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Abstract—A study is made into the temperature dependence of residual polarization of negative muons in crys-
talline silicon with the concentration of impurity of the n- and p-types ranging from 8.7 × 1013 to 4.1 × 1018 cm–3.
The measurements are performed in a magnetic field of 1000 G transverse to the muon spin, in the temperature
range from 4.2 to 300 K. The form of the temperature dependence of the relaxation rate ν of the magnetic
moment of the µAl0 acceptor in silicon is determined. For a nondegenerate semiconductor, the relaxation rate
depends on temperature as ν ∝  Tq (q ≈ 3). A variation in the behavior of the temperature dependence and a
multiple increase in the relaxation rate are observed in the range of impurity concentration in excess of
1018 cm−3. The importance of phonon scattering and spin-exchange scattering of free charge carriers by an
acceptor from the standpoint of relaxation of the acceptor magnetic moment is discussed. The constant of
hyperfine interaction in an acceptor center formed by an atom of aluminum in silicon is estimated for the first
time: |Ahf (Al)/2π| ~ 2.5 × 106 s–1. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in the investigations of impurity centers and
various defects in semiconductors never wanes,
because these investigations produce detailed data
about the distribution of the wave function of these cen-
ters in the crystal lattice, about the structure of the
impurity conduction band, and so on (see, for example,
[1]). In spite of the fact that a wealth of experimental
data about various impurities and defects in semicon-
ductors have been accumulated over a period of several
decades, shallow acceptor centers in semiconductors
with a crystal diamond structure (silicon, germanium,
etc.) are still little studied both experimentally and the-
oretically [1–4].

The main difficulties of theoretical investigations of
acceptor impurities in diamond-like semiconductors
are caused by the structure of the valence band of these
semiconductors. The upper edge of the valence band in
silicon and germanium is found at k = 0, and the band
is fourfold degenerate at this point.

In the case of shallow acceptor centers in diamond-
like semiconductors, the use of the electron paramag-
netic resonance (EPR) technique (which played the key
1063-7761/01/9206- $21.00 © 21004
part in the investigation of various paramagnetic impu-
rities in semiconductors) is limited because of the high
relaxation rate of the magnetic moment of the acceptor
and the broadening of the EPR line due to degeneracy
of the ground state of acceptor impurity and occasional
residual deformations in crystal [5].

The use of negative muons, which was justified the-
oretically in [6] and developed in the experimental
studies [7–10], enables one to extend the possibilities
of studying shallow acceptor centers in silicon.

The muonic atom formed as a result of implantation
of a negative muon into silicon simulates the behavior
of an aluminum atom, which is the acceptor impurity.
The behavior of residual polarization of a negative
muon in the 1S-state of the muonic atom is governed by
the state of the electron shell of this atom and by the inter-
action of the atom and the medium. The results of theoret-
ical treatment of the kinetics of the formation of a muonic
atom in silicon [11], which were supported by experimen-
tal results, indicate that, in the temperature range below
approximately 50 K in the period of time &10–9 s, an
acceptor center (muonic atom) forms in the neutral (para-
magnetic) state, µAl0. In an external magnetic field
001 MAIK “Nauka/Interperiodica”
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transverse to the muon spin, the relaxation (relaxation
rate, λ) and shift of the precession frequency (∆ω) of
muon spin occur, which are caused by the muon interac-
tion with the magnetic moment of the electron shell of
atom. The correlation between the muon polarization
parameters and the quantities that characterize the mag-
netic interactions of the acceptor center (Ahf is the constant
of hyperfine interaction between the muon magnetic
moments and the electron shell in muonic atom, and ν is
the relaxation rate of the magnetic moment of electron
shell) at ν @ Ahf is defined by the relations [12, 13]

(1)

(2)

where ∆ω = ω(T) – ω0 (ω0 is the angular precession fre-
quency of muon spin in the diamagnetic state of

muonic atom); kB is the Boltzmann constant; µB and 
is the Bohr magneton for an electron and muon, respec-
tively; g is the g-factor of the acceptor center; ωe =
gµBB/" is the angular precession frequency of the
magnetic moment of the electron shell of the acceptor
center in the external magnetic field B; and T is the
temperature in Kelvins. For a shallow acceptor center
in silicon, j = 3/2 [14].

The range of values of ν accessible for experimental
study is defined, according to Eq. (2), by the range of
values of λ being measured and by the value of the
hyperfine interaction constant. We assume that 0.05 &
λ & 20 µs–1 and use the estimate of Ahf /2π ≈ 30 µs–1

[10] to derive 5 × 109 & ν & 2 × 1012 s–1. Therefore, the
µ–SR method enables one to considerably increase the
upper limit of the relaxation rate (compared with the
capabilities of the EPR method: ν & 109 s–1 [5]) and
study the processes of magnetic relaxation of shallow
acceptors in undeformed silicon samples in a wide
range of temperature and impurity concentrations.

2. MEASUREMENTS

Given in this paper are the results of investigating
the residual polarization of negative muons in crystal-
line silicon with boron (8.7 × 1013, 5.5 × 1016, 1.4 ×
1018, 4.1 × 1018 cm–3), gallium (1.1 × 1015, 1.1 ×
1018 cm–3), and arsenic (8.0 × 1015, 2.0 × 1017 cm–3)
impurities in the temperature range from 4 to 300 K.

