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Abstract—We present model considerations for the process of the electron capture in energetic nonrelativstic
collisions of light atomic particlesin the presence of arelatively weak low-frequency external electromagnetic
field. The field is treated as an elliptically polarized quantum single-mode field. Establishing validity of the
dipole approximation to the electron transfer (where the total momentum of all emitted or absorbed photons
can be well above the typical inneratomic momenta of an electron in the initial and final states) and neglecting
the Doppler and aberration effects, we give afully nonrelativistic treatment for the field-assisted collisions and
show that the capture cross section isinvariant with respect to the Galilean transformations. The model consid-
eration suggeststhat thefield can substantially influence the capture dynamics and considerably change the cap-
ture cross section compared to the field-free collisions. Thisis especially the caseif the “resonance” conditions
nw=+Vv?/2 are satisfied, with nw being the energy transferred to or absorbed from the el ectromagnetic field and
v the collision velocity. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Electron transfer in nonrelativistic atomic collisions
is one of the fundamental problems in atomic physics
that has been studied in great detail (see, e.g., [1-3] and
references therein). The inclusion of an electromag-
netic field into atomic collisions introduces new
degrees of freedom and can substantially influence the
collision process under certain conditions. A good
example of thisinfluenceisrepresented by the radiative
€l ectron capture process, where the interaction with the
radiation field (with the QED photon vacuum field)
dramatically changes the capture process at high col-
lision velocities (see, eg., [4, 5], and references
therein). The present paper is an attempt at a prelimi-
nary analysis of the possibility to influence the electron
transfer process in fast nonrelativistic collisions by an
external monochromatic electromagnetic field. We
consider nearly symmetrical collisions of light atomic
particles, Z, ~ Z, ~ 1, one of which (Z,) initially carries
an electron in the ground state and the second is a bare
nucleus. We assume that the collision velocity v is suf-
ficiently high (v > Z; ,), but not relativistic (v < c,
where ¢ = 137 auu. is the speed of light). The electro-
magnetic field is treated as a quantized single-mode
field that initially contains a definite number of pho-
tons. Thisfield isassumed to beelliptically polarized in
general and to have afrequency that is small compared

TThis article was submitted by the authors in English.

to the minimal excitation energy of the electron bound
in the ground state of the particles Z, or Z,. The electric
field strength F, is regarded to be small compared to a
typical inner atomic field in the ground state,

z

1,2 _ 3
Fat D—Z— - Zl,2 a.U, FO < Fat-

We also assume that there are no multiphoton reso-
nances between the ground and excited states in par-
ticles 1 and 2. Using such a low-frequency electro-
magnetic field, we pursue two objects. First, a rela-
tively weak low-frequency field allows us to avoid
substantial depleting of the electron ground statesin
collision-free atomic systems. Second, as we see
below, the coupling of the electron to a field in the
charge exchange process is effectively stronger for
lower frequencies.

Atomic units are used throughout the paper unless
otherwise stated.

2. GENERAL CONSIDERATION
2.1. Preliminary Remarks

Since the collision velocity v is supposed to be suf-
ficiently high, we can use the impact parameter approx-
imation. We assume that the electron isinitially in the
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ground state of particle 1 moving along a straight-line
trajectory

R(t) = b +vt

inaninertial referenceframe K. Particle 1 collides with
particle 2, which rests at the origin in K. Asthe result of
the collision in the presence of an electromagnetic field,
the electron undergoes atransition into the ground state
of particle 2 simultaneously with the induced emission
or absorption of m=0, 1, 2, ... photons with the fre-
quency .

To describe the system consisting of an electron
subjected to the Coulomb interaction with two collid-
ing Coulomb centers and the electromagnetic field, we
take the Schrédinger equation

. 0
IaquD: (Hcol+Hint+th)|LPD (1)
where |W0s the state vector of the system,
_ A
Heot = =5+ Va(r =R(1)) + V,(r) 2

is the Hamiltonian of the electron in the fields of the
two colliding centers, and

2

1 A
Hi = ZA DD+ ®

is the interaction of the electron with the electromag-
netic field, with p being the electron momentum oper-
ator.

In the Schrédinger picture, the vector potential A of
the quantized electromagnetic field is given by (see,

eg. [6,7])

A = A(eaexp(ik 1) + e*a'exp(-ik (1)), (4)

AL
)\_va’

V is the quantization volume, k is the photon momen-
tum, and a and a" are the time-independent annihilation
and creation operators, respectively. We assume that
these operators are space-independent, i.e., that vector
potentia (4) corresponds to a plane wave.

where

The polarization vectors e and e* are given by

e = e,cos(&/2) +ie,sin(&/2),

- o )
e* = g cos(&/2)—ie,sin(&/2),
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where e; and e, are the unit vectors that are perpendic-
ular to the photon momentum k and to each other,

e,k =0 ¢elk =0.
The vectors e and e* satisfy the relations
el =1

(6)

ele = e* [B* = cost.

The angle ¢ determines the degree of polarization; e.g.,
& = 0and & =172 correspond to the linear and circular
polarizations, respectively.

The term H, in Eq. (1) describes the free electro-
magnetic field. It can be written as (see the Appendix)

th = Q)(Na—N), (7)
where
N, = %(aaT + aTa)
and N is the initial number of photons in the electro-

magnetic field.
With the ansatz

|WO= exp(—ik [ (N, —N))|¥,0) (8

the Schrddinger equation can be rewritten as

.0 1
I W10= Heq W10tk (Na=N) = ZAq BIW, O

)
[k*(N, = N)? ALl
+—=——+w(N,—N) + W, 0
> ( ) ﬁl 1
where
A, = Mea+e*a) (10)

isindependent of the el ectron coordinates. Equation (9)
can be simplified by noting two points. First, the term
K*(N,—N)* (N, —N)
T

represents arelativistic correction to theterm w(N, — N)
and must be dropped within the accuracy of the nonrel-
ativistic Schrodinger equation (see the Appendix). Sec-
ond, atypical change of the electron momentum in the
electron transfer process is approximately equal to v,

and the term k(N, — N) p |, Ccan be roughly estimated

k(N,—N)p|W,[Ik (N, — N)|¥,O

D%w(Na—N)NJlD
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Thus, it is seen that the main effect of the term k(N, —

N) p |W,[srelated to the Doppler shift. For nonrelativ-
istic collisions, one has

K(Na—N)P|W10< w(N, - N)|¥,[]

and the term k(N, — N) p |¥;[can al so be omitted.
The Schrodinger equation then becomes

) _ ASD
1 IWil= Heg W1 %Ao p+ %I%D (1)

+ W(N,—N) ¥, O

This equation looks like the Schrodinger equation with
the electromagnetic field taken in the dipole approxi-
mation. Theremark about validity of the dipole approx-
imation for the field-assisted electron transfer may now
be in order. Although the momentum k = w/c of one
low-freguency photon is much less than atypical elec-
tron momentum in the ground state of the target (p; ~
Z,) or of the projectile (p, ~ Z,), the total momentum of
all the emitted or absorbed photons can be well above
Py 2 (0., in the “resonance” case, see Section 3). We
have analyzed the role of the photon momentum in the
field-assisted electron transfer. The analysis shows that
in general, the corrections to the capture cross section
due to the photon momentum are of the order of vJc,
where v, ~ v isacharacteristic electron velocity in the
process. Thus, with the electron assumed to be nonrel-
ativistic in the capture process, the corrections to the
capture cross section are of minor importance.

Now, with the validity of the dipole approximation
for the electron transfer in nonrelativistic collisions
being established, we can neglect the Doppler and aber-
ration effects and give fully nonrelativistic treatment
for the field-assisted electron transfer process where
capture cross sections must be invariant under Galilean
transformations [4].

Equation (11) can be further simplified. To this end,
we consider the interaction term

1 2_ AN, 2. 1 T, At
— A = —((@"+a")cosg +aa +aa)
2c? 2c

in more detail. The quadratic terms a2 and a™? can be
removed from the Schrodinger equation by applying
the so called “ squeezed light” transformation (see, e.g.,

[8])

_ T
a = bcoshy + b sinhy, (12)

a' = b'coshy + bsinhy,
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where

_ AcosE

tanh(2x) = .
(2x) ERORY.

(13)

The corresponding Schrodinger equation for the elec-
tron interacting with “b-photons” is given by

.0 A % 1T
i=|W,0= H ¥, OF=(e,b+e b
c')tl 1 W1 C( b0 +€,0°) [P (14)
+ W Np ¥, 0

where

N, = %(bTb+bbT),

Wgr = @+ NI = (NI cosE.

As follows from (13), the difference between “a-pho-
tons” and “b-photons’ is determined by the factor

N _ o

we® Vo’

Since the quantization volume V of alaser field is usu-
ally of amacroscopic dimension, we can assume that

2T

LU

V'’

except for extremely low frequencies, which are not
considered in this paper. Therefore, we have x = 0 and
the difference becomes very small. Disregarding this
difference and replacing “b-photons’ with “a-photons”
in Eq. (14), we finally arrive at the Schrddinger equa
tion

i§|wlm= H oo W, 0 5(ea+ e*a’) [P
ot C (15)
+w(a'a=N)|W,0

In Eg. (15), we have also neglected the difference
between

N, = 0.5(aaT+ a*a) =aa+1/2
and
N, = a'a,
which isinessentia for the electron transfer process.
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2.2. Model One-Center Electron
Sates Dressed by the Interaction
with an Electromagnetic Field

We regard the charge transfer process as an electron
transition, due to a collision with the second center,
between the field-dressed electron states centered on
the target and the projectile. We first consider the prob-
lem of an e ectron bound to center 1, which movesin
the frame K with a constant velocity v and is subjected
to the electromagnetic field. As shown in the previous
subsection, the corresponding Schrddinger equation
can be written as

0 _ Ao t
i521®;00= FHay1 + =7 0+ w(@'a- N, o0 (16)
where

Has = =3+ V(T =R(D) (17

is the Hamiltonian of the electron in the Coulomb field
of the moving center.

The state vector |, (Uof the system consisting of
the el ectron bound to the moving center and of the el ec-
tromagnetic field containing initially N photons with
the frequency w can be expanded as

|P; (1) O

18
= > D exp(=inwt)ag o(t)Wa(t)IN +nlj o

where the unknown time-dependent coefficients a, ,
must be determined. In (18), the summation runs over
al the electron states {{,} including the continuum
and over the photon states with different numbers of
additional photons (n =0, £1, 2, ...). The states ), of
the electron in the field of binding center 1 moving
along a straight-line trajectory

R(t) = b+vt
are given by
Wa(t) = 65(r —R(1)) exp(-ielt)

2 (19)
x exp(iv D)exp%—izz—%

where ¢(1) (r) is the atomic state (discrete or continu-
ous) of the electron at center 1 with the energy s(”
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Inserting (18) in (16), we obtain the system of dif-
ferential equations for the unknown coefficients a, ,

Idacx no_ CZ Zaﬁ ~exp(i(n—m)wt) 20)
x [N+ nIAoIN + mip| plPgLl
Taking into account that
(Wol PlwgO= exp(iwgpt) (VOup + (Dol DIDpD.  (21)
where
Wap = g 8|(31),
we obtain
|da" D= Zaa mexp(i(n—m)owt)
c
x [N+ n AN +mO
(22)

+ %z S a5 mep(i((N-m)w+ ayp))

m BZa
x [N + | Ag|N + mUIip,o| Bl L]

The first and the second terms on the right-hand side
of (22) correspond to different mechanisms of the
dressing of the electron by the electromagnetic field.
The double sum in (22) describes the part of the elec-
tron dressing that is accompanied by transitions of the
electron into excited atomic states, including the
atomic continuum. In our model treatment this part of
the dressing will be neglected, which corresponds to
taking into account the so called diagonal dressing of
the electron by the electromagnetic field (see, e.g., [9]).
For the electron initially occupying the state i, we
then have

dag, _
dt

= Zao mexp(i(n—m)wt)N + n|Ag|N + mL]

(23)
a,n, =0 az0.
Equations (23) together with the assumption that the
coupling between the electron and the electromagnetic
field is adiabatically switched on and off at t — —oo
and t — +oo, respectively, form the basis for our
model of the system “bound electron + el ectromagnetic
field.”

The matrix elements N + n|Ay|N + mCare not equal
tozeroonly for m=n= 1. We assumetheinitial number
of photons N to be very large, N > |n| and N > |m|,
which corresponds to regarding the electromagnetic
field as an inexhaustible source and sink of photons.
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The matrix elements [N + nJA|N + n—21Cand [N + n|A|N +
n + 1can then be assumed to be n-independent and the
system of equations (23) reducesto

daon _ AN
d ¢
+e* Vg ,_exp(iwt)).

(e Vag e ep(-iat)

In order to solve (24), it is convenient to rewrite the sca-
lar productse-vande* - v as

el = voexp(ig),
e* IV = voexp(- ),

where v, and @ are given by

(25)

Vo = (v (B C0S(£/2))2 + (v [B,8in(E/2))?,
(26)

¢ = arctang Eitan(E/Z)%.

Using the ansatz
g n(t) = frexp(in(wt-g)), (27)

where f,, are time-independent, and inserting (27) in
(24), we obtain the simple relation

2n
fn+1+ 1:n—l = afnv (28)
where
G- _2)\VOA/N. 29)
CW

The absolute value of G determines the effective
strength of the electron-field coupling. Solutions of the
recurrence relation (28) are the Bessel functions (see,
e.g., [10]). Therefore,

8,0 = CLy(G)exp(in(wt—q)), (30)

where (,, denotes the Bessel functions J,, Y,, Hﬁl),

H® | or any linear combination thereof, and C is n-inde-
pendent.

Taking Egs. (30) and (18) into account, we rewrite
the state vector as

[®1,0(t) 0= Co(t) ) n(G)exp(-ing)IN +nlJ (31)

In order to determine C and to find which of the Bessel
functions corresponds to {, we note that, in the
absence of the coupling between the electron and the
electromagnetic field,

A, = 0,
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the state vector has the form

[P, o(t) = Wo(t)|NLI (32)
Therefore, in order to recover Eqg. (32) from Eq. (31),
onemust set C = 1 and ¢,(G) = J,(G) in Eq. (31) with
J, being the Bessal function of the first kind. Then the
initial state vector becomes

[®1,0() 0= Wo(t) y In(G)exp(-ing)|N +nlJ (33)

This state describes the moving electron bound in the
ground state and dressed by the interaction with the
electromagnetic field. Because the coupling to the field
is switched off ast —» +o, we have

|P; o(t —= +o0) = Yy(t).

Within the adopted approximation, therefore, if no col-
lision event occurs, the state vector of the “electron +
electromagnetic field” system isfinally the same asini-
tidly. Thus, the dressing given by (33) does not result
in any electron transitions within the same center and
can therefore be viewed, to some extent, as“ hidden.” It
isthe collision that can display the hidden dressing.

The final state vector |®; [Cdescribes the electron

(finally) bound in the ground state ¢(()2) of particle2 and

the presence of N + m photons. Within the approxima-
tion similar to that used to obtain the state vector
|P(t); oLIwe obtain

|©; 0= 65 exp(—i(el? + mw)t)[N+mD  (34)

2.3. Transition Amplitudes and Cross Sections

Because the collision velocity is supposed to be
sufficiently high, one can use perturbation theory in
the Coulomb interaction to consider the charge
exchange. It is known (see, e.g., [1-3] and references
therein) that the boundary-corrected Born approxima-
tion must be employed in order to obtain reliable
results for the nonradioactive charge exchange pro-
cesses in energetic Coulomb collisions. However, in
order to obtain just a preliminary insight into the field-
assisted electron capture, we use a simpler approach
that does not take the Coulomb-corrected boundary
conditions into account and corresponds to the OBK
approximation for the field-free collisions. It is known
(see, e.g., [1]) that for external field-free collisions, the
second-order terms (representing the Thomas double
scattering mechanism) are of minor practical impor-
tance for the total 1s-1s capture cross sections. For
example, in the

p+H(1ls) — H(1s)+p
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collisions, the second-order term dominates over the
first-order one at v = 80 a.u. At these velocities, how-
ever, the radiative electron capture dominates over the
nonradiative one and in addition, the relativistic effects
cannot be ignored in general. In the region of the colli-
sionveocitiesof interest inthe present paper (v ~10a.u.),
the first-order term dominates in the 1s-1s cross sec-
tions. In this paper, we conS| der the 1s-1s capture and
use the first-order approach,® which corresponds to the
first-order OBK (OBK1) approximation for the field-
free collisions (see, e.g., [12, 1]).

2.3.1. Prior form of the cross section of the field-
assisted charge exchange. In the first order of pertur-
bation theory in the prior form for the field-assisted
electron capture accompanied by the emission or
absorption of |n| photons, the transition amplitude is
given by

00

ale = i [ V(1) (35)

where V, is the interaction of the electron with the sec-
ond center and the initial and fina state vectors are
given by Egs. (33) and (34), respectively.

After some straightforward but lengthy algebra, we
rewrite the transition amplitude as

alll, = 21 J,(G) [d ax$2(q + v) (e - 0.5¢7)
x (X2(9))" exp(iq [b)

(36)
2
v
x 5=£? + ney— s(()l)+7+q|j%,
where x$” (g) and x{? (q) are the Fourier transforms of

the respective wavefunctions ¢ (r) and ¢ (r).

The cross section for the electron transfer accompa-
nied by net emission (n > 0) or net absorption (n < 0)

L1t is worthwhile to note the following. The dominance of the
Thomas double scattering mechanism at asymptotically high
collision velocities is directly related to the kinematics of the
electron transfer in field-free collisions. However, it is not clear
how an external field can influence the kinematics. In [11], for
example, the radiative electron capture was considered as colli-
sion-stimulated transitions between one-center electron states
dressed by the interaction with the radiation field, i.e., using an
approach quite similar to that applied in the present paper.
In[11], the Coulomb interaction with the other center was taken
into account only in the first order. Nevertheless, this approach
was shown to yield the correct velocity dependence for the radi-

ative capture cross section Oggc ~ Vv® at asymptotically high
velocities.
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of |n| photonsis given by

ol = [blal ()" = 3 ()1
x [dalxs”(a+v)| (et ~0.50°)° (37)
x| X§ ()] B + no— & + V; +q 08,
The charge exchange cross section is given by
Orior = ZGE,?.G. (38)

In this equation, the different termsin the sum describe
the electron transfer cross sections accompanied by the
induced emission (n > 0) or absorption (n < 0) of differ-
ent numbers of photons. The term with n = 0 corre-
sponds to the capture where the net number of
exchanged photonsis zero.

2.3.2. Post form of the cross section of the field-
assisted charge exchange. Inthe post form of thefield-
assisted electron capture accompanied by the emission
or absorption of |n| photons, the transition amplitudeis
represented by

00

o = = [ @ IVi(r —RO)IPo) (39)

where V, isthe interaction of the electron with the first
center and the initial and final state vectors are again
given by Egs. (33) and (34), respectively.

In the post form, the cross sections for the electron
transfer are given by

o = [Polal(o)” = ()T
x [d’alxe’(a + V(5 -05(a+v))" (40
X2 (@52 + neo— )+v;+q ave
and
Opost = Zoé?ﬁst. (41)

2.3.3. Galilean invariance of the charge exchange
cross sections. One can give a dightly more genera
treatment for the fiel d-assisted electron transfer by con-
sidering the process in an inertial reference frame K'
where both particles 1 and 2 move with the respective
velocities v, and v, along the trajectories

Ry(t) = by +v,t
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and
R,(t) = b, + v,
with
V=V,—V,

being the collision velocity. If one assumes that these
trajectories are parallel lines, the collision impact
parameter b is given simply by

b - bl_bZ'

In the frame K', the initial state vector is described by
Eqg. (33) with the evident replacementsb — b, and
v — Vv, in the electron state, in the argument of the
Bessdl functions, and in the phase @(=@,). The final
state vector is now represented by

D (1) 0= W2 (t) exp(—imot)

42
«S S(Gep(me)N rmemT

where ¢ (t), @,, and G, are given by Egs. (19), (26)
and (29) with evident replacements. Because the elec-
tromagnetic field adiabatically switches off ast —» oo,
the state vector (42) asymptotically reducesto

¢ () 0= P (D exp(-imwt)N+mD]  (43)
which describes the electron and the field with N + m
photons that are decoupled ast — .

Using Graf's addition theorem for the Bessel func-
tions (see [10, p. 363, no. 9.1.79]), one can show that
this more general treatment yields cross sections that
depend only on v = v; — v, and are exactly equal to
those given by Egs. (37) and (38) or Egs. (40) and (41).

The derivation briefly outlined above stresses the
Galilean invariance of the cross sections.

3. RESULTS AND DISCUSSION

Analyzing the form of dressed state (33), transition
amplitude (36), and cross sections (37) and (40), one
can conclude that the effective strength of the coupling
between the electron and the eectromagnetic field
occurring in the process of the electron transfer is deter-
mined by the factor |G|. The effective strength of this
coupling is determined not only by the field parameters
themselves but al so by the change in the electron vel oc-
ity. For high collision velocities, this coupling can
therefore be strong even for relatively weak electro-
magnetic fields.

In what follows, we consider the electromagnetic
field to be linearly polarized although similar conclu-
sions can also be drawn for a more general case of the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

759

eliptical polarization. For alinearly polarized field, the
coupling factor reducesto

F, O
jof = Fe
w
where
= _ A2TTGN
0= V; €

is the electric component of the electromagnetic field.

3.1. Weak Coupling
with the Electromagnetic Field

If the factor |G| is much smaller than unity, the term
with n = 0 dominatesin the total charge exchange cross
section. For n# 0, only thetermswithn+ 1in (38) (or
(41)) can reach noticeable values. In this case,

(44)

= %l DZ(;O %D Oogk1= Oopk1s

where

161"

Oogk1 =

Sk *alx$(a +v)|*(e? -05¢%)°

p (45)
2
x|x6 (@) 3 €6 + %+ O

isthe cross section of the nonradiative charge exchange
obtained in the OBK 1 approximation.

In accordance with (37), cross sections for the
charge exchange accompanied by the emission and
absorption of one photon are given by

(#1) _ |j:o D/D 16T[
Dz ZD 174

x (e —0.5¢%)°[x P (q)|®

2
1 v
sé)iw+7+q®%.

o = *qlx$P(q +v)|°

(46)

x 50k@ _

Because wis small, the terms +w do not play an essen-
tial role in the integrands in Eq. (46) and can be
dropped. Therefore, the processes accompanied by the
emission and the absorption of one photon give practi-
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cally identical contributionsto the capture cross section
and are related to the OBK 1 cross section (45) by

+ O
5 < [0 B

EPYIE OoBk1- (47)
From (44) and (47), it follows that
o™+ + 0" = oy, (49)

i.e, that the total electron transfer is only very dightly
influenced by the field in the case of aweak coupling.

We note that, for aweak coupling, the post form of
the cross section (Egs. (40) and (41)) yields results that
areidentical to (45) and (47).

3.2. Srong Coupling
with the Electromagnetic Field

The ratio between the contributions of the charge
transfer processes involving different numbers of emit-
ted or absorbed photons to the total capture cross sec-
tion becomes entirely different in the “intermediate”
(JFo - Vfo? = 1) and, especidly, in the strong-coupling
(JFo - v[/o? > 1) limits. For a strong coupling, Jy(x) < 1
for x > 1, and the charge transfer process without net
emission or absorption of photonsis therefore strongly
suppressed compared to the weak coupling limit. The
main contribution to the total charge exchange cross
section isnow due to the electron transfer accompanied
by the absorption and emission of large numbers of
photons. It follows from the properties of the Bessel
function J,(x) [10, 13] that in order to obtain a notice-
able contribution of the |n|-photon process, x must be at
least of the order of |n|. Therefore, one can estimate that
the maximum number of photons involved in the field-
assised charge exchange process is of the order of
IFo - vior.

“Resonance” conditions, the post-prior discrep-
ancy, and the correspondence to different physical
mechanisms of the charge exchange. The factors

X§P(q +v)|* and |[xP(q)|® entering the integrands in

(37) and (40) imply that at high velocities, each inte-
grand (excluding the delta-function) hastwo peaks cen-
tered around q = —v and g = 0. Therefore, the integrals
over the momentum transfer in (37) and (40) can berel-
atively large only if the argument of the delta-function
can be equal to zero at q =—v or g = 0. This can occur
if there is a considerable probability for many-photon
processes where the numbers |n| of the photons
involved satisfy the “resonance” conditions given by

2 2
v %
nw = 7+gf)1) —

2

—e) = (49)
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for the emission and by

2 2

_ Vv (1) (2) |4
nw e — +8 _s o
2 00 2

for the absorption.

As in the radiative eectron transfer, the resonance
condition for the charge exchange stimulated by emis-
sion looks more transparent if we view the charge
exchangeintherest frame of the projectile: the electron
with the initial energy €. + v22 undergoes a transi-
tion to the bound state of the projectile with the energy
el? | transferring the energy difference to the electro-
magnetic field by means of photon emission. On the
other hand, the resonance condition for the electron
transfer accompanied by absorption looks more natural
if we take the target frame as a reference frame: the
electron with the initial energy €$” undergoes atransi-
tion to the bound state of the moving projectile, where

)+ v2/2, absorbing the energy

(50)

itsenergy is equal to g;
difference from the electromagnetic field. If the reso-
nance conditions are satisfied, the collision kinematics
for the electron transfer can be substantially improved
in the same way as for the radiative electron capture,
where only one high-energy photon with the frequency
w = v?/2 is spontaneously emitted.

Analyzing the strong coupling case, we encounter a
difficulty related to the fact that the charge exchange
cross sections obtained in the prior and post forms
becomedrastically different. Theintegrandsin (37) and
(40) are strictly equal to each other only for n = 0 and
approximately equal for low |n|. As |n| increases, the
difference between the integrands in (37) and (40)
increases. This difference becomes especidly large
when the resonance conditions are satisfied. The latter
caseis of a particular interest, however, and the rest of
this section is mainly devoted to the analysis of the res-
onance case.

In the integrand in (37) (excluding the delta-func-
tion), theratio between the peaksatq=—-vandq=0is
proportional to v#, which means that the peak at g = 0
isnegligible compared to the one at g = —v. Thisresults
in the conclusion that in accordance with (37), the elec-
tron captureisfavored if it isaccompanied by the emis-
sion of alarge number of photons.

On the other hand, in the integrand in (40) (exclud-
ing the delta-function), the ratio of the peak at g =—v to
that at g = 0 is proportional to v, and the peak at q =
—v istherefore negligible compared to the one at g = 0.
This means that in accordance with (40), the electron
captureisfavoredif itisaccompanied by the absorption
of alarge number of photons.

As a first example, we now consider the capture
cross sections for the

p+H(1s) — H(1s)+p
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collisions assisted by the electromagnetic field with
Fo=215x10%au.and w=0.117eV = 4.3 x 102 a.u.
at the collision velocity v = 10 a.u. Inthisand al other
examples, we assumethat Fyisparallel (or antiparallel)
tov. Further, wetake all the reported values of the cross
sections to be multiplied by the factor 0.3, which is
known to bring the OBK1 cross sections to a reason-
able agreement with experimental data at intermedi-
ately high collision velocities. At the collision velocity
v = 10 a.u., the cross section for the nonradiative cap-
ture in electromagnetic field-free collisions calculated
in the OBK 1 approximation (and multiplied by 0.3) is
equal to Opgk; = 1.14 b

Using the prior form of the cross sections, we obtain

0© = 62 x 105 b, zm’ ol = 6.4 x 102 b,
1000 5O =38.24b,and § 2% o), =367.3bfor
the collisions assisted by the electromagnetic field.
Addlng the higher-n terms does not noticeably change
the prior cross section.? In accordance with the prior
form, the main contribution comes from the terms with
10000 < n < 12000 and the contribution from negative
nisnegligible.

Using the post form of the cross sections, we have

—10000
Z ooy = 38.24b,

n=-1

Oy = 6.2x107° b,

—12 000
Z ol = 367.3b

n=-1

for the same callisions. In accordance with the post
form, the main contribution is given by the terms with
—12000 < n <-10000 and positive n contribute negli-
gibly. Although the prior and the post forms yield the
same transfer cross sections for symmetrical collisions,
the physics that they describe is totally different. The
prior form stressesthe el ectron transfer due to emission
(the induced multiphoton bremsstrahlung) and the post
form supports the transfer process due to absorption
(the multiphoton ionization).

Asfurther examples, we consider the

p+He — H+He”

2 Although the numbers of the emitted or absorbed photons are
very large, simple estimates show that they are still much smaller
than the huge number of photons available in the “coherence”

volume V, ~ A = (2rc/w)? of the field with Fy = 2.15 x 102 au.
and w = 4.3 x 1073 a.u. Therefore, the assumption that the field is

an inexhaustible source and sink of photons, which has been used
in deriving Eq. (33), is not violated.
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and

He” +H — He +p

collisionsat v = 10 a.u. assisted by the electromagnetic
field with the same parameters as in the first example.
For the field-free collisions, one has g, = 27.5 b for
both colliding systems. For the field-assisted collisions,
in accordance with the prior form, we obtain the respec-
tive cross section O = 304 b and oy, = 9280 b for

the p—He* and He**—H collisions. In both reactions, in
the prior form, the terms with negative n (absorption)
contribute negligibly. In accordance with the post form,
we have 0,4 = 9280 b and 6.4 = 304 b for the p-He*
and He**—H callisions, respectively, and we find that
the terms with positive n (emission) have a negligible
impact on the cross section. Analyzing Egs. (37) and
(40), we conclude that the above correspondence
between the prior and the post cross sectionsisapartic-
ular case of the relation

0-post(zlv ZZ) = 0-prior(ZZv Zl)l

which holds for the capture cross sections obtained in
the prior and post forms.

Comparing the capture cross sections in the above
three examples, we see that

(51)

Oprior 0 Z\Z) (52)
with v = 5, while the dependence of the cross section on
Z, isrelatively weak. On the other hand,

Opos 0 Z} (53)
with u = 5 and the dependence of the cross section on
Z,isrelatively weak. Our calculationsfor other “target-
projectile’ pairs show similar dependenceson Z; and Z,

It isworthwhileto note that the dependence O Zi onthe
charge of the target nucleusis a signature of the photo-

effect (see, e.g., [6]), while the dependence O Zg onthe

charge of the projectile is a signature of two closely
related processes: the radiative recombination and the
radiative electron capture [2].

In arigoroustheory, evidently, there must be no dis-
crepancy between cross sections calculated in the prior
and post forms. Itisalso clear that the large discrepancy
between the prior and post formsin our case originates
from the fact that the dressed states (33) and (34) do not
exactly represent the system “electron in the field of a
nucleus + field.”2 One way to deal with the difficulty

3The problem of the post—prior discrepancy is also known in the
theory of the field-free electron transfer based on the eikonal
approximation, where additional physical arguments are neces-
sary in order to decide which form is more suitable (see, e.g., [1]
and references therein).
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is to try to remove the prior—post discrepancy by
implementing exact solutions for the dressed states,
which would yield identical results in both forms.
However, thisis very difficult to achieve and, in addi-
tion, one can then encounter the problem related to the
overcomplete representation of the electron Hilbert
space by two complete sets of states centered on the
target and on the projectile. We choose another way
instead. In what follows, we argue that one can still
obtain physically reasonable results with the approxi-
mate dressed states (33) and (34) keeping in mind that
with these states, the prior and post forms of the tran-
sition amplitude describe the electron transfer due to
different physical processes. To analyze this, we first
consider a collision-free system consisting of an atom
that isinitially in the ground state and alow-frequency
relatively weak electromagnetic field. We are inter-
ested in ionization probability due to the interaction
with the field and, in particular, in the probability of
finally finding the electron in high-energy continuum

states{ ¢}

For a high-energy continuum state, we can neglect
its distortion due to the interaction with the target
nucleus and write the state in the presence of the elec-
tromagnetic field as

o EpD|N+nD

n (54)
020

W' O exp(ip 1)

For the amplitude of transitions from the ground state
o' to the high-energy state, we then have

|on D J |j:0 EpD@IPD|V1|¢(l)D

(55)

x 5|:p (]

—NW—¢&'H

For high |p|, themagnltude|a | isvery smal. Still, in
accordance with (55) and with the properties of the
Bessdl functions, we can expect the continuum statesto
be populated with a small but nonzero probability for
al p| up to

pmax~ - l:Opmax
T = N W= 70«),
i.e,upto
2F
Pmax = HO

We now assumethat the atom collides with a projec-
tile having the velocity —v. Because the ground state of
the projectile can be represented by the continuum
states of the target and the momentum of the ionized
electron matches the momenta of the electron bound in
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the moving projectile, we see that if p,, = Vv, the
atomic electron can finally be captured by the projectile
as the result of ionization. It is now not difficult to
see that using states (33) and (34) (or their counter-
parts in the rest frame of the target or in any other
reference frame) and applying the post form with the
interaction V; amounts to calculating the contribu-
tion to the electron transfer that is represented by the
part of the target multiphoton ionization* where the
final electron states in the continuum of the target
match the ground state of the projectile. For v > Z,,
the high-energy continuum states with p = —v can
easily “cover” the ground state of any light projectile,
independently of Z,. Therefore, in applying the post
form, we see that the capture cross section is almost
independent of Z,.

A similar analysis can also be performed for the
contribution to the charge transfer described by the
prior form of the transition amplitude. We consider
a system consisting of anucleus at rest (representing
the projectile in its rest frame) and an incoming free
electron moving in the presence of the electromag-
netic field. The initial state of the electron with
the momentum q is given by an expression similar
to (54),

w2 O exp(iq D)zJ o EqD|N+nD (56)

As aresult of the collision with the nucleus, the elec-
tron can emit photons (the induced multiphoton brems-
strahlung) and undergo a transition to another state.
One of the possible final states of the electron can be

the ground state of the projectile, ¢O 2 The amplitude
of thistrangition is given by

br D J |j:0 qum)g)lvzlelqﬂ

(57)

—nw- SSZH

o’

X 6[]

Note that the state of the electron initially bound in the
target moving with the velocity v in the rest frame of
the projectile can be represented by a superposition of
states given by Eq. (56). Taking that into account and
comparing Eq. (57) with the transition amplitude in the
prior form, Egs. (35) and (36), we arrive at the follow-
ing conclusion. Using states (33) and (34) (or their
counterpartsin any other reference frame) and applying
the prior form with the interaction V, amounts to calcu-
lating the contribution to the electron transfer that is
due to that part of the induced multiphoton brems-
strahlung of the electron, initially bound in the ground

4 In the case under consideration, Fy/w > 1, we note that the ion-
ization of an atom by a classica electromagnetic field with
Fo/w = 1 can be viewed as atunneling effect [14].
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state of the target, where the final electron state is the
ground state of the projectile.

The radiative electron capture that proceeds with a
spontaneous emission of one high-energy photon is
known to be weakly dependent on the charge of the
target, Z,, provided Z; < v, where v is the collision
velocity [2]. According to our calculations, a similar
situation is encountered in the case under consider-
ation where the electron capture proceeds with the
induced emission of alarge amount of low-frequency
photons.

Summarizing the above analysis, we can make the
following important conclusions. First, for the field-
assisted electron capture in the strong-coupling case,
one can still use the approximate state vectors given by
Eqgs. (33) and (34) in order to describe the capture. Sec-
ond, using these approximate states, one must keep in
mind that the prior and post forms of the capture cross
sections are drastically different in general. Third, this
difference is related to the fact that in the adopted
approximation for the dressed electron states, the prior
and post forms describe the el ectron transfer due to dif-
ferent physical processes. the multiphoton ionization
and the induced multiphoton bremsstrahlung. Fourth,
the total cross section for the electron capture in the
case of astrong coupling with the electromagnetic field
can be evaluated as the sum of cross sections corre-
sponding to different physical processes mentioned
above,

— (n) (n)
Ot = Z O-post + Oo + z 0-prior

n<0

= Z 0-|(c:)?st + Z O-gr]i)orl

n<o0 n>0

n>0

(58)

where o\, and o'y are given by Egs. (37) and (40),

respectively, and describe the electron transfer due to
the induced bremsstrahlung and photoionization, and

_© _ - _ iFdy
Oo = Opior = Opog = Jo%‘ e EOOBKl

isnegligible.

We have aready mentioned that the problem of a
large prior post discrepancy is also known in eikonal
calculations for the field-free electron capture, where
additional physical arguments must be used in order to
decide which form should be applied. The same prob-
lem is encountered in first-order calculations for the
electron capture in field-free collisions with multielec-
tron targets. In the latter case, however, it is very diffi-
cult to decide which form should be given preference
and sometimes one introduces the average transition
amplitude

_ prior post
ai; = 0.5(ai  + ay
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(see, eg., [15]). Thisisdifferent from the situation with
the field-assisted collisionsin the strong-coupling case,
where one can argue that the post and prior forms cor-
respond to different electron transfer channels that do
not interfere and that the capture cross section must be
evaluated in accordance with Eqg. (58). One can add that

because of the different dependences Oy U zi and

Opost U Zi, only one of these forms is of practica

importance for calculations of the electron capture in
asymmetric field-assisted collisions, where the ratio
Z,/Z, differs considerably from unity.

To conclude this discussion, we briefly compare our
calculations for the electron transfer in collisions
assisted by an external field to the radiative electron
capture (REC) [11]. In the latter process, the resonance
condition for the electron transfer wy, ~ v/ 2 is satisfied
due to a spontaneous emission of one high-energy pho-
ton and, naturally, the electron transfer with a photon
absorption is not possible because there are no photons
intheinitia state of the free radiation field. In[11], the
REC was considered as the collision-stimulated transi-
tions between one-center electron states dressed by the
interaction with the radiation field. It was found in [11]
that the prior form of the REC cross section obtained
within the approach that is obviously very similar to
that employed here yields an excellent agreement with
the well established results for the radiative capture
cross section. However, the post form of the theory in
[11] leads to REC cross sections that are smaller by
many orders of magnitude. The reason is as follows.
With the approximate one-center electron states
dressed by the free radiation field as in [11], the prior
and post forms are “responsible” (similarly to the
present approach) for the electron transfer due to
bremsstrahlung and photoionization, respectively.
However, the coupling to the free radiation field, which
can produce spontaneous bremsstranhlung, cannot
result in photoionization.

4. CONCLUSIONS

The electron transfer process in fast collisions
assisted by a relatively weak low-frequency electro-
magnetic field can represent an interesting exampl e of
an effectively strong coupling between the electron
and the electromagnetic field. A key consegquence of
the strong electron-field coupling in the charge
exchange collisions is the emission and absorption of
avery large number of photons that can substantially
improve the electron transfer kinematics under certain
conditions.

The effect of a low-frequency electromagnetic
field on the electron transfer process discussed in the
present paper is closely related to some well-studied
processes. We have already discussed the connection
with the multiphoton ionization and the induced mul-
tiphoton bremsstrahlung. In addition, we now note the
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relation to a particular case of the induced bremsstrahl-
ung—free electron—atom collisionsin alaser field. Free
electron-atom collisions assisted by the electromag-
netic field were studied in some detail, mainly theoret-
ically (see, e.g., [16] for areview). One of the conclu-
sions of these studiesthat isrelevant to the topic of the
present paper isthat the external electromagnetic field
can substantially increase the magnitude of the scat-
tering cross section if there are some quasi-stationary
states that can be resonantly populated during the
scattering viathe stimulated emission or absorption of
photons.

The present analysis suggests that the capture cross
sections can be substantially influenced by the electro-
magnetic field. In addition, one can aso expect the
effect of the field to be reflected by naoticeable changes
in the spectra of high-energy photonsthat are spontane-
ously emitted during the radiative electron capture in
field-assisted collisions.
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APPENDIX

To derive a suitable form of the nonrelativistic
Schrédinger equation for the el ectron interacting with a
guantized electromagnetic field, we start with the Dirac
equation

.0 €.
i=|WO= ca —=-AFWYOF WWO
ot EBj CAD (A.1)

+ BmM.C WO+ wN, WD)

where W describes the Coulomb interaction with the
nuclei and o and B are the Dirac matrices. Decompos-
ing |WCinto major and minor components denoted by ¢
and X respectively, we rewrite Eq. (A.1) as

0 T = e O
a—W—wNa—mecDM)D— co [Bj_EADD(D

(A.2)
0 Oy = el
5~ W-wN, + mcHx0= co [Bs—EADM)D

where o are the Pauli spin matrices. A common way to
derive the nonrelativistic equation from a relativistic
oneisto assumethat all other energiesin the system are
much less than the electron rest energy m.c?. In our
case, this assumption does not hold because, as ssmple
estimates easily show, even for a very weak electro-
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magnetic field occupying a macroscopic volume, its
total energy ismuch larger than the electron rest energy.
It is clear, however, that the relevant quantity is the
amount of the el ectromagnetic energy that can be trans-
ferred between the electromagnetic field and the elec-
tron, rather than the total amount of the field energy.
Making the ansatz

b= exp(~i(mc” + Noo)t)[o,L)

(A.3)
XO= exp(-i(mec” + Nw)t)[x, ]

whereNistheinitial number of photonsin the quantum
field, we remove the irrelevant part of the total field
energy and obtain

0 _ e\l
5~ W=(Na=N)g¢:0= co O — Arx; ]

9 —W-w(N,—N) + 2mec%|x1D

3 (A9

= co [ —“Ad0.00

Assuming that the energy transfer between the electro-
magnetic field and the electron is nonrelativistic,

(N, —N) < mc?,
we can now approximate

1
Ma0= 57— CHp ~ AT

Inserting this expression into thefirst equationin (A.4)
and neglecting the spin term, we obtain Schrodinger
equation (1) for the mgjor component.
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Abstract—A harmonic analysis of the directions of arrival of cosmic-ray particles with an energy of about
107 eV in the vicinity of the registration threshold of the Yakutsk extensive air showers (EAS) array is given.
A method for determining the contribution of inhomogeneous observation conditions and seasonal variations
of the frequency of extensive air showers to the observed anisotropy is suggested. Taking into account these
factors results in a considerable decrease of the amplitude characterizing the degree of anisotropy of cosmic-
ray primaries. The amplitude of the first harmonic with respect to the right ascension is (0.45 + 0.55)%, which

shows that no probably significant anisotropy of the primary radiation is observed at 10 eV. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Determining the degree of anisotropy of the primary
flux and its dependence on the energy E, is important
for solving the problem of cosmic ray origin. At ener-
giesof 107 eV or higher, the characteristics of the cos-
mic radiation are studied with the help of installations
that register extensive air showers (EAS arrays) con-
sisting of secondary particles generated when the pri-
mary particleswith these energy enter the Earth’satmo-
sphere. One of the main methods used to estimate the
anisotropy on EAS arrays is the harmonic analysis of
the distribution of the directions of the arrival of show-
ers with respect to the right ascension [1]. In our previ-
ous work [2], we studied the data registered at the
Yakutsk array [3] over the period 1982-1995 in the
energy range of 3 x 10% < E, < 3 x 107 eV with respect
to the right ascension and obtained a probably signifi-
cant amplitude of thefirst harmonicr, = (1.35+ 0.36)%
and the phase ¢, = 123° + 15°. Earlier, in the study [4]
performed on the Haverah Park EAS array in approxi-
mately the same range of energies, thevaluer, = (1.7 £
0.4)% was obtained; however, the phase ¢, = 218° +
14° is considerably different from the results obtained
in [2]. It is seen from these data that the amplitude
observed issmall for thisenergy, and one must takeinto
account the contribution of the equipment and the
atmospheric conditions in order to estimate the true
anisotropy of cosmic rays. In our previouswork [2], we
did not analyze the effect of seasonal changes of the
atmospheric conditions.

In the process of the long-term operation of the EAS
array, the registration of events is sometimes inter-
rupted due to technical and technological reasons; in
addition, the effective area of event registration can

vary due to the temporal failure of certain detectors.
This can result in an inhomogeneous sky survey at dif-
ferent time instants of both the solar and sidereal day.
In addition, for the Yakutsk and similar arrays, the
energy E, = 10' eV is the threshold one and atmo-
spheric conditions, which have diurnal and seasonal
variations, influence the frequency of the shower event
registration. Since the direction survey conditions at
different right ascensions depend on time (if the array
is not on a pole), the inhomogeneity of the sky survey
and variation of the atmaspheric conditions can make a
considerable contribution to measurements, which dis-
torts the true anisotropy of the primary radiation. The
degree of influence on the results of the analysis can be
different in different experiments; it depends on a vari-
ety of factors, such as climatic conditions, the design of
the trigger array (its effective area depends on temper-
ature and pressure), criteria of event selection, possible
systematic errors in determining the parameters and
energy of showers under various atmospheric condi-
tions, and the frequency of short-term switching off of
the array at some moments of the day. For illustration
purposes, Fig. 1 presents the calculation results of the
dependence of the ratio of the first harmonic amplitude
for the right ascension to the amplitude for sidereal
time on the maximal zenith angle of the events at the
latitude of the Yakutsk array. This dependence is an
artifact arising due to observation conditions. It was
assumed in the calculation that the showers registered
are uniformly distributed over the sphere.

In order to investigate the anisotropy of cosmic rays
by the data obtained on ingtallations that do not measure
thedirection of arrival of individual events (E, < 104 eV),
thedistribution in sidereal timeisanalyzed. To takeinto
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account the influence of the variations caused by diur-
nal and seasonal cycles on the frequency of the events,
the distribution of the same events in “antisidereal”
timeisanalyzed using the method suggested in [5]. The
same method can be also applied for the analysis of air
showers when the direction of arrival is determined
with poor accuracy or is not determined at al because
of fluctuations of the time of arrival of different parti-
cles of the shower, which is the case in the vicinity of
the registration threshold. At the same time, the data on
the contribution of seasonal variations determined for
antisidereal time can be used to estimate the degree of
distortion of the anisotropy vector with respect to the
right ascension. In this study, we use the analysis by
sidereal timefor the dataobtained on theYakutsk EAS
array in the vicinity of E = 10'" eV and compare the
results with those obtained with respect to the right
ascension for the same sample. In the process, we ana-
lyze how the factors mentioned above (inhomoge-
neous sky survey and atmospheric variations) affect
the results obtained.

2. SELECTION OF EVENTS

The Yakutsk EAS array selects a shower when an
event isregistered simultaneously by three neighboring
stations forming a triangle. The selection scheme is
based on two types of station configurations. The first
one consists of stations located at the nodes of atrian-
gular grid with aside of 500 m (Trigger-500); the other
oneissimilar, but the sideis 1000 m (Trigger-1000). In
the first case, the registration threshold corresponds to
showers with the energy of (3-5) x 10'¢ eV; in the sec-
ond case, the energy is about 10%. The data obtained is
stored in primary storage devices, different at different
periods of time. Until summer 1995, the data was
stored in a working database after some preliminary
processing. The data was stored in the database if the
density of the shower particles on three stations
exceeded a certain threshold. The selection criteria
were dlightly different at different periods of time.
Since autumn 1982 until summer 1995, the threshold
density was set to 0.8 m2 (more than three particles per
the entire area of the counters at the station). Beginning
with summer 1995, the processing and storage are
organized in such away that al registered events can be
used for the analysis.

In this paper, as well asin the previous one [2], we
analyze the data obtained during the period from 1982
t0 1995 in the range of energiesfrom 3 x 106 eV to 3 x
10*" eV with the azimuth angle 6 < 60° that satisfied the
uniform criteria, i.e., if three stations registered the
event with a density more than 0.8 m=. For every year,
the data obtained within the period November—May
were analyzed. However, in contrast to [2], for each
period the effective area of the array was used, which
was determined by reliably operating observation sta-
tions. From the entire array of data, these criteria are
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Fig. 1. Dependence of theratio of the amplitudefor theright
ascension rgp to the amplitude for sidereal timer g4, which

is of artificia origin, on the maximal zenith angle 6, for

the events used in the analysisfor the latitude of the Yakutsk
EAS array. It was assumed in the calculation that the show-
ersregistered are uniformly distributed over the sphere.

satisfied by 135566 events, which is 10% less than
in[2]. The average energy of the showers selected is
1.6 x 10% eV (the most frequently registered energy is
10 eV); the average zenith angle is 24.2°. For this
sample, the harmonic analysis of the distribution of
events was performed with respect to solar, sidereal,
and antisidereal time, aswell aswith respect to theright
ascension.

3. TAKING INTO ACCOUNT INHOMOGENEITY
OF THE SKY SURVEY

Most often, the array is switched off dueto technical
and technological reasons in the daytime; thus, these
periods of time areinhomogeneously distributed across
the day. The inhomogeneity of sky survey is aso
affected by variations of the effective area caused by
temporary failure of certain observation stations. At the
Yakutsk EAS array, a list of time moments at which
registration was switched off and on is maintained, and
information on stations actually operating at every
instance of timeisregistered. Any changein the config-
uration of thetrigger systemisfixed asthe beginning of
anew period even if the array was not switched off. For
showers registered in the vicinity of the threshold, the
effective areais proportional to the number of triangles
in the trigger-500 that actually register the events. In
order to determine the degree of relativeinhomogeneity
of the sky survey over the whole period of observation,
the total number of operating trigger triangles was
counted for every minute of each day. The values
obtained were normalized by the average value over al
minutes. For the same periods with respect to solar
time, similar distributions over minutes with respect to
sidereal and antisidereal time can be easily obtained.
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Fig. 2. Distribution of the showersin the sample under study
over the zenith angle 6. The solid curve corresponds to the
uniform distribution over the celestial sphere.

Inhomogeneity of the sky survey resultsin different
observation conditions for different magnitudes of the
right ascension, which depend on the distribution of the
events over the zenith angle and the latitude of the
array. In order to determine the sky observation condi-
tions with respect to the right ascension, we determined
the zenith—angular distribution of the showers. Itispre-
sented in Fig. 2. The contribution to the narrow interval
of the RA from the part of the sky that is visible by the
array at the fixed zenith angle 0 at the fixed value of the
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sidereal time tg is proportional to the number of events
in the zenith—angular distribution of the showers multi-
plied by the value corresponding to tgin therelative dis-
tribution of the sky survey with respect to the sidereal
time. In order to obtain the complete distribution of the
sky survey, these contributions were summed over all
azimuth angles from 0 to 21t (assuming that they are
distributed uniformly), aswell as over all 6 and t..

To take into account the inhomogeneity of the sky
survey when determining the anisotropy vector param-
eters, the number of events in a certain minute-long
interval or right ascension was normalized by the corre-
sponding value in the relative distribution of the obser-
vation conditions.

Thefirst two columns of Table 1 present the param-
eters of the vectors of the first harmonic characterizing
the relative distributions of the observation conditions
for different variables obtained for the operational
periods of the array over the entire period of the sam-
ple analyzed. It is seen that the inhomogeneity is
rather large, and the amplitude is 1.74% even for the
right ascension. If the same distributions are consid-
ered for separate years, variations both in the ampli-
tude and phase are observed. In different years, the
number of trigger triangles was different; thus, we use
individual correctionsfor every year in the subsequent
analysis.

Table 1. Parameters of the first harmonic for various vectors (in total, 135566 events)

Distribution of events
Sky survey conditions

Vector Without regard to survey With regard to survey

r, % ¢, h r, % ¢, h r, % ¢, h
Solar 4.05 22.78 6.92 £ 0.39 2275+ 0.22 272+ 0.39 2248 £ 0.55
Sidered 2.30 8.98 3.93+0.39 9.00+0.38 1.62+0.39 10.40 £ 0.92
Antisiderea 2.15 13.34 3.50+0.39 12.44 + 0.43 1.41+0.39 10.82+ 1.06
RA 1.74 8.11 2.89+0.39 9.35+ 0.52 1.36+0.39 10.97+ 1.10
Sidereal-VAR 0.43+0.55 8.51+4.89 0.24 +0.55 11.96 + 8.75
RA-VAR(RA) 0.45+ 0.55 12.79 + 4.67

Table 2. Variation of the parameters of the first harmonic for various vectors in different seasons

. Vector with respect
Number of Solar vector Sideredl vector to right accension
Months
events

[ % o, h b h [ % o, h [ % o, h
11 14832 5.20 21.35 1.0 4.93 1.12 2.60 1.40
1201 37605 1.78 1.18 7.9 2.00 8.17 1.12 6.08
02-03 40039 3.15 22.09 8.7 2.72 9.16 221 10.12
04-05 43090 3.07 22.66 13.3 3.02 13.03 2.83 12.74
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4. RESULTS OF THE ANALY SIS

The amplitudes (r) in percent and phases (¢) in
hours for the vectors of the first harmonic with respect
tothe solar, sidereal, and antisidereal time, and theright
ascension are presented in Table 1 both with and with-
out regard to the inhomogeneity of the sky survey.
These data show that, first, theinhomogeneity of obser-
vation conditions is considerably different for different
time intervals of the day (=4%), and the amplitude of
all variables substantially decreases when the inhomo-
geneity istaken into account. Second, even with regard
to the inhomogeneity, a significant anisotropy with the
amplitude (2.72 £ 0.39)% with respect to the solar time
remains, as well as a substantial influence of seasonal
variations, which is seen from the amplitude of the anti-
Sidereal vector (1.41 + 0.39)%.

We denote the vector that appears due to seasonal
variations and contributes to the result observed with
respect to the sidereal time by VAR. It is mirror sym-
metric to the antisidereal vector with respect to the
solar one; i.e., it equals the antisidereal vector in abso-
lute value and has the phase

2cl)SoI _¢Anti’

where ¢4, is the phase of the solar vector and ¢4 IS
the phase of the antisidereal vector. The next to last row
in Table 1 shows an estimate of the anisotropy of the
primary radiation after subtracting the vector VAR. The
amplitude obtained islessthan o both with and without
regard to the inhomogeneity of the sky survey. Figure 3
shows the anisotropy vectors obtained with regard to
the influence of the inhomogeneity of the sky survey.

The contribution of seasonal variations to the sum-
mary vector with respect to the right ascension
VAR(RA) can be estimated similarly to the calculation
of the relative distribution of the sky survey with
respect to the right ascension. The calculation is based
on the same experimental distribution of the showers
over the zenith angle, and the weight of the inhomoge-
neity with respect to sidereal time at the instance tg is
specified on the basis of the parameters obtained for the
vector VAR. The last row of Table 1 shows the results
for the right ascension obtained after subtracting the
calculated atmospheric component. The amplitude is
lessthan g, asisthe case in the analysis with respect to
sidereal time.

