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Abstract—We present model considerations for the process of the electron capture in energetic nonrelativstic
collisions of light atomic particles in the presence of a relatively weak low-frequency external electromagnetic
field. The field is treated as an elliptically polarized quantum single-mode field. Establishing validity of the
dipole approximation to the electron transfer (where the total momentum of all emitted or absorbed photons
can be well above the typical inneratomic momenta of an electron in the initial and final states) and neglecting
the Doppler and aberration effects, we give a fully nonrelativistic treatment for the field-assisted collisions and
show that the capture cross section is invariant with respect to the Galilean transformations. The model consid-
eration suggests that the field can substantially influence the capture dynamics and considerably change the cap-
ture cross section compared to the field-free collisions. This is especially the case if the “resonance” conditions
nω ≈ ±v2/2 are satisfied, with nω being the energy transferred to or absorbed from the electromagnetic field and
v  the collision velocity. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electron transfer in nonrelativistic atomic collisions
is one of the fundamental problems in atomic physics
that has been studied in great detail (see, e.g., [1–3] and
references therein). The inclusion of an electromag-
netic field into atomic collisions introduces new
degrees of freedom and can substantially influence the
collision process under certain conditions. A good
example of this influence is represented by the radiative
electron capture process, where the interaction with the
radiation field (with the QED photon vacuum field)
dramatically changes the capture process at high col-
lision velocities (see, e.g., [4, 5], and references
therein). The present paper is an attempt at a prelimi-
nary analysis of the possibility to influence the electron
transfer process in fast nonrelativistic collisions by an
external monochromatic electromagnetic field. We
consider nearly symmetrical collisions of light atomic
particles, Z2 ~ Z1 ~ 1, one of which (Z1) initially carries
an electron in the ground state and the second is a bare
nucleus. We assume that the collision velocity v  is suf-
ficiently high (v  @ Z1, 2), but not relativistic (v  ! c,
where c = 137 a.u. is the speed of light). The electro-
magnetic field is treated as a quantized single-mode
field that initially contains a definite number of pho-
tons. This field is assumed to be elliptically polarized in
general and to have a frequency that is small compared
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to the minimal excitation energy of the electron bound
in the ground state of the particles Z1 or Z2. The electric
field strength F0 is regarded to be small compared to a
typical inner atomic field in the ground state,

We also assume that there are no multiphoton reso-
nances between the ground and excited states in par-
ticles 1 and 2. Using such a low-frequency electro-
magnetic field, we pursue two objects. First, a rela-
tively weak low-frequency field allows us to avoid
substantial depleting of the electron ground states in
collision-free atomic systems. Second, as we see
below, the coupling of the electron to a field in the
charge exchange process is effectively stronger for
lower frequencies.

Atomic units are used throughout the paper unless
otherwise stated.

2. GENERAL CONSIDERATION

2.1. Preliminary Remarks

Since the collision velocity v  is supposed to be suf-
ficiently high, we can use the impact parameter approx-
imation. We assume that the electron is initially in the

Fat

Z1 2,

a0
2

---------∼ Z1 2,
3  a.u., F0 ! Fat.=
001 MAIK “Nauka/Interperiodica”



 

754

        

VO

 

Œ

 

TKIV, GRÜN

                          
ground state of particle 1 moving along a straight-line
trajectory

in an inertial reference frame K. Particle 1 collides with
particle 2, which rests at the origin in K. As the result of
the collision in the presence of an electromagnetic field,
the electron undergoes a transition into the ground state
of particle 2 simultaneously with the induced emission
or absorption of m = 0, 1, 2, … photons with the fre-
quency ω.

To describe the system consisting of an electron
subjected to the Coulomb interaction with two collid-
ing Coulomb centers and the electromagnetic field, we
take the Schrödinger equation

(1)

where |Ψ〉 is the state vector of the system,

(2)

is the Hamiltonian of the electron in the fields of the
two colliding centers, and

(3)

is the interaction of the electron with the electromag-
netic field, with  being the electron momentum oper-
ator. 

In the Schrödinger picture, the vector potential A of
the quantized electromagnetic field is given by (see,
e.g., [6, 7])

(4)

where

V is the quantization volume, k is the photon momen-
tum, and a and a† are the time-independent annihilation
and creation operators, respectively. We assume that
these operators are space-independent, i.e., that vector
potential (4) corresponds to a plane wave. 

The polarization vectors e and e* are given by

(5)

R t( ) b vt+=

i
∂
∂t
----- Ψ| 〉 Hcol H int Hph+ +( ) Ψ| 〉 ,=

Hcol –
∆
2
--- V1 r R t( )–( ) V2 r( )++=

H int
1
c
---A p̂ A2

2c2
--------+⋅=

p̂

A λ ea ik r⋅( ) e*a† ik r⋅–( )exp+exp( ),=

λ c
2π
ωV
--------,=

e e1 ξ /2( ) ie2 ξ /2( ),sin+cos=

e* e1 ξ /2( ) ie2 ξ /2( ),sin–cos=
JOURNAL OF EXPERIMENTAL
where e1 and e2 are the unit vectors that are perpendic-
ular to the photon momentum k and to each other,

The vectors e and e* satisfy the relations

(6)

The angle ξ determines the degree of polarization; e.g.,
ξ = 0 and ξ = π/2 correspond to the linear and circular
polarizations, respectively.

The term Hph in Eq. (1) describes the free electro-
magnetic field. It can be written as (see the Appendix)

(7)

where

and N is the initial number of photons in the electro-
magnetic field.

With the ansatz

(8)

the Schrödinger equation can be rewritten as

(9)

where

(10)

is independent of the electron coordinates. Equation (9)
can be simplified by noting two points. First, the term

represents a relativistic correction to the term ω(Na – N)
and must be dropped within the accuracy of the nonrel-
ativistic Schrödinger equation (see the Appendix). Sec-
ond, a typical change of the electron momentum in the
electron transfer process is approximately equal to v,
and the term k(Na – N) |Ψ1〉  can be roughly estimated
as

e1 2, k⋅ 0, e1 e2⋅ 0.= =

e e*⋅ 1,=

e e⋅ e* e*⋅ ξ .cos= =

Hph ω Na N–( ),=

Na
1
2
--- aa† a†a+( )=

Ψ| 〉 ik r Na N–( )⋅–( ) Ψ1| 〉 ,exp=

i
∂
∂t
----- Ψ1| 〉 Hcol Ψ1| 〉 k Na N–( ) 1

c
---A0– 

  p̂ Ψ1| 〉⋅–=

+
k2 Na N–( )2

2
----------------------------- ω Na N–( )

A0
2

2c2
--------++

 
 
 

Ψ1| 〉 ,

A0 λ ea e*a†+( )=

k2 Na N–( )2

2
----------------------------- ω Na N–( )

ω Na N–( )
2c2

--------------------------=

p̂

k Na N–( )p̂ Ψ1| 〉 k v Na N–( ) Ψ1| 〉⋅∼

∼ v
c
----ω Na N–( ) Ψ1| 〉 .
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INDUCED ELECTRON CAPTURE IN FIELD-ASSISTED ENERGETIC ATOMIC COLLISIONS 755
Thus, it is seen that the main effect of the term k(Na –
N) |Ψ1〉  is related to the Doppler shift. For nonrelativ-
istic collisions, one has

and the term k(Na – N) |Ψ1〉  can also be omitted. 

The Schrödinger equation then becomes

(11)

This equation looks like the Schrödinger equation with
the electromagnetic field taken in the dipole approxi-
mation. The remark about validity of the dipole approx-
imation for the field-assisted electron transfer may now
be in order. Although the momentum k = ω/c of one
low-frequency photon is much less than a typical elec-
tron momentum in the ground state of the target (p1 ~
Z1) or of the projectile (p2 ~ Z2), the total momentum of
all the emitted or absorbed photons can be well above
p1, 2 (e.g., in the “resonance” case, see Section 3). We
have analyzed the role of the photon momentum in the
field-assisted electron transfer. The analysis shows that
in general, the corrections to the capture cross section
due to the photon momentum are of the order of v e/c,
where v e ~ v  is a characteristic electron velocity in the
process. Thus, with the electron assumed to be nonrel-
ativistic in the capture process, the corrections to the
capture cross section are of minor importance.

Now, with the validity of the dipole approximation
for the electron transfer in nonrelativistic collisions
being established, we can neglect the Doppler and aber-
ration effects and give fully nonrelativistic treatment
for the field-assisted electron transfer process where
capture cross sections must be invariant under Galilean
transformations [4].

Equation (11) can be further simplified. To this end,
we consider the interaction term

in more detail. The quadratic terms a2 and a†2 can be
removed from the Schrödinger equation by applying
the so called “squeezed light” transformation (see, e.g.,
[8])

(12)

p̂

k Na N–( )p̂ Ψ1| 〉  ! ω Na N–( ) Ψ1| 〉

p̂

i
∂
∂t
----- Ψ1| 〉 Hcol Ψ1| 〉 1

c
---A0 p̂

A0
2

2c2
--------+⋅

 
 
 

Ψ1| 〉+=

+ ω Na N–( ) Ψ1| 〉 .

1

2c2
--------A0

2 λ2

2c2
-------- a2 a†2+( ) ξ aa† a†a+ +cos( )=

a b χ b† χ ,sinh+cosh=

a† b† χcosh b χ ,sinh+=
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where

(13)

The corresponding Schrödinger equation for the elec-
tron interacting with “b-photons” is given by

(14)

where

As follows from (13), the difference between “a-pho-
tons” and “b-photons” is determined by the factor

Since the quantization volume V of a laser field is usu-
ally of a macroscopic dimension, we can assume that

except for extremely low frequencies, which are not
considered in this paper. Therefore, we have χ ≈ 0 and
the difference becomes very small. Disregarding this
difference and replacing “b-photons” with “a-photons”
in Eq. (14), we finally arrive at the Schrödinger equa-
tion

(15)

In Eq. (15), we have also neglected the difference
between

and

which is inessential for the electron transfer process.

2χ( )tanh
λ2 ξcos

c2ω λ2+
---------------------.–=

i
∂
∂t
----- Ψ1| 〉 Hcol Ψ1| 〉 λ

c
--- ebb eb*b†+( ) p̂⋅+=

+ ωeffNb Ψ1| 〉 ,

Nb
1
2
--- b†b bb†+( ),=

ωeff ω λ2/c2+( )2 λ4/c4( ) ξcos
2

– .=

λ2

ωc2
---------

2π
Vω2
----------.=

2π
Vω2
---------- 0

i
∂
∂t
----- Ψ1| 〉 Hcol Ψ1| 〉 λ

c
--- ea e*a†+( ) p̂⋅+=

+ ω a†a N–( ) Ψ1| 〉 .

Na 0.5 aa† a†a+( ) a†a 1/2+= =

Na' a†a,=
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2.2. Model One-Center Electron
States Dressed by the Interaction

with an Electromagnetic Field

We regard the charge transfer process as an electron
transition, due to a collision with the second center,
between the field-dressed electron states centered on
the target and the projectile. We first consider the prob-
lem of an electron bound to center 1, which moves in
the frame K with a constant velocity v and is subjected
to the electromagnetic field. As shown in the previous
subsection, the corresponding Schrödinger equation
can be written as

(16)

where

(17)

is the Hamiltonian of the electron in the Coulomb field
of the moving center.

The state vector |Φi, 0〉  of the system consisting of
the electron bound to the moving center and of the elec-
tromagnetic field containing initially N photons with
the frequency ω can be expanded as

(18)

where the unknown time-dependent coefficients aα, n
must be determined. In (18), the summation runs over
all the electron states {ψα} including the continuum
and over the photon states with different numbers of
additional photons (n = 0, ±1, ±2, …). The states ψα of
the electron in the field of binding center 1 moving
along a straight-line trajectory

are given by

(19)

where (r) is the atomic state (discrete or continu-

ous) of the electron at center 1 with the energy .

i
∂
∂t
----- Φi 0,| 〉 Hat 1,

A0

c
------ p̂⋅ ω a†a N–( )+ + 

  Φi 0,| 〉 ,=

Hat 1, –
∆
2
--- V1 r R t( )–( )+=

Φi 0, t( )| 〉

=  inωt–( )aα n, t( )ψα t( ) N n+| 〉 ,exp
n

∑
α
∑

R t( ) b vt+=

ψα t( ) ϕα
1( ) r R t( )–( ) iεα

1( )t–( )exp=

× iv r⋅( ) i
v 2

2
------– t 

  ,expexp

ϕα
1( )

εα
1( )
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Inserting (18) in (16), we obtain the system of dif-
ferential equations for the unknown coefficients aα, n

(20)

Taking into account that

(21)

where

we obtain

(22)

The first and the second terms on the right-hand side
of (22) correspond to different mechanisms of the
dressing of the electron by the electromagnetic field.
The double sum in (22) describes the part of the elec-
tron dressing that is accompanied by transitions of the
electron into excited atomic states, including the
atomic continuum. In our model treatment this part of
the dressing will be neglected, which corresponds to
taking into account the so called diagonal dressing of
the electron by the electromagnetic field (see, e.g., [9]).
For the electron initially occupying the state ψ0, we
then have

(23)

Equations (23) together with the assumption that the
coupling between the electron and the electromagnetic
field is adiabatically switched on and off at t  –∞
and t  +∞, respectively, form the basis for our
model of the system “bound electron + electromagnetic
field.”

The matrix elements 〈N + n|A0|N + m〉  are not equal
to zero only for m = n ± 1. We assume the initial number
of photons N to be very large, N @ |n | and N @ |m |,
which corresponds to regarding the electromagnetic
field as an inexhaustible source and sink of photons.

i
daα n,

dt
------------ 1

c
--- aβ m, i n m–( )ωt( )exp

β
∑

m

∑=

× N n+〈 |A0 N m+| 〉 ψα〈 |p̂ ψβ| 〉 .

ψα〈 |p̂ ψβ| 〉 iωαβt( ) vδαβ ϕα〈 |p̂ ϕβ| 〉+( ),exp=

ωαβ εα
1( ) εβ

1( ),–=

i
daα n,

dt
------------ v

c
--- aα m, i n m–( )ωt( )exp

m

∑=

× N n+〈 |A0 N m+| 〉

+
1
c
--- aβ m, i n m–( )ω ωαβ+( )t( )exp

β α≠
∑

m

∑

× N n+〈 |A0 N m+| 〉 ϕα〈 |p̂ ϕβ| 〉 .

i
da0 n,

dt
------------ v

c
--- a0 m, i n m–( )ωt( ) N n+〈 |A0 N m+| 〉 ,exp

m

∑=

aα n, 0, α 0.≠=
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The matrix elements 〈N + n|A|N + n – 1〉 and 〈N + n|A|N +
n + 1〉  can then be assumed to be n-independent and the
system of equations (23) reduces to

(24)

In order to solve (24), it is convenient to rewrite the sca-
lar products e · v and e* · v as

(25)

where v 0 and φ are given by

(26)

Using the ansatz

(27)

where fn are time-independent, and inserting (27) in
(24), we obtain the simple relation

(28)

where

(29)

The absolute value of G determines the effective
strength of the electron-field coupling. Solutions of the
recurrence relation (28) are the Bessel functions (see,
e.g., [10]). Therefore,

(30)

where ζn denotes the Bessel functions Jn, Yn, ,

, or any linear combination thereof, and C is n-inde-
pendent.

Taking Eqs. (30) and (18) into account, we rewrite
the state vector as

(31)

In order to determine C and to find which of the Bessel
functions corresponds to ζn, we note that, in the
absence of the coupling between the electron and the
electromagnetic field,

i
da0 n,

dt
------------ λ N

c
------------ e va0 n 1+,⋅ iωt–( )exp(=

+ e* va0 n 1–, iωt( ) ).exp⋅

e v⋅ v 0 iφ( ),exp=

e* v⋅ v 0 iφ–( ),exp=

v 0 v e1⋅ ξ /2( )cos( )2 v e2 ξ /2( )sin⋅( )2+ ,=

φ
v e2⋅
v e1⋅
------------ ξ /2( )tan 

  .arctan=

a0 n, t( ) f n in ωt φ–( )( ),exp=

f n 1+ f n 1–+
2n
G
------ f n,=

G
2λv 0 N

cω
----------------------.–=

a0 n, Cζn G( ) in ωt φ–( )( ),exp=

Hn
1( )

Hn
2( )

Φi 0, t( )| 〉 Cψ0 t( ) ζn G( ) inφ–( ) N n+| 〉 .exp
n

∑=

A0 v⋅ 0,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the state vector has the form

(32)

Therefore, in order to recover Eq. (32) from Eq. (31),
one must set C = 1 and ζn(G) = Jn(G) in Eq. (31) with
Jn being the Bessel function of the first kind. Then the
initial state vector becomes

(33)

This state describes the moving electron bound in the
ground state and dressed by the interaction with the
electromagnetic field. Because the coupling to the field
is switched off as t  +∞, we have

Within the adopted approximation, therefore, if no col-
lision event occurs, the state vector of the “electron +
electromagnetic field” system is finally the same as ini-
tially. Thus, the dressing given by (33) does not result
in any electron transitions within the same center and
can therefore be viewed, to some extent, as “hidden.” It
is the collision that can display the hidden dressing.

The final state vector |Φf, m〉  describes the electron

(finally) bound in the ground state  of particle 2 and
the presence of N + m photons. Within the approxima-
tion similar to that used to obtain the state vector
|Φ(t)i, 0〉 , we obtain

(34)

2.3. Transition Amplitudes and Cross Sections

Because the collision velocity is supposed to be
sufficiently high, one can use perturbation theory in
the Coulomb interaction to consider the charge
exchange. It is known (see, e.g., [1–3] and references
therein) that the boundary-corrected Born approxima-
tion must be employed in order to obtain reliable
results for the nonradioactive charge exchange pro-
cesses in energetic Coulomb collisions. However, in
order to obtain just a preliminary insight into the field-
assisted electron capture, we use a simpler approach
that does not take the Coulomb-corrected boundary
conditions into account and corresponds to the OBK
approximation for the field-free collisions. It is known
(see, e.g., [1]) that for external field-free collisions, the
second-order terms (representing the Thomas double
scattering mechanism) are of minor practical impor-
tance for the total 1s-1s capture cross sections. For
example, in the 

Φi 0, t( )| 〉 ψ0 t( ) N| 〉 .=

Φi 0, t( )| 〉 ψ0 t( ) Jn G( ) inφ–( ) N n+| 〉 .exp
n

∑=

Φi 0, t +∞( )| 〉 ψ0 t( ).=

ϕ0
2( )

Φ f m,| 〉 ϕ 0
2( ) i ε0

2( ) mω+( )t–( ) N m+| 〉 .exp=

p H 1s( ) H 1s( ) p++
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collisions, the second-order term dominates over the
first-order one at v  * 80 a.u. At these velocities, how-
ever, the radiative electron capture dominates over the
nonradiative one and in addition, the relativistic effects
cannot be ignored in general. In the region of the colli-
sion velocities of interest in the present paper (v  ~ 10 a.u.),
the first-order term dominates in the 1s-1s cross sec-
tions. In this paper, we consider the 1s-1s capture and
use the first-order approach,1 which corresponds to the
first-order OBK (OBK1) approximation for the field-
free collisions (see, e.g., [12, 1]).

2.3.1. Prior form of the cross section of the field-
assisted charge exchange. In the first order of pertur-
bation theory in the prior form for the field-assisted
electron capture accompanied by the emission or
absorption of |n| photons, the transition amplitude is
given by

(35)

where V2 is the interaction of the electron with the sec-
ond center and the initial and final state vectors are
given by Eqs. (33) and (34), respectively.

After some straightforward but lengthy algebra, we
rewrite the transition amplitude as

(36)

where (q) and (q) are the Fourier transforms of

the respective wavefunctions (r) and (r).

The cross section for the electron transfer accompa-
nied by net emission (n > 0) or net absorption (n < 0)

1 It is worthwhile to note the following. The dominance of the
Thomas double scattering mechanism at asymptotically high
collision velocities is directly related to the kinematics of the
electron transfer in field-free collisions. However, it is not clear
how an external field can influence the kinematics. In [11], for
example, the radiative electron capture was considered as colli-
sion-stimulated transitions between one-center electron states
dressed by the interaction with the radiation field, i.e., using an
approach quite similar to that applied in the present paper.
In [11], the Coulomb interaction with the other center was taken
into account only in the first order. Nevertheless, this approach
was shown to yield the correct velocity dependence for the radi-
ative capture cross section σREC ~ 1/v 5 at asymptotically high
velocities.

aprior
n( ) i t Φ f n,〈 |V2 r( ) Φi 0,| 〉 ,d

∞–

∞

∫–=

aprior
n( ) 2πiJn G( ) d3qχ0

1( ) q v+( ) ε0
2( ) 0.5q2–( )∫=

× χ0
2( ) q( )( )* iq b⋅( )exp

× δ ε0
2( ) nω ε0

1( ) v 2

2
------ q v⋅+ +–+ 

  ,

χ0
1( ) χ0

2( )

ϕ0
1( ) ϕ0

2( )
JOURNAL OF EXPERIMENTAL
of |n| photons is given by

(37)

The charge exchange cross section is given by

(38)

In this equation, the different terms in the sum describe
the electron transfer cross sections accompanied by the
induced emission (n > 0) or absorption (n < 0) of differ-
ent numbers of photons. The term with n = 0 corre-
sponds to the capture where the net number of
exchanged photons is zero.

2.3.2. Post form of the cross section of the field-
assisted charge exchange. In the post form of the field-
assisted electron capture accompanied by the emission
or absorption of |n| photons, the transition amplitude is
represented by

(39)

where V1 is the interaction of the electron with the first
center and the initial and final state vectors are again
given by Eqs. (33) and (34), respectively.

In the post form, the cross sections for the electron
transfer are given by

(40)

and

(41)

2.3.3. Galilean invariance of the charge exchange
cross sections. One can give a slightly more general
treatment for the field-assisted electron transfer by con-
sidering the process in an inertial reference frame K'
where both particles 1 and 2 move with the respective
velocities v1 and v2 along the trajectories

σprior
n( ) d2b aprior

n( ) b( ) 2

∫ Jn
2 G( )16π4

v
-----------= =

× d3q χ0
1( ) q v+( ) 2 ε0

2( ) 0.5q2–( )2

∫
× χ0

2( ) q( ) 2δ ε0
2( ) nω ε0

1( )– v 2

2
------ q v⋅+ + + 

  .

σprior σprior
n( ) .

n

∑=

apost
n( ) t Φ f n,〈 |V1 r R t( )–( ) Φi 0,| 〉 ,d

∞–

∞

∫–=

σpost
n( ) d2b apost

n( ) b( ) 2

∫ Jn
2 G( )16π4

v
-----------= =

× d3q χ0
1( ) q v+( ) 2 ε0

1( ) 0.5 q v+( )2–( )2

∫
× χ0

2( ) q( ) 2δ ε0
2( ) nω ε0

1( )– v 2

2
------ q v⋅+ + + 

 

σpost σpost
n( ) .

n

∑=

R1 t( ) b1 v1t+=
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and

with

being the collision velocity. If one assumes that these
trajectories are parallel lines, the collision impact
parameter b is given simply by

In the frame K', the initial state vector is described by
Eq. (33) with the evident replacements b  b1 and
v  v1 in the electron state, in the argument of the
Bessel functions, and in the phase φ(=φ1). The final
state vector is now represented by

(42)

where (t), φ2, and G2 are given by Eqs. (19), (26)
and (29) with evident replacements. Because the elec-
tromagnetic field adiabatically switches off as t  ∞,
the state vector (42) asymptotically reduces to

(43)

which describes the electron and the field with N + m
photons that are decoupled as t  ∞.

Using Graf’s addition theorem for the Bessel func-
tions (see [10, p. 363, no. 9.1.79]), one can show that
this more general treatment yields cross sections that
depend only on v = v1 – v2 and are exactly equal to
those given by Eqs. (37) and (38) or Eqs. (40) and (41).

The derivation briefly outlined above stresses the
Galilean invariance of the cross sections.

3. RESULTS AND DISCUSSION

Analyzing the form of dressed state (33), transition
amplitude (36), and cross sections (37) and (40), one
can conclude that the effective strength of the coupling
between the electron and the electromagnetic field
occurring in the process of the electron transfer is deter-
mined by the factor |G |. The effective strength of this
coupling is determined not only by the field parameters
themselves but also by the change in the electron veloc-
ity. For high collision velocities, this coupling can
therefore be strong even for relatively weak electro-
magnetic fields.

In what follows, we consider the electromagnetic
field to be linearly polarized although similar conclu-
sions can also be drawn for a more general case of the

R2 t( ) b2 v2t,+=

v v1 v2–=

b b1 b2.–=

Φ f m, t( )| 〉 ψ0
2( ) t( ) imωt–( )exp=

× Jm'
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ψ0
2( )

Φ f m, t( )| 〉 ψ0
2( ) t( ) imωt–( ) N m+| 〉 ,exp=
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elliptical polarization. For a linearly polarized field, the
coupling factor reduces to

where

is the electric component of the electromagnetic field.

3.1. Weak Coupling
with the Electromagnetic Field

If the factor |G| is much smaller than unity, the term
with n = 0 dominates in the total charge exchange cross
section. For n ≠ 0, only the terms with n ± 1 in (38) (or
(41)) can reach noticeable values. In this case,

(44)

where

(45)

is the cross section of the nonradiative charge exchange
obtained in the OBK1 approximation.

In accordance with (37), cross sections for the
charge exchange accompanied by the emission and
absorption of one photon are given by

(46)

Because ω is small, the terms ±ω do not play an essen-
tial role in the integrands in Eq. (46) and can be
dropped. Therefore, the processes accompanied by the
emission and the absorption of one photon give practi-
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cally identical contributions to the capture cross section
and are related to the OBK1 cross section (45) by

(47)

From (44) and (47), it follows that

(48)

i.e., that the total electron transfer is only very slightly
influenced by the field in the case of a weak coupling.

We note that, for a weak coupling, the post form of
the cross section (Eqs. (40) and (41)) yields results that
are identical to (45) and (47).

3.2. Strong Coupling 
with the Electromagnetic Field

The ratio between the contributions of the charge
transfer processes involving different numbers of emit-
ted or absorbed photons to the total capture cross sec-
tion becomes entirely different in the “intermediate”
(|F0 · v|/ω2 * 1) and, especially, in the strong-coupling
(|F0 · v|/ω2 @ 1) limits. For a strong coupling, J0(x) ! 1
for x @ 1, and the charge transfer process without net
emission or absorption of photons is therefore strongly
suppressed compared to the weak coupling limit. The
main contribution to the total charge exchange cross
section is now due to the electron transfer accompanied
by the absorption and emission of large numbers of
photons. It follows from the properties of the Bessel
function Jn(x) [10, 13] that in order to obtain a notice-
able contribution of the |n|-photon process, x must be at
least of the order of |n|. Therefore, one can estimate that
the maximum number of photons involved in the field-
assisted charge exchange process is of the order of
|F0 · v|/ω2.

“Resonance” conditions, the post-prior discrep-
ancy, and the correspondence to different physical
mechanisms of the charge exchange. The factors

 and  entering the integrands in
(37) and (40) imply that at high velocities, each inte-
grand (excluding the delta-function) has two peaks cen-
tered around q = –v and q = 0. Therefore, the integrals
over the momentum transfer in (37) and (40) can be rel-
atively large only if the argument of the delta-function
can be equal to zero at q ≈ –v or q ≈ 0. This can occur
if there is a considerable probability for many-photon
processes where the numbers |n | of the photons
involved satisfy the “resonance” conditions given by

(49)
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for the emission and by

(50)

for the absorption. 
As in the radiative electron transfer, the resonance

condition for the charge exchange stimulated by emis-
sion looks more transparent if we view the charge
exchange in the rest frame of the projectile: the electron

with the initial energy  + v 2/2 undergoes a transi-
tion to the bound state of the projectile with the energy

, transferring the energy difference to the electro-
magnetic field by means of photon emission. On the
other hand, the resonance condition for the electron
transfer accompanied by absorption looks more natural
if we take the target frame as a reference frame: the

electron with the initial energy  undergoes a transi-
tion to the bound state of the moving projectile, where

its energy is equal to  + v 2/2, absorbing the energy
difference from the electromagnetic field. If the reso-
nance conditions are satisfied, the collision kinematics
for the electron transfer can be substantially improved
in the same way as for the radiative electron capture,
where only one high-energy photon with the frequency
ω ≈ v 2/2 is spontaneously emitted.

Analyzing the strong coupling case, we encounter a
difficulty related to the fact that the charge exchange
cross sections obtained in the prior and post forms
become drastically different. The integrands in (37) and
(40) are strictly equal to each other only for n = 0 and
approximately equal for low |n |. As |n | increases, the
difference between the integrands in (37) and (40)
increases. This difference becomes especially large
when the resonance conditions are satisfied. The latter
case is of a particular interest, however, and the rest of
this section is mainly devoted to the analysis of the res-
onance case.

In the integrand in (37) (excluding the delta-func-
tion), the ratio between the peaks at q ≈ –v and q ≈ 0 is
proportional to v 4, which means that the peak at q ≈ 0
is negligible compared to the one at q ≈ –v. This results
in the conclusion that in accordance with (37), the elec-
tron capture is favored if it is accompanied by the emis-
sion of a large number of photons.

On the other hand, in the integrand in (40) (exclud-
ing the delta-function), the ratio of the peak at q ≈ –v to
that at q ≈ 0 is proportional to v –4, and the peak at q ≈
–v is therefore negligible compared to the one at q ≈ 0.
This means that in accordance with (40), the electron
capture is favored if it is accompanied by the absorption
of a large number of photons.

As a first example, we now consider the capture
cross sections for the 
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2
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collisions assisted by the electromagnetic field with
F0 = 2.15 × 10–2 a.u. and ω = 0.117 eV = 4.3 × 10–3 a.u.
at the collision velocity v  = 10 a.u. In this and all other
examples, we assume that F0 is parallel (or antiparallel)
to v. Further, we take all the reported values of the cross
sections to be multiplied by the factor 0.3, which is
known to bring the OBK1 cross sections to a reason-
able agreement with experimental data at intermedi-
ately high collision velocities. At the collision velocity
v  = 10 a.u., the cross section for the nonradiative cap-
ture in electromagnetic field-free collisions calculated
in the OBK1 approximation (and multiplied by 0.3) is
equal to σOBK1 = 1.14 b. 

Using the prior form of the cross sections, we obtain

σ(0) = 6.2 × 10–5 b,  = 6.4 × 10–2 b,

 = 38.24 b, and  = 367.3 b for

the collisions assisted by the electromagnetic field.
Adding the higher-n terms does not noticeably change
the prior cross section.2 In accordance with the prior
form, the main contribution comes from the terms with
10 000 < n < 12 000 and the contribution from negative
n is negligible. 

Using the post form of the cross sections, we have

for the same collisions. In accordance with the post
form, the main contribution is given by the terms with
–12 000 < n < –10 000 and positive n contribute negli-
gibly. Although the prior and the post forms yield the
same transfer cross sections for symmetrical collisions,
the physics that they describe is totally different. The
prior form stresses the electron transfer due to emission
(the induced multiphoton bremsstrahlung) and the post
form supports the transfer process due to absorption
(the multiphoton ionization).

As further examples, we consider the

2 Although the numbers of the emitted or absorbed photons are
very large, simple estimates show that they are still much smaller
than the huge number of photons available in the “coherence”
volume Vc ~ λ3 = (2πc/ω)3 of the field with F0 = 2.15 × 10–2 a.u.

and ω = 4.3 × 10–3 a.u. Therefore, the assumption that the field is
an inexhaustible source and sink of photons, which has been used
in deriving Eq. (33), is not violated.
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1000∑
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and

collisions at v  = 10 a.u. assisted by the electromagnetic
field with the same parameters as in the first example.
For the field-free collisions, one has σOBK1 = 27.5 b for
both colliding systems. For the field-assisted collisions,
in accordance with the prior form, we obtain the respec-
tive cross section σprior = 304 b and σprior = 9280 b for
the p–He+ and He2+–H collisions. In both reactions, in
the prior form, the terms with negative n (absorption)
contribute negligibly. In accordance with the post form,
we have σpost = 9280 b and σpost = 304 b for the p–He+

and He2+–H collisions, respectively, and we find that
the terms with positive n (emission) have a negligible
impact on the cross section. Analyzing Eqs. (37) and
(40), we conclude that the above correspondence
between the prior and the post cross sections is a partic-
ular case of the relation

, (51)

which holds for the capture cross sections obtained in
the prior and post forms.

Comparing the capture cross sections in the above
three examples, we see that

(52)

with ν ≈ 5, while the dependence of the cross section on
Z1 is relatively weak. On the other hand,

(53)

with µ ≈ 5 and the dependence of the cross section on
Z2 is relatively weak. Our calculations for other “target-
projectile” pairs show similar dependences on Z1 and Z2

It is worthwhile to note that the dependence ∝  on the
charge of the target nucleus is a signature of the photo-

effect (see, e.g., [6]), while the dependence ∝  on the
charge of the projectile is a signature of two closely
related processes: the radiative recombination and the
radiative electron capture [2].

In a rigorous theory, evidently, there must be no dis-
crepancy between cross sections calculated in the prior
and post forms. It is also clear that the large discrepancy
between the prior and post forms in our case originates
from the fact that the dressed states (33) and (34) do not
exactly represent the system “electron in the field of a
nucleus + field.”3 One way to deal with the difficulty

3 The problem of the post–prior discrepancy is also known in the
theory of the field-free electron transfer based on the eikonal
approximation, where additional physical arguments are neces-
sary in order to decide which form is more suitable (see, e.g., [1]
and references therein).

He2+ H He+ p++

σpost Z1 Z2,( ) σprior= Z2 Z1,( )

σprior Z2
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σpost Z1
µ∝
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is to try to remove the prior–post discrepancy by
implementing exact solutions for the dressed states,
which would yield identical results in both forms.
However, this is very difficult to achieve and, in addi-
tion, one can then encounter the problem related to the
overcomplete representation of the electron Hilbert
space by two complete sets of states centered on the
target and on the projectile. We choose another way
instead. In what follows, we argue that one can still
obtain physically reasonable results with the approxi-
mate dressed states (33) and (34) keeping in mind that
with these states, the prior and post forms of the tran-
sition amplitude describe the electron transfer due to
different physical processes. To analyze this, we first
consider a collision-free system consisting of an atom
that is initially in the ground state and a low-frequency
relatively weak electromagnetic field. We are inter-
ested in ionization probability due to the interaction
with the field and, in particular, in the probability of
finally finding the electron in high-energy continuum

states { }. 

For a high-energy continuum state, we can neglect
its distortion due to the interaction with the target
nucleus and write the state in the presence of the elec-
tromagnetic field as

(54)

For the amplitude of transitions from the ground state

 to the high-energy state, we then have

(55)

For high |p|, the magnitude  is very small. Still, in
accordance with (55) and with the properties of the
Bessel functions, we can expect the continuum states to
be populated with a small but nonzero probability for
all |p| up to

i.e., up to

We now assume that the atom collides with a projec-
tile having the velocity –v. Because the ground state of
the projectile can be represented by the continuum
states of the target and the momentum of the ionized
electron matches the momenta of the electron bound in
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the moving projectile, we see that if pmax * v, the
atomic electron can finally be captured by the projectile
as the result of ionization. It is now not difficult to
see that using states (33) and (34) (or their counter-
parts in the rest frame of the target or in any other
reference frame) and applying the post form with the
interaction V1 amounts to calculating the contribu-
tion to the electron transfer that is represented by the
part of the target multiphoton ionization4 where the
final electron states in the continuum of the target
match the ground state of the projectile. For v  @ Z2,
the high-energy continuum states with p ≈ –v can
easily “cover” the ground state of any light projectile,
independently of Z2. Therefore, in applying the post
form, we see that the capture cross section is almost
independent of Z2.

A similar analysis can also be performed for the
contribution to the charge transfer described by the
prior form of the transition amplitude. We consider
a system consisting of a nucleus at rest (representing
the projectile in its rest frame) and an incoming free
electron moving in the presence of the electromag-
netic field. The initial state of the electron with
the momentum q is given by an expression similar
to (54),

(56)

As a result of the collision with the nucleus, the elec-
tron can emit photons (the induced multiphoton brems-
strahlung) and undergo a transition to another state.
One of the possible final states of the electron can be

the ground state of the projectile, . The amplitude
of this transition is given by

(57)

Note that the state of the electron initially bound in the
target moving with the velocity v in the rest frame of
the projectile can be represented by a superposition of
states given by Eq. (56). Taking that into account and
comparing Eq. (57) with the transition amplitude in the
prior form, Eqs. (35) and (36), we arrive at the follow-
ing conclusion. Using states (33) and (34) (or their
counterparts in any other reference frame) and applying
the prior form with the interaction V2 amounts to calcu-
lating the contribution to the electron transfer that is
due to that part of the induced multiphoton brems-
strahlung of the electron, initially bound in the ground

4 In the case under consideration, F0/ω @ 1, we note that the ion-
ization of an atom by a classical electromagnetic field with
F0/ω @ 1 can be viewed as a tunneling effect [14].
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state of the target, where the final electron state is the
ground state of the projectile.

The radiative electron capture that proceeds with a
spontaneous emission of one high-energy photon is
known to be weakly dependent on the charge of the
target, Z1, provided Z1 ! v, where v  is the collision
velocity [2]. According to our calculations, a similar
situation is encountered in the case under consider-
ation where the electron capture proceeds with the
induced emission of a large amount of low-frequency
photons.

Summarizing the above analysis, we can make the
following important conclusions. First, for the field-
assisted electron capture in the strong-coupling case,
one can still use the approximate state vectors given by
Eqs. (33) and (34) in order to describe the capture. Sec-
ond, using these approximate states, one must keep in
mind that the prior and post forms of the capture cross
sections are drastically different in general. Third, this
difference is related to the fact that in the adopted
approximation for the dressed electron states, the prior
and post forms describe the electron transfer due to dif-
ferent physical processes: the multiphoton ionization
and the induced multiphoton bremsstrahlung. Fourth,
the total cross section for the electron capture in the
case of a strong coupling with the electromagnetic field
can be evaluated as the sum of cross sections corre-
sponding to different physical processes mentioned
above,

(58)

where  and  are given by Eqs. (37) and (40),
respectively, and describe the electron transfer due to
the induced bremsstrahlung and photoionization, and

is negligible.
We have already mentioned that the problem of a

large prior post discrepancy is also known in eikonal
calculations for the field-free electron capture, where
additional physical arguments must be used in order to
decide which form should be applied. The same prob-
lem is encountered in first-order calculations for the
electron capture in field-free collisions with multielec-
tron targets. In the latter case, however, it is very diffi-
cult to decide which form should be given preference
and sometimes one introduces the average transition
amplitude
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(see, e.g., [15]). This is different from the situation with
the field-assisted collisions in the strong-coupling case,
where one can argue that the post and prior forms cor-
respond to different electron transfer channels that do
not interfere and that the capture cross section must be
evaluated in accordance with Eq. (58). One can add that

because of the different dependences σprior ∝   and

σpost ∝  , only one of these forms is of practical
importance for calculations of the electron capture in
asymmetric field-assisted collisions, where the ratio
Z2/Z1 differs considerably from unity.

To conclude this discussion, we briefly compare our
calculations for the electron transfer in collisions
assisted by an external field to the radiative electron
capture (REC) [11]. In the latter process, the resonance
condition for the electron transfer ωsp ~ v 2/2 is satisfied
due to a spontaneous emission of one high-energy pho-
ton and, naturally, the electron transfer with a photon
absorption is not possible because there are no photons
in the initial state of the free radiation field. In [11], the
REC was considered as the collision-stimulated transi-
tions between one-center electron states dressed by the
interaction with the radiation field. It was found in [11]
that the prior form of the REC cross section obtained
within the approach that is obviously very similar to
that employed here yields an excellent agreement with
the well established results for the radiative capture
cross section. However, the post form of the theory in
[11] leads to REC cross sections that are smaller by
many orders of magnitude. The reason is as follows.
With the approximate one-center electron states
dressed by the free radiation field as in [11], the prior
and post forms are “responsible” (similarly to the
present approach) for the electron transfer due to
bremsstrahlung and photoionization, respectively.
However, the coupling to the free radiation field, which
can produce spontaneous bremsstranhlung, cannot
result in photoionization.

4. CONCLUSIONS

The electron transfer process in fast collisions
assisted by a relatively weak low-frequency electro-
magnetic field can represent an interesting example of
an effectively strong coupling between the electron
and the electromagnetic field. A key consequence of
the strong electron-field coupling in the charge
exchange collisions is the emission and absorption of
a very large number of photons that can substantially
improve the electron transfer kinematics under certain
conditions.

The effect of a low-frequency electromagnetic
field on the electron transfer process discussed in the
present paper is closely related to some well-studied
processes. We have already discussed the connection
with the multiphoton ionization and the induced mul-
tiphoton bremsstrahlung. In addition, we now note the

Z2
5

Z1
5
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relation to a particular case of the induced bremsstrahl-
ung–free electron–atom collisions in a laser field. Free
electron-atom collisions assisted by the electromag-
netic field were studied in some detail, mainly theoret-
ically (see, e.g., [16] for a review). One of the conclu-
sions of these studies that is relevant to the topic of the
present paper is that the external electromagnetic field
can substantially increase the magnitude of the scat-
tering cross section if there are some quasi-stationary
states that can be resonantly populated during the
scattering via the stimulated emission or absorption of
photons.

The present analysis suggests that the capture cross
sections can be substantially influenced by the electro-
magnetic field. In addition, one can also expect the
effect of the field to be reflected by noticeable changes
in the spectra of high-energy photons that are spontane-
ously emitted during the radiative electron capture in
field-assisted collisions.
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APPENDIX

To derive a suitable form of the nonrelativistic
Schrödinger equation for the electron interacting with a
quantized electromagnetic field, we start with the Dirac
equation

(A.1)

where W describes the Coulomb interaction with the
nuclei and a and β are the Dirac matrices. Decompos-
ing |Ψ〉 into major and minor components denoted by ϕ
and χ respectively, we rewrite Eq. (A.1) as

(A.2)

where s are the Pauli spin matrices. A common way to
derive the nonrelativistic equation from a relativistic
one is to assume that all other energies in the system are
much less than the electron rest energy mec2. In our
case, this assumption does not hold because, as simple
estimates easily show, even for a very weak electro-
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magnetic field occupying a macroscopic volume, its
total energy is much larger than the electron rest energy.
It is clear, however, that the relevant quantity is the
amount of the electromagnetic energy that can be trans-
ferred between the electromagnetic field and the elec-
tron, rather than the total amount of the field energy.
Making the ansatz

(A.3)

where N is the initial number of photons in the quantum
field, we remove the irrelevant part of the total field
energy and obtain

(A.4)

Assuming that the energy transfer between the electro-
magnetic field and the electron is nonrelativistic,

we can now approximate

Inserting this expression into the first equation in (A.4)
and neglecting the spin term, we obtain Schrödinger
equation (1) for the major component.
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NUCLEI, PARTICLES, 
AND THEIR INTERACTION
Analysis of Anisotropy of Cosmic Rays with the Energy
of about 1017 eV by Yakutsk EAS Array Data
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Abstract—A harmonic analysis of the directions of arrival of cosmic-ray particles with an energy of about
1017 eV in the vicinity of the registration threshold of the Yakutsk extensive air showers (EAS) array is given.
A method for determining the contribution of inhomogeneous observation conditions and seasonal variations
of the frequency of extensive air showers to the observed anisotropy is suggested. Taking into account these
factors results in a considerable decrease of the amplitude characterizing the degree of anisotropy of cosmic-
ray primaries. The amplitude of the first harmonic with respect to the right ascension is (0.45 ± 0.55)%, which
shows that no probably significant anisotropy of the primary radiation is observed at 1017 eV. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Determining the degree of anisotropy of the primary
flux and its dependence on the energy E0 is important
for solving the problem of cosmic ray origin. At ener-
gies of 1017 eV or higher, the characteristics of the cos-
mic radiation are studied with the help of installations
that register extensive air showers (EAS arrays) con-
sisting of secondary particles generated when the pri-
mary particles with these energy enter the Earth’s atmo-
sphere. One of the main methods used to estimate the
anisotropy on EAS arrays is the harmonic analysis of
the distribution of the directions of the arrival of show-
ers with respect to the right ascension [1]. In our previ-
ous work [2], we studied the data registered at the
Yakutsk array [3] over the period 1982–1995 in the
energy range of 3 × 1016 < E0 < 3 × 1017 eV with respect
to the right ascension and obtained a probably signifi-
cant amplitude of the first harmonic r1 = (1.35 ± 0.36)%
and the phase ϕ1 = 123° ± 15°. Earlier, in the study [4]
performed on the Haverah Park EAS array in approxi-
mately the same range of energies, the value r1 = (1.7 ±
0.4)% was obtained; however, the phase ϕ1 = 218° ±
14° is considerably different from the results obtained
in [2]. It is seen from these data that the amplitude
observed is small for this energy, and one must take into
account the contribution of the equipment and the
atmospheric conditions in order to estimate the true
anisotropy of cosmic rays. In our previous work [2], we
did not analyze the effect of seasonal changes of the
atmospheric conditions.

In the process of the long-term operation of the EAS
array, the registration of events is sometimes inter-
rupted due to technical and technological reasons; in
addition, the effective area of event registration can
1063-7761/01/9205- $21.00 © 20766
vary due to the temporal failure of certain detectors.
This can result in an inhomogeneous sky survey at dif-
ferent time instants of both the solar and sidereal day.
In addition, for the Yakutsk and similar arrays, the
energy E0 ≈ 1017 eV is the threshold one and atmo-
spheric conditions, which have diurnal and seasonal
variations, influence the frequency of the shower event
registration. Since the direction survey conditions at
different right ascensions depend on time (if the array
is not on a pole), the inhomogeneity of the sky survey
and variation of the atmospheric conditions can make a
considerable contribution to measurements, which dis-
torts the true anisotropy of the primary radiation. The
degree of influence on the results of the analysis can be
different in different experiments; it depends on a vari-
ety of factors, such as climatic conditions, the design of
the trigger array (its effective area depends on temper-
ature and pressure), criteria of event selection, possible
systematic errors in determining the parameters and
energy of showers under various atmospheric condi-
tions, and the frequency of short-term switching off of
the array at some moments of the day. For illustration
purposes, Fig. 1 presents the calculation results of the
dependence of the ratio of the first harmonic amplitude
for the right ascension to the amplitude for sidereal
time on the maximal zenith angle of the events at the
latitude of the Yakutsk array. This dependence is an
artifact arising due to observation conditions. It was
assumed in the calculation that the showers registered
are uniformly distributed over the sphere.

In order to investigate the anisotropy of cosmic rays
by the data obtained on installations that do not measure
the direction of arrival of individual events (E0 < 1014 eV),
the distribution in sidereal time is analyzed. To take into
001 MAIK “Nauka/Interperiodica”
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account the influence of the variations caused by diur-
nal and seasonal cycles on the frequency of the events,
the distribution of the same events in “antisidereal”
time is analyzed using the method suggested in [5]. The
same method can be also applied for the analysis of air
showers when the direction of arrival is determined
with poor accuracy or is not determined at all because
of fluctuations of the time of arrival of different parti-
cles of the shower, which is the case in the vicinity of
the registration threshold. At the same time, the data on
the contribution of seasonal variations determined for
antisidereal time can be used to estimate the degree of
distortion of the anisotropy vector with respect to the
right ascension. In this study, we use the analysis by
sidereal time for the data obtained on the Yakutsk EAS
array in the vicinity of E = 1017 eV and compare the
results with those obtained with respect to the right
ascension for the same sample. In the process, we ana-
lyze how the factors mentioned above (inhomoge-
neous sky survey and atmospheric variations) affect
the results obtained.

2. SELECTION OF EVENTS

The Yakutsk EAS array selects a shower when an
event is registered simultaneously by three neighboring
stations forming a triangle. The selection scheme is
based on two types of station configurations. The first
one consists of stations located at the nodes of a trian-
gular grid with a side of 500 m (Trigger-500); the other
one is similar, but the side is 1000 m (Trigger-1000). In
the first case, the registration threshold corresponds to
showers with the energy of (3–5) × 1016 eV; in the sec-
ond case, the energy is about 1018. The data obtained is
stored in primary storage devices, different at different
periods of time. Until summer 1995, the data was
stored in a working database after some preliminary
processing. The data was stored in the database if the
density of the shower particles on three stations
exceeded a certain threshold. The selection criteria
were slightly different at different periods of time.
Since autumn 1982 until summer 1995, the threshold
density was set to 0.8 m–2 (more than three particles per
the entire area of the counters at the station). Beginning
with summer 1995, the processing and storage are
organized in such a way that all registered events can be
used for the analysis.

In this paper, as well as in the previous one [2], we
analyze the data obtained during the period from 1982
to 1995 in the range of energies from 3 × 1016 eV to 3 ×
1017 eV with the azimuth angle θ < 60° that satisfied the
uniform criteria, i.e., if three stations registered the
event with a density more than 0.8 m–2. For every year,
the data obtained within the period November–May
were analyzed. However, in contrast to [2], for each
period the effective area of the array was used, which
was determined by reliably operating observation sta-
tions. From the entire array of data, these criteria are
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
satisfied by 135 566 events, which is 10% less than
in [2]. The average energy of the showers selected is
1.6 × 1017 eV (the most frequently registered energy is
1017 eV); the average zenith angle is 24.2°. For this
sample, the harmonic analysis of the distribution of
events was performed with respect to solar, sidereal,
and antisidereal time, as well as with respect to the right
ascension.

3. TAKING INTO ACCOUNT INHOMOGENEITY 
OF THE SKY SURVEY

Most often, the array is switched off due to technical
and technological reasons in the daytime; thus, these
periods of time are inhomogeneously distributed across
the day. The inhomogeneity of sky survey is also
affected by variations of the effective area caused by
temporary failure of certain observation stations. At the
Yakutsk EAS array, a list of time moments at which
registration was switched off and on is maintained, and
information on stations actually operating at every
instance of time is registered. Any change in the config-
uration of the trigger system is fixed as the beginning of
a new period even if the array was not switched off. For
showers registered in the vicinity of the threshold, the
effective area is proportional to the number of triangles
in the trigger-500 that actually register the events. In
order to determine the degree of relative inhomogeneity
of the sky survey over the whole period of observation,
the total number of operating trigger triangles was
counted for every minute of each day. The values
obtained were normalized by the average value over all
minutes. For the same periods with respect to solar
time, similar distributions over minutes with respect to
sidereal and antisidereal time can be easily obtained.
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Fig. 1. Dependence of the ratio of the amplitude for the right
ascension rRA to the amplitude for sidereal time rSid, which
is of artificial origin, on the maximal zenith angle θmax for
the events used in the analysis for the latitude of the Yakutsk
EAS array. It was assumed in the calculation that the show-
ers registered are uniformly distributed over the sphere.
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Inhomogeneity of the sky survey results in different
observation conditions for different magnitudes of the
right ascension, which depend on the distribution of the
events over the zenith angle and the latitude of the
array. In order to determine the sky observation condi-
tions with respect to the right ascension, we determined
the zenith–angular distribution of the showers. It is pre-
sented in Fig. 2. The contribution to the narrow interval
of the RA from the part of the sky that is visible by the
array at the fixed zenith angle θ at the fixed value of the

0

N, 103

θ, deg
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Fig. 2. Distribution of the showers in the sample under study
over the zenith angle θ. The solid curve corresponds to the
uniform distribution over the celestial sphere.
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sidereal time tS is proportional to the number of events
in the zenith–angular distribution of the showers multi-
plied by the value corresponding to tS in the relative dis-
tribution of the sky survey with respect to the sidereal
time. In order to obtain the complete distribution of the
sky survey, these contributions were summed over all
azimuth angles from 0 to 2π (assuming that they are
distributed uniformly), as well as over all θ and tS.

To take into account the inhomogeneity of the sky
survey when determining the anisotropy vector param-
eters, the number of events in a certain minute-long
interval or right ascension was normalized by the corre-
sponding value in the relative distribution of the obser-
vation conditions.

The first two columns of Table 1 present the param-
eters of the vectors of the first harmonic characterizing
the relative distributions of the observation conditions
for different variables obtained for the operational
periods of the array over the entire period of the sam-
ple analyzed. It is seen that the inhomogeneity is
rather large, and the amplitude is 1.74% even for the
right ascension. If the same distributions are consid-
ered for separate years, variations both in the ampli-
tude and phase are observed. In different years, the
number of trigger triangles was different; thus, we use
individual corrections for every year in the subsequent
analysis.
Table 1.  Parameters of the first harmonic for various vectors (in total, 135566 events)

Vector
Sky survey conditions

Distribution of events

Without regard to survey With regard to survey

r, % ϕ, h r, % ϕ, h r, % ϕ, h

Solar 4.05 22.78 6.92 ± 0.39 22.75 ± 0.22 2.72 ± 0.39 22.48 ± 0.55

Sidereal 2.30 8.98 3.93 ± 0.39 9.00 ± 0.38 1.62 ± 0.39 10.40 ± 0.92

Antisidereal 2.15 13.34 3.50 ± 0.39 12.44 ± 0.43 1.41 ± 0.39 10.82 ± 1.06

RA 1.74 8.11 2.89 ± 0.39 9.35 ± 0.52 1.36 ± 0.39 10.97 ± 1.10

Sidereal–VAR 0.43 ± 0.55 8.51 ± 4.89 0.24 ± 0.55 11.96 ± 8.75

RA–VAR(RA) 0.45 ± 0.55 12.79 ± 4.67

Table 2.  Variation of the parameters of the first harmonic for various vectors in different seasons

Months Number of 
events

Solar vector Sidereal vector Vector with respect
to right accension

r, % ϕ, h ϕS, h r, % ϕ, h r, % ϕ, h

11 14832 5.20 21.35 1.0 4.93 1.12 2.60 1.40

12–01 37605 1.78 1.18 7.9 2.00 8.17 1.12 6.08

02–03 40039 3.15 22.09 8.7 2.72 9.16 2.21 10.12

04–05 43090 3.07 22.66 13.3 3.02 13.03 2.83 12.74
 AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001
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4. RESULTS OF THE ANALYSIS

The amplitudes (r) in percent and phases (ϕ) in
hours for the vectors of the first harmonic with respect
to the solar, sidereal, and antisidereal time, and the right
ascension are presented in Table 1 both with and with-
out regard to the inhomogeneity of the sky survey.
These data show that, first, the inhomogeneity of obser-
vation conditions is considerably different for different
time intervals of the day (.4%), and the amplitude of
all variables substantially decreases when the inhomo-
geneity is taken into account. Second, even with regard
to the inhomogeneity, a significant anisotropy with the
amplitude (2.72 ± 0.39)% with respect to the solar time
remains, as well as a substantial influence of seasonal
variations, which is seen from the amplitude of the anti-
sidereal vector (1.41 ± 0.39)%.

We denote the vector that appears due to seasonal
variations and contributes to the result observed with
respect to the sidereal time by VAR. It is mirror sym-
metric to the antisidereal vector with respect to the
solar one; i.e., it equals the antisidereal vector in abso-
lute value and has the phase

where ϕSol is the phase of the solar vector and ϕAnti is
the phase of the antisidereal vector. The next to last row
in Table 1 shows an estimate of the anisotropy of the
primary radiation after subtracting the vector VAR. The
amplitude obtained is less than σ both with and without
regard to the inhomogeneity of the sky survey. Figure 3
shows the anisotropy vectors obtained with regard to
the influence of the inhomogeneity of the sky survey.

The contribution of seasonal variations to the sum-
mary vector with respect to the right ascension
VAR(RA) can be estimated similarly to the calculation
of the relative distribution of the sky survey with
respect to the right ascension. The calculation is based
on the same experimental distribution of the showers
over the zenith angle, and the weight of the inhomoge-
neity with respect to sidereal time at the instance tS is
specified on the basis of the parameters obtained for the
vector VAR. The last row of Table 1 shows the results
for the right ascension obtained after subtracting the
calculated atmospheric component. The amplitude is
less than σ, as is the case in the analysis with respect to
sidereal time.

