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Abstract—A study ismadeinto the temperature dependence of residual polarization of negative muonsin crys-
talline silicon with the concentration of impurity of the n- and p-types ranging from 8.7 x 10%3 to 4.1 x 108 cm3,
The measurements are performed in amagnetic field of 1000 G transverse to the muon spin, in the temperature
range from 4.2 to 300 K. The form of the temperature dependence of the relaxation rate v of the magnetic
moment of the uAI0 acceptor in silicon is determined. For a nondegenerate semiconductor, the relaxation rate
depends on temperature asv [ T9 (q = 3). A variation in the behavior of the temperature dependence and a
multiple increase in the relaxation rate are observed in the range of impurity concentration in excess of
10'® cm3. The importance of phonon scattering and spin-exchange scattering of free charge carriers by an
acceptor from the standpoint of relaxation of the acceptor magnetic moment is discussed. The constant of
hyperfine interaction in an acceptor center formed by an atom of aluminum in silicon is estimated for the first
time: |Ays (Al)/2m|~ 2.5 x 10° s71. © 2001 MAIK * Nauka/Interperiodica’ .

1. INTRODUCTION

Interest in the investigations of impurity centers and
various defects in semiconductors never wanes,
because these investigations produce detailed data
about the distribution of the wave function of these cen-
ters in the crystal lattice, about the structure of the
impurity conduction band, and so on (see, for example,
[1]). In spite of the fact that a wealth of experimental
data about various impurities and defects in semicon-
ductors have been accumul ated over aperiod of severa
decades, shallow acceptor centers in semiconductors
with a crystal diamond structure (silicon, germanium,
etc.) are till little studied both experimentally and the-
oretically [1-4].

The main difficulties of theoretical investigations of
acceptor impurities in diamond-like semiconductors
are caused by the structure of the valence band of these
semiconductors. The upper edge of the valence band in
silicon and germanium is found at k = 0, and the band
isfourfold degenerate at this point.

In the case of shallow acceptor centers in diamond-
like semiconductors, the use of the electron paramag-
netic resonance (EPR) technigque (which played the key

part in the investigation of various paramagnetic impu-
rities in semiconductors) is limited because of the high
relaxation rate of the magnetic moment of the acceptor
and the broadening of the EPR line due to degeneracy
of the ground state of acceptor impurity and occasional
residual deformationsin crystal [5].

The use of negative muons, which was justified the-
oretically in [6] and developed in the experimental
studies [7-10], enables one to extend the possibilities
of studying shallow acceptor centersin silicon.

The muonic atom formed as aresult of implantation
of a negative muon into silicon simulates the behavior
of an aluminum atom, which is the acceptor impurity.
The behavior of residual polarization of a negative
muon in the 1S-gate of the muonic atom is governed by
the state of the electron shell of thisatom and by theinter-
action of the atom and the medium. The results of theoret-
ical treatment of the kinetics of the formation of amuonic
atominsilicon [11], which were supported by experimen-
ta results, indicate that, in the temperature range below
approximately 50 K in the period of time <10° s, an
acceptor center (muonic atom) formsin the neutral (para-
magnetic) state, ,Al% In an external magnetic field
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transverse to the muon spin, the relaxation (relaxation
rate, A) and shift of the precession frequency (Aw) of
muon spin occur, which are caused by the muon interac-
tion with the magnetic moment of the eectron shell of
atom. The correlation between the muon polarization
parameters and the quantities that characterize the mag-
netic interactions of the acceptor center (A isthe constant
of hyperfine interaction between the muon magnetic
moments and the eectron shell in muonic atom, and v is
the relaxation rate of the magnetic moment of eectron
shdl) atv > A isdefined by therelations [12, 13]

Aw _ 9Hsj(j+1)AA A
== N (1)
W 2uh SkeT 2(v¥+wp)
- 2 2
o S
3 gV 2w+

where Aw=w(T) —wy, (W, istheangular precession fre-
guency of muon spin in the diamagnetic state of

muonic atom); kg isthe Boltzmann constant; pig and pig

isthe Bohr magneton for an el ectron and muon, respec-
tively; g is the g-factor of the acceptor center; w, =
gugB/% is the angular precession frequency of the
magnetic moment of the electron shell of the acceptor
center in the external magnetic field B; and T is the
temperature in Kelvins. For a shallow acceptor center
insilicon, j =3/2[14].

The range of values of v accessible for experimental
study is defined, according to Eqg. (2), by the range of
values of A being measured and by the value of the
hyperfine interaction constant. We assume that 0.05 <
A = 20 ps?t and use the estimate of Ay /2= 30 ps?
[10] to derive 5 x 10° < v < 2 x 102 51, Therefore, the
U~SR method enables one to considerably increase the
upper limit of the relaxation rate (compared with the
capabilities of the EPR method: v < 10° s [5]) and
study the processes of magnetic relaxation of shallow
acceptors in undeformed silicon samples in a wide
range of temperature and impurity concentrations.

2. MEASUREMENTS

Given in this paper are the results of investigating
the residual polarization of negative muons in crystal-
line silicon with boron (8.7 x 103, 5.5 x 106, 1.4 x
10'8, 4.1 x 10'® cm®), gallium (1.1 x 10%, 1.1 x
108 cm ), and arsenic (8.0 x 10'°, 2.0 x 10% cmd)
impurities in the temperature range from 4 to 300 K.

The measurements were performed in the Stuttgart
LFQ Spectrometer facility [15] in the pE4 muon chan-
nel of the proton accelerator at the Paul Scherrer Insti-
tute (PSI, Switzerland). The samples to be investigated
were cut in the form of cylinders (30 mm in diameter,
15 mm high) from single crystals of silicon and
arranged so that the cylinder axis coincided with the
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muonic beam axis. A transverse magnetic field of 1000 G
was induced on the sample by Helmholtz coils. The
long-term stability of the magnetic field was at least 10,
The samples were placed in a cryostat and cooled by a
flow of liquid helium vapors, with the temperature sta-
bilized within 0.1 K intherangefrom 4.2t0 300K. The
electrons, which were caused by decay of muons that
stopped in the target, were registered by scintillation
counters. The intervals of time between the moment of
stopping of muon and the escape of decay electron
were stored in the form of histograms (USR spectra).
The time channel width of the spectrometer was
0.625 ns, with atotal of 16000 channelsin the spectrum.

3. RESULTS AND DISCUSSION

In addition to the target, some of the muons stop in
the cryostat material and in the scintillation counters
and make a contribution to the spectrum being
observed. Because thelifetime of negative muonsin the
1S-state depends on the charge of atomic nucleus, the
spectrogram of the time distribution of decay electrons
U~ — € may be represented in the form
[1+apx(t)] +B(1), ©)

—t/Ty

f(t) = ZNXe

where Ny isthe number of eventsin the zero channel of
the histogram due to the decay of muons captured by
atoms of the element X; Ty and py denote the muon life-
time and the projection of polarization vector of amuon
in the 1S-state of the element X onto the direction of
observation, respectively; a is the experimentally
obtained coefficient of asymmetry of the spatial distri-
bution of decay electrons with due regard for the solid
angle of acceptance of electrons; and B is the back-
ground of random coincidences. The explicit form of
the function py(t) depends on the experimental condi-
tions. Here, we treat the results of measurements in an
external magnetic field transverse to the muon spin.

The scintillation counters consist of hydrocarbons,
and the cryostat is made of brass. Accordingly, compo-
nents are always present in the spectra that correspond
to the capture of muons by carbon and copper.

The experimental data were treated by the least
sguares method. The lifetimes of negative muonsin the
1S-state of atoms (14) were fixed by the average value
of the experimental data of [16] (2030, 760, and 163 ns
for carbon, silicon, and copper, respectively).

The results of independent measurements in graph-
ite and copper have revealed that (a) the contributions
by the counters are described by the polarization func-
tion in the form

pc(t) = pocos(wt + @)

with a value of ap, = 0.009 £ 0.002; (b) the muons
which stopped in the cryostat walls (copper) lose their
polarization completely during atime of lessthan 107 s,
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Fig. 1. Experimentally obtained u~SR spectra for a silicon
sample with a gallium impurity (1.1 x 10 cm). After
subtraction of the background, the data are corrected for the
decay exponent, a = ap(t).

i.e., pey(t) = 0; and (c) the background of random coin-
cidences has the form

2

B(t) = by + Z b,cos(nwyt + @),

n=1

where wy, is defined by the time structure of the proton
beam.

Examples of experimentally obtained u~SR spectra
for a silicon sample with a galium impurity (1.1 X
10% cm®) at different temperatures are given in Fig. 1.
One can see in the figure that the precession of the
polarization vector occurs at afrequency closeto that of
free spin precession of muon and, as the temperature
decreases, the damping rate of the precession ampli-
tude (the muon spin relaxation rate) increases.

When treating the experimental data with due
regard for the muon spin relaxation at low tempera-
tures, the polarization function for silicon has the form

P(t) = poe'cos(wt + @), (4
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where p, is the polarization at the initial moment of
time; w and @ denote the frequency and initial phase of
muon spin precession in an external transverse mag-
netic field, respectively; and A is the muon spin relax-
ation rate.

The treatment of experimental data resulted in
determining the parameters of the polarization function
given by Eq. (4) for negative muons that stopped in sil-
icon. Figure 2 gives the temperature dependence of the
muon spin relaxation rate and precession frequency
shift for two silicon samples with a gallium impurity.

The temperature dependence of the frequency shift
for al investigated samples (except for two silicon sam-
ples with a high concentration of boron impurity [B] =
1.4 x 10*® cm3 and [B] = 4.1 x 10% cm3, the experi-
mental data for which are insufficient to determine the
form of the Aw/wy, correlation) does not contradict
Curie's law of LT (see, for example, Fig. 2). This
means that the contribution by the second term in
expression (1) for the frequency shift issmall compared
with the contribution by the first, paramagnetic term.
We ignored the second term in Eq. (1) to derive from
the experimental data on Aw/wy, an estimate of Ay, the
constant of hyperfine interaction for a muonic aumi-
num in silicon (the value of g was taken to be -1.07
[17]). The values of A,;/2mtfor all investigated samples
are approximately the same and equal to ~3 x 10’ s,
With due regard for the ratio of the magnetic moments
of muon and atomic nucleus of aluminum, we obtain
A(Al)/2m~-2.5 x 10° s for the constant of hyperfine
interaction in the acceptor center formed by an alumi-
num atom in silicon.

These results, obtained for the temperature depen-
dence of the muon spin relaxation rate, were described
by relation (2) assuming that the relaxation rate of the
magnetic moment of the acceptor center depends on
temperature as

v(T) = CT". (5)

In treating the experimental data, it was assumed
that A¢/2mt = 3 x 10’ s*. The obtained values of the
parameters C and q for different samples are given in
the table, where one can see that, for the first five sam-
plesinwhich theimpurity concentration varies by more
than three orders of magnitude, the values of the relax-
ation rate of the magnetic moment of the acceptor impu-
rity are close to one another. However, as the impurity
concentration increases further by a factor of approxi-
mately five, one observes an increase in v(T = 10 K) by
more than an order of magnitude. Figure 3 gives the
parameter q as afunction of the impurity concentration
(n) in gilicon in view of the data for samples investigated
by us previoudy [7-10] (for one of the samples, see[10],
the auminum impurity concentration wasrefined to 2.2 x
10Y cn3). Theresultsgivenin Fig. 3indicate that, in the
impurity concentration range of up to approximately
2 x 10% cm3 for n- and p-type silicon, the value of the
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Fig. 2. The temperature dependence of the muon spin relaxation rate (on the left) and precession frequency shift (on the right) for
silicon samples with different concentrations of gallium impurity: o, 1.1 x 105 cm3; A, 1.1 x 1018 cm ™3,

4 T T T
o) o _ -
R R
_ g
2 0Si:P 5
Lk aSi:As 1
vSi:Sb
1 1

0 |
12 14 16 18 20
logn

4 T T T

3r _ _£_§_ n
%

S 2F . .

oSi:B \\
I sSi: Al |

1 vSi:Ga B,
| | §

0 |
12 14 16 18 20
logn

Fig. 3. The dependence of the exponent g inthefunctionv = C'T' 9in theimpurity concentration n in samples of n-type (on the lft)
and p-type (on the right) silicon (the broken lines are drawn for graphic demonstration).

power law exponent g isvirtually constant and close to
three (although some spread of values is observed in
p-type silicon). However, in the impurity concentration
range above approximately ~10 cm3, a considerable
dependence of q on n is observed. For example, in
p-type silicon, the value of q decreases with n by afac-
tor of more than five. Therefore, in the impurity con-
centration range above 10 cm3, the relaxation rate of
the magnetic moment of the acceptor center ceases to
depend on temperature; i.e., both the absolute value of
v and the behavior of its temperature dependence vary.
The foregoing facts may serve as evidence of the varia-
tion of the mechanism of relaxation of the acceptor cen-
ter magnetic moment at n ~ 108 cmS,

The relaxation of the acceptor magnetic moment
may be caused by its interaction with the crystal lattice
(spin-lattice relaxation) and by spin-exchange scatter-
ing of free charge carriers from the acceptor center.

The results of assessing the importance of various
phonon processes, performed by Yafet [ 18] for a perfect
silicon crystal, indicate that, in the temperature range of
10K = T = 100 K, the key mechanism of relaxation of
the magnetic moment of a shallow acceptor is the
Raman phonon scattering and the relaxation rate v
depends on temperature as T°.
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The relaxation of paramagnetic centers in silicon
under conditions of spin-exchange scattering of free
charge carriers was treated by Semenov [19]. In anon-
degenerate semiconductor, the rate of spin-exchange
scattering v, is usualy related to the spin-exchange
scattering cross section 6 as

2kgT
V=2 /mﬁ* oN, (6)

and, in the case of degeneracy,

2/3

vo=h"N"%0k,T, )

where m* and N denote the effective mass of free
charge carriers and their concentration, respectively.

In anoncompensated semiconductor, the concentra-
tion N of freecharge carriersat kg T < E; depends onthe
impurity concentration n as [20]

~ 12 0 E o
N'= (non) “exp (52, ®
where ny = 2(m* kg T/21142)%2 is the effective density of
states in the conduction band (valence band), and E; is
the impurity ionization energy.
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Fig. 4. Estimates of the dependence of the concentration N
of free charge carriers and of the rate v, of spin-exchange

scattering of charge carriers by the acceptor on the concen-
tration n of impurity atomsin silicon.

It isknown (see, for example, [21]) that an increase
in the impurity concentration in a semiconductor is
accompanied by a decrease in the impurity ionization
energy. For example, in silicon, E; decreases from the
maximal value (=45meV) at n= 10 cm=3tozeroatn =
n. (n. is the critical concentration of impurity, which
corresponds to the diglectric-metal transition; in sili-
con, n. = 4 x 10*® cm [22]). Figure 4 gives the esti-
mates of the correlations N = f(n) and v, = f(n), calcu-
lated by formulas (8) and (6), (7) assuming that E;
decreaseslinearly from 45 meV at n=10'" cm—=to zero
an=4x10®cm3 withm* =0.3m,and 0 =T’ (a=
10 A [23] is a quantity of the order of the Bohr radius
of the acceptor). Formula(8) isinvalid in the vicinity of
n., and, at n = n, the concentration N of charge carriers
was taken to be equal to the concentration n of impurity
atoms. One can see in the figure that, in the impurity
concentration range above ~10% cm of interest to us,
the concentration N of free charge carriers in silicon
increases rapidly to approach the concentration n of
impurity atoms. Also observed in this concentration

MAMEDOV et al.

range is a fast increase in the rate of spin-exchange
scattering.

A comparison of the predicted values of the rate v,
of spin-exchange scattering, given in Fig. 4, with the
experimentally obtained values of the relaxation rate v
of the acceptor magnetic moment (see table) reveas
that, at T=5t0 30K and n = 2 x 10'” cm~3, we have
vV /v < 104 When the impurity concentration rises
above approximately ~2 x 10" cm3, the rate of spin-
exchange increases and, at N = n = 4 x 10® cm3
(degenerate silicon), ve = v.

Therefore, the calculation results demonstrate that
the spin-exchange scattering does not produce asizable
contribution to the relaxation of the magnetic moment
of acceptor center in the impurity concentration range
of upto ~2 x 10" cm= at T = 30 K. Apparently, the
main mechanism of relaxation in this concentration
range is the Raman phonon scattering. As was already
mentioned in [10], the difference between the tempera-
ture dependence of the relaxation rate of the magnetic
moment of the acceptor center and the dependence of
the form of T° [18] may be due to the fact that Yafet
[18], who treated a perfect silicon crystal, disregarded
the lifetime of phonons, which varies as T at temper-
atures below the Debye temperature and, in a number
of cases, it varies even more [24].

As the impurity concentration rises above approxi-
mately ~10'® cm3, the rel axation rate comes to depend
much less on temperature (a decrease in the parameter
q); at the same time, the relaxation rate at T = 10 K
increases by more than an order of magnitude in a nar-
row range of concentration variation. It is known [20]
that, at a high concentration of impurity, the phonon
spectrum of crystal varies considerably, which may
lead to a variation of the spin-lattice relaxation rate.
However, in view of the fact that the experimentally
observed relaxation rate of the acceptor magnetic
moment is virtually constant in a wide range of impu-
rity concentration from~5 x 10*?to ~2 x 10%” cm3, one
can hardly expect so abrupt a variation of the spin-lat-

The parameters of the temperature dependence of the relaxation rate v(T) = CTY of the magnetic moment of acceptor center,
obtained asaresult of treatment of the temperature dependence of the muon spin relaxation rate (n isthe impurity concentration)

v,10°st
Impurity n, cm=3 C,106s? q
T=10K T=30K
B 8.7 x 1013 120+ 80 2.24+0.22 21 240
Ga 1.1 x 10%° 18+ 13 2.87+£0.25 13 310
As 8.0 x 10'® 9+6 3.03+0.22 10 270
B 5.5 x 1016 50+ 30 245+0.21 14 210
As 2.0 x 10%7 20+ 15 2.80+0.25 13 270
Ga 1.1 %108 (2.0+0.5) x 10* 0.90+£0.10 158 430
B 1.4 x 108 (2.4 % 0.6) x 10* 0.81+0.12 155 380
B 4.1 %108 (25+1.3) x 10° 0.28+0.21 476 650
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92 No.6 2001
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tice relaxation rate with an increase in concentration
above approximately ~10'8 cm 3. On the other hand, at
n> 10! cm3, atransition to metallic conduction occurs
in silicon [22] and, as follows from the foregoing esti-
mates, the spin-exchange scattering of free charge car-
riers may become the predominant mechanism of
relaxation of the acceptor magnetic moment.

4. CONCLUSION

1. The temperature dependence of the relaxation
rate of the magnetic moment of an acceptor center in sili-
con for different concentrations of impurity has been
investigated; it is demongtrated that, at n < 2 x 10 cmr?,
the experimental data are well described by the empir-
ical correlation v(T) = CT9with the value of g = 3.

2. An estimate of the constant of hyperfine interac-
tion for an acceptor center of aluminum in silicon has
been produced for the first time ever: |A(Al)/21T| ~
25x 106 s,

3. The behavior of the temperature dependence of
the relaxation rate of the magnetic moment of acceptor
center has been found to change in the impurity con-
centration range corresponding to the semiconductor-
metal transition.

4. Theresults of analysis of the datalead one to con-
clude that, with the values of the impurity concentra-
tion of less than 2 x 10Y” cmr3, the spin-lattice interac-
tion is the key mechanism of relaxation of acceptor
center in silicon. In the range of higher values of impu-
rity concentration, a significant contribution to relax-
ation may be made by the spin-exchange scattering of
free charge carriers, which is apparently the key mech-
anism of relaxation of the acceptor magnetic moment
in the metal phase.
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Abstract—The phase diagram of ferromagnetic alloys Ni, . ,Mn, _,Gaisreconstructed on the basis of temper-
ature dependences of the resistance. It is seen from this diagram that for small x, structural transitions from the
cubic to the tetragonal phase are preceded by structural transformations in the cubic phase. In the framework
of the phenomenological Landau theory of phase transitions, phase diagrams of the structural and magnetic
phase transitions in these alloys are analyzed with regard for the modulation order parameter. It is shown that
premartensitic and postmartensitic phase transitions related to the appearance of the modulated structure can
occur along with martensitic transformations. The strain and modulation order parameters substantially affect
the magnetic phase transitions via the interaction with the magnetic order parameter. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Ferromagnetic Heusler alloys Ni, . ,Mn, _,Gaare of
major interest in connection with the fact that they can
exhibit the effect of huge magnetostriction reaching val-
ues up to 6% [1]. This effect is due to areconstruction of
interconnected magnetic and structurd domains, which
simulates interest in studying phase trangitions in these
dloys. Of mgor interest are the so-caled “martensitic
transformations,” which are firg-order phase transitions
from the initial highly symmetric phase to the low sym-
metric phase, which exists at low temperatures [2]. When
martengitic transformations are described in the frame-
work of the phenomenological Landau theory, the main
order parameters are the components of the strain tensor.
In this case, martensitic transformations are described
with the help of the density of free dastic energy with
regard for the anharmonicity (the proper phase transition)
[3]. If martengitic transformations occur in the ferromag-
netic matrix, they can be accompanied by changesin the
magnetic subsystem dueto the magnetodlastic interaction
that exists in ferromagnetics. As a result, martensitic
transformations cause magnetic phase transitions in
ferromagnetics.

At high temperatures, the point symmetry group O,
of the ferromagnetic Heusler alloysNi, , ,Mn, _,Gahas
the cubic structure. When the temperature decreases,
phase trangitions to the tetragonal structure occur in these
dloys [4]. Martenditic phase transformations and the
related magnetic phase trangitions in Ni, . ,Mn, _,Ga are

studied in [5-12] in detail in the framework of the Lan-
dau theory.

Presently, it has been established that martensitic
transitions can be accompanied by the appearance of an
intermediate modulated phase that is characterized by
the set of wave vectorsq; [13]. In experiments, the pres-
ence of the intermediate phase manifests itself in soft-
ening of the corresponding phonon modes [13, 14].
Experiments show that in Ni, ., Mn,_,Ga, the transi-
tion from the initial structure to the modulated phaseis
a first-order phase transition [15]; however, the jumps
of the order parameters and heat capacity are substan-
tially smaller than those of the martensitic transforma-
tion. It was shown in [14, 16] that the structural phase
transition to the modulated phase can be described in
the framework of the Landau theory using free energy,
which includesthe el astic energy with regard for anhar-
monicity, terms describing the modulated structure,
and terms that account for the interaction of the tetrag-
onal strains with the modulation order parameter. In
this case, the tetragonal strains are the secondary order
parameters, which are related to the primary parame-
ters describing the modulated structure. Strains appear
simultaneously with the modulation at the point of the
structural transition to the modulated phase. Their mag-
nitude is determined by the magnitude of the coupling
coefficient with the modulated order parameter.

Ni, . ,Mn, _,Gaalloysoccupy aspecial placeamong
a large number of solids in which both martensitic
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phase transitions without the appearance of the modu-
lated structure and transitions with an intermediate
modulated structure occur. X-ray experiments show
that the low-temperature martensitic phase of these
alloys contains both strong tetragonal distortions of the
lattice (c/a = 0.94) and a modulation of the tetragonal
structure with the polarization vector parallel to the

[110] axis and the wave vector oriented along the
[110] axis[17, 18]. Thefirst studies revealed only one
point (T = 202 K) of transition to the martensitic phase
with modulation and tetragonal distortions. In later
experiments [19], two different points of phase transi-
tions were discovered. The first transition, which is
observed at a higher temperature, is the transition from
the symmetric cubic structure to the modulated struc-
ture with the wave and polarization vectors mentioned
above. This intermediate phase, which was called pre-
martensitic in [19], has a modulation vector with the
module 1/3. This phase has an approximately cubic
structure and is accompanied by the appearance of
small tetragonal strains. The second phase transition is
the transition from the intermediate modulated struc-
ture to the actually martensitic phase, which is modu-
lated and has large tetragonal strains. Thus, the phe-
nomenological approach described in [2, 5-12, 14, 16]
must be generalized so as to describe two successive
phase transitions.

Another reason for which Ni,, Mn;_,Ga attract
much attention isthat the structural phase transitionsin
these alloys occur in the ferromagnetic matrix. It turns
out that structural transformations affect not only the
direction of the magnetization vector but also its mag-
nitude[5, 9, 11, 12]. Certain experiments show that the
magnetization increases in the course of the transition
to the modulated phase [20]. This fact must be taken
into account in the phenomenological description.

The actual magnetic structure of the tetragonal
phasein Ni,, ,Mn, _,Ga has not been thoroughly stud-
ied. It is only known from the measurements of the
magnetic susceptibility that the structural transition to
the tetragonal phase is accompanied by the appearance
of strong magnetic anisotropy [4]. In[21], a phenome-
nological model of the inhomogeneous martensitic
structure that appears in the alloy Ni,MnGa below the
temperature of the martensitic transition is constructed,
and estimates of the static magnetic susceptibility and
magnetization of the martensite are obtained.

Recently, theoretical paper [22] was published,
which is dedicated to modeling the premartensitic
phase transition in Ni,MnGa by the Monte Carlo
method. The authors of [22] conclude that premartensi-
tic effects are caused by the magnetoelastic coupling
between the magnetic subsystem and the phonon mode,
which softens as the modulation order is formed. The
premartensitic transition occurs in the case when this
magnetoelastic interaction is sufficiently large. This
result suggests that the magnetoel astic interaction must
be taken into account in the phenomenological theory.
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The premartensitic phase obtained in[22] does not con-
tain tetragonal strains. No tetragonal strains were actu-
aly observed in the premartensitic phase [13]; how-
ever, this can be due to the fact that they are small.
Thus, atheoretical study of tetragonal strains caused by
the modulation order is necessary. Effects that occur,
for example, in the magnetic subsystem and accom-
pany small tetragonal strains in the premartensitic
phase could reveal the presence of the strains if they
really exist.

Experimental studies presented in [11, 12] made it
possible to establish composition dependences of the
temperature of the magnetic and martensitic phasetran-
sitioninalloysNi,, ,Mn, _,Gafor 0< x<0.2. It turned
out that, as the content of Ni a the expense of Mn
increases, the temperature of the structural transition
alsoincreases and the temperature of the magnetic tran-
sition decreases so that they coincide in the interval
0.17 < x < 0.19. The composition dependences deter-
mined from the measurements of the resistance, mag-
netic susceptibility, and heat capacity coincide within
the accuracy of the experimental techniques. This fact
makes it possible to use any of these approaches to
refine the phase diagram of the alloys Ni, . ,Mn, _,Ga.

In the present paper, the phase diagram of the alloys
Ni, ., ,Mn;_,Gaintheinterval 0 < x < 0.09 is analyzed
on the basis of measuring the resistance of polycrystal-
line samples. Along with the specific features caused by
the structural and magnetic phase transitions, anoma-
lies that indicate the existence of premartensitic trans-
formations were observed. In order to explain the
results obtained, the phenomenological Landau theory
of phase transitions, which takes into account interac-
tions between the magnetic, strain, and modulation
order parameters, is extended to the case of cubic ferro-
magnetics. It is shown that the so-called premartensitic
and postmartensitic phase transitions can occur in
Ni, . ,Mn; _,Gaalong with martensitic transformations.
Formers are connected with the appearance of the mod-
ulated structure. The strain and modulation order parame-
ters cause magnetic phasetransitionsin ferromagnetics by
way of the interaction with the magnetic order parameter.
Thisfact leads to a substantial variety of possible mag-
netic statesin crystals.

2. EXPERIMENT

Polycrystals with the composition described above
were prepared by arc melting in the argon atmosphere
from high-purity components. To perform transport
measurements, samples were cut from massive poly-
crystals by spark cutting; then, current and potential
contacts were welded on those samples. In order to
eliminate the thermoel ectric voltage, the measurements
were performed in a wide temperature range using the
four-contact scheme for the alternate current with the
frequency f ~ 1 kHz; the results were registered using
phase-conscious measurements. The temperature was
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Fig. 2. The T—x phase diagram of Ni, , ,Mn, _,Ga alloys
for 0 < x < 0.09 (experimental).

measured by a platinum resistance thermometer that was
placed at the distance of =0.15 cm from the sample.

The temperature dependences of the resistance of
the polycrystalsNi, . ,Mn; _,Gafor 0< x<0.09 arepre-
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sented in Fig. 1. In the sample of the stoichiometric
Ni,MnGa, at the Curie point To = 380 K, thereisastep
in the dependence R(T), which is characteristic of second-
order phase trangtions. This step is caused by a decrease
of charge carriers scattering from magnetic fluctuations.
As the temperature decreases further, the resistance
behaveslike that in metals; however, a Tp = 260 K, there
isapeak, and at Ty, = 200 K another step is observed.
Theanomaly at T, hasawell-marked hysteresis, which
is characteristic of first-order phase transitions. It is
well known (see[17]) that the transition from the cubic
to the tetragonal phase occurs at this temperature. It
seems that the anomaly at T, corresponds to the pre-
martensitic transformation in the cubic phase when a
static modulation wave appearsin the crystal [19]. It is
difficult to determine from the above measurements
whether the anomaly at Tp isaconsequence of thefirst-
or second-order phase transition; thisis due to the fact
that thereisasmal delay between the temperatures of the
sample and the thermometer. It wasshown in[11, 12] that
the Curie temperature decreases monotonicaly with
increasing X, whereas the temperature of the structural
trangition increases (Fig. 2). The temperature of the
premartensitic transformation in the samples examined
is amost independent of the concentration and coin-
cides with the temperature of the structural transition at
x = 0.07-0.09.

3. THEORY

The sequence of phase transitions observed in
Ni, . Mn, _,Ga can be described in the framework of
the Landau theory of structural phasetransitionsfor cubic
crystas. In such crystals, both modulated and tetragonal
states can occur at low temperatures. Distortions of the
cubic lattice under structural transitions are described by
homogeneous strains written in the form of linear combi-
nations of the strain tensor components g; [2]:

1 1
€ = é(exx+eyy+ezz)v € = Tz(exx_eyy)1

1 D
J6
The strain e;, which corresponds to the change of the
volume, does not violate the symmetry of the lattice.
A symmetry violation occurs due to the strains e, and
e;, which areresponsible for the transition of the lattice
from the cubic to the tetragonal phase. Thistransitionis
accompanied by softening of the combination of the
elastic moduli C;; — C,,. The total expression for the
density of the free energy must also include the strains
€1 = €, & = €, and &; = &, which lead to adistortion
of the elementary cell down to a symmetry lower than
the tetragonal one.

In order to describe acoustic phonon modes of the
type (1/3, 1/3, 0) in the crystd, it is necessary to note

€ = (Zezz — € — eyy) .
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that six different orientations of the wave modulation
vector exist. They can be written in the form

k,=(1,1,0), k,=7(0,1,1), k3=1(1,0,1),
ks=2(1,1,0), ks=2(0,1,1), ke=0(1,1,0),

where { = 1/3. Thus, as a rule, an order parameter
should exist which consists of 12 components (six
amplitudes and six phases): Y;... W, ¢;...¢s Where

y; = |L|Jj|exp(i¢j)-

The atomic displacements corresponding to each of
these order parameters have the form

uj(r) = |g;lp;sin(k; 0 + ¢)),
where p, ..., pg ae the unit polarization vectors ori-
ented along the axes [1,1,0], [0,1,1], [1,0,1],
[1,1,0],]0,1,1],and[1, O, 1], respectively. The total
expression for the density of free energy must beinvari-

ant under the spatial transformations of the point sym-
metry group Oy, It consists of terms of three types:

F = Fe(€) + Fy(W) + Fey(e), Wi). (2

Here, F(g;) isthe density of free energy containing the
terms that are responsible for the anharmonicity of the
elastic subsystem with respect to the order parameter
(e,, &). It hasthe form (see[2])

Fo(e) = 3a(e} + &) + Sbey(e} ~ 3¢}) + Fo(e} + )’
©

+ %(Cu + 2C12)ei + %CM(eézl + eg + eg)’

where the coefficients a, b, and c are linear combina-
tions of the components of the elastic moduli of the sec-
ond, third, and fourth orders, respectively:

1
_6(C111 —3Cypp +2Cyp),

6./6

1
c= 4_8(C1111 +6C 11, —3C1120 — 8C1123).

a=Cy-Cp b=

(4)

Since Eq. (3) includestermsof thethird order, the phase
trangition with respect to the order parameter (e,, €;) has
the first order. When approaching the point of the struc-
tural transition to the tetragonal phase, the elastic mod-
ulus a = C;; — Cy, tends to zero; in the vicinity of the
transition point (T — T,,), it can be written as

a = ay(T-Tu)/Tw,

where Ty, is the temperature of the martensitic transi-
tion.

The total expression for F(y;) can be found in
[16, 23]. Here, we consider the simplest case of the
modulation that takes into account only one phonon
mode 1/3 (1, 1, 0). It isdescribed by the order parame-
ter Y = [Wlexp(i¢) (theindex is omitted for simplicity).
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Then, the expression for the density of the modulation
part of free energy can be written in the form

Fu(W) = ZAIU + 2Bl0l* + 2C)ul°
©)
+ZC[U° + ()7,

The last term in this formula can be minimized with
respect to the phase:

= W|°(exp(-i60) + exp(i6¢))
= 2|y|°cos(6¢).

[W°+ (p*)°]

The minimum of energy (5) is attained at ¢ = +T1U6,
+172, and +5106 when C; > 0, and at ¢ = 0, £7173,
2173, and mwhen C; <0. InEq. (5), weset C'=Cy,—|Cy|
and assume that C' > 0 for stability. The parameter A
depends on T; in the vicinity of the temperature of the
transition to the modulated state (T — Tp), it can be
written in the form

A = Ao(T - Tp)/Tp

The energy F, relating the strains g to the order
parameter that describes the modulation must beinvari-
ant under all symmetry operations connected with g
and ;. When only the phonon mode 1/3(1, 1, 0) is
taken into account, F, has the form

1 2
Fey(W, &) = %ﬁDlel-'- —D,e; + Dsezgmﬂz- (6)

/6

Equations (3), (5), and (6) completely determine the
density of the free energy of the cubic crystal and alow
for the description of phase transitions from the cubic
phase to the modul ated and tetragonal phases.

It follows from experiments that structural transfor-
mations in Ni,, ,Mn,; _,Ga occur in the ferromagnetic
matrix, which makes it necessary to take into account
the influence of the magnetic subsystem on the struc-
tural transitions. In these aloys, both in the cubic and
tetragonal phases, manganese atoms are the main carri-
ers of the magnetic moment [17]. This makes it possi-
ble to describe the Ni, ., ,Mn, _,Ga aloys by a single-
lattice magnetic subsystem with the vector of the mac-
roscopic magnetization M. The free energy aso
includes termsthat connect M with other parameters of
the system. For the sake of convenience, we introduce
the dimensionless magnetization vector m = M/M,,
where M; is the saturation magnetization.

The contribution of the magnetic subsystem to the
total energy of the cubic ferromagnetic consists of two
terms. The first one is of exchange origin. It is neces-
sary to take into account the dependence of the magni-
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tude of the magnetization vector m on temperature.
Thisterm has the form

Fadm) = Sa(mg + 1 + )

(7)

1 2
+ Zél(mi + mf, + mﬁ) )

Here a and &, are the exchange constants. The parame-
ter of the exchange interaction a depends on tempera-
ture; it can bewritten inthefollowing forminthevicin-
ity of the Curie point:

G = ao(T - TC)/TC

The second term represents the energy of magnetic
anisotropy of the cubic ferromagnetic; it can be written
in the form

Fa(m) = Ky(mim} +mim2 + m2md), ®)

where K; isthefirst cubic anisotropy constant.

The free energy must also include terms that relate
the components of m to other order parameters of the
system. The first of them relates the magnetization
components m, to the strains & ; it has the form

Fme(mi,ei) = r/—];Blelmz
+ Bz[%zez(mi— ) + %es(smi— m)] ©

+ Bs(e;mm, + esmm, + esm,m, ).

Thisexpression isthe smplest form of the magnetoelastic
energy with the phenomenological magnetodastic con-
stants By, B,, and Bs.

The second term describes the interaction of the com-
ponents of the magnetization vector m with the modula
tion order parameter ; it can be written in the form

leu(mi’ l]J)
1

1
= [éNlm2 + Ny - ém% + N3mxmy}|lp|2.
Here, the coefficients N; are the coupling parameters of
the magnetic and modul ation subsystems.

As aresult, the final expression for the density of
free energy has the form

F = Fo(e) + Fy(IWl®) + Foy(e, [WI%) + Fo(m)
+ Fa(m) + Froo(my, ) + Fry (M, [W]%).

This equation describes three phase transitions. the
Curie point, the transition to the modulated state, and
the transition to the tetragonal phase.

The equation for the density of free energy (11)
includes variables that are not responsible for phase
transitions, i.e., those that are indirect order parameters

(10)

(11)
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e, &, &5, and e;. After the minimization of energy with
respect to these variables, certain constants involved
in (11) are renormalized:

D2 DZ BZ
B=B-2lL_—1 4+ 30 p=og, =,
[B(Cy +2Cp,) Cuf ' 2C,
1 D,B,; Vo B;D;
No=3NimgcL vy M T NeT e,
2B’
R S—
3(Cyy +2Cyy)

With regard for this renormalization, the expression for
the density of free energy takes the form

F = Za(l+ &) + =bey(€3 —362) + S (€ + €2)°
2 3 4
1 2 1., .4 1. I
+ A+ T8I+ SCTY)

2 2 1 2 1 4

+—D,e;[P|"+ Zam” +=dm
J6 2 4 (12)

+ K(mim)z, + m§m§ + mimi)

1

2

+ [N'lm2 + Nzgnf - %m% + Ngmxmy}llplz.

+ B Eey(mi ) + Zey(3ml-m?) |

In order to determine all equilibrium states of the
alloys under consideration, it is necessary to minimize
function (12) with respect to the remaining order
parameters e,, e;, ||, my, m,, and m,. The system of
nonlinear al gebraic equations obtained can only be solved
numerically. To perform the numerica computation onthe
basis of the available experimental data [11-13, 15,
17, 19, 20], the following values of the parameters
involved in Eq. (12) were used: a, = 10 erg/lcm?, b =3 x
10 erg/cm?, ¢ = 3 x 10 erg/cm?®, D, = 108 erg/cm?,
A, =107 erg/cm3, B' = 1038 erg/cm?, C' = 10% erg/cm?,
K = —10° eg/cm’, B, = 15 x 10’ eglcm?, a, =
-10° erg/cm®, & = 10° erg/cm3, N; = 10° erg/cm®, N, =
—102 erg/cm?, and N; = —10? erg/lcm®. It is seen from
Fig. 2 that thetemperature of the magnetic, T, and struc-
tural, Ty, phase transitions depend on x approximately
linearly, and the temperature of the premartensitic trans-
formation T, = 260 K isamost independent of the com-
position of the aloys analyzed. Thus, the composition
dependences of these temperatures can bewritteninthe
form

Te = Teo—¥X, Ty = Ty T KX,
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where
TC0:390KI y:175K,

Two=200K, k=700K.

The phase T—x diagram of the Heuder alloys
Ni, . ,Mn, _,Ga calculated for the parameters indicated
above is shown in Fig. 3. Inis seen that the following
phases can be realized as the temperature and the com-
position vary: the paramagnetic cubic phase (1), the
ferromagnetic cubic phase (2) with the magnetization
along the axis [111], the ferromagnetic angular quasi-
cubic modulated phase (3) with the magnetization in
the plane of the type (110), and the ferromagnetic tet-
ragonal modulated phase (4) with the magnetization
along theaxis[001]. Theline C'Cistheline of the mag-
netic second-order phase transition between the para-
magnetic and ferromagnetic cubic phases. T'T is the
line of the first-order phase transition between the fer-
romagnetic phases (2) and (3). It isaccompanied by the
occurrence of modulations of the cubic lattice, which
resultsin asmall tetragonal distortion. N'Nand O'O are
the lines of the loss of stahility of phases (2) and (3),
respectively. B'B isthe line of the martensitic phasetransi-
tion between the ferromagnetic modulated phases (3)
and (4). This transition is accompanied by the occur-
rence of large tetragonal distortions of the lattice. G'G
and F'F arethelinesof theloss of stability of phases(3)
and (4), respectively. Itisseen from Fig. 3 that the mar-
tensitic transition is accompanied by alarge hysteresis,
while the hysteresis of the transition from the ferro-
magnetic cubic phase to the ferromagnetic quasi-cubic
one is very small. These facts are in good agreement
with experimental results on measuring the resistance
(see Fig. 1). For large %, the hysteresis regions of the
premartensitic and martensitic transitions partialy
intersect. As a result, these transitions partialy super-
impose on one another and are difficult to distinguish
experimentally (Fig. 1).

4. CONCLUSIONS

The experimental and theoretical study of the phase
diagram of Ni,, Mn,_,Gadloysintheinterva 0 < x <
0.1 conducted in this paper madeit possibleto reveal an
important specific featurein the behavior of these mate-
rials, consisting in the occurrence of static modulations
of the crystal lattice in the cubic and tetragonal phases.
The phenomenological theory of phase transitions of
Ni, ., . Mn,_,Ga aloys made it possible to describe the
sequence of two structural transitions: from the cubic
lattice to the modulated phase with small tetragonal
distortions (the premartensitic transition), and then
from the modulated quasi-cubic to the martensitic
structure with large tetragonal distortions and modula-
tion. These transitions are accompanied by magnetic
orientational transitions.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

1015

450 -

390 -

330 A
N

g
270 A

~ = - 71001]
iMII [001]
[110]
150

0 0.025 0.050 0.075 0.100
X

210

Fig. 3. The T—x phase diagram of aloys Ni, , ,Mn; _,Ga
for 0 < x< 0.1 (theoretical).

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 99-02-18247; by the
Ministry for Education, project no. 97-0-7.0-11; and by
the Russian Universities program.

APPENDIX

When congtructing the theoretical phase diagram, we
assumed that only the dastic moduli a and the constant of
exchange interaction a depended on temperature and
compostion. Variations of other parameters in (12) can
lead to a qualitative change of the phase diagram. For
example, it isinteresting to see how the phase diagram
of Ni, ., Mn, _,Ga changes when the parameters A and
D,, which are responsible for the modulation of the
crystal lattice, vary.

Figure 4 presentsthe phase diagram of Ni, . ,Mn, _,Ga
on the coordinatesa and Afor b>0, D,>0, and N, , 5
< 0 in the case when the alloy is in the ferromagnetic
state. It is seen from the diagram that in this case the
material can be in one of five states. In the phase dia-
gram, OC isthe line of the structural and magnetic ori-
entational first-order phase transitions from the high-
temperature cubic (austenitic) phase FC;,; to the low-
temperature (martensitic) phase FTqgy;, Which is char-
acterized by large tetragonal distortions and no modu-
lation. The phase FCi,,y; is stable above the line GH,
and the phase FTqg; is stable below MI. It is seen by
the region of their intersection that this transition is
accompanied by a large hysteresis. On the curve OB,
the structural and magnetic orientational first-order
phase transitions from the symmetric phase FC;;,;; to
the modulated angular phase FCMy,,,; occur. The ini-
tial cubic phase is stable to the right of the curve JG,
while the modulated one is stable to the left of QF. We
note that the phase FCMy,,; is not strictly cubic. It has
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Fig. 4. The phase diagram of the Ni-Mn—-Ga dloy on the
coordinatesa—Afor b>0, D, >0, and Ny , 3 <0. Solid
curves are the curves of first-order phase transitions, dot-
and-dash curves correspond to the second-order phase tran-
sition, and dashed curves are the boundaries of stability
regions of the phases; co' and pp' are thermodynamic paths;
F denotes the ferromagnetic phase, M is the modulated
phase, C the phase with acubic lattice, and T the phase with
atetragonal lattice. The direction of the magnetization vec-
tor of the phasesis indicated in square brackets.

small tetragonal distortions that appear along with the
modulation. In this phase, the magnitude of tetragonal
strains is determined by the parameter D,. If we set
D, = 0, then there will be no tetragonal strains. On the
curve RX, the magnetic orientational second-order
phase transition from the angular phase FCM,,; to the
symmetric phase FCM,qo; 0ccurs. Thisphasetransition
is caused by the interaction of the modulation order
parameter with the strain or magnetic order parameters.
The existence of this phase transition depends on the
magnitude of the interactions and, therefore, on the
magnitude of small tetragonal distortions in quasi-
cubic phases. RO is the curve of the martensitic and,
simultaneously, the magnetic orientational first-order
phase transition from the angular quasi-cubic phase
FCMuu to the symmetric tetragonal phase FTM oy,
which has large tetragonal distortions. The existence of
this phase transition is also determined by the interac-
tion of the modulation order parameter with the strain
or magnetic order parameters. On the curve RD, the
martensitic phase transition from the symmetric quasi-
cubic modulated phase FCMoy to the tetragona sym-
metric phase FTMqq; occurs. It is accompanied by a
large jump of tetragonal strains. On this curve, no reori-
entation of the magnetization vector and, therefore, no
magnetic phase transition occur.

The analysis of the equations obtained by the mini-
mi zation of energy (12) showsthat the location of point
R on the curve OD, the phase FCMqy;, and the curve
of the orientational second-order phase transition RX
on the phase diagram strongly depend on the value of
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the parameters D, and N,. In the case of the phase dia-
graminFig. 4, wehave D, > N,; thus, their locationinthe
phase diagram is mainly determined by the interaction of
the modulation and strain order parameters D,. It turns
out that, depending on the magnitude of thisinteraction
(and, therefore, on the magnitude of the tetragonal dis-
tortions, which are determined by thisinteraction inthe
modulated phases), the phase FCMqq; can either be
present on the phase diagram or not. Correspondingly,
the martensitic transition on the curve RD can be either
accompanied by the magnetic orientational phase tran-
sition or not. Figure 4 presents a situation when the
parameter D, is greater than a certain critical value at
which the phase FCMqy; still exists. If D, is less than
this critical value, then the phase FCM g, and the tran-
sition on the curve RX on the phase diagram do not
exist, since the tetragonal distortions in the premarten-
sitic phase are not large enough. In this case, the mar-
tensitic first-order phase transition from the angular
quasi-cubic phase FCMy,,,; to the symmetric tetragonal
phase FTMqo;; With large tetragonal distortions occurson
the curve OD. Thisphasetransition is accompanied by the
megnetic orientationa first-order phase transition at
which a reorientation of the magnetization from the
direction [uuw] to the direction [001] occurs. Depend-
ing on the parameter D,, the curve QX changesitsloca-
tion on the diagram between the curves QL and QF. As
D, increases, QX moves in the direction of QF (clock-
wise); however, even for very large values of D,, these
curves do not coincide; they rather converge asymptoti-
caly. The situation is different when D, decreases. In this
case, the curve QX approaches the curve QL (anticlock-
wise), and they merge at acertain value of D,. Beforethey
merge, the orientational second-order phase transition on
the curve RX occurs; on the curve RD, the martensitic
transition occurs, which is accompanied by jumps of
the magnetization modulus and tetragonal strains, but
without reorientation of the magnetization. When the
curves QX and QL coincide, the martensitic transition
on the curve OD is accompanied by simultaneous
jumps of the orientation, magnetization modulus, and
tetragonal strains. Thus, depending on the parameters
of the problem, a structural first-order phase transition
occurs on the curve OD either from the phase FCMy,;
or the phase FCMqgy; to the phase FTMqqy;. The phase
FTM 001y has both large tetragonal distortions and mod-
ulation order. InFig. 4, the phase FCM,,; is stable above
the curve QX, the phase FCMqy is stable above QL and
below QX, and the phase FTMqy; is stable below KM. At
last, the curve OE corresponds to the structural first-order
phase trangition between the martensitic tetragonal phase
FT o0y @d the modulated tetragonal phase FTM o). This
trangition is not accompanied by an orientational mag-
netic phase transition. The phase FTqy; is stable to the
right of the curve NM, and the phase FTMq,; is stable
to the left of PM. It must be noted that there exist equal
energy states FToo1;, FTjo10 FT[100, @Nd SO 0N in the
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phase FT. All these solutions, except for FT oo, Which
is connected with the transition to the modulated state
FTM o0y, are stable to the right of the curve MZ and
become metastable on the curve OE. Thus, the degen-
eracy of solutions in the modulated phase due to the
crystal symmetry is removed.

For b > 0and D, < 0inthe angular modul ated phase
on the curve RX, the magnetization vector is reoriented
to the [110] axis rather than to [001].

Itisseen from Fig. 4 that when the modul ation order
parameter is taken into account, the martensitic trans-
formation is accompanied either by a premartensitic
(with the thermodynamic path ag") or a postmartensitic
(with the thermodynamic path pp’) phase transition.
Thus, the variation of the parameter D, determines the
properties of the martensitic transformation.

In addition to structural and magnetic orientational
phase transitions, the theory suggested in this paper
allowsfor adescription of the magnetic phase transition
of the type disorder—order (the Curie point). Figure 5 pre-
sentsthe phase diagram on the coordinatesa — Afor the
casewhenthea —adiagram (for Yy =0, see[5, 9, 11, 12])
contains a second-order phase transition from the para-
magnetic cubic phase to the ferromagnetic cubic phase.

It is seen that, in this case, seven equilibrium states
can exist. PC is a paramagnetic cubic phase. On the
curve OB, a structura first-order phase trangition to the
modulated quasi-cubic paramagnetic phase PCM occurs,
in which small tetragona distortions appear due to the
interaction of the modulation and strain order parame-
ters. Then, on the curve ML, a martensitic first-order
trangition from the phase PCM to the tetragona modu-
lated phase PTM with large tetragonal strains occurs.
OM isthe curve of a magnetic second-order phase tran-
sition between the modulated quasi-cubic paramagnetic
(PCM) and ferromagnetic (FCMqy;) phases. On the
curve MQ, a smilar trandtion between the tetragona
modulated phases PTM and FTMq; occurs. ON is the
curve of an orientational second-order phase transition
between the quasi-cubic modulated symmetric (FCMgy;)
and angular (FCM,;) phases. On the curvesMN and NP,
amartensitic phase transition from these phases to the tet-
ragonal ferromagnetic phase FTMqy; occurs. OD isthe
curve of structural and orientational phase transitions
from the ferromagnetic cubic phase FC;;,,; to the mod-
ulated quasi-cubic angular phase FCMy,,,;. Findly, a
magnetic second-order phase transition between the para-
magnetic, PC, and ferromagnetic, FC, cubic phases
occurs on the curve OC. The stability domain of the phase
PC is bounded by the curves OC and OlI; of the phase
FC by OC and OH; of the phase PCM by OK, OQ, and
QR; of the phase PTM by OF and OU; of the phase
FTMuuw by OE, ES, and OG; of the phase FCMqq
by OQ, QE, and EO; and of the phase FTMqq,; by OF
and OT.

We note that, for the chosen value of the parameter a,
only premartensitic phase transitions to modulated
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Fig. 5. The phase diagram of the Ni-Mn—Ga alloy on the
coordinatesa —Aforb >0, D, > 0, and N; 5 3 < 0. Solid
curves are the curves of first-order phase transitions, dot-
and-dash curves mark second-order phase transitions, and
dashed curves are the boundaries of stability regions of the
phases; P denotes the paramagnetic phase, F the ferromag-
netic phase, M the phase with modulation, and C the phase
with acubic lattice. The direction of the magnetization vec-
tor of the phasesis indicated in square brackets.

phases occur in the a — A diagram. However, for other
values of a, postmartensitic phase transitions emergein
thea — A diagram.
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Abstract—In the framework of the Landau theory of phase transitions, the influence of the magnetoelastic
interaction on structural transitions in cubic ferromagnetics with a positive first magnetic anisotropy constant
isanalyzed. It is shown that structural transitions are not accompanied by a reorientation of magnetization in
this case. The phase diagrams of such ferromagnetics either contain atermination point of the structural transi-
tion or acritical point in which thefirst-order transition isreplaced by a second-order one. Magnetoelastic inter-
action also leads to the appearance of an interval of the ferromagnetic parametersin which a coupled first-order
structural-magnetic transition exists. The phase T—x diagram for Heusler Ni, . ,Mn; _,Gaadloysis calculated,
whichisin good agreement with the experimental phase diagram of these alloys. © 2001 MAIK “ Nauka/Inter-

periodica” .

Magnetoel astic interaction in ferromagnetics makes
it possible to initiate structural transitions using a mag-
netic field. From this viewpoint, of special interest are
martensitic transformations in ferromagnetics, which
possess the properties of shape memory and huge mag-
netostriction. For example, such are Heuder
Ni, ., Mn;_,Ga aloys, in which a transition from the
cubic to the tetragonal phase occurs as the temperature
decreases [1-3]. The influence of magnetostriction on
structural transitions in cubic ferromagnetics with a
negative first magnetic anisotropy constant when the
magnetization in the initial phase is oriented along the
[111] axiswasinvestigated in [4, 5]. In this case, struc-
tural phase transitions are accompanied by the appear-
ance of angular magnetic phases and a reorientation of
the magnetization. Experimental results that have been
recently obtained in [6] imply that, in the stoichiomet-
ric Ni,MnGa, the first anisotropy constant is positive;
i.e., the magnetization in the initial phase is oriented
along the [100] axis. In the present paper, we investi-
gate phase diagrams for this case.

In order to construct phase diagrams of a cubic fer-
romagnetic, we write out an expression for the free
energy that involves only the components of the order-
ing parameters responsible for the structural and mag-
netic transitions, which is usualy used in the Landau
theory [3-5, 7]:

F = Za(e}+ &) + 2bey(e,~36) + 3c(ef + €))

+ B[-l-ez(mi— m2) + L1

2 NG

2 2 2 2 2 20,1 2 1. 4
+K(mxmy+mymz+mzmx)+§am +£—16m .

es(smi—mz)} 1)

Here g are linear combinations of the components of
the strain tensor, &, = (8, —€,)/+/2 and ;= (26, — €, —
e,/ /6 a, b, and c arelinear combinations of the mod-

ulus of elasticity of the second, third, and fourth order,
a = Cyy—Cpp, b = (Cyy—3Cy,+2C),

C = (Cyya1 + 6C131p —3C111 — 8Cp123);

m = M/M, is the dimensionless unit magneti zation vec-
tor; My isthe saturation magnetization; B is the magne-
tostriction constant; K is the first cubic anisotropy con-
stant; and a and o are the exchange constants. In the
vicinity of the Curie temperature T = T, the exchange
constant can be written in the form

In the vicinity of the point of the structural phase tran-
sition T = T,,, the generalized elastic modulus of the
second order iswritten in the form

In aloys of the Ni,, , Mn,; _,Ga type, the tempera-
ture of the structural and phase transitions substantially
depends on the compoasition. In this connection, it isinter-

1063-7761/01/9206-1019$21.00 © 2001 MAIK “Nauka/Interperiodica’



1020
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Fig. 1. The phase diagram of a cubic ferromagnetic for
Tm < Tc on the coordinates a, b (C is the cubic phase with

small tetragonal distortions, T isthe tetragonal phase, and R
is the orthorhombic phase). For all phases, the magnetiza-
tion is oriented along the [001] axis. Solid curves corre-
spond to phase transitions, and dashed ones are the curves
of the loss of stability of phases.

esting to investigate phase diagrams both for Ty, < T¢
(compounds close to stoichiometry) and for Ty, ~ T¢
(compounds with x = 0.16-0.20). For definiteness, we
assume that the magnetostriction constant B > 0, and
the elastic modulus of the fourth order ¢ > 0.

First, consider the casewhen Ty, < T, i.e., when the
structural transition occursin the ferromagnetic matrix.
Then, we can set m? = 1in (1) and change from the Car-
tesian components of the magnetization m,, m,, and m,
to the polar (8) and azimuth (¢) angles of this vector.
Minimization of the free energy over e,, e;, 6, and ¢
leads to the following equilibrium states.

1. The cubic, C, and tetragonal, T, phases with the
magnetization along the [001] axis and strains deter-
mined by the equations

A/éB=O

e, =0, ae,+bel+cel+ S 2

are stable for b < 0 in the region described by the ine-
quality

@B_C +£,/-bB./B. 6)
For b > 0, the regions of existence of these phases are
separated by the branches of the discriminant curve
2
> 3.6 Jen’,
a—4ca— > abB+2 cB’+ 33B 0 @

of the cubic Eq. (2). Inside the region bounded by the
branches of curve (4), both phases are stable.
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2. The orthorhombic phase R with the magnetiza-
tion along the [001] axis (6 = 0) and strains determined
by the equations

4cbel—2b%e, +ab + “/-3—éBc = 0,
5 )
=4 |_@2_84 40
e = * |-€; C+e3C
is stable for
b’ ./6Bc 166 11
as4c 3D b<—D 9 BcD : (6a)
and for
J6Bc 2
as g3 —./6bB, (6b)
|j].6/\/6 ZD113
09 BcD <b<O0.

From symmetry considerations, it follows that in addi-
tion to the states considered above, ferromagnetics can
exhibit similar phases with the magnetization aong the
[100] and [010] axes.

The analysis of distortions of theinitial cubic lattice
in the phases C and T shows that these phases possess
the same tetragonal symmetry and differ only in the
magnitude of spontaneous strains. In the phase C, these
strains are determined by the strains of the cubic lattice
due to magnetostriction; in the phase T, they are deter-
mined by structural strains when passing to the marten-
sitic state. The curves of phase transitions between the
states C, T, and R are determined from the condition of
equality of the phase energy.

The phase diagram of the cubic ferromagnetic on
the coordinates a, b for T, < T is presented in Fig. 1.
Depending on the magnitude of the elastic moduli of
the second (a) and third (b) order, the ferromagnetic
can exhibit the following structural transformations.
For b > 0, thefirst-order phase transition from the phase
C to the phase T occurs on the curve AE defined by the
equation

,\/éBC
9 c (7)

This transition is accompanied by ajump of the strains
e; and is a martensitic transformation. From the sym-
metry point of view, it is an isostructural transition,
which has a termination point A with the coordinates

(18cB?)13, (9./6 Bc2)¥3. To the left of the point A, the
transition from the phase C to T is smooth, without any
jumpinthestrain e;. For b < 0, the martensitic transfor-
mation (the first-order structural phase transition) on
the curve CH occurs from the cubic phase C to the
orthorhombic one R, which is accompanied by ajump
of the strains e, and e;. On the curve CL, the second-

a=
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order structural phase transition between these two
phases occurs. An expression for the curve of the first-
order phase transition (CH) can be found from the con-
dition of equality of the energy for the phases C and R.
The equation for the curve of the second-order phase
transition (CL) isdetermined by the equality in (3). The
critical point of the termination of the first-order phase
transition (C) has the coordinates (/6 /3 — 1/2)(B?c)Y3,

—(16../6 BcZ/9)¥3. The coordinates of the points Aand C
are determined by the magnitude of the magnetostric-
tion B. For B = 0, the phase diagram coincides with the
diagram of the nonmagnetic cubic crystal [8].

Now consider the phase diagram of a cubic ferro-
magnetic for the case when the temperature of the mar-
tensitic (Ty) and magnetic (To) transitions become
comparable. In this case, in order to find equilibrium
states of the cubic ferromagnetic, the free energy (1)
must be minimized over the variables m,, m, m, €,
and e;. For definiteness, we assume that b > 0 and the
signs of the other constants remain the same as in the
case Ty < Te.

The minimization of (1) yields the following equi-
librium states of the ferromagnetic.

1. The cubic paramagnetic phase (PC),
m =m =m,=0, e =¢ =0, (8
isstablefor a =0, a=0.
2. The tetragonal paramagnetic phase (PT),
m =m,=m,=0, e =0,

b+ /b’ —4ac ©)

s T~ 2c ’
is stable for
2
. fG_Bb 0D
’ 4c’ (10)
2 2
a> b D/éa[

ac U4 B [CD

3. The cubic ferromagnetic (FC) and tetragonal fer-
romagnetic (FT) phases with the magnetization along
[001],

m =m, =0, m = —%B} + 2“/éBeam, (11)

with strains determined by the equations

e, = 0, ae,+bei+c3el+./6Bm/3 =0. (12)
The phase FC is stable for
a<0, az 5{2“’2(2&2 +12¢B” — 95ac)
Cc
(13)

N

27 Bc’

(6b +4cB’ - 36ac)
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Fig. 2. The phase diagram of a cubic ferromagnetic for
Ty ~ Tc on the coordinates a, o (PC is the paramagnetic
cubic phase, PT isthe paramagnetic tetragonal phase, FCis
the ferromagnetic cubic phase with small tetragonal distor-
tions, and FT is the ferromagnetic tetragonal phase). In the
FC and FT phases, magnetizationis oriented along the[001]
axis. Solid curves correspond to phase transitions, and
dashed ones are the curves of the loss of stability of phases.

and the phase FT is stable for

a< “/62
54Bc
“/_ (6b + 4cB? 36ac) (14
27Bc
2 2
as_b__D\Léa_“/a_ b O (0 =0)
4c U4 B 2[33

The stability region of the phases FC and FT is aso
bounded by the inequalities

a=-9,
45 3c(a +3)" , Jeb(a +8) , 4B’ , (15)
8R2 4B 3(a +3)

which follow from the condition mﬁ <l

From symmetry considerations, it follows that in
addition to these states, the crystal can exhibit other
equilibrium phases with the energies and regions of sta-
bility coinciding with those described above. These are
tetragonal paramagnetic phases with strains along the
axes [100] and [010], cubic ferromagnetic phases with
magnetization along the axes [100] and [010], and tet-
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ragonal phases with strains and magnetization along
the axes [100] and [010].

Asinthecase T, < T, the analysis of strains of the
cubic lattice in the phases FC and FT determined by
Egs. (12) shows that these phases possess identical tet-
ragona symmetry. The phases FC and FT differ in the
magnitude of spontaneous strains e;. In the phase FC,
they are mainly determined by the magnetostriction,
whereas in the phase FT by structural distortions that
occur while passing to the martensitic state.

The phase diagram of the cubic crystal for the case
Tw ~ T on the coordinates a, a is presented in Fig. 2.
The following phase transitions are possible from the
paramagnetic cubic phase PC. On the curve BK deter-
mined by the equation a = b%4c, the first-order struc-
tural phase transition to the tetragonal paramagnetic
phase PT with large distortions of the lattice occurs
(martensitic transformation). On the curve DM (a = 0),
the second-order phase transition to the ferromagnetic
cubic phase FC with small tetragonal distortions of the
lattice occurs. On the curve DB, the coupled structural—
magnetic first-order phase transition to the ferromag-
netic cubic phase FT with large tetragonal distortions of
the lattice occurs. The equation of this curve follows
from the equality of the energy of the phases PC and
FT. In addition to the transition PT —= PC aong BK,
the second-order isostructural magnetic phase transi-
tion from the paramagnetic tetragonal phase PT to the
ferromagnetic tetragonal phase FT can occur along the
curve BH. The equation of this curve follows from the
second condition of stability of the phase FT in (14)
when the inequality turns into equality. The first-order
isostructural phase transition between the ferromag-
netic phases FC and FT can occur along the curve GD.
The equation of this curve has the form

_ 2b° 48" /6Bca

9c 39 60
This transition is accompanied by a jump of the strain
e; and is classified as a martensitic transformation. In
the a—a diagram, it can have the termination point G.
This situation occurs in the case when the point G isto
the right of the stability curve of the phases FC and FT
in (15) (for simplicity, this curve is not shown in the
phase diagram). The analysis of inequalities (15) and
Eqg. (16) in combination with conditions (13) and (14)
of the stability of the phases FC and FT shows that the
termination point of the phase transition FT —~ FC
exists only for large values of the magnetoelastic con-
stant B ~ b3/c?. In this case, the transition between the
phases FT and FC to the left of the point G proceeds
smoothly, without jumps of the strain e;.

The region of absolute stability of the phase PC is
bounded by the lines OM and ON. For the phase PT,
this region is bounded by the curves LC and CH. The
phase FT is absolutely stable in the region to the left of
the curve GPH, and the phase FC above the curve

(16)
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GFM. The points D and B are critical. At these points,
the second-order phase transition curves split into two
curves of first-order phase transitions. The coordinates
of these points are

9 clr

In experimental studies of phasetransitionsin aloys
of the Ni, ., Mn; _,Gatype, the phase diagram is usu-
ally reconstructed on the temperature—concentration
(T—x) coordinates[3, 5]. In order to be able to compare
the theoretical results obtained in the present study with
the available experimental data, we present the theoret-
ical phase T—x diagram of the cubic ferromagnetic.

It follows from the experimental data[3, 5] that the
Curie temperature T and the martensitic transforma-
tion temperature Ty, for Ni,,,Mn,_,Ga aloys vary
amost linearly with the concentration. We use this
result to construct the theoretical a—o phase diagram
(Fig. 2) on the coordinates T—x. For this purpose, we
write the coefficientsa and a in the equation of the free
energy (1) intheform

a = ao(T_TM)/TM, CX = ao(T—Tc)/Tc, (17)
where Ty, = Ty + 0X, Te = Teg—YX, Tyoand Teg arethe
temperatures of the martensitic and magnetic transition
at x =0, and o and y are proportionality coefficients.
Tuor Teo O, and y are determined experimentally.

In order to calculate the phase T—x diagram, we use
the following values of the parameters involved in (1)
and (17) (see[3, 5, 6]):

a, = 10" erg/lcm®, a,=-10° erg/lcm?,
Tyo=202K, Teo=375K, 0=700K,
y=175K, b=3x 10" erg/cm?,
c=3x10%erg/cm’, B=1.5x 10’ erg/lcm?,
K=4x10*erg/lcm’, &= 10° erg/cmq.

Figure 3 presents the T—x phase diagram of
Ni, ., ,Mn; _,Ga aloys constructed numerically on the
basis of Egs. (17) and (18). Since the magnetoelastic
constant B is small, the region in the vicinity of the
intersection of the temperatures T,, and T cannot be
shown on the scale of Fig. 3a. Thisregion is shown in
Fig. 3b onagreater scale. Thedesignationsin Fig. 3are
thesame asin Fig. 2. It is seen from Fig. 3 that, for the
given values of the parameters, the region DB in which
the first-order coupled structural-magnetic phase tran-
sition can occur is confined within avery small interval
of concentrations around x = 0.19. This interval
strongly depends on the magnitude of the magnetoelas-
tic constant B. As B increases, the interval in which the
coupled structural-magnetic phase transition exists

(18)
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other designations coincide with those used in Fig. 2.

also increases. The phase diagram presented in Fig. 3is
in good agreement with the experimental T—-x diagram
(seeFigs. 5and 4in[3, 5], respectively).

The analysis of the influence of the magnetoeastic
interaction on the phase diagrams of cubic ferromag-
netics alows one to draw the following conclusions.

In contrast to the case of the negative cubic anisot-
ropy constant (K < 0), the structural phase transitions
for a positive first anisotropy constant (K > 0) are not
accompanied by reorientation of the magnetization.
Thisisdueto thefact that already in the cubic phasethe
magnetoel astic interaction decreases (strictly speaking)
the symmetry of the phase down to the tetragonal one.
The symmetry of the low-temperature phase is either
tetragonal (b > 0) or orthorhombic (b < 0). Due to the
fact that the high-temperature and low-temperature
phases contain the same symmetry elements (e.g., axes
of the second and fourth orders), no reorientation of
magnetization occurs in the case K > 0 under structural
transitions. When the symmetries of the high-tempera-
ture and low-temperature phases are identical (b > 0),
the curve of the structural phase transition can have a
termination point. To the right of this curve, the struc-
tural transition isaccompanied by ajump of strainsand
hysteresis, and behaves like a martensitic transforma:
tion. To the left of this point, no such transition occurs,
the strains vary smoothly from quasi-cubic to tetrago-
nal ones, and thereis no hysteresis. For b < 0, the sym-
metries of the high-temperature and |ow-temperature
phases are not identical. In this case, for large |b|, the
structural transition between phasesisafirst-order tran-
sition (a martensitic transformation); for small |b|, it is
a second-order transition. Thus, there is a critical point
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on the phase diagram for b < 0; at this point, the transi-
tion type changes. The coordinates of the termination
point of the structural transition (for b > 0) and the crit-
ical point (for b < Q) are determined by the magneto-
striction constant B. The magnetodastic interaction
leads to the situation when first-order coupled struc-
tural—magnetic phase transitions occur in a certain
interval of the parameters of the cubic ferromagnetic.
The magnitude of the interval on the phase diagram in
which such transitions occur is determined by the mag-
nitude of the magnetoel astic interaction. The calculated
theoretical T-x diagram of the Heuder alloys
Ni, ., Mn; _,Ga is in good agreement with the phase
diagram obtained experimentally.
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Abstract—The kinetics of the formation of an anomalous state of a helium crystal with afast-growing surface
areinvestigated. It is demonstrated experimentally that it is external supersaturation that is the determining fac-
tor of formation of an anomal ous state. The dependence of the time of formation of anomal ous state on temper-
ature and initial supersaturation is measured. The problem of crystal growth with the excitation of the first-
sound wave in the container is solved. This solution is used to determine the dependence of the kinetic coeffi-
cient of growth of anomalous facets on temperature and initial supersaturation. It is demonstrated that the
Kinetic coefficient of facet growth decreases on approaching the boundaries of the region of the existence of an
anomalous state. The kinetic coefficient of growth of atomically rough surfaces in an anomalous state is deter-
mined by the damping of pressure oscillation. It is found that the value of the latter coefficient is three—four
timesthat of the respective value for the facets but is considerably, by an order of magnitude, lessthan the value
of the coefficient of growth of such surfacesin the normal state. Phenomena are treated which accompany the
spiral growth of facets, namely, the excitation of oscillations of a screw dislocation during spiral rotation and
the emergence of vortex rings in superfluid helium. The effect of these phenomena on the kinetics of facet

growth and on the formation of an anomalous state is discussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The kinetic and thermodynamic properties of the
interface between liquid helium and its solid HCP
phase were the subject of intensive investigations fol-
lowing the theoretical prediction by Andreev and
Parshin [1] and experimental verification by Keshishev
et al. [2] of the quantum behavior of facet growthin the
atomically rough state. By now, afairly comprehensive
picture has been formed of thermodynamic transitions
on the surface and of the kinetics of facet growth. Three
roughening transitions have been reveded: a T, = 1.3 K,
the faceting of the basal plane (c-facets) is observed;
then, at Tg, = 0.9 K, the side planes (a-facets) are fac-
eted [3-5]; and, at the temperature Tg; = 0.36 K, the

faceting of (1101)-planes (s-facets) is observed [6].
The kinetics of crystal growth under conditions of
minor deviations from equilibrium (Dp < 1 mbar) are
defined by the state of the surface. Above the roughen-
ing transition in the atomically rough state, the rate of
growth is controlled by the scattering of quasiparticles
on the surface [7, 8] and by the dissipation in the
medium [9]. Below the roughening transition, in accor-
dance with the models of growth existing in classica
crystallography [10], the facet growth is associated
either with two-dimensional nucleation [10, 11] or with
topologically irremovable defects formed on the facet
by dislocations (spiral growth, Frank-Read sources
[10]). These models (with necessary correction for the
case of helium[12]) describe well most of the observed

phenomena. The only effect that drops out from the
general pattern was the burst-like growth of a disloca
tion-free crystal facet in the temperature range from
2 mK t0 0.25 K, which was observed by Ruutu et al. [12].

Another phenomenon, which does not fit the frame-
work of the known concepts either, consists in a sharp
acceleration of crystal growth by two-three orders of
magnitude (anomalous growth) under conditions of
fairly high supersaturation below the second roughen-
ing transition [13-16].

The investigation results revealed a number of fea-
tures of this transition: namely, (1) the acceleration of
growth occurs on the ¢c- and a-facets simultaneously
[14]; (2) the crystal changes over to the state with fast-
growing facets only in the case of initid supersaturation
above a certain value of Dp*, which decreases monotoni-
caly with temperature (phase diagram [15, 17]; and
(3) away from the transition boundary, the rate of crys-
tal growth becomes so high that the growth becomes
oscillating, with the damping decrement of oscillation
decreasing away from the transition boundary [16].

In this paper, we give the results of studies into the
effect of the condition of crystal formation on the tran-
sition to anomalous state with fast-growing facets, as
well as the results of analysis of the kinetics of growth
after transition. Section 2 contains a brief description of
the experimental procedure. The results of checking the
hypothesis which relates the transition to the behavior
of crystal nucleation are described in Section 3. The
experimental data on the time of emergence of an
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Fig. 1. Experimental scheme: (1) pulsed infrared light-emitting diode, (2) lens, (3) capacitive sensor diaphragm, (4) tungsten needle,
(5) copper refrigerant conduit connected to a®Hebath, (6) objective, (7) CCD matrix. The optical axisisarranged horizontally. The
details of the optical cryostat [19] are not shown. Time diagrams: A, frame pulses of the video signal; B, high-voltage pulse; C, LED

flashes.

anomalous state are given in Section 4. The results of
analysis of the pattern of crystal growth after transition
to anomalous state and in the closing stage of growth
are given in Section 5. Section 6 contains a discussion
of the experimental data and of the results of checking
some hypotheses; also treated in this section are the
processes which possibly initiate this transition.

2. EXPERIMENTAL PROCEDURE

The experimental apparatus and the container in
which the investigations were performed are described
in methodological papers [18-20] and in a number of
other papers[9, 21]. Theinvestigations were performed
in an optical container (see Fig. 1), which made possi-
ble the filming of the crystal in the process of growth.
The inner volume of the container was 4 cm®. The
nucleation and subsegquent growth of acrystal occurred
on atungsten needle 4 whose point was located on the
optical axis of the container. Crystal production was
initiated by a high-voltage pulse applied to the needle.
The use of this procedure resulted in solving of the fol-
lowing problems:

(1) the effect of the wall is ruled out: the crystal
grows amost freely, without touching the container
walls;

(2) the emergence of crystal is easily synchronized
with the operation of the video system,;

(3) theinitial supersaturation in helium Dp, may be
selected in the range from zero to the pressure of spon-
taneous crystal nucleation on the wall (0-15 mbar);

(4) one can change the conditions of crystal nucle-
ation by varying the pulse amplitude and duration.

This procedure made it possible (see [15, 17]) to
construct the phase diagram of the anomal ous state and
film the fast crystal growth.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

The crystals were grown from thermomechanically
cleaned helium. The experimental sequence was asfol-
lows (see the time diagrams in Fig. 1). First, desired
supersaturation was set up in the fluid. Then, a high-
voltage pulse B was supplied to the needle at the
moment of time synchronized with the video signal
(series of frame pulses A) with the delay t;. The first
LED flash of about 15 psin duration was delayed by t,
relative to the high-voltage pulse (see the series C).
Subsequent flashes of lighting were synchronized with
the frame pulses of the video signal that followed with
aperiod of 20 ms. Therefore, the time interval between
the first two frames was less than 20 ms (and usually
amounted to 13.6 ms), and that between the subsequent
frames was equal to the frame pulse period. Because
the video picture is transmitted in half-frames, the odd
frames are shifted by one line on the vertical relative to
the even frames. The crystal growth wasrecorded in the
memory of asignal processor (thefirst five frames) [20]
and, if required, was simultaneously recorded on video-
tape. The minimal interval between the first and second
framesislimited by the duration of the synchronization
pulse and cannot be shorter than 2 ms. This time reso-
lution is insufficient to get an idea of the stage of fast
crystal growth. In order to solve this problem, we mod-
ified the procedure. The experiment in crystal growing
a a fixed temperature was repeated approximately
15 times; in so doing, the initial supersaturation in the
container, the voltage, and the duration of the high-volt-
age pulsewere identical. It turned out that the curves of
pressure variation agreed within the measurement
accuracy, and the shape and orientation of crystals pho-
tographed with one and the same delay t, were similar;
i.e., the process of growth was well reproducible. We
varied the flash delay with a step equal to the duration
of linear sweep of 64 s to obtain a series of frames
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Fig. 2. The emergence of an anomalous state as a function of externa hydrostatic supersaturation and of supersaturation at the
moment of critical nucleation. Hollow points indicate anomalous growth, and solid points indicate normal growth; Dpg, initial

hydrostatic pressure; py , addition due to electrostatic field.

which give an idea about the variation of crystal shape
in the mode of oscillating growth (see Fig. 7 below).
The curve of pressure variation is averaged over 16
measurements. One can see that the crystals produced
under identical conditions have one and the same orien-
tation.

The pressure drop accompanying the crystal growth
was measured synchronously with video recording by
a capacitive pressure cell located on the container. The
cell diaphragm is at a distance of approximately 1 cm
from the needle. This resultsin a delay of the order of
30 ps due to the propagation of the first-sound wave in
liquid helium. The response of the measuring path to a
step variation of pressure consists in a delay of 32 s
and exponential relaxation with a single time constant.
Within a single series of experiments, the relaxation
constant remained the same. In different series, its
value was 54 or 77 us. For exactly relating the pressure
values to the moment of filming the crystal in the stage
of fast growth, correction was performed consisting of
atime shift by 62 us and compensation of the transient
characteristic.

Note that no specia attention was given to the pulse
amplitude and duration in previous studies [15-17],
because the pulse had only to initiate the guaranteed crys-
tal nucleation. Therefore, the amplitude was taken to be
high and identical for al experiments, and the duration
was several milliseconds. In[15-17], the beginning of the
pulse was recorded, and the voltage was switched off at
the moment of filming the first frame.

3. THE EFFECT OF THE CONDITIONS
OF CRYSTAL NUCLEATION

These experiments were performed to check the
hypothesis that relates the emergence of an anomalous
state to the behavior of critical nucleation. Assume that
the nucleus emerges in the classical case with an
already faceted surface, and in the quantum caseits sur-
face is in the atomically rough state, thus ensuring a
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high growth rate. Indeed, in the classical case, the sub-
critical nucleusisin aclose-to-equilibrium state, which
corresponds to the faceted form at the given tempera-
tures. In the quantum case, the nucleus emerges in the
final state. Note that the number of states of a nucleus
with a disordered surfaceis larger, because the entropy
of such asurface is higher than the entropy of a crysta
surface consisting of flat facets. Therefore, during tun-
neling, the nucleusin most caseswill find itself in states
with an atomically rough surface. Of course, astatelike
thisisnonequilibrium, and the relaxation of the nucleus
to its equilibrium form will proceed simultaneously
with its growth. If the relaxation time is long (see the
footnote made by Nozieres and Uwahain [22], p. 403),
the crystal surface will remain in the atomically rough
state until the termination of its growth. The relaxation
to the equilibrium form will manifest itself in the fact
that, because of the dynamic emergence of flat portions
on the surface, the rate of growth will be lower than the
rate of growth of atomically rough surfaces.

If this hypothesis is valid, then the boundary
between normal and anomal ous growth is the boundary
of transition from classical to quantum nucleation. In
1972, Kagan and Lifshitz [23] have called attention to
the fact that the boundary is sharp and the transition
supersaturation increases with temperature, which
agrees qualitatively with the form of the phase diagram
in[17]. Then, instead of the external hydrostatic pres-
sure, the main parameter of the process is the sum of
this pressure with the el ectrostatic pressure of the pulse.
Thisfact was noted by Yu.M. Kagan, who suggested an
experimental investigation of the effect of the pulse
amplitude. If the foregoing hypothesis is valid, the
position of the boundary between normal and anoma-
lous growth must be defined by the sum of hydrostatic
and electrostatic pressures referred to above.

Figure 2 gives the results of measurementsin which
these parameters were varied independently at two
temperatures. One can see in the graph that it is by the
hydrostatic pressure of the medium that the boundary
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Fig. 3. An example of arecord of the pressure drop in the container upon emergence of anomalous state with a delay of 36 ms at
T =0.639 K. Prior to the moment of transition, one can see the crystal faceting characteristic of growth below the first and second

roughening transitions.

between normal and anomal ous growth is defined. This
means that the hypothesis relating the effect of anoma:
lous growth to nucleation isinvalid.

4. THE KINETICS OF EMERGENCE
OF ANOMALOQOUS STATE

Because, as has now become clear, the anomalous
state does not arise simultaneously with crystal, but
develops under the effect of external hydrostatic pres-
sure, it is of interest to determine the characteristic
times of this process. For this purpose, the pulse dura-
tion wasreduced to 128 s (two lines of linear sweep of
the video adapter), and the amplitude was selected such
as to guarantee the nucleation of crystal during thistime.
The overal time of pressure recording was approximately
230 ms, and the crystal was photographed during the
first 80 ms.

Figure 3 illustrates the crystal growth in the case
when the transition to a state with a fast-growing sur-
face occurs 36 ms after the crystal nucleation. One can
see that the crystal first grows in the form of a hexago-
nal plate up to the moment of transition to an anoma-
lous state, after which it grows completely during
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approximately 170 ps, which is accompanied by adrop
of pressure to that of phase equilibrium. This patternis
typical for all observed series with long delay times.
Figure 4 gives the curves of pressure variation during
crystal growth with initial supersaturation above the
transition boundary. One can clearly see that, on
approaching the boundary supersaturation Dp*, the
delay time T;,,,, between the crystal nucleation and the
beginning of fast growth increases. The magnitude of
pressure jump in the case of fast growth may be much
less than that of the initial supersaturation (see Fig. 4).
The general tendency toward increasing delay time
Tump @ the boundary of anomalous region is
approached isillustrated by Fig. 5. Note that, for close
values of initial supersaturation Dpy, there nevertheless
exists a considerable scatter of the values of T, For
example, at Dpy = 4.8 mbar and T = 0.639 K, the value
of delay varies from experiment to experiment in the
range from 8 to 40 ms. As the temperature decreases,
the value of delay with the same initial supersaturation
decreases aswell. However, one cannot unambiguously
infer if it is the temperature decrease that leads to the
reduction of the delay time, because, as is seen in
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Fig. 4. Records of the pressure drop in the container during
thetime of crystal growth at T = 0.639 K with different val-
ues of initial supersaturation. Anincrease in Dpg leads to a
reduction of the time of emergence of anomalous state.

Fig. 4, adecrease in the boundary supersaturation Dp*
occurs simultaneously. If we combine the data of Dp*
for two different temperatures with the respective shift
of data, it will turn out that the data agree with one
another within the scatter. Therefore, it still remains to
be determined which factor defines the variation of
Tjump: NAMeEly, the temperature or the proximity to the
transition boundary.

Prior to transition to the anomal ous state, the crystal
grows rather slowly. Its shape, as follows from Fig. 3,
is almost invariable, which is indicative of the propor-
tionality of the rates of growth of the a- and c-facets.

100

—~T

Dp, mbar

Fig. 5. The time of emergence of anomalous state as afunc-
tion of initial supersaturation at 0.639 K (circles) and at
0.484 K (triangles). The arrows indicate the position of the
boundary of anomalous region at these temperatures.
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For the case of crystal growth to supersaturation of
about 0.5 mbar, this fact was previously observed in
[21]. The results of filming demonstrate that the rate of
growth of the c-facet islower than the rate of growth of
the a-facets, with the anisotropy of the rate of growth
V4V, being of the order of 2-3.5. Asfor the case of nor-
mal crystal growth, the rates of growth of equivalent a-
facets differ from one another by almost 50% in some
cases, which is indicative of the effect of surface
defects on the kinetics of growth. Figure 6 gives the
supersaturation dependence of the rate of growth for
crystalsprior to transition and for crystals growing nor-
mally up to the pressure of phase equilibrium. Because,
as was already mentioned above, a considerable scatter
is observed of both the anisotropy of growth and of the
absolute values of the growth rate, the values of the
growth rate were averaged as follows. The time depen-
dence of pressure for seven series of measurementswas
used to determine the variation of the crystal volumein
the process of growth. The quantity

1/3
— 03¢0
R DlTIOV‘D

(V. is the crystal volume) was taken to be the linear
dimension of crystal. We differentiate the function R(t)
to obtain the average rate of growth related to the rate
of growth of the a- and c-facets by relation (A.7). The
results obtained in crystals in which no transition was
observed until the termination of growth are indicated
by hollow points. Solid points indicate the results of
such treatment of three curves with the longest delay
times, as given in Fig. 4. One can see that these corre-
lations agree within the scatter. Therefore, prior to tran-
sition, the crystal growth does not differ qualitatively and
quantitatively from norma growth at smal vaues of
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Fig. 6. The averaged rate of crystal growth in the normal
state (hollow points) at T = 0.639 K and the results of treat-
ment, by the same method (see the text), of three curves of
pressure drop given in Fig. 4 (solid points).
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Fig. 7. The oscillating crystal growth at T = 0.484 K and Dpg = 3.6 mbar. One can see the kinetic faceting in the process of growth

and the rounding of crystal upon melting.

supersaturation. As observed by a number of researchers
[11, 12, 21], such agrowth is due to well-known physical
mechanisms such as the spird growth and the growth
induced by Frank-Read sources. The effect of defects
shows up, for example, in that the equivalent crysta
facets grow at different rates, which resultsin different
sizes of the side facets (see Fig. 3).