The measurements were performed in the Stuttgart
LFQ Spectrometer facility [15] in the µE4 muon chan-
nel of the proton accelerator at the Paul Scherrer Insti-
tute (PSI, Switzerland). The samples to be investigated
were cut in the form of cylinders (30 mm in diameter,
15 mm high) from single crystals of silicon and
arranged so that the cylinder axis coincided with the
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muonic beam axis. A transverse magnetic field of 1000 G
was induced on the sample by Helmholtz coils. The
long-term stability of the magnetic field was at least 10–4.
The samples were placed in a cryostat and cooled by a
flow of liquid helium vapors, with the temperature sta-
bilized within 0.1 K in the range from 4.2 to 300 K. The
electrons, which were caused by decay of muons that
stopped in the target, were registered by scintillation
counters. The intervals of time between the moment of
stopping of muon and the escape of decay electron
were stored in the form of histograms (µSR spectra).
The time channel width of the spectrometer was
0.625 ns, with a total of 16000 channels in the spectrum.

3. RESULTS AND DISCUSSION

In addition to the target, some of the muons stop in
the cryostat material and in the scintillation counters
and make a contribution to the spectrum being
observed. Because the lifetime of negative muons in the
1S-state depends on the charge of atomic nucleus, the
spectrogram of the time distribution of decay electrons
µ–  e– may be represented in the form

(3)

where NX is the number of events in the zero channel of
the histogram due to the decay of muons captured by
atoms of the element X; τX and pX denote the muon life-
time and the projection of polarization vector of a muon
in the 1S-state of the element X onto the direction of
observation, respectively; α is the experimentally
obtained coefficient of asymmetry of the spatial distri-
bution of decay electrons with due regard for the solid
angle of acceptance of electrons; and B is the back-
ground of random coincidences. The explicit form of
the function pX(t) depends on the experimental condi-
tions. Here, we treat the results of measurements in an
external magnetic field transverse to the muon spin.

The scintillation counters consist of hydrocarbons,
and the cryostat is made of brass. Accordingly, compo-
nents are always present in the spectra that correspond
to the capture of muons by carbon and copper.

The experimental data were treated by the least
squares method. The lifetimes of negative muons in the
1S-state of atoms (τX) were fixed by the average value
of the experimental data of [16] (2030, 760, and 163 ns
for carbon, silicon, and copper, respectively).

The results of independent measurements in graph-
ite and copper have revealed that (a) the contributions
by the counters are described by the polarization func-
tion in the form

with a value of αp0 = 0.009 ± 0.002; (b) the muons
which stopped in the cryostat walls (copper) lose their
polarization completely during a time of less than 10–9 s,

f t( ) NXe
t /τX–

1 α pX t( )+[ ]
X

∑ B t( ),+=

pC t( ) p0 ωt φ+( )cos=
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i.e., pCu(t) = 0; and (c) the background of random coin-
cidences has the form

where ωhf is defined by the time structure of the proton
beam.

Examples of experimentally obtained µ–SR spectra
for a silicon sample with a gallium impurity (1.1 ×
1015 cm–3) at different temperatures are given in Fig. 1.
One can see in the figure that the precession of the
polarization vector occurs at a frequency close to that of
free spin precession of muon and, as the temperature
decreases, the damping rate of the precession ampli-
tude (the muon spin relaxation rate) increases.

When treating the experimental data with due
regard for the muon spin relaxation at low tempera-
tures, the polarization function for silicon has the form

(4)

B t( ) b0 bn nωhf t φn+( ),cos
n 1=

2

∑+=
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Fig. 1. Experimentally obtained µ–SR spectra for a silicon
sample with a gallium impurity (1.1 × 1015 cm–3). After
subtraction of the background, the data are corrected for the
decay exponent, a = αp(t).
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where p0 is the polarization at the initial moment of
time; ω and φ denote the frequency and initial phase of
muon spin precession in an external transverse mag-
netic field, respectively; and λ is the muon spin relax-
ation rate.

The treatment of experimental data resulted in
determining the parameters of the polarization function
given by Eq. (4) for negative muons that stopped in sil-
icon. Figure 2 gives the temperature dependence of the
muon spin relaxation rate and precession frequency
shift for two silicon samples with a gallium impurity.

The temperature dependence of the frequency shift
for all investigated samples (except for two silicon sam-
ples with a high concentration of boron impurity [B] =
1.4 × 1018 cm–3 and [B] = 4.1 × 1018 cm–3, the experi-
mental data for which are insufficient to determine the
form of the ∆ω/ω0 correlation) does not contradict
Curie’s law of 1/T (see, for example, Fig. 2). This
means that the contribution by the second term in
expression (1) for the frequency shift is small compared
with the contribution by the first, paramagnetic term.
We ignored the second term in Eq. (1) to derive from
the experimental data on ∆ω/ω0 an estimate of Ahf, the
constant of hyperfine interaction for a muonic alumi-
num in silicon (the value of g was taken to be −1.07
[17]). The values of Ahf /2π for all investigated samples
are approximately the same and equal to ~3 × 107 s–1.
With due regard for the ratio of the magnetic moments
of muon and atomic nucleus of aluminum, we obtain
Ahf(Al)/2π ~ –2.5 × 106 s–1 for the constant of hyperfine
interaction in the acceptor center formed by an alumi-
num atom in silicon.