In addition, we performed a similar analysis of the
same sample for certain months of the year. The results
are presented in Table 2, where the observed parame-
ters are given with regard to the inhomogeneity of the
sky survey. In the column ¢, the phase in terms of the
sidereal timeis given for the solar vector, which corre-
spondsto the solar phase at the middle of the season. It
isseen from thistable that both the phase of the sidereal
vector and the one with respect to the right ascension
for different seasons vary with variation of the solar
vector direction in celestial coordinates. This fact con-
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Fig. 3. Mutual location of the anisotropy vectorsfor various
variables: Sol isthe solar vector; Sid is the sidereal vector;
Anti isthe antisidereal vector; and VAR is the contribution
of the atmospheric variationsto Sid.

firms that the main contribution to the amplitude with
respect to the right ascension is caused by seasonal vari-
ations of atmospheric origin. After al the relevant fac-
tors are taken into account, no statistically significant
anisotropy of the primary radiation at the energy of
10" eV is observed for the sample under study. In our
previouswork [2], we did not take into account the con-
tribution of the atmospheric variations, which is
responsible for the significant amplitude obtained.

At the present time, we are revising the list of oper-
ational periods of the Yakutsk EAS array for recent
yearsand arerestoring all the dataregistered up to 1995
that were not written to the working database because
of the selection criteria. Thiswill enable us to continue
the detailed analysis of the compl ete dataarray contain-
ing records of more than 10° events. The results can be
used to estimate the anisotropy of the primary radiation
with energy of about 107 eV.

5. CONCLUSIONS

The results obtained in this study show that the
inhomogeneity of the sky survey must be taken into
account when analyzing data with the purpose of esti-
mating the anisotropy of the primary radiation. The
inhomogeneity arises due to short-term switching off of
the array and variations of its effective area. In addition,
seasonal variations of the frequency of events of atmo-
spheric origin make a contribution to the vector
observed with respect to the right ascension. This con-
tribution can be estimated by the vector with respect to
antisidereal time and the zenith—angular distribution of
the showers. As aresult, it is estimated that the ampli-
tude of the first harmonic with respect to the right
ascension with regard to the perturbing factors is
(0.45 £ 0.55)%. Thus, the true anisotropy of the pri-
mary radiation at the energy 10’ eV islessthan 1.25%
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with aprobability of 0.95, judging by the data obtained
at the Yakutsk EAS array.
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Abstract—A theory of resonance Raman scattering of light by 2L O-phononsin semiconductor crystalsis pre-
sented. Wannier excitons are considered as intermediate states. Analytic expressions are obtained that take into
account contributions from different chains of intermediate states. The scattering cross section is shown to be
weakly dependent on the wave vector imparted to the phonon system. The theoretical model permits the calcu-
lation of the scattering cross section for the energy of the exciting radiation photon below the level of exciton

resonances. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The study of resonance Raman scattering near the
edge of fundamental absorption of a crystal is of con-
siderable interest because the scattering spectrum
exhibits anumber of specific features. One of these fea-
tures is the alternating change in the scattering cross
section with increasing number of phonons excitedin a
CdS crystd [1, 2]. In this case, the fourth-order lines
dominatein the spectrum. Thisfeaturewasexplainedin
paper [1] within the framework of a theoretical model
that considered excitons as intermediate states. The
interaction of excitons with phonons was treated using
the mechanism of the intraband Frélich electron—
phonon interaction. According to thismodel, the micro-
scopic mechanism of Raman scattering accompanied
by emission of n phonons can be described by the fol-
lowing sequence of processes:. (1) Absorption of a pho-
ton of exciting radiation accompanied by the transition
of the electronic system to the excited state; (2) transi-
tion between excitonic states accompanied by emission
of n phonons; (3) emission of aphoton of scattered light
and return of the electronic system to the ground state.
Anirregular nature of line intensities in Raman spectra
is caused by different alternation of intermediate states
of the sand p types. Thisfollows from the expansion of
the matrix element of the Frélich interaction in the
phonon wave vector g,

- i my—my;
Foox O DX GpF X0y OF 5— ———2
A'A c p c 2qpme +mh (1)

x Do (ap TF)2IXy O ..

RS _
Wilo =

A~ ~ ~ ~ . 2
[fl HER|C|:|E:| H EleD]m HEL|aDE| HER|| O

where q, is the unit vector in the direction of the
phonon wave vector; m; and m, are the effective

masses of an electron and a hole, respectively; xﬁv(r)

is the hydrogen wave function; and A denotes a set of
guantum numbers characterizing the relative electron—
hole motion. The first nonvanishing term, which corre-
sponds to the dipole approximation, describes transi-
tions between the s and p excitonic states. Transitions
between the s states correspond to the second (quadru-
pole) term in expansion (1). Because the dipole transi-
tion from the ground stateis allowed only to the s exci-
tonic state, the odd orders necessarily include the pro-
cess of scattering of the same parity (s—sfor 1LO and
sp-s-s for 3LO) into the chain of the intermediate
states. Therefore, the scattering cross section for such
processes contains afactor that, in the case of closeval-
ues of the effective masses of an electron and a hole,
leads to an irregular distribution of the intensities of
multiphonon lines.

Multiphonon Raman scattering has been studied in
papers [1, 3-5]. However, at present a theory of mul-
tiphonon scattering of light that takes into account
excitonic effectsis absent. In this paper, we propose a
theoretical model of Raman scattering of light by
2LO-phonons for the energy of an incident photon
lying near the exciton levels.

2. THEORY
2.1 Matrix Elements

The probability of two-photon Raman scattering of
light is described in the fourth order of the perturbation
theory by the expression [6]

21
hzz Z (Ec—ﬁws)(Eb+hwp_
f lab,c

B (E,—hoa)| O\ H 7872 @
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where |i Cand |f Care the initial and final states, respec-
tively; |al]|blland [cChre the intermediate virtual states;
Wy, s, and wy, are the frequencies of exciting radiation,
scattered light, and lattice phonons, respectively; and

Her and He are Hamiltonians of the electron—photon
and electron—phonon interactions. In the case of reso-
nance Raman scattering, the frequencies of exciting
radiation and scattered light are close to the energy gap,
so that the process of scattering can be treated within
the framework of atwo-band model.

Considering Wannier excitons as the intermediate
virtual states of an electron system, we will write the
matrix element of transition from the ground state to an
exciton state upon absorption of a photon in the dipole
approximation [7]

21h
HerliO= — [&=
Bl Her an WL 3)

x NU(2m)*80me, xer (0)3(K 1 =),
where e and m are the charge and mass of an electron;
€., 0., and N, are polarization, the wave vector, and the
density of exciting photons; n, is the refractive index;

K ,isthewave vector of an exciton; and 11, isthe inter-
band matrix element of the electron momentum opera-
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tor. Hereafter, the subscripts L and S correspond to
exciting radiation and scattered light. One can seefrom
expression (3) that the dipole transition is allowed only
to the s excitonic state.

A matrix element of the intraband Frolich exciton—
phonon interaction hasthe form [1, 8]

B He[al]
= veV (N, + 1)Y28(K, + 0, — K o) Py (d)), @
where
Pap(dp)

)
= (xovfid (exp(—iag, [F) — exp(icyd, ())|X0s),

Ve = eJ2mhwy(e. - &5"). (6)

Here, €, and g, are the high-frequency and low-fre-
guency dielectric constants; V is the crystal volume;
and n, isthe number of phonons. The parameter oy, is

deflned aS Olgy = M/ (My +M3) .

By inserting matrix elements (3) and (4) into (2) and
replacing sums over the phonon wave vectors by inte-
grals, weobtain[1, 9]

eN N, +1 n
Wiio = 4L(2 2 )Jl 8oy 2TE, To{ O (0 Oy —Gs—0p) +0 (A —Gs—0p 0,)}] 3w — ws—2w;)dq,,
2m n;ngw, w @)
where
As Az i . ' . ' A,
xcv(0><xw L (exp(-iaq’ ) — exp(icyq’ 1)) xcv>
a(g,q’) = 7
Mo Ao g (Ex,—fiwg) i, 20 +ﬁw —fiw (8)
Ax _
<x L (exp(—ig ) — expliayg D))xcv>x (O)(Ey —ho) ™
Here, M= mf + m" . states can be written as [11]
Xcv(r)Xcv(o) 95 [Eﬂ:l
> e T oy Wi ©

2.2 Green Function Method

In calculating a(q, q'), the summation over all the
intermediate excitonic states of the discrete and contin-
uous spectra involves significant difficulties. If the
exciting radiation frequency islower than the excitonic
resonance frequency (E;s > Ay ), this problem can be
solved using the Green function method [10, 11]. In
this case, the sum over al the intermediate s-excitonic
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where 1 is the reduced mass of an exciton (U = mf ™ +
m:_l); (2 is the gamma function; W, 15(2) is the

Whittaker function; k = ,/R/(E;—#w) ; Rand aarethe
exciton binding energy and its Bohr radius; and E; is

the energy gap. Using the Green method, we calculate
the function
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@ = 3 2@l Eetiaa 1) - ep(oa 1),

E), —fis (10)
)‘3
Taking into account (9), expression (10) assumes the we will find the integral over angular variables
form
Jd+1 21
| fa(a) = i EET (1-K9) Yin(Dq bg)
fd —K3)[Xeu (1) (exp(—aeq [T ) e v
(11) (14
—exp(ia,g D))WKS'UZS%zEdr_r' J-WKSJJZIJ( de)\(r){( 1)'ji(aar) = ji(apar)} rar.

We will calculate the integral (11) by using the expan-
sion of a plane wave in spherical functions[12]:

00 |
=4y S (AN Yin(9q 0q) Yin(9.9), (12)
I=0m=-
where j,(2) isaspherical Bessel function and Y, (3, ¢)
(Yim(@¢ ) is aspherical function of the polar angle
and azimuth of direction of the vector r(q) with respect
to a fixed coordinate system. Then, we will write the
wave function of the relative electron—hole mation as
xﬁv(r) =Y, (8, §)R\(r) [12] and, taking into account
the orthogonality of the spherical functions

21T

J’J’Y.*m(ﬁ,<|>)Yr,m-(ﬁ‘,<I>)Sinvf90|<1>0|19 = 0O, (13)

einr

Dcn{ (-1)'A(n, a.qa) — A(n, a,qa)} ,

'Af aad]- Al o, A = (dm),

_+1 2l Yim(Bg ¢g)
fr(q) =i ﬁr(1_ DG IE o

where

A(n, Q) —Iexng] Dn+|+1 2l +2, 200

nOd
(18)
WKS,MD(—SDJ'.(Qmp'”dp,
_ 2" [+
Cn = nI+2 m’ (19)
3 .
PN SN S L _ig
CK—J;(Zk) exp[QkDrgu s Y
We calculated integral (18) using the relation
(I+v)! iRe(iHl_Ve_iZ) (21)

ol
@ = ZVZOV!U—V)!(ZZ)V
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By inserting the radial functions

_ 2 [(n+1)! |
Rnl(p) /\/;snl +2(2| + 1)| (n —| — 1)| (2p) (15)
xexpD rﬂ n+|+1 21 +2, 29]
and
_ 2kexp(ry2K)| (1 + 1-ik™) .
Ra(p) W(ZI 1)1 (2kp) .

x exp(—ikp)FEli—(H +1,21 +2, 2ikgf!

for the discrete and continuous parts of the spectrum
(p =r/a) [12], we obtain

A = (nlm),
(17)

for the Bessel function [13] and the integral representa-
tion of the Whittaker function [14],

W, 12(2) = (22)

—ZtDl + I]]
F(l K)I dt.

By inserting expressions (21) and (22) into (18) and
taking into account that the Laplace transform for a
hypergeometric function has the form [14}

00

[eTF(acikp)p” ™ dp = FFbic @
S

we obtain
2K§
A(n, Q) = ——1,(Q, Kg,n), 24
Q) = Gt T (QKem, 29
where
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1
(Q KsN) = 55
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x5 (14 1-v)(keQ) Req' " Dlt”D [t 3 e 5042
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n 0
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Thus, the function f,(q) hasthe form

|+2
(n+1)! )
Ks Yim(%q §g) n'”HJ (Q K N), A = (nlm),

fa(a) = (26)

R[ (21 +1)!

J%z'*zk'”exp%‘rgu-- ‘Jlgg K, 'D, A = (kim),
where 2.3 Scattering Cross Section
Ji(Q, Kg, N) Taking the results obtained above, we rewrite
expression (8) in the form
I+1E( l)ll (ale Ks, n) _ Il(ath KS! n)g (27) 4K
(@' (@Q'" D a(a.a) = — i LZP (cosy)a(ga, q'a),  (28)

22l U (n + I)' ‘]I(le KS! n)‘]I(Q’ KLv n)

aW(Q Q) = 7 +1)!(2I)!EZ(n_|—1)!n2'+4 n(w, Q) -n"

|
k
+J" - - s=1

(29)

i + 1) WQ K TKDNQ K, TKT)
n(wy, Q) +K “H

where n(w, Q) = RYE, + #2Q%2Ma? + fiw, — i), ~ of intermediate states s-s—s, | = 1 corresponds to the

_ ' o . chain sp-s, etc.
Q= ga, and (9" - a)/q'q) isthe Legendre polynomial, Thedifferential cross section for two-photon Raman

One can seefrom (29) that | = O correspondsto achain  scattering can be written in this case as

do _ e4ns°)s[n + 1] v

dQ ~ Pmic*a®n II CKsKLZP(COSV)[“ (Q 1Qus— QP+ ai(|QLs—Q[. Q)] Q dQdo,  (30)

where C = &;851C, Thoy7/R’; do = sin9dddd; Qs = 3. DISCUSSION

Consider the dependence of the scattering cross sec-
(AL — ag)a is the wave vector imparted to the phonon o on the magnitude of the wave vector Q, s imparted

system; and y is the angle between vectorsQ = qaand  tg the phonon system. The photon wave vectors are
Qus— Q. small compared to the dimensions of the Brillouin
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zone. Thus, for backward Raman scattering by 2LO
phonons in a CdS crystal, Q,s = 0.2. To estimate the
contributions from phonons with small wave vectors
(Q< 1), we consider expression (18). Because the
Bessdl function of a small argument has the form [12]

. z
WA= (1)
the quantities A(n, Q) and I,(Q, kg, N)/Q'** depend
onQas Q' for Q —= 0. For Q, Q' < 1, this yields
o,(Q, Q) B (QQ)' ~*forl =1 (ay(Q, Q) 0 QQ). There-
fore, inthelimiting case Q, Q' — 0 only achain of the
intermediate states s—-p—s makes a contribution to scat-
tering because a,(Q, Q) — const. In this case, the
contribution of theregion Q < 1totheintegral (30) will
be small. Thus, phonons with Q, Q' > Q,splay amajor
role in scattering. This leads to a weak dependence of
the scattering cross section on the wave vector imparted
to the phonon system. This conclusion agrees well with
the results of the study of multiphonon scattering per-
formed in paper [1], where its was found experimen-
tally that below the fundamental absorption edge the
scattering cross section for even-order multiphonon
processesisindependent of the wave vector imparted to
the phonon system. Therefore, we can assume in the
calculation of the scattering cross section that two pho-
tons are created in the process of Raman scattering
which have equal in magnitude and oppositely directed
wave vectors, i.e.,

a(as—a.d)=a(g,qis—q)=a(a,—q). (32
Note that the region in which the approximation (31) is
valid expands with distance from the resonance. Thisis
distinctly demondtrated in Fig. 1, where the dependences
1(Q, Kg, 2)/Q? on Q are presented for kg = 0.9 and 0.2.
This property follows from relation (18). Indeed, the inte-
grand contains the function exp[<(p/kg)(1 + iKQ)],
which is expanded in a series in a small parameter
KQ < 1. Therefore, the dependence of the scattering
Cross section on g, — qs becomes weaker with distance
from the resonance.

It follows from expression (14) that in the case of
close magnitudes of the effective masses of an electron
and a hole, scattering is determined only by the states
with odd | to which chains of the intermediate states
s—p-s, s, etc. correspond. In addition, the contribution
from the corresponding intermediate states decreases

with increasing |. Therefore, for m; = my , the scatter-

ing mechanism involving a chain of the intermediate
states sp—s makes the dominant contribution. How-
ever, if the effective masses of an electron and a hole
are greatly different, one should also take into account
the transitions between the s excitonic states (s-s-9).
Figure 2 shows the dependences of relative contribu-
tions A\, to the scattering cross section on the effective
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Fig. 1. Dependences of the function 11(Q, Kg 2)/Q2 on the
phonon wave vector Q for kg= 0.9 (curve 1) and 0.2 (curve 2).

The dashed and dot-and-dash curves describe correspond-
ing approximate functions f(kg 2)Q, where 11(Q, Kg

n)/Q? oo ks NQ.

[

O
T
1

“r—- 1
0 02 04 06 08 1.0
m:/mz

Fig. 2. Dependences of the relative contributions A; of two
chains of the intermediate states s4p—s (A4, curve 1) and
s—s-s (g, curve 2) to the scattering cross section on the

ratio mg/my of the effective masses of an electron and a
hole.

masses of an electron and a hole for two chains of the
intermediate states s-s-s (A\) and s+p-s (A\o), where

A = [lon(Q QI QdQ. (33)
One can see from this figure that for m% /my > 0.5 the
contribution from transitions between s excitonic states
is negligibly smal (Ay < A;); however, already for
m; /m} = 0.2, the contributions A; and A, prove to be
of the same order, whereas when the effective masses
are substantially different (m} /my; < 0.15), the magni-
tude of A, exceeds that of A;.

Using the theoretical model devel oped in this paper,
we estimated the cross section for Raman scattering of
light by 2LO phonons in a CdS crysta taking into
account the contributions from two chains of interme-
diate states. s—s—s (I = 0) and sp-s (I = 1). We per-
formed calculations for the same geometry as for mul-
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Fig. 3. Efficiency Sy of Raman scattering of light by 2LO

phonons in a CdS crystal as a function of the exciting radi-
ation wavelength.

tiphonon scattering studied in paper [1]. In this case,
the excitonic series A, B, and C contribute to scattering.
We used in our calculations the following crystal
parameters: the energy gaps Eg, Egs and Eyc are 2.579,
2.596, and 2.66 eV, respectively; the exciton binding
energies Ry, Rg, and R are 0.03, 0.028, and 0.026 eV,
respectively [15]; the oscillator strengths for the 1S
excitonic are 41, = 0.0125, 41tz = 0.0075, and 471t =
0.005 for excitonic series A, B, and C, respectively [16];
hoy, = 305 cm™; g,=9.3; £, = 5.2 [17]; and mg /my; =
0.2[8]. Theéefficiency of two-phonon Raman scattering
Ss = Vlda/dQ calculated with these parameters as a

function of the exciting radiation wavelength is pre-
sented in Fig. 3.

CONCLUSIONS

The theoretical model of resonance Raman scatter-
ing of light by 2L O phonons was devel oped. The model
allows oneto calculate the cross section for two-photon
Raman scattering when the exciting radiation fre-
guency islower than the exciton transition frequency. It
is shown that below the fundamental absorption edge,
the dependence of the scattering cross section on the
wave vector g, — gs imparted to the phonon system is
weak and weakens with distance from the resonance.
Analytic expressions are obtained which take into
account contributions from different chains of the inter-
mediate states. It is shown that when the effective
masses of an electron and a hole are close, the scatter-
ing ismainly determined by a chain of the intermediate
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SEMENOVA, PROKHOROV

states s—p-s, but when m; and m}, are substantially

different, the transitions between s excitonic states
should be also taken into account. The model was used
to calculate the efficiency of Raman scattering by 2LO
phonons in a CdS crystal at different excitation wave-
lengths.
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Abstract—Analytical and numerical studies are made into the momentum distribution and energy spectra of
photoelectrons emitted during nonlinear ionization of atoms and molecules by laser radiation with elliptic
polarization. The dependence of these distributions on the éllipticity & of an electromagnetic wave istreated, as
well as their evolution upon variation of the Keldysh parameter y from the region of optical tunneling (y < 1)
to theregion of y > 1, in which the ionization is multiphoton. The quasiclassical approximation is used in the
calculations, in particular, the imaginary-time method and the saddle-point method with expansion in the vicin-
ity of thefield ellipse. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The analytical theory of multiphoton ionization of
atomsandionsinthefield of monochromatic laser radi-
ation was developed in [1-4], where the cases of linear
[1-3] and circular [2, 3] polarization were treated. The
most general case of elliptic polarization of electro-
magnetic wave,

F(t) = Fcos(wt)e, + EFsin(wt)e,, D

was treated in [4, 5] (here, F is the maximum value of
electric field and ¢ isthe elipticity of radiation (previ-
ously denoted by € [4]), 1< & < 1). Perelomov et al. [4]
have derived analytical formulas for the probability of
ionization and for the momentum photoel ectron spec-
trum that are valid for all values of the Keldysh param-
eter y, and have demonstrated that, at 0 < &2 < 1, the
most probable momentum of outgoing electron pu iS
directed along the minor axis of thefield elipse (y axis
in EQ. (1)). They have also noted that, at & = O (linear
polarization of radiation), the momentum p,. iS
directed along the electric field F, and, at § = +1 (circu-
lar polarization), the photoelectron distribution
becomes isotropic in the F(t) plane. However, the for-
mulas for momentum spectrum given in [4] are invalid
in the narrow range of { — £1, where the transition
to circular polarization occurs. Goresavskii and
Popruzhenko [5] investigated (including numerical
investigations) the polarization dependences (for al
values of &) of the momentum, angular, and energy dis-
tribution of photoelectrons and of the ionization rate of
atomsin the case of alow-frequency (y < 1) laser field.
Note that no comparison was previously made of the
results of [4, 5].

It is the objective of this study to investigate the
energy and momentum spectra of photoelectrons as
functions of the ellipticity & for al values of the
Keldysh parameter [1]

y = WKF = (2Kge) ™. 2

Here and in what follows, use is made of the atomic
unitsz = m=e= 1 (misthe electron mass), K, = K% 2w
isthe parameter indicative of the number of quanta nec-
essary for the process, € = F/k? is the reduced electric
field, | is the ionization potential of atomic state, and

K = /21 isthe momentum characteristic of that state.
It is assumed that the conditions

Ko>1, e<1 2)

are valid, which provide for the validity of the quasi-
classical approximation for many-quantum processes.
We will treat in detail the evolution of the energy pho-
toelectron spectrum upon transition from the condi-
tions of optical tunneling (y <€ 1) to the antiadiabatic
region of y> 1, aswell asto the transition region of y~ 1.
We will demonstrate that (except for the narrow range
of 1-¢&2 < e < 1), the results of [4, 5] obtained using
different methods virtually coincide.r Also treated is
the variation of the momentum spectrum of electronsin
therange of 1 - &2 ~ ¢, i.e, for close-to-circular polar-
ization. Explicit analytical expressions (12), (14), and
(18) are derived for the energy spectrum, which cover

1 The statements, made in [5] (for example, pp. 1201 and 1206) to
the effect that the formulas of [4] are valid only in avery limited
range of values of ¢ are based on misunderstanding and are essen-
tially wrong. See Fig. 4 and the discussion of Egs. (27) and (31)
below, and Section 5in [6].
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Ty q(y, &)
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Fig. 1. The dimensionless “time” 1q(y, &) of subbarrier

motion, found numerically from Eq. (5). The curves corre-
spond (from the bottom upwards) to the values of ellipticity
£=0,0.5,0.75,0.9, and 1.0.

the entire range of variation of the parameter y and are
characterized (as demonstrated by their comparison
with the results of numerical calculations) by a fairly
good accuracy. The momentum distribution of elec-
trons is found in the case of circularly polarized field
for arbitrary values of y (see formula (33) below).

At present, the problem of detailed description of
the momentum and energy spectra of photoelectrons
under conditions of multiphoton ionization of atoms
and molecules appears to be topical in at least two
respects. First, a number of experiments were per-
formed within the last decade, which involved mea-
surements (to a high resolution) of the distribution of
photoelectrons, including their distribution in an ellip-
tically polarized field [7—10]. Much of the experimental
results are associated with the transition region of the
adiabaticity parameter (y~ 1), littleinvestigated by ana-
Iytical methods. In this study, we have derived simple
analytical expressionsfit to describe the energy spectra
of photoionization in an elliptically polarized field for
different values of y. Second, the calculations of the
structure of spectrum of direct photoionization are nec-
essary during investigation of the processes associated
with interaction, in the final state, between ionized
electron and parent atom (ion) (such processes include
the generation of higher harmonics of laser radiation
[11, 12], multielectron noncascade ionization [13, 14],
and rescattering of photoelectrons [15]).

2. QUASICLASSICAL APPROXIMATION

The rate of ionization of the atomic level in alaser
field and the momentum spectrum of emitted electrons
are defined by the probability of tunneling through a
time-variable barrier, which may be conveniently cal-
culated using the imaginary-time method [4, 16]. Sub-
barrier trgjectories are introduced into the treatment,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

Y
Fig. 2. The function g(y, &) which defines the exponential
factor in expression (6) for the ionization probability. The
curves correspond (from the bottom upwards) to the values
of £ =0, 0.5,0.75, 0.9, and 1.0.

which formally satisfy the classica equations of
motion but with imaginary time (which is reflective of
the fact that such trajectories are not realized in classi-
cal mechanics). The exponential factor in the tunneling
probability is defined by the so-called “ extreme” subbar-
rier trgjectory (which minimizes the imaginary part of
the action function and defines the most probabl e tunnel -
ing path of a particle); in order to find the momentum
spectrum and the preexponential factor, one needs to
treat abeam of close-to-extremetrajectories. For details
and necessary refinements, see [4, 16-18].

In the case of ionization of the s-level bound by a
short-range potential (binding energy | = k%2, the
range of action of the forcesry < 1/K) under the effect
of the electric field of the wave as given by Eq. (1), the
momentum spectrum of photoelectrons has the form

dw(p) = [F(p)"d’p,
L CLAL L B

x EeXp[ w(py Prmax) }+ eXD[ w(py+ Prmax) }%-

The values of A, ¢;, and p,,, are defined by formulas
(23)—(28) in [4]; these quantities are expressed in terms
of the variable s = g(y, &), which satisfies the transcen-
dental equation (20) in [4]. The formulas of the latter
study are simplified considerably if we change over
from sto a new variable 1,

2 2
T, = Arctanh /i—ﬂ%
l+y

(4)
_ Jsinh’? Jsinh™to—y” tanhrd]
= coshrO |E|%l
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Fig. 3. The coefficients c(y, &) of Eq. (3) for momentum distribution as functions of the Keldysh parameter yat & = (a) 0, (b) 0.5, and

(c) 0.9.

which isfound from the equation
sinh To[l £2kotht, 1(5} V2 )

and has a transparent physical meaning: 1y = —iwt,,
where t, is the “initial moment” (purely imaginary), or
the total “time” of the subbarrier motion of electron
(Fig. 1). All quantities entering the formulasfor theion-
ization probability are readily expressed in terms of T,

A= Cl—— P, .80, 6
2n2 (v, &) p& g(v E)D (6)

_3
g(y! E) - 2
: (7
1+ sinh2t sinh’t
x[%u ~(1-8)—2 -8 }
2V V YTo
— tanht,)”
C, = Tp—0otanht,, C, = Tot OEZW,
Totanht, 7)
_ _ _20y
CZ - TO! P(V, E) - S|nh2.[0

(Figs. 2 and 3), and we used the notation

G%LE

_ EU.+(1—tanhT0/T0)EZ+
g =1.

ztanhrqj

£ =0,
[Tt/ tanht,,

Note that ¢, > ¢, > ¢, (the equality ¢, = ¢, is observed
only at & =0, i.e, in the case of linear polarization,
Fig. 3a). In so doing, the coefficients ¢, and c, are
numerically close to each other except for the case of
|€]= 1 (i.e., close-to-circular ellipticities).
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In Eq. (6), C, isthe asymptotic (at distancesr > 1/K
from the nucleus) coefficient of atomic wave function.?

Thus, Ci =1 in the case of the ground (1s) and 2s-
states of hydrogen atom (the values of C, for other

atomsand ions are givenin[17]), and Ci =1/2 for the
level in the d-potential.

Note that our normalization of the coefficients C,
corresponds to that in [17, 24] and differs from that
adopted in [2-5].

One can seein Fig. 2 that, as the dlipticity of light
increases, the value of g(y, &)increases monaotonically,
and the ionization probability decreases.® Even more
considerable is the decrease in g(y, &) during transition
from the adiabatic region of y < 1 to the multiphoton
region of y> 1, which leadsto asharp (because 2/3e > 1)
increase in the ionization probability.

Therefore, the spectrum given by Eq. (3) isthe sum
of two anisotropic Gaussian distributions with the cen-
ters at the points £p,,, ON the y axis (the minor axis of
the ellipse F(t)). In so doing, the most probable
momentum of outgoing electron is (see Appendix A)

_ Fsinht, _  sinht,
Pe= Gt T K ®

The results of calculation of the energy spectrum of
photoelectrons using the foregoing formulas will be

ax = |E| va

2 These coefficients occur repeatedly in quantum mechanics and
atomic physics and may be calculated by the Hartree—Fock
method: see, for example, [19]. In addition, simple analytical
approximations are available for these coefficients, which were
derived by Hartree [20], as well as those derived using the quan-
tum defect method [21-23] and from the expansion of effective
radius [24]. For neutral atoms and singly charged positive ions,
these approximations are characterized by afairly high accuracy
(in connection with this, see Table 2in [6]). Asisseenin Table 1
in [17], the numerical values of C, for the s-states are fairly close
to unity.

3 For a fixed amplitude of the field F. In so doing, the radiation

intensity J = (1 + £9)cF%/8m also varies, but not more than by a
factor of two.
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described below, but we will first treat two limiting

cases for which explicit analytical expressions may be

derived.
(@ y < 1 (low-frequency laser radiation). Here,

1
To=y-5(1+KY’

+43'735 +2k + 35ksz +. 9

aly, &) = 1——(1+k)v +0(y"),

P= 1—%(2+5k)y2+

cngky3+..., cy=y—:—:§ky3+..., (20)
_ 1 3
cz—y—§(1+k)y +...,
Eredyie [ - Sk '+ m (11)
W[ 120 27 '

where k = (1 — EZ)/2.4 We perform integration with
respect to d3p (for details, see Appendix B) to derive,
for the probability of n-photon ionization,

Wy, = Wy a(y(n—no))

a2 U
x expl-5(1-&")y (n—no)d,
4 U (12)
20263/2 2

Wh, = Y

2
T
oot -5

2

n>n, = 4F—ws[1+322+0(v2)]

where

and the function
a(x) = e 1y(x)

32
—X+EXTH+ .. .
1-X 4x , X 0,

(13)
i[l + i + .

/2TIX 8x
isintroduced, where | (X) isthe modified Bessdl function.

:|! X"ool

4 Note that, for y = 10, the momentum Pmax 1S @most proportional
to the elipticity of light & (see Fig. 2in [4]).
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Inthe case of n<ny,

O . 2FK [n—vJ
w,0exp&¢ —al— 0,
n 0 w2%[ nO_VD[l

F2 2
v=-—(1+&),
40°

(14)

where v is the photoionization threshold. We will use the
notation &, = w///FK = y.Je (§; < 1). If the dlipticity
& > &, distribution (14) is" pressed against” n=ny and
makes a negligibly small contribution (of the order of
JJe) to the total probability (or to the rate of level ion-

ization) W. We integrate Eq. (12) with respect to n from
N = ny to infinity to derive

W = 3e > KZCie
NT(1-E&7)

XeXD&—[l——%l 3Dv }D,

which is in complete agreement with the adiabatic
approximation in view of the correction proportional to
y? in the exponent [3, 4]. The main contribution to Eq.
(15) ismade by theregion of n—ny =y > 1, inwhich

1
n—n,

(15

W, = const
. . (12)
2
x expG5(1 -8y’ (n-no).
0 U

(b) In the opposite case of y > 1, Eq. (5) takes the
form

JIL-g(1-15He° = 2y, (5)
whence
To(Y, €)
_ Eln(zy/ﬁ), 1-82s 1/In(2y), (16)
On(y./2iny), & = 1.

We will restrict ourselvesto logarithmic approxima-
tion and assume that 1, > 1; then, 0 = 149,

1 I S 5 S
g(y1 E) 2v|:TO 2 2_[_0(1 + E26)i|1

2 (17)
Cx = TO(l_a)! Cy = TO(1+E 6)1

C,=To, P =y (1+£%),
whered = U[(1-&)1,+ &9 < 1. Inparticular, at & —= 0,
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C, =T +E—+...

y = To :
To

C,=Tp—1- %L

T, = |n(2y)+%€2+...,

E +0(&",

and, at & — £1,
¢, = 215k + O(KY),

where k has the same value as in Egs. (9)—(11). After
simple computations (see Eq. (B.7)), we derive Gauss-
ian distribution for the probability of n-photon ioniza-
tion,

C, = 2To— 2Tk + ...,

D(n no)
max , An= , 18
W = WP T n=u/n, (18)
Where Wig = W, |
L AEI-ET+ £
(1- E)TO+2E To
n, = K Eﬂ_+ EZ E
0 (-8 28]
(see dso [25]). On observing that Ky = 1/w > 1,
O €°1[1-(1-3)8) 7, 187> i,

H=01

%T—O[l—éré(l—zz)z] E1

and 1y = In(2y) > 1, we see that the distribution given
by Eg. (18) is always much narrower than the Poisson
distribution with (= n, (for which, apparently, p = 1).

Unlike that given by Eq. (18), the distribution given
by Egs. (12) and (14) isasymmetric rel ative to the value
of n = n, that corresponds to the maximum probability

of ionization. In view of formula (21) (see the text
below), Eq. (12) yields (y <1)

N, DKoy ™2 > 1,

Lh - nO

(19)
No Dﬂﬂj 1— EZ’

where M and An denote the average number of
absorbed photons and its dispersion. This estimate is
valid for 1 —&2 > ¢; in the case of circular polarization

[6],
An EKO/«/_K = y./e,
GO TSKlny) ™,

y<1,
y > 1.
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Finally, it follows from Eq. (18) that, at y > 1,

N Dpﬁ’mi
D‘”Jz (1%,

611 E — 1.

Therefore, the distribution with respect to n is aways
relatively narrow (in units of average (m[).
In the general case (any values of y and &), the pho-

toionization threshold v and the most probable number
N, of absorbed photons are [4]

= ng,

20
<1 (20)

_ F2 2 2
v = —(1+& +2y),
40
2 i (21)
No = V[1+ 2 2%@' CH }
1+&8°+2y°- To
where 14(Y, &) is determined from Eqg. (5). Hence,
no—v
v
22
_REUL+EY, Y -0, (2

DE. IT(1- & )To"'ZE Tol,

Therefore, Ny — v > 1 if y < exp[ JK,E/(1L-E9)],

which is amost always valid except for the case of lin-
ear polarization & = 0 (whenny, —v ~ 1if y > 1[1]).
Thus, with & # 0, the distribution of w,, coversmany val-
ues of n, even if y > 1. this enables one, in calculating
the ionization rate W, to replace the summation with
respect to n by integration.

For the photoelectron energy distribution, we have
derived asymptotic formulas (12), (14), and (18), which
are valid for low and high values of v, respectively. In
the case of arbitrary values of vy, thisdistribution may be
represented in the form of a single integral (see Egs.
(B.3) and (B.4) in Appendix B).

YHOO_

3. MOMENTUM SPECTRUM
IN THE TUNNEL LIMIT

As was aready mentioned above, the distribution
given by Eqg. (3) isinvalidin the narrow ellipticity range
of 1—&2< e < 1. In the case when the tunnel mode of
ionization isrealized (y < 1), analytical expressionsfor
momentum distributions have been obtained [5], which
are valid in this narrow range as well and provide for
direct limiting transition to the case of circular polar-
ization.

We will follow Goreslavskii and Popruzhenko [5]
and treat theionization asaquantum transition from the
bound state of W, with theionization potentid | tothe state
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of continuum with the asymptotic momentum p, whichis
approximated by the nonrelativistic Volkov wave func-
tion,

t
W, = E'Xp%p L _iJ’Ep(tl)dt%’ (23)
0 J 0

where E,(t) = [p + A(t)/c]%2 is the time-dependent
kinetic energy of electron in the laser field with the vec-
tor potential

t

A(t) = ~ofF(t)d’,

and the field F(t) is described by expression (1). The
momentum spectrum is described by formula (3),
where, at this paint,

_ AW i
F(p) = l(—g;[‘*i—zwo(p)ﬁ + 24

2w t
. [
X J’ dtexp%ltHIEp(t‘)dt‘D.
! o J 0

(24)

Under conditions of K, > 1 and F%w?® > 1, the time
integral in the amplitude equation (24) is calculated by
the saddle-point method. In the tunnel limit, the equa-
tion for the saddle point tp) = ty(p) + ity(p) is simpli-
fied, which enables one to write the ionization rate in
the form

aw = _w
() 4TPF
(25)
0 4./2[1 + Ep(to)] 0 5
Y PO Fy LY P

a

where the sum is computed over all saddle points or
solutions of Eq. (14) in [5] (in the case of linear polar-
ization, two such solutions exist, and, as the value of &
approaches unity, one solution remains). When condi-
tions (2) arevalid, the value of dW(p) is defined by the
exponent, and the main contribution to Eq. (25) ismade
by the region of momentum space with the least value
of [I + Ey(to)]¥%F(ty). The preexponential factor in
Eq. (25) corresponds to the case of ionization from the
ground state in the potential of zero range of action
(&-potential).

Expression (25) describesimplicitly the momentum
spectrum of photoelectrons and is valid for any values
of &. In order to derive explicit expressions, one must
take into account the fact that, with the preassigned
direction of the electron momentum, the distribution
given by Eq. (25) reaches its maximum provided

p = Pe(to) = —2A(to). (26)
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Asthe parameter t, varies within the optical period, the
vector Pg(t,) describes in the momentum space an
ellipse which will be referred to asfield ellipse,® and in
which the distribution given by Eq. (25) reaches alocal
maximum. By virtue of the condition 1/e > 1, theion-
ization probability decreases rapidly with deviation
from the field ellipse; the characteristic value of such
deviationisAp ~ /e pe < pg. Therefore, in Eq. (25) one
can change over to the explicit dependence on momen-
tum [5],

dw = Aexp[—é%z—e(l—zz)pi}
O E(p, &) E(p, &) = @7
<o ee = e

where Aisobtained from Eq. (6) at y < 1; thefollowing
notation is used:

2
1 1
E(p. &) = SA g/ + Epi-Epg + 5P,

_Epitpy
S Eplepl
In deriving Eq. (27) from (25), the ellipticity & was
taken to be arbitrary. In using Eq. (28), one can readily
see that the distribution given by Eq. (27) provides for
the limiting transition to the known cases of linear and
circular polarization [2, 3].

We will treat the correlation between formulas (3)

and (27) which describe one and the same momentum
spectrum. Except for the narrow region of “high val-

ues’ of elipticity (1 — &2 < €), the quantity £2p’ in
Eq. (28) is small compared with pi either because of

the smallnessof € (at & < ./e ) or because of the marked
elongation of distribution along the minor axis y of

polarization ellipse (1) at 1 —e > & > /e [4-6]. Inview
of theforegoing, expression (27) issimplified and coin-
cides completely with Eq. (3)6 in the case when the lat-
ter formula is written for the s-level in a short-range
potential. However, unlike Eq. (3), formula(27) isvalid
at & — 1 as well and describes the isotropization of
distribution over the azimuth angle @, which occurs
during transition to the circular field.

Figure 4 gives the momentum distribution of photo-
electrons |F(py, py, p, = 0)F%, calculated from Egs. (3)
and (27) for different values of the degree of polariza-
tion. In afield that is close to linearly polarized (§ <

y./e), the distribution is a peak with a maximum at

(28)
A

Sltliesinthe polarization plane and differsfrom Eqg. (1) by the fac-
tor L/w and by a phase shift through 172.
61f atransition to they < 1 limit is made in Eq. (3).
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Fig. 4. The momentum distribution of photoelectrons calculated by Egs. (3) (graphs a—d) and (27) (graphs e and f) for the case of

ionization of Ne3* ions (I

= 97 eV) by the field of atitanium—sapphire laser (fiw = 1.58 €V) with the intensity of 2 x 1016 W/cm?
[26]; inthis case, e = 0.04 and y = 0.2. The horizontal plane coincides with the plane p, =

0 in the momentum space. The ionization

probability is plotted on the vertical axisin arbitrary units. The series of graphs demonstrates the evolution of distribution upon vari-
ation of dlipticity & = (a) 0.05, (b) 0.25, (c) 0.50, (d, €) 0.8, (f) 0.95.

p =0 elongated along the major axis of polarization
dlipse. A two-pesk structureisformed inthe y.J/e <& <
Je range (Fig. 4a), which becomes clearly defined at

£ > /e and survives up to values of |§] = 1 —e (Figs. 4b—
4d). In this ellipticity range, the position of maximain
the momentum distribution is defined by formula (8)
(for the width of the maxima, see [5, 6]). As the field
polarization approaches circular, the distribution
becomes isotropic in the azimuth plane, asiswell seen
in Figs. 4e and 4f. Formula (27) must be used here to
describe the distribution.

Therefore, in the tunnel (y < 1) limit, the combina-
tion of expressions (3) and (27) provides for an ade-
guate description of momentum spectrum of photoel ec-
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tronsin the entire range of variation of thefield elliptic-
ity-1<&<1.

4. ENERGY SPECTRUM

The evolution of the photoelectron energy spectrum
in an elliptically polarized field was previously treated
only in the tunnel limit [5]. The expressions derived in
Section 2 describe energy spectrain the regions of low
and high values of the adiabaticity parameter y (seefor-
mulas (12) and (14) and (18), respectively). In order to
assess the accuracy of these asymptotic formulas, as
well as to construct an integral pattern of evolution of
energy spectrum during transition from the tunnel to
multiphoton mode of ionization, we will give the
results of numerical calculation of the spectrum, based
on direct integration of momentum distribution.
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Fig. 5. The energy spectrum of photoelectrons obtained by
numerical integration of Eq. (3) for the case of ionization of
Ne3* ions by the field of atitanium-sapphire laser with the
intensity of 3.2 x 1013 W/cm? (y=5.0), 2 x 10 W/cm? (y =
2.0), and 2 x 10 W/cm? (y = 0.2). [26]; in this case, € =
0.04 and y = 0.2. The series of graphs demonstrates the evo-
Iution of distribution w(x) = dW/dx (x = E/Eg is the dimen-
sionless electron energy) upon variation of elipticity & =
(a) 0.25, (b) 0.5, (c) 0.9. Dashed curvesin (b) correspond to
theresults of calculations based on the asymptotic formulas
(12) and (14) for y=0.2 and (18) for y = 2.0 and 5.0.

Figure 5 gives photoelectron spectra calculated by
formula (B.3); the integration over the variable u in
Eq. (B.4) was performed numerically. Because the typ-
ical number of above-the-threshold peaksin the impor-
tant region of the spectrum islarge, only their envelope
is given in the graphs. The ionization probability is
given as a function of dimensionless energy x = E/E,,
where E = p%/2 = w((n — V) is the final energy of elec-
tron, and the quantity E, = F%/w? is equa to the mean
vibrational energy of electron in the field given by
Eg. (1) within the factor (1 + &?)/4.
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Fig. 6. Thevalues of a and b asfunctions of y (see (B.5) and

(B.6)).

The presented series of graphs demonstratesthe fol-
lowing regularities found in Section 2 as a result of
analysis of asymptotic expressions (12), (14), and (18).

(1) For all values of v, the position of amaximum is
defined to a good accuracy by the condition

1
Emax = 552P§1
which immediately follows from Eq. (8).

(2) For all values of &, the shape of spectrum varies
from an asymmetric narrow peak at y << 1to arelatively
wide and symmetric (Gaussian) oneat y > 1.

Figure 5b (¢ = 0.5) shows further (by broken lines)
the spectra calculated by approximate analytical for-
mulas (12), (14), and (18). A comparison of the curves
with the results of numerical calculation reveals that
these asymptotic formulas describe the spectrum to a
high accuracy for al values of the adiabaticity parame-
ter, including the intermediate ones (y ~ 1). In particu-
lar, one can seethat, even at y = 2, the shape of the spec-
trum differs little from Gaussian (see Eg. (18)). An
agreement between analytical approximations and the

results of numerical calculations is observed for other
values of dlipticity & aswell.

(29)

5. CONCLUSION

The results obtained by us pertain to the ionization
of systems bound by short-range forces. As is demon-
strated in [3, 18], in the low-frequency limit, the effect
of the long-range Coulomb potential of atomic core on
the ionization probability may be taken into account
using the methods of the quasiclassical perturbation
theory and reduces to the emergence of agreat (in mag-
nitude) preexponential factor in the expression for the
ionization rate (for details, see, for example, [17]).
Because the shape of spectra and their dependence on
the dlipticity & and the Keldysh parameter y are largely
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defined by the exponential factors, the results obtained
by us may be used also to describe theionization of real
atoms.

Finally, note the following fact. Although the distri-
bution given by Eq. (3) ceasesto bevaidinthe—1—-&? <
e < lrangecloseto & = £1, it may be readily rewritten
in a form that permits limiting transition to circular
polarization. Indeed, expression (3) may be written in
different forms which are asymptotically equivalent to
one another inthe e = F/k® — 0 limit. At & = 1, zero
mode arises, which is associated with the symmetry of
escape of photoelectrons in the plane of light polariza-
tion. In this case, it is natural to change over from Car-
tesian components of momentum to cylindrical ones:

Po= pi + pi, p, and ¢ = arctan(p,/p,) . We assume
that y < 1 and &€%(1 —&?) > e to derive

F € F
aleal_f Apr - S . u
® N(1-E)w
F F
Apy,ZD[ED yJEc—o.

Therefore, P > Ap, > Ap, = Ap,, and the momen-
tum distribution given by Eq. (3) takes the form

(30)

2
W) 0 e eI + o]
(31)
-8
3e 3 9N (I) D

At 1 &2 <, thisdistribution starts spreading over the
azimuth angle ¢ (asiswell seenin Figs. 4e and 4f) and,
at & =1, changesdirectly to the known distribution for
circular polarization [26, 27]. It is possible to demon-
strate [5] that formula (31) follows from (27) as well.

As to the total probability (or ionization rate) W =
W, the relevant formulas derived in [2, 3] (valid

fé any values of y) inthetunnel limit of y << 1 coincide
with the expressions given in [5], provided the inaccu-
racies in the latter expressions, which were referred to
in Section 5 of [6], are corrected.

Therefore, the “inconsistency” between the results
of [4] and [5], referred to in [5], is fully eliminated
(note that the calculationsin [4, 5] were performed for
different calibrations of the electromagnetic field).
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APPENDIX A

The following is asimple derivation of formula (8),
based on the imaginary time method. The extreme sub-
barrier trajectory of electron in the field given by
Eq. (1) hastheform

X(t) = Ez(coshr0 —cosht),
@ (A.D)

_ . Fm sinht, _
y(t) = —|E(:2%lnhr— o z=0,

To

where T = —wt varies from 1, = T4y, &) (the initial
moment of subbarrier motion) to T = 0 at the moment of
electron exit from under the barrier. Hence,

p«(0) = p,(0) =0,

EF[{smhro 0
wly, O

5(0) = i “’d (A.2)

After exiting from under the barrier, the electron moves
in the classical trgjectory; therefore,
t
py(t) = p(0) + Fj'coswt'dt',
(A.3)

t

py(t) = py(0)+EFJ'Sincot‘dt'.

These integrals assume a unigue meaning if one takes
into account the switching off of the external field at
t— +oo,

[

J, = lim e coswtdt = 20( -0,
o -0 W +a
N (A.4)
J, = lim fe“'sinwtdt = 2(0 _— 1
o - +0 w +a w

0

Theresults of integration in (A.3) do not depend on the
concrete form of switching off the external field; it is
only required that this switching off should be suffi-
ciently slow (o < w), which may be illustrated using
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the following example. We replace the cut-off factor
exp(—at) in (A.4) by the Gaussian factor exp[—(at)?F] to
derive

2
J, = f eXpEZ=H O,
(A.4)
3. = _1 wheo 1
2= Vo
Here,
_XZX 2 3
w(x) =€ J’ey dy = xlFl%l, > —x%
22,4 5 (A.5)
) X 3x 15x T '¢ 0,
111 S
==+ .
ot e O(x™), x 0

isthe so-called Doson function [28]. Analogously, with
the Lorentz form of cut-off [1 + (at)?]™, we have J; ~

exp(-w/a) and J, = w1 + O(a?/w?)]. For an arbitrary
smooth (analytical) function of switching off of the

field, the momentum difference p, () — p,(0) is expo-
nentially small.
We find, from (A.2)—(A.4),
Pu(e) = pz(°°) =0,
_ _ &Fsinht, (A.6)
=) = py(0)+ 3 = T =,

which coincides with Eq. (8). Inthecaseof 0 < |§| < 1,
the momentum p,.., is directed on they axis, i.e., along
the minor axis of thefield ellipse [4].

Note that, in the subbarrier motion, the coordinate
x(t) isreal, and the coordinate y(t) is purely imaginary.
Accordingly, the velocity component v,(t) = dx/dt is
purely imaginary, and the component v,(t) is real.
Because at t > 0, the motion is classically alowed, the
electron momentum at the exit from under the barrier
may be directed only along the y axis. The situation is
analogous in the case of ionization by constant electric
and magnetic fields of arbitrary direction [24, 29],
when the subbarrier trgjectory is non-one-dimensional
due to the effect of the Lorentz force. Therefore, in
multidimensional problems of quantum mechanics, the
turning point is not, generally speaking, the arrest point
of aclassical particle.

Note that the foregoing inference is valid only for
short laser pulses, when a/w < 1. For long pulses, the
variation of the time average (drift) electron momen-
tum under the effect of the gradient force is significant
[30]. In order to calculate the distribution of outgoing
electrons by the final kinetic energies, one must treat
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their motion in a spatially nonuniform field in the
region of laser focus and take into account the effect of
ponderomotive accel eration. In simple models, this can
be done analytically [31], and for redlistic field profiles,
numerically [32].

APPENDIX B

The probability of n-photon ionization of the atomic
s-level isdetermined asaresult of integration of thedis-
tribution given by Eq. (3) with the d-function express-
ing the law of conservation of energy in the case of
multiphoton ionization by periodic field [1, 4],

_ EP
W, Ié IF(p)I dp, (B.1)
P, = ~J2w(n-V).
We assume that
_ 1 2q -
px - pn 1-u Sn¢'1 py an, (BZ)

p, = poa/l—u’cosd

(<1 £ u < 1) and perform integration over the azimuth
angle ¢ to derive

w, = 21Ap,J, (B.3)

where

1

J= J’duexp{ ~2(n-v)[c,(1-u®) + ¢ (u—£q)7}
(B.4)

xa(c(l—u )).

Here, g = pe/p,, € = (N —V)(c, — ¢,), the coefficients ¢
aregivenin (7), thefunction a(x) isdefined in (13), and
the quantities A and pr have the same values as in for-
mulas (6) and (8).

Therefore, the calculation of the probabilities wi,
that preassign the energy spectrum is reduced to a sin-
gleintegral, which generally speaking, isnot calcul ated
analytically. Below, we will treat threelimiting casesin
which further simplifications are possible.

1. For y < 1, we take into account expansions (9)—
(11) to find

+1

J= Iduexp{ ~(n—=v)y[by(1-u”) +by(u—Ea)’]}
(B.5)

xa((n—v)yby(1-u?)),
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where

b, = 2(1-€")Y*/3, b, = 2—(1-E)YI3, (B.6)

by = 1-[1—(7/9)E]y?/2. '
Because b; < b,, the exponent in Eq. (B.5) has a max-
imum of width du/u, = &,/ with u=u, = |€|]g + O(y?),
where &, = w/./FK = y./Je < 1. On eliminating the
small region of values of elipticity 0< & < &, we can
assumethat du < 1. If |€|g< 1, i.e, p, > pg the point ug
lies in the path of integration. We factor the slowly
varying function given by Eq. (13) outside the integral
sign and take into account the equality (N —v)(1— ud) =
n —n, to arrive at the distribution given by (12). On the
contrary, with |§|q > 1, theintegrand in Eq. (B.5) has a
maximum at the boundary of the integration region
(u=1oru=-1), which produces the distribution given
by (14).
2. In the opposite limiting case of y> 1, in view of

(17), we have

2(1-8)15
(1-8)1o+&”
2[(1-8") 10+ 2871
(1—E2)To+22
EZTO
(1-&9)1o+&"
Outside the narrow interval of 1> |&] > 1—(Tg./ng—V )7,
the coefficient ¢, > 1, and the integral given by

Eqg. (B.4) isformed on the edge of the integration region,
sothat, at 1o > 1,

¢ = (n-v)

c, = (nh=v) , (B.7)

c; = (h=v)

(1—zz)ro+2ﬂ

O
w, U exp3-2t
0 { (1-8)1,+&

(B.8)

x (Jn= —«/no—v)zé,

whence immediately follows distribution (18).
3. Findly, in the case of linear polarization,

c, = To—tanhty, ¢, = 21,

(B.9)

c, = (n—v)tanht,, T, = arcsinhy.