In summing up the results of these experiments, we
will formulate the main features of the process of emer-
gence of an anomalous state of a helium crystal with a
fast-growing surface.

(1) The transition to an anomalous state is realized
only if the initial supersaturation exceeds the boundary
supersaturation corresponding to the phase diagram in
[17], Dpo > Dp*.

(2) Thetime of delay between the crystal nucleation
and beginning of fast growth increases with approach-
ing the transition boundary.

(3) The values of delay are characterized by consid-
erable scatter.
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(4) Prior to the beginning of fast growth, the kinetics
of facet growth are defined by the surface defects and
do not differ qualitatively and quantitatively from the
kinetics at small values (< 1 mbar) of supersaturations.

5. THE KINETICS OF CRYSTAL GROWTH
AFTER TRANSITION TO AN ANOMALQOUS STATE

After transition to an anomalous state, the crystal
growth proceeds so rapidly that aradia acoustic oscil-
lation with a frequency of the order of 2-3 kHz is
excited in the container volume [16]. Asaresult, apres-
sure gradient now existsin the liquid, and the readings
of the sensor located on the wall do not coincide with
the values of pressure on the crystal boundary. Itisaso
of importance that the crystal growth and melting are
asymmetric processes. During growth, the crystal
shapeisdefined (asisseenin Fig. 7) by the slow-grow-
ing facets. During melting, on the contrary, its shapeis
aresult of the melting of surfaces with a high value of
the kinetic coefficient of growth (in our case, of the
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Fig. 8. The dependence of the kinetic coefficient of facet
growth on initial supersaturation, determined in the first
stage of oscillating crystal growth. The hollow symbols
indicate the data obtai ned with the times of formation of the
anomalous state of less than 10 ms. The solid squares indi-
cate the results of treatment of the curves in Fig. 4. The
arrows indicate the boundary of the anomalous region for
the given temperatures.

atomically rough regions). Therefore, the growth equa-
tions will include different kinetic parameters in the
stages of crystal growth and melting; also of impor-
tance is the ratio between the areas of slowly growing
facets and atomically rough regions. Below, we will
restrict ourselves to treating two stages of the process
of crystal growth, namely, theinitia region of fast crys-
tal growth from the moment of nucleation to the begin-
ning of first melting and the end region in which the
pressure variation becomessmall. Intheformer case, as
is seen in the photographs of the growth process (Fig. 7),
the crystal grows in the form of a hexagonal prism and
retains its shape, which makes it possible to determine
the kinetic coefficient of facet growth in the anomalous
state. Inthelatter case, the damping of oscillation of the
crystal-liquid system must be largely defined by the
kinetics of growth/melting of the atomically rough
regions of the crystal surface, which enables oneto esti-
mate the effect of transition on the kinetics of atomi-
cally rough surfaces.

5.1. Crystal Growth after Nucleation

We will treat the spherically symmetric problem of
crystal growth in acontainer of radius R,, assuming that
the rate of facet growth V is proportional to supersatu-
ration,

kAP, = p
V = KZ=Dp = KHs- s)AT+—pB 1)

where p is the density, s is the entropy per unit mass,
and AT and p denote the deviations of temperature and
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pressure from the line of phase equilibrium. The sym-
bols with primes indicate the solid phase, and those
without primesindicate the liquid phase. In the temper-
ature range for which this problem istreated, the entro-
pies of the solid and liquid phases are virtualy the
same, and the measure of nonequilibriumisequal, to a
good accuracy, to p (for more detail, see[24]). Theflow
equations for an ideally compressible liquid are as fol-
lows:

19°
B-G5e = 0
2
v=22 p= _paq)
or’ ot’

where c is the velocity of sound. The boundary condi-
tions

_ _Op,, _ ApBp _ BP9
v(rg) = —V K
(Fo P T ppatrro
v(R) =2 =0 ©
al’ r:RD

allow for the absence of liquid flow on the container
wall and for the equation of continuity on the crystal
boundary. In this problem, the crystal is treated as a
sphere of radius ry with the isotropic coefficient of
growth K. Theinitial conditions at the moment of crys-
tal nucleation have the form

_KA_ppO, r=20
p

p(r) = po, v(r) = (4)

0, r>0.

For small deviations of the crystal surface from the
equilibrium shape, Egs. (2) with boundary conditions (3)
give the oscillating crystal growth with damping defined
by the value of the parameter K (see [16]). There is no
small parameter in the stage of interest to us, and it is nec-
essay to solve the nondationary problem of crysta
growth smultaneoudly with that of the propagation of the
first-sound wave in the container volume. The numerical
calculation results are given in the Appendix.

Figure 8 gives the dependence of average values of
the growth coefficient on initial supersaturation at two
temperatures. One can see in the graph that the kinetic
coefficient of growth increases away from the transition
boundary, which agrees qualitatively with the behavior
of damping of pressure oscillation described in [16].
Nevertheless, the absolute values of K at T = 0.484 K
and Dpy, = 8 mbar are amost 40 times less than the
respective values for atomically rough surface at the
same temperature. The dark squares indicate the values
of K for the growth curves with jump delays of 14 to
240 ms relative to the moment of crystal nucleation
(Fig. 4). Within the scatter, these points agree with the
values determined with ashort delay (< 10 ms), for which
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the transition to fast growth occurs at almost the same
degree of supersaturation at which the crystal nucle-
ation occurs. This means that the kinetic properties of
the surface in the stage of fast growth are defined by the
initial supersaturation in the liquid rather than by the
pressure at which the transition occurs.

5.2. Damping of Oscillation
upon Termination of Growth

As was mentioned above, the crystal growth and
melting in the general case are due to the kinetics of the
entire crystal surface, and one cannot digtinguish between
the contributions made by the facets and atomically rough
surfaces using the correlations p(t) a one. However, asthe
pressure oscillation is damped, the moment comes when
the oscillation amplitude becomes so low that the melt-
ing—solidification of only the atomically rough regionsis
sufficient to compensate for the variation of theliquid den-
sty. Below thisamplitude of py,,, the growth kinetics and,
consequently, the damping are defined by the kinetic coef-
ficient of growth of only the atomically rough regions.
By measuring the damping of pressure oscillation below
this threshold, one can determine the kinetic coefficient of
surface growth after a time of the order of 0.5-1 msfol-
lowing the beginning of fast crystal growth.

The threshold pressure p,,,, is determined from geo-
metric considerations. Because the rate of facet growth
is much lower than that for the rough regions, we will
assume the facetsto be stationary. In this case, the crys-
tal growth is defined by the rough surfaces alone. The
boundary pressure corresponds to the situation when,
under conditions of maximal melting, the surface will
nevertheless still contact the side facet (we takethe side
facets because, as is seen in Fig. 7, the transverse
dimension of crystal is greater than its thickness). We
assume the transverse dimension-to-thickness ratio to
be L,/L. = r to derive that, for the values of r = 2 to 4,
the po,/Dpg ratio isin the range from 0.15 to 0.1. Fig-
ure 9a gives a record of pressure oscillation during
crystal growth, inwhich one can clearly seesix periods.
The values of extreme amplitudes on a semilog scale are
given in Fig. 9b. One can see that the damping decrement
has one and the same val ue both above py,,, = 1.5 mbar and
below this pressure. By the value of damping, one can
determine the kinetic coefficient of growth of atomi-
cally rough surfacesin an anomalous state, /K = 0.023 n/s.
This value is intermediate between the coefficient of
growth for anomalous facets (1/K; .« = 0.071 m/s) and
the coefficient of growth for atomically rough surfaces
(UK ougn = 4.5 x 10™* m/s) measured previously by the
crystallization-wave method [5] with small deviations
from equilibrium.

Therefore, the rate of growth of atomically rough
surfaces is higher than the rate of facet growth, which
agrees with the observed kinetic faceting of crystal in
the stage of growth and with the variation of the crystal
shape in the process of melting. The fact that the kinetic
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p extr» mbar

0.1 .
0

Fig. 9. (a) Pressure oscillation during crystal growth deepin
the anomalous region. (b) The decrease of pressure ampli-
tudes with time, N is the number of oscillation half-period
of the curve in (a). The supersaturation region is shaded,
where a variation of the decrement of oscillation damping
should have been observed if the kinetic coefficient of
growth of atomically rough surfacesin anomalous state cor-
responded to the coefficient measured at low values of
supersaturation in normal crystals.

coefficient of growth of an anomalous crystal surface is
much less than the coefficient of growth of anormal crys-
tad surface may have two interpretations. First, this
decrease in the surface mobility may be associated with
the variation of the physical mechanism responsible for
the motion of eementary surface defects, i.e., steps. With
such supersaturations and temperatures, the rate of sur-
face growth reaches the value of approximately 10 m/s,
and the rate of motion of the steps, as follows from the
results of estimating their mobility by the dataof [5, 22,
25], becomes constant approaching the velocity of
sound. A similar case, as applied to spiral facet growth,
was treated by Ruutu et al. [12]. A theoretical analysis
of the latter study reveals that, in this “relativistic” sit-
uation, the mobility of the steps decreases. The second
possibility is associated with the variation of the state
of crystal and, as aresult, of the kinetics of its surface.
In order to distinguish between these options, one must
measure the kinetic coefficient of growth under condi-
tions when the viscosity of the medium is fairly high
and the velocity of the steps is much lower than the
velocity of sound. Asisdemonstrated by the estimates,
in the case of supersaturation of up to 15 mbar, these
conditions are valid at a temperature above 0.6 K. In
this region, the damping of pressure oscillation is too
fast, which prevented the experimental determination
of whether the decrement varies at low amplitudes.
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6. DISCUSSION OF THE RESULTS

We will sum up the main features of the kinetics of
the formation of an anomalous transition. One can see
from the experimental resultsthat the processthat leadsto
the emergence of an anomalous Sate isinitiated by exter-
nal supersaturation. This process has a considerable dura
tion in the vicinity of critical supersaturation Dp*; how-
ever, the process accelerates considerably away from the
phase boundary. Asfor the boundary between the anoma:
lous and norma regions, it is possibly kinetic. In other
words, this transition is not observed at Dp < Dp* only
because the time of the formation of afast state becomes
longer than the time of crystal growth. The kinetics of
crystal growth before transition do not differ qualita-
tively and quantitatively from the kinetics of normal
crystal growth; i.e., the process leading to transition
does not reflect on the rate of facet growth before the
moment of transition. This behavior of the phenome-
non brings it even closer to the phenomenon of burst-
like growth of dislocation-free facets of crysta
observed in the temperature range from 0.02 to 0.25 K.
An assumption on the generality of the physical mech-
anisms of these phenomena was made previoudly in
[15] on the basis of the similarity of their phase dia-
grams.

Another qualitative aspect consistsin that the varia-
tion of kinetics was not caused by the surface transition
alone. This inference was made in [16] on the basis of
the results of filming crystalsin the mode of oscillating
growth. As is seen in Fig. 7, the melting of crystal
accompanied by disappearance of facets begins after
the growth stage. If the effect was associated with the
surface alone, the rate of facet growth in the next stage
of growth (that starts upon supersaturation that corre-
sponds in the phase diagram to the region of normal
growth) would be two-three orders of magnitude
|ower, and the oscillation woul d cease. Because no such
situation is observed in the experiment, the reason for
high mobility hasto do with the volume. Thisinference
isindirectly supported by the previously observed fact
that the transition occurs simultaneoudly on all facets,
aswell as by the fact that the mobility of the atomically
rough surfaces of an anomalous crystal differs from
that of the atomically rough surfaces of a normal crys-
tal.

The observation of oscillating crystal growth reveals
that the time of existence of an anomal ous state after its
emergence exceeds 3 ms (see Fig. 9). The results of
measurement of pressure variation after the completion
of crystal growth, associated with theflow of liquid into
the container, have led us to the conclusion that the kinet-
ics of facets become normal in approximately 100 ms.
Therefore, the relaxation of crystal to equilibrium state
occursin a period of time less than 100 ms.

It follows from the foregoing that the effect resides
essentially in the variation of the bulk properties, is
kinetic, and shows up as acceleration of facet growth.
Based on the available experimental data, it is not yet
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possible to define the type of rearrangement of volume
nor to determine whether it occursin crystal or in lig-
uid. No explanation can be found for this phenomenon
within the framework of the existing models. There-
fore, we will treat the factors which were not included
in the classical model of spiral growth. According to
this model, it is assumed that the spiral center associ-
ated with screw dislocation is stationary. This assump-
tion isvalid for the case of crystal growth at high tem-
peratures at which the phonon viscosity isvery high. In
the case of helium at temperatures close to absolute
zero, the viscosity is low and decreases with tempera-
tureasT", wheren = 3to 5[26-30]. Thismeansthat the
spiral rotation may bring about the excitation of dislo-
cation oscillation and additional dissipation associated
with dislocation friction. This processwill cause, onthe
one hand, the heating of crystal and, on the other hand,
the excitation of the dislocation subsystem of crystal.
For qualitative estimation of this effect, we will restrict
ourselves to the range of temperatures above 0.55 K,
where the velocity of individual stepsis much lessthan
the velocity of sound up to supersaturation of the order
of 15 mbar, the corrections of Ruutu et al. [12] are
minor, and the classical relations for spiral growth are
valid. One can treat the motion of dislocation in Koe-
hler’'s approximation of the string model [31] to derive
an approximate expression for the power transferred to

didlocation by the growth spiral,
BfC_n__1B
P CNAL+2n¥ = 20A ®)

Here, B is the line energy of a step; w is the angular
velocity of rotation of the growth spird; and A, B, and C
are the string model parameters defined by the expres-
sions

2 2
‘E+B£—Caz

oS0t o7 7 (6)
A= p'b* C = 2Gb®
m’ m(1-v)’

where p' is the solid helium density, b is the Burgers
vector, G is the shear modulus, and v is the Poisson
ratio. The numerical estimate for the dislocation con-
centration A = 2 x 10° cm (determined for crystals
grown on aneedle[21] by the value of threshold super-
saturation from which the facet growth starts) indicates
that the additional dissipation associated with disloca-
tions is negligibly small. In this temperature range, up
to supersaturation of the order of 15 mbar, this contri-
bution does not exceed 1% of the energy of phase tran-
sition. Therefore, the energy of dislocation oscillation
excited by spira growth is much less than the charac-
teristic energy of the process of growth. For thisreason,
the foregoing mechanism will hardly have a consider-
ableeffect onthe state of acrystal, anditisunlikely that
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this phenomenon will bring about the observed transi-
tion to the state with a fast-growing surface.

Another assumption of the classical model consigtsin
that the flow of liquid to the surface during spira growth
is treated as laminar and irrotationa. This is apparently
true of the growth of ordinary crystds, when the rate of
liquid flow to the boundary islow. In our case, themobility
of the stepsishigh, sothat their velocity may approach the
velocity of sound. Theentrainment of liquid by the growth
spiral developsadisturbance of laminar flow, this possibly
leading to the generation of vortices. A vortex filament
attracted toward the solid boundary may in principle pro-
duce steps on the surface and, thereby, develop centers of
facet growth. Indeed, the flow of liquid in the vicinity of
the vortex core causes a reduction of pressure, i.e., pro-
motes the melting of crystal. As follows from estima:
tion, the production of steps at a distance of the order of
10" cm from the surface occurs without a threshold.
However, the numerical estimates of the possibility of
generation of vortices by growth spirals are very pessi-
mistic. We assume for the associated mass the values
obtained in [22, 32] and derive that the energy and
angular momentum of liquid are too low to produce a
vortex line issuing from the center of growth spiral and
closing on a spiral with the opposite sense of rotation
(Frank-Read source). The production of vortex rings by
a growth spiral remains an open question, because the
flow of liquid in the vicinity of amoving step is potential.
Therefore, it isunlikely that the spiral growth producesin
a superfluid vortices with a concentration sufficient to
cause avariation of the kinetics of facet growth.

7. CONCLUSION

The results of studies into the emergence of an
anomalous state of helium crystal with a fast-growing
surface, produced by a short eectrostatic pulse in meta-
stable superfluid helium, have demonstrated that the emer-
gence of this state requires considerable time whose dura-
tion increases on gpproaching the boundary of the anom-
aous region. The results of observation of oscillating
crystal growth have demonstrated that this phenomenonis
not due to the variation of the surface properties alone.
Therefore, the anomaous state develops under the effect
of external supersaturation, which leads, as one can see
from the experimental data, to a variation of the bulk
properties of crystal or liquid. It follows from the
results of treating the phenomena accompanying the
spiral growth (dislocation oscillation and generation of
vortices) that these mechanisms will hardly lead to the
transition being observed. Moreover, both these mech-
anisms require the presence of a sufficient number of
didocations. If this effect and the phenomenon of
“explosive” facet growth [12] are of the same physical
nature, the transition to the state with a fast-growing
surface is not at al associated with dislocations,
because, in the latter casg, it is on the dislocation-free
facet that a fast growth is observed. Therefore, the
observed phenomenon cannot be explained within the
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known models by modifying those models and extend-
ing them to the case of helium crystal growth in asuper-
fluid.
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APPENDIX

We will treat the spherically symmetric problem of
crystal growth in acontainer. In this approximation, we
ignore the nonsphericity of the container (the1: 2ratio
of perpendicular dimensions) and replace areal crysta
growing in the form of a hexagonal prism with the
dimension ratio of 1 : k, where k = 2 to 3, by a sphere
of the same volume. The kinetic coefficient of growth
is taken to be isotropic. We will change over to a one-
dimensional problem using the substitution

O(r 1) = f(r t)

reduce Eqgs.(2)—(4) to the dimensionless form by the
replacement

Ror — 1,

(A1)

t— —1t,

cVv —v,
(A.2)

pc’p—p, CcROf— f,
and introduce the dimensionless parameter A propor-
tional to the surface mobility,

A= cK pg = K - 3.53[m/g]. (A.3)

Then, Egs. (2) and boundary and initial conditions (3)
and (4) will take the form

°1_f_ o - 20D 19f
a2 ar? v T orkr “rot’ (A4)
A of _
v(rgt)——2_ =0,
(O ) roatr o
an (A.5)
— [1_
v(lt) = TN 0,
D_}\p01 r= 0!
r,0) = py, v(r,0) = A.6
Pr.0) = por v(nO) =0 T L (AS)
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Fig. 10. The results of numerical calculation of the ratio
between the amplitude of the first minimum of pressure,
measured by a sensor on the container wall, to initial super-
saturation, as a function of kinetic coefficient of growth K.
The integration constant of the measuring circuit is 54 us.

The solution of this problem gives the time dependence
of pressure on the container wall wherethe capacitive sen-
sor is located. Note that, in the case of fast growth with a
delay (seeabove), theinitia value of thecrystal radiuswas
taken to be finite and determined by the pressure at which
the fast growth started. Then, the signa was convolved
with the transfer function of the measuring system. By
way of illugtration of the method, Fig. 10 gives the results
of cdculation of the ratio between the amplitude of the
first minimum of pressure to initial supersaturation for
threevalues of initid supersaturation and for theintegra-
tion congtant of the transfer function of 54 ps used in the
given series of experiments. The amplitude ratio may be
used to determine the kinetic coefficient of growthif VK =
0.01-0.2m/s.

Because the real crystal has the anisotropic coeffi-
cient of growth, wewill givetherelationsthat relate the
averaged kinetic coefficient of growth K, to the coeffi-
cients of facet growth. For this purpose, one must use
the crystal shape to determine the ratio between the
average growth rates, V,/V, =r. Then,

1n_, st
r%A/f% 0 r23 ’
K, = K,r"%0.846.

K: = Kg
(A7)
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Abstract—We measured the low-temperature specific heat of the layered organic superconductor k-(BEDT—
TTF),Cu(NCS), for the magnetic field directed along and across the conducting plane and found a difference
between the two measurements. Our dataindicate the existence of anodel ess superconducting state at zero field
and low temperature. The field dependence of the specific heat anisotropy consists of two linear branches with
the crossover field equal to the upper critical field perpendicular to the conducting plane. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The problem of superconductivity inlow-dimension
organic metals continues to attract much attention. A wide
discussion on the possibility of an unconventiona super-
conducting state in the k-(BEDT-TTF),X compound
involves arguments both in agreement and in disagreement
with the hypothess. For k-(BEDT-TTF),Cu(NCS),,
there is extensive evidence in favor of the unconven-
tional character of superconductivity: NMR [1], high-
frequency conductivity [2], thermal conductivity [3],
and specific heat data [4]. As to the penetration depth
data, both the unconventional [5] and the conventional
[6] behavior have been reported. Recent data of Car-
rington et al. [7] support the presence of low-lying
excitations but do not give a definite answer as to their
origin.

The previously reported data [8] of the specific heat
of K-(BEDT-TTF),Cu(NCS), under the magnetic field
upto 6 T perpendicular to the conducting plane and the
temperature region 1.65-4.4 K demonstrated an almost
linear field dependence of the specific heat for the field
considerably below the perpendicular upper critical
field Hep. Above H,, the specific heat is field-inde-
pendent within the experimental error. To obtain more
information about the character of the low-temperature
superconducting state, we performed specific heat mea-
surements under different orientations of the magnetic
field.

TThis article was submitted by the authors in English.

2. EXPERIMENTAL

For the measurements, we used a modification of
the standard ac-modulation technique; the experimen-
tal details are described in [9] and [10]. One single
crystal with the total mass 0.45 mg was used. In addi-
tion to the specific heat, the magnetoresistance of the
sample was measured. The Dingle temperature
extracted from the Shubnikov—de Haas oscillation was
about 0.5 K. The specific heat was measured mainly for
the magnetic field orientation along and perpendicular
to the conducting plane. It was rather difficult to esti-
mate the absolute value of the sample specific heat
because of the small sample mass and an involved and
significant field dependence of the specific heat of the
thermometer. It was previously found that the specific
heat of the thermometer is isotropic in the magnetic
field. Our experimental setup makesit possibleto rotate
the sample in situ. Calculating the difference between
the specific heat measured in the magnetic field paralle
and perpendicular to the conducting plane, C;—C;= AC,
we obtained areliable value of the specific heat anisot-
ropy AC.

3. RESULTS AND DISCUSSION

In Fig. 1, we plot the low-temperature specific heat
anisotropy AC of thelayered organic superconductor K-
(BEDT-TTF),Cu(NCS), divided by the temperature.
We can see that there are two regions for each curvein
Fig. 1: oneis below Hg, (the upper critical field per-
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Fig. 1. Theanisotropy of thefield dependence of the specific
heat at low temperatures. Inset: the extracted specific heat
perpendicular (Cp) and parallel (C) to the conducting lay-
ers.
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Fig. 2. The angular dependence of the specific heat at 0.5 K
and various fields.

pendicular to the conducting layers) and the other is
above thisfield.

We first note that, except in the region near He,, all
the curves coincide with each other. Using the data
from [8], we can conclude that much below Hg,p,

C, = ATH, 1)
and at all fields,
C, = A, TH, )

where A; and A, are some constants. The field depen-
dence of C coincides with the one reported in [8],
although it is different from the one reported in [4],
where a more abrupt increase of the electronic density
of states in the magnetic fields below 0.03 T was
observed.

The linear dependence of the specific heat on the
magnetic field follows from the London model. It gives
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the electronic specific heat expressed as[11]

TCDOHa_Z[ 1 aHCZ(T)]
3ot oT’LA*(T) H

where @, isthe flux quantum, H,(T) is the upper criti-
cal field, and A(T) is the effective penetration depth in
the plane perpendicular to the magnetic field. In the
BCS approximation, Eq. (3) leads to the following

field dependence of C (see[12]) at the temperatures
TT,<1:

C(H,T)= ©)

H
"Hoon(0)' )

with C,, being the electronic specific heat in the normal
state. We recall that the London model, which is valid
in the region H,; < H < H,, neglects the Pauli break-
ing effect and, therefore, Hy, in Eq. (4) is actualy the
orbital upper critical field.

We note that the applicability of the London model
does not depend on the superconducting pairing mech-
anism. The only important condition is a slow spatia
variation of the order parameter over the length scale of
the penetration depth. This condition is easily satisfied
if the penetration depth of the magnetic field is much
larger than the coherence length and the magnetic field
is much lower than the upper critical field. In our case,
the field dependence of the specific heat at |ow temper-
aturesis almost linear up to the upper critical field.

Considerably above H,p, the data for the tempera-
turesbelow 1.6 K amost coincide with each other. This
indicates a BCS-like nodeless |ow-temperature super-
conducting state with the final gap in the excitation
spectrum of the quasiparticle.

Using Eq. (4), we determined the upper critical field
at the zero temperature asH.,; (0.5 K) =4 T. The same
valueisobtained if we find the crossing point of thetwo
linear branches. Thisisless than the value of about 6 T
reported by Sasaki et al. [13] and that about 5 T
reported by Belin et al. [14], which were determined
from the magnetic torque and the heat conduction mea-
surements, respectively. On the other hand, thisis very
close to the field of irreversibility at low temperatures
reported in [13].

We note that the specific heat dependences on the
magnetic field parallel to the layersistoo strong for the
expected Josephson coupling between the layers (see
[15]). This problem requires a more detailed investiga-
tion of the low-temperature state for this orientation of
the magnetic field. At present, we do not have any rea-
sonabl e explanation of this fact.

The angular dependence of the specific heat is dem-
onstrated in Fig. 2. It is noteworthy that the specific
heat is amost independent of the angle in the region
+3° near the direction parallel to the conducting plane.
We do not know the reason for this behavior but it can
hardly be explained by the misalignment domain struc-

C,=C
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ture within the sample (with the planes inclined with
respect to each other): such a misalignment has not
been observed up to now [16].

4. CONCLUSION

In summary, we have demonstrated the nodeless
superconductivity in K-(BEDT-TTF),Cu(NCS),. The
field dependence of the specific heat at the field direc-
tion parallel to the plane demonstrates the behavior that
seems to be incompatible with the Josephson coupling
between thelayers. Further investigations are necessary
in order to solvethis problem. In addition, we estimated
the upper critical field perpendicular to the layersto be
about 4 T.
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Abstract—A mechanism of the formation of an exponentially large number of metastable states in magnetic
phases of disordered | sing magnets asaresult of condensation of fractal delocalized modes near thelocalization
threshold is suggested. The thermodynamic properties of metastable states are studied in the effective-field
approximation in thevicinity of transitionsin magnetswith zero uniform magnetization in the ground state such
as dilute antiferromagnets, spin glasses, and dilute ferromagnets with dipole interaction. These properties are
shown to determine the parameters of nonequilibrium processes in the glassy phase, namely, the shape of the
hysteresis loop, the thermodynamic values in field-cooled and zero-field-cooled regimes, and the thermorema-
nent and isothermal remanent magnetization values. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

A characteristic feature of disordered magnetsisthe
appearance of many metastable states accompanying
magnetic transitions in them. These states cause irre-
versibility phenomena in the response of magnets to
changesin the external magnetic field and temperature,
such as the dependence of thermodynamic parameters
on the order and rate of these changes, the appearance
of hysteresis|oops, whose shapes change depending on
the amplitude of the applied field, etc. [1-4]. Theirre-
versibility phenomena are inherent in all known types
of magnetic disorder in the corresponding inhomoge-
neous magnetic phases, from dilute magnets with non-
magnetic atom impurities [2, 4] to spin glasses existing
in crystalline solid solutions of ferromagnets with anti-
ferromagnets[1, 3].

Evidences for the existence of metastable states,
whose number exponentially depends on the number of
spins, have been obtained in numerical studies of sev-
eral models of disordered magnets with short-range
exchange [5-8]. A theoretical description of related
nonergodicity phenomena in the majority of models
also requires the use of numerical methods, e.g., see[1,
4,9].

The most important analytic results were obtained
for the Sherrington—Kirkpatrik spin glass model with
an infinite interaction radius. In this model, the noner-
godicity region was found to be bounded by finite fields
lower than the Almeida—Thouless H,; field [10]. The
thermodynamic parameters for field-cooled and zero-
field-cooled regimes with subsequently applying it [1]
were determined within the replica symmetry breaking
scheme [11] and using the concept of the hierarchy of
macroscopic relaxation times [12]. This is, however,

not an exhaustive account of information about irre-
versible processes obtained in terms of this model.
Although this approach is extensively used in studying
other effective-field models, eg., see [13, 14], it
remains unclear how the methods suggested in [11, 12]
can be used to describe all variety of irreversible pro-
cesses related to transitions between various metastable
states.

At the sametime, atheoretical description of noner-
godic effects would be quite obvious and simple if the
physical properties of metastable states of disordered
magnets, their regions of existence, and points of pos-
sible phase transitions between them at H < H,r were
known. In infinite-range effective-field models, this
information can in principle be obtained by studying
(nonaveraged) equations for local magnetic moments.
The best known example of using this approach is the
Thouless-Anderson-Palmer (TAP) equations in the
same Sherrington—Kirkpatrik model [15]. Although the
number of solutionsto these equations was shown to be
exponentially large [16], their explicit form could not
be determined by analytic methods. It is not even clear
how many of these solutions correspond to thermody-
namic potential minima and in what way barriers,
which diverge in the thermodynamic limit, appear
between them.

In addition, the results of studying TAP equations
for alarge but finite interaction radius [17] cast doubt
on the possibility of using infinite-range models as a
good approximation for describing real disordered
magnets. In [17], attention was for the first time called
to consequences of the qualitative difference between
the spectrum of a Gaussian ensemble of random
exchange matrices in the Sherrington—-Kirkpatrik
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model, in which al eigenvectors are delocalized, and
the spectrum of short-range matrices with localized
states at itstails [18]. According to [17], the condensa-
tion of local modes in a three-dimensional spin glass
with a fairly large but finite interaction radius can
change the character of the transition by excluding the
possibility of the condensation of delocalized modes if
the critical index of the localization radius v > 2/3.
Although such a situation with the absence of metasta-
ble states can hardly arise in most real disordered mag-
nets, these results show that qualitative peculiarities of
the spectral characteristics of random exchange should
be taken into account.

At the same time, studies of the spectra of various
ensembles of short-range random matrices showed that
all of them had like structures with localized states near
the spectrum boundaries and a fractal structure of
eigenvectors near the localization threshold [18-20]. It
can therefore be assumed that the universal character of
irreversibility phenomena in disordered magnets with
different short-range random exchange is related pre-
cisely to the similarity of their spectral characteristics.
The general mechanism of the appearance of many
metastable states in such systems can be virtualy
simultaneous condensation of a macroscopicaly large
number of almost overlapping and weakly interacting
fractd modes, which are close to the localization
threshold.

It should be noted that the finiteness of the interac-
tion radius by no means rules out the possibility of a
fairly accurate quantitative description of such atransi-
tion mechanism at the level of the effective-field
approximation. The matter is that a macroscopically
large number of condensing modes (order parameter
components) substantially decreases the number of
noncondensing modes with close eigenvalues (order
parameter fluctuations) in comparison with a homoge-
neous magnet of the same dimensionality. It can there-
fore be expected that the Ginzburg parameter should be
noticeably lower in such a transition than in homoge-
neous magnetsfor all ensembles of random short-range
exchanges.

Based on these ideas, we make an attempt to con-
struct a phenomenol ogical effective-field theory of dis-
ordered Ising magnets with zero magnetization in the
ground state; this theory uses heuristic assumptions on
the form of fractal eigenvectors of exchange integral
matrices. Within this approach, we are able to naturally
explain the appearance of multiple metastable statesin
inhomogeneous magnetic phases, and the use of some
simplifying assumptions allows a complete analytic
description of the thermodynamic properties of these
statesin the vicinity of phase transitionsto be obtained.
These results in turn make it possible to determine the
parameters of arbitrary irreversible processes and, in
particular, to obtain the first anaytic expressions
describing the shape of hysteresis loops at an arbitrary
field amplitude and the field and temperature depen-
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dences of remanent magnetizations in magnets of the
types specified above.

2. EFFECTIVE-FIELD APPROXIMATION
FOR DISORDERED ISING MAGNETS

The Hamiltonian of a disordered Ising magnet has
theform

_ 1
% = —EZJ”—SS—, L)

where Jj; is the matrix of random exchange integrals
and § = 1. Inmost realistic models, J;; isonly nonzero
if the distances between lattice sites |r; — r;| do not
exceed several radii of the nearest crystal lattice coor-
dination spheres, and the Jj value itself is bounded,

19l < I

Here, we will consider precisely such models. The
effective-field approximation for Hamiltonian (1)
reduces to replacing the J; matrix by the projector onto
its maximum eigenvalue J,

Jj=J%y clc). )

Here, ¢ are normalized eigenvectors of the J; matrix

corresponding to the largest (generally, degenerate in
multisublattice antiferromagnets) eigenvalue J and a =
1 ..., N,

As aresult, the Hamiltonian becomes a function of
the (multicomponent) order parameter,

N
-2 o
na =N Ci S '
2
and it only remains to calculate the entropy

S = INTr3 o 5 oc €)

to obtain the nonequilibrium thermodynamic potential
No
oy _ _M a 2_ a
F(n") = — Zl(n ) =TS(n").

Minimizing F with respect to n® allows us to obtain
equilibrium thermodynamic parameter values that cor-
respond to the deegpest minimum and metastable state
parameters that correspond to shallower minima. In
particular, we can find the average spin values

NO
[850= N”zz c*n®. (4)
a=1

The results obtained using this approximation may
give a qualitative and, in certain instances (at fairly
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large interaction radii or weak interactions of various
modes), afairly accurate quantitative description of the
thermodynamics of second-order transitions in homo-
geneous magnets. We therefore believe that it would be
natural to apply the effective-field approximation to
models of disordered magnets with random exchange.
It would then be sufficient to average the results
obtained within the scheme described above over ran-

dom J and ¢ values. The thermodynamics of disor-

dered magnets would then be qualitatively similar to
the thermodynamics of ideal magnetic crystals. In par-
ticular, in inhomogeneous magnetic phases, multiple
metastable states would be absent.

The most probable reason for the appearance of an
exponentially large number of metastable states is the
specia structure of the spectrum and eigenvectors of
the J; random matrix. Indeed, the eigenstates of the J;
random matrix with the properties described above are
localized in the vicinity of the upper and lower spec-
trum boundaries[18]. The description of atransitionin
a disordered magnet therefore requires that the maxi-
mum eigenvalue in (2) be replaced by a somewhat
smaller eigenvalue J at the localization threshold; that
is, the eigenvalue which is maximum among the eigen-
values with delocalized eigenvectors. This requirement
arises because a macroscopic phase transition can only
occur when the delocalized spin configuration under-
goes condensation, whereas the condensation of local
configurations with large eigenvalues (transition tem-
peratures) that precedes the macroscopic transition cor-
responds to a special transition to the Griffiths state,
which is not accompanied by noticeable anomalies of
thermodynamic values [21, 22]. However, note that,
according to [17], sequentia condensation of local
modes in a three-dimensional spin glass with a fairly
large interaction radius can make delocalized modes
stable, and no macroscopic transition then takes place.
In this work, we assume that the interaction radius is
sufficiently small for such a transition to nevertheless
occur.

At the same time, it appears quite probable that, in
most random realizations, the condensation of asingle
delocalized spin configuration with an eigenvalue clos-
est to the localization threshold isinsufficient for stabi-
lizing the new phase. It islikely that, for dimensiond >
2, the J; eigenvectors have afairly loose (fractal) struc-
ture near the threshold and almost decompose into sep-
arate localization regions only connected by quasi-one-
dimensional chains [19, 20]. In other words, there are
many siteswith the structure resembling that of the per-

colation cluster [23], where N(c*)’ > 1, whereas

N(c")? < 1 on the other sites. This substantially distin-

guishes modes close to the localization threshold from
modes within the continuous spectrum and eigenfunc-
tions of trandationally invariant J; matrices, for which

N(c" )= 1 on amost all lattice sites.
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Evidencefor the existence of such afractal structure
of modes at the localization threshold were obtained in
many numerical studies of various statistical ensembles
of short-range random matrices, see [19, 20]. Accord-
ing to (4), the condensation of one such mode resultsin
the appearance of fairly high mean spin values only on
aloose fractal structure, which is insufficient for stabi-
lizing modes with lower eigenvalues, which are gener-
ally localized on other fractal sets of sites. More
exactly, the condensation of the first delocalized mode

with vector ¢ can only stabilize those modes with J, < J
that noticeably overlap with it; that is, such modes that

Ncc? > 1 for most of the siteswhere N(c*)* > 1. For

this reason, the condensation of the mode closest to the
localization threshold will, as temperature decreases,
be followed by the condensation of another loose mode
that almost does not overlap with the first one, next, a
mode that almost does not overlap with the first and
second modes undergoes condensation, etc.

Such a sequential condensation of nonoverlapping
modes with decreasing eigenvalues occurs until fairly
large mean spin values appear on ailmost all lattice sites.
Generdly, in the intervals between the eigenvalues of
modes undergoing condensation, there can exist an
arbitrary number of modes that do not condense
because they substantially overlap with the already
condensed ones. In the effective-field approximation,
such modes are order parameter fluctuations, which can
beignored.

The fractal structure of modes undergoing conden-
sation presupposes that their number should diverge as
N — oo, Indeed, if we assume that the sets of sites on
which the modes under consideration are predomi-
nantly localized have fractal dimension d; < d (that is,

the number of sitesin these order regionsis N ), the
number of condensed modes N, can be estimated at a

value of the order of N* ™.

The suggested mechanism allows us to easly
explain the appearance of an exponentially large num-
ber of metastable states in inhomogeneous magnetic
phases. Indeed, the condensation of one modein a zero
field resultsin the formation of two stable statesrelated
to global spin flip, and each subsequent condensation
doubles their number. It follows that the condensation

of N, modes results in the formation of 7

exp(N' """ In2) stable states. Each such stateisrelated
to other via spin flips of independent groups of spins
corresponding to fractal modes. Precisely this structure
of spin configurations of ground states was observed in
recent numerical studies of a three-dimensional spin
glass model with binary random exchange [8], whichis
unambiguous evidence in favor of the mechanism
under consideration.
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Asthe eigenvectors of condensing modes ¢ almost

do not overlep (that is, Nci"ciB < 1formost sitesat a # 3),
our analysis can be considerably simplified. The space

of such ¢ can be approximated by a set of nonoverlap-
ping (normalized) e vectors (e'e’ = 0 for a # P),
which coincide with the ¢ eigenvectorsin the regions

of their predominant localization [where N(c' )2 > 1]
and equal zero outside these regions. In the subspace

spanned by (clearly, orthogonal) e vectors, Jj is
almost diagonal,

NO
Jj = Z (I8qp — Jop) V€.

o,pf=1
Here, J, iaasmall nonnegative definite matrix,
|Japl < J.

It isthen simpleto determine the effective-field thermo-
dynamic potential, which depends on the multicompo-
nent order parameter

o= NGy efs, No= 6(el])

[6(X) is the Heaviside step function] and the (quasi-)local
magnetizations

m, = Ny se(ef]).
i
The potentia has the form

No
1
F==35 JNaNg(38us—Jug)lalg
apf=1 G»

No

-T Z N, S, (I, my) —NHmM,

Sl My)

= Ng INTre8 m, 5068

(6)

Ngmy, Z56(/e)’
Here, Tr, denotes summing over the spin configura-

tions of those siteswhere € # 0. Note that, according
to the aforesaid, N, — o asN —» o and

Ng= N,
Za

and the uniform magnetization is
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- Ng
m= Z N Mo
a
Equation (5) includes the dependence on a small ran-

dom matrix J,; and random vectors e, the form of
which is determined by the type of the J; ensemble of

random matrices. In someinstances, theformof € can
be specified, as, e.q., in aspin glasswith binary random
exchange,

J

where each configuration of bonds includes nonfrus-
trated d-dimensional clusters (that is, clusters charac-
terized by a unique spin configuration o; corresponding
to the energy minimum) and

Jij0; = 2dJ,5 0.

It follows that delocalized eigenvectors with the largest
eigenvalues can approximately be constructed from
local spin configurations through combining certain
nonfrustrated d-dimensional clusters by branching
chains without closed loops, which are also nonfrus-
trated at any bond configuration [24]. As a result, the

form of € vectorswill be

ij = iJmax’

g = Ng"af, (7)

where o are the spin configurations constructed as
described above on nonfrustrated fractal subsets of
sites.

In dilute ferromagnets and antiferromagnets, vec-
tors €' can aso be represented in form (7) through
combining d-dimensional ferromagnetic (antiferro-
magnetic) clusters of the percolation cluster of bonds

by chains. In a dilute ferromagnet, o = 1, and in a
dilute antiferromagnet, o] = (—1)kri. Note however

that expressionsfor €' can substantially differ from (7)
for some actual bond configurations. We will neverthe-
less assume that, in most configurations, (7) fairly well
approximates €' and can be used to estimate the
ensemble-average of the sums

U = NG ()" t)

We will show that the thermodynamics in the vicinity
of the transition to an inhomogeneous magnetic phase
weakly depends on the detailed form of random vectors

e’ andisonly determined by several constants of form

(8.
The advantage of representing F by (5) is entropy
additivity. However, if J,z is an arbitrary random
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matrix, equation (5) is still difficult to analyze. To sim-
plify it, we can use the observation that the eigenvalues
of Jyg distributed between zero and some J, < J should
condenseto zero, because el genvectors nonoverlapping
with all preceding eigenvectors becomerarer asthedis-
tance to the localization threshold increases. As the
mean interval between neighboring eigenvalues is of
the order of 1/N, small eigenvalues of J,; may be of the
same order. This alows J,; to be approximately
replaced by the projector to some (random) r, vector
whose properties are determined by the type of the

ensemble of random matrices J;,

No
Jag = Jofalp, Z 2= 1. 9)
a=1

Generally, the assumption that a single eigenvalue
of the J,g matrix is finite, and all the others are of the
order of /N, is fairly rough. This assumption leads to
the coincidence of the points of condensation of all
modes except one and makes the transition sharper,
whereas, in reality, the condensation of modes can take
place in the whole interval fromT= Jto T =J—J,. At
the same time, such an assumption alows afairly sim-
ple analytic description to be obtained for the thermo-
dynamics of al metastable states. This description
qualitatively agreeswith experiment and can be used as
astarting point for constructing a more accurate theory
taking into account the distribution of condensation
temperatures for fractal modes.

We will show that the form of r in (9) can be found
taking into account that the J,; matrix determines the
type of the ground state of the crystal. As aresult, ther-
modynamic potential (5) takesthe form

N, N, 2
_J » JoU U
- ZZ NC(I(X+ Zﬁz ’\/N_(erlag
GN—l =1 (10)

-T Z N, S, (I, my) —NHmM.

The partial entropies (6) can be written as

Sx(lou mu) = In2—$nq?x[¢ma + lplu

- N;”ZZ 6(/e"|)Incosh (e + lIJe.GA/N_a)}

where the ¢, and ), values corresponding to the max-
imum are found from the equations
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m, = NG' tanh(¢ + el /No),
| (11)

lo = NG'y etanh (9 + Wael NG).

Differentiating potential (10) with respect to I, and m,
yields the equation of state

JON;mraz Nprglg—Jlg + TW, = 0,
7 (12)
T, = H.

Stable solutions to (11) and (12) corresponding to F
minimaare determined by the condition of positive def-
initeness of the matrix

Gop = 5aB§T[1— Z(e.u)2
. (13
xtanh2(¢a+wae."JN_a)} —JE+JorarB-
O

AtH=0and T = 0, it follows from (11) and (12) that
me = No'y san(ella), [ld = NG ef].
i i

We therefore have 2'° stable solutions to (11) and (12)
that differ in signsof |,.

If the ensemble of random J;; matrices is such that,
inthe majority of realizations, the transition to the state
with m = 0 occurs, than the energy for states withm=0
can be minimized by setting § ., /Nqrolo =cm. At
arbitrary signs of I, this condition is satisfied by only
oner, vector,

g = c'z sgn(e,")lz |e,“|.

Here, c' isthe normalization constant.

We will confine our consideration to disordered
magnets with m = 0 in the ground state, such as dilute
antiferromagnets, spin glasses, and dilute ferromagnets
with dipole interactions [25]. By virtue of the proper-

ties of random vectors € in dilute magnets and binary

spin glasses discussed above, (14) can be writtenin the
form [see (7) and (8)]

(14

0 Dl/Z
O N O
Mg = ulaD—qu (15)
Ez NgUig
B O
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To summarize, a study of metastable states in magnets
of the types specified above reduces to the search for
stable solutions of equations of state (11) and (12) with
rq in form (15). The spin configurations corresponding
to thel, and m, values obtained are determined by the
equation

0=y N;”ze.“—————'“l‘“;‘;m“
a 1a (16)

ula o

+ z NCI(ES))

Averaging the solutions over disorder reduces to

averaging over random € vectors and over J, < J.
Note that the localization threshold J is not a random
value and characterizes the whole ensemble of random
matrices Jj;.

The smallness of J, > 0 means that the correspond-
ing distribution function should have a fairly narrow
bounded support; that is, the possible J, values should be

smaller than some J > 0 satisfying the condition J < J.
In contrast to the case of the sums (8) of a macroscopic
number of terms, there is no reason to consider J,
fluctuations self-averaging; that is, to assume that

DJSD — DJOQ< as N —» . The thermodynamic

parameters of metastable and equilibrium states in an
inhomogeneous magnetic phases will therefore gener-
ally be non-self-averaging values, being determined by
different J, values in different samples. Note that the
absence of self-averaging equilibrium parameters was
also observed in numerical studies of disordered mag-
netic models[1, 26].

lor

3. THERMODYNAMICS IN THE VICINITY
OF THE TRANSITION

In the absence of afield, equations of state (11) and
(12) have a unique paramagnetic solution at T > J and
many stable solutions at T < J. It follows that, at T =J
and H = 0, thetransition from the paramagnetic to inho-
mogeneous magnetic phase occurs.

Consider the thermodynamics of the model in the
vicinity of thesetransitions. It isdetermined by the con-
dition
(17)

Equations (11), (12), and (15) then give equations for
the magnetizations of condensed modes m,,

lgy My << 1.

2
T u mN u m u;,H
.[m 0Y1a + 4a — la ,

Z Npufp  3Uiq J

and |, can be written through my,

(18)
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, (Ui —DH

_ (u3a_
ul(xla = a J +

3
UgqUgq) Mg

(19)
3ud,

Here, 1=1-J/Tand1,=JyJ>0.
Gaussian (13) can be rewritten as

0 2
T G =0+ %6(,3 + ol p-
O U, O

It follows from (17) and (18) that H < J, T < 1, and
To < 1. Thelast condition also follows from the small-
ness of T.

It is natural to assume that the sums of a macro-
scopic number of terms (8) are self-averaging and can
be replaced by the mean values. On the assumption
that, for the majority of random realizations, approxi-
mation (7) is valid on the mgjority of sites, we obtain

U4C( = 1’ l_'I3ot = Ula'

Let us also assume that the Ufu constants are indepen-
dent of mode humbers a; that is,

0 = N2
U =N zula

Generally, this approximation cannot qualitatively
change the results. Abandoning it would only lead to
some fluctuations in the solutions. At the same time, it
allows equations (18) to be substantially simplified and
makes them open to analytic treatment.

(20)

The 0% constant can be estimated from equation (7).
It follows from (7) and (8) that

- - —\2
1= Ng' S (Va—va)
a

where v, and v, arethe fractions of positive and neg-
ative € values, and we always have Ui <l Inadilute
dipoleferromagnet, Df =1. Inadilute antiferromagnet,
the v, — v, difference can be nonzero only because of
noncompensated spins on the surface of d-dimensional
antiferromagnetic clusters, on which € are predomi-

nantly localized. For this reason, v, — vy is of the

order of the ratio between the number of sites in
d-dimensional clusters and the number of sites on their
surface; that is,

=D,
where D isthe mean diameter of d-dimensional clusters
(in lattice parameter units). Clearly, D is a function of
the concentration of antiferromagnetic atoms and tends
to infinity when the concentration tends to one.
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The L‘Jf value in abinary spin glass depends on the
concentration of ferromagnetic bonds p; Uf =1lforp>

1-p.and Ui =D for p < p., where p; is the threshold
of percolation over bonds on a lattice of magnetic

atoms. At p. < p< 1-p,, the dependence of Df onpcan
qualitatively be described by the formula

@ = P=P*D7(1-p-po)
1-2p,
We will also replace N, by their average values
Ng = N/N,.
The introduction of reduced magnetizations |,

Ha = ma/Ula

in place of m, and the use of dimensionless field h =
0, H/J dlows (18) to be written as

3
T +Tol+ 52 = h, (21)

where
W= No' Mo

At 1 >0, Egs. (21) have a single paramagnetic solu-
tionwith equal |, = . Let usdenotethis solution by .
It satisfies the equation

3
(T+Tp+ 2 = .

3 (22)

At1<0,upto 2" _ 2 qable inhomogeneous solutions
can exist in addition to . These solutions have the form

Mo = ~=1(sind + ./30,cosd),
where o, = +1, and ¢ = ¢(T, To, h, &) isthe solution to
the equation

31,(~/3Acosh + sing) —21sin3¢ = 3h|t| ™%, (23)
A = Zoa/NO. (24)

The A parameter variesin theinterval (-1, 1) and deter-
mines the degree of inhomogeneity of the metastable
state. The A = £1 values correspond to a paramagnetic
statewith i, = 4. All stateswith equal A have equal uni-
form magnetization values,

W = J=t(sind + /3Acosp), (25)
Edwards-Anderson parameters,
_ a1l _m2= N1 2 202
g=N Ztﬁﬁ m’ = Ng Zua W o

= 31(A%-1)cos’ ¢ + (1 - )2,
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and also the same thermodynamic potential

4F

= (To+ UT)U® + 1q— 3hp —4In2. (27)

These states are stable at T + P > 0, which is equiva-
lent to the inequality

6] <TU6. (28)

As 1, > 0, the left-hand side of (23) isamonotonically
increasing function of ¢ at |¢| < U6, and there isthere-
fore only one stable solution for ¢ at a given A value,
which existsin theinterval of fieldsh_.<h<h,,

A
+ = ’\/éhATE the, (29)

7
har = J=31T,, h, = A/—T%O—gg. (30)

In this interval, solution (23) is fairly well approxi-
mated by the quadratic field function

T
(31)

_4(2—ﬁ)AhAT(h+—h)<h—h_)}
42— (2- J3)°A%n3;

which gives exact ¢ (h,) = 176 and ¢(Ah,;) = 0 values.

It follows from stability condition (27) and equali-
ties (23) and (25) that metastable states are stablein the
region

(Tl —h)?<—41°,

which is a band on the y, h plane. Magnetization is a
monotonically increasing function of h and A within
this band, and the field dependences of magnetization
are a family of nonintersecting curves bounded from
above and below by the po(h) curve, as is shown in
Fig. 1.

Clearly, the region of the existence of metastable
states in Fig. 1 determines the shape of the hysteresis
loop, which appears as a response to a dowly varying
external field, whose amplitude exceeds

he = hc + &I’
2

The shape of the loop changes as temperature varies,
because, at —2t < 3t,, only a part of the metastable
states are stable at h = 0 (see Fig. 1a), whereas, at 31, <
—21, dl metastable states are stable at h = 0 (Fig. 1b).
Note that if the field amplitude is smaller than h,, the
shape of the hysteresis loop is determined by the field
dependences of magnetization in the corresponding

(32)
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metastable states. Consider the equations for (dimen-
sionless) magnetic susceptibility x = du/oh,

-1 _ 21c0s3¢
X =T~ .
cos — /3AsinG
and specific entropy Sand specific heat capacity C,

q-+ Ui’

2

These equations give an idea of the character of field
and temperature dependences of the thermodynamic
values in various metastabl e states. For instance, at the
boundaries of the stability region at h = h,, g and x*
have the smallest values,

S=1n2-

3 To(1-4%

C=1+
21— ./3Atand

9 ,.2 1 2 2
g==-1(A"-1)—-=(1-07)1(3A£1)",

4 4 . (33)
X_l = To,

and the magnetization, entropy, and heat capacity are
given by

u:[—T(BA +1), S:In2+£(513A),
(34)
=‘(1+A)—;

As |h| approaches h, given by (32), more and more uni-
form stateswith A — +1 remain stable and their mag-
netization tends to po(xh,) = +2./-T. The magnetic
susceptibilities and heat capacities of these states, how-

ever, tend to limits different from the corresponding
values in the paramagnetic state,

2

_ Mo
>
T+To+Ho

In the middle of the stability band at ¢ =0 or h = Ah,r,
we have

a 2 _
Xo =T+To+ Uy Co =

q=—3T(l—UiA2), )(_1 = 1,21,

2%1 a° —2rD

Asinhomogeneity decreaseswhen A — £1orh —»
*h,r, the Y, X, S, and C values tend to their values for
the paramagnetic phase.

TheAlmeida—Thouless h,; field (30) determinesthe
phase transition point to the paramagnetic phase (accu-
rate to terms of the order of 1/N,). To show this, let us
find the A, values corresponding to the deepest states.

M= A./=-3T,

S= In2+
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Fig. 1. Field dependences of magnetization of metastable
(dashed lines) and stable (solid lines) statesin the vicinity of
the transition for (a) 2t < 3tg and (b) 3ty < -21.

Differentiating potential F (27) with respect to A and
using (23), (25), and (26), we obtain
2

g—z =-NTsind c033¢, o°F

00%|, -0
It follows that the smallest potential value is character-
istic of stateswith such A for which ¢ =0 at given T and
h. Clearly, solutions to (23) with ¢ = 0 exist for A =
h/hyr, which is only possible if h2 < hay. If h2> hap,
F(A) has no minimum in the domain of definition of
A?< 1, and aminimum is attained at its boundaries at
Doy = sgnh. It follows that transitions to the paramag-
netic state occur at h = £hy;.

As A isarationa value of the form 2n/N, — 1 [see

(24)], A cannot exactly equal h/hy at all h? < hi;. For
thisreason, A, corresponding to the smallest F valueis

determined by the condition of a minimum of |A —
h/h,;| and can be represented in the form

>0.

No—1

- (BN Onn-2 o2

Doy = 5 BN 1a(Ng—¢?

q nzllzNo 178(Ng” —€7)
_ 2

¥ (sgnh)e[hz - BN—(,’\IO <t hiT},
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-1 (a)

NL-7]s ] —

TIMONIN

har  h, h, h

0 T

Fig. 2. (a) Field and (b) temperature dependences (at h = 0) of thermodynamic parameters in the FC and ZFC modes: (1) FC sus-
ceptibility, (1') ZFC susceptibility, (2) FC susceptibility, (2) ZFC susceptibility, (3) FC Edwards-Anderson parameter, and (3') ZFC

Edwards-Anderson parameter.

where

It followsthat, at h? < hiT , aseries of first-order transi-
tions occur between inhomogeneous statesin the fields

hy = hyy 20t _q0

The corresponding ¢, value at h? < ha; is

ﬁ’“’ z BN~ ¢2).

Substituting Ag, and ¢, into (25) and (26) yields equi-
librium e, and g, values for Ny — oo,

h
Heq = T—Oe(hiw—hz) + 1oB(h” —har),

_ O pO, 2 2y 2
Oeq = _3TEH-_TD6(hAT_h ) + (1_u1)p~eq-
O hadd

Differentiating e, With respect to h, we obtain
Xea = To By =h?) + (T +T0+ pg) " O(h* — ).

The equilibrium entropy is found by differentiating the
equilibrium potential, which, accurate to terms of the

order of &>, hasthe form

eq = F% hA1D Tsconfv
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where configurational entropy S, is determined by
the logarithm of the number of states with equal
potentials F,

N, O
Sconf - N |I'l|:| D
ONo(1-2Ag)/20

The S, value is of the order of Ny/N and can be
ignored. For Ny —» oo, this gives

2
Sig = In2+ 0(hE; 1) - Eoo(n” ~ ).
The equilibrium heat capacity is given by

2
Ceq = 20(Nir —1") —m“—°+uze(h2—hfw>.
0 0

Note that P, Geg and S, are continuous at h? = hxy,
whereas X, and Cq, experience jumps in the transition
to the paramagnetic phase.

Note a so that the mean equilibrium parameters are,
generally, unobservable values because of the presence
of macroscopic barriers separating metastable states.
Experimental values close to these parameters can,
probably, be obtained by cooling the system in a low
constant field (field cooled mode, FC) at temperatures
close to the transition temperature [1, 3], when the bar-
riers between metastable states are comparatively low,
and the system has sufficient time to attain the deegpest
state (or astate closetoit) if cooled fairly slowly. When
the system is cooled in the absence of a field to some
temperature at which thefield is switched on (zero field
cooled mode, ZFC), the observed values differ from
equilibrium, because the system then reaches one of the
stateswith A = 0 and remainsin this state at h < h, (30)
(see Fig. 1), and the results of measurements corre-
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(b)

Moo

hIRM h
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Fig. 3. (a) Field dependences of mygy and mygy and (b) temperature dependence of saturation magnetization.

spond to this state. Their values are obtained from the
general formulasat A = 0 and ¢ = 1th/6h[see (31)].

If h, < h < h,, the system relaxes to a state at the
boundary of stahility region (on the lower branch of the
hysteresis loop) with

2 h—h,
Azpc—f3

Substituting A = A into (33) and (34) (with sign +)
gives thermodynamic parameter values to which the
values observed in the ZFC mode relax at h, < h < h,.
Lastly, at h > h,, the ZFC parameters correspond to the
paramagnetic state. The field and temperature depen-
dences of the thermodynamic parametersin the FC and
ZFC modes are shown in Fig. 2.

hAT

Similarly, proceeding from the intervals of the exist-
ence of metastable states (see Fig. 1) and their parame-
ters, we can find values determined in other arbitrary
nonequilibrium processes in inhomogeneous magnetic
phases. For instance, we can find the thermoremanent
magnetization (myy,), Which persists when the field is
switched off after an FC process, and isothermal rema-
nent magnetization (mgy), Which persists after cooling
in zero field and subsequent switching on of afield for
afinitetimeinterval (longer than the time of intravalley
relaxation) [1, 3]. For instance, it is clear that mygy, is
nonzero only if h > h,, and the expression for this value
can be obtained from (25) at

) 2h, 2 h-hp

A = ming=l, y = ’

i %L J3har /3 har D

J3mh A
¢IRME¢(h:O,AIRM):_—_I2é%;—I—RM-

The mygy value can aso be obtained from (25) by sub-
stituting

hp
A =min
TRM = %1- f - hmD
J3mh A
Orrv =0 (h =0, Argy) = —W-
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The field dependences of mygy,, and my,, are shown in
Fig. 3a. At

mln[?[

Mrrv ecomes fiel d-independent, and at
h>h,gy = min(2h, h,)

Mry &S0 becomes constant and coincides with Mygy,.
The saturation magnetization in strong fields is given
by

h>hpy = hATD

_ 2 32
Mo = 3T09(3To +21)(-1)

+[=3(T, + )] Y28(-31,— 21)

for both values. Itstemperature dependenceis shownin
Fig. 3b.

4. CONCLUSION

The most important result of this work is a com-
plete, although qualitative, description of the properties
of all metastable states in magnetic phases of disor-
dered Ising magnets with m= 0 in the ground state. We
also showed how these properties are related to the
parameters of slow nonequilibrium processes. The
results given in Fig. 1 allow the description of an arbi-
trary fairly slow nonequilibrium process with all
sequences of heating, cooling, and field variation imag-
inable. Qualitative agreement of the parameters of
some such processes obtained in this work with exper-
iment and numerical calculations performed in [1-4] is
evidence that the approximations used in (7), (9), (15),
and (20) are justified and that the condensation of a
macroscopic number of fractal modes existing near the
localization threshold can indeed be the physical mech-
anism of the appearance of an exponentially large num-
ber of metastable states. Note once more that the struc-
ture of the set of ground states observed in humerical
calculations of the 3d spin glass model with binary
exchange [8] also lends support to the suggested mech-
anism.

It should also be stressed that al results obtained
within the framework of the accepted approximations
are expressed through the statistic characterigtics of the
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matrix of random exchange interactions and contain no
phenomenological parameters. The suggested approach
can therefore be a starting point for constructing a more
accurate quantitative theory of the properties of metasta:
ble states of disordered magnets. Such a theory should
rely on detailed studies of the properties of the eigen-
vectors of random matrices J; near the locdization
threshold, which, are of necessity described at the level
of phenomenological assumptions in this work. The
goal of such aquantitative theory may, in particular, be
testing the universality of the properties of al disor-
dered magnets with m = 0 in the ground state, the
results for which, obtained using the accepted approxi-

mations, only differ by 0> constant values.
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Abstract—A model of a quantum dot for two interacting electrons is proposed and analyzed. The properties
of the ambient determining the form of the confinement potential for electrons are simulated using the electro-
static field of the image charge. Analytic expressions for the eigenvalues of each subsystem are derived taking
into account the external magnetic field and using the representation of the system Hamiltonian as the sum of
the Hamiltonians of the center of mass and of relative motion on the basis of the method of oscillator represen-
tation [M. Dineykhan and G. V. Efimov, Element. Chast. At. Yadra 26, 651 (1995); M. Dineykhan, G. V. Efimov,
G. Ganbold, and S. N. Nedelko, Oscillator Representation in Quantum Physics, Lecture Notes in Physics,
Vol. 26, Springer, Berlin (1995)]. The relative motion of electrons is responsible for a confinement potential
which differs from the parabolic confinement potential and is a function of the electron effective mass as well
as the characteristics of the image charge. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Advances in modern technology make it possible to
create semiconducting nanostructures (quantum dots)
[1-3] in which a finite number of electrons are “cap-
tured” in a bounded volume. A quantum dot is associ-
ated with a quantum well formed at the interface
between two finite-size semiconductors (such as GaAs
and GaAlAs) owing to different positions of the forbid-
den gaps on the energy scale in these semiconductors.
Besides, external contacts which make it possible to
control the properties of a quantum well also play an
important role. The presence of discrete energy levels
and even the manifestations of the shell structure which
was predicted [4, 5] and experimentally observed [6]
for quantum dots give groundsfor treating them as arti-
ficial atoms. The possibility of monitoring and control-
ling the properties of quantum dots attracts consider-
able attention to these objects, which may be used,
among other things, as a new elemental basisfor future
generations of computers[2].

Two-€electron quantum dots are the simplest exam-
ple of such systems which can be used to trace the
peculiarities of even more intricate complexes.

Using the hypothesis that the effective eectron con-
finement potential in a quantum dot corresponds to the
parabolic confinement potential, it is possible to describe
[7—9] the typical features of transport processes [10] and
spin oscillations in the ground state of a quantum dot in a
magnetic field [11]. However, electron correlations
may strongly affect the form of the confinement poten-
tial under certain experimental conditions. For exam-
ple, the description of experiments involving photoe-

mission [12] in aquantum dot requirestheintroduction
of anharmonic corrections [13] to the parabolic con-
finement potential. A natural question arises concern-
ing the mechanism of the confinement potential forma-
tion in a quantum dot.

What must the conditions be for the formation of,
say, a parabolic confinement potential in a quantum
dot? Which parameters of the system may lead to the
suppression of anharmonism or, on the contrary, give
rise to these effects?

The present work aims at analyzing the mechanism
of formation of the confinement potential in atwo-elec-
tron guantum dot in a constant external magnetic field.
The main components responsible for the formation of
the confinement potential in a quantum dot in the
so-called Coulomb-blockade regime include the exter-
nal voltage applied to the layered nanostructure and the
properties of contacts having various geometries and
connecting the quantum dot with the ambient [2, 3]. We
proceed from the fact that quantum-mechanical effects
play a significant role in the description of the mecha
nism of quantum dot formation. Further, we assume
that a quantum well is homogeneous in its dielectric
properties, while the system on the whole isinhomoge-
neous, and the continuity conditions for the tangential
derivatives of potentials must hold. These assumptions
lead to the introduction of an effective positive image
charge which is associated with external factors.

This approach iswell known in analyzing the prop-
erties of insulators in electrostatics [14]. Thus, we
assume that the image potential, which is created, for
one, due to a considerable difference in the permittivi-
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ties of the layers forming the quantum dot (e.g., a vac-
uum and a semiconductor or a semiconductor and an
insulator), plays a significant role in the formation of
the confinement potential .*

We will consider a three-body Coulomb system in
an external magnetic field, which is formed by two dec-
trons and an image charge. It should be noted that in our
formulation of the problem, theimage charge may aso be
associated with an impurity in the quantum dot.

Our analysis is based on the oscillator representation
method [16], which was successfully applied for calculat-
ing the energy spectrum of the system controlled by the
Coulomb and power potentials aswell as by the Coulomb
potential and the Yukawa potential [17]. The material lay-
out isasfollows. In Section 2, the model Hamiltonian of
the three-body system, which can be divided into the
Hamiltonian of the center-of-mass system and the
Hamiltonian of relative motion, is considered. In Sec-
tion 3, the Hamiltonian of relative motion is analyzed.
Examples of calculation of the energy spectrum of a
two-€electron system in the 2D case on the basis of the
results obtained in Section 3 aregivenin Section 4. The
main results are summarized in the Conclusion. Some
technical details of the calculations based on the oscil-
lator representation method are given in the Appendix.

2. FORMULATION OF THE PROBLEM

A quantum dot containing a few electrons may be
treated as a model of an atom in which the effective
positive image charge playstherole of the nucleus. Our
task is to determine the confinement potential for the
electrons proceeding from the Coulomb interaction
between the electrons and the image charge in the
quantum-mechanical formalism. For this purpose, we
consider athree-body system with the Coulomb inter-
action in an constant external magnetic field. Let m,,
m,, and m, be the masses and —Z;e, —Z,e, and —Z;e the
charges of the particles. The Hamiltonian of the system
can be written in the form

3 2
1< 1 e 21 Z,2,€
= = —_ N . + o—_—
H ZZ mj[PJ cA(rJ)] ATIEE|r 1 — 1|
=1 (1)
1 2,2, 1 Z5Z,€°

ATtEgy|r — 14 ATEg|r,—ry

Here, € and g, are the relative and absolute permittivi-
tiesand A(r) isthe vector potential, which isdefined in
the standard manner:

Ar) = %[er], @)

1 See, for example, the discussion on the role of image potentialsin
the formation of excitons in nanostructures of the type of super-
lattices and quantum wells [15].
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where B is the external magnetic field strength. We
introduce the Jacobi coordinates {x, y} and the center-
of-mass coordinates R of the system:

m, m;
X +
m+m, m+m+m

rh =

y+R,

m, ms
X +
m+m, m+m+m;

r, = y+R, (3)
m1+m2

—y+R
m+m,+mg

r, = —
The confinement potential in quantum dots is charac-
terized by astrong blocking along one of the three coor-
dinate axes (X, y, or 2). As aresult, low-lying quantum
excitations are determined by the properties of the con-
finement potential along the remaining two axes. Con-
sequently, quantum dots can be regarded from the geo-
metrical point of view as effective 2D systems. The
external magnetic field may be oriented, for example,
in a plane perpendicular to the plane of the quantum
dot. We assume that these planes intersect along a
straight line directed strictly along x; i.e., A(y) = 0. Tak-
ing into account this assumption, we can divide Hamil-
tonian (1) into two parts: the Hamiltonian of the center-
of-mass system

R #°m0 5, m0
Hem = EPQ+ZEprQ+ﬁﬁwCLZ (4)

and the Hamiltonian of relative motion
2
1 -, 1 Px 2
= —P.+—=P.+m*X=
TV TR T
+ e’ lez_ e ZiZ,
4dmeg, |x|  Amegly +x/2|

2
e Zzz3 1
— + = .
4miegyly —x/2| Zﬁwcl'xz

HHTI

®)

Here, w, = eB/cm* is the cyclotron frequency, m; =
m, = m* is the effective electron mass, and the follow-
ing notation has been introduced:

M= Lpos T o (Mut T,
2 m; + m, m,
= _ J/m,
m = m+m+mg, Q= TR, (6)

Po = Qi+ Q.
Due to the presence of the magnetic field, each Hamil-

tonian contains the components of the angular momen-
tum L = —A[r x A] aong the z axis in the intrinsic

coordinate systems. Accordingly, operators L, and L,
are the angular momentum components in the coordi-
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nate systems of relative motion (r = x) and of the center
of mass (r =Q).

It should be noted that the Coulomb interaction
makes zero contribution to the Hamiltonian (4) describ-
ing the motion of the center of mass. Solutions for the
center-of-mass Hamiltonian in the presence of a para-
bolic confinement potential were considered for the
first time by Fock and are known in the literature and
the Fock—-Darwin levels [18]. However, in the case
under investigation, in which the existence of aconfine-
ment potential (e.g., parabolic confinement potential) is
not presumed a priori, the eigenval ues of the center-of-
mass Hamiltonian have the form

0 0
Exy = (2N+|M| +1) /%hwc+£n—mt|\/|hwc, 0

whereN=0, 1, 2, ... istheradial quantum number and
M =0, £1, £2, ... is the angular momentum quantum
number. In contrast to the Fock—Darwin solutions,
which are determined by the parabolic confinement
potential and cyclotron frequency, the energy spectrum
of the motion of the center of mass in our model is
determined by the kinetic energy of electrons, the
cyclotron frequency and depends on the ratio of the
€l ectron effective mass and the sum of the masses of the
system components. In order to analyze the Hamilto-
nian of relative motion, we go over to new variables

r= @x, = {Ey- (8)

Further, we assume that the image charge Z; depends
not only on the effective electric charge Q, but also on
the ratio of the permittivities of the media:

ele—gl
Z. =
= [Hezte
where € and €' are the relative dielectric constants, e.g.,

of asemiconductor and an insulator. The corresponding
Schrddinger equation for relative motion has the form

2
et Lo gl + LB
8 ad/amd '

2
hﬁf Z,Z
A/_[|§+f3r| ©)
haf2f ZyZs

SR v <o

where f = ,/my/m,, a* = agem/m* is the effective
radius of the system and ag is the Bohr radius. In the

next section, we will find the solutions of the
Schrddinger equation (9).

+hooL
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3. ANALY SIS OF RELATIVE MOTION
3.1. Energy Spectrum of the Intrinsic System

In the two-center adiabatic approximation [19], the
wave function of the relative motion of a three-body
Coulomb system can be represented in the form

w(r,§) = x(e(r, 8), (10)

where ®(r, §) is the wave function of the intrinsic sys-
tem. In the two-center approximation, variabler iscon-
sidered as an externa parameter; i.e., r = const. We
present vector § in the cylindrical system of coordi-
nates. § ={p, z ¢} . Inthis case, the wave function ®(r, §)
assumes the form

o, §) = @cbm(r; P, 2).

Jn

Here, ¢ is the azimuthal angle and m is the magnetic
guantum number. Taking into account expression (11) and
simplifying the Schrodinger equation (9), we obtain

Z,Z\

JOC+2frz+ £%r2
(12)
Z,Z\

- Foulr: 9.2 = E)Bulr; p.2),

JOC=2frz+ 220

where E,(r) is the eigenvalue of the Hamiltonian of the
intrinsic system and parameter A is defined as

_ hJ/2f
all/m0
Carrying out the substitution of variables

P = 2/p1P2 Z= (P1—P2) (13

and going over to the parabolic system of coordinates
in Eq. (12), after relevant calculations, we obtain

(11)

0 @f[az 19 gf+a"1

—- 4= _ -
E_z op> PP p* 97

— +0,—
2| P P2y 2 " 30, 4p,  4p,

O 9,0, 0 9 m_ m
O api 0P, 0p3

—(p1+P)E
B lea)\(pl"' pZ)
A/(pl + p2)2 +2fr(p—py) + f2r
Z,Z -\ +
2Z3A(P1+P2) Egam(r P, P2) =

o1+ 02— 2f0 (pr—po) + Fr°0

Before defining the energy spectrum and the wave
function of the Schrédinger equation (14) using the
oscillator representation method [16], it is appropriate
to note that thismethod is based on the ideas and meth-
ods of the quantum theory of a scalar field. However, a
considerable difference between quantum field theory

(14)
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and quantum mechanics is that in the former case, the
guantized fields in the form of a set of an infinite num-
ber of oscillators for the ground state of a vacuum pre-
servetheir oscillatory nature in the quantum-field inter-
action. In quantum mechanics, the behavior of the
eigenfunctions for most potentials differs from the Gaus-
Sian behavior of the oscillator wave function. For thisrea
son, while applying the methods and ideas of quantum
field theory for solving quantum-mechanical problems,
the variables in the initia radia Schrddinger equation
should be changed so that the sought wave function would
display the Gaussian behavior at large distances, and the
transformed equation should be identified with the radial
Schrodinger equation in aspace with alarge dimension.
It should be noted that a similar idea was discussed for
the first time by Fock while solving the problem of the
spectrum of the hydrogen atom with the help of trans-
formation to the four-dimensional momentum space
[20].

Following Fock [21], we will assume that the
asymptotic behavior of the wave function of theintrin-
sic system is of the Coulomb type. In accordance with

what has been said above, we change the variables as
follows (see [16] for details):

P = Gh Om o= AWl D), k= 1,2 (15)

Using the atomic system of units (A = e=c = 1), we

obtain from (14)
d 10
Z aq q; aq

_ 4Z,Z5\(d1 + 0)
S+ )+ 2fr(f— ) + £r°
—4E(q; + )
42,7\ (0 + 05) 2 2
- ) = 0!
T o = (. o
(g +02) —2fr(gp—qy) + fr

where d is the dimension of the auxiliary space, which
isgiven by

(16)

d=2+2|m. a7
Asaresult of the change of variables, we obtain amod-
ified Schrodinger equation in the d-dimensional auxil-
iary space R, It followsfrom Egs. (16) and (17) that the
magnetic quantum number m appears in the definition
of the dimension d of the space. This approach makesit
possible to determine all the characteristics we are
interested in, including the spectrum and the wave
function, by solving the modified Schrédinger equation
for the ground state only in the d-dimensional auxiliary
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space RY. The wave function W,.(q5, g3) of the ground

statein Reisafunction of variables g; and g5 only. For
this reason, we identify the operator

a d 10 A
aqk O 0Q, *

with the Laplacian A, in the auxiliary space RY, which
acts on the wave function of the ground state, which isa
function of radius g, only. Proceeding from the modified
Schrédinger equation

HWH(01, 0) = €(E)Wr(ay, 0, (19)

in accordance with Eq. (16), we find that the energy
spectrumin RY is equal to zero:

g(E,) = 0. (20)

We will consider thisrelation asthe condition for deter-
mining the energy spectrum E, of the Hamiltonian (12).
Following the oscillator representation method, we write
the canonical variables in terms of the creation and anni-
hilation operators in the R space:

k=12 (18)

g = el g fasloal
J NP 2 07 (2
k=12 j=1..d [a2a"=3,

where wy is the oscillator frequency, which is yet
unknown. Substituting expressions (21) into Eg. (16)
and ordering in the creation and annihilation operators,
we obtain

H = Ho+go(E) + H,. (22)

Here, Hy is the Hamiltonian of two uncoupled oscilla-
tors,

Ho = wy(aj(Day(2)) + w(aj(2)a(2)), (23)

and gy(E,) is the ground-state energy in the zeroth
approximation of the oscillator representation [16, 22],
which hasthe form

dE, _dE,
d(A)l + iwz 2——- - 2——- _4( 1(.02)d/2
l

dsldsz{ Z,ZN (B1B2) " T (BL + By)
U F(@2)L[(,+B)7+ 211 (B, —Bo) + 1777 (24)
Z,Z\ (B1B2) " 1 (BL + By) }
JB.+ B, - 2fr (B —By) + £

x exp(—wB; — ;).

Theinteraction Hamiltonian H, can also be represented
in normal form in the creation and annihilation opera-

8O(Er) =
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tors. It contains no quadratic terms in the canonical
variables:

_ dt g pin
SN e i

2M4 2“—

x exp[- (fr)’t—ni-n3 DeXIDD—rll— e

x F(2i 1 (N19y), 20 /M_(N20,)) (25)

in
+ exptrni-“——niy—m

x F(2i 1N 100), 20./14(N102)) a :

B=0

where we have introduced the following notation:
F(y, Yo) = ez

gl
+1e,n %’H% A %

= B £ 2rft + 2i JtT.

Here, :...: symbol izes normal ordering, and the follow-
ing notation has been used: € = € —1-x—-X12 (see

also [17]). Some details of the representation of the
Hamiltonian in normal form are given in the Appendix.

The contribution of the interaction Hamiltonian H, is
considered as a small perturbation. In quantum field the-
ory, after representing the canonical variables in terms of
the creation and annihilation operators and representing
the interaction Hamiltonian in norma form, we find that
the requirement of the absence of second-degree fied
operators in the interaction Hamiltonian is essentialy
equivalent to renormalizations of the coupling constant
and the wave function [23]. Moreover, such a proce-
dure makes it possible to take into account the main
guantum contribution through the renormalization of
masses and through the energy of the vacuum. In other
words, all quadratic forms are completely included in
the Hamiltonian of a free oscillator. This requirement
makes it possible to formulate, in accordance with the
oscillator representation, the conditions

0g,(E)
0w,

98 _

50 - =0 (26)

for determining the frequencies w,; and w, of uncoupled
oscillators, which determine the main quantum contribu-
tion. Taking into account Eq. (24), we can use Egs. (20)
and (26) for calculating the energy E, of theintrinsic sys-
tem asafunction of parameter r. Sincewe areinterestedin
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the ground state, we will not consider radia perturbations
here. It was verified more than once by using the oscil-
lator representation for various potentials [17, 22, 24]
that the first-order correction associated with the interac-
tion Hamiltonian is identicaly equd to zero, while the
second-order correction is smaler than one percent. For
this reason, we will confine our analysis to the zeroth
gpproximation only.

In this approximation, energy E, is given by

0w, 2(ww,) dp,dB,
8 d W, + W, -!).‘!:Fz(d/Z)
Z.ZAB1+By)
JBL+ B+ 2fr (B —By) + 77 (27)
Z,Z A (B, +By) }
JBL+ B’ —2fr(By—By) + 1717

x exp{—w,B; — w,B7} .
We introduce new parameters

dr2+1%°%

E =

x (Blsz)d’z‘l[

W, + 0, _ W -
2 > T T
which can be determined from Egs. (26) taking into
account expressions (24) and (27) asfunctions of quan-
tity r.
It should be noted that in the approach we used here,

the violation of spherical symmetry is controlled by
parameter w_.

w, = (28)

3.2. Sructure of Confinement Potential

L et us now consider the problem of the confinement
potential. Taking into account Eq. (12), substituting
expression (10) into Eg. (9), and carrying out transfor-
mations (in the ordinary system of units), we obtain

1.2 #°
[2P 8@

h 2.7,

aEJA/ md '

c(f)}x(f) =0,

22
cHr

(29)

where E isthe energy spectrum of theinitial system and
the quantity V(r) is precisely the required confinement
potential:

10l 0 Dz
Vi) = B0+ 355 590 (30)
Thefirst termin thisexpression, E,(r), isthe potentia (27)
created by the electrostatic field of theimage charge, while
the second term is associated with the relative motion of
particles and is determined by averaging the total Hamil-
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Fig. 1. Dependences of (a) the oscillator frequency, (b) the potential created by the relative motion of electrons, and (c) the potential
created by the electrostatic field of the image charge on the separation between two electrons.

tonian (9) over the wave function ®(r, §) of the intrinsic
system. Obvioudy, the confinement potential obtained
contains various sol utions depending on the form of Cou-
lomb interaction and on the magnitude of the magnetic
field. Here, we confine our analysis only to the spheri-
cally symmetric solution w_=0, i.e., 0, = w, = w. In
this case, we have

2 2

- W, 1oy

V) = 5 alparl
f (31

AW l1-e e —frw
—P2iZs+ 2,25)| 2 -,
where wis defined by the equation

W—2N(Z,Z5+ Z,Z5)(1+ fro)e ™ = 0. (32)

Thus, the confinement potential in our model of atwo-
electron quantum dot differs from the parabolic con-
finement potential and is defined by expression (31)
and Eqg. (32).

Considering the limit r < 1 and expanding potential
V. into aTaylor seriesin variabler, we obtain

o 1, f}
V(r) = _TO + ﬁZEQ_Ll + ngzwgrz
i e (33)
- al_l8 + fzgﬁmoog’zrs + hg—go r*+0(r®,
where

2
0 O

o, = Bz 2R (34)

Confining ourselves only to the second power inr in
Eqg. (33), we obtain the parabolic confinement potential
with the confinement frequency . It follows from
Egs. (31), (33), and (34) that the properties of the
potential depend on the image charge and the effective
electron mass. This dependence isincluded in the fina

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

expression for the energy spectrum through parameters
wy and f. If the mass of the image charge is created by
al the electrons of the ambient medium or by heavy

ions, parameter f = 1 (f = 1/./3 for m; = m, = my). The
characteristic length of the quantum dot (well) [8, 9]
formed at the interface between two media,

ho_ all
mw,  4Z,f./2

is aso afunction of the image charge.

lo

Using specific values of parameters in the case of a
quantum dot (eg., Z, =Z,=Z;=1and m; =m, =), we
can determine the dependence of the oscillator frequency
wonthevaueof r appearingin Eq. (32). Accordingly, this
allows us to determine the dependence of the potential

2

frw
E(r) = %—m[zl?ri) —e‘”“’}

(35)

created by the electrostatic field of the image charge, as
well as of the potential

_ 1lowy

Vi = 20warD

(36)

associated with the rel ative motion of electrons, on param-
eterr. It can be seenfrom Fig. lathat withincreasingr, the
oscillator frequency w decreases smoothly from 4.619
to 0. Potentid V.4 isequal to zero at the origin, increases
over smal distances, and then decreases rapidly upon a
further increasein r (Fig. 1b). Potentid E/(r) is finite for
r = 0; i.e, it has no singularity, while for r = oo, it
decreases as a Coulomb potential. The value of poten-
tial V.4 isan order of magnitude smaller than the abso-
lute value of E,(r). Thus, the main contribution to the
confinement potential is determined by the interaction
of the electrons in the electrostatic field of the image
charge.
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4. ENERGY SPECTRUM

In this section, the oscillator representation [16] is
used for calculating the energy spectrum of atwo-elec-
tron system with potential V(r) (33). For illustration,
we consider the case when z = 0, i.e, a 2D system
which may serve asamodel of aquantum dot. Accord-
ing to Egs. (29) and (33), the Hamiltonian of the rela-
tive motion of the two-electron system has the form

2 2 2 2

H = _£|:_Q._ + l'i__nl} + fLQZpZ
219p* POPp p?| 2

(37)

N
+ o ©o -2 JEWp® + #°Gp”* - f% + %mﬁwc,

where m= 0, £1, ... is the magnetic quantum number
and

Mo A
> _ ANay _ N 2
W = R W-48w0A/(o,
2 )\43 I (38)
I N
Q= w+r7 C=95 K=

The Schrodinger equation for Hamiltonian (37) assumes
the form

Fide i
P (39)
—hngWp3+h3Gp4}Wm = U W,
Here, U,,, isthe energy parameter,
hoy m
U, = Em+?°—§hooc. (40)

We will first consider a purely parabolic potential;
i.e, W=0and G = 0. Inthis case, we obtain the follow-
ing expression for the energy spectrum (see [9] for
details):

2

. . 3k o, 27
"A/Eca”m*z*?bté”u*ﬂ

Am+22) te, o gymmE
F(1+|m) +4[1 ( 1)m]ngE

U]
E, = ﬁwog—% +t 204531+ |m)
]
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Fig. 2. Dependence of parameter o on the relative external
magnetic field strength t for various values of the magnetic
quantum number m. The lower level correspondsto m=-1,
the next to m= -2, and so on.