These results, obtained for the temperature depen-
dence of the muon spin relaxation rate, were described
by relation (2) assuming that the relaxation rate of the
magnetic moment of the acceptor center depends on
temperature as

. (5)

In treating the experimental data, it was assumed
that Ahf/2π = 3 × 107 s–1. The obtained values of the
parameters C and q for different samples are given in
the table, where one can see that, for the first five sam-
ples in which the impurity concentration varies by more
than three orders of magnitude, the values of the relax-
ation rate of the magnetic moment of the acceptor impu-
rity are close to one another. However, as the impurity
concentration increases further by a factor of approxi-
mately five, one observes an increase in ν(T = 10 K) by
more than an order of magnitude. Figure 3 gives the
parameter q as a function of the impurity concentration
(n) in silicon in view of the data for samples investigated
by us previously [7–10] (for one of the samples, see [10],
the aluminum impurity concentration was refined to 2.2 ×
1017 cm–3). The results given in Fig. 3 indicate that, in the
impurity concentration range of up to approximately
2 × 1017 cm–3 for n- and p-type silicon, the value of the

ν T( ) CT̃
q

=

AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001



THE RELAXATION RATE OF MAGNETIC MOMENT OF SHALLOW ACCEPTOR CENTER 1007
20

0.1

T, K

λ,
 µ

s–1

6050403010

1

10

30

∆ω
/ω

0,
 1

0
–3

103/T, K–1
10 50 70 90

15

10

5

0

100.0 33.3 20.0 14.3
T, K

16

Si : P

log n
12 14 18 20

q

0

1

2

3

4

Si : As
Si : Sb

16

Si : B

log n
12 14 18 20

q

0

1

2

3

4

Si : Al
Si : Ga

Fig. 2. The temperature dependence of the muon spin relaxation rate (on the left) and precession frequency shift (on the right) for
silicon samples with different concentrations of gallium impurity: s, 1.1 × 1015 cm–3; n, 1.1 × 1018 cm–3.

Fig. 3. The dependence of the exponent q in the function ν = C q in the impurity concentration n in samples of n-type (on the left)
and p-type (on the right) silicon (the broken lines are drawn for graphic demonstration).

T̃

power law exponent q is virtually constant and close to
three (although some spread of values is observed in
p-type silicon). However, in the impurity concentration
range above approximately ~1018 cm–3, a considerable
dependence of q on n is observed. For example, in
p-type silicon, the value of q decreases with n by a fac-
tor of more than five. Therefore, in the impurity con-
centration range above 1018 cm–3, the relaxation rate of
the magnetic moment of the acceptor center ceases to
depend on temperature; i.e., both the absolute value of
ν and the behavior of its temperature dependence vary.
The foregoing facts may serve as evidence of the varia-
tion of the mechanism of relaxation of the acceptor cen-
ter magnetic moment at n ~ 1018 cm–3.

The relaxation of the acceptor magnetic moment
may be caused by its interaction with the crystal lattice
(spin-lattice relaxation) and by spin-exchange scatter-
ing of free charge carriers from the acceptor center.

The results of assessing the importance of various
phonon processes, performed by Yafet [18] for a perfect
silicon crystal, indicate that, in the temperature range of
10 K & T & 100 K, the key mechanism of relaxation of
the magnetic moment of a shallow acceptor is the
Raman phonon scattering and the relaxation rate ν
depends on temperature as T5.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The relaxation of paramagnetic centers in silicon
under conditions of spin-exchange scattering of free
charge carriers was treated by Semenov [19]. In a non-
degenerate semiconductor, the rate of spin-exchange
scattering νe is usually related to the spin-exchange
scattering cross section δ as

(6)

and, in the case of degeneracy,

(7)

where m* and N denote the effective mass of free
charge carriers and their concentration, respectively.

In a noncompensated semiconductor, the concentra-
tion N of free charge carriers at kBT ! Ei depends on the
impurity concentration n as [20]

(8)

where n0 = 2(m*kBT/2π"2)3/2 is the effective density of
states in the conduction band (valence band), and Ei is
the impurity ionization energy.

νe 2
2kBT
πm*
------------σN ,≈

νe "
–1

N
2/3σkBT ,≈

N n0n( )1/2 Ei

2kBT
------------– 

  ,exp≈
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It is known (see, for example, [21]) that an increase
in the impurity concentration in a semiconductor is
accompanied by a decrease in the impurity ionization
energy. For example, in silicon, Ei decreases from the
maximal value (≈45 meV) at n ≈ 1017 cm–3 to zero at n ≈
nc (nc is the critical concentration of impurity, which
corresponds to the dielectric-metal transition; in sili-
con, nc ≈ 4 × 1018 cm–3 [22]). Figure 4 gives the esti-
mates of the correlations N = f(n) and νe = f(n), calcu-
lated by formulas (8) and (6), (7) assuming that Ei

decreases linearly from 45 meV at n = 1017 cm–3 to zero
at n = 4 × 1018 cm–3, with m* = 0.3 me and σ = πa2 (a =
10 Å [23] is a quantity of the order of the Bohr radius
of the acceptor). Formula (8) is invalid in the vicinity of
nc, and, at n = nc, the concentration N of charge carriers
was taken to be equal to the concentration n of impurity
atoms. One can see in the figure that, in the impurity
concentration range above ~1017 cm–3 of interest to us,
the concentration N of free charge carriers in silicon
increases rapidly to approach the concentration n of
impurity atoms. Also observed in this concentration
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Fig. 4. Estimates of the dependence of the concentration N
of free charge carriers and of the rate νe of spin-exchange
scattering of charge carriers by the acceptor on the concen-
tration n of impurity atoms in silicon.
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range is a fast increase in the rate of spin-exchange
scattering.