In view of the value of the integral
1

{ exp(—2cu”) (B.10)

xa(c(1-u?))du = w(/2c)//2c, ¢>0
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(the function w(x) was defined in (A.5)), we derive
from Egs. (B.4) and (B.5) the expressions for probabil-
itiesw,, which were earlier derived for this case (§ = 0)
previously in[2, 3].
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Abstract—The nondemocratic decay model is used to calculate the differential cross sectionsfor a series of
(e, 3e) experiments employing the J matrix method. The results of computations are compared with the
experimental data as well as with the theoretical results obtained by other authors. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The structure of quantum systems with more than
two particles and the reactions between them, which
are referred to in the scientific literature as “few body
problems in physics,” drew the attention of scientists
even at the dawn of the creation of quantum mechanics.
The powerful impetus received by this field during the
last two decades is due to asignificant improvement in
the technical basisfor the so-called coincidental exper-
iments in which the largest number of parameters
(energies, angles, polarization, etc.) of the fragments of
the decay reactions are triggered by a particle imping-
ing on a many-particle system (nucleus, atom, mole-
cule, thin film). The matrix elements for describing
such reactions include many-particle wave functions
with different asymptotic forms of the channels, and
hence the prablem of their correct approximate compu-
tation assumes prime importance. It was observed that
the larger the number of decay fragments, the more
accurate the approximate algorithms required for solv-
ing the many-particle Schrédinger equation.

At present, the most widely used is the close-cou-
pling formalism, in which a many-particle wave func-
tion is expanded in some “convenient” basis to trans-
form the initial Schrodinger equation into an infinite
system of coupled linear algebraic equations for the
coefficients of such an expansion. Thus, the problemis
reduced to the selection of the initial basis which can
best reflect the physics of the process under consider-
ation, and to the creation of an optimal and economical
computational algorithm.

The differential cross sections of elastic and
quasielastic scatterings of electrons by atoms repro-
duce the experimental data quite satisfactorily, even on
the absolute scale. The calculations of the process of

single ionization of an atom by an electron (called the
(e, 2e) reaction) and photoionization are currently
made by using a modification of the close-coupling
method, which was developed by Bray et al. [1, 2] asa
computer program called the convergent close-cou-
pling (CCC) method. An analogous computer program
was developed independently at the Khabarovsk State
Technical University by the authors for the case of sin-
gleionization of ahelium atom by electron impact [3].
The high energy of the incident and scattered electrons
(of the order of 5-8 keV in the experiments conducted
by the Orsay group [4]) allowed the authors to make a
number of simplifying assumptions, including the
description of afast electron by a plane wave and the
use of the one-phaoton exchange approximation (confin-
ing to the first Born term).

The results of our computations [3] show that for
large values of the transferred momenta Q > 1 at. unit
and energies of the emitted electron E; > 20 eV, its
angular distribution in the reaction He(e, 2e)He* isin
good agreement with the experiment if the He* ionisin
the ground state. However, the difference between the
theoretical results and the experimental dataisfound to
increase uniformly in the region of the inverse peak
upon a decrease in the values of Q and E,. It was
observed [5] that al theoretical results obtained for this
kinematic region, including the simplest models of the
wave functionsfor theinitial aswell asfina states, lead
to nearly identical results which do not match the
experimental data.

A similar regularity is observed if the He" ionisin
the excited state: a higher value of the multiplying fac-
tor is required with decreasing Q and E;. However, the
contribution of the two-photon exchange (second Born
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term) becomes significant in this case [6], although this
problem has not been investigated comprehensively.

A series of (e, 3e) experiments on helium atoms [7]
conducted recently by the Orsay group revealed even
greater disparities between the theoretical and experi-
mental results. In this series, the incident and the scat-
tered electrons again have high energies of the order of
5 keV, while the two dow emitted electrons have low
energies (not exceeding 10 eV). The emission angle of
one of the electrons was fixed while the fivefold differ-
ential cross section was treated as a function of the
angle at which the other electron was emitted. The
small value (0.24 at. units) of the transferred momen-
tum Q might indicate the closeness of the experimental
situation to the optical limit and the dominance of the
contribution from the dipole transition. However, the
results of measurementsdo not confirm this assumption
on the whole. This prompted us to carry out computa-
tions for the series of (e, 3e) experiments using the
CCC modification based on the J matrix method, which
was found to be highly effective in the analysis of
(e, 2e) processes [3].

2. THEORY

In thiswork, the J-matrix method was used for com-
putations of the He(e, 3e)He** reaction, for which a
large body of experimental dataisavailable onthe mea-
surement of the angular distribution of the electrons
emitted from the helium atom [7]. The kinematic con-
ditions under which these experiments were carried out
(theincident and scattered electron energy E; = E;= 5—
8 keV, while the energies E; and E, of the electrons
emitted by the helium atom are of the order of a few
electron-volts) made it possible to confine the analysis
to the first Born approximation (exchange of a virtual
photon between the incident el ectron and the atom) and
to use the nondemacratic decay model, whose principal
assumption stipulates the existence of an intermediate
pseudostate for the He* ion with an energy equal to the
energy of one of the electrons knocked out in the (e, 3€)
reaction. This allows us to present the amplitude of the
(e, 3e) processin the form of the sum

(e, 3e) _ (e 2e) ¢ (e €)
e i i
u
where f{"*® istheamplitude of the (e, 2e) reaction and

f ff’ ®) s the amplitude of the second electron emission
as aresult of shaking—the subscript | 1abels the pseu-
dostates of the He* ion which can be conveniently char-
acterized by the quantum numbers (n, I, m). In amore
elaborate form of the notation, we can write

flese) _ 2 - 0
Qgr%@nlm(pl)l eXp(IQ 1) (1)

+exp(iQ L ,) — 2|@ P (P,)| Py
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Here, Y,m(Py1; r1, I,) isthe wave function of the final
statein the (e, 2€) process in which, however, the pseu-
dostateis considered instead of the wave function of the
real ion-core, @ (p,) is the Coulomb function of the
electron scattered in the field of the He™ ion, Q = p; —
ps is the momentum transferred to the system, @, is
the wave function of the pseudostate of the He* ion, and
@, is the wave function of the helium atom.

For numerical computations, it is convenient to
determine the total orbital angular momentum L of two
electrons and its projection M in the wave function
Wom(P1; 11, o) Of thefinal state. In this case, the wave

function of the fina state of the He" ion and of the
knocked-out electron can be presented in the form of
the expansion

- 1 L
NJn m(pl)D: — av'F'F(E)
| Jﬁl% 7

X Cimu Yau(BOINT) (VA) : LM

where Y,,(p;) is a spherical function, nim are the

quantum numbers of the He* ion in the final state, Ap
are the quantum numbers of the knocked-out electron,
" = (n1"'A") is the index of the reaction channel, E =
pf/2 + g, is the total energy, €, is the energy of the
pseudostate, and the basis vectors |(VA)(nl) : LMThave
the following form in the coordinate representation:

@y, r4(1)(VA) : LMO

P XA Ynn(Fa F)], NNy o

P (DO @) Ynn(Fa Pl 0> N,

where P is the symmetrization operator, X,(r) are the
radial wave functions of the pseudostates, and

Yim(fa ) = me)\ulLMD(Im(fZ)Y)\u(fl)-
mp
The wave function of the ground state of the He

atom is also sought in the form of an expansion in the
basic set (3):
NI N)\
20=3 3 S amalnh(vA): 000 (4)
Al n=0v=0
Thewave functions x,,(r) are defined by the method
of pseudostates in which it is assumed that one of the

electrons may be in a pseudostate characterized by the
wave function

Puin(1) = FXar(1)Yin(P), Q
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while the other electron isin a state which may pertain
to adiscrete or a continuous spectrum. The number of
pseudostates is assumed to be finite, and hence the
wave functions x,(r) are sought in the form of an
expansion in basis functions:

N,
Xai() =5 Do (&11), (6)
n=0

where§, isthe basis parameter. It is convenient to solve
problems with Coulomb interaction using the Laguerre

basis:
_ n!
W) =2y

(7)

where L, (x) arethe associated Laguerre polynomials.
The quantity N, defines the accuracy of calculations of

wave functions [8]. This parameter can be selected
independently for each partial wave.

The expansion coefficients at.r.r(E) are the solu-
tions of the infinite set of algebraic equations

- L " YA
h;Vzofﬂtv-rvr(lf)ﬂln| J(VA) LM ®

x|H—E/(n"I")(v"A") : LME 0,

where H is the Hamiltonian of the two-electron target,
which can be presented without taking into account the
spin—orbit interaction in the form
= A LN 2
H=—50:-58 r, r,

The system of equations (8) is solved approximately
with the help of the J-matrix method [9]. The applica-
tion of the main approximation of the J-matrix formal-
ism to this problem involves the disregard of the matrix

elements of the residual interaction V= r;" —ry; under
the condition v' > N,. and (or) v" > N,..

Consequently, the system of equations (8) splitsinto
two parts, viz., theinternal part (v < N,.) and the exter-
nal part (v"' > N,.). For v" < N,., the infinite system of
equations can be anayticaly solved exactly, and its
solutions are essentialy the exact Coulomb functions
of the gjected electron in the chosen discrete represen-
tation, multiplied by the wave functions of the pseu-
dostates of the ion-core. For v" < N,., the system of
equations (8) is solved by the method of diagonaliza-
tion. By matching the internal and external solutions,
we can determine the parameters of the continuous
spectrum of a two-electron atomic system. In order to
determine the wave function @y(r4, r,) of the ground

£.1 ©)

Mo
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dtate, it is sufficient to diagonalize the matrix of Hamil-
tonian (9) in basis (3).

The application of the above-mentioned theoretical
model for computations of the (e, 2e) reactions in a
helium atom gave quite satisfactory results [3]. The
amplitude of the (e, 2€) process can be obtained by
using the functions (2) and (4), which are symmetric
relative to the transposition of coordinatesr, and r,:

e 2e 4 - :
floae) = —Q_zm—'nmleXpUQ [T 1) — Ll

A i P o (20
= —&EJL(Q)C.mA,_mYA,_mml),
where
I(Q) = ¥ @ )rrDir(Q), (11)
D,r'(Q) = Hn1)(vA) : LM 12

x [ 1= AT (Qr) Y. (7)ol

C,Lnﬂ’k_m is the Glebsch—Gordan coefficient and j_ isa
spherical function.

(e€)

The amplitude f,,
manner.

Using the expression for the amplitude f(© 39 and
taking into account the normalization of the wave func-
tion (2), we can easily obtain the differential cross sec-
tion o® of the (g, 3¢) reaction in the form

) d’c _
~ dQ.dE,dQ,dE,dQ,

is computed in an analogous

Ps (e 3e)|2
f . (13
> Ioz| % 1)

0)

3. DISCUSSION OF RESULTS

The close-coupling method applied to (e, 3e) reac-
tions has a significant drawback: the strong repulsion of
the electrons gjected from the target upon a decreasein
the angle between them and the closeness of their ener-
gies cannot be explained by taking into account the
finite number of pseudostates. In order to take into
account the electron—electron repul sion, the wave func-
tion of the final state can be multiplied [10] by the so-
called Gamow factor introduced in [11]:

T 0

1 [
O = 0
|pl—pz|D %l |pl—pz|D

The Gamow factor is a part of the approximate three-
particle function of the final state having a regular
three-particle asymptotic form. However, such a multi-
plication results in the loss of orthogonality of the two-
electron continuum functions and, consequently, the

o(Ip.—pdl) = expH-
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Fig. 1. Differential cross sections o® = d50/dQSdE1d§21dE2dQZ of the (e, 3e) reaction in ahelium atom for the projectile electron
energy E; = 5599 eV. The angle of the scattered electron 65 = 0.45°, and transferred momentum Q = 0.24 at. units. The emitted elec-
tron energies are E; = E, = 10 €V. The solid curves correspond to our calculations, and the dashed curves to the cal cul ations made
in [7]. The experimental results are borrowed from [7].

absolute value of the differential cross section o'®  Thus, thedifferential cross section oE? iscalculated by

decreases sharply. In order to restore the correct abso- ~ using the following expression:

- . . 5 2
lute val ue, we normalize the result to the differential 5O = @1 (|p1—p,))| 4
Ccross section g@: G T '

jo<5>|¢(|p1—p2|>|2dez
0

It should be observed that such anormalization is quite
appropriatein the present case since aconsiderabl e part

Tt
o = J' a®de,.
0
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Fig. 2. Differential cross sections 0® = d%0/dQE;dQ;dE,dQ, of the (e, 3¢) reaction in a helium atom for the projectile electron
energy E; = 5599 eV. The angle of the scattered el ectron 65 = 0.45°, and transferred momentum Q = 0.24 at. units. The emitted elec-
tron energiesare E; = E, = 4 €V. The solid curves correspond to our calculations, and the dashed curvesto the cal culations made in

[7]. The experimental results are borrowed from [7].

of interactions of the knocked-out electronsin the fina
state are taken into account during computation of the

amplitude f2® using the J-matrix approach.

Theresultsof computationsare showninFigs. 1and 2.
Thedifferential cross sectionsof the He(e, 3e)He™* pro-
cess are shown in the graphs (in atomic units) as func-
tions of the plane emission angle of one of the helium
electrons measured from the direction of the beam of

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

incident fast electrons (E; = 5599 eV), the plane angle
of the second electron being fixed and indicated in the
upper left corner of the graphs. The energies of the el ec-
tronsare 10 eV (Fig. 1) and 4 eV (Fig. 2), respectively.
In all the figures, 65 = 319°. The solid curve corre-
spondsto the results of our calculations, and the dashed
one, to the calculations made by Kheifets [7] using the
CCC technique. The experimental results are borrowed
from the same work.
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The results of our calculations show a close coinci-
dence (except for the multiplication factor) of the angu-
lar distribution of the emitted electrons with the calcu-
lations made by Kheifets et a. on a powerful multipro-
cessor computer. The same physical model of
nondemocratic decay was used in both cases. However,
it should be remarked that in a number of cases, both
calculations displayed a significant discrepancy with
the experimental results in magnitude and in the angle
of emission of the electron. These departures from the
results of independent qualitative computations clearly
indicate the manifestation of new physical effects even
in asimple atom like helium.

First, it is apparent that the nondemocratic decay
model, which stems from experiments involving the
emission of high-energy (of the order of 300-500 €V)
electrons [12], is less suitable for the physics of low-
energy processes with emission energies of 5-20 eV.
This conclusion is confirmed, among other things, by
the recent series of (e, 3e) experiments carried out by
the Ulrich group in Germany [13]. Thus, a basically
new model for taking correlation into account is
required for calculating the differential cross sections
of an (e, 3e) reaction in the kinematic region of close
and low electron emission energies.

Second, neither of the trial wave functions of the
helium atom ground state used in these calculations
brings us any closer to a formal solution of the
Schrodinger equation [14]. Nevertheless, these tria
functions are convenient for numerical computations.
For example, it was observed that the smpletrial func-
tions for helium, which were used successfully in cal-
culations of elastic, quasielastic, and even (e, 2€) reac-
tions, are utterly inadequate for describing the differen-
tial cross-sections of (e, 3e) processes, and more
cumbersome multiconfigurational Hartree—Fock or
Hylleraas polynomial functions are required for this
purpose. However, both the theory and the latest exper-
imental data point towards the possibility of asymptotic
guantization of the angle between the electron radius
vectors which was postulated by Heisenberg asearly as
in 1920s. In turn, this considerably changes the form of
the atomic wave function at middle distances of elec-
trons from the nucleus, which make the main contribu-
tion to the integral of the matrix element used in com-
putations.

Finaly, the effect of the intermediate multielectron
continuum on the results of calculations cannot be
reproduced completely even by alarge but finite num-
ber of pseudostates in the case of a system with Cou-
lomb potentials.
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Thus, more and more serious “ideological” and
computational problems are encountered when the
close-coupling method is used in the investigations of
multielectron ionization processes. New ideas and
computational algorithms are needed even for asimple
atom like helium.
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Abstract—Three- and two-dimensional models of p- and d-pairing are constructed for superconductors and
superfluid quantum liquids using the functional integration formalism. In these model s, the coll ective excitation
spectra are calculated for superconductors with nontrivial pairing (such as high-temperature superconductors
(HTSC) and heavy-fermion superconductors (HFSC)) for p- and d-pairing. Both three- and two- dimensional
systems are considered. Some of recent ideas concerning the realization of the mixture of different states in

HTSC are considered. In particular, the mixture of states dx2 _y +id,, isanalyzed. The obtained results of cal-
culations of collective excitation spectrain superconductors with nontrivial pairing may be used for determin-

ing the type of pairing and the order parameter in HTSC and HFSC and also for interpreting the experimental
results on ultrasound and microwave absorption in these system. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Until recently, the study of collective excitationsin
superconductors with nontrivial pairing was rather
exotic for several reasons. First, nontrivial pairing was
not established reliably even for an individua supercon-
ductor in spite of the existence of certain evidence[1] con-
cerning the nontrivia type of pairing in some supercon-
ductors (high-temperature superconductors (HTSC) and
heavy-fermion superconductors (HFSC)). Second, no
sound proof was obtained for the existence of collective
excitations in superconductors. The situation has
changed radically during recent years and especialy
during the last year so that the study of collective exci-
tations in superconductors with nontrivial pairing has
become aredlity. In the light of recent experiments[1],
this subject becomes quite vital. Above al, the so-
called amplitude mode (with afrequency of the order of
2/\) associated with order parameter amplitude oscilla-
tions was experimentally observed for the first time a
few years ago in films of traditional (low-temperature)
superconductors [1]. It should be noted that only the
first of the two collective modes existing in supercon-
ductors and associated with phase and amplitude oscil-
lations in the complex order parameter (zero sound)
had been observed experimentally before that. Besides,
the type of pairing has been established for many super-
conductors during the last year (see, for example, [2]):
s-pairing takes place in traditional (low-temperature
superconductors and in HTSC with electron-type con-
ductivity; d-pairing is observed in HTSC with hole-
type conductivity, organic superconductors, and some
HFSC (UPd,Al;, CePd,Si;, Celng, CeNi,Ge,, €tc.),

while p-pairing was detected in pure *He, *He in aero-
gel, Sr,RuO, (HTSC), and UPt; (HFSC).

2. MODELS OF p- AND d-PAIRING
FOR SUPERCONDUCTORS

The method of continual integrations as applied to a
nonrelativistic Fermi system at a temperature T neces-
sitates integration over the space of anticommuting
functions (X, 1), X(X, T) with the Fourier expansion

1 .
XX) = —) a(p)exp[i(wt+k K)], (1)
N2
where p = (k, w), w = (2n + 1)1 being the Fermi fre-
guencies; X = (X, 1), B = UT; V is the system volume;

and T isthe temperature.

Let us consider the functional of action for an inter-
acting Fermi system:

B B
_ 3, v _
S= '! dt XES XX, T)0 XX, T) '([%(T)dT, 2

which corresponds to the Hamiltonian
1 -
H(W) = [EXY SoX DR 0D
_ 1
— (A + SHgH)Xo(X, D)XSX, T) + ﬂd"*xofyu x-y) (3

x z X DX, DXy, DXX, T).
ss
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Here, H isthe magnetic field, A is the chemical poten-
tial, u is the magnetic moment of a particle, U is the
pair interaction potential, and sand s are the spin indi-
ces, each of which assumesthe value“+" or “—".

Let us first integrate over fast fields x,, for which
|k — ke | > kg Or |w]|< wy in expansion (1), and then over
slow Fermi fields, X, = X — X1 (here, ky and wy, are the
parameters specifying the layer width at the Fermi sur-
face, which are determined from the order of magni-
tude and do not affect the physical results). After inte-
grating over fast fields, we consider the terms describ-
ing noninteracting quasiparticles at the Fermi surface,
which are defined by the quadratic form S,, and their
pair interaction corresponding to the fourth-degree
form S,. Form S, can be written as

1,. +
S,= 3 sliw—cek—k) + suHlai(pa(p). (4)
S P
Here, Z is the normalization constant and c: is the
velocity of a particle on the Fermi surface. Form S, is

different for different types of pairing, and hence, the
cases of p- and d-pairing will be considered separately.

2.1. p-Pairing

Inthe case of thetriplet pairing, form S, can be writ-
ten as

S4:B_V Z

P1+ P2=P3t Py

to(P1, P2, P3, Pa)(P)

x a’(ppa.(ps)a.(ps)

1
_mz

P+ P2=P3* Py
x [2ai(pyal(p)a(psa.(ps)
+a,(pyai(pa.(ps)a Ps)

+a’(ppa’(pra(pya(ps)].

Here, p = (K, w) isthe 4-momentum, ty(p,) and t,(p;) are
the symmetric and antisymmetric scattering amplitudes
for transpositions p; < p,, P3 <~ P4, the superscript
on a, a* correspond to the values of s, s' (). In the
vicinity of the Fermi sphere, we can put w, =0, k; = njkg
(i=1, 2, 3, 4). Amplitudes t,, t; must be functions of
only two invariants, say, (N4, N,) and (N; — Ny, Nz —nNy),
the function t, being even and t; being odd in the second
invariant. Consequently, we can write

to = f((ny, ny), (N =Ny Nz—ny)),

t; = (N =Ny N3—ny)g((Ny, N3), (N =Ny N3—Ny)),

functions f and g being even in the second argument.
Functions f and g can be easily evaluated in the gas

t1(P1, P2y Pss Pa)
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model; for high-density systems, they must be deter-
mined from experiment. We consider the model with
f=0, g=const <0 asamodel of the BCS type (weak
coupling approximation) for superconductors and
superfluid guantum liquids with pairing in the p-state.
The most economical way of describing collective
excitationsisthe transition from the initial Fermi fields
to Bose fields describing Cooper pairs of quasiparti-
cles. Such atransition can be carried out by inserting,
say, a Gaussian integral of exp(c*Ac) over a Bose field
¢, where A is a certain operator, into the integral over
slow Fermi fields. After a translation of the Bose field
by the quadratic form of the Fermi fields annihilating
form S, the integral over the Fermi fields becomes a
Gaussian integral and is equal to the determinant of

operator M(c”, ).

Having integrated over ow Fermi fields, we arrive
at the functional of hydrodynamic action in the form

N
Seff - g Z Cla(p)cla(p)
e (5)
1 M(Ciav Ci+a)
+ élndet—M(C(o) C(O)+)

la

’

(0)

where ¢;, are the condensate values of the Bose fields

G and M(Gi,, Cip) is a4 x 4 matrix depending on the
Bose fields and quasifermionic parameters, whose ele-
ments are given by

1,.
My = Sli6o+ &= p(H (015,

1. .
My, = z[—”ﬂ"‘ &+ W(H [0)]0,,,,,
(6)
1
My, = B—\_/(nli_nZi)Cia(pl+ P,)0,,

1 +
My = _B_V(nli_nzi)cia(pl+ P,)0,.

Here, 0, (a =1, 2, 3) are the Pauli spin matrices, 0 =
(01, 0,5, 03). The hydrodynamic action functional con-
tains the entire information on the physical properties
of the model system and determines, among other
things, the spectrum of its collective excitations [3].

2.2. d-Pairing
In the case of singlet pairing, S, has the form
S = —iv > Py P Ps Pa)
B P+ P2=P3t Py (7)

x a(pya’(pz)a(psadps).
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Thefirst version of the d-pairing modd for superconduc-
tors, which was obtained by the method of functiona inte-
gration, was proposed by us earlier [4] in 1994, when the
first attempts were made to seriously consider the idea of
d-pairingin HTSC. Wewill present below amodified self-
consistent model of superconductors with d-pairing [5],
which will be subsequently used to andyze the spectrum
of collective modesin HTSC and HFSC.
In the case of d-pairing, we have

t(P1, P2, P3, Pg) = V(k R')

2 Lo ®
= 3 GnYan®)Y2u(K).
m=-2
Here,
k, = k+a/2, k, = —k+q/2,

ks = K+0/2, k; = —K +0/2,

and Y, K) are spherical harmonics with | = 2. We con-
sider the spherically symmetric case which requires
only one coupling constant g. In order to take into
account the lattice symmetry, additional coupling con-
stants must beintroduced (up to fivein the general case,
sincefiveisthe number of spherical harmonicswith| = 2).
However, this number decreases to two in the case of
cubic symmetry and to three in the case of hexagonal
symmetry: gy (M=0, £1, £2).

It was mentioned above that the number of degrees
of freedom for the order parameter in the case of singlet
d-pairing is equal to ten; i.e., we must have five com-
plex canonical variables. It is natural to chose for
canonical variables the following combinations of ini-
tial variables:

Cy = Cyy T Cx,

C; = C;3—Cp», C3 = CiptCyxy,

Cq4 = Ci3tCq, Cs = Cygt Cyy.

In the canonica variables ¢ (j = 1, 2, 3, 4, 5), the effec-
tive functional of action has the form

Sy = Z—fglgc:(mcj(p)(uzau)

- 9)
+1'Indet—(cj’cj) ,
27 e, o)

where

M_l

n = Zlio+ &= uH B)]5

P1P2?

1. .
M, = 2[—|(.0+ &+ U(H [b')]éplpz’

1 1507 (10)
BV 821t

x[c(1- 3cosze) +C,S n26c032¢

— k. J—
M12_ 21 —

+¢,Sin°0sin2¢ + c,sin20cosd + c,sin20sind].
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Here, &, isthe Kronecker delta symbol and o,
delta function.

b, ISthe

3. COLLECTIVE PROPERTIES
OF SUPERCONDUCTORS
WITH NONTRIVIAL PAIRING
3.1. p-Pairing

The first results on p-pairing were obtained by us
earlier [3] for A-, B-, A;-, 2D- and polar phases associ-
ated with superfluid *He in which the first three phases
were discovered experimentally. We considered addi-
tional superconducting phases that may be formed in
HTSC or HFSC.

The results are presented below. It should be
recalled that the spectrum of collective modes in each
superconducting phase consists of 18 modes including
high-frequency and Goldstone modes (A is the gap in
the Fermi spectrum, A, is the amplitude of the gap in
the Fermi spectrum for an anisotropic gap, and k isthe
momentum component of collective excitation, which
is pardlel to the orbital anisotropy axis I; here and
below, the number of collective modes is given in
parentheses).

A phase:

E = A(T)(1.96-0.31i) (3),
E = A(T)(1.17-0.13i) (6),
E> = c2k/3 (),

E® = cik; (6).

B phase:
E> = 12A°/5 (5), E° = 8A%5 (5),
E> = 47N (4), E° = cZk/3 (1),

E* = c2k/5 (1), E° = c2K’/5 (2).

2D phase:
E=0(6); E=A(T)(1.96-031) (2),
E = A(T)(1.17-0.13i) (4),
E=2uH (2), EZ=A%T)(1.96—0.31i)% +4u’H? (2),
E® = AYT)(0.518)% + 4u’H? (1),

E* = AXT)(0.495)% + 4p°H? (1).

E = Ay(T)(1.96-0.31i) (1),
E = Ay(T)(1.17-0.13i) (2),
E=2uH (8, E=0 ().
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Here, as before, H is the magnetic field. Six other and

modes have an imaginary spectrum (this is due to the
instability of the A, phase to small perturbations).

In the polar phase, ¢, = §;30,3, We obtain the fol-

lowing set of eguations for the collective mode spec-
trum:

1

J’dx(l—xz)[%l 4qA H3- 1} - 0 (6),

1

Idx(l—xz)(J—Z) = 0 (6),

J’dxx %1+4A U3 =0 (3),

1

J’dxeJ =0 (3).

Here,

j= l+A/1+4A/q

1+4A /q 1-J1+4A /q

X = cosB, g = w +cik [h).

Quantity J depends on the gap in the Fermi spectrum,
which in the general case is afunction of angular vari-
ables B and ¢. Putting kK = 0 and solving these equations
numerically, we obtained the roots E = Ay(T)(1.20 —
1.75i) for the second equation and E = O for the third
equation. The roots for the first and fourth equations
could not be determined.

Thus, for the polar phase, we obtained six strongly
attenuating modes with energy (frequency) E =
Ay(T)(1.20 — 1.75i) and three Goldstone modes. The
presence of strongly attenuating modes is associated
with the fact that in contrast to axial and planar phases,
where the gap vanishes only at poles and where collec-
tive modes attenuate moderately and can be observed
as resonances in experiments on ultrasound absorption,
the gap in the polar phase vanishes along the equator.

For the three phases

g O O O
151005 150105
20 0-10L 20 100

EOOOD DOOOB
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the spectrum is identical and can be determined from
thefollowing set of equations:

Idx(l x)%l_+4ADJ =0 (2,
Idx(l x)%l_+6ADJ =0 (3),

J'dx(l XAH + 84T DJ = 0 (1),
J’dx(2 x)%[+4AD(J 1) = 0 (1),

J'dex SL+6A Oi-1) = 0 (2),

ZAD =0 (2,

J’dx(l X )%l

1

J'dx(l—xz)J =0 (3),

4AD 0 (1),

Idx(l X )%L—

fdxx[ 201

J’dxe(J—l) =0 (1).
0

=0 (2),

The numerica solution of these equationsleadsto the fol-
lowing spectrum of high-frequency modes (for k = 0):

E = A(T)(1.83-0.06i) (1),
E = Ay(T)(1.58-0.04i) (2),
E = Ay(T)(1.33-0.10i) (1),
E = Ay(T)(1.33-0.08i) (2),
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E = A(T)(1.28-0.04i) (2),
E = A(T)(1.09-0.22i) (3),
E = A(T)(0.71-0.05i) (3),
E = A(T)(0.33-0.34i) (1),
E = A(T)(0.23-0.71i) (2).

The last two modes have imaginary components of the
same order of magnitude as the real components. This
means that they strongly attenuate and cannot be
treated as resonances.

1105
0 O
For the phase O j j o0, we obtain the following
U [l
0000
set of equati ons for the collective excitation spectrum:

J'dxx %1+2AD(J 1) =0 (6),

201 2£01=0 (4,

J’dx(l X )%L+
. 2 AZD
fax(1-x )H+5H1 =0 (),
0 q
J'dx(l X )%H3A U3 =0 (4).
The numerical solution of these equations leadsto thefol-

lowing spectrum of high-frequency modes (for k = 0):
E = A(T)(0.66—-0.02i), E = Ay(T)(0.64-0.02i),

E = A,(T)(0.46—0.04i), E = Ay(T)(0.36—0.04i).

U1 0 0F
0~ [l
For thephase — [ o —1 o0, we obtained the fol-
J60 0105
00 0 2
lowing two equations for the spectrum:

J’dx[%HnA mA 1 3XD‘](1_ ?)

_4, i6—arctam/§} = 0,

39@
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1 2 2

J‘dx[%l +08 %%{A +(2A-1)x3(1 -
¢ q

0

_ﬂ'+ ﬁarctan'\/é}

39A/:_3
1

nA® | mAA°2xT]
><J’dx[2%l+ P 1

+g—iarctam/§}

39A/:_3

1 2
—Z[J'de (1 x)x} = 0.

Thefirst of these equations |eads to an equation describ-
ing the modes corresponding to variables u;; — Uy,
Up, + Uy, Where u; + v;i = ¢; are the Bose fields from
Eqg. (5) for n=4 and m = 1; to variables u,, — Uy, for
n=4,m=0; to variables vy, — Vo, V15 + Vo for n=0,
m=-1; and to variables v,, — v, forn=0, m=0. The
second equation describes the modes corresponding to
variables u;; + Uy, Uz for A=1, n=4, m=1; to vari-
ables vy, + vy, Vgzfor A=1,n=0, m=-1; to variables
(Ups, Usp), (Ugg, Ugy) Tor A=0,n=4, m=1; and to vari-
ables (Vys, Vay), (V43, V) fOr A=0,n=0, m=-1.
Hoo0H
For the phase 0o o o, we have the following
E 1100
equation for the spectrum:

1 21

Idedcb(A x%)(1 £ Asind)

[%H%DMA 1} =0,

It describes the modes corresponding to variable ug;,
Uz, Va3 fOor A =0, n = 0; to variables ug;, Vg, V3, for
A=0,n=4;tovariables u;; £ Uy, Uy T Uyy, Vit Vo
for A=1,n=0; and to variables v;; £ V,, V1o £ Vyy,
Uzt UsgforA=1n=4

200 1H
0 0
For the phase 0 g o 1 O, we obtained the following
0ooog
two equationsfor the spectrum:

J’de'dq)x [%H”AD } =0,
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21

dx [do(1—>2)(1 + sind) +“ADJ_0
f I +

The first equation describes the modes corresponding
to variables Uy, Usy, Va3 for n = 0 and to variables ugs,
Va1, V3, Tor n = 4. The second equation describes the
modes corresponding to variables u;; *
Vi3t Vg forn=0and tovariables v, +
U3+ Uy forn=4.

For the two phases

Uzo,
Voo,

Upp, Upp
Vo, Vo

the spectra are identical and can be determined from
two equations, the first of which,

1 /2 2

dx (d —
oo 3%

2
O
+ Z—AZO[A(l —x%)cos’¢ + BxY %U(l —x%)cos’d
q

+ %[(1—x2) cos’d —x7] In(1—(1-x%) coszq))}

1 12 2

dx d¢[[ﬂ. +—
“[*) 7
2
O
+ %’[ B(1—x%)cos’d + AX’] %ux2

~21(1-x) 005’9~ X In(l—(l—xz)coszq))}

2

[J’dxj’dq) x*(1—x°) cos ¢J} =0,

leads to an equation describing the modes correspond-
ingtovariables vy, Va3 for A=1, B=0; tovariablesu,,
Uz for A=-1, B = 0; to variables v,3, v5 for A= 0,
B =1; and to variables uy3, us;, for A=0, B=-1. The
second equation

1
A% 2D 5 O
J’de’dq) —N + =x"P0
q O
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x I (1-x3)[(z—y)cos’d +y] + X'(1—z—Yy)}

+ [(1—x2)cosz¢ —x2] (2z+y-1)

¥ %[3(1—x2)sin2¢ _1yIn[L— (1 x})cosid] B= 0
0

describes the mode corresponding to variable u,, for
y=1z=0and N=0, P =0; to variable v,, for N =2,
P =0; tovariableu,, for N=0, P =1, to variable v, for
N =2, P =-1; tovariable u,; for N =1, P =-1; to vari-
ablevyforN=1,P=1;tovariableu,, fory=0,z=1
andN=0, P=0; tovariable v, for N=2, P =0; to vari-
ableus, fory=0,z=0and N=0, P=0; and to variable
vy forN=2,P=0.

Hoo01H
[l [l
For phase g o g, we obtain from the second
O
01000
equation the high-frequency modes

E = Ay(T)(1.80—-0.09i), E = Ay(T)(0.55-0.80i),
the last of which has the imaginary component of the
same order of magnitude as the real component. This
means that it attenuates strongly and cannot be treated
as aresonance.

Tewordt [6] analyzed the collective mode spectrum
for the order parameter in Sr,RuQ, under the assump-
tion that p-pairing takes place in this system. He con-
sidered two possible superconducting phases with the
order parameters

. ~ A
d = Dok +iky), d = Eoi(kx+ky).

It should be noted that the first phase is an analogue
of the A-phase of superfluid *He. Tewordt [6] deter-
mined the mode E = 24, for this phase and the mode

E = /34, for the second phase. Both modes are cou-
pled with charge density fluctuations, but this coupling
is weak in view of the smallness of the quantity
dN(E)/dE, which is a measure of the electron—hole
asymmetry on the Fermi surface. Comparing the results
obtained by Tewordt (E = 2A,) with our results, we note
that the value of frequency E = Ay(T)(1.96 — 0.31i)
obtained by us for high-frequency modes in the phase
which is an analogue of the A-phase of superfluid *He
ismore accurate. Thisisdueto thefact that Tewordt did
not calculate the imaginary components of collective
mode frequencies whose presence renormalizes the
real energy components by virtue of dispersion rela-
tions.
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We aso considered the second superconducting
Hoo1H

phase 0 o 1 0 studied by Tewordt. The equations for
O O
gooog

the mode spectrum of this phase are given above (how-
ever, the solution of these equations have not been
obtained).

Considering the pairing amplitude different in the xy
plane and in a plane perpendicular to it, Tewordt
obtained a number of quasi-Goldstone modes with fre-
quencies w? = A3 In(TJ/T,), where T < T, is the super-
conducting transition temperature corresponding to
pairing in the xy plane. Since both pairing amplitudes
are assumed to be equal in our anaysis, we obtained
pure Goldstone modes (T, = Ty and, hence, w = 0)
instead of quasi-Goldstone modes. It should be noted,
however, that the number of superconducting phasesin
the case of p-pairing considered by us is much larger
than those analyzed by Tewordt.

3.2. d-Pairing
3.2.1. Collective Excitationsin HTSC
with d-Pairing
Let us consider the superconducting states dxz_yz,
Oy O Ay @A d, . . emerging in the symmetry clas-
sification of HTSC (Table 1).

Let us calculate the collective mode spectrum for
the given five states. In the first approximation, the col-
lection excitation spectrum is determined by the qua-
dratic component of the effective action Sy obtained by

thetranglation ¢;(p) —= ¢(p) + ¢;(p) informula(9) for
Syr- Here, ¢(p) = J/BV cd,¢] are the condensate val-

uesof canonical Bosefieldsand thevaluesof ¢{ for the
cases listed in Table 1 are as follows:

1) &d=-2, 2)ca=2 3)c =2

4) c2=2, 5)ci=2

the remaining components ¢;(p) being equal to zero.

The spectrum can be determined from the equation
detQ = 0, where Q is the matrix of the quadratic form.
For each superconducting phase, we determined five
high-frequency modes (Table 2) and five Goldstone
(quasi-Goldstone) modes whose energies are equal to
zero or small (£0.14).

We calculated the spectrum of collective modes for
the five superconducting phases of HTSC, namely, for
dxz_yz, d,. :, Gy Oy and dg using the model of
d-pairing constructed by us using the functional inte-
gration method and considering the case of spherical
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Tablel
No Phase |Order parameter| C2PinFermi
' spectrum
H-1 0 of
1 Ao Do -100 DAgj3c0s20 — 1]
g0 0 2
2100
O 0 ,
2 dx2_y2 00-10 Dosin?B|cos2¢)|
[l
00 0 0
Ho10f
3 | dy 1000 Asin?0lsin29)|
000
Doo1H |
4 dy 0oo0o00 Aolsin26coso|
O O
0100
Hooof o
5 dy, Eo 0 1% Dolsin28sing|
010

symmetry that needs only the coupling constant g. The
inclusion of the lattice symmetry requires the introduc-
tion of additional coupling constants (up to five in the
general case).

For each of thefive phases, we determined five high-
frequency modes in each phase with frequencies lying
between A, and 2A, as well as five Goldstone (quasi-
Goldstone) modes with frequencies smaller than 0.1A,,.

It should be noted that the frequencies (energies) of
all collective modes are complex-valued. Thisisacon-
sequence of d-pairing or, in other words, a consequence
of gap vanishing in chosen directions. In this case, Bose
excitations decay into fermions, which leads to the
attenuation of collective modes. The value of the imag-
inary frequency (energy) component ImE; amounts to
25 to 80%. Some of these modes attenuate moderately
and may be treated as resonances, while others attenu-
ate more strongly, which complicatestheir observation.
The inclusion of the Coulomb interaction converts the
zero sound mode into a plasma mode.

The obtained spectra of collective modes in HTSC
may be used for interpreting ultrasonic experiments
and the experiments on microwave absorption in HTSC
as well as for identifying the type of pairing and the
order parameter in HTSC.
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d 2 2

3z —r

A

E, = Ay(2.0 — 1.65i)
Ej 5 = Ao(1.85 —0.69i)
E4 5 = Ao(1.64 — 0.50i)

E, = Ay(1.88 —0.79))
E, = Ay(1.66 — 0.50i)
Es = Ay(1.14 — 0.68i)
E, = Ay(1.13 - 0.71i)
Es = Ay(1.10 — 0.65i)

E; = Ay(1.76 — 1.1i)

E, = Ay(1.70 — 0.48i)
Es = Ay(1.14 — 0.68i)
E, = Ay(1.13 - 0.73i)
Es = Ay(1.04 — 0.83i)

3.2.2. Collective Excitations in Heavy-Fermion
Superconductors with d-Pairing

In heavy-fermion superconductors (HFSC), as in
HTSC, the order parameter and the type of pairing have
been established only for some compounds. The tradi-
tional BCS pairing contradicts the nonexponential tem-
perature dependence of most thermodynamic quantities
such as specific heat. The complex phase diagram of
HFSC also points to a nhontrivial pairing in these sys-
tems. Examples of HFSC with p-pairing as well as
d-pairing are known. The case of p-pairing was consid-
ered above. Here, we will apply the functional integra-
tion method for an analysis of the d-pairing in HFSC in
anal ogy with the procedure used by usfor all the super-
conducting states emerging in the symmetry classifica-
tion of HTSC. We will calculate the compl ete spectrum
of collective excitations for all superconducting states
emerging in the symmetry classification of HFSC. Let
us consider three superconducting states including dy
and Y,_;. Collective excitations in the two latter phases
were studied earlier by Hiroshima and Namaizawa [7]
using the method of kinetic equation. At the end of the
section, wewill compare our resultsfor two of thethree
phases with the results obtained in [7].

In each superconducting phase of HFSC, there exist
10 collective modes. We established that five of them
are high-frequency modes; i.e., they have frequencies
of the order of the gap width in the Fermi spectrum. At
the same time, the remaining five modes are Gol dstone
(or quasi-Goldstone) modes with frequencies (ener-
gies) vanishing (small) for zero pulses.

Thus, we will again consider the three-dimensional
model of d-pairing in superconductors. It should be
recalled that the model is described by the hydrody-
namic action functional obtained by successive func-
tiona integration over fast and then slow Fermi fields.
The hydrodynamic action functional determines all
properties of the system under investigation (HFSC in
the given case), including the collective excitation
spectrum.
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3.2.2.1. Calculation of Collective Mode Spectrum
We consider the following superconducting states
emerging in the symmetry classification of HFSC:
% LI OE
(1) dy phase O o &gl with the gap A(T) =
O O
oo o0 10
AO(T)(eMTi/Ski + e4ni/3k)2/ + ki)-
Hoo 1
(2) Yo, phase EO 0 —i% with the gap A(T) =
0l- 0
Do(T)sin20e™?;
21 i oH
(3) phase Oj —1 o with a gap proportional to
1l [l
00 0 0O
sin?.

Let us calculate the collective mode spectrum for
these three statesin analogy with Subsection 3.2.1. The

values of c? for the cases considered here are

1) ¢ =-1, ¢ =-i.3;
2) ¢g =2, c=2i
3) ¢y =2, cI=2i,

while the remaining components of c? areequal to zero.

In order to obtain the quadratic component of the
effective action Sy, we present the second term in

expression (9) in the form

%Indet(1+Cu),

G—l - M(CO+, CO), (9')
_ 10 o [eyQtl
u=—0»1 .
JBVO[eyQl o O
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Here,
[cYO = c(1-3cos8) + c,Sin"6cos2¢
+ cgsinzesinzq) +c,Sin20cos¢ + c;Sin20sing.

We expand expression (9') into a power series in new
Bose fields ¢; and retain the terms up to the second
order in ¢;. The second-order term is given by

1
_Z_ Z Tr(Gplpz pngGp3p4up4p1)'

P1; P2 Pz, Py

(the first-order term vanishes as a result of minimiza-
tion). After calculations, we obtain the quadratic form
determining the collective excitation spectrum.

EQUATION FOR THE GAP

Let us consider the first term in expression (9) for
Ss. Constant g describing the interaction of quasifer-
mions must be eliminated using the equation for the
gap. In order to derive this equation, we must calculate
Sy in the Ginzburg—Landau region (for T ~ T.), where
the wave function of Cooper pairs (order parameter) is
(modulo) small:

1 1
Sy = zg-}Z|cj(p)|2(1 +28;3) + 5Trin(1+ Gu).
P ]

Expanding the second term into a power seriesin Gu,
we obtain

- 1 2n
—Z RTr(Gu) .
n=1
Carrying out summation and substituting

g
_O(DO

Uy, = -2 O [eYH
P1P2 /\/B_VD [CYq

o O
and

P1P2
iw—¢& '’

_ Zogd

we obtain

_Aqy2. 1 a’c’Z’[c Y[][C+0Y]B
Si = ZgBVc +2In%L+ i

w+E

A/15/35T11, 05 isthe Pauli matrix, and the fol-
lowing substitution has been made: c?(p) =

JBV c8,c] . Constant ¢ can be determined from the

Here, a =
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equation 0S,:/0c = 0, which leads to the following
equation for the gap:

ALl a’Z?[c’YO[cY]
9 B\/%wz_i_ £+ 22OV Y]

Here, A = 6 for thefirst phase and A = 8 for the second
and third phases. For different superconducting phases,
we obtain the following equations:

1 o’Z?
D5t epv

2 . 4
y z (1—23cos 6) +3sin'0cos 20 =0,

A .
P+ 52 + z°[(1—3cosze)2 + 3sm4900322¢]

.2
} o’z z sin"26 =0,
9 2BV £ P+ 82+ A2sin®26
1— a Z z Sin426 -
g 2BV £ + 8%+ N2sin'20
where A, = 2cZa. Eliminating the term 1/g using the

equation for the gap, we arrive at the following expres-
sion for the quadratic component of Sy:

S = Z [c°YO[c™Y]
2A[3V 002 + Ez_,_ O(ZZZ[COY[] [C+OY]

xH (14 28;1)c;(p)c;(p)
j

2

4Bv > |v||\/|

p1+p2=p

x([c" (P Y(P)] [c(p) YHpo)]
+[c (P Y(PII[c(P) YL P)])

~ N[ (P)Y(=pY] [cA=P) Y(=p,)]
~ A" o(p) YH-pY] [c(~p) YE-P,)]} -

This is the genera quadratic form for al three
superconducting states of HFSC. Only parameter A and
the gap structure (through [c°Y*][c*°Y] and M;) are dif-
ferent for different superconducting states. Note that
A = A* (or c® = c™) for al three superconducting states.

The coefficients of the quadratic form are propor-
tional to the sums of the products of Green’s functions
for quasifermions. At low temperatures (T.— T~ T,), we

——{(iw; +&;)(iw, +&,)

(11)
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can pass from summation to integration in accordance
with therule

1
Y T
p
The integrals will be evaluated using Feynman's iden-
tity:

1 ki
(2m)*Cr

o [deodgdo. (12)

[(@I+E+a(@+E+00]7 (g

=jda[a(wi+zi+A2)+(1—a)(w§+E§+A2)]‘2

With the help of thisidentity, the integrals with respect
to variables w and ¢ and then with respect to parameter
o and angular variables can be easily evaluated.

After evaluating al integrals (except those over
angular variables), we equate the determinant of the
quadratic form to zero and arrive at the following set of
equations determining the complete spectrum of col-
lective modes in HFSC with d-pairing (index i labels
the branches of collective modes pertaining to the same
phase):

1) k=1, i=1

O/ + 4f 1

Idxjdq)D—InFlgﬁ(gl 2f1)lnfﬂ§ =0,

[dXId¢D—|nF191 +(0:—
0O/ + 4

k=1,

Jw™ +4f

F——2InFy0; + B ——fIDInf]Jj 0,

2f)Inf =0,
O

i =234,5
J’de’qu

J’de’dq)D—InFlgl %i—gf%mfﬁ =0,

0, /w? +4f1 0O (14)
) k=23 i=1
0wl + 41 0
]’dedd) A2 KN F, g, + %1—gflg|nf%=o,

J'de’d¢[|—Iangl+ o ——fDInf]D 0,

UJ/w +4fk
k=2, i=234,5
0/ + 4f 1 0
J’de’dq) F———2InF,g; + %i—égglnfﬁzo,
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J'de’dc])D—Iangl + —ggglnfﬁ =0

D W +4f, 0
Here,
|H—M+w5 =
JoPrat—w
0 = (1-3%)°, g, = (1-x)"cos’29),

g; = g = 4(1-x)x’cosd,
g, = 4(1—x2)xzsin2¢,
g5 = (1—x)’sin’9,
f, = %[(1—3x2)2+3(1—x2)200522¢],
2= (1),
w = WA,

, = 4(1=-X)%,

cosb = x,

3.2.2.2. Results: Collective Mode Spectrain HFSC

Solving Egs. (14) numerically, we determine the
spectra of collective modes of the three phases under
investigation. For each phase, we obtain 10 collective
modes, five of which (derived from the second equa-
tions) are high-frequency modes; i.e., their frequencies
are of the order of the gap width in the Fermi spectrum.
At the same time, the remaining five modes (obtained
from the first equations) are Goldstone (or quasi-Gold-
stone) modes with frequencies (energies) vanishing for
zero momenta.

Table 3 presents the results for high-frequency
modes (E; isthe energy (frequency) of theith branch) It
should be noted that in the dy state, the last three modes
are quasi-degenerate. The spectra of the second (Y,_;)
and third (containing a gap proportional to sin’0) states
arefound to beidentical. In both phases, three high-fre-
guency modes are determined, two of which are doubly
degenerate.

Thus, we have calculated the collective mode spec-
trum for three superconducting phases of HFSC,
namely, for phases dy and Y,_; and the phase with agap
proportional to sin?g, using the model of d-pairing con-
structed by us with the help of the functional integra-
tion method [4, 5] and considering the case of spherical
symmetry in which only one coupling constant g is
used. Theinclusion of thelattice symmetry necessitates
the introduction of additional coupling constants (up to
five in the general case: five is the number of spherical
harmonicswith | = 2). However, thisnumber isreduced
to two in the case of cubic symmetry and to threein the
case of hexagonal symmetry: gy(m=0, 1, +2).
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For each of the three phases, we have determined
five high-frequency modesin each phase (from the sec-
ond equations in (14)) with frequencies belonging to
theinterval (1.19-1.93)A,. Thefirst equations give five
Goldstone (quasi-Goldstone) modes (with frequencies
smaller than 0.1A).

Note that the frequencies (energies) of al collective
modes are complex-valued and their imaginary compo-
nents (IME;) describe the attenuation of collective
modes associated with the decomposition of Cooper
pairsinto original fermions. Thevalue of theimaginary
component of frequency amounts from 20 to 50% of
the real components ReE;. This means that collective
modes attenuate in the case of d-pairing more strongly
than in most cases of p-pairing, for which the imagi-
nary components of the frequency (energy) amount to
8-15% of RekE;. This is due to the difference in the
topology of zeros of the gap in the Fermi spectrum,
which are points in the case of p-pairing (in most
phases) and a combination of points and lines for
d-pairing. It should be noted that a similar situation is
sometimes encountered in the case of p-pairing (e.g., in
the polar phase of superfluid *He, the attenuation of col-
lective modes is stronger than in other phases (A, 2D,
etc.) just due to the presence of zero lines).

The attenuation of collective modes was not calcu-
lated by Hiroshimaand Namaizawa[7]. Thisisadraw-
back of the kinetic equation method as compared to the
functional integration method. Using the kinetic equa-
tion method, one can calculate only the real compo-
nents ReE; of collective mode frequencies. The inclu-
sion of collective mode attenuation (ImE;) leads to a
shiftin ReE; since, by virtue of the dispersion relations,
the presence of the imaginary component of collective
mode frequenciesresultsin the renormalization of their
real components ReE;.

Thus, we can compare only the real components of
collective mode frequencies. We obtained five high-fre-
guency modes in each phase. In the dy phase, the fre-
guencies lie in the interval (1.19-1.66)A,. Hiroshima
and Namaizawa [ 7] obtained five modes with frequen-
cies belonging to the interval (0.9-1.87)4A, and two
lower-lying modes with frequencies E = 0.32A,. The
frequencies obtained by usfor the Y,_; phase belong to
theinterval (1.59-1.93)A,, while the frequencies corre-
sponding to high-frequency modes from [7] lie in the
interval (1.22-1.57)A,. In both works, Goldstone and
low-lying modes were obtained.

It should be noted that the spectrum of the third
mode was calculated by us for the first time and was
found to be identical to the spectrum of the Y,_; phase.

Some of the modes we obtained attenuate moder-
ately and may be regarded as resonances, while others
attenuate more strongly, which makes observing them
difficult. The inclusion of the Coulomb interaction
transforms the zero sound mode into a plasma mode.
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Y,_, and sin®@ phases
Ey , = Do(T)(1.93 — 0.41i)
E, 5 = Do(T)(1.59 — 0.83i)

dy phase

E, = Ay(T)(1.45 — 0.48i)
E, = Ay(T)(1.66 — 0.50i)
Es = Ay(T)(1.24 — 0.64i)
E, = Ay(T)(1.21 - 0.60i)
Es = Ay(T)(1.19 — 0.60i)

The obtained collective mode spectrain HFSC may
be used for interpreting the results of ultrasonic exper-
iments and in experiments on microwave absorption in
HFSC aswell as for identifying the type of pairing and
the order parameter in these superconductors.

At the present time, the experiments on microwave
absorption in HFSC (at frequencies of the order of
20 GHz) are being carried out at the Northwest Univer-
sity (Evanston, USA). Their aim is to determine the
type of pairing and the order parameter in HFSC [1].

3.2.3. How to Distinguish between a Mixture
of Two d-Sates and a Pure d-Sate

Recent experiments [8] and theoretical investiga-
tions [9, 10] indicate that, apparently, a mixture of
d-statesisrealized in HTSC. We calculated for the first
time the collective excitation spectrum in the mixed
dxz_yz +id,, state of HTSC [11] using our earlier con-

structed model [4, 5] based on the functional integra-
tion method.

We proved [11] that in spite of the fact that the spec-
train both phases dxz_y2 and d,, areidentical, the spec-

truminthemixedd . . +id,, state differs completely
X -y

from the spectra of the pure states. Consequently, an
analysis of the collective mode spectrum in experi-
ments on ultrasound and microwave absorption makes
it possible to distinguish between a mixture of states
and pure states.

Most scientists believe [1] that d-pairing (dxz_yz

state) is realized in oxides. At the same time, various
hypotheses concerning the extended s-pairing, the mix-
ture of s and d states, and various d states are being
intensely discussed even now [12]. One of the reasons
behind such a situation isthat it is unclear whether the
gap exactly vanishes in a certain preferred direction in

the momentum space (asin the case of the dxz_yz state)

or it is anisotropic and does not exactly vanish (except,
probably, at some points on the Fermi surface). The
available experimental results [1] (on tunneling and
other effects) do not provide an unambiguous answer to
the above question, although it is of fundamental
importance. On the other hand, some experimental
results [8] can be explained [9] under the assumption
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that a mixture of states of the type dxz_yz +id, isreal-
ized in HTSC. Annett et al. [10] considered the possi-
bility of realizing amixture of variousd statesin HTSC
and arrived at the conclusionthat the d . _ . +id,, state
is preferred. We propose a method for distinguishing
between amixture of states and pure states.