Parameter x can be determined from the equation

2 2--1/4
x4+x3k[%%+ f%fﬂ
(42)
WAm+12) g
r(2+[ml)

Here, t = w./uy, is the relative magnetic field strength
and g* is the effective Lande factor. Expression (41)
also includes the contribution from the Zeeman effect
associated with the spin interaction between the two elec-
tronsin amagnetic field. Expressions (41) and (42) alow
us to determine the ground states of a quantum dot as
functions of its size k = I/a* and the relative magnetic
field strength t.

Let us now calculate the energy spectrum of Hamil-
tonian (39). In this case, the change of variablesis pre-
sented as follows:

p=0q" W,=d""oL0), 43)

where parameter a is associated with the behavior of
the wave function at large distances. The potential con-
tains anharmonic terms, and we will determine param-
eter a using the results obtained in [22]. For large val-
ues of p, the asymptotic form of the wave function is
determined by the anharmonic term Gp*with a = 1/3.
For small values of G and W, the true wave function
is closer to the Gaussian wave function and, hence,
o = 1/2. This limit corresponds to a parabolic confine-
ment potential. Thus, parameter a, which was initialy
regarded as a variational parameter in the minimiza-
tion of the ground-state energy in the zeroth approxi-
mation [22], may change in theinterval 1/3< a < 1/2.
Figure 2 shows the dependence of parameter a on the
magnetic field strength t = w,/w, for states with m =
-1, -2, =3, ... . The results of analysis show that for
stateswith asmall absol ute val ue of the magnetic quan-
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tum number m, parameter a < 1/2. As the magnetic
field increases, parameter a asymptotically tendsto the
limit o = 1/2 corresponding to a Gaussian wave func-
tion. It should be noted that in the oscillator representa-
tion, one can avoid the summation of seriesin the per-
turbation theory; i.e., the Dyson phenomenon problem
[25] can be bypassed successfully owing to the intro-
duction of parameter q.

After some transformations of Eqg. (39), we derive
the modified Schrodinger equation

2 2(a-1)

,d- 10} Feal

O #°7 a
B2 8220 1,k
B_Z[aq q dq

+202%2 qu2(4cx 1) 4ﬁ3/2G2Wq2(5a—1) (44)

+ 4a2ﬁ3Gq2(6u—1) _4G2Umq2(2a—1) EFDm(qz) =0,
0
where d = 2 + 4a|m|. The ground-state energy in the
zeroth approximation is given by
40U, T (d/2+2a 1)
(wh)> I (d/2)
, 4k Jiwya’r(di2 +a - 1)
(wh)* ™t r(d/2)
_ 44%2a®Wr (d/2 + 50 — 1)
(wh)>™~t  T(d2)
, 20°7*Q° T (d/2 + 40 - 1)
(wh)* r(dr2)
, Aa’hG [(d/2 +60 —1)
(wh)®~t  T(d/2) '
and for the interaction Hamiltonian we have

dwh
EO(UI’T'I) = 4 -

(45)

H, = IdTJ—Ep'ﬂD ERCEDN —2IJ%(qn)

y [4k [hoa® 17

a-1 (1-—
(wh) (1-a) )

4kt Jha’w 4U.0° ™
(wh)>*~* T(1-5a) (wh)za r(1-2a)

20°47Q° 1 | 4d’h’G 1™
(k)T (A-4a)  (@n)* 1T (1-6a) |
Equation

0go(Unm)

=0 47)
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is used for determining parameter w as a function of
energy U, aswell as other parameters of the potential.
Taking into account Egs. (47) and (45) and using nota-
tion (38), weabtain, after appropriate transformations, the
following expression for the energy spectrum:

E. .01 tm
hw, W H8 2

z Z JT(2+2a|m)r (4a + 2a|m))
" 4a r(2a + 2a|m|) 3

L 3kz/a_T (o +2[m)
2 T(2a+2a|ml|)

+1t°

V4

” [F(4a +2a|m|)[[f_ +tﬂ}
r2+2ajm) 03 "0

2 (50 +2alm)
962°0*? T(2+2am)
[ r+2ajm) f
[ (40 + 2a|m) 03

(48)

ED—1 34
+tD}

___f* r(6a+2ajm)
1607'a? T'(2 + 2alm))

o T(2+2alm) f" tqjl o
F(40(+20(|m|)53 0 g

Parameter zis determined from the equation

312 3F(O( +20|m))
2"+ 4ka M2+ 2a|m)

-1_1/4

]
+tD} -1

. 2 (50 +2a|m)
4z.Jal (2a + 2a|m))

[r(2+2a|m|) f’ za‘lf“
g e LI LLL VA SRR
Mo +2ajm)t3 U

L [_F(2+2a]m) f’
[F(40(+20(|m|)53

(49)

_ % r(6a +2alm)
Z10a (20 + 2a|m))

2 -1_3/2
x[ F(2+2afm) (f", 2] } _—
(4o +2ajm)d3z 0O

Obviousdly, the energy spectrum (48) differs from the
energy spectrum (41) determined by the parabolic
nature of the confinement potential. It followsfrom Fig. 3
that the dependences of the energy spectrum onthe size
k = I/a* of the quantum dot and the relative magnetic
field strength t = w,/wy, for parabolic and quasi-para-
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Fig. 3. Energy spectra of the Hamiltonian of the relative motion taking into account the Zeeman effect as functions of the relative
strength t of the external magnetic field for (a) parabolic and (b) quasi-parabolic potentials calculated by using formulas (41) and

(48), respectively.

bolic potentials are similar. However, singlet—triplet
transition in weak magnetic fieldsin the case of aquasi-
parabolic potential occur at higher values of the mag-
netic field (cf. Figs. 3aand 3b). We expect that the con-
finement potential in weak magnetic fields will differ
from the parabolic confinement potential. At the same
time, an analysis of expressions (48) and (49) shows
that in strong magnetic field, w, > wy, (i.e., in the limit
t — ), the contribution of the potential (33) associ-
ated with the quasi-parabolic structure is less notice-
able (z ~ 1). Thus, for strong magnetic fields, the
hypothesis on the parabolic nature of the confinement
potential for atwo-electron system is obvioudy quite jus-
tified. In our calculations, we used the following parame-
terstypical of GaAs: effective mass m* = 0.067m, and
g* =-0.44.

5. CONCLUSION

Proceeding from the assumption concerning the
existence of an image charge which may be due to a
large difference between the permittivities of the layers
forming a quantum dot or the presence of an impurity
in a semiconductor, we have formulated the model of a
two-€electron quantum dot. The model makesit possible
to determine consistently the effective confinement
potential for electrons, which is a function of the elec-
tron effective mass and the characteristics of the image
charge.

Using the oscillator representation, we have analyt-
ically calculated the energy spectrum of a quantum dot
for various values of the magnetic field. The division of
the total Hamiltonian into the Hamiltonian of the cen-
ter-of-mass motion and the Hamiltonian of relative
motion gives two types of solutions. The energy spec-
trum of the center-of-mass Hamiltonian is harmonic
and determined by the kinetic motion of the electrons,
the cyclotron frequency, and the ratio of the electron
effective massto the sum of the masses of the two elec-
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trons and the image charge. It should be emphasized
that in contrast to the Fock—Darwin case, this solution
is independent of the confinement potential for elec-
trons. The second solution determines the confinement
energy. In the model proposed by us, the confinement
potential iscompletely determined by theinteraction of
the electrons in the field of the image charge. The
results of analysis lead to the conclusion that the con-
finement potential in a quantum dot may differ signifi-
cantly from the parabolic potential (especially for small
values of the magnetic field), which can be verified
from an analysis of the spin oscillations of the ground
state of a two-electron system in magnetic fields. The
departure of the confinement potential from the para-
bolic confinement potential does not contradict the
Kohn theorem [26], which is valid in the case of the
electron—electron interaction, which is determined
exclusively by the relative distance.
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APPENDIX

An important element of calculationsin the oscilla-
tor approximation [16] is the representation of canoni-
cal variables in normal form. We will give here the
details of this representation for various potentials. Let
us consider the quantity

2

| = d
Jgt+2yxg’ +y?
- (A1)
= ——I—exp[—qu—t(q4+2vxq2+v2)] ,
oB) Jr o
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where q; is a vector in the auxiliary space RY. Taking
into account the relations (g, n; 0 RY)

exp(-tq’) = J’—exp( - 2ittg?),

exp(—q°K) (A.2)

= IDITP exp[-n*-2i./k(an)],

substituting them into Eq. (A.1), and using expres-
sions (21) for the canonica variable g;, we carry out nor-

mal ordering over the creation (aj+) and annihilation (a)
operators. This gives

| = “aa_B d_Tt[texp(—yzt) I jfexp(—rz)
) 0 = (A.3)
EdeeX _2%1 .
x p| N exp —2|/\/_(qn)] J
_{Dfrp [ d]} -
where
K = B+ 2yxt +2i Jt. (A4)

Using representation (A.3), we derive the expressions
(24) for the ground-state energy €,(E) and (25) for the
interaction Hamiltonian H,.

While analyzing Hamiltonian (44) with a quasi-par-
abolic potential, we must present in hormal form the
quantity ¢, where T may assume any value. For this
purpose, we will use the relation

o = J-r?i(T)X—l—reXp(_qu)
0
. 1T Ep"]D
‘f Jomp

x eXp[—nZE*l + fg} : exp[—2i./x(an)] :

_Ar@dR+y, . .. (A9

T M (d/2+71)

C Wb T(dr2) w ~LM(d/2+ 1)
L dx 1o [plrlD
5 = e

x exp[-n(1+ x)] : expz[~2iJ/xw(gn)] :.
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We will now give the details of calculating integrals
of the following form:

4. dB,

- H r2(di2)
 (BsB2)™™ (B + B2) exp(~wiBy — wyf)
Y =2Y(By~Bo) + (By + )’
First of all, we carry out the substitution of variables:

S = ﬁ , I ﬁ ,
S+t t—s

Blzﬁ- Bzzﬁ-

(A.6)

(A7)

In this case, integra (A.6) can be written in the form
)d/2 ltd

J=
2" 1I I r*(d/2)
N exp[—co+ty — W Xty]

J1=2xt+t2

(A.8)

where
_ Wt W, _ W -y
(A)+ - 2 1 w_ = 2 1
d=2+2m.
We will consider the case when w_= 0. In order to cal-

culate integral (A.8), we will use the following rela
tions [27]:

1 z Di Pk(x) <1
Ji-2xt+t2 SR, It =1, 9
S _Or(j+1)  r@ae+j)
JOXTPAN = T STk g2 )

Here, P,(X) is a Legendre polynomial. Taking into
account these representations, we obtain from (A.8)

(-1)’

£ [mit(fm/ - j)!

2(m+1) I
Y

J =

2m+1
2\\

j

D m+2+ m =2k +
Z B[ dtexp(—w, ty) (7™ 2T _?2m-E ) (A 10)
k= 0

Lr@m-2k+2)0 F(12+])
(yo) M R T (L+ ] —K)IT (k+32+ )
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The next integral can be calculated exactly:

1 1
n_— n 6” —At
dtt"e™ = (=1)"=— (dte
JO’ (-1) 3 AnJO’

n an 1—e_A
= (-1) — ,
( )aA” A
(A.12)

n=201,...

Using these relations, we arrive at expression (31) and
(A.6)—«A.11) for the confinement potentia (33).

=

10.

11.

12.

13.

REFERENCES

T. Chakraborty, Comments Condens. Matter Phys. 16,
35(1992); M. A. Kastner, Phys. Today 46, 24 (1993).
R. Turton, The Quantum Dot. A Journey into Future
Microelectronics (Oxford Univ. Press, New York, 1995).
L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots
(Springer-Verlag, Berlin, 1997).

M. Macucci, K. Hess, and G. J. lafrate, Phys. Rev. B 48,
17354 (1993); J. Appl. Phys. 77, 3267 (1995).

W. D. Heiss and R. G. Nazmitdinov, Phys. Lett. A 222,
309 (1996); Phys. Rev. B 55, 16310 (1997); Pis' ma Zh.
Eksp. Teor. Fiz. 68, 870 (1998) [JETP Lett. 68, 915
(1998)].

S. Tarucha, D. G. Austing, T. Honda, et al., Phys. Rev.
Lett. 77, 3613 (1996).

M. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108
(1990); Phys. Rev. B 45, 1947 (1992).

U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43,
7320 (1991); M. Wagner, U. Merkt, and A. V. Chaplik,
Phys. Rev. B 45, 1951 (1992).

M. Dineykhan and R. G. Nazmitdinov, Phys. Rev. B 55,
13707 (1997); J. Phys.: Condens. Matter 11, L83 (1999).
Bo Su, V. J. Goldman, and J. E. Cunningham, Phys. Rev.
B 46, 7644 (1992).

R. C. Ashoori, H. L. Stormer, J. S. Weiner, et al., Phys.
Rev. Lett. 71, 613 (1993); R. C. Ashoori, Nature (Lon-
don) 379, 413 (1996).

T. Demel, D. Heitmann, P. Grambow, and K. Ploog,
Phys. Rev. Lett. 64, 788 (1990).

D. Phannkuche and R. R. Gerhardts, Phys. Rev. B 43,
12098 (1991); 44, 13132 (1991).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,
25.
26.
27.

1059

L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 8: Electrodynamics of Continuous Media
(Nauka, Moscow, 1982; Pergamon, New York, 1984).
N. A. Gippius, V. D. Kulakovskii, and S. G. Tikhodeev,
Usp. Fiz. Nauk 167, 558 (1997) [Phys. Usp. 40, 534
(1997)]; E. A. Mulyarov and S. G. Tikhodegev, Zh. Eksp.
Teor. Fiz. 111, 274 (1997) [JETP 84, 151 (1997)].

M. Dineykhan and G. V. Efimov, Fiz. Elem. ChastitsAt.
Yadra 26, 651 (1995) [Phys. Part. Nucl. 26, 275
(1995)]; M. Dineykhan, G. V. Efimov, G. Ganbold, and
S. N. Nedelko, in Lecture Notes in Physics, Vol. 26: Oscil-
lator Representation in Quantum Physics (Springer-Ver-
lag, Berlin, 1995).

M. Dineykhan and R. G. Nazmitdinov, Yad. Fiz. 62, 143
(1999) [Phys. At. Nucl. 62, 138 (1999)].

V. Fock, Z. Phys. 47, 446 (1928); C. G. Darwin, Proc.
Cambridge Phil. Soc. 27, 86 (1930).

I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov,
Soheroidal and Coulomb Spheroidal Functions (Nauka,
Moscow, 1976); S. I. Vinitskii and L. |. Ponomarev, Fiz.
Elem. Chastits At. Yadra 13, 1336 (1982) [Sov. J. Part.
Nucl. 13, 557 (1982)].

V. A. Fock, The Principles of Quantum Mechanics
(Nauka, Moscow, 1976; Mir, Moscow, 1978).

V. A. Fok, lzv. Akad. Nauk SSSR, Ser. Fiz. 18, 161
(1954).

M. Dineykhan and G. V. Efimov, Rep. Math. Phys. 36,
287 (1995); Yad. Fiz. 59, 862 (1996) [Phys. At. Nucl. 59,
824 (1996)].

E. S. Fradkin, Nucl. Phys. 49, 624 (1963); K. Hayashi,
M. Hirayama, T. Muta, et al., Fortschr. Phys. 15, 625
(1967); A. Salam, Nonpolynomial Lagrangians. Renor-
maliz)ation and Gravity (Gordon and Breach, New York,
1971).

M. Dineykhan, Z. Phys. D 41, 77 (1997).

F. J. Dyson, Phys. Rev. 85, 631 (1952).

W. Kohn, Phys. Rev. 123, 1242 (1961).

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,
Series, and Products (Fizmatgiz, Moscow, 1962; Aca
demic, New York, 1980).

Trandated by N. Wadhwa

No. 6 2001



Journal of Experimental and Theoretical Physics, Vol. 92, No. 6, 2001, pp. 1060-1071.

Trangated from Zhurnal Eksperimental’ nor i Teoreticheskor Fiziki, Vol. 119, No. 6, 2001, pp. 1222-1234.

Original Russian Text Copyright © 2001 by Gadomsky, Idiatullov.

SOLIDS

Electronic Properties

Optical Size Resonances in Nanostructures

O. N. Gadomsky* and T. T. Idiatullov
UI’yanovsk State University, Ul’ yanovsk, 432700 Russia
* @e-mail: ged-group@mail.ru
Received November 10, 2000

Abstract—The existence of optical size resonancesin atomic nanostructuresis proved. The properties of opti-
cal sizeresonances strongly depend on the interatomic distances and on the polarization of an external radiation
field. The propertiesof linear and nonlinear size resonances are considered in the case of two-dimensional nano-
structures. The linear optical size resonances are described based on a closed system of equations for dipole
oscillators and nonlocal field equations taking into account the dipole-dipole interactions of atoms in the radi-
ation field. Using a stationary solution to these equations, it is demonstrated that two isotropic atoms with def-
inite intrinsic frequencies form an anisotropic system in the radiation field, possessing two or four size reso-
nances depending on whether the component atoms are identical or different. The nanostructure composed of
two different atoms possesses two size resonances with positive dispersion and two other resonances with neg-
ative dispersion. The frequencies of the size resonances significantly differ from theintrinsic frequencies of iso-
lated atoms entering into the nanostructure. By changing the angle of incidence of the external wave, it is pos-
sibleto excite various size resonances. The properties of nonlinear optical size resonances excited by anintense
radiation field were theoretically and numerically studied using the modified Bloch equations and nonlocal field
equations. Dispersion relationships for the nonlinear resonances were derived and the inversion properties of
atoms in the nanostructure were studied for various polarizations of the external optica wave. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The optical properties of nanostructures obtained
using modern technologies, including aggregates[1, 2]
and dimers [3, 4] on the clean surface of solids,
ultrathin films [5, 6], quantum wires [7] and quantum
dots [8], near-surface atomic probe [9, 10], surface
clusters[11-13], etc., can serve as abasisfor the devel -
opment of unique optical methods of investigation and
for the creation of unique optical devices. This paper is
devoted to atheoretical study of the interaction of two-
dimensional nanostructures with optical radiation. An
example of such a nanostructure is offered by a dimer
on the solid surface [4]. In our opinion, a complete
description of the optical properties of such nanostruc-
tures provides a basis for the knowledge of optical
properties of more complicated nanostructures.

Previoudly [14, 15], the near-field effect was pre-
dicted based on the description of dielectrics as a dis-
crete-continuous medium in contrast to the traditional
concept of a continuous dielectric [10, 16]. In [14, 15]
and in the subsequent papers [5, 6, 17], it was shown
that the structural factor related to a discrete distribu-
tion of atoms near the observation point significantly
affects the reflection and transmission properties of the
surface, the index of refraction of the subsurface layer,
the optical properties of thin films, and the lifetime of
an excited atom at the surface. In [18], the near-field
effect was used as a basis for recording quantum infor-
mation on individual atoms of a diatomic quantum
computer with the aid of intense quasiresonance radia-

tion at avariable angle of incidence of an external elec-
tromagnetic wave. The readout of the recorded quan-
tum information can be performed with the aid of prob-
ing radiation, based on a solution obtained in [19] for a
system of equations for dipole oscillators.

In this paper, we will demonstrate that the internal
interaction between atoms in the radiation field may
significantly change the spectral properties of nano-
structures exposed to both weak and strong optical
fields. It will be shown that two identical or different
atoms possessing isolated resonances may acquire the
so-caled size resonances in the field of optical radia-
tion, the frequencies of which strongly depend on the
interatomic distance and on the orientation of the nano-
structure axisrelative to the direction of propagation of
the external wave.

2. LINEAR OPTICAL SIZE RESONANCES
IN DIATOMIC NANOSTRUCTURES

Let the origin of a coordinate system coincide with
atom 1 of a small diatomic object (nanoobject). Then
the vectorsr (0, 0, 0) and r,(0, R, 0) determinethe posi-
tions of two atoms constituting this object, the linear
size of which is assumed to be considerably smaller
compared to the external radiation wavelength: k)R < 1,
where k, = w/c, wisthe circular frequency of the exter-
nal radiation, and c is the speed of light in vacuum.

We assume the positions of atomsin the object to be
fixed, for example, on a substrate, and the substrate
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effect to be taken into account in the corresponding val -
ues of the intrinsic frequencies of atoms and of the
widths of their energy levels.

The electric field strength of a light wave at any
observation point r at atineinstant t is determined by
the following equation:

p;(t—R;/c)

R

2
E(r,t) = E/(r,t) + Z rotrot (1)
i=1
where E/(r, t) isthe electric field strength of the exter-
nal wave, R = |r —r;|, and p; is the induced dipole
moment of the jth atom.

The dipole moments of atoms can be represented in
the following form:

p; = e(u;—iv;)exp(-iwt) +c.c, 2

where e is the electron charge; u; and v; (j = 1, 2) are
some vector functions of time, the meaning of which
will be explained below. The equations of motion for
the dipole moments (2) are as follows:

2
e
—E(r,t
SE(r,0),

Py + w(z)lpl +Yo1P1 + Yoo P2
3

2
.. . e
p>+ wgzpz T Yo2P2 T YoiP1 = ‘rﬁE(rzv t),

where wy, and wy, aretheintrinsic frequencies of atoms
1 and 2, respectively; misthe electron mass; E(r;, t) is
the field strength at the site of the jth atom; and yy; =
2e2w§j /3mc3. The terms proportional to p; in Egs. (3)
take into account aradiation-induced retardation in the
diatomic system [20].

Let thefield E(r;, t) in Egs. (3) have the form

E(rj,t) = Eo(rj, t)exp(-iwt) + c.c. 4@

In addition, we assume that the functions u; and v
are slowly varying with time, so that
Ui < wluy], vl < wlvy. ©®)
Upon substituting expressions (2) into Egs. (3), con-
ditions (5) alow the terms proportional to U; and V; to
be rejected. Let usintroduce the notation
ul_i\./l = Xl’ uZ_iVZ = XZ.
Omitting the factor exp(— wt), we obtain the follow-
ing set of equations from system (3):

2X 1(—w+ yy) + Xl(—wz + 0031 —iWYp)

+yelXad ~Y@iolX;] = ZE(r,1), ©

2X2(—i W+ Yp) + Xz(—wz + 0052 —iWYg)
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+You[X1] =Yl w[X4] = EE(rz, t),

where the symbol [...] indicates that the corresponding
value is determined at the time instant t — R/c. Substi-
tuting expressions for the fields Eq(r 4, t) and Ey(r,, t)
depending on the dipole moments of atoms 1 and 2 into
these equations, we obtain a self-consistent system of
equations determining the unknown functions X, and
X, a an arbitrary moment of time for a diatomic
nanoobject excited by pulsed or continuous fields.

2.1. Sationary Regime of Excitation
of a Small Object

In the case of continuous irradiation of atoms of the
small object studied, we will assume that

X1=X2:O (7)

and that thefields Eq(r 4, t) and E(r,, t) areindependent
of time. Taking this into account in Egs. (6), we obtain
the following system of equations:

Xl(—wz + (’0(2)1 —iwYp)

. . e
— Yool WX, €xp(ikyR) = aE(r1)1

8)
X (—0° + Wy — 1 0Yp)
— Vol 00X, exp(ikoR) = %E(rz).
According to Eg. (1),
Ej(1) = E}, + 2GeX5exp(ik,R),
ER(1) = B}, — FexBexp(ik,R), ©

Ea(2) = Ep exp(iko [R) + 2GeX;exp(ikoR),
Eo(2) = Eqexp(iko [R) —FeXiexp(ikoR),
where B =x, z EJ(j) = E{(r}); Y=X, ¥, Z the quantities

2
= g (10)
R R R

determine contributions of the Coulomb and retarding
polarization fieldsin Egs. (8).

It is convenient to solve Egs. (8) with an allowance
for relationships (9) and (10) separately for they and 3
components of the dipole moments. Taking into
account that py; =eX} , weobtain thefollowing formu-
las:

a)c!ff(z) E%I ]
ab(2)ES,

p%l = O(fo(l)E%la p%z

(11)
pél Ggff(l) Egh pgz
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where a4 are the effective polarizabilities taking
into account the mutual influence of atoms1 and 2 in

GADOMSKY, IDIATULLOV

the diatomic object studied. These quantities are
expressed as

1+a,02G + %kokggexp(iko R)exp(ikoR)

o (1) = ay

1—0(10(2%G+%k0k %G+Z'kok exp(2ik,R)

exp(ik, ER)+0(1%G+ 20 kZDexp(lk R)

agr(2) = a, o
1-0,0,(2G + §kok H2G+ —kok exp(2|k0R)
(12)
1- aza: 3k kZDexp(lk [R)exp(ikyR)
ag(1) = a;
exp(iky [(R) —a a: 3kok exp(lkOR)
ag(2) = a,
1-0,0, E: kok 3kok exp(2|koR)
where ky; = wy,/C, kg, = ,/C; a4 anda, are theisotropic v a
polarizabilities of atoms 1 and 2 determined without RE
alowing for the mutual influence. For atoms 1 and 2 1- G%G += kok exp(lkOR)
with the isolated resonances wy; and wy,, the isotropic (14)
polarizabilities are given by the formula 5 a
Ogrr =

e’ 1

o, = = .
I 2 2 .
Mg — W™ — WYy,
L et usconsder two different atoms possessing i solated
resonances with the wavenumbers k,, = 89000 cm* and

= 92000 cm. An analysis of formulas (12) shows
that the size resonancesin adiatomic object with R =

1 nm correspond to k; = 86988.152 cm™?, kg, =

93904.548 cm, ky; = 88324.489 cm™, and ky, =
92648.712 cmr™. The full width at half-maximum
(FWHM) of these size resonances correspondsto Aky, =

0.00281 cn?, Akg, =0.00007 cnm?, Akyz =0.00045cm,

and Akg, = 0.00273 cm. The vaues of y and B com-
ponents of the effective polarizabilities of atoms 1 and
2 in the diatomic nanoobject differ from one another,
which indicates the presence of an induced anisotropy
in the nanostructure studied. Moreover, the size reso-
nances ko, and kg, possess anegative dispersion, while
the dispersion of other size resonances is positive. In
the case of two identical atoms with a; = a, = a and
Wyy = Wyp = Wy, EXpressions (12) yield

(13)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

1+abf + %kokélgexp(i KoR)

where it is assumed that k, - R = 0, which means that
the incident wave is directed aong the normal to the
diatomic object axis. A numerical anaysis shows that
the effective polarizabilities of atoms 1 and 2 in the
diatomic nanoobject studied for various frequencies of
the external field are virtually independent of the angle
between vectors k, and R. A consistent interaction of
atoms in the object studied |leads to the appearance of
two size resonances with a positive dispersion and the
wavenumbers 85775 and 95569 cm for ky, = w/c =
89000 cnr ™.,

2.2. Optical Field Outside a Small Object

Let uscalculate thefield at an observation point r in
the wave zone where kolr —r4| > 1 and ko|r —r,| > 1.
For such observation points, the major role in Eq. (1)
belongs to the terms proportional to 1/R. The electric
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and magnetic field strengths at the observation point r
are given by the expressions[16]:

Ny x[Nn;xpy] Ny x[n,xpy]

E(r,t) = > > )
C'R; C'R,
y (15)
x n
H(r 1) = P20t P te
CR, C'R,

Theinduced dipole moments of atoms 1 and 2 inthe
small diatomic object studied are determined by formu-
las (15) at the time instantst — R,/c and t — R,/c. The
expressions for these moments are as follows:

P! =~ py;exp(ikoR,) exp(-iwt) + cc.,  (16)
where y indicates the component (X, y, or z) of the
induced dipole moment of the jthatomand R = |r —r].
The field strength at the observation point r can be
determined by substituting expressions (15) into the
energy conservation law written in terms of the Poynt-
ing vector and a unit normal vector for the surface of a
sphere with the radius R;. In the wave zone, however,
the E and H values are approximately equal and the
intensity of dipole radiation of a diatomic nanoobject is
given be the formula

4 2
di = 25X, exp(-ikoRy)
4Tc a7

+ X, exp(—ikoRy) [P sin“6,dQy,

where 6, is the angle between vectors X; and R,, dQ,
isthe element of asolid angle in the direction of vector
R;, and X, and X, are vectors determined for the effec-
tive polarizabilities.

A numerical anaysis of formula (17) showed that
the direction of maximum dipole radiation is deter-
mined by the sin?6, law for various values of amplitude
of an external field propagating along the z axis. For the
intrinsi ¢ resonance frequency, when k, = (0, 0, 89000 cn™)

and Eo, = (1/+/2, 1/./2, 0) CGSE units, the |, value at
0,=172is1.64 x 10713 erg/s. For the size resonance fre-
quency, where k, = (0, 0, 93904 cm?), the same E, at
0, = W2 yields |, = 1.62 erg/s. For the other size res-
onance with k, = (0, 0, 88324 cm™?), we obtain |, =
0.28 erg/s.

Thus, by changing the external field frequency so as
to makeit coinciding with one of the size resonance fre-
guencies of the nanoobject studied, we increase the
dipole radiation intensity by approximately 12 orders
of magnitude.
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3. NONLINEAR INTERACTION OF OPTICAL
RADIATION WITH A DIATOMIC NANOOBJECT

Now let us consider the properties of a nanoobject
consisting of two different atoms in the field of an
intense wave. The Hamiltonian of the systemiis

H= %hwoﬁ + %ﬁooozf + %fioomo31 + %ﬁooozoaz

, . " 18
—do [E109y +doy [E10y (18)

—do, [E01, + dgp [E,0,

where T isthe unitary operator; wy, and wy, are the fre-
guencies of intrinsic transitions in atoms 1 and 2,
respectively; d, and d, are the dipole moment operators
of the atoms

d, = dbjcll—dglozla d, = dbjclz—d;)'zozz (19)

determined by the real (dg,;, do,) and imaginary (do, ,

dg, ) parts of the complex dipole transition moments of
atoms 1 and 2; and g, are the effective spin operators
of thejthatom (j =1, 2; a =1, 2, 3) obeying the rela-
tionships

[olj,ozk] = 2i03j6]-k, [021,03k] = 2i0116jk,

[035, Oud = 2109,

where g is the Kronecker delta symbol. The electric
field strengths E; and E, at the sites of atoms 1 and 2
satisfy Egs. (1), where the induced dipole moments p,
and p, of the atoms depend nonlinearly on these fields.
For the same arrangement of atomsin the system asin
Section 2, thefield components E, and E, are described

by expressions (9) with the corresponding P}’ substi-
tuted for eX] , where

P, = dy; [b,,0—dy; b5, (21)

and [d ;[Jare the average values of the corresponding
operators a,;. Omitting the symbol [l..Cand using the
commutation relationships (20), we obtain the follow-
ing equations of motion:;

2

Gy = —0g; 0y + ﬁd;)'j [E;03;,
0y = Wyg; 0y + %d;)j (E;03;, (22)
O3j = —%db‘,— [E0; —%dgj [(E;0y;,
where
E, = (e —ie")(Ey —iEp)exp(—iwt) +cc., (23)
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€ —ie" isthe complex polarization vector of thefield on

atoms of the object, Ey; —iEy; is the complex field
amplitude, and w is the external field frequency. We
introduce the following notation:

X1j = @;;COSWt —a,;sinwt,

. (24)
X2j = g COSWL —a,;SiNWt,
where
2 f . 1 1 " n
ay; = Z{do; (EEq; —do; [B"Eq} ,
= 20 reE" ' RE!
A = £{ (doj [EEy) + do; LE"Eoj}
(25)

2 n p 1 " 1] n
8.3] = f_i{ dOj EEEOJ —dol |:é EO]} y

2 " " " T
a4j = f_i{ dOJ Ee'EOj + dOJ EEHEOJ'} .

In addition, we introduce the following transforma-
tion:

03; = U;coswt — v;sinwt, (26)
0, = U;sinwt + v coswt, 0z = W;.
Using Egs. (22) with notations (24) and (25) and

taking into account the conditions

Azj = -8y, a4 = a4y, (27)
we obtain a system of equations
Uj = v(=0yp; + W) —ay;w;,
Vi = uj(0g; —w) + ag;w;, (28)

W; = apu;j—ay;V;.
Conditions (27) imply that, for (') + (e")? = 1,
do; (&' = do; [, do (8" = dp; (& =0, (29)

which shows that the induced dipole moments of the
nanoobject are parallel to the complex polarization vec-
tor inside the object.

In the general case, Egs. (28) must be supplemented
with relaxation terms containing the characteristic

times of phase (T,;) and energy (T,;) relaxation of the
jth atom in the nanoobject. Finally, we obtain a set of
equations

W

U = —A vV, —ay, W, — —,
J 17 177 T

2]
. Vi
2j
Wi = AU —ay v — 0]
= &u AV,

1j
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where 4 = wy; — w is the detuning of the jth atom from
resonance and wy; istheinitial value of inversion of the
jth atom.

Let us separate the variables u; and v; in the values
ay; and ay entering into Egs. (28) and (30). Taking into
account Egs. (1), we obtain the following expression
for thefield at the site of atom 1:

E; = Yo(Ei(1) + 2Gexp(ikoR) exp(—iot) pz,)

+%o(Ef(1) —Fexp(ikR)exp(-iwt) pp;)  (31)

+2o(E(1) — Fexp(ikoR) exp(~iot) pgp) + C.C.,

where X, Yo, Z, are the unit vectors of the correspond-
ing coordinate axes and

1 . , .
Po2 = Z(U2—|V2)(doz—|d02)’

(32)
Ei(1) = (el —ig)Eq (1) exp(-iwat).

Note that the complex polarization vector €, — ie,
of the external wave in our analysis may, in the general
case, not coincide with the polarization vector € —ie"
of the field inside the nanoobject. An analogous
expression can be obtained for the field E, at the site
of atom 2. Subgtituting E,(1) — E,(2) and pgy; — Po1s
we obtain

E, = Yo(Eo exp(iko [R) exp(-iwt) (e}, —i€}y)
+2Gexp(ikoR) exp(—iwt) pyy )

+Xo(Eq exp(iko [R) exp(-iwt) (e —ier) (33)
—Fexp(ikoR) exp(~iwt) pyy )

+2o(Eq exp(iko [R) exp(-iwt) (e, —ie;;)
—Fexp(ikyR) exp(—iwt) pg; ) + c.C.,

where E;, isthe real amplitude of the external wave and
k, isthe wavevector of this wave with the modulus k, =
w/c. Expressions (31) and (33) are valid for diatomic
systems the dimensions of which are either smaller
than or comparable with the wavelength of the external
radiation. These expressions can be transformed in the
following manner. Let us separate a negative-frequency
part proportional to exp(—iwt) and take ascalar product
of both parts of these expressions by (€' + i€"). Taking
into account that k, - R = 0, kR — 0 and neglecting
the retarding interaction of atoms, wemay put F =G =
1/R®in Egs. (31) and (33). Eventually, we arrive at the
equations

Eo; = AE,, + Bu;,

Eg = CEy +Bv,,  (34)

No. 6 2001



OPTICAL SIZE RESONANCES IN NANOSTRUCTURES

determining the quantities a;; and ay. For k # J, the
coefficientsin (34) are given by the formulas

A=zeE+e' B, C=€eE —€'&,

B = duB(E)" + (6) T ~31()"+ ()] o

R CORICH]E
|

where dy, is the modulus of the dipole transition
moment of the kth atom.

The field dependence in the eguations of motion
(28) and (30) is determined by the values
2 ] ]
alj = %doj [é(AEm + Buk),
(36)

2 ! 1
Qyj = %dol‘ [E(CEq + Bvy),

which strongly depend on the interatomic distance and
the orientation of dipole moments relative to the polar-
ization vector of the external wave. Expressions (30)
and (34) form a closed system of equations for deter-
mining the field and atomic variables of the diatomic
nanoobject studied. Below, we will obtain some partial
solution to these equations.

3.1. Sationary Solution
Let us consider a stationary solution to Egs. (30) and
(34) for the conditions u; = v; = w; = 0. Equation (34),
with an allowance for (36), leadsto a system of nonlin-

ear algebraic equations. The u; and v; values are given
by the formulas

2 '
Ajay Ty +apTy

1 |2
o= Ailai—BiayTy (37)
j D. 0j»

J
l2 1
D; = 1+ ATy, +(af; +a5) Ty, Ty

Substituting expressions (36) into these relation-
ships, we obtain a closed system of equations for the
unknowns u,, v; and u,, v, which can be solved
numerically for various values of the parameters B and
C determined by the direction of field polarization
inside the nanoobject. Using the u; and v; determined
from these equations, we may find the inversions w,
and w, of the atoms by the formula

212
LA

7 5 Woj-
J
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In the case of a nanoobject comprising atoms 1 and 2
exposed to awesk field such that (a5, + a3, )Ty T <1,
we may use expressions (37) for solving Egs. (12).

3.2. Nonstationary Solution for T;; —» oo, Ty, — o

Let us solve Egs. (28) (subscript j omitted) on
assuming that the light pulse duration isrelatively short

1< T, T, and we may neglect the relaxation pro-

cesses. Moreover, we will aso assume that the values
a, and a, remain constant (time-independent) during
thetimeinterval T.

Let uswrite Egs. (28) in the matrix form:

. .0 . .0
d0¥0 MDUD -
w5 = oV g @
awQ gwQ
where M isthe matrix
| A _a U
A D0 A a2D
M=0A 0 a O (39)
OJ O
Oa,—a, 0 [0

A solution to Eg. (38) is obtained with the aid of the
transformation

0,0 0.0
ouo ..gt
Oy 0= exp(Mt)dv,0, (40)
0’0 0°°0
owQ

where U, V,, and w, aretheinitial valuesof u, v, and w,
respectively.

Using the roots A; of the characteristic equation

IAT = M| =0, we may represent the operator exp(Mt)
in the following form [21]:

exp(Mt) = 3T

ioi#]

~

VA
Nh exp(At).

(41)

Using expressions of the roots of the characteristic
equation,

A =0, A=+ /A +al+a5=+4iQ, (42
we can transform Eq. (41) to
N | ~1 . 5
exp(Mt) =M 5—2(1—00th) + M—dsttH, (43)
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Fig. 1. Nonlinear resonancein anisol ated two-level atom (atom 1): (a) frequency dependencesof u,, v4, and w, for theinitial inver-
sion wg, =—1 (atom in the ground state); (b) the same for wp; = 1 (atom in the excited state). Numerical cal culations were performed

for kg =89000 cm 2, do; = 7 x 10718 CGSE units, Ty = Th; =2.24x 1075, Eg =3.32 x 10 CGSE units, kg = w/c, fo; =1. The

external wave islinearly polarized, with the polarization vector e, being parallel to the vector do; = dg, ; dg; =0.

where according to (39),

E N -a aa, -DNa E
m? = U 2 2 0 (44)
[l alaz _A — al _Aaz D
O , L0
O -Aa; -Aa, -a;—a,

Using Eg. (43), we may study the inversion of the
atom-observer. Substituting matrices (39) and (44) into
(43), we obtain an expression for the inversion of atwo-
level atom in the field of a single rectangular pulse:

1
= 9_2(1 — cosQt)

x [~Day Uy —Ad,v o — (a5 + 85) Wl (45)

+ g—lzsith(azuo—alvo) + Wo.

For a, =0 (i.e., for areal amplitude and polarization
of thefield acting upon the atom), expression (45) coin-
cideswith the formulafor inversion following from the
Rabi solution [22].

A solution to the modified Bloch optica equations (38)
for thetimet > 1 (pulsed radiation switched off) can be
readily obtained by putting a; = a, = 0 in matrices (39)
and (44).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

Let us consider another property of solution (40). If
the light pulse acting upon the two-level atom is not
rectangular, the interval T can be divided into smaller
intervals during which the values E, E, and a,, a, are

constant. Then the solution to Eq. (38) can be presented
in the following form:

Oy,
Du(t)D 0 ool
Oy 0 = expd M(t)dtDD 0. (46)
v~ EJ 0'°g
aow(t) O DWOD

Let us also determine the area of the light pulse in
the modified Bloch equations using the values a, and a,
characterizing the polarization and amplitude of the
radiation pulse. Using theroots (42) with A =0, we may
determine the pulse area as

a(t) = J'A/af(t')+a§(t')dt'.

The mutual influence of atoms in the nanoobject
exposed to intensive pulsed radiation can be deter-
mined using solution (40) for variables u,, v; and u,, v,
determined at various time instants with the aid of
expressions (36).

(47)
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Fig. 2. Nonlinear optical size resonancesin adiatomic nanoobject composed of two identical atoms, for various polarizations of the
external radiation: (a) frequency dependences of uy, v4, and wy of atom 1 for the linear polarization with vector ey, directed along

the object axis; (b) the samefor e, 0 R. Numerical calculations were performed for dy; = dgp = dg =7 10718 CGSE units, Ty, =
le =224 % 10_8 S, E0| =34x 10_3 CGSE Units, f01 = f02 = fo = 1, lel = T'22 =21x 10_145; C= 0, A= 1, WOl = W02 = 1, B= doG (a)

and —(1/2)dyG (b).

4. NONLINEAR OPTICAL SIZE RESONANCES
IN A NANOOBJECT COMPOSED
OF TWO IDENTICAL ATOMS

Let us numerically investigate the stationary solu-
tion (37) for two identical atoms with the intrinsic fre-
guencies wy; = Wy,. For this purpose, we will compare
the spectral properties of the system to the analogous
properties of isolated atomsin the field of intense radi-
ation.

Figure 1 shows the characteristic plots of the quan-
tities u,, v4, and w,, for example, for atom 1 not inter-
acting with atom 2 and excited only by the field of an
external wave. The dipole transition moment of this
atom dy,; is determined using a formula for the oscilla-
tor strength fy,; [23] corresponding to the frequency wy,
or the wavenumber ky, = wy/c = 89000 cm™. The
energy relaxation time T,; isequal to the lifetime of the
excited state of atom 1 and the phase relaxation timeis

T,, = Ty. The field amplitude E, was selected such

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

that the value (2dy,/%)?T,; T, would be comparable
with unity. Asthe field E grows, the maximum uy, v,
and w; values and the resonance width significantly
increase. Depending on the initialy selected value of
inversion wy,;, we may obtain either positive (Fig. 1a) or
negative (Fig. 1b) dispersion.

Figure 2 shows the results of another numerical
experiment, in which the optica properties of a
diatomic nanostructure with the interatomic distance
R =1 nm were studied in the field of intense radiation
with an alowance for the mutual influence of atoms 1
and 2. The behavior of atomsin this object is described
by functions (37) in combination with relationships
(36) depending on the dipole orientation in the radia-
tion field. Let us assumethat the polarization vectors of
the external wave and the internal field inside the
nanoobject coincide, being parallel to the induced
dipole moments of atoms. In this case, according to for-
mulas (35), we have for thelinearly polarized wave A=1,

C =0, and B = dyG (for ey ||R) or B = —d,G/2 (for
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Fig. 3. Nonlinear optical size resonancesin adiatomic nanoobject composed of two identical atoms for various polarizations of the
external radiation and various initial inversions of atoms 1 and 2: (@) polarization ey, || R; (b) polarization ey, OR (for alinearly

polarized wave with e, [|0X). Numerical calculations were performed for f = 1, Ep = 3.4 % 1073 CGSE units, Wo; = -1, wpp = 1.

g, parale tothex axis). Asisseenin Fig. 2, the diatomic
nanoobject composed of identica atoms exhibits two
nonlinear size resonances at k; = 92160 cnm* and k, =

87500 cmr? corresponding to two directions of polar-
ization of the externa wave. g, ||R and e, O R
(instead of a single resonance k,, observed for the iso-
lated atoms).

The properties of nonlinear size resonances differ

from those of the linear size resonances corresponding
to solution (14). These differences are as follows.

1. The positions of nonlinear size resonances
strongly depend on the external field amplitude. Asthe
field amplitude Ey varies from 3.4 to 0.034 CGSE
units, the nonlinear resonance at e, || R shifts from
k; = 90590 cmr to k; = 92160 c? (Fig. 24). An anal-
ogous situation takes place for another size resonance
corresponding to the polarization ey, (R (Fig. 2b).

2. Thewidth of the nonlinear size resonancesis con-
siderably (10° times) greater than the width of thelinear

size resonances and strongly depends on the field
amplitude Ey,.

JOURNAL OF EXPERIMENTAL

3. The width and position of the nonlinear size res-
onance strongly depends on the transition oscillator
strength. For example, a 10-fold decrease in the oscil-
lator strength f, leads to an approximately 10-fold nar-
rowing of the nonlinear resonance and shiftsthe nonlin-
ear resonance maximum to k; = 89160 cnr? instead of

k, = 90590 cmt for fy = 1 and E,, = 3.4 CGSE units.

4. A decreasein the oscillator strength and the exter-
nal field amplitude leadsto adispersion dependence for
u, and v; typica of the isolated resonance (at ky =

89000 cm?) of noninteracting atoms.

5. The dispersion relationships of u,, v, and u,, v,
for atoms 1 and 2 of the nanoobject differ if their initial
inversions are not the same. Figure 3 shows these rela
tionships calculated for particular conditions of the
numerical experiment. Here, the nonlinear size reso-
nances occur near the intrinsic resonance (at ky, =

89000 cm™3).

6. The minima of inversion correspond to the size
resonances occurring on the left and on the right of the
intrinsic resonance at ky; = 89000 cnr?, depending on
the external wave polarization and amplitude.

AND THEORETICAL PHYSICS  Vol. 92
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Fig. 4. Nonlinear optical size resonancesin a diatomic nanoobject composed of two different atoms for two different polarizations
of the external radiation relative to the object axis and a fixed external field amplitude: (a) polarization ey, ||R; (b) polariza-

tion e}, || x. Numerical calculations were performed for fgy = fop = 1, dog = 7.06 x 10718 CGSE units, dg, = 6.95 x 10718 CGSE
units, Tyq = Typ = 224 x 1085, Egy = 3.4 x 107 CGSE units, Ty, = T), =2.1x 1045 C=0,A=1, Wy =Wgp = 1, By = 7.07 X

103 B, = 6.09 x 10° (a); By = -3.54 x 103, B, = -3.47 x 10° (b).

5. NONLINEAR OPTICAL SIZE RESONANCES
IN A NANOOBJECT COMPOSED
OF TWO DIFFERENT ATOMS

Consider a nanoobject to be composed of different
atoms 1 and 2 possessing isolated resonances with the
wavenumbers ky; = 89000 cm and ki, = 92000 crmrt.
In Section 2, we have studied the properties of linear
optical resonances in an analogous diatomic object
exposed to a low-intensity radiation field. Let us con-
sider properties of the same object in a stationary radi-
ation field, taking into account the inversion of atoms
described by solution (37). Figures 4 and 5 present the
results of numerical experiments obtained for various
polarizations of the external field and various initial
inversions.

Asisseen from Fig. 4, the case of g, ||R (when the
linearly polarized external wave has the wavevector
ko OR andthereal vector e, isdirected along the axis

of the diatomic nanoobject with the size R=1 nm) is
characterized by the appearance of two pronounced
maxima of v, and v, for the wavenumbers 87 500 and

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

93000 cnL. For the other polarization (Fig. 4, ey || R),
the maxima of v, and v, are observed at 88500 and
92500 cm .

Thus, exposed to an intense radiation field, a two-
level nanoobject composed of two different atoms
exhibits (as well as in the linear case) four size reso-
nances. The shapes and positions (on the wavelength
scale) of these resonances strongly depend on the exter-
nal field amplitude. The inversions of the two atoms
significantly differ for the same frequencies of the
external field. Asis seen from Fig. 5, the spectral prop-
erties of such a nanoobject significantly depend on the
initial inversions of both atoms.

6. CONCLUSION

Thus, we proved the existence of optical size reso-
nances in atomic nanostructures. The size resonance
frequencies significantly differ from the intrinsic fre-
quencies of isolated atoms. The proof was presented for
diatomic nanoobject representing dimers on a sold sur-
face, with a fixed arrangement relative to the surface
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Fig. 5. Nonlinear optical size resonances in a diatomic nanoobject composed of two different atoms for different initial inversions
of atoms 1 and 2: (a) polarization ey, [|R; (b) polarization ey, ||x. Numerical calculations were performed for the same parameters

asindicated in caption to Fig. 4, except for wg; = -1, wg, = 1.

crystallographic axes and the intrinsic frequencies and
polarizabilities of atoms determined by their interac-
tion with the surface. In this system, it is possible to
study dimers with the aid of an external optical radia-
tion field polarized in various directions. An exampleis
offered by the experiment [4] with arsenic dimerson a
clean GaAs surface. We have aready performed
numerical calculations showing the presence of optical
size resonances in N-atomic nanostructures such as
liner atomic chains and fullerenes.

The linear optical size resonances exhibit a high
selectivity and the resonance width is determined by
the radiation decay time of dipole oscillators. The non-
linear optical size resonances are characterized by a
markedly greater width, which isrelated to aresonance
excitation transfer between two closely spaced atoms.
The nature of optical size resonances is determined by
the electric dipole—dipole interaction of atoms in the
radiation field. We separate the static and dynamic
interaction components for atoms in a nanostructure.
The static component, independent of the radiation
field, leads to a change of the intrinsic atomic frequen-

cies and determines the phase relaxation times T,, and
T,,. The dynamic part of the interatomic interaction

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

depends on the radiation field and significantly modifies
(at small distances) the optical spectrum of the nano-
structure, which no longer contains intrinsic frequen-
cies and displays only the size resonances.

The number of resonances in a nanostructure
depends on the number of atoms and on whether these
atoms are identical or different. A diatomic nanostruc-
ture consisting of identical atoms exhibits two size res-
onances instead of one intrinsic resonance. In the case
of different atomsforming a diatomic nanoobject, there
appear four size resonancesinstead of two intrinsic res-
onances.

The variable field of a nanoobject in the wave zone
is strongly dependent on the frequency of the external
field. When thisfrequency coincideswith that of one of
the size resonances, the field strength in the wave zone
increases by approximately 12 orders of magnitude as
compared to the value in the same nanostructure
observed at the intrinsic resonance frequency.

Various size resonances of a nanoobject can be
excited by changing the polarization of the external
field. This implies that various optical size resonances
can be studied by changing the angle of incidence of an
external wave on the nanoobject. The properties of size
resonances also strongly depend on theinteratomic dis-
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tance in the nanostructure, on the electric field strength
in the external wave, and on the initial conditions.

We believe that the existence of optical size reso-
nances in nanostructures opens wide possibilitiesin the
study of such objects with aid of optical radiation. This
may |ead to the development of unique optical methods
of investigation (e.g., optical holography of nanostruc-
tures) and unique optical devices (e.g., a hanodimen-
siona light polarizer).
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Abstract—The effect of strong terahertz radiation on the current—voltage characteristics in one-dimensional
superlattices is studied using the method of two-time nonequilibrium Green's functions. It is shown that the
broadening of discrete spectrum lines due to elastic scattering plays afundamental role in this problem. A new
phonon-freetype of photon-induced charge transfer in the hopping modeis predicted. Under certain conditions,
the constant components of current and electric field may have opposite directionsin this regime. The phonon-
free current cannot be described in principle in the formalism of the one-time density matrix and reflects the
two-time nature of correlation functions. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The nonlinear dynamics of charged particles in semi-
conducting superlattices (SL) in strong dc and ac electric
fields has been studied intensely both theoretically and
experimentaly [1-23]. Interesting experimental results
[1-5] simulated the application of various theoretica
gpproximations based on the balance equation [6-9] or
tunneling [10-12]. Most theoretical publications [13-20]
are devoted to the solution of the Boltzmann equation
for one-dimensional models in the relaxation-time
approximation. Only a few publications [21-23] deal
with quantum effects in current transport in SLsin the
presence of electromagnetic radiation.

We will consider the current transport along the nor-
mal to the SL layers for alow concentration of charge
carriers (with Boltzmann's statistics). If the Bloch fre-
guency Q.. = eE . d/% (disthe SL period and E,.isadc
electric field) is higher than the reciproca relaxation
time 1/1, it is convenient to use the Stark ladder repre-
sentation. The electron transport is carried out through
inelastic transitions between the levels of this ladder
due to phonon absorption and emission. If an additional
ac component of the dectric field is also present, an addi-
tional channdl for current transport due to the absorption
and emission of photonsisopened. In thiscase, the photon
absorption under certain conditions may be more effective
than photon emission; as aresult, the constant component
of the electric current is directed opposite to the constant
component of thefield [1].

In the presence of a strong magnetic field directed
along the eectric field (and across the SL layers), the
electron spectrum is discrete in the 3D case also dueto
the Wannier—Stark and Landau quantization. In this
case, thelevel broadening dueto elastic scattering plays

a fundamental role. The electron transport cannot be
studied using the perturbation theory in elastic scatter-
ing. The summation of an infinite set of diagrams
required in this case leads to a nonanalytic dependence
of the electron state lifetime on the electron—impurity
interaction constant. For a continual electron spectrum
(e.g., in 3D systems in zero magnetic field) with Stark
localization, the perturbation theory in the electron—
impurity interaction can be used and the analysis can be
confined to the one-time density matrix f(k, t) (k isthe
wavevector) [24]. Inthe presence of an aternating electric
field component with frequency w., the distribution func-
tion is periodic f(k, t) = f(k, t + 2Iw,y), and the time
dependence of current can be analyzed by studying the
Fourier components f,(k, w,.) (misthe number of the
Fourier component). In all previous publications [21—
23], this approach or the Boltzmann equation in the
rel axation-time approximation was used. This method
effectively leads to the Esaki—Tsu theory [25] taking
into account the alternating component of thefield. The
same result was obtained using two-time Green's func-
tions and the Kadanov—Beym approximation [26-28].

In this paper, we will show that such a semiphenom-
enological approach is not satisfactory for systemswith
adiscrete spectrum, for which a consistent inclusion of
the lifetime of electronic states is of fundamental
importance. On the microscopic level, the lifetime is
associated with the introduction of an additional timet_
having the meaning of the duration of an act of scatter-
ing (t_. — 0 in the density matrix approximation). As
a result, we obtain the transport equation for the two-
time Green's function f(k, t, t.), which is the main
object of our investigation. It should be noted that the
application of the Kadanov—-Beym assumption trans-
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forms this equation into akinetic equation of the Boltz-
mann type for the standard one-time density matrix.
The transport equation obtained describes the hopping
as well as the band nature of transport in various limit-
ing cases. Besides, it takes into account the effect of an
electric field on scattering processes and level broaden-
ing dueto scattering. It will be proved that the two-time
nature of the distribution function leads to a steady cur-
rent induced by photons. The analysis will be carried
out using a 1D model. A more realistic case of the dis-
crete spectrum of 3D systemsinamagneticfieldisonly
slightly more complicated technically since it requires
the application of the Wigner representation but basi-
cally does not differ from the model considered here.

In Section 2, Dyson equations for two-time Green’s
functions are considered and the symmetry relationsfor
these functions are presented. The expression for the
density of states (Green's function G*) is derived in
Section 3. In Section 4, the transport equation for the G-
component is analyzed without using the Kadanov—Beym
assumption. The computation of the phonon-free contri-
bution iscarried out in Section 5. The results of numerical
calculations are given in Section 6.

2. BASIC EQUATIONS

We study the nonlinear transport in a narrow-band
SL with an electric field applied only along the z axis,
which isdirected across the layers. The analysiswill be
based on the Keldysh technique devel oped for two-time
Green's functions G*. The Dyson equations for such
Green's functions have the form [28]

[ih%—s(k) ¥ ieE(t)Dk}G*(ku K't)
Dt
= iﬁjdklgdtlzi(ktlkltl)G¢(kltl|kltl)
o (1)
+ J’dtlzi(kt|kltl)Gi(k1t1|k't')

t

: . O
_J-dtlz (ktlkltl)G_(kltl|k't') Ell

Wewill use below the following energy—momentum
relation for the SL:

e(k) = ﬁ_kD+A[1 cos(k.d)], @)

where disthe SL period, m* isthe effective mass, A is
thewidth of aminiband, and k; isthe momentum in the
xy plane of thelayers. Field E(t) isthe sum of aconstant
and a varying (in time) component which are directed
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along thezaxis. The eigenenergies >* are considered in
the Born approximation and will be given below.

In the presence of an electric field, Green's func-
tions G and energies X are nondiagonal in the momen-
tum representation, but obey the trangational symme-
try relations,

G (kt|k't) = G*(k|t, t)d[k' =k —A(t, D], (3)
with the vector potential A(t) defined by the relations

dA(t) _ eE(t) B = A —
rratialit A(t,t) = A(t) —A().
Relation (3) makesit possible to simplify Eq. (1):
[ (k)—aA(t 9 }Gt(k|t, )

Fi El’dtlzi(k It t)G (K + A(ty, t)|t,, 1)
o (4)
+ Idtlz*(k It )G (K + A(ty, 1) [ty, 1)

t

- o2 (KL WG (K + A, D]t )
O

It is convenient to write the second symmetry rela-
tion by introducing a new notation for Green's func-
tions:

G|, t) = GB(—%A(t', ot 1. )

Then condition G(x, X) = -G*(X, X) for the initia
Green'sfunction leadsto

G*(k|t, )0 = —G(k|t', 1), (6)

and relations (4) and (5) lead to the following set of
Dyson's equations for G

1aA(t f)
[a retk—3A(t tH-3 o O S (kI 1)
Dt
= 3 El’dtlz*H( + %A(tl, t)[t, te
)
~ 4 1
x Gk + SALL O]t t
.
+ J’dtlz*% + %A(tl, t)|t, t]g (7
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G+ %A(tl, )|ty 5
t
_Idtlz*B( + %A(tl, t)[t o

~+ 1 04
x G gk + SA(t, Bt t 0

It is more convenient to calculate G~ us ng a
dlightly different form of Dyson's equations, which can
be obtained by summing Eq. (7) with acomplex conju-
gate equation and carrying out the substitution t <— t'
(see Appendix A). For alow electron concentration, we

have G < G, where G* describes the density of
electron states, while G plays the role of a two-time

density matrix (see below). The roles of G ad G
interchange upon atransition from electrons to holes.

The quantity g(k) can be eliminated from the left-
hand side of Eg. (7) using the substitution

G'k|t, 1) = FigiKk|t, 1)
L o)
X expEi—;dere(k —A(, t'|r))5, ®
07 0

where

A ET) = STA® T +A(t, T]. ©)
In accordance with Eq. (6), we have the symmetry rela-
tion

g'(k|t, t) = g(k|t, " (10)

The eigenenergiesin the Born approximation can be
expressed in terms of Green's functions:

Skt t) = )3 Dit -G (k +q|t,t).  (11)
q
Inthe case of elastic scattering at ionized impurities, we

can use the simplest model in which function Dé(t) is
replaced by a constant scattering parameter U deter-
mining the white-noise pair correlator [ 28]. For scatter-
ing at polar optical phonons, we have

am__ My

#,2sinh(f10,/2kgT)

x cosmqg+2k T%
B

Dy(t) =
(12)
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where M, is the matrix element of the electron—phonon
interaction for phonons with the wave vector g. For the
sake of simplicity, we consider the interaction with
ordinary bulk phonons disregarding their renormaliza-
tion dueto the SL potential. Thisisimmaterial sincewe
are studying the phonon-free contribution to current
under the effect of terahertz radiation.

3. CALCULATION OF DENSITY OF STATES
(GREEN’S FUNCTION GY)

It was noted above that in the case of alow charge
carrier concentration, G* > G~ since G is proportional
to the electron concentration. In thislimit, we can omit
the contributions proportional to G- (and ) on the
right-hand side of Eq. (7) for G*, which leadsto thefol-
lowing closed equation for G*:

[6t+ SB(——A(t 5-3 L1OA(L, t)DK}G K[t )

— ' [l
= —|J’dtlz "o+ EA(tl,t)|t, to (13)
.
xé+g<+1A(t 01ty t2
2 1 1 D
Going over to g*, we obtain
0 10A(t, 1) + .
[at 2 ot D} (kit. ©)
t
(14)

= _ ZIdtlD;(tl—t)q:tlt(k, ajt, t)
q t

+ 1 ' + 1
xg B( +q+ EA(tl’ t)|t, t%g B( + EA(tl’ t)|t1, tH

In this equation, the phase factor
o, (k, q|t, t) (15)

ot

= expl1 [dtle(k + - A(t, D) ek ~AC, t D)
O O

has been introduced to describe the effect of the €l ectric
field on scattering.

In the range of quantizing electric fieldsin whichwe
are interested (when QT > 1), it is convenient to go
over to the Fourier representation in k,, which corre-
sponds to a transition from the momentum representa-
tion to the Stark ladder:

gik|t,t) = > gi (kot, t)exp(ilk,d).  (16)

| = —c0
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The convenience of the Stark ladder representation for

QqT > lisdueto the fact that gy > g/ (I # 0) under
such conditions. The latter inequality indicates atransi-
tion to the hopping transport region over the levels of
the Stark ladder; the current in this case is proportional
to the probability of transitions between these levels.

In the subsequent analysis, it is convenient to usethe
time variables

7ot

T t.=t-t, (17)

where time T describes variations of w,. on a macro-
scopic scaleandt_, on amicroscopic scale (of the order
of the interaction time).

Let us now consider the 1D model in which the
dependence on ki is absent. This model was used in
[13-20] for studying thetransport in SLs. In the follow-
ing analysis, we assume that the lifetime of electronic
states is associated only with elastic scattering. The
field dependence of the lifetime can be analyzed using
Eq. (14) both in the hopping and in the band modes. For
QT < 1, itisconvenient to use the momentum repre-
sentation, while for Q.1 > 1, we write Eq. (14) in the
Stark representation (16). For g, > g;, we have

T1o o0
H20T ot

il
+ §|:Qdc + QacCOSB’Jac%r

t

= Ujdtll,(T t, tl)g+Dl' +1 =

- ‘5%} (T )
- (18)

ﬂ

ngBI'

0 -th

where U is the coupling constant for elastic scattering,
Q.. = eE . d/fi for E,(t) = E,.co8(w,t). The kernel of
the integral equation has the form

(T, t_,t) = exp{—l—J'th% T- }

x> exp(-ikd)

zqz

X expy ’[d{sm +q,+ hJ’drE%+T——4%

(19)
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0 e tA10
e
—ek,+ S [dUEA"+ T -
wofporede T
ThisfunctionisperiodicinT;i.e.,
G (T + 21w, t) = gi(T, 1), (20)

which allows usto go over to the Fourier representation

gi(T.t) = > Gim(t-) exp(imay,T). (21)
The Fourier components satisfy the equation
m | .07 .+
[Ewac + éQdc + |W‘—|g|m(t—)
I ac
+2 Q.31<:|:glm 1(t )eXpD 2 H
(22)

+ Qi (1) XS E}

= -U z Idt |m1m2(t—, t,) 90m1(t1)90m2(t t)
m1m2 0
with the kernel
21 W,

ac

w
Imm(tt) = 52 [ Tt
0

(23)

H [ t [l
X expEpwac[mlgr +1 5 ‘%+ mZE’]' + EE_ mT}H
Finally, introducing the quantity
on(t) = Gin(t) ep-Smen, t 5

we obtain the following equatl on for this quantity:

(24)

Ohon(t) _
-U dty e mom(to t
Tt gn,[llz( ) (25)
x exp{iw,[myt; + (M, —m)t_]} hop, (t) hom (t-— 1)
with
Im(t—! tl) =
21 W,

Wy . . (26)
:'z—ﬁ I dTexp(imw, T)I, - o(T, t_, t,).

For narrow minibands (A — 0) in the Laplace repre-
sentation in t_, we can write Eq. (25) in the form

SNom(S) + U Nom,(S)Nom-m (S +1Mywag) = 3 0- (27)

my
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In the transition to the L aplace representation, we con-
fined our analysis to the region t_ > 0. The solution can
be continued to the region t_ < 0 using relation (10). It
can be seen from Eq. (27) that for m# 0, all hy,, = 0. If,
however, m= 0, Eqg. (25) can be presented in compact
form for an arbitrary width of a miniband al so:

[s+ U jdte‘s‘lo(t)gso(t)}gao(s) =1 (28)
0

with akernel

2w,

ac

— Wac 2
lo(t) = >n I dTJ;
0 (29)

N 5, 218N (Quo + Key) /2
k:z—oo kI1’“)ac|:| Qdc+kwac

exp(ikw,.T)

&
where J,(X) are Bessel’'s functions.

Using the integral equation (28), we can find the
dependence of the density of states on the frequency
W, of the ac component of the field and the Bloch fre-
guencies Q4. and Q,.. Thefield dependence of the den-
sity of states calculated numerically using Eq. (28) has
the form of a main peak and a number of auxiliary
peaks displaced relative to it by integral values of Qg
and w,. It ismost significant that the density of states
has no “tails’ in the intervals between the peaks. This
can be demonstrated analytically using Eq. (27) in the
narrow-band limit. In this case, we obtain the well-
known result independent of the field,

JS+4U —s

2U '

[
L,
[]

Joo(9) = (30)

with atypical nonanalytic dependence on the coupling
constant U. A similar result was obtained by us earlier
for zero alternating field [29]. After the inverse transi-
tion to the time representation,

Geo(t) = —=J,(24/01), (31)
Ut

T

we obtain an oscillating time dependence decreasing with
time according to a power law. Such a dow decrease in
timeleadsto sharp peaksin the energy space of thedensity
of states. Analytic continuation s — iwin (30) leads to
the following expression for the density of states:

JaU —o?

(32)

Such a nonanalytic result cannot be reproduced in per-
turbation theory. In [29], we compared it with the result
of the pole approximation leading to an exponentia

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

BRYKSIN, KLEINERT

time dependence gg(t) and, hence, to Lorentzian tails
for the density of states.

4. CALCULATION .
OF GREEN’S FUNCTION G

We will calculate the Green's function G using
Eq. (A.1) from Appendix A. For a nondegenerate elec-
tron gas, we can omit the contribution -G~ on the
right-hand side of Eg. (A.1), which leads to the linear
equation (A.2) for G~. The method for solving this
equation issimilar to that used in Section 3 and will not
be repeated here. In contrast to the calculation of the
density of states, we must take into account theinelastic
scattering responsible for energy dissipation. Below,
we will consider the interaction with polar optical
phonons without taking into account their dispersion
and the coupling constant independent of q. From
Eqg. (A.3) in Appendix A, we obtain

0 . : _
[O_T +ilQq +11Q,.c08(W,T) cos%wact%}g, (T, t)

C O ot
= (dt,fD(t_—t;) At |t —t)goEr — 2t —t -
0 2= 0
0

+ t__tl |:| + _—
X gopT + =5t~ D (t)Bi(t, [t ~t)

_ t . -t
ngBT—El, t_—t%go%r+ — ! t% (33)

_ , ot
+D (t_+t1)B|(t,t|t—tl)goBF—§l, t+ b

+ t+t +
X gofl — =5~ — D (L A(L t]t-t,)

_ tl D+ t_+tl DD
X Gl =50 t+ tegopy — 7 0

which corresponds to Eq. (18) for g, , where

At tL) = zq)tlt(ky .|t t)exp(-ilkd), (34)

kzqz

Z th*lt-(kz, d.|t, t)exp(-ilkd). (35)

k.0,

By(t, tty)

Equation (33) may be used for determining both g, -
and the current density depending on g,.,. Using the
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Fourier representation (21), we obtain the following
equation for gy(t) from Eq. (33):
I dlt1[ F7(t2) Goo(ts) Goolt — t2)
I (36)
—F (t) 9ot Gaolt —t)] = 0,
where
F*(t) = D*(O1(t) (37)
with the field-dependent function I4(t) (29). The linear
integral equation (36) should be solved taking into
account the additional condition gg,(t = 0) = 1.

It is now expedient to go over to the Fourier repre-
sentation in time and to introduce the frequency distri-
bution fy(w):

Goo(®) = Goo(e) f oo(w). (38)

Then we obtain the following equation for fy,(w) from
Eq. (36):

[

Idoo'g;o(oo— )

(39)
x [F () f (@ — 63) = F(w) f ()] = 0
with the additional constraint

I E]T[goo((*)) foo(w) = 1.

Equation (39) is the main result of this research.
Together with Eq. (40), it determines the frequency (w) or
time (t.) dependence of the distribution function, which

reflects the two-time nature of correlator g, (T, t)) . Inthe

case of elagtic scattering, when F*(w) = F(w), we have a
simple solution (fyy(w) = 1); i.e., the two-time nature of
the distribution function is immaterial. The Kadanov—
Beym approximation corresponds to the case when the
trivial solution fyy(w) = Lisvalid for inelastic scattering
also (see[26—28]). Onthe contrary, EqQ. (39) hasno triv-
ial solution for inelastic scattering (i.e., in the presence
of energy dissipation). However, such an approxima-
tion can be used if we disregard the dependence of

g,(T,t) ont.. Inthis case Eq. (33) leads to a standard
kinetic equation for the one-time density matrix [22]. If
this approximation is used, the current can be determined
from the dendty matrix components g,.q(T,t_ = 0).

Such an approximation was proposed long ago by Polya-
novskii [21] and was used by us [22, 23] for analyzing
the cyclotron—Stark—phonon—photon resonance in SLs.
However, the two-time approximation proposed here

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

1077

makes it possible to consider completely new physical
properties associated with the dependence of the distri-
bution function on t_. These properties have no ana
logue when the standard density matrix [22] or Boltz-
mann equation is used [17, 18, 20]. It will be shownin
the next section that the inclusion of the two-time
nature of Green’s functions is not just of academic
interest, but leadsto abasically new contribution to cur-
rent which does not appear when the one-time approx-
imation is used.

5. APPLICATION: PHONON-FREE CURRENT

Here, we will apply the formalism developed above
for describing the photon-induced contribution to cur-
rent. For this purpose, we will use the relation between
the steady-state current and the Green’s function g

P
21 W,

[ dTgl[T,t=0), D
0

_eng 0wy
h A ok, 21

4

where n is the € ectron concentration or, in the Fourier
representation (16) and (21),
| - e
) 2h (42)
X S0 1 m=olt = 0) = G-t m=olt- = O),

wherengisthe 2D eectron density. The quantity g, ,(t_=0)
was calculated in Appendix B. From Eq. (B.8), we
obtain (see also [23])

(<)

I:)ImSm

gEO(t— = O) = Z ||Qd . (43)
C
m=—o
The matrix elements
. Qo 0 1Quc
Sm B Z Jk_mB(DaCDJkaaCDIQdC+ kwac (44)

Kk = —o0
are equal to &, o in the limit of zero aternating field
component (Q,. — 0). Components P, -.; ,, were
obtained by applying the Fourier transformation to the
right-hand side of Eq. (B.1) and taking into account
the two-time nature of the correlation functions. Using the

symmetry of matrix elements P_; ., =

SI m, We can reduce the expression for current to the
form

* —
1,m» S—1,—m -

. enA o
Jz - ZﬁQche Z leslm-

= —0

(45)

In[22, 23], we studied the transport in SLsin the inter-
action with polar optical phonons. These calculations
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can be repeated using the new approximation. However,
it is much more interesting to consider the phonon-free
contribution which emerges only when the two-time
approach is used. In the case of eastic scattering from
impurities, we obtain

21w,

ac

. .
Plosim = 2U—2—"‘T—E J’ dT exp(—imw,T)

00

XIdt1A| - il(t’ tlt _tl)

— tl D + tl |:|
x [go%r 5 _t:ngO%r_Ei tr

g b o.o L0
—gogr > tJDQOE}r 2’t1D]

(46)

Equations (42)—(46) describe the transport to a SL with
an arbitrary width of minibandsin aquantizing electric
field, when Q. > 1. It can be seen from Eq. (46) that
the matrix elements P, -.; ,,= 0 when the Kadanov—

Beym approximation isused and gg(w) = goo(w) . This
means that the phonon-free contribution to current is
equal to zero in the one-time density matrix approxima-
tion.

Let us now carry out the Fourier transformation of
theright-hand side of Eq. (B.1) in T and retain only the

components gyy(w) with m = 0 for a strong terahertz
field:

P-iim= 4iU
p o (47)
x IdtlAl = +1m(tD) IM[ Goo(—t1) Goo(t1)]
0
with the matrix elements
21 W,
Wae .
Al,m(tl) = ﬁ I dTeXp(_I m(’oacT)
J ad]sn[(Qdc + kwac)tllz]
kX koo, Qe + k.
(48)
O
; 1]
x exp[l kwacgl' ZD} E

_tl

XI%texp{ ||k+—J’chos[k+A(T T)]}
0
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In this equation, the following notation should be used:
AT, 1) = QT

+ D Gl T+l -sn(@ T

We will confine our subsequent analysis to the limit of
narrow minibands. Then the first nonvanishing contri-
bution in A from (B.6) has the form
UA
Rele = R

o 2T

X Z I dT cos(mT)Jk%g—: COSTE (50)

k = —c0 0

Sn[(Qq + (M+K)w,/2)t]
Que+ (M+K)w, /2

x [ty IMGioo(~t1) Gooft).
0
This relation can be simplified using the equality

21

dT _ 2|j2ad]
J’—z—]—TJZk% cosTD Ji Cho,
0

In this case, we have

8T[ﬁ 2

X [g(;o((*) + Qdc + kwac) - 980(00— Qdc - kmac)] .

We can now obtain from (45) the expression for current
in the form

(51)

k(Qac/(*)ac)
Qdc + kwac

ReP,, = I 00 o(W)

(52)

_ enUA?
T o

Zé)ad] iQdc"‘ 1/Tac
|:Re z Jk u"“)acDI (Qdc + k‘(’oac) + 1/Tac (53)

Qdc T k(x) E.[ (w)goo(w + Qdc + k(*)ac)

X [ foo(@+ Qqc + Kwye) — foo(w)]

Here, therelaxation time 1. removing the divergence at
resonance points Q. = kw,. has been introduced phenom-
enologically in the same way as in [23]. This attenuation
has a completely different source than the lifetime which
can be expressed in terms of g, (seedso[22], where T,
is described on the level of microscopic theory).

In the limit of narrow minibands (A — 0), the
kinetic equation (39) has an exact analytic solution:

(Qac/wac) dw _+
Z

20 JUIKeT i
foo(W) = ———————exXp5——. 54
A = o e &Y
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Fig. 1. Dimensionless current density j,/jo as afunction of the dc dectric field component for E,. = 10 kV/em, /U oy = 0.01, T=4K
and 1, = 0.5 (a) and 1 ps (b). The optical phonon energy used as the energy scaleisfwy = 35 meV. The solid and dashed curves are
obtained from Eq. (53) for w,/uwyy = 0.1 and 0.2, respectively. The thin vertical line on the left-hand side of the figure marks the

boundary Ey. = 4% /U /ed below which our approximation is inapplicable. The thin solid line shows the current for Q,. = 0. This
current vanishesin fields Ey. > 4% /U /ed. The positions of resonancesin Fig. 1a are also marked by vertical lines.

Such a thermodynamically equilibrium distribution
function is realized if the charge carrier thermalization
time at a level of the Stark ladder is shorter than the
time of hopping between the levels (the latter time
determines the current in the system). If this condition
is violated, the transport becomes of a non-Markovian
type and the distribution function should be determined
numerically from (39) and (40). It should be noted that
inelastic scattering is controlled by the thermalization
of carriersat alevel of the Stark ladder, occurring inthe
intervals between the jumps.

The phonon-free current vanishes if we switch off the
dternating field (Q,. — 0) SiNce goo(W)goe(w + Qye) =0

for 2Qg. > JU (see (32)). This means that in a strong
electric field, when the transport has the form of jumps
over the levels of the Stark ladder, elastic scattering
does not lead to the emergence of current (i.e., no elec-
tron delocalization takes place). In the previous studies
of transport in SLs in the presence of electromagnetic
radiation [1-4, 10, 12, 17, 18, 20, 30-32], thefollowing
formula derived in [33, 34] was used:

jz(Qdca Qac)

[

- Z JZ[padj-(dC)(Qdc-l_kwac)-

Qe (55)
k [h)aclj z

Kk = -0

This formula gives j(Qq., Quc = 0) = j°)(Q,) # 0
which contradicts the result obtained above using two-
time Green’'s functions. It is this fundamental differ-
ence from the available results that indicates that the
contribution to current obtained above and referred to
as phonon-freeisnew in principle.
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The expression (53) for current may be interpreted
in the framework of hopping transport between the lev-
els of the Stark ladder with photon emission and
absorption. The current—voltage characteristic has the
form of aset of sharp peaks having awidth of the order

of 2./U (onthe Q. scale) and separated from oneanother
by ... The presence of an additiona phonon contribution
to current leads to the emergence of a background filling
the deep valleys between the peaks.

6. NUMERICAL RESULTS AND DISCUSSION

We also numerically calculated the photon-induced
current from (53). We confined ourselves to the case
when the thermalization at alevel of the Stark ladder is
quite rapid and the equilibrium distribution (54) can be
applied.

Figure lashowsthe current—voltage characteristic (53)
for w,Juy = 0.1. We use the %y, energy scale (wy, is the
optica phonon frequency), although phonons do not par-
ticipate explicitly in the charge transport, and introduce
the congtant j, = en/A%/167%w, having the dimensions of
current density. It was noted above that the phonon-free
current is absent for Q,. —= 0 as well asin a strong

field E4. > 4% /U /ed. In the region of weak fields E,, <

4%, ,JU led, the transport is of the band type and not of
the hopping type, and the results obtained above are not
valid under these conditions. In Fig. 1a, the region of
such weak fieldsis separated by avertical line. Photon-
induced current peaks are centered at points Q. = kw,,
and marked by vertical segments. The peaks are sepa-
rated by regions of zero current, in which the densities
of theinitial and final states do not overlap during hop-
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Fig. 2. Dimensionless current density j,/jq as a function of

electric field for Eq = 10 kV/em, /U /oy = 0.02, T= 4K,
and w,/wg = 0.1. The solid and dashed curves were plotted
using Eq. (53) for 1, = 1 psand 0, respectively.

ping. It should be noted that photon-induced jumps are
also redlized in the case of localization in disordered
systems and can be described using the balance equa-
tion [35]. The current peak width depends on the life-
time of electrons on the levels of the Stark ladder.

For 1,. — oo, expression (53) for current is simpli-
fied (see Appendix C):

_ menUA%J, (V') Iy (V)
8h°w’,  SINTV
wherev = Q /Wy, V' = Q,Jw,., and

_ — Snh[Aw,(v —k)/2kgT]
Fv) = k;» T(V—K)

x [ deogiafdo— (v = kg dp + 5%V ~ ko).

F(v), (56)

Naturally, this expression diverges when v is equa to
an integer. Thisis demonstrated in Fig. 1b, where 1. is
doubled ascompared to Fig. 1a. Inthiscase, regionsare
formed in which the alternating field induces a direct
current flowing against the dc component of the field.
Such a negative current isinduced as a result of photon
absorption and the motion of carriers up the Stark lad-
der. This clearly distinguishes the phonon-free current
from the phonon contribution for which the current is
always positive since the processes of phonon emission
always have a higher probability as compared to the
absorption processes, and an electron on the average
moves down the ladder.

The effect of the level width of the Stark ladder on

the current—voltage characterigtic is illustrated in Fig. 2.
The current peaks are well resolved when the condition
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8./U Jw,, < 1 is satisfied. The solid curve corresponds to

the same parameters asin Fig. 1b, but the value of J/U is
doubled. Thelevel widthiscloseto 2.8 meV. In this case,
there are no zero-current regions. In the limit of not

very small values of parameter 8./U /w,, the resultsin
general do not differ considerably from those obtained
by the method of one-time density matrix [22, 23]. The
dashed curve in Fig. 2 gives the phonon-free contribution
to current in the case of alarge attenuation (1. = 0). Inthis
limit, the current—voltage characteristic for the phonon-
free contribution is similar to the electron—phonon res-
onance [36].

7. CONCLUSION

In thiswork, the nonlinear transport under the effect
of dc and ac electric fields in systems with a discrete
electron spectrum is studied for one-dimensional SLs.
In such systems, the level broadening of the density of
states due to elastic scattering (e.g., fromionized impu-
rities) playsafundamental role. The Keldysh method is
used to derive the system of Dyson equations for the
density of states and the two-time electron distribution
function. These equations are analyzed in the limit of
strong field (Qq.T > 1), when the Wannier—Stark quan-
tization is significant. It is shown that the density of
states has the form of a set of narrow and sharp peaks.
An analytic solution of the transport equation is obtained
in the limit of narrow minibands of the superlattice. We
did not use the Kadanov—Beym approximation since the
two-time nature of Green's functions playsthe mgjor role.
The effectiveness of the proposed method is demon-
strated for the photon-induced phonon-free hopping
transport between the levels of the Stark ladder. This con-
tribution to current cannot be obtained using the method of
aone-time dengity matrix or through the Kadanov—Beym
approximation, which is employed in most theoretical
publications. An important property of phonon-free cur-
rent isthe possibility of itsflowing oppositeto the dc e ec-
tric field accompanied by the absorption of the eectro-
magnetic energy. We believe that the experimental inves-
tigations of phonon-free current transport will clarify the
nature of two-timetransport for which thefiniteness of the
scattering act duration must be taken into consideration.

Many years ago, phonon-free transport was studied for
the localization in disordered systems on the basis of the
balance equations for the electron dendity at a lattice site
[35]. Therelationsobtained in [35] haveastructuresimilar
to Eqg. (53). The main differenceisthat the degree of local-
ization in systems with a Stark ladder is associated with
the magnitude of eectric field: as the field becomes
smdler, a transition from the hopping to band transport
takes place. The proposed method alows in principle to
describe both these modes and a transition from one
mode to the other in the region QT = 1.
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APPENDIX A
Kinetic Equation for G-

In this Appendix, we present the intermediate results
which were used in deriving the kinetic equation for

g (t, 1) . We sum system of equations (7) and the com-
plex-conjugate system, where the substitution t <« t'
is made:

[%+%+ I%%%—%A(t', t)%—s%—%A(t, t')%

+ 100
o0t

aDA(t 60, }G (K|t, t)
I:lt

= 1 g[dtl[f% 4 %A(tl, t)[t, tJ
)

~t 1 0
xG Hk + SA, Bt t

5k %‘A(tl, [t t2G Tk + %A(tl, O, t%} (A1)
.

+ Idtl[ii% + %A(tl, t)[t, tG Hk + %A(tl, )|ty 5
~STHe+ %A(tl, [ty t5G" Fk + %A(tl, t)t, t%}
:

-f dtl[f e + %A(tl, Ot 136 + %A(tl, )]ty t2

~+ 1 A7 1 . o1
-2l SA O]t 67K+ SA M D, t]D} o

Using Eq. (8), we can now go over from G* to g*. Tak-
ing into account only the main contribution for a non-
degenerate electron gas, we obtain from Eqg. (A.1)

L1

20 - aDA(t t)Dk]g(ku )

[+
ot ot

.
- Z%Idtl[Da(tl—t)thlt(k, qlt,t)
q —00

1 , + 1
x gk +Q+ SA(t, )|t tag T+ A, Bt tH
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—Dg(t —t) (K, qlt, t)

. 1
xg H o+ g+ 3A O]t 15 "

xg T+ :—ZLA(tl, o[, t%}

t

- oty Dy(t:~ )@ (k. . 1)

. 1, . g .1
x gtk +q+ A, )]t g K+ SA® D]t g

- D;(tl _tl)q)':t(kl q |t1 tl)

i 1 N T 0
x g H o+ A+ A% O]t tHg K+ SAG Dt t%}g

where the quantity @, , is defined by relation (15). In

the special case of a one-dimensiona system, using
Eg. (16), we obtain

0,0 . [Pac [Wac
[E+W+||Qdccos (t+t)%005 > (1= t)%}

Gt t) = [du[D(t-OA Ut gt t) Go(ty, 1)
—D'(t' —t)B(t, t|t)golty, )Gt t1)] (A3

-~ j dt, [ D" (t, — ) At t't) go(t, t1) dolts, t)

—D7(t'—ty) By(t, t'|t) dolty, 1) Go(t, t) ] = P,(L, 1),

where the quantities A(t, t'|t;) and By(t, t'[t;) are defined
by relations (34) and (35).