A comparison of the predicted values of the rate νe

of spin-exchange scattering, given in Fig. 4, with the
experimentally obtained values of the relaxation rate ν
of the acceptor magnetic moment (see table) reveals
that, at T = 5 to 30 K and n & 2 × 1017 cm–3, we have
νe/ν < 10–4. When the impurity concentration rises
above approximately ~2 × 1017 cm–3, the rate of spin-
exchange increases and, at N ≈ n = 4 × 1018 cm–3

(degenerate silicon), νe ≈ ν.
Therefore, the calculation results demonstrate that

the spin-exchange scattering does not produce a sizable
contribution to the relaxation of the magnetic moment
of acceptor center in the impurity concentration range
of up to ~2 × 1017 cm–3 at T & 30 K. Apparently, the
main mechanism of relaxation in this concentration
range is the Raman phonon scattering. As was already
mentioned in [10], the difference between the tempera-
ture dependence of the relaxation rate of the magnetic
moment of the acceptor center and the dependence of
the form of T5 [18] may be due to the fact that Yafet
[18], who treated a perfect silicon crystal, disregarded
the lifetime of phonons, which varies as T–2 at temper-
atures below the Debye temperature and, in a number
of cases, it varies even more [24].

As the impurity concentration rises above approxi-
mately ~1018 cm–3, the relaxation rate comes to depend
much less on temperature (a decrease in the parameter
q); at the same time, the relaxation rate at T = 10 K
increases by more than an order of magnitude in a nar-
row range of concentration variation. It is known [20]
that, at a high concentration of impurity, the phonon
spectrum of crystal varies considerably, which may
lead to a variation of the spin-lattice relaxation rate.
However, in view of the fact that the experimentally
observed relaxation rate of the acceptor magnetic
moment is virtually constant in a wide range of impu-
rity concentration from ~5 × 1012 to ~2 × 1017 cm–3, one
can hardly expect so abrupt a variation of the spin-lat-
The parameters of the temperature dependence of the relaxation rate ν(T) = C  of the magnetic moment of acceptor center,
obtained as a result of treatment of the temperature dependence of the muon spin relaxation rate (n is the impurity concentration)

Impurity n, cm–3 C, 106 s–1 q
ν, 109 s–1

T = 10 K T = 30 K

B 8.7 × 1013 120 ± 80 2.24 ± 0.22 21 240
Ga 1.1 × 1015 18 ± 13 2.87 ± 0.25 13 310
As 8.0 × 1015 9 ± 6 3.03 ± 0.22 10 270
B 5.5 × 1016 50 ± 30 2.45 ± 0.21 14 210
As 2.0 × 1017 20 ± 15 2.80 ± 0.25 13 270
Ga 1.1 × 1018 (2.0 ± 0.5) × 104 0.90 ± 0.10 158 430
B 1.4 × 1018 (2.4 ± 0.6) × 104 0.81 ± 0.12 155 380
B 4.1 × 1018 (2.5 ± 1.3) × 105 0.28 ± 0.21 476 650

T̃
q

AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001



THE RELAXATION RATE OF MAGNETIC MOMENT OF SHALLOW ACCEPTOR CENTER 1009
tice relaxation rate with an increase in concentration
above approximately ~1018 cm–3. On the other hand, at
n > 1018 cm–3, a transition to metallic conduction occurs
in silicon [22] and, as follows from the foregoing esti-
mates, the spin-exchange scattering of free charge car-
riers may become the predominant mechanism of
relaxation of the acceptor magnetic moment.

4. CONCLUSION

1. The temperature dependence of the relaxation
rate of the magnetic moment of an acceptor center in sili-
con for different concentrations of impurity has been
investigated; it is demonstrated that, at n < 2 × 1017 cm–3,
the experimental data are well described by the empir-
ical correlation ν(T) = CTq with the value of q ≈ 3.

2. An estimate of the constant of hyperfine interac-
tion for an acceptor center of aluminum in silicon has
been produced for the first time ever: |Ahf(Al)/2π| ~
2.5 × 106 s–1.

3. The behavior of the temperature dependence of
the relaxation rate of the magnetic moment of acceptor
center has been found to change in the impurity con-
centration range corresponding to the semiconductor-
metal transition.

4. The results of analysis of the data lead one to con-
clude that, with the values of the impurity concentra-
tion of less than 2 × 1017 cm–3, the spin-lattice interac-
tion is the key mechanism of relaxation of acceptor
center in silicon. In the range of higher values of impu-
rity concentration, a significant contribution to relax-
ation may be made by the spin-exchange scattering of
free charge carriers, which is apparently the key mech-
anism of relaxation of the acceptor magnetic moment
in the metal phase.
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Abstract—The phase diagram of ferromagnetic alloys Ni2 + xMn1 – xGa is reconstructed on the basis of temper-
ature dependences of the resistance. It is seen from this diagram that for small x, structural transitions from the
cubic to the tetragonal phase are preceded by structural transformations in the cubic phase. In the framework
of the phenomenological Landau theory of phase transitions, phase diagrams of the structural and magnetic
phase transitions in these alloys are analyzed with regard for the modulation order parameter. It is shown that
premartensitic and postmartensitic phase transitions related to the appearance of the modulated structure can
occur along with martensitic transformations. The strain and modulation order parameters substantially affect
the magnetic phase transitions via the interaction with the magnetic order parameter. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Ferromagnetic Heusler alloys Ni2 + xMn1 – xGa are of
major interest in connection with the fact that they can
exhibit the effect of huge magnetostriction reaching val-
ues up to 6% [1]. This effect is due to a reconstruction of
interconnected magnetic and structural domains, which
stimulates interest in studying phase transitions in these
alloys. Of major interest are the so-called “martensitic
transformations,” which are first-order phase transitions
from the initial highly symmetric phase to the low sym-
metric phase, which exists at low temperatures [2]. When
martensitic transformations are described in the frame-
work of the phenomenological Landau theory, the main
order parameters are the components of the strain tensor.
In this case, martensitic transformations are described
with the help of the density of free elastic energy with
regard for the anharmonicity (the proper phase transition)
[3]. If martensitic transformations occur in the ferromag-
netic matrix, they can be accompanied by changes in the
magnetic subsystem due to the magnetoelastic interaction
that exists in ferromagnetics. As a result, martensitic
transformations cause magnetic phase transitions in
ferromagnetics.