For this purpose, we cal culated the spectrum of col-
lective excitations in the mixed d . . + id,, state of
HTSC. A comparison of this spectrum with the spec-
trum of pure d states of HTSC shows that they differ
significantly and this difference may be used for deter-
mining the symmetry of the order parameter in HTSC.

We will use the model of d-pairing described by
Egs. (9) and (10) and consider the mixed dxz_yz +id,,
state of HTSC. The order parameter in this state hasthe
form

0 0 Ogq00
1007 go10p

Oo—-1 00+i0 O
DO 10 D100D
00 0 0g poo0o0n

(15)

and the gap is given by
A(T) = A(T)sin’6.
The equation for the gap can be written in the form

1,09’ sn'0
2 =0, 16
g Zszoo +&° +Aosm9 (0
where
A, = 2cZa, o = J/15/321.

In the first approximation, the collective excitation
spectrum is determined by the quadratic part of the
effective action Sy obtained through the trandation

G(P) — (P + ci(p) in Sy Here, c(p) =
JBV c3,c’ are the condensate values of canonical

Bose fields, and the values of c? for the cases under
investigation are

=2, c5=2i,

while the remaining values of c? are equal to zero.

Eliminating the term 1/g with the help of the equa-
tion for the gap, we arrive at expression (11) for the
guadratic component of Sy for A = 4. The coefficients
of the quadratic form are proportional to the sumsof the
products of Green's functions for quasifermions. At
low temperatures (T, — T ~ T.), we can go over from
summation to integration in accordance with the rule
(12). We will evaluate the obtained integral s using Fey-
nman’s identity (13). With the help of thisidentity, we
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can easily evaluate the integrals with respect to vari-
ables w and & and then with respect to parameter o and
angular variables.

After evaluating these integral s (except the integrals
over angular variables) and equating the determinant of
the quadratic form to zero, we arrive at the following
set of equations determining the complete spectrum of
collective modesinthemixed d . . +id,, state (index

i labels the branches of collective modes belonging to
the same phase):

i=1
Idedq)D W +4f Ianﬁ%l—gfl%Inf@:O,
IdXJ’d¢m|anl+% - | f% =0,

i=23 4 (17)

1 21
J’dedq)@—“’wZ(:MIani +0 —%d&lnf@ -0,

J'dXJ’d(I)mlanl %i

1 O
—=g=Infg=0.

2N 0
Here

InA/m +4f +w_ =
Nl +4f —w

9, = (1-x9)’cos?2¢,

nF, g, = (1—3x2)2,

=g = 4(1-x)x’cosd,
93292 2( ) ¢22 e
gs = 4(1-X)X'sin"d, gs = (1-x") sin"0,
f, = %1[(1-3x2)2+3(1—x2)2coszz¢],

f=(1-x)°

and the following substitutions have been used: cosf =
X, W= WA,

Having solved these equations, we obtain the fol-
lowing results for the collective mode spectrum in the
dxz 2 +id,, state. Ten collective modes are obtained, five

of which (derived from the second equations) are high-
frequency modes; i.e., their frequencies are of the order
of the gap in the Fermi spectrum. At the sametime, the
remaining five modes are Goldstone (or quasi-Gold-
stone) mades with frequencies (energies) vanishing for
zero momenta (of the order of (0.03-0.08)Ay(T)).
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We present the results for high-frequency modes (E;
isthe energy of the ith branch):

E., = A(T)(1.93-0.41i),
Es = Ay(T)(1.62-0.75i),
Ess = A(T)(1.59 —0.83i).

(19)

We can compare the results with the spectrum of pure
dxz_yz and d,, states obtained by us earlier [13]:

E, = Ay(T)(1.88-0.79i),
E, = Ay(T)(1.66—0.50i),
E, = Ay(T)(1.40-0.68i), (20)
E, = A(T)(L13-0.71i),
Es = Ay(T)(L10-0.65i).

In spite of the fact that the spectrain both phases dxz_yz
and d,, are identical, the spectrum in the mixed dxz_yz +

id,, state absolutely differs from the spectra of the pure
states. In the latter states, all modes are nondegenerate,
whilein the mixed state, two high-frequency modes are
doubly degenerate. The energies of high-frequency
modes lie in the interval (1.1-1.88)Aq(T), while in the
mixed state, they belong to theinterval (1.59-1.93)Aq(T);
i.e., collective modes have higher frequencies in the
mixed state.

It should be noted that the attenuation of collective
modes in the pure states is stronger than in the mixed
state (ImE; varies from 30 to 65% in the pure state and
from 20 to 50% in the mixed state). This can be
explained taking into account the fact that in pure
states, the gap vanishes on the lines of the Fermi sur-
face, while it vanishes only at two points (poles) in the
mixed state.

The strong difference in the collective excitation
spectra for pure d states and the mixed state makes it
possible to verify the symmetry of the superconducting
state in experiments on ultrasound and microwave
absorption, in which collective modes are excited.
Although rather high frequencies (of the order of tens
gigahertz) might be required for such experiments,
there are no limitations of fundamental nature on the
frequencies of ultrasound (microwaves): since the fre-
guenciesof collective modes are proportional to the gap
amplitude Ay(T) vanishing at T, any frequency may, in
principle, be used as the temperature approaches T...

Thus, we are in a position to answer the following
two fundamental questions:

(1) does the gap disappear aong certain preferred
lines?

(2) do we have apure d state or amixture of d states
inHTSC?
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Balatsky et al. [12] analyzed the mixture of two
d-states and s- and d-states: dxz_yz +id,, and dxz_yz +

is. In the case when the mixture of two d statesis real-
ized, they studied the situation when the d,, state is
induced by an external magnetic field (in accordance
with the assumptions used by Laughlin [9] for explain-
ing the results of Krishana's experiments [8]). They
proved in this case the existence of an orbital magneti-
zation mode corresponding to the oscillations of the
relative phase ¢ between two components about the
equilibrium value ¢ = £172. Thismodeis similar to the
clapping mode in *He-A; the exact value of frequency
for this mode was aobtained in [3]. However, if the d
state is induced by an external magnetic field, the fre-
guency of this mode is proportiona to the externa
field, w= BA, (B is the magnetic induction).

We did not consider the reason behind the formation
of the impurity d,, state, which may be numerous (the
generation of the d,, state near the magnetic impurity,
the presence of vortex texture, etc.). In particular, we
did not introduce the external magnetic field and,
hence, did not study the field dependence of collective
mode frequencies. At the sametime, it should be noted
that Balatsky et al. [12] studied a single specific mode
in a mixture of states, while we considered the com-
plete spectrum of collective modes.

4. TWO-DIMENSIONAL p- AND d-WAVE
SUPERCONDUCTIVITY

4.1. Two-Dimensional Models
of p- and d-Pairing in Superconductors

Two-dimensiona (2D) models of superconductiv-
ity, including 2D models of d-pairing in HTSC are
important for several reasons. Above al, CuO, planes
are the common structural factor in virtualy al the
HTSC discovered so far. It is generally accepted that
the entire physics of this phenomenon is associated just
with these planes.

The existence of superfluidity in *He films was
proved even 20 years ago [3] and was subsequently
observed experimentally [14].

The 2D superconductivity has its own specific fea-
turesdueto thefact that, in accordance with Bogoliubov’s
(1/k?) theorem, the condensate exists only at T = 0.
However, superconductivity associated with a certain
behavior of Bose-field correlators is also possible for
T# 0: if these correlators decrease at large distances
according to a power law and not exponentialy, this
indicates the existence of superconductivity in the sys-
tem. In this case, the superconducting transition tem-
perature T, isthe point of transition from an exponential
decrease of Bose-field correlators to a power depen-
dence. Alternative approaches associated with the
introduction of the initial condensate generating the
superfluid density of carriers of the order of their total
density are also possible.
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4.1.1. p-Pairing

In order to describe the 2D model of p-pairing, we
consider the 3D model [3] with the following modifica-
tion made for the 2D case.

a. The orbital angular momentum | (|l | = 1) must be
perpendicular to the plane and may have only two com-
ponents along the z axis: 1. Since the p-pairing is a
triplet process, the total spin of apair is equal to unity,
and hence there are 3 x 2 x 2 = 12 degrees of freedom
in the case of two-dimensional p-pairing. Conse-
guently, the superconducting state in this case may be
described by an arbitrary complex 2 x 3 matrix c¢,(p) with
the same number of degrees of freedom (2 x 3 x 2=12).
This number isequal to the number of collective modes
in each phase. It should be recalled that in the 3D case,
this number is 18.

b. In this case x is a 2D vector, and the two-dimen-
siona “volume” S= L? (instead of V = L2 in the 3D
case).

4.1.1.2. Collective Mode Spectrum

We present here the results (some of which were
obtained earlier [3]) for the collective mode spectrum
in various superconducting states of 2D superconductor
with p-pairing (as before, the number of collective
modes is given in parentheses):

O

aphase OJ 100 E:

Oi o000

E* = cZk’/2 (3), E” = 2A°+c2k’/2 (6),

E> = 47+ (0.5-0.433i)c2k’/2 (3),

0 0
bphaseDlOOD:

0o1o00
E? = ¢2K%2 (2), E? = 3c2K’/4 (1),
E* = c2k’/4 (1), E® = 20° (4),

4N* +(0.15 + 0.22i)c2k*/2 (3),

E2
EZ

4N* +(0.85—0.22i)czk?/2 (1),
E> = 470+ (0.5-0.43i)czk’/2 (2),

O 0
phaseDOO_lm:
0000
E’=0 (3), E>=2A% (6), E*=4A* (3),
O 0
phaseDOﬂOD:
01 0 00
E’=0 (4), E®=24° (4), E*=4A% (4),
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0O O
phaseD1 0 OD:
00 -1 00
E* =0 (4), E*=2A° (4), E* = 4N° (4).
4.1.2. d-Pairing

It was mentioned above that CuO, planes are the
common structural factor of almost al discovered
HTSC, and it is generally accepted that the entire phys-
ics of superconductivity is associated just with these
planes. Considering that d-pairing is apparently real-
ized in most HTSC, an analysis of the 2D model of
d-pairing is of considerable interest. There also exists
additional argumentsin favor of the study of such mod-
els. For example, it was proved for a 2D antiferromag-
net that only the d-channel ensures attraction between
fermions; d-pairing also emergesin the symmetry clas-
sification of HTSC [10, 15].

Thus, we consider the 2D model of d-pairing in
CuO, planes, which was constructed by us earlier [4, 5]
using the functional integration method. As in the 3D
case, the model is described by the hydrodynamic
action functional obtained by successive functional
integration over fast and then slow Fermi fields. Asin
the 3D model the hydrodynamic action functional
determines all the properties of the system under inves-
tigation (in the given case, CuO, planes), including the
collective excitation spectrum.

In order to describe the 2D modd of d-pairing in
CuO, planes, we consider the 3D model used by us ear-
lier. The basic differences observed in the 2D case are
asfollows.

a. The orbital angular momentum | (|l | = 2) must be
perpendicular to the CuO, plane and may have only two
components along the z axis: £2. Since d-pairing is a
singlet process, the total spin of a pair is equa to zero
and, hence, thereare 1 x 2 x 2 = 4 degrees of freedom
in the case of the 2D d-pairing. Consequently, the
superconducting state in this case can be described by
a complex symmetric traceless 2 x 2 matrix c,(p)
which possesses the same number of degrees of free-
dom (2% 2x2—-2-2=4). Thisnumber isequal to the
number of collective modesin each phase. It should be
recalled that in the 3D case, this number is equal to 10.

b. The pairing potential is given by the formula
t=vkk)= 5 gnYan(®Y3u(K).

m=-2,2
In the case of circular symmetry, g, = g, = @, and we
have only one coupling constant g, while less symmet-
ric cases require the existence of both constants (g, and
0.,). We will consider the case of circular symmetry.

c. Vector x is two-dimensional, and the area S = L2
(instead of V = L2 in the 3D case). In view of these dif-

(21)
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ferences, we will describe our Fermi system by anti-
commuting functions XX, 1), Xs(X, T) defined in “vol-
ume’ S= L2 and antiperiodic in time T with period B =
T-1 (T isthe temperature).

After the functional integration with respect to slow
and fast Fermi fields, we obtain the effective functional

of action, which formally has the same form (5) asin
the 3D case.

In the 2D case, the number of degrees of freedom of
the order parameter for d-pairing is equal to four. In
other words, we have two complex canonical variables.
It can easily be seen from the nondiagonal elements of
matrix M that for canonical variables, we can choose

Cp = C;3—Cyp, C; = Cpp+Cy.
For conjugate variables, we have
+ o+ + + o+ +
C;i = C;y —Cxp, Cy = Cpp +Cyy.

In the canonical variables, Sy hasthe form

Sy = %%c;(p)cj(p)+%lndet%, (22)
where
My = %[iw—& H(H [6)]0,, p,,
M,, = %[—iw+ &+ H(H [o)]5 .
My, = M5, = 292 (c,cos20 + c,5in26).

/B

Functional Sy determines all properties of 2D super-
conductors (CuO, planes and others). In particular, it
determines the collective mode spectrum.

4.2. Collective Excitationsin CuO, Planes of HTSC
Two superconducting states with the order parame-

. U108 Ho1H
ters proportional to [ O and O O are formed
0oo-10 0100

in the symmetry classification of CuO, planes. In the
first phase, the gap is proportional to
Y, + Y, 0 sin°8|cos2¢[0 |cos24],
while in the second phase it is proportional to
—i(Yy—Ys,,) Osin°Blsin2¢0 |sin2¢).

Inthe 2D case, we put 6 = W2 and sin@ = 1.

Let us calculate the collective mode spectrum for
the two given states. In thefirst approximation, the col-
lective excitation spectrum is determined by the qua-
dratic part of the effective action Sy obtained by the
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trandation ¢ (p) — ¢(p) + ¢{(p) in Sy Here, cX(p)
are condensate values of canonical Bose fields ¢;(p).

The quadratic component of the effective action Sy
is defined by formula (11) for A= 4. In this case, A =

01 o O i
Ap|cos2¢| for phase O O and A = Aglsin2¢| for
0 0

0 1l
phase%o éE,AﬁZacZ,a: J151321, and M; = o +
1

& +402

The first term in the expression for Sy contains the
coupling constant g which must be eliminated using the
equation for the gap, which has the following forms for
the first and second phases, respectively:

1,92 cos’ 24 -
g BS z 2 g2 A2 254
oW +&"+ Agcos 2¢
252 . 2
1. a Z sin"2¢ -0

(o]

BS £ o+ g%+ njsin’2¢ )
Here, AS = 4a’c?Z°. At low temperatures, we can go

over from summation to integration using the following
rule:

1 1 ke

Here, as before, ke is the Fermi momentum of a quasi-
fermion and c; is the velocity on the Fermi surface.
After integrating with respect to w and & with the help
of the Feynman procedure, we arrive at the following
equations for the collective mode spectrum, obtained
from the condition detQ = 0, where Q is the matrix of
the quadratic part of functional Sy:

0,

1 2

dx w +4 O
| 0 %1nGg, - (g—9) 1N
2N 1-x0 O

J. dx E W
o«/l—XZDA/(*)Z"'Argk

Here, G=(./w’ + 4g, + w)/(Jw” + 4g, —w), k denotes

thephaseand i labelsthemodes, g, =x%, g, =1—X?, x =
cos2¢, and w = w/A,. Consequently, for each fixed k,
we have four equations leading to four frequencies of
collective modes.

(23)

I
o

O
InGgl_(gk_gi)Ingk%
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4.3. Discussion of Results

The spectrain both phases are found to be identical.
We obtained two high-frequency modes in each phase
(from the second equation in (23)) with the following
frequencies:

E, = Ay(1.42-0.65i),
E, = Ay(1.74-0.41i).

Note that the frequencies of both modes are complex-
valued. This is a consequence of d-pairing or, in other
words, the consequence of gap vanishing in the chosen
directions. In this case, Bose excitations decay into fer-
mions, which leads to collective mode attenuation. The
value of the imaginary component of the frequency
amounts to 23% of its real component for the second
mode and to 46% for the first mode. For this reason,
both modes may be regarded as resonances. The second
mode is defined better than the first mode.

The first equation in system (23) gives two Gold-

stone (quasi-Goldstone) modes with (frequencies
smaller than 0.1A).
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Abstract—The conductance of a ballistic dliptically shaped quantum wire is investigated theoreticaly. It is
shown that the effect of the curvature results in a strongly oscillating dependence of the conductance on the

applied bias. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent advances in semiconductor physics and
technology enabled the fabrication and investigation of
nanostructure devices possessing important properties,
such as small size, reduced dimensionality, relatively
small density of charge carriers, and hence, large mean
free path (which meansthat particlesexist in the ballis-
tic regime and the scattering processes can therefore be
neglected), and large Fermi wavelength A One of the
mesoscopic systems of particular interest is the quan-
tum wire in which particles are constrained to move
along a one-di mensonal curve due to gquantization of
the transverse modes.* One of the numerous important
problems pertaining to the quantum wire is to deter-
mine the influence of the reduced dimensionality upon
the system properties.

Jensen and Koppe [1] and da Costa [2] emphasized
that a low-dimensional system, in general, has some
knowledge of the surrounding three-dimensional Car-
tesian space: the effective potential arises from the
mesoscopic confinement process, which constrains
particles to move in adomain of areduced dimension-
ality. Namely, it was shown that a particle moving in a
one- or two-dimensional domain is affected by an
attractive effective potential [2]; this result was first
obtained in [3] and later in [4]. This idea was widely
studied by several other authors (see [5-12] and, for
example, [13] about the experimental realization of
such systems).

It was also shown in [14] that the torsion of the
twisted waveguide affects the wave propagation in the
waveguide independently of the nature of the wave. In
particular, the torsion of the waveguide results in the
rotation of the polarization of light in a twisted optical
fiber [15]. In [16], the authors prove that in awaveguide,
be it quantum or electromagnetic one, bound states
exist. Several papers have been devoted to the relation

T ThIS article was submitted by the authorsin English.
1 We study here only the one-channel wire with only the lowest
subband occupied.

of the guantum waveguide theory to the classical theory
of acoustic and electromagnetic waveguidesin [6].

The effect of the curvature on quantum properties of
electrons on a two-dimensional surface, in a quantum
waveguide, or in a quantum wire can be observed by
investigating kinetic and thermodynamic characteris-
tics of quantum systems [8-12]. In this paper, we pro-
pose to use measurements of the conductance G of a
guantum wire for this purpose; we show that the reflec-
tion of electrons from regions with avariable curvature
results in a nonmonotonic dependence of the conduc-
tance on the applied bias.

In [4], the Schrédinger equation on the eliptically
shaped ring was solved numerically in order to obtain
the eigenvalue spectrum of a particle confined to the
ring. The authors studied a quantum mechanical system
confined to anarrow ring by the rectangular well poten-
tial. They showed that in the limit as the ring width y
tends to zero, the behavior of the system is similar to
the straight line motion with the effective potential

_#
Vet = g2 1)

where R is the radius of curvature. Later [9], the elec-
tron energy spectrum in an elliptical quantum ring was
considered in connection with the persistent current;
the authors have concluded that the effective potentials
Vg are different for different confining potentials even
inthelimit asytendsto zero. Thisconclusionisin con-
tradiction with the results of some other papers [2, 6].
We address this problem in the present paper; we inves-
tigate the derivation of the one-dimensional Schrédinger
equation in order to understand more deeply how the
particle motion along the curve C is affected by the
confining potential. We demonstrate the consistency
with the previousresultsin [2]: the effective potential is
universal for different confining potentials and depends
only on the curvature (see Eqg. (1)).

1063-7761/01/9205-0811$21.00 © 2001 MAIK “Nauka/Interperiodica’
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n(s)

N

Fig. 1. Elliptically shaped quantum wire.

In Section 2, we derive a one-dimensional
Schrédinger equation starting from the two-dimen-
sional Schrodinger equation describing a nonrelativis-
tic electron that moves in a plane? and is subjected to
the confining potential V,. In Section 3, we apply these
results to theoretically study the conductance of the
quantum wire that consists of two linear parts and one
elliptically shaped part between them; the wire is con-
nected to two conducting reservoirs at different volt-
ages (see Fig. 1). In Section 4, we discuss the influence
of the curvature on the conductance.

2. SCHRODINGER EQUATION

In this section, we follow the approach proposed in
[2]. We consider the electron with the effective massm
moving in a quantum wire along a curve C that is con-
structed by a prior confinement potential V,. For sim-
plicity, we start with the two-dimensional motion. We
introduce the orthonormal coordinate system3 (s, 9),
where sisthe arc length parameter and q is the coordi-
nate along the normal n = n(s) to the reference curve C.
The curve C is then described by a vector valued func-
tion r(s) of thearc length s. In avicinity of C, the posi-
tion istherefore described by

R(s q) = r(s) +an(s). )

To obtain a meaningful result, the particle wave
function must be “uniformly compressed” into a curve,
thereby avoiding tangential forces [2, 4, 9]. We thus
consider V, to depend only on the q coordinate that
describes the displacement from the reference curve C;
this means that points with the same q coordinate but
different s coordinates (which describe the position on
C) have the same potential. This potentia involves a

2 We consider only flat curves and we refer the reader interested in
the effect of thetorsionto [7].

3 The advantages of establishing the (s, g) coordinate system from
the very beginning are that it allows the most general analysis and
that (because of the diagonal structure of the metric tensor) we
can decompose the dynamical equation of motion into two equa-
tions in the zero-order approximation in the width of the quantum
wire.
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small parameter y such that the potential increases
sharply for every small displacement in the normal
direction; y is the characteristic width of the potential
well V. The simplest examples of these potentials are
the rectangular well potential and the parabolic-trough
potentia (we notethat thereal potential would likely be
a combination of both, however). The small parameter
in the problem istherefore y/R < 1 [5].

The motion of the electron obeys the time-indepen-

dent Schrodinger equation
ﬁz
—5=Boq +Vy (AW = ey, 3
where the Laplacian is
1010 19,0
sa = hashas  haq aq’ “)
with
h = 1-k(s)q (5)

being the Lamé coefficient (corresponding to the longi-
tudina coordinate s) that depends on the curvature k =
k(s) in accordance with the Frenet equation.

To eliminate thefirst-order derivative with respect to
q from Eq. (3),* weintroduce the new wave function
by

B(s a) = Jhy(s, q). (6)

Thisisthe wave function introduced in [2] and normal-
ized so that

[dsdald(s o)l = 1. (7)
The Schrédinger equation (3) then becomes

a_ZDqJ
2mldsp2ds aqﬂ )
+ V(s Q)P + V()] = e,
where

ﬁZ

Vai(s ) = ~>m

2K, gy 2d’k , 507 gk
0T @t e

which isin agreement with [5, 8].

One must be careful with Eq. (8) in order to avoid
mistakes found in the literature [7, 9]. First, we cannot
decompose this equation, which contains termsthat are

(9)

4We do this to eliminate terms of the form f(q)d/dq that were
called “dangerous terms’ in [1]. We cannot use f(q) = f(0)
because f(q)d/dq = [f(0) + qdf(0)/dg]o/oq: athough q ~ vy, we
have 0/0q ~ y‘1 and the second term in the brackets is therefore

~y°, and this is the order of terms in which we are interested
below.
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functions of both s and g, into two equations introduc-
ing P(s, g) = X(QX:() asin [7], where the authors
obtained Eq. (31) for X;(s) with coefficients depending
on the q variable. To understand another mistake [9],
we consider Eq. (8) within the perturbation theory in
the small parameter y (which is small compared to R)
(see also [6]). We expand h™? and V4 in seriesing < y
and explicitly write the zeroth term as

-2 =1+ - f(S)ql,
2"

2,2 « M
Vals ) = S 5 yats
=1

Equation (8) can then be rewritten as

(Ho+ V) = €0, (10)
where
~ #2000 | 0% KK
Ho = —mEb— _2{] om (s +V (q), (11
N RS 9
V= om2 435 (5 *vsH (12

We note that V is a second order differential operator
in s. The solution of Eq. (10) is

(0) i

where ¢ ~ y and §©
order problem, Ho0® = ed® . This equation can be

decomposed by separating the wave function as () (s, g) =
n(@x(s)

corresponds to the zeroth-

2 2
“2mgg Vy(an = En (13)
and
7 d
—X *+ Vai(S)X = EX, (14)

Zmd

where Vg (s) isgiven by Eq. (1), e =E + E,and R=
k(s)™ is the curvature radius (in the next section, we
omit the subscript “I”, identifying the energy E with its
longitudinal component E|). Equation (13) describes
the confinement of the electron to a y-neighborhood of
the curve C and Eq. (14) describes the motion along the
s coordinate (along C). In fact, Eq. (14) is a conven-
tional one-dimensional Schrédinger equation for the
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el ectron moving in the s-dependent potential V4 (s); the
latter relates the geometry and the dynamical equation.
The origin of this potential isin the wavelike properties
of the particles; Vi is essential for the values of R/Ag
that are not large. We emphasize that the effective
potential in EQ. (1) inthe zeroth-order approximationin
V/R is independent of the “one-dimensionalization”
method, i.e., of the choice of V\(q) (compare this con-
clusion with the one derived in [9])

We also note that if we started from the three-
dimensional equation of motion, we would obtain an
additional effective potential that vanishesin the planar
situation [2].

3. CONDUCTANCE

The conductance G of quantum contacts can be
related to the transmission probability T(E) by Land-
auer'sformula[17]. At zero temperature and finite volt-
ages'V, it takes the form

_Go eVl eV
= 3T+ S -5

where G, = 2e?/h and E is the Fermi energy. The two
terms in this equation correspond to two electronic
beams moving in opposite directionswith different bias
energies. We are interested in the transmission proba-
bility T(E) for the electron energy E.

In this section, we consider the curve C to consist of
three ideally connected parts (see Fig. 1): (i) linear (s<
0), (ii) eliptical (0 <s<I, wherel ishalf of the ellipse
perimeter), and (iii) one more linear domain (s> 1). We
consider wave functionsin regi ons (i) and (iii) to be the

reﬁpectlve plane waves y, = € “ 4 re™ and Ys =

te' ° Where k, = J2mE/#? is the wave vector and t
and r are the transmission and reflection coefficients;
the transmission probability is given by T = [t|>. We
have Y, = x, where x isthe solution of Eq. (14) with the
effective potential given by Eq. (1). The curvature can
be written most ssmply in the €liptical coordinate v
[18] defined by its Lamé coefficient

H—E—adl ecosv

dv

where e is the eccentricity of the ellipse and a is the
length of its major semiaxis, we use v(s=0) = 0. The
effective (geometrical) potential in Eq. (1) can then be
written as

(15

(16)

72 1-¢€°
Veff(s) = 2 2 2 3! (17)
8ma’(1—e“cos v)
which isin agreement with [4].
We introduce the new wave function
E(v(s) = X(s)//H, (18)
No.5 2001
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Fig. 2. Conductance as a function of the bias G = G(eV) at
e€=0.99, a= 10Ag (at the same value of a but withe=0, the

amplitude AG/Gy, is on the order of 107%).
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1.0

0.8
0.6
04r
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Fig. 3. Conductance as afunction of the length of the major
semiaxisG = G(a) ate=0.99, V=0.

for which the equation takesthe form (see Egs. (14) and
(16)18))

d? 2ma’
s +[ :;f Eg(v)+U(v)}z =0, (19
U(v) = 51-¢* 1-€/2 €'sn’2y 20)

4 g g 16 g
where g = H%a? = 1 —?cos?v. Equation (19) isthe Hill
equation with Teperiodic coefficients; the fundamental
system of its solutionsis[19]

& = e™My(xv), (21)

where y(v) isaTt-periodic function and [ is the charac-
teristic exponent. We then have (see Egs. (18) and (21))

X = Ce"Y(v) +Ce ™ Y(—v), (22)
where § (v) = JHy(v).
With the known wave functions, we are now inter-

ested in T = |t |?, which describes the transmission over
the potential well (see Eq. (17)). We use the continuity
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conditions for the wave function and its derivative,
which gives asystem of four equationsthat issimilar to
the one givenin [20]; theresult is

_ 1 1P 2 7
T= [1+ZB(_ED sin nu} : (23)
where we denoted
_ i ko
K= —— =~ ) (29)
aklAll—eZQﬁV:O

(To obtain Eq. (23), we assumed that 1 and kK are real,
which is straightforward to proof.)

4. RESULTS AND DISCUSSION

To understand how the conductivity G depends on
the bias eV and the geometry, we must find the solution
of Hill equation (19). We did this numerically and also
within the perturbation theory for an ellipsethat is close
to the circle (i.e., € < 1); we found that the two solu-
tions are in good agreement for e < 1/2. In the zeroth-
order approximation in € (i.e., for e = 0, the case of a
circular arc), we have y, = ak, and K, = ky/k;, wherek, =

J2mE/H? + 1/4a° (see aso [12]). This implies that
oscillations in the G(V) dependence can be observed if
a = Ar and the amplitude of these oscillations is suffi-
ciently small.

The first-order approximation of the perturbation
theory (for a> A;) yields

H=Ho+ €1y, K=Ko+ €Ky, (29)
where
_ aki _ Mo
M = 2 = (26)
Kl s @7

" dko((ak)’— 1)

We have solved Hill equation (19) numericaly.
The characteristic exponent Y is defined via the solu-
tion of Eq. (19) with theinitial conditions,(0) =1 and
€,(0) =0, and p is then the solution of the equation
&,(1) = cosTip (see [19]). It is more difficult to find &,
(see Eq. (21)), which can be formulated as the bound-
ary value problem for Eq. (19) with the boundary con-
ditions &,(0) = 0 and &,(1) = sinTty (where &,(v) =
Imé&.(v)). Introducing &5(v) = &,(v)/&, (0), we have the
initial condition problem for &5(v) (with &5(0) = 0, and
€3(0) = 1), whose solution allows us to define K,

(8.18.), =0 = &€,(0) = sSinTtW &5(MT). The results of the
described procedure are numerically plotted in Figs. 2
and 3 for a sufficiently elongated ellipse with e = 0.99
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(with a/b = 7, where a and b are the respective lengths
of its major and minor semiaxes). We note about Fig. 3
that under the restriction R > y, we must not let a go to
zero; namely, we may suppose R > yfor a/ A ~ 10 but
may not for a/Ar < 1 [for e closeto unity]. We aso note
that EqQ. (15) is, strictly speaking, correct for eV small
compared with Eg and describes G(V) dependence for
eV ~ E¢ qualitatively. We conclude that e close to unity
significantly increases oscillationsin comparison to the
case of e = 0; the amplitude of oscillationsin G = G(V)
is defined by the value of a/Ar.

In summary, we have rederived the quantum-
mechanical effective potential induced by the curvature
of the one-dimensional quantum wire. We have shown
that for any confining potential V, depending only on
the displacement g from the reference curve C, this
effective potential is universal: it does not depend on
the choice of V, and is given by Eq. (1). We have stud-
ied the effect of the curvature on the conductance of an
ideal dliptically shaped quantum wire in the zeroth-
order approximation in the width of the wire. It has
been shown, in particular, that due to the effect of the
curvature, the dependence of the conductance G(V) on
the applied bias changes drastically. Thus, the effect of
the curvature can be observed by measuring the con-
ductance of the quantum wire. On the other hand, one
can change the characteristics of the quantum wire,
such as the conductance, setting its size, shape, or
applied bias.
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Abstract—It is experimentally established that the magnetoresistance of a Fe(SiO,);_yx nanocomposite
(x=0.6) inastrong magnetic field is described by alogarithmic function of the field strength. Thisfield depen-
denceisinconsistent with the well-known theory of the giant magnetoresi stance in ferromagnetic nanocompos-
ites. A model is developed according to which the unusual behavior of the magnetoresistance is explained by
nonsphericity of the material grains, exhibiting a broad variety of shapes. The experimental results agree with
conclusions and predictions of the proposed model. © 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

This study is devoted to the giant magnetoresistance
(GMR) of aFe(Si0O,);_, hanocomposite with x = 0.6,
which corresponds to the metal side of the metal—insu-
lator percolation transition in this system. The material
represents essentially a dispersion of ferromagnetic
metal granules in a dielectric matrix. Our experiments
showed that the electric resistance of such composites
in a sufficiently strong magnetic field varies as a loga-
rithmic function of the field strength. This field depen-
dence is inconsistent with that predicted by the known
theory of the GMR in ferromagnetic nanocomposites
[1, 2]. We believe that the discrepancy is related to the
fact that the traditiona theory was developed for asystem
composed of spherical metal granules, whereasreal nano-
composites usually consist of nonspherical particles.
Moreover, the degree of nonsphericity of these particles
may change as the granule shape varies from strongly
elongated (prolate) to significantly oblate.

Below we will describe the GMR of a system com-
posed of such granules within the framework of asim-
ple model, which relates the unusual quasilogarithmic
dependence of the magnetoresistance on the field
strength to the scatter of shapes of the nonspherical
granules of the nanocomposite.

2. EXPERIMENTAL RESULTS

We have studied thin Fe(SiO,);_, (x = 0.6) films
with athickness of 0.4 um. The sampleswere prepared
by the ion sputter deposition in vacuum using a mosaic
target composed of Fe and SiO, pellets. The iron vol-
ume fraction in the deposit was checked by the elec-
tron-probe X-ray microanaysis. The size of Fe gran-
ulesin the films varied from 2 to 20 nm.

The relative magnetoresistance AR/R of a sample
(Ris the electric resistance of the film at a given tem-
perature and the zero field strength, AR is the change in
the resistance upon application of a field with the induc-
tion B) was studied in a temperature range from 4.2 to
300 K using “long” (~0.1 s) magnetic field pulses with B
upto20T.

Figure 1 shows the experimental plots of magne-
toresistance versusinduction measured at various temper-
atures. In Fig. 2, the high-field branches of these plots are
congtructed asfunctions of thelogarithm of the* effective”
induction B/T. As is seen, the sample resistance in the
region of high fieldsis described by alogarithmic func-
tion of the field strength.
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Fig. 1. The plots of magnetoresistance versus magnetic
induction for a Fe(SiO,), _, nanocomposite (x = 0.6) at
various temperatures.
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3. MAGNETORESISTANCE
OF A NANOCOMPOSITE
WITH NONSPHERICAL METAL GRANULES

The dectric conductivity of granulated metals (nano-
composites) and the GMR of ferromagnetic metals are
determined by the electron tunneling between granules
[1, 2]. However, in area system containing granules of
various dimensions, the maximum contribution is due to
the granules having a size close to a certain “optimum”
value[3, 4].

For a nanocomposite consisting of spherical gran-
ules, the optimum size is determined by interplay
between the increased concentration (inherent in real
systems) of small-size particles and their reduced
degree of ionization (caused by the Coulomb effects).
The optimum granule size is given by the formula[3]

XY A T ™

aopt(T) aODITD aoDr(D ) 1

where KT, = (€%/eag)(ag/\)¥?x V1 — (x/x.)Y?], a, isthe
average granule size, A isthe electron wavelength in the
insulator phase, € isthe dielectric constant, x isthe bulk
content of the metal phase, and X is the percolation
threshold. The conductance G(T) of a given system is
determined by the “optimum cluster”—a cluster com-
posed of granules possessing the optimum size a,,(T),
rearranging in accordance with the temperature T.

A change in the resistance of the system exposed to a
magnetic field with theinduction B is dueto the magnetic-
field-dependent probability of the tunneling transitions
between spontaneously magnetized single-domain
(because of smdl size) granules. The relative magnetore-
sstance AR(B, T)/R=[G(0, T) — G(B, T)]/G(O, T) can be
expressed as [4]

= P*[tosyT,

AR(B,T) _
= @

where P isthe electron spin polarization in aferromag-
netic granule and vy is the angle between the external
magnetic field and the magnetic moment of each gran-
ule. The averaging is performed over granules consti-
tuting the optimum cluster. Thus, determination of the
magnetoresistance reduces to calculating the [dosy[
value averaged over the optimum cluster.

In the general case, however, the granulesin areal
system are nonspherical. Thisimpliesthat not all values
of the anglesy; are equiprobable and, hence, the time-

averaged value of cosy, for a nonspherical granuleis

determined by its anisotropy (magnetic and geometric)
and the external magnetic field [5]. For an ellipsoidal
granule possessing alarge (compared to the Bohr mag-
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Fig. 2. The plots of high-field magnetoresistance versus
effective magnetic induction (on a logarithmic scale) for a
Fe(Si0,); _x hanocomposite (x = 0.6) at various tempera-
tures.

neton) magnetic moment, this time-averaged value can
be calculated as

W, +W,
cosy; = I expD AkT E%
©)
x cosy,dQ/ I expD WAk_I_W'ﬂdQ

where dQ = siny,dy,dg is the solid angle; @ is the azi-
mutha angle of the magnetic moment of agranule (cosgp=
[cosB — cosy; cosB]/siny; sinf), 8 and B being the angles
between the large axis of the granule and the directions of
the magnetic moment and the external magnetic field,

respectively; W, = (L/2)VI §§n29 is the magnetic anisot-
ropy energy not depending explicitly on the magnetic
field strength; W = - VBcosy; is the Zeeman energy
depending only on the y; value; and | is the saturation
magnetization of the granule materia. In a sufficiently
strong magnetic field, [Wg| > W, and the above expres-
sion simplifiesto

cosy,; = cothh—1/h=L(h), 4

where h = | VB/KT. Thisrelationship correspondsto the
well-known Langevin model.

If the optimum cluster were composed of spherical
granules possessing the optimum size a,, the volume
Vin formula (4) would be the same for all granules:

V =V = (4103) @, (T) O T3, In that case, [Gosy(E

cosy; = L(hyy), Where hyy = 1BV,,/KT O T83, Evi-
dently, the temperature dependence of the magnetic
moment (proportional to [cosyL)lof the optimum cluster
even in thisidealized case is not described by the Lan-
gevin model, according to whichh O U/T.
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Fig. 3. The plots of magnetoresistance versus magnetic field
strength for a model granulated ferromagnetic metal com-
posite with nonspherical granules of elongated (solid
curves, xq = 0) and oblate (dashed curves, X, = 1) shapescal-
culated using various distribution functions fA2): (1) lin-
early increasing; (2) homogeneous (constant); (3) linearly
decreasing.

In a system composed of nonspherical (ellipsoidal)
granules, the situation iseven more complicated. Here, the
optimum granule size is determined by two factors [3]:
(i) the concentration of charged granules depends on their
capacitance C (for spherical granules, the latter quan-
tity coincides with the sphere radius) and (ii) the aver-
age (tunneling) distance between granules possessing
the same C depends on their concentration. Granules
shaped as the ellipsoid of revolution possess two char-
acteristic dimensions—a and b, representing the
lengths of the long and short axes of the dlipsoid,
respectively. Which of the two dimensions is more
essential for the problem under consideration? As is
known, the capacitance of an ellipsoidal granule with a
large a value isweakly dependent on the smaller (trans-
verse) size b. For such an elongated ellipsoid of revolu-
tion,

@-p)"
~ arccosh(a/b)  In(2alb)’

whereas for the oblate ellipsoid,

(az _ b2)112
arccos(a/b)’

which implies that 2/t < Cla < 1 [6]. Therefore, the
only significant dimension of ellipsoidal granulesisthe
greater axis length: al granules with the a value close
to a,, are optimum. Thus, the optimal cluster is com-
posed of granules with the volumes falling within the

interval Vi < V < Vi, Where Vi = (4103) a3y, , Viin =

(Brin/8o)*Vop (for elongated ellipsoids) or Vi, =
(Brmin/@gp) Vopt (for oblate ellipsoids), and byi/agy is the
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minimum (for a given nanocomposite) value of the
ratio of characteristic dimensions describing maximum
nonsphericity (elongation or flatness) of the granules.
For byy/ag,: ~ 0.1, the optimum cluster may include
granules with the volumes differing up to approxi-
mately 100 times (!). In this case, naturally, [cosy[#

cosy, and the averaging have to be performed over all
granules of the optimum cluster.

Let f(b) be the function of distribution of the short
axis length in a system composed of nonspherical
(ellipsoidal) granules and x, be the volume fraction of
such elongated granules. In this case,

b= agy
[tosyll=
A

O b’ O
H1-x)L P22, o
0 (B U

min

2
+ 3oL 2L A (b)db = F(hy),
(B UO
) (5)
F(hg) = j[(l—xo)L(hoptzz)

Znin

+X%oL(hon2) ] f,(2)dz,

wheref,(z) isafunction describing distribution of the
granules with respect to the parameter z = b/a,y
(0 <X< 11 Zyin = bmin/aopt)-

Thefunction f(2) entering into Egs. (5) most proba
bly depends on the method of nanocomposite synthe-
sis. Thisisequally valid for therelative fractions of pro-
late and oblate granules described by the parameter x,.
In principle, these characteristics can be obtained by
electron-microscopic investigation of each particular
system. However, the results of calculations presented
below show that, qualitatively, a relationship between
the resistance and the magnetic field strength depends
neither on selecting the distribution function f,(z) nor
on the parameters z,,, (zin << 1) and x,. For thisreason,
we will consider a simple approximation offered by a
system containing only elongated granules (X, = 0) pos-
sessing a homogeneous distribution function (f(2) =
const). This means that elongated ellipsoidal granules
of any shape, from spherical (z=1) to needle-like (z=0),
are equiprobable in the system. The calculations were
conducted for the case of z,;, = 0.1.

The magnetoresistance of this model system cal cu-
lated using Egs. (5) is presented in Fig. 3 (solid curve 2).
As is seen, the sample resistance variation in a broad
range of the magnetic field strength (5 < hy, < 50) is
described by alogarithmic function. The results of our
calculations show that the character of the magnetore-
sistance behavior is qualitatively the same for various
f(2) functions and x, values, which affect only the
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range of the magnetic field strength where the plots are
quasilogarithmic.

The characteristic effective field strength in the
range where the magnetoresi stance exhibits a quasiloga
rithmic behavior is hy, ~ 20 (see Fig. 3, solid curve 2 for
the homogeneous distribution function f,(2)). Comparing
this value to the effective induction B/T = 3 x 102 T/K,
corresponding to the experimental logarithmic field
dependence of the sample resistance in the temperature
interval T ~ 100-250 K (Fig. 2), we can estimate the
optimal granule size 2a,, ~ 20 nm (for the saturation
magnetization of Fe granules assumed to be equal to
that of bulk iron, I;= 0.2 T). This estimate agrees with
the data of electron-microscopic investigation of the
nanocomposites studied.

Let us consider the temperature variation of the
magnetoresistance in theregion of the quasilogarithmic
field dependence. Within the framework of the model
employed, the only reason for the temperature effect is
achangein the long axis length of granulesin the opti-
mum cluster: according to formula (1), ag(T) 0 T,
This implies that the magnetoresistance depends only
on the combination of parameters determining the char-
acteristic field: h,y, 0 B/T#2. In other words, the model
predicts a parametric dependence of the magnetoresis-
tance of the type AR/R = AR(B/T®3)/R, whereby any
AR/R value plotted as the function of B/T#3 must fit to
the single master curve. Represented in the correspond-
ing format (see Fig. 4), the experimental data confirm
this conclusion.

We have demonstrated that the model of nanocom-
posite with nonspherical granules of variable shape
suggests a quasilogarithmic behavior of the magnetore-
sistance in sufficiently strong magnetic fields. This is
obvioudly related to the large scatter of the volumes of
granules entering into the optimum cluster. The magne-
toresistance saturates together with the magnetization
of this cluster; however, as the field strength increases,
more and more small-size granules contribute to the
magnetization. This gradual involvement of new gran-
ules leadsto aslow (close to logarithmic) saturation of
the magnetization and, hence, of the magnetoresis-
tance.

Thus, the proposed model of nonspherical granules
provides for a qualitatively correct description of

! According to formula (1), agy(T) O T2 and, hence, the opti-
mum granule size at T = 4.2 K is 2a5,(4.2 K) ~ 100 nm. How-

ever, no such large granules were observed in rea systems. This
discrepancy indicates that the simple model is inapplicable at
very low temperatures.
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Fig. 4. The parametric plots of high-field magnetoresistance
of aFe,(Si0,)4 _ nanocomposite (x = 0.6).

experimental data on the magnetoresistance of agranu-
lated ferromagnetic metal nanocomposite Fe (SiO,); _,
in strong magnetic fields.
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Abstract—The electronic structure and the magnetic properties of the MnB, and CrB, compounds with hex-
agonal AlB,-type lattices were studied. The problem was treated in terms of the generalized Hubbard model
with an infinite el ectron-electron repul sion energy in the same atom. Equations for spin magnetic susceptibility
were derived and used to determine the conditions of ferromagnetic instability and construct the phase diagram
of the existence of ferromagnetic ordering. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The experimental studies of MeB, metal diborides
showed magnetic susceptibility to increase in the series
of 3d trangtion metals (Me =Ti, V, and Cr) [1]. The sus-
ceptibility of CrB, is an order of magnitude higher than
that of dl paramagnetic Group IV-VI metal diborides.

Asiron, cobalt, and nickel diborides cannot be synthe-
sized, MnB, isthe only ferromagnetic diboride with alow
trangition temperature (gpproximately 143-157 K) and a
low saturation magnetic moment of about 0.19-0.25 uB.

The electrical and magnetic properties of layered tran-
stion metal diborides with AIB,-type structures are char-
acterized by the presence of strongly split off (2xy, X2 —y?)
d states. These states are collectivized through boron
ions, which are in degenerate p,, py states.

The electronic state of the CrB, and MnB, com-
plexesis close to half-filled for both Cr* and Mn?* cat-
ions (3d°) and B~ anions (25°2p?).

Generally, the condition of electrical neutrality writ-
ten in terms of the mean occupation numbers of d (ny)
and p (n) €lectrons for the compounds under study
(MnB, and CrB,) hasthe form

ng+2n, = 8 for CrB,, !

ng+2n, = 9 for MnB,, @)
where ny and n, arethe numbers of d and p electrons per
cell, seeFig. 1.

According to the band cal culations performed for CrB,
[1], the charge of chromium cations equals 0.7, which,
according to (1), correspondsto ng = 5.3, n, = 1.35. It fol-
lows that, generdly, 5 < ny < 6, the (32 —r?) two-electron
chromium shell isincompletely occupied, and 1 <n, < 3/2.

In spite of the absence of calculations on MnB,, it is
natural to assume that the charge of Mn cations also does

not exceed one. Us ng the electrical neutraity condition,
we as previoudy obtain 1<n, <3/2and 6 <ny< 7.

L Asthe electronegativities of Cr (1.6) and Mn (1.5) differ insignif-
icantly, this assumption conforms to the Pauling electrical neu-
trality principle.

Because of hexagona symmetry of CrB,, the chro-
mium cation should have acompletely occupied (xz, yz)
shell and anincompletely occupied two-electron (322 —r?)
shell.

The four-electron (2xy, x? —y?) shell of the manga-
nese cation in MnB, only begins to be occupied,
whereas all the other shells are completely occupied.

In this work, the problem of ferromagnetism of
MnB, is studied on the assumption of a strong interac-
tion between electrons of the same atom. The corre-
sponding matrix elements, which are also called the
Hubbard energy, for chromium, manganese, and boron
(14, 15, and 8 eV, respectively) exceed the energy of
electron transfer to neighboring atoms and are hereafter
considered infinite.

We will show that, when the lower Hubbard elec-
tronic subband isfilled (for manganese e el ectrons), an
increase in the number of electrons causes an increase
in the total number of one-particle spin states, which
corresponds to a paramagnetic (positive) correction to
magnetic susceptibility.

However, if filling of the upper Hubbard subband
occurs[for the (322 —r?) chromium electrong], an increase

N

6
5
FINS
3 b
2
a
1
0 1 23 4567 8 910

ng

Fig. 1. Electrical neutrality lines in (ng, ny) coordinates:
(8) ng +2n, =8for CrB, and (b) ny + 2n, = "0 for MnB..
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in the number of electrons results in an increase in the
number of two-particle states with zero spin, which
gives an antiferromagnetic contribution to magnetic
susceptibility.

The corresponding Born scattering amplitudes cal-
culated on the Fermi surface have opposite signs, and
the spin part of magnetic susceptibility is infinite for
MnB, at T = 0, whereas CrB, remains paramagnetic at
all temperatures.

Magnetic susceptibility calculations are performed by
differentiating the equation of state written at the level of
the zero-loop approximation (Hubbard | approximation)
and the one-loop approximation for manganese d elec-
trons.

2. THE ELECTRONIC STRUCTURE
AT ZERO MAGNETIC FIELD

The spectrum of elementary excitations is found
using the generalized Hubbard-Emery model [2, 3],
which takes into account various electron jump inte-
grals between boron anions nearest to each other t®
and between nearest neighbor boron anions and manga-
nese cationst,

H = _Z ’p\t, U(r) bv', c(rl)tg?\)},(r, r')
— Z{ a;,c(r) bv,c(r l)tc, Jfr,r)+H.c} 2)

+ 3 &Pl o) Puo(r) + Y 2atho(r)cho(r).

Here, dio(r), Py o(r) and dio(r), P, o) are the
operators of creation and annihilation of d and p elec-
trons, respectively.

In chromium, the 322 (2xy, x> —y?)—r? shell is occu-
pied, and the A index therefore has only one value. In
MnB,, indices A take on two values corresponding to
two degenerate (2xy, X2 — y?) states of cations. In both
compounds, indices v take on two values correspond-
ing to two degenerate (X, y) boron states.

In AIB,-type lattices, the distance between the near-
est metal cations is two times larger than the distance
between the nearest boron anions, which, in turn,
equals the metal-boron—metal distance. For this rea-
son, cation—cation electron jJumps will not be taken into
account (e.g., see monograph [1]).

If the axes are selected as shown in Fig. 2, itiseasy to
caculate al four matrix elements of the jump operator.

For MnB, (and CrB,), we use the simplest model
corresponding to the arrangement of energy levels at

the " point instead of exact nondegenerate six (or five)
branches.
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For MnB,, we have two doubly degenerate hybrid
and one doubly degenerate nonhybrid subband of p
electrons,

+ v. 1
& = Eié“/(r"‘ V) +Agpfgeft)* — i,
€, t+€
=5 Ep:_VTer%_u’ X

2
r=e,-&, v =g,f,.
Electron jumps between transition element cations are
not taken into account, because the distance between the
nearest cations (3.02 A) noticeably exceeds the minimum
anion-cation distance (2.31 A), which, in turn, exceeds
the distance between boron anions (1.74 A).

It can be shown that the presence of a narrow loga-
rithmic singularity in the density of states for the factor

T, = g[g + cosa + cosP + cos(a + [3)]
insgnificantly changes the phase diagram in its separate
points. In the remaining broad region of energy, variable
T, changes, the corresponding density of states is amost
constant, and, physically, the calculations given below are
performed for the plane band model.

The dependence on transverse momentum p, is
inherent in the definition of excitation energy, which
contains xcos*(p,/2) factors, and the final equation for
the density of states has the form

1 /2
p(e) = %de.[daé(s—xcosza) = % -1-5—8 4
0 0

It follows that, at low energies, the dendity of states
corresponds to one-dimensiona motion, because p =

1/./ . At high energies, the density of states corresponds
to athree-dimensiond isotropic spectrum:; p= /1 —¢.

Motion over boron layersis purely two-dimensional
in character. The corresponding density of states has a
narrow van Hove peak.

3. EQUATIONS OF STATE

Let us define the A*p)normal coordinates used to
express the diagona elements of the one-particle vir-
tual Green function,

Ap) = 3

r+v

} )
Jr+v)2+ 4f f g7 cos’(p,/2)W, .

X [1+ sgnA
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The equations of state written in these coordinates in
the n, . < 1 region have the form

n, = 2f,
xéz[m(&(mw T A, pIne(E . pz»}% ©
p pA=1%
_ a¢ U () A N
ne=4f0 > A7 PINE (P D (1)
P A= % D
Here, f, , = 1-3n /4.

As has been mentioned, the most interesting region
is that where the charge of Mn cations does not exceed
one. According to electrical neutrality equation (1), we
should then consider theregion 1 <n,<2,6<ny<7or
0<ng<1,wheren,=ny—6.

Accordingly, let us write the equations of state for
theregion0<n.<lorl<n,<2

n, = 1+2g5f,

©
E% EE)+ Y AP PINE . pz))}E,

pyA =%

no=atd Y AEpEe P ©
0

L, PA =t
where f, = (2 + n,)/12, and the excitation energy and
normal coordinates depend on the gﬁ f , product, where

gf, = 3/2 is the sum of the squares of the genealogical
coefficients

Ap) = 3

r+v

Jr+v)2+ 4g,2)f f4c08’(p,/2)W,
= 202 [3+25,

pr fpﬂ+coscpx V3p

O~ "2 [
2 2 2 (11)

X[l + sgnA } (10)

S, = cosp,+ oS

2
v = fpgp|tp|§-

A _ Vv
&P p) =35

>0 (12

E(p) = _gifptp%qp) +€p'

+$nAJHJD +gpf f4CoS Epﬂwp—u,
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For CrB,, we must consider filling of the same p, ,,
shell of boron electrons. Using the notation n, = ny — 4
for the number of electronsin the open (322 —r?) chro-
mium shell, we can write for the 1 < n, < 2 region of
interest:

n=z=1+2f,
13
x0 AV, P o

Uy pr=s 0

n, = 1+29,2,fp
14
353 [np(z(lo))+ T A pNeEe, pz))}%( )

0 p PpA=2 a

wheref, is everywhere replaced by f, = n,/2.