APPENDIX B
Solution of Kinetic Equation
In this Appendix, we solve analytically the kinetic

equation for Green's function g, (T, 0) . Introducing the
new variables T and t_ in accordance with relations (17),
we obtain from Eq. (A.3)

[O% + i%}gf(ﬁ 0)
Idtﬂa‘(—tl)A.(t t-t)gd 2 HeF -2t
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+ + t — t
~D(t)Bi(t, tt—t) G5 T 5, gy — 3. ~tg

O o 2
(B.1)
_ _ t t
+D () By(t, t|t —tl)gogr 2 tngO%r 51’ —t%

+ + t
~D )AL tit=t)gogl — 5. ~tg

_ t 0
X Gorl =5t C=P(M),

where the right-hand side of the equation is denoted by
P,(T). The quantity A(T) is defined by the equation

dAM _ = 1Qy. +1Q,.c08(w,.T) (B.2)
TdT
and satisfies the relation
AL+ 2T = A(T) + 2 e (B.3)
ID W D | W .

ac ac

Thelinear differentia equation (B.1) can be solved easily,

91 (T, 0) = exp[-A(T)]

T (B.4)
x FC + de'Pl(T')exp[iA.(T')]E,
O O

and constant C is defined by the periodicity condition,

Q
C = [1 expD—Zml d‘ﬂ}
aC

0 (B.5)
I dT'P(T")exp[iA(T].
=210 W,

Integrating with respect to T in (B.4) and (B.5) using
therelation

expBI sn(wacT)E
(B.6)
z JKH exp(lkwaCT)
k= —o
and carrying out the Fourier transformation
P(T) = z Pimexp(imw,.T), (B.7)

m= —oco
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we obtain the final result that we employed in Section 5:

0= 5 P 5 33aah

m=—c k, k' = —o0
exp[i(m+k—K)w,.T]
IQdc + (k + m)wac

(B.8)

APPENDIX C
Alternative Expression for Current
In this Appendix, we present aform of current den-

sity other than (53) for /U /o, < 1 and w, T, —> ©o.
In this case, expression (53) can be written in the form

uA?
j: = =2 A8, (C.1)
where
_ 1 <
T Wy 2
(C2)
= m} Ju(v) I (V).
ac

The other (field-dependent) factor in Eg. (C.1) has the
form

—o (C3)
00(@ + (K + V) — foo(w)].
Since the level width for the dendity of dtates is of the

order of ,/U andislarger than ., theindex k of Bessdl's
functions can be replaced by —v. Asaresult, we obtain

- 0—31— z kkivv) gﬁggo(m)goo(m+ wye(k+V))
x[f

B= J(V')F(v)/w,,, (C.4)
_ 1 d(A) +
F(v) = = kJ’ anoo(w)goo(w + (K +V))
k = o
X[ foo(0+ (K +V)) = foo(w)]
(C5)

snh[ﬁmac(v k)/2k T]

:i IZT[

Qo] 00— 25V =19 || 0+ (v ~) | Fo(0):

Relations (C.2), (C.4), and (C.5) lead to an expression for
current in form (56) if we use reation (54) for foy(w).
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Abstract—The temperature dependences p4,(T) of Nd,_,Ce,CuO, . 5 single crystals with 0 < x < 0.20 are
studied and analyzed on the basis of the concepts in the theory of disordered 2D systems. The results are com-
pared with the data obtained for other copper-oxide HTSC. It is found that a transition to the superconducting
state in the optimal doping region 0.14 < x < 0.18 occurs only in crystals with afairly small degree of dis-
order (kel = 2, wherel isthe mean free path). Thistransition is compatible with the weak 2D-localization mode
as long as the localization radius is longer than the characteristic size of a Cooper pair. The superconducting
transition temperature in the optimal doping region increases monotonically with the parameter kgl character-
izing the degree of disorder in the crystal. The degradation of superconducting properties upon a further
increase in the doping level (x > 0.18) is apparently associated with atransition from 2D to 3D conductivity in
the single crystal. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Itiswell known that superconductivity emergesina
wide range of copper-oxide HTSC compounds as a
result of doping the initial dielectric matrix with nonis-
ovalent impurities. By way of asimple example, we can
mention the doping of the dielectric system La,CuO,
with strontium (which leads to the emergence of holes
[1]) or of the dielectric Nd,CuO, with cerium, leading
to the emergence of electrons [2] in CuO, planes. A
comparative analysis of phase diagrams T.(x) for the
superconducting transition temperature as a function of
the dopant concentration for these two systemsis given
in the review by Dagotto [3].

As aresult of the substitution of Sr?* for La®* (Ce**
for Nd®*) and the migration of extraholes (electrons) to
CuO, planes, the buffer layer between these planes
acquires apotential of charged impurity centersdistrib-
uted randomly in the lattice. The disorder generated by
this random impurity potential hinders the free motion
of carriers and may lead to their localization. Conse-
quently, the insulator—superconductor transition is
closely related to the insulator—metal transition [4].
Thisisanalogousto the doping of semiconductorswith
acceptors or donors, the essential difference being that
HTSC materials display clearly manifested 2D proper-
ties of charge carriers in macroscopic 3D crystals. For
thisreason, it isnatural to usetheideas developedinthe
physics of disordered 2D systems [5] for studying
transport phenomena in these materials. An analysis of

the effect of disorder introduced in the course of doping
on the transport properties of HTSC (the magnitude
and temperature dependence of resistivity, the presence
or absence of superconductivity, and the superconduct-
ing transition temperature) has been carried out by
many authors.

For example, Beschoten et al. [6] investigated the
emergence of the superconducting transition upon an
increase in the doping level of calcium in the insulator
Bi,Sr,PrCu,QOg. The substitution of Ca?* for Pr3* gener-
ates holes and leads to the insulator—superconductor
trangition in Bi,Sry(Pr, _,Ca)Cu,Og for z = z, = 0.52.
The authors of [6] considered the closeness of thistran-
sition to the insulator—-metal transition and found that
superconductivity in this case coexists with the spatial
localization of charge carriersfor z> z.

Mandrus et al. [7] studied the degradation of super-
conductivity inthe Bi,Sr,(Ca, _,Y,)Cu,Og System upon
an increase in yttrium concentration. The authors ana-
lyzed the temperature dependence of resistivity in the
ab planefor 0.2 < x < 0.8 and attributed the disappear-
ance of the superconducting transition for x, = 0.45
directly to the metal-insulator transition due to a
decrease in the concentration of holes and their local-
ization in the fluctuations of the random potential cre-
ated as a result of substitution of trivalent yttrium for
bivalent calcium.

Schlenga et al. [8] studied in detail the resistance
and magnetoresistance for a series of monocrystalline

1063-7761/01/9206-1084%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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La,_,Ba,CuQ,_; samples with the barium concentra-
tionx=(0.05+ 0.01)—(0.075+ 0.01) intheregion of the
insulator—metal transition induced by the substitution
of B&* for La*. Analyzing the temperature depen-
dence p,,(T), the authors observed a gradual transition
from strong to weak localization (and superconductiv-
ity) upon an increase in x. The absence of a sharp con-
centration boundary for the insulator—-metal transition
was attributed to the 2D-type conductivity in the sys-
tem.

The dependence of resistivity pg, in the normal
phase (for fixed temperature T = 40 K) on the strontium
concentration for a series of La,_,Sr,CuO, samples
withx < 0.15 presented by Karpinskaet al. [9] led to the
conclusion that an insulator—metal transition occursfor
x = 0.05. For sampleswith Sr concentration in the imme-
diate vicinity of thistrangtion (x = 0.048 and x = 0.051),
the temperature dependence of resistivity p,, was mea-
sured in magnetic fieldsup to 8.5 T at low and ultralow
temperatures down to 30 mK. It was found that the nor-
mal state of these samples after the destruction of
superconductivity by a magnetic field is insulating
(p — oo for T— 0); i.e., the magnetic field-induced
superconductor—insulator transition takes place.

Fukuzumi et al. [10] thoroughly investigated the
process of replacement of copper in the CuO, plane by
another element (zinc in the present case). Asan isova-
lent impurity, zinc does not change the initial concen-
tration of carriers but, being a strong scatterer with a
short-range potential, causes a disorder in the system
dueto adifferenceinion cores. Thetemperature depen-
dence of the resistivity was measured in the ab plane
for La,_,Sr,Cu; _,Zn,0O, single crystals with 0.1 < x <
0.3 and for YBay(Cu, _,Zn,);0;_, single crystals with
an oxygen concentration varying from 6.63 to 6.93
0.06 <y < 0.37) for various concentrations of Zn (z <
0.04). It was shown that the introduction of even afew
percent of Zn increases the residual resistance sharply,
decreases T, and leads to a superconductor—insulator
transition. The lower the hole concentration in the
matrix (Sr concentration in the Lasystem or the oxygen
concentration intheY system), the easier the supercon-
ductivity degradation; i.e., the superconductor—insula-
tor transition requires alower concentration of Zn.

In the present work, we study the effect of doping as
well as various anneding conditions (oxygen concentra
tion) on the transport properties of Nd, _,Ce CuQ,, 5 Sin-
gle crydals, separating (whenever possible) these two
ways of introducing disorder in the system. A transition
from the didectric to the superconducting state upon a
change in the annealing conditions in Nd,_,Ce,CuQ,, 5
was aso studied earlier [11-14], but no systematic studies
were carried out (to our knowledge) for Nd, _,Ce CuQ,, 5
single crystas in a wide range of cerium concentration
under optimal annealing (6 — 0).
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Fig. 1. Temperature dependences of resistivity pgy, oOf
Nd, _,CeCuQy, , 5 samples with various Ce concentra-
tions.

2. EXPERIMENTAL RESULTS AND DISCUSSION
2.1. Doping with Cerium

We measured the resistivity pg, in the CuO, planes
for optimally annealed monocrystalline films of
Nd, _,Ce,Cu0Q, ., 5 with 0.12 < x < 0.20. The technique
of growth, the conditions of annealing, and other char-
acteristics of these samples are described in [15, 16].
The samples having the highest value of T for a given
x are regarded as optimally annealed. The temperature
dependences p,,(T) in the temperature range T = 1.4—
300 K are presented in Fig. 1. The figure shows for
comparison the results obtained for an undoped bulk
single crystal of Nd,CuO, at T = 116-300 K.

Figure 2a shows the dependence of resistivity on the
Ce concentration for our series of the samples. Besides,
the available data for the best single crystals of
Nd,_,Ce,CuQ, , 5 withx = 0.14 [14] and 0.16 [12] are
also presented. The values of p,,(T) are taken for T =
T, for superconducting samplesand at T = 4.2 K for
nonsuperconducting ones. In the same form, Fig. 2a
presents the results obtained by Fournier et al. [17] for
epitaxial monocrystalline Pr,_,Ce,CuO, films with
0.13 < x < 0.20 (dashed curve).

Figure 2b presents the phase diagram T.(x) for the
same samples as in Fig. 2a. Besides, the results
obtained in [18] are presented, which are the same for
Nd- and Pr-containing systemswith x = 0.15: T,=24 K
(Ppr=8%x10°Q cmat T=50K). The T(x) dependence
for the Nd system is in accord with the phase diagram
available for the best polycrystalline samples of
Nd,_,Ce,CuO,. 5 [2, 3]. Note that not only are the
dependences p,,(X) and T,(x) in the Nd and Pr systems
similar qualitatively, but the numerical values of these
guantities are also close in sampleswith close stoichio-
metric compositions in oxygen (& — 0). Slightly
lower values of p,, for x < 0.18, as well as systemati-
cally higher values of T, for the Pr system, are probably
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Fig. 2. Dependences of (a) resistivity p, and (b) superconducting transition temperature T, on the cerium concentration x: our

results (light circles), theresults obtained in [12] (light squares) and [14] (light triangles) for the Nd system; dark rhombi correspond
to the results obtained in [17] for a Pr system, while the asterisk corresponds to the results from [18] for Nd- and Pr systems.

due to a better quality of epitaxialy grown films of
Pr, _,Ce,CuO,.

The following three segments can be singled out on
the p(X) curve for Nd,_,Ce CuQ, (Fig. 2a): a sharp
decrease in the resistivity of samples with alower (x <
0.12-0.14) doping level (p,, = 26.5 Q cm for Nd,CuO,
at T=116 K, which is more than four orders of magni-
tude larger than the value of p,, for x=0.12); acompar-
atively weak dependence p,,(X) for sasmpleswith 0.14 <
X < 0.18, and a noticeably sharper (as compared to 1/x)
decrease in the value of pg, in the region with a higher
doping level (x> 0.18). A decreasein theresistivity by
severa orders of magnitude upon an increase in the Ce
concentration from x = 0 to x = 0.12-0.14 is undoubt-
edly associated with the transition from the strong
exponential localization mode to the weak logarithmic
localization mode for charge carriers in cuprate planes
(insulator—metal transition in a disordered 2D system).
This is confirmed by the temperature dependence of
resistivity. For x = 0, we have py, [ exp(—EA/KT) with
E,= 60 meV [19]. On the other hand, the effects of
weak 2D localization (logarithmic increasein p,, upon
a decrease in temperature and a negative magnetoresis-
tance) are clearly manifested in the sample with x =
0.12[16].

Indeed, it was mentioned above that the substitution
of Ce* for Nd®* leads, on the one hand, to the emer-
gence of eectronsin the CuO, plane, and on the other
hand, to a disorder generated by the random distribu-
tion of Ceions. Asin the case of semiconductors, local-
ization or delocalization of charge carriers is deter-
mined by the ratio of the kinetic energy (Fermi energy
€r) and the potential energy of interaction of electrons
with impurities (random potential amplitude y) [20].
For 2D systems, € O n,, where n, is the 2D electron
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concentration, and the amplitudey of impurity potential
fluctuations is proportional to N, where N;= ng is the
surface density of impurities[21]. Obviously, y > ¢, for
low electron concentrations, which corresponds to an
insulator (strong localization). For high concentrations,
€ > Y, the quasi-metallic mode for the mean free path
isrealized with quantum interference corrections due to
the weak localization effects. The condition € > y cor-
responds to the “flooding” by electrons of the potential
relief at the bottom of the band, where conduction is
observed (the two-dimensional pdo band formed by the
electron states in the CuO, plane [22)).

An Anderson-type insulator—"metal” transition
takes place in the region y = €. The parameter charac-
terizing the extent of disorder may be the 2D conduc-
tivity o, in dimensionless units: g = ho,p/€%. A transi-
tion from strong localization to metal-type conduction
with weak localization effects in a 2D system corre-
sponds to the condition g = 1. In the “metallic” region
(g>1), we have[5]

2

e
Ozp = 'ﬁkFI’ (1)

where k- = (2rm)Y2 is the Fermi quasimomentum and |
is the mean free path.

The p,,(T) curve for asample with x = 0.12 (which
does not undergo a superconducting transition) clearly
displays segmentstypical of metal-type conduction and
corresponding to a semiconductor with the minimum
valueof py,=8x10%Qcmat T= 150K (Fig. 1). The
estimate

Oy = pa_ic (2
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of the partial conductivity in aCuO, layer, wherec =6 A
is the separation between cuprate planes, shows that
thisvalue of resistivity correspondsto kel = 2. In actual
practice, a superconducting transition is observed only
in samples with a high metal-type conductivity g =
kel > 1 (10< kel < 25) for sampleswith 0.14 < x< 0.18.
The data for stoichiometric Nd systems with a Ce con-
centration between x = 0.12 (kel = 2) and x=0.14 (kel =
10) are not available in the literature. In a Pr system
whose crystal structure and physical properties are
close to those of a Nd system, a clearly manifested
superconducting transition with T, = 8 K isobserved in
asamplewith x = 0.13 (k:l = 3.4) [17] (see Figs. 2aand
2b). Thus, we can assume that doping the stoichiomet-
ric samples of Nd or Pr systems with cerium leads to a
transition from an Anderson-type insulator to a super-
conductor for kel > (2-3).

A noticeable decrease (to about one-sixth) in the
value of p,, upon a dight variation of x from 0.18 to
0.20 (see Fig. 24d) is accompanied by a decrease in T,
which is apparently associated with the second metalli-
zation stage [4], i.e., the activation of charge transfer
between CuO, layersand atransition from the 2D to 3D
conduction. This is how Eliashberg interpreted in his
review [4] the experimental results obtained by
Sreedhar and Ganguly [1] onthe“anomalous’ degrada-
tion of the superconductivity for ahigh hole concentra-
tion (x > 0.3) in the La, _,Sr,CuO, system: the disap-
pearance of the superconducting transition is accompa-
nied by a decrease in resistivity p,, to afraction of its
initial value. The transition from a 2D- to 3D-type of
conduction in the La system for x = 0.3 [23] and in the
Nd system for x = 0.18 [19] is manifested in the change
in the temperature dependence of resitivity along thec
axis from insulator- to metal-type and in a strong
decrease in the anisotropy p./Pay

2.2. The Role of Nonstoichiometry

We aso anayzed the p,(T) dependence in the
Nd, _,Ce CuO,, 5 System for various concentrations o
of oxygen (different annealing conditions) for afixed x.
Figure 3 presents our results obtained for x = 0.18: in
the absence of annealing, for an intermediate annealing
mode (T, = 4 K), and for optimal annealing in vacuum
for 40 min at 800°C (T, = 6 K).

It is well known that Nd,_,Ce,CuQ,, ;s samples
which are not subjected to annealing are not supercon-
ducting even at a close-to-optimal doping level (0.14 <
X < 0.18). The formation of a phase with zero resistivity
requires annealing the samples in nitrogen [11], argon
[11, 12, 14], or in vacuum [13] for lowering the oxygen
concentration. According to modern concepts [11, 13],
the main role of annealing lies in the removal of
“excess’ nonstoichiometric oxygen (6 — 0). Excess
oxygen, occupying the apex oxygen sites, which are
vacant in optimally annealed Nd,_,Ce,CuQ,, 5, cre-
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intermediate annealing (T, = 4 K), kgl =2.5; (3) at optimum
annealing (T, = 6 K), kel = 25.

ates a random impurity potential which localizes elec-
trons supplied by cerium. As excess oxygen atoms are
removed during annealing, the disorder in the system
decreases and the mean free path increases. The
decrease in the extent of disorder must lead to atransi-
tion from the strong localization mode to a mode of
weak localization of charge carriers in cuprate planes
for kel = 1.

According to Sadovskii [24], superconductivity is
observed in disordered systems when the carrier local-
ization radius R, exceeds the size & of a Cooper pair.
For small mean free paths, inthe so-called “ dirty” limit,
when | < &, (&, isthe coherence length in the pure sub-
stance), we have & = (€.l )¥2. For the carrier localization
radius in 2D systems under weak localization condi-
tions (k| > 1), the following estimate is valid [5]:

Rioe = | exp EGke . ®

Aswe go over to the weak localization regime, the cor-
relation length & increases with | according to a power
law, while the localization radius increases exponen-
tially. For this reason, the condition R, > ¢ may be
attained even for kel of the order of several units.

Indeed, a Nd, 3,Ce,15CUO,, 5 single crystal is
superconducting even for kel = 2.5 (see Fig. 3). In
Nd,_,Ce,Cu0O, , 5 samples with x = 0.15 [14] and 0.18
[12], in which the oxygen concentration decreases as a
result of annealing, a superconducting transition was
also observed only for kel > 2. For example, Tanda
et al. [12] presented the p,,(T) dependences for eight
samples with x = 0.18 at various stages of annealing
from samplesin theinsulator phase to superconducting
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samples: 0.1 < g < 3.5. They noted that at the boundary
of the disorder-induced transition from the supercon-
ductor to theinsulator, the resistivity of the sample cor-
responds to kel = 3 (Ryp = pap/C = 8.5kQ).

Thus, a change in the disorder in the
Nd, _,Ce,CuO, . 5 system both due to doping (variation
of xfor &= const), aswell asdueto annealing (variation
of & for x = congt), leads to the emergence of a super-
conducting trangition only in crystals with a high conduc-
tivity. In al the publications mentioned above [6-10, 12,
14], it was established experimentally that the maxi-
mum surface resistance R,y in the normal phase, from
which a transition to the superconducting phase is still

possible, is close to the universal theoretica value RS, =

h/(2e)? (o5, = 4€?/h). This quantity correspondsto the
conductivity quantum of a Cooper pair with acharge 2e
and emerges in the Bose scenario of the transition from
a superconductor to an insulator upon an increase in
disorder [25]. Tanda et al. [12] consider this fact as a
serious argument in favor of precisely the Bose sce-
nario of the superconducting transition. However, the
conductivity of a Fermi gas above the boundary of the
insulator—metal transition (kel = 1) attains approxi-
mately the same value. Besides, the temperature and
magnetic-field dependences of resitivity p,, in the nor-
mal phase clearly display the features typical of the
weak localization effects for Fermi particlesin adisor-
dered system. Weak localization defects will be dis-
cussed in greater detail below.

2.3. Effects of Weak 2D Localization

The suppression of superconductivity by amagnetic
field allows us to analyze the properties of the normal
state of a superconductor below the superconducting
trangition temperature (T < T.). Experiments on the
Nd, 5,Ce,15CUQ, . 5 single crystal with T, = 6 K (sam-
ple3inFig. 3) inamagnetic field (up to 12 T) perpen-
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dicular to CuO, planes reveadled alogarithmic increase
inresistivity p,, upon cooling (0.2 K £ T<5K) aswell
as a clearly manifested negative magnetoresistance in
fieldsB> B, (B, =3-4T) [16]. These factswereinter-
preted by us as manifestations of the effects of weak 2D
localization for the metal-type conduction (k:l = 25)
along cuprate planes.

In the present work, we analyzed the magnetoresis-
tance of a Nd; gCey15Cu0, . 5 sample with a lower
valueof T,=4K (sample2in Fig. 3) and abroad (AT =
10 K) superconducting transition, which is apparently
associated with a larger disorder in the system (kql =
2.5). We measured resistivity p,, in amagnetic field up
to 5T perpendicular (B [] ab) and parallel (B ||ab) to a
CuO, planein the temperaturerange 1.4 K < T< 30 K.
Owing to a high extent of disorder, the logarithmic
increasein p,, is observed upon adecrease in tempera-
ture even in zero magnetic field. As aresult, the p,(T)
dependence for B = 0 has the shape of a curve with a
peak at T= 14 K (Figs. 4aand 4b).

It can be seen from Fig. 4a that the magnetic field
paralel to CuO, planes gradually suppresses supercon-
ductivity and virtually does not affect the resistance in
the normal phaseat T = 14 K. Figure 4b demonstrates,
on the one hand, a more rapid degradation of supercon-
ductivity by the transverse magnetic field, which is
associated with anisotropy of the upper critical field in
layered cuprate superconductors [26]. On the other
hand, for B [ ab, astronger effect of the magnetic field
on the segment describing the decrease in p,, upon
cooling in the normal phase is observed: as the value of
B increases, the segment is displaced towards lower
temperatures. Such a behavior is attributed to the sup-
pression of the gquantum correction to conductivity
associated with weak localization [16].

It can be seen from Fig. 4b that the transverse mag-
netic field B = 2 T suppresses the weak localization
effect almost completely, while the longitudinal field
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virtually does not influence this effect upto B=5T.
Such an anisotropy of magnetoresistance istypical just
of 2D systems[27].

3. CONCLUSION

An analysis of the publications devoted to the study
of eectrical conductivity of copper-oxide HTSC and
our results obtained for Nd,_,Ce,CuQ, , 5 single crys-
tals leads to the following conclusions concerning the
effect of disorder on the transport in these systems. In
layered HTSC crystals, spatial separation of charge car-
riers and charged impurities takes place: electrons (in
Nd systems) or holes (in La systems) do not remain in
the bound state at Ce** or Sr?* ions, but go over to CuO,
planes. Charge carriers in a “perfect” crystal are delo-
calized in the ab plane and localized in the c direction.
The situation is similar to that observed in semicon-
ducting superlattices or multilayer heterostructures
with selective doping in barriers; i.e., an HTSC crystals
may be regarded as a system of multiple quantum wells
(CuO, layers) separated by doped layers of Nd or La
oxides [28].

For alow concentration of charge carriers, the ran-
dom potential of ionized impurities or nonstoi chiomet-
ric defects leads to their strong localization and to the
temperature dependence of conductivity typical of
insulators. Upon an increase in the charge carrier con-
centration of charge carriers and the Fermi energy, a
transition to the weak localization mode occurs in the
vicinity of the universal value o, = €%/h of 2D conduc-
tivity of a CuO, layer (keI = 1). In the range of weak
localization, a superconducting transition may occur
when the localization radius exceeds the characteristic
size of a Cooper pair. This condition is usualy
observed even for small values of parameter kel = 2-3.
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Abstract—The de Haas—van Alphen effect in quasi-two-dimensional metalsis studied at arbitrary parameters.
Oscillations of the chemical potential can substantially change the temperature dependence of harmonic ampli-
tudes that is commonly used to determine the effective electron mass. The processing of the experimental data
using the standard Lifshitz—Kosevich formula can therefore lead to substantial errors even in the strong har-
monic damping limit. This can explain the difference between the effective electron masses determined from
the de Haas—van Alphen effect and the cyclotron resonance measurements. The oscillations of the chemical
potential and the deviations from the Lifshitz—Kosevich formula depend on the reservoir density of states that
existsin organic metals due to open sheets of the Fermi surface. This dependence can be used to determine the
density of electron states on open sheets of the Fermi surface. We present analytical results of the calculations
of harmonic amplitudes in some limiting cases that show the importance of the chemical potential oscillations.
We also describe a simple agorithm for a numerical calculation of the harmonic amplitudes for arbitrary res-
ervoir density of states, arbitrary warping, spin-splitting, temperature, and Dingle temperature. © 2001 MAIK

“ Nauka/lInterperiodica” .

The guantum magnetization oscillations (or the de
Haas-van Alphen (dHVA) effect) were discovered long
ago [1] and have been widely used as apowerful tool in
studying the Fermi surfaces and single el ectron proper-
ties in metals [2]. In a 3D metal, a good quantitative
description of this effect is given by the Lifshitz—
Kosevich (LK) formula [3]. In two- or quasi-two-
dimensional compounds, deviations from the LK for-
mula are possible for three reasons. the harmonic
damping inthe 2D caseisdifferent, theimpurity scattering
cannot be described by the usua Dingle law, and the
chemical potential aso becomesan oscillating function of
the magnetic field. The first problem is important only
when the harmonic damping is weak and can be easly
solved using the 2D harmonic expansion [2]. The second
problem concerns the accurate calculation of the density
of states (DOS) with electron—dlectron interactions and
theimpurity scattering. The electron—€lectron interactions
are not very important if many Landau levels (LLs) are
occupied (we consider the case where the Fermi energy
€r iIsmuch greater than the LL separation and the tem-
perature). In the 3D case, the impurity scattering adds
animaginary part il"(B) to the electron spectrum, which
means that the electron can leave its quantum state with
the probability w = I'(B)/1th per second. Assuming this
energy level width I'(B) to be independent of the mag-

T This article was submitted by the author in English.

netic field B, one obtains the Dingle law of harmonic
damping [4]

A O exp(—2milr/hw,),

where A isthe amplitude of the harmonic number | and
w, = eB/m*c is the cyclotron frequency. This Dingle
law has been proved by many experiments on 3D met-
as. In the 2D case, this law may be incorrect and the
problem of the DOS distribution in 2D metals has not
been solved yet, although many theoretical works have
been devoted to this subject (for example, [5-7]). The
problem is complicated because even the exact calcula-
tion of the pointlike impurity scattering is not sufficient
because the long-range impurities (and probably, the elec-
tron—electron interactions) are also important in the 2D
case[8]. The procedure of extracting the DOS distribution
from the dHvVA measurements was recently proposed in
[9]. Inthe present paper, we focus on the third question:
we assume the Dingle law to be valid and consider the
influence of the chemical potential oscillations on the
harmonic amplitudes of the dHVA oscillations in this
approximation. Because we consider the quasi-2D
case, the Dingle law is not a bad approximation. We
show that the chemical potential oscillations substan-
tially change the temperature and the Dingle tempera-
ture dependence of the harmonic amplitudeseveninthe
limit of astrong harmonic damping. Therefore, the esti-
mate of the effective electron mass based on the LK for-
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mulacan lead to an error of up to 30%. Thiscan explain
the difference between the effective electron masses
obtained from the dHVA effect and from the cyclotron
resonance measurements (for example, in [10] and
[11]). This problem was examined numerically by Har-
rison et al. [12] at zero warping W of the Fermi surface
(FS). Inthis paper, we derive explicit formulas describing
the quantum magnetization oscillations at  arbitrary
parameters. We study the result analytically in some limit-
ing cases. This shows the importance of the chemica
potential oscillation effect on harmonic amplitudes.

The energy spectrum of the quasi-two-dimensional
electron gasis given by

oy, o = 0 f+ 33+ Dlcos(k,d) + op.B, (1)

where W is the warping of a quasi-cylindrical FS. The
DOS distribution with the impurity scattering can be
written as

p(E! B) = pO(Ei B) + 6(E1 B)!
wherefor E > fiwy, the oscillating part of the DOSis[13]

. 40 <
P(E.B) = 2
- )
W He 0 2mr
X JO%[If-,L—o-J—CDcos%nlﬁwCDexpD hio, Sy

Inthisformula, g = B/®,isthe LL degeneracy, the fac-
tor cos(2riuB/fwy,) is due to the spin splitting, and the
factor Jo(dW/%w,) comes from the finite warping W of
the quasi-cylindrical FS. Jy(X) is the zero-order Bessel
function. The last factor in (2) is the usua Dingle fac-
tor.

The nonoscillating part of the DOS is given by

A
pO(E1 B) - hwc

where ng(E) istheratio of thereservoir dendity of statesto
the average DOS on the quasi-2D part of the FS. Theres
ervoir DOS occursin quasi-2D organic metal s because of
open sheets of the FS. These quasi-one-dimensional states
do not directly contribute to the magnetization oscilla-
tions because they form the continuous spectrum and
the nonoscillating DOS.

If the DOS is known, one can calcul ate the thermo-
dynamic potential

Q(y, B, T)

[

= TpEB)n[1+ oo (g

= QO(“! B! T) + é(u! B’ T)’
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where u(B) isthe chemical potential and the oscillating
part of the thermodynamic potentia is given by [13]

D' Lo Al
Q= ZgTz Cos%mhwcﬂsinh()\l)

x Jo%rl cos%nl “e

where A = 2T[2T/ﬁooc. The tota partl cle number IS usu-
aly constant,

0 ZHIFD

_@Q B, T

N=—gp O

T,B

8

_PEB) dE = const.

ol+expD THE

%

Thisisan equation for the chemical potential asafunc-
tion of the magnetic field. Separating the oscillating
part of the DOS and substituting

~ po(E. B)
E-&n

ol+ exXpg T 0

(where g is the Fermi energy at zero magnetic field),
we obtain

N = de

ol O

1 B 1 -

o ool LrenfF
(4)

x po(E, B)dE = J’ﬂdE.

0l+ exp%ET”E

We next use the fact that the relative reservoir DOS
nk(E) does not change appreciably at the scale of T or
|U — & <RwJ2 (thisis true if many LLs are occupied
because ny(E) changes substantialy at the Fermi energy
scale). Itthen followsthat ng(E) = nx(e) = const =ng. The
left-hand side of (4) can be simplified, and after the
insertion of (2), we obtain the equation for the oscillat-

ing part [1(B) of the chemical potential,

) ) _ hw,
M(B) =(B) — & = Z—m s

oo (D) 2m(ec + (B Al
Z I g ho, Usinh(Al) ©)

HeH 2mir
xcos%nl < exp% o EJO%TIﬁwD'
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This nonlinear equation cannot be solved analytically
without any approximations, but it determines oscilla-
tions of the chemical potential with arbitrary parame-
ters (it isonly assumed that e > T, Aiw,).

The magnetization oscillations at the constant elec-
tron density N = const are given by

V= (2 + Np) _ 00
dB N = const aB Y, N = const
_0Q du = _0Q
%_ N, B = const dB N = const aB Y, N = const
The oscillating part of the magnetization is
0Q
M(B) = -2
( ) 0B H, N = const
© I+1
_g Al
B Z sinhAl
21T
x cos%nl Het p%——% (6)

X Dsm %T{l H(B)DJOE{TI hol D

w H(B)O nd
+ 2L1cos%nl o DJlaTlﬁch%

where L(B) is given by Eq. (5) and involves the depen-
dence of the magnetization on the reservoir DOS.
Equations (5) and (6) describe the magnetization oscil-
lations at arbitrary parameters. The only approximation
used in deriving these formulas is the Dingle law of
harmonic damping. In quasi-2D organic metals with
the warping W > T, the Dingle law is believed to be a
sufficiently good approximation.

Equations (5) and (6) are a good starting point for
numerical calculations. It follows that in the limit
W/ < 1, the oscillating parts of the magnetization and
the chemical potential are related simply by

~ € 2
M(B) = —BEﬁ(?)

(1+ng)H(B). (7)

For zero warping, thiswas obtained in [9].

Nonlinear equation (5) for [1(B) can be solved ana-
Iytically only in some simple approximations. We do
this to illustrate the influence of the chemical potential
oscillations on the temperature and the Dingle temper-
ature dependence of the harmonic amplitudes. We thus
consider zero warping, zero spin splitting, and zero
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temperature. The sum in the right-hand side of Eqg. (5)
can then be calculated and we obtain

X 1 0 sin(y+x) 0 0

2~ ([T+ny Ceos(y + x) + e

where x = 21 (B)/Aiw., Y = 2118:-/A10),, and b = 21tTAw,.
For a very large electron reservoir ng = o, we have

x =0, which impliesthe case of afixed chemical poten-
tial. In this case, the magnetization is given by [13]

siny 0 ©)

M(B) =

The temperature dependence of the harmonic
amplitudesis given by the LK formula

21Tl w,
sinh(2°TI/Aw,)

It is also possible to solve Eg. (8) anayticaly at
ng = 0 and ng = 1. At zero electron reservoir ng = 0, the
solution to this equation is

ne) _
2 nﬁw

A(T) =

(10)

0 _sny 0
b—cos;)]

It describes oscillations of the chemical potential. The
magnetization at zero electron reservoir is given by the
formula

= arctan

98 an SNy [
M cosy cosy”’
which coincides with (9) after the phase shifty — y+ 11

and the sign change M —~ —M . Thisimplies that the
harmonic damping law

M(B) =

(11)

A O I—lexp(-l b) (12)
does not change and only the sign of al even harmonics
is reversed. This symmetry between the cases of the
fixed chemical potential = const and the constant par-
ticle density N = const is a feature of the specia expo-
nential law of the harmonic damping. Any finite tem-
perature and the electron reservoir density break this
symmetry.

We now consider the intermediate case where ng = 1.
Equation (8) then becomes

snx _ _ sin(y+x)

. (13
COSX  cos(y+x) +e
This gives
X = arcsin(e_bsiny).
For the magnetization, we obtain
M(y) = Barcsm(e ®siny). (14
No. 6 2001



THE INFLUENCE OF THE CHEMICAL POTENTIAL OSCILLATIONS

To determine how the harmonic damping has changed,
we must calculate the amplitudes of the first several
harmonics of this expression. The amplitude of thefirst
harmonicis

Tt

Ay(b) = %Jarcsin(e‘bsiny)sinydy,

and after the integration by parts, we obtain

coszye_bdy
A(b) = = I“—_‘“

l-e“siny
Thisis a superposition of two elliptic integrals,

A(b) = %[ PE(e®) —2sinhbK (). (15)
For b > 1, the deviations of A;(b) from the LK for-
mula are small,

Ab)=e’+e8+ ...
In the opposite limit b < 1, we obtain

A) = J b row). 9

Thisis substantially different from the LK dependence
A(b) = exp(-h) = 1 —b. For example, the value A,(0) is
4/tttimes larger than the LK prediction.

A stronger deviation from LK formula (12) can be
seen in the amplitudes of the next harmonics. All even
harmonics vanish because expression (14) possesses

the symmetries M (i—y) = M (y) and M (=y) = M ().

The amplitude of thethird harmonic can also be cal-
culated. For b> 1 and e® < 1, we have

Ag(b) = —e°/12+0(e™).

Thisresult isin contrast to the cases where ng = 0
or ng = o, where we had Ag(b) = €3%/3. Thisis not sur-
prising because in the symmetric case ng = 1, the oscil-
lations must be much smoother and more sinusoidal.
Therefore, the first harmonic must increase and the
higher harmonics must decrease. For b = 0, we have

As(0) =

cosBycosydy 4
I J’ a7)

cosy orr’

which is ~2.35 times less than the LK prediction A;(0) =
1/3 and has the opposite sign. In the case where ng = 1,
the first harmonic is therefore increased while the
amplitudes of the others are strongly decreased com-
pared to the cases of zero and infinite electron reservoir.
The deviation from the LK formula reduces as the
warping of the FS increases. The above analysis also
shows that at low temperature and low Dingle temper-
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Temperature dependence of harmonic amplitudes. The
solid lines are the numerical results (for ng =1, m* = 2
Tp =0.2K, and W=1K; seetext) and the dashed lines are
the LK prediction at the same parameters. Their strong devi-
ations are clearly seen, especialy for higher harmonics.

ature, the harmonic ratios can give a quantitative esti-
mate of the electron reservoir density that is much more
precise than just an observation about the slope of mag-
netization oscillations.

To include the correct temperature dependence,
warping, and spin-splitting and to consider an arbitrary
reservoir density, one can perform numerical calcula-
tions based on solving Eq. (5) for the chemical poten-
tial and inserting this solution in formula (6) for the
magnetization. This can be easily done for arbitrary
parameters that are available experimentally. The tem-
perature dependence of the first three harmonic ampli-
tudesisgiveninthefigurefor thefollowing set of param-
eters close to the real experiments on a-(BEDT-
TTF),KHQ(SCN),: thereservoir density ng = 1, the dHVA
frequency F = 700 T, the effective mass m* = 2m, the
Dingle temperature Ty = 0.2 K, and the warping W =1
K. We see a substantial deviation from the LK depen-
dence. As T — O, the obtained amplitude of the first
harmonic is about 1.1 times larger than the LK predic-
tion. If we adso let T, — 0 and W — O, their ratio
becomes 4/t = 1.27, in agreement with analytical
result (16). The second harmonic amplitude is close to
zero a T = 0. The amplitude of the third harmonic
changesitssign at T= 0.8 K and deviates very strongly
from the LK formula. It is damped much more strongly
thanthe LK predictions. At T=0and W=0, it a'so coin-
cides with prediction (17).

To conclude, it was shown both analytically and
numerically that the oscillations of the chemical poten-
tial are essentia for the temperature dependence of har-
monic amplitudes of dHVA oscillations in quasi-two-
dimensional compounds. The accurate determination
of the effective electron mass from the dHvA effect
should take this effect into account. This can be doneby a
smple numerical calculation based on Egs. (5) and (6).
The oscillations of the chemica potentia depend on the
reservoir density of satesin accordancewith Eq. (5). This
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fact may be used for estimating the reservoir density of
states in organic metals.
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Abstract—We present the results of analyzing the arrival directions of cosmic rays with energies Eg = 4 x
107 eV and zenith angles 8 < 45° detected at the Yakutsk setup during 1974-2000. It is shown that increased
particle fluxes exceeding the anticipated random distribution levels by (4-5)c arrive from the galactic plane
at Ey = (2-4) x 10 eV and from the supergalactic plane at E, > 8 x 10 eV. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Revealing the sources of ultrahigh energy cosmic
rays (E, = 10'7 eV) presents adifficult problemin astro-
physical research. Investigations in this direction have
been conducted for more than four decades all around
the world, but the origin of these cosmic rays is still
unclear. On the global scale, the cosmic rays do not
contradict the concept of isotropic distribution, but in
the region of extremely high energies (E, = 10'° eV)
there is a weak correlation between the arrival direc-
tions and both the galactic (see, eg., [1, 2]) and the
supergalactic planes [3, 4]. It was reported [5, 6] that
clusterswere observed in the directions of arrival of the
primary particles with energies E, > 10'° eV. Moreover,
acorrelation was found between individual clustersand
pulsars situated on the entrance side of the local arm of
the Galaxy [5]. There are some indications that cosmic
rays of extremely high energies may originate from gal-
axies with active nuclei [7, 8]. Previously [9], it was
demonstrated that particles with energies E, > 10%° eV
arriving from the equatorial region of asupergalaxy are
characterized by a higher flux (as compared to other
directions) and by atime-dependent intensity. Data pre-
sented below pour additional light on the problem of
the origin of the ultrahigh energy cosmic rays.

2. COSMIC RAY CHARACTERISTICS STUDIED,
RESULTS AND DISCUSSION

Below we report on extensive air showers (EASS)
with energies E, > 4 x 107 eV and zenith angles 0 < 45°
detected at the Yakutsk setup during 1974-2000. We
studied correlations between the cosmic ray arriva
directions and the galactic and supergalactic planes.
The analysisinvolved the datafor EASswith the direc-
tions of arrival determined by not less than five detec-

tors and the axes falling within the central circle with a
radius of <1700 m. These events provide for a mini-
mum error in determining the main EAS parameters
(arrival direction, axis coordinates, E,, etc.). The pri-
mary particle energies were determined using the rela
tionships

1.0+£0.02

Eo [6V] = (4.8+ 1.6) x 10(pq 600(0°)) . (D

Paco(0°) [M 7] =P co(®)exp (5200 - 1) 52 (2
P

A, [gfem?] -

= (450 £ 44) + (32 % 15) Iog(ps 600(0°)),

where pg 600(0) is the density of charged particles mea-
sured by the on-ground scintillation detectors at a dis-
tance of R = 600 m from the shower axis.

Figure la shows the fraction r = N(|bggg)| <
10°)/Ny; (N, isthetotal particle number) of the primary
particles arriving from equatoria regions (|bgs)| < 10°)
of the Galaxy (G) and supergalaxy (SG) plotted versus
the primary energy E,. Solid and dashed lines indicate
the values for an isotropic flux calculated by the Monte
Carlo method. The north pole of the supergalaxy has
the galactic coordinates b = 6.32° and | = 47.37° [10].
Figure 1b presents an energy spectrum of the cosmic
rays measured at the Yakutsk setup [11].

Asisseenin Fig. 1, thereis atendency toward sys-
tematic increase in rg; with the energy for E, = 5 x
10'8 eV, dthough the statistical accuracy is insuffi-
ciently high. At first glance, the Galaxy exhibits no
excess flux on the disk side. However, there is a slight
increase in rg for By < 4 x 108 eV which (as will be
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curves show the approximations according to the power
law: (1) Eg < 10189 eV (y; = -3.05+ 0.04); (2) 108 < Ey <
10190 eV (y, = —3.34 + 0.05); (3) Eg = 1010 eV (y5 =
-2.53 + 0.25); (1, 3") proposed galactic and supergalactic
components, respectively.

shown below) isneverthelessindicative of acertainrole
of the Galaxy in the origin of particles with these ener-
gies.

Let us consider this situation in more detail. Fig-
ure 2a shows the distributions of arrival directionswith
respect to latitude (at a step of Ab = 5°) for 319 EASs
with E; = 8 x 10 eV in the galactic and supergalactic
coordinates. The top curves (1) show the experimen-
tally observed (Ne,) and anticipated random (N,,) dis-
tributions; the bottom curves (2) present deviations of
the number of observed eventsfrom that expected, plot-

ted in units of the standard 0 = /N;an, Ng = (Ne —
N,z)/0. Curves 2 in Fig. 2a correspond to the average
behavior of n; upon smoothening using aFourier series
with five harmonics.

The values of N,,, were determined by playing the
number of showersrandomly distributed over the celes-
tial sphere. The procedure was as follows. For each
measured EAS, thereal arrival time and azimuth (deter-
mined in ahorizontal coordinate system) were replaced
at random to determine 500 directions in the galactic
and supergalactic coordinates. The resulting distribu-
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60°

—60°
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Fig. 2. Datafor EASwith (a) Ey= 8 x 10'8 eV and (b) Eg =
(3-4) x 108 eV: (1) plots of arrival directions versus lati-
tude in the galactic (G) and supergalactic (SG) coordinates
showing experimental data (Ngy,, histograms), figures indi-
cate the total number of showers) and anticipated random
distributions (N4, curves) for isotropic fluxes; (2) devia-
tions ng = (Neg — Nran)/ /N, 4, Plotted as histograms and
averaged curves.

tions of random events were normalized to rea with
respect to the absolute value.

Asis seen, the supergalactic plane exhibits a signif-
icant excess of events. In the latitude band Abg; = —-10—
0°, there are 65 EASs instead of expected 35, which

corresponds to arelative excess of (65— 35)/./35 = 50.
The galactic plane exhibits no effects in this energy
range, except for aweak (=20) positive deviation in the
latitude band Abg = —-5-0°.

Figure 2b shows distributions of the arrival direc-
tions for 874 EASs with E, = (3-4) x 10'® eV. These
curves exhibit a relative maximum of rgin comparison
with the anticipated isotropic flux density (Fig. 1a). The
events in the galactic plane (Jbg| < 5°) exhibit a signifi-
cant peak exceeding the expectation by (121-87)/./87 =
3.60. The supergalactic plane is not manifested in this
energy range.
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CORRELATIONS BETWEEN THE ARRIVAL DIRECTIONS

20 21006H% 7 1/56///
7%

(b) S Perseus

270 Orion

%

agittarius

300

3300 2 4kpe (W 30

Fig. 3. (8 A schematic diagram showing the mutual
arrangement of the galactic (G) and supergalactic (SG)
Milky Ways: Cg(Cgg), centers ACg (ACgg), anticenters;
Ng(Ngg), north poles; OO', line of intersection of the galac-
tic and supergalactic planes; S, point of observation; dashed
areas indicate visible sectors for Yakutsk EAS setup; (b) a
schematic diagram of the galactic spiral [12].

The above data reveal the following pattern. In the
energy range E, < (6-8) x 108 eV, the primary particles
are apparently mostly generated in the Galaxy. An
increase in their fraction in the disk (rg) can be inter-
preted asdueto adecreasein the degree of directed par-
ticle motion “smearing” caused by the galactic mag-
netic field. A sharp change in shape of the energy spec-
trum (Fig. 1b) and a strong correlation of the arrival
direction with the supergalactic plane for E, > (0.8-1) x

10% eV areindicative of the predominantly extragal ac-
tic origin of these particles.

The galactic plane is amost perpendicular to the
supergalactic plane (Fig. 3a). We may use this circum-
stance to refine some details in Fig. 2. Figure 4 shows
the distributions without events for |bg )| < 10° in the
supergalactic (galactic) plane. Asis seen, the distribu-
tionsin Figs. 2 and 4 are similar, but the latter curves
exhibit a stronger correlation in the cases indicated

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

889

(a)
G 207 SG 251

~
(e

o)

Number of events
()
(]
T
|

ng

%80 T T T T

B G 686

S0t 11+ .

T

o]

E /’d<

Z 0 1 1 1 1 1 1 1 1
4_ - - -

ng
N

i L

260° 0 60°  —60° 0 60°
bG bSG

Fig. 4. A diagram of the arrival directions (the same asin
Fig. 2, but without eventsin thelatitude band [bgz )| < 10°).

above. The supergalactic latitude band Abg; = —10-0°
exhibits 56 EASs (expected, 28) with E, > 8 x 10'8 eV,

which corresponds to an excess of (56 — 28)/./28 =
5.30, while the galactic plane (|bg| < 5°) shows a peak
of 105 EASsfor E, = (3-4) x 108 eV with an excess of

(105-68)/ /68 = 4.50. Figure 5 presents a diagram of
the arrival directions for EASs with E, = (3-4) x
108 eV plotted on the celestial spherein the galactic (G)
and supergalactic (SG) coordinates.

This increase in correlations may, at first glance,
appear rather unexpected—especially for the galactic
EASswith E, = (3-4) x 10'® eV. What can be the influ-
ence of the supergal axy, which has a markedly greater
volume and contains the Galaxy as a part? Thisis only
possible provided that particlesin this range also origi-
nate from outside the Galaxy.

In this context, it was especially of interest to study
the distributions of events in the latitude band with
|bss ()| < 10°, which are depicted in Figs. 6 and 7. Asis
seen, all distributionsin Fig. 6 are different from those
considered above. The first feature to be noted is that
the observed patterns are strongly different from those
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Fig. 5. A diagram of arrival directionsfor 686 EASwith Eg = (3-4) x 1018 ev plotted on the celestial sphereinthe galactic (G) and
supergalactic (SG) coordinates without events in the latitude band [bg )| < 10°.

anticipated for the random events. For example, the
datain Fig. 6a(G) give x? = 50 for n = 30 degrees of free-
dom (random probability, P = 10) and in Fig. 6a (SG),
¥? =55 (P = 3.5 x 1079). According to Fig. 6b we observe
for the Galaxy (G) x? =77 (P < 10°) and for the super-
galaxy (SG) x? = 85 (P < 107°). Secondly, the distribu-
tions are not similar to those presented in Fig. 2. This
result may seem surprising because the datadepicted in
Fig. 6 present only apart of thetotal set depicted in Fig. 2.

T T T T (a) T T T T
G 112 | SG 68
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Fig. 6. Distributions of eventsin the latitude band [bgz ()| <
10° (for notations see Fig. 2).
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Let us consider the distribution of arrival directions
presented in Fig. 7. Since the planes of the supergal axy
and Galaxy are mutually almost perpendicular, the pat-
tern of eventsin the [bg;| < 10° band with different bg
(Fig. 6(G)) presents in fact a distribution along the
supergalactic disk with respect to the latitude lg; and
vice versa, the pattern of eventsin the |bg| < 10° band
with different by (Fig. 6(SG)) presents essentially a
distribution along the galactic disk with respect to the
longitude |5. The Ig; value is counted clockwise from
the direction to the supergalaxy center (Fig. 3d).

Figure 8 showsthe distributions of arrival directions
for EASs from the supergdactic and gdactic disks (|b| <
10°) plotted versus the longitude coordinate. The data
in Fig. 8a(SG) can be interpreted as follows. In the
supergal actic disk sector studied (g5 = 0-130°), therel-
ativeintensity of cosmic rayswith E;>5 x 10*® eV var-
ies in a smooth manner (spline curve 2 in Fig. 8a). An
increasein theflux at I o5 = 90°, where the supergal actic
and galactic planesintersect, ismost probably dueto an
additional contribution due to the particles arriving
from the galactic disk. The peak observed in Fig. 8a(G)
at | =137° aso correspondsto theintersection of these
planes.

Now let us proceed to the analysis of datain Fig. 8b
showing the arrival directionsfor EASswith Ey = (2.5
4) x 10%8 eV. Thefirst peak in the galactic disk (see the
n, distribution) at Ig = 70° is apparently due to an
increased flux of particles originating from the exit of
thegaacticlocal arm. Thisiswell illustrated in Fig. 3b,
schematically depicting aspiral structure of the Galaxy
[12], where a galactic disk sector observed at the
Yakutsk setup is shaded. Thefourth peak at |5 = 180° is
related to a high intensity of emission from the anti-
center, where the particle absorption in the disk is at
minimum. This behavior is also quite possible if the
particles arrive from outside the Galaxy. As for the
peaksat |5 = 110 and 155°, these features can be attrib-
uted to the other arms of the Galaxy. The magnetic
fields of arms in the galactic disk are schematically
depicted in Fig. 9e [13], where open and dark circles
indicate the field orientation outward and inward rela-
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Fig. 7. A diagram of arrival directionsfor 194 EASwith Eq = (3-4) x 1018 ev plotted on the celestial spherein the galactic (G) and
supergalactic (SG) coordinates for eventsin the latitude band [ogzg)| < 10°.

tive the figure plane and the field strength is propor-
tional to the circle area.

Figure 9 shows distributions of the n values with
respect to the longitude |5 for EASs arriving with vari-
ous energies from the equatorial region (|bg| < 10°) of
the Galaxy. These data refer to events with the zenith
angles 8 < 60° and the shower axes falling inside the
entire perimeter of the Yakutsk setup. Smooth curves

(@)

[\
(=]

T
SG 240 G 175

Number of events
=
T
1
T
|

NN O

\*}
S

=)

Number of events

[\]

ng

0

-2 1 1 1 1 1
180°120° 60° 0 300°240°0 120°
ISG lG

|
240°

Fig. 8. Distributions of EAS with (a) Ey > 5 x 10'8 eV and

(b) Ep = (25-4) x 108 eV versus longitude | g for cos-
mic rays arriving from the galactic (G) and supergalactic
(SG) disks (|b] < 10°); (for notations, see Fig. 2).
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show the spline functions constructed using a Fourier
series with 13 harmonics. Note a special sequence of
changes in the histogram fragments. The aforemen-
tioned excess of particles arriving from the anticenter
with E, = (2.5-4) x 10*® eV is also observed at higher
energies (Fig. 9a). This flux decreases at E, < 2.5 x
10* eV (Fig. 9c) and completely vanishesin the region
of E, = (1-1.5) x 10'® eV (Fig. 9d). In contrast, the

010 %o |
10 60° 120° 180°
lG

240°

Fig. 9. Distributions of EAS versus longitude | g for cosmic
rays arriving from the galactic disk (Jb| < 10°) with various
energies: (a) Ep = 10186 ev; (b) E, = 101847186 gy
(c) Eg = 10182184 gv; (d) Ey = 10180182 gy, (g) Diar
gram of arrangement of the galactic magnetic arms [13]:
(o) field directed outward; (@) field directed inward; arrows
indicate the line of intersection of the galactic and supergaactic
planes (Ig = 137°); figuresindiceate the total numbers of events.
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direction of I = 75° exhibits a minimum at E; = 5 x
108 eV, which changes to maximum when the primary
particle energy decreasesto E, = 2 x 108 eV (Fig. 9¢).
Pronounced peaks are observed in the sector Al g = 105~
145° for the events with E, < 4 x 108 eV (Figs. 9b-9d).
For E, = (2.5-4) x 10 eV, the excessin the number of
observed events (690) over the random distribution

(581) in this sector amounts to (690-581)/./581 =
4.60.

The positions of these peaks correlate with the
arrangement of galactic magnetic arms (Fig. 9e).
Therefore, it isnot excluded that these peaks, aswell as
the dynamics of their variation for E, < 4 x 10 eV, are
related to the activity of these arms. Therole of individ-
ual galactic armsin the origin of cosmic raysin various
energy intervalsis probably different.

In the range of energies E, = 4 x 108 eV, the contri-
bution of the Galaxy is apparently not as large. The
minimum observed in Fig. 9d for |5 = 75° ismost prob-
ably dueto arelatively strong absorption of extragalac-
tic particles by the Orion arm (see Fig. 3b) as compared
to adjacent parts of the galactic disk. Note also a mini-
mum at |5 = 137° in Fig. 9b, which corresponds to the
intersection of galactic and supergalactic planes (line
SO in Fig. 3a). We may suggest that this minimum is
related to an increase in the flux of particles from equa-
torial regions of the supergalaxy, because these parti-
cles are more strongly absorbed in the supergalactic
disk.

The data presented in Fig. 8b(SG) (curves 2) show
that the number of events in the latitude band |bg;| <
10° also exhibits a minimum in the direction of inter-
section with the galactic disc at |45 = 90°. This mini-
mum can also be explained by the fact that particles
arriving from outside the Galaxy exhibit a stronger
absorption in the galactic disk then in the adjacent
regions. In the direction toward the center of the super-
galaxy (Igz=0°), we observe aclearly pronounced peak
with the observed frequency exceeding the random value

by (46-25)/ /25 = 40 in the angular sector Al = 15°.

Based on the fact that curves 2 in Fig. 8b(SG) cer-
tainly reveal a supergaactic structure, we must admit
that particles with the energies E, = (2.5-4) x 10 eV
may arrive from extragal actic sources. In this case, the
fraction of these particles may be comparable with the
Galaxy contribution. Assuming that this fraction
accounts for half of the events, the energy spectrum in
Fig. 1b can be represented as a sum of the galactic (1)
and extragalactic (3) components. The former spec-
trum (1') does not contradict the hypothesis [14] that
the galactic primary particles may be predominantly
neutrons with a spectrum of this very shape. This is
indicated by an additional radiation observed [14] at the
AGASA setup near the Galaxy center with an excess of
4.10 over the anticipated isotropic flux. Thisresult was
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confirmed and refined by the SUGAR group [15].
Unfortunately, the Yakutsk group cannot see the galac-
tic center.

The aforementioned significant  correlations
between the arrival directions of cosmic rays and the
galactic and supergalactic planes were revealed due to
avery large statistics of EASs observed on the Yakutsk
setup (atotal of about 37000 for E, = 10*® V) and a
very rigid selection of events for the analysis. Unfortu-
nately, no anal ogous datawere reported for the AGASA
setup, which is similar to ours with respect to the type
of detectors and the method of EAS data processing.
Recent report [6] only pointed out that two clusters
were observed at E, = 4 x 10*° eV in the direction close
to the supergal actic plane.

At first glance, the results obtained at the Yakutsk
and AGA SA setupsare at variance asfar asthe possible
role of the supergalaxy in the origin of extremely high
energy cosmic rays is considered. However, in fact
thereare no discrepancies. Thisisconfirmed by Fig. 10,
showing the distribution of arrival directions for EASs
with Ey > 10% eV in the supergal actic coordinates, plot-
ted at aAbg; = 10° step using the data reported by both
the Yakutsk and AGASA groups. We obtained a distri-
bution analogous to that measured on the AGASA
setup by adding three distributions reported in [6]. The
histograms 2 show the values of n, representing devia-
tions of the number of observed events from that for
isotropic fluxes (analogous to the histograms in Fig. 2b).
The number of analyzed eventsisthe same for both set-
ups. In our set, we employed the EASs with 6 < 60°
detected over the entire circle area (even for the shower
axes falling outside the setup perimeter).

Asisseen, despite adifferencein theinitial distribu-
tions 1 in Fig. 10, the distributions 2 are similar to one
another. Note certain important features. First, both dis-
tributions 2 show a (1.8-2.1)c excess in the number of
measured events over isotropic fluxesin alatitude band
of |bg| < 10°. Second, there are dipsindicative of —1.50
deficiency in the events occurring symmetrically rela-
tive to the supergalactic plane at |byg| = 10-20°.
Observed against these minima, the peaks of excess
radiation originating from the supergalactic plane
become more significant. Some other detailsin the two
distributions 2 are also coinciding to a certain extent,
thus showing evidence that these features are not acci-
dental.

A comparison of our data presented in Figs. 2 and
10 shows the inexpediency of using the |bg;| = 10° step
because this decreases significance of the results. The
real experimental accuracy, especialy that ensured by
arigid selection of eventsfor the analysis, is not worse
than 1-2°.

The fact that the arrival directions of the primary
particles with energies E, = 8 x 10'8 eV are correlated
with the supergal actic disk orientation suggests that the
particles of extragalactic origin must be electrically
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Fig. 10. Data of the (a) Yakutsk and (b) AGASA [6] groups on the distribution of showers with Eg = 10 eV: (1) arrival directions
versus |atitude bgs in the supergal actic coordinates; (2) deviations ng = (Nexp — Nyan)/ /N4, (for notations, see Fig. 2).

neutral. Otherwise, particles bearing the electric
charge z would move in the magnetic field by a tra-
jectory with a curvature radius (depending on the
energy E)

R = R,/300Hz. (4)

According to this, even the trajectories of protons mov-
ing in the galactic magnetic field (H = 3 x 106 Gs) with
energies on the order of 10%° eV would have acurvature
radius of approximately 3 kpc (which is considerably
smaller than the galactic disk radius of ~15 kpc).
The intergalactic magnetic fields, albeit weak (H =
9 x 1071% Gg), till give for these protons R = 10 Mpc,
which is also significantly smaller than the supergal ac-
tic disk diameter of ~60 Mpc). Under these conditions,
the cosmic rays would “forget” their origin and their
arriva directionswould exhibit no correlationswith the
Galaxy and supergalaxy structure, which is not the case
in the experiment.

The primary particles can hardly be neutrons.
Indeed, the neutrons with E, ~ 10%° eV possess a
Lorentz factor on the order of 10 and can cover before
decay only adistance on the order of 100 kpc, whichis
significantly smaller than supergalaxy size. We believe
that the ultrahigh energy cosmic rays consist of some
other neutral particles. This conclusion is based on a
complex analysis of the spatial and temporal structure
of EASs observed at the Yakutsk setup [16-18]. The
results of these investigations showed that the experi-
mental data for E, < (1-3) x 108 eV agree with calcu-
lations according to the QGSIET model [19] assuming
a composition of the primary particles varying from a
mixture enriched at E, ~ 10'7 eV with heavy nuclei (z=
10-30 fraction accounting for 63 + 7% [20]) to a mix-
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ture enriched with protons at E, ~ 10 eV. In theregion
of Ey = (3-5) x 10, the showers develop differently,
significantly changing their transverse structure. These
changes cannot be described within the framework of
the QGSIET model (irrespective of the composition of
primary particles, from protons to iron nuclei), thus
requiring other concepts concerning the development
of extended air showers in the regions of extremely
high energies.

3. CONCLUSION

As is seen from the data presented above, cosmic
rayswith energies E, = (3-5) x 108 eV exhibit correla-
tionsin their arrival directions with galactic and super-
galactic structure. This behavior gives certain grounds
to believe that the primary particles with these energies
may be of both galactic and extragalactic origin. Asfor
the energy range E, = 8 x 10'8 eV, there are indications
of the predominantly extragalactic origin of these cos-
mic rays.

The experimental facts presented above, together
with the results reported in [16-18], show evidence in
favor of a hypothesis that the extragalactic primary
radiation may contain a neutral component. On their
way to Earth, these neutral particles may “transillumi-
nate” alarge-scale structure of the Universe, probably
covering aregion of space markedly exceeding the vol-
ume of asupergalaxy.
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Abstract—The optimum conditions for a prolonged holding of charged particles resonantly trapped from the
galactic plasma by nonlinear waves and for the acceleration of these particles to high energies by the surfatron
mechanism are established. The density of particles trapped by the plasmawaves of large amplitude and by the
quasitransverse magnetosonic shock waves is estimated. Various reasons leading to possible breakage of the
process of surfatron acceleration of cosmic raysin the Galaxy are considered. Within the framework of the sur-
fatron acceleration mechanism, galactic cosmic rays originate predominantly from the interstellar plasma and
their energy spectrum isformed in two stages. In the first stage, some of the galactic plasma particles are accel-
erated from thermal energies to 10 eV/nucleon; in the second stage, the cosmic rays may continue gaining

energy up to 10%° eV/nucleon and above. © 2001 MAIK “ Nauka/Interperiodica’ .

1. INTRODUCTION

One of the main problems in any theory explaining
the origin of cosmic raysisthe mechanism of accelera-
tion of charged particles entering into these rays. As
was noted in [1, 2], the most studied acceleration pro-
cesses can be reduced to mechanisms of two types:
(i) acceleration caused by the electric field induced by
a variable magnetic field and (ii) acceleration due to
collisions with moving inhomogeneities of a magnetic
field. However, these mechanisms may provide for an
increase in the charged particle energy only up to
~10%? eV/nucleon [3, 4]. Explaining the presence of
particles with greater energies in the spectrum of cos-
mic rays requires searching for new acceleration pro-
CeSses.

In recent years, actively discussed as a method of
the collective acceleration of charged particles in a
weakly magnetized collisionless plasma is the so-
called surfatron mechanism (surfing) [2, 4-11], which
can provide for arelatively high rate of energy gain by
charged particles. According to this mechanism, the
particles are trapped by a potential wave running in the
plasma across aweak magnetic field and accelerated in
the direction along the wave front. The moving positive
potential jump can accelerate ions, while the negative
jump accelerates el ectrons.

Below we will consider two types of wave potential
perturbations most frequently encountered in a colli-
sionless plasma: (i) a longitudinal plasma wave and
(i) aquasitransverse magnetosonic shock wave (MSSW).
A periodic plasma wave containing both positive and
negative potential jumpsis capabl e of accelerating both
ions and electrons. In contrast, an MSSW comprises a
positive potential jump and accelerates only ions.

In the galactic plasma, the stationary plasma waves
and MSSWs may appear as aresult of anomalous phe-
nomena such as supernova and nova explosions, vigor-
0US processes in unstable stars, flares in quiet stars of
the Sun type, and some other analogous pulsed pro-
cesses. In addition, nonlinear plasma waves moving at
a subluminal speed may form as aresult of the electro-
magnetic energy conversion in hybrid resonance layers
[4], dueto nonlinear plasma oscillations generated by a
high-energy branch of the cosmic ray spectrum (wake
waves [12]), or upon a strong relativistic magnetic
dipole radiation emission from pulsars[2, 4].

A large (in principle, unlimited) duration of the pro-
cess of particle acceleration by surfing is provided by a
particle-wave synchronism stably maintained as a
result of the particle outrunning the wave being pre-
vented by deviations along the front in a constant mag-
netic field [11]. The particle accelerator based on this
principleis called Surfatron [7], and the corresponding
mechanism is referred to as the surfatron acceleration
or surfing. It must be noted that the mechanism of par-
ticle acceleration operative in the Surfatron was origi-
nally considered by Sagdeev [13] within the framework
of an analysis of theion motion in the MSSW front.

The surfatron acceleration mechanism under con-
sideration takes place in a weakly magnetized plasma.
The substance in the Galaxy frequently occurs in the
plasma state both in stellar atmospheres and in the inter-
stellar medium [2]. Typical values of the plasma parame-
ters for a stellar atmosphere are offered by those of the
upper chromosphere of the Sun (density, n, ~ 10° cm3;
temperature, T~ 10 eV; magnetic field strength, B, ~ 1 Oe)
and the solar wind (n, ~ 10 cm3; T~ 10 eV; average
magnetic field strength, B, ~ 10~ Oe). Inthe Galactic disk
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and its environment, the substance predominantly occurs
in the state of so-caled hot gas [2] representing a com-
pletely ionized plasmawith the following typical param-
gters: ng = 3 x 102 cmr3; T ~ 100 eV; magnetic field
strength, B, = 3 x 10 Oe.

Estimates of the energy of cosmic rays, obtained in [4]
for the charged particles accelerated by means of surf-
ing in the nonlinear plasma waves in the gaactic
plasma, amount to € ~ 10'"—10% eV. This result sug-
gests that the mechanism of surfatron acceleration is a
promising approach to explaining the formation of the
high-energy branch of the spectrum of cosmic rays.
Despite this optimism, however, there are several ques-
tions concerning features of the surfatron acceleration
of cosmic raysin the Galaxy. What is the source of cos-
mic rays involved in the surfing process? Whether or
not the source power is sufficient to provide for the
observed density of cosmic rays? Is there any differ-
encein the mechanism of acceleration for electrons and
ions? What is the role of relativistic particle emission
for the surfatron acceleration of cosmic raysin the Gal-
axy? These and some other questions will be consid-
ered below.

The paper is organized as follows. In Section 2, we
will establish optimum conditions for the surfatron
acceleration mechanism and consider the properties of
nonlinear waves by which the charged particles are
trapped and accelerated. An important characteristic of
the surfatron acceleration process—the density of par-
ticles trapped by a nonlinear wave—will be estimated
in Section 3. Section 4 isdevoted to elucidating the pos-
sible reasons capable of breaking the particle accelera-
tion process. The energies of cosmic rays gained as a
result of the acceleration by surfing in the Galaxy are
estimated in Section 5. The main conclusionsfollowing
from thisinvestigation are summarized in Section 6.

2. CONDITIONS NECESSARY
FOR THE SURFATRON
ACCELERATION PROCESS

As noted above, consideration will be restricted to
analysis of the charged particle acceleration by surfing
in the plasma waves and quasitransverse MSSWSs. In
both cases, we will assume the stationary waves to be
plane. The motion of articleswill be described either in
a laboratory frame (where the plasmais resting as the
whole) or in the wave frame. Consider a wave moving
in the laboratory frame in the direction opposite to the
X axis at a phase velocity u not exceeding the speed of
light c. The characteristic conversion factor for the pas-
sage from one to another frameis

v = 1/J1-B% B = ulc.

The surfatron acceleration takes place upon trap-
ping of a small group of particles by a potential wave
moving in the plasma across aweak magnetic field. As
is known [2, 4-11], a necessary condition for the long-
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term (“eternal”) acceleration of the trapped particlesis
provided by R= 1, where

R = E,/B,

E, being the maximum value (amplitude) of the electric
field strength in the wave and B, the magnetic field
strength at a point (in the wave frame) of the electric
field maximum. According to the formulas of the field
transformation on the passage from one frame to
another, the magnetic field strengths are related as

B = y¢Bo,

where B, isthe magnetic field strength in the laboratory
frame; the electric field Ey isthe same in both frames of
reference.

Let us check whether the condition R > 1 holds for
the longitudinal plasmawaves of large amplitude prop-
agating in agalactic plasma. We will consider aplasma
with the particle density n,, the temperature T < mc?,
and the longitudinal wave frequency

[ 2 2
W = (*)pe + (’oce
for the most typical interstellar medium with
Whe > Wie,

where

— 2 —
Wpe = A4TINGE/M, W = €eBy/mc,

e and m being the electron charge and mass, respec-
tively, and B, the magnetic field strength in the resting
plasma. In this case, we may ignore the effect of mag-
netic field on the dispersion properties of the plasma
and take w = .

The maximum theoretically possible amplitude of
the electric field strength in the stationary nonlinear
plasmawaveis[14]

Emo = A/8T[nomcz(yf -1).

Taking this expression into account, the parameter R
can be readily presented in the following form:

R= Peen Vi1 1
wce yf

This relationship indicates that the necessary condition
R> lisfulfilled if
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where 6, = T/mc? is a dimensionless temperature nor-
malized to the electron rest energy. Below we will
assume that the plasma pressure in the galactic plasma
is on the order of the average magnetic field pressure:

n,T OBS/8TL.

This assumption is acceptable for the Galaxy [1, 2] and
can be recognized as valid in the circumsolar plasma
(the chromosphere of the Sun, solar corona, and solar
wind). Under these conditions, we obtain

e 067 Vie g

2 2
Wpe

where v = /T/m isthethermal velocity of electrons.
Now the condition R> 1 can be expressed in terms of y;
in aform more convenient for practical use:

2 2
W 1 (V)
%’D§->(yf—1)>%§DGe. Q)
ce e Wpe

The temperature of particles in the circumsolar
plasmaisT= 10 eV, whilethat in theinterstellar plasma
of the galactic disk is T = 100 eV. Thus, the galactic
plasma.is characterized by the parameter

0, =2 x (10-107).

Substituting thisvaueinto relationship (1), we obtain esti-
mates for the maximum value of the conversion factor

y; =5 x (10°-10")
and for the minimum value of thisfactor
Vi —1=2x(107-107).

Thus, we arrive at a conclusion that there is alim-
ited, abeit sufficiently broad, range of plasma wave
velocities in which the wave may provide for a pro-
longed (“eternal”) acceleration of the trapped particles.
Asisseen, thisregime may be realized for both relativ-
istic and nonrelativistic waves in the galactic plasma,
but the rate of acceleration is significantly higher inthe
latter case. Indeed, for a plasma wave moving in the
laboratory frame in the direction opposite to the x axis
and the transverse magnetic field B, directed in the z
axis, the field accel erating particlesin the surfing mode
will be directed (in the wave frame) along they axisand
equal to

E

= BB = BEy _ mcWpe(yr —1)JYr+1
R .

4 eR Vi

This formula indicates that, for a given n, and the
most optimum value of R~ 1[10], the accelerating field
E, determining the surfatron acceleration is markedly
greater for arelativistic plasmawave (y; > 1) than for a
nonrelativistic wave (y; = 1).
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Let us proceed to determining conditions for a pro-
longed acceleration of nuclei by surfing in quasiperi-
odic MSSWs. These waves represent essentially a propa
gating jump of the magnetic field strength [13, 15]. Usu-
aly, both the wave front amplitude and width are
related to the magnetic field jump. One of the main
MSSW characteristicsis the Alfvén Mach number

Mp = Ulv,,

where

vV = Byl JATngM

is the Alfvén velocity and M is the ion mass. The
MSSWs with a Mach number i, < 3 are called lami-
nar, while the waves with Jl, > 3 are referred to as tur-
bulent.

Inalaminar MSSW, the magnetic field and potential
profiles are approximately coinciding. A potential jump
inthewaveis §, = €,/e and the jump width is approx-
imately d = clwy,e [13, 15] (here, €5 = Mu#/2 is the
kinetic energy of aflow incident onto the wave front in

the wave frame). Therefore, the electric field strength
can be expressed as

E - MuPw,. _ JMaBS
° ec c./Atn,m’

and the conversion parameter R = Ey/B for a laminar
waveis

R = MA(v A/c) /MIm.

Substituting the values of parameters of the circumso-
lar and interstellar plasma into this formula, one can
readily seethat R < 1 provided that Jl, < 3. Thus, lam-
inar MSSWs cannot feature a prolonged acceleration
regime.

In the case of aturbulent MSSW, the potential jump
amplitude is approximately the same as that for the
laminar wave, but the jump width becomes signifi-
cantly smaller than that of the magnetic field strength.
The potential jump takes place at the front end, where
the magnetic field strength is amost equal to that
behind the front. On the scale of the potentia jump
(whichisonthe order of the Debyeradiusd ~ vyg/,e),
the magnetic field remains virtually constant and the
jump isreferred to asisomagnetic 8, 9, 15]. For atur-
bulent MSSW with a jump width of d ~ vyg/wy,e, the
parameter

R=Mu’/edB
is determined by the relationship
R DMiL%

V1eWpe
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Under the assumptions made above for the galactic
plasma,

Weel Wpe LV 1elC,

we obtain that
R O,

Thus, in aturbulent MSSW (M, > 3) propagating in a
galactic plasma, the regime of prolonged acceleration
for ions can berealized provided that the potential jump
width is sufficiently small:

2
d <MAV e/ Wpe.

An analysis of the data of |aboratory and satellite mea-
surements[9, 15] allows usto conclude that such small
width of the isomagnetic potential jump is quite possi-
ble for MSSWsiin practice.

3. CALCULATION OF THE DENSITY
OF CHARGED PARTICLES TRAPPED
BY A WAVE

Now we will estimate the density of charged parti-
clestrapped into the potential well of awave. Assuming
that the particles are trapped from a plasma, the density
of such particles in the laboratory frame is determined
by the density of particlesmovingintheplasmaat aveloc-
ity closeto thewave velocity. Now wewill separately con-
sider the trapping of plasma eectrons and ions, assuming
that their velocities are distributed according to the
Maxwell law.

First, let us consider the conditions for trapping
electrons from the plasma. The density of electrons n;
trapped by anonlinear plasma wave obeys the relation-
ship

Ny O noexp{—(y¢ —1)/84 . )

As is seen, a considerable proportion of electrons can
be trapped by awave only in anonrelativistic case, that
is, for y; — 1 ~ 6,. According to relationships (1), a pro-
longed acceleration regimein this case is till possible.
Thus, a relativistic wave is characterized by a maxi-
mum accelerating field at an amost zero density of
electrons, while a nonrelativistic wave may trap alarge
density of electrons but provides for alow acceleration
rate. The main conclusion from this analysis is that,
provided relationship (1) is satisfied, an electron con-
centration observed in cosmic rays (n, ~ 102 cm3) can
be ensured by the partial resonance trapping of elec-
trons from the galactic plasma into a nonrelativistic
plasmawave.

Let us determine the density of trapped ions. Evi-
dently, the proportion of ions trapped from plasmaby a
nonlinear plasmawave is negligibly small. Indeed, this
density isdetermined by formula (2), where the exponent
is M/m times greater than that in the case of eectrons
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because the 6, value has to be replaced by 6, = T/(Mc?),
which is M/mtimes smaller than ..

In order to find the density of ions trapped from
plasma by a quasitransverse MSSW, we might use the
results reported in [8], where the n; value was calcu-
lated as a function of the electric field strength at the
potential jump, the potential amplitude, the tempera-
ture, and the mass of ions incident onto the shock wave
front. However, we will restrict the consideration to
obtaining rough estimates of the density of trapped ions
using the formula

n; O nyexp{ —Mu*/2T} .

Asisseen, then;/ny ratio isdetermined primarily by the
exponent Mu?/ 2T. For a galactic plasma, this value can
be written as

M2 MABS
2T~ 8mn,T

which shows that the density of ions in a laminar
MSSW (L, < 3) provides for an ion density observed
in the cosmic rays (n; ~ 107° cm~3). The same conclu-
sion would be obtained based on the results of a stricter
analysis [8]. Using the above formula to estimate the
density of particles for aturbulent MSSWs (UL, > 3), we
establish that the observed ion density can be provided
for waves with the Mach number below 5.

In the Galaxy, the wave may trap particles both from
the plasma and from galactic cosmic rays. Evidently,
the latter implies trapping by relativistic plasmawaves.
Let us evaluate the density of trapped particles in this
caseaswell. Asisknown [1, 2], the energy distribution
function of cosmic raysin the laboratory frame can be
written as

O,

K(k=1) _ K(k=1)

f =
(v) T

c(ymc?)"

where K is a proportionality factor [particles/(cm? s )],
k is the exponent, € is the energy, y = é/m.c? is the
dimensionless energy, and m, is the mass of particles
(electrons or ions).

Apparently, in the wave frame all particles which
move at velocities sufficiently close to zero will be
trapped. Based on the results obtained previously [10],
the scatter in dimensionless energy inthecaseof 1< R
< 2 and eZd,/(m.c?) > 1 (Z is the charge number) may
be limited by two characteristic quantities: (i) Ay ~ 1
(rest particle energy) and (ii) Ay ~ y; (energy of particles
moving at a wave velocity). In the former case, the
dimensionless momentum of trapped particles varies
between zero and p, = £1 (accordingly, the dimension-

less energy y varies from 1 to ./2). By the same token,
in the latter case, the momentum varies from zero to
p, = By and the energy, fromy =110 ;.
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In the laboratory frame, the dimensionless energy
variesfromy=y;/2to0 2.5y; intheformer caseand from

y=1to y? in the latter case. Accordingly, the density

of trapped particles in the laboratory frame in the
former caseis

2.5y

nTl I dy

vi/2

K(k=1) _ K

(k-1)’

o o

and that in the latter caseis

nT2~Id

The n#z value is comparable with the density of the

corresponding component observed in the cosmic rays.
Although the probability of trapping such alarge num-
ber of particlesin the wave is evidently small, we will
consider thisvalue as limiting.

Thus, the above analysis reveal ed that the number of
electrons trapped by a nonrelativistic plasma wave
from the galactic plasma in the regime of prolonged
acceleration is sufficient to provide for the density of
electrons observed in the cosmic rays. The necessary
amount of ions can be trapped in the MSSW fronts at a
Mach number not exceeding 5. The regime of pro-
longed acceleration can be realized only for turbulent
MSSWs in the interval 3 < Jl, < 5. For a relativistic
plasma wave, the number of particles (both electrons
and ions) trapped from the galactic plasmais negligibly
small. In this case, however, the particles can be
trapped from cosmic rays. A wave of sufficiently large
amplitude can trap a considerable amount of particles
from this source.

K(k 1)

4. POSSIBLE FACTORS LIMITING
THE PARTICLE ACCELERATION TIME

For any process of particle acceleration, an impor-
tant role is played by theinitial stage usually involving
the so-called injection problem [1, 2]. We all demon-
strate that, in the case of particle acceleration by the
surfatron mechanism, the rate of energy gainis so high
that the acceleration proceeds in the injectionless mode
(i.e., the injection problem is completely eliminated).
Let us compare the rate of energy gain by particles
involved in the surfing processto the rate of energy 1oss
by accelerated particles for the ionization and collision
events. The maximum level of energy lossestakes place
in the nonrelativistic energy range (for protons in the
atomic hydrogen medium, €, = 60 keV [1]). The max-
imum loss in the gas medium can be expressed as[1]

2.2 2
ane’ nOZ Zeoope

W, = ©)

myv v
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where n, isthe gas density and v isthe velocity of ions

with the charge number Z (for protons, v = 3 x 108
cm/s). In afully ionized gas, the velocity v in formula
(3) hasto bereplaced by v [1].

Let us determine the ratio of W, to the rate Ws of
energy gain by surfing. In the nonrelativistic case (y; =
1), the latter value obeys the relationship

Ws = eZE,v = eZB,uv/c.

Taking into account that, for an electron temperaturein
therange T, ~ 10-100 eV the particle velocity is on the
order of v ~ vg, we obtain for the W, /Wgratio

252 2 2 3
W, _ €Zwp _ wiemc’€BycZ
Ws ~ ezBuvZ. i Temict U
2
@ ZBo_ Z B
weeBePEe  BOIE.

Here, E, = e/} isthe electric field generated by an dlec-

tron at adistance of r, from its center, wherer, = €/(mc?)
is the classical electron radius. Since the E, value is
extremely large (E, ~ 10* CGSE units), the above ratio
for the galactic plasmais significantly lower than unity
in the entire range of parameters 3, 6, charge numbers Z,
and magnetic field strengths B,

Now let us analyze the possible factors that can
hinder the theoretically unlimited growth in the energy
of particles trapped in the potential wave and acceler-
ated by the surfatron mechanism. The first circum-
stance is the finite size of aregion in which the plasma
wave may spread in areal case. The second factor isthe
radiative loss of energy by the accelerated particles.
The third reason is the wave damping as a result of the
energy loss for the acceleration of charged particles.

L et us consider the particle energy limitation related
to finite dimensions of the region of wave spreading. In
the surfatron mechanism, aparticleis accelerated in the
direction perpendicular to the wave propagation, while
the particleistrapped and carried by the wave. Thus, in
the laboratory frame, the particle performs a two-
dimensional motion by (i) drifting with the wave in the
propagation direction and (ii) shifting in the transverse
direction due to the acceleration by surfing. For a non-
relativistic velocity, the transverse wave size is more
important [6, 8, 9]. This is related to the fact that the
particle velocity in the transverse direction may rapidly
exceed the wave propagation vel ocity; therefore, apro-
longed acceleration will only be possible provided that
the transverse size of aregion occupied by the waveis
greater than the longitudinal size. Here, it would be
expedient to recall a conclusion madein [6], according
to which restrictions related to the transverse wave size
can be removed to a certain extent for a sufficiently
high curvature of the potential wave front.
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For arelativistic wave, the path traveled by aparticle
in the transverse direction in the laboratory frame is
smaller than the longitudinal distance traveled with the
wave. Indeed, for an immobile observer (occurring in
the laboratory frame), a wave propagating at a velocity
of u=cfor atimet would cover adistance of L, = ut =
ct. Passing to the wave frame and assuming that the par-
ticle accelerated by surfing has reached a relativistic
stage, we obtain for the particle velocity components

vy=0, vy=c.

In the wave frame, according to the Lorentz transfor-
mation, the corresponding time interval amounts to
tw = t/y;. During the time ty, the particle in the wave
framewould travel inthetransverse direction adistance
of L, = cty. According to the Lorentz transformation
rules, the transverse path observed in both frames must
be the same. Thisimplies that, in the laboratory frame,
the particletravelsadistance of L, = ct/y; = L,/y;, which
isy; times shorter than L,.