In addition, we performed a similar analysis of the
same sample for certain months of the year. The results
are presented in Table 2, where the observed parame-
ters are given with regard to the inhomogeneity of the
sky survey. In the column ϕS, the phase in terms of the
sidereal time is given for the solar vector, which corre-
sponds to the solar phase at the middle of the season. It
is seen from this table that both the phase of the sidereal
vector and the one with respect to the right ascension
for different seasons vary with variation of the solar
vector direction in celestial coordinates. This fact con-

2ϕSol ϕAnti,–
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
firms that the main contribution to the amplitude with
respect to the right ascension is caused by seasonal vari-
ations of atmospheric origin. After all the relevant fac-
tors are taken into account, no statistically significant
anisotropy of the primary radiation at the energy of
1017 eV is observed for the sample under study. In our
previous work [2], we did not take into account the con-
tribution of the atmospheric variations, which is
responsible for the significant amplitude obtained.

At the present time, we are revising the list of oper-
ational periods of the Yakutsk EAS array for recent
years and are restoring all the data registered up to 1995
that were not written to the working database because
of the selection criteria. This will enable us to continue
the detailed analysis of the complete data array contain-
ing records of more than 106 events. The results can be
used to estimate the anisotropy of the primary radiation
with energy of about 1017 eV.

5. CONCLUSIONS

The results obtained in this study show that the
inhomogeneity of the sky survey must be taken into
account when analyzing data with the purpose of esti-
mating the anisotropy of the primary radiation. The
inhomogeneity arises due to short-term switching off of
the array and variations of its effective area. In addition,
seasonal variations of the frequency of events of atmo-
spheric origin make a contribution to the vector
observed with respect to the right ascension. This con-
tribution can be estimated by the vector with respect to
antisidereal time and the zenith–angular distribution of
the showers. As a result, it is estimated that the ampli-
tude of the first harmonic with respect to the right
ascension with regard to the perturbing factors is
(0.45 ± 0.55)%. Thus, the true anisotropy of the pri-
mary radiation at the energy 1017 eV is less than 1.25%

Sol
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Fig. 3. Mutual location of the anisotropy vectors for various
variables: Sol is the solar vector; Sid is the sidereal vector;
Anti is the antisidereal vector; and VAR is the contribution
of the atmospheric variations to Sid.
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with a probability of 0.95, judging by the data obtained
at the Yakutsk EAS array.
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Abstract—A theory of resonance Raman scattering of light by 2LO-phonons in semiconductor crystals is pre-
sented. Wannier excitons are considered as intermediate states. Analytic expressions are obtained that take into
account contributions from different chains of intermediate states. The scattering cross section is shown to be
weakly dependent on the wave vector imparted to the phonon system. The theoretical model permits the calcu-
lation of the scattering cross section for the energy of the exciting radiation photon below the level of exciton
resonances. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of resonance Raman scattering near the
edge of fundamental absorption of a crystal is of con-
siderable interest because the scattering spectrum
exhibits a number of specific features. One of these fea-
tures is the alternating change in the scattering cross
section with increasing number of phonons excited in a
CdS crystal [1, 2]. In this case, the fourth-order lines
dominate in the spectrum. This feature was explained in
paper [1] within the framework of a theoretical model
that considered excitons as intermediate states. The
interaction of excitons with phonons was treated using
the mechanism of the intraband Frölich electron–
phonon interaction. According to this model, the micro-
scopic mechanism of Raman scattering accompanied
by emission of n phonons can be described by the fol-
lowing sequence of processes: (1) Absorption of a pho-
ton of exciting radiation accompanied by the transition
of the electronic system to the excited state; (2) transi-
tion between excitonic states accompanied by emission
of n phonons; (3) emission of a photon of scattered light
and return of the electronic system to the ground state.
An irregular nature of line intensities in Raman spectra
is caused by different alternation of intermediate states
of the s and p types. This follows from the expansion of
the matrix element of the Frölich interaction in the
phonon wave vector qp:

(1)
Fλ 'λ χcv

λ '〈 | q̂pr χcv
λ| 〉∝ i

2qp

--------
me* mh*–

me* mh*+
---------------------+

× χcv
λ '〈 | qp r⋅( )2 χcv

λ| 〉 … ,+
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where  is the unit vector in the direction of the

phonon wave vector;  and  are the effective

masses of an electron and a hole, respectively; 
is the hydrogen wave function; and λ denotes a set of
quantum numbers characterizing the relative electron–
hole motion. The first nonvanishing term, which corre-
sponds to the dipole approximation, describes transi-
tions between the s and p excitonic states. Transitions
between the s states correspond to the second (quadru-
pole) term in expansion (1). Because the dipole transi-
tion from the ground state is allowed only to the s exci-
tonic state, the odd orders necessarily include the pro-
cess of scattering of the same parity (s–s for 1LO and
s–p–s–s for 3LO) into the chain of the intermediate
states. Therefore, the scattering cross section for such
processes contains a factor that, in the case of close val-
ues of the effective masses of an electron and a hole,
leads to an irregular distribution of the intensities of
multiphonon lines.

Multiphonon Raman scattering has been studied in
papers [1, 3–5]. However, at present a theory of mul-
tiphonon scattering of light that takes into account
excitonic effects is absent. In this paper, we propose a
theoretical model of Raman scattering of light by
2LO-phonons for the energy of an incident photon
lying near the exciton levels.

2. THEORY
2.1 Matrix Elements

The probability of two-photon Raman scattering of
light is described in the fourth order of the perturbation
theory by the expression [6]

q̂p

me* mh*

χcv
λ r( )
(2)W2LO
RS 2π

"
2

------ f〈 |ĤER c| 〉 c〈 |ĤEL b| 〉 b〈 |ĤEL a| 〉 a〈 |ĤER i| 〉
Ec "ωS–( ) Eb "ωp "ωL–+( ) Ea "ωL–( )

-------------------------------------------------------------------------------------------------
a b c, ,
∑

2

δ ωL ωS– 2ωp–( ),
f

∑=
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where |i 〉  and |f 〉  are the initial and final states, respec-
tively; |a〉, |b〉 , and |c〉  are the intermediate virtual states;
ωL, ωS, and ωp are the frequencies of exciting radiation,
scattered light, and lattice phonons, respectively; and

 and  are Hamiltonians of the electron–photon
and electron–phonon interactions. In the case of reso-
nance Raman scattering, the frequencies of exciting
radiation and scattered light are close to the energy gap,
so that the process of scattering can be treated within
the framework of a two-band model.

Considering Wannier excitons as the intermediate
virtual states of an electron system, we will write the
matrix element of transition from the ground state to an
exciton state upon absorption of a photon in the dipole
approximation [7]

(3)

where e and m are the charge and mass of an electron;
, qL, and NL are polarization, the wave vector, and the

density of exciting photons; nL is the refractive index;
Ka is the wave vector of an exciton; and πcv is the inter-
band matrix element of the electron momentum opera-

ĤER ĤEL

a〈 |ĤER i| 〉 e
mnL

---------- 2π"
ωL

----------=

× NL
1/2 2π( )3/2ε̂α

Lπcv
α χcv

λa* 0( )δ Ka qL–( ),

ε̂L
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tor. Hereafter, the subscripts L and S correspond to
exciting radiation and scattered light. One can see from
expression (3) that the dipole transition is allowed only
to the s excitonic state.

A matrix element of the intraband Frölich exciton–
phonon interaction has the form [1, 8]

(4)

where

(5)

(6)

Here, ε∞ and ε0 are the high-frequency and low-fre-
quency dielectric constants; V is the crystal volume;
and np is the number of phonons. The parameter αe(h) is

defined as αe(h) = .

By inserting matrix elements (3) and (4) into (2) and
replacing sums over the phonon wave vectors by inte-
grals, we obtain [1, 9]

b〈 |ĤEL a| 〉

=  γFV 1/2– np 1+( )1/2δ Kb qp Ka–+( )Pλbλa
qp( ),

Pλbλa
qp( )

=  χcv

λb iqp
1– iα eqp r⋅–( )exp iαhqp r⋅( )exp–( ) χcv

λa ,

γF e 2π"ωp ε∞
1– ε0

1––( ).=

mh e( )* / mh* me*+( )
(7)

where

(8)

W2LO
RS e4NL np 1+( )2

2m4nL
2 nS

2ωLωS

----------------------------------= ε̂α
L ε̂β

SγF
2 πcv

α πv c
β α qp qL qS qp––,( ){ α qL qS– qp qp,–( ) }+

2
δ ωL ωS– 2ωp–( )dqp,∫

α q q ',( )
χcv

λ3 0( ) χcv

λ3 i
q '
---- iα eq '– r⋅( ) iαhq ' r⋅( )exp–exp( ) χcv

λ2

Eλ3
"ωS–( ) Eλ2

"
2q2

2M
---------- "ωp "ωL–+ + 

 
---------------------------------------------------------------------------------------------------------------------------------

λ1 λ2 λ3, ,
∑=

× χcv

λ2 i
q
--- iα eq– r⋅( ) iαhq r⋅( )exp–exp( ) χcv

λ1 χcv

λ1* 0( ) Eλ1
"ωL–( ) 1– .
Here, M =  + .

2.2 Green Function Method

In calculating α(q, q'), the summation over all the
intermediate excitonic states of the discrete and contin-
uous spectra involves significant difficulties. If the
exciting radiation frequency is lower than the excitonic
resonance frequency (E1S > "ωL), this problem can be
solved using the Green function method [10, 11]. In
this case, the sum over all the intermediate s-excitonic

me* mh*
 states can be written as [11]

(9)

where µ is the reduced mass of an exciton (µ–1 =  +

); Γ(z) is the gamma function; Wκ, 1/2(z) is the

Whittaker function; κ = ; R and a are the
exciton binding energy and its Bohr radius; and Eg is
the energy gap. Using the Green method, we calculate
the function

χcv
λ r( )χcv

λ* 0( )
Eλ "ω–

---------------------------------
λ
∑ µ

2π"
2r

---------------Γ 1 κ–( )Wκ 1/2,
2r
κa
------ 

  ,=

me*
1–

mh*
1–

R/ Eg "ω–( )
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(10)f λ q( )
χcv

λ3 0( ) χcv

λ3 iq 1– iα eq r⋅–( ) iαhq r⋅( )exp–exp( ) χcv
λ

Eλ3
"ωS–

-----------------------------------------------------------------------------------------------------------------------------------.
λ3

∑=
Taking into account (9), expression (10) assumes the
form

(11)

We will calculate the integral (11) by using the expan-
sion of a plane wave in spherical functions [12]:

(12)

where jl(z) is a spherical Bessel function and Ylm(ϑ , ϕ)
(Ylm(ϑq, ϕq)) is a spherical function of the polar angle
and azimuth of direction of the vector r(q) with respect
to a fixed coordinate system. Then, we will write the
wave function of the relative electron–hole motion as

 = Ylm(ϑ , ϕ)Rλ(r) [12] and, taking into account
the orthogonality of the spherical functions

(13)

f λ q( ) i
µ

2πq"
2

---------------Γ 1 κS–( ) χcv
λ r( ) iα eq r⋅–( )exp(∫=

– iαhq r⋅( )exp )WκS 1/2,
2r
κSa
-------- 

  dr
r

------.

eiq r⋅ 4π il

m l–=

l

∑ jl qr( )Ylm ϑ q ϕq,( )Ylm* ϑ ϕ,( ),
l 0=

∞

∑=

χcv
λ r( )

Ylm* ϑ ϕ,( )Yl ' m ', ϑ ϕ,( ) ϑsin ϕd ϑd

0

π

∫
0

2π

∫ δll 'δmm ' ,=
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we will find the integral over angular variables

(14)

By inserting the radial functions

(15)

and

(16)

for the discrete and continuous parts of the spectrum
(ρ = r/a) [12], we obtain

f λ q( ) il 1+ 2µ
"

2q
--------Γ 1 κS–( )Ylm ϑ q ϕq,( )=

× WκS 1/2,
2r
κSa
-------- 

  Rλ r( ) 1–( )l jl α eqr( ) jl αhqr( )–{ } r r.d

0

∞

∫

Rnl ρ( ) 2

a3nl 2+ 2l 1+( )!
----------------------------------------- n l+( )!

n l– 1–( )!
-------------------------- 2ρ( )l=

× ρ
n
---– 

  F –n l 1 2l 2
2ρ
n

------,+,+ + 
 exp

Rkl ρ( ) 2k π/2k( ) Γ l 1 ik 1––+( )exp

V 2l 1+( )!
---------------------------------------------------------------------- 2kρ( )l=

× ikρ–( )F
i
k
-- l 1 2l 2 2ikρ,+,+ + 

 exp
(17)f λ q( ) il 1+ 2µ
"

2q
--------Γ 1 κS–( )

Ylm ϑ q ϕq,( )
2l 1+( )!

--------------------------- a=

Cn 1–( )lAl n α eqa,( ) Al n αhqa,( )–{ } , λ nlm( ),=

Ck 1–( )lAl
i
k
-- α eqa, 

  Al
i
k
-- αhqa, 

 –
 
 
 

, λ klm( ),=






where

(18)

(19)

(20)

We calculated integral (18) using the relation

(21)

Al n Q,( ) ρ
n
---– 

  F –n l 1 2l 2
2ρ
n

------,+,+ + 
 exp

0

∞

∫=

× WκS 1/2,
2ρ
κS

------ 
  jl Qρ( )ρl 1+ dρ,

Cn
2l 1+

nl 2+
---------- n l+( )!

n l– 1–( )!
--------------------------,=

Ck
a3

V
----- 2k( )l 1+ π

2k
------ 

  Γ l 1 i
k
--–+ 

  .exp=

jl z( ) 1
z
--- l ν+( )!

ν! l ν–( )!
----------------------- 1

2z( )ν------------ Re il 1 ν–+ e iz–( )
ν 0=

l

∑=
for the Bessel function [13] and the integral representa-
tion of the Whittaker function [14],

(22)

By inserting expressions (21) and (22) into (18) and
taking into account that the Laplace transform for a
hypergeometric function has the form [14}

(23)

we obtain

(24)

where

Wκ 1/2, z( ) ze z/2–

Γ 1 κ–( )
--------------------- e zt– 1 t+

t
----------- 

 
κ

t.d

0

∞

∫=

e sp– F a c; kρ,( )ρb 1– ρd

0

∞

∫ Γ b( )
sb

-----------F a b; c; 
k
s
--, 

  ,=

Al n Q,( )
2κS

4

Ql 1+ Γ 1 κS–( )
-----------------------------------Il Q κS n, ,( ),=
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(25)

Thus, the function fλ(q) has the form

(26)

Il Q κS n, ,( ) 1

2l 2+ κS
3

----------------=

× l ν+( )!
ν!

----------------- l 1 ν–+( ) κSQ( )l ν– Re il 1 ν–+ 1 t+
t

----------- 
 

κS

0

∞

∫ t
1
2
---

κS

2n
------ i

κSQ
2

----------+ + +
–l 2– ν+





ν 0=

l

∑

× F –n l 1 l 2 ν; 2l– 2; 
κSn 1–

t
1
2
---

κS

2n
------ i

κSQ
2

----------+ + +
------------------------------------------+ +,+ +

 
 
 
 

dt







.

f λ q( )
κS

4

R a
-----------

Ylm ϑ q ϕq,( )
2l 1+( )!

---------------------------

2l 2+

nl 2+
---------- n l+( )!

n l– 1–( )!
--------------------------Jl Q κS n, ,( ), λ nlm( ),=

a3

V
-----2l 2+ kl 1+ π

k
--- 

  Γ l 1 i
k
--–+ 

  Jl Q κS
i
k
--, , 

  , λexp klm( ),=

=

where

(27)

Jl Q κS n, ,( )

=  
il 1+

Q
-------- 1–( )l Il α eQ κS n, ,( )

α eQ( )l 1+
---------------------------------

Il αhQ κS n, ,( )
αhQ( )l 1+

---------------------------------–
 
 
 

.
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2.3 Scattering Cross Section

Taking the results obtained above, we rewrite
expression (8) in the form

(28)α q q ',( )
4κS

4κ L
4

πR3a
--------------- Pl γcos( )α l qa q 'a,( ),

l

∑=
(29)

α l Q Q ',( ) 22l

2l 1+( )! 2l( )!
--------------------------------- n l+( )!

n l– 1–( )!n2l 4+
---------------------------------------

n

∑ Jl Q ' κS n, ,( )Jl Q κ L n, ,( )
η ωL Q,( ) n 2––

----------------------------------------------------------




=

+ k
1 2π/k–( )exp–
-------------------------------------- s2k2 1+( )

Jl Q ' κS ik 1–, ,( )Jl Q κ L ik 1–, ,( )
η ωL Q,( ) k2+

----------------------------------------------------------------------
s 1=

l

∏ kd




,∫
where η(ωL, Q) = R–1(Eg + "2Q2/2Ma2 + "ωp – "ωL),

Q = qa, and Pl((q' · q)/q'q) is the Legendre polynomial.

One can see from (29) that l = 0 corresponds to a chain 
of intermediate states s-s–s, l = 1 corresponds to the
chain s–p–s, etc.

The differential cross section for two-photon Raman
scattering can be written in this case as
(30)dσ
dΩ
-------

e4nSωS np 1+[ ] 2V

π5m4c4a5nLωL

-------------------------------------------= CκS
4κ L

4 Pl γcos( ) α l Q QLS Q–,( ) α l QLS Q– Q,( )+[ ]
l

∑
2

Q2 Qd o,d∫∫
where C = ; do = sinϑdϑdϕ; QLS =

(qL – qS)a is the wave vector imparted to the phonon
system; and γ is the angle between vectors Q = qa and
QLS – Q.

ε̂α
L ε̂β

Sπcv
α πv c

β γ f
2 /R3
 

3. DISCUSSION
Consider the dependence of the scattering cross sec-

tion on the magnitude of the wave vector QLS imparted
to the phonon system. The photon wave vectors are
small compared to the dimensions of the Brillouin
AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001
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zone. Thus, for backward Raman scattering by 2LO
phonons in a CdS crystal, QLS ≈ 0.2. To estimate the
contributions from phonons with small wave vectors
(Q ! 1), we consider expression (18). Because the
Bessel function of a small argument has the form [12]

(31)

the quantities Al(n, Q) and Il(Q, κS, n)/Ql + 1 depend
on Q as Ql for Q  0. For Q, Q' ! 1, this yields
α l(Q, Q') ∝  (QQ')l – 1 for l ≥ 1 (α0(Q, Q') ∝  QQ'). There-
fore, in the limiting case Q, Q'  0 only a chain of the
intermediate states s–p–s makes a contribution to scat-
tering because α1(Q, Q')  const. In this case, the
contribution of the region Q ! 1 to the integral (30) will
be small. Thus, phonons with Q, Q' @ QLS play a major
role in scattering. This leads to a weak dependence of
the scattering cross section on the wave vector imparted
to the phonon system. This conclusion agrees well with
the results of the study of multiphonon scattering per-
formed in paper [1], where its was found experimen-
tally that below the fundamental absorption edge the
scattering cross section for even-order multiphonon
processes is independent of the wave vector imparted to
the phonon system. Therefore, we can assume in the
calculation of the scattering cross section that two pho-
tons are created in the process of Raman scattering
which have equal in magnitude and oppositely directed
wave vectors, i.e.,

(32)

Note that the region in which the approximation (31) is
valid expands with distance from the resonance. This is
distinctly demonstrated in Fig. 1, where the dependences
I1(Q, κS, 2)/Q2 on Q are presented for κS = 0.9 and 0.2.
This property follows from relation (18). Indeed, the inte-
grand contains the function exp[–(ρ/κS)(1 + iκSQ)],
which is expanded in a series in a small parameter
κSQ ! 1. Therefore, the dependence of the scattering
cross section on qL – qS becomes weaker with distance
from the resonance.

It follows from expression (14) that in the case of
close magnitudes of the effective masses of an electron
and a hole, scattering is determined only by the states
with odd l to which chains of the intermediate states
s−p–s, s–f–s, etc. correspond. In addition, the contribution
from the corresponding intermediate states decreases
with increasing l. Therefore, for  ≈ , the scatter-
ing mechanism involving a chain of the intermediate
states s–p–s makes the dominant contribution. How-
ever, if the effective masses of an electron and a hole
are greatly different, one should also take into account
the transitions between the s excitonic states (s–s–s).
Figure 2 shows the dependences of relative contribu-
tions Λl to the scattering cross section on the effective

jl z( ) zl

2l 1+( )!!
-----------------------≈ ,

α qLS q q,–( ) α q qLS, q–( ) α q q–,( ).≈≈

me* mh*
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masses of an electron and a hole for two chains of the
intermediate states s–s–s (Λl) and s–p–s (Λ0), where

(33)

One can see from this figure that for /  > 0.5 the
contribution from transitions between s excitonic states
is negligibly small (Λ0 ! Λ1); however, already for

/  ≈ 0.2, the contributions Λ1 and Λ0 prove to be
of the same order, whereas when the effective masses
are substantially different ( /  < 0.15), the magni-
tude of Λ0 exceeds that of Λ1.

Using the theoretical model developed in this paper,
we estimated the cross section for Raman scattering of
light by 2LO phonons in a CdS crystal taking into
account the contributions from two chains of interme-
diate states: s–s–s (l = 0) and s–p–s (l = 1). We per-
formed calculations for the same geometry as for mul-

Λ l α l Q Q,( ) 2∫ Q2dQ.=

me* mh*

me* mh*

me* mh*
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Fig. 1. Dependences of the function I1(Q, κS, 2)/Q2 on the
phonon wave vector Q for κS = 0.9 (curve 1) and 0.2 (curve 2).
The dashed and dot-and-dash curves describe correspond-
ing approximate functions f(κS, 2)Q, where I1(Q, κS,

n)/Q2  f(κS, n)Q.
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hole.
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tiphonon scattering studied in paper [1]. In this case,
the excitonic series A, B, and C contribute to scattering.
We used in our calculations the following crystal
parameters: the energy gaps EgA, EgB and EgC are 2.579,
2.596, and 2.66 eV, respectively; the exciton binding
energies RA, RB, and RC are 0.03, 0.028, and 0.026 eV,
respectively [15]; the oscillator strengths for the 1S
excitonic are 4πfA = 0.0125, 4πfB = 0.0075, and 4πfC =
0.005 for excitonic series A, B, and C, respectively [16];
"ωp = 305 cm–1; ε0 = 9.3; ε∞ = 5.2 [17]; and /  =
0.2 [8]. The efficiency of two-phonon Raman scattering
Seff = V–1dσ/dΩ calculated with these parameters as a
function of the exciting radiation wavelength is pre-
sented in Fig. 3.

CONCLUSIONS
The theoretical model of resonance Raman scatter-

ing of light by 2LO phonons was developed. The model
allows one to calculate the cross section for two-photon
Raman scattering when the exciting radiation fre-
quency is lower than the exciton transition frequency. It
is shown that below the fundamental absorption edge,
the dependence of the scattering cross section on the
wave vector qL – qS imparted to the phonon system is
weak and weakens with distance from the resonance.
Analytic expressions are obtained which take into
account contributions from different chains of the inter-
mediate states. It is shown that when the effective
masses of an electron and a hole are close, the scatter-
ing is mainly determined by a chain of the intermediate

me* mh*
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Fig. 3. Efficiency Seff of Raman scattering of light by 2LO
phonons in a CdS crystal as a function of the exciting radi-
ation wavelength.
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states s–p–s, but when  and  are substantially
different, the transitions between s excitonic states
should be also taken into account. The model was used
to calculate the efficiency of Raman scattering by 2LO
phonons in a CdS crystal at different excitation wave-
lengths.
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Abstract—Analytical and numerical studies are made into the momentum distribution and energy spectra of
photoelectrons emitted during nonlinear ionization of atoms and molecules by laser radiation with elliptic
polarization. The dependence of these distributions on the ellipticity ξ of an electromagnetic wave is treated, as
well as their evolution upon variation of the Keldysh parameter γ from the region of optical tunneling (γ ! 1)
to the region of γ @ 1, in which the ionization is multiphoton. The quasiclassical approximation is used in the
calculations, in particular, the imaginary-time method and the saddle-point method with expansion in the vicin-
ity of the field ellipse. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The analytical theory of multiphoton ionization of
atoms and ions in the field of monochromatic laser radi-
ation was developed in [1–4], where the cases of linear
[1–3] and circular [2, 3] polarization were treated. The
most general case of elliptic polarization of electro-
magnetic wave, 

(1)

was treated in [4, 5] (here, F is the maximum value of
electric field and ξ is the ellipticity of radiation (previ-
ously denoted by ε [4]), 1 ≤ ξ ≤ 1). Perelomov et al. [4]
have derived analytical formulas for the probability of
ionization and for the momentum photoelectron spec-
trum that are valid for all values of the Keldysh param-
eter γ, and have demonstrated that, at 0 < ξ2 < 1, the
most probable momentum of outgoing electron pmax is
directed along the minor axis of the field ellipse (y axis
in Eq. (1)). They have also noted that, at ξ = 0 (linear
polarization of radiation), the momentum pmax is
directed along the electric field F, and, at ξ = ±1 (circu-
lar polarization), the photoelectron distribution
becomes isotropic in the F(t) plane. However, the for-
mulas for momentum spectrum given in [4] are invalid
in the narrow range of ξ  ±1, where the transition
to circular polarization occurs. Goreslavskii and
Popruzhenko [5] investigated (including numerical
investigations) the polarization dependences (for all
values of ξ) of the momentum, angular, and energy dis-
tribution of photoelectrons and of the ionization rate of
atoms in the case of a low-frequency (γ ! 1) laser field.
Note that no comparison was previously made of the
results of [4, 5].

F t( ) F ωt( )excos= ξF ωt( )ey,sin+
1063-7761/01/9205- $21.00 © 20777
It is the objective of this study to investigate the
energy and momentum spectra of photoelectrons as
functions of the ellipticity ξ for all values of the
Keldysh parameter [1]

(2)

Here and in what follows, use is made of the atomic
units " = m = e = 1 (m is the electron mass), K0 = κ2/2ω
is the parameter indicative of the number of quanta nec-
essary for the process, e = F/κ3 is the reduced electric
field, I is the ionization potential of atomic state, and

κ =  is the momentum characteristic of that state.
It is assumed that the conditions

(2')

are valid, which provide for the validity of the quasi-
classical approximation for many-quantum processes.
We will treat in detail the evolution of the energy pho-
toelectron spectrum upon transition from the condi-
tions of optical tunneling (γ ! 1) to the antiadiabatic
region of γ @ 1, as well as to the transition region of γ ~ 1.
We will demonstrate that (except for the narrow range
of 1 – ξ2 & e ! 1), the results of [4, 5] obtained using
different methods virtually coincide.1 Also treated is
the variation of the momentum spectrum of electrons in
the range of 1 – ξ2 ~ e, i.e., for close-to-circular polar-
ization. Explicit analytical expressions (12), (14), and
(18) are derived for the energy spectrum, which cover

1 The statements, made in [5] (for example, pp. 1201 and 1206) to
the effect that the formulas of [4] are valid only in a very limited
range of values of ξ are based on misunderstanding and are essen-
tially wrong. See Fig. 4 and the discussion of Eqs. (27) and (31)
below, and Section 5 in [6].

γ ωκ/F 2K0e( ) 1– .= =

2I

K0 @ 1, e ! 1
001 MAIK “Nauka/Interperiodica”
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the entire range of variation of the parameter γ and are
characterized (as demonstrated by their comparison
with the results of numerical calculations) by a fairly
good accuracy. The momentum distribution of elec-
trons is found in the case of circularly polarized field
for arbitrary values of γ (see formula (33) below).

At present, the problem of detailed description of
the momentum and energy spectra of photoelectrons
under conditions of multiphoton ionization of atoms
and molecules appears to be topical in at least two
respects. First, a number of experiments were per-
formed within the last decade, which involved mea-
surements (to a high resolution) of the distribution of
photoelectrons, including their distribution in an ellip-
tically polarized field [7–10]. Much of the experimental
results are associated with the transition region of the
adiabaticity parameter (γ ~ 1), little investigated by ana-
lytical methods. In this study, we have derived simple
analytical expressions fit to describe the energy spectra
of photoionization in an elliptically polarized field for
different values of γ. Second, the calculations of the
structure of spectrum of direct photoionization are nec-
essary during investigation of the processes associated
with interaction, in the final state, between ionized
electron and parent atom (ion) (such processes include
the generation of higher harmonics of laser radiation
[11, 12], multielectron noncascade ionization [13, 14],
and rescattering of photoelectrons [15]).

2. QUASICLASSICAL APPROXIMATION

The rate of ionization of the atomic level in a laser
field and the momentum spectrum of emitted electrons
are defined by the probability of tunneling through a
time-variable barrier, which may be conveniently cal-
culated using the imaginary-time method [4, 16]. Sub-
barrier trajectories are introduced into the treatment,

2

1

0 1 2 3 4 5
γ

ξ = 1

ξ = 0

τ0

Fig. 1. The dimensionless “time” τ0(γ, ξ) of subbarrier
motion, found numerically from Eq. (5). The curves corre-
spond (from the bottom upwards) to the values of ellipticity
ξ = 0, 0.5, 0.75, 0.9, and 1.0.
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which formally satisfy the classical equations of
motion but with imaginary time (which is reflective of
the fact that such trajectories are not realized in classi-
cal mechanics). The exponential factor in the tunneling
probability is defined by the so-called “extreme” subbar-
rier trajectory (which minimizes the imaginary part of
the action function and defines the most probable tunnel-
ing path of a particle); in order to find the momentum
spectrum and the preexponential factor, one needs to
treat a beam of close-to-extreme trajectories. For details
and necessary refinements, see [4, 16–18].

In the case of ionization of the s-level bound by a
short-range potential (binding energy I = κ2/2, the
range of action of the forces r0 ! 1/κ) under the effect
of the electric field of the wave as given by Eq. (1), the
momentum spectrum of photoelectrons has the form

(3)

The values of A, ci, and pmax are defined by formulas
(23)–(28) in [4]; these quantities are expressed in terms
of the variable s = s(γ, ξ), which satisfies the transcen-
dental equation (20) in [4]. The formulas of the latter
study are simplified considerably if we change over
from s to a new variable τ0,

(4)

dw p( ) F p( ) 2= d3 p,

F p( ) 2 A
1
ω
----– cx px

2 cz pz
2+( )exp=

×
cy

ω
----– py pmax–( )2 cy

ω
----– py pmax+( )2exp+exp

 
 
 

.

τ0 Arctanh s2 γ2+

1 γ2+
---------------,=

s
τ0sinh

2 γ2–
τ0cosh

-------------------------------- ξ 1
τ0tanh

τ0
----------------– 

  ,= =

0.4

0 5 10
γ

ξ = 0

q(γ, ξ)

ξ = 1

0.6

0.8

1.0

Fig. 2. The function g(γ, ξ) which defines the exponential
factor in expression (6) for the ionization probability. The
curves correspond (from the bottom upwards) to the values
of ξ = 0, 0.5, 0.75, 0.9, and 1.0.
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cy, z

cx
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(b)3
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cz
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cx

(c)4

2

1

0
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2 4 6 8 10

cz

3
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Fig. 3. The coefficients c(γ, ξ) of Eq. (3) for momentum distribution as functions of the Keldysh parameter γ at ξ = (a) 0, (b) 0.5, and
(c) 0.9.
which is found from the equation

(5)

and has a transparent physical meaning: τ0 = –iωt0,
where t0 is the “initial moment” (purely imaginary), or
the total “time” of the subbarrier motion of electron
(Fig. 1). All quantities entering the formulas for the ion-
ization probability are readily expressed in terms of τ0,

(6)

(7)

(7')

(Figs. 2 and 3), and we used the notation

Note that cy ≥ cz > cx (the equality cy = cz is observed
only at ξ = 0, i.e., in the case of linear polarization,
Fig. 3a). In so doing, the coefficients cy and cz are
numerically close to each other except for the case of
|ξ| ≈ 1 (i.e., close-to-circular ellipticities).

τ0sinh
2

1 ξ2– τ0coth 1
τ0
----– 

  2

γ2=

A Cκ
2 ω2

2π2F
------------P γ ξ,( ) 2

3e
------– g γ ξ,( )

 
 
 

,exp=

g γ ξ,( ) 3
2γ
------=

× 1 1 ξ2+

2γ2
--------------+ 

  τ0 1 ξ2–( )
2τ0sinh

4γ2
-------------------– ξ2 τ0sinh

2

γ2τ0

-----------------– ,

cx τ0= σ τ0, cytanh– τ0 σξ2 τ0 τ0tanh–( )2

τ0
2 τ0tanh

---------------------------------,+=

cz τ0, P γ ξ,( ) 2σγ
2τ0sinh

-------------------= =

σ 1 ξ2– ξ2+
τ0tanh

τ0
---------------- 

 
1–

=

=  
1 1 τ0/τ0tanh–( )ξ2 …, ξ+ + 0,=

τ0/ τ0, ξtanh 1.=


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In Eq. (6), Cκ is the asymptotic (at distances r @ 1/κ
from the nucleus) coefficient of atomic wave function.2

Thus,  = 1 in the case of the ground (1s) and 2s-
states of hydrogen atom (the values of Cκ for other

atoms and ions are given in [17]), and  = 1/2 for the
level in the δ-potential.

Note that our normalization of the coefficients Cκ
corresponds to that in [17, 24] and differs from that
adopted in [2–5].

One can see in Fig. 2 that, as the ellipticity of light
increases, the value of g(γ, ξ)increases monotonically,
and the ionization probability decreases.3 Even more
considerable is the decrease in g(γ, ξ) during transition
from the adiabatic region of γ ! 1 to the multiphoton
region of γ @ 1, which leads to a sharp (because 2/3e @ 1)
increase in the ionization probability.

Therefore, the spectrum given by Eq. (3) is the sum
of two anisotropic Gaussian distributions with the cen-
ters at the points ±pmax on the y axis (the minor axis of
the ellipse F(t)). In so doing, the most probable
momentum of outgoing electron is (see Appendix A)

(8)

The results of calculation of the energy spectrum of
photoelectrons using the foregoing formulas will be

2 These coefficients occur repeatedly in quantum mechanics and
atomic physics and may be calculated by the Hartree–Fock
method: see, for example, [19]. In addition, simple analytical
approximations are available for these coefficients, which were
derived by Hartree [20], as well as those derived using the quan-
tum defect method [21–23] and from the expansion of effective
radius [24]. For neutral atoms and singly charged positive ions,
these approximations are characterized by a fairly high accuracy
(in connection with this, see Table 2 in [6]). As is seen in Table 1
in [17], the numerical values of Cκ for the s-states are fairly close
to unity.

3 For a fixed amplitude of the field F. In so doing, the radiation
intensity J = (1 + ξ2)cF2/8π also varies, but not more than by a
factor of two.

Cκ
2

Cκ
2

pmax ξ pF, pF
F
ω
----

τ0sinh
τ0

--------------- κ
τ0sinh

γτ0
---------------.= = =
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described below, but we will first treat two limiting
cases for which explicit analytical expressions may be
derived.

(a) γ ! 1 (low-frequency laser radiation). Here,

(9)

(10)

(11)

where k = (1 – ξ2)/2.4 We perform integration with
respect to d3p (for details, see Appendix B) to derive,
for the probability of n-photon ionization,

(12)

where

and the function

(13)

is introduced, where I0(x) is the modified Bessel function.

4 Note that, for γ & 10, the momentum pmax is almost proportional
to the ellipticity of light ξ (see Fig. 2 in [4]).

τ0 γ 1
9
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+
13
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35
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1
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2
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1
6
---γ2 1

120
---------

1
27
------ 1 k+( )– γ4 …+ + +
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 
 

,=
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× 2
3
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 
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 

,exp
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2

π
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2
e
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× 2
3e
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3
-----– 

  γ2

 
 
 
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4ω3
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1
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In the case of n < n0,

(14)

where ν is the photoionization threshold. We will use the

notation ξ1 = ω/  =  (ξ1 ! 1). If the ellipticity
ξ @ ξ1, distribution (14) is “pressed against” n = n0 and
makes a negligibly small contribution (of the order of

) to the total probability (or to the rate of level ion-
ization) W. We integrate Eq. (12) with respect to n from
n = n0 to infinity to derive

(15)

which is in complete agreement with the adiabatic
approximation in view of the correction proportional to
γ2 in the exponent [3, 4]. The main contribution to Eq.
(15) is made by the region of n – n0 * γ–1 @ 1, in which

(12')

(b) In the opposite case of γ @ 1, Eq. (5) takes the
form

(5')

whence

(16)

We will restrict ourselves to logarithmic approxima-
tion and assume that τ0 @ 1; then, σ = τ0δ,

(17)

where δ = 1/[(1 – ξ2)τ0 + ξ2] ≤ 1. In particular, at ξ  0,

wn ξ2–
Fκ
ω2
------- 1 n ν–

n0 ν–
--------------– 

 
2

 
 
 
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ν F2

4ω3
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Fκ γ e

e

W
3e
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2
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× 2
3e
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3
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  γ2
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.exp
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1––( )2[ ] e

τ0 2γ,=
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2γ/ 1 ξ2–( ), 1 ξ2–  @ 1/ 2γ( ),lnln

γ 2 γln( ), ξln 1.±=
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2γ
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1
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and, at ξ  ±1,

where k has the same value as in Eqs. (9)–(11). After
simple computations (see Eq. (B.7)), we derive Gauss-
ian distribution for the probability of n-photon ioniza-
tion,

(18)

where wmax = ,

(see also [25]). On observing that K0 = I/ω @ 1,

and τ0 * ln(2γ) @ 1, we see that the distribution given
by Eq. (18) is always much narrower than the Poisson
distribution with 〈n〉  = n0 (for which, apparently, µ = 1).

Unlike that given by Eq. (18), the distribution given
by Eqs. (12) and (14) is asymmetric relative to the value
of n = n0 that corresponds to the maximum probability
of ionization. In view of formula (21) (see the text
below), Eq. (12) yields (γ !1)

(19)

where 〈n〉  and ∆n denote the average number of
absorbed photons and its dispersion. This estimate is
valid for 1 – ξ2 @ e; in the case of circular polarization
[6],
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Finally, it follows from Eq. (18) that, at γ @ 1,

(20)

Therefore, the distribution with respect to n is always
relatively narrow (in units of average 〈n〉).

In the general case (any values of γ and ξ), the pho-
toionization threshold ν and the most probable number
n0 of absorbed photons are [4]

(21)

where τ0(γ, ξ) is determined from Eq. (5). Hence,

(22)

Therefore, n0 – ν @ 1 if γ ! exp[ ],
which is almost always valid except for the case of lin-
ear polarization ξ = 0 (when n0 – ν ~ 1 if γ @ 1 [1]).
Thus, with ξ ≠ 0, the distribution of wn covers many val-
ues of n, even if γ @ 1: this enables one, in calculating
the ionization rate W, to replace the summation with
respect to n by integration.

For the photoelectron energy distribution, we have
derived asymptotic formulas (12), (14), and (18), which
are valid for low and high values of γ, respectively. In
the case of arbitrary values of γ, this distribution may be
represented in the form of a single integral (see Eqs.
(B.3) and (B.4) in Appendix B).

3. MOMENTUM SPECTRUM 
IN THE TUNNEL LIMIT

As was already mentioned above, the distribution
given by Eq. (3) is invalid in the narrow ellipticity range
of 1 – ξ2 ≤ e ! 1. In the case when the tunnel mode of
ionization is realized (γ ! 1), analytical expressions for
momentum distributions have been obtained [5], which
are valid in this narrow range as well and provide for
direct limiting transition to the case of circular polar-
ization. 

We will follow Goreslavskii and Popruzhenko [5]
and treat the ionization as a quantum transition from the
bound state of Ψ0 with the ionization potential I to the state

n〈 〉 n0,
∆n
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of continuum with the asymptotic momentum p, which is
approximated by the nonrelativistic Volkov wave func-
tion,

(23)

where Ep(t) = [p + A(t)/c]2/2 is the time-dependent
kinetic energy of electron in the laser field with the vec-
tor potential

and the field F(t) is described by expression (1). The
momentum spectrum is described by formula (3),
where, at this point,

(24)

Under conditions of K0 @ 1 and F2/ω3 @ 1, the time
integral in the amplitude equation (24) is calculated by
the saddle-point method. In the tunnel limit, the equa-
tion for the saddle point ts(p) = t0(p) + it1(p) is simpli-
fied, which enables one to write the ionization rate in
the form

(25)

where the sum is computed over all saddle points or
solutions of Eq. (14) in [5] (in the case of linear polar-
ization, two such solutions exist, and, as the value of ξ
approaches unity, one solution remains). When condi-
tions (2') are valid, the value of dW(p) is defined by the
exponent, and the main contribution to Eq. (25) is made
by the region of momentum space with the least value
of [I + Ep(t0)]3/2/F(t0). The preexponential factor in
Eq. (25) corresponds to the case of ionization from the
ground state in the potential of zero range of action
(δ-potential).

Expression (25) describes implicitly the momentum
spectrum of photoelectrons and is valid for any values
of ξ. In order to derive explicit expressions, one must
take into account the fact that, with the preassigned
direction of the electron momentum, the distribution
given by Eq. (25) reaches its maximum provided

(26)
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As the parameter t0 varies within the optical period, the
vector PF(t0) describes in the momentum space an
ellipse which will be referred to as field ellipse,5 and in
which the distribution given by Eq. (25) reaches a local
maximum. By virtue of the condition 1/e @ 1, the ion-
ization probability decreases rapidly with deviation
from the field ellipse; the characteristic value of such

deviation is ∆p ~ pF ! pF. Therefore, in Eq. (25) one
can change over to the explicit dependence on momen-
tum [5],

(27)

where A is obtained from Eq. (6) at γ ! 1; the following
notation is used:

(28)

In deriving Eq. (27) from (25), the ellipticity ξ was
taken to be arbitrary. In using Eq. (28), one can readily
see that the distribution given by Eq. (27) provides for
the limiting transition to the known cases of linear and
circular polarization [2, 3].

We will treat the correlation between formulas (3)
and (27) which describe one and the same momentum
spectrum. Except for the narrow region of “high val-

ues” of ellipticity (1 – ξ2 ≤ e), the quantity ξ2  in

Eq. (28) is small compared with  either because of

the smallness of ξ (at ξ < ) or because of the marked
elongation of distribution along the minor axis y of

polarization ellipse (1) at 1 – e > ξ >  [4–6]. In view
of the foregoing, expression (27) is simplified and coin-
cides completely with Eq. (3)6 in the case when the lat-
ter formula is written for the s-level in a short-range
potential. However, unlike Eq. (3), formula (27) is valid
at ξ  1 as well and describes the isotropization of
distribution over the azimuth angle φ, which occurs
during transition to the circular field.

Figure 4 gives the momentum distribution of photo-
electrons |F(px, py, pz = 0)|2, calculated from Eqs. (3)
and (27) for different values of the degree of polariza-
tion. In a field that is close to linearly polarized (ξ &

), the distribution is a peak with a maximum at

5 It lies in the polarization plane and differs from Eq. (1) by the fac-
tor 1/ω and by a phase shift through π/2.

6 If a transition to the γ ! 1 limit is made in Eq. (3).

e
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. The momentum distribution of photoelectrons calculated by Eqs. (3) (graphs a–d) and (27) (graphs e and f) for the case of
ionization of Ne3+ ions (I ≈ 97 eV) by the field of a titanium–sapphire laser ("ω = 1.58 eV) with the intensity of 2 × 1016 W/cm2

[26]; in this case, e = 0.04 and γ = 0.2. The horizontal plane coincides with the plane pz = 0 in the momentum space. The ionization
probability is plotted on the vertical axis in arbitrary units. The series of graphs demonstrates the evolution of distribution upon vari-
ation of ellipticity ξ = (a) 0.05, (b) 0.25, (c) 0.50, (d, e) 0.8, (f) 0.95.
p = 0 elongated along the major axis of polarization

ellipse. A two-peak structure is formed in the  < ξ <

 range (Fig. 4a), which becomes clearly defined at

ξ >  and survives up to values of |ξ| ≈ 1 – e (Figs. 4b–
4d). In this ellipticity range, the position of maxima in
the momentum distribution is defined by formula (8)
(for the width of the maxima, see [5, 6]). As the field
polarization approaches circular, the distribution
becomes isotropic in the azimuth plane, as is well seen
in Figs. 4e and 4f. Formula (27) must be used here to
describe the distribution.

Therefore, in the tunnel (γ ! 1) limit, the combina-
tion of expressions (3) and (27) provides for an ade-
quate description of momentum spectrum of photoelec-

γ e

e

e
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trons in the entire range of variation of the field elliptic-
ity –1 ≤ ξ ≤ 1.

4. ENERGY SPECTRUM

The evolution of the photoelectron energy spectrum
in an elliptically polarized field was previously treated
only in the tunnel limit [5]. The expressions derived in
Section 2 describe energy spectra in the regions of low
and high values of the adiabaticity parameter γ (see for-
mulas (12) and (14) and (18), respectively). In order to
assess the accuracy of these asymptotic formulas, as
well as to construct an integral pattern of evolution of
energy spectrum during transition from the tunnel to
multiphoton mode of ionization, we will give the
results of numerical calculation of the spectrum, based
on direct integration of momentum distribution.
SICS      Vol. 92      No. 5      2001
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Figure 5 gives photoelectron spectra calculated by
formula (B.3); the integration over the variable u in
Eq. (B.4) was performed numerically. Because the typ-
ical number of above-the-threshold peaks in the impor-
tant region of the spectrum is large, only their envelope
is given in the graphs. The ionization probability is
given as a function of dimensionless energy x = E/E0,
where E = p2/2 = "ω(n – ν) is the final energy of elec-
tron, and the quantity E0 = F2/ω2 is equal to the mean
vibrational energy of electron in the field given by
Eq. (1) within the factor (1 + ξ2)/4.
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Fig. 5. The energy spectrum of photoelectrons obtained by
numerical integration of Eq. (3) for the case of ionization of
Ne3+ ions by the field of a titanium-sapphire laser with the
intensity of 3.2 × 1013 W/cm2 (γ = 5.0), 2 × 1014 W/cm2 (γ =
2.0), and 2 × 1016 W/cm2 (γ = 0.2). [26]; in this case, e =
0.04 and γ = 0.2. The series of graphs demonstrates the evo-
lution of distribution w(x) = dW/dx (x = E/E0 is the dimen-
sionless electron energy) upon variation of ellipticity ξ =
(a) 0.25, (b) 0.5, (c) 0.9. Dashed curves in (b) correspond to
the results of calculations based on the asymptotic formulas
(12) and (14) for γ = 0.2 and (18) for γ = 2.0 and 5.0.
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The presented series of graphs demonstrates the fol-
lowing regularities found in Section 2 as a result of
analysis of asymptotic expressions (12), (14), and (18).

(1) For all values of γ, the position of a maximum is
defined to a good accuracy by the condition

(29)

which immediately follows from Eq. (8).
(2) For all values of ξ, the shape of spectrum varies

from an asymmetric narrow peak at γ ! 1 to a relatively
wide and symmetric (Gaussian) one at γ @ 1.

Figure 5b (ξ = 0.5) shows further (by broken lines)
the spectra calculated by approximate analytical for-
mulas (12), (14), and (18). A comparison of the curves
with the results of numerical calculation reveals that
these asymptotic formulas describe the spectrum to a
high accuracy for all values of the adiabaticity parame-
ter, including the intermediate ones (γ ~ 1). In particu-
lar, one can see that, even at γ = 2, the shape of the spec-
trum differs little from Gaussian (see Eq. (18)). An
agreement between analytical approximations and the
results of numerical calculations is observed for other
values of ellipticity ξ as well.

5. CONCLUSION

The results obtained by us pertain to the ionization
of systems bound by short-range forces. As is demon-
strated in [3, 18], in the low-frequency limit, the effect
of the long-range Coulomb potential of atomic core on
the ionization probability may be taken into account
using the methods of the quasiclassical perturbation
theory and reduces to the emergence of a great (in mag-
nitude) preexponential factor in the expression for the
ionization rate (for details, see, for example, [17]).
Because the shape of spectra and their dependence on
the ellipticity ξ and the Keldysh parameter γ are largely

Emax
1
2
---ξ2 pF

2 ,=

1.0
8 20

γ

a, b

b × 3

1.2

1.4

1.6

0 4 12 16

a

Fig. 6. The values of a and b as functions of γ (see (B.5) and
(B.6)).
AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001



ENERGY AND MOMENTUM SPECTRA OF PHOTOELECTRONS 785
defined by the exponential factors, the results obtained
by us may be used also to describe the ionization of real
atoms.

Finally, note the following fact. Although the distri-
bution given by Eq. (3) ceases to be valid in the –1 – ξ2 ≤
e ! 1 range close to ξ = ±1, it may be readily rewritten
in a form that permits limiting transition to circular
polarization. Indeed, expression (3) may be written in
different forms which are asymptotically equivalent to
one another in the e = F/κ3  0 limit. At ξ = ±1, zero
mode arises, which is associated with the symmetry of
escape of photoelectrons in the plane of light polariza-
tion. In this case, it is natural to change over from Car-
tesian components of momentum to cylindrical ones:

p⊥  = , pz, and ϕ = . We assume
that γ ! 1 and ξ2(1 – ξ2) @ e to derive

(30)

Therefore, pmax @ ∆px @ ∆py = ∆pz, and the momen-
tum distribution given by Eq. (3) takes the form

(31)

At 1 – ξ2 ≤ e, this distribution starts spreading over the
azimuth angle ϕ (as is well seen in Figs. 4e and 4f) and,
at ξ = ±1, changes directly to the known distribution for
circular polarization [26, 27]. It is possible to demon-
strate [5] that formula (31) follows from (27) as well.

As to the total probability (or ionization rate) W =
, the relevant formulas derived in [2, 3] (valid

for any values of γ) in the tunnel limit of γ ! 1 coincide
with the expressions given in [5], provided the inaccu-
racies in the latter expressions, which were referred to
in Section 5 of [6], are corrected.

Therefore, the “inconsistency” between the results
of [4] and [5], referred to in [5], is fully eliminated
(note that the calculations in [4, 5] were performed for
different calibrations of the electromagnetic field).
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APPENDIX A

The following is a simple derivation of formula (8),
based on the imaginary time method. The extreme sub-
barrier trajectory of electron in the field given by
Eq. (1) has the form

(A.1)

where τ = –iωt varies from τ0 = τ0(γ, ξ) (the initial
moment of subbarrier motion) to τ = 0 at the moment of
electron exit from under the barrier. Hence,

(A.2)

After exiting from under the barrier, the electron moves
in the classical trajectory; therefore,

(A.3)

These integrals assume a unique meaning if one takes
into account the switching off of the external field at
t  +∞,

(A.4)

The results of integration in (A.3) do not depend on the
concrete form of switching off the external field; it is
only required that this switching off should be suffi-
ciently slow (α ! ω), which may be illustrated using

x t( ) F

ω2
------ τ0cosh τcosh–( ),=

y t( ) –iξ F

ω2
------ τ

τ0sinh
τ0

---------------τ–sinh 
  , z 0,= =

px 0( ) pz 0( ) 0,= =

py 0( ) –iωdy
dτ
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ω
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τ0sinh
τ0

--------------- 1– 
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px t( ) px 0( ) F ωt 'cos t 'd ,

0

t
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py t( ) py 0( ) ξF ωt ' t '.dsin
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the following example. We replace the cut-off factor
exp(–αt) in (A.4) by the Gaussian factor exp[–(αt)2] to
derive

(A.4')

Here,

(A.5)

is the so-called Doson function [28]. Analogously, with
the Lorentz form of cut-off [1 + (αt)2]–1, we have J1 ~
exp(−ω/α) and J2 = ω–1[1 + O(α2/ω2)]. For an arbitrary
smooth (analytical) function of switching off of the
field, the momentum difference px(∞) – px(0) is expo-
nentially small.

We find, from (A.2)–(A.4),

(A.6)

which coincides with Eq. (8). In the case of 0 < |ξ| < 1,
the momentum pmax is directed on the y axis, i.e., along
the minor axis of the field ellipse [4].

Note that, in the subbarrier motion, the coordinate
x(t) is real, and the coordinate y(t) is purely imaginary.
Accordingly, the velocity component v x(t) = dx/dt is
purely imaginary, and the component v y(t) is real.
Because at t > 0, the motion is classically allowed, the
electron momentum at the exit from under the barrier
may be directed only along the y axis. The situation is
analogous in the case of ionization by constant electric
and magnetic fields of arbitrary direction [24, 29],
when the subbarrier trajectory is non-one-dimensional
due to the effect of the Lorentz force. Therefore, in
multidimensional problems of quantum mechanics, the
turning point is not, generally speaking, the arrest point
of a classical particle.

Note that the foregoing inference is valid only for
short laser pulses, when α/ω ! 1. For long pulses, the
variation of the time average (drift) electron momen-
tum under the effect of the gradient force is significant
[30]. In order to calculate the distribution of outgoing
electrons by the final kinetic energies, one must treat
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their motion in a spatially nonuniform field in the
region of laser focus and take into account the effect of
ponderomotive acceleration. In simple models, this can
be done analytically [31], and for realistic field profiles,
numerically [32].

APPENDIX B

The probability of n-photon ionization of the atomic
s-level is determined as a result of integration of the dis-
tribution given by Eq. (3) with the δ-function express-
ing the law of conservation of energy in the case of
multiphoton ionization by periodic field [1, 4],

(B.1)

We assume that

(B.2)

(–1 ≤ u ≤ 1) and perform integration over the azimuth
angle ϕ to derive

(B.3)

where

(B.4)

Here, q = pF/pn, c = (n – ν)(cz – cx), the coefficients ci

are given in (7'), the function a(x) is defined in (13), and
the quantities A and pF have the same values as in for-
mulas (6) and (8).

Therefore, the calculation of the probabilities wn

that preassign the energy spectrum is reduced to a sin-
gle integral, which generally speaking, is not calculated
analytically. Below, we will treat three limiting cases in
which further simplifications are possible.

1. For γ ! 1, we take into account expansions (9)–
(11) to find

(B.5)

wn δ
p2 pn

2–
2

----------------- 
  F p( ) 2d3 p,∫=

pn 2ω n ν–( ).=

px pn 1 u2– ϕ , pysin pnu,= =

pz pn 1 u2– ϕcos=

wn 2πA pnJ ,=

J u 2 n ν–( ) cx 1 u2–( ) cy u ξq–( )2+[ ]–{ }expd

1–

1
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× a c 1 u2–( )( ).

J u n ν–( )γ b1 1 u2–( ) b2 u ξq–( )2+[ ]–{ }expd

1–

+1

∫=

× a n ν–( )γb3 1 u2–( )( ),
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where

(B.6)

Because b1 ! b2, the exponent in Eq. (B.5) has a max-
imum of width δu/u0 = ξ1/ξ with u = u0 = |ξ|q + O(γ2),

where ξ1 = ω/  =  ! 1. On eliminating the
small region of values of ellipticity 0 ≤ ξ ≤ ξ1, we can
assume that δu ! 1. If |ξ|q < 1, i.e., pn > pF, the point u0
lies in the path of integration. We factor the slowly
varying function given by Eq. (13) outside the integral

sign and take into account the equality (n – ν)(1 – ) =
n – n0 to arrive at the distribution given by (12). On the
contrary, with |ξ|q > 1, the integrand in Eq. (B.5) has a
maximum at the boundary of the integration region
(u = 1 or u = –1), which produces the distribution given
by (14).