At high temperatures, the point symmetry group Oh

of the ferromagnetic Heusler alloys Ni2 + xMn1 – xGa has
the cubic structure. When the temperature decreases,
phase transitions to the tetragonal structure occur in these
alloys [4]. Martensitic phase transformations and the
related magnetic phase transitions in Ni2 + xMn1 – xGa are
1063-7761/01/9206- $21.00 © 21010
studied in [5–12] in detail in the framework of the Lan-
dau theory.

Presently, it has been established that martensitic
transitions can be accompanied by the appearance of an
intermediate modulated phase that is characterized by
the set of wave vectors qi [13]. In experiments, the pres-
ence of the intermediate phase manifests itself in soft-
ening of the corresponding phonon modes [13, 14].
Experiments show that in Ni2 + xMn1 – xGa, the transi-
tion from the initial structure to the modulated phase is
a first-order phase transition [15]; however, the jumps
of the order parameters and heat capacity are substan-
tially smaller than those of the martensitic transforma-
tion. It was shown in [14, 16] that the structural phase
transition to the modulated phase can be described in
the framework of the Landau theory using free energy,
which includes the elastic energy with regard for anhar-
monicity, terms describing the modulated structure,
and terms that account for the interaction of the tetrag-
onal strains with the modulation order parameter. In
this case, the tetragonal strains are the secondary order
parameters, which are related to the primary parame-
ters describing the modulated structure. Strains appear
simultaneously with the modulation at the point of the
structural transition to the modulated phase. Their mag-
nitude is determined by the magnitude of the coupling
coefficient with the modulated order parameter.

Ni2 + xMn1 – xGa alloys occupy a special place among
a large number of solids in which both martensitic
001 MAIK “Nauka/Interperiodica”
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phase transitions without the appearance of the modu-
lated structure and transitions with an intermediate
modulated structure occur. X-ray experiments show
that the low-temperature martensitic phase of these
alloys contains both strong tetragonal distortions of the
lattice (c/a ≈ 0.94) and a modulation of the tetragonal
structure with the polarization vector parallel to the

[ ] axis and the wave vector oriented along the
[110] axis [17, 18]. The first studies revealed only one
point (T = 202 K) of transition to the martensitic phase
with modulation and tetragonal distortions. In later
experiments [19], two different points of phase transi-
tions were discovered. The first transition, which is
observed at a higher temperature, is the transition from
the symmetric cubic structure to the modulated struc-
ture with the wave and polarization vectors mentioned
above. This intermediate phase, which was called pre-
martensitic in [19], has a modulation vector with the
module 1/3. This phase has an approximately cubic
structure and is accompanied by the appearance of
small tetragonal strains. The second phase transition is
the transition from the intermediate modulated struc-
ture to the actually martensitic phase, which is modu-
lated and has large tetragonal strains. Thus, the phe-
nomenological approach described in [2, 5–12, 14, 16]
must be generalized so as to describe two successive
phase transitions.

Another reason for which Ni2 + xMn1 – xGa attract
much attention is that the structural phase transitions in
these alloys occur in the ferromagnetic matrix. It turns
out that structural transformations affect not only the
direction of the magnetization vector but also its mag-
nitude [5, 9, 11, 12]. Certain experiments show that the
magnetization increases in the course of the transition
to the modulated phase [20]. This fact must be taken
into account in the phenomenological description.

The actual magnetic structure of the tetragonal
phase in Ni2 + xMn1 – xGa has not been thoroughly stud-
ied. It is only known from the measurements of the
magnetic susceptibility that the structural transition to
the tetragonal phase is accompanied by the appearance
of strong magnetic anisotropy [4]. In [21], a phenome-
nological model of the inhomogeneous martensitic
structure that appears in the alloy Ni2MnGa below the
temperature of the martensitic transition is constructed,
and estimates of the static magnetic susceptibility and
magnetization of the martensite are obtained.

Recently, theoretical paper [22] was published,
which is dedicated to modeling the premartensitic
phase transition in Ni2MnGa by the Monte Carlo
method. The authors of [22] conclude that premartensi-
tic effects are caused by the magnetoelastic coupling
between the magnetic subsystem and the phonon mode,
which softens as the modulation order is formed. The
premartensitic transition occurs in the case when this
magnetoelastic interaction is sufficiently large. This
result suggests that the magnetoelastic interaction must
be taken into account in the phenomenological theory.

110
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The premartensitic phase obtained in [22] does not con-
tain tetragonal strains. No tetragonal strains were actu-
ally observed in the premartensitic phase [13]; how-
ever, this can be due to the fact that they are small.
Thus, a theoretical study of tetragonal strains caused by
the modulation order is necessary. Effects that occur,
for example, in the magnetic subsystem and accom-
pany small tetragonal strains in the premartensitic
phase could reveal the presence of the strains if they
really exist.