Now let us estimate the energy of a particle trapped
by a nonlinear wave and accelerated due to surfing for
atime t during which the wave travels a distance of
L, = ut. Therate of the energy gain by the particle must
be the samein both frames, but the expression issim-
pler in the wave frame, where this rate is eZEv,
(E, = BB = ByiBy, By being the magnetic field strength
in the laboratory frame). As was demonstrated in [10],
the velocity v, of atrapped particle accelerated by surf-
ing approaches within a short time (on the order of a
cyclotron period) the speed of light. Putting v, = cin
the above expression, we obtained that the energy
gained by the particle for thetimetis

€ = eZBy;Byct. 4

In the case of anonrel ativistic plasmawave and qua-
sitransverse M SSWs propagating in the gal actic plasma
at a nonrelativistic velocity, the particle acceleration
timewill berestricted (see above) by thetransverse sys-
temsizel, = ct. Using Eq. (4) withy; = 1, we obtain for
the corresponding particle energy

€ =~ eZPB,L,, (5)

whereL, = L,c/lu> L,.

For arelativigtic plasmawave (B = 1), the accelera
tion time is limited by the longitudinal size L, = ct. In
this case, Eq. (4) yields

€ = 107ZyByL,, (6)

where B, isexpressed in oersteds (Oe), L, in parsecs (pc),
and € in electronvolts (eV). Here, a particle in the rela
tivistic wave will shift in the transverse (acceleration)
direction by adistancethat isy; times shorter than L.

Thus, the maximum energies of particles acceler-
ated by surfing across the nonlinear plasma waves can
belimited asaresult of afinite size of the region featur-
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ing favorable wave propagation conditions. For alimit-
ing energy gained during acceleration in anonrelativis-
tic wave, the most critical parameter is the transverse
sizeL, given by formula(5). For arelativistic wave, the
maximum energy is limited mostly by the longitudinal
size L, of the possible wave propagation region
described by formula (6).

A part of the energy of particles accelerated by surf-
ing up to relativistic and ultrarelativistic velocities is
spent for radiation. We will consider the energy lost by
accelerated particles for the radiation of three types.
The first radiation is related to the surfatron accelera
tion process as such. Asis known [2, 4-11], a particle
in the course of surfing moves (in the wave frame) pre-
dominantly in a constant homogeneous €electric field
E, = uBlc = ByB,. Indeed, an idedly trapped particle
reaching the relativistic or ultrarelativistic acceleration
stage is subject in thisframeto no forces other than that
of the electric field E,. The constant power of radiation
due to the surfatron acceleration of the particle in the
constant homogeneous electric field is[10]

4 42
_Z¢€eE

2 3"
m-c

We

Since the radiation power is inversely proportional to
the squared particle mass, a significant role in practice
is played only by the acceleration of electrons, so that
wemay putm =mandZ=1.

Let us estimate the ratio of the radiation power W
to the rate W of the energy gain for electrons acceler-
ated by surfing in a plasma wave. Assuming the veloc-
ity components of trapped electrons to be v, = 0 and
vy = ¢ [10], we obtain Ws = eE,c. Therefore, the radi-
ated to gained power ratio is

We _ €E) _

Bo
Ws  mic Py Ee
For the parameters 3, y; and the B, values employed,
the power radiated by accelerated electrons in the Gal-
axy is negligibly small as compared to the rate of
energy gain. Thus, the radiation from electrons (and the
more so from ions) accelerated by surfing in the electric
field E, can be ignored.

The absence of the effect of a magnetic field on the
ideally trapped particles accelerated by the surfatron
mechanism leads to an important conclusion that this
process is not accompanied by synchrotron (magnetic
bremsstrahlung) radiation from electrons. Asis known
[1, 2], the main part of cosmic radiation in the RF range
is due to cosmic rays, the major contribution being due
to the synchrotron radiation of relativistic eectrons mov-
ing in the galactic magnetic fields. It was suggested [3]
that electronsin the Galaxy, losing energy for the synchro-
tron radiation, cannot gain energies exceeding 10% eV. It
appears that eectrons experiencing acceleration by the
surfatron mechanism generate, despite the presence of a
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magnetic field, no synchrotron radiation and, hence, are
not subject to thisrestriction. Indeed, €l ectronsaccelerated
by surfing may, in principle, acquire an arbitrarily high
energy on moving across the magnetic field with the
wave. These electrons produce no synchrotron radiat-
ing aslong asthey are trapped in the wave.

Another possible radiation from particlesmoving in
a plasma medium is related to their retardation as a
result of the wave excitation in the plasma[14]. Let us
estimate the energy loss for a plasma wave observed
from the laboratory frame. As above, we will consider
astationary stage of the surfing process and assume the
particle velocity to be close to the speed of light.

According to [14], the power Wi, of the radiation of
this type for particles with amass m. > mis described
by aformula similar to Eg. (3):

4mn,Z%€* Z’ew;
Wy = =022 np = S22,
Here A = mc%/hw,. and it is assumed that the particle

velocity obeys the requirements
v >Ze’lf =22 x 10° cr/s.

Note that the latter formula can be used only for elec-
tronswith v = c[14].

Let us estimate the ratio of the radiation power Wy
to the rate W5 of the particle energy gain during surfing
in aplasmawave. For the particles with v = ¢, the radi-
ated to gained power ratio is

V> Vg,

Wy Z°€ W), Zew},
— = > InA\ = 2In/\
WS ZeEyC Byf Boc
2
w,.B
= i%_(”n/\
BVf (oY Ee

For the plasma parameters employed, this ratio is neg-
ligibly small because InA < 100. Thus, the particle
retardation as a result of the wave emission during
motion in the plasma can be ignored as well.

In the Galaxy, relativistic electrons may lose energy
as a result of the scattering on photons, which is
referred to as Compton energy losses [1, 2, 16]. The
powers of synchrotron and Compton radiation in the
Galaxy are proportional to the squared particle energy
and exhibit comparablevaluesfor electron energiesbelow
én ~ 10 eV [1,2, 6]. Above the €,,, level, the Compton
losses cease to depend on the energy and remain virtually
constant [16].

As above, let us compare the power of Compton
radiation to the rate of the particle energy gain due to
the surfatron acceleration process. According to [1, 2,
16], for € < €, the rate of Compton energy losses is
~10716€2 GeV/s (€ is the eectron energy in GeV). The
ratio of therate of energy losses as aresult of the Comp-
ton scattering under conditions typical of the Galaxy
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(Bp=3x10°0e, €,,~10°GeV, y; > 1) to therate of
the electron energy gain due to acceleration is negligi-
bly small. Therefore, we may neglect the Compton
energy lossesfor electrons accelerated by surfing in the
relativistic plasma waves.

Thus, we come to a conclusion that the energy
losses related to the main three types of radiation gen-
erated by particles accelerated according to the surfa-
tron mechanism can be ignored.

Finally, let us evaluate the energy limitation as a
result of the wave damping caused by the trapped parti-
cles. Since we are speaking of the maximum energies, we
will consider the case of particlestrapped by ardativigtic
wave. As was demonstrated in Section 3, this can take
place only for particlesin the cosmic rays. The relativ-
istic plasma wave damping can be roughly estimated
using the relationship

d(E’] 2/ dy\ _

It + 8mim,c <an¥> =0,
whereT = eByt/m,cisthe dimensionlesstime; the angle
brackets denote averaging with respect to the wave-
length A = U/wy,. Taking into account that, in therelativis-
tic stage (B =1), the energy in the laboratory frameis

Y= YiBT=y(T,

and, hence,
dy/dt =vyy,
we obtain
Ch.dy/dtl=y ; Ohyd

The wavelength-averaged density [hLlis rather dif-
ficult to evaluate because all the trapped particles accel-
erated by surfing tend to gather at a specia point in the
potential profile, in which the strengths of dectric and
magnetic fields are equal E, = B (in the wave frame) [10].
In arough approximation based on athorough analysis of
the surfing process performed in [10], we may take

Ch{Tn=0x/A,

where nisthe density of particlesin anegligibly small
vicinity ox of the special point. The dx/A ratio can be
estimated using the relationship

OX/IA O(R-1)/R,
where R= 1 (optimum surfing regime) and, hence,
ox/\ O(R-1)/R< 1.

Note that R — 1 at least in the course of the wave
damping, since we are considering a final stage of the
electric field decay in which the particles “fall out” of
the potential well [4, 10]. Taking for simplicity

(R—1)/R< 1/8m,
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we obtain an expression for the limiting energy
€m= E2/N.
Since E, = B = y; By, wefinaly arrive at
€= (v:Bo)’In.

Assuming that the trapped particle density n is compara
ble with that observed in cosmic rays (n ~ 102°cmr®) and
substituting B, = 3 x 10 Oe and y; ~ 10>-10%, we obtain
an esimate for the limiting energy €é,,, ~ 10°°-10% eV.
This estimate shows that, even when a greater part of
the particles from cosmic rays are trapped in a plasma
wave, the particles may gain an energy up to 10™° with
an alowance for the wave damping. Apparently, a
much lower fraction of particles are usually trapped
and, hence, the wave damping does not prevent parti-
clesfrom acquiring a still greater energy.

We did not consider some other factors that may
restrict the time or reduce the efficiency of the acceler-
ation process. These may include the nuclear and pho-
tonuclear interactions of the ion component of cosmic
rays with an interstellar medium, the nuclear fragmenta-
tion processes, the presence of a nonzero angle between
thewave propagation direction and the magnetic field vec-
tor (obliqguewave) [9], thewavefront deviation from plane
geometry (thesefactorswere partly considered in [6]), the
effect of inhomogeneity in the plasma density and mag-
netic field strength distribution, the ingtability of the
plasma—nonlinear wave—accel erated article system, etc.

5. ESTIMATES OF THE PARTICLE ENERGY
GAINED BY SURFING

In order to provide for optimum surfing conditions, the
nonlinear plasmawaves in the Galaxy must be capable of
spreading over sufficiently extended regions with a quasi-
homogeneous magnetic field. It was suggested [1] that
such regions may exist in the spira arms of the Gaaxy.
The magnetic field must be quasihomogeneous upon
large-scale averaging. The spatial dimensions of mag-
netic fieldsin the spiral arms are comparableto the size
of these arms, with a thickness of 200-500 pc and a
length on the order of 10°*-10* pc.

Now let us estimate the energy the particles may
acquire as aresult of acceleration by the surfatron mecha-
nism in various regions of the Galaxy. First, consder the
particles accelerated in a stellar atmosphere (exemplified
by the chromosphere of the Sun). The acceleration of pro-
tons by surfing in the chromospheric plasma was consid-
ered in detail previoudy [9]. It was established that pro-
tons trapped in a turbulent MSSW with an isomagnetic
potential jump may acquire an energy on the order of
10 GeV, while the energy gained in a laminar MSSW
may be on the order of 10 MeV. By the same token, one
may readily check that energies of the same order can
be gained by protons accelerated by surfing in interstel-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

KICHIGIN

lar MSSWs propagating in the solar system (i.e., in the
solar wind plasma).

Let us consider the acceleration of electronsinacir-
cumsolar plasma by means of surfing in anonrelaivistic
plasmawave. Subgtituting typica parameters of the chro-
mospheric plasma (3, = 10 Oe,  ~ 1072, L, ~ 10° cm) or
the solar wind (B, = 10 Oe, B ~ 102, L, ~ 10 AU ~
10 cm) into formula (5), we obtain a value on the
order of € ~ 10'° eV for the energy of electrons accel-
erated by surfing in nonrelativistic plasmawavesin the
vicinity of the Sun.

Thus, charged particles in the circumsolar plasma
can be accelerated by surfing up to an energy on the
order of 10 GeV/nucleon. As was pointed out in [1], a
product of the characteristic scale by the magnetic field
entering into formulas (4)—6) for some other stars may
be greater by three orders of magnitude. Therefore, we
may concludethat particles accel erated by the surfatron
mechanism in a stellar atmosphere may gain an energy
of up to 102 eV/nucleon.

Note that a source of the stellar cosmic rays are par-
ticles originating deep in the stars and then leaving
them to be accelerated in the solar plasma atmosphere
from thermal to relativistic energies as a result of surf-
ing across the nonlinear waves generated by flares or
other powerful perturbationsin the circumsolar plasma.
Subsequently, these high-energy particles may be car-
ried out to the interstellar space: electrons, by nonrela-
tivistic plasma waves and ions, by magnetosonic shock
waves.

Let us estimate the energies of electrons and ions
trapped from interstellar plasma and accelerated in
nonrelativistic nonlinear waves (y; = 1) propagatingin a
plasma of the galactic disk. As was demonstrated in Sec-
tion 3, dectrons of the interstellar plasma can be aso
trapped in this system and accelerated in the plasma
waves. Substituting the corresponding parameters (B, =
3x10°0e, B ~ 1072 L, ~ 100 pc ~ 10® cm) into for-
mula (5), we estimate the electron energy at € ~ 10 eV.

As was demonstrated in Section 3, the ions may be
trapped in a sufficient amount by MSSWs with the
Mach numbers below 5. In alaminar MSSW (il < 3),
a small proportion of ions continuously incident onto
the wave front are also trapped and accelerated to an
energy of € = é4(M/m) [13]. For example, a shock
wave with M, = 2 and T ~ 100 eV in the interstellar
plasma accel erates protons up to an energy of

€ = MU’ (M/m) = MAT/(8Tn, T/BZ)(M/m)
= MAT(M/m) = 1 MeV.

Upon a prolonged acceleration by surfing in aturbulent
MSSW (for 3 < ., < 5), alimiting energy of protonsin
the intergtellar plasma can be estimated by formula (5).
Taking A, =5, ng=3x 103 cm and the typical values
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of By=3x10°0e, B = Mpvp/c=2%x 103 and L, ~
100 pc = 3 x 10?° cm into formula (5), we estimate the
ion energy at € = 10% eV.

Thus, the charged particles trapped by nonrelativis-
tic nonlinear waves from the galactic plasma can be
accelerated by surfing in the Galaxy up to an energy of
€ ~ 10% eV/nucleon in the stellar atmospheres and up
to ‘€ ~ 10% eV/nucleon in the galactic disk.

Acceleration of these particles to still higher ener-
gies can be provided only by the relativistic plasma
waves (y; > 1). To thisend, particles acquiring relativistic
energies as described above must be trapped again by rel-
ativigtic plasmawaves and continue gaining energy in the
new stage of surfing. Thus, we conclude that cosmic rays
may acquire large energies (€ > 10% eV/nucleon) only
upon several stages of the surfatron acceleration. We
may suggest that the acceleration of particles proceeds
in most cases in two stages. In the first stage, ions and
electrons are trapped by nonrelativistic waves from the
galactic plasma and accelerated by surfing to relativis-
tic energies. In the second stage, these particles con-
tinue gaining energy by surfing in arelativistic plasma
wave.

We believe that nonlinear plasma waves continu-
ously appear in the Galaxy and most probably possess
isotropic directions and a sufficiently broad range of
velocities. Under these conditions, particlestrapped in and
then lost from one wave may be resonantly trapped by
another (newly created) nonlinear wave movingin afavor-
able direction a an appropriate velocity. Thisacceleration
process can be multiply repeated in a*“relay” mode.

Notethat, on leaving atrapping wave, particleswill be
held by a magnetic field within a certain region deter-
mined by their Larmor radius. Then the particlesare either
trapped by another appropriate relativistic plasmawave so
as to continue gaining the energy, or they lose the previ-
oudly acquired energy viavarious channels. Apparently, in
the interruptions between acceleration stages, the energy
ismorerapidly lost by relativistic and ultrarel ativistic el ec-
trons. Indeed, such particles moving in the galactic mag-
netic field will intensively lose energy by producing syn-
chrotron radiation.

Let us estimate the energies gained by particles
accelerated in the second stage of surfing in arelativis-
tic plasma wave propagating over a distance character-
istic of the Galaxy. Substituting a magnetic field
strength of By = 3 x 10 Oe and a characteristic size
comparable with the gdlactic disk dimensions L, = 300 pc
into formula (6), we obtain for y; = 10-10* an estimate

of € = 3Z(10%-10%) eV. Therefore, the proposed
mechanism of the charged particle acceleration by the
surfatron mechanism provides an explanation for the
formation of a high-energy part of the spectrum of cos-
mic rays observed in the Galaxy.

Thus, upon considering the formation of the energy
spectrum of cosmic rayswe may conclude that the whole
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spectrumisformed in two stages. Inthefirst stage, the par-
ticlesof interstellar plasmabedonging to afar “tail” part of
the Maxwdl| distribution function are trapped by nonrela
tivistic waves and accelerated by surfing in an injection-
less mode up to an energy of € ~ 10% eV. In the second
stage, these particles are trapped by relativisic plasma
waves and continue gaining energy by surfing up to
€ ~ 10%° eV. Here, anoteworthy fact is that the bound-
ary energy of € ~ 10% eV separating the two stages
falls within the region of inflection in the energy spec-
trum of cosmic rays, after which the spectrum slope
becomes steeper [2].

An important question concerning the shape of the
energy spectrum of cosmic rays requires specia anaysis.
However, preliminary conclusions formulated in [4] sug-
gest that the differential energy spectrum corresponding to
the surfatron accel eration mechanismis described by a
power law with the exponent k = 3 close to that
observed in experiment.

6. FINAL REMARKS
AND PRINCIPAL CONCLUSIONS

The results of this investigation of the process of
surfatron acceleration of particles showed that many
problems related to the acceleration of cosmic raysin
the Galaxy can be solved within the framework of this
mechanism. First, the charged particles are trapped by
plasma waves directly from the galactic plasma at an
amount sufficient to provide for the observed density of
cosmic rays in the Galaxy. Second, the same mecha-
nism may account for the injectionless particle acceler-
ation from thermal energiesin the plasmato alimiting
energy in the cosmic rays. Third, there are no principal
differences in the acceleration of various charged parti-
cles: both eectrons and nuclei are accelerated inasimilar
manner to the same limiting energies (per unit charge).
Since the particles are trapped by a wave in a resonant
manner and the acceleration rate is constant, there is no
danger for complex nuclei to break in the course of accel-
eration. Findly, according to the results obtained in [4],
the differentia energy spectrum of cosmic rays corre-
sponding to the surfatron acceleration mechanism is
close to that observed in experiment (a power law with
an exponent closeto k = 3).

Thus, summarizing the results of this investigation
we may conclude the following:

1. The main source of cosmic raysis represented by
the interstellar plasma. The cosmic rays formed in the
plasma atmospheres of stars are partly carried away by
nonlinear waves into the interstellar medium. Within
the framework of the surfatron acceleration mecha-
nism, a problem concerning the primary or secondary
origination of the electron component in the cosmic
rays[1] is solved in favor of the primary electrons.

2. The high-energy part of the spectrum of cosmic rays
in the Galaxy isformed in two stages. In the first stage, a
small part of the charged particles of the galactic plasma
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are trapped by nonreativistic nonlinear waves and accel-
erated by the surfatron mechanism from therma energies
to an energy of ‘€ ~ 10'2 eV/nucleon in star atmospheres
or up to € ~ 10% eV/nucleon in the gaactic disk. In the
second stage, these particles can be trapped by relativis-
tic plasma waves and continue gaining energy by surf-
ing up to € ~ 10%-10"° eV/nucleon. A remarkable fact
is that the boundary energy separating the two stages
falls within the region of inflection in the energy spec-
trum of cosmic rays[2].

3. The maximum energy of particles accelerated by
surfing in the nonlinear plasma waves is limited by
dimensions of the region of wave propagation. During
the surfatron acceleration, the energy losses of relativ-
istic particles related to the known radiation types and
the damping of nonlinear weaves as a result of the
energy being spent for the acceleration of particles can
be ignored in the first approximation.

4. The surfatron accel eration is not accompanied by
the synchrotron radiation, which is the most effective
channel of energy loss for the accelerated relativistic
particles. For this reason, electrons (as well as nuclei)
inthe Galaxy can be accelerated by the surfatron mech-
anism up to an energy of € ~ 10%° eV.
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Abstract—We discuss the interpretation of the non-Abelian Stokes theorem for the Wilson loop in the Yang—
Mills theory. For the “gravitational Wilson loops,” i.e., holonomiesin curved d = 2, 3, 4 spaces, we then derive
“non-Abelian Stokestheorems’ that are similar to our formulain theYang—Millstheory. In particular, we derive
an elegant formulafor the holonomy in the case of a constant-curvature background in three dimensions and a
formulafor small-arealoopsin any number of dimensions. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

One of the main objects in the Yang—Mills theory
and in gravity is the parallel transporter along closed
contours, or the holonomy. In the Yang—Mills theory, it
is conventionally called the Wilson loop; it can be writ-
ten as a path-ordered exponential

W, = TrPexpEde AT%, 1)

d(r)

where x*(t) with 0 < T < 1 parametrizes the closed con-

tour, Af} isthe Yang—Millsfield (or connection), and T2

are the gauge group generators in a given representa-
tion r whose dimension is d(r). For d-dimensional vec-
tors in curved Riemannian spaces, the “gravitational
Wilson loop,” or holonomy, can also be written as a
trace of the path-ordered exponential of the connection
given by the Christoffel symbol,

1 dx" - "
W, = a[Pexpg—fdra-T—rﬂ . @

One can also consider parallel transporters of spinorsin
acurved background: the holonomy is then defined not
by the Christoffel symbols, but by the spin connection
(see the precise definitions bel ow).

The Yang-Mills Wilson loop is invariant under
gauge transformations of the background field A; the
gravitational Wilson loop is invariant under general
coordinate transformations, or diffeomorphisms, pro-
vided the contour is transformed as well.

T This article was submitted by the authorsin English.

Itisgeneraly believed that, in three and four dimen-
sions, the average of the Wilson loop in pure Yang—
Mills quantum theory exhibitsthe arealaw behavior for
large and simple (e.g., flat rectangular) contours. This
must be true not for al representations, but only those
with a nonzero “N-ality”; in the simplest case of the
U(2) gauge group, these are the representations with a
half-integer spin J.

One of thedifficultiesin proving the arealaw for the
Wilson loop is that it is a complicated object by itself:
it isimpossible to compute it analytically in a general
non-Abelian background field, not to mention averag-
ing it over an ensemble of configurations.

A decade ago, we suggested a formula for the Wil-
son loop in agiven background belonging to any gauge
group and any representation [1]. In this formula, the
path ordering along the loop is removed at the price of
an additional integration over al gauge transformations
of the given non-Abelian background field, or more
precisely, over a coset depending on the particular rep-
resentation in which the Wilson loop is considered.
Furthermore, the Wilson loop can be presented in the
form of a surface integral [2], see the next section. We
call this representation the non-Abelian Stokes theo-
rem. It isquite different from previousinteresting state-
ments[3-6] that wered so referred to asthe “ non-Abelian
Stokes theorem,” but which involved surface ordering.
Our formula has no surface ordering. A classfication of
“non-Abdian Stokes theorems’ for arbitrary groups and
their representations was recently given by Kondo et al.
[7] who used the naturaly arising techniques of flag
manifolds.

Although these formulas do not usualy facilitate
finding Wilson loops in particular backgrounds, they
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can be used in averaging Wilson loops over ensembles
of Yang—Mills configurations or over different metrics,
and in more general settings, see, e.g., [7-11].

The main aim of this paper isto present new formu-
las for the gravitational holonomiesincurvedd =2, 3, 4
spaces; these formulas are similar to our non-Abelian
Stokes theorem for the Yang—Mills case. We get rid of
the path ordering in Eq. (2) and write the holonomies as
exponentials of surface integrals. Instead of the path
ordering, we have to integrate over certain covariantly
unit vectors (for d = 3) or covariantly unit (anti)self-
dual tensors (for d = 4). Remarkably, these formulas put
parallel transporters of different spinson the samefoot-
ing. In particular, holonomies for half-integer spins are
presented in terms of the metric tensor (and its deriva
tives) only, but not in terms of the vierbein or the spin
connection.

In addition to a purely theoretical interest, we have
apractical motivation in mind. Recently, it was shown,
both on the lattice [13, 14] and in the continuum [12, 13],
that the SU(2) Yang-Mills partition functionind = 3 can
be exactly rewritten in terms of loca gauge-invariant
quantities given by the six components of the dual space
metric tensor. Thisrewriting can beuseful ininvestigating
the spectrum and the correlation functions of the theory
directly in a gauge-invariant way, but it is insufficient
for studying the interactions of external sources
because these couple to the Yang—Mills potential and
not to gauge-invariant quantities. The present paper
demonstrates, however, that a typical source, i.e., the
Yang-Mills Wilson loop, can be expressed not only
through the potential (or connection) but also through
the metric tensor, which is gauge-invariant. Thus, not
only the partition function, but also the Wilson loops in
the d = 3 Yang—Mills theory can be expressed through
local gauge-invariant quantities. A detailed formulation
of the resulting theory is given elsewhere.

Although the main content of the paper is the non-
Abelian Stokes theorems for holonomies in 3 and 4
dimensions, we add three short sections with relevant
material. For completeness, we add the Stokes theorem
in two dimensions, compute the holonomy in the spe-
cial case of a constant curvature with a cylinder topol-
ogy inthree dimensions, and give ageneral formulafor
the “gravitational Wilson loop” for small loops in any
number of dimensions.

2. NON-ABELIAN STOKES THEOREM
IN THE YANG-MILLS THEORY

Let T parametrize the loop defined by the trgjectory
x#(t) and let A(t) be the tangent component of the
Yang—Millsfield aong theloop in the fundamental rep-
resentation of the gauge group,

_ Al aqu a _ 1. ab
AT = A=, Tt t?) = 557
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Gauge transformations of A(T) are given by
AD) — SDADS' M +ISHESM). @)

Let H; be the Cartan subalgebra generators (i =
1, ..., r, wherer istherank of the gauge group) and the
r-dimensional vector m be the highest weight of the
representation r in which theWilson loop is considered.
The formulafor the Wilson loop derived in [1] isa path
integral over all gauge transformations 1) that are
periodic along the contour:

W, = IDS(T)

. (4)
X exp(iIdTTr[miHi(SAS_l +isS ).

We stress that Eg. (4) is manifestly gauge invariant,
as isthe Wilson loop itself. For example, in the simple
case of the SU(2) group, Eq. (4) becomes

W, = IDS(T)

_ ®)
x (I3[t Tr[ry(SAS +isS))),

where 15 isthe third Pauli matrix and J=1/2, 1, 3/2, ...
is the “spin” of the representation of the Wilson loop
considered.

The path integrals over al gauge rotations in Egs. (4)
and (5) are not of the Feynman type: they do not contain
terms quadratic in the derivativesin 1. Therefore, a cer-
tain regul arization of these integralsisimplied ensuring
that 1) is sufficiently smooth. For example, one can

introduce quadratic termsin the angular velocitiesi ss'
with small coefficients eventually set equal to zero; see
[1] for details. Equation (5) was derived in [1] in two
independent ways: (i) by adirect discretization and (ii)
by using the standard Feynman representation of path
integrals as a sum over al intermediate states, in this
case for the axial top supplemented by an action of the
“Wess—Zumino” type. Another discretization leading
to the same result was recently used by Kondo [7].
A similar formulahas been used by Alekseev, Faddeev,
and Shatashvili [16] in deriving a formula for group
characters to which the Wilson loop is reduced ifor a
constant A field (which is the case actually considered
in[16]). In [17], Eq. (4) was rederived in an indepen-
dent way specifically for the fundamental representa-
tion of the SU(N) gauge group. Finally, another deriva-
tion of a variant of Eq. (5) using lattice regularization
was recently givenin [18].

The second term in the exponent in Egs. (4) and (5)
isin fact a “Wess—Zumino”-type action, and it can be
rewritten not as a line but as a surface integral associ-
ated with a closed contour. For simplicity, we consider
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the SU(2) gauge group and parametrize the SU(2)
matrix Sin Eq. (5) by Euler'sangles,

o071

a+vm . B 1;9 =Y

> DeXpE

~
NS

EIEI

<
[

N
O
o

The derivation of Eq. (5) impliesthat 1) isaperiodic
matrix. This meansthat a £ y and (3 are periodic func-
tions of T with the period 41t

The second term in the exponent in Eq. (5), which
we denote by ®, isthen

® = J’dTTr(TsiSST) = [du(dcosp +)
= [etlé(cosB—1) + (& +Y)] ()
= Ide(cosB—l).

The last term is a total derivative and can be actually
dropped because a + y is 4reperiodic, and therefore,
does not contribute to Eq. (5) even for half-integer rep-
resentations J. We note that a can be 2reperiodic if y
(which drops from Eq. (7)) is 21%, 6T%, ...-periodic. If
a(1) = a(0) + 21k, a(t) makes k windings. Theintegra-
tion over al possible a(t) implied in Eqg. (5) can be
divided into distinct sectors with different winding
numbers k.

Introducing a unit 3-vector

1 axt
= =Tr(St°S't
> ( 3) ©)
= (sinBcosa, sinBsina, cosp),
we can rewrite d as
= L rdrdoe®™e, n0.nPa n’
of i amen (©)

i,j =10,

where we integrate over any spanning surface for the
contour (wecall it a“disk”), and n or a and 3 are con-
tinued to the interior of the disk without singularities.
We denote the second coordinate by ¢ such that 0 =1
corresponds to the edge of the disk coinciding with the
contour and o = O corresponds to the center of the disk.
See [14] for the details on the continuation to the inte-
rior of the disk.
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We note that if the surface is closed or infinite, the
right-hand side of Eqg. (9) is the integer topological
charge of the n field on the surface,

Q= Si TJdeTeabCei ;n’a,n°n’. (10)
Equation (9) can also be rewritten in theformthat is

invariant under surface reparameterizations. Introduc-
ing the invariant surface element

2g _ @Ox'9x" _9x'axg_ w
d’S" = dodtHz- 5 - S-S5 = ¢ d(Area), (1)

we can rewrite Eq. (9) as

® = %[dzs*“ea“naaunbavn? (12)
For the Wilson loop, we then obtain [1]
= J’ Dn(o, 1)
(13)

x exp[iJ I dt(A’n®) + I—é—JJ’dzsf“’e""bsnaaunba\,nc}.

The interpretation of this formula is obvious: the
unit vector n plays the role of the instant direction of
the color “spin” in the color space. However, multiplying
its length by J does not guarantee that we deal with atrue
quantum state from the representation labelled by J; thisis
achieved only by introducing the “Wess—Zumino” termin
Eq. (13) that fixes the representation to which the probe
quark of the Wilson loop belongs to be exactly J.

Finally, we can rewritethe exponent in Eg. (13) such
that both terms appear to be surface integrals [2],

W = J'D n(o, 1) (14)

x exp[%] [ (-Fiun + €' (D,n)°(Dun)) |
where

ab _ ab acb pcC
Dy =0,0 +e A,

is the covariant derivative and
Fiy = 0,A5—0,A + € ACA)

isthe field strength. Indeed, expanding the exponent in
Eq. (14) in powers of A, we observe that the quadratic
term cancels while the linear term is a total derivative
reproducing the A?n? term in Eq. (13); the zero-order
term is “Wess—Zumino” term (9) or (7). We note that
both termsin Eq. (14) are explicitly gauge invariant. We
call Eg. (14) the non-Abelian Stokestheorem. We stress
that it isdifferent from the previously proposed Stokes-
like representations of the Wilson loop based on order-
ing elementary surfacesinside theloop [3-6]. For afur-
ther discussion of Eq. (14), see[18].

No. 6 2001



908

We now briefly discuss gauge groups higher than
U(2): for this purpose, we must return to Eq. (4). Itis
valid for any group and any representation, however, its
surface form depends explicitly on the group represen-
tation in which the Wilson loop is considered. Equa-
tion (4) says that one can in fact integrate not over all
gauge transformations Shbut only over those that do not
commute with the combination of Cartan generators
mH;, where m is the highest weight of a given repre-
sentation. In the SU(2) case, one has

J=121232,..,

because SU(2) hasthe rank 1 and thereis only one Car-
tan generator. In the SU(2) case, one therefore inte-
grates over the coset SU(2)/U(1) for any representation;
this coset can be parametrized by the n field as
described above.

For higher groups, there are severa possibilities of
taking cosets: a particular coset depends on the repre-
sentation of the Wilson loop. For example, in the case
where the Wilson loop is in the fundamental represen-
tation of the SU(N) group, the combination mH; is pro-
portiond to one particular generator of the Cartan subal-
gebrathat commuteswith the SU(N—1) x U(1) subgroup.
(For SU(3), this generator is the Gell-Mann Ag matrix
or a permutation of its elements.) For the fundamental
representation of the SU(N) group, the appropriate
coset istherefore given by

SU(N)/SU(N-1)/U(1) = cP"
A possible parametrization of this coset is given by a

complex N-vector u® of the unit length, uf, u“=1.Tobe
specific, the Cartan combination in the fundamental
representation can always be set equal to

mH, =diag(1, 0, ..., 0)

by rotating the axes and subtracting the unit matrix. In
this basis, u® is just the first column of the unitary

matrix S and ug is the first row of S Unitarity of S
implies that

mH; = Jtg,

uu® = 1.
In this parametrization, Eq. (4) can be written as

W = J’DuDuTé(ugua -1)

U
x expiJ’dr%uf,(iDu)guB, (15)
(05 = 0,85 —iAL(t%)g.
Using the identity
Eijai(uTDiu) = Eij[(DiU)T(Dju) + UTDiDiu]
(16)

= Eij[_lz(uTFiju) + (DiU)T(DjU)}
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we can present Eq. (15) in a surface form,
WindV = J’DuDuTé(Iulz ~1)

1
X expEJ’dS“V[%(uTFWU) + i(Dpu)T(DVu)E' o

where F,,, is the field strength in the fundamental rep-
resentation. Equation (17) was first published in [17],
however, with an unexpected overall coefficient 2inthe
exponent. Equation (17) presents the non-Abelian
Stokes theorem for the Wilson loop in the fundamental
representation of SU(N). In the particular case of the
U(2) group, transition to Eq. (14) is achieved by iden-
tifying the unit 3-vector

n® = u! (1))puP,

where
0 B a+y) 0
E cos§ exp E—i —EB
v i g (18)
. B o -y
- sn5eed5 g
2iu’a,u = a(cosp—1) + (& +Y).
It must be mentioned that the quantity
IdodTeijiaiulaju“ = 21Q (19)

appearing in Eq. (17) isthe topological charge of the 2-
dimensional CPN-* model. For closed or infinite sur-
faces, Q isan integer.

In the case where the Wilson loop is taken in the
adjoint representation of the SU(N) gauge group, the
combination mH; in Eq. (4) is the highest root. Only
group elements of the form exp(ia;H;) commute with this
combination (these eements belong to the maximum
torus subgroup U(1)N-1). In the case of the adjoint repre-
sentation, one therefore integrates over the flag manifold

[19, 7]
SU(NY/U@)V ™t = EV

3. “GRAVITATIONAL WILSON LOOPS’

An object similar to the Wilson loop of the Yang—
Millstheory also existsin gravity theory. It isthe paral-
lel transporter of a vector on a Riemannian manifold
along a closed contour, also called a holonomy. The
holonomy is trivia if the space is flat but becomes a
nontrivial functional of the curvatureif it isnonzero. In
the remaining sections, we present new formulas for
the parallel transporterson d = 2, 3, 4 Riemannian man-
ifolds.

We first recall some notation from differential
geometry. We use [20] as ageneral reference book. Let
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Ouw = Gy (L, V =1, ..., d) bethe covariant metric tensor,
with the contravariant tensor g*v being its inverse,

g9’ = 6f1 . The determinant of the covariant metric ten-
sor isdenoted by g. The Christoffel symbol is defined as

MA
FSK = gu)\r)\,\)K = g?(avg)u( +aKg)\V_a)\g\JK)v
o0 (20)

29"
The action of the covariant derivative on a contra-
variant vector is defined as

K _
rVK_

(O v = (8,85 + T V™. (21)

The commutator of two covariant derivatives deter-
mines the Riemann tensor,

[DpDc]; = R;pc = gKK RK')\pc (22)
= 6prg)\ _aor;}\ + rgrrTc)\ - rcKrrr;)\'

A contraction of the Riemann tensor gives the symmet-
ric Ricci tensor,

R)\cr = R;KG’ R; = R;pog)\o- (23)
Its full contraction is the scalar curvature
R = R,g" = R (24)

The paralel transporter of a contravariant vector
along a curve x*(1) is determined by solving the equa-
tion

u
%—’i(mp);w(r) = 0. (25)

The solution can be written using the evolution operator

Vi@ = WOIv'(0), (26)
where v*(0) is the vector at the starting point of the
contour and v(1) is the parallel-transported vector at
the point labelled by 1. The evolution operator can be
symbolically written as a path-ordered exponential of
the Christoffel symbol,

Wes = {Pexp%{dr%ﬁ—“r@l. )

We define the “gravitational Wilson loop” as the
trace of the paralel transporting evolution operator
along the closed curve xH(t) with x#(1) = x#(0),

Wi = SIW(D)]Y (29
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This quantity is diffeomorphism-invariant: the
metric tensor is transformed under coordinate
changes x* — x'"(x), but if the contour is changed, as

XH(T) — XH(x(1)),

the gravitational Wilson loop or the holonomy remains
the same. In this respect, the gravitational holonomy is
different from the Yang—Mills loop which is invariant
under gauge transformations without changing the con-
tour.

The parale transporter of a covariant vector is given
by the transposed matrix; its trace coincides with that of
the matrix used in transporting contravariant vectors.

4. RELATION OF GRAVITY QUANTITIES
TO THOSE OF THE YANG-MILLS THEORY

We now show that the " gravitational Wilsonloop” is
not only analogousto, but directly expressible through,
the Yang-Mills Wilson loops of the SU(2) group. For

this purpose, we introduce the standard vierbein eﬁ and
itsinverse e such that
A _A

€6 = Ouv:
e = g, dete] = Jg.

We decompose the vector experiencing the parallel
transport in vierbeins, v = cAe™, with the reciprocal
decomposition

eﬁeB“ — xAB
(29)

¢t = elv", (30)

and insert this in Eq. (25) defining the paralld trans-
port. We then have

_dxt

0=4r

(Oc’e™

T (3D

[e™a,c" + c*(a,e™ + i e™)]

dx" e«
= 577 (0,87 + o),

where we introduced the spin connection

AB _ BA _ 1 A B B
W, =-Ww, = ée (0,8, —0¢€,)
L

567 (9,60 ~ 0€0)

(32)

~ Zebe e (0,5 ~0,6)

and used the fundamental relations

AB Bk

0, + e = —wiPe™, (33)

AB_B

0,eM - e = —w’er. (34)
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One can introduce the SO(d) “field strength”

Foy = [0, + @, 0, + @]
AC_ CB (35)

AC_ CB
a(o +co W,

= auwv -, W,

related to the Riemann tensor as

ozAB A B _
Jvae €\ = _RK)\pva

@AB AK B)\

pv = RK)\uve € (36)

Fvete® = R.

The above material is common for any number of
dimensions. To proceed further, we consider the cases
whered = 3 and d = 4 separately. The case whered = 2
is considered in Section 6.

41.d=3

In three dimensions, one can immediately identify
the spin connection with the SU(2)-valued Yang—Mills
field as

Aic - _%eabc ;ab.

Working in three dimensions, we denote the Lorentz
indicesby i, j, ... =1, 2, 3 and theflat triade indices by
a, b,...=1 2, 3. Recalling the generatorsin the J =
representation,

(37)

(TC)ab - _iecab [TCTd] - iECdfo
we can rewrite the last parenthesisin Eq. (31) as

(38)

0,8" + & = 9.8 -iA(T) V= (D)™, (39)

which is the standard Yang—Mills covariant derivative in
the adjoint representation. In the fundamental (spinor)
representation, the Yang—Mills covariant derivativeis

a _ c|:p'|] _
(0)g = aiesB i A DzD 66[3+ w [0 O'b]|3,(4o)
alB = 1’21

which coincides with the known expression for the cova
riant derivative in the spinor representation in a curved
space.

The standard Yang—Mills field strength is directly
related to that in EQ. (35),

Fi = 0,AT—0,AM+ " AAS = —%ea‘”%fﬁ (41)
It follows from Eq. (36) that
abC Ijekel = Rukl (42)

We next consider the parallel transporter of a 3-vec-
tor in a curved space, as defined by Eq. (25). In accor-
dance with Egs. (31) and (39), solving Eq. (25) is
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equivalent to solving the Yang—Mills equation for the
parallel transporter,

dx’ ab b _
(D)7 =0, (43)
whose solution is
(1) = [Wy"(@]™c’(0),
(44)

WM™

[Pexpardr AT‘D} ,

where the subscript “1” indicates that the path-ordered
exponential is taken in the J = 1 representation. The
parallel transport of a contravariant vector is therefore
given by

v = An)e*()

= O] O v(0),
which immediately implies the sought relation between
the “gravitational” and Yang—Mills pardld transporters,
WOl = €W 170, (49)

Therelation becomes especially neat for theWilsonloops,
i.e., for thetracesof parale transportersaong closed con-
tours. Because the vierbeins take identical values at the

end points of aclosed contour, €5(1) = e(0), we obtain

Wi = SIWETS =

(45)

1 aa

W = Wit @)
In asimilar way, one can show that the same equation
isvalid for the gravitationa parallel transporter of covari-
ant vectorsand, moregeneraly, for parallel transporters of
any integer spin J. In this case, the Yang—Mills Wilson
loop must betaken in the same representation asthe grav-
itational one,

w5 = wi. (48)

It is understood that the right-hand side of Eq. (48)
is expressed through the Yang—Mills field equal to the
spin connection in accordance with Eq. (37), while the
left-hand sideis expressed through the Christoffel sym-
boals, that is, through the metric. It must be stressed that
the spin connection is defined viathe vierbein, which is
not uniquely determined by the metric tensor. The Wil-
son loop, being a gauge-invariant quantity, is neverthe-
less uniquely determined by the metric tensor and its
derivatives. Thisisthe meaning of Eq. (48).

For a half-integer J, there is no way to define the
parallel transporter other than through the spin connec-
tion. Nevertheless, as we show in Section 8, where we
present the holonomy for any spinin asurfaceform, the
“gravitational Wilson loop” is aso expressible through
the metric tensor and its derivatives, even for half-inte-

ger spins.

No. 6 2001



NON-ABELIAN STOKES THEOREMS IN THE YANG-MILLS AND GRAVITY THEORIES

42.d=4

In four Euclidean dimensions, the rotation group
is SO(4), with its algebra isomorphic to that of
SU(2) x SU(2), and therefore, all irreducible represen-
tations of SO(4) can be classified by (J,, J,), where
J12,=0,12, 1, ... |abel the representations of the two
(2) subgroups. For example, the 4-vector representa-
tion whose parallél transporter was considered in the
beginning of this section transforms in the (1/2, 1/2)
representation of SU(2) x SU(2). Because of this, it is

convenient to decompose the spin connection w;," into
self-dual and anti-self-dual partsusing ‘t Hooft’'sn and
n symbols

aAB 1 A+ _B- B+ A—
= =Tro (0 0 -0 ,
n 5T ( ) 49)
o™ = (tig, 1),
ne = %Trca(cA‘o "—o%o™). (50)

We use the capital Latin characters to denote flat
4-dimensional vierbein indices, A, B, ... = 1, 2, 3, 4,
whilea, b, ... =1, 2, 3; 0@ are the three Pauli matrices.
The spin connection },° transforms in the 6-dimen-
sional representation of SO(4), which can be decom-
posed into the sum (1, 0) + (O, 1) of the adjoint repre-
sentations of the two SU(2) subgroups. We write

a 1 a a
u - 2”2'1 AB AB. (51)

The SO(4) “field strength” in Eq. (35) is then decom-
posed as

AB

l.a a
Fov = SFLIN-SFLEA™  (52)

where
Fou(m = 9,15 —a,T0, + T, (53)
Fiu(P) = 8,p5—0,p5 + € pops (54)

are the usua Yang-Mills field strengths of the SU(2)
Yang-Mills potentials 1, and p;;. We stressthat 6 x 4 =
24 variables w),° equivalent to 2 x 3 x 4 = 24 variables
15, and p;, are defined by only 4 x 4 = 16 tetrades €],

viaEg. (32), and therefore, not al of them are indepen-
dent.
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Contracting Eg. (36) with then and n symbols, we
obtain

aAB_Ak _BA

FSV(T[) = Zﬂ € e RK}\pw (55)

—aAB_Ak _BA

Fﬁv(p) = zn e e RK)\uv (56)
We now return to the parallel transporter of a4-vec-
tor. As shown in the beginning of this section, finding
this parallel transporter is equivalent to solving the
equation
dxt AB ABy B _
E(aué +w, )C (57)
We represent the 4-vector ¢ as a combination of two
spinors,

+y0 —B
¢’ = x20™pwP, xiuPf = cA(oA a,

a,pB =12

(58)

Inserting this in Eq. (57) and decomposing ,° asin
Eqg. (51), we aobtain

cau[ o™y
(59)
1 a__a a—au + |:|
=3l 0" w] 0= 0.

Using the definition of the n-symbolsin Egs. (49)
and (50), it is easy to verify that this equation is satis-
fied provided the spinors x and Y satisfy

dxt B _
—~ [a 5% — 'Tﬁmzm} =

(60)
dx
It xa[a 6B+|T[3D25}
dx" a0
= [a 5 - ipia }w = (61)

The expressions in sguare brackets are identical to
the Yang—Mills covariant derivatives, with the role of

the Yang-Mills potentials played by 1, and p;,
respectively. Equations (60) and (61) define the Yang—
Mills paralel transportersin the fundamental represen-

tation. Their solution can be written as evolution oper-
ators,

X' = [WTD]yx'(0)

T T Tt Y (62)
or X(1) = Xy (OIW (D],

W(r) = [WP]I5W°0), (63)
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WL = [Pegffadingt]. o

WP = [Pexpﬁ Idr——pf}(;%}

Returning to the 4-vector c” in Eq. (58), we see that its
evolution is determined by

) = [Woewo(0)]1°°¢%(0),
[Woeaor(D]

- %Tr[vv"T(r)o“vv"(r)ij.

(65)

(66)

We now choose a closed contour and take the trace
of the evolution operator. The “gravitational Wilson
loop” for a4-vector isthen given by

WS 4, = 7€) Won1)]*°€5(0)
AA _ T
A Woeeo(D] ™ = STIW -ETrVVp.

Its generalization to the holonomy in an arbitrary rep-
resentation (J,, J,) is obvious,

W(GJl, J5) = ngwgz’
68)
ol 1 (
W\T]L 27+ 1Tr(2J+l)WTL

Thus, the holonomy in the (J,, J,) representation in
a curved d = 4 space is equal to the product of two
Yang—Mills Wilson loops, with the role of the Yang—

Mills potentials played by the self-dual T[fj and anti-

self-dual pﬁ parts of the spin connection. In Section 9,

we show that both W™ and WP can be written in terms
of the metric tensor.

5. SMALL WILSON LOOPS

For small-area contours, the “gravitational Wilson
loop” can be expanded in powers of the area. The most
straightforward way to do thisisto usethe path-ordered
form of W in Eq. (27). We take a square contour of the
size a x a lying in the 12 plane and expand the path-
ordered exponential in powers of a. After some simple
algebra, we obtain the first nontrivial term of this
expansion, which happens to be O(a?),

4
a
vector - [WGector] HR; 12 Rﬁ 12
Z(AS HV(AS hv Kp )\o (69)
=1- TRKAW Rpcrpv g g
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where (ASW is the surface element lying in the pv
plane. We note that the first correction to the holonomy
is negative-definite. We emphasize that the first-order
termin ASisin general present in the expansion of the
parallel transporter; however, it vanishes after taking

the trace owing to the identity Rﬁw =0, and therefore,
the expansion of the trace starts with the (AS)? term.
In three dimensions, Eg. (69) can be further simpli-

fied because the Riemann tensor is expressed through
the Ricci tensor via

Rik = R —Rigjk + R 9ix
R (70)
R0 + E(gilgjk_gikgjl)-
Because the Riemann tensor is antisymmetric with
respect to each pair of subscripts, we can replace

m_.In 1 m_.In n_Im
g"g" —3(g"g"~g"g")
(71)
_ _1_€k|i€mnjg__
29 v
Introducing the dual surface element
AS™™ = €"TAS, (72)
we have
kI| pquklpq _ _48?”_ R |r1:| (73)

which as a matter of fact is the Einstein tensor. For the
parallel transporter of an arbitrary spin J, thefactor 2in
the numerator of Eg. (69) must be replaced by J(J + 1).

Combining all the factors, we obtain

Wf = 1_ 2\](\]‘*‘1)%:2” i
(74)
is 1 .
xg”HQJ —zRgJ%ASrASS.

Thisisour final expression for the trace of the spin-J
parald transporter for small loops in a curved d =
3 space. We note that Eq. (74) isinvariant under diffeo-
morphisms.

6. GRAVITATIONAL WILSON LOOP
IN TWO DIMENSIONS

In a curved d = 2 space, the trace of the parallel
transporter dong a closed loop can be computed exactly
for any metric and can be presented in the form of a
“Stokes theorem”. Theresult isrelated to the Gauss-Bon-
net theorem and isgenerally known: we present it herefor
the sake of completeness.
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The key observation is that in two dimensions, spin
connection (32) has only one component,

o = ®w. (75)

In this section, all indices take only two values 1, 2. In
accordance with Eqg. (31), the parallel transporter of a
vector is determined by the equation

dCa dXI ab_b

E_Ewie c =0, (76)
which is solved by
(1) = WP(1)c(0),
W(r) = [ oY) siny()
O-siny(t) cosy(1) D (77)

X
y(1) = Idraoo,
0

According to the general theorem in Section 4, the
gravitational Wilson loop is equa to the Yang—Mills
one, and we obtain

Wy = %Waa(l)

= cosd, (78)

where

1 .
dx’ 1,

® = Y1) = [drgo = zfdx'eabwiab. (79)

0
Thisformulaisnot fully satisfactory because the holon-
omy is expressed through the spin connection and not
through the metric. Expressing it through the metric
can be achieved if we apply the Stokes theorem and
write Eq. (79) in a surface form. We have

® = %J'dSeabeijaiw?b, (80)
where dSisthe element of the spanning surface for the
contour. Introducing the field strength related to the
Riemann tensor,

F ac_ ch ac_ ch

= 0, —am + 0 W — W W,

ki
= Rieqel,

(81)
eabekel = €k|«/§:

and noticing that the commutator term is zero in two
dimensions, we rewrite Eq. (80) as

® = %J’d&/@R, WS = cosd, 82)
where

R = (12)e'ey RS
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is the scalar curvature. It is gratifying that the holon-
omy is expressed through the Einstein-Hilbert action,
which is known to be atotal derivative in two dimen-
sions. Needlessto explain, Eq. (82) is diffeomorphism-
invariant.

In two dimensions, there is essentialy only one
component of the Riemann tensor,

1
Ry = ERg (83)
(see[20]). Taking this into account, it is easy to verify
that for small areas, the expansion of Eqg. (82) givesthe
same result as Eq. (69) written for small loops.

7. AN EXAMPLE OF BIG LOOPS:
A CONSTANT-CURVATURE BACKGROUND
IN THREE DIMENSIONS

In three dimensions, the Riemann tensor is express-
ible through the Ricci tensor, see Eq. (70). Therefore,
the diffeomorphism-invariant information about curved
spacesisfully contained in the three eigenvalues of the
symmetric Ricci tensor,

R = A3, (84)
with the scalar curvature being the sum of the three,
R=A+A,+As.

For example, the de Sitter S® space corresponds to
AL = A, = A3 = R/3 = const.

In this section, we consider another constant-curvature
case, namely, the cylinder space S? x R characterized
by

A=A, = R2=const, A; =0.
We show that the paralle transporter in these spaces can
be computed for any form of the contour and any metric

and that the gravitational Wilson loop is given by an ele-
gant formula.

A genera metric can be considered as the one
induced by six external coordinates WA(X;, Xp, Xs),

g = owow', A=1,.,6 (85)

Inthe specia case of the cylinder space $? x R, it is suf-
ficient to use only four external coordinatesw? (a=1, 2,
3) and w* subject to the constraint

3
S W) =3

a=1

An example of such external coordinatesis given by

1,23
1“()—[3Xr, (x)—[lnr (87)

2001

(86)
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leading to the metric tensor
3/2 1

o, = 235, o= & (89)

SR rs

A simple calculation using formulas from Section 3
shows that this metric indeed gives a zero eigenvalue of
the Ricci tensor with the other two eigenvalues equal to
the constant R/2. Because the eigenvalues of the Ricci
tensor are diffeomorphism-invariant, a general change
of coordinates X' — y(X) in Eq. (87) results in the
same eigenvalues. Therefore, the most general descrip-
tion of the cylinder spaces S? x Ris given by

a _ 2ya(x) 4 _ 2
wWi(x) = /\/:RW wi(x) = J%'n|Y(X)|,

89
_ 20’0,y ®9
9 = R .
2 ) a _ b c
Jg = % ; .,keabca.y ajysaky
¥ (90)

; ﬁ " e 0 W oW WA W,

where y3(x) are three arbitrary functions of the coordi-
nates X'. We note that g; is given by the product of two
matrices

Mla = aIyallyli

and hence, /g isitself adeterminant (of the matrix M).

Our aim isto calculate the Wilson loop for any con-
tour in any metric (89) corresponding to the cylinder
spaces. We use the diffeomorphism invariance of the
Wilson loop. If we compute it for a general contour in
some metric representing cylinder spaces, the most
general case is recovered by diffeomorphisms of both
the contour and the metric. We start with the specific
metric given by Egs. (87) and (88).

Given metric tensor (88), we construct a vierbein
corresponding to it. Thisis, of course, not unique but
any choice of the vierbein suits us. We choose

21.a
- «/;ré" e'ef = g

Given the vierbein, we construct the spin connection
(or the Yang—Mills field) from its definition (32) and
obtain

(91)

1
A;’:l - _éeabcwibc =€

aii XJ
l;—zv (92)
which happens to be the field of the Wu-Yang mono-
pole; the scalar curvature R has dropped from the spin
connection. According to the theorem in Section 4, the
gravitational Wilson loop is equa to the Yang—Mills
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Wilson loop, provided the Yang-Mills potential A? is

the spin connection of the metric under consideration.
Therefore, al we have to do isto compute the Wilson
loop for a general contour in the field of the Wu-Yang
monopole.

Thistask is easily solvable if we use another invari-
ance, the gauge invariance of the Wilson loop. It is well
known that the Wu-Yang monopole in hedgehog gauge
(92) can be transformed to the string gauge where the
potential has only one nonzero component along the
third color axis (plus a Dirac string). In this gauge, the
Yang-Mills potentia is basicaly Abelian, and the Wil-
son loop in any representation J is therefore given by

J
1 .
ws = wi" = 571 Z exp(im®),

m=-J

® = fdx‘A? = J’dsré.

(93)

In the last equation, we used the normal Stokes the-
orem for the circulation and also used the fact that in
the string gauge, the magnetic field of the monopoleis
the Coulomb field of a point charge; dS is the element
of the spanning surface for the contour and is orthogo-
nal to the surface.

Equation (93) isthe gravitational Wilson loop for arbi-
trary contours but in a specific metric given by Eq. (88).
To generaize it to the general metric given by (89), it
only remains to perform the general coordinate trans-
formation of Eq. (93). To this end, it is convenient to
use, instead of dS, its dual dS! such that dS = €;;,dS*.
We recall that under a general coordinate transforma-
tion X' — y'(x), the contravariant vector transforms as

Vi V3,

and the antisymmetric contravariant tensor transforms
as

ds' —.ds™a, ya.y'.
Theflux in EqQ. (93) istherefore given by

i k
X i X
® = (dsX = [(dsie X .
I Sr3 I eljkrg (94)
n€ik0mY 0,y Y
e IdSm om0z 2 e .

This eguation takes a more symmetric form in terms of
external coordinates (89),

o = [QD IdS(Eabceij kaiWaajWbWC,

ZWaZ —
a=1

(95)
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Equations (93) and (95) are our final result for the
gravitational Wilson loop in the cylinder S? x R space
of the constant curvature R. The Wilson loop implicitly
depends on the metric through Eg. (89). We now make
several comments.

(i) The parallel transporter must depend on the met-
ric along the contour but not on the spanning surface for
the contour, because this surface can be drawn arbi-
trarily. Thisisindeed so despite the surface form of the
result because

Oi(€apce AW, WPW°) = 0. (96)
Therefore, theflux in Eq. (95) can be presented asacir-
culation of acertain vector.

(ii) The flux in Eqg. (95) has the form of a well-
known expression for the winding number of a map-
ping S? — 2. For aclosed or infinite surface, the wind-
ing number is normalized as

i |:E|:|3/2
gnlR!

XJ’dSKEabceijkaiWaajWch = Q =

(97)
integer.

(iii) For small contours, Egs. (93) and (95) repro-
duce the result of the previous section. To check this,
we rewrite the general small-loop expansion (69) for
the specific metric in Eq. (87). Wefind

v i _ Brzéij'

1
R_rsekmxuepqvx , 0 2 (98)

Rkl pq =

Inserting thisin Eq. (69) and then performing a general
coordinate transformation x' — y'(x), we obtain, after
some simple algebra,

2

U3 WP3 VIA S

WJG - 1_J(J6+ 1)%pquy a|y3a]y ASID ’ (99)
0 ly] O

which exactly coincides with the expansion of Eqg. (93)
in the small loop area AS up to the second order.

8. THE NON-ABELIAN STOKES THEOREM
IN d = 3 GRAVITY

In Section 4, we have shown that the gravitational
Wilson loop viewed as a functional of the metric is
equal to the Yang—Muills Wilson loop viewed as a func-
tiona of the Yang—Mills potential, provided this poten-
tial is set equal to the spin connection corresponding to
the metric in question.
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We now present the Yang—Mills Wilson loop in
terms of our non-Abelian Stokes formula, see Eq. (14):

WS[metric] = W;"[spin connection]

= J'Dné(nz—l) (100)

x exp%] Idzéi[— Fin+€**°n*(D;n)’(D;n) .

We next replace the surface element by its dual dS/ =
€'PdS, with the aim to rewrite this representation for the
Wilson loop in terms of the metric of the curved three-
dimensional space. To this end, we first decompose the
integration unit vector n in the dreibein:

n* = me,
o (101)

n’n* = mm'e'el = mm'g; = 1.

The new 3-vector m isa covariant unit vector. Because
the background metric g; is fixed, we only change the
integration variables fromn to m as

J'Dné(nz—l)...

o (102)
= IDmJ@é(m’mJgij—l)...

We next use relation (42) of the field strength F;
computed from the spin connection

A = (U2)e™w”®

to the Riemann tensor. The first term in the exponent of
Eqg. (100) becomes

first term = —dS,e"

(103)
x %—%eabcm”eﬁRL”e,beCK.
Using
e = LM g = dete?,  (104)
g
Equation (103) can be continued as
first term = dSp.sijpi Rjn€e "gmm’.  (105)

2.9

The combination of the covariant Riemann tensor and
two antisymmetric epsilon symbols has been encoun-
tered in Section 5: in three dimensions, it givesthe Ein-
stein tensor, see EQ. (73). We thus obtain
first term = dS,./g(R&} —2R)m", (106)

where R” isthe Ricci tensor and R = R',ﬁ is the scalar
curvature.
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We now turn to the second term in the exponent in
Eg. (100) and again use decomposition (101). We exploit
fundamental relation (33) that can be presented as

D;"n” = ex(0;)(m, (107)

where

bb _ bb' bcb' A c
DJ - a] 6 + € A]
istheYang—Mills covariant derivative and

(Dj)r = aj5|k+ r;ﬂ

is the gravitational covariant derivative. The second
term istherefore given by

second term = dS,e**efelefe Pm(0),

xm (0))pm" (108)

= dS,/ge"Pe,m(0;m)' (0;m)".

Gathering Egs. (102), (106), and (108) together, we
finally obtain a non-Abelian Stokes theorem for the
gravitational Wilson loop or the trace of the spin-J par-
allel transporter along a closed contour:

WS = IDmJ@é(mimjgij -1)

x expi3 [dS/aL (RS} 2Ry m’ (109)

ijk r
+e’ e P (O,m)*(0;m)'].

Several comments arein order here.

(i) The holonomy, which was defined as a path-
ordered exponential, is expressed here by a simple
exponential of an integral over the spanning surface for
the closed contour. That is why we call our formula a
“Stokes theorem.” The price to pay is the functional
integration over the covariantly unit vector m defined
on the surface.

(if) Equation (109) is invariant under diffeomor-
phisms in the sense that the holonomy remains invari-
ant under a general coordinate transformation

X —x'(x)
and the appropriate change of the surface.

(iii) The parallel transporter depends only on the
contour but must not depend on the spanning surface.
The surface integra in Eq. (109) has the form

jd&fgjvk,

and the condition that it does not depend on the form of
the surfaceis

(110)

0 (/gV") = 0,
or equivalently,

(112)

(0 V' =0, (112)
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because
rk =rk =alndg.

The verification of Eq. (112) is rather lengthy and we
relegate it to the Appendix.

(iv) With condition (112) or equivaently (111) sat-
isfied, the surface integral can be written as

Id@ﬁ;v"

g . (113)
= Id%ellkajBk = — dXI Bi

proving that it depends only on the contour, asit should

be. However, the vector field B; cannot be uniquely

determined from the metric tensor and the covariantly
unit vector m.

(v) The following comment is closely related to the
previous one. Paralel transporters of integer spins
1,2, ... are defined via Christoffel’s ' symbols and
hence by the metric tensor, while parallel transporters
of half-integer spins 1/2, 3/2, ... are not: they are
defined via the spin connection that is not uniquely con-
gructed from the metric. Nevertheess, it should be
expected that the holonomy for half-integer spins, being a
diffeomorphism-invariant quantity, can be expressed
through the metric only. Equation (109) solves this non-
trivial problem: only the metric and its derivetives are
involved. The solution is possible only with the holonomy
represented in the form of a surface integrdl, as in Eq.
(209). One cannot solve this problem in a contour form
because it is not uniquely expressible through the met-
ric. If that were possible, one would be able to write a
parallel transporter in terms of the metric along an open
contour aswell, but that is not so for half-integer spins.

(vi) Equation (109) solves another long-standing
problem in the Yang-Mills theory. It was recently
shown [12-14] that the SU(2) Yang—Mills partition
function in three dimensions can be exactly rewrittenin
terms of gauge-invariant quantities given by the six com-
ponents of the dual space metric tensor. The usual argu-
ment why this rewriting is not very useful isthat externa
sources couple to the Yang-Mills potentid and not to
gauge-invariant quantities. However, we now have dem-
ongtrated that a typica source—the Yang—Mills Wilson
loop—can be expressed not only through the potential but
a so through the metric tensor, which is gauge-invariant.
Thus, not only the partition function, but also the Wilson
loops in the d = 3 Yang-Mills theory can be expressed
through local gauge-invariant quantities.

9. THE NON-ABELIAN STOKES THEOREM
IN d = 4 GRAVITY

The aim of this section is to express the holonomy
W3, 5, in the representation (Jy, J,) in a curved d = 4
space through the metric tensor and its derivatives.

No. 6 2001



NON-ABELIAN STOKES THEOREMS IN THE YANG-MILLS AND GRAVITY THEORIES

Equation (68) presents the holonomy in terms of the
(anti)self-dual parts of the spin connection. Thelatter is
not uniquely determined by the metric, which isnot sat-
isfactory. In addition, we would like to eliminate the
path-ordering in the Yang-Mills Wilson loops W™f
entering Eqg. (68). Both goals are achieved via the non-
Abelian Stokes theorem similar to that of the previous
section, which we now derive.

We start by applying representation (14) to the
Yang-Mills Wilson loop W,

W = IDné(nz—1)expE%J’dS“[—FﬁV(T[)na
(114)
+€™°n(Dy(MN)°(Dy(Mn)°]1 5

where
Dﬁb(T[) - auéab‘FGaClefl

is the covariant derivative with respect to the self-dual

part of the spin connection and Fﬁv(n) is the appropri-
ate field strength (53); it is related to the Riemann ten-
sor via Eq. (55). We next introduce the antisymmetric
tensor

KA — %na aABeAKeB)\.

Thefirst termin Eq. (114) can be written as—R,,-
m*. The tensor m has actually only two independent
components. To see this, we introduce two covariant
projector operators

m (115)

Piw = 200" elelelel
1 (116)
= Z(gkug)\v - gKvg)\u + ’\/éeK)\pV)’
_ 1_aas_
Pow = Z07 0" ceveje;
1 (117)
= Z_(ngg)\v — O g)\p - «/E_Jemw);
satisfying the projector conditions
Pi)\uv guulgvvpﬁ'v'pc = i)\pc! (118)
Powd™ 0" Phivps = 0, (119)
Powd®d" = 3. (120)

Pim are (covariantly) orthogona projectors, each hav-
ing three zero and three nonzero eigenvalues. They project
agenera antisymmetric tensor into (covariantly) sdf-dual
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and anti-self-dual parts, respectively. It is easy to verify
that the tensor m introduced in Eq. (115) is self-dual,

Pawm® = 0, (121)
and satisfies the normalization condition
m®*m, = Poum@m? = 1, (122)

which follows from the normalization n? = 1. There-

fore, m® indeed has only two independent degrees of
freedom in a given metric. We change the integration
variablesin Eqg. (114) from n to m,

J’Dné(nz—l)...
KA — (Y KA (123)
=J’Dm OB (P M™)S(M " my, —1)...

We now compute the covariant derivative of m as

KA _ KA K VA A KV
m"., = a“m +rpym™ +,m

1 ans AK_BA A Avy BA
= ina [0,n’e™e™ +n(0,e™ + T}, e™)e

+ naeAK(aueB)\ + r)\Ver)]

u (124)

aAB a_AkK _BA

1
= er [o,n"e"e

AC_Ck _BA Ak . BC_CA
—n‘w, e e —n'e™w, e,

where in the last equation, we have used fundamental
relation (33). We now insert the decomposition of the
spin connection «,® into the self-dual and anti-self-

dua parts, Eq. (51). Using the relations for the n, i
symbols,

aAB _bAC - 6ab68C+€abC cBC

r]aABnbAC abs<BC abcncBC’ (125)
APR™C = 37°8%C + €7,
I']aABI’_]bAC - I’]aACI’_]bAB, (126)

itiseasy to seethat only the self-dual piece of w;," sur-
vivesin Eq. (124), giving
K 1 a K al acl Cc
m )\;“ — én ABeA eB)\(apa b+€ bT[u)nb
1 (227)
- ér]aABeAKeBA(Du(n)n)a.

In other words, the gravitational covariant derivative of
m is expressed through the Yang—Mills covariant
derivative of the n field entering the second term in
Eq. (114).
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Using consecutively Egs. (125) and (127), we
finally rewrite Eq. (114) in terms of the metric:

W, = J'Dm”‘ @5(P;Auv m")&(m m,, — 1)

‘]1 \Y KA
X exp B EJ‘dSH |:_RKM,[V m (128)

1 A
_é'\/éekpotg)\)\'mK m p;pmcr;v}%

Similarly, WP is obtained by integrating over the anti-
self-dual covariantly unit tensors:

W5 = IDm“[gas(P;mm““)a(m“mm—1)

x expB%2 I ds” [—RW\, m* (129)

1 B
+ é'\/éero'Tg)\)\'mK)\ m)\p;u mor;v :| Elr

As derived in Section 4.2, the gravitational holon-
omy in the representation (J,, J,) is the product of the
two components,

W(cf]r J2) = ngwgz' (130)

Equations (128), (129), and (130) constitute the “non-
Abelian Stokes theorem” for the holonomy in a curved
d =4 space. It expresses the holonomy via surface inte-
grals over spanning surfaces for the contour and pre-
sents the holonomy in terms of the metric tensor and its
derivatives only, without referring to the spin connec-
tion, even for half-integer representations (J;, J,).

10. CONCLUSION

The main results of this paper are the non-Abelian
Stokes theorems for holonomies: the Yang—Mills Wil-
son loop (Eg. (14)) and the traces of parallel transport-
ersincurvedd =3 (Eg. (109)) and d =4 (Egs. (128) and
(129)) spaces. In al these cases, the path-ordered expo-
nentials of the connections are replaced by ordinary
exponentials of surface integrals, which, however, do
not actually depend on the way the surface is spanned
on the contour. The priceto pay for theremoval of path-
ordering is high: we obtain functional integralsinstead.
In the simplest case of the SU(2) Yang—Mills theory,
thisis an integral over aunit 3-vector n “living” on the
surface; for the d = 3 Riemannian manifold, thisis an
integral over a covariantly unit 3-vector m, and for d = 4,
one integrates over (anti)self-dua covariantly unit ten-
sors.

In spite of the occurrence of functional integration,
we believe that our formulas are aesthetically appeal-
ing. Compared to path-ordered exponentials, they are
better suited to averaging over guantum ensembles of
Yang-Millsfields or over various metrics. We hope that
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elegant formulas can aso be used in more general set-
tings.

In addition to the general non-Abelian Stokes for-
mulas, we have presented holonomy as a surface inte-
gral for a specific background, namely, for a constant-
curvature d = 3 space with the cylinder topology S? x R.
The “gravitational Wilson loop” is given by aformula
for the character whose argument is the winding num-
ber of external coordinates, see Section 8.

Parallel transporters of integer spins have a dua
description: such a transporter can be defined either as
a path-ordered exponential of Christoffel symbolsor as
apath-ordered exponential of the spin connectioninthe
appropriate representation. In Section 4, we have
shown that these representations are equivalent. Even
though the spin connection is not uniquely determined
by the metric tensor, this equivalence implies that the
holonomy written in terms of the spin connection can
in fact be expressed through the metric only.

For half-integer spins, the situation isfar lesstrivial
because the only way to define the holonomy isviathe
spin connection, anditisnot at al clear beforehand that
the holonomy can be uniquely written through the met-
ric tensor and its derivatives. The non-Abelian Stokes
theorem proved in this paper demonstrates that this
rewriting can be achieved, but only with the holonomy
presented in the surface form. Although the surface
integral does not depend on the way one draws the sur-
face and can actually be written as an integral along the
contour, the contour formis not uniquely defined by the
surface one, which reflects the ambiguity in determin-
ing the spin connection from the metric.

This finding has an interesting implication for the
Yang—Mills theory in three dimensions, which can be
identically reformulated as a quantum gravity theory
with the partition function written as a functional inte-
gra over the metric tensor of the dual space [12, 13,
14]. This metric tensor is local and gauge invariant (in
theYang—Mills sense). However, one might wish to cal-
culate the average of the Wilson loop, which is origi-
nally defined by the Yang—Mills potential, but not by
the metric tensor. In the “quantum gravity” formula
tion, the Yang—Mills Wilson loop becomes a parallel
transporter in the gravitational sense. It is therefore
very important that the Yang—Mills Wilson loop in any
representation can be expressed through the gauge-
invariant metric tensor. Thus, not only the partition
function but also the Wilson loop can be presented in
terms of local and gauge-invariant quantities. This sub-
ject is described in more detail elsewhere[15].
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APPENDIX

Proof that Eq. (109) does not depend
on the surface

The path-integral representation for the “gravita-
tional Wilsonloop” in Eq. (109) must not depend on the
choice of the spanning surface for a given contour, but
only on the contour itself. To prove that thisis so, we
verify EqQ. (112),

OV =0, (131)
where

k _ k K ijk
Ve = (Rap—sz)nffeJ epqrmp(mim)q(mjm)’,(lgz)
mm'g; = 1.

To simplify the notation, we denote covariant deriv-
ativesby “;” (see[20]). Explicitly, the covariant deriv-
atives of a scalar, avector, and atensor are given by

Sk = 0,S,

Vi = V' + TV, Vi = 9V —TLV,,
K kij kI ; il,ll(j J.k :l ik VvVl (133)
Tk = 0T +TyT +Tg T,
| |
Tijok = 0Ty =TTy =TTy, et

The ordinary derivative of aconvolution of two tensors
can be written as a sum of covariant derivatives,

O(TTE ) =TT
+TOT

We apply the covariant derivative to thefirst term of
the vector VX,

0, [ (R8s —2R5)m"]
= (RS —2RS),m" + (R85 — 2R5)m}.

The covariant derivative of the Einstein tensor is
known to be zero [20, Eq. (92.10)]. Therefore, only the
second term survivesin Eg. (135).

We next apply the covariant derivative to the second
term of VK as

OiL€” € pqrm®(0;m)*(0;m)']
= "€ o (0,m)P(0;m) (0, m)’
qurmp(Dim)q(Dijm)r.

The first term here vanishes for the following reasons.
Differentiating the condition that m' is a covariantly
unit vector, we obtain

(134)

(135)

(136)

+2€IJk

0= ak(mimjgij)

o , (137)
= 2gij(ka)lmJ = 2(0m)'my,
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because the covariant derivative of the metric tensor is
zero. This implies that the three vectors (O, , sm)' are
not linearly independent, because three linearly inde-
pendent vectors cannot be orthogonal to a given vector
(in this case, m) in three dimensions. The first term in
Eq. (136) isthe antisymmetrized product of these three
linearly dependent vectors and is therefore zero.

The second term in Eq. (136) contains the commu-
tator of covariant derivatives, equa to

Gijk(Dijm)r
_ 1k (138)
where Ry isthe Riemann tensor. Therefore, the second
(and the only nonzero) termin Eq. (136) can be written
as

r 1 ijk .r
[Dij]smS = >€ ]kg thskj m’,

ek (139)
We next use Eq. (70) to express the Riemann tensor
through the Ricci and metric tensors and write the prod-
uct of two epsilon symbols as a determinant made of
Kronecker deltas. Performing al convolutions, we
obtain that Eq. (139) can beidentically rewritten as

[94s(R3, — 2R5) — gps( RS, — 2R)]

x mPm°(0;m)“.

rt p..S q
epqrg Rtskjm m (Dim) '

(140)

Here, thefirst term is zero because of Eq. (137) and in
the second term, we use

gpsm’m® = 1.
Thisgives

~(R3,—2R,)(T0;m)*, (141)

which cancels exactly with Eq. (135). Thus, (0,)(V' =0,
g.e.d.
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Abstract—A new mechanism describing the formation of protogal axiesis proposed, based on the second-order
phase transition in the inflation stage and the domain wall formation upon the end of inflation. The presence of
closed domain wallswith the size markedly exceeding the cosmological horizon at theinstant of their formation
and thewall collapsein the postinflation epoch (when the wall size becomes comparable with the cosmological
horizon) lead to the formation of massive black hole clustersthat can serve asnuclei for the future galaxies. The
black hole mass distributions obtained do not contradict the available experimental data. The number of black
holes with M ~ 100 solar masses (M) and above is comparable with the number of galaxiesin the visible Uni-
verse. Development of the proposed approach gives grounds for aprincipally new scenario of galaxy formation
in the model of ahot Universe. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the past decade, investigations into the nature of
active galactic nuclei exhibited aconsiderable progress.
Now there is virtually no doubt that the centers of gal-
axies contain massive black holes[1]. It isthe existence
of black holes with masses on the order of 10°-108 M,
in the galactic nuclei and the accretion of matter onto
these holes that is believed to account for the physical
nature of their activity. A possible explanation for the
formation of such supermassive black holes assumes
the collapse of alarge number of stars caused by their
high concentration at the galaxy center. However, the
mechanism of galactic nuclei formation is still unclear.
According to Veilleux [2], there are serious grounds to
believe that the formation of stars and galaxies pro-
ceeded simultaneously. Stiavelli [3] considered a
model of galaxy formation around a massive black hole
and presented arguments in favor of this model (see
also[4]). Each of the two approaches has certain advan-
tages, while not being free of drawbacks.

The problem of the possible“primordial” black hole
(PBH) formation is still open. In contrast to the case of
“secondary” black holes, which are related to the evo-
lution of stars and stellar systems, there is no convinc-
ing astronomic evidence for the existence of PBHs.
Restrictions posed by the astronomic data on the PBH
concentration offer a unique source of information on
the inhomogeneity of the early Universe [5] and on the
physical processes accounting for this inhomogeneity

[6]. Generally speaking, the PBH mass may be arbi-
trary, ranging from the Planck value (or even below [7])
up to a mass contained within the contemporary cos-
mological horizon. However, in most cases the astro-
physical effects related to the presence of PBH are
restricted to masses much lower than the solar mass.
The reason is that the mechanism of PBH formation is
usually related to the development of inhomogeneities
bounded by the cosmological horizon. The data of
observations concerning the distribution of light ele-
ments and the spectrum of cosmic microwave radiation
pose very rigid restrictions on the magnitude of inho-
mogeneities existing in the pregal actic stage following
the first second of expansion of the Universe. Thus,
realistic mechanisms of PBH formation have to be
apparently related to very early (t < 1 s) stages of the
evolution of the Universe—when the mass contained
within the cosmological horizon and limiting the possi-
ble PBH mass was significantly lower than the solar
mass. Nevertheless, the actively discussed possibility
of a genetic relationship between quasars and active
galactic nuclei, on the one hand, and the existence of
PBHs with much greater masses, on the other hand [8],
becomes a subject for detailed investigations [9-11].

Below we will consider a new mechanism describ-
ing the early formation of PBHs, which serve as the
nucleation centers in the subsequent formation of gal-
axies. This mechanism may prove to be free of disad-
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vantagesinherent in the model s based on the concept of
asingle PBH being a nucleus of the future galaxy.

Previously [11] we proposed a new mechanism of
PBH formation that opens the possibility of massive
black hole formation in the early Universe. The mech-
anism is based on the possibility that black holes are
formed as aresult of a collapse of closed walls formed
during a second-order phase transition. The masses of
such black holes may vary within broad limits, up to a
level on the order of 108 M.

Let us assume that a potential of the field system
possesses at least two different vacuum states. Then
there are two possible distributions of these statesin the
early Universe. Thefirst possibility is that the Universe
contains approximately equal numbers of both states,
whichistypical of atemperature-controlled phase tran-
sition under usual conditions. The alternative possibil-
ity corresponds to the case when the two vacuum states
form with different probabilities. In this case, there
appear islands of less probable vacuum state sur-
rounded by the sea of another, more probable vacuum
state. As was recently demonstrated [12], an important
condition for thisdistribution is the existence of valleys
in the scalar field potential during inflation. Then the
background de Sitter fluctuationsin this massless scalar
field lead to the formation of islands representing one
vacuum in the sea of another vacuum. This phase tran-
sition takes place after the end of inflation in the Fried-
mann—-Robertson—Walker Universe. After the phase
transition, the two vacuum states are separated by a
wall; the size of this wall may be significantly greater
as compared to the cosmological horizon at that period
of time. At some instant after crossing the horizon, the
walls begin to contract because of the surface tension.
Asaresult, provided that friction is absent and the wall
does not radiate a considerable part of its energy in the
form of scalar waves, amost all energy of this closed
wall may be concentrated within a small volume inside
the gravitational radius. This is a necessary condition
for black hole formation.

The mass spectrum of black holes formed by this
mechanism depends on parameters of the scalar field
potential determining the direction and size of the
potential valley during inflation and the postinflation
phase transition. Although we deal here with the so-
called pseudo-Nambu—Goldstone field, the proposed
mechanism possesses a sufficiently general character.

The presence of massive PBHsisanew factor inthe
development of gravitational instability in the sur-
rounding matter and may serve as a basis for new sce-
narios of the formation and evolution of galaxies.

2. THE FORMATION OF CLOSED WALLS
OF A COMPLEX FIELD

Now we will describe a mechanism accounting for
the appearance of massive walls with the size markedly
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greater than the horizon at the end of inflation. Let us
consider a complex scalar field with the potential

V() = A(0I° - £772)°, ®)

where ¢ = re®. We assume the mass of the radial field
component r to be sufficiently large, so that the com-
plex field would occur in the ground state even before
the end of inflation. Since the minimum of potential (1)
is degenerate, the field has the form

o = (f//2)€°,

with the phase 6 acquiring the meaning of a massless
field.

For the following considerations, it should be noted
that, using expression (1) in the inflation period, we
ignored the term

3V(0) = A*(1- cosB) 2

reflecting the contribution of instanton effects to the
Lagrangian renormalization. Since the parameter A
appears as aresult of the renormalization, itsvalue can-
not be large and we may quite reasonably assume that
N\ < H, f. The omitted term (2) beginsto play asignifi-
cant role in the postinflation stage, when the Hubble
constant sharply decreases with time (H = 1/2t during
the radiation dominated epoch).

Let us assume that a part of the Universe occurring
inside the contemporary horizon was formed Ny
e-folds before the end of inflation. As was demon-
strated in [13], the quantum field fluctuations during
inflation are rapidly transformed into a classical field
component, while the massess field values in the
neighboring causality-disconnected regions with the
size H! differ on the average by

30 = H/2nf 3)

after asingle e-fold. In the next time step At = H (i.e,
during the next efold) each causality-connected
domain is divided into ~e* causality-disconnected sub-
domains; the phase in each of the new domains differs
by ~86 from that in the preceding step. Thus, more and
more domains appear with time in which the phase dif-
ferssignificantly from theinitial value. More precisely,
the probability of finding the phase 8 is[14-16]

1 expg (8,-6)0

P(6,N) = 0,
J2noy O 205 O @)
H
On = oV Nu= N,

where N is the number of e-folds remaining to the end
of the inflation period and 8, isthe random phase value
at the instant of formation of the causality-connected
domain corresponding to a visible part of the contem-
porary Universe. Without a loss of generality, we may
select 0< 6, < 1t Below we will demonstrate that a par-
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ticular value of theinitial phase significantly affectsthe
evolution of the Universe in the postinflation epoch.

The probability of finding a certain phase obeys the
Gaussian distribution (4) and, hence, the phase aver-
aged over the entire space equals the random initial
phase 6. A principally important point is the appear-
ance of domains with the phases 6 > 1t Appearing only
after acertain period of time during which the Universe
exhibited exponential expansion, these domains turn
out to be surrounded by a space with the phase 6 < 1L
These very domains lead in what follows to the forma-
tion of large-scale structures. Note that the phase fluc-
tuations during the first e-folds may, generally speak-
ing, eventually transform into fluctuations of the cos-
mic microwave radiation, which will lead to imposing
restrictions on the scaling parameter f. This difficulty
can be avoided by taking into account interaction of the
field ¢ withtheinflaton field (i.e., by making parameter
favariable).

Initially, the potential (1) possessed a U(1) symme-
try and the phase 6 corresponded to a massless scalar
field. Owing to the term (2), the symmetry is broken
after the end of the inflation period: the potential of
the 0 field acquires minima at the points 6,;, = 0, £ 2T,

+4m, ..., and the field acquires the mass my = 2f/A2.
According to the classical equation of motion,
.. . dsVv _
6+3H6+W-0, ()

the phase performs decaying oscillations about the
potential minimum, theinitial values being different in
various space domains. Moreover, domains with the
initial phase 1< 0 < 2m perform oscillations about the
potential minimum at 6,,,, = 21T, whereas the phase in
the surrounding space tends to a minimum at the point
0,in = 0. Upon ceasing of the decaying phase oscilla-
tions, the system contains domains characterized by the
phase 6,;, = 2rtsurrounded by the space with 6,,,, = 0.
Apparently, on moving in any direction from the inside
to the outside of the domain, we will unavoidably pass
through a point where 8 = 1t because the phase varies
continuously. This implies that a closed surface must
exist which is characterized by the phase 6,4 = Tt The
size of this surface depends on the moment of domain
formation in the inflation period, while the shape of the
surface may be arbitrary. A principal point for the sub-
sequent considerations is that the surface is closed.

Thus, we obtained a field configuration connecting
various vacuum states of the potentia (2). A rigorous
classical solution of this problem possessing a transla-
tional symmetry in the two directions in space (flat
wall) iswell known [17]:

8,1 (X —X,) = —4arctan [exp Bi:d—x—%} (6)

where d is the wall thickness. Since the thickness of a
closed wall is related to microscopic parameters of the
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theory, whereas the characteristic wall size is a priori
unlimited, expression (6) is applicable to within a suf-
ficiently high accuracy in the case under consideration.
As can be readily shown, the wall possesses an energy
concentrated where the phase is 8 = 1t [17]. Thus, we
obtained a mechanism providing the formation of
domains surrounded by closed walls. The surface energy
of awall depends on the Lagrangian parameters, while
the wall size is determined by the time of crossing the
phase value equa to Ttduring the inflation period.