4. FERROMAGNETIC INSTABILITY

The conditions of arising of ferromagnetic instabil-
ity are easy to obtain in the one-loop approximation if
it is taken into account that, in the region 0 < n, < 1,
one-particle occupation numbers no enter into the

equations of state through the end multiplier, which
equals the sum of the mean occupation numbers for
empty and one-particle states,

fo = ng+ng, (15)

= 5f2.
In exactly the same way, one-particle occupation

numbers n; intheregion 1< n,< 2 enter into the equa-

tions of state through the end multiplier, whichis equal
to the sum of the mean occupation numbers of two-par-
ticle states with a zero total spin projection,

and therefore dng

f7 = n,+n? (16)

=_5f°.
Note also that, in theregion 1 < N, <2, two-particle
occupation numbers n;, enter into the equations of state

and therefore dn;

through the g2 f2 + g5f2 combinations of end multi-

pliers. Two end multipliers f7 , are expressed through

the sums of one-particle and two-particle states,
f=nl+n’, f5=ny+n°. (17)

Hence the variation of two-particle occupation num-

bersis given by

3nn = 0.

3n° = 5f%+5f, (18)
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For MnB,, these relations lead to the equations

dnd = 5f% = KedfS
25 c0 e (19)
+ feDeyngkéfk—feDoéH,
k
oy = § ofy
2
(20)
= kng§5f§+gpfpopeéf —g5f,DEBH.
k
Here, we use the convenient notation
Ke = Ko+ foDs Kp = K, +gaf,D,,
2 _ 2 3 (21)
% =D 6=5

k

The Dy, Dy, ¢ and Dy, D , coefficients are the variationa
derivatives of Ko and K., which are defined bel ow.

The missing equation, which relates the variations of
one-particle and two-particle p states, can be obtained
according to the definition of the diagona components of
the one-particle Green function written with the use of
auxiliary coefficients b, satisfying the orthogonaity con-
dition g,b, + g,b, = 0.

In the zero-loop approximation, the sought equation
has the form (see[4, 5])
b,g;0n; = K(g1b;8f7 +g,0,0f7). (22)
Using the orthogonality conditions and relation (22),
we find that the variations of the end multipliers are
related as
3fI(1-K,) +3f3(1+K,) = 0. (23)
Equations (19), (20), (22), and (23) alow three indepen-
dent variations of the end multipliers to be determined.
The condition of solvability of this system of equations

at OH = 0 makes it possible to obtain the condition of
arising of ferromagnetic instability (n,< 1, 1 <n, < 2):

Ky(1-K)(1-Kg) = fK,(1-K,)D,

* 1,0,(1- KDy + Kig (24)

— 0%, %w K H(DyDe~Dy D p).
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Here, f, = 1/(3K, + 1), f, = U(4—K,), and g5 = 3/2. At
T=0,whenD,D,-D,, .D , =0, wecanasofind the cor-
rection corresponding to the one-loop approximation for
d electrons:

Kp(l_Kp)(l_Ke)(l_Se) = fer(l_Kp)De

(29)
+gof (1-KJ) —+K%D
where
_oz 1
S = o, f
< EYp)| 1+ son(r + v) == |
O A/1+sy2 (26)
——sgn(r+ v)sJ'—X P Ex
(1+sx) O

Here, p(y) = (M) v/ 1 - y2 in the problem under consid-
eration.

Taking into account one-loop correctionsfor p elec-
trons leads to fairly cumbersome and partially cancel-
ing corrections, which will be ignored.

For CrB,with1<n,<2and 1<n,< 2, thecondition
for ferromagnetic instability has the form

KK{1-K,) = gof ,K,D %+KD

+f,K(1-K,)D, (27)
—f,g2f p%m@(D D,-D,,D, ).
Here,
Y AP PP p). (28)
Py P, A
1
Kp = é
0 , X , 0 (9
x Dz [nF(E (p)) + z A'(p, pPINe(E (P, pz))}m,
O P P, A O
5K 5K
D, = =, D,= e
v 6fv' P 2
o(g°fp) (30)
- 6l2<V Dy = oKy
3(gpf ) of,

wherev =eor z
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Table
Region o f, K No M R,
4-3n n 4K
p p
O<n,<1 1 7 an 173K 0 4
3 2+n, 4(n,—1) 2(2+K)) 1
L<mp<2 2 ¥ 2+n 4°K, 3 3
- 3(n,—-2 6(1+K
2<n,<3 3 6-np (np—2) ( ) 4 4
. 2 12 6-n, 3+K, 3
3n.—8 4(n_—3) 4(3-2K,)
p p _
S<mp<a ! 7 30,8 4-3K ! !
Region 9 f, n, r, R,
2-n, 2K,
0<n,<1 1 5 ry TR 0 2
n, 2 2
l<n,<2 1 > 2 o, 7°K, -1 1

The general conditions for the arising of ferromag-
netism can be found through variations of the end mul-
tipliersin the equations of state written in the Hubbard |
approximation,

N, = [ny] + Ry,

xmznp(a O+ Y AV e e e,

Ps P, A
n, = [n] +Rf,

32
xmz A(p, pINeE(p, pz))m. (32)

P, A

Here, R, , isthe degeneracy multiplicity of ([n, /] + 1)-
particle states, and f, , are the end multlpllers which
were determined for each integer interval and tabu-
lated.

The condition of the arising ferromagnetism for the
N, < 1 region can easily be obtained by simply differ-
entiating the equations of state.

At T = 0, the general equation for determining the
boundaries of the paramagnetic and ferromagnetic
phases has the form

KpKz(l_ Kp)(l_ Kz) - I—zKp(l_ Kp)(rz+ Kz)
~LK(1-K)(F,+K,) = 0,

Here, I', , aredimensionless amplitudes of scattering of

high-spin excitations calculated for each integer interval
of variations of mean occupaion numbers n, ,, L, =

(33)

p.z
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gpf pDp, and L, = f,D,. The amplitudes are listed in the
table, which aso contains the relation between the K, ,
coefficients and the mean occupation numbers (for elec-
trons, subscripts p in the table must be replaced by €).

Consider two cases.

(A)O0<n,<1,I,=0, andthed subsystem resonates
between unoccupied and one-particle states. The condi-
tion for the arising of ferromagnetism has the form

Kp(1-Ky)(1-K))

= £,D0,K,(1=K,) +gafDy(1—K)(Mp+K,). (
This equation was used in studying MnB, (where
1<n,<2,T,=1/3, andK, — K, <1).

(B) 1<n,<2,I,=-1, and the d subsystem reso-
nates between one-particle and two-particle states. The

condition for the arising of ferromagnetism then takes
the form

KpK(1-K,) = —=f,D,K,(1-K,)
+ 05 DK+ Kp).
This equation was applied to CrB,, where 1 <n, < 2.

34)

(35

5. PHASE DIAGRAM

The most general property of systems with infinite
Hubbard repulsion is a positive amplitude of scattering of
excitationswith opposite spin projectionsif the number of
excitations is small, which corresponds to a tendency to
ferromagnetism. For MnB,, thistendency manifestsitself
by positive D, and D,, values for filling both the lower
hybrid subband and the lower haf of the boron subband.
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Fig. 2. Separate fragments of the structure of MnB,. Solid
lines with arrows are jJump directions. Dashed lines are ele-
mentary translation vectors.

15 T T T T
(a)
1.4 C 1
1.3F -
1.2¢ A
1.1
z=1
1.0 ke .
0 02 04 0.6 0.8 1.0
ne

825

Fig. 3. Magnetic phase diagram a T = 0 and in the region of
small n,—1values. Ferromagnetic regionsare hatched, z=1is
the boundary at whichfilling of the p boron subband begins; A,
is the ferromagnetic region in the zero-loop approximation; Aq
isthe ferromagnetic region in the one-loop approximation; Bis
the ferromagnetic region; and C isthe electrical neutrality line.

0.4

0.6

0.8 1.0

Fig. 4. Magnetic phase diagram of MnB, at T = 0; C is the electrical neutrality line: (a) zero-loop approximation and (b) one-loop

approximation.

A comparison of the right-hand sides of (34) and (35)
shows that, in the regions where D, D,, and D, have the
same sign, thereisa substantial compensation for CrB,.

Direct calculations show that, exactly in the region
where the n, and n, occupation numbers are related by
the electrical neutrality condition 2n, + n, = 4, the D,
and D, coefficients are of the same order of magnitude
and Eq. (35) does not have solutions.

It follows that the CrB, compound remains para-
magnetic at all temperatures.

IntheAppendix, we, by way of illustration, consider
a particular case when the electron jump energy over

boron layers equals the electron jump energy between
the nearest boron and manganese layers; that is, t,=t.

At T =0, we will usethey = /e and s =
495 f2(r + v)? variables, where v = g3 f fyand r =
€, — &, instead of the g, and &, independent parameters.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

First consider theregion of energieswhere thelower
hybrid subband is filled, whereas the boron subband
remains unoccupied.

Figure 3 shows that, under these conditions, ferro-
magnetic ordering exists in a very narrow region of
deviations of the number of p electrons from unity

(region A,).

The D, value rapidly decreases as energy increases,
and the system remains paramagnetic (region A) until,
alongside filling of the lower subband, filling of the
boron subband begins (region B).

According to Fig. 4, the line of electrical neutrality
of MnB, intersects a fairly wide region of ferromag-
netic ordering, in which the lower hybrid and boron
subbands are occupied simultaneously. Taking into
account one-loop corrections broadens the possible
region of the existence of ferromagnetism, see Fig. 4b.

No. 5 2001



826

The ferromagnetic region obtained in the zero-loop
approximation and shown in Fig. 4acoversasubstantialy
smaller fraction of the phase diagram, but, in both cases,
the line of MnB, dectrical neutrality intersects the ferro-
magnetic region in its fairly extended part.

Figures 3 and 4 shown that the region of ferromag-

netic instability is situated in the region of asmall num-
ber of excitations for both p and e excitations.

TheMnB, electricd neutrality lineintersectstheferro-
magnetic part of the phase diagramin afairly wideregion,
which corresponds to smultaneous filling of the lower
hybrid and the broad boron p subband.

We therefore abtain a qualitative explanation of the
existence of ferromagnetism in MnB,, which is the only
ferromagnetic diboride.

6. CONCLUSIONS

In both CrB, and MnB,, p eectrons resonate between
one-particle (S = 1/2) and triplet two-particle (S = 1)
states. For thisreason, CrB, hasafairly substantial sus-
ceptibility, whereas MnB, is ferromagnetic in the whole
region of n, numbers for which the p— scattering ampli-
tudeis positive.

Asfar as hybrid p—d excitations are concerned, the
character of their interactions in MnB, is different in
principle from that in CrB,.

For MnB, in the region of small n, numbers, the
amplitude of scattering of hybrid excitationsispositive,
and, a smal n, and n,, the scattering amplitudes are
summed. Ferromagnetic ordering therefore exists in a
fairly wide region of n, and n variables, which intersects
the 2n, + n, = 3 electrical neutrdity line, see Fig. 4b.

In CrB,, in which the p subband and the upper half
of the Hubbard (3z2 — r?) subband are filled simulta-
neously, the scattering amplitude is negative at small
n, — 1 numbers. For this reason, substantial compensa-
tion of the total scattering amplitude occurs at small n,
and n,— 1, and the system remains paramagnetic in the
region of intersection with the 2n, + n, = 4 electrical
neutrality line.
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APPENDIX

Consider the special situation when jump integrals
over boron layers and jump integrals between manga-
nese and boron layers are equal in magnitude. Below,
these integrals are set equal to one.
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In this situation, v = gif,, and r is expressed
through s as

g2t ,f
r= —v+sgn(r+v)2 [Lople sp :,

sothat & = %tlrzvl 1+sy?—u, (AD
r
Ep = E—VZ_U

Parameter s introduced in place of energy differencer
varies from zero to infinity and actually determines the
splitting of subbands.

They and z values change from zero to one and are
determined by the position of the Fermi level within the
Brillouin zone.

CaseA: r>v, 0<s<0.68

Under these conditions, the lowest subband is &,
which is occupied independently of the higher boron p
subband.

AL If+v2—|r+v|J1+8/2 <pu<vi2—|r + V|2,
we have

1. +
Kp = é‘]s(y’ 1)1 Ke = ‘Js(y! 1)’

H= %—%Ir+v|A/1+sy2.

Here and throughout, the following notation is used:

(A.2)

1

[l
N1+ sxﬂ

2

=4/
p(x)—nl X

3D =3[P0
y

The coefficients in the condition of the appearance of
ferromagnetism are obtained by differentiating the
equation of state:

foDee = —SON(r +V)2I(, )

LY 1—y2[1+__59”. (r+v)} (A-3)
n J1+sy?
nir+v).
giprpp = ¥ (2T[_)‘J(y’ 1)
2 2
_ S9p fp N1-y
x{l sgn(r +v) - }+y > (A.4)

San(r + v)./sg; f }[1_sgn(r+v>}
JT(L=sgn(r +v)J1+sy?) J1+sy’

2001
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_ 1
>
<Bn( e vy ioyLe SUEY] A9
0 1+sy’

—sgn(r + v)sJ'(y, 1)}

In the case under consideration,

2 _ 3 =1 =1
% =3 h=7x 7 Ty

: XZA/l—x2

J'(y, 1) = J'(—]—--_—;;E;STZCIX
y

Theintegralsthat appear in these equations are reduced to
dliptical integrals, after which computer calculations can
be performed to determine the phase curve. We considered
zero-loop and one-loop (for d electrons) approximations,
see Fig. 4.

The hatched regionsin Fig. 3 are ferromagnetic order-
ing regions. The ferromagnetic region obtained in the
zero-loop approximation (A,) is situated within the A;
region whose boundary was calculated in the one-loop
approximation.

Note that the dectrica neutraity line intersects the A
region at high energies, at which ferromagnetic insta-
bility does not arise.

A2.1f r/2 — v < pu < /2, the broad nonhybrid p sub-
band is occupied. For this subband, the condition of fer-
romagnetism is satisfied, but the electrical neutrality
line does not intersect it.

(A.6)

CaseB: O0<r<yv, 068< s< 247
Under these conditions, the lowest subband is the

lower &, subband. Starting with a certain chemical
potential value, it is filled simultaneously with the
boron p band.

The upper edge of the boron subband is situated
above the top of the lower hybrid subband.

BL If v/I2—(r + v)J1+s/2 <p<r/2-v,thelower
hybrid subband is filled. The situation is indistinguish-
able from case Al. For this reason, the zero-loop
gpproximation gives anarrow region adjoining the K, = 0,
or n, = 1, line. This region is a continuation of the
region considered under Al.

In the one-loop approximation, the whole B1 region
isferromagnetic and the boundary of the ferromagnetic
region lies within region B2.

B2. 1frl2—v<u<vi2—|r + v|/2,the & and boron
p subbands are filled simultaneously,

1.- 1 +
Ky, = éJs(y, 1) +§Jp(z, 1), Kyg=JW1. (A7)
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They and zvariables are related to each other and to the
chemical potentia as

p = %_@ ll+sy2 = g_zv,
(A.8)

L—1+|r—A/1+sy2, 0<y<Vy.

- lld
2v 2 2v

An explicit dependence of z on y is found taking into
account the definitions

1

3@ 1) = [lpldx = 12

(A.9)

1.- 1 ~ 1-z
Ko = 330, D+ 33,2 D) = Ko+ 22

Combining this equation with the condition of the
equality of the chemical potentials and the condition
v =f, yields the equation

(1+2)? = %—;(7—2}2p+z)(A/1+sy2+1)2 (A.10)

for determining z. Using (A.12), we abtain

z=-1+B+./B(B+12-4K,),

(JL+syP+1)

where B = 6s(1+3Ky) '

(A.11)

~ 1 _
Kp = éJs(y, 1);

the z value should be positive and should not exceed
one.

In the (s, y) variables, the required boundaries can
be determined by (A.8) with z set equal to O or 1. The
conditions z= 1 and 0O correspond to the beginning and
end of boron subband filling, respectively.

The coefficients present in the condition of the appear-
ance of ferromagnetism are found by differentiating the
equation of state,

foDee = —Sgn(r +V)2J(y, 1)

+1‘ 1-— 1+w ,
= yz[ T+sy2}

2 _z
gpprpp =2

2
+sgn(r+ V)30, 1)[1—sgn<r +) ngip}
+sz1—y2[1_sgn(r )] (A-12)
21(1+2) w
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-1
S = mif,
x%sgn(r+v)y [l_y2|:l+wi|
0 1+sy2

—sgn(r + v)sJ(y, 1)}-

These coefficients should be substituted into the condi-
tion of ferromagnetism, which allows the phase curve to
be determined. The results of cal culations show that the
ferromagnetic phase boundary in both zero- and one-
loop approximations occurs inside the BZ region.

CaseC: —v<r<0, 24>s> 247

Under these conditions, the lower &, band is the

lowest. Starting with a certain chemical potential value,
its filling, however, occurs simultaneously with filling
of the boron p band.

The bottom edge of the boron p subband is situated
above the energy minimum of the lower &, subband.

Thetop edge of the boron p subband is stuated below
the top of the lower & subband.

CLIfvI2—(r+Vv)J1+s/2<u<r/2-v,thelower
hybrid subband is occupied,

1. +
Kp = EJs(y- 1)1 Kd = ‘Js(yl 1)1

p= - sy

2

The last condition relates y to the chemical potential.
The y parameter varies in a limited region, namely,
yx <Yy <1, where y.is determined from the condition

(A.13)

VI2—r + v|J1+syivi2=r/2-v.

Case C1 only differsfrom Al and B1 in that the nar-
row ferromagnetic region in the ny and n,, variables now
ends at the (0, 0) point, which correspondsto s= 24, see
Fig. 3.

The curve corresponding to the condition z= 1 (at
z =1, filling of the lower hybrid subband continues and
that of the boron subband begins) is shown in Fig. 3.
Withinthisregion, the condition of ferromagnetic instabil-
ity is satisfied even in the zero-loop approximation.

Note that the ferromagnetic region boundary inter-
sects the boundary at which filling of the boron p sub-
band begins; within this subband, there exists ferromag-
netic ordering caused by the boron—boron exchange scat-
tering amplitude.

In the one-loop approximation, the whole C1 region
remains ferromagnetic.
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C21frl2—v<u<vi2—|r +v|2, the & and boronp
subbands are filled simultaneously,

1.- 1 .
Kp = é\]s(yy 1) + ZJP(Z, 1), Kd = \]S(y, 1) (A14)

All dependences then coincide with those for case B2,
see Egs. (A.7)—(A.11).
In the one-loop approximation, a part of the bound-

ary phase curve for case C2 intersectsthe MnB,, el ectri-
cal neutrality line.
An analysis of Figs. 3 and 4 leads us to conclude

that, under the corresponding conditions, the electrical
neutrality line passes through the ferromagnetic region.

The ferromagnetic region aobtained in the zero-loop
approximation lies compl etely within the ferromagnetic
region of the one-loop approximation.

CaseD: -v<r<0, 24<s<+w
The broad p subband is the lowest; this subband is
filled independently of hybrid subbands.
DL If—v+r2<p<v/2—(r+v).J/1+s/2,wehave

r

1
K, = QJP(Z’ 1), Kg=0, p=z-2zv. (A.15)

N

The last condition relates z to the chemical potential.

The boron subband is only filled. It follows that
Ko = 0; that is, ny = 6, and the number of p electrons
changes from 1 to some finite value. The condition of
ferromagnetism is satisfied even at a small number of
excitations. Atn, =1, all p electronsareinthe state with
spin 1/2, and when n, increases, new stateswith spin 1 are
formed. It follows that the system tends to ferromag-
netic ordering from the outset.

Incase D1, Kg = Deg = Dy = Dpe = 0,

1 z
Ky = 5(1-2), g;f,Dyp =

P
This leads us to conclude that ferromagnetic instability
existsforal 1>2z>0.47, or 0 < K,<0.27.

D2.I1f vi2—(r + v)I2<u<r/2,the & and boronp
subbands are filled simultaneously,

(A.16)

1. 1 .
Ky = 500, D+ 33,2 1), K¢ = 3y, 1). (A1)

This and all the other equations coincide with (A.7)—
(A.12).

In the zero-loop approximation, the curve of the
appearance of ferromagnetism begins at s equal to
infinity and y = 1, which corresponds to Ky = 0 and
K, = 0.21, see Fig. 4a, where the whole zero-loop
approximation curve is shown.
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CaseE: b<—v, r<—v, s>21/4=525
The lowest subband is the broad p subband, which
isfilled independently of hybrid subbands.
EL If —v+r/2<pu<v/i2+(r+v).J/1+s/2, wehave

r

1
K, = QJP(Z’ 1), Kg=0, p=z-2zv. (A.18)

N

The last condition relates z to the chemical potential.

Case Elisindistinguishablefrom D1, that is, ny =0,
0.21 < n, <1/ 2, and the ferromagnetic region lies
within the 0.21 < n, < 0.27 narrow interval.

E2. 1f vi2+|r + v|2<pu<r/2, the & and boron p
subbands are filled simultaneously,

1.+ 1 _
Kp = é\]s(ya 1) + éJp(Z, l), Kd = Js(y’ 1) (Alg)

Here, the lower and the broad p subbands overlap. The
zand y parameters are related to each other as

M= %—@A/l+sy2 = %—vz.

The last condition relates the y and z values to the
chemical potential. An explicit dependence of zon y
can be found taking into account the definitions

1

3@ D) = [[p,(]dx = 1-2

(A.20)

(A.21)
1.+ 1 ~ 11—z
Kp = éJS(y’ l) + éJp(z, 1) = Kp+ T
Combining these equations with the condition of the

equality of the chemical potentials and the v = f, condi-
tion, we obtain the equation

(1+2)? = %—2(7-2|2p+z)(A/1+sy2—1)2 (A.22)

for determining z. This equation yields

z= —1+C+.JC(C+12-4K,),

1+s-1)°

where C = 65(1+3K,)

(A.23)

/ 1.+
Ko = 330, D.
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The z value should be positive and should not exceed
unity. In this region, no ferromagnetic instability is
observed under the conditions studied.

At thelevel of the zero-loop approximation, thereis
no ferromagnetic instability in thisregion.

The phase curve obtained in the one-loop approxima-
tion begins a the same parameter values as in case D2,
thatis,s=wandy=1, or K;=0and Kp=0.21. Further,
the phase curve deviates from the line corresponding to
s = oo and then intersects thisline at y = 0.91, or at the
Kq=0.02, K, =0.32 point.

The whole one-loop approximation curve is shown
in Fig. 4b.

CaseF: 0<s<21/4, r<—v
The lowest subband is the broad p subband, which
isfilled independently of the hybrid subbands.
F1.If —v +r/2<p<r/2, we have

1 r
K, = EJP(Z, 1), Ky=0, p= 572V (A.24)

The last condition relates z to the chemical potential
value.

CaseFlisindistinguishablefromD1: ny=0,0.21 <
n, < 1/2, and the ferromagnetic region liesin the narrow
0.21<n,<0.27 interval.

F21f VI2+ (r + V)J1+ sy 12 < pvi2 + (r + v)/2,
the lower hybrid subband isfilled.

It can be shown that, under these conditions, the sys-
tem remains paramagnetic at all temperatures and chemi-
ca potential values.
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Abstract—Thefield and angular dependence of the magnetic linear birefringence (MLB) in noncentrosymmet-
ric cubic (symmetry class Ty) rare-earth (RE) semiconductors y-Ln,S; (Ln = Dy, Pr3*, Gd®*, La®") was stud-
ied. Thefield dependence of the MLB in Dy,S; and Pr,S; isacombination of two contributions, quadratic and linear
with respect to the magnetic induction B, both possessing a strong anisotropy. The quadratic birefringence related to
the Cotton—Mouton effect manifestations at a wavelength of A = 633 nm is characterized in Dy,S; by the
value of B = 1.5 deg/(cm T?) and the anisotropy parameter a=-0.7 and in Pr,S;, by B = 0.2 deg/(cm T?) and a = 2.
The non-reciprocal MLB caused by the magnetic-field-induced spatial dispersion reaches y = 0.55 and
0.71 deg/(cm T) in Dy,S; and Pr,S;, respectively. The relationship between parameters A and g of the v ten-
sor describing contributions of the Bk; type to the dielectric tensor g;;(w, k, B) isA=2gin Dy,S; (aswell asin
boracite crystals containing 3d ions), which is characteristic of the second-order magnetoelectric permittivity
manifestations in the optical frequency range. In Pr,S;, the relationship A = 3.3g is evidence of manifestations
of the additional quadrupole mechanism. A comparison of the Cotton—M outon and Faraday effectsin Ln,S; and
in magnetic semiconductors Cd; _,Mn,Te shows a principa difference between these systems and indicates
that both phenomenain Ln,S; are determined by the optical transitionsin RE ions rather than by the interband
or exciton transitions. Thisis also confirmed by the comparison of the Cotton—M outon effect manifestationsin
Ln,S;, in dielectric Dy;GasO,, and Dy;AlsO;, single crystal cubic garnets, and in Dy,0O5. An analysis of the
non-reciprocal MLB mechanisms related to manifestations of the local interconfiguration optical transitions
4fN —~ 4fN-15d in RE ions showed that this phenomenon, in contrast to the Cotton-Mouton and Faraday
effects, is caused by the presence of odd components of the crystal field acting upon the RE ion in Ln,S;. In
Gd,S;, aswell asin diamagnetic Ln,S;, neither the Cotton—M outon effect nor the non-reciprocal MLB are man-

ifested at T = 294 K, which is explained by different microscopic mechanisms of the magnetooptical phenom-
enafor ionsin the S-state and diamagnetic ions, on the one hand, and RE ions with nonzero orbital moment, on
the other hand. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Rare-earth (RE) sesquisulfides of the Ln,S; system,
where Ln®* is atrivalent RE ion, may crystallize in a
cubic noncentrosymmetric lattice of the ThyP, type
(symmetry class T,) and represent wide-bandgap mag-
netic semiconductors with a band gap of E; ~ 2.5-3 eV.

These materids possess a high resigtivity (p ~ 10° Q cm)
and abroad transparency window in the visible spectral
range. A detailed description of many physical proper-
ties of sesquisulfides can be found in reviews[1, 2]. The
presence of trivalent RE ions with unfilled 4f electron
shellsin these compounds accountsfor their paramagnetic
properties and for arelatively large magnitude of thelin-
ear magnetooptical effects.

To our knowledge, only linear (with respect to the
magnetic field strength) Faraday and Kerr effects in
y-Ln,S; crystals were studied to date [3-6]. It should
be noted that the linear magnetic Faraday effect is

described by athird-rank axial tensor a;;, possessing a
singe independent parameter in cubic crystals. Thiscir-
cumstance accounts for the isotropic character of this
phenomenon, whereby the magnitude of the Faraday
effect is independent of the direction of light propaga-
tion relative to the crystallographic axes.

As is well known, the crystals containing RE ions
may exhibit a large quadratic Cotton—-Mouton effect
(magnetic birefringence or double refraction), which is
described by afourth-rank tensor 3, [7]. In cubic crystal's
bel onging to the symmetry classes O, or Ty, the [3;; tensor
possesses three independent parameters. For this reason,
the Cotton—-Mouton (CM) effect can be anisotropic,
whereby the magnetic birefringence depends on the
direction of light propagation and on the magnetic field
orientation relative to the crystallographic axes.

A phenomenol ogical description of the CM effectin
cubic magnetic crystals was reported in [7, 8]. How-

1063-7761/01/9205-0830$21.00 © 2001 MAIK “Nauka/Interperiodica’



ANISOTROPY OF THE LINEAR AND QUADRATIC MAGNETIC BIREFRINGENCE

ever, this description is also valid in RE paramagnets
exposed to a magnetic field, provided sufficiently high
temperatures and low field strengths. A microscopic
theory of the CM effect related to the optical transitions
in RE ions was developed in [9]. Experimental investi-
gations of the CM effect in cubic paramagnets were
conducted for noncentrosymmetric RE gallates and
aluminates with a garnet structure (symmetry class Oy,)
[10-13]. To our knowledge, no experimental investiga-
tions of the CM effect in RE sesguisulfides were
reported.

In noncentrosymmetric crystals, in contrast to the
structureswith the center of inversion, the magneticlin-
ear birefringence (MLB) can be determined both by the
reciprocal CM effect and by the non-reciprocal mag-
netic birefringence (NMB) related to a magnetic-field-
induced spatial dispersion [14, 15]. The latter effect is
described by terms of the type dg; = v;;B/k; in the
dielectric tensor expansion, where B is the magnetic
induction and k is the light wavevector. In contrast to
the CM effect, the NMB magnitude is described by an
odd linear function of the magnetic induction.
A phenomenological analysis of the NMB in crystals
of the T4 symmetry was reported in [16, 17]. The phe-
nomenon was experimentally studied in the cubic crys-
tals of magnetic semiconductors (CdMnTe and
ZnMnTe) [16-18], semiconductors (CdTe, ZnTe,
GaAs) [19-21], and dielectrics (boracites R;B,0;3X,
R =Co?, Cu?, Ni%*; X = Br-, IN) [21, 22]. The results
of these investigations showed that, in both semicon-
ductors and magnetic semiconductors, the CM and
NMB effects are determined primarily by the interband
and exciton transitions, while the same effects in
dielectric R;B,0,5X are determined by the local elec-
tron transitions between states of the unfilled 3d elec-
tron shell of the R?* ion. In RE compounds, the non-
reciprocal birefringence effect has not been observed to
the present.

Since the RE sesquisulfides are, on the one hand,
semiconductors with the absorption edge determined
by the interband transitions and, on the other hand,
compounds exhibiting intense loca transitions in RE
ions and strong linear magnetooptical effects, we may
expect manifestations of both the NMB and CM effects
in these materials. It would be of interest to compare
the Faraday effect and the MLB manifestations in RE
semiconductors of the Ln,S; system to the behavior of
noncentrosymmetric magnetic semiconductors of the
Cd, _,Mn,Tetype and dielectric R;B,O,5X crystals(the
magnetic and magnetooptical properties of which are
determined by 3d ions) and to the properties of cen-
trosymmetric dielectric RE garnets.

The purpose of this work was to study experimen-
tally the magnetic linear birefringence in cubic noncen-
trosymmetric single crystals of y-Ln,S; with various
REions (Ln = Dy®, Pr¥*, Gd*, La®*). We compared the
magnitudes of the linear and quadratic magnetooptical
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effects in these RE compounds to those in magnetic
semiconductors of the Cd, _,Mn,Te type and in dielec-
tric crystals (boracites and paramagnetic RE garnets).
We aso aimed at elucidating the microscopic mecha-
nisms responsible for the manifestations of magnetic-
field-induced spatia dispersion in the transparency
range of RE sulfides.

2. EXPERIMENTAL METHODS
AND SAMPLE PREPARATION

The non-reciprocal magnetic birefringence and the
CM effect were studied as described elsewhere [16,
17]. The method consists in measuring the rotation
angle a of the polarization plane of the light passed
through a crystal, placed in an external magnetic field
with the induction B, and a quarter-wave (A/4) plate.
Thedirection of light propagation was perpendicular to
the magnetic induction vector B, which was verified by
a zero Faraday effect measured using the same optical
scheme without the quarter-wave plate. The measure-
ments were performed in two geometries: E || B (with
theincident light polarized so that the E vector was par-

allel to B) and EB = 45° (with the E vector making an
angle of 45° with the magnetic field direction). In both
geometries, the light polarization direction was parallel
to the principal axisof theA/4 plate. In order to increase
the sensitivity of o measurements, we used the Faraday
polarization modulator and alock-in detection scheme.
The light source was a helium—neon laser (LGN-111)
with an output power of up to 30 m\W, operating at a
wavelength of A =633 nm. A crystal placed into the gap
of an electric magnet could be rotated about the axis
paralel to the light wavevector k with an accuracy of
approximately 0.1°.

In the absence of the magnetic field, the spontane-
ous hirefringence related to the presence of internal
stresses or defects produces an initia rotation of the
polarization plane by an angle a4(0) depending on the
crystal azimuth 8. The angular dependence of this ini-
tial rotation, ay(0), is described by second-order har-
monics. Upon measuring this angular dependence, we
can determine the magnitude of the spontaneous birefrin-
gence and the orientation of its principa directions. The
spontaneous birefringence in y-Ln,S; crystals (Ln = Dy,
Pr, Gd, Lu) amounted to An ~ (3-5) x 1075, During the
experiment, the spontaneous birefringence component
was compensated by rotating the analyzer, after which
the field dependence a(B) = a,(B) — 0, was measured
at various values of the crystal azimuth angle (6 a,(B)
is the angle of rotation of the polarization plane of the
transmitted light relative to the E vector in the incident
light beam). Using this technique, the field dependence
a(B) could be measured with amaximum error of ~10"
seconds of arc.

Rare-earth (RE) sesguisulfides of the y-Ln,S; sys-
tem crystallize in a structure of the Th;P, type belong-
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Table 1. The energy parameters of y-Ln,S; crystals [3-6]

Compound Eg. &V Eer, €V
Dy.S; 25 38
Pr,S; 2.42 3.15
Gd,S; 2.7 3.2
La,S; 2.76 5.4

ing to the T, symmetry class[1, 2]. In this structure, the
RE ions are located at the centers of octahedra (formed
by the S?~ ions) belonging to the noncentrosymmetric
point group S, [23]. The RE ions occupy 8/9 of the pos-
sible central positions, while the remaining 1/9 of these
sites are vacant (these vacancies are randomly distrib-
uted over the crustal volume). The presence of these
vacancies does not change the crystal symmetry (T,)
according to the X-ray diffraction data. The y-Ln,S;
(Ln =Dy, Pr, Gd, Lu) crystals used in our experiments
were grown by the Czochralski method [24]. The sam-
pleswith lateral dimensions 3 x 3 mm and thickness of
1 mm were cut from ingots along the (110) planewith an
accuracy of 2°. The orientation and structural perfection
of the samples were checked by X-ray diffraction mea-
surementsin the Laue geometry. It isimportant to note
that NMB is extremely sensitive to the presence of
twins and/or blocks in the crystals, for which reason
special attention was paid to obtaining samples without
blocks.

The absorption (transmission) and reflection spectra
of the y-Ln,S; crystals were measured in [1, 25, 26].
The spectral dependences of the Faraday and Kerr
effects were reported in [1, 3-6]. Table 1 presents data
on the bandgap width E, and the energy of the effective
oscillator responsible for the frequency dependence
(dispersion) of the Faraday effect in the crystals stud-
ied. The optical quality of the crystals was checked
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with the aid of a polarization microscope and by mea-
suring the optical absorption spectraat T=294 K. Data
on the eladtic, piezooptical, piezoelectric, and elec-
trooptical propertiesof Dy,S; werereported in[27, 28].

3. EXPERIMENTAL RESULTS

The magnetooptical phenomena in paramagnets at
high temperatures and low field strengths are described
interms of expansion of the dielectric tensor g;(w, k, B)
with respect to components of the magnetic field B:

&j(w, k, B) = go(w) + a;;, By

1
+Yiju Beki + Biju BBy,

wherethetensors o, Bjju, and y;j refer to the Faraday
effect, the CM effect plusthe isotropic magnetic refrac-
tion birefringence, and the NMB, respectively. In the
transverse geometry (k U B), the Faraday effect in cubic
crystals is not manifested. Therefore, a change in the
polarization of light passed through acrystal exposed to an
externa magnetic field B is due to the CM effect (qua
dratic with respect to the induction B), the NMB effects
(linear in B), and a contribution of the second order in
;B Thus, in a noncentrosymmetric crystal with an
dlowed y;;4 tensor, the ML B value may contain quadratic
(even) and linear (odd) contributions with respect to the
magnetic field induction B.

Figure 1 shows the field dependence of a(B) mea

sured for Dy,S; atk ||[110] intheE ||B and EB =45°
geometries. The measurements were performed for vari-
ousvaluesof theangle 6 between the magnetic field B and
the [001] type crystal axis. The a(B) curves measured in
both geometries can be described by combinations of the
linear and quadratic functions, a(B) = yB + 3B2. The coef-
ficients y and 3 depend on the experimental geometry

(E||B or EB = 45°); in acertain geometry, the curves

a, deg/cm Z(, deg/cm
4 [ T T T T T T ] T _I o T T T T
5 8=150° 5L %, 9=0 | o |
A E||B N o EB=45° ©
L AA AA ] o o
2 45° AAA AAA 2F 90° ‘:'D DD ]
[e] A
0° 0000003%6699 e@@vvvvvvv 1 OOOOOO ° a” AAAAAA T
O vvvwvggﬁﬁ BBSOOOOOOOOO OOOBBBO BBBAAA
30°_o” On 0 AAAAAMAAWE@”A% %gww
a® o 270° V" vy
2 L o (=] n | vV Vv n
— o |:|EI - 300vvv Vv
EI‘:I _27 vv i
B -15-10 -05 0 05 10 1.5 -15-10-05 0 05 1.0 1.5
B, T B, T

Fig. 1. Thefield dependences of o (B) measured in the (110) plane of Dy,S;inthe E ||B and EB = 45° geometriesat various angles

0 between the magnetic boeld B and the [001] type crystal axis.
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Fig. 2. The angular dependences of 8 = 9%0/dB?[g = ; measured for Dy,S; inthe E || B and EB = 45° geometries.

may significantly (up to a change in the sign of a)
depend on the angle 6, showing evidence of signifi-
cantly different types of anisotropy.

Figure 2 presents angular dependences of the coef-
ficient B = 0%a(B)/0B?|g - o measured for Dy,S; in the

E || B and EB = 45° geometries. The (6) curves,
which describe anisotropy of the even contribution to
a(B), exhibit a 180° periodicity and can be approxi-
mated by combinations of the zeroth, second-, and
fourth-order harmonics. The quadratic magnetic bire-
fringencein Dy,S; at B=1T reachesAn=5.3 x 10~".
Using the known Verdet constant V = 330 deg/(cm T)
for Dy,S;, we may readily show that the contribution to
An due to the terms quadratic in a; for this field must
betwo orderslower; thisimpliesthat the quadratic con-
tribution to a(B) is related to the CM effect described
by the 3;;,4 tensor.

Note that the a(B?) value related to the CM effect is
determined both by the orientation of principal axesand
by the magnitude of the magnetic birefringence An(B?).
Asiswell known, the principa directions of birefringence
in cubic crystals may deviate from the magnetic field B,
except for the cases of B ||[001], B ||[111], and B || [110]
[7, 8]. For these directions of the applied magnetic
field, the birefringence components obey arelationship
ANy = (Angq; + Angy)/ 2 and, in addition, the a value

for the EB = 45° geometry is related to An by the for-
mula a = rtAnd/A, where d is the crystal thickness and
A isthe light wavelength. In the genera case, thisrela
tionship is not valid for other orientations of the mag-
netic field because deviation of the principa directions of
birefringencefrom thefield direction may reach up to 45°.

Asis seen from Fig. 2 for Dy,S; measured in the EB =
45° geometry, 0119 = (Olggy + 01q7)/ 2. Thisimplies that
anisotropy of the CM effect in this sample is the same
asthat inacubic crystal. Thisfact, together with asmall
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value of the spontaneous hirefringence in the crystals
studied, indicate that the presence of alarge number of
vacancies in Ln,S; samples does not lead to deviation
of the “optical” symmetry of these crystals from the
“X-ray” symmetry. This provides additional evidence
that the vacancies are randomly distributed over the
crystal lattice volume.

Figure 3 showsthe angular dependences of the coef-

ficient B for Pr,S; measured inthe EB = 45° geometry.
Similar to Dy,S;, this crystal obeys the rule of “even
effects’ 0110 = (Agpg + 0111)/ 2. However, Pr,S; exhibits
amarkedly lower magnitude of the CM effect and aless
pronounced anisotropy (being closer to the isotropic
case).

Figure 4 presents angular dependences of the coef-
ficient y = 0o/ 0Bl - , describing the linear contribution

to a(B), measured for Dy,S; inthe E ||B and EB =45°

B, deg/cm T2
0 T T T T T

-0.05- Pr,S; (110

-0.10} .

-0.15

-0.20

-0.254
OO

180° 270° 360°

6

1
90°
Fig. 3. Theangular dependences of 3(8) measured for Pr,S;
inthe EB = 45° geometry.
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Fig. 4. The angular dependences of y = da/0B|g = o for Dy,S; measured in the E || B and EB = 45° geometries.

geometries. As is seen from these data, a 180° change
in the crystal azimuth (6 — 6 + 180°) leads to alter-
nation of the sign of y. The y(8)curves can be described
by combinations of thefirst- and third-order harmonics:
cosH and cos36 (inthe E || B geometry) or SinB and sSin30

(in the EB = 45° geometry). According to [16, 17], this
type of the y(8) anisotropy is characteristic of the non-
reciprocal birefringence in a cubic crystal of the Ty
symmetry, which was related to the magnetic-field-
induced spatial dispersion. In contrast to the CM effect,

the NMB easy axes in a cubic crystal at k || [110]

never coincide with the magnetic field direction, except
for the case of B [|[011]. For B ||[001], the easy axes of
birefringence make an angle of 45° with the direction
of B. Thus, the relationship a = tAnd/A holdsin the

E || B geometry for B || [001] and in the EB = 45°
geometry for B ||[011]. The fact that the NMB anisot-
ropy in Dy,S; can be described by expressions similar
tothosefor anideal cubic crystal also indicatesthat the
presence of vacancies in this crystal does not lead to
deviation of the “optical” symmetry from the “X-ray”
symmetry in this RE sesquisulfide.

It should be noted that the orientation of principal
birefringence axesin areal crystal placed in an external
magnetic field is determined by the field-independent
spontaneous birefringence (always present due to the
internal stresses and defects) or the Lorentz birefrin-
gence, as well as by the field-dependent CM and NMB
effects. Asaresult, the orientation of the principal bire-
fringence axes is a complicated function of B and 6.
However, the results of model calculations using the
experimental values of spontaneous birefringence and
the parameters characterizing NMB and CF effects, the
linear or quadratic contributions to a(B) can neverthe-
less be described using aformalism taking into account
only a certain selected effect. For example, the qua-
dratic contribution to a(B) iswell described by expres-
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sions obtained for the ideal cubic crystal taking into
account only the [3;;yB,B, terms, while the linear contri-
bution is adequately described using the y;;,Byk; terms.
Thisis explained by the fact that the spontaneous and
induced birefringence components are small and the
second-order terms can be neglected. Nevertheless,
should the spontaneous birefringence be sufficiently
large (An ~ 104-107%), the field dependence of a(B)
may be sensitive to the mutual influence of the sponta-
neous hirefringence and the NMB and CM effects.
However, no such mutual influence was manifested in
the crystals studied in our experiments.

Figure 5 showsthe angular dependences of the coef-
ficient y(B) for Pr,S;. Similar to those for Dy,S;, these
curves are described by the first- and third-order har-
monics but with a somewhat different relative values of
the harmonic amplitudes. Thisis manifested by adifferent
ratio of the magnitudes of large and smal extrema
observed for the y plots of Dy,S; and Pr,S;. Note that the
magnetic linear birefringence, as well as the CM and
Faraday effects, in RE semiconductors must be inde-
pendent of the incident light intensity. Indeed, it was
experimentally established that an increase in the light
intensity by two orders of magnitude led to no signifi-
cant changes in the observed pattern. This result indi-
cates, in particular, that NMB is a linear optical phe-
nomenon and can be interpreted ignoring the “ second-
ary” effects related, for example, to the light-induced
internal electric fields or the electrooptical effect andits
variations caused by the magnetic field application (the
Kikoin effect).

In diamagnetic L&,S; crystals, aswel asin Gd,S;, the
magnitude of the CM and NMB effects in a magnetic
field with B = 1.5 T did not exceed the sensitivity
threshold. In the cubic centrosymmetric crystals of
Dy,03, DYAIG, and DyGaG, no NMB manifestations
were observed at all.
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Fig. 5. The angular dependences of y(8) for Pr,S; measured in the E || B and EB =45° geometries.

4. DISCUSSION OF RESULTS

For crystals of the Ty symmetry, the tensors of oy,
Biju» and yijq possess one, two, and three independent
parameters, respectively. The v,y tensor components
describing the NMB effect are as follows: y;; = - =
A, yl]lj y]]l g (IJ =Xy, Yz, ZX) yljk| lekI The magnl'
tudes and signs of the parameters A and g determinethe
value and anisotropy of y(6) inthe E || B and EB =45°
geometries. Using the experimental angular depen-
dences y(6), the parameters A and g can be determined
by computer calculations with an accuracy of ~10%.
The CM effect in cubic crystals of the O, and T4 sym-
metry classes is determined by the values of B.,5 and
Bi111 — Bz [7, 8]. Dependence of the orientation of
principal axes and the magnitudes of the magnetic bire-
fringence on the magnetic field direction is described
by the anisotropy parameter a = 2Ba5/(B1111 — B1az2);
the behavior of these characteristics for various values
of awas reported in [8].

Table 2 presents data on the Faraday effect (the Ver-
det constant V), the maximum 3 and y coefficients, the
A and g parameters and the A/g ratio, and the a values
for Dy,S; and Pr,S;. As seen from these data, the linear
Faraday effect and NMB in Pr,S; are 1.5 timesthose in
Dy,S;. The parameter A for Pr,S; isalso 1.7 times that
for Dy,S;, whereas the g value for Pr,S; is somewhat
smaller than that for Dy,S;. A large difference is
observed for parameters describing the CM effect in
Dy,S; and Pr,S;. In contrast to the Faraday effect and
NMB, the maximum CM effect in Dy, S; is 6 times that
in Pr,S;; moreover, the magnetooptical anisotropy
parameters of the two crystals differ both in magnitude
and in sign. The Faraday effect in diamagnetic La,S;
and in Gd,S; is lower by almost two orders of magni-
tude as compared to the same effect in Pr,S; and Dy,S;.
The NMB and CM effects on these crystalsat T=294 K
are very small and are not manifested in the region of
magnetic fields (B = 1.5 T) used in our experiments.
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This comparison shows that the MLB magnitude and
anisotropy in Ln,S; significantly depend on the RE ion
type. Moreover, this dependenceis different for the lin-
ear and quadratic magnetooptical phenomena in cubic
RE sesquisulfides.

In RE semiconductors, the magnetooptical phenom-
enaobserved in the transparency range can berelated to
the interband and exciton optical transitions, aswell as
to theloca optical trangtionsin RE ions. In this context,
it was interesting to compare the behavior of the magne-
tooptical phenomena in RE semiconductors (Ln,S;) and
in cubic magnetic semiconductors containing 3d ions
of Mn?* such as Cd, _,Mn,Te or Zn, _,Mn,Te (Symme-
try class Ty). In the latter case, the large magnitude of
the magnetooptical phenomena is determined just by
the interband and/or exciton transitions, which are
related to a strong splitting of the energy bands and
exciton states caused by the exchange and sp—d interac-
tions [29], whereas the local transitions inside the 3d
electron shell of manganese are insignificant. As was
demonstrated in [16, 17], the CM effectin Cd; _,Mn,Te
and Zn,_,MnTeat T =294 K is observed near the fun-
damental absorption edge at E; — E < 0.2 eV, sharply
increases on approaching the band edge in proportion

Table 2. The parameters of non-reciprocal magnetic bire-
fringence and the Cotton—-Mouton and Faraday effects in
Dy,S; and Pr,S; crystals

Parameter Dy,S; Pr,S;
Ymax: deg/(cm T) 0.55 0.73
A, 108 um/T 53 1.7
g, 108 pm/T 2.7 2.3
Alg 1.9 33
Brmax. deg/(cm T?) 15 0.24
a -0.7 19
V, deg/(cm T) 330 504
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to J(Eg — E)35, and is virtually isotropic (a = 1). The
latter impliesthat, irrespective of the magnetic field ori-
entation, one of the principal birefringence axes is
always parallel to B and the effect is constant. For this
reason, the CM effect in these crystalsis observed only
inthe EB = 45° geometry.

A quite different behavior of the CM effect is
observed in Ln,S;. Here, the CM effect hasalarge mag-
nitude in the region far from E4 (E;—E = 0.54 eV and
0.48 eV for Dy,S; and Pr,S;, respectively) and is charac-
terized by a sharply pronounced anisotropy (a=-0.7 and
+2 in Dy,S; and Pr,S;, respectively). Note a very strong
anisotropy of the CM effect in Dy,S;, where the magnetic
birefringencefor B ||[001] isclosein magnitude but oppo-
dtein sign as compared to that for B || [111]. In Dy,S;,
rotation of the magnetic field in a plane of the (110)
type is accompanied by alarge (~45°) deviation of the
principal axes of birefringence from the magnetic field

direction. As a result, comparable quadratic contribu-
tionsto a(B) are observed in Dy,S; for both E || B and
EB = 45° geometries (Fig. 1).

It should be noted that the strong anisotropy of the
CM effect is characteristic of the cubic dielectrics con-
taining RE ions. In particul ar, the parameter of magne-
tooptical anisotropy in Dy;Ga:0;, and Dy,Al;0,, single
crystal cubicgarnetsat T=294 K and A =633nmisa=—
6 and +2, respectively. A maximum CM effect in these
crystals, observed for B || [111], amountsto 3 = 0.3
and 0.4deg/(cm T?) in Dy;Ga;0;, and Dy;AIl:O;,,
respectively, which is somewhat lower as compared
to B = 1.5 cm/(cm T?) in Dy,S;. Thisisrelated to the
fact that the allowed electric dipole transitions (respon-
sible for the Faraday and CM effects in Dy3* ions) are
characterized by higher energies in dielectric crystals
than in Dy,S;. In dielectric Dy,O5; (T, symmetry
class, E; = 4.9 eV [1]), both the anisotropy parameter
(a=-5) and the magnitude (8 = 0.7 deg/(cm T?)) are
lower approximately by half as compared to the analo-
gous values in Dy,S;. Thus, judging by the dispersion
and anisotropy characteristics, the CM effect in RE
semiconductors is essentially different from the mag-
netic birefringence effect in magnetic semiconductors
of the Cd, _,Mn,Te type and analogous to the effect in
cubic dielectrics containing RE ions.

Dispersion of the Faraday effect in magnetic semi-
conductors of the Cd, _,Mn,Te type is proportiona to
0(Ey— E)™° and strongly increases on approaching the
band edge (Ey). On the contrary, investigations of the
Faraday and Kerr effects in Dy,S; and Pr,S; [3-5]
showed that the optical transitions responsible for the
dispersion of the Faraday effect in the transparency
range occur beyond the fundamental absorption edge
(E;=3.8and 3.15 eV in Dy,S; and Pr,S;, respectively)
and can be related to the interconfiguration electron
transitions of the 4fN —~ 4fN-15d type., Therefore,
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there are grounds to believe that both linear and qua-
dratic magnetooptical phenomena in the transparency
range of sesquisulfides are primarily determined by the
local optical transitionsin RE ions.

A microscopic theory of the Faraday and CM effects
taking into account the electric-dipole-allowed transi-
tionsin RE ionsis based on an expression for the polar-
izability tensor ay; [31]. Inthetransparency rangefar from
the resonance transition frequencies (e — w > IMyy), this
tensor can be written as

Q= =2
" ALV

‘5 [iwlm(d'gedgg) | Weg Re(d;ed’eg)} @)
g 2 2 2 2 '

et W — Wy W — Wy

where d is the dipole moment operator; |[gCand |e(are
the wavefunctions of the ground and excited states; wy,
is the transition frequency; I, is the damping parame-
ter; py isthe ground state occupancy; AV isthe unit cell
volume; and o denotes the RE in position in the unit
cell. The first term in the square brackets of Eq. (2)
refers to the imaginary antisymmetric part of o;; and
describes the ion contribution to the Faraday effect,
while the second term determines the symmetric part of
a;; and describes the fiel d-independent ion pol arizabil -
ity component and the [3;;,, tensor (that is, the isotropic
magnetic birefringence and the CM effect). In the
absence of an external magnetic field, the contribution
of the first term to a;; is zero.

The application of a magnetic field modifies the
energy levels of the ground and excited states, perturbs
their wavefunctions, and changes the occupancies py.
Since the electric dipole transition is allowed, we may
neglect (in arough approximation) the effect of crystal
fields upon the ion. This “free ion” approximation is
frequently used to describe dispersion of the Faraday
effect in RE compounds at high temperatures. In partic-
ular, this approximation was applied to Ln,S; crystals
[3]. However, the “free ion” modd is inapplicable to
description of the anisotropic magnetooptical phenom-
ena even at high temperatures. Indeed, the CM effect in
this model would be isotropic—in obvious discrepancy
with experiment (see, eg., Fig. 1). For adeguate
description of the anisotropic magnetooptical phenom-
ena, aswell asthefield and temperature dependences of
the Faraday effect, it is necessary (especialy at low tem-
peratures) to take into account the crystal field effects.

The eigenstates of an RE ion in amagnetic field are
determined using the Hamiltonian
H = HO+Vcr+V21 (3)

where H, is the free ion Hamiltonian including the
Coulomb and spin—orbit interactions; V,, is the crystal
field potential; and V, = pg(L + 2S)B is the Zeeman
interaction energy, L and S being the orbital and spin
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moment operators. The crystal field potential V., is
determined by the point symmetry of the RE ion posi-
tion and can be written as

Ve = Y kz BIrYa(8, 1), (4)

i
where BY are coefficients depending on the symmetry

of the ion environment; YE are spherical harmonics;
and r;, 6,, ¢; are the spherical coordinates of the ith
electron of the RE ion.

In order to describe the multiplet splitting in the
crystal field and the effect of applied magnetic field
upon the resulting states, the V,, operator is projected
onto the space of wavefunctions of the corresponding
multiplet. Since these wavefunctions are of the same
parity, EQ. (4) will contain only components with even
n. Thisimpliesthat odd components of the crystal field
do not lead to the splitting of states of the ground and
excited multiplets. Therefore, the crystal-field-induced
anisotropy of the CM effect is determined only by the
even harmonics. In the Th;P, type lattice, the RE ions
occupy pasitions possessing the S, point symmetry and
the crystal field potential V., depends on the parameters

BY, By, B2, B}, and Bi. As demonstrated in [32], a
correct description (including the temperature and field
dependences) of the magnetic Faraday effect in RE
compounds must take into account the crystal field
effects; however, the odd components of the crysta
field potential are aso not manifested in that phenome-
non.