Experimental studies presented in [11, 12] made it
possible to establish composition dependences of the
temperature of the magnetic and martensitic phase tran-
sition in alloys Ni2 + xMn1 – xGa for 0 ≤ x ≤ 0.2. It turned
out that, as the content of Ni at the expense of Mn
increases, the temperature of the structural transition
also increases and the temperature of the magnetic tran-
sition decreases so that they coincide in the interval
0.17 ≤ x ≤ 0.19. The composition dependences deter-
mined from the measurements of the resistance, mag-
netic susceptibility, and heat capacity coincide within
the accuracy of the experimental techniques. This fact
makes it possible to use any of these approaches to
refine the phase diagram of the alloys Ni2 + xMn1 – xGa.

In the present paper, the phase diagram of the alloys
Ni2 + xMn1 – xGa in the interval 0 ≤ x ≤ 0.09 is analyzed
on the basis of measuring the resistance of polycrystal-
line samples. Along with the specific features caused by
the structural and magnetic phase transitions, anoma-
lies that indicate the existence of premartensitic trans-
formations were observed. In order to explain the
results obtained, the phenomenological Landau theory
of phase transitions, which takes into account interac-
tions between the magnetic, strain, and modulation
order parameters, is extended to the case of cubic ferro-
magnetics. It is shown that the so-called premartensitic
and postmartensitic phase transitions can occur in
Ni2 + xMn1 – xGa along with martensitic transformations.
Formers are connected with the appearance of the mod-
ulated structure. The strain and modulation order parame-
ters cause magnetic phase transitions in ferromagnetics by
way of the interaction with the magnetic order parameter.
This fact leads to a substantial variety of possible mag-
netic states in crystals.

2. EXPERIMENT

Polycrystals with the composition described above
were prepared by arc melting in the argon atmosphere
from high-purity components. To perform transport
measurements, samples were cut from massive poly-
crystals by spark cutting; then, current and potential
contacts were welded on those samples. In order to
eliminate the thermoelectric voltage, the measurements
were performed in a wide temperature range using the
four-contact scheme for the alternate current with the
frequency f ~ 1 kHz; the results were registered using
phase-conscious measurements. The temperature was
SICS      Vol. 92      No. 6      2001
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measured by a platinum resistance thermometer that was
placed at the distance of ≈0.15 cm from the sample.

The temperature dependences of the resistance of
the polycrystals Ni2 + xMn1 – xGa for 0 ≤ x ≤ 0.09 are pre-
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Fig. 1. Temperature dependences of the resistance for
Ni2 + xMn1 – xGa polycrystals.
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Fig. 2. The T–x phase diagram of Ni2 + xMn1 – xGa alloys
for 0 ≤ x ≤ 0.09 (experimental).
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sented in Fig. 1. In the sample of the stoichiometric
Ni2MnGa, at the Curie point TC ≈ 380 K, there is a step
in the dependence R(T), which is characteristic of second-
order phase transitions. This step is caused by a decrease
of charge carriers scattering from magnetic fluctuations.
As the temperature decreases further, the resistance
behaves like that in metals; however, at TP ≈ 260 K, there
is a peak, and at TM ≈ 200 K another step is observed.
The anomaly at TM has a well-marked hysteresis, which
is characteristic of first-order phase transitions. It is
well known (see [17]) that the transition from the cubic
to the tetragonal phase occurs at this temperature. It
seems that the anomaly at TP corresponds to the pre-
martensitic transformation in the cubic phase when a
static modulation wave appears in the crystal [19]. It is
difficult to determine from the above measurements
whether the anomaly at TP is a consequence of the first-
or second-order phase transition; this is due to the fact
that there is a small delay between the temperatures of the
sample and the thermometer. It was shown in [11, 12] that
the Curie temperature decreases monotonically with
increasing x, whereas the temperature of the structural
transition increases (Fig. 2). The temperature of the
premartensitic transformation in the samples examined
is almost independent of the concentration and coin-
cides with the temperature of the structural transition at
x ≈ 0.07–0.09.

3. THEORY

The sequence of phase transitions observed in
Ni2 + xMn1 – xGa can be described in the framework of
the Landau theory of structural phase transitions for cubic
crystals. In such crystals, both modulated and tetragonal
states can occur at low temperatures. Distortions of the
cubic lattice under structural transitions are described by
homogeneous strains written in the form of linear combi-
nations of the strain tensor components eii [2]:

(1)

The strain e1, which corresponds to the change of the
volume, does not violate the symmetry of the lattice.
A symmetry violation occurs due to the strains e2 and
e3, which are responsible for the transition of the lattice
from the cubic to the tetragonal phase. This transition is
accompanied by softening of the combination of the
elastic moduli C11 – C12. The total expression for the
density of the free energy must also include the strains
e4 = exy , e5 = eyz, and e6 = ezx, which lead to a distortion
of the elementary cell down to a symmetry lower than
the tetragonal one.