2. In the opposite limiting case of γ @ 1, in view of
(17), we have

(B.7)

Outside the narrow interval of 1 ≥ |ξ| > 1 – (τ0 )–1,
the coefficient c1 @ 1, and the integral given by
Eq. (B.4) is formed on the edge of the integration region,
so that, at τ0 @ 1,

(B.8)

whence immediately follows distribution (18).
3. Finally, in the case of linear polarization,

(B.9)

In view of the value of the integral

(B.10)
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∫
× a c 1 u2–( )( )du w 2c( )/ 2c, c 0>=
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(the function w(x) was defined in (A.5)), we derive
from Eqs. (B.4) and (B.5) the expressions for probabil-
ities wn, which were earlier derived for this case (ξ = 0)
previously in [2, 3].
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Abstract—The nondemocratic decay model is used to calculate the differential cross sections for a series of
(e, 3e) experiments employing the J matrix method. The results of computations are compared with the
experimental data as well as with the theoretical results obtained by other authors. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The structure of quantum systems with more than
two particles and the reactions between them, which
are referred to in the scientific literature as “few body
problems in physics,” drew the attention of scientists
even at the dawn of the creation of quantum mechanics.
The powerful impetus received by this field during the
last two decades is due to a significant improvement in
the technical basis for the so-called coincidental exper-
iments in which the largest number of parameters
(energies, angles, polarization, etc.) of the fragments of
the decay reactions are triggered by a particle imping-
ing on a many-particle system (nucleus, atom, mole-
cule, thin film). The matrix elements for describing
such reactions include many-particle wave functions
with different asymptotic forms of the channels, and
hence the problem of their correct approximate compu-
tation assumes prime importance. It was observed that
the larger the number of decay fragments, the more
accurate the approximate algorithms required for solv-
ing the many-particle Schrödinger equation.

At present, the most widely used is the close-cou-
pling formalism, in which a many-particle wave func-
tion is expanded in some “convenient” basis to trans-
form the initial Schrödinger equation into an infinite
system of coupled linear algebraic equations for the
coefficients of such an expansion. Thus, the problem is
reduced to the selection of the initial basis which can
best reflect the physics of the process under consider-
ation, and to the creation of an optimal and economical
computational algorithm.

The differential cross sections of elastic and
quasielastic scatterings of electrons by atoms repro-
duce the experimental data quite satisfactorily, even on
the absolute scale. The calculations of the process of
1063-7761/01/9205- $21.00 © 0789
single ionization of an atom by an electron (called the
(e, 2e) reaction) and photoionization are currently
made by using a modification of the close-coupling
method, which was developed by Bray et al. [1, 2] as a
computer program called the convergent close-cou-
pling (CCC) method. An analogous computer program
was developed independently at the Khabarovsk State
Technical University by the authors for the case of sin-
gle ionization of a helium atom by electron impact [3].
The high energy of the incident and scattered electrons
(of the order of 5–8 keV in the experiments conducted
by the Orsay group [4]) allowed the authors to make a
number of simplifying assumptions, including the
description of a fast electron by a plane wave and the
use of the one-photon exchange approximation (confin-
ing to the first Born term).

The results of our computations [3] show that for
large values of the transferred momenta Q > 1 at. unit
and energies of the emitted electron E1 > 20 eV, its
angular distribution in the reaction He(e, 2e)He+ is in
good agreement with the experiment if the He+ ion is in
the ground state. However, the difference between the
theoretical results and the experimental data is found to
increase uniformly in the region of the inverse peak
upon a decrease in the values of Q and E1. It was
observed [5] that all theoretical results obtained for this
kinematic region, including the simplest models of the
wave functions for the initial as well as final states, lead
to nearly identical results which do not match the
experimental data.

A similar regularity is observed if the He+ ion is in
the excited state: a higher value of the multiplying fac-
tor is required with decreasing Q and E1. However, the
contribution of the two-photon exchange (second Born
2001 MAIK “Nauka/Interperiodica”
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term) becomes significant in this case [6], although this
problem has not been investigated comprehensively.

A series of (e, 3e) experiments on helium atoms [7]
conducted recently by the Orsay group revealed even
greater disparities between the theoretical and experi-
mental results. In this series, the incident and the scat-
tered electrons again have high energies of the order of
5 keV, while the two slow emitted electrons have low
energies (not exceeding 10 eV). The emission angle of
one of the electrons was fixed while the fivefold differ-
ential cross section was treated as a function of the
angle at which the other electron was emitted. The
small value (0.24 at. units) of the transferred momen-
tum Q might indicate the closeness of the experimental
situation to the optical limit and the dominance of the
contribution from the dipole transition. However, the
results of measurements do not confirm this assumption
on the whole. This prompted us to carry out computa-
tions for the series of (e, 3e) experiments using the
CCC modification based on the J matrix method, which
was found to be highly effective in the analysis of
(e, 2e) processes [3].

2. THEORY
In this work, the J-matrix method was used for com-

putations of the He(e, 3e)He++ reaction, for which a
large body of experimental data is available on the mea-
surement of the angular distribution of the electrons
emitted from the helium atom [7]. The kinematic con-
ditions under which these experiments were carried out
(the incident and scattered electron energy Ei ≈ Es ≈ 5–
8 keV, while the energies E1 and E2 of the electrons
emitted by the helium atom are of the order of a few
electron-volts) made it possible to confine the analysis
to the first Born approximation (exchange of a virtual
photon between the incident electron and the atom) and
to use the nondemocratic decay model, whose principal
assumption stipulates the existence of an intermediate
pseudostate for the He+ ion with an energy equal to the
energy of one of the electrons knocked out in the (e, 3e)
reaction. This allows us to present the amplitude of the
(e, 3e) process in the form of the sum

where  is the amplitude of the (e, 2e) reaction and

 is the amplitude of the second electron emission
as a result of shaking—the subscript µ labels the pseu-
dostates of the He+ ion which can be conveniently char-
acterized by the quantum numbers (n, l, m). In a more
elaborate form of the notation, we can write

(1)

f e 3e,( ) f µ
e 2e,( ) f µ

e e,( ),
µ
∑=

f µ
e 2e,( )

f µ
e e,( )

f e 3e,( ) 2

Q2
------ ψnlm

– p1( )〈 | iQ r1⋅( )exp
nlm

∑–=

+ iQ r2⋅( ) 2 φ0| 〉 ΦC
– p2( ) Φnlm〈 | 〉 .–exp
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Here, (p1; r1, r2) is the wave function of the final
state in the (e, 2e) process in which, however, the pseu-
dostate is considered instead of the wave function of the

real ion-core, (p2) is the Coulomb function of the
electron scattered in the field of the He++ ion, Q = pi –
ps is the momentum transferred to the system, Φnlm is
the wave function of the pseudostate of the He+ ion, and
φ0 is the wave function of the helium atom.

For numerical computations, it is convenient to
determine the total orbital angular momentum L of two
electrons and its projection M in the wave function

(p1; r1, r2) of the final state. In this case, the wave
function of the final state of the He+ ion and of the
knocked-out electron can be presented in the form of
the expansion

(2)

where  is a spherical function, nlm are the
quantum numbers of the He+ ion in the final state, λµ
are the quantum numbers of the knocked-out electron,
Γ' ≡ (n'l 'λ') is the index of the reaction channel, E =

/2 + εnl is the total energy, εn'l ' is the energy of the
pseudostate, and the basis vectors |(νλ)(nl) : LM〉  have
the following form in the coordinate representation:

(3)

where 3 is the symmetrization operator, χnl(r) are the
radial wave functions of the pseudostates, and

The wave function of the ground state of the He
atom is also sought in the form of an expansion in the
basic set (3):

(4)

The wave functions χnl(r) are defined by the method
of pseudostates in which it is assumed that one of the
electrons may be in a pseudostate characterized by the
wave function

(5)

ψnlm
–

ΦC
–

ψnlm
–

ψnlm
– p1( )| 〉 1

p1

--------- aν 'Γ 'Γ
L E( )

λµ
∑=

× Clmλµ
LM Yλµ p̂1( ) n 'l '( ) ν 'λ '( ) : LM| 〉 ,

Yλµ p̂1( )

p1
2

r1 r2, nl( ) νλ( ) : LM〈 | 〉

=  

1
r1r2
---------3 χnl r2( )χνλ r1( )=lλLM r̂2 r̂1,( )[ ] , n Nl,≤

1
r1r2
---------3 χnl r2( )φνλ ξλr1( )=lλLM r̂2 r̂1,( )[ ] , n Nl,>

=lλLM r̂2 r̂1,( ) lmλµ LM〈 | 〉 Ylm r̂2( )Yλµ r̂1( ).
mµ
∑=

φ0| 〉 anν lλ
0( ) nl( ) νλ( ) : 00| 〉 .

ν 0=

Nλ

∑
n 0=

Nl

∑
λ l

∑=

Φnlm r( ) 1
r
---χnl r( )Ylm r̂( ),=
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while the other electron is in a state which may pertain
to a discrete or a continuous spectrum. The number of
pseudostates is assumed to be finite, and hence the
wave functions χnl(r) are sought in the form of an
expansion in basis functions:

(6)

where ξl is the basis parameter. It is convenient to solve
problems with Coulomb interaction using the Laguerre
basis:

(7)

where  are the associated Laguerre polynomials.
The quantity Nl defines the accuracy of calculations of
wave functions [8]. This parameter can be selected
independently for each partial wave.

The expansion coefficients  are the solu-
tions of the infinite set of algebraic equations

(8)

where H is the Hamiltonian of the two-electron target,
which can be presented without taking into account the
spin–orbit interaction in the form

(9)

The system of equations (8) is solved approximately
with the help of the J-matrix method [9]. The applica-
tion of the main approximation of the J-matrix formal-
ism to this problem involves the disregard of the matrix

elements of the residual interaction V =  –  under
the condition ν' > Nλ' and (or) ν'' > Nλ''.

Consequently, the system of equations (8) splits into
two parts, viz., the internal part (ν'' ≤ Nλ'') and the exter-
nal part (ν'' > Nλ''). For ν'' ≤ Nλ'', the infinite system of
equations can be analytically solved exactly, and its
solutions are essentially the exact Coulomb functions
of the ejected electron in the chosen discrete represen-
tation, multiplied by the wave functions of the pseu-
dostates of the ion-core. For ν'' ≤ Nλ'', the system of
equations (8) is solved by the method of diagonaliza-
tion. By matching the internal and external solutions,
we can determine the parameters of the continuous
spectrum of a two-electron atomic system. In order to
determine the wave function φ0(r1, r2) of the ground

χnl r( ) Dnn'
l φn'l ξ lr( ),

n' 0=

Nl

∑=

φnl x( ) n!
n 2l 1+ +( )!

------------------------------=

× xl 1+ x
2
---– 

  Ln
2l 1+ x( ),exp

Ln
α x( )

aν'Γ 'Γ
L E( )

aν'Γ 'Γ
L E( )〈 n'l '( ) ν 'λ '( ) : LM

ν' 0=

∞

∑
MΓ '

∑
× H E– n''l ''( ) ν ''λ ''( ) : LM〉 = 0,

H
1
2
---∆1

1
2
---∆2––= Z

r1
---- Z

r2
----–

1
r12
------.+–

r1
1– r12

1–
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state, it is sufficient to diagonalize the matrix of Hamil-
tonian (9) in basis (3).

The application of the above-mentioned theoretical
model for computations of the (e, 2e) reactions in a
helium atom gave quite satisfactory results [3]. The
amplitude of the (e, 2e) process can be obtained by
using the functions (2) and (4), which are symmetric
relative to the transposition of coordinates r1 and r2:

(10)

where

(11)

(12)

 is the Glebsch–Gordan coefficient and jL is a
spherical function.

The amplitude  is computed in an analogous
manner.

Using the expression for the amplitude f (e, 3e) and
taking into account the normalization of the wave func-
tion (2), we can easily obtain the differential cross sec-
tion σ(5) of the (e, 3e) reaction in the form

(13)

3. DISCUSSION OF RESULTS

The close-coupling method applied to (e, 3e) reac-
tions has a significant drawback: the strong repulsion of
the electrons ejected from the target upon a decrease in
the angle between them and the closeness of their ener-
gies cannot be explained by taking into account the
finite number of pseudostates. In order to take into
account the electron–electron repulsion, the wave func-
tion of the final state can be multiplied [10] by the so-
called Gamow factor introduced in [11]:

The Gamow factor is a part of the approximate three-
particle function of the final state having a regular
three-particle asymptotic form. However, such a multi-
plication results in the loss of orthogonality of the two-
electron continuum functions and, consequently, the

f nlm
e 2e,( ) 4

Q2
------ ψnlm

–〈 | iQ r1⋅( ) 1 φ0| 〉–exp–=

=  
4

Q2
------ JL

Γ Q( )Clmλ , m–
L0 Yλ , m–* p̂1( ),

Lλ
∑–

JL
Γ Q( ) a*( )ν'Γ 'Γ

L Dν'Γ '
L0 Q( ),

ν'Γ '

∑=

DνΓ
LM Q( ) 〈 n'l '( ) ν 'λ '( ) : LM=

× 1 iL– 4πjL Qr( )YL r̂( ) ψ0〉,

Clmλ , m–
L0

f nlm
e e,( )

σ 5( ) d5σ
dΩsdE1dΩ1dE2dΩ2
--------------------------------------------------≡

ps

pi p2
---------- f e 3e,( ) 2

.=

ϕ p1 p2–( ) π
p1 p2–
-------------------– 

  Γ 1 1
p1 p2–
-------------------– 

  .exp=
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Fig. 1. Differential cross sections σ(5) = d5σ/dΩsdE1dΩ1dE2dΩ2 of the (e, 3e) reaction in a helium atom for the projectile electron
energy Ei = 5599 eV. The angle of the scattered electron θs = 0.45°, and transferred momentum Q = 0.24 at. units. The emitted elec-
tron energies are E1 = E2 = 10 eV. The solid curves correspond to our calculations, and the dashed curves to the calculations made
in [7]. The experimental results are borrowed from [7].
absolute value of the differential cross section 

decreases sharply. In order to restore the correct abso-
lute value, we normalize the result to the differential
cross section σ(4):

σ 5( )

σ 4( ) σ 5( ) θ2.d

0

π

∫=
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Thus, the differential cross section  is calculated by
using the following expression:

It should be observed that such a normalization is quite
appropriate in the present case since a considerable part

σG
5( )

σG
5( ) σ 5( ) ϕ p1 p2–( ) 2

σ 5( ) ϕ p1 p2–( ) 2 θ2d
0

π

∫
------------------------------------------------------σ 4( ).=
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Fig. 2. Differential cross sections σ(5) = d5σ/dΩsdE1dΩ1dE2dΩ2 of the (e, 3e) reaction in a helium atom for the projectile electron
energy Ei = 5599 eV. The angle of the scattered electron θs = 0.45°, and transferred momentum Q = 0.24 at. units. The emitted elec-
tron energies are E1 = E2 = 4 eV. The solid curves correspond to our calculations, and the dashed curves to the calculations made in
[7]. The experimental results are borrowed from [7].
of interactions of the knocked-out electrons in the final
state are taken into account during computation of the

amplitude  using the J-matrix approach.

The results of computations are shown in Figs. 1 and 2.
The differential cross sections of the He(e, 3e)He++ pro-
cess are shown in the graphs (in atomic units) as func-
tions of the plane emission angle of one of the helium
electrons measured from the direction of the beam of

f nlm
e 2e,( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
incident fast electrons (Ei = 5599 eV), the plane angle
of the second electron being fixed and indicated in the
upper left corner of the graphs. The energies of the elec-
trons are 10 eV (Fig. 1) and 4 eV (Fig. 2), respectively.
In all the figures, θQ = 319°. The solid curve corre-
sponds to the results of our calculations, and the dashed
one, to the calculations made by Kheifets [7] using the
CCC technique. The experimental results are borrowed
from the same work.
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The results of our calculations show a close coinci-
dence (except for the multiplication factor) of the angu-
lar distribution of the emitted electrons with the calcu-
lations made by Kheifets et al. on a powerful multipro-
cessor computer. The same physical model of
nondemocratic decay was used in both cases. However,
it should be remarked that in a number of cases, both
calculations displayed a significant discrepancy with
the experimental results in magnitude and in the angle
of emission of the electron. These departures from the
results of independent qualitative computations clearly
indicate the manifestation of new physical effects even
in a simple atom like helium.

First, it is apparent that the nondemocratic decay
model, which stems from experiments involving the
emission of high-energy (of the order of 300–500 eV)
electrons [12], is less suitable for the physics of low-
energy processes with emission energies of 5–20 eV.
This conclusion is confirmed, among other things, by
the recent series of (e, 3e) experiments carried out by
the Ulrich group in Germany [13]. Thus, a basically
new model for taking correlation into account is
required for calculating the differential cross sections
of an (e, 3e) reaction in the kinematic region of close
and low electron emission energies.

Second, neither of the trial wave functions of the
helium atom ground state used in these calculations
brings us any closer to a formal solution of the
Schrödinger equation [14]. Nevertheless, these trial
functions are convenient for numerical computations.
For example, it was observed that the simple trial func-
tions for helium, which were used successfully in cal-
culations of elastic, quasielastic, and even (e, 2e) reac-
tions, are utterly inadequate for describing the differen-
tial cross-sections of (e, 3e) processes, and more
cumbersome multiconfigurational Hartree–Fock or
Hylleraas polynomial functions are required for this
purpose. However, both the theory and the latest exper-
imental data point towards the possibility of asymptotic
quantization of the angle between the electron radius
vectors which was postulated by Heisenberg as early as
in 1920s. In turn, this considerably changes the form of
the atomic wave function at middle distances of elec-
trons from the nucleus, which make the main contribu-
tion to the integral of the matrix element used in com-
putations.

Finally, the effect of the intermediate multielectron
continuum on the results of calculations cannot be
reproduced completely even by a large but finite num-
ber of pseudostates in the case of a system with Cou-
lomb potentials.
JOURNAL OF EXPERIMENTAL
Thus, more and more serious “ideological” and
computational problems are encountered when the
close-coupling method is used in the investigations of
multielectron ionization processes. New ideas and
computational algorithms are needed even for a simple
atom like helium.
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Abstract—Three- and two-dimensional models of p- and d-pairing are constructed for superconductors and
superfluid quantum liquids using the functional integration formalism. In these models, the collective excitation
spectra are calculated for superconductors with nontrivial pairing (such as high-temperature superconductors
(HTSC) and heavy-fermion superconductors (HFSC)) for p- and d-pairing. Both three- and two- dimensional
systems are considered. Some of recent ideas concerning the realization of the mixture of different states in
HTSC are considered. In particular, the mixture of states  + idxy is analyzed. The obtained results of cal-

culations of collective excitation spectra in superconductors with nontrivial pairing may be used for determin-
ing the type of pairing and the order parameter in HTSC and HFSC and also for interpreting the experimental
results on ultrasound and microwave absorption in these system. © 2001 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Until recently, the study of collective excitations in
superconductors with nontrivial pairing was rather
exotic for several reasons. First, nontrivial pairing was
not established reliably even for an individual supercon-
ductor in spite of the existence of certain evidence [1] con-
cerning the nontrivial type of pairing in some supercon-
ductors (high-temperature superconductors (HTSC) and
heavy-fermion superconductors (HFSC)). Second, no
sound proof was obtained for the existence of collective
excitations in superconductors. The situation has
changed radically during recent years and especially
during the last year so that the study of collective exci-
tations in superconductors with nontrivial pairing has
become a reality. In the light of recent experiments [1],
this subject becomes quite vital. Above all, the so-
called amplitude mode (with a frequency of the order of
2∆) associated with order parameter amplitude oscilla-
tions was experimentally observed for the first time a
few years ago in films of traditional (low-temperature)
superconductors [1]. It should be noted that only the
first of the two collective modes existing in supercon-
ductors and associated with phase and amplitude oscil-
lations in the complex order parameter (zero sound)
had been observed experimentally before that. Besides,
the type of pairing has been established for many super-
conductors during the last year (see, for example, [2]):
s-pairing takes place in traditional (low-temperature
superconductors and in HTSC with electron-type con-
ductivity; d-pairing is observed in HTSC with hole-
type conductivity, organic superconductors, and some
HFSC (UPd2Al3, CePd2Si3, CeIn3, CeNi2Ge2, etc.),
1063-7761/01/9205- $21.00 © 0795
while p-pairing was detected in pure 3He, 3He in aero-
gel, Sr2RuO4 (HTSC), and UPt3 (HFSC).

2. MODELS OF p- AND d-PAIRING
FOR SUPERCONDUCTORS

The method of continual integrations as applied to a
nonrelativistic Fermi system at a temperature T neces-
sitates integration over the space of anticommuting
functions χ(x, τ), χ(x, τ) with the Fourier expansion

(1)

where p = (k, ω), ω = (2n + 1)πT being the Fermi fre-
quencies; x = (x, τ), β = 1/T; V is the system volume;
and T is the temperature.

Let us consider the functional of action for an inter-
acting Fermi system:

(2)

which corresponds to the Hamiltonian

(3)

χs x( )
1

βV
----------- as p( ) i ωτ k x⋅+( )[ ] ,exp

p

∑=

S τ x3d

0

β

∫ χs x τ,( )∂τχs x τ,( ) * τ( ) τ ,d

0

β

∫–
s

∑=

* τ( ) x3 1
2m
-------∇χ s x τ,( )∇χ s x τ,( )

s

∑d∫=

– λ sµ0H+( )χs x τ,( )χs x τ,( )
1
2
--- x3d y3 U x y–( )d∫+

× χs x τ,( )χs' y τ,( )χs' y τ,( )χs x τ,( ).
ss'

∑
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Here, H is the magnetic field, λ is the chemical poten-
tial, µ is the magnetic moment of a particle, U is the
pair interaction potential, and s and s' are the spin indi-
ces, each of which assumes the value “+” or “–”.

Let us first integrate over fast fields χ1, for which
|k – kF | > k0 or |ω| < ω0 in expansion (1), and then over
slow Fermi fields, χ0 = χ – χ1 (here, k0 and ω0 are the
parameters specifying the layer width at the Fermi sur-
face, which are determined from the order of magni-
tude and do not affect the physical results). After inte-
grating over fast fields, we consider the terms describ-
ing noninteracting quasiparticles at the Fermi surface,
which are defined by the quadratic form S2, and their
pair interaction corresponding to the fourth-degree
form S4. Form S2 can be written as

(4)

Here, Z is the normalization constant and cF is the
velocity of a particle on the Fermi surface. Form S4 is
different for different types of pairing, and hence, the
cases of p- and d-pairing will be considered separately.

2.1. p-Pairing

In the case of the triplet pairing, form S4 can be writ-
ten as

Here, p = (k, ω) is the 4-momentum, t0(pi) and t1(pi) are
the symmetric and antisymmetric scattering amplitudes
for transpositions p1  p2, p3  p4, the superscript
on a, a+ correspond to the values of s, s ' (±). In the
vicinity of the Fermi sphere, we can put ωi = 0, ki = nikF

(i = 1, 2, 3, 4). Amplitudes t0, t1 must be functions of
only two invariants, say, (n1, n2) and (n1 – n2, n3 – n4),
the function t0 being even and t1 being odd in the second
invariant. Consequently, we can write

functions f and g being even in the second argument.
Functions f and g can be easily evaluated in the gas

S2
1
Z
--- iω cF k kF–( ) sµH+–[ ] as

+ p( )as p( ).
s p,
∑≈

S4
1

βV
------- t0 p1 p2 p3 p4, , ,( )a+

+ p1( )
p1 p2+ p3 p4+=

∑=

× a–
+ p2( )a– p4( )a+ p3( )

–
1

2βV
---------- t1 p1 p2 p3 p4, , ,( )

p1 p2+ p3 p4+=

∑

× 2a+
+ p1( )a–

+ p2( )a– p4( )a+ p3( )[

+ a+
+ p1( )a+

+ p2( )a+ p4( )a+ p3( )

+ a–
+ p1( )a–

+ p2( )a– p4( )a– p3( ) ] .

          

t0 f n1 n2,( ) n1 n2– n3 n4–,( ),( ),=

t1 n1 n2– n3 n4–,( )g n1 n2,( ) n1 n2– n3 n4–,( ),( ),=
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model; for high-density systems, they must be deter-
mined from experiment. We consider the model with

 

f 

 

= 0

 

, g

 

 = const < 0 as a model of the BCS type (weak
coupling approximation) for superconductors and
superfluid quantum liquids with pairing in the 

 

p-

 

state.

The most economical way of describing collective
excitations is the transition from the initial Fermi fields
to Bose fields describing Cooper pairs of quasiparti-
cles. Such a transition can be carried out by inserting,
say, a Gaussian integral of exp(

 

c

 

+

 

Ac

 

) over a Bose field

 

c

 

, where 

 

A 

 

is a certain operator, into the integral over
slow Fermi fields. After a translation of the Bose field
by the quadratic form of the Fermi fields annihilating
form 

 

S

 

4

 

, the integral over the Fermi fields becomes a
Gaussian integral and is equal to the determinant of

operator .

Having integrated over slow Fermi fields, we arrive
at the functional of hydrodynamic action in the form

(5)

where  are the condensate values of the Bose fields

 

c

 

ia

 

 and 

 

M

 

(

 

c

 

ia

 

, ) is a 4 

 

×

 

 4 matrix depending on the
Bose fields and quasifermionic parameters, whose ele-
ments are given by

(6)

Here, 

 

σ

 

a

 

 (

 

a 

 

= 1, 2, 3) are the Pauli spin matrices, 

 

σ

 

 =
(  σ

 
1  
,  σ

 
2  
,  σ

 
3  
). The hydrodynamic action functional con-

tains the entire information on the physical properties
of the model system and determines, among other
things, the spectrum of its collective excitations [3].

 

2.2. d-Pairing

 

In the case of singlet pairing, 

 

S

 

4

 

 has the form

(7)

M̂ c+ c,( )

Seff
1
g
--- cia

+ p( )cia p( )
p i a, ,
∑=

+
1
2
--- det

M cia cia
+,( )

M cia
0( ) cia

0( )+,( )
-------------------------------,ln

cia
0( )

cia
+

M11
1
Z
--- iω ξ µ H s⋅( )–+[ ]δ p1 p2

,=

M22
1
Z
--- –iω ξ µ H s⋅( )+ +[ ]δ p1 p2

,=

M12
1

βV
------- n1i n2i–( )cia p1 p2+( )σa,=

M21 –
1

βV
------- n1i n2i–( )cia

+ p1 p2+( )σa.=

S4 –
1

βV
------- t p1 p2 p3 p4, , ,( )

p1 p2+ p3 p4+=

∑=

× a+
+ p1( )a–

+ p2( )a– p4( )a+ p3( ).
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The first version of the d-pairing model for superconduc-
tors, which was obtained by the method of functional inte-
gration, was proposed by us earlier [4] in 1994, when the
first attempts were made to seriously consider the idea of
d-pairing in HTSC. We will present below a modified self-
consistent model of superconductors with d-pairing [5],
which will be subsequently used to analyze the spectrum
of collective modes in HTSC and HFSC.

In the case of d-pairing, we have

(8)

Here,

and Y2m( ) are spherical harmonics with l = 2. We con-
sider the spherically symmetric case which requires
only one coupling constant g. In order to take into
account the lattice symmetry, additional coupling con-
stants must be introduced (up to five in the general case,
since five is the number of spherical harmonics with l = 2).
However, this number decreases to two in the case of
cubic symmetry and to three in the case of hexagonal
symmetry: g|m| (m = 0, ±1, ±2).

It was mentioned above that the number of degrees
of freedom for the order parameter in the case of singlet
d-pairing is equal to ten; i.e., we must have five com-
plex canonical variables. It is natural to chose for
canonical variables the following combinations of ini-
tial variables:

In the canonical variables cj (j = 1, 2, 3, 4, 5), the effec-
tive functional of action has the form

(9)

where

(10)

t p1 p2 p3 p4, , ,( ) V k̂ k'ˆ,( )=

=  gmY2m k̂( )Y2m* k'ˆ( ).
m 2–=

2

∑

k1 k q/2, k2+ –k q/2,+= =

k3 k' q/2, k4+ –k' q/2,+= =

k̂

c1 c11 c22, c2+ c11 c22, c3– c12 c21,+= = =

c4 c13 c31, c5+ c23 c32.+= =

Seff
1

2g
------ c j

+ p( )c j p( ) 1 2δj1+( )
p j,
∑=

+
1
2
--- det

M c j
+ c j,( )

M c j
+ 0( ) c j

0( ),( )
-----------------------------,ln

M11
1
Z
--- iω ξ µ H s⋅( )–+[ ]δ p1 p2

,=

M22
1
Z
--- –iω ξ µ H s⋅( )+ +[ ]δ p1 p2

,=

M12 M21*
1

βV
------- 15

32π
--------- 

 
1/2

= =

× c1 1 3 θcos
2

–( ) c2 θsin
2 ϕcos

2
+[

+ c3 θsin
2

2ϕsin c4 2θ ϕcossin c5 2θ ϕsinsin+ + ] .
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Here, δj1 is the Kronecker delta symbol and  is the
delta function.

3. COLLECTIVE PROPERTIES 
OF SUPERCONDUCTORS 

WITH NONTRIVIAL PAIRING

3.1. p-Pairing

The first results on p-pairing were obtained by us
earlier [3] for A-, B-, A1-, 2D- and polar phases associ-
ated with superfluid 3He in which the first three phases
were discovered experimentally. We considered addi-
tional superconducting phases that may be formed in
HTSC or HFSC.

The results are presented below. It should be
recalled that the spectrum of collective modes in each
superconducting phase consists of 18 modes including
high-frequency and Goldstone modes (∆ is the gap in
the Fermi spectrum, ∆0 is the amplitude of the gap in
the Fermi spectrum for an anisotropic gap, and k|| is the
momentum component of collective excitation, which
is parallel to the orbital anisotropy axis l; here and
below, the number of collective modes is given in
parentheses).

A phase:

B phase:

2D phase:

A1 phase:

δp1 p2

E ∆0 T( ) 1.96 0.31i–( ) (3),=

E ∆0 T( ) 1.17 0.13i–( ) (6),=

E2 cF
2 k2/3 (3),=

E2 cF
2 k ||

2 6( ).=

E2 12∆2/5 (5), E2 8∆2/5 (5),= =

E2 4∆2 4( ), E2 cF
2 k2/3 1( ),= =

E2 cF
2 k2/5 1( ), E2 cF

2 k2/5 2( ).= =

E 0 (6); E ∆0 T( ) 1.96 0.31i–( ) 2( ),= =

E ∆0 T( ) 1.17 0.13i–( ) 4( ),=

E = 2µH  (2), E 0
2

  =  ∆ 0
2 T ( ) 1.96 0.31 i – ( ) 

2 4 µ 
2 H 

2  (2),+

E2 ∆0
2 T( ) 0.518( )2 4µ2H2 1( ),+=

E2 ∆0
2 T( ) 0.495( )2 4µ2H2 1( ).+=

E ∆0 T( ) 1.96 0.31i–( ) 1( ),=

E ∆0 T( ) 1.17 0.13i–( ) 2( ),=

E 2µH (8), E 0 (1).= =
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Here, as before, H is the magnetic field. Six other
modes have an imaginary spectrum (this is due to the
instability of the A1 phase to small perturbations).

In the polar phase, cia = , we obtain the fol-
lowing set of equations for the collective mode spec-
trum:

Here,

Quantity J depends on the gap in the Fermi spectrum,
which in the general case is a function of angular vari-
ables θ and ϕ. Putting κ = 0 and solving these equations
numerically, we obtained the roots E = ∆0(T)(1.20 –
1.75i) for the second equation and E = 0 for the third
equation. The roots for the first and fourth equations
could not be determined.

Thus, for the polar phase, we obtained six strongly
attenuating modes with energy (frequency) E =
∆0(T)(1.20 – 1.75i) and three Goldstone modes. The
presence of strongly attenuating modes is associated
with the fact that in contrast to axial and planar phases,
where the gap vanishes only at poles and where collec-
tive modes attenuate moderately and can be observed
as resonances in experiments on ultrasound absorption,
the gap in the polar phase vanishes along the equator.

For the three phases

δi3δa3

x 1 x2–( ) 1 4∆2

q2
---------– 

  J 1–d

0

1

∫ 0 (6),=

x 1 x2–( ) J 2–( )d

0

1

∫ 0 (6),=

xx2 1 4∆2

q2
---------+ 

  Jd

0

1

∫ 0 (3),=

xx2Jd

0

1

∫ 0 (3).=

J
1

1 4∆2/q2+
------------------------------ 1 1 4∆2/q2++

1 1 4∆2/q2+–
---------------------------------------,ln=

x θ, q2cos ω2 cF
2 k n⋅( ).+= =

1

2
-------

1 0 0

0 1– 0

0 0 0 
 
 
 
 

,
1

2
-------

0 1 0

1 0 0

0 0 0 
 
 
 
 
JOURNAL OF EXPERIMENTAL
and

the spectrum is identical and can be determined from
the following set of equations:

The numerical solution of these equations leads to the fol-
lowing spectrum of high-frequency modes (for κ = 0):

1

2
-------

0 1– 0

1 0 0

0 0 0 
 
 
 
 

,

x 1 x2–( ) 1 4∆2

q2
---------+ 

  Jd

0

1

∫ 0 (2),=

x 1 x2–( ) 1 6∆2

q2
---------+ 

  Jd

0

1

∫ 0 (3),=

x 1 x2–( ) 1 8∆2

q2
---------+ 

  Jd

0

1

∫ 0 (1),=

x 2 x2–( ) 1 4∆2

q2
---------+ 

  J 1–( )d

0

1

∫ 0 1( ),=

2 xx2 1 6∆2

q2
---------+ 

  J 1–( )d

0

1

∫ 0 2( ),=

x 1 x2–( ) 1 2∆2

q2
---------– 

  Jd

0

1

∫ 0 (2),=

x 1 x2–( )Jd

0

1

∫ 0 (3),=

x 1 x2–( ) 1 4∆2

q2
---------– 

  Jd

0

1

∫ 0 1( ),=

xx2 1 2∆2

q2
---------– 

  J 1–d

0

1

∫ 0 2( ),=

xx2 J 1–( )d

0

1

∫ 0 1( ).=

E ∆0 T( ) 1.83 0.06i–( ) 1( ),=

E ∆0 T( ) 1.58 0.04i–( ) 2( ),=

E ∆0 T( ) 1.33 0.10i–( ) 1( ),=

E ∆0 T( ) 1.33 0.08i–( ) 2( ),=
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The last two modes have imaginary components of the
same order of magnitude as the real components. This
means that they strongly attenuate and cannot be
treated as resonances.

For the phase , we obtain the following

set of equations for the collective excitation spectrum:

The numerical solution of these equations leads to the fol-
lowing spectrum of high-frequency modes (for κ = 0):

For the phase , we obtained the fol-

lowing two equations for the spectrum:

E ∆0 T( ) 1.28 0.04i–( ) 2( ),=

E ∆0 T( ) 1.09 0.22i–( ) 3( ),=

E ∆0 T( ) 0.71 0.05i–( ) 3( ),=

E ∆0 T( ) 0.33 0.34i–( ) 1( ),=

E ∆0 T( ) 0.23 0.71i–( ) 2( ).=

1 1 0

i i 0

0 0 0 
 
 
 
 

x x2 1 2∆2

q
2

---------+ 
  J 1–( )d

0

1

∫ 0 6( ),=

x 1 x2–( ) 1 2∆2

q2
---------+ 

  Jd

0

1

∫ 0 4( ),=

x 1 x2–( ) 1 ∆2

q2
-----+ 

  Jd

0

1

∫ 0 4( ),=

x 1 x2–( ) 1 3∆2

q2
---------+ 

  Jd

0

1

∫ 0 4( ).=

E ∆0 T( ) 0.66 0.02i–( ), E ∆0 T( ) 0.64 0.02i–( ),= =

E ∆0 T( ) 0.46 0.04i–( ), E ∆0 T( ) 0.36 0.04i–( ).= =

1

6
-------

1– 0 0

0 1– 0

0 0 2 
 
 
 
 

x 1 n∆2

q2
---------

m∆2

q2
----------1 x2–

3
-------------+ + 

  J 1 x2–( )d

0

1

∫

–
4
3
--- 16

9 3
---------- 3arctan+ 0,=
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The first of these equations leads to an equation describ-
ing the modes corresponding to variables u11 – u22,
u12 + u21, where uij + v iji = cij are the Bose fields from
Eq. (5) for n = 4 and m = 1; to variables u12 – u21 for
n = 4, m = 0; to variables v 11 – v 22, v 12 + v 21 for n = 0,
m = –1; and to variables v 12 – v 21 for n = 0, m = 0. The
second equation describes the modes corresponding to
variables u11 + u22, u33 for A = 1, n = 4, m = 1; to vari-
ables v 11 + v 22, v 33 for A = 1, n = 0, m = –1; to variables
(u23, u32), (u13, u31) for A = 0, n = 4, m = 1; and to vari-
ables (v 23, v 32), (v 13, v 31) for A = 0, n = 0, m = –1.

For the phase , we have the following

equation for the spectrum:

It describes the modes corresponding to variable u31,
u32, v 33 for A = 0, n = 0; to variables u33, v 31, v 32 for
A = 0, n = 4; to variables u11 ± u21, u12 ± u22, v 13 ± v 23
for A = 1, n = 0; and to variables v 11 ± v 21, v 12 ± v 22,
u13 ± u23 for A = 1, n = 4.

For the phase , we obtained the following

two equations for the spectrum:

x 1 n∆2

q2
---------

m∆2

q2
----------2

3
--- A 2A 1–( )x2+[ ]+ + 

  J 1 x2–( )d

0

1

∫

–
4
3
--- 16

9 3
---------- 3arctan+

× x 2 1 n∆2

q2
---------

mA∆2

q2
--------------2x2

3
--------+ + 

  Jx2d

0

1

∫

+
2
3
--- 8

9 3
---------- 3arctan–

– 2 xJ
∆2

q2
-----2

3
--- 1 x2–( )x

2
d

0

1

∫
2

0.=

0 0 0

0 0 0

1 1 0 
 
 
 
 

xd

0

1

∫ ϕ A x2–( ) 1 A ϕsin±( )d

0

2π

∫

× 1 n∆2

q2
---------+ 

  J A 1–+ 0.=

0 0 1

0 0 1

0 0 0 
 
 
 
 

xd

0

1

∫ ϕx2 1 n∆2

q2
---------+ 

  J 1–d

0

2π

∫ 0,=
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The first equation describes the modes corresponding
to variables u31, u32, v 33 for n = 0 and to variables u33,
v 31, v 32 for n = 4. The second equation describes the
modes corresponding to variables u11 ± u21, u12 ± u22,
v 13 ± v 23 for n = 0 and to variables v 11 ± v 21, v 12 ± v 22,
u13 ± u23 for n = 4.

For the two phases

the spectra are identical and can be determined from
two equations, the first of which,

leads to an equation describing the modes correspond-
ing to variables v 11, v 33 for A = 1, B = 0; to variables u11,
u33 for A = –1, B = 0; to variables v 13, v 31 for A = 0,
B = 1; and to variables u13, u31 for A = 0, B = –1. The
second equation,

xd

0

1

∫ ϕ 1 x2–( ) 1 ϕsin±( ) 1 n∆2

q2
---------+ 

  Jd

0

2π

∫ 0.=

1

2
-------

0 0 1

0 0 0

1± 0 0 
 
 
 
 

and
1

2
-------

0 0 0

0 0 1

0 1± 0 
 
 
 
 

,

xd

0

1

∫ ϕ 1
2∆2

q2
---------+





d

0

π/2

∫

+
2∆0

2

q2
--------- A 1 x2–( ) ϕcos

2
Bx2+[ ]





J 1 x2–( ) ϕcos
2

+
1
2
--- 1 x2–( ) ϕcos

2
x2–[ ] 1 1 x2–( ) ϕcos

2
–( )ln

× xd

0

1

∫ ϕ 1
2∆2

q2
---------+





d

0

π/2

∫

+
2∆0

2

q2
--------- B 1 x2–( ) ϕcos

2
Ax2+[ ]





Jx2

–
1
2
--- 1 x2–( ) ϕcos

2
x2–[ ] 1 1 x2–( ) ϕcos

2
–( )ln

– xd

0

1

∫ ϕ
4∆0

2

q2
---------x2 1 x2–( ) ϕcos

2
Jd

0

π/2

∫
2

0,=

xd

0

1

∫ ϕ 1
2∆2

q2
---------N

2∆0
2

q2
---------x2P+ +

 
 
 





d

0

π/2

∫
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describes the mode corresponding to variable u22 for
y = 1, z = 0 and N = 0, P = 0; to variable v 22 for N = 2,
P = 0; to variable u21 for N = 0, P = 1; to variable v 21 for
N = 2, P = –1; to variable u23 for N = 1, P = –1; to vari-
able v 23 for N = 1, P = 1; to variable u12 for y = 0, z = 1
and N = 0, P = 0; to variable v 12 for N = 2, P = 0; to vari-
able u32 for y = 0, z = 0 and N = 0, P = 0; and to variable
v 32 for N = 2, P = 0.

For phase , we obtain from the second

equation the high-frequency modes

the last of which has the imaginary component of the
same order of magnitude as the real component. This
means that it attenuates strongly and cannot be treated
as a resonance.

Tewordt [6] analyzed the collective mode spectrum
for the order parameter in Sr2RuO4 under the assump-
tion that p-pairing takes place in this system. He con-
sidered two possible superconducting phases with the
order parameters

It should be noted that the first phase is an analogue
of the A-phase of superfluid 3He. Tewordt [6] deter-
mined the mode E = 2∆0 for this phase and the mode

E = ∆0 for the second phase. Both modes are cou-
pled with charge density fluctuations, but this coupling
is weak in view of the smallness of the quantity
dN(E)/dE, which is a measure of the electron–hole
asymmetry on the Fermi surface. Comparing the results
obtained by Tewordt (E = 2∆0) with our results, we note
that the value of frequency E = ∆0(T)(1.96 – 0.31i)
obtained by us for high-frequency modes in the phase
which is an analogue of the A-phase of superfluid 3He
is more accurate. This is due to the fact that Tewordt did
not calculate the imaginary components of collective
mode frequencies whose presence renormalizes the
real energy components by virtue of dispersion rela-
tions.

× J 1 x2–( ) z y–( ) ϕcos
2

y+[ ] x2 1 z– y–( )+{ }

+ 1 x2–( ) ϕcos
2

x2–[ ] 2z y 1–+( )

+
1
2
--- 3 1 x2–( ) ϕsin

2
1–[ ] y 1 1 x2–( )cos2ϕ–[ ]ln





 = 0,

0 0 1

0 0 0

1 0 0 
 
 
 
 

E ∆0 T( ) 1.80 0.09i–( ), E ∆0 T( ) 0.55 0.80i–( ),= =

d̂ ∆0ẑ kx iky+( ), d̂
∆0

2
----- ẑ kx ky+( ).= =

3
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We also considered the second superconducting

phase  studied by Tewordt. The equations for

the mode spectrum of this phase are given above (how-
ever, the solution of these equations have not been
obtained).

Considering the pairing amplitude different in the xy
plane and in a plane perpendicular to it, Tewordt
obtained a number of quasi-Goldstone modes with fre-

quencies ω2 = ln(Tc/Tcj), where Tcj < Tc is the super-
conducting transition temperature corresponding to
pairing in the xy plane. Since both pairing amplitudes
are assumed to be equal in our analysis, we obtained
pure Goldstone modes (Tc = Tcj and, hence, ω = 0)
instead of quasi-Goldstone modes. It should be noted,
however, that the number of superconducting phases in
the case of p-pairing considered by us is much larger
than those analyzed by Tewordt.

3.2. d-Pairing

3.2.1. Collective Excitations in HTSC
with d-Pairing

Let us consider the superconducting states ,

dxy, dxz, dyz, and  emerging in the symmetry clas-

sification of HTSC (Table 1).
Let us calculate the collective mode spectrum for

the given five states. In the first approximation, the col-
lection excitation spectrum is determined by the qua-
dratic component of the effective action Seff obtained by

the translation cj(p)  cj(p) +  in formula (9) for

Seff. Here,  = cδp0  are the condensate val-

ues of canonical Bose fields and the values of  for the
cases listed in Table 1 are as follows:

the remaining components cj(p) being equal to zero.
The spectrum can be determined from the equation

detQ = 0, where Q is the matrix of the quadratic form.
For each superconducting phase, we determined five
high-frequency modes (Table 2) and five Goldstone
(quasi-Goldstone) modes whose energies are equal to
zero or small (≤0.1∆0).

We calculated the spectrum of collective modes for
the five superconducting phases of HTSC, namely, for

, , dxy, dxz, and dyz, using the model of

d-pairing constructed by us using the functional inte-
gration method and considering the case of spherical

0 0 1

0 0 1

0 0 0 
 
 
 
 

∆0
2

d
x

2
y

2–

d
3z

2
r

2–

c j
0 p( )

c j
0 p( ) βV c j

0

c j
0

1 ) c1
0 2, 2 ) c2

0– 2, 3 ) c4
0 2,= = =

4 ) c5
0 2, 5 ) c3

0 2,= =

d
x

2
y

2–
d

3z
2

r
2–
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symmetry that needs only the coupling constant g. The
inclusion of the lattice symmetry requires the introduc-
tion of additional coupling constants (up to five in the
general case).

For each of the five phases, we determined five high-
frequency modes in each phase with frequencies lying
between ∆0 and 2∆0 as well as five Goldstone (quasi-
Goldstone) modes with frequencies smaller than 0.1∆0.

It should be noted that the frequencies (energies) of
all collective modes are complex-valued. This is a con-
sequence of d-pairing or, in other words, a consequence
of gap vanishing in chosen directions. In this case, Bose
excitations decay into fermions, which leads to the
attenuation of collective modes. The value of the imag-
inary frequency (energy) component ImEi amounts to
25 to 80%. Some of these modes attenuate moderately
and may be treated as resonances, while others attenu-
ate more strongly, which complicates their observation.
The inclusion of the Coulomb interaction converts the
zero sound mode into a plasma mode.

The obtained spectra of collective modes in HTSC
may be used for interpreting ultrasonic experiments
and the experiments on microwave absorption in HTSC
as well as for identifying the type of pairing and the
order parameter in HTSC.

Table 1

No. Phase Order parameter Gap in Fermi 
spectrum

1 ∆0|3cos2θ – 1|

2 ∆0sin2θ|cos2ϕ|

3 dxy ∆0sin2θ|sin2ϕ|

4 dxz ∆0|sin2θcosϕ|

5 dyz ∆0|sin2θsinϕ|

d
3z

2
r

2–

1– 0 0

0 1– 0

0 0 2 
 
 
 
 

d
x

2
y

2–

1 0 0

0 1– 0

0 0 0 
 
 
 
 

0 1 0

1 0 0

0 0 0 
 
 
 
 

0 0 1

0 0 0

1 0 0 
 
 
 
 

0 0 0

0 0 1

0 1 0 
 
 
 
 
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Table 2

, dxy dxz, dyz

E1 = ∆0(2.0 – 1.65i) E1 = ∆0(1.88 – 0.79i) E1 = ∆0(1.76 – 1.1i)

E2, 3 = ∆0(1.85 – 0.69i) E2 = ∆0(1.66 – 0.50i) E2 = ∆0(1.70 – 0.48i)

E4, 5 = ∆0(1.64 – 0.50i) E3 = ∆0(1.14 – 0.68i) E3 = ∆0(1.14 – 0.68i)

E4 = ∆0(1.13 – 0.71i) E4 = ∆0(1.13 – 0.73i)

E5 = ∆0(1.10 – 0.65i) E5 = ∆0(1.04 – 0.83i)

d
3z

2
r

2–
d

x
2

y
2–
3.2.2. Collective Excitations in Heavy-Fermion 
Superconductors with d-Pairing

In heavy-fermion superconductors (HFSC), as in
HTSC, the order parameter and the type of pairing have
been established only for some compounds. The tradi-
tional BCS pairing contradicts the nonexponential tem-
perature dependence of most thermodynamic quantities
such as specific heat. The complex phase diagram of
HFSC also points to a nontrivial pairing in these sys-
tems. Examples of HFSC with p-pairing as well as
d-pairing are known. The case of p-pairing was consid-
ered above. Here, we will apply the functional integra-
tion method for an analysis of the d-pairing in HFSC in
analogy with the procedure used by us for all the super-
conducting states emerging in the symmetry classifica-
tion of HTSC. We will calculate the complete spectrum
of collective excitations for all superconducting states
emerging in the symmetry classification of HFSC. Let
us consider three superconducting states including dγ
and Y2–1. Collective excitations in the two latter phases
were studied earlier by Hiroshima and Namaizawa [7]
using the method of kinetic equation. At the end of the
section, we will compare our results for two of the three
phases with the results obtained in [7].

In each superconducting phase of HFSC, there exist
10 collective modes. We established that five of them
are high-frequency modes; i.e., they have frequencies
of the order of the gap width in the Fermi spectrum. At
the same time, the remaining five modes are Goldstone
(or quasi-Goldstone) modes with frequencies (ener-
gies) vanishing (small) for zero pulses.

Thus, we will again consider the three-dimensional
model of d-pairing in superconductors. It should be
recalled that the model is described by the hydrody-
namic action functional obtained by successive func-
tional integration over fast and then slow Fermi fields.
The hydrodynamic action functional determines all
properties of the system under investigation (HFSC in
the given case), including the collective excitation
spectrum.
JOURNAL OF EXPERIMENTAL 
3.2.2.1. Calculation of Collective Mode Spectrum

We consider the following superconducting states
emerging in the symmetry classification of HFSC:

(1) dγ phase  with the gap ∆(T) =

∆0(T)(  +  + );

(2) Y2–1 phase  with the gap ∆(T) =

∆0(T)sin2θe–iϕ;

(3) phase  with a gap proportional to

sin2θ.
Let us calculate the collective mode spectrum for

these three states in analogy with Subsection 3.2.1. The

values of  for the cases considered here are

while the remaining components of  are equal to zero.

In order to obtain the quadratic component of the
effective action Seff, we present the second term in
expression (9) in the form

(9')

e4πi/3 0 0

0 e2πi/3 0

0 0 1 
 
 
 
 

e4πi/3kx
2 e4πi/3ky

2 kz
2

0 0 1

0 0 i–

1 i– 0 
 
 
 
 

1 i 0

i 1– 0

0 0 0 
 
 
 
 

c j
0

1) c1
0 1, c2

0– i 3;–= =

2) c4
0 2, c5

0 2i;= =

3) c2
0 2, c3

0 2i,= =

c j
0

1
2
--- det 1 Cu+( ),ln

G 1– M c0+ c0,( ),=

u
1

βV
----------- 0 cY∗[ ]

cY∗[ ] 0 
 
 

.=
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Here,

We expand expression (9') into a power series in new
Bose fields cj and retain the terms up to the second
order in cj. The second-order term is given by

(the first-order term vanishes as a result of minimiza-
tion). After calculations, we obtain the quadratic form
determining the collective excitation spectrum.

EQUATION FOR THE GAP

Let us consider the first term in expression (9) for
Seff. Constant g describing the interaction of quasifer-
mions must be eliminated using the equation for the
gap. In order to derive this equation, we must calculate
Seff in the Ginzburg–Landau region (for T ~ Tc), where
the wave function of Cooper pairs (order parameter) is
(modulo) small:

Expanding the second term into a power series in Gu,
we obtain

Carrying out summation and substituting

and

we obtain

Here, α = , σ3 is the Pauli matrix, and the fol-

lowing substitution has been made:  =

cδp0 . Constant c can be determined from the

cY∗[ ] c1 1 3 θcos
2

–( ) c2 θ 2ϕcossin
2

+=

+ c3 θsin
2

2ϕsin c4 2θ ϕ c5 2θ ϕ.sinsin+cossin+

1
4
--- Tr Gp1 p2

up2 p3
Gp3 p4

up4 p1
( ).

p1 p2 p3 p4, , ,
∑–

Seff
1

2g
------ c j p( ) 2 1 2δj1+( ) 1

2
---Tr 1 Gu+( ).ln+

p j,
∑=

1
4n
------Tr Gu( )2n.

n 1=

∞

∑–

up1 p2

α
βV

----------- 0 cY∗[ ]
cY∗[ ] 0 

 
 

=

G
Zσ3δp1 p2

iω ξ–
--------------------,=

Seff
A
2g
------βVc2 1

2
--- 1 α2c2Z2 c0Y∗[ ] c+0Y[ ]

ω2 ξ2+
--------------------------------------------------+ 

  .ln+=

15/35π
c j

0 p( )

βV c j
0
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equation δSeff/δc = 0, which leads to the following
equation for the gap:

Here, A = 6 for the first phase and A = 8 for the second
and third phases. For different superconducting phases,
we obtain the following equations:

where ∆0 = 2cZα. Eliminating the term 1/g using the
equation for the gap, we arrive at the following expres-
sion for the quadratic component of Seff:

(11)

This is the general quadratic form for all three
superconducting states of HFSC. Only parameter A and
the gap structure (through [c0Y*][c+0Y] and Mi) are dif-
ferent for different superconducting states. Note that
∆ = ∆+ (or c0 = c0+) for all three superconducting states.

The coefficients of the quadratic form are propor-
tional to the sums of the products of Green’s functions
for quasifermions. At low temperatures (Tc – T ~ Tc), we

A
g
---

1
βV
------- α2Z2 c0Y∗[ ] c+0Y[ ]

ω2 ξ2 α2Z2 c0Y∗[ ] c+0Y[ ]+ +
--------------------------------------------------------------------

p

∑+ 0.=

1)
1
g
--- α2Z2

6βV
------------+

× 1 3 θcos
2

–( )
2

3 θsin
4

2ϕcos
4

+

ω2 ξ2 ∆0
2

4
----- 1 3 θcos

2
–( )

2
3 θsin

4
2ϕcos

2
+[ ]+ +

-------------------------------------------------------------------------------------------------------------
p

∑  = 0,

2 ) 1
g
--- α2Z2

2βV
------------ 2θsin

2

ω2 ξ2 ∆0
2

2θsin
2

+ +
----------------------------------------------

p

∑+ 0,=

3 ) 1
g
--- α2Z2

2βV
------------ 2θsin

4

ω2 ξ2 ∆0
2

2θsin
4

+ +
----------------------------------------------

p

∑+ 0,=

Seff
α2Z2

2AβV
--------------- c0Y∗[ ] c+0Y[ ]

ω2 ξ2 α2Z2 c0Y∗[ ] c+0Y[ ]+ +
--------------------------------------------------------------------

p

∑–=

× 1 2δj1+( )c j
+ p( )c j p( )

j

∑

+
Z2

4βV
---------- 1

M1M2
--------------- iω1 ξ1+( ) iω2 ξ2+( ){

p1 p2+ p=

∑

× c+ p( )Y p2( )[ ] c p( )Y∗ p1( )[ ](

+ c+ p( )Y p1( )[ ] c p( )Y∗ p2( )[ ] )

– ∆2 c+ p( )Y p– 1( )[ ] c∗ p–( )Y p– 2( )[ ]

– ∆+2 c p( )Y∗ p– 1( )[ ] c p–( )Y∗ p– 2( )[ ] } .
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can pass from summation to integration in accordance
with the rule

(12)

The integrals will be evaluated using Feynman’s iden-
tity:

(13)

With the help of this identity, the integrals with respect
to variables ω and ξ and then with respect to parameter
α and angular variables can be easily evaluated.