The non-reciprocal magnetic birefringence, related
to the local optical transitions with the energies inde-
pendent (unlike the case of interband or exciton transi-
tions) of the wavevector k, is determined by the magne-
toel ectric and quadrupol e mechanisms[21]. The contri-
bution of these mechanismsto the symmetric art of the
dielectric permittivity tensor g; has the following form:

1

og;(w k) = e

. ©)
x [_ejlkGik_silijk + ‘Z‘(ai'jl + a}il)}k"

where g; is a fully antisymmetric third-rank unit ten-
sor,

2 Lo oy O
Gi = 77y > PoRe(demeg) ==, (6)
oge 0‘)99_
. 2 i, ok w
ajj = —mngm(dgeﬁng Y
oge Weg —

m is the magnetic moment operator, and Q' isthe qua-
drupole moment operator. In the absence of an external

magnetic field, G;; = 0 and ai'jk = 0. The application of
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amagnetic field leads to the appearance of nonzero ten-
sor components linearly depending on B:

G

where G, is the second-order magnetoel ectric permit-
tivity in the optical frequency range [21]. As is seen
from Egs. (6) and (7), atransition will contribute to the
non-reciprocal birefringence provided that it is Smulta-
neoudy alowed inthe ectric dipole and magnetic dipole
or quadrupole approximations. Since the magnetic
moment operator m and the quadrupole moment operator
Q' are even, while the operator d is odd, this requirement
cannot be satisfied for the states with definite parity.

Thus, in the case of dlowed eectric dipole transitions,
the NMB is due to the states of different parity being
mixed by the odd crystd field components. These states
include, in particular, the states of the 4fN and 4fN-15d
configurations. The RE ion positions in y-Ln,S; possess
no center of inversion (symmetry class S,) and the crys-
tal field potential contains only the terms with odd n.
Since the CM and NMB effects observed in Dy,S; and
Pr,S;inafield of B=1T are comparable (see Table 1),
we may conclude that an odd crystal field determinesto
a considerable extent the MLB in y-Ln,S; crystals. In
contrast to the case of sesquisulfides, the CM effect is
not observed at B = 1 T in the transparency range of
boracites containing 3d ions, where the MLB is mostly
determined by the NMB effect [22].

It must be noted that, for the appearance of NMB in
the case of allowed electric dipole transitions, the odd
crystal field is necessary in order to make these transi-
tions alowed in the magnetic dipole and quadrupole
approximations; in the case of intraconfiguration tran-
sitions between states of the same parity, the presence
of thisfield providesfor these transitions being allowed
in the electric dipole approximation. In both cases, the
NMB is determined by the degree of mixing of the
wavefunctions of different parity. Therefore, we may
expect that parameters describing NMB will have close
values irrespective of whether the transition is allowed
or forbidden in the electric dipole approximation.
Indeed, a comparison of the A and g parameters for
Dy,S;, Pr,S; and those of R3B,045l boracites (in which
the NMB is due to transitions inside the 3d electron
shell of atransition metal [21, 22]) shows that these
guantities are approximately on the same order of mag-
nitude. The absence of the CM effect in boracites can
be explained by weak transitions in the 3d shell; mak-
ing these transitions allowed in the electric dipole
approximation would require taking into account the
odd crystal field or the interaction with odd phonons.

In the general case, the electric dipole transitions
inside the 3d or 4f shells can be rendered allowed by the
action of the odd crystal field or by the interaction with
odd phonons. However, the odd phonons by themselves
cannot provide for the appearance of NMB. Indeed, the
interaction with odd phonons may render the electric

i = GijkBx, &k = ajuB,
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dipole transition allowed (and manifested in the
absorption spectra) even for a centrosymmetric ion
environment, but the NMB will not appear as long as

the G and aj, tensors are forbidden in the cen-
trosymmetric groups. In the case of a noncentrosym-

metric environment, the Vg, components and Yiju ten-

sors will be proportional to odd powers of a certain
parameter & representing a shift (or a combination of
shifts) of the RE ions from their positions correspond-
ing to the centrosymmetric environment. For example,
the parameter o in boracites can be represented by the
ion shift from the central position in the ferroelectric
phase [33] or by pairwise (£d) ion shifts from the base
plane in the parael ectric phase [21].

The odd phonons may produce a local (in time)
changein the parameter & but, in the approximation linear
with respect to 9, this mechanism cannot account for
NMB because the average o value remains unchanged.
Therefore, we may expect that NMB (in contrast to the
absorption coefficient, Faraday effect, or CM effect) is
determined primarily by purely electron transitions. It
should be noted that methods available for determining
parameters of the odd crystal field are very restricted.
Thus, investigations of the NMB effect offer a possibil-
ity of evaluating these parameters, provided that the
corresponding theory would be devel oped.

In crystals of the Ty symmetry, the G tensor describ-
ing the second-order magnetoelectric permittivity pos-
sessesasingleindependent coefficient G,,. Therefore, the
magnetoelectric mechanism may give a contribution to
the y;y tensor only with a strictly determined ratio of
the parameters A and g: A = 2g. This was demonstrated
by direct calculations for the boracite crystals with 3d
ion positions possessing a D,y symmetry [21]. Never-
theless, the relationship A = 2g must be valid for crystals
of the Ty symmetry irrespective of the particular symmetry
of the ion ervironment. Indeed, the investigations of
boracites with various 3d ions (Co?*, Cu?*, Ni%*) [22]
showed that this relationship holds with a good accu-
racy irrespective of the 3d ions type, which is evidence
that the magnetoelectric mechanism of birefringence
dominates. As is seen from Table 1, the relationship
A =2gholdsin Dy,S;, whichisindicative that the mag-
netoelectric mechanism is operative in this crystal as
well. At the same time, the analogous parameters in
Pr,S; obey a different relationship: A = 3.3g (Table 1).
Taking into account that the parameters are determined
with an accuracy of 10%, so that A/g = 3.3 £ 0.6, we may
conclude that the NMB in Pr,S; cannot be explained by
the magnetoel ectric mechanism alone and it is necessary
to take into account the quadrupole mechanism related to

matrix elements of thel m(diegQg;) type.

Zvezdin et al. [9] showed that the polarizability of
an RE ion, described by the second term in Eq. (2)
(responsible for the CM effect), for the interconfigura
tion electric dipole transitions of the 4fN — 4fN-15d
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type far from resonance frequencies can be expressed
through the quadrupole moment components Q;;:

a; = a,[Q;0 (8)
where [.. [denotes averaging over levels of the ground
state with the occupancy p, (for notations see [9]).
According to the experimental data, the CM effect is
more pronounced in Dy,S; than in Pr,S;, despite a
lower effective oscillator energy in the latter compound
(Table 1). This behavior can be related to different
properties of the ground state multiplets in Dy®* and
Pr¥* ions. In acrystal field of low symmetry, the ®H,5,
multiplet of Dy3* (with an odd number of €lectrons on
the 4f shell) splits into several Kramers doublets. For
Pr3* (with even number of electrons), the ground state
multiplet “F4 represents a set of singlets.

As demonstrated in [9] for asinglet ground state, the
field dependence of [@Q;0at low temperatures is mani-
fested in the second-order terms (for the Kramers dou-
blets, in thefirst-order terms) with respect to gB/E, where
E isthe energy difference between the ground state levels.
For RE ionsin the S-state (Gd®*), the dependence of [@Q; 0]
on B is manifested in the third-order terms, which
accounts for the MLB in Gd,S; being markedly lower
than in Dy,S; or Pr,S;. The linear magnetooptical phe-
nomena caused by ionsin the S-states, in contrast to the
effects due to ions possessing honzero orbital momen-
tum in the ground state, are related only to the spin
splitting [34]. For this reason, the crystals of com-
pounds containing ions in the S-state are characterized
by low magnitudes of the Faraday effect. According to
the experimental data, thisisalso valid for the NMB. In
La,S;, where the 4f shell is empty, the magnetooptical
phenomena are purely of the diamagnetic nature, with
a magnitude lower by at least two orders as compared
to that in paramagnetic crystals of Ln,S;.

5. CONCLUSION

We have experimentally studied the non-reciprocal
magnetic birefringence, related to the magnetic-field-
induced spatial dispersion, and the CM effect in noncen-
trosymmetric sesquisulfides of the y-Ln,S; type. The
NMB and CM effects (as well as the Faraday effect)
depend on the type of RE ions entering into the crystal
lattice. Both effects are more pronounced for ions pos-
sessing nonzero orbital moments in the ground state
(Pr3*, Dy®") thanfor ionsin the Sgtate (Gd®**) and diamag-
netic ions (La®*). A strong anisotropy of the CM effect in
y-Ln,S; indicates that this phenomenon (as well as that
observed in RE didlectrics) is related to dectron transi-
tionsin RE ions. A decisive role is played by the crystal
field, especialy by the centrosymmetric crystal field
components.

The non-reciprocal magnetic birefringence, in con-
trast to the CM effect, for both allowed and forbidden
electric dipole transitions, is related to the presence of
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odd crystal field components. The NMB magnitude
observed in Dy,S; and Pr,S; indicatesthat the odd crys-
tal field components in these compounds are suffi-
ciently large. Therefore, investigations of the NMB
effect offer a possibility of evaluating the crystal field
parameters, provided that the corresponding theory
would be developed. The level of the NMB anisotropy
in Dy,S; corresponds to manifestations of the second-
order magnetoelectric permittivity in the optical fre-
guency range. At the same time, the NMB in Pr,S; is
partly due to the quadrupole mechanism. We expect
that investigations of the spectral dependence of the
Cotton—M outon effect and the non-reciprocal magnetic
birefringence in RE sesquisulfides may help to deter-
mine the values of various matrix elements of the opti-
cal transitions and the crystal field parameters
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Abstract—The zone-center phonon frequencies of polar lattices are calculated for uniaxial crystals proceeding
from the symmetry considerations. The long-range Coulomb forces and crystal anisotropy are explicitly taken
into account. The free-carrier contributionsto the dielectric constant areincluded. The angular dispersion of the
optical-phonon modes is compared to data for a hexagonal 6H-SiC polytype. © 2001 MAIK “ Nauka/Inter pe-

riodica” .

1. INTRODUCTION

Electrostatic dipole—dipole interactions play an
important role in the theory of lattice vibrations. It is
common knowledge [1] that the degeneracy of phonon
modes at the Brillouin zone center (e.g., in the cubic
3C-SiC crystal) isremoved if the atomic displacements
are accompanied by the Coulomb field. Then the fre-
guency of thelongitudinal optical mode becomes|larger
than the frequencies of transverse modes. For noncubic
crystals (e.g., for the hexagonal or rhombohedral SIC
polytypes), the long-range Coulomb field also gives
rise to an angular dependence of the zone-center
modes: at k = 0, the optical phonon frequencies depend
on the direction of propagation.

This phenomenon is rather unusual from both
physical and mathematical standpoints: the eigenval-
ues of the dynamical matrix calculated for k = 0 depend
on the k-direction. This is caused by a nonanalytical
k-dependence of the dynamical matrix which results
from a long-range dipole—dipole interaction. In polar
cubic crystals, the Coulomb field splits the threefold
degeneracy of optical modes at the Brillouin zone cen-
ter, but the frequency dependence on the propagation
direction also appears in uniaxia crystals due to the
long-range electrostatic field.

The electrodynamic part of the problem was formu-
lated by Loudon [2]. The Coulomb contributionsin the
dynamical matrix are usually calculated by means of
the Evald summation [1]. The angular dispersion of the
optical modes is clearly demonstrated by the recent
numerical calculations for the zone-center phonons [ 3]
and for the entire Brillouin zone[4] inthe case of A!"'BY
semiconductors with the wurtzite structure. The Cou-
lomb field is also taken into account in the theory of
phonon—plasmon coupled modes (polaritons) [5] when
the effect of free carriersis studied.

The main purpose of this paper is (i) to calculate the
angular dispersion for the zone-center phonons in

TThis article was submitted by the author in English.

uniaxial crystals using the symmetry arguments and
(ii) to consider the effect of free carriers on these
modes. For definiteness, we concentrate on the phonon
modes of uniaxial SiC polytypesthat are presently very
popular in technical applications.

2. OPTICAL MODES AT THE ZONE CENTER
OF CUBIC CRYSTALS

Among the hexagonal and rhombohedral SiC poly-
types, there is the cubic 3C-SIC polytype with two
atoms in the unit cell. First we consider the optical
modes in this simplest case. For the nearest vicinity of
the Brillouin zone center, k < 17d, where d isthe lattice
parameter, the acoustic and optical modes can be
divided using the series expansion in k of the dynami-
cal matrix. Astheresult, in the zero approximationin k
we obtain the system of three equations for the optical
displacements u; (i = X, Y, 2):

(@—M*w)u = f, 1)

where M* is the reduced mass of two atoms (Si and C)
in the unit cell, @ is the diagonal element of the force
constant matrix (the only diagonal element of the 3 x 3
matrix existing in a cubic crystal). The value of ¢ can
be calculated in the nearest neighbor approximation,
but the long-range Coulomb interaction cannot be con-
sidered in thisway. The Coulomb effect is described by
theforcef = ZeE acting on an effective charge Z, where
the electric field E is found from Maxwell’s equations.
Eliminating the magnetic field from Maxwell’s equa-
tions, we can express the electric field E in terms of
polarization P as

—Anfk(k [P) - ooP/c]
K — w’lc?

E =

)

We areinterested in the w values of the order of opti-
cal mode frequencies, such that w/c = 10 cm™. If the
phonon isexcited by light, itswave vector hasthe value
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of the photon wave vector, i.e., of the order of 10° cnr™.
The condition k > w/c is then satisfied and the terms
involving ¢ must be omitted in Eq. (2), which then
becomes

E = —4mk(k CP)/K°. ©)

In the longwave limit (k < 17d), the polarization is
related to the phonon displacement and the electric
field by the macroscopic equation

P = NZeu + XE, 4

where x is the atomic permittivity and N is the number
of unit cells per cm®. Sometimes, the local field is used
in equations similar to (4) instead of the macroscopic
field E. For cubic crystals (for which only the simple
Lorentz relationship exists), thelocal field can be elim-
inated by renormalizing the force constant .

Using Egs. (3) and (4), we can express the electric
field E in terms of u. Equation (1) then gives the fre-
guencies of transverse and longitudinal optical modes
in the cubic crystal as

wio = @/M* and wip = G/M* +p, ®)
where
p = AMZ°e®N/e"M* and €” = 1+4mX.  (6)

Although relation (3) between E and P involves the
k-direction explicitly, the frequencies of optical modes
(5) are independent of the propagation direction, as it
must be for acubic crystal.

3. OPTICAL MODES AT THE ZONE CENTER
OF UNIAXIAL CRYSTALS

The crystal anisotropy of the noncubic SIC poly-
types is known to be small because the nearest neigh-
bors of any given atom preserve the cubic symmetry.
Let usintroduce the strain tensor g; describing a small
difference between the dynamic matrices for the non-
cubic polytype and the cubic one. The phonon spec-
trum of the noncubic polytype can then be obtained in
the following way. At the first step, we transform the
Brillouin zone of the cubic polytype (“the large zone”)
using the strain g;. Hence, we find the frequencies of
the so-called strong modes. For the zone-center, they
can be obtained by expanding the dynamic matrix in
the strain g;;.

At the second step, we take into account that noncu-
bic polytypes have more than two atomsin the unit cell
and additional optic modes appear. Phonon branches of
the large zone are folded [6] into the Brillouin zone of
the noncubic polytype, thereby producing additional
weak modes. The weak mode intensity in both optics
and Raman scattering was calculated in [7]. In the
present paper, we thus consider only strong modes.

The dynamic matrix can contain only the g; compo-
nentsthat areinvariant under the symmetry transforma-
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tions of the crystal. There are two first-order invariants,
e, and e, + g, assuming that thezaxisis parallel tothe
c axis. We can fix the crystal volume, i.e., impose the
condition ; = 0. We then have only one invariant, for
instance e,,, which isinvolved only in the diagonal ele-
ments of the force-constant matrix in Eq. (1). The coef-
ficients of the xx and yy elements are equal because of
the rotation invariance around the ¢ axis. Finaly,
we can omit the common frequency shift. Instead of
Eqg. (1), we thus obtain

2 U
OB+ pn—w pnny pnyan, 0O
O 2 2 ad
| pnxny B + pny_m pnynz O
O 2 >
O pn.n, pnynz a +pnz_w O
(7)
0, O
0%0
xOu,O=0,
07’0
ou,d
wheren =k/kand
o =@/M*, B = a+be,. (8

We take the vector k in the yz plane and denote as 6 the
angle between k and the c axis,

ne=0, n,=cosb, n, = sinb.

We then see from Eq. (7) that there are one transverse
mode (TO,) vibrating in the x direction and two modes
in the yz plane with the frequencies

(0?01 =B,
@}(6) = 3(p+a+P) ©)

+ %{ [p+ (a—PB)cos26]? + (o —B)’sin° 26} "

We emphasize that Egs. (9) give the phonon fre-
guencies at the zone center, but these frequencies
depend on the propagation direction 8. This depen-
dence has its origin in the simultaneous effect of the
Coulomb field (described by the constant p) and crystal
anisotropy (B # a). In the absence of the Coulomb field

(p=0), wehave w. =a, w; =B, and thereis no angu-
lar dispersion. For the isotropic case (a = 3), EQ. (9)
gives the modes for the cubic crystal.

If the Coulomb effect is small compared to the crys-
tal anisotropy (p << |a — [), we can omit the off-diago-
nal termsin matrix (7). We then have one mode vibrat-

ing closeto the ¢ direction with the frequency wﬁ =a+
pcos?O (with an accuracy to p?/(a — B)?), and the other
mode near the y direction with the frequency oof, =B+
psing.
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B+p
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TO
B 1
10,
o ER N
0 sin’0 !

Angular dispersion of the optical phonon modes at the zone
center inuniaxial crystals. The angle 6 isthe angle between
the ¢ axis and the wave vector k — 0. The TO; mode is
polarized perpendicularly to thec—k plane. The LO and TO,
modes have a nearly longitudinal and transverse character,
respectively, if the Coulomb force effects dominate over the
crystal anisotropy.

In the opposite limiting case of the small crysta
anisotropy, it is useful to pass to the coordinate system
with the Z axis along the k vector, subjecting Eq. (7) to
the unitary transformation

H1 o o 7
Uj = 00 cos® sinB - (10)
00 —sinB cosb
We must then diagonalize the matrix
O O
DB 5 0 ) 0 0
EO Bcos 6+ asin’® (B—a)sinBcosHh % (11)

00 (B—0a)sin@cosd Bsin“0+ acos 8 + p U

We see that in addition to the TO; mode, in the case
where |a — B| < p, there are another nearly transverse
TO, mode and nearly longitudinal LO mode with the
frequencies

w7o,(8) = Bcos’8+ asin’e, 2
W’ o(0) = p +Psin’ B+ acos’ 6,

which can also be obtained by expanding Eqg. (9) with
an accuracy to (o —B)%/p?. The dispersion curves corre-
sponding to Egs. (9) and (12) are shown schematically
inthefigure. The angular dispersions of form (12) were
obtained by Loudon [2].

One can see from Eq. (9) that a conservation law
exists. Namely, the sum of the squared frequencies of
the y and z modes is independent of the propagation
direction, e.g.,
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2/~ _ 2, _
wy (8 = 0) + w,(6 =0)
= wy(8 = T02) + W}(8 = W2).
As an example, we consider the 6H-SiC polytype. The
angular dispersion of its optical modes is known from

the experiment [5, 6]. For 8 = 0 (propagation parallel to
the ¢ axis), the TO, and y modes are degenerate and

their frequencies are equal to ./B. The experimental

value is 797 cmr! (with the uncertainty about 1 cmr?).
The corresponding value of the longitudinal modeis

wo(8=0) = Jp+a.

For 6 = 172 (propagation perpendicular to the c axis),
Wro,(8 = 102) = J/a

(the experimental valueis 788 cm™) and

wo(0=12) = Jp+PB

(the experimental value is 970 cm™). It immediately
follows that p = 552.9? cm™, a = 7882 cm?, and 3 =
7972 cmr2,

We then find

Wo(0=0) = ./p+a = 9626cm,

which should be compared with the experimental value
964 cm. The small difference between these two val-
ues can be attributed to the anisotropy in the atomic
permittivity, which is considered in the next section.

(13)

4. EFFECTS OF THE PERMITTIVITY
ANISOTROPY AND FREE CARRIERS

In the previous section, we assumed that the uniax-
ial anisotropy affects only the short-range contribution
to the force constant matrix, but in uniaxial crystals, the
atomic permittivity x is atensor with two independent
components, X, and X, corresponding to the crystal
axes. This effect is small because each atom has nearly
cubic surroundings, but it must beincluded for acareful
comparison with experiments. In a similar way, free
carriers contribute to the angular dispersion of the lon-
gitudinal optical mode.

To take into account both the anisotropy of atomic
permittivity and the conductivity of free carriers g, we
replace Eqg. (4) with

- 90
Py = NZeu; + g + i
(14)
P- = NZeus + o+ i%%ED.

Using Egs. (3) and (14), we obtain the equation of
motion in form (7) and phonon frequencies (9), but the

No. 5 2001



THE COULOMB EFFECTS IN THE DYNAMICS OF POLAR LATTICES

conservation law (13) does not apply now because p
becomes a function of 6,

2 2
p(0) = 4—-—_"35 N[%ﬁ’ + 4ni%iEcosze

0 -GE]]- 2
+ %D+4"'6Dsn 9},

(15

where €, =1 + 41y, and €7 = 1 + 471X We note that

the vibration modes acquire some damping due to con-
ductivity. In addition, the optical phonon has a natural
width [ given by its probability to decay into lower
energy phonons, and the term il'/2 must be added to w
in Eq. (7).

We can then use transformation (10) and obtain
matrix (11) with the function p(0) instead of constant p.
We see that in the limiting case of the weak anisotropy,
|a—B| < p(8), the Coulomb field (and therefore the car-
riers) affects only the longitudinal mode. Its frequency
is determined by the equation

R(w) = p(B) + Bsin®0+ acos’0—iwl —w* = 0,

(16)
where p(0) given by Eq. (15) depends on w explicitly
and through the conductivity o.

Equation (16) gives the frequency of the LO
phonon—plasmon coupled mode in uniaxial semicon-
ductors. Notice that in the isotropic case, Eq. (16) coin-
cides with the condition (w)= 0, where the dielectric
function g(w) is given by the well-known expression

2 2 2
g(w) = €| 1+ Z(JOLO_Z(")TO _ OOP_ 7
Wo—w —il wW(wtiy)

and the plasmon frequency is

» _ 41me’
W, = ——.
£”m
In this case, Egs. (5), (6), and (8) give
4nz°e’N
Uﬁo =a =8, wio = 0‘ﬁo"'—,

e*M*
and the Drude formula for the conductivity reads

_ né
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Thefunction R(w) in Eg. (16) ismeasured in Raman
experiments. Namely, the Raman intensity considered
as afunction of frequency transfer wis

_ 1
I(w, 8) = Im_R(w)
for the LO mode excitation with the propagation direc-
tion 6. If theincident or scattered light has afinite aper-
ture, Eq. (17) must beintegrated over the allowed range
of 6.

Equation (17) can be used in experimental studying
the effect of carriers on the Raman scattering in uniax-
ial semiconductors. The conductivity tensor in Eq. (15) is
given by the Drudelike formulawith the diagona compo-
nentsmy, o and y;, , for instance, o) = ne?/m(—w + ).

Let us summarize the main result of the paper: the
effects of crystal anisotropy (a # (3) and Coulomb field
p(0) on the phonon dispersion are explicitly separated,
asone can seein Egs. (9) and (16).
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Abstract—For the model [6] of nonlocal electrodynamics with nonsmooth (piecewise linear) nonlinearity, the
problem of point spectrum of speeds of topological solitons with the minimal topological charge is analyzed.
The variation of the spectrum of speeds under one-parameter deformation of such anonlinearity is determined.
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1. Recently, various piecewise linear approxima-
tions of the nonlinearity determining the dependence of
the Josephson current on the phase difference of super-
conductor pairs have been often used for analyzing the
dynamics of Josephson vortices [1-6]. This approach
was largely stimulated by studies of the dynamics of
topological solitons in dislocation theory [1]. Note that
piecewise linear approximations of nonlinearities in
wave eguations were earlier widely used for the analy-
sis of wave propagation in nonlinear signal transmis-
sionlines[7].

In our opinion, the most interesting line of investi-
gations is connected to the use of piecewise linear
approximations of nonlinearity in problems of nonlocal
Josephson electrodynamics; this approach is described
in the works by Silin and his associates [4-6]. This
approach enables oneto perform acomparitive analysis
of the vortex dynamics under various models of nonlo-
cal effects (differential and integral).

In this work, we use a simple generalization of one
model of nonlocal electrodynamics suggested in [6] as
a basis for analyzing the influence of one-parameter
deformation of the piecewise linear approximation of
the nonlinearity on the spectrum of speeds and internal
structure of the 2rekink (topological soliton). This gen-
eralization makes it possible, in particular, to trace the
variation of the spectrum of speeds of the 2r-kink when
passing from the piecewise linear approximation of the
nonlinearity used in [6, 7] to the approximation used by
Aubry [1] and Volkov [2].

In the model under consideration, nonlocal effects
are responsible for the appearance of higher order
derivativesin the wave equation with a nonsmooth non-
linearity. Thissituation requiresthat the notions used to
describe soliton solutions be refined (in contrast to the
case of the nonlinear Klein—-Gordon wave eguation).

For example, in the case of steady waves, the non-
linear wave equation of our model leads to a

Lagrangian (or Hamiltonian) dynamical system with
two degrees of freedom. The corresponding equations
of motion are locally integrable under a piecewise lin-
ear approximation of the potential. When constructing
the complete solution (the entire trajectory), we use the
conditions of smoothness of the function and its three
derivatives at the points where the potential is not
smooth. In the regions of local integrability, the dynam-
ical system possesses a pair of first integrals. One of
themisglobal, but the other is not conserved. More pre-
cisely, the second integral has finite discontinuities at
the points where the potential is not smooth. This situ-
ation is typical for other models in which taking into
account nonlocal effectsis related to the appearance of
a finite number of higher order derivatives in the non-
dissipative nonlinear wave equation under a piecewise
linear approximation of the nonlinearity.

We call attention to a yet unstudied possibility of
renouncing the condition of the maximum smoothness
of the trgjectory and replacing it by the condition of the
conservation of both first integrals. In the model under
congderation, thismeansthe continuity of theglobal solu-
tion and its derivative and finite discontinuities of the sec-
ond and third derivetives. In this work, we use the condi-
tion of the maximum smoothness of the solution.

Finally, we note that the rigorous passing from the
problem with asymptotic boundary conditions at infin-
ity to the problem with boundary conditions on afinite
interval (with itslength to be determined) can be effec-
tively used in the analysis of soliton solutions. This
possibility derives from the piecewise linear approxi-
mation of the potential and was realized in numerical
calculations. An alternative approach based on the
numerical analysis of the transcendental solvability
equations of the problem was used to verify the numer-
ical results and construct asymptotics only. The results
obtained confirm certain results and assumptions pre-
sented in [6, 7] for the value of the structure parameter
corresponding to the values given therein.
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In particular, this approach makes it possible to
relate the description of the influence of Cherenkov’s
wave capture on the structure of the 2rekink described
in [4-6] with the fact that the trgjectory of the 2rekink
temporary lieson atorusin the four-dimensional phase
space. For smooth trgjectories, the realization of this
possibility in our model is related to the discontinuity
of one of the first integrals at the point where the non-
linearity is not smooth.

2. We consider the following generalization of the
nonlinear wave equation as the basic model:

1
€4uxxxx+ €(2)EJXX_C_2U{H+ f(u) = 0. (D)

Here €, €,, and c are the characteristic lengths and
speed. For solutions of the form u(x, t) = u(x — vt),
Eqg. (1) can be written in the form

SUXXXX + uXX + f(u) = 0 (2)
Here, the parameter € is defined by the formula

4 2 -2
ndn ERA 3)

and the transformation of the independent variable is
given by therelation
2 =12
X —xtaB Y0
0 CZD

Equation (2) is a Lagrange equation
0F dPSn, o Lo

ou  dx[bud " gy2lou,]
For the Lagrangian &£ = £(u, u, u,), we have

12 1o -
= 5EUc+ 5Ux U(u), U(u) = If(u)du. (5)
Note that in our model, nonlocal effects lead to the
dependence of the Lagrangian on higher derivatives.
Defining the canonical variables (q;, d,, p1, p,) by the

equations (see, e.g., [8])

= 0. (4)

q. = u,
_ 0¥ _ dmodp_
P = a_LIX_dXQ?UXXD - ux+£uxxxv (6)
q2 X1 p2 auxx XX

we write Eq. (2) in the Hamiltonian form

da, _oH _ . 9P _ 0H _ 0y

dx op ® ax T Taq,  oqy 0
dq2 _ 6H 1 dp2 — aH —_
ax ap, €" dx  ag, Pt
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Fig. 1. The dependence f(u) for the values of the parameter
a= 0 (curvel) and a < 2 (curve2).

with the Hamiltonian

1,1
H = pyd,—5-p5 =50+ U(ay), ®

which islinear in the momentum p;.

In the case when f(u) is a piecewise linear function
(see Fig. 1) of theform

(—iu, uld[o,a),
f(u) =<_§%:1, ul[a 4-a), 9)
&—i(u—4), ul[4—a,4]

or its periodic extension (f(u + 4) = f(u)), Eq. (2) can be
integrated on each of the three linearity intervals or
their shifts by the period. Moreover, Eg. (2) has two
first integrals on each of theseintervals:

Il = suxxxux_%suix + %Ui + U(U),
(10)
1 - 1.
|2 - E‘Euxxx + Euxx + V(U, Uy, uxx)'
Here
(1 010
_Z_a.u, u [ 1a)l
2
U) = 2=u) _ 11
(u) 20— ub[a 4-a), (11)
1 2
k2a(4—u), ull[4-a 4],
V(u’uX’uXX)
1 )
—auuxx+2aux, uld[o,a),
2 12)
) 2—-u U (
4 2 a3y ul[a 4-a),
4—u 1
?UXX—Z—an UD[4—8.,4].
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Completing the solution at the break points of the func-
tion f(u) by the continuity condition of the function u,
and its derivatives u,, U, and u,,,, we see that the first
integral 1, preserves its value on al three intervals of
linearity of f(u). This means that I, is the global first
integral. However, the first integrd |, is discontinuous
at the pointsu =aand u=4—a. More precisealy,

1 2
—mux(a),

|2|U=a+_|2|u:a— -
2fu=a-as ~12fu=aoa)- (13)
_ 1 20,
= a(2—a)uX(4 a).
wherea, =a 0.
In terms of the canonical variables (;, 0, P1, P,
the first integrals (10)—(12) have the form

1 1
= H = Py~ 5o P55+ U(ay),
1 2 1 o (14)
2_€(p1—Q2) + 2_€2p2 +V (01, 02, P2)-
Here

V(dy, Gz, P2)
1 1
_a_SQ1p2+2_aq§1 UD[O1 a),

_] 2-q, 605 (15)
M se—aP pay UO4-a)

4CI1

P2— 2aQ21 uli[4-a, 4],

and the dISCOFItInUItIeS the local first integral |, are
determined by the expressions

|2|q1:a+_|2|ql=a_ = a(2 a)qZ(a)
2fg, = 4-ae 12 a, = (4-a)- (16)
_ 1
- a(2 a)q2(4 a)

These formulas for the first integrals (1, 1) and for the
discontinuities of thelocal integral |, can be easily gen-
eralized for the case of other piecewise linear approxi-
mations of the nonlinearity f(u), for example, for the
case of the two-parameter piecewise linear approxima:
tion f(u) defined as

(4—a)u
—-——a—B——, uD[O,a),
_J(4—a+b)u—4b
f(u) = TS ul[ab), (17)
4—u
4Tb, UD[b,4],
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which satisfies (as well as nonlinearity (9)) the condi-
tion
4

[fwdu = o. (18)

Due to this condition, the equilibrium states u = 0 and
u =4 are at the same level of the global first integral ;.

3. Let us consider the prablem on the topological
soliton for Egs. (2), (9) with the conditions

lim =4,

X = 400

[im =0,

X - —00

(19)

From the viewpoint of the Hamiltonian dynamical sys-
tem (7), (8), (11), this problem corresponds to that [9]
of determining the heteroclinic trajectory in the phase

space{(a, 0, P1, P2)} that isbiasymptotic for the equi-
librium states Oy(0, 0, 0, 0) and O4(4, 0, 0, 0), which are
singular points of the saddle—center type (see [9]). We
note that such trajectories are sought in the space of
dynamical systems[9], which are, in this case, indexed
by the values of the structure parameters (g, a). When
f(u) isaperiodic function, the solutionsto this problem
are associated with topological solitons with the mini-
mal charge (analogues of 2rekinks). For the intervals u [
[0,a] andu O [4—a, 4], we have for x O (-, 0],
di(x) = u(x) = aexp{kx ,
0x(x) = u, = kay,
P1(X) = Uy +Elgy = (1+ek)kay,

Pa(X) =
for x O [I, +0), we have
t(x) = 4—aexp{k(x-1},
0z2(x) = k(4-qy),
pi(x) = (1+ek)k(4-qy),
P(x) = ek’(4—qy).

(20)

2
—€u,, = —€k°qy;

(21)

Here
K = 1D 1+ =-1

d,(0) = u(0) = a, Ch(l) =u(l) = 4-a.

Ontheinterval g; U [a, 4 —a], the solution has the
form

(22)

di(X) = 2+a,sin(k,x+a,)
+a_sin(k-x+a_),
d2(x) = k,a,cos(k,x+a,)

+k a_cos(kx+a_),

(23)
p,(x) = ek,k_(k_a,cos(k,x+a,)
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+k,a_cos(k.x+a_)),
p(x) = e(iCa,sin(k,x +a,)
+Ka sin(k_x +a_))
forx O [0, I]. Here

i ZS%L

In essence, the initia problem (19) on thelinex O
(=00, +00) is reduced to an overdetermined boundary
value problem on the interval u O [a, 4 — &], which
depends on two structure parameters (g, a). Indeed, in
accordance with (23), the unknown amplitudes a.,
phases a,, and | (the unknown length of the region of
possible oscillations of the function u(x) and its deriva
tives u,, U, and u,,) satisfy four conditions on each of
the internal boundaries (i.e,, aa x = 0 and x = 1). The
boundary conditions depend on the structure parame-
ters (g, a). In the phase space { (q,, 0, P1, Po)}, formulas
(23) determine a segment of the trajectory belonging to
the torus that must be sewed (by continuity) with the
half-trgj ectories defined by formulas (20) and (21). The
length of the trajectory segment belonging to the torus
is not known in advance.

Thefollowing four expressions areimplied by (23):

_ _‘E_D (24)

(k.a)*

_ K= (@ -2)K) + (P - k) (D)
e2(K2 —K3)?

tan(k,x +a,) = kEZ___(_gg__?ZEK:

=A.(01, 92, Py pz)-

Formulas (25) determine two local first integralsin the
domain of the phase space defined by the inequalities
a<(; <4-a Actualy, theseintegrals are the constant
amplitudes a,. It is evident that a, must be functions of
the first integrals 14, |, and the structure parameters €
and a. It is easy to show that

[EEN
xS

- &

2% T 1-4¢/(2-a)

The proof is based on the comparison of expressions

(25) with expressions (14), (15), and (11) with regard
for therelations

2
+

(H+DKE+1,). (27

e(C+KD) = 1, g(kk)? = i
€k+ = k+_2_ia’ (28)
2 2y _ _ 4¢
£ -10) = [1-52
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Note that

2o Hrlvel,
2k+a+ 2k—— 1-4e/(2-a)

For half-tragjectories (20) and (21), the constants of the
firstintegrals|, = H and |, are zero. Since H isthe glo-
bal first integral, we havethat H = 0 for therequired tra-
jectoriesin (27). The constant of the first integral |, is
determined from the discontinuity conditions (14),
which imply that I, = —ak?/(2 — a) on the internal inter-
val [a, 4 — a]. Therefore, for the required trgjectories,
formulas (27) have the form

(29)

120
2ki

(30)

|P’

€
1—45/(2—a)5‘¢_2

The sewing conditions for the solutions of the inter-
nal boundary value problem with the solutions with the
external oneimply, by (26), the four equations

tan(a.) = d.(g,a), tan(k.l +a,)=-0.(g a), (31)
where

K —(2-a)k
T (K +K)ka
= A.(A1, Gy P2y P2) g, = o

Assuming that the phase variables can rotate on the
length |, we write (31) in the form

0.(¢, @) = 2

o, = arctand, (g, a),
(33)
o, +k,| = —arctand, (¢, a) + Tm,,

where m, are integers. Relations (33) constitute an
overdetermined system of linear inhomogeneous equa-
tions in three unknowns (a., I). It is consistent if

k_%arctan&(s, a)— gm%

=k, %lrctané_(s, a)— gmg

(34)

Under this condition, theinternal boundary value prob-
lem is defined on the segment with the length | deter-
mined by the equation

(kk )l = —k Farctand, (¢, a) —gm 0

in
(35)
—k,Hprctand (g, a) - gm%.
Note that
ka,—k.o_ = g(m+k_— mk.). (36)
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Fig. 2. The dependence of the eigenvaluese on afor thefirst
five modes.

Thus, the solution to the internal boundary value prob-
lemiswritten in the form

u(x) = 2+ a,sin(k,x + arctand,) 37)
+a_sin(k_x + arctand_).

Moreover, the values of the parameters (g, a) and the
pairs of even integers must satisfy the consistency con-
ditions (34) and the condition | > 0. The requirement
that the integers must be even derives from the fact that
the phase variables can rotate by an angle multiple of
21

Thus, in the model under consideration, the phase
half-trajectories of the saddle singular points Oy and O,
are sewed with the segment of the trgjectory that lieson
the torus (due to the continuity of the phase trajectory)
when reaching the surface of the torus with the param-
eters(a,, a), (k,, k). Thisis achieved at the expense of
a finite discontinuity of the additional first integral.
Such a simple and demonstrative interpretation of the
internal structure of the topological soliton is possible
only for nonsmooth (piecewise linear) dynamical sys-

4
6

Fig. 3. Theplots of thefirst eigenfunction u;(x) and itsthree
derivatives uy , uy, and uy' fora=1.Theeigenvalueise =
0.047.
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tems. For the case of asmooth nonlinearity f(u), the sit-
uation is more complex. It is not clear which forms of
smooth nonlinearities f(u) can lead to solutions of the
type of atopological soliton with an internal structure
and a given topological charge. Thisissue is discussed
in more detail in [10] and the literature cited therein.

4. Inthis section, we citethe results of the numerical
analysis of the problem on topological solitons (19).
We used the boundary conditions at x = 0 as the initial
conditions of the Cauchy problem; the integration was
performed (for arbitrary values of the parameters € and
a) until the trajectory reached the plane of symmetry
u = 2for u, = 0. Thismeansthat the points correspond-
ing to the flex points of the function u(x; €, a) were
determined on the plane of symmetry. Then, the tragjec-
tory was extended up to x = | using the symmetry of the
problem.

For the values a I [0, 2], the point spectrum of the
parameter €,(a) and the corresponding eigenfunctions
u,(X; @) weredeterminedforn=1, 2, ..., 10. Thevalues
a< 1 a~1,anda~2wereanayzedin more detail.

The variation of the point spectrum g,(a) depending
on the parameter a (the deformation of the nonlinearity
f(u, @) is presented in Fig. 2. As a increases, all
eigenvalues €,(a) decrease, and tend to the limit € =0 as
a— 2.

From the viewpoint of the initial wave equation (1),
the point spectrum €,(a) of speeds

(39)

of the family of topological solitons characterized by
the eigenfunctions (modes) u,(X; €,, @) corresponds to
the point spectrum € ¢.(a). For fixed values of the
parameters (€/€, < 1, a), the speed of the solitons
decreases as n increases (due to the decrease of €,(a)
with increasing n). Moreover, there exists a maximum

-4 1 1 1 | |
-6 -4 -2 0 2 4 6

Fig. 4. The plots of the tenth eigenfunction uyg(x) and its
three derivatives uj,, Uiy, and uj, for a=1. The eigen-
valueis e = 0.00062.
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Fig. 5. Theplots of thefirst eigenfunction u;(x) and itsthree
derivatives u,, U, , and u,' for a=0.1. The eigenvalueis
€=0.160.

value n, = n(€/€,, a) that corresponds to the lower
bound of the spectrum of speeds, which is, generally,
not egqual to zero. At a fixed value of the nonlocality
parameter €/¢,, the increase of the parameter a results
in the decrease of the speed of solitons and the number
of modes. For every maode, there exists a critical value
of the parameter a, = a,(€/{,, n); when this value is
attained, the speed of the soliton becomes zero. It isevi-
dent that a. ~ 2 for €/€, < 1.

For a = 1, the spectrum of the eigenvaluesfor n> 1
(which was determined numericaly) is described by

theformula1/4./g, = nwith ahigh degree of accuracy.

This expression is obtained in the process of the analy-
sis of solvability conditions of the problem in the limit
£ <1,

Figures 3 and 4 present the plots of the dependence
Of Un(X), (Un(3))X, (Un(X))x N (Un(X))sex fOr n =1 (€ =
0.047) and n =10 (g, = 0.00062) for a = 1. The com-
parison of the plots shows that the eigenfunction and its
derivative retain its superficially simple behavior when
passing from the first mode to the tenth one; however,
the second and the third derivatives of u,(x) and u,o(X)
are substantially different from each other. More pre-
cisely, when passing to higher modes, a more complex
small-scale structure (in particular, high-frequency
oscillations of the third derivative whose characteristic
amplitude dightly varies when passing from lower
modes to higher ones) appears amost on the same
length.

Figures 5 and 6 present the plots of the dependence
Of Un(X), (Un(X))X, (Un(X))s: 8N (Un(X))c fOr N =1 (€1 =
0.160) and n =10 (€, =0.0034) for a=0.1. Thegeneral
tendency to forming a small-scale structure of the sec-
ond and third derivatives of the eigenfunctions is
retained when passing to higher modes. However, in
the process, the increase of the oscillation amplitude of
the third derivative is observed. Another difference can
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Fig. 6. The plots of the tenth eigenfunction uyg(x) and its
three derivatives U}, U}y, and uj, fora=0.1. The eigen-
valueise = 0.0034.

be seen when looking at the dependence of the first
derivative of (u,(X)), on x (seeFig. 7). Itischaracterized
by three points of extremum. Such a behavior of
((ux(X)), is retained for the third mode and disappears
only for higher modes.

When passing to the domain a < 2, the eigenfunc-
tion and itsfirst derivative retain the characteristic size
of the localization region and their superficially smple
form. However, its second and third derivatives
undergo sharp variations (of the type of afinite discon-
tinuity for the second derivative and a deltalike spike
for the third one) in asmall neighborhood of x = 0. Fig-
ure 8 illustrates the behavior for the first eigenfunction
(a=1.8and € =0.001992). It isnot clear whether or not
this behavior of the solutions in the domain a < 2 can
be considered as an indication of the existence of solu-
tions with discontinuities of higher derivatives.

In conclusion, we note that our simple model of the
nonlocal Josephson electrodynamics in the problem on
the topological soliton with the minimal topological

4
2 - .
0
u'5(x)
-Ir u'"(x) i
-4 1 1 1 1 1

Fig. 7. The plots of the second eigenfunction u,(x) and its
three derivatives u;, u,, and u,' for a=0.1. The eigen-
valueise = 0.063.
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Fig. 8. Theplots of thefirst eigenfunction u(x) and itsthree
derivativess u; , uy, and u}' for a=1.8. Theeigenvalueis
€ =0.001992.

charge (2rekink) actually leads to a point spectrum of
speeds and a peculiar internal structure of the soliton
(vortex). However, it is important that one-parameter
deformation of the piecewise linear function approxi-
mating the Josephson current generally leads to a cor-
responding deformation of the point spectrum of
speeds and qualitatively the same internal structure of
the soliton. However, it isnot clear whether or not such
astructural stability of the object of interest under study
is retained under deformations of piecewise linear non-
linearities in more general models (for example, those
that take account of higher spatial derivativesin theini-
tial wave equation or nonlocal effects in the integral
form).
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Abstract—In tunneling experiments with high-quality single crystals of asingle-layer cuprate superconductor
Bi,Sr,CuQg . 5 Using the break junction and point-contact techniquesat T < T, the coexistence of the supercon-
ducting-state gap and the normal-state gap was observed. The values of the superconducting energy gap 2A

are in the range from 13.4 to 15 meV (4, , = 6.7-7.5 meV). The values of 2A, , are similar for two samp@
with T, = 4 K and for two samples with T, = 9-10 K and are independent of the carrier concentration. The nor-
mal-state gap, with the magnitude approximately equal to 50 meV, persistsat T < T, and in the magnetic field
H > H, up to 28 T. After the transition of the sample to the normal state, theintensity of the tunneling conduc-
tance rapidly decreaseswith increasing magnetic field strength and temperature. The observed large broadening
of the tunneling spectra and large zero-bias conductances can be caused by a strong angular dependence of the
superconducting gap. Thetunneling results arein full agreement with the data of the angle-resolved photoemis-

sion spectroscopy measurements. © 2001 MAIK “ Nauka/Interperiodica” .

It is known that tunneling spectroscopy has been
used successfully in studying the superconducting state
in conventiona superconductors. However, this method
has encountered considerable difficulties in the case of
high-temperature superconductors (HTSC) due to an
extremely small coherence length & and high inhomo-
geneity of samples. At present, more reproducible
results are only obtained for the bilayered cuprate
Bi,Sr, CaCu,0g ., 5 (Bi2212). Previously [1, 2], we have
performed an extensive tunneling study on high-quality
Bi2212 single crystals using the break junction tech-
nigue. Our experiments show that the presently avail-
able quality of Bi2212 samples enables fabricating
good-quality tunnel junctions in the ab-plane with a
low or almost zero leakage current and a well devel-
oped gap structure in the tunneling spectra. The angle-
resolved photoemission spectroscopy (ARPES) mea
surements [3-6] confirmed the energy gap value found
but, on the other hand, gave evidence of a strong angu-
lar dependence of the gap consistent with a four-lobed
dxz_y2 order parameter. In addition, many experiments
(e.9., NMR [7], photoemission [5], and tunneling [8])
have provided evidence that in the normal state of the
underdoped Bi2212, a pseudogap exists in the elec-
tronic excitation spectra at temperatures T* above the
superconducting transition temperature T.. In scanning
tunneling measurements on Bi2212, Renner et al. [§]

T This article was submitted by the authorsin English.

have found this pseudogap to be present both in under-
doped and overdoped samples, and to scale with the
superconducting gap. It has been proposed that the
pseudogap in the normal state can be seen as a precur-
sor for the occurrence of superconductivity where the
superconducting phase-coherence is suppressed by
thermal or quantum fluctuations [9-11]. In the case of
a nonsuperconducting origin, the pseudogap can be
formed in the spin part of the excitation spectrum.

The situation for the low-T, single-layer cuprate
superconductor Bi,Sr,CuOg, 5 (Bi2201) is more com-
plicated. The first point contact tunneling measure-
ments of the superconducting energy gap in imperfect
Bi2201 crystals were performed long ago [12]; up to
now, however, it has been impossible to fabricate a
high-quality tunnel junction using the break junction
method. Because the coherence length &, in Bi2201 is
larger than in Bi2212 and reaches 45 A [13], it is very
difficult to directly prepare a quality tunnel barrier in
liquid helium. InARPES experiments, Harriset al. [14]
have observed highly anisotropic superconducting gaps
of 10+ 2and 7 £ 3 meV in optimally doped and under-
doped Bi,Sr,_,LaCuQg. 5 (Bi,La2201), respectively.
They have also found a pseudogap above T. and
assumed that these two energy gaps can have a com-
mon origin in the pairing interaction. However, on the
basis of the experimental study of the ¢ axis resistivity
p. in the normal state of nondoped Bi2201 single crys-
tals under continuous high magnetic fields, we recently

1063-7761/01/9205-0851$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Differentia conductances dl/dV as functions of V for four break junctionsat (a) T= 2.6 and (b) T= 1.6 K for Bi2201 single
crystals (a) No. 1 and (b) No. 2 with T, = 3.5 and 4 K, respectively. For clarity, the curves are shifted vertically with respect to the
lower curves. The inset shows the geometry of the break junction.

concluded [15] that superconductivity is probably not
at the origin of the pseudogap. The tunneling study of
high-T, superconductors in the normal state under high
magnetic fields can give important information on the
nature of the pseudogap.

In this paper, we describe the tunneling measure-
ments for several high-quality Bi,Sr,La,CuQg. sSingle
crystalswith midpoint T, = 3.5-4 K (overdoped) and 9—
10K (near optimally doped) using the break junction and
point-contact techniques under continuous magnetic
fidddsH up to 28 T. A low T, value for these crystds per-
mits usto investigate the gap structures of a cuprate super-
conductor in the normal state down to low temperatures.
In magnetic fieds, we observed adifferent behavior of the
superconducting and normal-state gaps. The previous
results of the tunneling study using the break junction in
lower magnetic fields were published in [16]. However,
here we give a sdlection of these results because later
magnetotransport measurements [13] allow us to
understand an unusual behavior of differential conduc-
tances di/dV in magnetic fields.

The Sr-deficient Bi, ., ySr;_ x+)CUa +) s+ 5 SiNQlE
crystals with a Bi/Sr ratio of 1.4-1.5 for samples with
T.=9-10K and 1.7 for sampleswith T.= 3.5-4 K (with
the Bi excesslocalized at the Sr positions) were grown
in a gaseous phase in closed cavities of the KCI solu-
tion-melt [17]. Because of along growing time, thesingle
crystas have a high cation ordering. The crystal sizes are
around (0.5-2.5) mm x (0.4-2) mm x (1.5-5) um. The
half-widths of main reflections in the X-ray rocking
curvesfor single crystalsdo not exceed 0.3-0.1°, which
isthe minimum value reported so far. The crystal lattice
parameters are a = 5.353-5.385 A and ¢ = 24.600-
24.638 A, and the superlattice periodicity is a = 4.75a.
The superconducting transition width defined by 10%
and 90% of the superconducting transition points
ranges from 0.5 to 1.5 K. The onset temperaturesin the
superconducting transition for the dc-resistance and ac-
susceptibility are close, and the transition widths are

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

amost the same. The in-plane resistivity p,, of the
crystals shows alinear temperature dependence at high
temperatures and saturates to the residual resistivity
below 2040 K. The in-plane resistivity Sope Ap,,/AT =
0.5-1.5 pQ cm/K was obtained at high temperatures.
The residua resistivity p,,(0) is between 80 and 180 pQ
cm. By measuring the normal-state Hall coefficient in
our crystals in the temperature region of 4.2-50 K, we
have found that the concentration of the carriers equals
n = (4.8-6.3) x 10% cm=. The carrier density in low-T,
samples was larger than in the samples with T,= 9-10 K.
It is believed [18] that single crystals of pure Bi-excess
Bi2201 phase are always overdoped because Bi gives
some intrinsic doping. Thisisreasonableif one consid-
ersthe optimally La-doped Bi2201 polycrystal samples
with the maximum value for Bi2201 T, = 25 K and the
carrier density n= 3 x 10?* cm=3 [18]. Our single crys-
tals with T, = 3.54 K must therefore be assigned to
heavily overdoped ones. On the other hand [19], the
carrier concentrations in the underdoped Bi,La2201
single crystals with T, = 13 K are similar. Because the
magnitude of T, in nondoped Bi2201 single crystals
approximately equals 13 K, the sampleswith T.= 9-10K
studied here are most likely to be slightly underdoped
or nearly optimally doped. The tunneling junctions
weremadein situ at 1.5 K by the superconductor—insu-
lator—superconductor (SIS type) break junction [2] or
the superconductor—insulator—normal metal (SIN type)
tunnel point contact techniques[12], using a Cu needle
as a counter electrode. The current—voltage (I-V) char-
acteristics and derivatives dV/dl were measured by the
usual phase-sensitive detection technique. The tunnel-
ing in the break junction geometry used in our experi-
mentsis supposed to probe the superconducting statein
the ab plane [2].

Thetypical differential conductances di/dV as func-
tions of V for four break junctionsat T= 2.6 and 1.6 K
for two single crystals (Nos. 1 and 2) with T, = 3.5 and
4 K are shown in Fig. 1. Although the measurements
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were carried out at low (=0.2 kQ, Fig. 1a) and moder-
ately high (=0.5 kQ, Fig. 1b) resistances of the tunnel
barrier, the spectra reveal a very large zero-bias con-
ductance (80-90% of the conductance), the gap struc-
ture is strongly smeared and the conductance of the
low-resistance junctions (Fig. 1a) has the V-shaped
background. We have not observed anything similar in
the tunneling experiments with Bi2212 single crystals
[1, 2]. Recently, Mallet et al. [20] analyzed in detail the
influence of different channels of a current leakage on
the tunneling spectraof HTSC and suggested some cor-
rection procedure in order to extract the real tunneling
density of states. However, in the given case, the zero-
bias conductance istoo large to be completely ascribed
to the leakage current. In spite of numerous attempts,
we could not obtain the curves of di/dV versus V with
the same clear gap structure and small zero-bias con-
ductance as for Bi2212. Taking this circumstance into
account, it seems that the large zero-bias conductance
and strongly smeared gap structure in the tunneling spec-
train Fig. 1 aremore probably related to a high anisotropy
of the superconducting gap in Bi2201 observed recently in
ARPES experiments by Harris et al. [14]. In the under-
doped Bi,La2201 single crydals, they observed not a
sharp gap, but areproducible gap of 7+ 3 meV aong the
(1, 0) symmetry line of the k-gpace and a.zero gap at 45°.
For the SIS junctions studied here, the peak-to-peak dis-
tance between the two main maxima on the di/dV curves
must correspond to 44, . As can be seen in Fig. 1, the
value of the superconducting energy gap 24, isin the
range of 13.4-15 meV (with A, , = 6.7—7.5 meV). The
break junction method is atechnique that probesthe tun-
neling dengity of states integrated over the polar anglein
the k,,-space. The strong angular dependence of the
energy gap with zero value in some directions must result
in ahigh density of states inside the gap [20] (large zero-
bias conductance in tunneling spectra) and to a strongly
smeared gap structure corresponding to the upper limit
of A, . Thisisin full agreement with the APRES mea-
surements[14]. Both our tunneling spectraand APRES
spectra have a broad gap structure that is difficult to
describe within a ssimple BCS model. We have used
only the phenomenological parameter I to take the pair
breaking effects into account [21] and obtained an
energy gap of 3.5-4 meV that isvery closeto that mea-
sured by us in the point-contact tunneling experiments
on Bi2201 [12].