In order to describe acoustic phonon modes of the
type (1/3, 1/3, 0) in the crystal, it is necessary to note

e1
1
3
--- exx eyy ezz+ +( ), e2

1

2
------- exx eyy–( ),= =

e3
1

6
------- 2ezz exx– eyy–( ).=
 AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001



PHASE TRANSITIONS 1013
that six different orientations of the wave modulation
vector exist. They can be written in the form

where ζ = 1/3. Thus, as a rule, an order parameter
should exist which consists of 12 components (six
amplitudes and six phases): ψ1…ψ6, ϕ1…ϕ6, where

The atomic displacements corresponding to each of
these order parameters have the form

where p1, …, p6 are the unit polarization vectors ori-

ented along the axes [ ], [ ], [ ],
[1, 1, 0], [0, 1, 1], and [1, 0, 1], respectively. The total
expression for the density of free energy must be invari-
ant under the spatial transformations of the point sym-
metry group Oh . It consists of terms of three types:

(2)

Here, Fe(ej) is the density of free energy containing the
terms that are responsible for the anharmonicity of the
elastic subsystem with respect to the order parameter
(e2, e3). It has the form (see [2])

(3)

where the coefficients a, b, and c are linear combina-
tions of the components of the elastic moduli of the sec-
ond, third, and fourth orders, respectively:

(4)

Since Eq. (3) includes terms of the third order, the phase
transition with respect to the order parameter (e2, e3) has
the first order. When approaching the point of the struc-
tural transition to the tetragonal phase, the elastic mod-
ulus a = C11 – C12 tends to zero; in the vicinity of the
transition point (T  TM), it can be written as

where TM is the temperature of the martensitic transi-
tion.

The total expression for Fψ(ψi ) can be found in
[16, 23]. Here, we consider the simplest case of the
modulation that takes into account only one phonon
mode 1/3 (1, 1, 0). It is described by the order parame-
ter ψ = |ψ|exp(iϕ) (the index is omitted for simplicity).

k1 = ζ 1 1 0, ,( ), k2 = ζ 0 1 1, ,( ), k3 = ζ 1 0 1, ,( ),

k4 = ζ 1 1 0, ,( ), k5 = ζ 0 1 1, ,( ), k6 = ζ 1 1 0, ,( ),

ψ j ψ j iϕ j( ).exp=

u j r( ) ψ j p j k j r⋅ ϕ j+( ),sin=

1 1 0, , 0 1 1, , 1 0 1, ,

F Fe e j( ) Fψ ψi( ) Feψ e j ψi,( ).+ +=

Fe e j( ) = 
1
2
---a e2

2 e3
2+( )

1
3
---be3 e3

2 3e2
2–( )

1
4
---c e2

2 e3
2+( )2

+ +

+
1
2
--- C11 2C12+( )e1

2 1
2
---C44 e4

2 e5
2 e6

2+ +( ),+

a C11 C12, b–
1

6 6
---------- C111 3C112– 2C123+( ),= =

c
1
48
------ C1111 6C1112 3C1122– 8C1123–+( ).=

a a0 T TM–( )/TM,=
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Then, the expression for the density of the modulation
part of free energy can be written in the form

(5)

The last term in this formula can be minimized with
respect to the phase:

The minimum of energy (5) is attained at ϕ = ±π/6,
±π/2, and ±5π/6 when C1 > 0, and at ϕ = 0, ±π/3,
±2π/3, and π when C1 < 0. In Eq. (5), we set C' = C0 – |C1|
and assume that C ' > 0 for stability. The parameter A
depends on T; in the vicinity of the temperature of the
transition to the modulated state (T  TP), it can be
written in the form

The energy Feψ relating the strains ei to the order
parameter that describes the modulation must be invari-
ant under all symmetry operations connected with ei

and ψj . When only the phonon mode 1/3(1, 1, 0) is
taken into account, Feψ has the form

(6)

Equations (3), (5), and (6) completely determine the
density of the free energy of the cubic crystal and allow
for the description of phase transitions from the cubic
phase to the modulated and tetragonal phases.

It follows from experiments that structural transfor-
mations in Ni2 + xMn1 – xGa occur in the ferromagnetic
matrix, which makes it necessary to take into account
the influence of the magnetic subsystem on the struc-
tural transitions. In these alloys, both in the cubic and
tetragonal phases, manganese atoms are the main carri-
ers of the magnetic moment [17]. This makes it possi-
ble to describe the Ni2 + xMn1 – xGa alloys by a single-
lattice magnetic subsystem with the vector of the mac-
roscopic magnetization M. The free energy also
includes terms that connect M with other parameters of
the system. For the sake of convenience, we introduce
the dimensionless magnetization vector m = M/M0,
where M0 is the saturation magnetization.

The contribution of the magnetic subsystem to the
total energy of the cubic ferromagnetic consists of two
terms. The first one is of exchange origin. It is neces-
sary to take into account the dependence of the magni-

Fψ ψ( ) 1
2
---A ψ 2 1

4
---B ψ 4 1

6
---C0 ψ 6+ +=

+
1
6
---C1 ψ6 ψ*( )6+[ ] .

ψ6 ψ*( )6+[ ] ψ 6 i6ϕ–( )exp i6ϕ( )exp+( )=

=  2 ψ 6 6ϕ( ).cos

A A0 T TP–( )/TP.=

Feψ ψ ei,( ) 1

3
-------D1e1

2

6
-------D2e3 D3e4+ + 

  ψ 2.=
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tude of the magnetization vector m on temperature.
This term has the form

(7)

Here α and δ1 are the exchange constants. The parame-
ter of the exchange interaction α depends on tempera-
ture; it can be written in the following form in the vicin-
ity of the Curie point:

The second term represents the energy of magnetic
anisotropy of the cubic ferromagnetic; it can be written
in the form

(8)

where K1 is the first cubic anisotropy constant.
The free energy must also include terms that relate

the components of m to other order parameters of the
system. The first of them relates the magnetization
components mi to the strains ei; it has the form

(9)

This expression is the simplest form of the magnetoelastic
energy with the phenomenological magnetoelastic con-
stants B1, B2, and B3.