After evaluating all integrals (except those over
angular variables), we equate the determinant of the
quadratic form to zero and arrive at the following set of
equations determining the complete spectrum of col-
lective modes in HFSC with d-pairing (index i labels
the branches of collective modes pertaining to the same
phase):

1) k = 1, i = 1

(14)

k = 2, i = 2, 3, 4, 5

1
βV
------- 1

2π( )4
-------------

kF
2

cF

----- ωd ξd Ω.d∫
p

∑

ω1
2 ξ1

2 ∆2+ +( ) ω2
2 ξ2

2 ∆2+ +( )[ ] 1–

=  α α ω1
2 ξ1

2 ∆2+ +( ) 1 α–( ) ω2
2 ξ2

2 ∆2+ +( )+[ ] 2–
.d∫

x ϕd

0

2π

∫d

0

1

∫
ω2 4 f 1+

ω
------------------------- F1g1 g1 2 f 1–( ) f 1ln+ln

 
 
 

0,=

x ϕd

0

2π

∫d

0

1

∫ ω

ω2 4 f 1+
------------------------- F1g1 g1 2 f 1–( ) f 1ln+ln

 
 
 

0,=

k 1, i 2 3 4 5, , ,= =

x ϕd

0

2π

∫d

0

1

∫
ω2 4 f 1+

ω
------------------------- F1gi gi

2
3
--- f i– 

  f 1ln+ln
 
 
 

0,=

x ϕd

0

2π

∫d

0

1

∫ ω

ω2 4 f 1+
------------------------- F1gi gi

2
3
--- f 1– 

  f iln+ln
 
 
 

0,=

2) k 2 3, i, 1= =

x ϕd

0

2π

∫d

0

1

∫
ω2 4 f k+

ω
------------------------- Fkg1 g1

3
2
--- f 1– 

  f kln+ln
 
 
 

0,=

x ϕd

0

2π

∫d

0

1

∫ ω

ω2 4 f k+
------------------------- Fkg1 g1

3
2
--- f i– 

  f 1ln+ln
 
 
 

0,=

x ϕd

0

2π

∫d

0

1

∫
ω2 4 f 2+

ω
------------------------- F2gi gi

1
2
---g2– 

  f 2ln+ln
 
 
 

0,=
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Here,

3.2.2.2. Results: Collective Mode Spectra in HFSC

Solving Eqs. (14) numerically, we determine the
spectra of collective modes of the three phases under
investigation. For each phase, we obtain 10 collective
modes, five of which (derived from the second equa-
tions) are high-frequency modes; i.e., their frequencies
are of the order of the gap width in the Fermi spectrum.
At the same time, the remaining five modes (obtained
from the first equations) are Goldstone (or quasi-Gold-
stone) modes with frequencies (energies) vanishing for
zero momenta.

Table 3 presents the results for high-frequency
modes (Ei is the energy (frequency) of the ith branch) It
should be noted that in the dγ state, the last three modes
are quasi-degenerate. The spectra of the second (Y2–1)
and third (containing a gap proportional to sin2θ) states
are found to be identical. In both phases, three high-fre-
quency modes are determined, two of which are doubly
degenerate.

Thus, we have calculated the collective mode spec-
trum for three superconducting phases of HFSC,
namely, for phases dγ and Y2–1 and the phase with a gap
proportional to sin2θ, using the model of d-pairing con-
structed by us with the help of the functional integra-
tion method [4, 5] and considering the case of spherical
symmetry in which only one coupling constant g is
used. The inclusion of the lattice symmetry necessitates
the introduction of additional coupling constants (up to
five in the general case: five is the number of spherical
harmonics with l = 2). However, this number is reduced
to two in the case of cubic symmetry and to three in the
case of hexagonal symmetry: g|m|(m = 0, ±1, ±2).

x ϕd

0

2π

∫d

0

1

∫ ω

ω2 4 f 2+
------------------------- Fkgi gi

3
2
---g2– 

  f 2ln+ln
 
 
 

0.=

ω2 4 f k+ ω+

ω2 4 f k+ ω–
----------------------------------- Fk,≡ln

g1 1 3x2–( )2
, g2 1 x2–( )2

2ϕcos
2

,= =

g3 g 4 1 x2–( )x2 ϕcos
2

,= =

g4 4 1 x2–( )x2 ϕsin
2

,=

g5 1 x2–( )2 ϕsin
2

,=

f 1
1
4
--- 1 3x2–( )2

3 1 x2–( )2
2ϕcos

2
+[ ] ,=

f 2 4 1 x2–( )x2, f 3 1 x2–( )2
,= =

θcos x, ω ω/∆0.= =
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For each of the three phases, we have determined
five high-frequency modes in each phase (from the sec-
ond equations in (14)) with frequencies belonging to
the interval (1.19–1.93)∆0. The first equations give five
Goldstone (quasi-Goldstone) modes (with frequencies
smaller than 0.1∆0).

Note that the frequencies (energies) of all collective
modes are complex-valued and their imaginary compo-
nents (ImEi) describe the attenuation of collective
modes associated with the decomposition of Cooper
pairs into original fermions. The value of the imaginary
component of frequency amounts from 20 to 50% of
the real components ReEi. This means that collective
modes attenuate in the case of d-pairing more strongly
than in most cases of p-pairing, for which the imagi-
nary components of the frequency (energy) amount to
8–15% of ReEi. This is due to the difference in the
topology of zeros of the gap in the Fermi spectrum,
which are points in the case of p-pairing (in most
phases) and a combination of points and lines for
d-pairing. It should be noted that a similar situation is
sometimes encountered in the case of p-pairing (e.g., in
the polar phase of superfluid 3He, the attenuation of col-
lective modes is stronger than in other phases (A, 2D,
etc.) just due to the presence of zero lines).

The attenuation of collective modes was not calcu-
lated by Hiroshima and Namaizawa [7]. This is a draw-
back of the kinetic equation method as compared to the
functional integration method. Using the kinetic equa-
tion method, one can calculate only the real compo-
nents ReEi of collective mode frequencies. The inclu-
sion of collective mode attenuation (ImEi) leads to a
shift in ReEi since, by virtue of the dispersion relations,
the presence of the imaginary component of collective
mode frequencies results in the renormalization of their
real components ReEi .

Thus, we can compare only the real components of
collective mode frequencies. We obtained five high-fre-
quency modes in each phase. In the dγ phase, the fre-
quencies lie in the interval (1.19–1.66)∆0. Hiroshima
and Namaizawa [7] obtained five modes with frequen-
cies belonging to the interval (0.9–1.87)∆0 and two
lower-lying modes with frequencies E = 0.32∆0. The
frequencies obtained by us for the Y2–1 phase belong to
the interval (1.59–1.93)∆0, while the frequencies corre-
sponding to high-frequency modes from [7] lie in the
interval (1.22–1.57)∆0. In both works, Goldstone and
low-lying modes were obtained.

It should be noted that the spectrum of the third
mode was calculated by us for the first time and was
found to be identical to the spectrum of the Y2–1 phase.

Some of the modes we obtained attenuate moder-
ately and may be regarded as resonances, while others
attenuate more strongly, which makes observing them
difficult. The inclusion of the Coulomb interaction
transforms the zero sound mode into a plasma mode.
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The obtained collective mode spectra in HFSC may
be used for interpreting the results of ultrasonic exper-
iments and in experiments on microwave absorption in
HFSC as well as for identifying the type of pairing and
the order parameter in these superconductors.

At the present time, the experiments on microwave
absorption in HFSC (at frequencies of the order of
20 GHz) are being carried out at the Northwest Univer-
sity (Evanston, USA). Their aim is to determine the
type of pairing and the order parameter in HFSC [1].

3.2.3. How to Distinguish between a Mixture 
of Two d-States and a Pure d-State

Recent experiments [8] and theoretical investiga-
tions [9, 10] indicate that, apparently, a mixture of
d-states is realized in HTSC. We calculated for the first
time the collective excitation spectrum in the mixed

 + idxy state of HTSC [11] using our earlier con-

structed model [4, 5] based on the functional integra-
tion method.

We proved [11] that in spite of the fact that the spec-
tra in both phases  and dxy are identical, the spec-

trum in the mixed  + idxy state differs completely

from the spectra of the pure states. Consequently, an
analysis of the collective mode spectrum in experi-
ments on ultrasound and microwave absorption makes
it possible to distinguish between a mixture of states
and pure states.

Most scientists believe [1] that d-pairing (

state) is realized in oxides. At the same time, various
hypotheses concerning the extended s-pairing, the mix-
ture of s and d states, and various d states are being
intensely discussed even now [12]. One of the reasons
behind such a situation is that it is unclear whether the
gap exactly vanishes in a certain preferred direction in
the momentum space (as in the case of the  state)

or it is anisotropic and does not exactly vanish (except,
probably, at some points on the Fermi surface). The
available experimental results [1] (on tunneling and
other effects) do not provide an unambiguous answer to
the above question, although it is of fundamental
importance. On the other hand, some experimental
results [8] can be explained [9] under the assumption

d
x

2
y

2–

d
x

2
y

2–

d
x

2
y

2–

d
x

2
y

2–

d
x

2
y

2–

Table 3

dγ phase Y2–1 and sin2θ phases

E1 = ∆0(T)(1.45 – 0.48i) E1, 2 = D0(T)(1.93 – 0.41i)

E2 = ∆0(T)(1.66 – 0.50i) E3 = ∆0(T)(1.62 – 0.75i)

E3 = ∆0(T)(1.24 – 0.64i) E4, 5 = D0(T)(1.59 – 0.83i)

E4 = ∆0(T)(1.21 – 0.60i)

E5 = ∆0(T)(1.19 – 0.60i)
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that a mixture of states of the type  + idxy is real-

ized in HTSC. Annett et al. [10] considered the possi-
bility of realizing a mixture of various d states in HTSC
and arrived at the conclusion that the  + idxy state

is preferred. We propose a method for distinguishing
between a mixture of states and pure states.

For this purpose, we calculated the spectrum of col-
lective excitations in the mixed  + idxy state of

HTSC. A comparison of this spectrum with the spec-
trum of pure d states of HTSC shows that they differ
significantly and this difference may be used for deter-
mining the symmetry of the order parameter in HTSC.

We will use the model of d-pairing described by
Eqs. (9) and (10) and consider the mixed  + idxy

state of HTSC. The order parameter in this state has the
form

(15)

and the gap is given by

The equation for the gap can be written in the form

(16)

where

In the first approximation, the collective excitation
spectrum is determined by the quadratic part of the
effective action Seff obtained through the translation

cj(p)  cj(p) +  in Seff. Here,  =

cδp0  are the condensate values of canonical

Bose fields, and the values of  for the cases under
investigation are

while the remaining values of  are equal to zero.

Eliminating the term 1/g with the help of the equa-
tion for the gap, we arrive at expression (11) for the
quadratic component of Seff for A = 4. The coefficients
of the quadratic form are proportional to the sums of the
products of Green’s functions for quasifermions. At
low temperatures (Tc – T ~ Tc), we can go over from
summation to integration in accordance with the rule
(12). We will evaluate the obtained integrals using Fey-
nman’s identity (13). With the help of this identity, we
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can easily evaluate the integrals with respect to vari-
ables ω and ξ and then with respect to parameter α and
angular variables.

After evaluating these integrals (except the integrals
over angular variables) and equating the determinant of
the quadratic form to zero, we arrive at the following
set of equations determining the complete spectrum of
collective modes in the mixed  + idxy state (index

i labels the branches of collective modes belonging to
the same phase):

i = 1

i = 2, 3, 4 (17)

Here

(18)

and the following substitutions have been used: cosθ =
x, ω = ω/∆0.

Having solved these equations, we obtain the fol-
lowing results for the collective mode spectrum in the

 + idxy state. Ten collective modes are obtained, five

of which (derived from the second equations) are high-
frequency modes; i.e., their frequencies are of the order
of the gap in the Fermi spectrum. At the same time, the
remaining five modes are Goldstone (or quasi-Gold-
stone) modes with frequencies (energies) vanishing for
zero momenta (of the order of (0.03–0.08)∆0(T)).
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ω
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1
2
---g– 

  fln+ln
 
 
 
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x ϕd
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2π
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  fln+ln
 
 
 

0.=
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ω2 4 f+ ω–
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,=

g2 1 x2–( )2
2ϕcos

2
,=

g3 g 4 1 x2–( )x2 ϕcos
2

,= =

g4 4 1 x2–( )x2 ϕsin
2
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2

–( )
2

ϕsin
2

,= =

f 1
1
4
--- 1 3x2–( )2

3 1 x2–( )2
2ϕcos

2
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We present the results for high-frequency modes (Ei

is the energy of the ith branch):

(19)

We can compare the results with the spectrum of pure
 and dxy states obtained by us earlier [13]:

(20)

In spite of the fact that the spectra in both phases 

and dxy are identical, the spectrum in the mixed  +

idxy state absolutely differs from the spectra of the pure
states. In the latter states, all modes are nondegenerate,
while in the mixed state, two high-frequency modes are
doubly degenerate. The energies of high-frequency
modes lie in the interval (1.1–1.88)∆0(T), while in the
mixed state, they belong to the interval (1.59–1.93)∆0(T);
i.e., collective modes have higher frequencies in the
mixed state.

It should be noted that the attenuation of collective
modes in the pure states is stronger than in the mixed
state (ImEi varies from 30 to 65% in the pure state and
from 20 to 50% in the mixed state). This can be
explained taking into account the fact that in pure
states, the gap vanishes on the lines of the Fermi sur-
face, while it vanishes only at two points (poles) in the
mixed state.

The strong difference in the collective excitation
spectra for pure d states and the mixed state makes it
possible to verify the symmetry of the superconducting
state in experiments on ultrasound and microwave
absorption, in which collective modes are excited.
Although rather high frequencies (of the order of tens
gigahertz) might be required for such experiments,
there are no limitations of fundamental nature on the
frequencies of ultrasound (microwaves): since the fre-
quencies of collective modes are proportional to the gap
amplitude ∆0(T) vanishing at Tc, any frequency may, in
principle, be used as the temperature approaches Tc.

Thus, we are in a position to answer the following
two fundamental questions:

(1) does the gap disappear along certain preferred
lines?

(2) do we have a pure d state or a mixture of d states
in HTSC?

E1 2, ∆0 T( ) 1.93 0.41i–( ),=

E3 ∆0 T( ) 1.62 0.75i–( ),=

E4 5, ∆0 T( ) 1.59 0.83i–( ).=

d
x

2
y

2–

E1 ∆0 T( ) 1.88 0.79i–( ),=

E2 ∆0 T( ) 1.66 0.50i–( ),=

E3 ∆0 T( ) 1.40 0.68i–( ),=

E4 ∆0 T( ) 1.13 0.71i–( ),=

E5 ∆0 T( ) 1.10 0.65i–( ).=

d
x

2
y

2–

d
x

2
y

2–
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Balatsky et al. [12] analyzed the mixture of two
d-states and s- and d-states:  + idxy and  +

is. In the case when the mixture of two d states is real-
ized, they studied the situation when the dxy state is
induced by an external magnetic field (in accordance
with the assumptions used by Laughlin [9] for explain-
ing the results of Krishana’s experiments [8]). They
proved in this case the existence of an orbital magneti-
zation mode corresponding to the oscillations of the
relative phase ϕ between two components about the
equilibrium value ϕ = ±π/2. This mode is similar to the
clapping mode in 3He–A; the exact value of frequency
for this mode was obtained in [3]. However, if the dxy

state is induced by an external magnetic field, the fre-
quency of this mode is proportional to the external
field, ω ≈ B∆0 (B is the magnetic induction).

We did not consider the reason behind the formation
of the impurity dxy state, which may be numerous (the
generation of the dxy state near the magnetic impurity,
the presence of vortex texture, etc.). In particular, we
did not introduce the external magnetic field and,
hence, did not study the field dependence of collective
mode frequencies. At the same time, it should be noted
that Balatsky et al. [12] studied a single specific mode
in a mixture of states, while we considered the com-
plete spectrum of collective modes.

4. TWO-DIMENSIONAL p- AND d-WAVE 
SUPERCONDUCTIVITY

4.1. Two-Dimensional Models 
of p- and d-Pairing in Superconductors

Two-dimensional (2D) models of superconductiv-
ity, including 2D models of d-pairing in HTSC are
important for several reasons. Above all, CuO2 planes
are the common structural factor in virtually all the
HTSC discovered so far. It is generally accepted that
the entire physics of this phenomenon is associated just
with these planes.

The existence of superfluidity in 3He films was
proved even 20 years ago [3] and was subsequently
observed experimentally [14].

The 2D superconductivity has its own specific fea-
tures due to the fact that, in accordance with Bogoliubov’s
(1/k2) theorem, the condensate exists only at T = 0.
However, superconductivity associated with a certain
behavior of Bose-field correlators is also possible for
T ≠ 0: if these correlators decrease at large distances
according to a power law and not exponentially, this
indicates the existence of superconductivity in the sys-
tem. In this case, the superconducting transition tem-
perature Tc is the point of transition from an exponential
decrease of Bose-field correlators to a power depen-
dence. Alternative approaches associated with the
introduction of the initial condensate generating the
superfluid density of carriers of the order of their total
density are also possible.

d
x

2
y

2–
d

x
2

y
2–
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4.1.1. p-Pairing

In order to describe the 2D model of p-pairing, we
consider the 3D model [3] with the following modifica-
tion made for the 2D case.

a. The orbital angular momentum l (|l | = 1) must be
perpendicular to the plane and may have only two com-
ponents along the z axis: ±1. Since the p-pairing is a
triplet process, the total spin of a pair is equal to unity,
and hence there are 3 × 2 × 2 = 12 degrees of freedom
in the case of two-dimensional p-pairing. Conse-
quently, the superconducting state in this case may be
described by an arbitrary complex 2 × 3 matrix cia(p) with
the same number of degrees of freedom (2 × 3 × 2 = 12).
This number is equal to the number of collective modes
in each phase. It should be recalled that in the 3D case,
this number is 18.

b. In this case x is a 2D vector, and the two-dimen-
sional “volume” S = L2 (instead of V = L3 in the 3D
case).

4.1.1.2. Collective Mode Spectrum

We present here the results (some of which were
obtained earlier [3]) for the collective mode spectrum
in various superconducting states of 2D superconductor
with p-pairing (as before, the number of collective
modes is given in parentheses):

a phase :

b phase :

phase :

phase :

1 0 0

i 0 0 
 
 

E2 cF
2 k2/2 (3), E2 2∆2 cF

2 k2/2 (6),+= =

E2 4∆2 0.5 0.433i–( )cF
2 k2/2 3( ),+=

1 0 0

0 1 0 
 
 

E2 cF
2 k2/2 (2), E2 3cF

2 k
2
/4 1( ),= =

E2 cF
2 k2/4 (1), E2 2∆2 4( ),= =

E2 4∆2 0.15 0.22i+( )cF
2 k2/2 3( ),+=

E2 4∆2 0.85 0.22i–( )cF
2 k2/2 1( ),+=

E2 4∆2 0.5 0.43i–( )cF
2 k2/2 2( ),+=

0 0 1

0 0 i 
 
 

E2 0 3( ), E2 2∆2 6( ), E2 4∆2 3( ),= = =

0 1± 0

1 0 0 
 
 

E2 0 4( ), E2 2∆2 4( ), E2 4∆2 4( ),= = =
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phase :

4.1.2. d-Pairing

It was mentioned above that CuO2 planes are the
common structural factor of almost all discovered
HTSC, and it is generally accepted that the entire phys-
ics of superconductivity is associated just with these
planes. Considering that d-pairing is apparently real-
ized in most HTSC, an analysis of the 2D model of
d-pairing is of considerable interest. There also exists
additional arguments in favor of the study of such mod-
els. For example, it was proved for a 2D antiferromag-
net that only the d-channel ensures attraction between
fermions; d-pairing also emerges in the symmetry clas-
sification of HTSC [10, 15].

Thus, we consider the 2D model of d-pairing in
CuO2 planes, which was constructed by us earlier [4, 5]
using the functional integration method. As in the 3D
case, the model is described by the hydrodynamic
action functional obtained by successive functional
integration over fast and then slow Fermi fields. As in
the 3D model the hydrodynamic action functional
determines all the properties of the system under inves-
tigation (in the given case, CuO2 planes), including the
collective excitation spectrum.

In order to describe the 2D model of d-pairing in
CuO2 planes, we consider the 3D model used by us ear-
lier. The basic differences observed in the 2D case are
as follows.

a. The orbital angular momentum l (|l | = 2) must be
perpendicular to the CuO2 plane and may have only two
components along the z axis: ±2. Since d-pairing is a
singlet process, the total spin of a pair is equal to zero
and, hence, there are 1 × 2 × 2 = 4 degrees of freedom
in the case of the 2D d-pairing. Consequently, the
superconducting state in this case can be described by
a complex symmetric traceless 2 × 2 matrix cia(p)
which possesses the same number of degrees of free-
dom (2 × 2 × 2 – 2 – 2 = 4). This number is equal to the
number of collective modes in each phase. It should be
recalled that in the 3D case, this number is equal to 10.

b. The pairing potential is given by the formula

(21)

In the case of circular symmetry, g2 = g–2 = g, and we
have only one coupling constant g, while less symmet-
ric cases require the existence of both constants (g2 and
g–2). We will consider the case of circular symmetry.

c. Vector x is two-dimensional, and the area S = L2

(instead of V = L3 in the 3D case). In view of these dif-

1 0 0

0 1– 0 
 
 

E2 0 4( ), E2 2∆2 4( ), E2 4∆2 4( ).= = =

t v k̂ k'ˆ,( ) gmY2m k̂( )Y2m* k'ˆ( ).
m 2 2,–=

∑= =
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ferences, we will describe our Fermi system by anti-
commuting functions χs(x, τ), (x, τ) defined in “vol-
ume” S = L2 and antiperiodic in time τ with period β =
T–1 (T is the temperature).

After the functional integration with respect to slow
and fast Fermi fields, we obtain the effective functional
of action, which formally has the same form (5) as in
the 3D case.

In the 2D case, the number of degrees of freedom of
the order parameter for d-pairing is equal to four. In
other words, we have two complex canonical variables.
It can easily be seen from the nondiagonal elements of
matrix M that for canonical variables, we can choose

For conjugate variables, we have

In the canonical variables, Seff has the form

(22)

where

Functional Seff determines all properties of 2D super-
conductors (CuO2 planes and others). In particular, it
determines the collective mode spectrum.

4.2. Collective Excitations in CuO2 Planes of HTSC

Two superconducting states with the order parame-

ters proportional to  and  are formed

in the symmetry classification of CuO2 planes. In the
first phase, the gap is proportional to

while in the second phase it is proportional to

In the 2D case, we put θ = π/2 and sinθ = 1.
Let us calculate the collective mode spectrum for

the two given states. In the first approximation, the col-
lective excitation spectrum is determined by the qua-
dratic part of the effective action Seff obtained by the

χs

c1 c11 c22, c2– c12 c21.+= =

c1
+ c11

+
c22

+ , c2
+– c12

+
c21

+
.+= =

Seff
1

2g
------ c j

+ p( )c j p( )
1
2
--- det

M c j
+ c j,( )

M c j
+ 0( ) c j

0( ),( )
------------------------------,ln+

p j,
∑=

M11
1
Z
--- iω ξ– µ H s⋅( )+[ ]δ p1 p2

,=

M22
1
Z
--- –iω ξ µ H s⋅( )+ +[ ]δ p1 p2

,=

M12 M21
+ σ0α

β
--------- c1 2ϕcos c2 2ϕsin+( ).= =

1 0

0 1– 
 
  0 1

1 0 
 
 

Y22 Y2–2 θsin
2

2ϕcos 2ϕcos ,∝ ∝+

–i Y22 Y2–2–( ) θsin
2

2ϕsin 2ϕsin .∝ ∝
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translation cj(p)  cj(p) +  in Seff. Here, 
are condensate values of canonical Bose fields cj(p).

The quadratic component of the effective action Seff
is defined by formula (11) for A = 4. In this case, ∆ =

∆0|cos2ϕ| for phase  and ∆ = ∆0|sin2ϕ| for

phase , ∆0 = 2αcZ, α = , and Mi =  +

 + ∆2.

The first term in the expression for Seff contains the
coupling constant g which must be eliminated using the
equation for the gap, which has the following forms for
the first and second phases, respectively:

Here,  = 4a2c2Z2. At low temperatures, we can go
over from summation to integration using the following
rule:

Here, as before, kF is the Fermi momentum of a quasi-
fermion and cF is the velocity on the Fermi surface.
After integrating with respect to ω and ξ with the help
of the Feynman procedure, we arrive at the following
equations for the collective mode spectrum, obtained
from the condition detQ = 0, where Q is the matrix of
the quadratic part of functional Seff:

(23)

Here, G ≡ (  + ω)/(  – ω), k denotes
the phase and i labels the modes, g1 = x2, g2 = 1 – x2, x =
cos2ϕ, and ω = ω/∆0. Consequently, for each fixed k,
we have four equations leading to four frequencies of
collective modes.

c j
0 p( ) c j

0 p( )

1 0

0 1– 
 
 

0 1

1 0 
 
 

15/32π ωi
2

ξ i
2

1
g
---

α2Z2

βS
------------ 2ϕcos

2

ω2 ξ2 ∆0
2 2ϕcos

2
+ +

-----------------------------------------------
p

∑+ 0,=

1
g
---

α2Z2

βS
------------ 2ϕsin

2

ω2 ξ2 ∆0
2 2ϕsin

2
+ +

----------------------------------------------
p

∑+ 0.=

∆0
2

1
βS
------ 1

2π( )3
-------------

kF

cF

----- ωd ξd ϕ .d∫
p

∑

xd

1 x2–
------------------

ω2 4gk+
ω

------------------------- Gg1 gk gi–( ) gkln–ln
 
 
 

0

1

∫ 0,=

xd

1 x2–
------------------ ω

ω2 4gk+
------------------------- Gg1 gk gi–( ) gkln–ln

 
 
 

0

1

∫ 0.=

ω2 4gk+ ω2 4gk+
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4.3. Discussion of Results

The spectra in both phases are found to be identical.
We obtained two high-frequency modes in each phase
(from the second equation in (23)) with the following
frequencies:

Note that the frequencies of both modes are complex-
valued. This is a consequence of d-pairing or, in other
words, the consequence of gap vanishing in the chosen
directions. In this case, Bose excitations decay into fer-
mions, which leads to collective mode attenuation. The
value of the imaginary component of the frequency
amounts to 23% of its real component for the second
mode and to 46% for the first mode. For this reason,
both modes may be regarded as resonances. The second
mode is defined better than the first mode.

The first equation in system (23) gives two Gold-
stone (quasi-Goldstone) modes with (frequencies
smaller than 0.1∆0).
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Abstract—The conductance of a ballistic elliptically shaped quantum wire is investigated theoretically. It is
shown that the effect of the curvature results in a strongly oscillating dependence of the conductance on the
applied bias. © 2001 MAIK “Nauka/Interperiodica”.
¶ 1. INTRODUCTION

Recent advances in semiconductor physics and
technology enabled the fabrication and investigation of
nanostructure devices possessing important properties,
such as small size, reduced dimensionality, relatively
small density of charge carriers, and hence, large mean
free path (which means that particles exist in the ballis-
tic regime and the scattering processes can therefore be
neglected), and large Fermi wavelength λF. One of the
mesoscopic systems of particular interest is the quan-
tum wire in which particles are constrained to move
along a one-dimensional curve due to quantization of
the transverse modes.1 One of the numerous important
problems pertaining to the quantum wire is to deter-
mine the influence of the reduced dimensionality upon
the system properties.

Jensen and Koppe [1] and da Costa [2] emphasized
that a low-dimensional system, in general, has some
knowledge of the surrounding three-dimensional Car-
tesian space: the effective potential arises from the
mesoscopic confinement process, which constrains
particles to move in a domain of a reduced dimension-
ality. Namely, it was shown that a particle moving in a
one- or two-dimensional domain is affected by an
attractive effective potential [2]; this result was first
obtained in [3] and later in [4]. This idea was widely
studied by several other authors (see [5–12] and, for
example, [13] about the experimental realization of
such systems).

It was also shown in [14] that the torsion of the
twisted waveguide affects the wave propagation in the
waveguide independently of the nature of the wave. In
particular, the torsion of the waveguide results in the
rotation of the polarization of light in a twisted optical
fiber [15]. In [16], the authors prove that in a waveguide,
be it quantum or electromagnetic one, bound states
exist. Several papers have been devoted to the relation

¶ This article was submitted by the authors in English.
1 We study here only the one-channel wire with only the lowest

subband occupied.
1063-7761/01/9205- $21.00 © 20811
of the quantum waveguide theory to the classical theory
of acoustic and electromagnetic waveguides in [6].

The effect of the curvature on quantum properties of
electrons on a two-dimensional surface, in a quantum
waveguide, or in a quantum wire can be observed by
investigating kinetic and thermodynamic characteris-
tics of quantum systems [8–12]. In this paper, we pro-
pose to use measurements of the conductance G of a
quantum wire for this purpose; we show that the reflec-
tion of electrons from regions with a variable curvature
results in a nonmonotonic dependence of the conduc-
tance on the applied bias.

In [4], the Schrödinger equation on the elliptically
shaped ring was solved numerically in order to obtain
the eigenvalue spectrum of a particle confined to the
ring. The authors studied a quantum mechanical system
confined to a narrow ring by the rectangular well poten-
tial. They showed that in the limit as the ring width γ
tends to zero, the behavior of the system is similar to
the straight line motion with the effective potential

(1)

where R is the radius of curvature. Later [9], the elec-
tron energy spectrum in an elliptical quantum ring was
considered in connection with the persistent current;
the authors have concluded that the effective potentials
Veff are different for different confining potentials even
in the limit as γ tends to zero. This conclusion is in con-
tradiction with the results of some other papers [2, 6].
We address this problem in the present paper; we inves-
tigate the derivation of the one-dimensional Schrödinger
equation in order to understand more deeply how the
particle motion along the curve C is affected by the
confining potential. We demonstrate the consistency
with the previous results in [2]: the effective potential is
universal for different confining potentials and depends
only on the curvature (see Eq. (1)).

V eff
"

2

8mR2
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In Section 2, we derive a one-dimensional
Schrödinger equation starting from the two-dimen-
sional Schrödinger equation describing a nonrelativis-
tic electron that moves in a plane2 and is subjected to
the confining potential Vγ. In Section 3, we apply these
results to theoretically study the conductance of the
quantum wire that consists of two linear parts and one
elliptically shaped part between them; the wire is con-
nected to two conducting reservoirs at different volt-
ages (see Fig. 1). In Section 4, we discuss the influence
of the curvature on the conductance.

2. SCHRÖDINGER EQUATION

In this section, we follow the approach proposed in
[2]. We consider the electron with the effective mass m
moving in a quantum wire along a curve C that is con-
structed by a prior confinement potential Vγ. For sim-
plicity, we start with the two-dimensional motion. We
introduce the orthonormal coordinate system3 (s, q),
where s is the arc length parameter and q is the coordi-
nate along the normal n = n(s) to the reference curve C.
The curve C is then described by a vector valued func-
tion r(s) of the arc length s. In a vicinity of C, the posi-
tion is therefore described by

(2)

To obtain a meaningful result, the particle wave
function must be “uniformly compressed” into a curve,
thereby avoiding tangential forces [2, 4, 9]. We thus
consider Vγ to depend only on the q coordinate that
describes the displacement from the reference curve C;
this means that points with the same q coordinate but
different s coordinates (which describe the position on
C) have the same potential. This potential involves a

2 We consider only flat curves and we refer the reader interested in
the effect of the torsion to [7].

3 The advantages of establishing the (s, q) coordinate system from
the very beginning are that it allows the most general analysis and
that (because of the diagonal structure of the metric tensor) we
can decompose the dynamical equation of motion into two equa-
tions in the zero-order approximation in the width of the quantum
wire.

R s q,( ) r s( ) qn s( ).+=

n(s)
q

s

C

γ

–eV/2 eV/2

Fig. 1. Elliptically shaped quantum wire.
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small parameter γ such that the potential increases
sharply for every small displacement in the normal
direction; γ is the characteristic width of the potential
well Vγ. The simplest examples of these potentials are
the rectangular well potential and the parabolic-trough
potential (we note that the real potential would likely be
a combination of both, however). The small parameter
in the problem is therefore γ/R ! 1 [5].

The motion of the electron obeys the time-indepen-
dent Schrödinger equation

(3)

where the Laplacian is

(4)

with

(5)

being the Lamé coefficient (corresponding to the longi-
tudinal coordinate s) that depends on the curvature k =
k(s) in accordance with the Frenet equation.

To eliminate the first-order derivative with respect to
q from Eq. (3),4 we introduce the new wave function 
by

(6)

This is the wave function introduced in [2] and normal-
ized so that

(7)

The Schrödinger equation (3) then becomes

(8)

where

(9)

which is in agreement with [5, 8].
One must be careful with Eq. (8) in order to avoid

mistakes found in the literature [7, 9]. First, we cannot
decompose this equation, which contains terms that are

4 We do this to eliminate terms of the form f(q)∂/∂q that were
called “dangerous terms” in [1]. We cannot use f(q) = f(0)
because f(q)∂/∂q ≈ [f(0) + qdf(0)/dq]∂/∂q: although q ~ γ, we
have ∂/∂q ~ γ–1 and the second term in the brackets is therefore
~γ0, and this is the order of terms in which we are interested
below.

–
"

2

2m
-------∆s q, ψ Vγ q( )ψ+ εψ,=

∆s q,
1
h
--- ∂

∂s
-----1

h
--- ∂

∂s
----- 1

h
--- ∂

∂q
------h

∂
∂q
------,+=

h 1 k s( )q–=

ψ̃

ψ̃ s q,( ) hψ s q,( ).=

ds q ψ̃ s q,( ) 2d∫ 1.=

"
2

2m
------- ∂

∂s
----- 1

h2
----- ∂

∂s
----- ∂2

∂q2
--------+ 

  ψ̃–

+ V eff s q,( )ψ̃ Vγ q( )ψ̃+ εψ̃,=

Veff s q,( ) "
2

2m
-------–=

× h 2– k2

4
---- q

2
---h 2– d2k

ds2
-------- 5q2

4
--------h 4– dk

ds
------ 

 
2

+ + 
  ,
 AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001



CONDUCTANCE OF THE ELLIPTICALLY SHAPED QUANTUM WIRE 813
functions of both s and q, into two equations introduc-
ing (s, q) = χn(q)χt(s) as in [7], where the authors
obtained Eq. (31) for χt(s) with coefficients depending
on the q variable. To understand another mistake [9],
we consider Eq. (8) within the perturbation theory in
the small parameter γ (which is small compared to R)
(see also [6]). We expand h–2 and Veff in series in q & γ
and explicitly write the zeroth term as

Equation (8) can then be rewritten as

(10)

where

(11)

(12)

We note that  is a second order differential operator
in s. The solution of Eq. (10) is

where  ~ γl and  corresponds to the zeroth-

order problem,  = ε . This equation can be
decomposed by separating the wave function as (s, q) =
η(q)χ(s),

(13)

and

(14)

where Veff(s) is given by Eq. (1), ε = Et + El, and R =
k(s)–1 is the curvature radius (in the next section, we
omit the subscript “l”, identifying the energy E with its
longitudinal component El). Equation (13) describes
the confinement of the electron to a γ-neighborhood of
the curve C and Eq. (14) describes the motion along the
s coordinate (along C). In fact, Eq. (14) is a conven-
tional one-dimensional Schrödinger equation for the
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electron moving in the s-dependent potential Veff(s); the
latter relates the geometry and the dynamical equation.
The origin of this potential is in the wavelike properties
of the particles; Veff  is essential for the values of R/λF

that are not large. We emphasize that the effective
potential in Eq. (1) in the zeroth-order approximation in
γ/R is independent of the “one-dimensionalization”
method, i.e., of the choice of Vγ(q) (compare this con-
clusion with the one derived in [9])

We also note that if we started from the three-
dimensional equation of motion, we would obtain an
additional effective potential that vanishes in the planar
situation [2].

3. CONDUCTANCE

The conductance G of quantum contacts can be
related to the transmission probability T(E) by Land-
auer’s formula [17]. At zero temperature and finite volt-
ages V, it takes the form

(15)

where G0 = 2e2/h and EF is the Fermi energy. The two
terms in this equation correspond to two electronic
beams moving in opposite directions with different bias
energies. We are interested in the transmission proba-
bility T(E) for the electron energy E.

In this section, we consider the curve C to consist of
three ideally connected parts (see Fig. 1): (i) linear (s <
0), (ii) elliptical (0 < s < l, where l is half of the ellipse
perimeter), and (iii) one more linear domain (s > l). We
consider wave functions in regions (i) and (iii) to be the

respective plane waves ψ1 =  +  and ψ3 =

, where k1 =  is the wave vector and t
and r are the transmission and reflection coefficients;
the transmission probability is given by T = |t |2. We
have ψ2 ≡ χ, where χ is the solution of Eq. (14) with the
effective potential given by Eq. (1). The curvature can
be written most simply in the elliptical coordinate v
[18] defined by its Lamé coefficient

(16)

where e is the eccentricity of the ellipse and a is the
length of its major semiaxis; we use v (s = 0) = 0. The
effective (geometrical) potential in Eq. (1) can then be
written as

(17)

which is in agreement with [4].
We introduce the new wave function

(18)
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for which the equation takes the form (see Eqs. (14) and
(16)–(18))

(19)

(20)

where g = H2/a2 = 1 – e2cos2v. Equation (19) is the Hill
equation with π-periodic coefficients; the fundamental
system of its solutions is [19]

(21)

where y(v) is a π-periodic function and µ is the charac-
teristic exponent. We then have (see Eqs. (18) and (21))

(22)

where (v ) ≡ y(v ).
With the known wave functions, we are now inter-

ested in T = |t |2, which describes the transmission over
the potential well (see Eq. (17)). We use the continuity
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Fig. 2. Conductance as a function of the bias G = G(eV) at
e = 0.99, a = 10λF (at the same value of a but with e = 0, the

amplitude ∆G/G0 is on the order of 10–5).

Fig. 3. Conductance as a function of the length of the major
semiaxis G = G(a) at e = 0.99, V = 0.
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conditions for the wave function and its derivative,
which gives a system of four equations that is similar to
the one given in [20]; the result is

(23)

where we denoted

(24)

(To obtain Eq. (23), we assumed that µ and κ are real,
which is straightforward to proof.)

4. RESULTS AND DISCUSSION

To understand how the conductivity G depends on
the bias eV and the geometry, we must find the solution
of Hill equation (19). We did this numerically and also
within the perturbation theory for an ellipse that is close
to the circle (i.e., e2 ! 1); we found that the two solu-
tions are in good agreement for e < 1/2. In the zeroth-
order approximation in e2 (i.e., for e = 0, the case of a
circular arc), we have µ0 = ak2 and κ0 = k2/k1, where k2 =

 (see also [12]). This implies that
oscillations in the G(V) dependence can be observed if
a * λF and the amplitude of these oscillations is suffi-
ciently small.

The first-order approximation of the perturbation
theory (for a > λF) yields

(25)

where

(26)

(27)

We have solved Hill equation (19) numerically.
The characteristic exponent µ is defined via the solu-
tion of Eq. (19) with the initial conditions ξ1(0) = 1 and

(0) = 0, and µ is then the solution of the equation
ξ1(π) = cosπµ (see [19]). It is more difficult to find ξ+
(see Eq. (21)), which can be formulated as the bound-
ary value problem for Eq. (19) with the boundary con-
ditions ξ2(0) = 0 and ξ2(π) = sinπµ (where ξ2(v) =

Imξ+(v)). Introducing ξ3(v) = ξ2(v)/ (0), we have the
initial condition problem for ξ3(v ) (with ξ3(0) = 0, and

(0) = 1), whose solution allows us to define κ,

( /ξ+)v  = 0 = (0) = sinπµ/ξ3(π). The results of the
described procedure are numerically plotted in Figs. 2
and 3 for a sufficiently elongated ellipse with e = 0.99
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(with a/b = 7, where a and b are the respective lengths
of its major and minor semiaxes). We note about Fig. 3
that under the restriction R @ γ, we must not let a go to
zero; namely, we may suppose R @ γ for a/λF ~ 10 but
may not for a/λF & 1 [for e close to unity]. We also note
that Eq. (15) is, strictly speaking, correct for eV small
compared with EF and describes G(V) dependence for
eV ~ EF qualitatively. We conclude that e close to unity
significantly increases oscillations in comparison to the
case of e = 0; the amplitude of oscillations in G = G(V)
is defined by the value of a/λF.

In summary, we have rederived the quantum-
mechanical effective potential induced by the curvature
of the one-dimensional quantum wire. We have shown
that for any confining potential Vγ depending only on
the displacement q from the reference curve C, this
effective potential is universal: it does not depend on
the choice of Vγ and is given by Eq. (1). We have stud-
ied the effect of the curvature on the conductance of an
ideal elliptically shaped quantum wire in the zeroth-
order approximation in the width of the wire. It has
been shown, in particular, that due to the effect of the
curvature, the dependence of the conductance G(V) on
the applied bias changes drastically. Thus, the effect of
the curvature can be observed by measuring the con-
ductance of the quantum wire. On the other hand, one
can change the characteristics of the quantum wire,
such as the conductance, setting its size, shape, or
applied bias.
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Abstract—It is experimentally established that the magnetoresistance of a Fex(SiO2)1 – x nanocomposite
(x ≈ 0.6) in a strong magnetic field is described by a logarithmic function of the field strength. This field depen-
dence is inconsistent with the well-known theory of the giant magnetoresistance in ferromagnetic nanocompos-
ites. A model is developed according to which the unusual behavior of the magnetoresistance is explained by
nonsphericity of the material grains, exhibiting a broad variety of shapes. The experimental results agree with
conclusions and predictions of the proposed model. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This study is devoted to the giant magnetoresistance
(GMR) of a Fex(SiO2)1 – x nanocomposite with x ≈ 0.6,
which corresponds to the metal side of the metal–insu-
lator percolation transition in this system. The material
represents essentially a dispersion of ferromagnetic
metal granules in a dielectric matrix. Our experiments
showed that the electric resistance of such composites
in a sufficiently strong magnetic field varies as a loga-
rithmic function of the field strength. This field depen-
dence is inconsistent with that predicted by the known
theory of the GMR in ferromagnetic nanocomposites
[1, 2]. We believe that the discrepancy is related to the
fact that the traditional theory was developed for a system
composed of spherical metal granules, whereas real nano-
composites usually consist of nonspherical particles.
Moreover, the degree of nonsphericity of these particles
may change as the granule shape varies from strongly
elongated (prolate) to significantly oblate.

Below we will describe the GMR of a system com-
posed of such granules within the framework of a sim-
ple model, which relates the unusual quasilogarithmic
dependence of the magnetoresistance on the field
strength to the scatter of shapes of the nonspherical
granules of the nanocomposite.

2. EXPERIMENTAL RESULTS

We have studied thin Fex(SiO2)1 – x (x ≈ 0.6) films
with a thickness of 0.4 µm. The samples were prepared
by the ion sputter deposition in vacuum using a mosaic
target composed of Fe and SiO2 pellets. The iron vol-
ume fraction in the deposit was checked by the elec-
tron-probe X-ray microanalysis. The size of Fe gran-
ules in the films varied from 2 to 20 nm.
1063-7761/01/9205- $21.00 © 20816
The relative magnetoresistance ∆R/R of a sample
(R is the electric resistance of the film at a given tem-
perature and the zero field strength, ∆R is the change in
the resistance upon application of a field with the induc-
tion B) was studied in a temperature range from 4.2 to
300 K using “long” (~0.1 s) magnetic field pulses with B
up to 20 T.

Figure 1 shows the experimental plots of magne-
toresistance versus induction measured at various temper-
atures. In Fig. 2, the high-field branches of these plots are
constructed as functions of the logarithm of the “effective”
induction B/T. As is seen, the sample resistance in the
region of high fields is described by a logarithmic func-
tion of the field strength.

T = 4.2 K

102 K

159 K

254 K

0 10

0.01

B, T

∆R/R

20

0.02

0.03

0.04

Fig. 1. The plots of magnetoresistance versus magnetic
induction for a Fex(SiO2)1 – x nanocomposite (x ≈ 0.6) at
various temperatures.
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3. MAGNETORESISTANCE 
OF A NANOCOMPOSITE

WITH NONSPHERICAL METAL GRANULES

The electric conductivity of granulated metals (nano-
composites) and the GMR of ferromagnetic metals are
determined by the electron tunneling between granules
[1, 2]. However, in a real system containing granules of
various dimensions, the maximum contribution is due to
the granules having a size close to a certain “optimum”
value [3, 4].

For a nanocomposite consisting of spherical gran-
ules, the optimum size is determined by interplay
between the increased concentration (inherent in real
systems) of small-size particles and their reduced
degree of ionization (caused by the Coulomb effects).
The optimum granule size is given by the formula [3]

(1)

where kT0 ≈ (e2/εa0)(a0/λ)3/2x–1/2[1 – (x/xc)1/3], a0 is the
average granule size, λ is the electron wavelength in the
insulator phase, ε is the dielectric constant, x is the bulk
content of the metal phase, and xc is the percolation
threshold. The conductance G(T) of a given system is
determined by the “optimum cluster”—a cluster com-
posed of granules possessing the optimum size aopt(T),
rearranging in accordance with the temperature T.

A change in the resistance of the system exposed to a
magnetic field with the induction B is due to the magnetic-
field-dependent probability of the tunneling transitions
between spontaneously magnetized single-domain
(because of small size) granules. The relative magnetore-
sistance ∆R(B, T)/R = [G(0, T) – G(B, T)]/G(0, T) can be
expressed as [4]

(2)

where P is the electron spin polarization in a ferromag-
netic granule and γ is the angle between the external
magnetic field and the magnetic moment of each gran-
ule. The averaging is performed over granules consti-
tuting the optimum cluster. Thus, determination of the
magnetoresistance reduces to calculating the 〈cosγ〉
value averaged over the optimum cluster.

In the general case, however, the granules in a real
system are nonspherical. This implies that not all values
of the angles γ1 are equiprobable and, hence, the time-

averaged value of  for a nonspherical granule is
determined by its anisotropy (magnetic and geometric)
and the external magnetic field [5]. For an ellipsoidal
granule possessing a large (compared to the Bohr mag-

aopt T( ) a0
x

4π
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1/2 λ
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----- 
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neton) magnetic moment, this time-averaged value can
be calculated as

(3)

where dΩ = sinγ1dγ1dφ is the solid angle; φ is the azi-
muthal angle of the magnetic moment of a granule (cosφ =
[cosθ – cosγ1cosβ]/sinγ1sinβ), θ and β being the angles
between the large axis of the granule and the directions of
the magnetic moment and the external magnetic field,

respectively; WA = (1/2)V sin2θ is the magnetic anisot-
ropy energy not depending explicitly on the magnetic
field strength; WB = –IsVBcosγ1 is the Zeeman energy
depending only on the γ1 value; and Is is the saturation
magnetization of the granule material. In a sufficiently
strong magnetic field, |WB| @ WA and the above expres-
sion simplifies to

(4)

where h = IsVB/kT. This relationship corresponds to the
well-known Langevin model.

If the optimum cluster were composed of spherical
granules possessing the optimum size aopt, the volume
V in formula (4) would be the same for all granules:

V = Vopt = (4π/3) (T) ∝  T–5/3. In that case, 〈cosγ〉 =

 = L(hopt), where hopt = IsBVopt/kT ∝  T –8/3. Evi-
dently, the temperature dependence of the magnetic
moment (proportional to 〈cosγ〉) of the optimum cluster
even in this idealized case is not described by the Lan-
gevin model, according to which h ∝  1/T.

γ1cos
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Fig. 2. The plots of high-field magnetoresistance versus
effective magnetic induction (on a logarithmic scale) for a
Fex(SiO2)1 – x nanocomposite (x ≈ 0.6) at various tempera-
tures.
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In a system composed of nonspherical (ellipsoidal)
granules, the situation is even more complicated. Here, the
optimum granule size is determined by two factors [3]:
(i) the concentration of charged granules depends on their
capacitance C (for spherical granules, the latter quan-
tity coincides with the sphere radius) and (ii) the aver-
age (tunneling) distance between granules possessing
the same C depends on their concentration. Granules
shaped as the ellipsoid of revolution possess two char-
acteristic dimensions—a and b, representing the
lengths of the long and short axes of the ellipsoid,
respectively. Which of the two dimensions is more
essential for the problem under consideration? As is
known, the capacitance of an ellipsoidal granule with a
large a value is weakly dependent on the smaller (trans-
verse) size b. For such an elongated ellipsoid of revolu-
tion,

whereas for the oblate ellipsoid,

,

which implies that 2/π < C/a < 1 [6]. Therefore, the
only significant dimension of ellipsoidal granules is the
greater axis length: all granules with the a value close
to aopt are optimum. Thus, the optimal cluster is com-
posed of granules with the volumes falling within the

interval Vmin < V < Vopt, where Vopt = (4π/3) , Vmin =
(bmin/aopt)2Vopt (for elongated ellipsoids) or Vmin =
(bmin/aopt)Vopt (for oblate ellipsoids), and bmin/aopt is the

C
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Fig. 3. The plots of magnetoresistance versus magnetic field
strength for a model granulated ferromagnetic metal com-
posite with nonspherical granules of elongated (solid
curves, x0 = 0) and oblate (dashed curves, x0 = 1) shapes cal-
culated using various distribution functions fz(z): (1) lin-
early increasing; (2) homogeneous (constant); (3) linearly
decreasing.
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minimum (for a given nanocomposite) value of the
ratio of characteristic dimensions describing maximum
nonsphericity (elongation or flatness) of the granules.
For bmin/aopt ~ 0.1, the optimum cluster may include
granules with the volumes differing up to approxi-
mately 100 times (!). In this case, naturally, 〈cosγ〉 ≠

 and the averaging have to be performed over all
granules of the optimum cluster.

Let fb(b) be the function of distribution of the short
axis length in a system composed of nonspherical
(ellipsoidal) granules and x0 be the volume fraction of
such elongated granules. In this case,

(5)

where fz(z) is a function describing distribution of the
granules with respect to the parameter z ≡ b/aopt
(0 < x < 1, zmin = bmin/aopt).

The function fz(z) entering into Eqs. (5) most proba-
bly depends on the method of nanocomposite synthe-
sis. This is equally valid for the relative fractions of pro-
late and oblate granules described by the parameter x0.
In principle, these characteristics can be obtained by
electron-microscopic investigation of each particular
system. However, the results of calculations presented
below show that, qualitatively, a relationship between
the resistance and the magnetic field strength depends
neither on selecting the distribution function fz(z) nor
on the parameters zmin (zmin ! 1) and x0. For this reason,
we will consider a simple approximation offered by a
system containing only elongated granules (x0 = 0) pos-
sessing a homogeneous distribution function (fz(z) =
const). This means that elongated ellipsoidal granules
of any shape, from spherical (z = 1) to needle-like (z = 0),
are equiprobable in the system. The calculations were
conducted for the case of zmin = 0.1.

The magnetoresistance of this model system calcu-
lated using Eqs. (5) is presented in Fig. 3 (solid curve 2).
As is seen, the sample resistance variation in a broad
range of the magnetic field strength (5 < hopt < 50) is
described by a logarithmic function. The results of our
calculations show that the character of the magnetore-
sistance behavior is qualitatively the same for various
fz(z) functions and x0 values, which affect only the

γ1cos

γcos〈 〉 1 x0–( )L
ab2
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3

--------hopt
 
 
 



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b aopt=

∫=

+ x0L
a2b
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3

--------hopt
 
 
 





f b b( )db F hopt( ),=

F hopt( ) 1 x0–( )L hoptz
2( )[

zmin

1
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+ x0L hoptz( ) ] f z z( )dz,
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range of the magnetic field strength where the plots are
quasilogarithmic.

The characteristic effective field strength in the
range where the magnetoresistance exhibits a quasiloga-
rithmic behavior is hopt ~ 20 (see Fig. 3, solid curve 2 for
the homogeneous distribution function fz(z)). Comparing
this value to the effective induction B/T ≈ 3 × 10–2 T/K,
corresponding to the experimental logarithmic field
dependence of the sample resistance in the temperature
interval T ~ 100–250 K (Fig. 2), we can estimate the
optimal granule size 2aopt ~ 20 nm (for the saturation
magnetization of Fe granules assumed to be equal to
that of bulk iron, Is ≈ 0.2 T). This estimate agrees with
the data of electron-microscopic investigation of the
nanocomposites studied.1 

Let us consider the temperature variation of the
magnetoresistance in the region of the quasilogarithmic
field dependence. Within the framework of the model
employed, the only reason for the temperature effect is
a change in the long axis length of granules in the opti-
mum cluster: according to formula (1), aopt(T) ∝  T–5/9.
This implies that the magnetoresistance depends only
on the combination of parameters determining the char-
acteristic field: hopt ∝  B/T8/3. In other words, the model
predicts a parametric dependence of the magnetoresis-
tance of the type ∆R/R = ∆R(B/T8/3)/R, whereby any
∆R/R value plotted as the function of B/T8/3 must fit to
the single master curve. Represented in the correspond-
ing format (see Fig. 4), the experimental data confirm
this conclusion.

We have demonstrated that the model of nanocom-
posite with nonspherical granules of variable shape
suggests a quasilogarithmic behavior of the magnetore-
sistance in sufficiently strong magnetic fields. This is
obviously related to the large scatter of the volumes of
granules entering into the optimum cluster. The magne-
toresistance saturates together with the magnetization
of this cluster; however, as the field strength increases,
more and more small-size granules contribute to the
magnetization. This gradual involvement of new gran-
ules leads to a slow (close to logarithmic) saturation of
the magnetization and, hence, of the magnetoresis-
tance.

Thus, the proposed model of nonspherical granules
provides for a qualitatively correct description of

1 According to formula (1), aopt(T) ∝  T–1/2 and, hence, the opti-
mum granule size at T = 4.2 K is 2aopt(4.2 K) ~ 100 nm. How-
ever, no such large granules were observed in real systems. This
discrepancy indicates that the simple model is inapplicable at
very low temperatures.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
experimental data on the magnetoresistance of a granu-
lated ferromagnetic metal nanocomposite Fex(SiO2)1 – x
in strong magnetic fields.
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Abstract—The electronic structure and the magnetic properties of the MnB2 and CrB2 compounds with hex-
agonal AlB2-type lattices were studied. The problem was treated in terms of the generalized Hubbard model
with an infinite electron-electron repulsion energy in the same atom. Equations for spin magnetic susceptibility
were derived and used to determine the conditions of ferromagnetic instability and construct the phase diagram
of the existence of ferromagnetic ordering. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The experimental studies of MeB2 metal diborides

showed magnetic susceptibility to increase in the series
of 3d transition metals (Me = Ti, V, and Cr) [1]. The sus-
ceptibility of CrB2 is an order of magnitude higher than
that of all paramagnetic Group IV–VI metal diborides.

As iron, cobalt, and nickel diborides cannot be synthe-
sized, MnB2 is the only ferromagnetic diboride with a low
transition temperature (approximately 143–157 K) and a
low saturation magnetic moment of about 0.19–0.25 µB.

The electrical and magnetic properties of layered tran-
sition metal diborides with AlB2-type structures are char-
acterized by the presence of strongly split off (2xy, x2 – y2)
d states. These states are collectivized through boron
ions, which are in degenerate px, py states.

The electronic state of the CrB2 and MnB2 com-
plexes is close to half-filled for both Cr+ and Mn2+ cat-
ions (3d5) and B– anions (2s22p2).

Generally, the condition of electrical neutrality writ-
ten in terms of the mean occupation numbers of d (nd)
and p (np) electrons for the compounds under study
(MnB2 and CrB2) has the form

(1)

where nd and np are the numbers of d and p electrons per
cell, see Fig. 1.

According to the band calculations performed for CrB2
[1], the charge of chromium cations equals 0.7, which,
according to (1), corresponds to nd = 5.3, np = 1.35. It fol-
lows that, generally, 5 < nd < 6, the (3z2 – r2) two-electron
chromium shell is incompletely occupied, and 1 < np < 3/2.

In spite of the absence of calculations on MnB2, it is
natural to assume that the charge of Mn cations also does
not exceed one.1 Using the electrical neutrality condition,
we as previously obtain 1 < np < 3/2 and 6 < nd < 7.

1 As the electronegativities of Cr (1.6) and Mn (1.5) differ insignif-
icantly, this assumption conforms to the Pauling electrical neu-
trality principle.

nd 2np+ 8 for CrB2,=

nd 2np+ 9 for MnB2,=
1063-7761/01/9205- $21.00 © 20820
Because of hexagonal symmetry of CrB2, the chro-
mium cation should have a completely occupied (xz, yz)
shell and an incompletely occupied two-electron (3z2 – r2)
shell.