3. DOMAIN WALL DECELERATION
DURING MOTION THROUGH A PLASMA

The first- and second-order phase transitions lead to
the formation of afield walls separating one vacuum of
this field from another. One of these mechanisms was
described in the preceding section. Inturn, thewallsare
moving at a subluminal velocity and interact with the
surrounding plasma. Depending on the character of this
interaction and the shape of thefield potential, there are
two possible situations. In thefirst case, the plasma par-
ticles pass through the wall, falling into a different vac-
uum and acquiring a certain mass. This situation corre-
sponds to an electroweak phase interaction [18],
whereby the corresponding Higgs field is responsible
for amechanism of the fermion mass production. Inthe
opposite case, the particle mass is not changed upon
going from one to another vacuum (an example is
offered by the case of interaction with an axion wall).
In the former case, the interaction with the medium
leads to a significant retardation of the domain wall,
whilein the latter case, the walls are virtually transpar-
ent for the medium provided that the parameters are
given reasonable values.

All considerations are conveniently conducted in
the resting wall frame. The probability of a particle
scattering from the plane resting wall is

d’k
2eV(2m)°e"”

wheredn(k) isthe distribution of incident particleswith
respect to momentum and M is the matrix element for
the particle transition from a state with the energy € and
momentum k to the state with the energy €' and
momentum k' upon interaction with the potential U =
U(2) describing the plane wall. The pressure produced
by incident particles upon the wall isrelated to the rate
of their momentum transfer to the wall,

_1 e
p - SJ’dqu’ qz - kz kZl (8)

where Sisthewall area. Let us select the Lagrangian of
the particle-wall interaction in the following form rep-
resenting a classical configuration of the complex field
phase:

dw = dn(k)2m¥ e— €)|M|? (7)

Lie = 10,8(2)3, I, = Dy, . 9
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Calculating amatrix element for the particle scatter-
ing from the wall with the transition from the initial
momentum Kk to final momentum K,

M = K| J’Lintd4x|kD (10)

we obtain

1
cosh’ (k,dm)

In deriving formula (11), we took into account that
the laws of the energy—momentum conservation lead to
the following relationships:

k; = 2k, qy=ky—k; = 0,

according to which a nonzero contribution to the pres-
sureisonly due to the reflected particles with k, = —k,.

Therefore, the pressure of incident particles upon the
wall can be written as

IM|* = 8(4m)°S5'(q)K (12)

k2
T[ZIcostw  (Tik,d)
dn(k)dk

(k,—k,)d(e—¢)
(12)

x 8k —kp)=;

L et us determine the distribution of the incident par-
ticles with respect to the transverse momentum dn(k).
In the resting plasma frame,

O Eo(ko)BdkoV
expi- of O)D 0

dno(ko) = C T D(ZT[)s.

(13)

Here and below, the subscript O denotes quantities
determined in the resting plasma frame. Assuming the
plasma temperature T to be significantly greater as
compared to the fermion masses and normalizing it to
the total particle density,

Mo = N(g*)T?,  N(g+) =5,
we obtain C = 201&. In addition, it is evident that
dn(k) = dng(ky), (14

where the incident particle momentum in the resting
wall and plasma frames (in the latter frame, the wall
moves at avelocity v) are related as

Koy = K
Ko, = Y(K,+ ve),
0 y( ) (15)
Eo = y(vk,+¢€),
Y = 1
1-v?
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Integrating the pressure (12) with resect to the
momentum of the incident particle, we obtain

32C K
p = sgn( z) 5\/J’——( e+ vk)—5——
cosh” (1k,d)

(16)

O e+vk
xexpg—y

This formula was derived with alowance for the
Lorentz invariance of the phase volume d3k'/e". Numer-
ical calculation of the integral in (16) presents no diffi-
culties, but we are interested in analytically estimating
the pressure produced by the medium upon the wall.
For this purpose, note that the walls are formed at tem-
peratures T ~ A and the wall thickness is d = f/2A2
Therefore, there is alarge parameter

Td=f/IAN> 1,

using which we may obtain a sufficiently reliable esti-
mate of the integral. According to (16), the most effec-
tive scattering takes place for an incident particle
momentum of

k,01/md < T.
At the sametime, it is evident that
k,Oed yT> k,.

Using these relationships, we may estimate theinte-
gral in (16). A fina expression for the pressure pro-
duced by the surrounding medium upon the domain
wall isasfollows:

17

4. CONDITIONS FOR PRIMORDIAL
BLACK HOLE FORMATION

After heating of the Universe, the evolution of
domains formed with the phase 8 > 11 and which
sharply increased in volume during the inflation period
proceeds on the background of the Friedmann expan-
sion and is described by the reativistic equation of
state. First, an equilibrium state with the “vacuum”
phase 6 = 2rtinside the domain and the 8 = 0 phase out-
sideisestablished at T ~ A. A closed wall correspond-
ing to the phase 6 = Ttis formed in the transition region
with a width of ~1/m ~ f/A?, which separates the
domain from the surrounding space. The surface
energy density on the wall amountsto ~ f/A2.

It must be noted that the process of establishing the
equilibrium (“vacuum”) phase values may acquire a
protracted character. If the stage of coherent phase
oscillations about the equilibrium values is sufficiently
long, the energy density of these oscillations may
become dominating and determine the dust period of
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expansion. Let us consider the factors influencing the
cosmological evolution of such awall.

1. First, note that the domain size immediately after
the end of inflation markedly exceeds the horizon size
in the Friedmann expansion stage. The overall contrac-
tion of the closed wall may begin only when the hori-
zon size R, will be equal to the domain size. Up to this
moment, the characteristic domain size increases with
the expanding Universe because we assumed that the
existing field contribution to the total energy—momen-
tum tensor is small as compared to that of the inflaton
field. Accordingly, thefield gives also asmall contribu-
tion to the total energy density of the Universe upon
heating, when the energy density of inflaton transforms
into the energy density of relativistic particles. Evi-
dently, internal stresses developed in the wall after
crossing the horizon initiate processes tending to mini-
mize the wall surface. Thisimplies that the wall tends,
first, to acquire a spherical shape and, second, to con-
tract toward the center. For ssimplicity, below we will
consider the motion of closed spherical walls.

2. Since the energy of the surrounding plasma rap-
idly decreases, the wall energy may become at acertain
time instant comparable with the energy of the sur-
rounding medium. Simultaneously, the domain sepa-
rates from the general expansion process and its radius
R, may become smaller than R,

3. The wall energy is proportional to its area at the
instant of crossing the horizon. By the moment of max-
imum contraction, this energy is virtually completely
converted into kinetic energy. Should the wall by this
moment be localized within the limits of the gravita-
tional radius, a PBH isformed.

4. Contracting under the action of internal forces,
the wall moves through the surrounding plasma. The
resulting force of friction may, under certain condi-
tions, become significant and lead to a uniform (nonac-
celerated) contraction of the wall. In this case, the
potential energy of the wall is dissipated in the sur-
rounding medium. Only when the wall would decrease
toacertain small size R;, will theinternal forces propor-
tiona to the surface curvature dominate and the wall
will again contract with acceleration to supply the nec-
essary energy to the center sufficient to form a PBH.

The above considerations show that the energy con-
centrated in the course of wall contraction can be deter-
mined using the condition

E=4nR’c, R = min(R, R, R/), (18)

where o = 4A?f is the surface energy density of the
wall. A condition of PBH formation is that

Ruin 0d <ry = 2E/m3. (19)

It is assumed that the spherical wall contracts until
reaching a size on the order of the wall thickness.

Let us determine the values of R, R,,, and R, for a
system with Lagrangian (1). Consider a domain with a
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certain phase appearing N e-folds before the end of
inflation. Thedomain size at theend of inflation periodis

I, = He",

(20)
where H isthe Hubble constant at that time instant. By
the moment of crossing the horizon, the domain will
expand to acquire the characteristic size

2N
e

2HN’

Ry = (21)

Below we assume that a visible part of the Universeis
formed N = N, = 60 e-folds before the end of inflation.

The second characteristic size R, is determined
from the condition that the wall energy (18) is equal to
the energy of plasma contained in the domain bounded
by the closed wall:

_ A3
Ev—p3R,
where
N -
p—%gT

is the plasma density during the radiation dominated
epoch. Taking into account that o = 4A%f, we obtain the
critical wall size corresponding to the domain separat-
ing from the general expansion:

30 _ 360A°f _ A*f

P Tt T

Asisknown, the temperature in the Robertson-\Walker
Universe during the radiation-dominated epoch varies

with time as
T=0%5 0% My
Dporgeld Wt

Taking into account that an increase in the wall radius
up to the instant of separation from the general expan-
sion is proportional to the scaling factor

R = RCI’it =

(22)

(23)

R(t) = It (24)
we arrive at the desired relationship for R(N):
Y 2/3 .
R, = (2°1t0) 35‘%5 Nzgexpg%% (25)

An expression for the characteristic wall size (radius)R;
above which the friction is significant can be obtained
by equating the pressure developed by the internal
forces p,; = 20/R; to that produced by the surrounding
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medium on the moving wall. Using relationship (17)
for the latter pressure, we obtain

mod*
10y °

R = (26)

The above considerations do not take into account the
effect of a gravity field on the wall dynamics. There-
fore, the obtained relationships are valid provided that
the initial wall size is much greater than the gravita-
tiona radius. Generally speaking, the gravitational
radius may be comparable with (or even exceed) the
wall size for a sufficiently large domain size. In this
study, we deal with smaller domains for which the
intrinsic gravity field does not affect the wall evolution.
Now we proceed to the study of PBH cluster formation
in the early evolution stage of the Universe.

5. CORRELATIONS
IN THE BLACK HOLE DISTRIBUTION

Previoudly [11] we have studied a new process
involving the formation of uncorrelated PBHSs in the
Universe. It was demonstrated that a model with rea-
sonably selected parameters readily provides for the
formation of 10! massive (10%°-10% g each) black
holes, which is precisely equal to the number of galax-
iesin the visible Universe. In that analysis, we did not
take into account correlations (inherent in this mecha-
nism) between the formation of a massive black hole
and the appearance of smaller black holes surrounding
it. This correlation is related primarily to certain fea
tures of the above-discussed process of the formation of
domains with the phases 8 > 1t Apparently, the appear-
ance of such domains creates prerequisites for the for-
mation of new smaller domainsinside.

L et us estimate the mass di stribution of these daugh-
ter domains. Consider a region with a size on the order
of H™ and a phase within t< 6, < T+ & (Where d =
H/2nf is the average phase jump during the H time
period) formed during the inflation period as aresult of
fluctuation in a certain region of space with the phase
8 < 1t During the next e-fold, this space domain will
separate into € subdomains and some of these will
acquire aphase 6, in theinterval T— 3 < 6, < 11 Upon
the subsequent phase transition, these domains will be
separated by walls from the external region. Similar
transitions, with crossing the phase 6 = 1tin the reverse
direction, will take place in each subdomain during the
next e-fold. Thus, astructure of the fractal type appears
which reproduces itself in each time step on a decreas-
ing scale.

Let ¢ denote the number of subdomains formed in
each step, around which a wall may form with time.
Apparently, this value obeys the inequality 1 < { < €2.
In the subsequent estimates, we will assumethat { = 2-3.
Since each causality-connected domain touches
approximately six neighboring domains, we can hardly

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

RUBIN et al.

expect { to be greater for a total number of ~€* = 20.
The mass of the future black hole (if it would actually
form) is determined by the area of a closed surface with
the phase 0 = 1t Theratio of areas of theinitial (mother)
and daughter domains is readily estimated: the initial
area after asingle e-fold is

So ~ e2 H —2’
and the daughter subdomain areais
S =H™

Therefore, the ratio of masses of the black holes
belonging to two sequential generationsis

M/M;,;=S/S, =€ (27)
for their relative number assumed to be
N;../N; = C. (28)

Asisreadily seen, the number and mass of black holes
appearing upon the jth e-fold after the initial domain
formation are determined by parameters of the largest
black hole genetically related to the primary domain in
which the phase originally exceeded Tt. It isevident that

(29)

Excluding j from these relationships, we obtain the
desired black hole mass distribution in a cluster:

N;=, M;=Mgye”.

Nai(M) = (Mg/M) 2™, (30)
The total mass of the cluster can be expressed through
the mass M, of the largest initial black hole:

My = M0+z2|v|1+z2|v|2+... = M, @
+€My+ (2€5) My + ... = My[1=2/€7] .

As is seen, the total mass of the black hole cluster is
only one and a half to two times greater than the largest
initial black hole mass. The number of daughter black
holes depends on the factors considered in the previous
section.

6. DISCUSSION OF RESULTS

In the preceding sections, we considered only the
principal possibility of the formation of domain walls
connecting adjacent vacuum states. We have used the
formulas derived above to estimate efficiency of the
proposed mechanism of black hole cluster formation.
The numerical calculations were performed for the fol-
lowing values of parameters (which are consistent with
the observed anisotropy in the cosmic microwave radi-
ation): the Hubble constant at the end of inflation,
H = 10" GeV; Lagrangian parameters, f = 1.77H and
A =5 GeV. Theinitial phase, at which the visible part
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Black hole mass, g

1040

Fig. 1. Plotsof the characteristic domain size (inclined solid
line) and gravitational radius (dashed line) versus the
domain mass. Horizontal line indicates the wall thickness.
See the text for numerical values of parameters.

of the Universe is formed by the time t, = 60H to the
end of inflation controls the number of domains and,
accordingly, the number of closed walls formed in the
postinflation stage. This random value, not related to
the Lagrangian parameters, must be selected taking
into account the data of observations on the abundance
of black holesin the Universe. We will use the numeri-
cal value 8, = 0.05tt, which ensures a sufficiently large
number of massive black holes, while the presence of
numerous smaller black holes does not contradict
experimental restrictions.

Figure 1 showsthe results of numerical calculations
constructed in alogarithmic scale. The bottom horizon-
tal line shows the wall thickness. Asis seen, the condi-
tion of wall existence (the characteristic domain size
must exceed the wall thickness) is fulfilled for the
domains with masses exceeding 10*° g. The domains of
lower energies possess (for the parameters selected)
dimensions below the wall thickness. This implies that
the wall formation isimpossible and the domain exhib-
its only fluctuations in the energy density. During con-
traction, the wall energy is eventually completely con-
verted into radiation.

The necessary condition for black hole formation as
aresult of the domain wall collapsing is that the gravi-
tational radius of the domain must be greater than the
wall thickness. Asis seen from Fig. 1, thiscondition is
fulfilled for black holeswith masses>10?° g. Therefore,
the proposed mechanism of black hole formation leads
to a nontrivial situation: massive PBHs exist in the
complete absence of black holes possessing masses
below this threshold. Note that the most significant
observational restrictions concerning the PBH abun-
dance refer to the mass region ~10'° g (which cannot
form for the parameters selected). Since the gravita-
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Fig. 2. Primordial black hole mass distribution in the Uni-
Verse.

tional radiusis proportional to thewall surface area, the
plots corresponding to the domain size and its gravita-
tional radius must intersect. This intersection actually
takes pace at awall mass of ~10% g. For greater masses,
the gravity effects have to be taken from the very begin-
ning, which will limit from above the possible PBH
masses. According to formula (26), the friction
becomes significant only for supermassive walls, the
number of whichis negligibly small.

Figure 2 shows the PBH mass distribution calcu-
lated for the selected parameters (see also the discus-
sionin[11]). Asisseen, the PBH massesfall within the
range from 10% to 10% g. The initia phase 6, was
selected so as to provide that the number of massive
PBHSs (~10% g) was equal to the number of galaxiesin
the visible part of the Universe. The total mass of black
holes amounts to ~1% of the contemporary baryonic
contribution.

The results of calculations are sensitive to changes
in the parameter A and the initial phase 6. As the A
value decreases to =1 GeV, till greater PBHs appear
with a mass of up to ~10%° g. A change in the initial
phase leads to sharp variations in the total number of
black holes. As was shown in Section 5, each domain
generates afamily of subdomainsin close vicinity. The
total mass of such a cluster is only 1.5-2 times that of
the largest initial black hole in this space region. Thus,
our calculations confirm the possibility of formation of
the clusters of massive PBHs (~100 M, and above) in
the earliest stages of evolution of the Universe at atem-
perature of 1-10 GeV. These clusters represent stable
energy density fluctuations around which increased
baryonic density may concentrate in the subsequent
stages, followed by the evolution into galaxies.
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7. CONCLUSION

This paper proposes a new mechanism for the for-
mation of protogalaxies, which is based on the cosmo-
logical inferences of the elementary particle models
predicting nonequilibrium second-order phase transi-
tion in the inflation stage period and the domain wall
formation upon the end of inflation. The presence of
closed domain walls with the size markedly exceeding
the cosmological horizon at the instant of their forma-
tion leads to the wall collapse in the postinflation epoch
(when the wall size becomes comparable with the cos-
mological horizon), which results in the formation of
massive black hole clusters that can serve as nuclei for
the future galaxies. The black hole mass distributions
are calculated, which do not contradict the available
experimental data. The number of black holeswith M ~
100 My and above is comparable with the number of
galaxiesinthevisible Universe. A mechanism of decel-
eration of thewall motion isconsidered, and it is shown
that this process may affect only the dynamics of col-
lapse of supermassive walls.

Development of the proposed approach gives
groundsfor aprincipally new scenario of galaxy forma-
tion in the model of a hot Universe. Traditiondly, the
hot Universe model assumes a homogeneous distribu-
tion of matter on all scales, whereas the appearance of
observed inhomogeneities is related to the growth of
small initial density perturbations. However, an analy-
sis of the cosmological inferences of the theory of ele-
mentary particles indicates the possible existence of
strongly inhomogeneous primordial structures in the
distribution of both the latent mass and baryons. These
primordial structures represent a new factor in the the-
ory of galaxy formation. Topological defects such as
the cosmological walls and filaments, primordial black
holes, archiolesin the models of axion cold latent mass
[19, 20], and essentialy inhomogeneous baryosynthe-
sis (leading to the formation of antimatter domains in
the baryon-asymmetric Universe) [12, 21] offer by no
means acompletelist of possible primary inhomogene-
ities inferred from the existing elementary particle
models.

The proposed approach discloses a number of inter-
esting aspects in this direction. Indeed, this model pro-
vides for a possibility of the quantitative analysis of
correlations in the formation of massive PBHs and the
primary inhomogeneity of the latent mass and baryons.
Originally inherent in this mechanism isthe inhomoge-
neous phase distribution, which eventually acquires
(similar to what takes place in the invisible axion cos-
mology) a dynamical sense of the initial amplitude of
the coherent oscillations of ascalar field. Irrespective of
the efficiency of dissipation of the energy of these oscil-
lations, the regions of closed wall formation must be
correlated with the regions of maximum energy density
of thelatent mass. If these oscill ations are not decaying,
their energy density may provide for the contemporary
latent mass density. Inhomogeneity in theinitial ampli-
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tude of these oscillations would then imply an inhomo-
geneity in theinitial energy density and, hence, regions
of black hole formation will become the regions of
increased latent mass density. A qualitatively similar
effect (albeit not as pronounced) takes place in the dis-
sipation of coherent oscillations at the expense of parti-
cle production. An increase in the oscillation energy
density transformsinto alocal increasein the density of
latent mass particles produced in this region.

In the class of spontaneous baryosynthesis models,
a change in the phase determines the production of
excess baryons. Therefore, in addition to an increase in
the latent mass density, the regions of massive PBH for-
mation may be characterized by a higher baryon den-
sity. Inside a closed wall, where the phase is © > 11, the
same mechanism leads to the production of excess anti-
baryons[12]. However, this antimatter domain will sur-
viveonly provided that itssizeis sufficiently large[22].
Thus, development of the proposed approach may lead
to a number of interesting scenarios of initial stagesin
the formation of protogal axies, depending on the selec-
tion of particular elementary particle models and their
parameters. This study presents the first step in this
direction.
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Abstract—Deep inglastic scattering events of alongitudinally polarized electron by a polarized proton with a
tagged collinear photon radiated from the initial-state electron are considered. The corresponding cross section
is derived in the Born approximation. The model-independent radiative corrections to the Born cross section
are also calculated. The obtained result is applied to the elastic scattering. © 2001 MAIK * Nauka/I nter peri-

odica” .

1. INTRODUCTION

The idea of using radiative events (events with the
emission of an additional tagged photon) in Iepton—
hadron interaction to expand the experimental possibil-
ities for studying different topics in high-energy phys-
ics has become quite attractive recently.

Photon radiation from the initial e'e~-state in the
events with missing energy has been successfully used
at LEP in measuring the number of light neutrinos and
in searching for new physical signals (for arecent pub-
lication, see, e.q., [1]). The possibility to undertake the
bottonium spectroscopy studies at B-factories by using
the hard photon emission from the electron or the
positron was considered in [2]. An important physical
problem of the total hadronic cross section scanning in
the electron-positron annihilation process at low and
intermediate energies by means of the initial-state radi-
ative events was extensively discussed in [3].

Theinitial-state collinear radiation isvery important
in certain regions of the deep inelastic scattering (DIS)
at the HERA kinematic domain. It leads to a reduction
of the projectile electron energy and therefore, to a shift
of the effective Bjorken variables in the hard scattering
process compared to those determined from the actual
measurement of the scattered electron alone. That is
why the radiative eventsin the DIS process

e (k) + p(p1) — e (ky) +y(k) + X(p,) (1)
must be carefully taken into account [4].

In addition, the measurement of the energy of the
photon emitted very closeto theincident electron beam
direction [5, 6] alows studying the overlap of the kine-
matical photoproduction region Q% =—k; —k,)?=0and
the DIS region with small transferred momenta (Q?
about several GeV?) within the high-energy HERA

experiments. These radiative events can also be used
for independently determining the proton structure

TThis article was submitted by the authors in English.

functions F; and F, in asingle run without lowering the
beam energy [5, 7]. The high-precision calculation of
the corresponding cross section (taking the radiative
corrections (RC) into account) was performed in [8].

In this paper, we investigate the events for deep-
inelastic radiative process (1) with a longitudinally
polarized el ectron beam and a polarized proton as atar-
get. Asin [8], we suggest that the hard photon is emit-
ted very close to the direction of the incoming electron

beam (8, = p;k; < B, with 8, < 1) and the photon
detector (PD) measuresthe energy of all photonsinside
a narrow cone with the opening angle 26, around the

electron beam. The scattered electron 3-momentum is
fixed simultaneously.

We consider the longitudinal (along the electron beam
direction) and perpendicular (in the plane (kq, ky))
polarizations of the proton. In Section 2, we derive the
corresponding cross sections in the Born approxima-
tion, and in Section 3, we calculate the different RC
contributions to the Born cross section. The total radia-
tive correction for different (exclusive and cal orimeter)
experimental conditionsfor the scattered el ectron mea-
surement is given in Section 4. Our results can be
applied to the cross section of process (1). We consider
the target proton at rest and also the colliding electron-
proton beams. In Section 5, we apply the results
obtained in Section 4 to describe the quasi-elastic scat-
tering using the relation between the spin-dependent
proton structure functions and the proton electromag-
netic form factors in this limiting case.

2. BORN APPROXIMATION

The spin-independent part of the DIS cross section
for the experimental setup considered here was recently
investigated in detail [8]. We now consider the spin-
dependent part of the corresponding cross section that
is described by the proton structure functions g, and g,.
Because the opening angle of the forward PD is very
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small and we consider only the cross section where the
tagged photon isintegrated over the solid angle covered
by the PD, we can apply the quasi-real electron method
[9] and parametrize these radiative events using the
standard Bjorken variables

- Q2 y = 2p;(k; —kj)
2p;(ky—ky)’ \ ’ (2
V = 2p;k,

and the energy fraction of the electron after the initial-
state radiation of a collinear photon

_2pi(ki—=K) _e-w

where € is the initial-electron energy and w is the
energy deposited in the PD.

An dternative set of kinematic variablesthat is spe-
cially adapted to the collinear photon radiation is given
by the shifted Bjorken variables[5, 10]

~2
A2 2 R Q
= —~(k;—k,-kK)*, X = —/———,
Q = larlel) 25k -,
o = 2p,(ky —k; —k)
2py(ky —K)
The shifted and standard Bjorken variables are related
by

A2 _ o2 o XYZ o - zty-1

Q=2Q, k=777 ¥ - 0O
At fixed values of x and y, the lower limit of z can be
derived from the constraint on the shifted variable X,

X

(4)

%<1 »z>i=Y
1-xy

In the Born approximation, we determine the DIS
cross section in radiative process (1) in terms of the
contraction of the leptonic and hadronic tensors

do_ _ 4no’(Q)
Jdxdy &

zLoH o, (6)

where G(Qz) is the running electromagnetic coupling
constant that takes the vacuum polarization effects into
account and the Born leptonic current tensor is given by
[11]
B a .. d’k
= — + —
va 4_,_[2-([2' 8pv)\pq)\(klp Rt k2p Rs) W’ (7)
q = ki —k;—Kk,

where Q covers the solid angle of the PD.

1 Inwhat follows, we are only interested in the spin-dependent part
of the cross section.
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For theinitial-state collinear radiation considered in
this paper, the quantities R, and R, can be written as

2
Rt = ____l___zﬂ’
(1-t ¢
z . 2m(1-2)
(1—Z)t+ 2 ®

t = —2kk;,, q = zk;—ko.

In accordance with the quasi-real electron approxi-
mation [9], the trivial angular integration of the Born
leptonic tensor gives

Rs =

2n2
(of . €0
LE\) = E_[P(Z, Lo)dZ|8w)\pq)\klp, LO = In_zo’
1+2 21 2 ©)
+Z —z+
P(z Lo) = L, ( == )
1-7 z

where mis the electron mass.

We write the spin-dependent part of the hadronic
tensor in the right-hand side of Eq. (6) as

—_ € v q)\ Sq
H, = —iM-£222 (g, + —0,—py, |, (10
uv | 20,9 [(91 %)S gzplq plpi| (10)

where M is the proton mass and Sis the proton polar-
ization 4-vector. In writing expressions (7) and (10), we
assume that the polarization degree of both the electron
and the proton is equal to 1.

Our normalization is such that the proton structure
functions g, and g, are dimensionless and in the limit-

ing case of the elastic scattering (X — 1) they are
expressed in terms of the proton electric (Gg) and mag-
netic (Gy) form factors as

(% Q%) — 8(1-%)
A
x |:GMGE+ m(GM_GE)GM]a
22
A= 2
4M

o A o A
0o(% Q) —= —8(1 - %) 755 (Gu = Ge) G,

(11)

Gue = GM,E(QZ)'

It is convenient to parametrize the proton polariza-
tion 4-vector in terms of the 4-momenta of the reaction
under study [12],

2
gl = 2MKu -V,
MV

_upy, t VK, —[2ut + V(1 -y)] Ky,
«/—uVZ(l—y) —u’M?

(12)

SHD
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Fig. 1. The dependence of e; on the energy fraction of the tagged photon z; = 1 — zfor different values of x, y, and V. The upper set
corresponds to V = 10 GeV2 and the lower one to V = 100 GeV2. The maximum value of z; is y(1 —X)/(1 — xy).

where u = -Q?, T = M?%V, and we neglect the electron
mass. The 4-vector of the longitudinal proton polariza:
tion has the respective components

I [Py n.E
%_(Olnl)v %1 EIV:IL, M]E

for the target at rest and the colliding beams. Here,
E,(p,) isthe proton energy (3-momentum) and n, isthe
unit vector along the initial electron 3-momentum
direction. The 4-vector of the perpendicular proton

polarization SE is the same in both these cases,
[0,

B im0

where n, is the unit vector along the scattered electron
3-momentum direction. It is easy to verify that SIS’ =0.

Using the definitions of the DIS cross section in
Eqg. (6), leptonic and hadronic tensors (9) and (10), and the
parametrization of the proton polarization in Eq. (12),
after simple calculations we derive a spin-dependent
part of the cross section of process (1) with a tagged
collinear photon radiated from the initial state,

(13)

U n,—ny(n, Chy)d (14)

d B
yd;lllydz orr (2 Lo) 2, (%, 7,09, (15)
4n0( (Q )
2) = % 2xyD (16)
xgy(% Q )[1 +eR(% O],
_ 4nd?(Q )J -
2y = —
’ Vy QZ( —y=%y1) an

x gy(% Q)1 +e,R(% Q")],
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where
o = 4K o =2
PUoRgt+y-20 7§
o A2 2
-~ X ~ ~
R = g———————Z(A’?Z), =M V=
g:(% Q) v

It is helpful to recall that the unpolarized DIS cross
section is proportional to (1 + eR), where R= 0, /0+.
For the events with the tagged collinear photon [5], we
have

o= 2(1-9)
AN2"
1+(1-9)
Because the quantities e; and e, strongly depend on
Z, the determination of the proton structure functions g,
and g, is possible by measuring the z-dependence of
cross section (15) in a single run without lowering the
electron beam energy. The quantity e, is proportional to
T and is therefore very small under HERA conditions.
Thus, the separation of g, and g, in the DIS process
with the longitudinally polarized proton is possible in
experiments with the target at rest and low values of V
(up to 20 GeV?). At HERA, the cross section of this
process can be used for measuring the structure func-
tion g, only. This can be seen in Fig. 1. On the other
hand, Fig. 2 showsthat the experiments with the tagged
photon and the perpendicular proton polarization can
be used to measure both g, and g, in a wide range of
energies (provided that Q? is not large).

3. RADIATIVE CORRECTIONS

We restrict ourselves to the model-independent
QED radiative correctionsrelated to the radiation of the
real and virtual photons by leptons. The remaining
sources of RC inthe same order of the perturbation the-
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Fig. 2. The quantity e, at different values of x and y asafunctionof zy =1—-z

ory, such asthevirtual correctionswith adouble photon
exchange mechanism and the bremsstrahlung of the
proton and partons, are more involved and model-
dependent. They are not considered here. Our approach
to the calculation of the RC is based on taking into
account all the essential Feyman diagramsthat describe
the observed cross section in the chosen approxima-
tion. To avoid cumbersome expressions, we retain the
terms accompanied by at least one power of large loga-
rithmsin the RC. In the considered case, three different
types of such logarithms appear,

2

In—2,

Lo, Lo Lo = | (18)

62
n—,
2

In the chosen approximation, we additionally
neglect the terms of the second order 8, m?/e285, and
m?/Q? in the cross section.

Thetotal RC to cross section (15) includes the con-
tributions of the virtual and soft photon emission and
also the hard photon radiation.

As one can see, we use the standard gauge-invariant
expression for the hadronic tensor. The leptonic tensor
was calculated in accordance with the QED rules. The
complete set of Feynman diagrams for the calculation
of the radiative correction caused by the real photon
emission is taken account. Taking the loop correction
into account involves the gauge invariant method for
solving both the infrared and the ultraviol et divergence
problems The results obtained in our paper are there-
fore gauge-invariant. We begin with cal culating the vir-
tual and soft corrections.

3.1. Virtual and Soft Corrections

To calculate the virtual- and soft-photon emission
corrections, we start from the expression for the one-
loop corrected Compton tensor with a heavy photon for
the longitudinally polarized electron [13]. For the hard
collinear initial-state radiation considered here, this
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Compton tensor can be written as

2 3
: d’k
vagpLB+a_|€ qk—
Hv 2 R 3| Suvae A R1p”
411.([
2 2
X[I+ALZZ+Z)LQ|nz},
_t t
1+7
T = —={2InZ[l,-In(1-2) - L] —2F(2}}
1-z
1+2z2-7 (19)
2(1-2) °
1/zd
X
F(z2) = [(=In|1-X,
X
|
It = In;t21
= 0 |2 ™ 9
p= 4(LQ—1)|na—LQ+3LQ+3Inz+§_§,

where & is the fictitious photon mass and the tensor Lff\,
isdefined in Eq. (9).

To eliminate the photon mass, we must add the con-
tribution of the additional soft photon emission with
an energy less than Ag, A < 1. This contribution was
found in [14] and the corresponding procedure of the
photon mass elimination was described in [15]. The
resultis

V+S
L —

V ~
[T va(p - p)’
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2

5= 2(|_Q—1)|nA— +3Lg+3Inz—In’Y

(20)
—§—§+2L|28:0
2
v=£&,
3

where €, is the scattered electron energy and 6 is the
electron scattering angle (6 = @).

The angular integration with respect to the hard
tagged photon over the solid angle of the PD gives
(within the chosen accuracy)

+ a
L ® = B ny 5 [PP(z Lo) + Gl dzigyup ki,
0+ 7
G = —=lInz(Ly-2Lg) - 2F(2)] (21)
M-z
1+2z-7 4(1—z+22)

—— +
2(1-2) o = Lolnz.

Using the right-hand side of Eq. (21) instead of LEV
intheright side of Eqg. (6), we derive the contribution of

the virtual and soft corrections to Born cross section
(15) as

V+S
doj o

ydydxdz 22)

= D“D —H [BP(z Lo) + GIZ (%, 9, Q),

whereZ, (X, ¥, QZ) aredefined in Egs. (16) and (17).

3.2. Double Hard Bremsstrahlung
We now consider the emission of an additional hard

photon with the 4-momentum k and an energy higher
than Ag. To cal cul ate the contribution from thereal hard
bremsstrahlung, which in our case corresponds to the
double hard photon emission with at least one photon
seen in the forward PD, we specify three kinematical
domains:

(i) both hard photons hit the forward PD—i.e., both
are emitted within a narrow cone around the electron

beam @1, @1 < 6y,

(if) one hard photon is tagged by the PD and the
other is collinear to the outgoing electron momentum

Kk, <85, 8, <1
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(iii) an additional photon is emitted at large angles
(i.e., outside both narrow cones defined above) with
respect to both incoming and outgoing electron
momenta.

The contributions of regions (i) and (ii) contain qua-
dratic terms in the large logarithms L, and Lo, whereas
region (iii) contains terms of the order LyLg, Which can
give an even larger numerical contribution if 26, >
€6,/m.

We refer to the third kinematical region as the semi-
collinear one. Beyond the leading logarithmic accu-
racy, the calculation can be performed using the results
in [16] for the leptonic current tensor with the longitu-
dinally polarized electron for the collinear as well as
semicollinear regions.

The contribution of kinematical region (i), where
both hard photons hit the PD and each has an energy
higher than Ag, can be written as

x ﬁ%P(Z)( z) + Cha ZzEnz—— —2Inq]} Lo

2

+7(1-2)-2(1-2)Inz+ 2:()’1+_ZZ)I ¥

3-22+37 1-z o o A2
-2 17 InA é:zlLD(x,y,Q).

(23)

Thedouble-logarithm termsin theright side of Eq. (23)
are the same for the polarized and unpolarized cases,
whereasthe one-logarithm terms are different. In Eq. (23),

we use the notation Pf;z) (2) for the © part of the second-

order eectron structure function D(z, L) [17],

D(z L) = 8(1-2)+5- P(l)(z)L

100 T 52 2
+2E2TDP (2L + ...,

PU(2) = PY(90(1-2-1) +5(1-2)Py,

—) (24)
2
PO () = ZZ p® = g+2InA
PO(2) = 2[1 ZETbln(l 7)— Inz+%
1
+§(1+z)lnz—l+z]
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To calculate the contribution of kinematical region
(ii), we can use the quasi-real electron method to
describe the radiation of both collinear photons. This
contribution to the observed cross section depends on
the event selection, in other words, on the method of
measuring the scattered electron.

For the exclusive event selection, where only the
scattered electron is detected, but the photon emitted

almost collinearly (i.e., within the opening angle 26,
around the scattered electron momentum) goes unno-
ticed or isnot taken into account in cal culating the kine-
matical variables, we have, in accordance with [9],

dclili ),Dexcl 0(2

—— = —P(z L

ydydsdz 412 (2 Lo)

(25)

dy, 1+(1+Y1)
(%]

e -1+

Y1
AlY

X z||, D(Xs’ Ysi Qsz)a

where y, is the energy fraction of the photon radiated
along the 3-momentum k, relative to the scattered elec-

tron energy (y; = w/s,) and

2 I2

0
= +2InY,
m

~ £
L =1In

o = yz(1+yy)
T z=(1-y)(A+y)
yo = ZZ@=NArY) e

s z

Q*z(1+y,).

The upper integration limit in Eq. (25) can be found
from the condition of the inelastic process occurrence

= (M + p)?, where  is the pion mass. Taking into
account that g = zk, — (1 + y,)k, for kinematics (ii), we
obtain

_ 2ze[M —¢g,(1-c)] —2|V|82—p.2—2M|.l

Lmax 2¢,[M + ze(1—c)]

for the proton target at rest and

_ 22-Y(1+c)
ylmax Y(1+C)

for the HERA collider, where ¢ = cosb. In writing this
limit for HERA, we neglect the electron energy and the
proton mass compared to the proton beam energy. We
note that for the exclusive event selection, the parame-
ter 0, is purely auxiliary and does not enter the final

result when the contribution of region (iii) is added.
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From the experimental point of view, amore realis-
tic measurement method is the calorimeter event selec-
tion, where the photon and the electron cannot be dis-
tinguished inside a narrow cone with the opening angle

26, along the outgoing electron momentum direction.
Therefore, only the sum of the photon and electron
energies can be measured if the photon belongs to this
cone. In this case, we obtain

do ™ _ o
Jagdsdz ~ gyt & o)

00

dy, [1+ (1+y,)°
A'!-Y(l-l_yl) Y1

<E—1)+y1}

L (26)
X z”, D(Xv y’ Q )
1

_a’ - Y_
= f—nzp(z, Lo)[(L—l)%an—i]+ﬂ

x %, (% 9, Q7).

For the calorimeter event selection, the parameter 0,
isphysica and thefinal result depends on it (see below).

To calculate the contribution of region (iii), we can
usethe quasi-real electron method [9] and writethelep-
tonic tensor in this region (which describes the col-
linear photon radiation with the energy fraction 1 — z
and the noncollinear photon radiation with the 4-

momentum k) as

Loy (K, Kz, (1—2)ky, K)

a dz ~ (27)
= E_[P(Z, LO); L (ZKy, ko, K),
~ a d k
Ly (2K, Ky, K) = o (2K, ko, K),
u +t z S+U
(Zk11 k21 k) - 2|£pv)\pq}\|:( ) klp g{ k2pi|

g = zk,—k,—k, 0 = —2zk.k;,

§ = 2Kk, T = —2zKk,.

In the general case of the noncollinear photon radi-
ation with the 4-momentum k, the contraction of the

leptonic tensor Ll‘jv (ky, ko, K) and the hadronic one is
given by
o (K, ey K HYL

———{(2rA+q B)g, + 2t (A —x(u+ OB g3 X,
q
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LY, (K Ko K)H = —

Al

2
ﬁAS—%B

—A %l y+ ZUTD} [As+x'(s+ u)B

By 5
, 2

5o

Q

Hrx(u+t)B- At]}gzm
]

UTD
vo

A = (u+1)’+ (ug’—st)(u+s), (29)
B = (u+t)%v+UHD
+Hur9RV(L-y) -=F
A, = (u+s)’+(ug®=st)(u+t), q = k,—k,—k,

2
- =
2pq
The contraction of the shifted leptonic tensor
LZV (zkq, ko, k) entering the definition of the leptonic
tensor in region (iii) and the hadronic tensor can be
obtained from Egs. (28) and (29) by the substitution

(Ky, K) — (2ky, K),

012 = 012X, qz).

=2 (30)

We use the approach developed in [8] to extract the
leading contributions (those proportional to In8, and

InB, ) to the respective cross section and to separate the
infrared singularities. We write the cross section as

do_ln) ~ G_z
ydxdydz AP

T dxg[Z + (2-%,)7]
HD(Z LO)[ I X12(Z—X1)
21— c)

(31)

n e [

0 AIY

x |n

1+7 H

2(1-c¢)
2 15 Fo4i D%

x n

Z|| D(Xs’ y51 Qs)i|

0
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where
_ Xy(z=x%)
oz x +y-1
= Q*(z-xy).
For the proton target at rest, we have
_ 2ze[M —g,(1-c)] —2Mg, —
Amax 2¢[M —g,(1—c)]
and for the HERA collider conditions,

Y(1+c

_Z-%ty-1
! z—%x,

u’—2uM

The dependence on the infrared auxiliary parameter
A and on the angles 6, and 6, is contained in the first

two terms on the right-hand side of Eq. (31), whereas
the quantities Z, ; do not contain the infrared and col-
linear singularities. They can be written as

2(1 c)

o= I1+u [-}[t1|t1

Xm Y1m =
dx dx
x {J’x_llq)”' ot to(ty, U)) — I X_llq)n, «a,0)| (32
0 0 .
dx, ", 10
850 a0 30, 0]
O .

where we use the same notation asin [8], namely,

_1-c, _

Cy, = COSO; 5,

e1,2 = izkl,m

X, = t,(1-2a)+azx2,/a(l-a)t,(1-t,).
The quantity @ (t;, t,) is given by
a X
(q )X Gy

cl3||, ot tp) =

G, = g.(2t A+’ B) + 2g,F[ A — X(Ti + T)B].

O1,2 = 91,2(;(1 az),

(33)
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XEQ[ ud’y AQ- y+2uTD}
1 e t

[ V

+ g Aot 3+ 0)B+ B-g+ 2

x[i(a+f)é—At]}E;

For the proton target at rest and the HERA collider,
the respective upper integration limitsin the right-hand
side of Eq. (32) are

. 2Mze — 2Me, — 2ze€,(1 —C) — u* — 2Mu

_ 2z=Y(1+c)
l+c,

4. THE TOTAL RADIATIVE CORRECTION

The total RC to Born cross section (15) is given by
the sum of the virtual and soft corrections and the hard-
photon emission contribution. The last one is different
for the exclusive and cal orimeter event selection. In the
considered approximation, it is convenient to write this
RC as

do; _ o

ydxdydz g7

The first term Z; is independent of the experimental
selection rulesfor the scattered electron and is given by

(Zif o+ Z¢,0)- (34)

1+7
2 0= LOEI‘ZLOP(Z)( )"‘ —Z

X [SInz—ZF(z) + InzY—2InzInY—T§[2

L+ aq 3+7 2
+2L|ZD 5 D}+2(1_Z)In z
2
—Mln(l—z) (35)
1-z
3-20z+7 2(1 c)

2(1-2) D||D( ,9,Q%) +P(z Ly)InF=—= O

P(l)(l W, o(Xo Yo Q)

Il
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1+z
1

where the quantity PA(x) is defined by relations (24)
and the quantities x;, ;, and Qf depend on u = x,/z.

On the other hand, the second term in the right-hand
side of Eqg. (34), denoted by Z;, explicitly depends on
the event selection rule. It includes the main effect of
the scattered-electron radiation. For the exclusive event
selection, where only the scattered bare electron is
measured and any photon that is collinear to its
momentum direction isignored, this contribution is

ST = P(z Lo)

_ Ximax
L Z“ s UO - T,

ypmax

ol g, Y
* [ dyl[(LQ+InY—1)P Dl_+ylﬂ+_1+yj (36)

x z||, D(X51 Ys: Qi)

In this case, as mentioned above, the parameter 6,
that separates kinematical regions (ii) and (iii) is not
physical, and we see that the final result does not con-
tain it. However, the mass singularity that is related to
the scattered electron radiation exhibits itself through
Lo inthe right-hand side of Eq. (36).

The situation is quite different for the calorimeter
event selection, where the detector cannot distinguish
between the eventsinvolving a bare electron and events
where the scattered electron is accompanied by a hard
photon emitted within a narrow cone with the opening

angle 26, around the scattered electron momentum
direction. For this experimental setup, we derive

3% 0= P(z L)

Y1max

{ n20-0) I dy, PO L 0

ayavs (37)

%%, X Yo Q)+ 57, (%5, QZ)}.

For the calorimeter setup, the parameter 6, defines

the event selection rule and is therefore physicaly
meaningful. The final result depends on it. However,
the mass singularity due to the photon emission by the
final electron is cancelled in accordance with the
Kinoshita—L ee-Nauenberg theorem [18]. The absence
of the mass singularity clearly indicates that the term

containing In8, in theright-hand side of Eq. (37) arises
due to the contribution of kinematical region (iii),

where the scattered electron and the photon radiated
from the final state are well separated. That is why no
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guestion arises as to determining the quantity €, that
enters the expression for yya,.

Comparing our analytical results for the RC due to
thereal and virtual photon emission with similar calcu-
lations for the unpolarized case [8], we see that within
the leading-log accuracy (double-logarithm terms in
our case), these RCs are the same for the spin-depen-
dent and spin-independent parts of the cross section of
radiative DIS process (1). The difference appears at the
level of the next-to-leading-log accuracy (single loga
rithmic termsin our case). That istrue for the photonic
corrections in an arbitrary order of the perturbation
theory.

We note that the correction to the usually measured
asymmetry, which is the ratio of the spin-dependent
part of the cross section to the spin-independent one, is
not large because the main factorized contribution due
to thevirtual and soft photon emission trends to cancel-
lation in this case. If the experimental information
about the spin observablesis extracted directly from the
spin-dependent part of the cross section (see [19] for
the corresponding experimental method), this cancella-
tion does not occur and the factorized correction gives
the basic contribution.

5. THE CASE OF QUASI-ELASTIC SCATTERING

In the previous sections, we considered the tagged-
photon events in the DIS process. These events can be
used to measure the spin-dependent proton structure
functions g, and g, in asingle run without lowering the
electron beam energy. In the quasi-elastic case, where
the target proton is scattered elastically,

e (ky) + p(p1) — € (ko) +y(k) + p(p2),  (39)
the tagged-photon events can also be used to measure
the proton electromagnetic form factors Gz and G,
Our final results obtained in Section 4 can then be
applied using relation (11) between the spin-dependent
proton structure functions g, and g, and the proton el ec-
tromagnetic form factors in this limit. In this case, we
can therefore use all the formulasin Section 4 with %,
and G, entering the definition of Z, ; replaced by

i o and Gj o, respectively,

d o 4Ama’(Q9)
ZII(X' y,Q) = y(4M2+ Q2)
x [41% + 1—%%GMGE— A-as 2r)G'ﬂ (39)
x9(1-x),
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8ma’(Q°)
y(4M* + Q)

—(l+2T)GMGE}6(1—x),

SH(x Y, Q%) =

x[%]__-

J s[1-y(1+1)]
(40)

~ 2
Gd = —
e 4M2+Q2
x(Dy, -G + ), (GuGe)3(1-%),

D, = B[’ +2T(U+1)],

0 am- “
E” = 2T |:ﬂ-+—‘—DAt B(2V+U+t) y (41)
O Q O

~2
D, = —KB[%+S+U+(U+1:)%[ y+2urg}

ED=K§1+1~|\—A—E[A -0 y+2uTD }

2

QU

[s+ (1 +4t) +(+DA-9+ ZUTD]E;

where
B = (U+1)(2V+U+1)
+(U+8)[2V(1-9)-T-§,

M o o coan-
K= /\/A—z(l—y—xyT) !
Q

and the form factors in the right-hand side of Eq. (41)
depend on .

The description of the form factorsis a very impor-
tant test for any theoretical model of strong interactions
[20]. The proton magnetic form factor Gy, is known
with ahigh accuracy in awide range of the momentum
transfer, while the data about the electric form factor G
are very poor. The recent experiment at the Jefferson
Lab on the measurement of theratio of therecoil proton
polarizations performed by the Hall A Collaboration
[21] improves the situation in the region up to Q? =
3.5GeV?, but the higher momentum transfer region
remains unexplored. The use of radiative events (38),
with both the polarized and unpolarized proton target,
at accelerators with a high-intensity electron beam (for
example, CEBAF) can open new possibilities in the
measurement of Gg as compared to both the Rosen-
bluth method [22] and the method based on measuring
the recoil proton polarization ratio [23].
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Abstract—A new method for calculating the density matrix of a quantized electromagnetic field which inter-
acts with the environment in the presence of kinetic processes in the medium is suggested. This method accu-
rately takesinto account photon—photon quantum correlators and possesses certain symmetry properties, which
substantially facilitate the summation of the Feynman diagramsthat arisein the cal cul ations. Forward scattering
of resonance radiation by two-level gas atomsin amagnetic field is considered as an application. Insufficiency
of asemiclassical description of this coherent processin excited media with the use of the unique tensor index
of refraction is shown to follow from quantum electrodynamics. The introduction of one more function depend-
ing on the frequency of irradiation and the concentration of excited atomsis necessary. Experiments that simul-
taneously determine both this additional function and the standard refractive index of the medium are specified.

© 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Work [1], which called attention to the special fea-
tures of the Hanle effect in forward scattering, initiated
an unremitting flow of studies [2—11]. The characteris-
tic feature of this effect as distinguished from the stan-
dard Hanle effect [12] is the coherence of secondary
radiation sources. As arule, two aspects of the problem
are considered: linear scattering with the purpose of
diagnosing scattering media[9-11] and nonlinear mag-
netooptical effects with the purpose of studying their
characteristic features [1-8].

In both theoretical and experimental studies, the
influence of excited atoms on the processes under study
has not been given due attention. It was implicitly and
sometimes explicitly [2, 4] assumed that the influence
of excited atoms through medium polarization depend-
ing on the difference n, —ny, (n, and n,, are the concen-
trations of nonexcited and excited atoms, respectively)
can only weaken the observed effects.

Inreality, and we call attention to this circumstance,
the role played by excited atoms under the conditions
of coherence of secondary radiation sources is much
more important even in linear scattering processes, to
which our consideration will be confined. Consistent
guantum el ectrodynamics, which deals with quantized
electromagnetic fields, showsthat, in this case, the scat-
tering medium cannot be described with the use of one
polarization or refractive index tensor, and we must
introduce one more function depending on the electro-
magnetic field frequency. A similar situation arises in
studying the effects of selective reflection of resonance
radiation from excited media [13, 14]. It follows that
we are dealing with the general properties of the evolu-
tion of quantized electromagnetic fields in excited dis-
persing media. The Hanle effect in forward scatteringis

convenient in that it allows various characteristics of
media, including those that are not described by their
indexes of refraction, to be diagnosed with the use of
existing experimental units by observing mutually
orthogonal scattered light polarizations.

Recall that the index of refraction in a natural way
appearsin classical opticsin describing the determinis-
tic (not fluctuation) radiation component by excluding
the dynamic variables of the medium from the Maxwel
system of equations. Such a procedure cannot be
applied to field operators in quantum electrodynamics
in the presence of absorbing media. The index of
refraction in quantum electrodynamics is naturally
present in the method of Green quantum functions[15].
Such a calculation procedure has aready been used in
severa optical works [16-20]. The problem, however,
persists, and its essenceis asfollows. We cannot obtain
closed equationsfor quantum-averaged val ues because,
in deriving them, the chain of Bogolyubov equations
hasto be closed by correlator breaks. In the Green func-
tion technique, an equivalent procedureisthe neglect of

[, On Gin G correlators, where d , (Gixy ) is the
operator of annihilation (creation) of a photon in the
state with wave vector k and polarization index A.
Arguments of one or another kind are used to justify the
assumption that these correlators play a comparatively
unimportant role (all k and A are equal) in the find
equations. At the same time, the presence of induced
radiation processes in excited media causes the appear-
ance of correlators of just this type. Their coefficients
are singular because of the presence of & functions that
ensure that the conservation laws be obeyed. For this
reason, the possibility of ignoring such correlatorsisfar
from obvious.
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To retain these correlators and elucidate the rol e that
they play, we use another technique for excluding
medium parameters from the calcul ation scheme. Let p
be the density matrix of the atoms + electromagnetic
field system. After summing over the parameters of
medium atoms, the density matrix of an electromag-
netic field in a medium, py, = Sp,p, arises in a natural
way. The mean field characteristics are found by apply-
ing the standard procedure,

[(8'0= Spyé Pons (B € 0= Sppné € pon,

where €’ is the operator of electromagnetic field
strength. Thistechnigque does not involve breaking pho-
ton—photon correlators.

Below, we describe a new method for deriving a
closed equation for py,. This method possessesinternal
symmetry, which substantially facilitates calculations.

Attempts at finding equations for the density matri-
ces of subsystems (such asthe photon field) interacting
with the environment were made in [21-23]. The form
of the equations and the absence of symmetry relations
impeded going beyond perturbation theory. To over-
come these difficulties, the method of I' operators was
developed in [13, 14]. Experience shows that familiar-
izing oneself with the method that uses the abstract I
space involves serious difficulties. This prompted us to
develop another independent method for calculating
Ppn Which has similar symmetry properties.

We use the method of matrix Green functions devel-
oped in [24] for calculating quantum means. We will
show that some of its modification allows py, to be cal-
culated. Such a calculation scheme requires certain
nonobvious preliminary constructions and for this rea-
son has remained undemanded.

Consistently taking into account photon—photon
correlators has nonobvious consequences, such as the
insufficiency of describing the optical properties of
excited media by a unique polarization tensor. What is
more, the existence of such a tensor would contradict
the fundamentals of quantum electrodynamics. This
assertion can beillustrated by the example that admits
elementary analysis, see below.

2. PRELIMINARY ANALYSIS

Some properties of light passed through athermally
excited gas layer in a magnetic field can be predicted
based on the following nonrigorous semiquantitative

analysis. Let ususethe S matrix theory, and let p be the
density matrix of the medium + field system after
switching on the interaction Hamiltonian. The p,, den-
sity matrix of the photon subsystem can always be writ-
ten [14] asthe sum of two terms,

Pon = P + PUb. )
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The pgﬂ term describes electromagnetic field scatter-

ing not accompanied by changes in the initial state of

the medium (coherent scattering channel). The p(p”r? term

describes processes that change the state of the medium
(incoherent scattering channdl). Sum (1) shows that there
is no quantum (described by wave functions) interfer-
ence phenomena between these channels because
medium atomic functionsin finite states are orthogonal.

Let Nn = GGy, be the operator of the number of

photons in the state corresponding to the (k, A) mode.
It follows from (1) that

Nia0= Niad? + MNiad”,
Rid? = SpthkAp(p?, (2
Miod” = SpyuNiaplp.

This showsthat, if (k, A) is the mode to which pho-
tons are scattered from the (kq, Ap) initial state as a

result of their interaction with the medium, the Nk, O
mean in this mode is representable by the sum of two
positive definite terms. Thisconclusion is of fundamen-
tal importance. The positive definiteness of the terms
in (2) follows from the possibility in principle of mea-
suring them. A formal proof of this statement can be
found in [13].

Next, consider the result of scattering of transverse
(A =1, 2) photons on two structurally identical atoms,
one of which is not excited and occurs at point R;, and
the other is excited and occurs at point R,. The atoms
will be assumed to be two-level but possessing Zeeman
sublevels. Let the scattered light bein quasi-resonance,
[k — Wl <k, with the wy,, frequency of optical transi-
tionsin atoms, £ = ¢ = 1. The resonance condition com-
plicates the analysis and, generally, makes perturbation
theory inapplicable. For preliminary analysis purposes,
wewill proceed asfollows. Let us use perturbation the-
ory retaining £i0 terms, which arise as a consequence
of the adiabatic hypothesis, in resonance denominators.
In amore complete theory, these termswill be replaced
by +iy/2 (y is the width of the atomic energy levels)
because of the presence of mass operators. The colli-
sional width will always be assumed to exceed the radi-
ation width. The signs of i0 and iy/2 should coincide
because of the causality principle. It follows that taking
into account i0 terms, which will immediately be
replaced by iy/ 2, allows usto predict the structure of the
final equationsin a more elaborate theory.

We assume that each atom has one valence el ectron.
The spin effects are ignored. In the second quantization
representation, the Hamiltonian of the system iswritten as

A=A
A°= Z&BFBJ' + Zsjﬁ;ﬁi + Z kBi;Adk)\ + 12%,
j j kA
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0 = _Z Pii (k) « |Pmu(K)Pmi Ko N,
7 [2kV 2kv 5
R ~ KRoat . A 200 o _
N (elk Ry 6B, + ok IZRZBi G By) + Hec. y O (&, —Em ko).6(k Ko)
K=o, +iy/2

Here, V = L,L,L, isthe normalization volume, €; are the
allowed atomic energy values taking into account the
presence of amagnetic field, and b; (b} ) and B; (B;)
are the operators of annihilation (creation) of the first
and second atom states corresponding to these energy

levels. Inthis special problem, all operators can be con-
sidered belonging to Bose-Einstein fields. Further,

Pi(k) = %jwf(r)ﬁeﬁeiknwj(r)dr, p =0,

where (; is the wave function of an atom in the state

with energy ¢;, and eﬁ are the unit vectors of linear
polarization of photons.

The S matrix will be calculated accurate to third-
order perturbation theory,

é =1+ é(l) + §(2) + 3(3).

Standard cal cul ations show that, for the coherent chan-
nel [14],

A Ao
Pi: (K) P (Ko)
2kV

Dilmdc) = [AS(2)||’\\||<)\|AS(2)|:|= 4T[2

expli(ko—k) [R4]
K=o, +iy/2

x 8 (K - ko)[ 3)

2

L &xpli(ko—k) ERz]}
Wy —K+iy/2

0

where N, is the number of photons in the scattered
mode. Here, it is taken into account that, by virtue of
Zeeman splitting, only the €., and €, sublevels are in
resonance with frequency k, and, for this reason, only
these sublevels areretained in (3).

For the incoherent scattering channel, we have

Mod” = B+ 8V N087+87020. 9

The (8" || 870 termis not of interest to us because
it does not describe scattering processes. Explicit cal-
culations of (4) with retention of terms fourth-order in
charge[asin (3)] yield

&3

BN 820+ cc. = -8
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Let us analyze (3)—5) taking into account that scat-
tering occurs forward. If the incoherent channel is
absent, then only coherent scattering channel does,

according to (3), participate in the formation of [N,\O
for the (ko, A) scattered mode. This mode differs from
the initial (ko, Ag) mode by its polarization, which is
perpendicular to that of the latter. According to (3), if
k= Wy then the amplitudes of waves scattered on dif-
ferent atoms are algebraically summed. This means
that, in the presence of many scatterers and at their low
concentration,

D’\\lk)\dc) O N, + N, (6)

However, if [K—wy, | > Y/ 2, then, again according to (3),
the amplitudes of scattered waves are subtracted from
each other, and, for extended media, we should expect

D,\\lk)\dc) 0 Ny —Npy. (7)

The difference between (6) and (7) is at variance
with calculations based on the standard quantum Green
function methods with the use of refractive index k
of the medium related to polarization operator IN as
K = 1 —M/k? [15]. Such calculations using the proce-
dure of breaking photon—photon correlators show [20]
that I U n, —n,,, for al frequencies.

It may seem that our analysisisincomplete because
of the neglect of the incoherent scattering channel. Can
taking this channel into account restore agreement
between the theories? At first sight, this is precisely
how matters stand, because the sum of (3) and (5) gives
a complete result, which only differs from (3) in the
sign of iy/2 in the denominator in the second term.
According to this expression, the amplitudes of scatter-
ing of optica waves on excited and nonexcited atomsin
thek =k, direction are in antiphase for all frequencies.
This implies (7), which seemingly restores agreement
between the theories. Such a conclusion would be erro-
neous. The matter is that (5) is negative at k = k,, and
this contradicts the positive definiteness of the contri-

bution of the incoherent scattering channel to [Ni»[.
The positive definiteness is restored by consistently

taking the &% termin (4) into account. Thisin turn
means that terms sixth-order in charge, which determine
the sign of the fina result, should be included in (4).
Clearly, sixth-order terms in the incoherent channel
exceed fourth-order terms in magnitude, and perturba-
tion theory becomesinapplicable. The e ementary sum-
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mation of the Feynman diagrams resulting in the
replacement of i0 by iy/2 does not change the situation.
We must use other additional summation methods.

To summarize, caculations of incoherent channel
contributions to resonance scattering when the medium
contains excited atoms always require going beyond
perturbation theory and taking into account infinite
subseguences of Feynman diagrams. At the same time,
the positive definiteness of the incoherent scattering
channel is evidence of the inequality

ENkO)\DE D’\\lko)\dc) O n“ +n,
for

K=w AZAo.

mpL

The example considered above shows that the pro-
cess that changes polarization for orthogonal to initial
when light passes through an excited resonance medium
in a magnetic field cannot be described with the use of
standard refractive index and medium polarizability,
which depend on n, —n,,,. It will be shown that the inten-
sity of light passed through a medium with scattering but
without polarization changes (A = Ay) admits such a
description, and the refractive index can then appropri-
ately be used.

It follows that studying the optical properties of
excited isotropic resonance media by quantum electrody-
namics requires at least two functions depending on k to
be used smultaneoudy. The absence of one of them
would contradict the fundamentals of gquantum theory.
Explicit equations for these functions are given below.

Note that calculations of these equations requires
the use of quantized field theory methods. Our results
cannot be obtained in semiclassical theory dealing with
nonquantized fields. The usua assertion that, in strong
fields, the results of quantum optics using coherent [25]
states and those of classical optics should coincide,
because perturbation theory series in these theories
only differ by vacuum terms, which are of little conse-
guence, isinapplicable because of the inapplicability of
perturbation theory.

Consider the results of semiclassical theory in more
detail. According to this theory, the light scattering
mechanism is the induction of dipole moments of
atoms by radiation undergoing scattering and then the
induction of radiation by induced and therefore time-
depended secondary wave dipole moment.

If aclassical electromagnetic wave fals on a two-
level atom in the excited state Y, and the strength of
thiswave is described by the formula

%v - %%;(eiwt_'_e—imt)’
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then, according to [26], the induced dipole moment in
the units that we use equals

2
e

v o _ * .V -_<
d, = eImer g, dr = an

x S € Oulr” | mOm|r*| uo
2

i ot —i ot
xd € + € N
Lo, —w—iy/2 oy, + w—iy/2]

+ C.C.

If the atom occurs in the ground state U, the external
field induces the dipole moment

2 ' '
dh = —g—nz o (mir [ plrm

0 eioot e—iwt 0
x — + . +C.C.
Loym—w—iy/2  wyy+ w—iy/2]

If the excited and nonexcited atoms are situated close to
each other, then, in the quasi-resonance approximation,
W = Uy, and the resultant dipole moment is given by
the sum

2 V' v
d\r:1+d\1}1 — _gﬁzg"d“'r |m><m|r ||.,l>

U Wy —w—iy/2

Ll Tmy I m)* e,
—W, T WHIY/2

We see that all dipole moment components are fully
compensated. For this reason, the scattering amplitude in
extended media is determined by the n, — n, difference,
and, when n,, —= n,,, scattering disappears according to
semiclassical theory.

The theory of the Hanle effect based on the semi-
classical approach taking into account the presence of
excited atomsisdescribed in [4], whereitisshown that,
in agreement with the semiclassical analysis performed
above, the Hanle effect is determined by the n, —ny, dif-
ference not only in the linear approximation but also in
the approximation of an arbitrary order nonlinear with
respect to field €.

Next note that the same semiclassical theory can be
used to obtain a different result. Let the energy widths
of atoms be zero. A system comprising an excited and
a nonexcited atom does not possess dipole scattering.
Suppose that an extraneous particle approaches one of
the atoms. The energy level of the atom shifts under
such perturbation. The resonance frequencies of the
excited and nonexcited atoms cease to coincide. This
means that waves scattered in antiphase by the excited
and nonexcited atoms cease to strictly compensate each
other because of different energy denominators in the
scattering amplitudes. Dipole scattering appears. What
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Scheme of energy levels corresponding to arithmetic sum-
mation of the amplitudes of light reflected by excited and
nonexcited atoms.

ismore, if the scattered light frequency falls within the
detuning of the resonance frequencies (see figure),
then, because of a change in the sign of one of reso-
nance denominators, waves scattered by the atoms
become synphase and are arithmetically summed.
A flash of scattered light occurs.

Such an elementary consideration in terms of semi-
classical theory shows that the intensity of light scat-
tered in resonance by two atoms one of whichisexcited
should be proportional to the n, + n, sum. Unfortu-
nately, formally taking into account collisional pro-
cesses in semiclassical theory by the introduction of a
collisional width leads to a different result, see above.
This leads us to conclude that, in the semiclassical the-
ory of radiation, widths of atomic levelsin the presence
of excited media are not aways correctly taken into
account.

Condsgtent quantum electrodynamic theory has no
such shortcomings. This theory will now be constructed.

3. DENSITY MATRIX
OF THE PHOTON SUBSYSTEM

3.1. Basic Propositions of the Theory

Consider agas comprising two-level, but possessing
Zeeman sublevels, atoms each with one valence electron.
Thetransverse dectromagnetic field will beassumed to be
in quasi-resonance, |k — oo,m| <k, with optical atomic tran-
sitions. Taking into account trandational degrees of free-
dom, let us write the Schrodinger equation in the form

OW

+"|
"ot H,

1
T
o

= HY, H

~ A~ ~ ~

= Ha+ Hpn, Ha =

I
S
|

Zsi(p)BrpBip’
ip

I:lph = zk%;)\dk)\*'%%,
%)

A = —%qu(r, R)PA (r)d(r, R)drdR,
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b(r.R) = zw R)E— [ ..

ik
e““ay, +H.c.

A(r) =
kA

Here, €(p) = & + p%2M, p is the momentum of the

atom, M is the mass, and bip (bi+p ) are the operators of
annihilation (creation) of an atom in the state with
momentum p and internal state described by wave
function ;. In the absence of thermal degeneracy, all
operators can be considered belonging to the Bose—
Einstein field.

Hamiltonian H responsible for interaction of medium
atoms with the reservoir can be introduced into the
Schrodinger equation. Wewill not do thisexplicitly, but
it will be assumed that the reservoir maintains the con-
centration of excited atoms at a constant level and
broadens their energy levels.

Let us rewrite the Schrodinger equation in the inte-
gral form

0y°

where W istheinitial state of the system before switch-
ing on Hamiltonian A',

W=+ Ry,

09 ~o0,0 _
IW —-H %r =1, (9)
The solution to (8) can be written in the form
0%,

i— —HY, =

W=y+4 Ay 5

(10)

3.2. Green Matrix Functions ;).
Let
Cgvac - (g (ga, (g - (g0+

Let usintroduce the eigenfunctions and eigenval ues of
free field operators

HDhCDN = gon(N) Dy, |:|aXN = &(N)Xn-

Here, the argument of the photon field is N = Ny, ,
N, ---» Where Ny , - are the occupation numbers of
states (k;, A;), and the argument of the atomic field is
N=N, N; where Ninj are the occupation

1Py ? E1o

numbers of states (i, p;). Put
G =9 - . 9, = —izwoW,
WO = ¢N0exp[—ieph(No)t]xNbexp[—i ea(No)t],

AU
(12)
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where the N, and N, vectors correspond to the initial

states of the system and Z is an arbitrary dimensionless
constant. By definition,

(g(1)1 = (ggle> + Cg(1)29<a (g(z)z = (ggle< + cg(1)29>a (12)
where0” =0(t—t') and 6< = B(t' —t), 6 isthe Heaviside
function. It follows from (12) that

ngl + ngz = (522 + ngl (13)

and

ng)l_ gz = cg?, Cg(l)l_ 21 = ng- (14)

The %’ and 62 functions possess retarded and advanced
characters. They satisfy (9).

3.3. Matrix Green Functions ;.

We will define these functions as solutions to the
integral equation

Gy =Gy + Cgﬂlcfj)ﬁllllzcguw (19)

where cfﬁ) = §,(—1)' * 1 and the repeat subscriptsimply
summeation.

Consider the following question. What are the prop-
erties of operator Hy- that ensure that the ;. function
will possess algebraic properties (13), (14) inherent in
the ;. function?

Let usact on Eq. (15) from the left by the matrix [24]

and, from the right, by the matrix U~ = 0", Equating
the elements of the obtained matrix equation taking
into account (13) and (14) yields four equalities:

G+ Gy = Cg(1)2 + (ggl + (Cg(l)z + (ggl) |:|a(§a

+C§?|:|',(<le+(§21) +(g?(|:||21—|:|'12)(§a, o
G =G+ GG, Ga= Gt GHG,  (17)
|:|‘11—|:|'22 = H'21—|:|I12, (18)

where the notation
Hr = Hu+H, Ha=Hu-He (19)

is used. It follows from the equality 6, = ¢, that

H.= A" (20)
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Equation (16), in turn, yields

G, = (1+ Cgr|:|lr)cg22(1 + Ha(ga) —Cgrﬁizcgia,

R - - (21)
Gn = (L+9GH)Gx(1+Ha9,) + 9, H2%Y,.

Conditions (18)—(20) can be satisfied by requiring that

Hi- = 8,.0(t—t)A". (22)

Equations (17) are now equivalent to differential equa-
tion (10). It follows from (21) and (11) that

G, = AZWW",

where W satisfies (8).

We have shown that the WW* product, where W is
the solution to (8), can be found by solving integral
equation (15) under condition (22). We have

Pon = IZ7 0990 t—t. (23)

Averaging in (23) is performed over atomic variablesin
both quantum and statistical senses.

3.4. Averaging over an Ensemble of Systems

Let ususethenotation 4|, - o = 4. Retaining only
thefirst term of the expansion of ;. in powers of Z, we
obtain

G = Dy —iZpy, G = DY —iZpy,

(24)
py. = WO,

All matrix p)). elements are equal. According to (23),

[Pl P [Dpd= 0.

Let us solve (15) iteratively setting Z equal to 0. This
yields

A=A+ A°0PHA°

. A (25)
+A°0PA'A° AN + ..
Next, we will differentiate the iterative series with
respect to Z and then set Z = 0. We arrive at
p=p’+p’cPA'A%+ A% VAP + ... (26)
The structure of series (26) isidentical to that of series
(25) with sequential replacement of each A° matrix by
pC in such away that each term of (26) necessarily con-
tains the p® matrix, but only raised to the power one.
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Let usaverage (25) and (26) after multiplying them by
the exp[i Ha (t — t')] operator from the left. Consider this
procedure as applied to the ;. matrix. Because

G ==0(t=) S X PrXn P
NN’

x exp{—i[e,(N") +ep,(N)] (t -1},
we have

Cexp[iHa(t—t')]90
= —iZancD;exp[—isph(N)(t—t')]e(t—t') = O

Further, according to (11) and (24),
[pyf] = @y, O, exp[—iepn(No) (t—t)] ,
and, taking into account (14), we obtain

mo0=A0-n7 mio=o, b= 4.

The other mﬂD elements are determined by equali-

ties (12). These elements are related by Egs. (13). This
means that

A = N Texp[—iHa(t—t)]1.

Let usreturn to series (26) and average the third term
(second-order perturbation theory). We will use the inter-
action representation

exp(iHat)P(r, R)exp(—iHat) = {(X),
X={rR, .

Taking into account astochastic (Gaussian) distribution
of atoms over degrees of freedom yields

" (X)PAD(X) P (X)PAP(X,)D
= - f’AGzl(le Xz)f’AGlz(sz X1),
where
G Xy, Xq) =i Eﬂl+(X1)¢(Xz)D

G (X, Xp) =i UTJ(Xl)fV(Xz)D

Other possible terms of the performed factorization
give zero asthe end result. Let usintroduce the notation

2
9)|1|2(t1, tp) = —E‘%E
XJ.FA)A G (Xy, X3) D3|01|2(t1t2)D 27

X ij)zf)l& G12(X2, Xl)dr 1dedr 2d Rz.
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The expression to be calculated takes the form
D’lﬂﬂf fﬁ)ﬁ)mz UX&D

Thisformulawas obtained in [13] by the method of I
operators. The term describing the second order of the
iterative series for the p,; matrix is calculated in asim-
ilar way. We eventually have

0= A0+ mﬁlﬁb ,(3)1@)|1|2 D'S&El (28)

[py0= 0+ Opy [ (P11, (Y, 0
. . (29)
+ ) [0 (D PhL I, 0+ B B (1P, Oy O

The odd terms of the iterative series vanish if the
medium initially does not possess coherent properties.
Equations (28) and (29) found in second-order perturba-
tion theory contain [A°Cand [@°Cis right-hand multipliers.
They are replaced by complete functions [AUand [pas a
result of taking into account subsequent perturbation
theory terms and the Dyson summation of Feynman

diagrams. The derived equations are exact if 93”- and

@’ﬁ are understood to be complete expressions for
polarization operators. In the simplest, so-called one-

loop approximation, we have (27) for -, and asimi-
lar equation for @)ﬁ inwhich (A0 isreplaced by [p°C]
It follows from the vanishing of [A\),0 that [A,,00=
@’12 = 0. Therefore,

m,0= 30 -M,0= 00 mO= 0,

@)11=9A>r, @)22=9§)a, (j)az @):

Equations of the algebraic structure of Egs. (28) and
(29) were considered in [13]. Following the reasoning
of [13], we obtain

p 1= [p 12GC) + Eblef”),
p0” = (1+ P, UL+ PaD ),

mlzﬂn) = —mrE@) 52 (A (30)

0= A0+ Y, 0

0= B+ IP. [0

This system of equations shows that the evolution of a
guantum field in a medium is generally governed by
two operators, %, and P . Thei mpossibility of using
aunique medium polarization tensor is now made obvi-
ous. Coherent scattering processes are described by the

%, operator, and incoherent processes including
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induced radiation, by the 97’22 operator. Induced radi-
ation processes are incoherent because, while chang-
ing the state of atoms, they disturb the phase of the
atom + field wave function and do not interfere with
coherent scattering processes|[27]. Asshown below, the
standard refractive index arises as some combination of

éﬁr E“]d ébgg.
Equation (27) isvalid if nxsyr/y< 1, wherenisthe
total concentration of scatterers, X = 21vk, and y;(y) is

the radiation (total) width of excited atom energy lev-
els. Below, in accordance with this equation, we give

expanded formulas for 93% and @’EZ in the energy rep-
resentation

f(E) = J’e‘E‘f(t)dt.

We have [13]

P.(E) = [ p, A (E—Hpn)Gi p,
koA koA,

+ d;lMCr(E— |:|ph)6(kzxz],

Ak n (KPR (k)
(E) = % i

Ny(P)d. (K5, Kq)
E + Wy + (Ky + k) (p/2M +iy/ 2]

(31)

CHME) = Y Pt (k) Pl (kz)

mpp 2,/kik,

Nu(P)d; (K4, K»)
E — Wy — (K +Kp) [p/2M +iy/2

Here, n(n,) is the concentration of excited (nonex-
cited) atoms on Zeemen sublevels, y =y, +y,, ad y, ,
are the collisional widths of the corresponding energy
levels. For aplane paralld scattering layer of thickness L
with symmetry axis z[13],

O (K, k2) = B(Kyx ko) B(Kyys Kay) B (ki —ko,),

L

0.(@) = [e ' =

0

1-¢'*
iqL,

Further,
PL(E)
- Z |:ak A J.AlZ(E E ) |1--)12(E )ELGKZ)‘Z (32)

SUSLIYP
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) , W dE s
@i, [CulE~E) DU(EN 6L, |

where
k}\kz)\z m (kl)P (kz)
A —2TT = N
12 n%) k1k2 (p)
k,+k
><6\'%_(’0le %DBL(M, 2)
3 ) mu (K P k
Clz)\k)\(E) — _znz p( 1) ( 2) u(p)

J@z
x 8,FE + oy, +—'°E(k Z)EéL(kz,kl),

5,(E) = ﬁ[%+ ing_l_%—iYgl]

3.5. Coherent Scattering Channel

Let the scattered flux of photons be in the initia
Fock state (kq, Ag),

[p1o(E)D = 21t&(E — Hpn) INo [N

Wewill beinterested in the density of photons that passed
through a plane parallel scattering layer of thickness L.
The photon density operator will be written as

mp

A, 1
n r = -
=3

X z dilxlexp[—i (ki —kp) OF]d -
klkz
In accordance with (30), in the lowest order with respect
to the concentration of scattering particles, we have
pu? = CpY0+ P, (pY0+ (b LPa (A (33)
Consider the contribution of the second termin (33) to

AOAO(r )C. Equation (31) yields

B0 = § S

X Z GEOAOeXp[—i (ko—kp) F]d i,
k (34)

okaho s E
G0, C, Ayl mlzdj—

Note that the term with k; = k, = k, written separately
in the polarization operator makes a zero contribution
to the result of calculations because of smallness of its
statistical weight when L, —= oo, It follows that no

N KohokoAo  +
X [, Ar Ui p, +
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mode should be treated separately in the summation
over k, in (34). The technique of the further calcula-
tions was described in [13, 14]. According to (33), we
eventually have

EﬁAOAO(r)Eiclm - No

VEKLENKO

Ko
X GVB(O—wm“ - MEDE}

Consider the scheme of calculations of ™ (r)d”
for polarization of transmitted light perpendicular to
polarization of incident radiation (A # Ay). According
to (30), the diagonal element of thisvalueis given by

(36)

{1 2n Y Piu(ko)|” () +Nu(P))  (35) 7 = A%, pYP. D
mpp Ko Asaresult,
Eﬁ”‘(r)[ic)
R mp(kO)P u(Ko) (Nu(P) = Nw(P)) (Ko — Wy, kOEp/M)_IV(np(p)+nm(p))/2
Y Z 2k
< 0 1o — Wiy — ko CP/M|? +y2/4

We will discuss this result below. Here, we will only
note that, if [k, — wy, — Ko - p/M| >y, the termsin (36)
depend on the n, — n, difference. At the same time, if
ko — Wiy, — Ko - p/M| <, they depend onthen, + n,, sum.

3.6. Incoherent Scattering Channel

First note that the contribution of the incoherent
channel to the diagonal element of 0™ (r)Cis positive
definite at any A. This follows from the preliminary
analysis of the problem given in Section 2, and thiswas
independently proved for (30) in [13]. It follows that
Egs. (35) and (36) determined by the coherent scatter-
ing channel estimate the sought values from below.
However, for A = A, the term taking into account the
role played by the medium hasanegativesignin (35), and
the positive definite term from the incoherent channel
can compensate it. For this reason, the contribution of
the incoherent channel is of special interest.

In accordancewith (30) and (32), let us calcul ate the
expression

AoA n) A+ ~
h™ O(r)[iﬂ w0 = ISpphZ Qe on g Aicyng
kl

x expli(ky—Ko) - 1] D8 4,
o— dE

J'AI;Z)\H\ mlthA OxomDZ_\/+CC

Note that although the incoherent channel isrespon-
sible for the contribution of induced processes to the
overall scattering intensity, the term with k; = k, = kg

(37)

in the %, operator makes no contribution because of
the smallness of its statistical weight. Formally, this

term containsthe L;l multiplier and vanishesasV — oo,
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Such aform of calculations of induced radiation istyp-
ical of media of finite dimensions. For the same reason,

the term with C,, contained in @)22 falls out of calcula-
tions.

Subsequent transformations of (37) with ignoring
spontaneous radiation give an almost obvious result,

N

m(r)d” = ant 32

Ao 2
Pmu(ko)

Ko

k
nm(p)ayB(O - wmu - ﬁg%

3
mup

The sum of this expression and (35) can be written as
)"

N
= FL-2koL ImK(ko)],

o) + '
(38)

where

Fiky) = 1 mp(ko)

ZJ'(2”)

Nu(P) —Nw(P)
Ko — Wny —Ko Cp/M +iy/2’

asV —» 0, and K ° (ko) issmply the diagonal element
of the standard index of refraction of the medium which
can be obtained in terms of the theory described in[15].
Like medium polarizability, this index of refraction
depends on the n, — n, difference and the concentra-
tions of atoms on the lower and upper atomic transition
levels. According to (38), the medium becomes less
active as n,, — n,.
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Another conclusion followsfrom (36). Theintensity
of light that passes through the medium with a 21t
changeinitslinear polarization direction is determined
by the n, + n, sum under the conditions of resonance
with some Zeeman frequency k = wy,, and does not
decrease as n,, — n,,. Taking into account the contri-
bution of the incoherent channel cannot change this
result, because this contribution is positive definite.

We arrive at the conclusion that thisintensity cannot
be described by the refractive index of the medium that
contains excited atoms. Its description requires the use
of another medium characteristic, which depends, in
particular, on the n, + Ny, sum.

4. CONCLUSION

Theresults of thiswork, in particular, formulas (36)
and (38), were obtained in the quasi-resonance approx-
imation for two-level scatterers. It was assumed that the
interaction of an excited atom with radiation caused
light scattering or induced radiation. Absorption was
ignored. It follows that the eventual formula would be
substantially different if the medium contained scatter-
ers with an equidistant energy spectrum.

This insufficiency of the description of the optical
properties of excited dispersing mediain a semiclassi-
cal radiation theory is caused by not taking into account
the photon—photon correlators. Like the medium refrac-
tive index, the new characteristic of the medium that
appears in our analysis, which depends on the n, + n,,
sum, depends on the Planck constant only through
oscillator strengths. This is quite natural, if the essen-
tialy quantum two-level object of scattering is taken
into account. Note that the dependence of the refractive
index on the n, —n,, difference is also a consequence of
guantum theory. Such a difference cannot be obtained
for light scattering on classical oscillators.

In thiswork, we did not explicitly take into account
the role played by the incoherent channel in the forma-
tion of theintensity of light scattered with aT1v2 change
in polarization. We only noted that this role was posi-
tive definite and required going beyond the scope of
perturbation theory. By analogy with studies performed
in [14], it can be expected that taking this channel into
account would result in an observabl e frequency broad-
ening of scattered light because of achangein the num-
ber of quantain the system. This effect would be deter-
mined by the coefficient of absorption of photons by
the medium.

In testing the suggested theory, studying the Hanle
effect in a longitudinal magnetic field may be useful.
We call attention to works[10, 11], in which an electric
discharge in inert gases served as a scatterer. In such
experiments, the existence of a noticeable fraction of
excited scatterers should be expected. A series of exper-
iments with different discharge currents would be of
interest, because the dependences of passed light inten-
sitieswith different A on n, and n,,, are qualitatively dif-
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ferent. If, in addition, side scattering intensities of spec-
tral lines related to the 3S~— 3P and 3P —— °D tran-
sitions are measured, for instance, when discharges
occur in He, then the relative occupancies of the lower
n, and upper n, energy levels, transitions between
which areresponsible for the Hanle effect, can be deter-
mined.

Such an experiment would not only allow us to
refine the rules governing the Hanle effect in forward
scattering but would also call attention to the general
features of constructing quantum electrodynamics for
excited dispersing media.
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Abstract—The asymptotic resonant charge exchange theory is developed for slow collisions of atomsand ions
with valent p-electrons. Because of a small rotation angle of the molecular axisin the course of the p-electron
transition, the resonant charge exchange cross section is not sensitive to the rotational energy of colliding par-

ticles, and the cross sections are nearly equal for cases “

a’,"b”, and “d” of the Hund coupling, and also for

cases“c” and “¢e” of the Hund coupling. The cross sections of the resonant charge exchange process are evalu-
ated under various conditions and for various elements of the periodical table with p-electron shells of atoms

and ions. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The resonant charge exchange process corresponds
to the tunnel transition of a valent electron from the
field of one atomic core to another in the course of a
collision of an ion with the parent atom. Under rea
conditions, one can consider nuclei to move along clas-
sical trajectories [1-3]: at small collision velocities
compared to a typical atomic velocity, the rate of this
process can be expressed through the parameters of a
molecular ion consisting of the colliding atom and its
ion [4, 5]. In particular, for the transiting s-electron and
structureless cores, with only two electron terms of the
molecular ion involved in this process, the prabability
P, Of the electron transition from one core to another
after the collision is given by [4]

P = SNEZ(P), Z(p)—IA(R)dt (1)

where R(t) is the distance between the nuclei, tistime,
p is the impact parameter of the collision, {(p) is the
exchange phase, and the ion—atom exchange interac-
tion potential is defined as

A(R) = g4(R) —£4(R), )

€4(R) and g (R) being the energies of the even and odd
states of the molecular ion. These states are character-
ized by different symmetries of the electron reflection
with respect to the symmetry plane, which is perpen-
dicular to the line joining the nuclei and bisectsiit.