To prove arelation between the energy gap and T,
we have measured the tunneling conductances di/dV at
different temperatures shown in Fig. 2. It can be seen
that the gap structure (marked by arrows) broadens and
diminishes as the temperature increases with a small
decrease in the feature position. Because T, = 4 K for
the given sample and the gap structure disappearsat T
near T., we can assume that the observed energy gap is
definitely the superconducting state gap of Bi2201.
Because the gap structure is smeared out and the zero-
bias conductance is high, it isimpossible to investigate
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Fig. 2. Tunneling conductances di/dV versus V at different
temperatures for sample No. 2. The curves are shifted with
respect to the upper one. The gap structure is marked by
arrows.

the temperature dependence of the superconducting
gap in detail.

The tunneling spectrum of the superconductor out-
side the gap for high-ohmic junctions with a good tun-
neling barrier is known to be flat [22] because this is
expected for a Fermi liquid. The V-shaped form of the
conductance for the low-resistance junctions comes from
the bias voltage-induced barrier decreasing. However, the
results in Fig. 2 show that the form of the background
changes from flat to V-shaped with increasing tempera
ture. Moreover, the V-shaped background conductance
increases remarkably with increasing temperature. One of
thereasonsfor the observed change can be atemperature-
induced barrier damping or the temperature depen-
dence of the coherence length €. Near T, & islargeand
the measured tunneling density of statesis determined
not only by the CuO, planes but also by the nonmetallic
Bi—O layers. To exclude the influence of the tempera-
ture-induced barrier transparency change, we have
measured the tunneling spectra of the break junctionin
magnetic fields above the upper critical field H, a a
given temperaturein the geometry when H isparallel to
the c axis.

The effect of the magnetic field on the tunneling
conductance di/dV at T= 1.4 K isshown in Fig. 3. As
can be seen, the behavior of the Bi2201 break junction
in the magnetic field sharply differs from that for
Bi2212 [1, 2]. First, the magnitude of the tunnel-junc-
tion conductance decreases with increasing magnetic
field and the curves of dI/dV versusV significantly shift
down, thereby decreasing the zero-bias conductance.
Second, in the magnetotransport experiments [13] car-
ried out after the tunneling measurements[16], we have
found that the ab-plane H,, in our low-T, Bi2201 single
crystasequals 10 T at T = 1.4 K, but the gap structurein
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Fig. 3. The effect of the magnetic field on tunneling conduc-
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Fig. 4. Differential conductancesdl/dV versusV for Bi2201-
Cutunnel point contactsfabricated on single crystalsNo. 24
(curve 1) and No. 44 (curve 2) with T, = 9 and 10 K, respec-
tively (T=1.6 K, H=0, R = 0.6 kQ). The inset schemati-
cally shows the geometry of the point contact.

Fig. 3practically disappearsaready at 5 T. Aswas men-
tioned above, the tunnel current probes a region of the
order of the coherence length. For the break junctionin
the mixed state, the conductance di/dV corresponds to
the tunneling density of states for an isolated vortex
with anormal core and the superconducting density of
states near the vortex is broadened by the pair-bresking
effect of thelocal magnetic field. Thus, the superconduct-
ing gap structure can be already smeared at H < H,. We
note that the barrier transparency at constant tempera-
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ture remains unchanged and the general form of tunnel-
ing conductances is preserved. In the tunneling mea
surements of the conventional superconductorsin mag-
netic fields H > H,,, the differential conductance di/dVv
is constant at €V from zero to A. In the present case, a
large dip around V = 0O, seen in Fig. 3, indicates the
existence of an energy gap in high magnetic fieldsup to
23 T. Although the spectraare so broad that it is difficult
to define the gap value exactly, we can say that this gap
persistseveninthenormal stateat H > H,. At the same
time, we found that the V-dependences of the differen-
tial resistance dVv/dI at two pointswithVV=0and 40 mV
extracted from Fig. 3 are quadratic in the magnetic field
in awide range of fields without the saturation occur-
ring for the classical magnetoresistivity of a normal
metal in the transverse configuration. The datain Fig. 3
point out that, due to alarge anisotropy of theresistance
of Bi2201 single crystals (p/py, ~ 10°-10* [13]), the
measurement current in the break junction geometry
flows in a very thin layer of the sample. In high mag-
netic fields, the resistance of this near-barrier region
can be of the order of or larger than the resistance R, of
the tunneling barrier. In this case, the break junction is
not quite afour-probe junction, and the applied voltage
drops partially across the bulk of the crystal and not
only acrossthe tunneling barrier, especialy at low tem-
peratures, where the nonmetallic resistance along the
c axis becomes very large.

To partialy exclude the influence of the crystal
resistance on the measured tunneling spectra, we have
studied the point-contact tunnel junctions in which the
four-probe contact method can be better realized. The
tip of acopper wire needle was pressed perpendicularly
to the crystal surface (parallel to the c axis). The mag-
netic field was also oriented parallel to the ¢ axis. The
point-contact tunnel junctions use the natural oxide
layer on the contact-forming electrodes as a tunneling
barrier. In our experiments, the point contacts revealed
ahigh resistance after thefirst touch in liquid helium at
1.5K; the background conductance only increased with
increasing bias voltage. After a further increase of the
pressure applied to thetip, agaplike structure appeared in
the |-V characteristics of the contacts.

The differential conductances di/dV of the Bi2201-
Cu tunnel point contacts fabricated on two single crys-
tals, Nos. 24 and 44, with T.= 9 and 10 K, respectively,
are shown in Fig. 4. The tunneling barrier resistance R
for these contactsat T= 1.6 K isequal to about 0.6 kQ.
The gap structure on the characteristics of the SIN-type
tunnel junctions is always smeared larger than in the
case of SIS-type junctions. Nevertheless, the zero-bias
conductance for our point-contact tunnel junctions was
less than for the break junctions. Two pairs of symmet-
ric features on the curves plotted in Fig. 4 can be easily
seen, and we believe we have observed two energy
gaps. The peak-to-peak distances between the symmet-
ric maxima on the curves of di/dV versus V lie in the
range of 15-18 and 45-50 mV. The magnitude of the
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first gap is in close agreement with data in Fig. 1,
although the T, value of the given crystal is nearly twice
asthat of crystal No. 2in Fig. 1. The second pair of gap
featuresin the SIS break junctionsin case of atrue gap
must be located near 100 mV (44, ,), which we did not
study for break junctions.

In Fig. 5, we have plotted the differential conduc-
tances di/dV for the Bi2201—Cu tunnel point contact at
different temperatures. It can be seen that the gap struc-
ture again broadens and rapidly vanishes with increas-
ing temperature. At low temperatures away from T, the
tunneling barrier transparency does not change because
the conductance spectra shapes are preserved. How-
ever, starting from T = 5 K, the V-shaped background
conductance is dightly enhanced with increasing tem-
perature, the differential conductances at zero biasV =0
change, and the curves shift down. Since T, = 9K for the
given sample (No. 24), thegap structureisbelieved to van-
ishat T < T, but thisisnot thecase. Inset ain Fig. 5 shows
|-V characterigtics of the low-resistance (<0.1 Q) tunnel
break junction fabricated from the same single crystal
where the superconducting energy gap is well seen at
6 K.IninsetbinFig. 5, we have plotted the temperature
dependence of the differential resistancedVv/dl at V=0
extracted from the experimental data in combination
with the ab-plane superconducting transition curve of
thegivensinglecrysta. It iseasy to verify that the crys-
tal resistance rise and the shift of the dI/dV curves in
Fig. 5 with increasing temperature are caused by the
superconducting transition of the Bi2201 crystal region
near the tunneling barrier asbefore evenif R = 0.6 kQ.
The tunneling conductance behavior at temperatures
near and above T, for the point contacts (Fig. 5) isiden-
tical to that for break junctions (Fig. 2).

The effect of the magnetic field on the gap structure
aT=16K isillustrated in Fig. 6, where we show the
differential conductancesdl/dV for the Bi2201-Cu tun-
nel point contact at different fields oriented along the
crystal caxis (R, = 0.6 kQ). In moderate magnetic fields
(up to 6 T), the dI/dV curves did not shift with respect
to each other; for clarity, the curvesin Fig. 6 have been
shifted vertically by the same value with respect to the
H =0 curve. Asearlier, the gap features broaden and prac-
ticaly diminish aready at 4 T, dthough the respective
values of T, and ab-planeH, at 1.6 K areequa to 10K
and 22T for crystal No. 44. In the point junction region of
the crystal, additional pinning centers are produced by the
pressure between the contact-forming electrodes. In this
case, thetunneling conductance di/dV mainly conformsto
the dendity of gtates in the norma vortex cores near the
contact already at H > H,. Asisillustrated by theinset in
Fig. 6, the ab-plane resistance of the same Bi2201 crys-
tal in magnetic field 4 T still equals zero, but the gap
structureis hardly visible.

A steady value and the general shape of the conduc-
tance spectrain the magnetic field upto 6 T madeit pos-
sibletonormdizethelast di/dV curvesat H=0-5T by the
conductance at H = 6 T, where the gap structure is no
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Fig. 5. Differential conductancesdl/dV asfunctions of V for
Bi2201-Cu tunnel point contacts at different temperatures
(sample No. 24, H = 0). Inset a shows the |-V characteris-
tics of the tunnel break junction with avery low resistance
(< 0.1 Q) fabricated from the same single crystal where the
superconducting energy gap iswell seen at 6 K. Ininset b,
we have plotted the temperature dependence of the differen-
tial resistance di/dV at V = 0 extracted from the experimen-
tal data in combination with the ab-plane superconducting
transition curve of the given single crystal.

dl/dV, arb. units
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Fig. 6. Differential conductancesdl/dV asfunctions of V for
the Bi2201—Cu tunnel point contacts at T = 1.6 K and for
different values of the field oriented along the c-axis of the
crystal (No. 44). The curves are shifted vertically by the
same value with respect to the H = 0 curve. The inset shows
the ab-plane resistance of the same Bi2201 crystal.

longer visible, in order to see the magnetic field influ-
ence on the gap features more clearly. In the normalized
conductances, the gap structure broadens and dimin-
ishes gradualy at increasing fields with a decrease in
peak positions. The peak-to-peak distance between the
two main maxima of the di/dV curveat H = 0 is equal
t014.8mV (A, ,=7.4meV). Asnoted above, thisvalue
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Fig. 7. Differential resistances di/dV as functions of V for
Bi2201—Cu contacts at 1.6 K in different magnetic fields
(sampleNo. 44, R, =4.5kQ, T=1.6K), Hisparalel tothe
c-axis. A variation of the half-width of the gap versus mag-
netic field is shown in the inset.
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[02e]
T

H, T

Fig. 8. The magnetic field dependences of the zero-bias dif-
ferential resistances di/dV at temperatures 1.6 K (full
squares), 4.2 K (circles), and 10 K (open squares) normal-
ized to the respective maximum values. The solid line shows
the ab-plane superconducting transition of the same crystal
in the magnetic field at 4.2 K.

is coincident with that measured by the break junction
technique. It is surprising that the magnitude of 2A,, ; is
similar for two sampleswith T, = 4 K and two samples
with T, = 9-10 K and isindependent of the carrier con-
centration. So far as our normalization is not quite cor-
rect, it is difficult to give a quantitative analysis of the
magnetic field effect on the gap value. However, the
shift in the position of the features in the normalized
conductance in Fig. 6 reflects the reduction of the order
parameter in the point-contact region in the magnetic
field. It is reasonabl e to expect that there are additional
pinning centersin the point junction region of the crys-
tal, and hence, the number of fixed vortices rapidly
increases with the magnetic field. This leads to a fast
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suppression of the order parameter and the closing of
the superconducting energy gap in the magnetic field
H < He,.

The second pair of maximain the upper part of the
di/dV curves in Figs. 46 is related to the large dip
around zero voltage, the main shape of which does not
vary with the magnetic field and temperature. The
peak-to-peak distance between the second maxima in
zero field isapproximately equal to 52 mV. Asthemain
maxima, these maxima broaden with increasing mag-
netic field, but the shift in the position of peaksin the
normalized conductances is only slight. This gap does
not close above T, and H,, asindicated by Figs. 3and 5,
and can be identified with the normal-state gap of Bi2201
observed in ARPES experiments by Harries et al. [14].
Because this gap occurring in the tunneling spectra is
so broad and the zero-bias conductanceisso large, thereis
anonzero state dendity a the Fermi energy, i.e, the true
gap does not exist [5]. Our point-contact tunneling spectra
at low temperatures and zero magnetic field can be pre-
sumably described by a representative background, two
broad peaks near the energies £25 meV, and sharper
peaks at the energies £7.4 meV, aswas done in ARPES
experiments with Bi2212 [6].

Next, we studied the magnetic field dependence of the
normal-state gap in more detail using a sufficiently high-
Ohmic point-contact tunnel junction with R = 4.5 kQ.
Such large resistance makes the observation of the
superconducting gap difficult but ensures only a negli-
gible effect of the crystal magnetoresistance on the
main shape of the tunneling spectra. Figure 7 showsthe
series of the differential resistances dVv/dl as functions
of V for this Bi2201—-Cu contact at 1.6 K in different
magnetic fields. It can be seen that the shape of the tun-
neling spectra does not vary with the magnetic field and
the data provide clear evidence that the normal-state
gap still existsup to 28 T. A variation of the half-width
of the gap versus magnetic field is shown in theinset in
Fig. 7. In Fig. 8, we have plotted the magnetic field
dependences of the zero-bias differential resistances
dv/dl at T=1.6K, 4.2 K, and 10 K normalized to the
corresponding maximum values. Here, we also show
the ab-plane superconducting transition of the same
crystal in the magnetic field at 4.2 K (solid line). From
Fig.8andtheinsetinFig. 7, itisclear that thetransition
of the sample to the normal state is responsible for a
small increase in the gap half-width and the enhance-
ment of the differentia resistance at V = 0. However,
after the transition of the sampleto the normal state, the
intensity of the dV/dl curves (the dip amplitude in tun-
neling conductance) starts to decrease rapidly with the
magnetic field. Furthermore, we note that the intensity
of the tunneling spectraat V = 0 also undergoes a rapid
declineat T > T.. Thisisin contrast with heavily under-
doped Bi2212 samples with T, = 10 K [5], where the
large normal-state gap does not close even at 301 K.
Our last result agreeswell with the data of ARPES mea-
surements of optimally doped Bi2212 [6].
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It is probable that the normal-state gap observed in
tunneling experiments is the pseudogap that has been
widely discussed recently. It is worth mentioning that
many tunneling conductances with a smilar shape and a
large dip in the vicinity of the zero-bias voltage have been
observed in the meta—insulator—semiconductor tunnel
junctions [23]. In particular, the conductance peaks and a
large dip on the tunndling spectra of the Bi dloy junction
[24] were attributed to the energy gap and to the band
bending near the surface due to the applied voltage,
respectively. It isinteresting that with an increasing mag-
netic field, the conductance peakstend to be washed away,
whereasthe dip dueto the energy gap is deepened. There-
fore, it is quite possible that a norma gap in BiO layers
manifests itself in our measurements as the large dip
near the zero-bias voltage.

To summarize, in the tunneling experiments with
high-quality single crystals of single-plane Bi2201
cuprate superconductor using the break junction and
point-contact techniques at T < T, we observed the
coexistence of the superconducting-state gap and the
normal-state gap. The value of the superconducting
energy gap 24, , isin the (13.4-15)-meV range (A, , =
6.7—7.5 meV). The values of 24, , are similar for two
sampleswith T, = 4 K and two sampleswith T, = 9-10K
and areindependent of thecarrier concentration. At T< T,
the normal -state gap with the magnitude approximately
equal to 50 meV persistsin the magnetic field H > H,
up to 28 T. However, after the transition of the sample
to the normal state, the intensity of the dv/dl versus V
curves (the dip amplitude in the tunneling conductance)
starts to decrease rapidly with the increasing magnetic
field and temperature. The observed large broadening
of the tunneling spectra and large zero-bias conduc-
tances can be caused by a strong angular dependence of
the superconducting gap. The tunnel results are in full
agreement with the angle-resolved photoemission
spectroscopy measurements [14].
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Abstract—The critical field Hg corresponding to the emergence of vortices in a superconductor without a
threshold isfound near thetransition temperature and in the limit as T — O for an arbitrary value of the depair-
ing factor I'. In superconductors of the second kind, thisfield value coincides with the absol ute instability point
of the Meissner state. In large-k superconductors, the order parameter tends to zero on the surface of the super-
conductor if the external magnetic field reaches the value H. We obtain that Hg = H,,, (Wwhere H, is the ther-
modynamic critical field) for an arbitrary value of the depairing factor I in the temperature region near T, and

a T=0.© 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In superconductors with a large value of the Gin-
zburg—L andau parameter K, the critical magnetic fields
Ha, Hen Hep @e widely separated by their k-values
[1, 2]. Here, H., isthe magnetic field value for the tran-
sition to the Shubnikov phase (vortex state), H., is the
thermodynamic critical field, and H, is the bifurcation
point corresponding to the formation of avortex statein
the volume of the superconductor. If k = 1, al three
magnetic field values coincide. An isolated vortex is
attracted to the boundary of a superconductor if the
external magnetic field is weaker than a certain critical
value H, the field of a barrierless penetration of vorti-
ces into the superconductor [3]. Near the transition
temperature T, the problem of entering a vortex into
the superconductor was considered by de Gennes [3].
He estimated that H, is of the same order asthe thermo-
dynamic critical field H,,. The exact value has not been
found, because this requires considering small dis-
tances of the order of the correlation length. The value
of the critical field H can be found as the linear insta-
bility point of the Meissner state. This means that there
exists a stage of the transformation of the linear insta-
bility to the formation of a single vortex.

From this standpoint, the problem of calculating the
critical field H, is closely related to the problem of
determining the superheating field Hg,. The last prob-
lem was considered by Ginzburg [4]. In what follows, we
show that both problems (the calculation of the critical
fildHginthek > 1 limit and the cal culation of the critical
field Hy, in the Kk < 1 limit) can be solved using asingle

TThis article was submitted by the author in English.

method near thetrangition temperature T., where the Gin-
zburg-Landau equations are applicable. The linear
instability problem is simpler than the calculation of
the vortex energy and some results for the Hg value can
be found outside the framework of the Ginzburg—Lan-
dau free energy. We a so find H in the zero-temperature

limit. We show that near T,, we have H, = H,,, and
Hg, = He /K , With the k value related to the original
definition of kg askg, = K/ /2.

2. THE CRITICAL FIELD Hq
NEAR THE TRANSITION TEMPERATURE

The Ginzburg—L andau equations valid near the tran-
sition temperature can be written as

O 1D AT, 723)AM
FT—=—= —2ieAr + =—=——71A = 0,
o 8Thor il 0

j = -ie2(ar0.8-00.0%), €

rotrotA = 4t

‘[_—I_Ill a _—_+2ieA
) + 3 - 1

D is the effective diffusion coefficient, A is the vector
potential, {(X) is the Riemann zeta function, and v =

1063-7761/01/9205-0858%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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mp/212 is the density of states on the Fermi surface. The  The solution of (7) is

value of D was found by Gor’kov [5] and isequal to

v,

D=3

)

x O = w(v2) - }m,
where v isthe Fermi velocity, 1, is the transport colli-

sion time, and Y(x) isthe Euler psi-function.
We use the gauge where
A = (A(Y),0,0), H =(0,0-0A0y). (3

In the extreme case of large k, we can usethelocal rela-
tion between A and A,

AZ

8¢ T’ [ D

7¢(3)

As aresult, we obtain only one equation for the vector
potential A instead of system (1),

nDe’ Az} . 4

2~ ~ ~
_‘%} %A[l-%ﬂ =0,
K
2 )
o0k
H = KaY.

In Eq. (5), we use the dimensionless variables

= = A _ [TD
y - EY! A - HchE A(Y)! E - 16T_[a
_ _71(3) _A_ [ 72(3)
A1 ) R AT A S ) B
b 3omteuDTT & 21e’vD? ©)
HZ,  41PT?1? -
s = T M= Hab

The definition of k in Eq. (6) differs from the origi-
nal definition of kg, by the factor ./2:

KoL = KIW/2.

With this definition of k, the boundary between super-
conductors of the first and the second kind isat kK = 1.
For k = 1, dl the critical fields H, Hgy, and He, coin-
cide. Thedefinitionsof & and k in Eg. (6) can be continued
in anaturd way for the entire temperature region [6, 7].

Equation (5) can be reduced to the first-order equa-

tion
0A 1~ 1~ A2
av - AR @

~
.b
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A= 4Cexp(-Y/K)

1+ C?exp(=2Y/K)’
oA . 4C1-C" o
-0 K@a+cd”

where Cis an arbitrary positive constant. The function

~ a..

A, = _ 4exp(=Y/K)[1-C’exp(=2Y/K)]

ach [1+CPexp(=2Y/K)]?

(9)

is a solution of system (1) linearized near A with A

given by Egs. (4) and (8). The function A isthe eigen-
function of this system of equations with zero eigen-
value if the boundary condition

0A;
0Y |v=o

issatisfied. Using Egs. (8) and (10), we obtain the crit-
ical value of the coefficient C,

=0 (10)

C’ = 3-2./2. (11)

Therefore, the Meissner state becomes absolutely
unstable at the magnetic field value
H, = Hgp, (12
Thislinear instability leadsto the formation of vortices.
Hence, there exists some stage of the transformation
from the linear instability to the formation of vortices.
This stage cannot be studied in the framework of the
Ginzburg-L andau equations. The energy OE of the vortex
antivortex pair at distances 2a such that 2a < & decreases
very dowly with a, only as 1/In(§/2a) [8]. Thisenergy was
found as the minimum of the Ginzburg-Landau free
energy for fixed positions of zeros of A and fixed vortici-
ties (x1) [8]. From this point of view, a single vortex
enters the superconductor without a threshold only if
the order parameter A is equal to zero at the boundary.

Using Egs. (4), (8), and (11), it is easy to prove that
the condition

Aly-o = 0

is satisfied in the case under consideration. Our conjec-
tureisthat this condition is the boundary condition for
the problem of calculating the critical field Hg for k > 1.
Itissatisfied in all the cases considered in what follows.
We note that the critical field Hy is separated from the
critical fieldsH; and H, by the large parameter K. The
critical field H., was introduced in [1] as

He, = —=(Tc—T). (13)

neD
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Therefore,
ch — Hc2 —
A, oA K. (14
The critical field H, wasfound in [2] as
He, _ Ink +0.146
_— = 1
A, - (15

3. THE SUPERHEATING FIELD Hyg,
FORk <1

The superheating field Hy, was found by Ginzburg [4].
Inthe range kK < 1, this problem can be solved analyti-
caly. In a superconductor with a small value of K, the
magnetic field is screened near the surface at the dis-
tances much smaller than the correlation length €. In
the leading approximation, we then obtain

4rte’ VDA (O)P

A(y) = AoexpBJ (16)

where A(0) isthe order parameter on the surface of the
superconductor. With the help of Eq. (16), we reduce
the system of equations (1) to one equation for the order
parameter A and to the effective boundary condition for
this equation,

E AT
G-1- 2— +ATA =0,
O oY O
(17)
A200
oY

Hk
8

Y=0

where

and the quantities &, K, Y, and H aredefinedin Egs. (6).
Equation (17) has the solution

_2C
C(a+c)? (18)

CexpY—-1 jHA

A= Trcepy 3v

Y=0

where C > 1 is an arbitrary parameter related to the
external magnetic field by Eq. (17). The function

- ok _

— — 2expY
Te

(1+ CexpY)® (19)

isthe solution of system (1) linearized near the function A
given by Eq. (18).
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Thisfunction becomesthe eigenfunction of thissys-
tem of equations with zero eigenvalue if the boundary
condition

[OAl AlaAD -0
DOY A GYD

is satisfied. With the help of Eqs. (18), (19), and (20),
we obtain the critical value of the coefficient C as

(20)

C = 3+2./2. (21)
The superheating field Hg, is therefore related to the
field H,,, by the ssimple equation
—-1/4
Ho o L -2 22)
Hcm ,\/R KGL

4. CRITICAL FIELD Hg
THE GENERAL ANALYSIS

The general strategy of calculating H, is as follows.
First, the expression for the current density j must be
found as a function of the vector potential A and the
order parameter A,

= Q(A D)A. (23)

Equation (23) is formal and the relation can be nonlo-
ca. In Eq. (23), the order parameter A must be consid-
ered as afunctional of the vector potential A. Next, we
solve the Maxwell equation for A,

a—A+4T[Q(A M)A = 0,
oy’ (24)

OA _

5 H(0) = Heu,
where H, is the external magnetic field. Solutions of
Eq. (24) form aone-parameter family. Thevalue of A(y)
at the point y = 0 can be considered as this parameter,
and hence, the function

_ 0A
A= dA(0)

isasolution of linearized equation (24). It is an eigen-
function of this equation if the boundary condition

0A - _0°A =0
ay y=0 aA(O)ay y=0

is satisfied. Equation (26) determines the critical field
H, (if k > 1). We apply this strategy in the extreme case
where kK > 1 and in the case where the superconductor
can be considered as “dirty” material. The system of
equations for the Green functions a and 3 can then be
taken in theform [9]

(25)

(26)

aA —Bw+ = B}GB BaaD‘GBr,
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A = 2TT|A| zg(w), a’+|p% = 1, (27)

w>0

j = —ievD2mT z (B*0_B—Ba.B*).

w>0

For k > 1, therelation of the vector potential to the
order parameter A islocal in the leading approximation
and a and 3 can be taken asreal functions. In this case,
the system of equations (27) can be essentially simpli-
fied to

Atand —w = sing (I +2e°DA?).

A = 2mTA| Z cosd,

w>0

. 2 2 .
j = —vD8nT  Acos ¢, —— = 41,
2 )

w>0

o = sng, P = coso,

wherel” = T;l , With 14 being the electron spin flip scat-
tering time.

In what follows, we restrict ourselves to the zero-
temperature limit. There are two regions

A>T +2€°DA,
) (29)
A<T +2e"DA.
In thefirst region, we have
_ |2 %3 ETTTd] g
- & DyAD 720
(30)
9 [Fde '
5y RINGAn- 30 =~
whereyisthe Euler constant, Iny=0.577216..., and T2

is the transition temperature for the superconductor
without paramagnetic impurities,

®(8) = (4re?vD)™

2%3 T[rD EETTTOD 1
0
—%[F%M EFTdJ_n_I'D
2 T 0
2001
Tt

Oya0™ 30
Oya0™ a0
where A, isthe vaue of the order parameter asy —» co.

(31)
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We define the quantity Y as the point where

A(Y) = T +26’DA(Y). (32)
At this point, we have
TO
A(Y) = eXIO 41] (33)

Intheregiony >, the order parameter A isthe solution
of the equation

Te Tl
s dbhIn=e T
[ —Sm—— =0 @

We now consider theregiony > Y. In thisregion, the
system of equations (30) for the order parameter A and
the vector potential A is more complicated,

0
Tl

Aln 2 2 2 2,2 2412
v((IT'+2e"DA) + ((I' +2e"DA) —A%) )

_[+2e DAZ%arcst A O
2 b+ 2e?DAH

3 A %L_D A DZDUZH
r+2e2DA20 U+ 2¢2DAY

(35

0°A A []
-2+ 16m€ vDA[;Aarcsm e S
b+ 2¢?D A

dy* O

2 A a2
—(F +2e’D A [__ _g a8 0
( )|5-m " +2¢’ DA

_1 _g_ A DZDM}D 0
H+2¢?DAt0 O

For y > Y, we have obtained thefirst integral of the equa-
tion for A (see Eq. (34)). We now show how to obtain
thefirstintegral in theregiony <. To simplify the cal-
culations, we set I' = 0 in what follows. We then obtain

Hom _ VAZ A - T2
8T[ - 2 ] 0 y ]
AZ = 81P€’VDA,,.

(36)

Equations (36) allow us to pass to the dimensionless
variables

A=AD y=AY Y=\Y,

9 . (37)
H=HgH, A=H,\A
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Equations (35) and (37) imply

2

InH LL = A~
|}2+ (AA T[2A2)1/2D 271tA
A T DTA]D
xDarcsm = =5 = P
g Oa20~ 220 70200
N (38)
—Q—'—A+2Aﬁgarcsnm-f—m—i
0y° 0 U na
mA” g A
[“E%l Cra00 3H- irgals D}E 0

The problem of cdculating the critical field Hg isthus
reduced to solving system (38) ontheinterva {0, Y} with
the boundary conditions

A(Y) = exp(-104), A(Y) = Jmexp(-T18),

1/2

oAl - O .o 5.0 (39)
AN
oyly-v O o 3=l
We must find the point Yo such that
o~
A = 0. (40)
aYay S”:Ov?:ch

The value of the derivative dA/0Y &t the point § = 0
givesthefield Hg via

He _ A

= 22 . 41
Hcm ay y:O,QZQU ( )
To solve this problem, we set
z=12 42)
A
The system of equations (38) implies
A S
1+4J1-2°
exp[—z—lz(arcsinZ—ZA/l—Zz)}, (43)
0A _ [}, [(_ 51T v
5 =1t -erd @)
where

1

®,(2) = 2[dZR(2),
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R(Z) =

y

(1+1-2%°

x exp[—%(arcsinZ—ZA/l—Zz)]

——1§(arcs;nz—zA/1—zz)}
27

(44)

Z
x[-——————-
1+41-2°
| . 1r2 2,12 1 23/2[||:|
xDarcst——[—— 1-Z2°)y " -=(1-29 }D-
0 Z13 g 3 DD

The second equation in (43) isin fact an equation for Z,

0Z 2 2,2
— = —(1+41-Z
9y = )

x exp[%z(arcsinZ—ZA/l—Zz)}

5 5, 49

D.[. 5] ]./ZD

-1
. O
—éé(arcsnz—zA/l—zz)E .

Condition (40) implies that

a_é =0 or Q?ﬁ
aYg,:O az y=0

= 0. (46)

The function Z is a monotonic function of y, and
hence, the first equation in (46) cannot be satisfied. It
follows from Eq. (44) and the second equation in (46)
that

Z=0 (47)
at the critical point, and therefore,
Hg
Hcm
12 (48)

We note that the T = 0, the order parameter behaves as

Ay) Oy*

for small values of y.

(49)
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5. THE CRITICAL FIELD Hq
IN A SUPERCONDUCTOR
WITH MAGNETIC IMPURITIES

The system of equations (35) can be solved for an arbi-
trary value of the spin flip scattering time ™ = Tgl .Todo
this, we put

A

A T — (50)
[ +2e’DA’
From the first equation in (35), we obtain
nre 1
M+26°DA* = ———=
Vi1+J1-7° 51)

X exp[—z—lz(acénZ—ZJl——Zz)}.

With the help of Eq. (51), we obtain the first integral
of the second equation in (35),

R = B+ 20"

3 (52)

where

0 b

®1(2) = SHVEFT IdZR(Z) (53)

0if A, <T.
The upper integration limit in Eq. (53) is defined as

El if A>T,

b= 54
= if A, <T. %)
il

In Egs. (53) and (54), the quantity A,, isthe value of the
order parameter in the Meissner state at large distances
from the surface. The value of A, can be found from
Egs. (30) and (35) as

7Ta _
A, InDVAwD 4

T D
A, InD =

EvL/(r+A/r )D

if A>T,

rd [A
aEresngrg 9
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F = 1— EAI_"‘HDWA <T.

The quantity B was found with the help of Egs. (30),
which were used to obtain the boundary conditions for
the vector potential A at the pointy suchthat Z=1.Itis
easy to obtain that

T
[ +2e’DAY,., = Texp E

T,
Az, =
(56)
oA = —A/SHVDAX, —°°—n—rD
0y|z-1 40
12
AT Spnm, ]

Sl sy 35

Using boundary condition (26) in Eg. (52), we
immediately obtain the critical field H, as

He = (B+ ®1(0))"” (57)

At the critical point Hg, the condition Al,-o =0 is
satisfied for al values of I'. Equation (57) can be
checked in the simplest case where " > A,,. We have

02 O bt
—_ C
A=D % F mro %0
[48e Dy (58)
3 VT 4
®.(2) = 0V v O Or O ZD'
The solution of Eq. (52) is given by
A 0 T Dl/Z
Tt
a=DefTe B Cep(y) (59)

C Be’Dyd C2 + exp(2y/A)’

where 0 < C < 1 isan arbitrary constant and the pene-
tration depth A isgiven by

0 12
’“— _ 1I2|jTTd] A,
= (8mve’D) OyO T (60)
Using Eqg. (59), we find the magnetic field value at the
pointy =0 as

AOmT O
ci- C) =0 . (61)

H(0) =
(1+C ) A CBe’ Dy
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Energies of the Shubnikov phase (thick solid line), the
Meissner state (thin ling), and the states with different val-
ues of the vortex density (dashed lines).

The condition 0H(0)/dC = 0 determinesthe value of the
critical field Hg. With the help of Eq. (61), we obtain

C’ = 3-2.2,
e = QB MTe vl (62)
il e’y 312

This value of Hg corresponds to the point Z = 0 and
coincideswith the value given by Egs. (57) and (58). To
complete the calculation, we give the equation for the

thermodynamic field H,, [10],
B dT HZ
8F = —<|p)? = —em
3F = v J’ T " = ==, (63)
2yrim

where A = A, can be found from Eq. (55) with the
replacement T. — T,.

In the extreme case where ' > A, we find from
Egs. (55) and (63) that

dTe _ 1 P o - VAG
T, " T arn (64
As before, we obtain
Hs =1, >A,.. (65)
Hcm

We now prove that for an arbitrary value of the
depairing factor I', we have the relation

Hs = Hem (66)
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Using Egs. (55), (57), and (63), we verify that in both
regions A,, > [ and A, < ', the derivatives of H> and

HZ. with respect to T2 coincide,
OHZ _ oHZ,
T oT

This proves Eq. (66). Equation (57) allows us to take
the integral over T, in expression (63) for the free
energy and to obtain the critical field H,,,in the explicit
form if

2
Hcm —

4TV

(67)

2 TAT 2r®
® 2 3

A>T, (68a)

2 02
Hcm - |:A2_[I[_T_d:| R(Z)D Z
w7 ey

1
L (acsinz-z1-7A0 itA, <,
27° b

where A, and T are related by Eq. (55).

Z=A,IT

6. CONCLUSION

We have found the general method of calculating
the critica field H in the entire range of k values and
given the results for Hg in the temperature region near T,
and T = 0. For an arbitrary vaue of the depairing factor I',
the quantities H, and H,,, are equal in both temperature
regions. The initia definition of H, is the value of the
external magnetic field at which vortices can penetrate
into the superconductor without a threshold. In super-
conductors of the second kind, the value of this field
coincides with the critical field value of the absolute
instability of the Meissner state. In a superconductor of
the first kind, the field of the absolute instability of the
Meissner state is the overheating field. If the order
parameter A is nonzero at the boundary of the super-
conductor, the energy of a vortex-antivortex pair (at
least in the kK > 1 limit) decreases very slowly with the
distance 2a between them in the range 2a < ¢ [8]. As
the result, the order parameter A is zero on the bound-
ary of the superconductor at the point H,. The point H
isan essentially singular point because an infinite num-
ber of states with different numbers of vortices in the
sample go out of this point (the number of states is of
the order SHJ ®,, where Sisthe area of the sample and
@, = e is the flux quantum). The free energy of the
Shubnikov phase is the envelope curve for al these
states.

By the Shubnikov phase, we mean the state with the
minimum value of the free energy in a given external
magnetic field. The disappearance of the threshold in
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the Meissner state at the point Hg does not mean that
vortices can fredy enter the superconductor in the Shub-
nikov phase as the external magnetic field changes. Inthe
figure, we present the free energy asafunction of the mag-
netic field for the Shubnikov phase (solid line), the Meiss-
ner state energy (thinline), and the energy of stateswith
different densities of vortices in the superconductor
(dashed line).
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Abstract—Hamiltonian equations are formulated in terms of collective variables describing the dynamics of
the soliton of an integrable nonlinear Schradinger equation on a 1D lattice. Earlier, similar equations of motion
were suggested for the soliton of the nonlinear Schrodinger equation in partial derivatives. The operator of soli-
ton momentum in adiscrete chain is defined; this operator isunambiguously related to the vel ocity of the center
of gravity of the soliton. The resulting Hamiltonian equations are similar to those for the continuous nonlinear
Schrédinger equation, but the role of the field momentum is played by the summed quasi-momentum of virtual
elementary system excitations related to the soliton. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Some nonlinear differential equations in partia
derivatives important for physical applications [the
nonlinear Schrodinger equation, the Landau-Lifshits
equations in the theory of magnetization, etc.] possess
so-called dynamic solitons. Dynamic solitons are
understood to be nonlinear spatially localized perturba-
tions of the system under study whaose stability is
ensured by the presence of simple additive integrals of
motion. The dynamics of the soliton of the nonlinear
Schrodinger equation has been described in detail for both
its free motion (e.g., see [1]) and motion in an externa
fidd [2]. The dynamics of the magnetic dynamic soliton
has been studied no lessthoroughly [3, 4].

The motion of the dynamic soliton is usualy char-
acterized by the speed of motion of its center of gravity
V and interna eigenfrequency w (the frequency of preces-
sion for amagnetic soliton) in the laboratory frame of ref-
erence. These two mechanical characteristics of solitons
can be put in correspondence to two integrals of motion:
total soliton momentum P and soliton mass N [the number
of virtual elementary excitations of the system (quasi-par-
ticles) bound in the soliton]. The remarkable property of
the soliton asaparticle-like excitation isthe presence of an
important relation between these integrals of motion, the
V and w parameters, and soliton energy E. If E iswritten
in terms of integrals of motion (totd momentum and
mass) as independent dynamic variables, smal variations
inP, N, and Earerdated as[2, 3]

SE = V&P + Q3N, (1)

where Q is the soliton frequency in the frame of refer-
ence moving a speed V (the Planck constant is
assumed to equal one). If the phase of the solitoniskx —
wt, then Q = w—KkV.

In this respect, the energy of soliton free motion, that
is, its kinetic energy, plays the role of the Hamiltonian
function. Equation (1) gives the equations of motion

_O0E ,_0E
_OP’Q_ON' 2

The first equation in (2) is the usual Hamiltonian
equation of motion. The second eguation determines
the physical meaning of Q; namely, soliton energy E(P, N)
increases by Q(P, N) when the number of quasi-parti-
cles bound in the soliton increases by one.

We are going to generalize the Hamiltonian descrip-
tion of solitons to the dynamics of particle-like solu-
tions (solitons) of nonlinear discrete equations on alat-
tice; that is, of finite-difference rather than differential
equations. Such a generaization is nontrivial because
one of the integrals of motion used above, namely, the
field soliton momentum, is related to continuity of sys-
tems and is meaningless for a discrete periodic lattice.
This raises the problem of defining the integral of
motion conjugate to soliton velocity V. We will show
how the corresponding integral of motion isintroduced
and what physical meaning it has.

One of the simplest nonlinear differential equations
well studied as regards the dynamics of solitonsisthe
nonlinear Schroédinger equation, which is completely
integrable. However, the transition from a continuous
nonlinear Schrédinger equation to its discrete (lattice)
analogue is not unambiguous. If we start with a close-
coupling-type model, the discrete analogue of the
Schrédinger equation (taking into account the nonlin-
ear term) should be written as

oW
Ia_tn:an_wn+l_wn—l_zg|wn|2wn- (©)

\Y
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An analogue of precisely this equationisused in the
nonlinear optics of asystem of parallel waveguides[5].
Unfortunately, (3) is not completely integrable and
does not have exact soliton solutions of the type of the
soliton of the continuous nonlinear Schrodinger equa-
tion. Thereis, however, an exactly integrable version of
the nonlinear Schrodinger equation on alattice [6-8],

iawn

ot
The wy + 2 frequency shift used in (4) is of no conse-
guence; we give it for convenience of referencesto [8],

where this equation is discussed from the point of view
of interest to us.

The linearized equation has the dispersion law
e(k) = —2cosk, 5)

which determines the spectrum of elementary excita-
tions corresponding to the (0 — 2 < w < wy, + 2)fre-
guency interval.

Equation (4) has a dynamic soliton-type solution [6]
and allows Hamiltonian equations of motion for such a
soliton to be derived.

= (Woar Wl )1+ W) + oW, (4

w=wy+e(k),

2. MECHANICAL INTEGRALS OF MOTION

Equation (4) has two additive integrals of motion,
namely, the integral

N = ZIn(1+|LPn|2), (6)

mentioned above, which plays the role of the norm of
the wave function and determines the number of soli-
ton-related elementary excitations, and the # integral
defined by

7 = E+(JL)ON, E = _Z(wnw:+1+w:wn+l)' (7)
n

This integral can be treated as the Hamiltonian of the
system.

Hamiltonian (7) generates (4) in conformity with
the usual definition

owv,
5 - 146 %d, €S)
but Poisson brackets {..., ...} are defined in a non-

standard way, namely,
{Wo Wi} = 1(1+]W )8,

{(Wn Wt = WL W} =0

Let us take into account the distinguishing property of
discrete chains, namely, their periodicity. Because of
trandational periodicity, there is obvious symmetry in
aninfinite uniform chain related to the displacement by
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the period of thelattice; that is, tothen — n+ 1 tran-
sition. Let T be the operator of this displacement,

W, =¥ ©
Its eigenfunctions € correspond to eigenvalues €k

(-mt< k < 1), where k is the quasi-wave number.

Operator T generates the additional additiveintegral
of motion

ZW;‘TLP,],
n

which can conveniently be written as
S=4 Z[w:(wn+1_wn) _Lpn(q',:+1_q',:)]

= _iZ(qJ:qJn+l_qanJ:+l) (10)

= _izw:(wn+1_wn—l)'
n

Note that thej, = —[ W) (W, —W¥,) — W (Wi_, -
W )] value in a discrete chain is an analogue of the

density of the flux of particlesin a continuous medium.
The S vaue therefore has the meaning of the total
momentum in an excited chain.

Clearly, the definitions of finite integrals of motion
(6), (7), and (10) refer to an arbitrary solution to (4)
localized in space. We will, however, be interested in
their use to describe the dynamics of a separate soliton.

Consider a stationary solution to (4) of the type
W (1) = ®.(t)exp(ikn—iwt—i0), 1D

where @.(t) is a real function and 8 is an arbitrary

constant phase. The @, function and the relation
between w and k are determined by two real equations

(W= )P, = COsk(Py, 1+ P, _1)(1+ D7), (12)
a%ln(lupﬁ) = —28nk®,(®,,,—P,_;). (13)

The ®,, function that vanishes at infinity, ®,= 0 as
n — oo, corresponds to soliton solutions. The N, E,
and Sintegral s of motion depend on both theform of @,
and the k value,

N =5 In(1+®2), (14)
2
= -2cosky P, D, ., (14a)
2
S = 25inkz DD, .. (14b)
Vol. 92 No. 5 2001
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Consider small changes in the integrals of motions
related to small wave function W variations; that is,
changes caused by small variations in ®,, and wave
number k. It follows from (12) and (14) that

(W —w)ON = coskZ(d>n+1+CDn_l)6d>n. (15)

Similarly, (14a), (14b), (15), and (7) yield

8% = wdN + Sdk. (16)

Clearly, the most important parameters of solution (11)
(that is, w and K) are related by two dynamical Hamil-
tonian equations

:ﬁe:
N

0E

o+ 9E _ 0¥ _ 0E
0" AN’

w S_W_—B—IZ’

(17)

if the Hamiltonian is treated as a function of the N and
k independent variables, # = (N, k). Note that the
derivations of both (14)—14b) and equations of motion
(17) are not explicitly related to the complete integra-
bility of the initial nonlinear equation. They, however,
imply that the infinite sums in (14)—(14b) converge,
that is, that this equation has a solution or solutionsthat
vanish at infinity. In particular, the existence of a
dynamic soliton is implied. In other words, it is
assumed that there exists a solution of type (11) local-
ized in space and not accompanied by emission of
small-amplitude waves of the phonon type. Such solu-
tions are not known for discrete nonlinear equations
that do not possess complete integrability. Precisely for
this reason, we turn to (4).

3. HAMILTONIAN EQUATIONS
IN TRADITIONAL VARIABLES

Aswetreat adynamic soliton as a particle-like exci-
tation with an internal vibrational mode, it would be
expedient to have equations of motion for a traditional
pair of canonical variables, one of which isthe velocity
of the center of gravity of the soliton.

If (4) has a stationary localized solution traveling
along the chain at rate V, its amplitude should, as with
the continuous nonlinear Schrédinger equation, be
expected to have the form

P, (t) = d(n-Vit). (18)
Indeed, such a solution does exist [8],
d(x) = Acn[B(x—Xo), K], (29

where A = const and cn(z, K) isthe Jacobi eliptic cosine
whose parameter K liesintheinterval 0<k < LAtk <1,
the elliptic cosine becomes the trigonometric cosine,
and (19) becomes a solution to the linear equation. In
the opposite limiting case (k — 1), we have the
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cn(z, K) — 1/coshz = sechz transition and the solu-
tion [8]

W, (t) = sinhBsech[B(n—Vt—X,)]
x exp(ikn—iwt +i0),

where x, = const, 6 = const, and the 3, V, w, and k
parameters are related to each other by two equations,

W = wy— 2coshfcosk, (22)
V = (2/B)sinhBsink. (22)

If the soliton solution has form (20), the integrals of
motion are invariant under continuous trandations and
can therefore be calculated by the integration [8], the
sumsin (14)—(14b) being replaced by integrals,

Z :J’dn....

n

(20)

We then have
N = 2B, E = —-4sinhfcosk,
S = 4sinhBsink.

It followsthat three of four parameters3, V, w, and k are
determined by fixed integrals of motion, and the fourth
one (quasi-wave number k) remains free. Clearly, the
width of the soliton A = 1/f is only determined by N,
and the energy of the soliton and its velocity are peri-
odic functionsof k (asit should bein auniform periodic
structure).

Clearly, (21) follows from the first Hamiltonian
equation (17), whereas the second Hamiltonian equa-
tion and (22) lead usto conclude that

S = NV. (24)

This result harmonizes with treating S as the total
momentum.

Equation (24) allows Hamiltonian equations (16)
and (17) to be written in a more familiar form. Let us
introduce P = Nk (the total quasi-momentum of ele-
mentary excitations related to the soliton® as an inde-
pendent variable in place of k. We will assume that the
new Hamiltonian (€) is afunction of independent vari-
ables P and N; that is, €(N, P) = #(N, P/N). This
replaces (16) and (17) by

0é = QBN+ VoP,

_0€ _0¢
Q= Vi
where Q is, asin the continuous nonlinear Schrodinger
equation, the frequency of the soliton in the frame of
reference moving at velocity V.

(23)

(25)

1 The physical meaning of the field momentum as the total quasi-
momentum of elementary excitations of a discrete system is
known in the dynamics of crystal lattice [9], and the relations
obtained in this work substantiate that this circumstance is of a
genera physical character.
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We arrive at the conclusion that the Hamiltonian
equations for the soliton of the discrete nonlinear
Schradinger equation in a uniform chain are formally
fully identical to those for the continuous nonlinear
Schrddinger equation, but the role of the field momen-
tum is now played by the total quasi-momentum P of
soliton linear excitations. Such a definition of P is
attached to the special form of the solution to the dis-
crete nonlinear Schrodinger equation and uses a defi-
nite dependence of the phase of the solution on the
chain node number; this dependence determines the
physical meaning of quasi-momentum k.

4. MOTION IN AN EXTERNAL UNIFORM FIELD

Next, let us analyze the equations that describe the
dynamics of a soliton in a nonuniform chain, in which
the quasi-wave number kis not conserved. Suppose that
the w, value weskly varies aong the chain, that is,
weakly depends on node number n. At small chain
length intervals, this dependence can be considered lin-
ear!

W, = Wy +nn. (26)
For convenience, we introduce small gradient n of the
w, function. The Hamiltonian that generates (4) with w,

of type (26) hasthe form [8]

¥ = E+ Zoonln(1+|LIJn|2)
" (27)
= E+w0N+r]ZnIn(1+|LIJn|2),

where the last term describes the nonuniform potential
U in whose field the soliton moves.

L et us use the representation
W, = dpexpli(kn—wt—wpt)]
to write the equation that generalizes (12):
(NN —w)®L = cosk(DL, , + DL )[1+(D%)7]. (29)

If gradient n is small, an approximate method for
analyzing this situation can be suggested. This method
is also applicable to more complex U(n) potentials.
This is the so-called adiabatic approximation, which
recommended itself as an effective tool for handling
continuous systems. If N < wy, the soliton only senses
the w, local constant value at the point at which its cen-
ter is situated. We can therefore assume that itsformis
as previously described by a solution of type (20), in
which the k and V parameters dlightly vary with time.
Let us write the solution in the form

Wo = d(n—X(t)expli(kn—a(t) —wot],  (29)
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where X(t) isthe coordinate of the center of the soliton.
Obviously, its velocity V and frequency w are given by

_ dX _do
V_dt’ Codt’

First, let us show that a nonuniform potential [the
last term in (27)] leadsto anonconserved total momen-
tum S and determines the equation of motion of the
guasi-wave number k. Based on definition (14)—(14b),
let us calculate the derivative of Swith respect to time,

dS _ _ *
a - {%,S =N Zn[wn(wn+1+wn—l) (30)

+W (Wh + W)

Substituting (29) into (30) and replacing the summation
by the integration, we obtain

[

((jj_ts = 2ncosk [ n@(n)[®(n+ 1) ~>(n—1)] dn. (31)

Retaining the leading terms of the expansion in powers
of n, we can usethe solutionsto (11) and (28), in which
W, = Wy = const, in the right-hand side of (31). Using
(11) and the equality (dd/dt) = —-V(d®d/dn) yields

ds _ h d 2
—= = r]VcotkInann(1+ ®)dn

dt (32)

= —nVNcotk.

According to (24), we have NV = Sin the right-hand
side of (32). Itis, in addition, clear that the nonuniform
character of wy, has no effect on the conservation of N
as an integral of motion. This ssimplifies (32), which
becomes

av _

i -nV cotk.

Lastly, relation (22) between the velocity and the wave
number can be used to obtain the final equation
dk _
dt
It follows that the quasi-wave number of the soliton in

anonuniform external field linearly dependsontime, as
it should in the quasi-classical approximation.

Let us transform the nonuniform potential in (27),

—N. (33)

U(X) = nJ’nIn[1+®2(n—X)]dn, (34)

where the ®(n) function in the approximation that we
use is determined by (19) or (20). Taking into account
that, in this approximation, ®(¢) = d(-¢), we obtain

U(X) = nNX. (35)
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It follows that total energy (27) can be written in the
form

€ = E(N, P/N) + wN + U(X) (36)

and can be treated as a function of three independent
variables, N, P, and X. AsP = Nk and X only depend on
time in sum (36), the derivative of the wave number
with respect to time, Eq. (33), plays the role of one of
the canonical Hamiltonian equations

dP _ 0€ dX _ 0€¢
dt oxX’ dt  oP’

Dynamical Hamiltonian equations of type (37) nat-
urally arisein thetheory of the soliton of the continuous
nonlinear Schrodinger equation [1] and in the theory of
magnetic solitons[3, 4].

One of the remarkable applications of the equations
of motion of solitonsin external fieldsisthe description
and calculation of Bloch oscillations of the soliton of
the discrete nonlinear Schrddinger equation in a uni-
form external field [8].

To obtain a quasi-classical description of Bloch oscil-
lations, it suffices to use the obvious solution of (33)

k=-nt (38
(we assume that k = 0 at t = 0) and substitute (38) into
the equation for soliton velocity, Eq. (22):

(37)

= —lsinthinr]t, N = const.

N 2

This is precisely the periodic time dependence of
soliton velocity in a uniform external field [8, 10] that
determines Bloch oscillations at an wg = || frequency.

In accordance with (36) and (37), we can introduce
force F acting on the soliton,
ou
F=-—% =N
This makes it clear that, at a given (fixed) force, the
wg = |F|/N Bloch frequency isinversely proportional to
the soliton power (N).

Bloch oscillations are sometimes related to so-
called dynamic localization of a particle moving in an
external uniform field with a periodic dependence of
the velocity of the particle on its quasi-momentum. We
would rather call attention to another aspect of the phe-
nomenon.

Quasi-classical oscillations with one frequency
should correspond to some discrete equidistant energy
spectrum of a quantum problem. Indeed, such a spec-
trum in the problem with Eqg. (28) does exist and mani-
fests itself by arising of the “Wannier—Stark |adder”
(see Appendix).

(39)

APPENDIX

Let us return to Eg. (28). The solution to (28)
depends on the w parameter in a very special way:
namely, this solution is a function of the z= n — w/n
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variable. It follows that the solution is the same at dif-
ferent n and w pairs satisfying the requirement z =
const. This requirement can only be met if

w=mn, m=0,%1,%2 ...,

that is, if set m comprisesinteger numbers.