The four-electron (2xy, x2 – y2) shell of the manga-
nese cation in MnB2 only begins to be occupied,
whereas all the other shells are completely occupied.

In this work, the problem of ferromagnetism of
MnB2 is studied on the assumption of a strong interac-
tion between electrons of the same atom. The corre-
sponding matrix elements, which are also called the
Hubbard energy, for chromium, manganese, and boron
(14, 15, and 8 eV, respectively) exceed the energy of
electron transfer to neighboring atoms and are hereafter
considered infinite.

We will show that, when the lower Hubbard elec-
tronic subband is filled (for manganese e electrons), an
increase in the number of electrons causes an increase
in the total number of one-particle spin states, which
corresponds to a paramagnetic (positive) correction to
magnetic susceptibility.

However, if filling of the upper Hubbard subband
occurs [for the (3z2 – r2) chromium electrons], an increase

a

b

0 1

np

nd

2 3 4 5 6 7 8 9 10

2

3

4

5

6

1

Fig. 1. Electrical neutrality lines in (nd, np) coordinates:
(a) nd + 2np = 8 for CrB2 and (b) nd + 2np = 9 for MnB2.
001 MAIK “Nauka/Interperiodica”



        

ON THE THEORY OF FERROMAGNETISM OF HEXAGONAL DIBORIDES 821

                   
in the number of electrons results in an increase in the
number of two-particle states with zero spin, which
gives an antiferromagnetic contribution to magnetic
susceptibility.

The corresponding Born scattering amplitudes cal-
culated on the Fermi surface have opposite signs, and
the spin part of magnetic susceptibility is infinite for
MnB2 at T = 0, whereas CrB2 remains paramagnetic at
all temperatures.

Magnetic susceptibility calculations are performed by
differentiating the equation of state written at the level of
the zero-loop approximation (Hubbard I approximation)
and the one-loop approximation for manganese d elec-
trons.

2. THE ELECTRONIC STRUCTURE 
AT ZERO MAGNETIC FIELD

The spectrum of elementary excitations is found
using the generalized Hubbard–Emery model [2, 3],
which takes into account various electron jump inte-
grals between boron anions nearest to each other t (p)

and between nearest neighbor boron anions and manga-
nese cations t,

(2)

Here, ,  and ,  are the
operators of creation and annihilation of d and p elec-
trons, respectively.

In chromium, the 3z2 (2xy, x2 – y2)– r2 shell is occu-
pied, and the λ index therefore has only one value. In
MnB2, indices λ take on two values corresponding to
two degenerate (2xy, x2 – y2) states of cations. In both
compounds, indices ν take on two values correspond-
ing to two degenerate (x, y) boron states.

In AlB2-type lattices, the distance between the near-
est metal cations is two times larger than the distance
between the nearest boron anions, which, in turn,
equals the metal–boron–metal distance. For this rea-
son, cation–cation electron jumps will not be taken into
account (e.g., see monograph [1]).

If the axes are selected as shown in Fig. 2, it is easy to
calculate all four matrix elements of the jump operator.

For MnB2 (and CrB2), we use the simplest model
corresponding to the arrangement of energy levels at
the Γ point instead of exact nondegenerate six (or five)
branches.

Ĥ p̂ν σ,
+ r( ) p̂ν' σ, r'( )tν ν',

p( ) r r',( )
r r',
∑–=

– d̂λ σ,
+

r( ) p̂ν σ, r'( )tσ ν, r r',( ) H.c.+{ }
r r',
∑

+ εp p̂ν σ,
+ r( ) p̂ν σ, r( )

r

∑ εdd̂λ σ,
+

r( )d̂λ σ, r( ).
r

∑+

d̂λ σ,
+

r( ) p̂ν σ,
+ r( ) d̂λ σ, r( ) p̂ν σ, r( )
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For MnB2, we have two doubly degenerate hybrid
and one doubly degenerate nonhybrid subband of p
electrons,

(3)

Electron jumps between transition element cations are
not taken into account, because the distance between the
nearest cations (3.02 Å) noticeably exceeds the minimum
anion–cation distance (2.31 Å), which, in turn, exceeds
the distance between boron anions (1.74 Å).

It can be shown that the presence of a narrow loga-
rithmic singularity in the density of states for the factor

insignificantly changes the phase diagram in its separate
points. In the remaining broad region of energy, variable
τp changes, the corresponding density of states is almost
constant, and, physically, the calculations given below are
performed for the plane band model.

The dependence on transverse momentum pz is
inherent in the definition of excitation energy, which
contains xcos2(pz/2) factors, and the final equation for
the density of states has the form

(4)

It follows that, at low energies, the density of states
corresponds to one-dimensional motion, because ρ ≈
1/ . At high energies, the density of states corresponds

to a three-dimensional isotropic spectrum: ρ ≈ .

Motion over boron layers is purely two-dimensional
in character. The corresponding density of states has a
narrow van Hove peak.

3. EQUATIONS OF STATE

Let us define the Aλ(p)normal coordinates used to
express the diagonal elements of the one-particle vir-
tual Green function,

(5)

ξp
± v

2
----

1
2
--- r v+( )2 4gp

2 f pge
2 f e tp

2+ µ,–±=

µ
εp εe+

2
---------------, ξp– v τp
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r εp εe, v– gp
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2
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The equations of state written in these coordinates in
the np, e < 1 region have the form

(6)

(7)

Here, fe, p = 1 – 3ne, p/4.
As has been mentioned, the most interesting region

is that where the charge of Mn cations does not exceed
one. According to electrical neutrality equation (1), we
should then consider the region 1 < np < 2, 6 < nd < 7 or
0 < ne < 1, where ne = nd – 6.

Accordingly, let us write the equations of state for
the region 0 < ne < 1 or 1 < np < 2:

(8)

(9)

where fp = (2 + np)/12, and the excitation energy and

normal coordinates depend on the  product, where

 = 3/2 is the sum of the squares of the genealogical
coefficients

(10)

(11)

(12)

np 2 f p=
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For CrB2, we must consider filling of the same px, y
shell of boron electrons. Using the notation nz = nd – 4
for the number of electrons in the open (3z2 – r2) chro-
mium shell, we can write for the 1 < nz < 2 region of
interest:

(13)

(14)

where fe is everywhere replaced by fz = nz/2.

4. FERROMAGNETIC INSTABILITY

The conditions of arising of ferromagnetic instabil-
ity are easy to obtain in the one-loop approximation if
it is taken into account that, in the region 0 < ne < 1,

one-particle occupation numbers  enter into the
equations of state through the end multiplier, which
equals the sum of the mean occupation numbers for
empty and one-particle states,

(15)

and therefore  = .

In exactly the same way, one-particle occupation

numbers  in the region 1 < nz < 2 enter into the equa-
tions of state through the end multiplier, which is equal
to the sum of the mean occupation numbers of two-par-
ticle states with a zero total spin projection, 

(16)

and therefore  = – .

Note also that, in the region 1 < np < 2, two-particle

occupation numbers  enter into the equations of state

through the  +  combinations of end multi-

pliers. Two end multipliers  are expressed through
the sums of one-particle and two-particle states,

(17)

Hence the variation of two-particle occupation num-
bers is given by

(18)
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AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001



ON THE THEORY OF FERROMAGNETISM OF HEXAGONAL DIBORIDES 823
For MnB2, these relations lead to the equations

(19)

(20)

Here, we use the convenient notation

(21)

The Dp, Dp, e and Dd, De, p coefficients are the variational
derivatives of Kp and Ke, which are defined below.

The missing equation, which relates the variations of
one-particle and two-particle p states, can be obtained
according to the definition of the diagonal components of
the one-particle Green function written with the use of
auxiliary coefficients bk satisfying the orthogonality con-
dition g1b1 + g2b2 = 0.

In the zero-loop approximation, the sought equation
has the form (see [4, 5])

(22)

Using the orthogonality conditions and relation (22),
we find that the variations of the end multipliers are
related as

(23)

Equations (19), (20), (22), and (23) allow three indepen-
dent variations of the end multipliers to be determined.
The condition of solvability of this system of equations
at δH = 0 makes it possible to obtain the condition of
arising of ferromagnetic instability (ne < 1, 1 < np < 2):

(24)
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Here, fe = 1/(3Ke + 1), fp = 1/(4 – Kp), and  = 3/2. At
T = 0, when De Dp – Dp, eDe, p = 0, we can also find the cor-
rection corresponding to the one-loop approximation for
d electrons:

(25)

where

(26)

Here, ρ(y) = (4/π)  in the problem under consid-
eration.

Taking into account one-loop corrections for p elec-
trons leads to fairly cumbersome and partially cancel-
ing corrections, which will be ignored.

For CrB2 with 1 < nz < 2 and 1 < np < 2, the condition
for ferromagnetic instability has the form

(27)

Here,
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(29)
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Table

 Region fp Kp np Γp Rp

0 < np < 1 1 0 4

1 < np < 2 3
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The general conditions for the arising of ferromag-
netism can be found through variations of the end mul-
tipliers in the equations of state written in the Hubbard I
approximation,

(31)

(32)

Here, Rp, z is the degeneracy multiplicity of ([np, z] + 1)-
particle states, and fp, z are the end multipliers, which
were determined for each integer interval and tabu-
lated.

The condition of the arising ferromagnetism for the
np, z < 1 region can easily be obtained by simply differ-
entiating the equations of state.

At T = 0, the general equation for determining the
boundaries of the paramagnetic and ferromagnetic
phases has the form

(33)

Here, Γp, z are dimensionless amplitudes of scattering of
high-spin excitations calculated for each integer interval
of variations of mean occupation numbers np, z, Lp =

np np[ ] Rp f p+=

× nF ξν p( )( ) Aν
λ–( ) p pz,( )nF ξλ p pz,( )( )

pz p λ, ,
∑+

p

∑
 
 
 

,

nz nz[ ] Rz f z+=

× Aλ p pz,( )nF ξλ p pz,( )( )
pz p λ, ,
∑

 
 
 

.

K pKz 1 K p–( ) 1 Kz–( ) LzK p 1 K p–( ) Γ z Kz+( )–

– LpKz 1 Kz–( ) Γ p K p+( ) 0.=
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, and Lz = fzDz. The amplitudes are listed in the
table, which also contains the relation between the Kp, z
coefficients and the mean occupation numbers (for elec-
trons, subscripts p in the table must be replaced by e).

Consider two cases.
(A) 0 < nz < 1, Γz = 0, and the d subsystem resonates

between unoccupied and one-particle states. The condi-
tion for the arising of ferromagnetism has the form

(34)

This equation was used in studying MnB2 (where
1 < np < 2, Γp = 1 / 3, and Kz  Ke < 1).

(B) 1 < nz < 2, Γz = –1, and the d subsystem reso-
nates between one-particle and two-particle states. The
condition for the arising of ferromagnetism then takes
the form

(35)

This equation was applied to CrB2, where 1 < np < 2.

5. PHASE DIAGRAM

The most general property of systems with infinite
Hubbard repulsion is a positive amplitude of scattering of
excitations with opposite spin projections if the number of
excitations is small, which corresponds to a tendency to
ferromagnetism. For MnB2, this tendency manifests itself
by positive De and Dp values for filling both the lower
hybrid subband and the lower half of the boron subband.

gp
2 f pDp

K p 1 K p–( ) 1 Kz–( )

=  f zDzK p 1 K p–( ) gp
2

f pDp 1 Kz–( ) Γ p K p+( ).+

K pKz 1 K p–( ) f zDzK p 1 K p–( )–=

+ gp
2 f pDpKz Γ p K p+( ).
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Fig. 2. Separate fragments of the structure of MnB2. Solid
lines with arrows are jump directions. Dashed lines are ele-
mentary translation vectors.
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Fig. 3. Magnetic phase diagram at T = 0 and in the region of
small np – 1 values. Ferromagnetic regions are hatched, z = 1 is
the boundary at which filling of the p boron subband begins; A0
is the ferromagnetic region in the zero-loop approximation; A1
is the ferromagnetic region in the one-loop approximation; B is
the ferromagnetic region; and C is the electrical neutrality line.
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Fig. 4. Magnetic phase diagram of MnB2 at T = 0; C is the electrical neutrality line: (a) zero-loop approximation and (b) one-loop
approximation.
A comparison of the right-hand sides of (34) and (35)
shows that, in the regions where De, Dz, and Dp have the
same sign, there is a substantial compensation for CrB2.

Direct calculations show that, exactly in the region
where the nz and np occupation numbers are related by
the electrical neutrality condition 2np + nz = 4, the Dp

and Dz coefficients are of the same order of magnitude
and Eq. (35) does not have solutions.

It follows that the CrB2 compound remains para-
magnetic at all temperatures.

In the Appendix, we, by way of illustration, consider
a particular case when the electron jump energy over
boron layers equals the electron jump energy between
the nearest boron and manganese layers; that is, tp= t.

At T = 0, we will use the y =  and s =

4 fpfdt2/(r + v )2 variables, where v  = fpfd and r =
εp – εe , instead of the εp and εe independent parameters.

ε
gp

2 gp
2

First consider the region of energies where the lower
hybrid subband is filled, whereas the boron subband
remains unoccupied.

Figure 3 shows that, under these conditions, ferro-
magnetic ordering exists in a very narrow region of
deviations of the number of p electrons from unity
(region A0).

The Dp value rapidly decreases as energy increases,
and the system remains paramagnetic (region A) until,
alongside filling of the lower subband, filling of the
boron subband begins (region B).

According to Fig. 4, the line of electrical neutrality
of MnB2 intersects a fairly wide region of ferromag-
netic ordering, in which the lower hybrid and boron
subbands are occupied simultaneously. Taking into
account one-loop corrections broadens the possible
region of the existence of ferromagnetism, see Fig. 4b.
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The ferromagnetic region obtained in the zero-loop
approximation and shown in Fig. 4a covers a substantially
smaller fraction of the phase diagram, but, in both cases,
the line of MnB2 electrical neutrality intersects the ferro-
magnetic region in its fairly extended part.

Figures 3 and 4 shown that the region of ferromag-
netic instability is situated in the region of a small num-
ber of excitations for both p and e excitations.

The MnB2 electrical neutrality line intersects the ferro-
magnetic part of the phase diagram in a fairly wide region,
which corresponds to simultaneous filling of the lower
hybrid and the broad boron p subband.

We therefore obtain a qualitative explanation of the
existence of ferromagnetism in MnB2, which is the only
ferromagnetic diboride.

6. CONCLUSIONS

In both CrB2 and MnB2, p electrons resonate between
one-particle (S = 1/2) and triplet two-particle (S = 1)
states. For this reason, CrB2 has a fairly substantial sus-
ceptibility, whereas MnB2 is ferromagnetic in the whole
region of np numbers for which the p–p scattering ampli-
tude is positive.

As far as hybrid p–d excitations are concerned, the
character of their interactions in MnB2 is different in
principle from that in CrB2.

For MnB2 in the region of small ne numbers, the
amplitude of scattering of hybrid excitations is positive,
and, at small np and ne, the scattering amplitudes are
summed. Ferromagnetic ordering therefore exists in a
fairly wide region of np and ne variables, which intersects
the 2np + ne = 3 electrical neutrality line, see Fig. 4b.

In CrB2, in which the p subband and the upper half
of the Hubbard (3z2 – r2) subband are filled simulta-
neously, the scattering amplitude is negative at small
nz – 1 numbers. For this reason, substantial compensa-
tion of the total scattering amplitude occurs at small np

and nz – 1, and the system remains paramagnetic in the
region of intersection with the 2np + ne = 4 electrical
neutrality line.
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APPENDIX

Consider the special situation when jump integrals
over boron layers and jump integrals between manga-
nese and boron layers are equal in magnitude. Below,
these integrals are set equal to one.
JOURNAL OF EXPERIMENTAL 
In this situation, v  = fp, and r is expressed
through s as

(A.1)

Parameter s introduced in place of energy difference r
varies from zero to infinity and actually determines the
splitting of subbands.

The y and z values change from zero to one and are
determined by the position of the Fermi level within the
Brillouin zone.

Case A: r > v, 0 < s < 0.68

Under these conditions, the lowest subband is ,
which is occupied independently of the higher boron p
subband.

A1. If +v /2 –  < µ < v /2 – |r + v |/2,
we have

(A.2)

Here and throughout, the following notation is used:

The coefficients in the condition of the appearance of
ferromagnetism are obtained by differentiating the
equation of state:

(A.3)

(A.4)
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--------------------------+ ,
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(A.5)

In the case under consideration,

(A.6)

The integrals that appear in these equations are reduced to
elliptical integrals, after which computer calculations can
be performed to determine the phase curve. We considered
zero-loop and one-loop (for d electrons) approximations,
see Fig. 4.

The hatched regions in Fig. 3 are ferromagnetic order-
ing regions. The ferromagnetic region obtained in the
zero-loop approximation (A0) is situated within the A1
region whose boundary was calculated in the one-loop
approximation.

Note that the electrical neutrality line intersects the A
region at high energies, at which ferromagnetic insta-
bility does not arise.

A2. If r/2 – v  < µ < r/2, the broad nonhybrid p sub-
band is occupied. For this subband, the condition of fer-
romagnetism is satisfied, but the electrical neutrality
line does not intersect it.

Case B: 0 < r < v, 0.68 < s < 2.47

Under these conditions, the lowest subband is the

lower  subband. Starting with a certain chemical
potential value, it is filled simultaneously with the
boron p band.

The upper edge of the boron subband is situated
above the top of the lower hybrid subband.

B1. If v /2 – (r + v)  < µ < r/2 – v, the lower
hybrid subband is filled. The situation is indistinguish-
able from case A1. For this reason, the zero-loop
approximation gives a narrow region adjoining the Kp = 0,
or np = 1, line. This region is a continuation of the
region considered under A1.

In the one-loop approximation, the whole B1 region
is ferromagnetic and the boundary of the ferromagnetic
region lies within region B2.

B2. If r/2 – v  < µ < v /2 – |r + v |/2, the  and boron
p subbands are filled simultaneously,

(A.7)
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The y and z variables are related to each other and to the
chemical potential as

(A.8)

An explicit dependence of z on y is found taking into
account the definitions

(A.9)

Combining this equation with the condition of the
equality of the chemical potentials and the condition
v  = fp yields the equation

(A.10)

for determining z. Using (A.12), we obtain

(A.11)

the z value should be positive and should not exceed
one.

In the (s, y) variables, the required boundaries can
be determined by (A.8) with z set equal to 0 or 1. The
conditions z = 1 and 0 correspond to the beginning and
end of boron subband filling, respectively.

The coefficients present in the condition of the appear-
ance of ferromagnetism are found by differentiating the
equation of state,

(A.12)
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These coefficients should be substituted into the condi-
tion of ferromagnetism, which allows the phase curve to
be determined. The results of calculations show that the
ferromagnetic phase boundary in both zero- and one-
loop approximations occurs inside the BZ region.

Case C: –v  < r < 0, 24 > s > 2.47

Under these conditions, the lower  band is the
lowest. Starting with a certain chemical potential value,
its filling, however, occurs simultaneously with filling
of the boron p band.

The bottom edge of the boron p subband is situated

above the energy minimum of the lower  subband.

The top edge of the boron p subband is situated below

the top of the lower  subband.

C1. If v /2 – (r + v) /2 < µ < r/2 – v, the lower
hybrid subband is occupied,

(A.13)

The last condition relates y to the chemical potential.
The y parameter varies in a limited region, namely,
y* < y < 1, where y*is determined from the condition

v /2 – |r + v | /2 = r/2 – v.

Case C1 only differs from A1 and B1 in that the nar-
row ferromagnetic region in the nd and ne variables now
ends at the (0, 0) point, which corresponds to s = 24, see
Fig. 3.

The curve corresponding to the condition z = 1 (at
z = 1, filling of the lower hybrid subband continues and
that of the boron subband begins) is shown in Fig. 3.
Within this region, the condition of ferromagnetic instabil-
ity is satisfied even in the zero-loop approximation.

Note that the ferromagnetic region boundary inter-
sects the boundary at which filling of the boron p sub-
band begins; within this subband, there exists ferromag-
netic ordering caused by the boron–boron exchange scat-
tering amplitude.

In the one-loop approximation, the whole C1 region
remains ferromagnetic.
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C2. If r/2 – v  < µ < v/2 – |r + v |/2, the  and boron p
subbands are filled simultaneously,

(A.14)

All dependences then coincide with those for case B2,
see Eqs. (A.7)–(A.11).

In the one-loop approximation, a part of the bound-
ary phase curve for case C2 intersects the MnB2 electri-
cal neutrality line.

An analysis of Figs. 3 and 4 leads us to conclude
that, under the corresponding conditions, the electrical
neutrality line passes through the ferromagnetic region.

The ferromagnetic region obtained in the zero-loop
approximation lies completely within the ferromagnetic
region of the one-loop approximation.

Case D: –v  < r < 0, 24 < s < +∞
The broad p subband is the lowest; this subband is

filled independently of hybrid subbands.

D1. If –v  + r/2 < µ < v /2 – (r + v ) /2, we have

(A.15)

The last condition relates z to the chemical potential.
The boron subband is only filled. It follows that

Ke = 0; that is, nd = 6, and the number of p electrons
changes from 1 to some finite value. The condition of
ferromagnetism is satisfied even at a small number of
excitations. At np = 1, all p electrons are in the state with
spin 1/2, and when np increases, new states with spin 1 are
formed. It follows that the system tends to ferromag-
netic ordering from the outset.

In case D1, Kd = Dee = Dep = Dpe = 0,

(A.16)

This leads us to conclude that ferromagnetic instability
exists for all 1 > z > 0.47, or 0 < Kp < 0.27.

D2. If v /2 – (r + v)/2 < µ < r/2, the  and boron p
subbands are filled simultaneously,

(A.17)

This and all the other equations coincide with (A.7)–
(A.12).

In the zero-loop approximation, the curve of the
appearance of ferromagnetism begins at s equal to
infinity and y = 1, which corresponds to Kd = 0 and
Kp = 0.21, see Fig. 4a, where the whole zero-loop
approximation curve is shown.
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Case E: b < –rv, r < –v, s > 21/4 = 5.25

The lowest subband is the broad p subband, which
is filled independently of hybrid subbands.

E1. If –v  + r/2 < µ < v /2 + (r + v) /2, we have

(A.18)

The last condition relates z to the chemical potential.
Case E1 is indistinguishable from D1; that is, nd = 0,

0.21 < np < 1 / 2, and the ferromagnetic region lies
within the 0.21 < np < 0.27 narrow interval.

E2. If v /2 + |r + v |/2 < µ < r/2, the  and boron p
subbands are filled simultaneously,

(A.19)

Here, the lower and the broad p subbands overlap. The
z and y parameters are related to each other as

(A.20)

The last condition relates the y and z values to the
chemical potential. An explicit dependence of z on y
can be found taking into account the definitions

(A.21)

Combining these equations with the condition of the
equality of the chemical potentials and the v  = fp condi-
tion, we obtain the equation
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for determining z. This equation yields

(A.23)
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The z value should be positive and should not exceed
unity. In this region, no ferromagnetic instability is
observed under the conditions studied.

At the level of the zero-loop approximation, there is
no ferromagnetic instability in this region.

The phase curve obtained in the one-loop approxima-
tion begins at the same parameter values as in case D2;
that is, s = ∞ and y = 1, or Kd = 0 and Kp = 0.21. Further,
the phase curve deviates from the line corresponding to
s = ∞ and then intersects this line at y = 0.91, or at the
Kd = 0.02, Kp = 0.32 point.

The whole one-loop approximation curve is shown
in Fig. 4b.

Case F: 0 < s < 21/4, r < –v

The lowest subband is the broad p subband, which
is filled independently of the hybrid subbands.

F1. If –v  + r/2 < µ < r/2, we have

(A.24)

The last condition relates z to the chemical potential
value.

Case F1 is indistinguishable from D1: nd = 0, 0.21 <
np < 1/2, and the ferromagnetic region lies in the narrow
0.21 < np < 0.27 interval.

F2. If v /2 + (r + v) /2 < µv /2 + (r + v)/2,
the lower hybrid subband is filled.

It can be shown that, under these conditions, the sys-
tem remains paramagnetic at all temperatures and chemi-
cal potential values.
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Abstract—The field and angular dependence of the magnetic linear birefringence (MLB) in noncentrosymmet-
ric cubic (symmetry class Td) rare-earth (RE) semiconductors γ-Ln2S3 (Ln = Dy3+, Pr3+, Gd3+, La3+) was stud-
ied. The field dependence of the MLB in Dy2S3 and Pr2S3 is a combination of two contributions, quadratic and linear
with respect to the magnetic induction B, both possessing a strong anisotropy. The quadratic birefringence related to
the Cotton–Mouton effect manifestations at a wavelength of λ = 633 nm is characterized in Dy2S3 by the
value of β = 1.5 deg/(cm T2) and the anisotropy parameter a = –0.7 and in Pr2S3, by β = 0.2 deg/(cm T2) and a = 2.
The non-reciprocal MLB caused by the magnetic-field-induced spatial dispersion reaches γ = 0.55 and
0.71 deg/(cm T) in Dy2S3 and Pr2S3, respectively. The relationship between parameters A and g of the γijkl ten-
sor describing contributions of the Bikj type to the dielectric tensor εij(ω, k, B) is A = 2g in Dy2S3 (as well as in
boracite crystals containing 3d ions), which is characteristic of the second-order magnetoelectric permittivity
manifestations in the optical frequency range. In Pr2S3, the relationship A = 3.3g is evidence of manifestations
of the additional quadrupole mechanism. A comparison of the Cotton–Mouton and Faraday effects in Ln2S3 and
in magnetic semiconductors Cd1 – xMnxTe shows a principal difference between these systems and indicates
that both phenomena in Ln2S3 are determined by the optical transitions in RE ions rather than by the interband
or exciton transitions. This is also confirmed by the comparison of the Cotton–Mouton effect manifestations in
Ln2S3, in dielectric Dy3Ga5O12 and Dy3Al5O12 single crystal cubic garnets, and in Dy2O3. An analysis of the
non-reciprocal MLB mechanisms related to manifestations of the local interconfiguration optical transitions
4f N  4f N – 15d in RE ions showed that this phenomenon, in contrast to the Cotton–Mouton and Faraday
effects, is caused by the presence of odd components of the crystal field acting upon the RE ion in Ln2S3. In
Gd2S3, as well as in diamagnetic Ln2S3, neither the Cotton–Mouton effect nor the non-reciprocal MLB are man-
ifested at T = 294 K, which is explained by different microscopic mechanisms of the magnetooptical phenom-
ena for ions in the S-state and diamagnetic ions, on the one hand, and RE ions with nonzero orbital moment, on
the other hand. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rare-earth (RE) sesquisulfides of the Ln2S3 system,
where Ln3+ is a trivalent RE ion, may crystallize in a
cubic noncentrosymmetric lattice of the Th3P4 type
(symmetry class Td) and represent wide-bandgap mag-
netic semiconductors with a band gap of Eg ~ 2.5–3 eV.
These materials possess a high resistivity (ρ ~ 1010 Ω cm)
and a broad transparency window in the visible spectral
range. A detailed description of many physical proper-
ties of sesquisulfides can be found in reviews [1, 2]. The
presence of trivalent RE ions with unfilled 4f electron
shells in these compounds accounts for their paramagnetic
properties and for a relatively large magnitude of the lin-
ear magnetooptical effects.

To our knowledge, only linear (with respect to the
magnetic field strength) Faraday and Kerr effects in
γ-Ln2S3 crystals were studied to date [3–6]. It should
be noted that the linear magnetic Faraday effect is
1063-7761/01/9205- $21.00 © 20830
described by a third-rank axial tensor αij k possessing a
singe independent parameter in cubic crystals. This cir-
cumstance accounts for the isotropic character of this
phenomenon, whereby the magnitude of the Faraday
effect is independent of the direction of light propaga-
tion relative to the crystallographic axes.

As is well known, the crystals containing RE ions
may exhibit a large quadratic Cotton–Mouton effect
(magnetic birefringence or double refraction), which is
described by a fourth-rank tensor βijkl [7]. In cubic crystals
belonging to the symmetry classes Oh or Td, the βijkl tensor
possesses three independent parameters. For this reason,
the Cotton–Mouton (CM) effect can be anisotropic,
whereby the magnetic birefringence depends on the
direction of light propagation and on the magnetic field
orientation relative to the crystallographic axes.

A phenomenological description of the CM effect in
cubic magnetic crystals was reported in [7, 8]. How-
001 MAIK “Nauka/Interperiodica”
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ever, this description is also valid in RE paramagnets
exposed to a magnetic field, provided sufficiently high
temperatures and low field strengths. A microscopic
theory of the CM effect related to the optical transitions
in RE ions was developed in [9]. Experimental investi-
gations of the CM effect in cubic paramagnets were
conducted for noncentrosymmetric RE gallates and
aluminates with a garnet structure (symmetry class Oh)
[10–13]. To our knowledge, no experimental investiga-
tions of the CM effect in RE sesquisulfides were
reported.

In noncentrosymmetric crystals, in contrast to the
structures with the center of inversion, the magnetic lin-
ear birefringence (MLB) can be determined both by the
reciprocal CM effect and by the non-reciprocal mag-
netic birefringence (NMB) related to a magnetic-field-
induced spatial dispersion [14, 15]. The latter effect is
described by terms of the type δεij = γijklBkkl in the
dielectric tensor expansion, where B is the magnetic
induction and k is the light wavevector. In contrast to
the CM effect, the NMB magnitude is described by an
odd linear function of the magnetic induction.
A phenomenological analysis of the NMB in crystals
of the Td symmetry was reported in [16, 17]. The phe-
nomenon was experimentally studied in the cubic crys-
tals of magnetic semiconductors (CdMnTe and
ZnMnTe) [16–18], semiconductors (CdTe, ZnTe,
GaAs) [19–21], and dielectrics (boracites R3B7O13X,
R = Co2+, Cu2+, Ni2+; X = Br–, I–) [21, 22]. The results
of these investigations showed that, in both semicon-
ductors and magnetic semiconductors, the CM and
NMB effects are determined primarily by the interband
and exciton transitions, while the same effects in
dielectric R3B7O13X are determined by the local elec-
tron transitions between states of the unfilled 3d elec-
tron shell of the R2+ ion. In RE compounds, the non-
reciprocal birefringence effect has not been observed to
the present.

Since the RE sesquisulfides are, on the one hand,
semiconductors with the absorption edge determined
by the interband transitions and, on the other hand,
compounds exhibiting intense local transitions in RE
ions and strong linear magnetooptical effects, we may
expect manifestations of both the NMB and CM effects
in these materials. It would be of interest to compare
the Faraday effect and the MLB manifestations in RE
semiconductors of the Ln2S3 system to the behavior of
noncentrosymmetric magnetic semiconductors of the
Cd1 – xMnxTe type and dielectric R3B7O13X crystals (the
magnetic and magnetooptical properties of which are
determined by 3d ions) and to the properties of cen-
trosymmetric dielectric RE garnets.

The purpose of this work was to study experimen-
tally the magnetic linear birefringence in cubic noncen-
trosymmetric single crystals of γ-Ln2S3 with various
RE ions (Ln = Dy3+, Pr3+, Gd3+, La3+). We compared the
magnitudes of the linear and quadratic magnetooptical
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
effects in these RE compounds to those in magnetic
semiconductors of the Cd1 – xMnxTe type and in dielec-
tric crystals (boracites and paramagnetic RE garnets).
We also aimed at elucidating the microscopic mecha-
nisms responsible for the manifestations of magnetic-
field-induced spatial dispersion in the transparency
range of RE sulfides.

2. EXPERIMENTAL METHODS
AND SAMPLE PREPARATION

The non-reciprocal magnetic birefringence and the
CM effect were studied as described elsewhere [16,
17]. The method consists in measuring the rotation
angle α of the polarization plane of the light passed
through a crystal, placed in an external magnetic field
with the induction B, and a quarter-wave (λ/4) plate.
The direction of light propagation was perpendicular to
the magnetic induction vector B, which was verified by
a zero Faraday effect measured using the same optical
scheme without the quarter-wave plate. The measure-
ments were performed in two geometries: E || B (with
the incident light polarized so that the E vector was par-

allel to B) and  = 45° (with the E vector making an
angle of 45° with the magnetic field direction). In both
geometries, the light polarization direction was parallel
to the principal axis of the λ/4 plate. In order to increase
the sensitivity of α measurements, we used the Faraday
polarization modulator and a lock-in detection scheme.
The light source was a helium–neon laser (LGN-111)
with an output power of up to 30 mW, operating at a
wavelength of λ = 633 nm. A crystal placed into the gap
of an electric magnet could be rotated about the axis
parallel to the light wavevector k with an accuracy of
approximately 0.1°.

In the absence of the magnetic field, the spontane-
ous birefringence related to the presence of internal
stresses or defects produces an initial rotation of the
polarization plane by an angle α0(θ) depending on the
crystal azimuth θ. The angular dependence of this ini-
tial rotation, α0(θ), is described by second-order har-
monics. Upon measuring this angular dependence, we
can determine the magnitude of the spontaneous birefrin-
gence and the orientation of its principal directions. The
spontaneous birefringence in γ-Ln2S3 crystals (Ln = Dy,
Pr, Gd, Lu) amounted to ∆n ~ (3–5) × 10–6. During the
experiment, the spontaneous birefringence component
was compensated by rotating the analyzer, after which
the field dependence α(B) = α1(B) – α0 was measured
at various values of the crystal azimuth angle (θ α1(B)
is the angle of rotation of the polarization plane of the
transmitted light relative to the E vector in the incident
light beam). Using this technique, the field dependence
α(B) could be measured with a maximum error of ~10′′
seconds of arc.

Rare-earth (RE) sesquisulfides of the γ-Ln2S3 sys-
tem crystallize in a structure of the Th3P4 type belong-
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ing to the Td symmetry class [1, 2]. In this structure, the
RE ions are located at the centers of octahedra (formed
by the S2– ions) belonging to the noncentrosymmetric
point group S4 [23]. The RE ions occupy 8/9 of the pos-
sible central positions, while the remaining 1/9 of these
sites are vacant (these vacancies are randomly distrib-
uted over the crustal volume). The presence of these
vacancies does not change the crystal symmetry (Td)
according to the X-ray diffraction data. The γ-Ln2S3
(Ln = Dy, Pr, Gd, Lu) crystals used in our experiments
were grown by the Czochralski method [24]. The sam-
ples with lateral dimensions 3 × 3 mm and thickness of
1 mm were cut from ingots along the (110) plane with an
accuracy of 2°. The orientation and structural perfection
of the samples were checked by X-ray diffraction mea-
surements in the Laue geometry. It is important to note
that NMB is extremely sensitive to the presence of
twins and/or blocks in the crystals, for which reason
special attention was paid to obtaining samples without
blocks.

The absorption (transmission) and reflection spectra
of the γ-Ln2S3 crystals were measured in [1, 25, 26].
The spectral dependences of the Faraday and Kerr
effects were reported in [1, 3–6]. Table 1 presents data
on the bandgap width Eg and the energy of the effective
oscillator responsible for the frequency dependence
(dispersion) of the Faraday effect in the crystals stud-
ied. The optical quality of the crystals was checked

Table 1.  The energy parameters of γ-Ln2S3 crystals [3–6]

Compound Eg, eV Eeff, eV

Dy2S3 2.5 3.8

Pr2S3 2.42 3.15

Gd2S3 2.7 3.2

La2S3 2.76 5.4
JOURNAL OF EXPERIMENTAL
with the aid of a polarization microscope and by mea-
suring the optical absorption spectra at T = 294 K. Data
on the elastic, piezooptical, piezoelectric, and elec-
trooptical properties of Dy2S3 were reported in [27, 28].

3. EXPERIMENTAL RESULTS

The magnetooptical phenomena in paramagnets at
high temperatures and low field strengths are described
in terms of expansion of the dielectric tensor εij(ω, k, B)
with respect to components of the magnetic field B:

(1)

where the tensors αijk , βijkl , and γijkl refer to the Faraday
effect, the CM effect plus the isotropic magnetic refrac-
tion birefringence, and the NMB, respectively. In the
transverse geometry (k ⊥  B), the Faraday effect in cubic
crystals is not manifested. Therefore, a change in the
polarization of light passed through a crystal exposed to an
external magnetic field B is due to the CM effect (qua-
dratic with respect to the induction B), the NMB effects
(linear in B), and a contribution of the second order in
αijkBk. Thus, in a noncentrosymmetric crystal with an
allowed γijkl tensor, the MLB value may contain quadratic
(even) and linear (odd) contributions with respect to the
magnetic field induction B.

Figure 1 shows the field dependence of α(B) mea-

sured for Dy2S3 at k ||  in the E || B and  = 45°
geometries. The measurements were performed for vari-
ous values of the angle θ between the magnetic field B and
the [001] type crystal axis. The α(B) curves measured in
both geometries can be described by combinations of the
linear and quadratic functions, α(B) = γB + βB2. The coef-
ficients γ and β depend on the experimental geometry

(E || B or  = 45°); in a certain geometry, the curves

εij ω k B, ,( ) ε0 ω( ) α ijkBk+=

+ γijklBkkl βijklBkBl,+
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Fig. 1. The field dependences of α(B) measured in the (110) plane of Dy2S3 in the E || B and  = 45° geometries at various angles
θ between the magnetic boeld B and the [001] type crystal axis.
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Fig. 2. The angular dependences of β = ∂2α/∂B2|B = 0 measured for Dy2S3 in the E || B and  = 45° geometries.EB
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may significantly (up to a change in the sign of α)
depend on the angle θ, showing evidence of signifi-
cantly different types of anisotropy.

Figure 2 presents angular dependences of the coef-
ficient β = ∂2α(B)/∂B2|B = 0 measured for Dy2S3 in the

E || B and  = 45° geometries. The β(θ) curves,
which describe anisotropy of the even contribution to
α(B), exhibit a 180° periodicity and can be approxi-
mated by combinations of the zeroth, second-, and
fourth-order harmonics. The quadratic magnetic bire-
fringence in Dy2S3 at B = 1 T reaches ∆n = 5.3 × 10–7.
Using the known Verdet constant V = 330 deg/(cm T)
for Dy2S3, we may readily show that the contribution to
∆n due to the terms quadratic in αijk for this field must
be two orders lower; this implies that the quadratic con-
tribution to α(B) is related to the CM effect described
by the βijkl tensor.

Note that the α(B2) value related to the CM effect is
determined both by the orientation of principal axes and
by the magnitude of the magnetic birefringence ∆n(B2).
As is well known, the principal directions of birefringence
in cubic crystals may deviate from the magnetic field B,
except for the cases of B || [001], B || [111], and B || [110]
[7, 8]. For these directions of the applied magnetic
field, the birefringence components obey a relationship
∆n110 = (∆n111 + ∆n001)/2 and, in addition, the α value

for the  = 45° geometry is related to ∆n by the for-
mula α = π∆nd/λ, where d is the crystal thickness and
λ is the light wavelength. In the general case, this rela-
tionship is not valid for other orientations of the mag-
netic field because deviation of the principal directions of
birefringence from the field direction may reach up to 45°.
As is seen from Fig. 2 for Dy2S3 measured in the  =
45° geometry, α110 = (α001 + α111)/2. This implies that
anisotropy of the CM effect in this sample is the same
as that in a cubic crystal. This fact, together with a small
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value of the spontaneous birefringence in the crystals
studied, indicate that the presence of a large number of
vacancies in Ln2S3 samples does not lead to deviation
of the “optical” symmetry of these crystals from the
“X-ray” symmetry. This provides additional evidence
that the vacancies are randomly distributed over the
crystal lattice volume.

Figure 3 shows the angular dependences of the coef-

ficient β for Pr2S3 measured in the  = 45° geometry.
Similar to Dy2S3, this crystal obeys the rule of “even
effects” α110 = (α001 + α111)/2. However, Pr2S3 exhibits
a markedly lower magnitude of the CM effect and a less
pronounced anisotropy (being closer to the isotropic
case).

Figure 4 presents angular dependences of the coef-
ficient γ = ∂α/∂B|B = 0 describing the linear contribution

to α(B), measured for Dy2S3 in the E || B and  = 45°
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Fig. 3. The angular dependences of β(θ) measured for Pr2S3
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geometries. As is seen from these data, a 180° change
in the crystal azimuth (θ  θ + 180°) leads to alter-
nation of the sign of γ. The γ(θ)curves can be described
by combinations of the first- and third-order harmonics:
cosθ and cos3θ (in the E || B geometry) or sinθ and sin3θ
(in the  = 45° geometry). According to [16, 17], this
type of the γ(θ) anisotropy is characteristic of the non-
reciprocal birefringence in a cubic crystal of the Td

symmetry, which was related to the magnetic-field-
induced spatial dispersion. In contrast to the CM effect,

the NMB easy axes in a cubic crystal at k || 
never coincide with the magnetic field direction, except
for the case of B || [011]. For B || [001], the easy axes of
birefringence make an angle of 45° with the direction
of B. Thus, the relationship α = π∆nd/λ holds in the

E || B geometry for B || [001] and in the  = 45°
geometry for B || [011]. The fact that the NMB anisot-
ropy in Dy2S3 can be described by expressions similar
to those for an ideal cubic crystal also indicates that the
presence of vacancies in this crystal does not lead to
deviation of the “optical” symmetry from the “X-ray”
symmetry in this RE sesquisulfide.

It should be noted that the orientation of principal
birefringence axes in a real crystal placed in an external
magnetic field is determined by the field-independent
spontaneous birefringence (always present due to the
internal stresses and defects) or the Lorentz birefrin-
gence, as well as by the field-dependent CM and NMB
effects. As a result, the orientation of the principal bire-
fringence axes is a complicated function of B and θ.
However, the results of model calculations using the
experimental values of spontaneous birefringence and
the parameters characterizing NMB and CF effects, the
linear or quadratic contributions to α(B) can neverthe-
less be described using a formalism taking into account
only a certain selected effect. For example, the qua-
dratic contribution to α(B) is well described by expres-
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110[ ]

EB

〈
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sions obtained for the ideal cubic crystal taking into
account only the βijklBkBl terms, while the linear contri-
bution is adequately described using the γijklBkkl terms.
This is explained by the fact that the spontaneous and
induced birefringence components are small and the
second-order terms can be neglected. Nevertheless,
should the spontaneous birefringence be sufficiently
large (∆n ~ 10–4–10–3), the field dependence of α(B)
may be sensitive to the mutual influence of the sponta-
neous birefringence and the NMB and CM effects.
However, no such mutual influence was manifested in
the crystals studied in our experiments.

Figure 5 shows the angular dependences of the coef-
ficient γ(θ) for Pr2S3. Similar to those for Dy2S3, these
curves are described by the first- and third-order har-
monics but with a somewhat different relative values of
the harmonic amplitudes. This is manifested by a different
ratio of the magnitudes of large and small extrema
observed for the γ plots of Dy2S3 and Pr2S3. Note that the
magnetic linear birefringence, as well as the CM and
Faraday effects, in RE semiconductors must be inde-
pendent of the incident light intensity. Indeed, it was
experimentally established that an increase in the light
intensity by two orders of magnitude led to no signifi-
cant changes in the observed pattern. This result indi-
cates, in particular, that NMB is a linear optical phe-
nomenon and can be interpreted ignoring the “second-
ary” effects related, for example, to the light-induced
internal electric fields or the electrooptical effect and its
variations caused by the magnetic field application (the
Kikoin effect).

In diamagnetic La2S3 crystals, as well as in Gd2S3, the
magnitude of the CM and NMB effects in a magnetic
field with B = 1.5 T did not exceed the sensitivity
threshold. In the cubic centrosymmetric crystals of
Dy2O3, DyAlG, and DyGaG, no NMB manifestations
were observed at all.
 AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001
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Fig. 5. The angular dependences of γ(θ) for Pr2S3 measured in the E || B and  = 45° geometries.EB
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4. DISCUSSION OF RESULTS

For crystals of the Td symmetry, the tensors of αi jk,
βijkl, and γijkl possess one, two, and three independent
parameters, respectively. The γijkl tensor components
describing the NMB effect are as follows: γiijj = –γjjii =
A, γijij = –γijji = g (ij = xy, yz, zx); γijkl = γjikl. The magni-
tudes and signs of the parameters A and g determine the

value and anisotropy of γ(θ) in the E || B and  = 45°
geometries. Using the experimental angular depen-
dences γ(θ), the parameters A and g can be determined
by computer calculations with an accuracy of ~10%.
The CM effect in cubic crystals of the Oh and Td sym-
metry classes is determined by the values of β2323 and
β1111 – β1122 [7, 8]. Dependence of the orientation of
principal axes and the magnitudes of the magnetic bire-
fringence on the magnetic field direction is described
by the anisotropy parameter a = 2β2323/(β1111 – β1122);
the behavior of these characteristics for various values
of a was reported in [8].

Table 2 presents data on the Faraday effect (the Ver-
det constant V), the maximum β and γ coefficients, the
A and g parameters and the A/g ratio, and the a values
for Dy2S3 and Pr2S3. As seen from these data, the linear
Faraday effect and NMB in Pr2S3 are 1.5 times those in
Dy2S3. The parameter A for Pr2S3 is also 1.7 times that
for Dy2S3, whereas the g value for Pr2S3 is somewhat
smaller than that for Dy2S3. A large difference is
observed for parameters describing the CM effect in
Dy2S3 and Pr2S3. In contrast to the Faraday effect and
NMB, the maximum CM effect in Dy2S3 is 6 times that
in Pr2S3; moreover, the magnetooptical anisotropy
parameters of the two crystals differ both in magnitude
and in sign. The Faraday effect in diamagnetic La2S3
and in Gd2S3 is lower by almost two orders of magni-
tude as compared to the same effect in Pr2S3 and Dy2S3.
The NMB and CM effects on these crystals at T = 294 K
are very small and are not manifested in the region of
magnetic fields (B = 1.5 T) used in our experiments.
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This comparison shows that the MLB magnitude and
anisotropy in Ln2S3 significantly depend on the RE ion
type. Moreover, this dependence is different for the lin-
ear and quadratic magnetooptical phenomena in cubic
RE sesquisulfides.

In RE semiconductors, the magnetooptical phenom-
ena observed in the transparency range can be related to
the interband and exciton optical transitions, as well as
to the local optical transitions in RE ions. In this context,
it was interesting to compare the behavior of the magne-
tooptical phenomena in RE semiconductors (Ln2S3) and
in cubic magnetic semiconductors containing 3d ions
of Mn2+ such as Cd1 – xMnxTe or Zn1 – xMnxTe (symme-
try class Td). In the latter case, the large magnitude of
the magnetooptical phenomena is determined just by
the interband and/or exciton transitions, which are
related to a strong splitting of the energy bands and
exciton states caused by the exchange and sp–d interac-
tions [29], whereas the local transitions inside the 3d
electron shell of manganese are insignificant. As was
demonstrated in [16, 17], the CM effect in Cd1 – xMnxTe
and Zn1 – xMnxTe at T = 294 K is observed near the fun-
damental absorption edge at Eg – E < 0.2 eV, sharply
increases on approaching the band edge in proportion

Table 2.  The parameters of non-reciprocal magnetic bire-
fringence and the Cotton–Mouton and Faraday effects in
Dy2S3 and Pr2S3 crystals

Parameter Dy2S3 Pr2S3

γmax, deg/(cm T) 0.55 0.73

A, 10–8 µm/T 5.3 7.7

g, 10–8 µm/T 2.7 2.3

A/g 1.9 3.3

βmax, deg/(cm T2) 1.5 0.24

a –0.7 1.9

V, deg/(cm T) 330 504
SICS      Vol. 92      No. 5      2001
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to ∝ (Eg – E)–3.5, and is virtually isotropic (a = 1). The
latter implies that, irrespective of the magnetic field ori-
entation, one of the principal birefringence axes is
always parallel to B and the effect is constant. For this
reason, the CM effect in these crystals is observed only

in the  = 45° geometry.

A quite different behavior of the CM effect is
observed in Ln2S3. Here, the CM effect has a large mag-
nitude in the region far from Eg (Eg – E = 0.54 eV and
0.48 eV for Dy2S3 and Pr2S3, respectively) and is charac-
terized by a sharply pronounced anisotropy (a = –0.7 and
+2 in Dy2S3 and Pr2S3, respectively). Note a very strong
anisotropy of the CM effect in Dy2S3, where the magnetic
birefringence for B || [001] is close in magnitude but oppo-
site in sign as compared to that for B || [111]. In Dy2S3,
rotation of the magnetic field in a plane of the (110)
type is accompanied by a large (~45°) deviation of the
principal axes of birefringence from the magnetic field
direction. As a result, comparable quadratic contribu-
tions to α(B) are observed in Dy2S3 for both E || B and

 = 45° geometries (Fig. 1).

It should be noted that the strong anisotropy of the
CM effect is characteristic of the cubic dielectrics con-
taining RE ions. In particular, the parameter of magne-
tooptical anisotropy in Dy3Ga5O12 and Dy3Al5O12 single
crystal cubic garnets at T = 294 K and λ = 633 nm is a = –
6 and +2, respectively. A maximum CM effect in these
crystals, observed for B || [111], amounts to β = 0.3
and 0.4 deg/(cm T2) in Dy3Ga5O12 and Dy3Al5O12,
respectively, which is somewhat lower as compared
to β = 1.5 cm/(cm T2) in Dy2S3. This is related to the
fact that the allowed electric dipole transitions (respon-
sible for the Faraday and CM effects in Dy3+ ions) are
characterized by higher energies in dielectric crystals
than in Dy2S3. In dielectric Dy2O3 (Th symmetry
class, Eg = 4.9 eV [1]), both the anisotropy parameter
(a = –5) and the magnitude (β = 0.7 deg/(cm T2)) are
lower approximately by half as compared to the analo-
gous values in Dy2S3. Thus, judging by the dispersion
and anisotropy characteristics, the CM effect in RE
semiconductors is essentially different from the mag-
netic birefringence effect in magnetic semiconductors
of the Cd1 – xMnxTe type and analogous to the effect in
cubic dielectrics containing RE ions.

Dispersion of the Faraday effect in magnetic semi-
conductors of the Cd1 – xMnxTe type is proportional to
∝ (Eg – E)–1.5 and strongly increases on approaching the
band edge (Eg). On the contrary, investigations of the
Faraday and Kerr effects in Dy2S3 and Pr2S3 [3–5]
showed that the optical transitions responsible for the
dispersion of the Faraday effect in the transparency
range occur beyond the fundamental absorption edge
(E0 = 3.8 and 3.15 eV in Dy2S3 and Pr2S3, respectively)
and can be related to the interconfiguration electron
transitions of the 4f N  4f N – 15d type., Therefore,

EB

〈

EB

〈
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there are grounds to believe that both linear and qua-
dratic magnetooptical phenomena in the transparency
range of sesquisulfides are primarily determined by the
local optical transitions in RE ions.

A microscopic theory of the Faraday and CM effects
taking into account the electric-dipole-allowed transi-
tions in RE ions is based on an expression for the polar-
izability tensor αij [31]. In the transparency range far from
the resonance transition frequencies (ωeg – ω @ Γeg), this
tensor can be written as

(2)

where d is the dipole moment operator; |g〉  and |e〉  are
the wavefunctions of the ground and excited states; ωeg

is the transition frequency; Γeg is the damping parame-
ter; ρg is the ground state occupancy; ∆V is the unit cell
volume; and σ denotes the RE in position in the unit
cell. The first term in the square brackets of Eq. (2)
refers to the imaginary antisymmetric part of αij and
describes the ion contribution to the Faraday effect,
while the second term determines the symmetric part of
αij and describes the field-independent ion polarizabil-
ity component and the βijkl tensor (that is, the isotropic
magnetic birefringence and the CM effect). In the
absence of an external magnetic field, the contribution
of the first term to αij is zero.

The application of a magnetic field modifies the
energy levels of the ground and excited states, perturbs
their wavefunctions, and changes the occupancies ρg .
Since the electric dipole transition is allowed, we may
neglect (in a rough approximation) the effect of crystal
fields upon the ion. This “free ion” approximation is
frequently used to describe dispersion of the Faraday
effect in RE compounds at high temperatures. In partic-
ular, this approximation was applied to Ln2S3 crystals
[3]. However, the “free ion” model is inapplicable to
description of the anisotropic magnetooptical phenom-
ena even at high temperatures. Indeed, the CM effect in
this model would be isotropic—in obvious discrepancy
with experiment (see, e.g., Fig. 1). For adequate
description of the anisotropic magnetooptical phenom-
ena, as well as the field and temperature dependences of
the Faraday effect, it is necessary (especially at low tem-
peratures) to take into account the crystal field effects.

The eigenstates of an RE ion in a magnetic field are
determined using the Hamiltonian

(3)

where H0 is the free ion Hamiltonian including the
Coulomb and spin–orbit interactions; Vcr is the crystal
field potential; and VZ = µB(L + 2S)B is the Zeeman
interaction energy, L and S being the orbital and spin

α ij
2

"∆V
-----------=

× ρg

iω Im dge
i deg

j( )
ω2 ωeg

2–
----------------------------------
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σge

∑
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moment operators. The crystal field potential Vcr is
determined by the point symmetry of the RE ion posi-
tion and can be written as

(4)

where  are coefficients depending on the symmetry

of the ion environment;  are spherical harmonics;
and ri , θi , ϕi are the spherical coordinates of the ith
electron of the RE ion.

In order to describe the multiplet splitting in the
crystal field and the effect of applied magnetic field
upon the resulting states, the Vcr operator is projected
onto the space of wavefunctions of the corresponding
multiplet. Since these wavefunctions are of the same
parity, Eq. (4) will contain only components with even
n. This implies that odd components of the crystal field
do not lead to the splitting of states of the ground and
excited multiplets. Therefore, the crystal-field-induced
anisotropy of the CM effect is determined only by the
even harmonics. In the Th3P4 type lattice, the RE ions
occupy positions possessing the S4 point symmetry and
the crystal field potential Vcr depends on the parameters

, , , , and . As demonstrated in [32], a
correct description (including the temperature and field
dependences) of the magnetic Faraday effect in RE
compounds must take into account the crystal field
effects; however, the odd components of the crystal
field potential are also not manifested in that phenome-
non.

The non-reciprocal magnetic birefringence, related
to the local optical transitions with the energies inde-
pendent (unlike the case of interband or exciton transi-
tions) of the wavevector k, is determined by the magne-
toelectric and quadrupole mechanisms [21]. The contri-
bution of these mechanisms to the symmetric art of the
dielectric permittivity tensor εij has the following form:

(5)

where εijk is a fully antisymmetric third-rank unit ten-
sor,

(6)

(7)

m is the magnetic moment operator, and Qij is the qua-
drupole moment operator. In the absence of an external
magnetic field, Gij = 0 and  = 0. The application of

Vcr Bn
kri

nYn
k θi ϕ i,( ),

kn

∑
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∑=

Bn
k

Yn
k

B2
0 B4
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a magnetic field leads to the appearance of nonzero ten-
sor components linearly depending on B:

where Gijk is the second-order magnetoelectric permit-
tivity in the optical frequency range [21]. As is seen
from Eqs. (6) and (7), a transition will contribute to the
non-reciprocal birefringence provided that it is simulta-
neously allowed in the electric dipole and magnetic dipole
or quadrupole approximations. Since the magnetic
moment operator m and the quadrupole moment operator
Qij are even, while the operator d is odd, this requirement
cannot be satisfied for the states with definite parity.

Thus, in the case of allowed electric dipole transitions,
the NMB is due to the states of different parity being
mixed by the odd crystal field components. These states
include, in particular, the states of the 4f N and 4f N – 15d
configurations. The RE ion positions in γ-Ln2S3 possess
no center of inversion (symmetry class S4) and the crys-
tal field potential contains only the terms with odd n.
Since the CM and NMB effects observed in Dy2S3 and
Pr2S3 in a field of B = 1 T are comparable (see Table 1),
we may conclude that an odd crystal field determines to
a considerable extent the MLB in γ-Ln2S3 crystals. In
contrast to the case of sesquisulfides, the CM effect is
not observed at B = 1 T in the transparency range of
boracites containing 3d ions, where the MLB is mostly
determined by the NMB effect [22].