In reality, the resonant charge exchange cross sec-
tion islarge compared to atypical atomic value of this
dimensionality. This implies that transitions at large
separations give the leading contribution to the cross

TThis article was submitted by the author in English.

section. This fact is the basis of the asymptotic theory
of the resonant charge exchange [6, 7], where the cross
section is expanded with respect to a small parameter
that is inversely proportional to the typical separation
for the electron transition. Within the framework of the
asymptotic theory, the cross section of this process is
expressed through the collision parameters and the
radial wave function parameters of the transiting valent
electron in the atom when the electron is located far
from the core. In particular, for the s-electron transition
between structurel ess cores, the cross section of theres-
onant charge exchange is[7]

0, = [2mpdpsin’ {(p) = T2
o ©

—C

U(Ro) = 5 = 028,

where C = 0.577 isthe Euler constant and the exchange

phase for the free motion of the nuclei R= A/vt* + p
isgiven by [7]

2p) = IA(R)dt f;:j’mp)

_ 1 2 -y _2ly-12 _
= ‘M/;/A P exp(—py).

Here, v isthe collision velocity, y?/2 isthe atom ioniza-
tion potentia or the electron binding energy, and A is
the asymptotic coefficient of the electron wave function
in this atom; we use atomic unitswherei =m,=e= 1.
The asymptotic parameters of the atom are contained in

(4)
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the normalized radial wave function of the electron at
large distances r from the core,

W(r —o0) = ArV te™, (5)

In particular, A = 2 for the hydrogen atom [8].

We note that the small asymptotic theory parameter
is 1/Ryy, and because the asymptotic theory involvesthe
information about the electron location far from the
core, we can keep only two expansion terms in the
expression for the cross section, as we did in Eq. (3).
This corresponds to the asymptotic theory accuracy for
the transition of a valent s-electron in the range 1-5%
[9] for the eéV-collision energies.

For atransiting p-electron, the asymptotic theory of
the resonant charge exchange process becomes cum-
bersome[10, 11] because, on the one hand, the electron
transfer process is entangled with the rotation of the
molecular axis, and on the other hand, the fine splitting
of theion and atom levels can be important in this pro-
cess. The above formulas for the s-electron transition
were used in some recent calculations [12-14] as
model ones for the evaluation of the cross section of
this process for the transiting p-electron. This leads to
an uncontrolled error that is absent in the asymptotic
theory. We note that the contemporary computer tech-
nigue allows us to formulate the asymptotic theory in a
simpleway and to exhibit various aspects of the process
under consideration. In this paper, we present the
asymptotic theory for the resonant charge exchange
process with the transiting p-electron. We are guided
mostly by the ground states of the colliding ion and
atom and focus on the cross section averaging over the
directions of the initial momenta.

2. RESONANT CHARGE EXCHANGE
WITH THE TRANSITING p-ELECTRON
FOR LIGHT ATOMS

Wefirst consider the case of asmall spin—orbit split-
ting of atom and ion levelsand neglect relativistic inter-
actions. This corresponds to the LS-coupling scheme
for the atom. At large separations, the quantum num-
bers of the molecular ion are the atom quantum num-
bers L9V, Mg (the orbital momentum, spin, and their
projections on the molecular axis) and the same quan-
tum numbers of the ion Ismm.. The atom orbital and
spin momenta L and Sare given by the sum of the elec-
tron orbital and spin momenta |, and 1/2 and of the
respective momenta of the atomic core | and s. The
atom spin S and the spin of the other atom core s are
then summed into the total spin | of the molecular ion.
The atomic wave function is then expressed through
parameters of the core and the valent electron by means
of the genealogical or Racah coefficients [15, 16]. The
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ion—atom exchange interaction potentia is then given
by [10, 17]

_1+172 LS)2
A(ly, Ims, LM S) = et 1 1n(G,S)
(6)
x{lel L HI | L}Alew
Hmm+pf (g M —p M

where n is the number of identical valent electrons of
the atom, G2 is the genealogical (Racah) coefficient
[15, 16], the square brackets are the Clebsch—Gordan
coefficients that are responsible for the summation of
the electron and ion orbital momenta into the atom
orbital momentum, and A|eu isthe exchangeinteraction

potential for one valent electron located in the field of
structurel ess cores. We note a weak dependence of the
exchange interaction potential on the total spin | of the
molecular ion. Indeed, the level splitting corresponding
to different total spins of the molecular ion is deter-
mined by the exchange of two electrons and varies at
large separations R as exp(—2yR). Therefore, Eq. (6)
contains the average spin of the molecular ion. Next,
because the exchange interaction potentia A,
decreases as R* with increasing |, we are restricted by

the term with the minimum value of p in Eq. (6). Asa
result, for the valent p-electron, we have [10, 17]

6
Ap(R) =38y, Au(R) = R_Ao, (7)
Y
where [7]
AO - AZR(Z/Y)—le—RV—(l/V) (8)

isthe exchange interaction potential for avalent s-elec-
tron [7] with the same asymptotic radial wave function.

Formula (6) allows oneto construct the matrix of the
exchange interaction potential of an ion and an atom
with valent p-electrons. Below, we represent these
matrices in the case where the atom and theion are in
the ground electron states. One can be convinced of the
identity of the transiting electron and the hole. In accor-
dance with Eq. (6) for atoms of group 3 (with one
valent p-electron) and atoms of group 8 (with one
valent p-hole) in the periodical table of elements, with
the ground states of the atom and the ion given by 1S
and 2P, the exchange interaction potential of the inter-
acting atom and the ion is given by the matrix

M, =-1M, =0/M =+1
A(ML)z L L L ,

A11 A10 A11

(%)

where M, is the orbital momentum projection for the
atom (elements of group 3) or the ion (elements of
group 8).
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For elements of groups 4 and 7 of the periodical
table, with the ground electron states of the atom and
the ion given by 3P and 2P, the matrix of the exchange
interaction potential, in accordance with Eq. (6), is

5
A M) ==
(m7 L) 3
M, ==1M, =0 M, =+1
L L L (9b)
| Mm=-1 Ay Ay Ay
m= Ay 20y, Ay ’
m=1 TARH) Ay TARR

where m and M, are the projections of the orbital ion
and atom momenta.

For elements of groups 5 and 6 of the periodical
table with the atom and ion ground states “Sand 3P, the
matrix of the exchange interaction potential is given by

A(m) = /im=-1Im=0m=1
AlO A11

9c
3 A, (%)

Asthe quantization axis, wetake the direction on which
the projection of the electron momentum is zero. We let
8 denote the angle between the quanti zation and mol ec-
ular axes. By definition, the exchange interaction
potential A(B) of the atom and itsion with valent p-elec-
tronsisequal to

£(®) = 53 [dhio(®) A

4m
= 3 |Y1M(91 ¢)|2A1M,

M

where dﬁ,lo(e) is the Wigner rotation function [20] and
Y.m(0) is the spherical function; it follows that
41tlY,4(0)? is the probability of finding a state with the
momentum projection M at the angles 6 and ¢ with
respect to the molecular axis. The spherical function
satisfies the normalization condition

1

[dcos|Y(0)° = 1
i}

ZFT'

It follows that for groups 3 and 8 of the periodical
table of elements, the exchange interaction potential of
an atom and a parent ion is given by

A(8) = AyCoS B + Ay, SIN6. (10a)
Matrix (9b) gives the ion—atom exchange interaction
potential as a function of the angles between the quan-
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tization and molecular axes for elements of groups 4
and 7 of the periodical system,

5
A(B) = =
©® =3 (10b)

X [A,Sin“018N°0, + Ay, (cOS 0, + €05 6,)],

where 8; and 0, are the respective angles between the
molecular axis and the quantization axes for the atom
and the ion, with zero electron momentum projection
on the quantization axis. For groups 4 and 7 of the
periodical system, the exchange interaction potential
is similar to that for atoms of groups 3 and 8 and is
given by
_ 7 2 .2
A(B) = é(Alocos 0+A,;,sin0). (10c)
Although we are restricted by the ground states of
the ion and the parent atom, thisis a general scheme of
constructing the ion—atom exchange interaction poten-
tial. Being averaged over thetotal quasimoleculespin|,
the exchange interaction potential depends on the ion
(m) and the atom (M) angular momentum projections
on the molecular axis. This corresponds to the LS-cou-
pling scheme for atoms and ions, which means neglect-
ing the spin-orbital interaction. Therefore, the above
expressions correspond to the hierarchy of the interac-
tion potentials

Vo > U(R), A(R), (11)
where V,, is the typical exchange interaction potential
for valent electrons inside the atom or the ion, U(R) is
the long-range interaction potential between the atom
and the ion at large separations R, and A(R) is the
exchange interaction potential between the atom and
the ion. Within the framework of the LS-coupling
scheme for atoms and ions, we assume the excitation
energies inside the electron shell to be relatively large.
Thiscriterionisfulfilled for light atomsand ions. Inthe
same manner, one can construct the exchange interac-
tion potential matrix for excited states within a given
electron shell.

Because the exchange interaction potential is deter-
mined by the transition of one electron from the valent
electron shell and the transiting electron carries a cer-
tain momentum and spin, additional selection rules
apply for the one-electron interaction. In particular, for
the transition of a p-electron, the selection rules are
given by

IL-I|<1, |S—-9<1/2 (12)

These selection rules follow from the properties of the
Clebsch—Gordan coefficients entering Eg. (6). If these
conditions are viol ated, the ion—atom exchange interac-
tion potential is zero at the scale of one-electron inter-
action potentials. In Table 1, we list the states of atoms
and their ions with valent p-electrons for which the
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Table 1. Theion and parent atom states with valent p-elec-
trons. The one-electron transition is forbidden between these
states and the exchange interaction potential of the ion and
the parent atom is zero

Electron configuration Electron configuration
and ion state and atom state
p’('D) p’(*S
P9 P9
P9 p°(°D)
p’(*S) p*('D)
P9 ES)
p°(°D) p*('9

ion—atom one-electron exchange interaction potential
is zero.

When a valent p-electron transits from one atomic
coreto the other inthe course of collision, the processes
of charge exchange and the electron momentum rota-
tion are entangled. One can partially separate these pro-
cesses because the charge exchange proceeds in a nar-
row range of separations R where the molecular axis

turns at asmall angle of the order 1/,,/R,y . Indeed, the

range of distances AR between the nuclei where the
charge exchange phase ( varies considerably is AR ~
1/y, which corresponds to the rotation angle 3 ~ vt/R ~

1/./Ry < 1. Thisfact allows usto simplify the deriva-
tion of the resonant charge exchange cross section.
Below we find the cross section averaged over angles
between the collision impact parameter and the quanti-
zation axis on which the orbital momentum projection
is zero.

Proceeding in this way, we orientate the quantiza-
tion axis with respect to the direction of the collision
impact parameter as the motionless axis; the average
cross section of the resonant charge exchange is then
given by

12mn

g = ‘%TJ'J'G(S,q))dcosﬁdq),

-10

(13)

whered and ¢ arethe polar angles of theimpact param-
eter direction with respect to the quantization axis
direction and o(9, ¢) is the charge exchange cross sec-
tion at a given direction of the collision impact param-
eter. We first consider the cases where the momentum
projection on the molecular axis is conserved in the
course of the electron transfer. This corresponds to a
small rotational energy and, under condition (11), is
determined by the condition

= <U(p), (), (14)
which means that the rotational energy v/p at the clos-
est approach distance is small compared to the long-
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range splitting U(p) of molecular levels for states with
different projections of the orbital momentum on the
molecular axis or to the exchange interaction splitting
A(p). Criterion (14) correspondsto cases“a” and “b” of
the Hund coupling [18, 19]. For the free motion of col-
liding particles, the current angle 6 between the
molecular and quantization axes and the angle @
between these axes at the closest approach distance
are related by

cosO = cosd cosa + sind sina cosp (15)
where a and ¢ are the polar angles of the molecular
axis with respect to its direction at the closest approach
distance; we have sina = vt/R, where v isthe collision
velocity, t istime, and Risthe current distance between
the colliding particles.

Using Egs. (15) and (10), we can represent the
exchange phases in the form of an expansion in the
small parameter of the theory 1/py if criterion (14) is
satisfied. For elements of groups 3, 5, 6, and 8 of the
periodical system, we have

{(p,9.,9) =L(p, 0)

X [coszﬂ - lcoszz‘i + —1—sin28(2 + coszcb)]. (162)
Yyp Yp

This expression applies to large collision impact
parameters, and {(p, 0) is the phase of the charge
exchange process when the quantization axis has the
same direction as the molecular axis at the closest
approach distance; {(p, 0) = 3(y(p) for elements of
groups 3 and 8 and {(p, 0) = 7¢y(p) for elements of
groups 5 and 6, where the charge exchange phase (; is
given by Eq. (4) and is related to the s-electron transi-
tion with the same asymptotic parametersy and A. For
atoms of groups 4 and 7, the charge exchange phase at
large impact parameters of the collision is given by

L = 574(p) TSNS, 8’9, + £
0 Yp

X [2cosz191 + 20032192 + sin219lcos2192 (16b)
+ C032318in2192 - sin21‘3lsin282(cos2q>l + c032q>2)

. : O
+ sin29,sin29,cosb, cosd,] [
0

where 8, ¢, and §,, ¢, are the respective polar angles
of the quantization axes of the atom and theion relative
to the molecular axis at the closest approach distance.

We now determine the average cross section from
formula (13) using formula (4) for the cross section at
agiven angle and the dependence { [0 exp(-yp) for the
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exchange phase. For elements of groups 3, 5, 6, and 8
of the periodical system, this gives

o_1
o, 21
R 5 e (17)
x_([_([[lJrV_Roan} dcosddd,

where R, = /20 /Tt. The same expression applies to
elements of groups 4 and 7 with the integration over
four angles 84, ¢4, 95, §; here o isthe cross sectionin
Eg. (3) for the transiting s-electron with the same
asymptotic parameters as for the p-electron. Table 2
contains these reduced cross sections depending on the
parameter Ryy. Thevalue of Z;inTable 2 gives 6 /o for
elements of groups 3 and 8 of the periodical table, the
value of Z,is 6 /0, for elements of groups4 and 7, and

the value of Z; gives G /o, for elements of groups 5 and
6. In addition, this table contains the reduced cross sec-
tions X, and X, corresponding to the respective pro-
jections 0 and 1 of the orbital momentum on the impact
parameter direction.

We aso consider the opposite case to (14), where

%
il U(p), A(p). (18)
In this case, the exchange phase for elements of groups
3,5, 6, and 8isgiven by

2P 9.0) = Up OFos's + Zan's (19

instead of (16a). The corresponding reduced average

cross section is denoted by Zg in Table 2. This corre-

spondsto cases “b” and “d” of the Hund coupling, and
according to the datain Table 2, the results for this case
practically coincide with case “a” of the Hund cou-

pling. Thevalue X in Table 2is
5= 3,,/3+25,,/3.

Comparing it to the average cross section one testifies
to the sensitivity of the cross section to different meth-
ods of averaging.

3. RESONANT CHARGE EXCHANGE
WITH THE TRANSITING P-ELECTRON FOR
HEAVY ATOMS

In considering the resonant charge exchange pro-
cess, we follow the general scheme of classifying the
limiting cases of momentum coupling in diatomic mol-
ecules. This scheme is given in Table 3 [18, 19]. The
cases of the Hund coupling unify different relations
between energetic parameters of colliding particles. An
important energetic parameter of the quasimolecule
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Table 2. The reduced cross sections of the resonant charge
exchange

Ry | 6 8 10 | 12 | 14 | 16
o | 140 | 129 | 123 | 119 | 116 | 114
>, | 108 | 098 | 094 | 092 | 091 | 091
s 119 | 108 | 1.04 | 101 | 099 | 0.95
b 117 | 109 | 105 | 103 | 1.02 | 1.01
s | 116 | 108 | 104 | 102 | 101 | 1.00
% 150 | 132 | 1.23 | 118 | 114 | 112
% 144 | 129 | 122 | 117 | 114 | 111
Sy, | 118 | 110 | 1.07 | 105 | 104 | 1.03
Sy | 118 | 110 | 106 | 1.04 | 103 | 1.02
Sep | 116 | 109 | 1.06 | 1.04 | 1.03 | 102

Table 3. The Hund coupling cases

Hund coupling case Relation
a Ve >8>V,
b Vo>V, > &
c o> V>V,
d V>V, > &
e V>8>V,
e o>V, >\,

consisting of colliding particlesistheinteraction poten-
tial V. between the orbital angular momentum of the
electrons and the molecular axis. This includes the
exchange interaction potential V,, inside the atom and
theion dueto the Pauli exclusion principle, the splitting
of the molecular ion levels due to the long-range inter-
action U(R), and the exchange interaction potential
A(R) between the ion and the atom. Within the frame-
work of Hund schemes, we compare this interaction
potentia to the relativistic interaction & given by the
sum of spin—orbit interactions of the individual elec-
trons and other relativistic interactions and the rota-
tional energy given by V, = vp/R? for the free motion of
colliding particles. For colliding atomic particles, in
contrast to amolecule, different types of the Hund cou-
pling can be realized on one classical trajectory of parti-
cles. We use the general Nikitin scheme [21-23], which
relates the characters of the momentum coupling of col-
liding atomic particles moving along one trgjectory. The
problem under consideration is simpler because we are
interested in the behavior of colliding particles on the
trajectory element where the electron transition occurs.
Only onetype of the momentum coupling isrealized on
this part of the trajectory.

Above, we considered the cases where relativistic
interactions are negligible and the projection of the
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Table4. Theground states of atomswith p-electron shellsin
the framework of the LSand jj coupling schemesand theion—
atom exchange interaction potential A for the Hund coupling
cases“c’ and“¢”

Shell J LSterm jj-shell A
p 12 2Py (V2] Ay
p? 0 *Po [12)? Ay
pe 32 Sy, | [1/2)93/2]* Dy
p* 2 3P, [1/2]Y3/2]3 0
p° 3/2 2Py, | (1213023 Ny
p° 0 'S [V2)73/2]* | Agp

orbital electron momentum on the molecular or the
motionless axis is conserved in the course of the elec-
tron transfer, which corresponds to cases “a”, “b”, and
“d” of the Hund coupling and is realized for light
atomic particles. In what follows, we are guided by
heavy atoms and examine the cases where relativistic
interactions are important.

In the collisions of heavy atomic particles, the rela-
tivistic interactions are dominant, and therefore, the jj
coupling scheme becomes valid for an individua
atomic particle. The quantum numbers of the interact-
ing atom and ion are therefore given by J and M, the
total atomic electron momentum and its projection on
the molecular axisfor the atom, and also by the respec-
tive ion quantum numbers j and m. At large separa-
tions, these quantum numbers arerelated to amol ecul ar
ion consisting of the ion and the parent atom. We note
that the total momentum J and its projection on a given
direction M; are the quantum numbers of an individual
atomic particle in both momentum coupling schemes

SMIRNOV

(LSand jj), which simplifies the analysisin the genera
case. Next, taking the relativistic effects into account
reduces the atom symmetry. For this reason, on the one
hand, the ion—atom exchange interaction potential is
expressed through the one-electron exchange interac-
tion potential in a simpler way, and on the other hand,
the prohibition of some one-electron transitions
strengthens in the presence of relativistic interactions
because of aweaker mixing of atesin this case. Table 4
contains parameters of the electron shells for the
ground electron states of atoms and ions with p-elec-
tron shells. We note that for the jj-coupling, the similar-
ity between the transitions of the p-electron and the
p-hole is lost because of different signs of the spin—
orbit interaction potential for the electron and the hole.
Hence, the ion—atom exchange interaction potentia is
different in the cases where the p-electron shells of the
atom and its ion are replaced by shells consisting of
identical p-holes. Moreover, for group 6 of the periodi-
ca system of elements, the one-electron ion—-atom
exchange interaction potential is zero if the atom and
the ion are found in the ground states. We note that for
all the groups in the periodic table of elements with
valent p-electrons, the ion—-atom one-electron exchange
interaction potential is not zero for light atomsif atoms
and their ions are found in the ground states.

It follows from the datain Table 4 that the ion—atom
exchange interaction potential is ssimpler in the pres-
ence of relativistic interactions because of alower sym-
metry of atomic particles in this case. For the LS-cou-
pling scheme for individual atomic particles, we were
restricted by the ground states of atomic particles
because of a cumbersome problem, but the presence of
relativistic effects smplifiesthis problem. As ademon-
stration of this, Table 5 contains the matrix of the
exchange interaction potential for elements of group 5.

Table 5. The exchange interaction potential for atoms of group 5 of the periodical system of elements whose atomic electron

shell is p? and their ions have the electron shell p?

LS 4S5, Dy, Dy, 2Py 2Py,
BT, (B | B | (B, (F.

o, ]| e o) o) o) o)
Py B | e Banl*) Banl*) Baol) o)
®, BEH | s Banl) Bal) Bal) o)
D, [%1 0(0) Byo(*) Byo(*) Byo(*) Bgo(*)
s K 00) Bu(0) Bu(0) ) D)
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The notation for the ion and atom electron terms used
in Table 5 applies to the LS and jj-coupling schemes.
The values of the exchange interaction potentials are
given assuming that the jj momentum coupling scheme
applies, and it is indicated in parentheses whether this
potential is zero (0) or nonzero (+) for the LS-coupling
scheme. In particular, for the ground atom and ion
states, the exchange interaction potential occupies one
cell in Table 5, while within the framework of the
LS-coupling scheme, it is given by matrix (9c).

We note that for the jj-coupling scheme, the p-elec-
tron shell of an atom or an ion is separated into two
independent subshells with j = 1/2 and j = 3/2. Hence,
the difference between the numbers of electrons in
these subshellsfor the interacting ion and the atom can-
not exceed one. Thisisthe criterion of the one-electron
transition replacing Eq. (12) for the LS-coupling
scheme. If this criterion is not satisfied, the one-elec-
tron ion—atom exchange interaction potentia is zero; oth-
erwisg, itisequal to Ay, or Ay, depending on the momen-
tum of the trangiting electron (see Tables 4 and 5).

We now focus on elements of groups 3 or 8 of the
periodical table, where one transiting p-electron (or p-
hole) islocated in thefield of two structurel ess cores. If
the spin—orbit splitting of the electron levels is large
compared to the electrostatic ion—atom interaction, the
quantum numbers of the molecular ion arejm, the total
electron momentum and its projection on the molecular

axis. The exchange interaction potential Djm, pertain-

ing to thejj-coupling schemefor atoms and ionsand the
exchange interaction potentials A,,, pertaining to the
LS-coupling schemes are related by

2

Ay,

This follows from the relation between the electron
wave functions for the respective states. For the

exchange interaction potentials A jm, wherem =0 +

in accordance with the properties of the Clebsch—-Gor-
dan coefficients, this gives

1, .2

Do 1 = 3A10 + 3A11,
2, ,1

20
Dy 12 = 3A10 + 3A11, (20)

Dz 32 = Doy,
where A,y and A4, are given by Egs. (7) and (8).

By analogy with the previous operations, if the
molecular axisis at the angle 0 to the quantization axis
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on which the angular momentum projection is zero, the
exchange interaction potentials are given by

1 2
Ay = :B)Alo + §A11a

Banl8) = Ff + Soos'd A, (21)

M, 1.

This corresponds to elements of groups 3 and 8 of the
periodical system and gives the exchange phases for
case“c” of the Hund coupling,

Ca2(p, B) -1+ i, Lan(p. 9) =1, §c0528
Zo(p) oy L) 22 22)
A, 9, 24,.3,.2 2 401
+py|:2+23n ~8 +2 n 'SCOS (I)l:l’

where {y(p) is the charge exchange phase for the tran-
siting s-electron with the same asymptotic parameters
A and y as defined in accordance with Eq. (4) and 8, ¢
are the polar angles of the impact parameter direction
with respect to the quantization axis. Table 2 contains

the reduced cross sections %; = 0,/a,, where the aver-

age cross section g; for a given total momentum is

determined by formula (13). As can be seen, the differ-
ence of the average cross sections for different total
momenta is small compared to the accuracy of deter-
mining the cross sections, and we neglect this differ-
ence. One can determine the cross sections for case “¢€’
of the Hund coupling, where because of a large rota-
tional energy, the momentum projection on the motion-
less axis is conserved for the state with j = 3/2. In

Table 2, 33, isthe reduced cross section of the resonant

charge exchangefor thestatewithj = 3/2incase“ €’ of the
Hund coupling. According to the datain Table 2, the con-
nection between the molecular and motionless axisis not
essential for the cross section of this process.

Thus, one can see that the molecular axis rotation
gives a small contribution to the resonant charge
exchange cross section. That is, the difference between
cases“a’,“b”, and“d” of the Hund coupling, aswell as
between cases“c” and “€", is not essentia for this pro-
cess. Next, according to the data in Table 2, the differ-
ence between the cross sections for cases “a” and “c”
of the Hund coupling is not significant for atoms of
groups 3 and 8 of the periodical system of elements,
and it is essentia for atoms of groups 4, 5, 6, and 7.
Thus, the transition between these coupling cases
results from the competition between the splitting U(R)
due to a long-range ion—atom interaction, the splitting
A(R) dueto the exchange interaction, and the fine level
splitting &. Tables 6 and 7 contain these values for
atoms of groups 3 and 8 of the periodical system of ele-
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Table 6. Parameters of the resonant charge exchange pro-
cess for collisions of atoms of group 3 of the periodical sys-
tem with their ions at the energy 1 eV in the laboratory coor-
dinate system

B Al Ga In TI
0,10%em?| 11 18 2.0 2.2 21
YRy 12 14 14 15 14
Aol , % 0.7 0.5 0.4 0.3 0.4
&, cmt 15 112 826 | 2213 | 7793
U(Ry), cmt | 360 350 320 330 390
ARy, cm™ | 11 5 3 25 2

Table 7. Parameters of the resonant charge exchange pro-
cess for collisions of atoms of group 8 of the periodical sys-
tem with their ions at the energy 1 eV in the laboratory coor-
dinate system

Ne Ar Kr Xe
g, 10 cn?? 33 5.8 75 10
YRy 11 12 13 14
Aol , % 0.8 0.5 0.4 0.3
&, cmt 780 1432 | 5370 [10537
U(Ry), 103 cm™ 5 4 2 2
A(Ry), cmt 13 8 5 3

ments. Next, the long-range splitting of levels depends
on the atom and ion states. If atoms and ions are found
in the ground states, the long-range splitting U(R) of
atomic levels for elements of groups 3, 4, 6, and 7
results from the interaction of the ion charge with the
atom quadrupole moment and is given by

5070
6R°

where R is the distance between the interacting parti-
cles and °CJis the mean sguare of the electron orbit
radius of the valent electron in the atom. The long-

U(R) = (233)

SMIRNOV

range splitting of ion levels for elements of groups 4
and 7, where the quadrupole momenta of the atom and
the ion is not zero, is determined by the interaction of
the quadrupole momenta, and the long-range ion—atom
interaction potential V(R) isthen given by

- QQa

V(R) = —d (23b)

where Q, and Q; are the respective quadrupole

momentaof the atom and theion, which are +2[12[/5 for
states with zero orbital momentum projection and

FALFIYS for states for which the orbital momentum
projection on the motionless axisis 1. Expression (23b)
relates to elements of groups 4 and 7 of the periodical
system, where the quadrupole moment of atoms and
ionsisnot zero. Next, the splitting of ion levelsfor ele-
ments of groups 5 and 8, whose atoms have zero qua
drupole moment, is given by

12p(F%0)°
25R?

where (3 is the atom polarizability. The value Ac/G in
Tables 6 and 7 characterizes the error in the cross sec-
tion arising from using only the exponential depen-
dence of the exchange phase {(p) O exp(-yp), aswedid
inTable 2.

The datain Tables 6 and 7 show therole of different
interactions for the resonant charge exchange process
involving real ions and atoms. In particular, it follows
from these tables that the long-range splitting of molec-
ular terms is important for elements of group 3 and is
negligibly small compared to the exchange interaction
potential for molecular ions of rare gases. In addition,
in Table 8 we give the average cross sections of theres-
onant charge exchange processes for elements with
valent p-electrons. We note that in accordance with
Egs. (3) and (4), the cross section o of this process
depends on the callision velocity v as[1, 5]

U(R) = , (23¢)

(24)

Table 8. The parameters of the cross section of the resonant charge exchange for elements with valent p-electrons of atoms

and ions at the collision energy 1 eV

Element B C N (@) F Ne Al Si P
o, 10715 cm? 11 8.6 6.2 6.6 49 3.3 18 15 11
o =—dIna/dinv 0.16 0.16 0.16 0.16 0.17 0.18 0.15 0.14 0.14
Element S Cl Ar Ga Ge As Se Br Kr
o, 10715 cm? 10 8.0 5.8 20 18 13 13 10 7.5
o =—dInao/dinv 0.15 0.15 0.16 0.14 0.13 0.14 0.14 0.13 0.15
Element In Sh Sb Te | Xe Tl Pb Bi
o, 1071 cm? 22 19 17 16 13 10 21 20 22
o =—dInao/dinv 0.14 0.13 0.13 0.13 0.13 0.14 0.14 0.13 0.12
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where C isaconstant. Thefirst order of the asymptotic
theory allows us to represent this relation as

dino _ ,_ 1 o) _ Vg
dinv 2Ry’ o(vy) OvD”

Table 8 givesthe parameters of thisformula at the col-
lison energy 1 eV in the laboratory coordinate system.

(25)

4. CONCLUSION

We have developed the asymptotic theory for the
resonant charge exchange process in slow collisions of
an ion and a parent atom with the transiting p-electron.
The cross section of this process is not sensitive to the
relation between the rotational and other interactions of
the colliding particles and inside them, but can depend
on the spin—orbit interaction. We have two limiting
cases that correspond to cases “a’, “b”, and “d” and
cases “c” and “€” of the Hund coupling, or to the LS
and jj-coupling schemes for isolated colliding atomic
particles. For elements of groups 3 and 8 of the period-
ical system, the average cross sections of the resonant
charge exchange are nearly equa for these limiting
cases of the momentum coupling, while for other
groups the difference between the cross sections for
different coupling schemes exceeds the accuracy of the
evaluation of these cross sections. The accuracy of the
asymptotic theory of the resonant charge exchange
with the transiting p-electron is worse than that in the
case of the transiting s-electron (1-5% [9]) and is esti-
mated as ~10% at eV energies.
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Abstract—Simple analytical expressions are obtained for the rate of the inverse stimulated bremsstrahlung
absorption under electron scattering from a Coulomb center with charge Z in the presence of the el ectromag-
netic ﬂeld The initial and final values of electron energy are assumed to be small compared to the Rydberg
energy Z2 (atomic units are used throughout). Single-photon processes of absorption and induced radiation of
photon by electron are treated. It is assumed that the electromagnetic field frequency @ israther low, so that the
condition Zw/p < 1, where p is the electron momentum, and the condition zw < p? are valid. However, this
frequency is assumed to be fairly high compared to the electron—-Coulomb center collision frequency: w > vg4.

The dependences of the rates of photon absorption and induced radiation on the angle 6 between the direction
of incident electron and the electromagnetic field polarization vector (assumed to be linearly polarized) are
obtained. It is demonstrated that, for any angles 6, the rate of photon absorption is higher than the rate of
induced radiation and, therefore, the Marcuse effect for slow electrons (el ectromagnetic field amplification) is
absent. It isfurther demonstrated that a slow electron on the average absorbs double ponderomotive energy per

collision with an ion (Coulomb center) in Maxwellian plasma. This agrees both with the known results cal cu-
lation for fast electrons and with the known results of the calculation based on the classical Boltzmann kinetic
equation for plasma. © 2001 MAIK “ Nauka/lnter periodica”

1. INTRODUCTION

It is well known that a free electron cannot realy
absorb or radiate photons of an external monochro-
matic electromagnetic field. However, in the presence
of aCoulomb center of potential Z/r, such processesare
possible (here and throughout, we use, as a rule, the
atomic system of units, e=m, =% =1, and take into
account the Planck constant only in Section 2). We
assume that the electromagnetic field is rather weak, so
that only single-photon processes of photon absorption
and induced radiation occur (the first-order perturba-
tion theory with respect to external electromagnetic
field). The respective upper constraint on the field
strength will be given below. The rate of the photon
absorption and induced emission was calculated by
Marcuse [1] for fast electrons using the perturbation
theory with respect to the Coulomb potential as well.
We will write p for the initial electron momentum
(prior to scattering) and p' for the final electron momen-
tum (after scattering), the condition of validity of the
Born approximation for the Coulomb potential has the
formp> Z, p' > Z. A detailed description of the corre-
sponding results obtained by Marcuse can be found in
monograph [2]. It has been found that, in a certain
range of angles 6 between the initial electron momen-
tum p and the vector of magnetic field strength E (in all
instances, we will assume the electromagnetic field to be
linearly polarized), the rate of photon absorption, w,, is

less than the rate of induced photon radiation, w,, so
that the electromagnetic radiation increases (thisis pre-
cisely the so-called Marcuse effect). However, in the
case of integration with respect to all angles assuming
a uniform angular distribution of electrons, this effect
disappears and, conversely, an electron extracts the
electromagnetic energy from radiation; i.e., the radia-
tion isabsorbed. If therate of absorption of electromag-
netic energy is averaged over the electron velocities
assuming their Maxwellian distribution, the average
energy absorbed by the electron in a single collision
with a Coulomb center is E2/2w?, where w is the elec-
tromagnetic field frequency; i.e., the average energy is
equal to the double average ponderomative electron
energy U, = E?/4u?. This value coincides exactly with
that yielded by the Boltzmann equation for elastic scat-
tering of classical electrons by multiply charged ionsin
plasma[3, 4] when treating the high-frequency conduc-
tivity of plasma (here, the high frequency implies the
validity of the inequality w > v, where v, isthe elec-
tron-ion collision frequency).

This paper deals with the investigation of the oppo-
sitelimiting case of dow electrons, p < Z, p' < Z, when
the quasiclassical approximation is valid. Of course,
the photon energy is always assumed to be small com-
pared to the electron energy, i.e., w < p2. In addition
to this criterion, however, there is the classical dimen-
sionless parameter 3 = Zw/p®, which does not contain
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the Planck constant. In [5], we treated the limiting case
of high frequencies, namely, Zw/p® > 1 (which does not
contradict the above criterion w < p?, because p < Z).
In so doing, the scattering of electrons through large
anglesis significant.

In practice, however, theinverselimiting case of low
radiation frequenciesis realized, Zw/p® < 1, if one has
in mind the frequencies of typical laser light sources
and the electron temperatures of multiply charged laser
cluster plasma of tens of electron-volts and higher [6].
Therefore, we treat the problem for slow electrons in
just the above-identified limiting low-frequency case of
Zwlp® < 1. The eectron scattering through small
angles in the process of photon absorption or emission
isimportant.

We will first turn to the solution of this problem
within the classical field theory (Section 2). In text-
books on the classical field theory (see, for example,
[7]), one can find results only for the electromagnetic
energy loss averaged over the angle 6. Therefore, it is
of interest to derive simple analytical expressions for
energy loss with afixed value of this angle. Of course,
within this classical approach, the rates of induced
emission and absorption of a photon are equal, because
the Planck constant is zero within the classical field the-
ory.

One could calculate the work of an electron in an
external field directly as well and, thereby, determine
directly the difference between the rates of photon
emission and absorption. For this purpose, however,
one must solve a linear differential equation for small
perturbation of the coordinate of an electron, scattered
from a Coulomb center, by a variable electromagnetic
field, which is a fairly complicated problem. Appar-
ently, it would be much simpler to turn to the known
results of quantum electrodynamics [8] for spontane-
ous bremsstrahlung under electron scattering from a
Coulomb center, use the well-known rules to change
over to induced radiation [2], and perform the neces-
sary simplifications of the results in the quasiclassical
limit. In Section 3, thisis done for total rates of photon
absorption and emission, averaged over the angle 6,
and in Section 4, for rates with a fixed value of this
angle between the direction of incident el ectron and the
polarization vector of electromagnetic field. At the
same time, the known results of Marcuse for fast elec-
trons are given in al instances for comparison.

In conclusion, the results obtained are compared
with the known results for the average increase of the
electron energy in Maxwellian plasma during a single
collision with anionin the presence of external electro-
magnetic field. For both fast and slow electrons, this
increase in energy is equal to the double average pon-
deromotive energy, which isin good numerical agree-
ment with the results of the calculation based on the
Boltzmann kinetic equation for classical electrons
[3,4].
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2. CLASSICAL APPROACH

Within the classical field theory (see formula
(67.10) in[7]), we will start from the spectral radiation
density. We divide this quantity by Aw to derive the
number of photons of frequency w emitted spontane-
ously by an electron to the solid angle dQ,

dN, J7dQdw. (1)

3
(&)
= ——lel¥
2r[2c3ﬁ|
Here, the quantity r, is the Fourier component of the
classical radius vector of an electron during its motion
in the field of the attracting Coulomb center of charge

Z, e isthe polarization vector of the emitted spontane-
ous photon, and c is the velocity of light.

Upon transition to induced processes of photon
emission or absorption, one must perform thefollowing
substitution in the foregoing expression (for more
detail, see monograph [2]):

°cE?

dQdw — >
hw

where E is the amplitude of strength of the external
variableelectric field and wisthefield frequency. Then,
we derive a simple expression for the number of pho-
tons subjected to induced emission or absorption,

1
Ng, = R|E [

We will assume that the electron is scattered in the
xy plane. Then, the Fourier component of itsradiusvec-
tor isrepresented asthe expansion in unit vectorsin this
plane,

Fo= Xelx + Yoly-

The expressions for the Fourier components of projec-
tions of the electron radius vector are well known [7],

Tia .
X, = - Hig (iBe),

_ ma 1,0,
Yo = N 1_8_2HiB (iBe).
Here, the notation
_Zw 4 B P
B—F<l, 8.—52, € = l+@:|
is introduced.

The guantity € is the eccentricity of the hyperbolic
path followed by an unperturbed e ectronin thefield of the

Coulomb center. The function H{g'(x) is the cylindrica
Hanke function, and p isthe impact parameter.
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Unit vectors dong the x, y axes can be represented as
i = p—p i = p+p’
¥ 2psin(8/2)" Y 2pcos(9/2)’
where 3 is the electron scattering angle, i.e., the angle

between the initial electron momentum p and its find
momentum p'. Then, we derive

_ E[r. cosB'— cosb cosO' + cosO
roLE = [ w }

2% sn®@2) Yo cos(3/2)

Here, 6' isthe angle between the final electron momen-
tum p' and the vector of dectric field strength E. We use
the formulas of spherica trigonometry, which relate the
angles 6, 6', and 9 with one another, to derive

_ R A 0 0
rolE = E[xw%;osesma—S|n6cos§cosq>D

2
9 . .. 3 ]
- ywa:ose cosz —sinBsin > cos¢D]
Here, ¢ isthe angle between the projection of the vector p'
on the plane perpendicular to the vector p and the line
of intersection of this plane with the plane of the vec-
torsp and E.

The averaging over the angle ¢ is elementary, and
Egs. (1) and (2) yield

2

Ne,a(6, 9) = 2|Xw|

%:os esm212 + 1sm Bcos 22% ©)

20 | 1 297
2|yw| %os fcos’ >+ 2sm ‘Bsin 50

The angle 9 of Coulomb scattering of electron is
related to the impact parameter p and eccentricity € by
the known simple relations

9 _p .9 _ 1
cot > = sin > = 5
This enables one to reduce the averaging of rate given by
Eq. (3) over the angle 9 to integration with respect to the
impact parameter p; for this purpose, one must multiply
dimensionless expression (3) by 2rm,ppdp and integrate it
with respect to al impact parameters. Here, n; isthe spa-
tial concentration of Coulomb centers, from which the
given electron is scattered. From integration with
respect to p we will then turn to integration with respect
to €, using the relation pdp = a%ede.

As a result, we derive the number of photons sub-

jected to induced emission (absorption) per unit time,

nz’n,E

Ne, a(e) = 2p3ﬁ2
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sm 6} (@]

J’edsH X [ cose+2%l

. 0
+ |yw|2[2i825|n26 + %L_slgcoszﬁ} 0

The above-identified Fourier components are simpli-
fiedinthe 3 < 1 limit,

2|a

o = KaBE), Yo = GF [1-TKo(Be)

Here, Ky(X) and K;(x) are Macdonald functions.

We substitute these quantities into Eq. (4) to calcu-
late the arising integrals. In so doing, one must ignore a
part of terms in Eq. (4) containing smallness of the

order of B < 1. Asaresult, we derive
2mZ°n,E?
Ne, a(e) = _.E__4_nL2__

pw#

g » ’ 2 1C>° 2
x [cos OftdtKy(t) + = [tdtK{(t
EC I o(t) 2_[ 1(t)
+kos’e - %sinz(%ﬁz J'dth(t)% E;
B

We calculate dimensionless integral s to a desired accu-
racy with respect to [3,

vz 1 11
ItdtKo(t) =3 J’tdtKl(t) = InBT/_Z’
B
001 2, _ 1
{tdtKo(t) = 2[32'
Here, y = 1.781... = expC and C = 0.577... isEuler's
constant. We derive
2 2
N, (6) = ZEDE
pw h

) (5)
X 2 1‘ _2_9_ - Ugn? i|
[cos 0+ ZE’nwa lmsm 0.
Thisresult is new and isthe key result in this section. It
gives the angular distribution for photon absorption or
induced emission by an electron under scattering from
a Coulomb center in the presence of electromagnetic
field. Because the logarithm argument is great, the pro-
cess of photon absorption or emission takes place
mainly when the electron moves normally to the field
polarization (6 = 172).
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The absorption or induced emission taken singly
may show up indirectly, for example, in the Boltzmann
kinetic equation when treating radiation processes in
plasma. Of most interest is, of course, their difference
proportional to the electromagnetic wave absorptivity
being measured.

We average expression (5) over the angle 6 to derive
_ 21Z°n,E 3

Ne,a = L |2| 3 In2p .

3pw'h’  YZw

On returning from induced to spontaneous radiation,
the substitution [2]

(6)

8whdw

e’

E2

must be performed; we find from Eq. (6)
2 _ 3

1632 n, In 2p .

3c’hpw YZwW

Theenergy radiated by an electron per unit time (it does
not contain the Planck constant) is obtained from the
foregoing formula as aresult of multiplication by 7w,

Nea = dw

2
dE, = do—2n2k

We divide this expression by np to derive exactly expres-
sion (70.21) from [7] for effective radiation of low fre-
guencies, asisto be expected.

3. QUANTUM APPROACH:
TOTAL RATES

In the quantum approach, the rates of photon
absorption and induced emission are different from
each other. Treated in this section is a simpler problem
of calculating the total rate integrated with respect to
the angle O between the initial direction of electron
motion and the polarization vector of electromagnetic
radiation, assuming that B = Zw/p® < 1. The cross sec-
tion of spontaneous photon radiation by an electron
with initial momentum p and final momentum p' under
scattering from a Coulomb center with charge Z is
given by the known relation of quantum electrodynam-
ics[8] (inwhat follows, we assume the Planck constant
to be equal to unity),

641vZ>  p
3¢’ p(p-p)°
y d|F (—x)|*/dx dw
[1-exp(-21tV)][exp(2TTV) —1]
Here, we used the notation

do, =
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and introduced a reduced notation for the complete
hypergeometric function F(—=x) = F(iv, iv', 1; =) and its
argument
X = Lplz > 1.
(p—p)
The transition to induced emission is achieved by the
substitution [2]
nc’E>
8w’
Then, we derive the following compact expression for

the rate of induced photon emission averaged over all
angles:

dw —

_ 81°Z°n,E*p' exp(—2v)
3(p-p) ' @
LAIF (=)
dx

The rate of photon absorption is given by asimilar for-
mula in which one needs only to replace the factor
exp(—21v) by exp(—2mv) (for detailed explanation of this
difference, see the discussion of formula(92.8) in [8]).

The hypergeometric function entering expression (7)
may be ssimplified, under condition x > 1, by transition
to a combination of hypergeometric functions with the
argument 1/x < 1,

W, = n;pdo,,

FAOV'=Vv)) v

POV, VL 120 = En S F =iy
Fi(v-=v")) v
FGV)F(1=iv)

Here, ' (2) is the gamma function. Use is also made of
the condition v' —v < 1 equivalent to the condition of
low field frequency Zw/p® < 1.

The hypergeometric function is further simplified
using Stirling’s formula for gamma functions of large
argumentsv, v' > 1. We derive

Jx

F(iv,iv', 1; —x) = i—nxi"exp(nV)Iny—v. (8)

Here, the notation v = (v + v')/2isintroduced. Asisto
be expected, asymptotic representation (8) of the
hypergeometric function is symmetric relative to the
permutation of itsfirst two indicesv ~—— V'

The correctionsin Eq. (8) when calculating the rate
given by Eq. (7) have arelative smallness 1/v2 < 1 or
(Zw/p®)? < 1. Therefore, these corrections do not con-
tain terms linear with respect to the emitted photon fre-
guency w. Thisisvery important because, when therate
of photon absorption is subtracted from the rate of its
induced emission, the main parts of therates cancel out,
and it isthe small parts, which are linear with respect
to w, that remain.
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We substitute Eq. (8) into (7) to find for the rate of
induced photon emission

2nZ°n,E’exp (v — TW) 2(p|0)
YZw

(9)

We =

3poo

Here, p' = p — w/p. We expand Eqg. (9) in terms of the
small quantity Zw/p® < 1 to derive

2nZ nE’ [%l

3poo

nZoqjl 2p 3w
3|j wa 2p2

}. (10)

We similarly calculate the rate of photon absorption.
Instead of Eqg. (9), we derive an expression that differs
only by the form of the exponent,

32

2 =2 ,

W, = 21Z°n,E exp(4T[v V) In2( pp') (11)
3pw YZW

Now p'= p + w/p. Note that here we corrected the mis-

print made in the respective expression (56) in [5]. We

expand Eq. (11) in terms of the smal quantity Zwp® < 1

to derive

sz}. (12)

One can see that, if the additions linear with respect to
frequency are ignored, expressions (10) and (12) coin-
cide with classical expression (6), as must be the case.

We subtract Eq. (10) from (12) to find the difference
defining the rate of inverse stimulated bremsstrahlung
absorption, averaged over all angles,

2nz°n,E?
= ZentE (13)

We multiply this expression by the frequency w to
obtain the energy absorbed by an electron per unit time.
On averaging this energy over the Maxwellian distribu-
tion at some average electron temperature T, we derive
(with logarithmic accuracy) the average energy being
absorbed in the form

dU _ - 2./2nz°nE? nT_?V2
dt - Wyl = 2312 7w
3T W

Because the average number of electron collisions
with Coulomb centers (ions) per unit time is given by
the known relation of the kinetic theory of plasma[3, 4]

4ﬁn z

e A,

ei

where A = T¥/Zw is the Coulomb logarithm (in the
case of plasma, the Coulomb logarithm contains the
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plasma frequency instead of Zw, see [4]), the previous
expression may be transcribed in the form

du _ E°
dt 2w2 en

and, therefore, the quantity E%/2wY? is the average
energy absorbed by aslow electronin asingle collision
with a Coulomb center. Turning back to the discussion
in the Introduction, one can conclude that the foregoing
guantity is exactly equal to the respective energy for a
fast electron, aswell asto the respective energy derived
from the solution of the classical Boltzmann kinetic
equation for Maxwellian plasma[3, 4].

This result is valid in the high-frequency limit of
W > Vg, When the time between two successive colli-
sions of an electron with Coulomb centers is much
longer than the period of laser field oscillations[4]. In the
opposite low-frequency limit of w < vy, win the forego-
ing expression must be replaced by v (see the deriva
tionsin [6]). Then we find that the energy absorption is
independent of the electromagnetic field frequency and
is defined by the expression

du _ 16E°
dt  3mvy’

Inreal cases, for example, in theinteraction between
ultrashort laser pulses and large atomic clusters, both
the high-frequency and low-frequency limits with
respect to the collision frequency between free elec-

trons and multiply charged ionsinside a cluster may be
realized.

4. QUANTUM APPROACH:
ANGULAR DISTRIBUTIONS

In this section, which isthe key section of the paper,
we obtained the rates of photon absorption and of
induced emission by an el ectron scattering from a Cou-
lomb center in the presence of the electromagnetic field
with afixed angle 6 between the initia direction of the
electron momentum p and the vector of electric field
strength E.

The rate of electron transition from the initial state
with momentum p to the final state with momentum p'
in thefirst order perturbation theory with respect to the
field of electromagnetic wave is given by the Fermi
golden rule,

w(p —=p') = gj’lv(pap')lz
2 2

(P__P - dp’

007 T2 T o

Here, the perturbation has the form of dipole interac-
tion between an electron and the electromagnetic field,

V = Eelt,

(14)
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where e isthe unit vector of field polarization and E is
the amplitude of the field strength.

Because the matrix element of the coordinate oper-
ator is related to the matrix element of the momentum
operator by the known relation of quantum mechanics,

r(p —p’) = ip(p — p')/w,
the transition rate given by Eq. (14) may be written as
2

E'np’' 2
e —p")|7dQ,,..
16T[2w2I| B(p — p")l°dQ,

The expression for the matrix element of the momen-
tum operator is given in [8]. We derive (in the case of
induced emission)

w(p —p’) =

87 /VV' exp(—Ttv)

lep(p — p")l =
w(p-p)°
[ RB=P) B ) + (pp Lo pp E)F(X)|
Here, as above,
v =z>1, v'=-Z—,>1

In addition, new notation is introduced,

NP . LS
(p-p)"  (p—p)

As above, the angle between the vectors p and p' (scat-

tering angle) is indicated by 9. We expand the scalar

products of the vectors to derive the rate of induced
photon emission (14)

ATPE?n, Z° exp(—2T1V)

We(8) = 2 "
w p(p-p)

iz, :
XJ"m(p cos0' — pcos) F(—x)

2
+pp'(cosB — cosB')F'(—x)| dQ,.

Here, we introduce the angle 6' between the vectors p'
and e. We express the differential of the solid angle in
terms of the differential of the variable x,

On expressing theangle 6'interms of 6 and 9 using the
formulas of spherical trigonometry (as in Section 2)
and integrating with respect to the angle ¢ (the latter is
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determined as in Section 2), we will derive the rate of
induced photon emission in the form

4180, E2Z% exp(=211v)

We(8) =
w'p’p'(p-p)°
: o > liz, ,
XIdecos 0|—(p'cosd — p)F(—x)
0 O X

2

+ 2pp'sin2%F‘(—x) (15)

2 2|:|
+ 2 _sin?esine O

4 .
> SF(-X) - pF(—X)

= Asin’@ + Bcos’®.
Here,

a= 4pp' >
(p—p)
In the Appendix, a new asymptotic representation is
derived for the complete hypergeometric function, which

is adequate for the parameters in the problem being
treated,

F(—x) = F(iv,iv', 1; =X)
= L exp(mv)x 7K L2V (16)

DA/')J]

Here, as above, K((2) is the Macdonald function with
zero index, and

=

Vv +v'
2

Representation (16) is valid with relative accuracy
(v =v")? < 1, which enables one to include correctly
both the main terms in the rate (15) and the corrections
linear with respect to frequency w, which define the dif-
ference between the rates of photon absorption and
induced emission.

We will first turn to theterm Ain Eq. (15). We sub-
dtitute Eq. (16) into (15) to derive

Vv =

2 _ p’exp(21my)
2

iz .
KO0 =pF(x| = BEE

(V' =V)° 20290, V° 20290
x[ 7 KOD[)J]+ " KlDf)J] .
On substituting this expression into Eg. (15), one can

readily make sure that the term K2(2v/./X) makes a
small contribution to the rate of induced photon emis-
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sion, which proportional to w?. We ignore this term to
derive

Az TE’n, Z°exp(21V— 211V)

w'p

® 2

=2 b7, 2,-

v J'dtB—TDKl(vt).
b

Here, we use the notation

_b-p
b=—7F<1
~'pp’

Theintegral is calculated asin Section 2. We derive

nE? n Z? exp(2mv— ZHV)E

_ O
A= ybv o

Let us now turn to the calculation of B in Eq. (15).
We substitute Eqg. (16) into the first term in Eq. (15) to
find

w'p

1 2
‘%(p'cos@ —p)F(—x) + 2pp'sin2%F'(—x)

= [ppD exp(2nv)

' 2., 2[RV 2 2[2\75}
x| (V' =Vv) Kogm—==+ (bV) ' Kim—|.
(v-v) St (00 kI

On substituting this expression into Eqg. (15), we find

nE’n, Z* exp(2mv— 211V)
(A)4 p2 p|

B =

00

2051y + 1O 2o
X {dt[ZtKO(Vt) + hp Kl(vt)]

The calculation of the integrals the way it was done in
Section 2 (here, both integrals introduce comparable
contributions) gives

5 = nE? nZ exp(2mv— 2nv)

w'p

We substitute the obtained resultsinto Eg. (15) and per-
form expansion in terms of w/p? < 1 with an accuracy
within termslinear with respect to frequency to find the
rate of induced photon emission,

We(e) T[E nZ %l T[

(17)
2 p _ 30)5
X [Zcos 0+ E’ny———Zw 1- 2pﬂsm 9}
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The rate of photon absorption is found similarly,

Wa(e) - T[E nZ %l 14

'’ p p (18)
2 2p° oy 3w }
x [Zcos 0+ anwa 1+ 2pﬂsm ‘0

On averaging over the angle 6, we obtain from Egs. (17)
and (18) the expressions of the previous section (Egs. (10)
and (12), respectively), asisto be expected.

We subtract Eq. (17) from (18) to find the rate of
inverse stimulated bremsstrahlung absorption,

2 2

Wr = W, —W, = %gn’-’e. (29

wp
One can see that this quantity is aways positive; i.e.,
the Marcuse effect is not observed for slow electrons.
We average Eqg. (19) over the angle 6 to derive expres-
sion (13) from the previous section, as is to be
expected.

One can further see from Eqg. (19) that the rate of
inverse stimulated bremsstrahlung absorption is maxi-
mum when theinitial direction of electron is normal to
that of polarization of electromagnetic field.

The results obtained may be used in analyzing the
heating of the electronic component of clusters in the
field of high-power laser radiation [6, 9, 10].

In conclusion, note that also of interest is the analo-
gous problem in which two laser fields are involved
rather than one, with one of those fields being much
more intense than the other. The respective problem of
absorption and amplification of aweak electromagnetic
field in the kinetic theory of plasma was treated by
Chichkov and Uryupin [11].
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APPENDIX

We will derive the asymptotic representation (16)
for the complete hypergeometric function used in this
study.

It is advisable that the hypergeometric function
F(iv, iv', 1; =) with a great argument x > 1 should be
first expanded in terms of hypergeometric functions
with asmall argument,

F@v' —v)) WV

PV IV L0 = E v a=iv)
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x FEV, iv,1+i(v—-V"); —%E

FIOV =V veDn s . ]
I'_—(—i\—)-)—l:(—mx FBV,IV,1+I(V—V),—)—@.

We introduce into treatment, asin Section 2, the small
difference Av = (v' —v)/2 < 1 and the average value of
vV = (V' +v)/2 and transcribe this expression ignoring
the terms of the order of (Av)? < 1,

F(iv,iv', 1; —x) = _e—xél—?—T(—]AI\S)))X_W
[apD—Z|Avln[)p
X FHV, v, 1+i(v-V'); _1)5 A1)
—Jgap%iAvln%/_:E

X FEV', iv,1+i(v'—v); —:—E}

We now treat each of the two new hypergeometric func-
tions,

FEV,iV,1+i(V—V');—1)E

2
_ vaIx
B 1+1![1+i(v—v')] (A-2)
) (v—l) 2%
2'[1+|(v vil[2+i(v— v)]
With v > 1, this gives, in the zero approximation,
the modified Bessdl function,

- 1,20
O [)4]
A first-order correction with respecttov —v' < linthe

denominator in Eq. (A.2) gives the following combina-
tion of modified Bessel functions:

F(O)Bv iv,1+i(v—-v"); —

F(I)Ev, iv,1+i(v-V'); —1)5

_ iy A% Y EQVD]

= i(vi-v)|K +1n I
Here, asin the main text, the quantity yisthelogarithm
of Euler’s constant. A correction of the next order with
respect tov —v' = Zw/p® < lisrea and, in combination
with the included terms, gives a contribution to (A.1)
that is quadratic with respect to frequency w. As was
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done in al instances above, we ignore such a correc-
tion.

We further include first-order corrections with
respect to 1/v < 1 in the numerator in EQ. (A.2),

_|2E2VD
O f)p
We collect al first-order corrections to derive the

asymptotic representation for the first hypergeometric
function entering Eq. (A.1),

F(Z)Ev, iv,1+i(v-V'), —ED

FBV, iv,1+i(v—-Vv'"); —%E

AN , RV
ODA/Q] ZDA/Q]

+i(v— v)[K()%QA/_V)E InY/YIO%AQ/'_V)E]

The second hypergeometric function in the right-hand
part of (A.1) is derived from (A.3) by permutation of
indicesv ~— V"

We substitute Eqg. (A.3) and the analogous second
hypergeometric functionin (A.1) to derive, after expan-
sonsintermsof Av < 1,

FEV, iv,1; —1)5 = ?_XP_T(;E_X)X—W

(A.3)

.- 0 o z 2Y
K@ + 2 21@ - 1@ + 5@ s b

Here, z= 2V/.JX.

We are interested in the following regions of argu-
ment and indices of the hypergeometric function:

Xx>1, v,v>1,

v (A.9)

lv—-v'| <1,

Thus, the quantity ./x may be both greater and smaller
than v. Indeed, in calculating the integrals of modified
Bessel functions, the values of the variable x of the
order of v2 are important.

In satisfying these conditions, one can ignore the
modified Bessel functions |y, 1,, and I, in the preceding
expression (they have smallness of the order of /v < 1);
then, we derive the final asymptotic representation for
the compl ete hypergeometric function,
| R vy LBVD (4 5

FEv,iv',l; —%E:I

used in the main text.
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Abstract—An investigationsis made of the steady-state structure of a plasmainhomogeneity arising asaresult
of high-frequency heating and additional ionization of a background magnetized plasmaby the near-zonefield
of amagnetic-type source (ring electric current). It isassumed that the source axisis parallel to an external mag-
netic field; the source frequency belongsin the low hybrid band. The main attention is focused on the particul ar
case (important for possible applications) when the characteristic longitudina and transverse scales of density
distribution considerably exceed the corresponding scales of distribution of the electron temperature and of the
source field. Simplified equations for the near-zone field of the source, the electron temperature, and the plasma
density are written for this particular case. Based on the numerical solution of these equations, steady-state dis-
tributions of plasma parametersin the formed plasmainhomogeneity arefound. It isdemonstrated that aplasma
inhomogeneity provesto be markedly extended along the external magnetic field. It isfound that, for the values
of the source current that are attainable under the conditions of active ionospheric and model laboratory exper-
iments, the maximum plasma density in a nonuniform plasma may appreciably exceed the background value.

© 2001 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Nonuniform plasma structures, devel oped in amag-
netized plasma by the fields of electromagnetic
sources, are of considerable interest in the context of
problems associated with high-frequency heating of
plasma, with improvements in the methods of “active”
plasma diagnostics, and with the artificial effect on the
parameters of ionospheric plasma. The singularities
associated with the development of such plasma struc-
tures were subjected to both experimental and theoreti-
cal investigations (see [1-12] and the references cited
in these papers). Particular interest is aroused by the
possibilities of developing strong disturbances of
plasma as aresult of nonlinear ionization effectsin the
near zone of the sources, i.e., the region which is usu-
ally characterized by the maximal values of the electric
field intensity.

Of the studies pertaining to the above-mentioned
scope of problems, note the theoretical investigation
(performed by Mareev and Chugunov [10]) of the
steady-state structure of high-frequency discharge in
the near-zone field of an electric-type antenna operat-
ing in ararefied neutral gas in the presence of external
constant magnetic field. Note, however, that no theoret-
ical models are in fact available at present that would
describe the processes of discharge structures forming
in the near-zone field of radiatorslocated in the already
existing (background) magnetoactive plasma. At the
sametime, it is such formulation of the problem that is

characteristic of anumber of laboratory [8, 10, 11] and
ionospheric [9] experiments, in which it was demon-
strated that an additional ionization of background
plasma in the field of an antenna (of both electric and
magnetic types) may serve as an efficient method of
developing strong disturbances of plasma extended
along the external magnetic field. The presence of such
nonuniform plasma formations, as is demonstrated in
[13], leads to a considerable increase in the power of
radiation of the sources in some frequency bands, as
well asto anumber of other interesting effects[14].

This paper deals with the investigation of the
steady-state structure of a nonuniform plasma forma
tion developed in the case of additional ionization of a
background magnetized plasma by the near-zone field
of a magnetic-type source (ring electric current). We
will restrict ourselves to treating the case in which the
source frequency w belongs in the whistler (lower
hybrid) band,

(Quon) ™ < w< wy < o, (1)

where wy and w, denote the gyrofrequency and the
plasma frequency of electrons, respectively, and Q is
the gyrofrequency of ions. Note that the specific nature
of nonlinear effectsin thisrange, which isof great interest
from the viewpoint of various agpplications [10, 13], is
largely due to the presence of the resonance cones of
the sources[10, 15].
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2. BASIC EQUATIONS

We will treat the given ring electric current (har-
monic in time: (Oexp(iwt)) of the density

JU)-¢ozpap pﬂaa 2

where |, is the amplitude of total current, a isthe char-
acteristic scale of current distribution over the trans-
verse coordinate p (p, ¢, and z are cylindrical coordi-
nates, and d is Dirac’sdeltafunction). It is assumed that
the zaxisis directed aong the external magnetic field,

The maximum value of the density of the given current
specified in the form of Eq. (2) is evidently attained at

p=a = a2

Note that the diffusion of current over the cross section
is necessary for eliminating the singularity of the field
on resonance cones of the source.

A cold magnetized plasma, in which the source is
located, is described by the permittivity tensor

Es—igog

€ = [0j L. 3
Qig ¢ 0f ©)
00 0 nQ

In the frequency band given by Eq. (1), the compo-
nents of the tensor (3) have the form [16]

2
wh VW4 + wl
8: 2 Eﬂ-—_ H ]
wh—w0 P —w
oom .2vco
g= ———H-io— @
(wh— 0w

_ wp Vg
= _—PLq 48
n wZ%L o

provided that the additional conditionsv, << wandv, <
wy — w (v, is the effective frequency of electron colli-
sions) are valid.

In what follows, the characteristic source scale a is
in all instances taken to be small compared to the elec-
tromagnetic wavelength

0 21 172’
Kole—dl
which enables one to use the quasi-electrogtatic approxi-
mation for describing the near-zone fidd. Within this
approximation, the equationsfor thefield in the near zone
of amagnetic-type source are written as[10, 15]

E=- —ikA, B = rotA, (5)
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div(ED ) = —ikydiv(EA), (6)

where the vector potential A in its turn satisfies the
equation

= —(41/c)j, ()

U isthe scalar potentlal, and k, = w/c isthe wave num-
ber in free space.

We will use the balance equations for density and
energy [17] in order to describe the steady-state distri-
bution of plasma density N and €lectron temperature T,
in anonuniform plasmaformation arising as aresult of
heating and additional ionization of background
plasmain the sourcefield. The equation for steady-state
distribution of N has the form

divl, = divl, = (v, —=v )N—aN?+q..,  (8)

whereI', and I'; denote the flux density of electronsand
ions, respectively; v; is the rate of ionization of neutron
molecules by electron impact; v, is the rate of electron
attachment; a is the coefficient of electron-ion recom-
bination; and g, is the intensity of the external source
which maintains the equilibrium value of plasma den-
Sty N01

Oext = (AgNg+Va0—Vig)Nog

(the subscript zero indicates the background values of
the respective quantities).

We will write the equation for steady-state distribu-
tion of temperature T.. We will assume that the follow-
ing correlations are valid in the nonuniform plasmafor-
mation:

Vei < Venv 6enven < w, 6eivei < Vin- (9)

Here, v;,, Vo, and v denote the rate of collision of ions
and electrons with neutral molecules and ions, respec-
tively (Vo= Vg, * V4), and d.,and O are average relative
fractions of the energy lost by electrons in collisions
with neutral moleculesand ions. Thelast inequality in (9)
enables one to disregard the heating of ions [17]. We
further assume that the characteristic scale of nonuni-
formity of the field amplitude considerably exceeds the
transverse scale of the electron thermal conductivity,
and it is possible to disregard the heat flux across the
transverse magnetic field in the balance equation for
energy. As aresult, we have the following equation for
the electron temperature [17, 18]:

19 0T,
Noatkeias *

T,
eII
P (10)

2
~BuVe(Te=Te) + 29 = 0,
where K is the electron thermal conductivity along the

external magnetic field; I is the longitudinal compo-
nent of the vector Iy, B¢ is the component of the ther-
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mal force tensor for electrons ﬁe By = (Be)zz); Te IS
the background val ue of the electron temperature, taken
to be equal to the neutral temperature; and

Q = 2v.NQ(E)

isthetime average power of Joule heating. The quantity
Q(|E|) may be represented as

S(E) = [(“’H*“’)‘*’ (E,+E
(U)H_
, (11)
440 m(EE}) +|E)’

(wh — W

where e is the absolute value of electron charge and m
is the electron mass. In deriving formula (11), we used
expressions (4) for the components of the plasma
dielectric tensor.

In order to avoid misunderstanding, note that, in
changing over to a simplified form of Eqg. (10) for the
energy balance equation, weignored some unimportant
terms of the order of (8,,v.N)2divI.. These terms are
small if theinequalities

[Vi=V4 < 8gVe, N < gV,
are satisfied; these inequalities are always valid under
conditions of real interest to us, in which anonuniform
plasmaformation is developed in theionosphereorina
laboratory plasma which simulates the situation in the
ionosphere.

In the case of weakly ionized plasma treated here,
the expressions for the electron and ion flux density
may be written as

= Nbed —DON-D"NpoT,,

Te (12)
I, =-Nbp —DiON,

where @ is the potential of the electric field arising in
the plasma due to the presence of nonuniformity; De

and be are the tensors of diffusion and mobility for
electrons, respectively; D; and bi are the respective

tensors for ions; and Iﬁ(eT) is the tensor of thermodiffu-
sion for electrons. In the case of azimuthally symmetric
plasma formations, we can restrict ourselves to analyz-
ing only the behavior of the diagonal components of
these tensors. The respective components, as well as
the quantities Kq and B¢ entering Eq. (10), alow the
following representation:
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T TV
De|| KD - ’ eld = 29’
e m(h)H
T, T O 0
Diy = =, Dip= —0O+-0,
Mvin MVinl:I Vlan
e e
be|| = -?De”l beD = -?Dem
ee ee (13)
by = 'FiDi”’ b = -I_—iDiD’

D(T) kéﬁ)De”, D(T)_k(T)DeD,

ell
NT,

K = Ko—, B¢ =

—r BoTe-

Here, k' and k{¥ are thermodiffusion relations given
by the formulas

M = 1 TeVe

KD = KD = T dv,
e

v dT, v dT,’ (14)
Kb, Ko, and [3, are coefficients dependent on the form of
the function v(T,); T; is the ion temperature (T, = Ty);
and M is the ion mass; the symbols “|[" and “0" indi-
cate, asusual, the directions along and across the exter-
nal magnetic field, respectively.

Equations (5)—(8) and (10), aong with relations (11)—
(14), enable oneto investigate the steady-state structure of
a plasmainhomogeneity arising in an undisturbed (back-
ground) plasma as a result of nonlinear ionization effects
in the near zone of a high-frequency source of the mag-
netic type. The results of solving these equations are
largely defined by the dependence of the quantities
gppearing in them on temperature and other factors.
Therefore, in order to obtain any results, these depen-
dences must be defined concretely.

We will treat ionization effects which occur in the
air at typical discharge temperatures of the order of T, ~
5-10 eV. In this case, the temperature dependence of
quantities appearing in Egs. (8) and (13) may be
approximately described by the following model
expressions [17, 19]:

V.= 2x 107N, T (1+ T,
v, = 27 x 10N (T /1)
X (1+ 2T /1) exp(-1/T,),

Va = Ba(Te)Nm (15)

o = 2.5x107(0.026/T,)*
+1.1x107(0.026/T,)",
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en
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e’

Fig. 1. The model temperature T, dependence of the average

fraction of energy lost by an electron upon collision with
neutral molecules in air. It is assumed within the model
employed that 8, — 0.1 at T, —> oo.

in which the quantities v, v;, and v, are expressed
ins?, T.ineV, aincm? s, the concentration of neutral
moleculesN,, in cn3; | isthe effectiveionization potential

of neutra molecules, hereinafter taken to be | = 14 eV.
We will assume the attachment coefficient 3, to be

B, = 3x10 °[1+10(T,—Tg)]
a To<T.<10eV.

For the quantity d.,(T.), we will use the approximation
given in Fig. 1. In the electron temperature range T, =
1-10 eV, this correlation isin adequate agreement with
the experimental data for air available in the literature
[20]. With the adopted form of the function v(T,), the
guantities Ky, Ko, and By in Eq. (13) may be approxi-
mately assumed to be independent of T, for the values
of electron temperature being treated,

KD:: 1, KO: 15, Boz_ll3

3. FIELD AND ELECTRON TEMPERATURE
DISTRIBUTION

The solution of the set of equations (5)—(8) and (10)
is afairly complicated problem. In this paper, we will
restrict ourselves to treating a particular case, which is
of importance from the standpoint of possible applica-
tions, when these equations may be investigated within
some simplified approach. We will assume that the
characteristic longitudinal and transverse scales|y; and
Iyo of the plasma density distribution considerably
exceed the respective scales of electron temperature
distribution (I and Ir) and of source field distribution
(Igyand lgr). Inview of obvious relations

lgy O(—n/e)**a
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(compare with [10]) and I+ ~ lgn
condition iswritten as

~ a, the formulated

Iy > max{ly, (-n/e)ad}, lyo>a  (16)
In this case, asafirst approximation, one can ignorethe
space derivatives of the plasma density N in Egs. (6)

and (10).
Asaresult, Eq. (6) for the potential | takesthe form

pLonoun oy
pap%apD o7 WopapPA) (1)
where
v = e, vi=gn;
it istaken into account that in the case being treated
A, = A =0.

Next we ignore the small terms corresponding to the
inclusion of collisionsin expressions (4) for the compo-
nents of the dielectric tensor and derive the following
formulas for y and y

= (/@) =177 v, = y(w/w)™  (18)

As is seen from Eq. (18), the quantitiesy and y, in the
frequency band given by Eq. (1) do not depend on the
plasma density.

As for Eq. (10), the terms NI, 0T./0z and
N™0(Bg ¢)/0z in this equation may be ignored along
with the derivatives of density N. As one can readily
see, in the case of (16), the maximal contributions by
these terms with respect to the term containing the ther-
mal conductivity Ke” are small quantities of the order of

kgf /Ko and Boke“ IKq, respectively. Finally, we derive

2
Te+ i%[_lgv_djﬂﬂ-@
072 T v, 0THUaz0

* [Q(IE]) = 8en(Te—Teo)] = O.

The solution of Eq. (19) must satisfy the following con-
ditions:

(19)

al-OaIz—O
0z (20)

Te*> Teo aI Z —> 0,

Therefore, the distributions of the near-zone field of a
magnetic-type source and of the electron temperature,
when conditions (16) are valid, are described to a first
approximation by equations which are independent
(with due regard for relations (18)) of the plasma den-
sity.
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We will now turn to seeking the solution to equa-
tions for the near-zone field. One can readily see that
the Fourier transforms of the field and current,

E(n) = J’E(r)exp(ikon r)dr,
i(n) = J’j (r)exp(ikon Li)dr,
are related by

E(n) = |

4T [n(n [(£j(n)) -] (n)}
w(n-n)L (nCEn) '
whence, after performing inverse Fourier transforma-
tion, we have

2
E, = ~Eo— 5 (FP +iy 'FP),
1+y

E, = EoFY, (22)

2
Y
E, = sgn(2) E,—25(F§" - FY).
1+y

Here,
E, = I,T°ko/C,

2n

Fo? = Izl,zerfc(zl,z)exp(zi2+im&)dz, (22)
0

m=0,1,
where
g, = [d=ipcost o _ ;yld-pcost
a a
erfc(§) isthe complementary error function:

erfc(§) = n”% [ep(-r)r.
&

Expressions (21) and (22) make it possible to calcu-
late the distribution of the field componentsin the near
zone of the source given by Eq. (2). Further we substi-
tute the appropriate distributions into formula (11) for

the quantity Q to find the solution of Eq. (19) that
would satisfy conditions (20). The distribution of the
field components and of the electron temperature was
calculated numerically for specified values of the
parameters

koa =0.02, w/wy
Vel = 8.6x107°.

The size of the source was taken to be a = 2 m. Note
that, in this case, the above-identified values of the
dimensionless parameters characterizing a background

= 0.34,

Wyo/wy = 3.5,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

973

N
\\\\\\\\\\§§\\\

4
3
la
0 P
Zla (b)
5
o
Ny F
. /
\s
31 ¥
N}
2,
@
3 /A
a1
0 1 2 3

pla

Fig. 2. The space distribution of theradial component of the
near-zone electric field of the source given by Eq. (2) aty =
0.36, Yg = 0.62, kpa = 0.02, a = 2 m; (&) the dependence of
|E,| on the coordinates p, z, (b) |E,| level lines.

plasma correspond to the conditions of active experi-
mentsin the Earth’sionosphere at an dtitude of ~150 km
(see[9, 17]): Ng=3 x 10° cm=2 and B, = 0.5 G (we will
further indicate the values of Ty = 0.07 eV, V/V;, = 7.6,
and v, /Q, = 0.63).

The results of calculating the field components are
given in Figs. 2-4. The dependences of the absolute
values of the field components on the coordinates p and
z are given, as well as the isolines corresponding to
these dependences. In addition, Fig. 5 gives analogous

graphs for the quantity Q that characterizes the spatial
distribution of the power of Joule heating in the plasma.
As is demonstrated by the data presented here, the
power of Joule heating exhibitslocal maximaat p = a, (in
the z= 0 plane) and at the focal point p =0, z = y1a,,
which is the vertex of a convergent resonance cone for
aring source with the maximal value of current density
at p = ay, z= 0. A divergent resonance cone originating
on the source and a divergent resonance cone with the
vertex at the focal point prove to be less pronounced,
although the absol ute value of the field and the value of

Q decrease along the generatrices of these cones at a
slower rate than in the other directions (see Figs. 2b, 4b,
and 5b).

As for the distribution of the electron temperature
T«p, 2), it is characterized by the presence of a maxi-
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pla

Fig. 3. The space distribution of the azimuth component of
the near electricfield of the source given by Eq. (2). Theval-
ues of parameters are as given in Fig. 2; (a) the dependence
of [Ey| on the coordinates p, z; (b) |Ey| level lines.

mum &t the origin of the referenceframep =0andz=0,

in spite of the nonmonotonic behavior of the Q func-
tion in the neighborhood of this point. This singularity
of the T, profileis attributed to the fact that the temper-
ature distribution is markedly affected by the longitudi-
nal electron heat conduction. The dependence of the
maximal electron temperature T,(0, 0) on the source
current Iy isgiven in Fig. 6. Figure 7 gives the temper-
ature distribution on the transverse and longitudinal
coordinates, which corresponds to the value of current
lo =76 A. One can readily see that the transverse scale
of temperature distribution is defined by the source size
(I+o ~ ap), and the longitudinal scale of temperature dis-
tribution is defined by the characteristic length of elec-
tron heat conduction along the external magnetic field,

172
) O(To/MV23er) -

It must be emphasized that the results obtained are
valid only if conditions (16) are satisfied. We will see
below that, as the temperature T, increases, inequalities
(16) ceaseto bevalid with the necessary margin. There-
fore, for relatively high temperatures (for T, > 10 eV),
the theoretical model being treated needs to be consid-
erably refined.
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Fig. 4. The spatial distribution of the longitudinal compo-
nent of the near electric field of the source given by Eg. (2).
The values of parameters are as given in Fig. 2; (a) the depen-
dence of |E,| on the coordinates p, z (b) |E| level lines.

4. PLASMA DENSITY DISTRIBUTION

An analysisof the results of solving the equation for
the electron temperature T, reveal s that the characteris-
tic dimensions I+, and I of the region with a higher
value of T, satisfy the condition

|-2|-“/I$-D = De“/DiD!
which istransformed into the inequality
13/135 > Dgjo/Dig

upon substitution of the background value Dy, o of the
diffusion coefficient Dy It is natural to assume that an
analogous inequality

I%/1ho = DgyfDig (23)

is valid for the characteristic dimensions of a region
with ahigher plasmadensity. Aswe will see below, this
assumption is supported by the results of calculating
the density distribution.

One can readily demonstrate [21] that, given the
validity of condition (23) and of the inequality

W Qy > (T TIVerVin(1 + QE/VE),

the density balance equation (8) may be approximately
represented as
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dive(DoUsN) + 5 E)H%';E
+divEpOH 073 (24)
+(Vi=Va)N=aN*+ gy = O,
where
Dy, = Defl + %‘5 DL + ;D (25)

Without dwelling on the detail s of deriving Eq. (24),
note that it is derived from the initial equation (8) if we
set

@ = —(T,/eN)ON

in the expression for the flux I'y in Eq. (12), which is
approximately valid if condition (23) is satisfied (for
details, see [18, 21]). We will further take into account
the fact that, in the case given by (16), the thermodiffu-
sion term in Eq. (24) admits the representation

OT
d.vED‘T)—DTD N div ESS) - %.
e

In the heated part of the nonuniform plasmaformation,
the contribution of this term considerably exceeds the
contribution made by the proper diffusion terms. In
view of this, we will replace the quantities given by
(25) by their background values

Do = 2Der 00 Djp = 2Dg0-

It is obvious that such a replacement, which is exact
outside of the heating region, has no appreciable effect
on the behavior of the left-hand side of Eq. (24) for the
steady-state distribution of plasma density. We derive

2

DoyAoN + DHO‘; N V()N

(26)
—a(r)N?+Qgq = 0,
where

CramUdT
v(r) =v,—=vy—=v, Vg = —dlvai)e Te%'

The concrete form of the functions v(r) and a(r) is
defined by the dependence on temperature Ty(r) of the
quantities entering these functions.

Because the quantitiesv(r) and a(r) differ consider-
ably from their background valuesv, and a, only in the
heating region, whose dimensions | and |, are small
compared to the dimensions |, and Iy of the nonuni-
form plasmaformation, the functions

Av(r) =v(r)=v,, Aa(r) = a(r)—a,
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Fig. 5. Thespatial distribution of the é function corresponding
to the components of the near eectric fidld given in Figs. 24

(a) the dependence of é/émax on the coordinates p, z
(b) Q/Omax level lines.
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Fig. 6. The maximum electron temperature T max = Te(0, 0)
as afunction of the source current |,

are characterized by the &-function-like behavior against
the background of the N(r) distribution. Therefore, the
above-mentioned functions may be replaced by some
modd digtributionsf,(r) and f,(r) decreasing fairly rapidly
away from the point r = 0 and satisfying the conditions
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Fig. 7. The distribution of the electron temperature Ty(p, 2) on the transverse and longitudinal coordinates at |5 = 76 A: (a) Te(p, 0),

(b) T(0, 2).

J’fv(r)dr =J’Av(r)dr,

J’fa(r)dr = J’Aa(r)dr.

We will select the distributions f,(r) and f,(r) in the
form

(27)

V-V,
M ST TTeo + @1
. (28)
f(X(r) = 2 a_zao 2. 1/2?
cosh™[(p/po)” +(Z/29)°]
where p, and z, must satisfy the inequalities
Po<lnm Zo<ly
and the constants v and o are defined by the formulas
- 3
V=Vot—5—— Av(r)dr,
Tt
p;Zo‘[ (29)
o = ay+ ———Aa(r)dr,
TUPoZy
Nmax/NO
30 T
201 -
10 -
0 1
74 76 78
Iy, A

Fig. 8. The maximal plasma density N5 8s a function of
the source current 1y (Ng is the density of background
plasma).
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which follow from (27). In the problem treated here, it
is convenient to set

Po = 8o 2 = ay(Dyo/D)

and change in Eq. (26) to new coordinates x, y, and Z,
where

2= 2(Do/Dyo) "
We will finally derive

V-V, __G-d
cosh’(fla,)  cosh’(F/ay)
+ (Vio=Va0) (N = Ng) —aro(N* = N§) = 0,

where

D ,AN +

(30)

r = (x2+y2+'22)ll2

and A denotes the Laplace operator in the new coordi-
nates.

Equation (30) proves to be very convenient for
numerical investigation. An analysis of this equation
reveals that, for a given value of the source current 1,
(i.e., for aknown form of Ty(r) distribution), it has a spa-

tially localized, spherically symmetric (inthex, y, Z coor-
dinates) solution of N(r) which satisfies the conditions

N _

0 forr =0;
or (31)

N —N, for r— oo,

Equation (30) was solved numerically for the same
values of the source dimensions and of the parameters
for the background plasma asthose used in the previous
section to search for the T,(r) distribution. The con-
stants v and a for each given value of the source cur-
rent |, were cal culated by formulas (29) with dueregard
for the respective T(r) distribution. Asfollowsfrom the
performed calculations, the solution of Eq. (30) has a
maximum value at r = 0. The dependence of the maxi-
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mal plasmadensity N, on the source current is given
in Fig. 8. Figure 9 gives the spatia distribution of den-
sity for two cases of N, /Ny = 10 and 30 which corre-
spondto thevaluesof sourcecurrent =77 and 78A. One
can readily see that the distributions of plasma density
obtained satisfy all the restrictions specified above.

Note that the process of formation of density distur-
bance exhibits a threshold behavior. The value of cur-
rent I = 75 A (in this case, Ty o = 7.4 €V), to which
corresponds arel ative disturbance of density at the cen-
ter Noa/Np = 1.001, may be interpreted as the threshold
of development of plasma inhomogeneity. As follows
from the calculation results, in the case of a dight
excess of the threshold value of current, the increasein
the ionization rate is largely compensated by an
increasein thermodiffusion loss, and theincreasein the
plasma density in the plasmainhomogeneity is largely
due to a decrease in the recombination coefficient
(0a/0T, < 0). In our case, this behavior is observed for
lo values at which N,,»/Ng < 10. For these values, the
conditions of validity of the approximate description
employed by us (seeinequalities (16)) are satisfied with
avery large margin.! As |, increases, a sharp increase
in the plasma density in the plasma inhomogeneity
occurs, which is due to a faster rise of the ionization
rate compared with thermodiffusion loss. Although, in
this case, the characteristic scales of distribution of
plasmadensity and el ectron temperature approach each
other, conditions (16) are still valid at Nj,,/Ny < 50,
though with a smaller margin. As the source current
continues to increase, inequalities (16) cease to be
valid, and the theoretical model employed becomes
inadequate. Nevertheless, as revealed by the foregoing
treatment, this model, in spite of the existing restric-
tions, enables one to describe the steady-state structure
of a plasma inhomogeneity with a fairly strong distur-
bance of density.

Note that, under conditions of increasing transverse
dimension a of the source, accompanied by an appre-
ciable decrease in the contribution made by trans-
verse thermodiffusion to the ionization balance, much
lower values of the source current | are required to pro-
vide for the given disturbance of plasma density
Nmax/No- For example, for a = 3 m and for the above-
identified values of parameters of background plasma,
the relative disturbance of density N,,/N, = 10 is
attained at |, = 46 A (instead of |, =77 A in the case of
a=2m).

LWe do not dwell on the analytical calculation of the quantity
Nmax: Which may be performed for the given conditions. When
model representations (28) are used, the appropriate treatment is
performed the way it was done in [22] for a high-frequency dis-
chargein rarefied gas in the absence of external magnetic field.
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and for Ny a/Ng = 30 (curve 2).