It followsthat, among the solutionsto (13) and (28),
there exists a system of oscillating stationary solitons.
Thisis precisely the series of solutionsthat corresponds
to the Wannier—Stark ladder (A.1). Such solutions can
be written in the form

(A1)

W= W exp[ik(n—-m) —i(w,+ mmt]. (A.2)

Solitons of this series with various numbers m have
identical profiles with centers displaced by m nodes.
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Abstract—A simple proof of the unconditional security of a relativistic quantum cryptosystem based on
orthogonal statesis given. Limitations imposed by the special relativity theory allow the proof to be markedly
simplified as compared to the case of nonrelativistic cryptosystems based on nonorthogonal states. An impor-
tant point in the proposed protocol is a space-time structure of the quantum states, which isignored in the non-
relativistic protocols using only the properties of the space of states of the information carriers. As a conse-
guence, the simplification isrelated to the inefficacy of using the collective measurements against an eavesdrop-
per, the allowance for which is an especialy difficult task in the nonrelativistic case. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Nonrelativistic quantum cryptography, in contrast to
classical cryptography based on the laws of classical
physics, is based on the fundamental laws of nonrela-
tivistic quantum mechanics [1, 2]. Security of classical
cryptography is based on the unproven complexity of
calculating certain functions such as a discrete loga
rithm. It is implied that the calculation of such func-
tions, as well as the inverse functions, are performed
using a physical device operating according to the laws
of classical physics. In addition, it is implicitly
assumed that the information transmission between
legal partiesis provided by classical objects. Since the
laws of classical physics do not prohibit simultaneous
nonperturbing monitoring of any dynamic variables of
aclassical system, it isimpossible to provide for guar-
anteed detection of eavesdropper intervention in the
course of information transfer between legal parties.
For this reason, the security of classical cryptosystems
is based on the exponentially growing complexity of
calculating the key distribution, rather than on detect-
ing an eavesdropper attack during the key transmission.

The laws of classical physics provide only an
approximate description of reality. A more rigorous
description is provided by nonrelativistic quantum
mechanics. Using quantum mechanics, it ispossible, in
principle, to realize a computational device (quantum
computer) possessing agreater computational power in
solving certain tasks as compared to classical computa-
tional facilities. The factorization problem encountered
in the key decoding by an eavesdropper, which is expo-
nentially complex (intolerable) for a classical com-
puter, is only polynomialy complex (tolerable) for a
guantum computer [3]. Thus, the laws of nonrelativistic
guantum mechanics also do not guarantee the uncondi-

tionally secure information exchange using well-
known classical algorithms. By unconditional security
we imply the secrecy based on prohibitions inherent in
the fundamental laws of nature, rather than on the tech-
nical (computational) complexities.

While prohibiting unconditionally secure classical
cryptography (in the aforementioned sense), quantum
mechanics offers possibilities for quantum cryptogra-
phy. Quantum cryptography is based on the possibility
of detecting attempts at eavesdropping. This possibility
is guaranteed by the laws of guantum mechanics in
cases when the information is transferred by quantum
systems.

Nonrelativistic quantum cryptography is based on
two circumstances dictated by postul ates of nonrelativ-
istic quantum mechanics: (i) an unknown quantum
state cannot be duplicated (no-cloning theorem) [4];
(i) it is impossible to obtain information about quan-
tum states bel onging to anonorthogonal basis set with-
out perturbing these states [5].

In nonrel ativistic quantum mechanics, the latter pro-
hibition is not valid for orthogonal states. Moreover,
there is no prohibition for instantaneous nonperturba-
tion distinguishing between the orthogonal states. For
this reason, the use of orthogonal states for nonrelativ-
istic quantum cryptosystems is not even a subject for
discussion.

Nonrelativistic quantum cryptosystems make essen-
tially no use of the space-time specificity of quantum
states (since both the no-cloning theorem and the state-
ment concerning the impossibility of obtaining infor-
mation about the quantum states belonging to a nonor-
thogonal basis set without introducing perturbations
are of an absolutely general character). Nonrelativistic
guantum cryptography protocols employ only the prop-
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erties of the Hilbert space of states of the information
carriers. The effects of state transmission between
remote parties are insignificant and not considered
explicitly. Speaking more strictly, attempts at making
use of the space-time specificity of quantum states in
the absence of alimiting transmission speed apparently
cannot bring something essentially new to quantum
cryptography.

A strict proof of the unconditional security of anon-
relativistic quantum exchange protocol under condi-
tions when the behavior of both the eavesdropper and
the legal parties is restricted only to the laws of quan-
tum mechanics presents an extremely complicated task.
To date, several proofs of various degrees of complexity
were proposed based on various initial assumptions.
However, in view of the problem complexity, no com-
monly accepted opinion has yet been formed [6-9].

Nonrelativistic quantum mechanics, aswell as clas-
sical physics, presents an approximate description of
the nature. A more adequate description, taking into
account both the space-time structure of quantum states
and restrictions imposed by the specia reativity, is
provided by relativistic quantum theory. Since no ratio-
nal interpretation of relativistic quantum mechanics is
available, thistheory arises as the quantum field theory
(QFT).

The QFT does not close the problem of nonrelativ-
istic quantum cryptography, because the quantum-field
system states are described (aswell asin nonrelativistic
guantum mechanics) by rays in the physical Hilbert
space[10]. Since nonrel ativistic quantum cryptography
protocols use only the properties of statesin the Hilbert
space, these protocols surviveinthe QFT. The QFT can
ensure a principally new approach to cryptography
only provided that the space-time specificity of states
are explicitly taken into account in the protocols. In
other words, we must take into account that the sates,
albeit dill described (as in nonrelativistic quantum
mechanics) by rays in the Hilbert space, are generated
by the field operators (more precisely, by the general-
ized functions with operator values) bearing informa-
tion about the space-time structure. The field operators
obey the commutation relationships reflecting the
microcausality principle. This principle is a conse-
guence of limitations imposed by the relativity, imply-
ing the absence of causal relationships for points sepa-
rated by a spacelike interval in Minkowskian space-
time. In addition, the QFT allows the effects of state
transmission in Minkowskian space-time to be explic-
itly taken into account and used in constructing the
cryptographic protocols.

Limitationsimposed by the QFT and special relativ-
ity lead to a significant difference in some features of
the quantum information theory (for detail see[11, 12])
as compared to the nonrelativistic case. Limitations
imposed by the specia relativity upon quantum mea-
surements were originally considered as long ago asin
1931 by Landau and Peierls [13]. The qualitative con-
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siderationsformulated in that paper based on the uncer-
tainty relationship, together with the restriction of ulti-
mate speed, led to aconclusion that no precise determi-
nation of, for example, momentum within any finite
timeinterval ispossiblein therelativistic (in contrast to
the nonrel ativistic) case.

Below we describe a simple example of an uncondi-
tionally secure relativistic quantum cryptosystem in a
noisy communication channel. The cryptosystem
makes use of the quantum field states (photons) as
information carriers. The more restrictive character of
the laws of relativistic QFT significantly simplifies the
proof of the unconditional security of the protocol as
compared to the nonrelativistic case. In addition, the
proposed scheme can be rather simply implemented in
experiment, in contrast to the unconditionally secure
exchange protocolsin the nonrelativistic case, where an
essential rolein the proof of security is played by collec-
tive measurements that are not provided with a clear
scheme of experimental realization. The proposed proto-
col explicitly employs the causal effects and makes use
only of theindividual measurements.

The considerations presented below were inspired
by the paper by Goldenberg and Vaidman [14]. In our
opinion, the ideas formulated in that work were not
appreciated [15]. Moreover, subsequent developments
[16] reduced the approach essentially to a nonrelativis-
tic cryptosystem based on nonorthogonal states, thus
virtually rejecting the initial idea.

Themainideaconsistsin that the “internal” degrees
of freedom of a quantum field (photon spirality) are
used for encoding the transmitter information, while
the spatial degrees of freedom are employed for detect-
ing eavesdropper intervention. This is an essentially
new circumstance as compared to the nonrelativistic
case, which allows eavesdropper attacks to be detected
(with an alowance for the special relativity require-
ments) by measuring the time delay of the state trans-
mitted and ensures that the eavesdropper would obtain
zero information. The fact that the transmitted informa-
tion represents the quantum field statesis also essential
for the protocol.

The QFT allows even orthogonal statesto be usedin
the cryptosystems. Since the system states in the rela-
tivistic (as well as in the nonrelativistic) case are
described by rays in the Hilbert space of states, there
are till valid prohibitions concerning unknown state
cloning and the nonperturbing reliable differentiation
of nonorthogonal states (these theorems are proven
using only properties of the space of states).

Important for the following, there are two circum-
stances dictated by the QFT (for detail, see[17, 18]).

1. For reliably distinguishing between two orthogo-
nal states of the free quantum field, it is necessary that
the entire Minkowskian space-time region would be
accessible where the state carrier is nonzero. The
orthogonal states of the free quantum field can be for-
mally reliably distinguished without introducing errors
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only during an infinite time because of their principa
unlocalizability related to the impossibility of con-
structing the field states with a compact carrier in the
coordinate space, which would be generated in the
four-dimensional space of momentum by the carriers
preset on a mass surface.

2. The theory permits the existence of free quantum
fields arbitrarily strongly localized in the space-time
(i.e., with any degree of localization and the decay rate
arbitrarily closeto exponential). The principal unlocal-
izability is dictated by the local character of the QFT.

The latter circumstance is essential for cryptogra-
phy by admitting the formation of arbitrarily localized
states possessing preset arbitrarily small and arbitrarily
steep (close to exponential) tails outside the space-time
region controlled by the legal parties. The probability
of distinguishing between two orthogonal statesin the
guantum field may vary from 1/2 (indistinguishable
states) to 1 (reliably distinguishable states) due to the
effects of field transmission from the controlled
Minkowskian space-time region to a region accessible
for the measurements. More precisely, the probabilities
of obtaining aresult during afinite time (due to the for-
mation of strongly localized states) may differ from 1/2
or 1 by apreset arbitrarily small value. This parameter
can be selected as the smallest in the problem.

The existence of a limiting transmission speed for
both the quantum field and classical objects (including
measuring ones), the access to the whole region of the
field comprising two arbitrarily strongly localized but
spatialy separated “halves’ of the state is principally
possible only during a finite time. Therefore, the prob-
ability of reliably distinguishing the two states varies
from 1/2 to 1 also within afinite time. A strong local-
ization of the two “halves’ spaced by 1, alowsthe pro-
tocol to be written so as to provide that the probability
isP(t) =1/2for 0< 1t <14andincreasesin ajumplike man-
ner up to P(t) = 1 for T = 14 (within the scale AT < 1,4 of
the state localization). The jump smearing, which is
controlled by localizing each half of the state, can be
made arbitrarily exponentially small.

Since relativistic quantum cryptography explicitly
employs the space-time structure of states, the proof of
security cannot be conducted without considering a
particular system geometry. This geometry must be
explicitly taken into account in contrast to the nonrela-
tivistic case using only the structure of the space of
states.

2. MEASUREMENTS INVOLVED
IN THE PROTOCOL

Now we will describe the measurements used in the
protocol. Since it is necessary to take into account a
particular geometry, we will consider a simple one-
dimensional model reflecting all features stipulated by
the QFT. Let us consider the particles (field quanta)
possessing agiven spectrum and moving at the speed of
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light over a one-dimensional mass surface (or the front
part of a one-dimensional light cone in the momentum
representation, k2 — ki = 0). The two legal parties
(Aand B) control the vicinity of points x, and Xg,
respectively (see the figure). The size of controlled
regions in the vicinity of these points is determined by
the localization of states and can be rendered arbitrarily
small (on the order of the state localization). In this
geometry, it is sufficient to consider only states trans-
mitted from x, to Xg with a momentum k > 0. All the
sates are determined on asingle branch of thelight cone
T =X-—t(c=1). The Hilbert space of carrier statesis
¥, O C?, where K, refers to the spatial and C?, to the
internal (polarization) degrees of freedom.
Let us consider apair of orthogonal states

_ 1 g
W, 0= ﬁ{f(k)|km(|+mt| Dak, (1

where |£[1] C? are the orthogonal basis states and

00

[k|kO=8(k—K), kK >0, J'lf(k)lzdk = 1.
0

In the coordinate representation, the states on the
branch of a one-dimensiona light cone can be written
as

00

W, 0= —[15 j F(U) T (O 0,

T = X—t, 2

0= (e'“"k@k, f(t) = [ f(k)dk.
| I

The basis st { |1} is nonorthogonal to:
muEd(T—-1)£0(t—-T1).
A measurement capable of reliably distinguishing

the given pair of orthogonal statesis represented by the
expansion of unity in #, J C? (and, by the same token,
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in #, O C2, where ¥, is the space isomorphous to #,
and spun on the basis set {|1[J.

The measurement is represented as
.A/L0+M1 = IkD Icz,

Mo,l =
Po

IkD@O,l = ITD@O,l!
|ODKM1 @)1 = |1|:|:|1Iv

1 1
o= —(+& -0, [10= —(+G-|-0,
I ﬁ(l 0, | 2(I -0

7

<) [

= [Rimjdr = [.(dv),

©)

I, = J’|kD]R|dk = 1,
0
. . (4)
0 —ikt ad iK't g
M(dt) = B’e |kE1IGB’e K|dkOdr.
0 a 0 2

Note that measurement (4) is nonlocal on the light
cone.

The carrier of state f(1) on the light cone can be
selected arbitrarily strongly localized in the limit as
[f())? — O(t). Strictly speaking, according to the
QFT, the states preset on amass surface cannot possess
a compact carrier in Minkowskian space-time. How-
ever, it is possible to construct an arbitrarily strongly
localized state with the tails arbitrarily close to expo-
nential [18]. The latter circumstance implies that we
may select atime “window” At such that the probabil-
ity of detecting the state in this time interval would be
arbitrarily closeto unity. Let usassumethat the state (in
fact, the norm of the f(1) packet) and the interval are
selected so that the probability of detection outside the
time window At (dueto thetails of the state not accom-
modated within At) can be made arbitrarily (exponen-
tially) close to zero. This parameter will be considered
as the smallest in the problem. More precisdly, the
probability of the results of measurements of the input
states |y, ;Owithin the time window At in channel 0
(corresponding to %) and channel 1 (corresponding to
%) has the form (see formula (4)):

Pr{Ar, |qu, 1|}

o O 0 0
= TFDDDI M(dtO 0 Py, Yo, 1 Mg 40
DDElAT D D D
AT
= Ilf(r)lzdt =1-9,
AT

wherethe parameter d isrelated to thetail of the state as
J’ |f(1)|°dt = 53—~ 0.

[T >At
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In other words, the problem has two independent
parameters: the window At characterizing localization
of the state (thisinterval is selected so asto provide that
the integral of the squared amplitude of the state f(1)
would be arbitrarily close to unity) and the spacing 14
characterizing the separation of two “haves’ of the
state (this quantity must be selected such that the tails
of the two “halves’ would not touch one another to
within a preset accuracy, AT < t4). For convenience,
below we will consider the state carrier as compact
(with an alowance for the above restrictions) because
this assumption will not affect the final results.

It is necessary to point out the following. The mea-
surement under consideration cannot be considered as
ameasurement lasting for the time At. For every event,
the result of a measurement (i.e., the reading of a clas-
sical instrument such as a photodetector with a suffi-
ciently small (formally infinitesimal) time constant
operating in a standby mode) appears at arandom time
instant within (t, T + dt) at a probability density of

Pr{dt, [y, .

= Tr{ ((M(dT)) O Po 1) Wo Mg} = [F(1)|°dt.

Thisinterpretation is natural and agrees with the classi-
cal limit, whereby aclassical signal is measured with a
time shape of f(T).

Let the state |y, C(or |Y,0) be prepared by the time
instant T; (with an accuracy of At, for which purpose it

IS necessary to control a space-time region with a size
of A1):

0

Wo,, 0= :/l—é.[(f(T —T) [ (FLE FOydr. (5)

Thisisfollowed by the unitary transformation indepen-
dent of the state:

[Wo,1(Tg) U= U 0

00

- %Zj'(f(I—ri—Td)hED HO (6)

+f(t—1) I |-Odr.

The accuracy of the moment of preparation is deter-
mined by the width of the state carrier f(1).

The matrix elements of the unitary operator are as
follows:

HIFUROFO= o,(T—-T'—14)
=IeXp{ik(T—T‘—Td)} , (7
0

HE|URQ-O0= 8,(1-1), FE|URDFCEO.
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This unitary transformation is nonlocal on the light
cone T = X —t (for 14 # 0); the latter condition implies
that realization of thistransformation requires accessto
aregion with the size 14 (to within an accuracy of At)
on the light cone. The physical meaning of this unitary
transformation corresponds to a time shift (delay) of a
“half” of the state with a polarization component |-
Thetransformation realized for afixed x (i.e., localy in
the space of coordinates), requires a time At = T4
(because T = x —t); the transformation performed at a
timeinstant (but nonlocally in space) requires a coordi-
nate space region AX = ct4(c=1).

Note that the space-timeinterval T4 on the light cone
branch is independent of the reference frame because
the light cone is invariant with respect to the Lorentz
transformation. For thisreason, an eavesdropper cannot
make use of the twin paradox [17].

The stretched sates |Yy(ty)Dand |, (T4)Care orthog-
onal. However, the property of being orthogonal is non-
local, which means that the verification of orthogonal-
ity requires access to a space-timeregion (interval) =1,
with an accuracy of At — 0. In other words, the
orthogonality is a nonlocal property in the Hilbert
space #,, meaning that all the states [tCon which 7€, is
spun (or the space-time region T = 14) must be accessi-
ble.

All the nonrél ativistic quantum cryptography proto-
cols imply that the Hilbert spaces of states are always
accessible to both legal parties and an eavesdropper. In
the relativistic case, the access can be controlled using
the effects of state transmission from the regions mon-
itored by legal parties to the region accessible to the
eavesdropper. The “extension” of states and the limita-
tion of ultimate transmission speed for both classical
and quantum states allows the protocol to be written so
asto provide that the whole state is never accessible to
the eavesdropper. More strictly speaking, reaching the
whole state requires that the entire interval in which the
stateis present would be accessible. However, attempts
at accessing a finite space-time region will result in an
unavoidable delay in the state detection by alegal party
because of the finiteness of the speed of light. Thiscir-
cumstance makes insignificant the collective measure-
ments, which are effective in the nonrelativistic case
(where the entire space of states is accessible for al
parties involved in the protocol) and are so difficult to
consider in the proof of unconditional security. Thus,
we may consider only the individual measurements in
every transmission, since any attempt at eavesdropping
is recognized by a delay in each message detection by
the legal party.

If a2T-wideinterval T, centered at t,, such that T, =
(-T+1o T+ T) and 2T < 14 + At, isaccessible, then no
one measurement on the states |iy(ty) Cand |, (t4) Cwill
distinguish these states (which therefore appear as the
same state). This is formally manifested by restriction

of the density matrix to a subspace 7€ +_spun on the |10
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states with the carrier belonging to the T, interval. The
density matrix is

o0 O 0 O
Pr = TFE%M(dT)DD | AWo, 2(Ta) Mo 1 (Te)ID
013 m m O

_1 2
= 2J’lf(T)I dr O [+

To

(8)

1 2
+ §I|f(r—rd)| dr O IH.
TO

If the interval Ty < 14 + At does not simultaneously
cover the carriers of states with various polarizations
(see figure), then only one of the functions f(t) or f(T —
Ty) is nonzero. Thus, the measurements in the space-
time region (in the interval T, < 14 + AT) are incapable
of distinguishing the orthogonal states. Therefore, the
probability of distinguishing these statesis 1/2 (simple
coin tossing). The limitation of the ultimate transmis-
sion speed implies that the time of access to any inter-
val 14 cannot be smaller than the magnitude of this
interval.

3. DESCRIPTION OF PROTOCOL

Legal parties A and B (henceforth “Alice” and
“Bob”) can monitor the vicinity of points X, and xg
(Xa < Xg), respectively (see figure). The clocks of Alice
and Bob are assumed to be synchronized. The size of
the monitored regions must be Ax, g ~ At. The known
width of the state carrier (AT — 0) is the smallest
parameter in the problem. The channel length (xg —
Xa = Top,) iS@so known (although the absol ute accuracy
isnot required).

1. Alice prepares a message corresponding to states
O or 1 a arandom timeinstant t; (to within At):

W 1 0= %2 j f(r-t =Tl D (e 0dr, -

Theintegration with respect to dt in (9) isformally per-
formed over the entire branch of the light cone, but
actually the state is formed with the participation of
only the basis set vectors [T(from the interval At.

2. A half of the state (component |+ is submitted to
the channel, while another half (component |-0) is kept
as described by the unitary transformation U,(ty) (this
interpretation of the unitary transformation is quite nat-
ural because U,(14) has matrix elements with a shift
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along the light cone only for components with the
polarization |+0):

[Wo,1(Ta) = Ua(Te) [Wo, 10

00

- %Zj’(f(T—Ti—TA—Td)l'*‘D (10)

+f(1—-1,-1,)F0 O [t dr.

This transformation is nonlocal and its realization in
the vicinity of x, requiresthe time 1, irrespective of the
state (O or 1).

3. Transmission of the state message from Alice to
Bob is formally described by the unitary translation
U(ty,) aong the branch of the light cone for a time
interval Ty, (T, = Xg — Xa):

NJo,l(Tch)D: U(Tch)NJo,l(Td)D
=%2£(f<r—ri—u—rd—uh>|+m (12)

+f(T-T,—-T,—T) -0 O [tdrt.

4. Bob performsthe unitary transformation Ug(—T,),
which is independent of the input state and combines
the two “halves’ together (a back shift of the [+[com-
ponent toward |-Jcan be implemented using beam
splitters, mirrors, and delay lines):

Ug(=Tg)[Wo, 1(Tcn) U

00

= Lot taet ) (FCE LD O p. D
,\/é:[) i A ch .

The form of matrix elements of the operator Ug(—T,) is
analogous to that for the operator U,(ty) with the sub-
stitutionty — —Tg:

HEUg(—Tg)[t0= 0.(T-T' - Tq),

HE|Up(-Ta) t-0= 3.(T-T),
[ @ Ug(—Tq) [t U= 0.

5. Upon accomplishing the transformation Ug(—T,),
Bob performs the measurement realizing the unit
expansion according to (3) and (4). The space of the
measurement results representstheset © ={i, 1:i =0,
1; T O (=0, )} (where index i = 0,1 describes the
eventsin channels 0 or 1, respectively):

00

[ O (Po+Py) = 1,0l (13)

The measurement describes the probability of obtain-
ing the result within the interval At in the channel 0 or
1, whichis given by the following expression:
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Pr{(AT)} = J’|f(r—ri—rA—rch)|2dT. (14)

The result is nonzero if the interval At covers the state
carrier. Since the states are orthogonal, the events in
Bob's detection channels uniquely coincides with
Alice's messages (noise ignored).

The selection of 14 > 1, implies that only a part of
the state is always available in the channel (only a part
of the space of states ¥, is accessible). The accessto a
part of the space of states guarantees that the informa-
tion about the state in the channel is zero (the probabil -
ity of distinguishing statesis 1/2). Because the ultimate
transmission speed is limited, reaching the second
“half” of the state requires accessto the interva T > 14 >
T, Which unavoidably leads to a delay in the moment
of message detection at Bob's site

6. Bob communicatesto Alice (viaapublic channel)
the moment of detecting the 1 state (because the (1)
carrier width is small, this moment is known to within
At — 0). If there were no detection at all, the given
message is rejected. Upon receiving Bob's message on
the detection time, Alice communicates the emission
time T1;. If the detection time at Bob’'s siteistg =1, +
Ty + T, (to within At), the transmission is accepted.
Should a delay in detection be found (exceeding tg),
the transmission attempt is rejected.

A point of principal importance is that the absence
of delay in detection at Bob's site guarantees that an
eavesdropper has zero information about the state
transmitted by Alice (with a 1/2 probability of distin-
guishing the states). Deviation of the probability from
1/2 isdetermined by exponentia tails of the state which
can be made arbitrarily small by stretching the state
“halves’ (increasing 1) In the absence of delay of a
compact state carrier f(1), theinformation gained by the
eavesdropper on the transmitted state is definitely zero.

7. An eavesdropper has no information about the
remaining messages, but the channel noise (decoher-
ence) results in that the 0 and 1 sequence available to
the legal parties is not yet identical. The discrepancy
can be brought both by eavesdropping attempts and by
natural noise. For example, the eavesdropper may
detect the first “half” of the state transmitted by Alice.
This registration can be performed within a time
At — 0 (this allows the eavesdropper to determinei).
Then, immediately upon detecting the message, the
eavesdropper prepares an arbitrary message with the
f(t) carrier, which, while not producing any detection
delay at Bob's site, will be inconsistent with the state
transmitted by Alice and interpreted as the channel
noise. According to (8), the probability of determining
the moment of message transmission by the eavesdrop-
per is 1/2 (because only half of the state is accessible);
note that the fact of signal detection by the eavesdrop-
per provides zero information about the state, the prob-
ability of guessing the state being 1/2. The complete
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probability of correctly determining the state transmit-
ted via the channel is 1/2 x 1/2 = 1/4. Note that the
probability of correctly guessing the state in each mes-
sage by the eavesdropper doing nothing at all (coin
tossing) is also 1/2. At first glance, thisis rather unex-
pected: the eavesdropper has access to the communica
tion channel, but the probability of detecting states is
reduced by half as compared to the case of guessing
without access to the channel. However, there is noth-
ing surprising in this fact because ssimple guessing
refers to one of the two possible states (0 or 1). In the
case of detection, it is necessary to determine addition-
aly the moment i of message preparation (in order to
avoid the message being rejected by the legal parties),
while the probability of detecting the state half is 1/2.
In the case of access to the communication channel, the
probability of misinterpretation of the transmitted state
(3/4) includes the probability (1/2) of incorrect deter-
mination of the very fact of any message preparation
within the given time interval. Since the fact of detect-
ing a message provides zero information about the
state, the eavesdropper may only guess it, the probabil-
ity of whichis 1/2.

Thus, if the legal parties accept only messages
received without delay (more precisely, if adelay does
not exceed 14 + 14,), thisfact guarantees that the proba-
bility of determining the transmitted state by an eaves-
dropper does not exceed 1/4, which is only half of the
probability of correct guessing without intervention
into the communication channel.

Thus, there arises a quite curious situation not
encountered in the nonrel ativistic case. From the stand-
point of an eavesdropper, the purpose of which is to
obtain maximum information about the key sequence at
aminimum probability of being disclosed by legal par-
ties, a correct eavesdropping strategy consists in
attempts of simply guessing (which requires no access
to the secure channel) of what is sent in each transmis-
sion event. Here, it is sufficient to access only the clas-
sical (public) channel so asto know the total number of
received messages; this channel isaccessibleto al par-
tiesin the quantum cryptography tasks. In this case, the
probability of disclosing the eavesdropper is zero
because no disturbances at all are introduced into the
communication channel. The intervention into the
communication channel only has sense when the prob-
ability of obtaining the required information (per mes-
sage accepted by the legal parties) exceeds the proba-
bility of coin tossing (1/2).

Thus, the maximum probability that each state trans-

mission attempt undertaken by legal parties is correctly
identified by an eavesdropper does not exceed 1/2.

8. Now we have only to solve the problem of key
identity at thelegal parties. Let usfirst consider anoise-
less communication channel. Upon termination of the
data transmission session involving 2N messages, Alice
and Bob perform aprocedure consisting of m< 2N runs
of random hashing (parity check with a random bit
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sequence; for detail see[19]). After each run, the length
of the 2N-bit sequenceisreduced by two bits. If the par-
ities coincide in all m hashing runs, the probability that
the remaining 2N — 2m sequences may differ does not
exceed 2™ Thisimpliesthat Alice and Bob possessthe
same key with a probability exponentially approaching
unity. According to the above considerations, the prob-
ability that an eavesdropper obtained reliable informa-
tion about the key and remained undisclosed does not
exceed 2-2N-m),

Now let the channel be noisy, which is manifested
by detection errors at Bob's site, for example, asaresult
of the polarization rotation. Let the probability of this
event (Alice sends 0, Bob detects 1 or vice versa) be
p < 1. As above, the legal users accept only messages
involving no time delay. Upon accomplishing the ses-
sion involving 4N messages accepted, Alice and Bab
decode 2N messages and evaluate the level of noisein
the channel (p value). The knowledge of the probability
of error in sending asingle bit allows, in principle (pro-
vided a sufficiently long sequence is used), selecting an
appropriate classical block code [20] that effectively
reduces the error of transmitting coded words down to
an arbitrarily low level.

For example, Alice communicates to Bob (via the
public channel) only the numbers of messages trans-
mitting state 1 (combined in groups of 2k messages)
and the same for state 0 messages. This yields 2k-sized
blocks (coded 1 and 0). Then, using a majority vote,
Bob proves the errorsin each group (this coding allows
k — 1 errorsto be corrected), after which the blocks con-
taining k errors are rejected (Bob informs Alice about
the numbers of these groups via the public channel).
The probability of error in the remaining groups does
not exceed p¢ < p. Now the legal parties obtain a

sequence of 2N -sized groups (withnew 1 and 0). This
isfollowed by ahashing procedure of mruns ana ogousto

that described above, which yields a Z(N — m)-long
sequence. The probability that the remaining sequence

with the length 2(N — m) is identical for both parties
(provided that the parities in these sequences coincide
in all mhashing runs) isnot lessthan 1 — 27N ™™ .

The block coding is only necessary in order to
increase the probability of survival for the sequence
retained upon hashing. The hashing procedure can be
performed for the initial (rather than block) sequence.
However, in this case the probability that hashing will
reveal no parity breakdowns in the noisy channel is
small. Nevertheless, a sequence that has passed the test
is secure and identical (to within the above probabili-
ties). The probability that an eavesdropper obtained
reliable information about the key and remained undis-

closed is certainly less than 2 2M~™ (it insufficient to
know one bit in each code group). The proposed simple
coding scheme is apparently not optimum but provides
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asimple and clear formulation of the relativistic quan-
tum cryptography protocol.
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Abstract—TheK-entropy and thet,,, time of dynamical memory (thetime of forgetting initial conditionsduring
numerical integration) of aclassical system of particles whose interactions are governed by the L ennard-Jones
potential were calculated by the method of molecular dynamics. The K value was a characteristic of a system
of many particles, and the t,,, value proved to increase logarithmically as fluctuations of the total energy of the
system decreased; that is, as the accuracy of numerical integration increased. Two different K-entropy values
corresponding to the same total energy of the system were found to exist, namely, K for the equilibrium and

K, for the nonequilibrium state. The rate of kinetic energy relaxation (tr_l ) was shown to egual K,,, and the K,

value was found to be a more fundamental characteristic than t,_l . The density dependences of K, (monotonic)

and K, (nonmonatonic) were calculated. The transition from dynamical (Newtonian) correlationsto stochastic
for the velocity autocorrelation function was considered. The reasons for the finiteness of dynamical memory
in physical processes are discussed. The duration of dynamical correlationsin real systemsislimited by quan-

tum uncertainty and is of the order of picoseconds. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The arising of irreversibility, stochasticity, and
chaos in dynamical systems has been studied in many
works (e.g., see [1-20] and the references cited
therein). Of great interest is the divergence of trajecto-
ries and the K-entropy characterizing this divergence
(the Krylov—Kolmogorov entropy and the mean maxi-
mum Lyapunov exponent). The K value is aso the rate
of entropy increase[1, 9, 10], that is, K* isan important
relaxation time.

The 1, time of behavior predictability was intro-
duced in [3-5]. This value characterizes the time inter-
val for which the future behavior of adynamical system
can be predicted from the initial conditions by deter-
ministic dynamical equations determining the evolu-
tion of the system. Mentioned among the reasons for
the finiteness of 1, [3-7] were measurement noise,
fluctuation forces, and inaccurate knowledge of the dif-
ferential equations that describe the dynamical system.
The vaue to which T, tends in the limit of negligibly
low measurement and ignorance noises was called
the predictability horizon, 1,. Both 1, and 1, are pro-

portiona to )\11, where A, is the largest positive

Lyapunov exponent, and the proportionality factor log-
arithmically depends on the noise level. It was also

assumed that the correlation time of the system is T, =
0.5\;" [3-5].

Zadlavskii [1] usesthe terms “K-entropy” and “ cor-
relation splitting time t.” The K value corresponds to
the A, value averaged over the phase space, and 1 cor-

responds to T, It was, however, assumed that T = K.

A particular case of dynamical systemsis classical
many-particle systems. Such systems are numerically
studied by the method of molecular dynamics. Theidea
of the method isvery simple: all possible classical sys-
tems and media are simulated by a set of N moving
atoms and/or molecules, which interact with each other
(e.g., see [10, 11, 18, 21-25]). The numerica integra-
tion of the corresponding system of Newton equations

mITO - e, )
dt?
or
dv(t)
m&8 = E ), (28)
dri(t) _
T vi(t), (2b)
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isintegrated for each particle to determine the trajecto-
riesof al particles. Here, m, v, r;, and F; are the mass,
velocity, and coordinate of the ith particle and the force
acting on this particle, respectively (i=1, 2, ..., N); the
v; and r; values explicitly depend only ontimet; F, only
depends on the coordinates of particles; r(t) isthe set of the
coordinates of al particles, r(t) = {ry(t), ro(t), ..., ry(t)};
v(t) is defines similarly; and

—a%i ), 3

where U isthe potential energy. For instance, for ad(r)
pair interparticle interaction potential,

U(ry,rop...,fy) = Z¢(|ri—rj|). 4
i>]
Function U (forces F) are assumed to be given in the
method of molecular dynamics. The total energy of the
system (E) is the sum of the kinetic T and potential U
energies,

F = U(ry,roy, ...

E=T+U, (5)
" mv?

The solution to system (1) or (2) gives the trgjectories
of particles{r(t), v(t)}.

Set (1) or (2) is exponentially unstable for a system
comprising more than two particles (e.g., see[1, 9, 10,
18, 21-24]). The parameter that determines the degree
of instability, that is, the rate of divergence of initialy
close phase trgectories, is the K-entropy. The
K-entropy values were calculated by the method of
molecular dynamics for system of neutral [10-14, 17—
20] and charged particles of two- [26] and one-compo-
nent [27—29] plasmas. In [30], the notion of dynamical
memory time t,, (the time of forgetting initial condi-
tions) was introduced. The t,, value is determined by
the accuracy of the numerical integration scheme [17—
19, 26-30]. The t,, and t;, values [3-5] are similar in
nature, their difference is caused by the difference
between the noises to which they correspond. The
K-entropy values were calculated in [10-14, 17-20,
26-30] for equilibrium systems only. In [1, 3-30], no
distinction was drawn between equilibrium and non-
equilibrium systems.

In thiswork, we consider both equilibrium and non-
equilibrium two- and three-dimensional systems of
particles whose interactions are governed by the Len-
nard-Jones potential

12 6
U= 4{%@ —%EJ. 7)

We use reduced unitsinwhichm=¢=0=1, and time
is measured in (mo?/€)¥2 units. For instance, for argon,
€=1.65324 x 102 J, 0 = 3.405 x 101 m, m= 6.64 x
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102 kg, and (mo?/€)V? = 2.16 x 10 s. The calcula-
tions were performed in the density range p = mn =
(0.1-1.1)mo~Y3. Periodic boundary conditions were
used. The number of particlesin the principal cell was
varied in the range N = 16-216. In Section 2, the K and
t,, values for an equilibrium system are calculated and
the dependence of the Kt,,, value on total system energy
E fluctuationsis determined. In Section 3, the existence
of two different K-entropy values for the equilibrium
and nonequilibrium states is considered. The rate of
kinetic energy relaxation is shown to coincide with the
nonequilibrium K-entropy value. In Section 4, we
describe the transition of time correlations from
dynamical to stochastic as the time interval increases.
The physical meaning of the maximum dynamical
memory timein real systemsisrelated to low but finite
guantum uncertainty noises, which exist in all classica
systems. This result is directly related to the Landau
hypothesis[2] of the quantum nature of irreversibility.

2. EQUILIBRIUM SYSTEM
2.1. Model and Method of Calculations

For a given U function and particles of the same
mass m and for identical initial conditions correspond-
ing to theith point on an equilibrium mol ecular-dynam-
ical trgjectory, solutions {r(t), v(t)} to system (2) are
found in steps At and trgjectories {r'(t), v'(t)} are cal-
culated in steps At'. Averaged differences of the coordi-
nates (velocities) of thefirst and second trajectories are
determined at coinciding time moments,

N
1 1

v Oa= 5 (Vi) - Vi),
i (8)

1 1

[Ar(t)0 = Nz(rj(t)—rj(t))z.
i

To improve accuracy, averagingoveri,i=1,2,...,Mis
also performed. In some time t; (this value should be

considered separately), the differences become expo-
nentially increasing (Fig. 1),

MvA(t)D = Aexp(Kt), [Ar’(t)J= Bexp(Kt). (9)

TheK valueisthe K-entropy, and the A and B values are
determined by the difference of At and At'. At

o 1), 0BT 10
t> = 2N =7, (10)
where T is the temperature, saturation is reached,
MvA(t)0= 20070 = 6kT/m,
(11)

[Ar?(t)d = 6D(t—t,,) + [Ar’(t,)0

where 3KT/misthe square of thermal velocity v and D
is the diffusion coefficient. Estimates show that
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DArY(t,)0=r,,, wherer,, = (J/2n0) " is the mean path
of particles between collisions.
The dynamical memory time is determined by cal-

culating t,, at the same At value and different At' val-

ues of At/2, At/5, At/10, etc. (Fig. 2). The limiting t;,
value when At'/At — 0 isthe dynamical memory time
t,, for a given system and the selected numerical inte-
gration step At. During numerical integration, the sys-
tem completely “forgets’ its initial conditions in time
t,, and the calculated molecular-dynamical trajectory
completely ceases to correlate with the initial Newto-
nian trajectory.

The K-entropy (and t,,) values weakly depend on N
[20] starting with N ~ 10 (Fig. 3).

2.2. K-entropy and Memory Time

The K values are interpreted in the literature [1] as
the rate of entropy Schanges caused by dynamical mix-
ing of trajectories, and the K value is assigned the
meaning of thetime of correlation decoupling (see adso
[9, 10]). To consider these statements in the context of
molecular dynamics, let us briefly recall the reasoning
givenin[1, 9, 10].

The entropy Sof a subsystem is given by [1]

S = kInArl', (12

where Al is the size of the phase space region where
the subsystem resides in equilibrium for amost the
whole time. Consider the evolution of some small ini-
tially compact Al phase volume element. By virtue of
the Liouville theorem,

AT (t) = AT, (13)

The structure of the phase volume, however, changes.
Thetrajectoriesthat had close pointswithint Al asthe
initial conditions exponentially diverge as time passes.
As the volume remains constant, its structure becomes
increasingly cut and stretched, and hollows are formed
inside. The envelope of this structure bounds increas-

ingly large volume AT (t) . From (9), we obtain the esti-
mate

AT (1) = AT €™, (14)

and if aformulaof the A" = (4/3)1r3 typeis used, then
h coincides with the K entropy within a factor. It fol-
lows from (12) and (14) that h ~ K isindeed the rate of
entropy changes caused by dynamical mixing of trajec-
tories[1, 9, 10].

It follows from our calculations that time t,,, can be
interpreted as the time during which phase volume
AT () attainsits maximum value Al .., and the entropy
reaches the maximum value that corresponds to the
equilibrium phase tragjectory which is studied in molec-
ular dynamics calculations. In other words, time t,, is

10! . . .

10°
10—1 L
10—2 L
1073
104
1073
10°6
107

—8 1 1 1
10 0 2 4 6

Fig. 1. Normalized averaged differences of (1) velocities
Dv(t)Dand (2) coordinates Ar%(t)dat coinciding time
moments along two trajectories calculated for identical ini-
tial conditions in steps At = 0.001 and At' = 0.0001; L isthe
calculation cell edge length, N=64, p=0.5,and T = 0.44;
three-dimensional system (d = 3).
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Fig. 2. Dependence of t., on At'/At for various At values:

At = (1) 0.01, (2) 0.005, (3) 0.001, (4) 0.0005, and (5) 0.0001
(the leftmost points of lines 1 and 2 correspond to At' =
0.00001); N=64,p=0.5T=0.44,andd = 3.
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Fig. 3. Dependence of K-entropy on the number of particles
Natp=0.5T=044,andd=3.
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(2) Lennard-Jones system with N = 64, p = 0.5, T = 0.44,
and d = 3 and (2) nonidea plasma[26].

the time of complete filling of the phase volume in
which the subsystem (the molecular-dynamics cell at
given temperature T) or, more exactly, the phase point
representing this system travels along the molecular-
dynamics trajectory. During each subsequent t,,, inter-
val of this trajectory, the procedure of complete filling
of the Al' .. phase volume repests itself.
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By the meaning of calculations, t,,, isalso thetime of
correlation decoupling (in terms of [1]); that is, t,, = T.
Clearly, contrary to the T = K- assumption madein[1],
the K and t,, values may be substantially different.
There is not only a qualitative but also a fundamental
difference between K and t,,,. The K valueis acharac-
teristic of the many-particle system under study and
does not depend on the accuracy and scheme of numer-
ical integration. In contrast, thet,, value depends on the
accuracy of numerical integration, which, in this case,
plays the role of a coarsening process.

In [1], coarsening parameter € was introduced
which was supposed to decrease to zero in the end of
derivations. It was assumed that the result for the time
of correlation decoupling was independent of € and
remained finite when € — 0. In molecular dynamics,
theroleof € isplayed by the accuracy of numerical inte-
gration. Clearly, t,, — o ase€ — 0. Asin [1], the
K-entropy is ametric invariant and does not depend on
the coarsening procedure when ¢ — 0.

2.3. The Dependence of Kt
on At and [AE?0]

The calculated dependences of Kt,,, on At and [AE?[]
are shown in Fig. 4. The Kt,, value logarithmically
increases as the numerical integration step decreases.
This result can be obtained from (9)—<(11) on the
assumption that A ~ (At)", where nis determined by the
order of accuracy of the numerical integration scheme.
Indeed, at timet =t,,

6kT/m = 20/ 0= A v3(t,)0 = Aexp(Kt,). (15)
Taking the logarithm of (15) yields

Kt, = —nlIn(At) + congt, (16)
or, in another form,
K(tml_tmz) = n|n(At2/At1), (17)

wheret,; and t,, are the memory times for the At; and
At, values. This result does not depend either on tem-
perature, density, or the special features of the system
under study.

Because of the approximate character of numerical
integration, energy E [Eqg. (5)] is only constant in the
mean. The E value fluctuates about the mean value
from step to step, and the trajectory obtained in molec-
ular dynamics calculations does not lie on the E = const
surface, in contrast to exact solutions to Newton Egs.
(1) and (2). This trajectory is situated in some layer of
thickness AE > 0 near the AE = const surface [18, 19].
The AE value depends on the accuracy and the scheme
of numerical integration [18, 19, 31-34], and [AE*(J~
At". 1t follows from (16) and (17) that

Kt, = —In(CETD) + const, (18)
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D 2
K(th —tme) = InD%-E—z—%. (29
OAED

The results for a Lennard-Jones system and the
results obtained in [26] for a nonideal plasma are
shown in Figs. 4 and 5. The calculation data well fit
Egs. (18) and (19).

Equation (19) relates the K-entropy and the dynam-
ica memory time to the noise level in the dynamical
system. This equation corresponds to the concepts
developed in [3-7]. Recall that, according to [1],
Kt — ty) = 0 for the time of correlation decoupling
and does not depend on the noise level.

2.4. Selection of the Accuracy of Numerical Integration

The scheme and step of numerical integration
should be selected to satisfy the condition

T, <t,<t,/M, (20)

where T, isthe relaxation time of the dynamical process
under study, t, is the trajectory length, and M2 is the
required accuracy of averaging the results. The right-
hand side of inequality (20) corresponds to the obvious
statistical independence of phase molecular-dynamics
trgjectory points spaced t,,, gpart. The actual accuracy of
averaging may therefore even be expected to exceed M2,

3. NONEQUILIBRIUM SYSTEM
3.1. Model and Method of Calculations

In nonequilibrium state cal culations, the parameters
of the system are the same as with the equilibrium state.
The initial conditions are selected as a square or cubic
lattice of particles moving at low velocities. Kinetic
energy [V2(t)[values and vel ocity (A v2(t)Cand coordi-
nate [Ar?(t)Odivergences are calculated. We used Eq.
(8) for two phase trgjectories, the initial conditions for
which first differed by a small random value. No aver-
aging over M was performed.

3.2. Two K-entropies, Nonequilibrium and Equilibrium

Calculations show that a nonequilibrium system is
characterized by the presence of two exponential por-
tions (Fig. 6) of the [A v2(t)Cand [Ar?(t) Idependences.
The first portion corresponds to the evolution of the
system up to attaining equilibrium (K, is the nonequi-
librium K-entropy value), and the second portion
begins after equilibrium is reached (K. is the equilib-
rium K-entropy value). The K-entropy is constant dur-
ing relaxation at the first stage, although the ratio
between the kinetic and potential energies substantially
changes as trajectories diverge. We therefore cannot
treat the K-entropy as a function of temperature. Nor
can it be treated as a function of the total energy of the
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Fig. 6. Normalized time dependences of (1) the kinetic
energy of the system, (2) divergence of coordinates, and
(3) divergence of velocitiesin anonequilibrium systemwith
N=64,p=05andd=2.

system a a constant density, because the K value
changes after the attainment of equilibrium; that is, at
the same total energy vaue, there exist two
K-entropies, equilibrium and nonequilibrium. Never-
theless, the K-entropy retains its meaning as the rate at
which entropy increases.

3.3. Relation between Nonequilibrium K-entropy
and the Kinetic Energy Relaxation Time

Slopes (on the logarithmic scale) of the exponential
portions of the time dependences of the kinetic energy
and divergence of velocities coincide in all numerical
experiments within statistical errors (Fig. 6). This coin-
cidence is observed for both two- and three-dimen-
sional systems. It follows that the nonequilibrium

K-entropy value coincides with T,*, where T," is the
kinetic energy relaxation rate. Time T, therefore
acquires the meaning of the reciprocal velocity of mix-
ing trajectories.

By analogy with t,,, we can introduce time t, at
which the kinetic energy of the system attains equilib-
rium. During kinetic energy T relaxation, the T(t)
dependence obeys the equation

T(t) = Toexp(Kyb), (21)

where T, is the initial nonequilibrium kinetic energy
value. Then,

/T, = Kt = In(T/Ty), (22)

where T is the equilibrium kinetic energy value. Pre-
cisely t, rather than 1, is the kinetic energy relaxation
time. Time t, during which kinetic energy attains equi-

No. 5 2001



884

0_ T T
1 21 & RS g
v o g o
2 o »
2 VT |:|D J.
i D)
1 2
boe 0959° %og00 00 %0 'fo‘ n"‘ ()0
. |:f] * o ./
* e F p Vr

10~ 101 _
/
o /
[m} /
o /
I:ID /
a /
2‘:||:| ,
[u] /
o /
/
10201 & , _
/
. 1 1
0 2 4 6

Fig. 7. Normalized time dependences of (1) the kinetic
energy of the system and (2) divergence of coordinatesin a
nonequilibrium systemwithN=64,p=1.1,andd = 2.

K
25 T T

20

T
*
I

15

10

* + +
o, + F
Sr + ¥ 5+ % 7
.

+ 3
*
1 1
0 0.4 0.8 1.2
p

Fig. 8. (1) Equilibrium and (2) nonequilibrium K-entropy as
afunction of density; N=64andd = 3.

librium is much longer than time 1,; for instance, t, =
201, in Fig. 6.

To determine which of the two values, 1, or K, is of
primary importance, calculations for the initialy
closely packed lattice were performed when the mean
kinetic energy of particles for a long time (compared
with 1,) remained unchanged on average (Fig. 7). The
|attice remained in a state similar to metastable, and the
trajectories exponentially diverged at rate K. After
some time, the kinetic energy, however, began to
increase and relaxed to the equilibrium value, and in

this experiment also, the equality T," = K, held. It fol-
lows that the K, and rr_l values coincide even when
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kinetic energy relaxation does not occur simulta-
neously with the divergence of tragjectories. It can there-
fore be stated that the K, value determines the rate of

Kinetic energy increase, and K;l is the characteristic

relaxation time, which manifests itself both in the
divergence of trgjectoriesin anonequilibrium state and
when the kinetic energy attains equilibrium.

Theinitial (metastable) regionin Fig. 7 isoutwardly
similar to the dependence shown for the equilibrium
system at the right of Fig. 6. The K value for this state,
however, equaled the nonequilibrium K, rather than the

equilibrium K, value; that is, it equaled the T, value

that appeared later, when the kinetic energy began to
relax to equilibrium.

The difference between K, and K, was studied in a
wide density range (Fig. 8). The calculations showed
that the K ,-entropy had anonmonotonic density depen-
dence. This dependence differed from the monotonic
(asin[20]) density dependence of the K-entropy of the
equilibrium system.

3.4. Selection of Numerical Integration Accuracy

In studying nonequilibrium systems, it suffices to
require that t, be approximately equal to t,. It is, how-
ever, then necessary to perform averaging over the dis-
tribution of initial configurations corresponding to the
problem to be solved; that is, length t, should be calcu-
lated for each statistically independent initial configu-
rations. Their number M determines the accuracy of
averaging M2, The selection of the ensemble of initial
configurations is a separate problem.

4. THE PHYSICAL MEANING OF DYNAMICAL
MEMORY TIME AND THE ROLE IT PLAYS

Compare the dynamical memory time with the char-
acteristic times of the vel ocity autocorrelation function.
The results for this function are shown in Fig. 9. The
region where velocity autocorrelation function values
exceed 10! corresponds to times shorter than memory
time t,,. It follows that correlations in this region are
dynamical correlations which follow from the Newton
equations. Correlations in the tail of the velocity auto-
correlation function occur in the time region where
dynamical memory of the initial conditions is not
retained; that is, these correlations are of a stochastic
rather than dynamical nature.

It would beinteresting to study the question whether
or not memory time variations caused by increasing the
accuracy of numerical integration influence the charac-
ter of correlations in the region of the transition from
dynamical to stochastic correlations. Computationally,
thisis not a simple problem. It follows from (18)—(19)
and Figs. 4 and 5 that t,, grows no faster than logarith-
mically as the accuracy of numerical integration
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increases. The available computation facilities allow
AE to be decreased by only 5 orders of magnitude even
with the use of refined numerical schemes [32-34].
This would only increase t,, two times. It follows that
the region of stochastic correlations would neverthel ess
remain in the time interval of velocity autocorrelation
function calculations [35]. The time of the transition
from dynamical to stochastic correlations for various
integration schemes depending on temperature, den-
sity, and the mass of particles requires additional con-
Sideration.

At the same time, the problem of excessively
increasing t,, is of no concern for physics. Recall that
there exist physical factorsthat lead to finite dynamical
memory times in real systems also [3—7, 15, 16, 36].
The errors of the numerical scheme play the role of
negligible (but aways finite!) quantum uncertainty
characteristics of any system considered classical. In
[15, 16, 36], the notion of quasi-classical trajectories
was introduced, and the equations of motion in the
guasi-classical approximation were obtained; that is,
the transition to the classical limit was performed with
retaining corrections first-order in the Planck constant
h. The resulting equations differed from Newtonian by
the appearance of random sources. These sources took
into account smearing of wave packets and diffraction
in elagtic scattering. Attention to the role played by
weak inelastic processes was drawn by Gertsenshtein
and Kravtsov [7], who studied trajectory perturbations
under the action of athermal eectromagnetic fidld [3] and
spontaneous emission of low-frequency photons[6].

The approaches used in [3, 6, 7, 15, 16, 36] were
based on the Landau hypothesis that the origin of irre-
versibility was related to quantum mechanics.
Although the Schrddinger equation is symmetrical with
respect to time reversal, quantum mechanics in reality
contains nonegquivalence of two time directions. Deep
irreversibility in quantum mechanics is inherent in the
measurement process [2], which has a probabilistic
character. The use of the measurement procedure alowed
quantum noise to be edtimated and the quasi-classical
equations of motion to beintroduced [15, 16, 36].

Quantum noise simulation [15, 16, 36] in molecular
dynamics cal culations has not been performed asyet. It
can, nevertheless, be suggested that, because of thelog-
arithmic dependence of t,,, on the noise level, quantum
uncertainty should lead to t,, valuesin the range studied
in thiswork, that is, in the picosecond range. We stress
that the aforesaid refers to dynamical memory times of
areal dense system of atoms rather than its numerical
model.

All of the above allows us to reconsider the tradi-
tional views on the problem of reversibility. As has
been mentioned, the finite quantum uncertainty value
(AE > 0) isthe reason why the dynamical memory time
is always finite in rea systems (t,, < +). It can be
assumed in the quasi-classical approximation that a
pencil of trgjectories expanding at aK rate rather than
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a single classical tragjectory starts at a certain system
phase space point. Only the initial divergence condi-
tions, that is, A, B, and t, [see (9) and Fig. 1], depend on
the Planck constant. Applying the standard time rever-
sd procedure at timet = t* (v(t*) — —v(t*),t — )
leads to a new pencil of trgjectories starting at the
{r(t*), v(t*)} point where the system currently occurs.
By time t*, dynamical memory of theinitial conditions
is partly (or completely) lost, and there is only some
probability P, that the system will return to the initial
{r(0), v(0)} point. Probability P, exponentialy
decreases as time t* increases if t* > t. Dynamical
memory timet,, is the characteristic time during which
this probability reduces virtually to zero; that is,
P (t* =t,) = 0. It followsthat reversibility, that is, the
return of the system to the initial conditions, isimpos-
sible already at least at times of the order of t,,. It has
been noted that, in real systems, t,,, liesin the picosec-
ond range, and it can therefore be assumed that the
overwhelming majority of molecular processes (such
aschemical reactionsetc.) aregeneraly irreversible. To
summarize, whereas previoudly, theirreversibility phe-
nomenon was considered unusual, it appears that now,
reversible events, if encountered, will require thorough
examination.

Estimates of dynamica memory times were
obtained in this work for molecular dynamics numeri-
cal schemes. Thet,, values obtained correspond to the
noise level of numerical integration. We, however,
established that the dynamica memory time very
weakly (logarithmically) depended on the noise level,
which allowed us to extend qualitative conclusions to
real systems of atoms, in which the finiteness of the
dynamical memory time is caused by quantum uncer-
tainty.
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