It must be noted that, for the appearance of NMB in
the case of allowed electric dipole transitions, the odd
crystal field is necessary in order to make these transi-
tions allowed in the magnetic dipole and quadrupole
approximations; in the case of intraconfiguration tran-
sitions between states of the same parity, the presence
of this field provides for these transitions being allowed
in the electric dipole approximation. In both cases, the
NMB is determined by the degree of mixing of the
wavefunctions of different parity. Therefore, we may
expect that parameters describing NMB will have close
values irrespective of whether the transition is allowed
or forbidden in the electric dipole approximation.
Indeed, a comparison of the A and g parameters for
Dy2S3, Pr2S3 and those of R3B7O13I boracites (in which
the NMB is due to transitions inside the 3d electron
shell of a transition metal [21, 22]) shows that these
quantities are approximately on the same order of mag-
nitude. The absence of the CM effect in boracites can
be explained by weak transitions in the 3d shell; mak-
ing these transitions allowed in the electric dipole
approximation would require taking into account the
odd crystal field or the interaction with odd phonons.

In the general case, the electric dipole transitions
inside the 3d or 4f shells can be rendered allowed by the
action of the odd crystal field or by the interaction with
odd phonons. However, the odd phonons by themselves
cannot provide for the appearance of NMB. Indeed, the
interaction with odd phonons may render the electric

Gij GijkBk, aijk' aijkl' Bl,= =
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dipole transition allowed (and manifested in the
absorption spectra) even for a centrosymmetric ion
environment, but the NMB will not appear as long as
the Gijk and  tensors are forbidden in the cen-
trosymmetric groups. In the case of a noncentrosym-

metric environment, the  components and γijkl ten-
sors will be proportional to odd powers of a certain
parameter δ representing a shift (or a combination of
shifts) of the RE ions from their positions correspond-
ing to the centrosymmetric environment. For example,
the parameter δ in boracites can be represented by the
ion shift from the central position in the ferroelectric
phase [33] or by pairwise (±δ) ion shifts from the base
plane in the paraelectric phase [21].

The odd phonons may produce a local (in time)
change in the parameter δ but, in the approximation linear
with respect to δ, this mechanism cannot account for
NMB because the average δ value remains unchanged.
Therefore, we may expect that NMB (in contrast to the
absorption coefficient, Faraday effect, or CM effect) is
determined primarily by purely electron transitions. It
should be noted that methods available for determining
parameters of the odd crystal field are very restricted.
Thus, investigations of the NMB effect offer a possibil-
ity of evaluating these parameters, provided that the
corresponding theory would be developed.

In crystals of the Td symmetry, the Gijk tensor describ-
ing the second-order magnetoelectric permittivity pos-
sesses a single independent coefficient Gxyz. Therefore, the
magnetoelectric mechanism may give a contribution to
the γijkl tensor only with a strictly determined ratio of
the parameters A and g: A = 2g. This was demonstrated
by direct calculations for the boracite crystals with 3d
ion positions possessing a D2d symmetry [21]. Never-
theless, the relationship A = 2g must be valid for crystals
of the Td symmetry irrespective of the particular symmetry
of the ion environment. Indeed, the investigations of
boracites with various 3d ions (Co2+, Cu2+, Ni2+) [22]
showed that this relationship holds with a good accu-
racy irrespective of the 3d ions type, which is evidence
that the magnetoelectric mechanism of birefringence
dominates. As is seen from Table 1, the relationship
A = 2g holds in Dy2S3, which is indicative that the mag-
netoelectric mechanism is operative in this crystal as
well. At the same time, the analogous parameters in
Pr2S3 obey a different relationship: A = 3.3g (Table 1).
Taking into account that the parameters are determined
with an accuracy of 10%, so that A/g = 3.3 ± 0.6, we may
conclude that the NMB in Pr2S3 cannot be explained by
the magnetoelectric mechanism alone and it is necessary
to take into account the quadrupole mechanism related to

matrix elements of the Im  type.

Zvezdin et al. [9] showed that the polarizability of
an RE ion, described by the second term in Eq. (2)
(responsible for the CM effect), for the interconfigura-
tion electric dipole transitions of the 4f N  4f N – 15d

aijkl'

Vcr
n

deg
i Qge

jk( )
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type far from resonance frequencies can be expressed
through the quadrupole moment components Qij:

(8)

where 〈…〉  denotes averaging over levels of the ground
state with the occupancy ρg (for notations see [9]).
According to the experimental data, the CM effect is
more pronounced in Dy2S3 than in Pr2S3, despite a
lower effective oscillator energy in the latter compound
(Table 1). This behavior can be related to different
properties of the ground state multiplets in Dy3+ and
Pr3+ ions. In a crystal field of low symmetry, the 6H15/2

multiplet of Dy3+ (with an odd number of electrons on
the 4f shell) splits into several Kramers doublets. For
Pr3+ (with even number of electrons), the ground state
multiplet 4F6 represents a set of singlets.

As demonstrated in [9] for a singlet ground state, the
field dependence of 〈Qij〉 at low temperatures is mani-
fested in the second-order terms (for the Kramers dou-
blets, in the first-order terms) with respect to µBB/E, where
E is the energy difference between the ground state levels.
For RE ions in the S-state (Gd3+), the dependence of 〈Qij〉
on B is manifested in the third-order terms, which
accounts for the MLB in Gd2S3 being markedly lower
than in Dy2S3 or Pr2S3. The linear magnetooptical phe-
nomena caused by ions in the S-states, in contrast to the
effects due to ions possessing nonzero orbital momen-
tum in the ground state, are related only to the spin
splitting [34]. For this reason, the crystals of com-
pounds containing ions in the S-state are characterized
by low magnitudes of the Faraday effect. According to
the experimental data, this is also valid for the NMB. In
La2S3, where the 4f shell is empty, the magnetooptical
phenomena are purely of the diamagnetic nature, with
a magnitude lower by at least two orders as compared
to that in paramagnetic crystals of Ln2S3.

5. CONCLUSION
We have experimentally studied the non-reciprocal

magnetic birefringence, related to the magnetic-field-
induced spatial dispersion, and the CM effect in noncen-
trosymmetric sesquisulfides of the γ-Ln2S3 type. The
NMB and CM effects (as well as the Faraday effect)
depend on the type of RE ions entering into the crystal
lattice. Both effects are more pronounced for ions pos-
sessing nonzero orbital moments in the ground state
(Pr3+, Dy3+) than for ions in the S-state (Gd3+) and diamag-
netic ions (La3+). A strong anisotropy of the CM effect in
γ-Ln2S3 indicates that this phenomenon (as well as that
observed in RE dielectrics) is related to electron transi-
tions in RE ions. A decisive role is played by the crystal
field, especially by the centrosymmetric crystal field
components.

The non-reciprocal magnetic birefringence, in con-
trast to the CM effect, for both allowed and forbidden
electric dipole transitions, is related to the presence of

α ij a2 Qij〈 〉 ,=
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odd crystal field components. The NMB magnitude
observed in Dy2S3 and Pr2S3 indicates that the odd crys-
tal field components in these compounds are suffi-
ciently large. Therefore, investigations of the NMB
effect offer a possibility of evaluating the crystal field
parameters, provided that the corresponding theory
would be developed. The level of the NMB anisotropy
in Dy2S3 corresponds to manifestations of the second-
order magnetoelectric permittivity in the optical fre-
quency range. At the same time, the NMB in Pr2S3 is
partly due to the quadrupole mechanism. We expect
that investigations of the spectral dependence of the
Cotton–Mouton effect and the non-reciprocal magnetic
birefringence in RE sesquisulfides may help to deter-
mine the values of various matrix elements of the opti-
cal transitions and the crystal field parameters
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Abstract—The zone-center phonon frequencies of polar lattices are calculated for uniaxial crystals proceeding
from the symmetry considerations. The long-range Coulomb forces and crystal anisotropy are explicitly taken
into account. The free-carrier contributions to the dielectric constant are included. The angular dispersion of the
optical-phonon modes is compared to data for a hexagonal 6H-SiC polytype. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Electrostatic dipole–dipole interactions play an
important role in the theory of lattice vibrations. It is
common knowledge [1] that the degeneracy of phonon
modes at the Brillouin zone center (e.g., in the cubic
3C-SiC crystal) is removed if the atomic displacements
are accompanied by the Coulomb field. Then the fre-
quency of the longitudinal optical mode becomes larger
than the frequencies of transverse modes. For noncubic
crystals (e.g., for the hexagonal or rhombohedral SiC
polytypes), the long-range Coulomb field also gives
rise to an angular dependence of the zone-center
modes: at k = 0, the optical phonon frequencies depend
on the direction of propagation.

This phenomenon is rather unusual from both
physical and mathematical standpoints: the eigenval-
ues of the dynamical matrix calculated for k = 0 depend
on the k-direction. This is caused by a nonanalytical
k-dependence of the dynamical matrix which results
from a long-range dipole–dipole interaction. In polar
cubic crystals, the Coulomb field splits the threefold
degeneracy of optical modes at the Brillouin zone cen-
ter, but the frequency dependence on the propagation
direction also appears in uniaxial crystals due to the
long-range electrostatic field.

The electrodynamic part of the problem was formu-
lated by Loudon [2]. The Coulomb contributions in the
dynamical matrix are usually calculated by means of
the Evald summation [1]. The angular dispersion of the
optical modes is clearly demonstrated by the recent
numerical calculations for the zone-center phonons [3]
and for the entire Brillouin zone [4] in the case of AIIIBV

semiconductors with the wurtzite structure. The Cou-
lomb field is also taken into account in the theory of
phonon–plasmon coupled modes (polaritons) [5] when
the effect of free carriers is studied.

The main purpose of this paper is (i) to calculate the
angular dispersion for the zone-center phonons in

¶This article was submitted by the author in English.
1063-7761/01/9205- $21.00 © 20840
uniaxial crystals using the symmetry arguments and
(ii) to consider the effect of free carriers on these
modes. For definiteness, we concentrate on the phonon
modes of uniaxial SiC polytypes that are presently very
popular in technical applications.

2. OPTICAL MODES AT THE ZONE CENTER
OF CUBIC CRYSTALS

Among the hexagonal and rhombohedral SiC poly-
types, there is the cubic 3C-SiC polytype with two
atoms in the unit cell. First we consider the optical
modes in this simplest case. For the nearest vicinity of
the Brillouin zone center, k ! π/d, where d is the lattice
parameter, the acoustic and optical modes can be
divided using the series expansion in k of the dynami-
cal matrix. As the result, in the zero approximation in k
we obtain the system of three equations for the optical
displacements ui (i = x, y, z):

(1)

where M* is the reduced mass of two atoms (Si and C)
in the unit cell, φ is the diagonal element of the force
constant matrix (the only diagonal element of the 3 × 3
matrix existing in a cubic crystal). The value of φ can
be calculated in the nearest neighbor approximation,
but the long-range Coulomb interaction cannot be con-
sidered in this way. The Coulomb effect is described by
the force f = ZeE acting on an effective charge Z, where
the electric field E is found from Maxwell’s equations.
Eliminating the magnetic field from Maxwell’s equa-
tions, we can express the electric field E in terms of
polarization P as

(2)

We are interested in the ω values of the order of opti-
cal mode frequencies, such that ω/c ≈ 103 cm–1. If the
phonon is excited by light, its wave vector has the value

φ M*ω2–( )u f,=

E
4π k k P⋅( ) ω2P/c2–[ ]–

k2 ω2/c2–
----------------------------------------------------------.=
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of the photon wave vector, i.e., of the order of 105 cm–1.
The condition k @ ω/c is then satisfied and the terms
involving c2 must be omitted in Eq. (2), which then
becomes

(3)

In the longwave limit (k ! π/d), the polarization is
related to the phonon displacement and the electric
field by the macroscopic equation

(4)

where χ is the atomic permittivity and N is the number
of unit cells per cm3. Sometimes, the local field is used
in equations similar to (4) instead of the macroscopic
field E. For cubic crystals (for which only the simple
Lorentz relationship exists), the local field can be elim-
inated by renormalizing the force constant φ.

Using Eqs. (3) and (4), we can express the electric
field E in terms of u. Equation (1) then gives the fre-
quencies of transverse and longitudinal optical modes
in the cubic crystal as

(5)

where

(6)

Although relation (3) between E and P involves the
k-direction explicitly, the frequencies of optical modes
(5) are independent of the propagation direction, as it
must be for a cubic crystal.

3. OPTICAL MODES AT THE ZONE CENTER
OF UNIAXIAL CRYSTALS

The crystal anisotropy of the noncubic SiC poly-
types is known to be small because the nearest neigh-
bors of any given atom preserve the cubic symmetry.
Let us introduce the strain tensor eij describing a small
difference between the dynamic matrices for the non-
cubic polytype and the cubic one. The phonon spec-
trum of the noncubic polytype can then be obtained in
the following way. At the first step, we transform the
Brillouin zone of the cubic polytype (“the large zone”)
using the strain eij. Hence, we find the frequencies of
the so-called strong modes. For the zone-center, they
can be obtained by expanding the dynamic matrix in
the strain eij.

At the second step, we take into account that noncu-
bic polytypes have more than two atoms in the unit cell
and additional optic modes appear. Phonon branches of
the large zone are folded [6] into the Brillouin zone of
the noncubic polytype, thereby producing additional
weak modes. The weak mode intensity in both optics
and Raman scattering was calculated in [7]. In the
present paper, we thus consider only strong modes.

The dynamic matrix can contain only the eij compo-
nents that are invariant under the symmetry transforma-

E 4πk k P⋅( )/k2.–=

P NZeu= χE,+

ωTO
2 φ/M*= and ωLO

2 φ/M* ρ,+=

ρ 4πZ2e2N /ε∞M* and ε∞ 1 4πχ.+= =
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tions of the crystal. There are two first-order invariants,
ezz and exx + eyy, assuming that the z axis is parallel to the
c axis. We can fix the crystal volume, i.e., impose the
condition eii = 0. We then have only one invariant, for
instance ezz, which is involved only in the diagonal ele-
ments of the force-constant matrix in Eq. (1). The coef-
ficients of the xx and yy elements are equal because of
the rotation invariance around the c axis. Finally,
we can omit the common frequency shift. Instead of
Eq. (1), we thus obtain

(7)

where n = k/k and

(8)

We take the vector k in the yz plane and denote as θ the
angle between k and the c axis,

We then see from Eq. (7) that there are one transverse
mode (TO1) vibrating in the x direction and two modes
in the yz plane with the frequencies

(9)

We emphasize that Eqs. (9) give the phonon fre-
quencies at the zone center, but these frequencies
depend on the propagation direction θ. This depen-
dence has its origin in the simultaneous effect of the
Coulomb field (described by the constant ρ) and crystal
anisotropy (β ≠ α). In the absence of the Coulomb field

(ρ = 0), we have  = α,  = β, and there is no angu-
lar dispersion. For the isotropic case (α = β), Eq. (9)
gives the modes for the cubic crystal.

If the Coulomb effect is small compared to the crys-
tal anisotropy (ρ ! |α – β|), we can omit the off-diago-
nal terms in matrix (7). We then have one mode vibrat-

ing close to the c direction with the frequency  = α +
ρcos2θ (with an accuracy to ρ2/(α – β)2), and the other

mode near the y direction with the frequency  = β +
ρsin2θ.

β ρnx
2 ω2–+ ρnxny ρnxnz

ρnxny β ρny
2 ω2–+ ρnynz

ρnxnz ρnynz α ρnz
2 ω2–+ 

 
 
 
 
 

×
ux

uy

uz 
 
 
 
 

0,=

α φ/M*, β α bezz.+= =

nx 0, nz θ, nycos θ.sin= = =

ωTO1

2 β,=

ωy z,
2 θ( ) 1

2
--- ρ α β+ +( )=

± 1
2
--- ρ α β–( ) 2θcos+[ ] 2 α β–( )2 2θsin

2
+{ }

1/2
.

ωz
2 ωy

2

ωz
2

ωy
2
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In the opposite limiting case of the small crystal
anisotropy, it is useful to pass to the coordinate system
with the z' axis along the k vector, subjecting Eq. (7) to
the unitary transformation

(10)

We must then diagonalize the matrix

(11)

We see that in addition to the TO1 mode, in the case
where |α – β| ! ρ, there are another nearly transverse
TO2 mode and nearly longitudinal LO mode with the
frequencies

(12)

which can also be obtained by expanding Eq. (9) with
an accuracy to (α – β)2/ρ2. The dispersion curves corre-
sponding to Eqs. (9) and (12) are shown schematically
in the figure. The angular dispersions of form (12) were
obtained by Loudon [2].

One can see from Eq. (9) that a conservation law
exists. Namely, the sum of the squared frequencies of
the y and z modes is independent of the propagation
direction, e.g.,

Uij

1 0 0

0 θcos θsin

0 θsin– θcos 
 
 
 
 

.=

β 0 0

0 β θ α θsin
2

+cos
2 β α–( ) θ θcossin

0 β α–( ) θ θcossin β θ α θ ρ+cos
2

+sin
2 

 
 
 
 

.

ωTO2

2 θ( ) β θ α θ,sin
2

+cos
2

=

ωLO
2 θ( ) ρ β θ α θ,cos

2
+sin

2
+=

TO2
α

0

ω2

β + ρ

TO1

LO

α + ρ

β

1θ2
sin

Angular dispersion of the optical phonon modes at the zone
center in uniaxial crystals. The angle θ is the angle between
the c axis and the wave vector k  0. The TO1 mode is
polarized perpendicularly to the c–k plane. The LO and TO2
modes have a nearly longitudinal and transverse character,
respectively, if the Coulomb force effects dominate over the
crystal anisotropy.
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(13)

As an example, we consider the 6H-SiC polytype. The
angular dispersion of its optical modes is known from
the experiment [5, 6]. For θ = 0 (propagation parallel to
the c axis), the TO1 and y modes are degenerate and

their frequencies are equal to . The experimental
value is 797 cm–1 (with the uncertainty about 1 cm–1).
The corresponding value of the longitudinal mode is

For θ = π/2 (propagation perpendicular to the c axis),

(the experimental value is 788 cm–1) and

(the experimental value is 970 cm–1). It immediately
follows that ρ = 552.92 cm–2, α = 7882 cm–2, and β =
7972 cm–2.

We then find

which should be compared with the experimental value
964 cm–1. The small difference between these two val-
ues can be attributed to the anisotropy in the atomic
permittivity, which is considered in the next section.

4. EFFECTS OF THE PERMITTIVITY 
ANISOTROPY AND FREE CARRIERS

In the previous section, we assumed that the uniax-
ial anisotropy affects only the short-range contribution
to the force constant matrix, but in uniaxial crystals, the
atomic permittivity χ is a tensor with two independent
components, χ|| and χ⊥ , corresponding to the crystal
axes. This effect is small because each atom has nearly
cubic surroundings, but it must be included for a careful
comparison with experiments. In a similar way, free
carriers contribute to the angular dispersion of the lon-
gitudinal optical mode.

To take into account both the anisotropy of atomic
permittivity and the conductivity of free carriers σ, we
replace Eq. (4) with

(14)

Using Eqs. (3) and (14), we obtain the equation of
motion in form (7) and phonon frequencies (9), but the

ωy
2 θ 0=( ) ωz

2 θ 0=( )+

=  ωy
2 θ π/2=( ) ωz

2 θ π/2=( ).+

β

ωLO θ 0=( ) ρ α+ .=

ωTO2
θ π/2=( ) α=

ωLO θ π/2=( ) ρ β+=

ωLO θ 0=( ) ρ α+ 962.6 cm 1– ,= =

P|| NZeu||= χ|| i
σ||

ω
-----+ 

  E||+ ,

P⊥ NZeu⊥= χ⊥ i
σ⊥

ω
------+ 

  E⊥ .+
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conservation law (13) does not apply now because ρ
becomes a function of θ,

(15)

where  = 1 + 4πχ|| and  = 1 + 4πχ⊥ . We note that
the vibration modes acquire some damping due to con-
ductivity. In addition, the optical phonon has a natural
width Γ given by its probability to decay into lower
energy phonons, and the term iΓ/2 must be added to ω
in Eq. (7).

We can then use transformation (10) and obtain
matrix (11) with the function ρ(θ) instead of constant ρ.
We see that in the limiting case of the weak anisotropy,
|α – β| ! ρ(θ), the Coulomb field (and therefore the car-
riers) affects only the longitudinal mode. Its frequency
is determined by the equation

(16)

where ρ(θ) given by Eq. (15) depends on ω explicitly
and through the conductivity σ.

Equation (16) gives the frequency of the LO
phonon–plasmon coupled mode in uniaxial semicon-
ductors. Notice that in the isotropic case, Eq. (16) coin-
cides with the condition ε(ω)= 0, where the dielectric
function ε(ω) is given by the well-known expression

and the plasmon frequency is

In this case, Eqs. (5), (6), and (8) give

and the Drude formula for the conductivity reads

ρ θ( ) 4πZ2e2N
M*

---------------------- ε||
∞ 4πi

σ||

ω
-----+ 

  θcos
2

=

+ ε⊥
∞ 4πi

σ⊥

ω
------+ 

  θsin
2

,

ε||
∞ ε⊥

∞

R ω( ) ρ θ( )≡ β θ α θ iωΓ– ω2–cos
2

+sin
2

+ 0,=

ε ω( ) ε∞ 1
ωLO

2 ωTO
2–

ωTO
2 ω2– iωΓ–

-------------------------------------
ωp

2

ω ω iγ+( )
------------------------–+ ,=

ωp
2 4πne2

ε∞m
---------------.=

ωTO
2 α β , ωLO

2 ωTO
2 4πZ2e2N

ε∞M*
----------------------,+= = =

σ ne2

m –iω γ+( )
----------------------------.=
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The function R(ω) in Eq. (16) is measured in Raman
experiments. Namely, the Raman intensity considered
as a function of frequency transfer ω is

(17)

for the LO mode excitation with the propagation direc-
tion θ. If the incident or scattered light has a finite aper-
ture, Eq. (17) must be integrated over the allowed range
of θ.

Equation (17) can be used in experimental studying
the effect of carriers on the Raman scattering in uniax-
ial semiconductors. The conductivity tensor in Eq. (15) is
given by the Drudelike formula with the diagonal compo-
nents m||, ⊥  and γ||, ⊥ , for instance, σ|| = ne2/m||(–iω + γ||).

Let us summarize the main result of the paper: the
effects of crystal anisotropy (α ≠ β) and Coulomb field
ρ(θ) on the phonon dispersion are explicitly separated,
as one can see in Eqs. (9) and (16).
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Abstract—For the model [6] of nonlocal electrodynamics with nonsmooth (piecewise linear) nonlinearity, the
problem of point spectrum of speeds of topological solitons with the minimal topological charge is analyzed.
The variation of the spectrum of speeds under one-parameter deformation of such a nonlinearity is determined.
© 2001 MAIK “Nauka/Interperiodica”.
1. Recently, various piecewise linear approxima-
tions of the nonlinearity determining the dependence of
the Josephson current on the phase difference of super-
conductor pairs have been often used for analyzing the
dynamics of Josephson vortices [1–6]. This approach
was largely stimulated by studies of the dynamics of
topological solitons in dislocation theory [1]. Note that
piecewise linear approximations of nonlinearities in
wave equations were earlier widely used for the analy-
sis of wave propagation in nonlinear signal transmis-
sion lines [7].

In our opinion, the most interesting line of investi-
gations is connected to the use of piecewise linear
approximations of nonlinearity in problems of nonlocal
Josephson electrodynamics; this approach is described
in the works by Silin and his associates [4–6]. This
approach enables one to perform a comparitive analysis
of the vortex dynamics under various models of nonlo-
cal effects (differential and integral).

In this work, we use a simple generalization of one
model of nonlocal electrodynamics suggested in [6] as
a basis for analyzing the influence of one-parameter
deformation of the piecewise linear approximation of
the nonlinearity on the spectrum of speeds and internal
structure of the 2π-kink (topological soliton). This gen-
eralization makes it possible, in particular, to trace the
variation of the spectrum of speeds of the 2π-kink when
passing from the piecewise linear approximation of the
nonlinearity used in [6, 7] to the approximation used by
Aubry [1] and Volkov [2].

In the model under consideration, nonlocal effects
are responsible for the appearance of higher order
derivatives in the wave equation with a nonsmooth non-
linearity. This situation requires that the notions used to
describe soliton solutions be refined (in contrast to the
case of the nonlinear Klein–Gordon wave equation).

For example, in the case of steady waves, the non-
linear wave equation of our model leads to a
1063-7761/01/9205- $21.00 © 20844
Lagrangian (or Hamiltonian) dynamical system with
two degrees of freedom. The corresponding equations
of motion are locally integrable under a piecewise lin-
ear approximation of the potential. When constructing
the complete solution (the entire trajectory), we use the
conditions of smoothness of the function and its three
derivatives at the points where the potential is not
smooth. In the regions of local integrability, the dynam-
ical system possesses a pair of first integrals. One of
them is global, but the other is not conserved. More pre-
cisely, the second integral has finite discontinuities at
the points where the potential is not smooth. This situ-
ation is typical for other models in which taking into
account nonlocal effects is related to the appearance of
a finite number of higher order derivatives in the non-
dissipative nonlinear wave equation under a piecewise
linear approximation of the nonlinearity.

We call attention to a yet unstudied possibility of
renouncing the condition of the maximum smoothness
of the trajectory and replacing it by the condition of the
conservation of both first integrals. In the model under
consideration, this means the continuity of the global solu-
tion and its derivative and finite discontinuities of the sec-
ond and third derivatives. In this work, we use the condi-
tion of the maximum smoothness of the solution.

Finally, we note that the rigorous passing from the
problem with asymptotic boundary conditions at infin-
ity to the problem with boundary conditions on a finite
interval (with its length to be determined) can be effec-
tively used in the analysis of soliton solutions. This
possibility derives from the piecewise linear approxi-
mation of the potential and was realized in numerical
calculations. An alternative approach based on the
numerical analysis of the transcendental solvability
equations of the problem was used to verify the numer-
ical results and construct asymptotics only. The results
obtained confirm certain results and assumptions pre-
sented in [6, 7] for the value of the structure parameter
corresponding to the values given therein.
001 MAIK “Nauka/Interperiodica”
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In particular, this approach makes it possible to
relate the description of the influence of Cherenkov’s
wave capture on the structure of the 2π-kink described
in [4–6] with the fact that the trajectory of the 2π-kink
temporary lies on a torus in the four-dimensional phase
space. For smooth trajectories, the realization of this
possibility in our model is related to the discontinuity
of one of the first integrals at the point where the non-
linearity is not smooth.

2. We consider the following generalization of the
nonlinear wave equation as the basic model:

(1)

Here ,, ,0, and c are the characteristic lengths and
speed. For solutions of the form u(x, t) = u(x – v t),
Eq. (1) can be written in the form

(2)

Here, the parameter ε is defined by the formula

(3)

and the transformation of the independent variable is
given by the relation

Equation (2) is a Lagrange equation

(4)

For the Lagrangian + = +(u, ux, uxx), we have

(5)

Note that in our model, nonlocal effects lead to the
dependence of the Lagrangian on higher derivatives.
Defining the canonical variables (q1, q2, p1, p2) by the
equations (see, e.g., [8])

(6)

we write Eq. (2) in the Hamiltonian form

(7)

,4
uxxxx ,0

2
uxx

1

c2
----utt– 

  f u( )++ 0.=

εuxxxx uxx f u( )+ + 0.=

ε ,
,0

----- 
  4

= 1 v 2

c2
------– 

 
2–

,

x x,0
1–

1 v 2

c2
------– 

 
1/2–

.

∂+
∂u
--------

d
dx
------

∂+
∂ux

-------- 
  d2

dx2
--------

∂+
∂uxx

---------- 
 +– 0.=

+
1
2
---εuxx

2–=
1
2
---ux

2 U u( ), U u( )–+ f u( ) u.d∫=

q1 u,=

p1
∂+
∂ux

--------
d
dx
------

∂+
∂uxx

---------- 
 – ux εuxxx,+= =

q2 ux, p2
∂+
∂uxx

---------- εuxx,–= = =

dq1

dx
-------- ∂H

∂ p1
-------- q2,

d p1

dx
--------- ∂H

∂q1
--------–

∂U
∂q1
--------,–= = = =

dq2

dx
-------- ∂H

∂ p2
--------

1
ε
--- p2,

d p2

dx
---------– ∂H

∂q2
--------– p1 q2+–= = = =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
with the Hamiltonian

(8)

which is linear in the momentum p1.
In the case when f(u) is a piecewise linear function

(see Fig. 1) of the form

(9)

or its periodic extension (f(u + 4) = f(u)), Eq. (2) can be
integrated on each of the three linearity intervals or
their shifts by the period. Moreover, Eq. (2) has two
first integrals on each of these intervals:

(10)

Here

(11)

(12)

H p1q2
1
2ε
----- p2

2 1
2
---q2

2 U q1( ),+––=

f u( )

1
a
---u, u 0 a ),,[∈–

2 u–
2 a–
-----------, u a 4 a ),–,[∈–

1
a
--- u 4–( ), u 4 a 4,–[ ]∈–

=

I1 εuxxxux=
1
2
---εuxx

2–
1
2
---ux

2 U u( ),++

I2
1
2
---εuxxx

2=
1
2
---uxx

2 V u ux uxx, ,( ).++

U u( )

1
2a
------u, u 0 a ),,[∈–

2 u–( )2

2 2 a–( )
-------------------- 1– , u a 4 a ),–,[∈

1
2a
------ 4 u–( )2, u 4 a 4,–[ ] ,∈

=

V u ux uxx, ,( )

=  

1
a
---uuxx

1
2a
------ux

2+ , u 0 a ),,[∈–

2 u–
2 a–
-----------uxx

ux
2

2 2 a–( )
--------------------– , u a 4 a ),–,[∈–

4 u–
a

-----------uxx
1

2a
------ux

2– , u 4 a 4,–[ ] .∈

f

0

–1

a

2

4 u
4 – a

11

2

Fig. 1. The dependence f(u) for the values of the parameter
a * 0 (curve 1) and a & 2 (curve 2).
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Completing the solution at the break points of the func-
tion f(u) by the continuity condition of the function ux

and its derivatives ux, uxx, and uxxx, we see that the first
integral I1 preserves its value on all three intervals of
linearity of f(u). This means that I1 is the global first
integral. However, the first integral I2 is discontinuous
at the points u = a and u = 4 – a. More precisely,

(13)

where a± = a ± 0.
In terms of the canonical variables (q1, q2, p1, p2),

the first integrals (10)–(12) have the form

(14)

Here

(15)

and the discontinuities the local first integral I2 are
determined by the expressions

(16)

These formulas for the first integrals (I1, I2) and for the
discontinuities of the local integral I2 can be easily gen-
eralized for the case of other piecewise linear approxi-
mations of the nonlinearity f(u), for example, for the
case of the two-parameter piecewise linear approxima-
tion f(u) defined as

(17)

I2 u a+= I2–
u a–=

1
a 2 a–( )
--------------------ux

2 a( ),–=

I2 u 4 a–( )+= I2–
u 4 a–( )–=

=  
1

a 2 a–( )
--------------------ux

2 4 a–( ).

I1 H p1q2= =
1
2ε
----- p2

2–
1
2
---q2

2 U q1( ),+–

I2
1
2ε
----- p1 q2–( )2=

1

2ε2
-------- p2

2 V q1 q2 p2, ,( ).++

V q1 q2 p2, ,( )

=  

1
aε
-----q1 p2

1
2a
------q2

2+ , u 0 a ),,[∈–

2 q1–
ε 2 a–( )
------------------- p2

6q2
2

2 2 a–( )
--------------------– , u a 4 a ),–,[∈

4 q1–
aε

-------------- p2
1

2a
------q2

2– , u 4 a 4,–[ ] ,∈

I2 q1 a+= I2–
q1 a–=

1
a 2 a–( )
--------------------q2

2 a( ),–=

I2 q1 4 a–( )+= I2–
q1 4 a–( )–=

=  
1

a 2 a–( )
--------------------q2

2 4 a–( ).

f u( )

4 a–( )u
ab

--------------------, u 0 a ),,[∈–

4 a– b+( )u 4b–
b b a–( )

-----------------------------------------, u a b ),,[∈

4 u–
4 b–
-----------, u b 4,[ ] ,∈

=
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which satisfies (as well as nonlinearity (9)) the condi-
tion

(18)

Due to this condition, the equilibrium states u = 0 and
u = 4 are at the same level of the global first integral I1.

3. Let us consider the problem on the topological
soliton for Eqs. (2), (9) with the conditions

(19)

From the viewpoint of the Hamiltonian dynamical sys-
tem (7), (8), (11), this problem corresponds to that [9]
of determining the heteroclinic trajectory in the phase
space {(q1, q2, p1, p2)} that is biasymptotic for the equi-
librium states O0(0, 0, 0, 0) and O4(4, 0, 0, 0), which are
singular points of the saddle–center type (see [9]). We
note that such trajectories are sought in the space of
dynamical systems [9], which are, in this case, indexed
by the values of the structure parameters (ε, a). When
f(u) is a periodic function, the solutions to this problem
are associated with topological solitons with the mini-
mal charge (analogues of 2π-kinks). For the intervals u ∈
[0, a] and u ∈  [4 – a, 4], we have for x ∈  (–∞, 0],

(20)

for x ∈  [l, +∞), we have

(21)

Here

(22)

On the interval q1 ∈  [a, 4 – a], the solution has the
form

(23)

f u( ) ud
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∫ 0.=

= 0, = 4.
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q2 x( ) k 4 q1–( ),=
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p2 x( ) εk2 4 q1–( ).=

k2 1
2ε
----- 1 4ε

a
-----+ 1– 

  ,=

q1 0( ) u 0( ) a, q1 l( ) u l( ) 4 a.–= = = =

q1 x( ) 2 a+ k+x α++( )sin+=

+ a– k–x α–+( ),sin

q2 x( ) k+a+ k+x α++( )cos=

+ k–a– k–x α–+( ),cos

p1 x( ) εk+k– k–a+ k+x α++( )cos(=
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for x ∈  [0, l]. Here

(24)

In essence, the initial problem (19) on the line x ∈
(–∞, +∞) is reduced to an overdetermined boundary
value problem on the interval u ∈  [a, 4 – a], which
depends on two structure parameters (ε, a). Indeed, in
accordance with (23), the unknown amplitudes a±,
phases α±, and l (the unknown length of the region of
possible oscillations of the function u(x) and its deriva-
tives ux, uxx, and uxxx) satisfy four conditions on each of
the internal boundaries (i.e., at x = 0 and x = l). The
boundary conditions depend on the structure parame-
ters (ε, a). In the phase space {(q1, q2, p1, p2)}, formulas
(23) determine a segment of the trajectory belonging to
the torus that must be sewed (by continuity) with the
half-trajectories defined by formulas (20) and (21). The
length of the trajectory segment belonging to the torus
is not known in advance.

The following four expressions are implied by (23):

(25)

(26)

Formulas (25) determine two local first integrals in the
domain of the phase space defined by the inequalities
a < q1 < 4 – a. Actually, these integrals are the constant
amplitudes a±. It is evident that a± must be functions of
the first integrals I1, I2 and the structure parameters ε
and a. It is easy to show that

. (27)

The proof is based on the comparison of expressions
(25) with expressions (14), (15), and (11) with regard
for the relations

(28)

+ k+a– k–x α–+( ) ),cos

p2 x( ) ε k+
2a+ k+x α++( )sin(=

+ k–
2a– k–x α–+( )sin )

k±
2 1

2ε
----- 1 1 4ε

2 a–
-----------–± 

  .=

k±a±( )2

=  
k±

2 p2 q1 2–( )k+−
2–( )2

p1 q2εk±
2–( )2

+

ε2 k+
2 k–

2–( )2
---------------------------------------------------------------------------------------,

k±x α±+( )tan k±–
p2 q1 2–( )εk+−–

p1 q2εk±
2–

---------------------------------------=

≡ ∆± q1 q2 p1 p2, , ,( ).

1
2
---k±

2a±
2 ε

1 4ε/ 2 a–( )–
---------------------------------- H 1+( )k+−

2 I2+( )=

ε k+
2 k–

2+( ) 1, ε k+k–( )2 1
2 a–
-----------,= =

εk±
4 k±

2 1
2 a–
-----------,–=

ε k+
2 k–

2–( ) 1 4ε
2 a–
-----------– .=
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Note that

(29)

For half-trajectories (20) and (21), the constants of the
first integrals I1 = H and I2 are zero. Since H is the glo-
bal first integral, we have that H = 0 for the required tra-
jectories in (27). The constant of the first integral I2 is
determined from the discontinuity conditions (14),
which imply that I2 = –ak2/(2 – a) on the internal inter-
val [a, 4 – a]. Therefore, for the required trajectories,
formulas (27) have the form

(30)

The sewing conditions for the solutions of the inter-
nal boundary value problem with the solutions with the
external one imply, by (26), the four equations

(31)

where

(32)

Assuming that the phase variables can rotate on the
length l, we write (31) in the form

(33)

where m± are integers. Relations (33) constitute an
overdetermined system of linear inhomogeneous equa-
tions in three unknowns (α±, l). It is consistent if

(34)

Under this condition, the internal boundary value prob-
lem is defined on the segment with the length l deter-
mined by the equation

(35)

Note that

(36)

1
2
---k+

2a+
2 1

2
---k–

2a–
2+

H 1 εI2+ +
1 4ε/ 2 a–( )–
----------------------------------.=

1
2
---k±

2a±
2 ε

1 4ε/ 2 a–( )–
---------------------------------- k+−

2 ak2

2 a–
-----------– 

  .=

α±( )tan  = δ± ε a,( ), k±l α±+( )tan  = δ± ε a,( ),–

δ± ε a,( ) k±
ak2 2 a–( )k+−

2–

k2 k+−
2+( )ka

------------------------------------=

=  ∆± q1 q2 p1 p2, , ,( ) q1 a= .

α± δ± ε a,( ),arctan=

α± k±l+ – δ± ε a,( )arctan πm±,+=

k– δ+arctan ε a,( ) π
2
---m+– 

 

=  k+ δ–arctan ε a,( ) π
2
---m–– 

  .

k+k–( )l k– δ+arctan ε a,( ) π
2
---m+– 

 –=

– k+ δ–arctan ε a,( ) π
2
---m–– 

  .

k–α+ k+α––
π
2
--- m+k– m–k+–( ).=
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Thus, the solution to the internal boundary value prob-
lem is written in the form

(37)

Moreover, the values of the parameters (ε, a) and the
pairs of even integers must satisfy the consistency con-
ditions (34) and the condition l > 0. The requirement
that the integers must be even derives from the fact that
the phase variables can rotate by an angle multiple of
2π.

Thus, in the model under consideration, the phase
half-trajectories of the saddle singular points O0 and O4
are sewed with the segment of the trajectory that lies on
the torus (due to the continuity of the phase trajectory)
when reaching the surface of the torus with the param-
eters (a+, a–), (k+, k–). This is achieved at the expense of
a finite discontinuity of the additional first integral.
Such a simple and demonstrative interpretation of the
internal structure of the topological soliton is possible
only for nonsmooth (piecewise linear) dynamical sys-

u x( ) 2 a+ k+x δ+arctan+( )sin+=

+ a– k–x δ–arctan+( ).sin

n = 1

2
3

4
 5

0.40

0.04

0.08

0.12

0.16

ε

0.8 1.2 1.6 2.0
a

Fig. 2. The dependence of the eigenvalues ε on a for the first
five modes.
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Fig. 3. The plots of the first eigenfunction u1(x) and its three
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tems. For the case of a smooth nonlinearity f(u), the sit-
uation is more complex. It is not clear which forms of
smooth nonlinearities f(u) can lead to solutions of the
type of a topological soliton with an internal structure
and a given topological charge. This issue is discussed
in more detail in [10] and the literature cited therein.

4. In this section, we cite the results of the numerical
analysis of the problem on topological solitons (19).
We used the boundary conditions at x = 0 as the initial
conditions of the Cauchy problem; the integration was
performed (for arbitrary values of the parameters ε and
a) until the trajectory reached the plane of symmetry
u = 2 for uxx = 0. This means that the points correspond-
ing to the flex points of the function u(x; ε, a) were
determined on the plane of symmetry. Then, the trajec-
tory was extended up to x = l using the symmetry of the
problem.

For the values a ∈  [0, 2], the point spectrum of the
parameter εn(a) and the corresponding eigenfunctions
un(x; a) were determined for n = 1, 2, …, 10. The values
a ! 1, a ~ 1, and a ~ 2 were analyzed in more detail.

The variation of the point spectrum εn(a) depending
on the parameter a (the deformation of the nonlinearity
f (u, a)) is presented in Fig. 2. As a increases, all
eigenvalues εn(a) decrease, and tend to the limit ε = 0 as
a  2.

From the viewpoint of the initial wave equation (1),
the point spectrum εn(a) of speeds

(38)

of the family of topological solitons characterized by
the eigenfunctions (modes) un(x; εn, a) corresponds to
the point spectrum ε εn(a). For fixed values of the
parameters (,/,0 < 1, a), the speed of the solitons
decreases as n increases (due to the decrease of εn(a)
with increasing n). Moreover, there exists a maximum

v n c 1
,
,0

----- 
  2

εn
1/2– a( )– 

  1/2

=

4

2

0

–2

–4
–6 –4 –2 0 2 4 6

x

u

u10(x)

u'10(x)

u''10(x)

u'''10(x)

Fig. 4. The plots of the tenth eigenfunction u10(x) and its

three derivatives , , and  for a = 1. The eigen-

value is ε = 0.00062.

u10' u10'' u10'''
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value nc = n(,/,0, a) that corresponds to the lower
bound of the spectrum of speeds, which is, generally,
not equal to zero. At a fixed value of the nonlocality
parameter ,/,0, the increase of the parameter a results
in the decrease of the speed of solitons and the number
of modes. For every mode, there exists a critical value
of the parameter ac = ac(,/,0, n); when this value is
attained, the speed of the soliton becomes zero. It is evi-
dent that ac ~ 2 for ,/,0 ! 1.

For a = 1, the spectrum of the eigenvalues for n > 1
(which was determined numerically) is described by

the formula 1/4  = n with a high degree of accuracy.
This expression is obtained in the process of the analy-
sis of solvability conditions of the problem in the limit
ε !1.

Figures 3 and 4 present the plots of the dependence
of un(x), (un(x))x, (un(x))xx, and (un(x))xxx for n = 1 (ε =
0.047) and n = 10 (ε10 = 0.00062) for a = 1. The com-
parison of the plots shows that the eigenfunction and its
derivative retain its superficially simple behavior when
passing from the first mode to the tenth one; however,
the second and the third derivatives of u1(x) and u10(x)
are substantially different from each other. More pre-
cisely, when passing to higher modes, a more complex
small-scale structure (in particular, high-frequency
oscillations of the third derivative whose characteristic
amplitude slightly varies when passing from lower
modes to higher ones) appears almost on the same
length.

Figures 5 and 6 present the plots of the dependence
of un(x), (un(x))x, (un(x))xx, and (un(x))xxx for n = 1 (ε1 =
0.160) and n = 10 (ε10 = 0.0034) for a = 0.1. The general
tendency to forming a small-scale structure of the sec-
ond and third derivatives of the eigenfunctions is
retained when passing to higher modes. However, in
the process, the increase of the oscillation amplitude of
the third derivative is observed. Another difference can

εn
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u'1(x)
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Fig. 5. The plots of the first eigenfunction u1(x) and its three

derivatives , , and  for a = 0.1. The eigenvalue is

ε = 0.160.
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be seen when looking at the dependence of the first
derivative of (u2(x))x on x (see Fig. 7). It is characterized
by three points of extremum. Such a behavior of
((u2(x))x is retained for the third mode and disappears
only for higher modes.

When passing to the domain a & 2, the eigenfunc-
tion and its first derivative retain the characteristic size
of the localization region and their superficially simple
form. However, its second and third derivatives
undergo sharp variations (of the type of a finite discon-
tinuity for the second derivative and a deltalike spike
for the third one) in a small neighborhood of x = 0. Fig-
ure 8 illustrates the behavior for the first eigenfunction
(a = 1.8 and ε = 0.001992). It is not clear whether or not
this behavior of the solutions in the domain a & 2 can
be considered as an indication of the existence of solu-
tions with discontinuities of higher derivatives.

In conclusion, we note that our simple model of the
nonlocal Josephson electrodynamics in the problem on
the topological soliton with the minimal topological
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Fig. 6. The plots of the tenth eigenfunction u10(x) and its

three derivatives , , and  for a = 0.1. The eigen-

value is ε = 0.0034.
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charge (2π-kink) actually leads to a point spectrum of
speeds and a peculiar internal structure of the soliton
(vortex). However, it is important that one-parameter
deformation of the piecewise linear function approxi-
mating the Josephson current generally leads to a cor-
responding deformation of the point spectrum of
speeds and qualitatively the same internal structure of
the soliton. However, it is not clear whether or not such
a structural stability of the object of interest under study
is retained under deformations of piecewise linear non-
linearities in more general models (for example, those
that take account of higher spatial derivatives in the ini-
tial wave equation or nonlocal effects in the integral
form).
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Fig. 8. The plots of the first eigenfunction u1(x) and its three

derivatives s , , and  for a = 1.8. The eigenvalue is

ε = 0.001992.
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Abstract—In tunneling experiments with high-quality single crystals of a single-layer cuprate superconductor
Bi2Sr2CuO6 + δ using the break junction and point-contact techniques at T < Tc, the coexistence of the supercon-
ducting-state gap and the normal-state gap was observed. The values of the superconducting energy gap 2∆p–p
are in the range from 13.4 to 15 meV (∆p–p = 6.7–7.5 meV). The values of 2∆p–p are similar for two samples
with Tc = 4 K and for two samples with Tc = 9–10 K and are independent of the carrier concentration. The nor-
mal-state gap, with the magnitude approximately equal to 50 meV, persists at T < Tc and in the magnetic field
H @ Hc2 up to 28 T. After the transition of the sample to the normal state, the intensity of the tunneling conduc-
tance rapidly decreases with increasing magnetic field strength and temperature. The observed large broadening
of the tunneling spectra and large zero-bias conductances can be caused by a strong angular dependence of the
superconducting gap. The tunneling results are in full agreement with the data of the angle-resolved photoemis-
sion spectroscopy measurements. © 2001 MAIK “Nauka/Interperiodica”.
¶ It is known that tunneling spectroscopy has been
used successfully in studying the superconducting state
in conventional superconductors. However, this method
has encountered considerable difficulties in the case of
high-temperature superconductors (HTSC) due to an
extremely small coherence length ξ and high inhomo-
geneity of samples. At present, more reproducible
results are only obtained for the bilayered cuprate
Bi2Sr2 CaCu2O8 + δ (Bi2212). Previously [1, 2], we have
performed an extensive tunneling study on high-quality
Bi2212 single crystals using the break junction tech-
nique. Our experiments show that the presently avail-
able quality of Bi2212 samples enables fabricating
good-quality tunnel junctions in the ab-plane with a
low or almost zero leakage current and a well devel-
oped gap structure in the tunneling spectra. The angle-
resolved photoemission spectroscopy (ARPES) mea-
surements [3–6] confirmed the energy gap value found
but, on the other hand, gave evidence of a strong angu-
lar dependence of the gap consistent with a four-lobed

 order parameter. In addition, many experiments

(e.g., NMR [7], photoemission [5], and tunneling [8])
have provided evidence that in the normal state of the
underdoped Bi2212, a pseudogap exists in the elec-
tronic excitation spectra at temperatures T* above the
superconducting transition temperature Tc. In scanning
tunneling measurements on Bi2212, Renner et al. [8]

¶ This article was submitted by the authors in English.
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have found this pseudogap to be present both in under-
doped and overdoped samples, and to scale with the
superconducting gap. It has been proposed that the
pseudogap in the normal state can be seen as a precur-
sor for the occurrence of superconductivity where the
superconducting phase-coherence is suppressed by
thermal or quantum fluctuations [9–11]. In the case of
a nonsuperconducting origin, the pseudogap can be
formed in the spin part of the excitation spectrum.

The situation for the low-Tc single-layer cuprate
superconductor Bi2Sr2CuO6 + δ (Bi2201) is more com-
plicated. The first point contact tunneling measure-
ments of the superconducting energy gap in imperfect
Bi2201 crystals were performed long ago [12]; up to
now, however, it has been impossible to fabricate a
high-quality tunnel junction using the break junction
method. Because the coherence length ξab in Bi2201 is
larger than in Bi2212 and reaches 45 Å [13], it is very
difficult to directly prepare a quality tunnel barrier in
liquid helium. In ARPES experiments, Harris et al. [14]
have observed highly anisotropic superconducting gaps
of 10 ± 2 and 7 ± 3 meV in optimally doped and under-
doped Bi2Sr2 – xLaxCuO6 + δ (Bi,La2201), respectively.
They have also found a pseudogap above Tc and
assumed that these two energy gaps can have a com-
mon origin in the pairing interaction. However, on the
basis of the experimental study of the c axis resistivity
ρc in the normal state of nondoped Bi2201 single crys-
tals under continuous high magnetic fields, we recently
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Differential conductances dI/dV as functions of V for four break junctions at (a) T = 2.6 and (b) T = 1.6 K for Bi2201 single
crystals (a) No. 1 and (b) No. 2 with Tc = 3.5 and 4 K, respectively. For clarity, the curves are shifted vertically with respect to the
lower curves. The inset shows the geometry of the break junction.
concluded [15] that superconductivity is probably not
at the origin of the pseudogap. The tunneling study of
high-Tc superconductors in the normal state under high
magnetic fields can give important information on the
nature of the pseudogap.

In this paper, we describe the tunneling measure-
ments for several high-quality Bi2Sr2LaxCuO6 + δ single
crystals with midpoint Tc = 3.5–4 K (overdoped) and 9–
10 K (near optimally doped) using the break junction and
point-contact techniques under continuous magnetic
fields H up to 28 T. A low Tc value for these crystals per-
mits us to investigate the gap structures of a cuprate super-
conductor in the normal state down to low temperatures.
In magnetic fields, we observed a different behavior of the
superconducting and normal-state gaps. The previous
results of the tunneling study using the break junction in
lower magnetic fields were published in [16]. However,
here we give a selection of these results because later
magnetotransport measurements [13] allow us to
understand an unusual behavior of differential conduc-
tances dI/dV in magnetic fields.

The Sr-deficient Bi(2 + x)Sr2 – (x + y)Cu(1 + y)O6 + δ single
crystals with a Bi/Sr ratio of 1.4–1.5 for samples with
Tc = 9–10 K and 1.7 for samples with Tc = 3.5–4 K (with
the Bi excess localized at the Sr positions) were grown
in a gaseous phase in closed cavities of the KCl solu-
tion–melt [17]. Because of a long growing time, the single
crystals have a high cation ordering. The crystal sizes are
around (0.5–2.5) mm × (0.4–2) mm × (1.5–5) µm. The
half-widths of main reflections in the X-ray rocking
curves for single crystals do not exceed 0.3–0.1°, which
is the minimum value reported so far. The crystal lattice
parameters are a = 5.353–5.385 Å and c = 24.600–
24.638 Å, and the superlattice periodicity is  = 4.75a.
The superconducting transition width defined by 10%
and 90% of the superconducting transition points
ranges from 0.5 to 1.5 K. The onset temperatures in the
superconducting transition for the dc-resistance and ac-
susceptibility are close, and the transition widths are

ã
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almost the same. The in-plane resistivity ρab of the
crystals shows a linear temperature dependence at high
temperatures and saturates to the residual resistivity
below 20–40 K. The in-plane resistivity slope ∆ρab/∆T =
0.5–1.5 µΩ cm/K was obtained at high temperatures.
The residual resistivity ρab(0) is between 80 and 180 µΩ
cm. By measuring the normal-state Hall coefficient in
our crystals in the temperature region of 4.2–50 K, we
have found that the concentration of the carriers equals
n = (4.8–6.3) × 1021 cm–3. The carrier density in low-Tc
samples was larger than in the samples with Tc = 9–10 K.
It is believed [18] that single crystals of pure Bi-excess
Bi2201 phase are always overdoped because Bi gives
some intrinsic doping. This is reasonable if one consid-
ers the optimally La-doped Bi2201 polycrystal samples
with the maximum value for Bi2201 Tc ≈ 25 K and the
carrier density n ≈ 3 × 1021 cm–3 [18]. Our single crys-
tals with Tc = 3.5–4 K must therefore be assigned to
heavily overdoped ones. On the other hand [19], the
carrier concentrations in the underdoped Bi,La2201
single crystals with Tc = 13 K are similar. Because the
magnitude of Tc in nondoped Bi2201 single crystals
approximately equals 13 K, the samples with Tc = 9–10 K
studied here are most likely to be slightly underdoped
or nearly optimally doped. The tunneling junctions
were made in situ at 1.5 K by the superconductor–insu-
lator–superconductor (SIS type) break junction [2] or
the superconductor–insulator–normal metal (SIN type)
tunnel point contact techniques [12], using a Cu needle
as a counter electrode. The current–voltage (I–V) char-
acteristics and derivatives dV/dI were measured by the
usual phase-sensitive detection technique. The tunnel-
ing in the break junction geometry used in our experi-
ments is supposed to probe the superconducting state in
the ab plane [2].

The typical differential conductances dI/dV as func-
tions of V for four break junctions at T = 2.6 and 1.6 K
for two single crystals (Nos. 1 and 2) with Tc = 3.5 and
4 K are shown in Fig. 1. Although the measurements
 AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001
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were carried out at low (≈0.2 kΩ , Fig. 1a) and moder-
ately high (≈0.5 kΩ , Fig. 1b) resistances of the tunnel
barrier, the spectra reveal a very large zero-bias con-
ductance (80–90% of the conductance), the gap struc-
ture is strongly smeared and the conductance of the
low-resistance junctions (Fig. 1a) has the V-shaped
background. We have not observed anything similar in
the tunneling experiments with Bi2212 single crystals
[1, 2]. Recently, Mallet et al. [20] analyzed in detail the
influence of different channels of a current leakage on
the tunneling spectra of HTSC and suggested some cor-
rection procedure in order to extract the real tunneling
density of states. However, in the given case, the zero-
bias conductance is too large to be completely ascribed
to the leakage current. In spite of numerous attempts,
we could not obtain the curves of dI/dV versus V with
the same clear gap structure and small zero-bias con-
ductance as for Bi2212. Taking this circumstance into
account, it seems that the large zero-bias conductance
and strongly smeared gap structure in the tunneling spec-
tra in Fig. 1 are more probably related to a high anisotropy
of the superconducting gap in Bi2201 observed recently in
ARPES experiments by Harris et al. [14]. In the under-
doped Bi,La2201 single crystals, they observed not a
sharp gap, but a reproducible gap of 7 ± 3 meV along the
(π, 0) symmetry line of the k-space and a zero gap at 45°.
For the SIS junctions studied here, the peak-to-peak dis-
tance between the two main maxima on the dI/dV curves
must correspond to 4∆p–p. As can be seen in Fig. 1, the
value of the superconducting energy gap 2∆p–p is in the
range of 13.4–15 meV (with ∆p–p = 6.7–7.5 meV). The
break junction method is a technique that probes the tun-
neling density of states integrated over the polar angle in
the kab-space. The strong angular dependence of the
energy gap with zero value in some directions must result
in a high density of states inside the gap [20] (large zero-
bias conductance in tunneling spectra) and to a strongly
smeared gap structure corresponding to the upper limit
of ∆p–p. This is in full agreement with the APRES mea-
surements [14]. Both our tunneling spectra and APRES
spectra have a broad gap structure that is difficult to
describe within a simple BCS model. We have used
only the phenomenological parameter Γ to take the pair
breaking effects into account [21] and obtained an
energy gap of 3.5–4 meV that is very close to that mea-
sured by us in the point-contact tunneling experiments
on Bi2201 [12].