5. CONCLUSION

We have suggested a theoretical model which
enables oneto investigate the steady-state structure of a
plasma inhomogeneity arising upon additional ioniza-
tion of a magnetized background plasma by the near-
zone field of a magnetic-type source, under conditions
when characteristic spatial scales of density distribu-
tion exceed considerably the size of the heating region.
Within this model, it proves possible to study the
dependences of all basic characteristics of a steady-
state nonuniform plasma formation on the parameters
of the source and background plasma. One can seefrom
the treatment results that the characteristics of a non-
uniform plasma formation are largely defined by the
dependence of the coefficients of transport in a magne-
toactive plasma on the electron temperature. It must be
emphasized that the presence of nonuniformity of the
electron temperature necessitates the inclusion of ther-
modiffusion in analyzing the distribution of plasma
density.

In conclusion, note that the results of our calcula-
tions demonstrate that a magnetic-type source placed in
a magnetized plasma is capable of maintaining a non-
uniform plasma formation markedly extended along
the external magnetic field; the density of plasmainthis
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formation considerably exceeds the background value.
This fact is of interest in view of the possibility of
appropriate experiments in cosmic and laboratory
plasma, as well as from the standpoint of analyzing the
operation of some devices designed to produce a dense
plasma.
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Abstract—The paper deals with the results of experimental investigation of the dynamic behavior of macro-
particles charged by way of photoemission, under conditions of microgravity. The experimental data have been
obtained for bronze particles subjected to solar radiation in a buffer gas at a pressure of 40 Torr (Mir space sta-
tion). Different procedures for determining the transport properties of macroparticles by analyzing video
records of experiments are treated. The velocity distribution, the temperature, the charge, the friction coeffi-
cient, and the dust particle diffusion coefficients are found. The results of comparing the experimental and the-
oretical estimates demonstrate that the dynamic behavior of macroparticles under the conditions of investiga-
tions are defined by the process of their ambipolar diffusion. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Photoemission is one of the main mechanisms of
charging dust particles under space conditions. Macro-
particles several micronsin size may acquire a positive
charge of the order of 10°-10° timesthe electron charge
and form gas, liquid, or crystal dust structures [1-4].
The phase state of such structuresis closely associated
with the processes of macroparticle diffusion.

Thediffusion isanonequilibrium process caused by
thermal motion of particles, which is one of the main
sources of energy loss (dissipation) in plasma-dust sys-
tems. Both suspended macroparticles of matter in
buffer gases (Brownian motion) and the gas molecules
proper or particles of the plasmacomponent (self-diffu-
sion) may diffuse. In the case of plasma-dust clouds
consisting of charged macroparticles, ions, and elec-
trons, the transport properties of the system may be
affected considerably by combined diffusion transfer of
particles of unlike charge (ambipolar diffusion).

Most of the known methods of experimental deter-
mination of the diffusion coefficients of ions and elec-
trons are based on the results of indirect measurements
of microparticle mobility in external electric fields [5].
Such methods are unfit for use in the diagnostics of par-
ticles in plasma because they introduce considerable
perturbations in the system being investigated. For
determining the transport characteristics of weakly
interacting macroparticles, extensive use is made of the
methods of correlation spectroscopy of photons, whose
range of validity isrestricted to the short-range order of
interparticle interaction [6, 7]. The simplest and most
obvious method of diagnostics for dust systems is the
analysis of mean-square shifts or of particle density
gradients using video recording of experiments. The

main difficulties arising in solving these problems are
associated either with the need for correct identification
or with the lack of asufficient number of particlesinthe
volume being analyzed.

This paper describes the results of investigating the
trangport properties of macroparticles charged by way of
photoemission, under conditions of microgravity. The
experimental data were obtained for bronze particles sub-
jected to solar radiation (Mir space station, 1997).

2. EXPERIMENT

The experiments were performed aboard the Mir
space station. A detailed description of the experimen-
tal setup was given in [2]. The main element of the
working chamber was aglass ampoul e with bronze par-
ticles coated with a monolayer of cesium. The particles
were placed in a buffer gas (neon) at a pressure P of
about 40 Torr. The parameters of particles are given in
Table 1.

The ampoule was a cylinder, one end of which was
aflat uviol window intended for illumination of the par-
ticles by solar radiation (Fig. 1a). The particles in the
ampoule were additionally illuminated by a sheet laser
beam (“laser knife”) whose width did not exceed
200 pm. A semiconductor laser with an operating
wavelength of 0.67 um was used for this purpose. The
image was recorded by a CCD camera, the signal from
which was recorded on magnetic tape (frame frequency
of 25 s™). The videocamera field of vision was a rect-
angle of approximately 8 x 9 mm (Fig. 1); the video-
camera was set on the ampoule center, with a depth of
focus for the selected diaphragm setting of 16 being
approximately 9 mm (see Fig. 1a). The video records
were later processed using special computer codes
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Table 1. The average radiusr, of bronze particles with the
density p and the work function W. The limiting charge Z,,,
(7) of the particles and the friction coefficients v, (Stokes
formula) and v, (free-molecular mode)

Moy UM W eV | Zx(€)
375 8.2 15 |69x10% 7.7 7.8

pr glcm3 V+1| S_l V+21 S_l

enabling one to identify the shifts of individual parti-
clesin the videocamera field of vision. In the presence
of intense fluxes of solar radiation, the number of parti-
cles recorded by the videocamera was defined by the
depth of focus of the video system, which made it pos-
sibleto follow the positions of individual particles dur-

ing periods of time t > 5t (where 1 = v;' isthe decel-
eration time and v, is the collision frequency of dust
particles and buffer gas molecules) sufficient for analy-
sis of the transport characteristics of the system. The
number of identified particles was | ess than 40% of the
total number of particles recorded by the videocamera
at theinitial moment of time.

Thefirst stage of the experiment involved the obser-
vation of the behavior of macroparticles under condi-
tions of microgravity in the absence of solar radiation
(“dark” mode). During the time of observation (15 to
20 min), the number of particlesin thefield of vision of

(@)

Videocamera
field of vision

60 mm

y, mm (b)
Sr____l____l'__"l__“l__‘l
I 1 x20 x1 vxl a2 :
| | 1 | | 1 | |
6r n| 1 : roc
I - I
I\t =
4'."‘" ] Y 4 | ( I
: - ! F g { I
| L B P
zl_\ 1 1 __JI
! ; - |
:.____I____L__ .~ |
0 2 4 6 8
X, mm

Fig. 1. (8 The geometric dimensions of the working
ampoule and (b) the mechanical trajectory of macroparticles
after the system is subjected to the effect of radiation.
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the video system did not vary appreciably. The dust
concentration n, was determined by the particles enter-
ing the plane of the laser knife and was in the range
from 200 to 400 cm3,

The second stage of the experiment involved the
observation of the behavior of macroparticles under
conditions of illumination of the dust cloud by solar
radiation. In the initia state, the bronze particles were
located on the ampoule walls and, therefore, the exper-
iments were performed in accordance with the follow-
ing scheme:

(1) dynamic effect (impact) on the system with the
illuminator shutters closed:;

(2) exposurein darknessfor aperiod of 2-4 s> tin
order to reduce the particle velocity acquired from the
initial impulse (impact);

(3) illumination of the ampoule by solar radiation;

(4) relaxation of the particles to the initial state
(departure to the walls), after which the illuminator
shutters closed.

The time of particle departure to the ampoule walls
was 3 to 5 min, this being more than three orders of
magnitude less than the time of total diffusion loss of
macroparticles a room temperature because of their
Brownian motion. The vectors of particle velocity in the
initidl stage of illuminatiion were directed chaoticaly.
Some time (~1-3 9) &fter the effect of solar radiation, the
particle motion assumed a clearly defined direction
towards the ampoule walls. Figure 1b gives the trgjecto-
ries of 40 particles after the system was subjected to the
effect of radiation.

3. DETERMINATION OF TEMPERATURE
AND VELOCITY SPECTRA OF DUST PARTICLES

An analysis of video records of the experiments
revealed irregular variations of the magnitude and
direction of the velocity of individual particles against
the background of their combined drift motion. Such
irregular fluctuations of the velocity of particles reflect
their kinetic temperature, which, for the Maxwellian
velocity spectrum (V,, V,), may be derived from the
estimation of dispersion as [§]

Tuy = M V0= OV} (€

where m, isthe mass of adust particle and [T describes
averaging over the ensemble and in time, assuming that

the system is ergodic. The quantity [V, 0= ViY isthe
drift velocity of regular drift of particles, against whose
background the therma motion of particles occurs.
Determining the temperature from relation (1) for dif-
ferent samplings of particles (20to 60) gives T, =51 eV
and T, = 22 eV with an accuracy of 5%, which ismuch
higher than their room temperature T = 0.03 €V. In so
doing, the recorded values of particle velocity distribu-
tion (Vy, V) in both the x- and y-direction were close to
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Fig. 2. Experimental spectraof velocities V, (&) and V, (b) for particles from various regionsindicated in Fig. 1b: regions X1, x2 (»);
regionsx2, y2 (a). Dashed curves describe the approximation of experimental databy the Maxwellian distribution with temperatures

Ty=51eV (3 and T, = 22 eV ().

Maxwellian, with the temperature derived by formula (1).
The particle velocity spectraf(V,) andf(V,) aregivenin
Figs. 2a and 2b for different regions of the measuring
volume, marked in Fig. 1b as x1, in Fig. 2a as x2, and
in Fig. 2b asyl and y2. The values of drift velocity of
particles for these regions corresponded to

Vit = 0011 cm/s, V3 = 0.0145 cmls,
V' = 00072 cmi/s,  VJ© = 0.0061 c/s.,

Note that the dust particlesin plasma may have other
than uniform distribution of irregular kinetic energy over
degrees of freedom (i.e., Maxwellian spectrawith T, # T,
are possible) and the value of kinetic temperature of
macroparticles may considerably exceed that of the
temperature of the gas surrounding them. These effects
may be associated, for example, with fluctuations of the
particle charge or with the spatial inhomogeneity of the
parameters of the plasma-dust system [9-13]. The
anomalous “ heating” of macroparticles was repeatedly
observed in experiments in studying dust structures in
laboratory plasma[12-15].

4. DIFFUSION OF MACROPARTICLES

Because the plasma-dust system being treated con-
sists of positively charged macroparticles and photo-
electrons emitted by them, one can assume that the
transport properties of such a system will depend on the
ambipolar diffusion of particles. Asaresult of the consid-
erable difference between the mobility of eectrons, and
that of dust particles |, the components of such a system
will separate in the entire volume of the ampoule and a
negative surface charge will ariseonthewals. Thearising
eectricfield of polarization interfereswith further separa-
tion of charged components. As a result, electrons and
heavy particles may diffuse “together,” with some
effective coefficient D, of ambipolar diffusion. The
guantity D, is defined by the diffusion coefficient of a
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slower component and, in the absence of magnetic and
externa dectric fields, may be written in the form [5, 16]

D, = {DeMs + Dipgd { Hs + g (2

where D, and D, arethe coefficients of free diffusion of
electrons and particles, respectively; in the presence of
aMaxwellian velocity spectrum, the latter coefficients
obey the relation

Dery = Tewsy Ve Moy, )

where Tg,), My, and v, denote the temperature,
mass, and collison frequency (coefficient of friction)
with buffer gas neutrals for eectrons and particles.
Because |, > |, the coefficient of ambipolar diffusion
may be written as

Da= D, + D/,
whence, in view of formula (3), we have
D,=(1+Z2TJT,)D,, 4

where Z isthe macroparticle charge in el ementary elec-
tron charges (€). The temperature T, of photoelectrons
leaving the particle surface depends on the particle
material and, in most cases, isintherangefrom 1to 2 eV
[17, 18].

Notethat relations (2)—(4) arevalid only for the case
of weakly ionized plasma-dust system, when the dissi-
pation is defined by buffer gas neutrals and the colli-
sions of charged components are unimportant. On the
other hand, the coefficient of ambipolar diffuson
describes polarization effects which are impossible in a
rarefied plasma with a low dendty of charged compo-
nents. The particle diffusion of such aplasmais defined
by coefficients (3).
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Fig. 3. The experimentally obtained dependence of Dl((y)

and of the results of its approximation (broken lines) by
curves (6) on the characteristic parameter t/t (on the number
of deceleration times) for different regions of the measuring
volumex1, x2, y1, and y2, (Fig. 1b).

5. DETERMINATION OF THE COEFFICIENTS
OF FRICTION AND FREE DIFFUSION
OF MACROPARTICLES

The direct determination of the diffusion coeffi-
cients of macroparticles by treating the video records of
experiments is complicated by a number of difficulties,
the main one of which is caused by the impossibility of
identifying the motion of individua particles during a
period of time sufficient for the diagnostics of their param-
eters. It is this fact (associated with the narrow field of
vison bounded by the “laser knife” plane) that served as
the reason for the unsuccessful attempt a determining the
free diffuson coefficient D, of macroparticles in the
“dark” mode. Theillumination of dust cloud by solar radi-
ation brings about an expansion of the measuring volume,
which enables one to follow the motion of afairly large
number of particles for a period of time sufficient for
the diagnostics of their parameters.

Given the particle temperature, the free diffusion
coefficients D, may be estimated using relation (3).
However, in spite of the close values of the friction
coefficients v,; (Stokes' formula [19]) and v,, (free-
molecular mode [20]), which are given by different the-
oretical models (see Table 1), the value of v, depends,
to alarge measure, on the accuracy of determining the
effective size of particlesand on the pressure of the sur-
rounding gas. Therefore, the data about the coefficient
v, call for an independent experimental verification.

The coefficients of friction v, and diffusion DX of

macroparticles may be recovered using the results of
x(y)

measuring temperature and velocity V5 of the regu-
lar drift of particles (see Section 3),
x(y)
X [ (1) 70— (VXP)°

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

VAULINA et al.

where [Ar(t)?0is the mean-square shift of individual
particle in the direction of the x (or y) axis, and the
guantity

DX(Y)(.[ . 00) — DX(Y)

corresponds to relation (3). The function DX¥(t) for the
thermal motion of particles may aso be represented as
1-—exp(—v,t
Dty = x(y)E;L IO( )E ()

Figure 3 gives the time dependence of DX for differ-

ent regions of the measuring volume (x1, X2, y1, and y2,
Fig. 1b) and the results of the closest approximation of

these dependences by curves (6) at v;—~ = 3.1 s for

TX =51leV and T) =22 eV. Therefore, we can derive

DX=14x10° cm’/s, D’=62x10°cm’/s

for the coefficients of free diffusion of particles.

6. MACROPARTICLE CHARGE

Data on the macroparticle charge Z are required for
determining the ambipolar diffusion coefficient D,
from relation (4). The limiting estimate of the dust par-
ticle charge Z,,,,, = 69000 may be derived from the con-
dition of equality of the surface potential ¢sto the quan-
tity v —W[2, 3],

Zax = (Vi —W)r /e, @)
where hv,,,, isthe maximal quantum energy, which, in
our case, corresponds to the wavelength A, = 0.3 um
and is defined by the transmission function of the experi-
mental chamber. A more exact estimate of the charge Z
may be obtained as aresult of analysis of the time depen-
dence of thereative variation of the particle concentration
n(t)/ny [2]. The experimenta dependences n(t)/n, are
giveninFig. 4. Theinitia concentration of macroparticles
Ny = N(t = 0) was close to 1.95 x 10% cn.

Inthe casewhen the electric field forces acting on an
individual macroparticle on the side of other particles are
balanced by the friction forces, the dependence n(t)/n,
may be approximated by the following function [2]:

n(t)/n, = (1+3wet/v,) ", (8)

where wy, = A/(Ze)zno/m+ isthedust frequency att = 0.
Relation (8) enables one to determine w, by way of
optimal matching of the experimental and prediction
data. This may give the value of the macroparticle
chargefor the giveninitial concentration n,. Theresults
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of approximation of the experimental dependence
n(t)/ng by function (8) isgivenin Fig. 4 for

v =315t w,=02s".

Proceeding from the obtained values of n, = 195 cm™
and w, = 0.2 s%, the particle charge may be estimated as

Zep = (wol€)/m,/ny = 4.03 x 10%e.

The results of test calculations of the dependence
n(t)/n, by the method of molecular dynamics are given
inFig. 4 for asystem of particleswith Z = 40300 at n,
=195cm2andv, = 3.1s?. Thethree-dimensiona sys-
tem of equations of motion was solved for acylindrical
ampoule (Fig. 1a) with dueregard for F,, of thethermal
motion of particles under conditions of their initial
velocity being equal to zero and absorption of macro-
particles on the cylinder walls,

2
dory

m+? = ZCD(r)

dr
- m+v+Ft'—‘ +Fp,.

Fe—r;
Ire=ri

r= \rk—ri\

9)

Here,

o(r) = (€20

is the parameter of electric interaction and r isthe dis-
tance between a pair of interaction particles. An analy-
sisof the solution of Egs. (9) for different parameters of
particles has revealed that the dependence n(t)/n, is
defined by the ratio between the eigenfrequency wy, and
the friction coefficient v,. The thermal motion of parti-
cles has no appreciable effect on the variation of the
concentration n(t)/ny with their kinetic temperatures of
upto50eV.

One can readily see (Fig. 4) that, for timest < 15t =

-1 . .
(vi®) " =5s, bronze particlesmovein amode close to

that given by Eq. (8). A further decrease in the particle
concentration at t > 10 s leads to a reduction of the
forces of interparticle interaction and, accordingly, to
agreement between the experimental data and the
resultsof calculations by the method of Brownian dynam-
ics (9) and approximation (8).

Note that the effects of polarization of unlike charges
were not included explicitly in any of the numerical prob-
lemsgiven by Egs. (8) and (9). Nevertheless, these effects
indirectly influence the value of the equilibrium charge
of dust particles. The particle potential ¢ reaches a
steady-state value as a result of balance between the elec-
tron recombination on the particle surface and the photoe-
mission flux from the particle. In so doing, the floating
potential @, of the ampoulewall surfaceisdefined by the
photoel ectrons escaping from the particles. The eectric
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Fig. 4. The relative concentration n(t)/ng as a function of
time t: points, experiment; bold line, method of molecular
dynamics; fine line, approximation (8); broken line, region
of ambipolar diffusion.

field arising in the ampoul e prevents some of the emitted
electrons from leaving the dust cloud. The presence of
photoel ectrons returning to the surface of macroparticles
may cause a considerable reduction of their equilibrium
chargerelativeto thelimiting value Z,,,, given by Eq. (7).
For the conditions being treated (n, = (1-3) x 10? cm3),
the determination of the charge from the balance equa-
tion gives Z = (3.5-5) x 10% [2], which corresponds to
the value of Z,, obtained as aresult of measurements.

7. EXPERIMENTAL ANALY SIS
OF AMBIPOLAR DIFFUSION
OF MACROPARTICLES

One can use the measurement results given in Sec-
tions 3-6 to determine the ambipolar diffusion coeffi-
cient D, for macroparticles from relation (4) for the
known temperature of electrons in the system of dust
particles emitting those electrons. The temperature T,
of electronsin the system being treated may differ from
the temperature of photoel ectrons leaving the particle
surface. In the absence of electric fields, the electron
energy relaxation time (the time during which the
energy of an electron decreases by afactor of approxi-
mately 2.78) is defined as

-1
T,=10 ,

wheret = vf , & Listhe number of effective collisions

and the effective relaxation length is A, = (0.8-1)Ad-Y2,
A is the mean free path of an electron with an energy
equal to theinitial energy [5]. For neon, & = 10, and the
relaxation distance A, [cm] = 10 to 12/P [Torr] under
the pressure being treated has a value of approximately
0.25t0 0.3 cm, exceeding the average distance |, = 0.15
to 0.18 cm between the dust particles which are the
background electron sources. Hence we derive that, in
the absence of electric fields, the electron energy loss
over distances of about ~I/2 will amount to approxi-
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Table 2. The results of measurements of the charge Z,,, the friction coefficient v$® | the temperature (T, Ty), the free dif-

fusion coefficient (D, DY), and the ambipolar diffusion coefficient D, for bronze particles

Zep(€) voP st T,, eV T,

ev D}, cm¥s DY, cm?/s D,, cm?/s

4.03 x 10* 31 51 22

1.4x10° 62x10° [(1.1-2.1) x 1072

mately 30% of the initial energy of photoelectrons at
the dust particle surface. Note that, in the presence of
electric fields E, an electron may further acquire an
additional stochastic energy € which is some function
of the quantity E&V2[5]. Therefore, arigorous determi-
nation of the electron temperature in a system of emit-
ting dust particles calls for solving the complete kinetic
equation. Therefore, in order to estimate the value of
the ambipolar diffusion coefficient D,, we will assume
that the temperature of electronsin the system does not
actually differ from the temperature of photoelectrons
at the particle surface, whence wefind, for T,= 1-2 eV,
D, = (1.07-2.14) x 10 cm?/s.

Because the loss of charges in the experiment under
consideration are associated with their diffusion
towards the walls, one can write an additional estima-
tion formula allowing for the average rate of diffusion
loss of dust particles in order to check the correctness
of determining the ambipolar diffusion coefficient [5],

dn/dt = —nvy E—nDa/\z, (20

where v is the frequency of diffusion drifts and A is
some characteristic scale. For a cylindrical volume of
radiusRand length L = 4R, thequantity A=R/2=0.75cm
(Fig. 1) to an accuracy of up to the coefficient 2 [5].
A more accurate determination of A requires the solu-
tion of the diffusion equation for macroparticles with
concrete boundary conditions. The frequency of diffu-
sion drifts may be estimated by the rate of variation of
the relative particle concentration n(t)/n, (Fig. 4). The
charge polarization effects responsible for ambipolar
diffusion of particles show up during comparison of the
predicted and experimentally obtained n(t)/n, curves.
The experimentaly obtained n(t)/n, curve at t < 10 s
agrees well with the exponentia solution n = nyexp(—v4t)
of Eq. (10) withvy= 3w/ v;* =0.05s (Fig. 4), from
which we derive the independent estimate D, = A, =
1.97 x 10 cm?/s for the coefficient of ambipolar diffu-
sion. Thisresult fully agreeswiththe estimatesgiven at the
beginning of the paragraph. This|eads one to assume that
the electron temperature in the system of dust particles
was close to the photoel ectron temperature at the parti-
cle surface.

One can readily see that the derived coefficient D, is
much higher than the free diffusion coefficient D, and
agrees with the theoretical predictions given by Eq. (4)
within the accuracy of determining characteristic diffu-

sion distance A\, the assumption T, = 1 to 2 €V, and the
errors in measuring the particle parameters (Z, T, v.).
Therefore, one can conclude that the process of ambi-
polar diffusion was observed in the present experiment,
i.e., that the density values of charges of both signs
were high enough for asubstantial space chargeto form
as aresult of the charge separation, this space charge
leading to the emergence of an electric field of polariza-
tion.

8. CONCLUSION

The objective of this study was to investigate experi-
mentally and theoretically the transport properties of mac-
roparticles charged by way of photoemission under the
effect of solar radiation, under conditions of microgravity.
In order to solve the problem set, we treated the data
(video records) of experiments performed aboard the Mir
space station with bronze particles in a buffer gas (neon)
at apressure of 40 Torr.

Different procedures for determining the transport
characteristics of macroparticles by analyzing video
records of experiments were treated. The velocity dis-
tribution, the temperature, the charge, the friction coef-
ficient, and the diffusion coefficients for dust particles
have been found (Table 2). Theresults of comparing the
experimental and theoretical estimates have demon-
strated that the dynamic behavior of macroparticles
under the conditions of our investigations were defined
by the process of their ambipolar diffusion. The results
of analyzing the experimental results leads one to con-
clude that the electric interaction between particles has
no considerable effect on the transport characteristics
of plasma-dust systems with the parameter of interpar-
ticle interaction

r = (ez)*(4rn/3)"*/T < 50.
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Abstract—The paper describes the results of investigation of a discharge arising in vacuum on the surface of
solid dielectric materials when irradiated by intense (up to 25 MW/cm?) electromagnetic centimeter wave radi-
ation. When the density of the microwave energy flux exceeds some threshold value depending on the target
material, adischarge emergesin the vicinity of the surface. Its emergence is associated with the evaporation of
the target material and the breakdown of evaporated matter. The thus forming plasmainitially has the form of
athin (on the wavelength scale) layer with the electron density of the order of 10'® cm™3. It is demonstrated
experimentally that effective generation of multiply charged ions occurs in the plasma. The measured energy
distribution of ionsin expanding plasma agrees with the predicted distribution obtained in solving the problem
on quasineutral expansion into vacuum of a localized bunch of collisionless plasma with cold ions. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recently, a marked increase of interest has been
observed in the investigations of a discharge arising in
vacuum in the vicinity of the surface of solids when irra-
diated by intense electromagnetic radiation. This interest
is due, on the one hand, to progress reached in the devel-
opment of high-power microwave oscillators, which
madeit possibleto investigate the discharge at high val-
ues of microwave radiation heretofore inaccessible (of
the order of tens of megawatts per square centimeter)
and, on the other hand, to the possible practical applica
tion of such discharge for modifying the surface of solids
[1, 2] and for developing ion sources. It appears of
interest to investigate this discharge from the stand-
point of high-power electronics, because the develop-
ment of adischarge at outlet windows and insulators of
REB oscillators may restrict the power and duration of
microwave pulse. This paper gives the results of inves-
tigation of a discharge arising on the surface of dielec-
tric materials when irradiated by powerful quasioptical
beams of electromagnetic waves; in particular, the
paper contains the first experimental data pertaining to
the behavior of the expansion of a multicomponent
plasma and to the efficiency of generation of multiply
charged ions.

2. EXPERIMENTAL RESULTS
AND THEIR DISCUSSION

The experiments were performed using high-power
short-pulse microwave carsinotron radiation. Radiation
with the frequency of 10 GHz and pulse duration of
40 ns was formed into a quasioptical beam of linearly

polarized el ectromagnetic waves and focused to a vac-
uum chamber (the intensity in the focal region reached
25 MW/cm?). The cross-sectional area of the focal spot
was 10 cm?. The pressure in the chamber was main-
tained at alevel of p=102to 10-°torr.

When dielectric materials were brought into the
focal region of the microwave beam, a discharge
occurred on their surface (the discharge was registered
by a flash of light), with the radiation intensity at the
moment of emergence of the discharge exceeding some
threshold value dependent on the target material and
independent of the residual gas pressure in the range
employed in the experiment (p < 107 torr). For exam-
ple, the threshold value of the intensity during the
emergence of the discharge was 20 MW/cm? on Teflon,
8 MW/cm? on glass, and 2 MW/cm? on Plexiglas. A pho-
tograph of the discharge is given in Fig. 1. The plasma
glow was a plurdity of filaments extended in the direction
of the dectric field of the wave. The characterigtic trans-
verse dimension of filament was 0.1-0.2 cm, the mean
distance between filaments was 0.2-0.4 cm, and the
length of filaments was defined by the transverse
dimensions of the microwave beam and reached several
centimeters (up to 10 cm).

The space-time characteristics of discharge lumi-
nescence were investigated using a high-speed elec-
tron-optical streek camera. The velocity of discharge
propagation on the didlectric surface from the focd spot
center in the direction of the eectric field of the wave
reached 108 cnv/s, and the velocity of motion of theion-
ization front toward the incident microwave was V, =

3 x 10’ cm/s. Figure 2 gives a characteristic optical
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scan of a discharge that illustrates its propagation
toward microwave radiation.

The development of adischarge at afairly high power
of radiation was accompanied by complete shielding of
microwave radiation. Characterigtic oscillograms of a
transmitted microwave signa are given in Fig. 3. These
measurements were performed with the aid of a cooled,
fast-neutron, germanium microwave detector and specia
caorimeters. Given a high oscillator power, the transmis-
sion factor through a plasmalayer decreased more than 50
times after approximately ten nanoseconds.

The observed development of a discharge may be
associated only with the breakdown of evaporating
matter of the dielectric target. The intrinsic absorption
of microwave radiation by the dielectricistoo low even
for its appreciable heating. Batanov et al. [3] have
assumed that, in the case of high intensity of microwave
radiation, a secondary-emission discharge arises on the
dielectric surface in vacuum, whose electrons bombard
the surface to cause an appreciableincrease in the el ec-
trical conductivity in the thin surface layer (the so-
called induced conductivity). It was the absorption of
microwave energy in this layer that apparently resulted
in its heating and evaporation with subsequent breakdown
of the vapors. The amount of evaporated matter in our
experiments was estimated by the variation of pressurein
the chamber after each discharge and by the recoil
momentum acquired by the target during evaporation of
matter. The pressure was measured with the aid of an open
ionization lamp at severa distances from the discharge at
the moments of time 2, 3, and 30 ms after the termination
of the microwave pulse, when the plasma no longer
affected the accuracy of measurement. The pressureincre-
ment was (4-8) x 107 torr at a background pressure of
4 x 10 torr. The estimate of evaporated target matter
for the experimental conditions varies from 6 x 10 to
1.5 x 10'8 particles per shot. The mass of evaporated mat-
ter was estimated by the recoil momentum (acquired by
the target after the microwave shot and measured using a
pendulum sensor) and found to agree with the estimate
made by the pressure increment.

The expansion of evaporating matter into vacuum
proceeds at a speed of the order of the sound velocity
corresponding to the evaporation temperature. For a
constant evaporation rate, this process is described by
self-similar expansion wave [4],

N(X, t) _ NO _M—DZ/(V—H’ (1)

where N(x, t) describes the spatial distribution of vapor
density, x is the distance from the target, t is the time
from the beginning of the evaporation process, N, isthe
density of vapors at the target surface, V, is the velocity
of sound in vapors at the target surface, and yis the adi-
abatic exponent in vapor treated as ideal gas. The den-
sity of the vapor flux from thetarget isin this case equal
to the product N,V For estimation, we assume that

V, = 10° cm/s to find that the vapor density at the target

Fig. 1. A photograph of a discharge on Plexiglas, taken
aong the axis of a microwave beam. The dark strip at the
frame center is the shadow of a Langmuir probe, and the
arrow on the left indicates the direction of the microwave
electric field.

Fig. 2. An optical scan of a discharge. The z axis corre-
sponds to the coordinate perpendicular to the target plane,
and thet axis indicates time.

10 T T T T

8 r a .

Intensity, arb.units

0 10 20 30 40
Time, ns

Fig. 3. Oscillograms of (&) incident and transmitted micro-
wave radiation for different values of microwave radiation
power; (b) 4 MW/cm?, (c) 12 MW/cm?.
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Fig. 4. Oscillograms of (a) microwave radiation transmitted
through plasma and (b) plasma potential.

reached values of (1-5) x 10 c® characterigtic of air at
atmospheric pressure. The vapors expanded to take up,
during the characteristic time of discharge development
T, = 108 5 aregion of thickness|; =5 x 103 cm. Within
thisregion, the vapor density decreasesrapidly away from
the target, so that, even at a distance of Ig/2, the effective
frequency v of collisons between eectrons and vapor
molecules comesto be of the order of thecyclic field fre-
guency w. Estimates indicate that, for the intensity of
microwave radiation characteristic of the experiment,
the frequency v; of ionization by electron impact in an
undisturbed field reached values of the order of 10'°s? in
dense gas at the dielectric surface and of 10" st inthe
region of its maximum, where v = w. The breakdown
of vapors in these conditions occurs very rapidly (dur-
ing atime of lessthan 1 ns), and the plasma being thus
formed proves to be localized initially in a thin layer
with a thickness of the order of 10 cm, in which the
collision frequency of electrons is of the order of the
field frequency. The plasmadensity in thislayer contin-
uesto increase until, because of its screening effect, the
microwave field intensity in the vicinity of the target
decreases to a level at which the ionization frequency
turns out to be of the order of the characteristic fre-
guency V. Of loss of plasma from the breakdown
region. Estimates indicate that the main loss of plasma
in the region of maximum of ionization is due to its
ambipolar diffusion, and v .= 10° s*. Thisvalue of the
ionization frequency in the region being treated is
attained with a microwave electric field amplitude of
the order of several kV/cm, while the undisturbed value
of amplitude is approximately 100 kV/cm. Thethin (on
the wavelength scale) plasma layer may provide for a
corresponding decrease in the field amplitude owing to
reflection of incident radiation. One can use the known
formulas for the reflection factor I of the thin plasma

layer,
__.J__’ J = I_EJ'_’\le.(EE__,
1+ 2J N (w—iv) (2)
E = Ey(1+T1),

=
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to demonstrate that the desired decrease in the field
amplitude occurs if the total number of electrons per
unit area of the layer reaches avalue of the order of

50cN/w= 2 x 10" cm™.

Here, cisthevelocity of light in vacuum, N, isthe elec-
tron density, and N, is the critical plasma density. Inte-
gration is performed over the entire thickness of the
plasma layer; E and E, denote the complex amplitude
of electricfield in plasmaand the amplitude of incident
plane wave, respectively.

Therefore, the breakdown of athin layer of vapor in
the vicinity of the target must bring about, during a
time of the order of 1 ns, the formation of a plasma
layer 10~ cm thick with an electron density of the
order of 10'® cm3, which shields the target from inci-
dent microwave radiation. Because of shielding, the
ionization processes must decelerate considerably, but
the plasma layer will expand first because of diffusion
and then, when the plasma extends outside of the vapor
cloud, its free expansion will begin at the ionic-sound
velocity, which is apparently registered by the streak
camera as the ionization front motion.

Movable electric probes were used to investigate the
plasma potential and the characteristics of plasma
expansion. The plasma potential Uy, ,s Was measured by a
solitary probe of high load resistance (severa megaochms)
placed in the vicinity of the dielectric (atypical oscillo-
gram of the potential is given in Fig. 4). The measure-
ment results demonstrated that the plasma potential
increased rapidly after a dense plasma was formed,
reached a value of severa kilovolts, and was main-
tained at thislevel for along time. The high potentia of
the plasma points to a high electron temperature. In all
probability, this high potential is developed by the
plasma on the periphery of the discharge, where the
plasma density is low, and the microwave field ampli-
tude at a distance of quarter the wavelength from the
dense plasmalayer (i.e., at the antinode of the standing
wave being formed) may even exceed the incident wave
amplitude. Therefore, the electron temperature here is
maintained at a high level (of the order of oscillatory
energy of electrons, which amounts to several keV).

In addition, the ions escaping from the discharge
were subjected to time-of-flight and energy analysis.
The measurements were performed using a five-chan-
nel ion analyzer enabling one to determine the time that
ions with different energies arrived at the analyzer. The
analyzer waslocated at a distance of approximately 3m
from the discharge. The collimator axis of this instru-
ment coincided with the direction of the electric vector
in the wave. The analyzing element of the instrument
was provided by a capacitor which deflected theionsto
an angle defined by their energy. The particleswere fur-
ther delivered to five cylindrical capacitors separating
ions of certain energy and were registered by a second-
ary-emission multiplier (SEM). A typical oscillogram
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of the SEM current I,(t) isgiveninFig. 5. The peaksin
the oscillogram correspond to ions whose energy per
unit elementary charge was defined by channel tuning
(the oscillogram in Fig. 5 corresponds to tuning the
channel to the energy of singly ionized ions of 200 eV).
Assuming that the ions fly from the target to analyzer
uniformly for alarge part of the track [5], one can fur-
ther determine their velocity by the time of arrival of
ions at the analyzer. Therefore, a quite certain ratio
between theion charge and its mass may be assigned to
each peak in the SEM current oscillogram, which
enables one to identify ions. The results of such identi-
fication are given in Fig. 5. The first (by the time of
arrival) two peaks correspond here to ions of atomic
and molecular hydrogen, and the next three peaks are
associated with carbon ions with the charge numbers
+3, +2, and +1, respectively. The results of these mea-
surements lead one to conclude that multiply charged ions
are effectively formed in the discharge plasma; the values
of density of carbon ions with charges of 1, 2, and 3 are
comparable.

By varying the channel tuning, one could determine
the dependence of the time of arrival of ions of each type
on their energy W. The measured respective dependence
for singly ionized carbon ionsis given in Fig. 6 (points).
Also given in Fig. 6 for comparison is a prediction curve
obtained assuming that ions expand with a constant
velocity (W 0O t=2). Such a dependence may aso be
obtained using the solution of the problem on the
expansion of alocalized plasmoid to vacuum [5]. The
agreement between the predicted and experimentally
obtained results points to the validity of the initia
assumption of the inertial behavior of ion expansion
that was used in the identification of ions.

Figure 7 gives the energy distribution (points) of C*
ions registered by the analyzer and a curve correspond-
ing to the dependence proportional to 1/W. In the
energy range W < 3 keV, the experimental points coin-
cide well with this curve; in the case of high values of
energy, the points lie much lower than the curve. This
meansthat, in the above-identified range, the energy spec-
trum of ions arriving at the analyzer is inversaly propor-
tional to energy; at high values of energy, this spectrum
decreases much more abruptly. Such an energy distribu-
tion of ions, experimentally recorded away from the
plasma source, may be obtained in solving the problem
on expansion of a quasineutral bunch of collisionless
plasmawith cold ions, if theinitial velocity distribution
of electrons along the collimator axis (i.e., in the direc-
tion of the electric vector in incident electromagnetic
wave) is defined by the expression

(V) O[Ve-Vvi ™, 3

where V; is the velocity of electrons of energy mVS 2=
3 keV. It isinteresting to note that, in accordance with
the results of Ignat’ev and Rukhadze [6], it isthe form-
ing of just such a distribution function that one should

+

CH+ O+

H* Hj

L1
!

Fig. 5. An oscillogram of the SEM current of ion analyzer.
The oscillograph scan, 10 ps per division.
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Fig. 6. The time of arrival of C* ions at the analyzer as a
function of their energy.
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Fig. 7. The energy distribution of C* ions.
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expect in the case of gas ionization in superstrong
microwave fields in which the free oscillation energy of
electrons is much higher than 100 eV. In this case, the
value of V, is defined by the amplitude of the oscillation
velocity of eectrons. Under experimental conditions,
the direction from the discharge plasmato the ion ana-
lyzer coincided with the direction of polarization of
incident microwave radiation, and the characteristic
values of the oscillatory energy of electrons reached
several kiloelectron-volts. Therefore, one can assume
that the ions registered by the analyzer accelerated asa
result of expansion of the plasma formed on the dis-
charge periphery where the collision frequency of elec-
tronsislow compared with the field frequency, and the
amplitude of electric field is of the order of its ampli-
tude in an incident electromagnetic wave.

3. CONCLUSION

The investigation results have demonstrated that the
plasma arising in the vicinity of a dielectric target in
vacuum when irradiated by intense electromagnetic
radiation is characterized by a number of unique prop-
erties that may define the future uses of this plasma.
The plasma turns out to be substantially nonequilib-
rium, with its density reaching the value of 10 cm.
The volume and shape taken up by the plasmamay vary
depending on the shape and size of the microwave
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beam and the target. In the experiments described in
this paper, the plasma had the form of a thin disk
approximately 10 cm in diameter.
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Abstract—A set of gasdynamic equationsis given in the general form for matter with an arbitrary equation of
statein the case when the entropy equation is used instead of the energy equation. Intheideal gas approximation
in view of viscosity, a numerical investigation is performed of non-steady-state two-dimensional flows in a
channel with a cavity. The calculation results have demonstrated that, given the flow velocity and the geometry
of channel and cavity, pressure pulsations arise that are due to the departure of vortices from the cavity into the
main flow. The values of the amplitude and frequency of pressure pulsations are determined. If measures are
taken aimed at limiting the departure of vortices from the cavity, for example, abaffleisinstalled to restrict the
interaction between the main flow and gas in the cavity, one can considerably increase the flow velocity in the
channel, unaffected by the cavity. Such non-steady-state flows may be realized in MHD-generator channels,
resonators of gas flow lasers, gas ductsfor ventilation and gas transport systems, mufflers, whistles, etc. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

By now, alarge number of experimental and predic-
tion studies have been performed to investigate sub-
sonic steady-state flows in smooth-walled channels of
different shapes[1]. Such flows are realized in the sub-
sonic part of atwo-dimensional Laval nozzle, in vane
channels of turbines and compressors, in chemica
reactorsfor the deposition of thin films, etc. Along with
this, the study of non-steady-state flows is of certain
scientific and practical interest. Here, one can single
out the problem of gas flow past a cavity in a channel.
The solution of this problem will help explain the orig-
ination of vortices in liquid or gas flows and study in
detail the generation of the so-called vortex sound.
Numerous technical devices exist in which at least one
wall hasaclosed or open cavity, which may bring about
the emergence of the non-steady-state flow modein the
device. Such devices include MHD-generator chan-
nels, resonators of gas flow lasers, whistles, gas ducts
for ventilation and gas transport systems, mufflers, and
others. In anumber of cases, for example, in pul se-peri-
odic gas lasers during the imposition of discharge, the
flow in the resonator is non-steady-state and character-
ized by theinleakage of flow into the cavity and by pos-
sible emergence of acoustic disturbances in the flow.
The treatment of such flowswill enable oneto estimate
the effect of the non-steady-state characteristics of flow
or of the geometry of the flow passage, for example, on
the parameters of radiation being generated, on the
electrode processes in lasers and MHD generators, and
so on. The parameters of such systems may be esti-

mated analytically only in simple cases. The numerical
calculation of such flows helpsin analyzing the dynam-
ics of disturbances in gas and liquid, calculating the
parameters of acoustic disturbances, and studying the
effect on these parameters of the characteristics of flow
in the real geometry of the flow passage.

At present, mathematical simulation is widely used
for numerical analysis of hydrogasdynamic problems;
fairly extensive literature is available on the subject.
The monograph by Godunov et al. [2] may be cited as
an example. The set of equations employed includes
equations of conservation of mass, momentum, and
total energy and is closed by the equation of state. The
energy equation may be written in several equivalent
forms; however, it isusually written in terms of specific
energy or temperature. In [3, 4], the equation for
entropy (which has asimpler form) was used instead of
the energy equation, and the density p (or pressure P)
and the entropy Swere used as the independent thermo-
dynamic variables. This approach is more advisable
because, for example, under conditions of adiabatic
contractions and expansions, only p changes in the
variables, while in the case of (p, T) both variables
change (p, . We will aso adhere to this approach.
Given in this paper is the set of equations in the vari-
ables(p, S and (P, S) in the general case of matter with
an arbitrary equation of state. Within the ideal gas
model in view of viscosity, numerical simulation was
performed of subsonic gas flow in a square channel
with an inner cavity, simulating the flow passage of the
resonator of agas laser. It is the objective of this study
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to perform a numerical investigation of non-steady-
state flows in a channel with closed cavity, which may
cause the emergence of acoustic vibrations.

2. EQUATIONS OF GAS DYNAMICS

The set of equations of gas dynamics includes the
continuity eguation

dp . givy =

a0 +pdivu = 0, (D)
the equation of motion

du ., 1 _1

a +‘—)VP = pF, (2)

and the energy equation, which may be written in sev-
eral equivalent forms, with the simplest form being

s _ Q
dt pT’
Here, p isthe density; u isthe velocity vector; P isthe
pressure; T is the temperature; Sis the entropy; and F
and Q denotethe density of power and thermal effect on
the flow due to external sources and dissipation pro-

cesses (viscosity and thermal conductivity), respec-
tively.

The following arguments may be advanced in favor
of the equation of entropy instead of energy: first, the
equation for entropy iswritten in asmpler form, namely,
only convective transfer S on gpace coordinates is
observed in the absence of heat sources; and, second, in
processes with constant entropy, the set of equations (1)—
(3) reducesin fact to the solution of two equations (1) and
(2). Themodel being treated may be especially efficient
when used in a weakly compressed liquid, i.e., when
the velocity of gas particles is much lower than that of
sound. This enables one to study the propagation of
hydrodynamic disturbances both in gas and in liquid.
This set of equations will be especialy simple in the
case when the velocity of sound is constant and no
source-related terms are present.

We will use the equation defining the velocity of
sound as the equation relating the pressure and density,

=0 4

o, (4)

The velocity of sound ¢ and the quantities appearing in
the set of equations when this replacement is made are
calculated using the thermodynamic functions. In the
general case of matter with an arbitrary equation of
state, (p, u, S or (P, u, S) may be selected as indepen-
dent variables for the set of equations (1)—(4). We will
discuss these two cases in more detail. Assume that
(p, u, S are selected as independent variables and the
internal energy E is the preassigned function of p and

©)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

BREEYV et al.

S E=E(p,S. Then, inview of Eq. (4), we have for the
pressure gradient

vp=cvp+ 2 vs
s,

Inview of this, the set of equations (1)—3) will be writ-
ten as

do ., Givu =
OI,[+d|vu—0,
du, 2y + 1@ yg- 1
dt+CV¢+pEBSDpVS pF, 5)
s _ Q
dt pT’

where d¢ = dp/p. In so doing, the vel ocity of sound, the
temperature, and the derivative of pressure with respect
to entropy at constant density are determined from the
thermodynamic relations

szi[ 2981 @R _ 9E -
oplP )y B9, ~ dpas’ ©

- DE]
T=5e

In the case of idea gas, the expression for internal
energy hasthe form

Ly

where E,, S, and p, are some reference values of
energy, entropy, and density, respectively; yisthe adia-
batic exponent; C,, = R/(y—1); and Risthe gas constant.
Then, we use formulas (6) to derive expressions for
temperature, velocity of sound, and the partial deriva-
tive of pressure with respect to entropy,

E = EODpr_l [ﬁ_sdj 7)

eXpl:l CV D!

_ et B SO 2
T TOEbd] exp c, O ¢ = yRT,
1Py _
—= = (y=-1T.
ptBS]
The pressure is determined using the equation of state
P = pRT.

The set of equations (5) is written in the variables
(6, u, S), which may be used for calculation in the case
of ahomogeneous medium. In the case of multicompo-
nent media, it is more convenient to replace p by P,
because the pressure is continuous on the contact sur-
face. We will write the set of gasdynamic equationsin
the independent thermodynamic variables (P, u, S) and
assume that the enthalpy h is preassigned as afunction
of P and S Then, the equation of state will be repre-
sented as p = p(P, S). We differentiate this expression
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with respect to time and take into account Eqg. (4) defin-
ing the velocity of sound to derive

dp_ 1dP @pg dS
dt ~ 2dt sl dt
Inview of this, Egs. (1)—(3) transform to

1dP 9 Q

c2dt oS pT’
du 1
iz = 8
o pVP pF (8)

ds _ Q
dt pR
Thevelocity of sound, the temperature, the density, and
the derivative of density with respect to entropy at con-
stant pressure are determined from the thermodynamic
relations

+pdivu =

¢ Lo o 2 0h
o Py s, 9PoS o
o 1_@m
D)SD p @d]s
In the case of ideal gas, the expression for enthalpy has
the form
( 1)/ —
= n BPH " o B=Se
8 0c, O

where h, is some reference value of enthalpy, and Cp =
Ry/(y—21). Then, formulas (9) yield

DpD(v l)/v

[ﬁsdj 2 _
T=TH e ¢ = yRT
o - P
55, " R

The equation of state enables us to determine the den-
sity as

p = P/RT.

In Egs. (5) and (8), the equations of mation and conti-
nuity without sourcesform a set of equations of nonlin-
ear acoustics. Energy equation (3) may be solved inde-
pendently if the velocity of sound is known at every
space point or if arelation is available that relates the
velocity of sound to hydrodynamic quantities (for
example, the Poisson adiabat).

3. FORMULATION OF THE PROBLEM

We treat, within the framework of the equations
given above, atwo-dimensional problem of gasflow in
asquare channel with aclosed cavity inasidewall. The
singularity of the effects observed in this case consists
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in that, on the one hand, the cavity is an acoustic reso-
nator with eigenfrequencies v; and, on the other hand,
vortices may arise and be carried away by the flow of
gas or liquid past that cavity. The periodic departure of
the formed vortices from the cavern will lead to pres-
sure pulsations. The eigenfrequencies of the acoustic
resonator are defined by its characteristic dimensionsl|,
and velocity of sound ¢ and may be represented in the
general form as[4]

= CpEqO
VI Ir(pDrGIDV

where @(ca;/l,) is some numerical coefficient and a; is
the damping factor for vibrations with the frequency v;.
The frequency of pressure pulsations, governed by the
periodic departure of vortices arising in the cavity, is
proportional to the quantity VF/I,, where F is some
coefficient depending on geometry. This system may be
treated as a self-oscillatory nonlinear system [4]; i.e.,
the resonator eigenfrequencies and the formation of a
vortex structure in the flow are interrelated. We will treat
such a system within the ideal-gas model. For this pur-
pose, we will write the set of gasdynamic equations (5) in
view of Egs. (6) and (7) in the form

%+divu = 0,

%‘t‘ + PV = “Au ¥ -L‘V(duv u), (10)
ds _ )\AT Q
dt ~ p T pT

where Q is the heat released by the work of viscous
forces, W is the viscosity coefficient, and A is the ther-
mal conductivity coefficient for gas. We will restrict
ourselves to the case in which the gas flow velocity is
much lower than the velocity of sound c,. In this case,
one can ignore the heat released under conditions of
viscous dissipation. Wewill likewiseignore the thermal
conductivity. The term related to viscosity is determin-
ing in avery thin layer. For the characteristic geometric
dimensions and gas dynamic parameters treated by us,
the thickness of laminar boundary layer was 6 = 0.003 m
[5]. In view of these assumptions, the set of equations
(20) will be written as

do , 0Vy, OVy, BVx
dt odx ady X

2 2
dV,, 00 _ vV, 0V[]

dT aX CODaXZ ay2|:|

:O,

v, a9V
A At

11
Codox*> 0YoxJ (1)
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9 9 where
dd_\iy * % ) CXE{-LVZY * a% O¢ O O¢ O
00X oy O
y M
v %V, a*v,Od as _ g Y
3c257 axayE ot -
oDOy O A Vx 1 A = Vy 1
where B = 0, 1 for plane and cylindrical geometry, 1V, / 1V,
respectively; V, and V, are the components of the veloc-
ity vector u along the x and y axes, respectively, nor- Vv
malized to the sound velocity ¢,; and v=n/p isthekine- BV,
matic viscosity. The variable 1 = ¢yt is introduced W = X
instead of time. The set of equations (11) is used to per- X v adivvg |
form a numerical analysis of the dynamics of nonsta- C—%le 3ox U
tionary interaction of gas flow in asquare channel with 0
a cavity. We will write Egs. (11) in a compact matrix
form, 0
do +Ad+ P = 0, (12) Wy = v + adivv |-
dt c,lm Y 39y U
where For Egs. (13) and (14), use is made of the explicit two-
P step difference scheme of [6-8] modified for this prob-
o 2 £ lem,
E o E ox dy o o
®=0v,0. A=|Z 00|, Placs1 = Dy £ Beu ,—E—HAT+ WA,
O,, O X
g Vy g 0 00 CDT CDT
ay (&J;l:f}. = q);/ktl + B;ki 1)%_%AT + LIJ;kAT,
BV, where
x \Y +V
_|v v adivV kel Tk 1
W= AV, +— T 2
Co © 3¢y OX Bus1 = :
_\i V N _V_adIVV 1 ka112+ ka
co ’ 3¢, Oy
Theinitial conditions are preassigned in the form Vi1 + Vi L
®(x,y,0) = Py(xy). Bl = 2 ,
The form of the boundary conditions depends on the 1 Viksr + Vi
concrete formulation of the problem. 2
4. NUMERICAL MODEL BV«
Thetotal approximation technique [9] isused tofind W, = X ,
the numerical solution of Eq. (12). Two problems are V. 4+ adivVvp
solved successively at the step Art, V%X X 3ox U,
0P, 0P,
— 2+ A —+ =
37 TAG TP =0 (13) 0
W = adiv V[
0P 0P : y veAV. + '
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~ THAT PR ; T+AT&’TI:+A;—&)T|:_AI ~ T+AT

chk _chk+Ayk #AT+wyk AT,
A= Ve L e Ve
1V, 1V,

T

. TT+HA T T+HAT . .
The expressions for Wy and Wy are similar to

those for W, and W,,, but are constructed with due

S T+AT

regard for the form of ®xy+1 and Pyges .

The foregoing scheme is of the second order of
accuracy with respect to the space coordinates and of
the first order with respect to time [9]. The conditions
of stability of the scheme are valid with a margin.

We will calculate the boundary conditions using
Egs. (1) and (2) written in the characteristic form,

@+%+VXB:O d_X:\/+1

dt = drt X Todt = (15)
dop , dVy V\B _ o dy_

T y =0 dt_vyil'

For visualizing the velocity field, we will calculate
the quantities

_ V — V
VX:—X Vy: y

JVi+V; JVi+ Ve
and construct vector diagrams of the vector field (V, Vy).

By way of a test, a calculation was performed of
one-dimensional flat, cylindrical, and spherical sound
pulses on the condition that the velocity of sound is much
higher than the rate of displacement of gas particles. Such
calculations were performed in accordance with the pro-
ceduredescribedin [6]. Theresults obtained (gasdynamic
parameters of pulses) were compared with analytical
expressions [10], and the laws of conservation in this
case were checked for validity. In order to check the
computer codes, the flow rate in the inlet and outlet
cross sections was monitored. The calculation results
demonstrated that, at T = 20, the values of flow rate
agreed within 1%. The viscous steady-state plane-par-
alel flow in the channel was calculated as well, and a
parabolic velocity profile was obtained to a good accu-

racy [12].

5. NUMERICAL CALCULATION RESULTS

Within the problem set, we will treat the flow of air
in a sguare channel with a cavity in aside wall, which
simulates the flow passage of a gas laser. A schematic
diagram of such adeviceisgiveninFig. 1. Thefollow-
ing geometric dimensions and parameters of flow and
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Fig. 1. The channel and cavity scheme: L and H, the channel
length and width, respectively; I, and h,, the length and
width of the resonator cavity, respectively; ly, and hy,, the

length and width of the throat connecting the channel and
resonator cavity, respectively. The broken lineindicates two
baffles (1, 2). The circles indicate the points A, B, and C,
where the pressure pulsations are calcul ated.

cavity were selected for calculation: the channel length
along the flow L = 0.3 m, the channel width H =0.1 m,
the cavity length |, = 0.13 m, the cavity height h, =
0.04 m, and the length and height of the throat connect-
ing the channel and the resonator cavity |, = 0.1 mand
hy, = 0.03 m. The pressure P, at the channel outlet was
taken to be 0.1 atm with a temperature of 300 K. The
inlet velocity was varied from 10 to 100 m/s. The cal-
culations were performed in a square mesh grid. The
step in space was assumed to be Ah = 0.002 m, and the
step in time At = C:Ah, where C. is the Courant num-
ber. It was assumed that C-=0.9[8, 9]. Thecalculation
was performed during aperiod of time T = 0-0.02 s. In
the inlet cross section, the velocity was preassigned,
and in the outlet cross section, the pressure. Witht =0
in the calculation region, zero velocity was preas-
signed, and the pressure was assumed to be equal to the
outlet pressure. The flow relaxed to a steady state in
periods of time of about L/V. The transition process
caused pressure pul sations which either decayed or did
not decay. It has been assumed that, if the pulsation
amplitude continues to decrease over periods of time
T > L/V, such a vibrational process is decaying, and
conversely, if the amplitude did not change with time,
pressure pulsations occur in the flow. Also performed
for monitoring were calculations during a period of time
considerably exceeding L/V (=0.6 s), whose results dem-
onstrated the presence or absence of pressure pulsa-
tions, depending on the selected parameters.

The calculation results demonstrate that, in the
entire range of the treated parameters of the problem,
the pressure oscillation with a frequency v = 800 Hz
arises during the initial period in the cavity over its
entire depth, with the amplitude of this oscillation
reaching a value of 8% pressure at the channel outlet.
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Fig. 2. A fragment of the pattern of velocity field (V, V)

in the cavity and channel with the inlet velocity of flow of
20 m/s.
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Fig. 4. The pressure pulsations (8P/Py ;) as a function of

time, with theinlet velocity of 60 m/s, at the pointsA, B, and
C (Fig. 1). Dot-and-dash curve, at point A; solid curve, at
point B; dashed curve, at point C.

In the course of time, depending on the velocity of flow
in the channel, this oscillation may either decay (at V <
40 m/s) or its amplitude reaches some steady-state
value, and this oscillation is imparted to the main flow
(V=60 m/s). Figures 2 and 3 give fragments of the pat-

tern of velocity field (Vx, Vy). An analysis of the
velocity field in the channel and cavity reveals that a
vortex formsin the cavity. With amain flow velocity of
up to 40 m/s, thisvortex isin the cavity and its center is
stationary (Fig. 2). When the vel ocity increases from 40
to 60 m/s, the vortex moves in the cavity; simulta-
neously, much smaller vorticesareformed in the cavity.
Thevortices, which form in the vicinity of the flow, are
carried periodicaly one by one into the main flow;
therefore, as the velocity increases, the decay of pres-
sure pulsations becomes weaker. When the inlet veloc-
ity reaches a value of about 60 m/s, al of the vortices
formed in the cavity depart periodically one by oneinto
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Fig. 3. A fragment of the pattern of velocity field (V, V)

in the cavity and channel with the inlet velocity of flow of
60 m/s.
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Fig. 5. A fragment of the pattern of velocity field (V, Vy)

in the cavity and channel in the presence of baffles on the
side of undisturbed flow. The inlet velocity of flow, 60 m/s.

the main flow. In so doing, the secondary vortex that
forms at the left-hand wall of the throat is comparable
in magnitude to the initial vortex (Fig. 3). From this
moment on, the pressure oscillation ceases to decay.
The flow in the channel starts “making noise.” The cal-
culation results demonstrate that the period of repeti-
tion of the velocity field pattern corresponds to a fre-
guency of approximately 800 Hz. One can assume that
the periodic departure of vorticesfrom the cavity main-
tains the pressure oscillation. Figure 4 gives the pat-
terns of pressure distribution asafunction of timeat the
points A, B, and C (Fig. 1). One can see that the oscil-
lation occurs with a frequency of =800 Hz. The calcu-
lations performed with a finer mesh grid produced the
same results.

We performed calculations of flow as a function of
the geometric dimensions of the cavity. It has been
found that an increase in the cavity height h. by approx-
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imately 20% causes very little change in the frequency
but leads to a decrease in the value of critical velocity
at which the pressure pulsations cease to decay. In our
case, this critical velocity is 20 m/s. Analogously, a
20% increase in the width of the resonator cavity leads
to adecreasein the critical velocity by half.

The calculation results have demonstrated that one
can substantially reduce the pressure pulsationsif athin
baffle 1 1 cminsizeor lessisinstalled between the cav-
ity and channel on the side of undisturbed flow at the
beginning of the cavity (seeFig. 1). Asaresult, the baf-
fle stabilizes the initial flow in the cavity and prevents
the origination of vortices in the vicinity of the main
flow in the cavity. Therefore, the velocity at which the
pressure oscillation decays increases to 100 m/s (no
calculations were performed at higher values of veloc-
ity). The pattern of velocity field in this case is similar
tothat givenin Fig. 2. The provision of yet another baf-
fle (shown at 2 in Fig. 1) at the end of the cavity no
longer affects the behavior of flow in the channel; how-
ever, two conjugate vortices are formed in the cavity
(Fig. 5).

Note that, because the cavity dimensions are not
small compared with the region under investigation, it
would be more correct to treat the entire region as a
complex acoustic resonator, when the channel length
along the flow L and the channel width H affect the crit-
ical velocity and the frequency of pressure oscillation.
Therefore, the obtained results are qualitative and, for a
concrete device, calculations must be made with due
regard for concrete geometry.

This procedure is also suitable for investigating a
non-steady-state flow of liquid in a channel with a cav-
ity, if the equation of state for ideal gas is replaced by
the respective equation for liquid in the form of Tate's
formula[11].

6. CONCLUSION

In this paper, a set of gasdynamic equationsis given
in the general form with an arbitrary equation of state
for the case when the entropy equation is used instead
of the energy equation. In the ideal gas approximation
in view of viscosity, a numerical investigation is per-
formed of anon-steady-state two-dimensional subsonic
flow in achannel with acavity, simulating the flow pas-
sage of the resonator of a gas laser. It has been found
that, in such cases, given some velocity of incident
flow, pressure pulsations may arisein this flow that are
defined by the characteristics of undisturbed flow and
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by the geometry of the flow passage. The frequency and
amplitude of these pulsations have been analyzed. It
has been found that a 20% variation of the geometric
dimensions of the cavity causes the critical velocity, at
which acoustic disturbances occur, to vary by a factor
of two. The calculation results have demonstrated that
the pressure oscillation is associated with the departure
of vortices arising in the cavity and that the frequency
of this oscillation coincides with the frequency of
departure of vortices from the cavity. The provision of
baffles in the closed cavity in the vicinity of the flow
may considerably reduce the effect of the cavity on the
main flow and increase the critical velocity of flow at
which pressure pulsations arise in the channel.
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Abstract—The results of experiments devoted to the study of spectral, spatial, and time characteristics of a
spectrally bright point x-ray source based on avacuum diode with alaser-plasma cathode and atitanium needle
anode with a photon energy approximately equal to 4.5 keV are presented. The experimental resultsrevealed a
considerable difference between the electron emission from laser plasmain astrong electric field and the explo-
sive electron emission and demonstrated the effectiveness of laser plasma as an el ectron source. The optimiza-
tion of the laser radiation power density, the accelerating voltage, and the interel ectrode spacing made it possi-
ble to create a point x-ray source whose spectral brightness exceeds available sourcesin the class of small-size
pulse x-ray instruments (tubes with explosive cathodes). It has been proved experimentally that the maximum
contrast of the characteristic lines of the anode material is attained in the case of an optimal choice of acceler-
ating voltage. The x-ray source has the following parameters: (1) spectral brightness of the K-lines of titanium
of the order of 102! photons/cm? s sr keV; (2) emitting region size of 250 pm; and (3) laser pulse duration less

than 20 ns. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The microscopy of stationary and moving objects
with high gradients of density and refractive index
(which include crystalline structures, high-temperature
plasma, and biological media) requires the use of
pulsed, spectrally bright, and high-contrast sources of
x-ray radiation. Nowadays, x-ray tubes with explosive
cathodes, as well as plasmas produced by a high-power
laser radiation, are widely used for generating short
x-ray pulses. Each of these sources undoubtedly hasits
own advantages and drawbacks. The broad spectrum of
laser plasma radiation, the considerable amount of
power required for attaining the high electron tempera-
ture, and the displacement of the radiation maximum to
therange of afew kiloelectronvolts hamper the creation
of a small-size, high-efficiency, and contrast source of
X-ray quanta. In x-ray tubes with an explosive electron
emission, the lower working voltage threshold is not
lower than 50 kV, which deteriorates the contrast of the
characteristic line emitted by elements with a small
atomic number. Stable explosive eectron emission is
impossible in the range of accelerating voltages <20 kV;
this complicates the synchronization of the source with
diagnostic equipment. For this reason [1-4], one of the
promising trends in creating a smal-size, spectraly
bright, and contrast x-ray sourceis the study of avacuum
diode with a laser-plasma cathode, which emits radiation
in the wavel ength range determined by the anode mate-
rial. X-ray diodes with laser-plasma cathodes have the
following advantages.

(1) The electron temperature, concentration, and
expansion velocity of alaser plasma, which exceed the
corresponding parameters of a cathode plasma formed
during explosive electron emission by at least an order of
magnitude (under similar conditions for applied voltage
and electrode geometry) determine the high emissivity of
alaser-plasma cathode, thusincreasing the total discharge
current and the spectra brightness of the source.

(2) A high emissivity of a laser-plasma cathode is
observed even for low values of working voltage. For
example, for U = (3-4)U, (U, is the excitation thresh-
old of the characteristic radiation from the anode mate-
rid), theratio of the characterigtic radiation intensity tothe
bremsstrahlung intensity attains its peak value [5]. Asthe
voltage incresses, the radiation yield in the K-lines attains
saturation or even startsto decrease [6]. At the sametime,
the bremsstrahlung yield only increases with the volt-
age. Consequently, the maximum contrast of radiation
inthe K-linesis attained by applying the optimum volt-
age used in our experiments.

(3) The possibility of operating in the point source
mode is ensured by a needle-shaped anode.

(4) The control of the accelerating voltage and the
use of various materials for the anode make it possible
to obtain high-contrast x-ray line emission in a fairly
wide spectral range.

(5) Findly, such diodes are distinguished by stabil-
ity of the output parameters, simplicity of phasing with
diagnostic equipment, and low operation costs.

1063-7761/01/9206-0998%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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2. ESTIMATION OF THE EMISSIVITY
OF A LASER-PLASMA CATHODE

When laser radiation with a low power density (the
characteristic fluxes used in our experiments are
10'°-10% W/cm?) acts on a plane target, the character-
istics of the formed plasma may be estimated to a high
degree of accuracy using self-similarity [7]. For such
fluxes, the laser energy is absorbed in the plasma
corona owing to the backward bremsstrahlung mecha-
nism. In this case, the electron temperature of the
plasmain the absorption region is defined as

OPAT¥ QALY
T [eV] = 55101‘5 o

where P is the laser radiation density at the target in
W/cm?, \ isthe laser wavelength in micrometers, A and

Z are the atomic mass and number of the target, Z; is
the average charge of plasmaions, A is the Coulomb
logarithm, and L is the scale of density inhomogeneity
in micrometers, corresponding to the diameter of the
focal spot of the laser beam (in the case of a plasma
pulse of a nanosecond duration).

Thus, for P = 10 W/cm? and A = 1 pm, the temper-
ature of the laser plasma at the aluminum target is 30—
35 eV. A further expansion of the plasmacloud leadsto
its adiabatic cooling, and the electron temperature at adis-
tance of several millimeters from the target is T < 10 eV.
Thetotal number of particlesin the plasmais given by [8]

_ E(y-1)
2(1+ Z)kT’
where E, is the laser radiant energy, v is the adiabatic

exponent equal to 1.3-1.4, kisthe Boltzmann constant,
and the coefficient 1/2 takes into account the kinetic

energy of the plasma. For the degree of ionization Z; =
34, thetotal number of electronsin the plasmamay be
aslargeas 3 x 10%°,

If we apply voltage U to a spherical plasma cloud,
the number of electrons escaping from the cloud dueto
the acceleration of chargesin the external electric field
is such that their charge Q = UR, where Ris the radius
of the cloud. Coulomb forces prevent afurther emission
of electrons from the cloud. The current increases due
to an increase in the number of electrons being acceler-
ated:

(ZILA)*®

dQ dR
dt Udt = Uv,

where v isthe plasma expansion velocity. Thisrelation
showsthat for a constant accel erating voltage, the dura-
tion of the x-ray pulse is determined by the laser plasma
expansion velocity. For R=2 mm (half the anode—cathode
distance) and U = 20 kV, the charge is Q = 13.3 CGS
units, which is equivalent to 3 x 10%° electrons. In this
connection, only a small fraction (~107°) of the total
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Fig. 1. Geometry of an x-ray source with a titanium anode
and a laser-plasma titanium cathode.

number of eectrons present in the plasma participate in
the generation of x-rays at the anode. It should be noted,
however, that the above estimate isrough. In order to con-
struct a more comprehensive modd, we must consider a
number of factors, which are associated with

(a) the limitations introduced by the characteristics
of the electric circuit of the source (the upper bound
imposed on the number of electrons participating in the
generation of x-rays, by the capacitance of the dis-
charge circuit and the effect of the circuit inductance on
the shape and duration of a current pulse);

(b) the functiona dependence of the perveance (pro-
portionality factor in the 3/2 law) of the electron flow
on the source geometry, the velocity of the current-
removal boundary [9], and also with the possible non-
monotonic potentia distribution in the interelectrode
space[10],

(c) a decrease in the volume charge in the gap
between the electrodes due to levelling out of the con-
ductivities of the metal and the laser plasma[11], |ead-
ing to an increase in the emissivity of the cathode;

(d) recombination during the expansion of laser
plasma, which in turn leads to a decrease in the number
of electrons being accelerated in the interel ectrode gap.

3. EXPERIMENT

The experimental setup is presented in Fig. 1. The
discharge circuit of the source [1] possessed a low
inductance and consisted of an earthed titanium (alumi-
num) target serving as a cathode and a titanium anode
having the shape of a cone with atip diameter of 250 um
and a 5-nF capacitor whose charge, corresponding to
10 C (10*® electronsfor U = 20 kV), limited the num-
ber of electrons from the laser plasma, which were
accelerated by the electric field. The voltage across the
capacitor was maintained by a dc voltage source in the
range 3-26 kV. The charging time of the capacitor was
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Fig. 2. Spectrogram and densitogram of emission of doubl et
linesKq1 (2.749 A) and K, (2.752 A) by atitanium anode.

The spectrogram was obtained by firing 30 laser pulses on
crystalline mica spectrograph with double focusing in the
VI order of reflection. Theradius of the spherical surface of
the crystal R=100 mm; a=111.5mm and b =96.6 mm are
the distancesfrom the center of crystal bending to the source
and the photographic film, respectively. The backward lin-

ear dispersion D, = 7.373 x 1073 A/mm, theworking voltage
of the source is 22 kV, the laser pulse energy E; = 0.27 J, the
pulse duration T = 10 ns, the laser beam diameter at the tar-
get is 150 um, and the power density P = 1.5 x 101 W/cm?.

determined by a high-resistance resistor of 100 MQ
which excluded the effect of the voltage source on the
discharge of the circuit. The current in the diode circuit
was measured with the help of the Rogowski loop and
independently by the method of voltage drop acrossthe
standard low-inductance resistor of 10 mQ. We used a
neodymium laser (A = 1.06 pm) with the following
parameters. pulse duration of 10 and 30 ns and the
energy variationin therange 10°-1 J. Thelaser beam was
focused to the plane anode to form a spot with aradius of
gpproximately 100 um. The maximum power density of
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laser radiation at thetarget was P = 10%> W/cn?. The pres-
sure in the discharge chamber was 107° torr. Electrons
emitted from the laser plasma formed at the cathode
were accelerated by the electric field towards the tita-
nium anode, initiating x-ray radiation in the character-
istic K- and L-lines of titanium as well as the x-ray
bremsstrahlung with a peak at A [nm] = 1.86/U (U is
measured in kilovolts) [12].

The x-ray radiation intensity was measured with the
help of silicon p—i—n diodes (Quantrad 100-PIN-250).
The diodes facing the titanium anode were protected by
filters with a cutoff energy approximately equal to
3.6 keV (100 pm of beryllium and 6 pm of aluminum)
and 5.2 keV (200 pum of beryllium and 20 pm of alumi-
num). In turn, the diode intended for measuring the
intensity of radiation emitted by the laser plasma was
placed behind the anode of the source. The characteris-
tic radiation and bremsstrahlung emitted by the anode
in the direction of the p—i—n diode were cut by a spe-
cialy bent lead screen. The photosensitive surface of
the diode was coated with a mylar film. The quantum
yield of x-rays in the K-lines of the anode (hv(K,) =
4.51 keV and hv(Kg) = 4.93 keV) was determined from
the differencein signasfrom the diodesfacing it from the
known value of the response, equal to 0.2 C/J. The spatial
distributions of x-ray radiation emitted by the laser
plasma (cathode) and the titanium anode were regis-
tered by amultiframe pinhole camerawith filters 10 um
of beryllium (the cutoff energy E = 1 keV) and 10 um
of beryllium with 15 um of titanium (E = 3.8 keV) on
UVVR and DEF x-ray films. X-ray bremsstrahlung was
registered on a DEF film (which is more sengitive to hard
radiation) mounted behind the UVVR film serving as an
extrafilter. The pinhole camerawas arranged relative to
the electrodes in such a way that the magnification of
the objectswas '= 4.

The emission spectrum (Fig. 2) in the region of
K-lines was recorded on the UVVR film with the help
of acrystalline mica spectrograph (with a double inter-
planar spacing of 19.9 A) with double focusing. The
electron temperature of the cathode plasma was mea-
sured from the peak of the spectral distribution with the
help of an x-ray spectrograph based on a transmission
diffraction grating with aperiod of 1.4 um [4]. Thedis-
persion and spectral resolution of such a spectrograph
were 20 A/mm and ~10 A, respectively.

4. DISCUSSION OF EXPERIMENTAL RESULTS

In our experiments, we studied the spectral, spatial,
and time characteristics of a pulsed point x-ray source
based on avacuum diode with alaser-plasma cathode and
aneedle-shaped anode. In the case of atitanium anodeand
alaser-radiation power density of 4.2 x 10 W/cn?? at the
anode, the spectral brightness of the radiation sourcein
the K-lines was 1.3 x 10% photons/cm? s sr keV, which
corresponds to 1.6 x 10'* x-ray quanta per pulse. The
radiation was formed by the doublet K, (2.749 A) and
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Anode (Ti)

| 4 mm |

Fig. 3. Spatial distribution of the x-ray radiation emitted by
the anode and laser plasma. The working voltage of the
sourceis 22 kV, thelaser radiant energy E; =0.33J, and the
pulse duration is 10 ns. The separation from the source to
the pinhole camera aperture is 1 cm and the magnification
I = 4. The images were obtained after 15 shots. (a) UVVR
film, Befilter of thickness d = 10 um, the diameter D of the
cameraapertureis 130 pm, the diameter 2r of thefocal spot of
thelaser beam at thetar%et islSOélm, andthedensity P of laser
radiation is 1.3 x 10~ W/cm*; (b) UVVR film, Be, d =
10 pm, D = 190 pm, 2r = 100 pum, P = 4.2 x 101 Wiem?:
(c,d)Be,d=10pum, and Ti, d = 15 ym, D = 130 pm, 2r =
100 pm, P = 4.2 x 101 w/em?; UVVR film (c), and DEF
film mounted behind the UVVR film (d).
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Fig. 4. X-ray radiation yield from a vacuum diode with a
|aser-plasma cathode as a function of the applied accel erat-
ing voltage U (I = 2.2 mm, E_ =0.2J).

Kaz (2.752 A) and the K line (2.514 A). Microdensito-
metric measurements proved that bremsstrahlung is
negligibly weak as compared to the characteristic radia-
tionintherange 2.4-3 A (Fig. 2). An analysis of the spa-
tia distribution of x-ray radiation emitted by atitanium
cathode and anode revealed that for a power density of
laser pulse at the cathode lower than 5 x 101 W/cn?, the
radiation intengity of the cathode plasmafor A <35A is
much lower than the intensity of characteristic radia
tion and bremsstrahlung emitted by the anode (Fig. 3).
The electron temperature T = 70 eV of the titanium
cathode plasma measured with the help of an x-ray
spectrograph from the spectral distribution peak for
P = 10" W/cm? is in good agreement with the model
estimates [7]. The x-ray radiation intensity emitted by a
source with a needle-shaped anode decreases sharply
from the tip of the anode to its bottom (Fig. 3). This
alowed us to estimate the source size, which amounted
approximately to 250 um. The obtained images of the dis-
charge gap aso confirmed the absence of additiona
sources of radiation, indicating the absence of the pinch
effect.

In order to optimize the diode characteristics, we
measured the intensity of x-ray radiation as a function
of the laser radiant energy, accel erating voltage, and the
distance between the target (cathode) and anode. In these
experiments, the laser beam was focused on a plane alu-
minum target to form a spot of diameter 2r = 130 um; the
light pulse duration was 30 ns.

The dependence of the x-ray intensity on the accel-
erating voltage for the electrode spacing | = 2.2 mm
laser radiation energy E; = 0.2 Jis presented in Fig. 4.
The laser energy was Q = 200 mJ to within £5%).
A strong increase in the x-ray radiation emitted by the
anode is observed in the range of accelerating voltages
U = 10-20 kV, above which the growth becomes
slower. This is in accord with the condition that the
maximum contrast of the characteristic radiation lines
is attained when the accel erating voltage isthreeto four
times higher than the line excitation threshol ds. For this
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Fig. 5. Dependence of x-ray yield (a) and current in the x-ray source circuit (b) on the electrode spacing | (E; =25 mJ, U =19KkV).

reason, we carried out our subsequent experiments for
avoltage of 19 kV.

The dependences of the x-ray intensity and the cur-
rent pulse amplitude on the electrode spacing | for a
fixed laser energy E, = 25 mJ and voltage U = 19 kV
are presented in Fig. 5. It can be seen that the current
pulse amplitude in the diode circuit correlates with the
intensity of x-ray radiation.

Figure 6 shows the dependence of the x-ray inten-
sity on the laser pulse energy for the anode-cathode
spacing | = 2.2 mm and for the accelerating voltage
U =19 kV. The presence of peaks on the dependences
presented in Figs. 5 and 6 indicates the extremum of the
perveance of the electron flow emitted by the source
and the optimal conditions for generating x-rays in
givenintervalsof E and |.

In order to study the processes occurring in the elec-
trode gap during the acceleration of electrons from the
cathode plasma undergoing hydrodynamic expansion
and to estimate the stability of the source operation and
the possibility of its synchronization with the complex
of the diagnostic equipment, we measured the time
shift of the x-ray pulse emitted by the source relative to
the radiation emitted by the laser plasma. The depen-
dence of the delay timet, for the peak of the x-ray diode
pulse relative to the peak of plasma radiation on the
laser energy for the constant anode—cathode separation
| =2.2mmandthevoltage U = 19kV isshownin Fig. 7a.
For laser radiation energies at the target up to E, =

I, rel. units
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80+

401

O 1 1 1 ]

1 10 102 103 104
EL,mJ

Fig. 6. Dependence of the x-ray yield from the diode on the
laser radiant energy (I =2.2 mm, U = 19 kV).
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300 mJ, the peak of the pulse emitted by the diode is
delayed relative to the peak of the x-ray pulse emitted
by the laser plasma, this delay becoming smaller upon
anincreaseinE, . For E; > 300 mJ, the peak of the pulse
under investigation leads the peak of the plasma pulse.
In our opinion, this advance is associated with specific
experimental conditions (the relation between the elec-
trode spacing and the laser pulse duration). As the
energy of laser radiation increases, the velocity of the
current-removal boundary increases, and the discharge
gap is filled with laser plasma more rapidly, while the
action of the laser pulse on the cathode still continues.

The time delay t, between the peaks of x-ray pulses
emitted by the diode and the plasmawas al so measured
for various electrode spacings and a constant laser
energy. Figure 7b shows the dependence of the delay
time ty for E_. = 25 mJ. This dependence for low laser
radiation energiesis defined asty = 12 [ns/mm]| [mm].
The obtained coefficient of 12 ns/mm is much larger
that the value 0.25 n'mm expected for the acceleration
of free electrons by apotential difference of 19kV. This
is explained by the screening of the field applied to the
plasma. Electrons reaching the anode are essentially
the electrons from the surface layer of the plasmacloud
experiencing hydrodynamic expansion. The total num-
ber of electrons in a current pulse is estimated by a
quantity of the order of 10'°, although only asmall frac-
tion of these electrons (10“-10-9) is accelerated to the
excitation energy reguired for generating x-ray quanta
in the K-lines of the anode. For | > 7 mm, a two-peak
structure of the pulse is observed. This indicates the
presence of a group of “fast” electrons leaving the
plasmamuch earlier than the main part of plasmaelec-
trons.

The duration of an x-ray pulse from the source
under investigation for a fixed power density of laser
radiation at the target and a fixed potential at the anode
increases with the interelectrode spacing (from 18 ns
for | =1 mmto 28 nsfor | = 7 mm) (Fig. 8) and
decreases upon an increase in the laser power density
for fixed | and U.

Theintensity of x-ray radiation depends on the state
of the surface of the cathode. Repeated impacts in the
same region of the cathode lower the intensity of x-ray
radiation.
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Fig. 7. Dependence of the delay time tq of the x-ray pulse
peak relative to the peak of the x-ray pulse emitted by
plasmaon (a) the laser energy (I = 2.2 mm, U =19kV) and
(b) the distance | (E_ =25 mJ, U = 19kV).
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Fig. 8. Dependence of the duration of an x-ray pulse emitted
by the vacuum diode on distance| (E_ =25mJ, U = 19kV).

5. CONCLUSION

Thus, our investigations have led to the creation of a
pulse point source of x-rays emitting in the range of
K-lines of Ti with a pulse duration shorter than 20 ns
and a spectral brightness of 10°* photons/cm? s sr keV.
The source is superior to the commercialy available
x-ray tubes with explosive cathodes, having a spectral
brightness of 10'-10' photons/cm?ssr keV. The
parameters of our source demonstrate the prospects of
its application for studying rapid processes and in
microscopy of moving objects. In turn, the optimiza-
tion of the parameters of electrical circuit of the source
for its operation in the frequency mode makes it possi-
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ble to apply the source in the x-ray structural analysis
of stationary objects and in lithography, where the
x-ray radiation dose is one of the applicability criteria.
for example, when x-ray pulses repeated at afrequency
of 100 Hz, the spectral brightness of such a source in
the units adopted for a comparative analysis of contin-
uous-wave sources of x-rays (synchrotrons and x-ray
tubes) are of the order of 107 photons/mm? s mrad?
(0.1% of the line width), which corresponds to the
spectral brightness of tubes with arotating anode [13].
The study of various operating conditions of the source
(for various el ectrode spacings, power densities of laser
radiation, and the voltages across the electrodes)
proved that the attainment of optimal characteristics of
radiation (spectral brightness, pulse duration, and delay
time) is a self-consistence problem which must be
solved individually for special purposes.

ACKNOWLEDGMENTS

This work was supported by the Russian Founda-
tions for Basic Research (projects nos. 99-02-18499a
and 00-02-16113).

REFERENCES

1. M.V.Dmitriev, Yu. A. Zakharenkov, and A. S. Shikanov,
Preprint No. 91, Fiz. Inst. Akad. Nauk SSSR (L ebedev
Ingtitute of Physics, Academy of Sciences of USSR,
1989).

2. Yu. V. Korobkin, V. B. Rozanov, A. S. Shikanov, and
G. A. Vergunova, Preprint No. 27, Fiz. Inst. Ross. Akad.
Nauk (Lebedev Institute of Physics, Russian Academy
of Sciences, 1995).

3. Yu. V. Korobkin, V. B. Rozanov, A. S. Shikanov, and
G. A. Vergunova, J. Russ. Laser Res. 19, 101 (1998).

4. Yu. V. Korobkin, I. V. Romanov, A. A. Rupasov, et al.,
Phys. Scr. 60, 76 (1999).

5. 1. B. Borovskii, Physical Foundations of X-ray Spectral
Investigations (Nauka, Moscow, 1956).

6. B. L. Henke and M. A. Tedler, in Advances in X-ray
Analysis (Plenum, New York, 1975), Vol. 18.

7. P.Mora, Phys. Fluids 25, 1051 (1982).

8. Yu. V. Afanas'ev, N. G. Basov, O. N. Krokhin, et al.,
Itogi Nauki Tekh., Radiotekh. 17, 156 (1978).

9. G. A. Mesyats and D. |. Proskurovskii, Pulse Electric
Discharge in Vacuum (Nauka, Novosibirsk, 1984).

10. A.V.Bolotov, A.V. Kozyrev,A.V. Kolesnikov, et al., Zh.
Tekh. Fiz. 61 (1), 40 (1991) [Sov. Phys. Tech. Phys. 36,
23 (1991)].

11. F. Chen, Introduction to Plasma Physics (Plenum, New
York, 1984; Mir, Moscow, 1987).

12. Physical Quantities. Handbook, Ed. by I. S. Grigor’ev
and E. Z. Méelikhov (Energoatomizdat, M oscow, 1991).

13. J. Kirz, O. T. Attwood, B. L. Henke, et al., X-ray Data
Booklet (Lawrence Berkley Laboratory, University of
Cdlifornia at Berkley, 1986), PUB-490 Rev.

Trandated by N. Wadhwa

No. 6 2001



	1004_1.pdf
	1010_1.pdf
	1019_1.pdf
	1024_1.pdf
	1035_1.pdf
	1038_1.pdf
	1049_1.pdf
	1060_1.pdf
	1072_1.pdf
	1084_1.pdf
	1090_1.pdf
	887_1.pdf
	895_1.pdf
	905_1.pdf
	921_1.pdf
	930_1.pdf
	940_1.pdf
	951_1.pdf
	960_1.pdf
	969_1.pdf
	979_1.pdf
	986_1.pdf
	991_1.pdf
	998_1.pdf