To prove a relation between the energy gap and Tc,
we have measured the tunneling conductances dI/dV at
different temperatures shown in Fig. 2. It can be seen
that the gap structure (marked by arrows) broadens and
diminishes as the temperature increases with a small
decrease in the feature position. Because Tc = 4 K for
the given sample and the gap structure disappears at T
near Tc , we can assume that the observed energy gap is
definitely the superconducting state gap of Bi2201.
Because the gap structure is smeared out and the zero-
bias conductance is high, it is impossible to investigate
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the temperature dependence of the superconducting
gap in detail.

The tunneling spectrum of the superconductor out-
side the gap for high-ohmic junctions with a good tun-
neling barrier is known to be flat [22] because this is
expected for a Fermi liquid. The V-shaped form of the
conductance for the low-resistance junctions comes from
the bias voltage-induced barrier decreasing. However, the
results in Fig. 2 show that the form of the background
changes from flat to V-shaped with increasing tempera-
ture. Moreover, the V-shaped background conductance
increases remarkably with increasing temperature. One of
the reasons for the observed change can be a temperature-
induced barrier damping or the temperature depen-
dence of the coherence length ξ. Near Tc , ξ is large and
the measured tunneling density of states is determined
not only by the CuO2 planes but also by the nonmetallic
Bi–O layers. To exclude the influence of the tempera-
ture-induced barrier transparency change, we have
measured the tunneling spectra of the break junction in
magnetic fields above the upper critical field Hc2 at a
given temperature in the geometry when H is parallel to
the c axis.

The effect of the magnetic field on the tunneling
conductance dI/dV at T = 1.4 K is shown in Fig. 3. As
can be seen, the behavior of the Bi2201 break junction
in the magnetic field sharply differs from that for
Bi2212 [1, 2]. First, the magnitude of the tunnel-junc-
tion conductance decreases with increasing magnetic
field and the curves of dI/dV versus V significantly shift
down, thereby decreasing the zero-bias conductance.
Second, in the magnetotransport experiments [13] car-
ried out after the tunneling measurements [16], we have
found that the ab-plane Hc2 in our low-Tc Bi2201 single
crystals equals 10 T at T = 1.4 K, but the gap structure in
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Fig. 2. Tunneling conductances dI/dV versus V at different
temperatures for sample No. 2. The curves are shifted with
respect to the upper one. The gap structure is marked by
arrows.
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Fig. 3 practically disappears already at 5 T. As was men-
tioned above, the tunnel current probes a region of the
order of the coherence length. For the break junction in
the mixed state, the conductance dI/dV corresponds to
the tunneling density of states for an isolated vortex
with a normal core and the superconducting density of
states near the vortex is broadened by the pair-breaking
effect of the local magnetic field. Thus, the superconduct-
ing gap structure can be already smeared at H ! Hc2. We
note that the barrier transparency at constant tempera-

23 T
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Fig. 3. The effect of the magnetic field on tunneling conduc-
tances dI/dV as functions of V at T = 1.4 K (H is parallel to
the c-axis), sample No. 2.
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Fig. 4. Differential conductances dI/dV versus V for Bi2201-
Cu tunnel point contacts fabricated on single crystals No. 24
(curve 1) and No. 44 (curve 2) with Tc = 9 and 10 K, respec-
tively (T = 1.6 K, H = 0, Rt = 0.6 kΩ). The inset schemati-
cally shows the geometry of the point contact.
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ture remains unchanged and the general form of tunnel-
ing conductances is preserved. In the tunneling mea-
surements of the conventional superconductors in mag-
netic fields H > Hc2, the differential conductance dI/dV
is constant at eV from zero to ∆. In the present case, a
large dip around V = 0, seen in Fig. 3, indicates the
existence of an energy gap in high magnetic fields up to
23 T. Although the spectra are so broad that it is difficult
to define the gap value exactly, we can say that this gap
persists even in the normal state at H @ Hc2. At the same
time, we found that the V-dependences of the differen-
tial resistance dV/dI at two points with V = 0 and 40 mV
extracted from Fig. 3 are quadratic in the magnetic field
in a wide range of fields without the saturation occur-
ring for the classical magnetoresistivity of a normal
metal in the transverse configuration. The data in Fig. 3
point out that, due to a large anisotropy of the resistance
of Bi2201 single crystals (ρc/ρab ~ 103–104 [13]), the
measurement current in the break junction geometry
flows in a very thin layer of the sample. In high mag-
netic fields, the resistance of this near-barrier region
can be of the order of or larger than the resistance Rt of
the tunneling barrier. In this case, the break junction is
not quite a four-probe junction, and the applied voltage
drops partially across the bulk of the crystal and not
only across the tunneling barrier, especially at low tem-
peratures, where the nonmetallic resistance along the
c axis becomes very large.

To partially exclude the influence of the crystal
resistance on the measured tunneling spectra, we have
studied the point-contact tunnel junctions in which the
four-probe contact method can be better realized. The
tip of a copper wire needle was pressed perpendicularly
to the crystal surface (parallel to the c axis). The mag-
netic field was also oriented parallel to the c axis. The
point-contact tunnel junctions use the natural oxide
layer on the contact-forming electrodes as a tunneling
barrier. In our experiments, the point contacts revealed
a high resistance after the first touch in liquid helium at
1.5 K; the background conductance only increased with
increasing bias voltage. After a further increase of the
pressure applied to the tip, a gaplike structure appeared in
the I–V characteristics of the contacts.

The differential conductances dI/dV of the Bi2201-
Cu tunnel point contacts fabricated on two single crys-
tals, Nos. 24 and 44, with Tc = 9 and 10 K, respectively,
are shown in Fig. 4. The tunneling barrier resistance Rt

for these contacts at T = 1.6 K is equal to about 0.6 kΩ .
The gap structure on the characteristics of the SIN-type
tunnel junctions is always smeared larger than in the
case of SIS-type junctions. Nevertheless, the zero-bias
conductance for our point-contact tunnel junctions was
less than for the break junctions. Two pairs of symmet-
ric features on the curves plotted in Fig. 4 can be easily
seen, and we believe we have observed two energy
gaps. The peak-to-peak distances between the symmet-
ric maxima on the curves of dI/dV versus V lie in the
range of 15–18 and 45–50 mV. The magnitude of the
 AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001
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first gap is in close agreement with data in Fig. 1,
although the Tc value of the given crystal is nearly twice
as that of crystal No. 2 in Fig. 1. The second pair of gap
features in the SIS break junctions in case of a true gap
must be located near 100 mV (4∆p–p), which we did not
study for break junctions.

In Fig. 5, we have plotted the differential conduc-
tances dI/dV for the Bi2201–Cu tunnel point contact at
different temperatures. It can be seen that the gap struc-
ture again broadens and rapidly vanishes with increas-
ing temperature. At low temperatures away from Tc, the
tunneling barrier transparency does not change because
the conductance spectra shapes are preserved. How-
ever, starting from T ≥ 5 K, the V-shaped background
conductance is slightly enhanced with increasing tem-
perature, the differential conductances at zero bias V = 0
change, and the curves shift down. Since Tc = 9 K for the
given sample (No. 24), the gap structure is believed to van-
ish at T < Tc, but this is not the case. Inset a in Fig. 5 shows
I–V characteristics of the low-resistance (<0.1 Ω) tunnel
break junction fabricated from the same single crystal
where the superconducting energy gap is well seen at
6 K. In inset b in Fig. 5, we have plotted the temperature
dependence of the differential resistance dV/dI at V = 0
extracted from the experimental data in combination
with the ab-plane superconducting transition curve of
the given single crystal. It is easy to verify that the crys-
tal resistance rise and the shift of the dI/dV curves in
Fig. 5 with increasing temperature are caused by the
superconducting transition of the Bi2201 crystal region
near the tunneling barrier as before even if Rt ≈ 0.6 kΩ .
The tunneling conductance behavior at temperatures
near and above Tc for the point contacts (Fig. 5) is iden-
tical to that for break junctions (Fig. 2).

The effect of the magnetic field on the gap structure
at T = 1.6 K is illustrated in Fig. 6, where we show the
differential conductances dI/dV for the Bi2201–Cu tun-
nel point contact at different fields oriented along the
crystal c axis (Rt ≈ 0.6 kΩ). In moderate magnetic fields
(up to 6 T), the dI/dV curves did not shift with respect
to each other; for clarity, the curves in Fig. 6 have been
shifted vertically by the same value with respect to the
H = 0 curve. As earlier, the gap features broaden and prac-
tically diminish already at 4 T, although the respective
values of Tc and ab-plane Hc2 at 1.6 K are equal to 10 K
and 22 T for crystal No. 44. In the point junction region of
the crystal, additional pinning centers are produced by the
pressure between the contact-forming electrodes. In this
case, the tunneling conductance dI/dV mainly conforms to
the density of states in the normal vortex cores near the
contact already at H > Hc1. As is illustrated by the inset in
Fig. 6, the ab-plane resistance of the same Bi2201 crys-
tal in magnetic field 4 T still equals zero, but the gap
structure is hardly visible.

A steady value and the general shape of the conduc-
tance spectra in the magnetic field up to 6 T made it pos-
sible to normalize the last dI/dV curves at H = 0–5 T by the
conductance at H = 6 T, where the gap structure is no
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
longer visible, in order to see the magnetic field influ-
ence on the gap features more clearly. In the normalized
conductances, the gap structure broadens and dimin-
ishes gradually at increasing fields with a decrease in
peak positions. The peak-to-peak distance between the
two main maxima of the dI/dV curve at H = 0 is equal
to 14.8 mV (∆p–p = 7.4 meV). As noted above, this value
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is coincident with that measured by the break junction
technique. It is surprising that the magnitude of 2∆p–p is
similar for two samples with Tc = 4 K and two samples
with Tc = 9–10 K and is independent of the carrier con-
centration. So far as our normalization is not quite cor-
rect, it is difficult to give a quantitative analysis of the
magnetic field effect on the gap value. However, the
shift in the position of the features in the normalized
conductance in Fig. 6 reflects the reduction of the order
parameter in the point-contact region in the magnetic
field. It is reasonable to expect that there are additional
pinning centers in the point junction region of the crys-
tal, and hence, the number of fixed vortices rapidly
increases with the magnetic field. This leads to a fast
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suppression of the order parameter and the closing of
the superconducting energy gap in the magnetic field
H ! Hc2.

The second pair of maxima in the upper part of the
dI/dV curves in Figs. 4–6 is related to the large dip
around zero voltage, the main shape of which does not
vary with the magnetic field and temperature. The
peak-to-peak distance between the second maxima in
zero field is approximately equal to 52 mV. As the main
maxima, these maxima broaden with increasing mag-
netic field, but the shift in the position of peaks in the
normalized conductances is only slight. This gap does
not close above Tc and Hc2, as indicated by Figs. 3 and 5,
and can be identified with the normal-state gap of Bi2201
observed in ARPES experiments by Harries et al. [14].
Because this gap occurring in the tunneling spectra is
so broad and the zero-bias conductance is so large, there is
a nonzero state density at the Fermi energy, i.e., the true
gap does not exist [5]. Our point-contact tunneling spectra
at low temperatures and zero magnetic field can be pre-
sumably described by a representative background, two
broad peaks near the energies ±25 meV, and sharper
peaks at the energies ±7.4 meV, as was done in ARPES
experiments with Bi2212 [6].

Next, we studied the magnetic field dependence of the
normal-state gap in more detail using a sufficiently high-
Ohmic point-contact tunnel junction with Rt = 4.5 kΩ.
Such large resistance makes the observation of the
superconducting gap difficult but ensures only a negli-
gible effect of the crystal magnetoresistance on the
main shape of the tunneling spectra. Figure 7 shows the
series of the differential resistances dV/dI as functions
of V for this Bi2201–Cu contact at 1.6 K in different
magnetic fields. It can be seen that the shape of the tun-
neling spectra does not vary with the magnetic field and
the data provide clear evidence that the normal-state
gap still exists up to 28 T. A variation of the half-width
of the gap versus magnetic field is shown in the inset in
Fig. 7. In Fig. 8, we have plotted the magnetic field
dependences of the zero-bias differential resistances
dV/dI at T = 1.6 K, 4.2 K, and 10 K normalized to the
corresponding maximum values. Here, we also show
the ab-plane superconducting transition of the same
crystal in the magnetic field at 4.2 K (solid line). From
Fig. 8 and the inset in Fig. 7, it is clear that the transition
of the sample to the normal state is responsible for a
small increase in the gap half-width and the enhance-
ment of the differential resistance at V = 0. However,
after the transition of the sample to the normal state, the
intensity of the dV/dI curves (the dip amplitude in tun-
neling conductance) starts to decrease rapidly with the
magnetic field. Furthermore, we note that the intensity
of the tunneling spectra at V = 0 also undergoes a rapid
decline at T > Tc . This is in contrast with heavily under-
doped Bi2212 samples with Tc = 10 K [5], where the
large normal-state gap does not close even at 301 K.
Our last result agrees well with the data of ARPES mea-
surements of optimally doped Bi2212 [6].
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It is probable that the normal-state gap observed in
tunneling experiments is the pseudogap that has been
widely discussed recently. It is worth mentioning that
many tunneling conductances with a similar shape and a
large dip in the vicinity of the zero-bias voltage have been
observed in the metal–insulator–semiconductor tunnel
junctions [23]. In particular, the conductance peaks and a
large dip on the tunneling spectra of the Bi alloy junction
[24] were attributed to the energy gap and to the band
bending near the surface due to the applied voltage,
respectively. It is interesting that with an increasing mag-
netic field, the conductance peaks tend to be washed away,
whereas the dip due to the energy gap is deepened. There-
fore, it is quite possible that a normal gap in BiO layers
manifests itself in our measurements as the large dip
near the zero-bias voltage.

To summarize, in the tunneling experiments with
high-quality single crystals of single-plane Bi2201
cuprate superconductor using the break junction and
point-contact techniques at T < Tc, we observed the
coexistence of the superconducting-state gap and the
normal-state gap. The value of the superconducting
energy gap 2∆p–p is in the (13.4–15)-meV range (∆p–p =
6.7–7.5 meV). The values of 2∆p–p are similar for two
samples with Tc = 4 K and two samples with Tc = 9–10 K
and are independent of the carrier concentration. At T < Tc,
the normal-state gap with the magnitude approximately
equal to 50 meV persists in the magnetic field H @ Hc2
up to 28 T. However, after the transition of the sample
to the normal state, the intensity of the dV/dI versus V
curves (the dip amplitude in the tunneling conductance)
starts to decrease rapidly with the increasing magnetic
field and temperature. The observed large broadening
of the tunneling spectra and large zero-bias conduc-
tances can be caused by a strong angular dependence of
the superconducting gap. The tunnel results are in full
agreement with the angle-resolved photoemission
spectroscopy measurements [14].
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Abstract—The critical field Hs corresponding to the emergence of vortices in a superconductor without a
threshold is found near the transition temperature and in the limit as T  0 for an arbitrary value of the depair-
ing factor Γ. In superconductors of the second kind, this field value coincides with the absolute instability point
of the Meissner state. In large-κ superconductors, the order parameter tends to zero on the surface of the super-
conductor if the external magnetic field reaches the value Hs. We obtain that Hs = Hcm (where Hcm is the ther-
modynamic critical field) for an arbitrary value of the depairing factor Γ in the temperature region near Tc and
at T = 0. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In superconductors with a large value of the Gin-
zburg–Landau parameter κ, the critical magnetic fields
Hc1, Hcm, Hc2 are widely separated by their κ-values
[1, 2]. Here, Hc1 is the magnetic field value for the tran-
sition to the Shubnikov phase (vortex state), Hcm is the
thermodynamic critical field, and Hc2 is the bifurcation
point corresponding to the formation of a vortex state in
the volume of the superconductor. If κ = 1, all three
magnetic field values coincide. An isolated vortex is
attracted to the boundary of a superconductor if the
external magnetic field is weaker than a certain critical
value Hs, the field of a barrierless penetration of vorti-
ces into the superconductor [3]. Near the transition
temperature Tc, the problem of entering a vortex into
the superconductor was considered by de Gennes [3].
He estimated that Hs is of the same order as the thermo-
dynamic critical field Hcm. The exact value has not been
found, because this requires considering small dis-
tances of the order of the correlation length. The value
of the critical field Hs can be found as the linear insta-
bility point of the Meissner state. This means that there
exists a stage of the transformation of the linear insta-
bility to the formation of a single vortex.

From this standpoint, the problem of calculating the
critical field Hs is closely related to the problem of
determining the superheating field Hsh. The last prob-
lem was considered by Ginzburg [4]. In what follows, we
show that both problems (the calculation of the critical
field Hs in the κ @ 1 limit and the calculation of the critical
field Hsh in the κ ! 1 limit) can be solved using a single

¶This article was submitted by the author in English.
1063-7761/01/9205- $21.00 © 20858
method near the transition temperature Tc, where the Gin-
zburg–Landau equations are applicable. The linear
instability problem is simpler than the calculation of
the vortex energy and some results for the Hs value can
be found outside the framework of the Ginzburg–Lan-
dau free energy. We also find Hs in the zero-temperature
limit. We show that near Tc, we have Hs = Hcm and

Hsh = Hcm/ , with the κ value related to the original

definition of κGL as κGL = κ/ .

2. THE CRITICAL FIELD Hs 
NEAR THE TRANSITION TEMPERATURE

The Ginzburg–Landau equations valid near the tran-
sition temperature can be written as

(1)

rotrotA = 4πj

where

D is the effective diffusion coefficient, A is the vector
potential, ζ(x) is the Riemann zeta function, and ν =

κ
2

–τ πD
8T
------- ∂

∂r
----- 2ieA– 

  2

– 7ζ 3( ) ∆ 2

8π2T
2

-----------------------+
 
 
 

∆ 0,=

j ie
πνD
4T

----------- ∆*∂–∆ ∆∂+∆*–( ),–=

τ 1 T /Tc, ∂±– ∂
∂r
----- 2ieA,±= =
001 MAIK “Nauka/Interperiodica”
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mp/2π2 is the density of states on the Fermi surface. The
value of D was found by Gor’kov [5] and is equal to

(2)

where v  is the Fermi velocity, τtr is the transport colli-
sion time, and ψ(x) is the Euler psi-function.

We use the gauge where

(3)

In the extreme case of large κ, we can use the local rela-
tion between A and ∆,

(4)

As a result, we obtain only one equation for the vector
potential A instead of system (1),

(5)

In Eq. (5), we use the dimensionless variables

(6)

The definition of κ in Eq. (6) differs from the origi-

nal definition of κGL by the factor :

With this definition of κ, the boundary between super-
conductors of the first and the second kind is at κ = 1.
For κ = 1, all the critical fields Hc1, Hcm, and Hc2 coin-
cide. The definitions of ξ and κ in Eq. (6) can be continued
in a natural way for the entire temperature region [6, 7].

Equation (5) can be reduced to the first-order equa-
tion

(7)

D
v ltr

3
---------=

× 1
8Tτ tr

π
------------- ψ 1/2( ) ψ 1

2
--- 1

4πTτ tr

----------------+ 
 –+

 
 
 

,

A A y( ) 0 0, ,( ), H 0 0 ∂A/∂y–, ,( ).= =

∆2 8π2T2

7ζ 3( )
-------------- τ πDe2

2T
-------------A

2
– .=

–
∂2 Ã

∂Y2
--------- 1

κ2
----- Ã 1

1
2
--- Ã

2
–+ 0,=

H̃ κ∂ Ã
∂Y
-------.–=

y ξY , A Hcmκξ Ã Y( ), ξ πD
16Tτ
------------,= = =

λL
2 7ζ 3( )

32π4e2νDTτ
-------------------------------, κ

λL

ξ
----- 7ζ 3( )

2π5e2νD2
------------------------,= = =

Hcm
2

8π
---------

4π2T2ντ 2

7ζ 3( )
-----------------------, H HcmH̃ .= =

2

κGL κ / 2.=

∂ Ã
∂Y
-------

1
κ
--- Ã 1

1
4
--- Ã

2
– .–=
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The solution of (7) is

(8)

where C is an arbitrary positive constant. The function

(9)

is a solution of system (1) linearized near  with ∆
given by Eqs. (4) and (8). The function  is the eigen-
function of this system of equations with zero eigen-
value if the boundary condition

(10)

is satisfied. Using Eqs. (8) and (10), we obtain the crit-
ical value of the coefficient C,

(11)

Therefore, the Meissner state becomes absolutely
unstable at the magnetic field value

(12)

This linear instability leads to the formation of vortices.
Hence, there exists some stage of the transformation
from the linear instability to the formation of vortices.
This stage cannot be studied in the framework of the
Ginzburg–Landau equations. The energy δE of the vortex
antivortex pair at distances 2a such that 2a ! ξ decreases
very slowly with a, only as 1/ln(ξ/2a) [8]. This energy was
found as the minimum of the Ginzburg–Landau free
energy for fixed positions of zeros of ∆ and fixed vortici-
ties (±1) [8]. From this point of view, a single vortex
enters the superconductor without a threshold only if
the order parameter ∆ is equal to zero at the boundary. 

Using Eqs. (4), (8), and (11), it is easy to prove that
the condition

is satisfied in the case under consideration. Our conjec-
ture is that this condition is the boundary condition for
the problem of calculating the critical field Hs for κ @ 1.
It is satisfied in all the cases considered in what follows.
We note that the critical field Hs is separated from the
critical fields Hc1 and Hc2 by the large parameter κ. The
critical field Hc2 was introduced in [1] as

(13)

Ã
4C Y /κ–( )exp

1 C2 2Y /κ–( )exp+
----------------------------------------------,=

∂ Ã
∂Y
-------

Y 0=

4C
κ

------- 1 C2–

1 C2+( )2
----------------------,–=

Ã1
∂

∂C
------- Ã

4 Y /κ–( ) 1 C2 2Y /κ–( )exp–[ ]exp

1 C2 2Y /κ–( )exp+[ ] 2
---------------------------------------------------------------------------------= =

Ã

Ã

∂ Ã1

∂Y
---------

Y 0=

0=

C2 3 2 2.–=

Hs Hcm.=

∆ y 0= 0=

Hc2
4

πeD
---------- Tc T–( ).=
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Therefore,

(14)

The critical field Hc1 was found in [2] as

(15)

3. THE SUPERHEATING FIELD Hsh 
FOR κ ! 1

The superheating field Hsh was found by Ginzburg [4].
In the range κ ! 1, this problem can be solved analyti-
cally. In a superconductor with a small value of κ, the
magnetic field is screened near the surface at the dis-
tances much smaller than the correlation length ξ. In
the leading approximation, we then obtain

(16)

where ∆(0) is the order parameter on the surface of the
superconductor. With the help of Eq. (16), we reduce
the system of equations (1) to one equation for the order
parameter ∆ and to the effective boundary condition for
this equation,

(17)

where

and the quantities ξ, κ, Y, and  are defined in Eqs. (6).
Equation (17) has the solution

(18)

where C > 1 is an arbitrary parameter related to the
external magnetic field by Eq. (17). The function

(19)

is the solution of system (1) linearized near the function 
given by Eq. (18).

Hc2

Hs

--------
Hc2

Hcm

--------- κ .= =

Hc1

Hcm

---------
κln 0.146+

κ
----------------------------.=

A y( ) A0
4π2e2νD

T
----------------------∆2 0( )y– 

  ,exp=

–1 2
∂2

∂Ỹ
2

---------– ∆̃2
+

 
 
 

∆̃ 0,=

∆̃2∂∆̃
∂Y
------

Y 0=

H̃
2κ
8

----------,=

∆ 8π2T2τ
7ζ 3( )

----------------- 
 

1/2

∆̃=

H̃

∆̃ C Yexp 1–
1 C Yexp+
--------------------------, ∂∆̃

∂Y
------

Y 0=

2C

1 C+( )2
--------------------,= =

∆̃1
∂∆̃
∂C
------- 2 Yexp

1 C Yexp+( )2
---------------------------------= =

∆̃
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This function becomes the eigenfunction of this sys-
tem of equations with zero eigenvalue if the boundary
condition

(20)

is satisfied. With the help of Eqs. (18), (19), and (20),
we obtain the critical value of the coefficient C as

(21)

The superheating field Hsh is therefore related to the
field Hcm by the simple equation

(22)

4. CRITICAL FIELD Hs:
THE GENERAL ANALYSIS

The general strategy of calculating Hs is as follows.
First, the expression for the current density j must be
found as a function of the vector potential A and the
order parameter ∆ ,

(23)

Equation (23) is formal and the relation can be nonlo-
cal. In Eq. (23), the order parameter ∆ must be consid-
ered as a functional of the vector potential A. Next, we
solve the Maxwell equation for A,

(24)

where Hext is the external magnetic field. Solutions of
Eq. (24) form a one-parameter family. The value of A(y)
at the point y = 0 can be considered as this parameter,
and hence, the function

(25)

is a solution of linearized equation (24). It is an eigen-
function of this equation if the boundary condition

(26)

is satisfied. Equation (26) determines the critical field
Hs (if κ > 1). We apply this strategy in the extreme case
where κ @ 1 and in the case where the superconductor
can be considered as “dirty” material. The system of
equations for the Green functions α and β can then be
taken in the form [9]

∂∆̃1

∂Y
--------- 2

∆̃1

∆̃
-----∂∆̃

∂Y
------+ 

 
Y 0=

0=

C 3 2 2.+=

Hsh

Hcm

--------- 1

κ
-------

2 1/4–

κGL

------------.= =

j Q A ∆,( )A.=

∂2A

∂y2
--------- 4πQ A ∆,( )A+ 0,=

∂A
∂y
------– H , H 0( ) Hext,= =

A1
∂A

∂A 0( )
---------------=

∂A1

∂y
---------

y 0=

∂2A
∂A 0( )∂y
---------------------

y 0=

0= =

α∆ βω–
D
2
---- α∂–

2β β∂2α
∂r2
---------– 

 + αβΓ ,=
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(27)

For κ @ 1, the relation of the vector potential to the
order parameter ∆ is local in the leading approximation
and α and β can be taken as real functions. In this case,
the system of equations (27) can be essentially simpli-
fied to

(28)

where Γ = , with τs being the electron spin flip scat-
tering time.

In what follows, we restrict ourselves to the zero-
temperature limit. There are two regions

(29)

In the first region, we have

(30)

where γ is the Euler constant, lnγ = 0.577216…, and 
is the transition temperature for the superconductor
without paramagnetic impurities,

(31)

where ∆∞ is the value of the order parameter as y  ∞.

∆ 2πT λ β ω( ), α2 β 2+
ω 0>
∑ 1,= =

j ieνD2πT β*∂–β β∂+β*–( ).
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j e2νD8πT A ϕ , ∂2A

∂y2
---------–cos

2
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∑– 4πj,= =

α ϕ , βsin ϕ ,cos= =

τ s
1–

∆ Γ 2e2DA,+>

∆ Γ 2e2DA.+<

A
2

πe2D
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πTc
0
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 ln πΓ
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-------– 
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∂
∂y
----- ∆

πTc
0

γ∆
--------- 

 ln πΓ
4

-------– 
 

1/2

Φ ∆( ),–=

Tc
0

Φ ∆( ) 4π2e2νD( )1/2
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×
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2
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0
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2
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We define the quantity Y as the point where

(32)

At this point, we have

(33)

In the region y > Y, the order parameter ∆ is the solution
of the equation

(34)

We now consider the region y > Y. In this region, the
system of equations (30) for the order parameter ∆ and
the vector potential A is more complicated,

(35)

For y > Y, we have obtained the first integral of the equa-
tion for A (see Eq. (34)). We now show how to obtain
the first integral in the region y < Y. To simplify the cal-
culations, we set Γ = 0 in what follows. We then obtain

(36)

Equations (36) allow us to pass to the dimensionless
variables

(37)
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Equations (35) and (37) imply

(38)

The problem of calculating the critical field Hs is thus

reduced to solving system (38) on the interval {0, } with
the boundary conditions

(39)

We must find the point  such that

(40)

The value of the derivative ∂ /∂  at the point  = 0
gives the field Hs via

(41)

To solve this problem, we set

(42)

The system of equations (38) implies
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∆̃ Ỹ( ) π/4–( ), Ã Ỹ( )exp π π/8–( ),exp= =

∂ Ã
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------- 1 π

2
--- 5

3
---– 

  π
2
---– 

 exp Φ1 Z( )+ +
1/2

,–=

Φ1 Z( ) 2 dZR Z( ),

Z

1

∫=
JOURNAL OF EXPERIMENTAL 
(44)

The second equation in (43) is in fact an equation for Z,

(45)

Condition (40) implies that

(46)

The function Z is a monotonic function of , and
hence, the first equation in (46) cannot be satisfied. It
follows from Eq. (44) and the second equation in (46)
that

(47)

at the critical point, and therefore,

(48)

We note that the T = 0, the order parameter behaves as

(49)

for small values of y.
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∂Ỹ
------
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5. THE CRITICAL FIELD Hs 
IN A SUPERCONDUCTOR

WITH MAGNETIC IMPURITIES

The system of equations (35) can be solved for an arbi-

trary value of the spin flip scattering time Γ = . To do
this, we put

(50)

From the first equation in (35), we obtain

(51)

With the help of Eq. (51), we obtain the first integral
of the second equation in (35),

(52)

where

(53)

The upper integration limit in Eq. (53) is defined as

(54)

In Eqs. (53) and (54), the quantity ∆∞ is the value of the
order parameter in the Meissner state at large distances
from the surface. The value of ∆∞ can be found from
Eqs. (30) and (35) as

(55)
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The quantity B was found with the help of Eqs. (30),
which were used to obtain the boundary conditions for
the vector potential A at the point y such that Z = 1. It is
easy to obtain that

(56)

Using boundary condition (26) in Eq. (52), we
immediately obtain the critical field Hs as

 (57)

At the critical point Hs, the condition ∆|y = 0 = 0 is
satisfied for all values of Γ. Equation (57) can be
checked in the simplest case where Γ @ ∆∞. We have

(58)

The solution of Eq. (52) is given by

(59)

where 0 < C < 1 is an arbitrary constant and the pene-

tration depth  is given by

(60)

Using Eq. (59), we find the magnetic field value at the
point y = 0 as
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  π
2
---– 

 exp Γ2

3
-----+





1/2

.

Hs B Φ̃1 0( )+( )1/2
.=

A
πTc

0

48e2Dγ
-------------------

 
 
 

1/2
∆∞

Γ
------ 

 
2

Z2– 
 

1/2

,=

Φ̃1 Z( ) πν
12
------

πTc
0

γ
--------- 

 
2 ∆∞

Γ
------ 

 
4

Z4– 
  .=

A
∆∞

Γ
------

πTc
0

6e2Dγ
----------------

 
 
 

1/2

C y/λ̃( )exp

C2 2y/λ̃( )exp+
--------------------------------------,=

λ̃

λ̃
1–

8πνe2D( )1/2 πTc
0

γ
--------- 

 
1/2∆∞

Γ
------.=

H 0( ) C 1 C2–( )
1 C2+( )2

------------------------
∆∞

Γλ̃
-------

πTc
0

6e2Dγ
----------------

 
 
 

1/2

.=
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The condition ∂H(0)/∂C = 0 determines the value of the
critical field Hs. With the help of Eq. (61), we obtain

(62)

This value of Hs corresponds to the point Z = 0 and
coincides with the value given by Eqs. (57) and (58). To
complete the calculation, we give the equation for the
thermodynamic field Hcm [10],

(63)

where ∆ = ∆∞ can be found from Eq. (55) with the

replacement   Tc .

In the extreme case where Γ @ ∆∞ , we find from
Eqs. (55) and (63) that

(64)

As before, we obtain

(65)

We now prove that for an arbitrary value of the
depairing factor Γ, we have the relation

(66)

C2 3 2 2,–=

Hs
2 ∆∞

4Γλ̃
---------- 

  2 πTc
0

6e2Dγ
---------------- πν

3
------

∆∞
4

Γ2
------.= =

δ^– ν
dTc

Tc

-------- ∆ 2

2γΓ/π

Tc
0

∫
Hcm

2

8π
---------,= =

Tc
0

dTc

Tc

---------
1
12
------d

∆
Γ
--- 

 
2

, δ^
ν
24
------

∆∞
2

Γ2
------.–= =

Hs

Hcm

--------- 1, Γ  @ ∆∞.=

Hs Hcm.=

0
–4

F

H

Hc1

2 4 6 8 10 12

–3

–2

–1

0

1

2

Hs Hc2

Energies of the Shubnikov phase (thick solid line), the
Meissner state (thin line), and the states with different val-
ues of the vortex density (dashed lines).
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Using Eqs. (55), (57), and (63), we verify that in both

regions ∆∞ > Γ and ∆∞ < Γ, the derivatives of  and

 with respect to  coincide,

(67)

This proves Eq. (66). Equation (57) allows us to take
the integral over Tc in expression (63) for the free
energy and to obtain the critical field Hcm in the explicit
form if 

∆∞ > Γ, (68a)

and 

(68b)

where ∆∞ and  are related by Eq. (55).

6. CONCLUSION

We have found the general method of calculating
the critical field Hs in the entire range of κ values and
given the results for Hs in the temperature region near Tc

and T = 0. For an arbitrary value of the depairing factor Γ,
the quantities Hs and Hcm are equal in both temperature
regions. The initial definition of Hs is the value of the
external magnetic field at which vortices can penetrate
into the superconductor without a threshold. In super-
conductors of the second kind, the value of this field
coincides with the critical field value of the absolute
instability of the Meissner state. In a superconductor of
the first kind, the field of the absolute instability of the
Meissner state is the overheating field. If the order
parameter ∆ is nonzero at the boundary of the super-
conductor, the energy of a vortex-antivortex pair (at
least in the κ @ 1 limit) decreases very slowly with the
distance 2a between them in the range 2a ! ξ [8]. As
the result, the order parameter ∆ is zero on the bound-
ary of the superconductor at the point Hs. The point Hs

is an essentially singular point because an infinite num-
ber of states with different numbers of vortices in the
sample go out of this point (the number of states is of
the order SHs/Φ0, where S is the area of the sample and
Φ0 = π/e is the flux quantum). The free energy of the
Shubnikov phase is the envelope curve for all these
states.

By the Shubnikov phase, we mean the state with the
minimum value of the free energy in a given external
magnetic field. The disappearance of the threshold in

Hs
2

Hcm
2 Tc

0

∂Hs
2

Tc
0

----------
∂Hcm

2

∂Tc
0

------------.=

Hcm
2

4πν
---------- ∆∞

2 π∆∞Γ
2

-------------- 2Γ2

3
---------+–=

Hcm
2

4πν
---------- ∆∞

2 πTc
0

γ
--------- 

 
2

R Z( ) Z

1 1 Z2–+
----------------------------

–=

–
1

2Z2
--------- Zarcsin Z 1 Z2––( )

 1–

Z ∆∞/Γ=

if ∆∞ < Γ,

Tc
0
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the Meissner state at the point Hs does not mean that
vortices can freely enter the superconductor in the Shub-
nikov phase as the external magnetic field changes. In the
figure, we present the free energy as a function of the mag-
netic field for the Shubnikov phase (solid line), the Meiss-
ner state energy (thin line), and the energy of states with
different densities of vortices in the superconductor
(dashed line).
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Abstract—Hamiltonian equations are formulated in terms of collective variables describing the dynamics of
the soliton of an integrable nonlinear Schrödinger equation on a 1D lattice. Earlier, similar equations of motion
were suggested for the soliton of the nonlinear Schrödinger equation in partial derivatives. The operator of soli-
ton momentum in a discrete chain is defined; this operator is unambiguously related to the velocity of the center
of gravity of the soliton. The resulting Hamiltonian equations are similar to those for the continuous nonlinear
Schrödinger equation, but the role of the field momentum is played by the summed quasi-momentum of virtual
elementary system excitations related to the soliton. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Some nonlinear differential equations in partial
derivatives important for physical applications [the
nonlinear Schrödinger equation, the Landau–Lifshits
equations in the theory of magnetization, etc.] possess
so-called dynamic solitons. Dynamic solitons are
understood to be nonlinear spatially localized perturba-
tions of the system under study whose stability is
ensured by the presence of simple additive integrals of
motion. The dynamics of the soliton of the nonlinear
Schrödinger equation has been described in detail for both
its free motion (e.g., see [1]) and motion in an external
field [2]. The dynamics of the magnetic dynamic soliton
has been studied no less thoroughly [3, 4].

The motion of the dynamic soliton is usually char-
acterized by the speed of motion of its center of gravity
V and internal eigenfrequency ω (the frequency of preces-
sion for a magnetic soliton) in the laboratory frame of ref-
erence. These two mechanical characteristics of solitons
can be put in correspondence to two integrals of motion:
total soliton momentum P and soliton mass N [the number
of virtual elementary excitations of the system (quasi-par-
ticles) bound in the soliton]. The remarkable property of
the soliton as a particle-like excitation is the presence of an
important relation between these integrals of motion, the
V and ω parameters, and soliton energy E. If E is written
in terms of integrals of motion (total momentum and
mass) as independent dynamic variables, small variations
in P, N, and E are related as [2, 3]

(1)

where Ω is the soliton frequency in the frame of refer-
ence moving at speed V (the Planck constant is
assumed to equal one). If the phase of the soliton is kx –
ωt, then Ω = ω – kV.

δE VδP= ΩδN ,+
1063-7761/01/9205- $21.00 © 20866
In this respect, the energy of soliton free motion, that
is, its kinetic energy, plays the role of the Hamiltonian
function. Equation (1) gives the equations of motion

(2)

The first equation in (2) is the usual Hamiltonian
equation of motion. The second equation determines
the physical meaning of Ω; namely, soliton energy E(P, N)
increases by Ω(P, N) when the number of quasi-parti-
cles bound in the soliton increases by one.

We are going to generalize the Hamiltonian descrip-
tion of solitons to the dynamics of particle-like solu-
tions (solitons) of nonlinear discrete equations on a lat-
tice; that is, of finite-difference rather than differential
equations. Such a generalization is nontrivial because
one of the integrals of motion used above, namely, the
field soliton momentum, is related to continuity of sys-
tems and is meaningless for a discrete periodic lattice.
This raises the problem of defining the integral of
motion conjugate to soliton velocity V. We will show
how the corresponding integral of motion is introduced
and what physical meaning it has.

One of the simplest nonlinear differential equations
well studied as regards the dynamics of solitons is the
nonlinear Schrödinger equation, which is completely
integrable. However, the transition from a continuous
nonlinear Schrödinger equation to its discrete (lattice)
analogue is not unambiguous. If we start with a close-
coupling-type model, the discrete analogue of the
Schrödinger equation (taking into account the nonlin-
ear term) should be written as

(3)

V
∂E
∂P
------, Ω ∂E

∂N
-------.= =

i
∂Ψn

∂t
---------- 2Ψn Ψn 1+–= Ψn 1–– 2g Ψn

2Ψn.–
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An analogue of precisely this equation is used in the
nonlinear optics of a system of parallel waveguides [5].
Unfortunately, (3) is not completely integrable and
does not have exact soliton solutions of the type of the
soliton of the continuous nonlinear Schrödinger equa-
tion. There is, however, an exactly integrable version of
the nonlinear Schrödinger equation on a lattice [6–8],

(4)

The ω0 + 2 frequency shift used in (4) is of no conse-
quence; we give it for convenience of references to [8],
where this equation is discussed from the point of view
of interest to us.

The linearized equation has the dispersion law

(5)

which determines the spectrum of elementary excita-
tions corresponding to the (ω0 – 2 < ω < ω0 + 2)fre-
quency interval.

Equation (4) has a dynamic soliton-type solution [6]
and allows Hamiltonian equations of motion for such a
soliton to be derived.

2. MECHANICAL INTEGRALS OF MOTION

Equation (4) has two additive integrals of motion,
namely, the integral

(6)

mentioned above, which plays the role of the norm of
the wave function and determines the number of soli-
ton-related elementary excitations, and the * integral
defined by

(7)

This integral can be treated as the Hamiltonian of the
system.

Hamiltonian (7) generates (4) in conformity with
the usual definition

(8)

but Poisson brackets {…, …} are defined in a non-
standard way, namely,

Let us take into account the distinguishing property of
discrete chains, namely, their periodicity. Because of
translational periodicity, there is obvious symmetry in
an infinite uniform chain related to the displacement by

i
∂Ψn

∂t
---------- Ψn 1+ Ψn 1–+( ) 1 Ψn

2+( ) ω0Ψn.+=

ω ω0= ε k( ), ε k( )+ 2 k,cos–=

N 1 Ψn
2+( ),ln

n

∑=

* E ω0N , E+ ΨnΨn 1+* Ψn*Ψn 1++( ).
n

∑–= =

∂Ψn

∂t
---------- * Ψn,{ } ,=

Ψm Ψn*,{ } i 1 Ψn
2+( )δmn,=

Ψm Ψn,{ } Ψ m* Ψn*,{ } 0.= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the period of the lattice; that is, to the n  n + 1 tran-
sition. Let T be the operator of this displacement,

(9)

Its eigenfunctions eikn correspond to eigenvalues eik

(−π < k < π), where k is the quasi-wave number.
Operator T generates the additional additive integral

of motion

which can conveniently be written as

(10)

Note that the jn = –i[ (Ψn + 1 – Ψn) – Ψn(  –

)] value in a discrete chain is an analogue of the
density of the flux of particles in a continuous medium.
The S value therefore has the meaning of the total
momentum in an excited chain.

Clearly, the definitions of finite integrals of motion
(6), (7), and (10) refer to an arbitrary solution to (4)
localized in space. We will, however, be interested in
their use to describe the dynamics of a separate soliton.

Consider a stationary solution to (4) of the type

(11)

where  is a real function and θ is an arbitrary
constant phase. The Φn function and the relation
between ω and k are determined by two real equations

(12)

(13)

The Φn function that vanishes at infinity, Φn= 0 as
n  ±∞, corresponds to soliton solutions. The N, E,
and S integrals of motion depend on both the form of Φn

and the k value,

(14)

(14a)

(14b)

TΨn Ψn 1+= .

Ψn*TΨn,
n

∑

S i Ψn* Ψn 1+ Ψn–( ) Ψn Ψn 1+* Ψn*–( )–[ ]
n

∑–=

=  i Ψn*Ψn 1+ ΨnΨn 1+*–( )
n

∑–

=  i Ψn* Ψn 1+ Ψn 1––( ).
n

∑–

Ψn* Ψn 1–*

Ψn*

Ψn t( ) Φn
ω t( ) ikn iωt– iθ–( )exp ,=

Φn
ω t( )

ω0 ω–( )Φn k Φn 1+ Φn 1–+( ) 1 Φn
2+( ),cos=

∂
∂t
----- 1 Φn

2+( )ln 2 kΦn Φn 1+ Φn 1––( ).sin–=

N 1 Φn
2+( ),ln

n

∑=

E 2 k ΦnΦn 1+ ,
n

∑cos–=

S 2 k ΦnΦn 1+ .
n

∑sin=
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Consider small changes in the integrals of motions
related to small wave function Ψ variations; that is,
changes caused by small variations in Φn and wave
number k. It follows from (12) and (14) that

(15)

Similarly, (14a), (14b), (15), and (7) yield

(16)

Clearly, the most important parameters of solution (11)
(that is, ω and k) are related by two dynamical Hamil-
tonian equations

(17)

if the Hamiltonian is treated as a function of the N and
k independent variables, * = *(N, k). Note that the
derivations of both (14)–(14b) and equations of motion
(17) are not explicitly related to the complete integra-
bility of the initial nonlinear equation. They, however,
imply that the infinite sums in (14)–(14b) converge,
that is, that this equation has a solution or solutions that
vanish at infinity. In particular, the existence of a
dynamic soliton is implied. In other words, it is
assumed that there exists a solution of type (11) local-
ized in space and not accompanied by emission of
small-amplitude waves of the phonon type. Such solu-
tions are not known for discrete nonlinear equations
that do not possess complete integrability. Precisely for
this reason, we turn to (4).

3. HAMILTONIAN EQUATIONS
IN TRADITIONAL VARIABLES

As we treat a dynamic soliton as a particle-like exci-
tation with an internal vibrational mode, it would be
expedient to have equations of motion for a traditional
pair of canonical variables, one of which is the velocity
of the center of gravity of the soliton.

If (4) has a stationary localized solution traveling
along the chain at rate V, its amplitude should, as with
the continuous nonlinear Schrödinger equation, be
expected to have the form

(18)

Indeed, such a solution does exist [8],

(19)

where A = const and cn(z, κ) is the Jacobi elliptic cosine
whose parameter κ lies in the interval 0 < κ < 1. At κ ! 1,
the elliptic cosine becomes the trigonometric cosine,
and (19) becomes a solution to the linear equation. In
the opposite limiting case (κ  1), we have the

ω0 ω–( )δN k Φn 1+ Φn 1–+( )δΦn.
n

∑cos=

δ* ωδN Sδk.+=

ω ∂*
∂N
-------- ω0= =

∂E
∂N
-------, S+

∂*
∂k
--------

∂E
∂k
------,= =

Φn t( ) Φ n Vt–( ).=

Φ x( ) Acn β x x0–( ) κ,[ ] ,=
JOURNAL OF EXPERIMENTAL
cn(z, κ)  1/  =  transition and the solu-
tion [8]

(20)

where x0 = const, θ = const, and the β, V, ω, and k
parameters are related to each other by two equations,

(21)

(22)

If the soliton solution has form (20), the integrals of
motion are invariant under continuous translations and
can therefore be calculated by the integration [8], the
sums in (14)–(14b) being replaced by integrals,

We then have

(23)

It follows that three of four parameters β, V, ω, and k are
determined by fixed integrals of motion, and the fourth
one (quasi-wave number k) remains free. Clearly, the
width of the soliton λ = 1/β is only determined by N,
and the energy of the soliton and its velocity are peri-
odic functions of k (as it should be in a uniform periodic
structure).

Clearly, (21) follows from the first Hamiltonian
equation (17), whereas the second Hamiltonian equa-
tion and (22) lead us to conclude that

(24)

This result harmonizes with treating S as the total
momentum.

Equation (24) allows Hamiltonian equations (16)
and (17) to be written in a more familiar form. Let us
introduce P = Nk (the total quasi-momentum of ele-
mentary excitations related to the soliton1 as an inde-
pendent variable in place of k. We will assume that the
new Hamiltonian (%) is a function of independent vari-
ables P and N; that is, %(N, P) = *(N, P/N). This
replaces (16) and (17) by

(25)

where Ω is, as in the continuous nonlinear Schrödinger
equation, the frequency of the soliton in the frame of
reference moving at velocity V.

1 The physical meaning of the field momentum as the total quasi-
momentum of elementary excitations of a discrete system is
known in the dynamics of crystal lattice [9], and the relations
obtained in this work substantiate that this circumstance is of a
general physical character.

zcosh zsech

Ψn t( ) β β n Vt– x0–( )[ ]sechsinh=

× ikn iωt– iθ+( ),exp

ω ω0= 2 β k,coscosh–

V 2/β( ) β k.sinsinh=

…
n

∑ n…d∫ .=

N 2β, E 4 β k,cossinh–= =

S 4 β k.sinsinh=

S NV .=

δ% ΩδN VδP,+=

Ω ∂%
∂N
-------, V

∂%
∂P
-------,= =
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We arrive at the conclusion that the Hamiltonian
equations for the soliton of the discrete nonlinear
Schrödinger equation in a uniform chain are formally
fully identical to those for the continuous nonlinear
Schrödinger equation, but the role of the field momen-
tum is now played by the total quasi-momentum P of
soliton linear excitations. Such a definition of P is
attached to the special form of the solution to the dis-
crete nonlinear Schrödinger equation and uses a defi-
nite dependence of the phase of the solution on the
chain node number; this dependence determines the
physical meaning of quasi-momentum k.

4. MOTION IN AN EXTERNAL UNIFORM FIELD

Next, let us analyze the equations that describe the
dynamics of a soliton in a nonuniform chain, in which
the quasi-wave number k is not conserved. Suppose that
the ω0 value weakly varies along the chain, that is,
weakly depends on node number n. At small chain
length intervals, this dependence can be considered lin-
ear,

(26)

For convenience, we introduce small gradient η of the
ωn function. The Hamiltonian that generates (4) with ωn

of type (26) has the form [8]

(27)

where the last term describes the nonuniform potential
U in whose field the soliton moves.

Let us use the representation

to write the equation that generalizes (12):

(28)

If gradient η is small, an approximate method for
analyzing this situation can be suggested. This method
is also applicable to more complex U(n) potentials.
This is the so-called adiabatic approximation, which
recommended itself as an effective tool for handling
continuous systems. If η ! ω0, the soliton only senses
the ωn local constant value at the point at which its cen-
ter is situated. We can therefore assume that its form is
as previously described by a solution of type (20), in
which the k and V parameters slightly vary with time.
Let us write the solution in the form

(29)

ωn ω0= ηn.+

* E ωn 1 Ψn
2+( )ln

n

∑+=

=  E ω0N η n 1 Ψn
2+( ),ln

n

∑+ +

Ψn Φn
ω i kn ωt– ω0t–( )[ ]exp=

ηn ω–( )Φn
ω k Φn 1+

ω Φn 1–
ω+( ) 1 Φn

ω( )2
+[ ]cos= .

Ψn
0 Φ n X t( )–( ) i kn φ t( )–( ω0t–[ ] ,exp=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where X(t) is the coordinate of the center of the soliton.
Obviously, its velocity V and frequency ω are given by

First, let us show that a nonuniform potential [the
last term in (27)] leads to a nonconserved total momen-
tum S and determines the equation of motion of the
quasi-wave number k. Based on definition (14)–(14b),
let us calculate the derivative of S with respect to time,

(30)

Substituting (29) into (30) and replacing the summation
by the integration, we obtain

(31)

Retaining the leading terms of the expansion in powers
of η, we can use the solutions to (11) and (28), in which
ωn = ω0 = const, in the right-hand side of (31). Using
(11) and the equality (∂Φ/∂t) = –V(dΦ/dn) yields

(32)

According to (24), we have NV = S in the right-hand
side of (32). It is, in addition, clear that the nonuniform
character of ωn has no effect on the conservation of N
as an integral of motion. This simplifies (32), which
becomes

Lastly, relation (22) between the velocity and the wave
number can be used to obtain the final equation

(33)

It follows that the quasi-wave number of the soliton in
a nonuniform external field linearly depends on time, as
it should in the quasi-classical approximation.

Let us transform the nonuniform potential in (27),

(34)

where the Φ(n) function in the approximation that we
use is determined by (19) or (20). Taking into account
that, in this approximation, Φ(ξ) = Φ(–ξ), we obtain

(35)

V
dX
dt
-------, ω dφ

dt
------.= =

dS
dt
------ * S,{ } η n Ψn* Ψn 1+ Ψn 1–+( )[

n

∑= =

+ Ψn Ψn 1+* Ψn 1–*+( ) ] .

dS
dt
------ 2η kcos nΦ n( ) Φ n 1+( ) Φ n 1–( )–[ ] n.d

∞–

∞

∫=

dS
dt
------ ηV k n

d
nd

------ 1 Φn
2+( )ln nd

∞–

∞

∫cot=

=  ηVN k.cot–

dV
dt
------- ηV k.cot–=

dk
dt
------ η .–=

U X( ) η n 1 Φ2+ n X–( )[ ]ln n,d∫=

U X( ) ηNX .=
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It follows that total energy (27) can be written in the
form

(36)

and can be treated as a function of three independent
variables, N, P, and X. As P = Nk and X only depend on
time in sum (36), the derivative of the wave number
with respect to time, Eq. (33), plays the role of one of
the canonical Hamiltonian equations

(37)

Dynamical Hamiltonian equations of type (37) nat-
urally arise in the theory of the soliton of the continuous
nonlinear Schrödinger equation [1] and in the theory of
magnetic solitons [3, 4].

One of the remarkable applications of the equations
of motion of solitons in external fields is the description
and calculation of Bloch oscillations of the soliton of
the discrete nonlinear Schrödinger equation in a uni-
form external field [8].

To obtain a quasi-classical description of Bloch oscil-
lations, it suffices to use the obvious solution of (33) 

k = –ηt (38)
(we assume that k = 0 at t = 0) and substitute (38) into
the equation for soliton velocity, Eq. (22):

(39)

This is precisely the periodic time dependence of
soliton velocity in a uniform external field [8, 10] that
determines Bloch oscillations at an ωB = |η| frequency.

In accordance with (36) and (37), we can introduce
force F acting on the soliton,

This makes it clear that, at a given (fixed) force, the
ωB = |F |/N Bloch frequency is inversely proportional to
the soliton power (N).

Bloch oscillations are sometimes related to so-
called dynamic localization of a particle moving in an
external uniform field with a periodic dependence of
the velocity of the particle on its quasi-momentum. We
would rather call attention to another aspect of the phe-
nomenon.

Quasi-classical oscillations with one frequency
should correspond to some discrete equidistant energy
spectrum of a quantum problem. Indeed, such a spec-
trum in the problem with Eq. (28) does exist and mani-
fests itself by arising of the “Wannier–Stark ladder”
(see Appendix).

APPENDIX

Let us return to Eq. (28). The solution to (28)
depends on the ω parameter in a very special way:
namely, this solution is a function of the z = n – ω/η

% E N P/N,( ) ω0N U X( )+ +=

dP
dt
-------

∂%
∂X
-------,

dX
dt
-------–

∂%
∂P
-------.= =

V
1
N
---- N

2
---- η t, Nsinsinh– const.= =

F
∂U
∂X
-------– ηN .–= =
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variable. It follows that the solution is the same at dif-
ferent n and ω pairs satisfying the requirement z =
const. This requirement can only be met if

(A.1)

that is, if set m comprises integer numbers.
It follows that, among the solutions to (13) and (28),

there exists a system of oscillating stationary solitons.
This is precisely the series of solutions that corresponds
to the Wannier–Stark ladder (A.1). Such solutions can
be written in the form

(A.2)

Solitons of this series with various numbers m have
identical profiles with centers displaced by m nodes.
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Abstract—A simple proof of the unconditional security of a relativistic quantum cryptosystem based on
orthogonal states is given. Limitations imposed by the special relativity theory allow the proof to be markedly
simplified as compared to the case of nonrelativistic cryptosystems based on nonorthogonal states. An impor-
tant point in the proposed protocol is a space-time structure of the quantum states, which is ignored in the non-
relativistic protocols using only the properties of the space of states of the information carriers. As a conse-
quence, the simplification is related to the inefficacy of using the collective measurements against an eavesdrop-
per, the allowance for which is an especially difficult task in the nonrelativistic case. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Nonrelativistic quantum cryptography, in contrast to
classical cryptography based on the laws of classical
physics, is based on the fundamental laws of nonrela-
tivistic quantum mechanics [1, 2]. Security of classical
cryptography is based on the unproven complexity of
calculating certain functions such as a discrete loga-
rithm. It is implied that the calculation of such func-
tions, as well as the inverse functions, are performed
using a physical device operating according to the laws
of classical physics. In addition, it is implicitly
assumed that the information transmission between
legal parties is provided by classical objects. Since the
laws of classical physics do not prohibit simultaneous
nonperturbing monitoring of any dynamic variables of
a classical system, it is impossible to provide for guar-
anteed detection of eavesdropper intervention in the
course of information transfer between legal parties.
For this reason, the security of classical cryptosystems
is based on the exponentially growing complexity of
calculating the key distribution, rather than on detect-
ing an eavesdropper attack during the key transmission.

The laws of classical physics provide only an
approximate description of reality. A more rigorous
description is provided by nonrelativistic quantum
mechanics. Using quantum mechanics, it is possible, in
principle, to realize a computational device (quantum
computer) possessing a greater computational power in
solving certain tasks as compared to classical computa-
tional facilities. The factorization problem encountered
in the key decoding by an eavesdropper, which is expo-
nentially complex (intolerable) for a classical com-
puter, is only polynomially complex (tolerable) for a
quantum computer [3]. Thus, the laws of nonrelativistic
quantum mechanics also do not guarantee the uncondi-
1063-7761/01/9205- $21.00 © 20871
tionally secure information exchange using well-
known classical algorithms. By unconditional security
we imply the secrecy based on prohibitions inherent in
the fundamental laws of nature, rather than on the tech-
nical (computational) complexities.

While prohibiting unconditionally secure classical
cryptography (in the aforementioned sense), quantum
mechanics offers possibilities for quantum cryptogra-
phy. Quantum cryptography is based on the possibility
of detecting attempts at eavesdropping. This possibility
is guaranteed by the laws of quantum mechanics in
cases when the information is transferred by quantum
systems.

Nonrelativistic quantum cryptography is based on
two circumstances dictated by postulates of nonrelativ-
istic quantum mechanics: (i) an unknown quantum
state cannot be duplicated (no-cloning theorem) [4];
(ii) it is impossible to obtain information about quan-
tum states belonging to a nonorthogonal basis set with-
out perturbing these states [5].

In nonrelativistic quantum mechanics, the latter pro-
hibition is not valid for orthogonal states. Moreover,
there is no prohibition for instantaneous nonperturba-
tion distinguishing between the orthogonal states. For
this reason, the use of orthogonal states for nonrelativ-
istic quantum cryptosystems is not even a subject for
discussion.

Nonrelativistic quantum cryptosystems make essen-
tially no use of the space-time specificity of quantum
states (since both the no-cloning theorem and the state-
ment concerning the impossibility of obtaining infor-
mation about the quantum states belonging to a nonor-
thogonal basis set without introducing perturbations
are of an absolutely general character). Nonrelativistic
quantum cryptography protocols employ only the prop-
001 MAIK “Nauka/Interperiodica”
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erties of the Hilbert space of states of the information
carriers. The effects of state transmission between
remote parties are insignificant and not considered
explicitly. Speaking more strictly, attempts at making
use of the space-time specificity of quantum states in
the absence of a limiting transmission speed apparently
cannot bring something essentially new to quantum
cryptography.

A strict proof of the unconditional security of a non-
relativistic quantum exchange protocol under condi-
tions when the behavior of both the eavesdropper and
the legal parties is restricted only to the laws of quan-
tum mechanics presents an extremely complicated task.
To date, several proofs of various degrees of complexity
were proposed based on various initial assumptions.
However, in view of the problem complexity, no com-
monly accepted opinion has yet been formed [6–9].

Nonrelativistic quantum mechanics, as well as clas-
sical physics, presents an approximate description of
the nature. A more adequate description, taking into
account both the space-time structure of quantum states
and restrictions imposed by the special relativity, is
provided by relativistic quantum theory. Since no ratio-
nal interpretation of relativistic quantum mechanics is
available, this theory arises as the quantum field theory
(QFT).

The QFT does not close the problem of nonrelativ-
istic quantum cryptography, because the quantum-field
system states are described (as well as in nonrelativistic
quantum mechanics) by rays in the physical Hilbert
space [10]. Since nonrelativistic quantum cryptography
protocols use only the properties of states in the Hilbert
space, these protocols survive in the QFT. The QFT can
ensure a principally new approach to cryptography
only provided that the space-time specificity of states
are explicitly taken into account in the protocols. In
other words, we must take into account that the sates,
albeit still described (as in nonrelativistic quantum
mechanics) by rays in the Hilbert space, are generated
by the field operators (more precisely, by the general-
ized functions with operator values) bearing informa-
tion about the space-time structure. The field operators
obey the commutation relationships reflecting the
microcausality principle. This principle is a conse-
quence of limitations imposed by the relativity, imply-
ing the absence of causal relationships for points sepa-
rated by a spacelike interval in Minkowskian space-
time. In addition, the QFT allows the effects of state
transmission in Minkowskian space-time to be explic-
itly taken into account and used in constructing the
cryptographic protocols.

Limitations imposed by the QFT and special relativ-
ity lead to a significant difference in some features of
the quantum information theory (for detail see [11, 12])
as compared to the nonrelativistic case. Limitations
imposed by the special relativity upon quantum mea-
surements were originally considered as long ago as in
1931 by Landau and Peierls [13]. The qualitative con-
JOURNAL OF EXPERIMENTAL
siderations formulated in that paper based on the uncer-
tainty relationship, together with the restriction of ulti-
mate speed, led to a conclusion that no precise determi-
nation of, for example, momentum within any finite
time interval is possible in the relativistic (in contrast to
the nonrelativistic) case.

Below we describe a simple example of an uncondi-
tionally secure relativistic quantum cryptosystem in a
noisy communication channel. The cryptosystem
makes use of the quantum field states (photons) as
information carriers. The more restrictive character of
the laws of relativistic QFT significantly simplifies the
proof of the unconditional security of the protocol as
compared to the nonrelativistic case. In addition, the
proposed scheme can be rather simply implemented in
experiment, in contrast to the unconditionally secure
exchange protocols in the nonrelativistic case, where an
essential role in the proof of security is played by collec-
tive measurements that are not provided with a clear
scheme of experimental realization. The proposed proto-
col explicitly employs the causal effects and makes use
only of the individual measurements.

The considerations presented below were inspired
by the paper by Goldenberg and Vaidman [14]. In our
opinion, the ideas formulated in that work were not
appreciated [15]. Moreover, subsequent developments
[16] reduced the approach essentially to a nonrelativis-
tic cryptosystem based on nonorthogonal states, thus
virtually rejecting the initial idea.

The main idea consists in that the “internal” degrees
of freedom of a quantum field (photon spirality) are
used for encoding the transmitter information, while
the spatial degrees of freedom are employed for detect-
ing eavesdropper intervention. This is an essentially
new circumstance as compared to the nonrelativistic
case, which allows eavesdropper attacks to be detected
(with an allowance for the special relativity require-
ments) by measuring the time delay of the state trans-
mitted and ensures that the eavesdropper would obtain
zero information. The fact that the transmitted informa-
tion represents the quantum field states is also essential
for the protocol.

The QFT allows even orthogonal states to be used in
the cryptosystems. Since the system states in the rela-
tivistic (as well as in the nonrelativistic) case are
described by rays in the Hilbert space of states, there
are still valid prohibitions concerning unknown state
cloning and the nonperturbing reliable differentiation
of nonorthogonal states (these theorems are proven
using only properties of the space of states).

Important for the following, there are two circum-
stances dictated by the QFT (for detail, see [17, 18]).

1. For reliably distinguishing between two orthogo-
nal states of the free quantum field, it is necessary that
the entire Minkowskian space-time region would be
accessible where the state carrier is nonzero. The
orthogonal states of the free quantum field can be for-
mally reliably distinguished without introducing errors
 AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001
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only during an infinite time because of their principal
unlocalizability related to the impossibility of con-
structing the field states with a compact carrier in the
coordinate space, which would be generated in the
four-dimensional space of momentum by the carriers
preset on a mass surface.

2. The theory permits the existence of free quantum
fields arbitrarily strongly localized in the space-time
(i.e., with any degree of localization and the decay rate
arbitrarily close to exponential). The principal unlocal-
izability is dictated by the local character of the QFT.

The latter circumstance is essential for cryptogra-
phy by admitting the formation of arbitrarily localized
states possessing preset arbitrarily small and arbitrarily
steep (close to exponential) tails outside the space-time
region controlled by the legal parties. The probability
of distinguishing between two orthogonal states in the
quantum field may vary from 1/2 (indistinguishable
states) to 1 (reliably distinguishable states) due to the
effects of field transmission from the controlled
Minkowskian space-time region to a region accessible
for the measurements. More precisely, the probabilities
of obtaining a result during a finite time (due to the for-
mation of strongly localized states) may differ from 1/2
or 1 by a preset arbitrarily small value. This parameter
can be selected as the smallest in the problem.

The existence of a limiting transmission speed for
both the quantum field and classical objects (including
measuring ones), the access to the whole region of the
field comprising two arbitrarily strongly localized but
spatially separated “halves” of the state is principally
possible only during a finite time. Therefore, the prob-
ability of reliably distinguishing the two states varies
from 1/2 to 1 also within a finite time. A strong local-
ization of the two “halves” spaced by τd allows the pro-
tocol to be written so as to provide that the probability
is P(τ) = 1/2 for 0 ≤ τ < τd and increases in a jumplike man-
ner up to P(τ) = 1 for τ = τd (within the scale ∆τ ! τd of
the state localization). The jump smearing, which is
controlled by localizing each half of the state, can be
made arbitrarily exponentially small.

Since relativistic quantum cryptography explicitly
employs the space-time structure of states, the proof of
security cannot be conducted without considering a
particular system geometry. This geometry must be
explicitly taken into account in contrast to the nonrela-
tivistic case using only the structure of the space of
states.

2. MEASUREMENTS INVOLVED
IN THE PROTOCOL

Now we will describe the measurements used in the
protocol. Since it is necessary to take into account a
particular geometry, we will consider a simple one-
dimensional model reflecting all features stipulated by
the QFT. Let us consider the particles (field quanta)
possessing a given spectrum and moving at the speed of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
light over a one-dimensional mass surface (or the front
part of a one-dimensional light cone in the momentum

representation, k2 –  = 0). The two legal parties
(A and B) control the vicinity of points xA and xB,
respectively (see the figure). The size of controlled
regions in the vicinity of these points is determined by
the localization of states and can be rendered arbitrarily
small (on the order of the state localization). In this
geometry, it is sufficient to consider only states trans-
mitted from xA to xB with a momentum k > 0. All the
sates are determined on a single branch of the light cone
τ = x – t (c = 1). The Hilbert space of carrier states is
*k ⊗  C2, where *k refers to the spatial and C2, to the
internal (polarization) degrees of freedom.

Let us consider a pair of orthogonal states

(1)

where |±〉 ∈  C2 are the orthogonal basis states and

In the coordinate representation, the states on the
branch of a one-dimensional light cone can be written
as

(2)

The basis set {|τ〉} is nonorthogonal to:

〈τ|τ '〉 = δ+(τ – τ') ≠ δ(τ – τ').

A measurement capable of reliably distinguishing
the given pair of orthogonal states is represented by the
expansion of unity in *k ⊗  C2 (and, by the same token,

k0
2

ψ0 1,| 〉 1

2
------- f k( ) k| 〉

0

∞

∫ +| 〉 –| 〉±( )dk,⊗=

k k'〈 〉 δ k k'–( ), k k' 0, f k( ) 2 kd

0

∞

∫>, 1.= =

ψ0 1,| 〉 1

2
------- f τ( ) τ| 〉

∞–

∞

∫ +| 〉 –| 〉±( )dτ ,⊗=

τ x t,–=

τ| 〉 e ikτ– k| 〉 k, f τ( )d

0

∞

∫ eikτ f k( ) k.d

0

∞

∫= =
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t

τch

τd τs

xA xB
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in *τ ⊗  C2, where *τ is the space isomorphous to *k

and spun on the basis set {|τ〉}.
The measurement is represented as

(3)

(4)

Note that measurement (4) is nonlocal on the light
cone.

The carrier of state f(τ) on the light cone can be
selected arbitrarily strongly localized in the limit as
|f(τ)|2  δ(τ). Strictly speaking, according to the
QFT, the states preset on a mass surface cannot possess
a compact carrier in Minkowskian space-time. How-
ever, it is possible to construct an arbitrarily strongly
localized state with the tails arbitrarily close to expo-
nential [18]. The latter circumstance implies that we
may select a time “window” ∆τ such that the probabil-
ity of detecting the state in this time interval would be
arbitrarily close to unity. Let us assume that the state (in
fact, the norm of the f(τ) packet) and the interval are
selected so that the probability of detection outside the
time window ∆τ (due to the tails of the state not accom-
modated within ∆τ) can be made arbitrarily (exponen-
tially) close to zero. This parameter will be considered
as the smallest in the problem. More precisely, the
probability of the results of measurements of the input
states |ψ0, 1〉  within the time window ∆τ in channel 0
(corresponding to 30) and channel 1 (corresponding to
31) has the form (see formula (4)):

where the parameter δ is related to the tail of the state as

}0 }1+ Ik I
C2,⊗=

}0 1, Ik 30 1,⊗ Iτ 30 1, ,⊗= =

30 0| 〉 0〈 | , 31 1| 〉 1〈 | ,= =

0| 〉 1

2
------- +| 〉 –| 〉+( ), 1| 〉 1

2
------- +| 〉 –| 〉–( ),= =

Ik k| 〉 k〈 | kd

0

∞

∫ Iτ τ| 〉 τ〈 | τd

∞–

∞

∫ } dτ( ),

∞–

∞

∫= = = =

} dτ( ) e ikτ– k| 〉dk

0

∞

∫ 
 
 

eik'τ k'〈 |dk'

0

∞

∫ 
 
 

dτ .=

Pr ∆τ ψ0 1,,{ }

=  Tr } dτ( )
∆τ–

∆τ

∫ 
 
 

30 1,⊗
 
 
 

ψ0 1,| 〉 ψ0 1,〈 |
 
 
 

=  f τ( ) 2 τd

∆τ–

∆τ

∫ 1 δ,–=

f τ( ) 2 τd

τ ∆τ>
∫ δ 0.=
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In other words, the problem has two independent
parameters: the window ∆τ characterizing localization
of the state (this interval is selected so as to provide that
the integral of the squared amplitude of the state f(τ)
would be arbitrarily close to unity) and the spacing τd

characterizing the separation of two “halves” of the
state (this quantity must be selected such that the tails
of the two “halves” would not touch one another to
within a preset accuracy, ∆τ ! τd). For convenience,
below we will consider the state carrier as compact
(with an allowance for the above restrictions) because
this assumption will not affect the final results.

It is necessary to point out the following. The mea-
surement under consideration cannot be considered as
a measurement lasting for the time ∆τ. For every event,
the result of a measurement (i.e., the reading of a clas-
sical instrument such as a photodetector with a suffi-
ciently small (formally infinitesimal) time constant
operating in a standby mode) appears at a random time
instant within (τ, τ + dτ) at a probability density of

This interpretation is natural and agrees with the classi-
cal limit, whereby a classical signal is measured with a
time shape of f(τ).

Let the state |ψ0 〉  (or |ψ1〉) be prepared by the time
instant τi (with an accuracy of ∆τ, for which purpose it
is necessary to control a space-time region with a size
of ∆τ):

(5)

This is followed by the unitary transformation indepen-
dent of the state:

(6)

The accuracy of the moment of preparation is deter-
mined by the width of the state carrier f(τ).

The matrix elements of the unitary operator are as
follows:

= (7)

Pr dτ ψ0 1,| 〉,{ }

=  Tr } dτ( )( ) 30 1, ) ψ0 1,| 〉 ψ0 1,〈 |⊗({ } f τ( ) 2dτ .=

ψ0 1,| 〉 1

2
------- f τ τ i–( ) τ| 〉 +| 〉 –| 〉±( )⊗( ) τ .d

∞–

∞

∫=

ψ0 1, τd( )| 〉 U ψ0 1,| 〉=

=  
1

2
------- f τ τ i– τd–( ) τ| 〉 +| 〉⊗(

∞–

∞

∫
± f τ τ i–( ) τ| 〉 –| 〉 )dτ .⊗

+〈 | τ '〈 |U τ| 〉 +| 〉 δ+ τ τ '– τd–( )=

ik τ τ '– τd–( ){ } ,exp

0

∞

∫
–〈 | τ '〈 |U τ| 〉 –| 〉 δ+ τ τ '–( ), ±〈 | τ '〈 |U τ| 〉 +−| 〉 0.==
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This unitary transformation is nonlocal on the light
cone τ = x – t (for τd ≠ 0); the latter condition implies
that realization of this transformation requires access to
a region with the size τd (to within an accuracy of ∆τ)
on the light cone. The physical meaning of this unitary
transformation corresponds to a time shift (delay) of a
“half” of the state with a polarization component |–〉 .
The transformation realized for a fixed x (i.e., locally in
the space of coordinates), requires a time ∆t = τd

(because τ = x – t); the transformation performed at a
time instant (but nonlocally in space) requires a coordi-
nate space region ∆x = cτd (c = 1).

Note that the space-time interval τd on the light cone
branch is independent of the reference frame because
the light cone is invariant with respect to the Lorentz
transformation. For this reason, an eavesdropper cannot
make use of the twin paradox [17].

The stretched sates |ψ0(τd)〉  and |ψ1(τd)〉  are orthog-
onal. However, the property of being orthogonal is non-
local, which means that the verification of orthogonal-
ity requires access to a space-time region (interval) ≥τd

with an accuracy of ∆τ  0. In other words, the
orthogonality is a nonlocal property in the Hilbert
space *τ, meaning that all the states |τ〉 on which *τ is
spun (or the space-time region τ ≥ τd) must be accessi-
ble.

All the nonrelativistic quantum cryptography proto-
cols imply that the Hilbert spaces of states are always
accessible to both legal parties and an eavesdropper. In
the relativistic case, the access can be controlled using
the effects of state transmission from the regions mon-
itored by legal parties to the region accessible to the
eavesdropper. The “extension” of states and the limita-
tion of ultimate transmission speed for both classical
and quantum states allows the protocol to be written so
as to provide that the whole state is never accessible to
the eavesdropper. More strictly speaking, reaching the
whole state requires that the entire interval in which the
state is present would be accessible. However, attempts
at accessing a finite space-time region will result in an
unavoidable delay in the state detection by a legal party
because of the finiteness of the speed of light. This cir-
cumstance makes insignificant the collective measure-
ments, which are effective in the nonrelativistic case
(where the entire space of states is accessible for all
parties involved in the protocol) and are so difficult to
consider in the proof of unconditional security. Thus,
we may consider only the individual measurements in
every transmission, since any attempt at eavesdropping
is recognized by a delay in each message detection by
the legal party.

If a 2T-wide interval T0 centered at τ0, such that T0 =
(–T + τ0, τ0 + T) and 2T < τd + ∆τ, is accessible, then no
one measurement on the states |ψ0(τd)〉  and |ψ1(τd)〉  will
distinguish these states (which therefore appear as the
same state). This is formally manifested by restriction
of the density matrix to a subspace *  spun on the |τ〉T0
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
states with the carrier belonging to the T0 interval. The
density matrix is

(8)

If the interval T0 < τd + ∆τ does not simultaneously
cover the carriers of states with various polarizations
(see figure), then only one of the functions f(τ) or f(τ –
τd) is nonzero. Thus, the measurements in the space-
time region (in the interval T0 < τd + ∆τ) are incapable
of distinguishing the orthogonal states. Therefore, the
probability of distinguishing these states is 1/2 (simple
coin tossing). The limitation of the ultimate transmis-
sion speed implies that the time of access to any inter-
val τd cannot be smaller than the magnitude of this
interval.

3. DESCRIPTION OF PROTOCOL

Legal parties A and B (henceforth “Alice” and
“Bob”) can monitor the vicinity of points xA and xB

(xA < xB), respectively (see figure). The clocks of Alice
and Bob are assumed to be synchronized. The size of
the monitored regions must be ∆xA, B ~ ∆τ. The known
width of the state carrier (∆τ  0) is the smallest
parameter in the problem. The channel length (xB –
xA = τch) is also known (although the absolute accuracy
is not required).

1. Alice prepares a message corresponding to states
0 or 1 at a random time instant τi (to within ∆τ):

(9)

The integration with respect to dτ in (9) is formally per-
formed over the entire branch of the light cone, but
actually the state is formed with the participation of
only the basis set vectors |τ〉 from the interval ∆τ.

2. A half of the state (component |+〉) is submitted to
the channel, while another half (component |–〉) is kept
as described by the unitary transformation UA(τd) (this
interpretation of the unitary transformation is quite nat-
ural because UA(τd) has matrix elements with a shift

ρT Tr } dτ( )
T0

∫ 
 
 

I
C2⊗

 
 
 

ψ0 1, τd( )| 〉 ψ0 1, τd( )〈 |
 
 
 

=

=  
1
2
--- f τ( ) 2 τd

T0

∫ +| 〉 +〈 |⊗

+
1
2
--- f τ τ d–( ) 2 τd

T0

∫ –| 〉 –〈 | .⊗

ψ0 1,| 〉 1

2
------- f τ τ i– τ A–( ) τ| 〉

∞–

∞

∫ +| 〉 –| 〉±( )dτ ,⊗=

τ A xA.=
SICS      Vol. 92      No. 5      2001



876 MOLOTKOV, NAZIN
along the light cone only for components with the
polarization |+〉): 

(10)

This transformation is nonlocal and its realization in
the vicinity of xA requires the time τd irrespective of the
state (0 or 1).

3. Transmission of the state message from Alice to
Bob is formally described by the unitary translation
U(τch) along the branch of the light cone for a time
interval τch (τch = xB – xA):

(11)

4. Bob performs the unitary transformation UB(–τd),
which is independent of the input state and combines
the two “halves” together (a back shift of the |+〉  com-
ponent toward |–〉  can be implemented using beam
splitters, mirrors, and delay lines):

(12)

The form of matrix elements of the operator UB(–τd) is
analogous to that for the operator UA(τd) with the sub-
stitutionτd  –τd:

5. Upon accomplishing the transformation UB(–τd),
Bob performs the measurement realizing the unit
expansion according to (3) and (4). The space of the
measurement results represents the set Θ = {i, τ : i = 0,
1; τ ∈  (–∞, ∞)} (where index i = 0,1 describes the
events in channels 0 or 1, respectively):

(13)

The measurement describes the probability of obtain-
ing the result within the interval ∆τ in the channel 0 or
1, which is given by the following expression:

ψ0 1, τd( )| 〉 UA τd( ) ψ0 1,| 〉=

=  
1

2
------- f τ τ i– τ A– τd–( ) +| 〉(

∞–

∞

∫
± f τ τ i– τ A–( ) –| 〉 ) τ| 〉dτ .⊗

ψ0 1, τch( )| 〉 U τch( ) ψ0 1, τd( )| 〉=

=  
1

2
------- f τ τ i– τ A– τd τch––( ) +| 〉(

∞–

∞

∫
± f τ τ i– τ A– τch–( ) –| 〉 ) τ| 〉dτ .⊗

UB τd–( ) ψ0 1, τch( )| 〉

=  
1

2
------- f τ τ i– τ A– τch–( ) +| 〉 –| 〉±( ) τ| 〉 τ .d⊗

∞–

∞

∫

+〈 | τ '〈 |UB τd–( ) τ| 〉 +| 〉 δ+ τ τ '– τd–( ),=

–〈 | τ '〈 |UB τd–( ) τ| 〉 –| 〉 δ+ τ τ '–( ),=

±〈 | τ '〈 |UB τd–( ) τ| 〉 +−| 〉 0.=

} dτ( )
∞–

∞

∫ 30 31+( )⊗ Iτ I
C2.⊗=
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(14)

The result is nonzero if the interval ∆τ covers the state
carrier. Since the states are orthogonal, the events in
Bob’s detection channels uniquely coincides with
Alice’s messages (noise ignored).

The selection of τd > τch implies that only a part of
the state is always available in the channel (only a part
of the space of states *τ is accessible). The access to a
part of the space of states guarantees that the informa-
tion about the state in the channel is zero (the probabil-
ity of distinguishing states is 1/2). Because the ultimate
transmission speed is limited, reaching the second
“half” of the state requires access to the interval τ > τd >
τch, which unavoidably leads to a delay in the moment
of message detection at Bob’s site

6. Bob communicates to Alice (via a public channel)
the moment of detecting the τB state (because the f(τ)
carrier width is small, this moment is known to within
∆τ  0). If there were no detection at all, the given
message is rejected. Upon receiving Bob’s message on
the detection time, Alice communicates the emission
time τi. If the detection time at Bob’s site is τB = τi +
τd + τch (to within ∆τ), the transmission is accepted.
Should a delay in detection be found (exceeding τd),
the transmission attempt is rejected.

A point of principal importance is that the absence
of delay in detection at Bob’s site guarantees that an
eavesdropper has zero information about the state
transmitted by Alice (with a 1/2 probability of distin-
guishing the states). Deviation of the probability from
1/2 is determined by exponential tails of the state which
can be made arbitrarily small by stretching the state
“halves” (increasing τd) In the absence of delay of a
compact state carrier f(τ), the information gained by the
eavesdropper on the transmitted state is definitely zero.

7. An eavesdropper has no information about the
remaining messages, but the channel noise (decoher-
ence) results in that the 0 and 1 sequence available to
the legal parties is not yet identical. The discrepancy
can be brought both by eavesdropping attempts and by
natural noise. For example, the eavesdropper may
detect the first “half” of the state transmitted by Alice.
This registration can be performed within a time
∆τ  0 (this allows the eavesdropper to determine i).
Then, immediately upon detecting the message, the
eavesdropper prepares an arbitrary message with the
f(τ) carrier, which, while not producing any detection
delay at Bob’s site, will be inconsistent with the state
transmitted by Alice and interpreted as the channel
noise. According to (8), the probability of determining
the moment of message transmission by the eavesdrop-
per is 1/2 (because only half of the state is accessible);
note that the fact of signal detection by the eavesdrop-
per provides zero information about the state, the prob-
ability of guessing the state being 1/2. The complete

Pr ∆τ( ){ } f τ τ i– τ A– τch–( ) 2 τ .d

∆τ
∫=
 AND THEORETICAL PHYSICS      Vol. 92      No. 5      2001



A SIMPLE PROOF OF UNCONDITIONAL SECURITY 877
probability of correctly determining the state transmit-
ted via the channel is 1/2 × 1/2 = 1/4. Note that the
probability of correctly guessing the state in each mes-
sage by the eavesdropper doing nothing at all (coin
tossing) is also 1/2. At first glance, this is rather unex-
pected: the eavesdropper has access to the communica-
tion channel, but the probability of detecting states is
reduced by half as compared to the case of guessing
without access to the channel. However, there is noth-
ing surprising in this fact because simple guessing
refers to one of the two possible states (0 or 1). In the
case of detection, it is necessary to determine addition-
ally the moment i of message preparation (in order to
avoid the message being rejected by the legal parties),
while the probability of detecting the state half is 1/2.
In the case of access to the communication channel, the
probability of misinterpretation of the transmitted state
(3/4) includes the probability (1/2) of incorrect deter-
mination of the very fact of any message preparation
within the given time interval. Since the fact of detect-
ing a message provides zero information about the
state, the eavesdropper may only guess it, the probabil-
ity of which is 1/2.

Thus, if the legal parties accept only messages
received without delay (more precisely, if a delay does
not exceed τd + τch), this fact guarantees that the proba-
bility of determining the transmitted state by an eaves-
dropper does not exceed 1/4, which is only half of the
probability of correct guessing without intervention
into the communication channel.

Thus, there arises a quite curious situation not
encountered in the nonrelativistic case. From the stand-
point of an eavesdropper, the purpose of which is to
obtain maximum information about the key sequence at
a minimum probability of being disclosed by legal par-
ties, a correct eavesdropping strategy consists in
attempts of simply guessing (which requires no access
to the secure channel) of what is sent in each transmis-
sion event. Here, it is sufficient to access only the clas-
sical (public) channel so as to know the total number of
received messages; this channel is accessible to all par-
ties in the quantum cryptography tasks. In this case, the
probability of disclosing the eavesdropper is zero
because no disturbances at all are introduced into the
communication channel. The intervention into the
communication channel only has sense when the prob-
ability of obtaining the required information (per mes-
sage accepted by the legal parties) exceeds the proba-
bility of coin tossing (1/2).

Thus, the maximum probability that each state trans-
mission attempt undertaken by legal parties is correctly
identified by an eavesdropper does not exceed 1/2.

8. Now we have only to solve the problem of key
identity at the legal parties. Let us first consider a noise-
less communication channel. Upon termination of the
data transmission session involving 2N messages, Alice
and Bob perform a procedure consisting of m < 2N runs
of random hashing (parity check with a random bit
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sequence; for detail see [19]). After each run, the length
of the 2N-bit sequence is reduced by two bits. If the par-
ities coincide in all m hashing runs, the probability that
the remaining 2N – 2m sequences may differ does not
exceed 2–m. This implies that Alice and Bob possess the
same key with a probability exponentially approaching
unity. According to the above considerations, the prob-
ability that an eavesdropper obtained reliable informa-
tion about the key and remained undisclosed does not
exceed 2–2(N – m).

Now let the channel be noisy, which is manifested
by detection errors at Bob’s site, for example, as a result
of the polarization rotation. Let the probability of this
event (Alice sends 0, Bob detects 1 or vice versa) be
p < 1. As above, the legal users accept only messages
involving no time delay. Upon accomplishing the ses-
sion involving 4N messages accepted, Alice and Bob
decode 2N messages and evaluate the level of noise in
the channel (p value). The knowledge of the probability
of error in sending a single bit allows, in principle (pro-
vided a sufficiently long sequence is used), selecting an
appropriate classical block code [20] that effectively
reduces the error of transmitting coded words down to
an arbitrarily low level.

For example, Alice communicates to Bob (via the
public channel) only the numbers of messages trans-
mitting state 1 (combined in groups of 2k messages)
and the same for state 0 messages. This yields 2k-sized
blocks (coded 1 and 0). Then, using a majority vote,
Bob proves the errors in each group (this coding allows
k – 1 errors to be corrected), after which the blocks con-
taining k errors are rejected (Bob informs Alice about
the numbers of these groups via the public channel).
The probability of error in the remaining groups does
not exceed pk ! p. Now the legal parties obtain a

sequence of 2 -sized groups (with new  and ). This
is followed by a hashing procedure of m runs analogous to

that described above, which yields a 2(  – m)-long
sequence. The probability that the remaining sequence

with the length 2(  – m) is identical for both parties
(provided that the parities in these sequences coincide

in all m hashing runs) is not less than 1 – . 

The block coding is only necessary in order to
increase the probability of survival for the sequence
retained upon hashing. The hashing procedure can be
performed for the initial (rather than block) sequence.
However, in this case the probability that hashing will
reveal no parity breakdowns in the noisy channel is
small. Nevertheless, a sequence that has passed the test
is secure and identical (to within the above probabili-
ties). The probability that an eavesdropper obtained
reliable information about the key and remained undis-

closed is certainly less than  (it insufficient to
know one bit in each code group). The proposed simple
coding scheme is apparently not optimum but provides

Ñ 1̃ 0̃

Ñ

Ñ

2 Ñ m–( )–

2 2 Ñ m–( )–
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a simple and clear formulation of the relativistic quan-
tum cryptography protocol.
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Abstract—The K-entropy and the tm time of dynamical memory (the time of forgetting initial conditions during
numerical integration) of a classical system of particles whose interactions are governed by the Lennard-Jones
potential were calculated by the method of molecular dynamics. The K value was a characteristic of a system
of many particles, and the tm value proved to increase logarithmically as fluctuations of the total energy of the
system decreased; that is, as the accuracy of numerical integration increased. Two different K-entropy values
corresponding to the same total energy of the system were found to exist, namely, Ke for the equilibrium and

Kn for the nonequilibrium state. The rate of kinetic energy relaxation ( ) was shown to equal Kn, and the Kn

value was found to be a more fundamental characteristic than . The density dependences of Ke (monotonic)
and Kn (nonmonotonic) were calculated. The transition from dynamical (Newtonian) correlations to stochastic
for the velocity autocorrelation function was considered. The reasons for the finiteness of dynamical memory
in physical processes are discussed. The duration of dynamical correlations in real systems is limited by quan-
tum uncertainty and is of the order of picoseconds. © 2001 MAIK “Nauka/Interperiodica”.

tr
1–

tr
1–
1. INTRODUCTION

The arising of irreversibility, stochasticity, and
chaos in dynamical systems has been studied in many
works (e.g., see [1–20] and the references cited
therein). Of great interest is the divergence of trajecto-
ries and the K-entropy characterizing this divergence
(the Krylov–Kolmogorov entropy and the mean maxi-
mum Lyapunov exponent). The K value is also the rate
of entropy increase [1, 9, 10], that is, K–1 is an important
relaxation time.

The τpr time of behavior predictability was intro-
duced in [3–5]. This value characterizes the time inter-
val for which the future behavior of a dynamical system
can be predicted from the initial conditions by deter-
ministic dynamical equations determining the evolu-
tion of the system. Mentioned among the reasons for
the finiteness of τpr [3–7] were measurement noise,
fluctuation forces, and inaccurate knowledge of the dif-
ferential equations that describe the dynamical system.
The value to which τpr tends in the limit of negligibly
low measurement and ignorance noises was called
the predictability horizon, τh. Both τpr and τh are pro-

portional to , where λ+ is the largest positive
Lyapunov exponent, and the proportionality factor log-
arithmically depends on the noise level. It was also

λ+
1–
1063-7761/01/9205- $21.00 © 20879
assumed that the correlation time of the system is τc ≈
0.5  [3–5].

Zaslavskiœ [1] uses the terms “K-entropy” and “cor-
relation splitting time τ.” The K value corresponds to
the λ+ value averaged over the phase space, and τ cor-
responds to τh. It was, however, assumed that τ = K–1.

A particular case of dynamical systems is classical
many-particle systems. Such systems are numerically
studied by the method of molecular dynamics. The idea
of the method is very simple: all possible classical sys-
tems and media are simulated by a set of N moving
atoms and/or molecules, which interact with each other
(e.g., see [10, 11, 18, 21–25]). The numerical integra-
tion of the corresponding system of Newton equations

(1)

or

(2a)

(2b)

λ+
1–

mi

d2ri t( )
dt2

---------------- Fi r t( )[ ] ,=

mi

dvi t( )
dt

-------------- Fi r t( )[ ] ,=

dri t( )
dt

-------------- vi t( ),=
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is integrated for each particle to determine the trajecto-
ries of all particles. Here, mi, vi, ri, and Fi are the mass,
velocity, and coordinate of the ith particle and the force
acting on this particle, respectively (i = 1, 2, …, N); the
vi and ri values explicitly depend only on time t; Fi only
depends on the coordinates of particles; r(t) is the set of the
coordinates of all particles, r(t) = {r1(t), r2(t), …, rN(t)};
v(t) is defines similarly; and

(3)

where U is the potential energy. For instance, for a Φ(r)
pair interparticle interaction potential,

(4)

Function U (forces F) are assumed to be given in the
method of molecular dynamics. The total energy of the
system (E) is the sum of the kinetic T and potential U
energies,

(5)

(6)

The solution to system (1) or (2) gives the trajectories
of particles {r(t), v(t)}.

Set (1) or (2) is exponentially unstable for a system
comprising more than two particles (e.g., see [1, 9, 10,
18, 21–24]). The parameter that determines the degree
of instability, that is, the rate of divergence of initially
close phase trajectories, is the K-entropy. The
K-entropy values were calculated by the method of
molecular dynamics for system of neutral [10–14, 17–
20] and charged particles of two- [26] and one-compo-
nent [27–29] plasmas. In [30], the notion of dynamical
memory time tm (the time of forgetting initial condi-
tions) was introduced. The tm value is determined by
the accuracy of the numerical integration scheme [17–
19, 26–30]. The tm and th values [3–5] are similar in
nature, their difference is caused by the difference
between the noises to which they correspond. The
K-entropy values were calculated in [10–14, 17–20,
26–30] for equilibrium systems only. In [1, 3–30], no
distinction was drawn between equilibrium and non-
equilibrium systems.

In this work, we consider both equilibrium and non-
equilibrium two- and three-dimensional systems of
particles whose interactions are governed by the Len-
nard-Jones potential

(7)

We use reduced units in which m = ε = σ = 1, and time
is measured in (mσ2/ε)1/2 units. For instance, for argon,
ε = 1.65324 × 10–21 J, σ = 3.405 × 10–10 m, m = 6.64 ×

Fi
∂

∂ri

-------U r1 r2 … rN, , ,( ),–=

U r1 r2 … rN, , ,( ) Φ ri r j–( ).
i j>
∑=

E T U ,+=

T
mv i

2

2
----------.

i 1=

N

∑=

U 4ε r
σ
--- 

 
12 r

σ
--- 

 
6

– .=
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10–26 kg, and (mσ2/ε)1/2 = 2.16 × 10–12 s. The calcula-
tions were performed in the density range ρ = mn =
(0.1–1.1)mσ–1/3. Periodic boundary conditions were
used. The number of particles in the principal cell was
varied in the range N = 16–216. In Section 2, the K and
tm values for an equilibrium system are calculated and
the dependence of the Ktm value on total system energy
E fluctuations is determined. In Section 3, the existence
of two different K-entropy values for the equilibrium
and nonequilibrium states is considered. The rate of
kinetic energy relaxation is shown to coincide with the
nonequilibrium K-entropy value. In Section 4, we
describe the transition of time correlations from
dynamical to stochastic as the time interval increases.
The physical meaning of the maximum dynamical
memory time in real systems is related to low but finite
quantum uncertainty noises, which exist in all classical
systems. This result is directly related to the Landau
hypothesis [2] of the quantum nature of irreversibility.

2. EQUILIBRIUM SYSTEM

2.1. Model and Method of Calculations

For a given U function and particles of the same
mass m and for identical initial conditions correspond-
ing to the ith point on an equilibrium molecular-dynam-
ical trajectory, solutions {r(t), v(t)} to system (2) are
found in steps ∆t and trajectories {r'(t), v'(t)} are cal-
culated in steps ∆t'. Averaged differences of the coordi-
nates (velocities) of the first and second trajectories are
determined at coinciding time moments,

(8)

To improve accuracy, averaging over i, i = 1, 2, …, M is
also performed. In some time tl (this value should be
considered separately), the differences become expo-
nentially increasing (Fig. 1),

(9)

The K value is the K-entropy, and the A and B values are
determined by the difference of ∆t  and ∆t '. At

(10)

where T is the temperature, saturation is reached,

(11)

where 3kT/m is the square of thermal velocity vT and D
is the diffusion coefficient. Estimates show that

∆v 2 t( )〈 〉 1
N
---- v j t( ) v j' t( )–( )2

,
j

N

∑=

∆r2 t( )〈 〉 1
N
---- r j t( ) r j' t( )–( )2

j

N

∑ .=

∆v 2 t( )〈 〉 A Kt( ), ∆r2 t( )〈 〉exp B Kt( ).exp= =

t tm'> 1
K
---- 6kT

m
--------- 1

A
--- 

  ,ln≈

∆v 2 t( )〈 〉 2 v 2〈 〉 6kT /m,= =

∆r2 t( )〈 〉 6D t tm–( ) ∆r2 tm( )〈 〉 ,+=
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〈∆r2(tm)〉  = rav , where rav = ( nσ)
–1

 is the mean path
of particles between collisions.

The dynamical memory time is determined by cal-
culating  at the same ∆t  value and different ∆t ' val-

ues of ∆t/2, ∆t/5, ∆t/10, etc. (Fig. 2). The limiting 
value when ∆t '/∆t  0 is the dynamical memory time
tm for a given system and the selected numerical inte-
gration step ∆t. During numerical integration, the sys-
tem completely “forgets” its initial conditions in time
tm, and the calculated molecular-dynamical trajectory
completely ceases to correlate with the initial Newto-
nian trajectory.

The K-entropy (and tm) values weakly depend on N
[20] starting with N ~ 10 (Fig. 3).

2.2. K-entropy and Memory Time

The K values are interpreted in the literature [1] as
the rate of entropy S changes caused by dynamical mix-
ing of trajectories, and the K–1 value is assigned the
meaning of the time of correlation decoupling (see also
[9, 10]). To consider these statements in the context of
molecular dynamics, let us briefly recall the reasoning
given in [1, 9, 10].

The entropy S of a subsystem is given by [1]

(12)

where ∆Γ is the size of the phase space region where
the subsystem resides in equilibrium for almost the
whole time. Consider the evolution of some small ini-
tially compact ∆Γ0 phase volume element. By virtue of
the Liouville theorem,

(13)

The structure of the phase volume, however, changes.
The trajectories that had close points within t ∆Γ0 as the
initial conditions exponentially diverge as time passes.
As the volume remains constant, its structure becomes
increasingly cut and stretched, and hollows are formed
inside. The envelope of this structure bounds increas-
ingly large volume . From (9), we obtain the esti-
mate

(14)

and if a formula of the ∆Γ = (4/3)πr3 type is used, then
h coincides with the K entropy within a factor. It fol-
lows from (12) and (14) that h ~ K is indeed the rate of
entropy changes caused by dynamical mixing of trajec-
tories [1, 9, 10].

It follows from our calculations that time tm can be
interpreted as the time during which phase volume
∆Γ(t) attains its maximum value ∆Γmax, and the entropy
reaches the maximum value that corresponds to the
equilibrium phase trajectory which is studied in molec-
ular dynamics calculations. In other words, time tm is

2

tm'

tm'

S k ∆Γ ,ln=

∆Γ t( ) ∆Γ0.=

∆Γ t( )

∆Γ t( ) ∆Γ0eht,=
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Fig. 1. Normalized averaged differences of (1) velocities
〈∆v 2(t)〉  and (2) coordinates 〈∆r2(t)〉  at coinciding time
moments along two trajectories calculated for identical ini-
tial conditions in steps ∆t = 0.001 and ∆t' = 0.0001; L is the
calculation cell edge length, N = 64, ρ = 0.5, and T = 0.44;
three-dimensional system (d = 3).
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Fig. 3. Dependence of K-entropy on the number of particles
N at ρ = 0.5, T = 0.44, and d = 3.
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the time of complete filling of the phase volume in
which the subsystem (the molecular-dynamics cell at
given temperature T) or, more exactly, the phase point
representing this system travels along the molecular-
dynamics trajectory. During each subsequent tm inter-
val of this trajectory, the procedure of complete filling
of the ∆Γmax phase volume repeats itself.

1
2

10–4

Ktm

10–3 10–2
8

12

16

20

∆E2〈 〉( ) E⁄

10–410–5 10–3 10–2

∆t

Fig. 4. Dependence of the Ktm value on the relative system

total energy fluctuation 〈∆E2〉1/2/E and integration step ∆t:
(1) Lennard-Jones system with N = 64, ρ = 0.5, T = 0.44, and

d = 3 and (2) nonideal plasma [26] (only the 
axis corresponds to the plasma).

∆E
2〈 〉 /E

1
2

100
0

〈∆E2
2〉/〈∆E2

1〉

K(tm1 – tm2)

101 102 103 104 105

2

4

6

8

10

Fig. 5. Dependence of K(tm1 – tm2) on / :

(1) Lennard-Jones system with N = 64, ρ = 0.5, T = 0.44,
and d = 3 and (2) nonideal plasma [26].
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JOURNAL OF EXPERIMENTAL
By the meaning of calculations, tm is also the time of
correlation decoupling (in terms of [1]); that is, tm = τ.
Clearly, contrary to the τ = K–1 assumption made in [1],
the K–1 and tm values may be substantially different.
There is not only a qualitative but also a fundamental
difference between K–1 and tm. The K value is a charac-
teristic of the many-particle system under study and
does not depend on the accuracy and scheme of numer-
ical integration. In contrast, the tm value depends on the
accuracy of numerical integration, which, in this case,
plays the role of a coarsening process.

In [1], coarsening parameter ε was introduced
which was supposed to decrease to zero in the end of
derivations. It was assumed that the result for the time
of correlation decoupling was independent of ε and
remained finite when ε  0. In molecular dynamics,
the role of ε is played by the accuracy of numerical inte-
gration. Clearly, tm  ∞ as ε  0. As in [1], the
K-entropy is a metric invariant and does not depend on
the coarsening procedure when ε  0.

2.3. The Dependence of Ktm 
on ∆t and 〈∆E2〉

The calculated dependences of Ktm on ∆t and 〈∆E2〉
are shown in Fig. 4. The Ktm value logarithmically
increases as the numerical integration step decreases.
This result can be obtained from (9)–(11) on the
assumption that A ~ (∆t)n, where n is determined by the
order of accuracy of the numerical integration scheme.
Indeed, at time t = tm,

(15)

Taking the logarithm of (15) yields

(16)

or, in another form,

(17)

where tm1 and tm2 are the memory times for the ∆t1 and
∆t2 values. This result does not depend either on tem-
perature, density, or the special features of the system
under study.

Because of the approximate character of numerical
integration, energy E [Eq. (5)] is only constant in the
mean. The E value fluctuates about the mean value
from step to step, and the trajectory obtained in molec-
ular dynamics calculations does not lie on the E = const
surface, in contrast to exact solutions to Newton Eqs.
(1) and (2). This trajectory is situated in some layer of
thickness ∆E > 0 near the ∆E = const surface [18, 19].
The ∆E value depends on the accuracy and the scheme
of numerical integration [18, 19, 31–34], and 〈∆E2〉  ~
∆t n. It follows from (16) and (17) that

(18)

6kT /m 2 v 2〈 〉 ∆ v 2 tm( )〈 〉 A Ktm( ).exp= = =

Ktm n ∆t( ) const,+ln–=

K tm1 tm2–( ) n ∆t2/∆t1( ),ln=

Ktm E2〈 〉( ) const,+ln–=
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(19)

The results for a Lennard-Jones system and the
results obtained in [26] for a nonideal plasma are
shown in Figs. 4 and 5. The calculation data well fit
Eqs. (18) and (19).

Equation (19) relates the K-entropy and the dynam-
ical memory time to the noise level in the dynamical
system. This equation corresponds to the concepts
developed in [3–7]. Recall that, according to [1],
K(tm1 – tm2) = 0 for the time of correlation decoupling
and does not depend on the noise level.

2.4. Selection of the Accuracy of Numerical Integration

The scheme and step of numerical integration
should be selected to satisfy the condition

(20)

where τr is the relaxation time of the dynamical process
under study, t0 is the trajectory length, and M–1/2 is the
required accuracy of averaging the results. The right-
hand side of inequality (20) corresponds to the obvious
statistical independence of phase molecular-dynamics
trajectory points spaced tm apart. The actual accuracy of
averaging may therefore even be expected to exceed M–1/2.

3. NONEQUILIBRIUM SYSTEM

3.1. Model and Method of Calculations

In nonequilibrium state calculations, the parameters
of the system are the same as with the equilibrium state.
The initial conditions are selected as a square or cubic
lattice of particles moving at low velocities. Kinetic
energy 〈v 2(t)〉  values and velocity 〈∆v 2(t)〉  and coordi-
nate 〈∆r2(t)〉  divergences are calculated. We used Eq.
(8) for two phase trajectories, the initial conditions for
which first differed by a small random value. No aver-
aging over M was performed.

3.2. Two K-entropies, Nonequilibrium and Equilibrium

Calculations show that a nonequilibrium system is
characterized by the presence of two exponential por-
tions (Fig. 6) of the 〈∆v 2(t)〉  and 〈∆r2(t)〉 dependences.
The first portion corresponds to the evolution of the
system up to attaining equilibrium (Kn is the nonequi-
librium K-entropy value), and the second portion
begins after equilibrium is reached (Ke is the equilib-
rium K-entropy value). The K-entropy is constant dur-
ing relaxation at the first stage, although the ratio
between the kinetic and potential energies substantially
changes as trajectories diverge. We therefore cannot
treat the K-entropy as a function of temperature. Nor
can it be treated as a function of the total energy of the

K tm1 tm2–( )
∆E2

2〈 〉
∆E1

2〈 〉
---------------

 
 
 

.ln=

τ r tm t0/M,< <
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system at a constant density, because the K value
changes after the attainment of equilibrium; that is, at
the same total energy value, there exist two
K-entropies, equilibrium and nonequilibrium. Never-
theless, the K-entropy retains its meaning as the rate at
which entropy increases.

3.3. Relation between Nonequilibrium K-entropy 
and the Kinetic Energy Relaxation Time

Slopes (on the logarithmic scale) of the exponential
portions of the time dependences of the kinetic energy
and divergence of velocities coincide in all numerical
experiments within statistical errors (Fig. 6). This coin-
cidence is observed for both two- and three-dimen-
sional systems. It follows that the nonequilibrium

K-entropy value coincides with , where  is the
kinetic energy relaxation rate. Time τr therefore
acquires the meaning of the reciprocal velocity of mix-
ing trajectories.

By analogy with tm, we can introduce time tr at
which the kinetic energy of the system attains equilib-
rium. During kinetic energy T relaxation, the T(t)
dependence obeys the equation

(21)

where T0 is the initial nonequilibrium kinetic energy
value. Then,

(22)

where T is the equilibrium kinetic energy value. Pre-
cisely tr rather than τr is the kinetic energy relaxation
time. Time tr during which kinetic energy attains equi-

τ r
1– τ r

1–

T t( ) T0 Knt( ),exp=

tr/τ r Kntr T /T0( ),ln= =
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Fig. 6. Normalized time dependences of (1) the kinetic
energy of the system, (2) divergence of coordinates, and
(3) divergence of velocities in a nonequilibrium system with
N = 64, ρ = 0.5, and d = 2.
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librium is much longer than time τr; for instance, tr =
20τr in Fig. 6.

To determine which of the two values, τr or Kn, is of
primary importance, calculations for the initially
closely packed lattice were performed when the mean
kinetic energy of particles for a long time (compared
with τr) remained unchanged on average (Fig. 7). The
lattice remained in a state similar to metastable, and the
trajectories exponentially diverged at rate Kn. After
some time, the kinetic energy, however, began to
increase and relaxed to the equilibrium value, and in

this experiment also, the equality  = Kn held. It fol-

lows that the Kn and  values coincide even when

τ r
1–

τ r
1–

1

2

∆v
2 t( )〈 〉

2 v T
2
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v
2 t( )〈 〉

v T
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t

10–10

100

2 4 6

Fig. 7. Normalized time dependences of (1) the kinetic
energy of the system and (2) divergence of coordinates in a
nonequilibrium system with N = 64, ρ = 1.1, and d = 2.
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Fig. 8. (1) Equilibrium and (2) nonequilibrium K-entropy as
a function of density; N = 64 and d = 3.
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kinetic energy relaxation does not occur simulta-
neously with the divergence of trajectories. It can there-
fore be stated that the Kn value determines the rate of

kinetic energy increase, and  is the characteristic
relaxation time, which manifests itself both in the
divergence of trajectories in a nonequilibrium state and
when the kinetic energy attains equilibrium.

The initial (metastable) region in Fig. 7 is outwardly
similar to the dependence shown for the equilibrium
system at the right of Fig. 6. The K value for this state,
however, equaled the nonequilibrium Kn rather than the

equilibrium Ke value; that is, it equaled the  value
that appeared later, when the kinetic energy began to
relax to equilibrium.

The difference between Kn and Ke was studied in a
wide density range (Fig. 8). The calculations showed
that the Kn-entropy had a nonmonotonic density depen-
dence. This dependence differed from the monotonic
(as in [20]) density dependence of the Ke-entropy of the
equilibrium system.

3.4. Selection of Numerical Integration Accuracy

In studying nonequilibrium systems, it suffices to
require that tr be approximately equal to t0. It is, how-
ever, then necessary to perform averaging over the dis-
tribution of initial configurations corresponding to the
problem to be solved; that is, length t0 should be calcu-
lated for each statistically independent initial configu-
rations. Their number M determines the accuracy of
averaging M–1/2. The selection of the ensemble of initial
configurations is a separate problem.

4. THE PHYSICAL MEANING OF DYNAMICAL 
MEMORY TIME AND THE ROLE IT PLAYS

Compare the dynamical memory time with the char-
acteristic times of the velocity autocorrelation function.
The results for this function are shown in Fig. 9. The
region where velocity autocorrelation function values
exceed 10–1 corresponds to times shorter than memory
time tm. It follows that correlations in this region are
dynamical correlations which follow from the Newton
equations. Correlations in the tail of the velocity auto-
correlation function occur in the time region where
dynamical memory of the initial conditions is not
retained; that is, these correlations are of a stochastic
rather than dynamical nature.

It would be interesting to study the question whether
or not memory time variations caused by increasing the
accuracy of numerical integration influence the charac-
ter of correlations in the region of the transition from
dynamical to stochastic correlations. Computationally,
this is not a simple problem. It follows from (18)–(19)
and Figs. 4 and 5 that tm grows no faster than logarith-
mically as the accuracy of numerical integration

Kn
1–

τ r
1–
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increases. The available computation facilities allow
∆E to be decreased by only 5 orders of magnitude even
with the use of refined numerical schemes [32–34].
This would only increase tm two times. It follows that
the region of stochastic correlations would nevertheless
remain in the time interval of velocity autocorrelation
function calculations [35]. The time of the transition
from dynamical to stochastic correlations for various
integration schemes depending on temperature, den-
sity, and the mass of particles requires additional con-
sideration.

At the same time, the problem of excessively
increasing tm is of no concern for physics. Recall that
there exist physical factors that lead to finite dynamical
memory times in real systems also [3–7, 15, 16, 36].
The errors of the numerical scheme play the role of
negligible (but always finite!) quantum uncertainty
characteristics of any system considered classical. In
[15, 16, 36], the notion of quasi-classical trajectories
was introduced, and the equations of motion in the
quasi-classical approximation were obtained; that is,
the transition to the classical limit was performed with
retaining corrections first-order in the Planck constant
h. The resulting equations differed from Newtonian by
the appearance of random sources. These sources took
into account smearing of wave packets and diffraction
in elastic scattering. Attention to the role played by
weak inelastic processes was drawn by Gertsenshtein
and Kravtsov [7], who studied trajectory perturbations
under the action of a thermal electromagnetic field [3] and
spontaneous emission of low-frequency photons [6].

The approaches used in [3, 6, 7, 15, 16, 36] were
based on the Landau hypothesis that the origin of irre-
versibility was related to quantum mechanics.
Although the Schrödinger equation is symmetrical with
respect to time reversal, quantum mechanics in reality
contains nonequivalence of two time directions. Deep
irreversibility in quantum mechanics is inherent in the
measurement process [2], which has a probabilistic
character. The use of the measurement procedure allowed
quantum noise to be estimated and the quasi-classical
equations of motion to be introduced [15, 16, 36].

Quantum noise simulation [15, 16, 36] in molecular
dynamics calculations has not been performed as yet. It
can, nevertheless, be suggested that, because of the log-
arithmic dependence of tm on the noise level, quantum
uncertainty should lead to tm values in the range studied
in this work, that is, in the picosecond range. We stress
that the aforesaid refers to dynamical memory times of
a real dense system of atoms rather than its numerical
model.

All of the above allows us to reconsider the tradi-
tional views on the problem of reversibility. As has
been mentioned, the finite quantum uncertainty value
(∆E > 0) is the reason why the dynamical memory time
is always finite in real systems (tm < +∞). It can be
assumed in the quasi-classical approximation that a
pencil of trajectories expanding at a K–1 rate rather than
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
a single classical trajectory starts at a certain system
phase space point. Only the initial divergence condi-
tions, that is, A, B, and tl [see (9) and Fig. 1], depend on
the Planck constant. Applying the standard time rever-
sal procedure at time t = t* (v(t*)  –v(t*), t  –t)
leads to a new pencil of trajectories starting at the
{r(t*), v(t*)} point where the system currently occurs.
By time t*, dynamical memory of the initial conditions
is partly (or completely) lost, and there is only some
probability Prev that the system will return to the initial
{r(0), v(0)} point. Probability Prev exponentially
decreases as time t* increases if t* > tl. Dynamical
memory time tm is the characteristic time during which
this probability reduces virtually to zero; that is,
Prev(t* = tm) ≈ 0. It follows that reversibility, that is, the
return of the system to the initial conditions, is impos-
sible already at least at times of the order of tm. It has
been noted that, in real systems, tm lies in the picosec-
ond range, and it can therefore be assumed that the
overwhelming majority of molecular processes (such
as chemical reactions etc.) are generally irreversible. To
summarize, whereas previously, the irreversibility phe-
nomenon was considered unusual, it appears that now,
reversible events, if encountered, will require thorough
examination.

Estimates of dynamical memory times were
obtained in this work for molecular dynamics numeri-
cal schemes. The tm values obtained correspond to the
noise level of numerical integration. We, however,
established that the dynamical memory time very
weakly (logarithmically) depended on the noise level,
which allowed us to extend qualitative conclusions to
real systems of atoms, in which the finiteness of the
dynamical memory time is caused by quantum uncer-
tainty.
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