The second term describes the interaction of the com-
ponents of the magnetization vector mi with the modula-
tion order parameter ψ; it can be written in the form

(10)

Here, the coefficients Ni are the coupling parameters of
the magnetic and modulation subsystems.

As a result, the final expression for the density of
free energy has the form

(11)

This equation describes three phase transitions: the
Curie point, the transition to the modulated state, and
the transition to the tetragonal phase.

The equation for the density of free energy (11)
includes variables that are not responsible for phase
transitions, i.e., those that are indirect order parameters

Fex m( ) 1
2
---α mx

2 my
2 mz

2
+ +( )=

+
1
4
---δ1 mx

2 my
2 mz

2+ +( )2
.

α α 0 T TC–( )/TC.=

Fa mi( ) K1 mx
2my

2 my
2mz

2 mz
2
mx

2+ +( ),=

Fme mi ei,( ) 1

3
-------B1e1m2=

+ B2
1

2
-------e2 mx

2 my
2–( ) 1

6
-------e3 3mz

2 m2–( )+

+ B3 e4mxmy e5mymz e6mzmx+ +( ).

Fmψ mi ψ,( )

=  
1
3
---N1m2 N2 mz

2 1
3
---m2– 

  N3mxmy+ + ψ 2.

F Fe ei( ) Fψ ψ 2( ) Feψ ei ψ 2,( ) Fex m( )+ + +=

+ Fa mi( ) Fme mi e j,( ) Fmψ mi ψ 2,( ).+ +
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e1, e4, e5, and e6. After the minimization of energy with
respect to these variables, certain constants involved
in (11) are renormalized:

With regard for this renormalization, the expression for
the density of free energy takes the form

(12)

In order to determine all equilibrium states of the
alloys under consideration, it is necessary to minimize
function (12) with respect to the remaining order
parameters e2, e3, |ψ|, m1, m2, and m3. The system of
nonlinear algebraic equations obtained can only be solved
numerically. To perform the numerical computation on the
basis of the available experimental data [11–13, 15,
17, 19, 20], the following values of the parameters
involved in Eq. (12) were used: a0 = 1011 erg/cm3, b = 3 ×
1011 erg/cm3, c = 3 × 1012 erg/cm3, D2 = 103 erg/cm3,
A0 = 1023 erg/cm3, B' = 1038 erg/cm3, C ' = 1055 erg/cm3,
K = –105 erg/cm3, B2 = 1.5 × 107 erg/cm3, α0 =

−109 erg/cm3, δ = 109 erg/cm3,  = 103 erg/cm3, N2 =

–102 erg/cm3, and  = –102 erg/cm3. It is seen from
Fig. 2 that the temperature of the magnetic, TC, and struc-
tural, TM, phase transitions depend on x approximately
linearly, and the temperature of the premartensitic trans-
formation TP = 260 K is almost independent of the com-
position of the alloys analyzed. Thus, the composition
dependences of these temperatures can be written in the
form

B' = B 2–
D1

2

3 C11 2C12+( )
---------------------------------

D3
2

C44
--------+ 

  , K  = K1

B3
2

2C44
-----------,–

N1'
1
3
---N1

D1B1

6 C11 2C12+( )
---------------------------------, N3'– N3

B3D3

C44
------------,–= =

δ δ1

2B1
2

3 C11 2C12+( )
---------------------------------.–=

F
1
2
---a e2

2 e3
2+( ) 1

3
---be3 e3

2 3e2
2–( ) 1

4
---c e2

2 e3
2+( )2

+ +=

+
1
2
---A ψ 2 1

4
---B' ψ 4 1

6
---C ' ψ 6+ +

+
2

6
-------D2e3 ψ 2 1

2
---αm2 1

4
---δm4+ +

+ K mx
2my

2 my
2mz

2 mz
2mx

2+ +( )

+ B2
1

2
-------e2 mx

2
my

2–( ) 1
6
---e3 3mz

2 m2–( )+

+ N1' m
2 N2 mz

2 1
3
---m2– 

  N3' mxmy+ + ψ 2.

N1'

N3'

TC TC0 γx, TM– TM0 κx,+= =
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where

TC0 = 390 K, γ = 175 K,

TM0 = 200 K, κ = 700 K.

The phase T–x diagram of the Heusler alloys
Ni2 + xMn1 – xGa calculated for the parameters indicated
above is shown in Fig. 3. In is seen that the following
phases can be realized as the temperature and the com-
position vary: the paramagnetic cubic phase (1), the
ferromagnetic cubic phase (2) with the magnetization
along the axis [111], the ferromagnetic angular quasi-
cubic modulated phase (3) with the magnetization in
the plane of the type (110), and the ferromagnetic tet-
ragonal modulated phase (4) with the magnetization
along the axis [001]. The line C 'C is the line of the mag-
netic second-order phase transition between the para-
magnetic and ferromagnetic cubic phases. T 'T is the
line of the first-order phase transition between the fer-
romagnetic phases (2) and (3). It is accompanied by the
occurrence of modulations of the cubic lattice, which
results in a small tetragonal distortion. N 'N and O 'O are
the lines of the loss of stability of phases (2) and (3),
respectively. B'B is the line of the martensitic phase transi-
tion between the ferromagnetic modulated phases (3)
and (4). This transition is accompanied by the occur-
rence of large tetragonal distortions of the lattice. G 'G
and F 'F are the lines of the loss of stability of phases (3)
and (4), respectively. It is seen from Fig. 3 that the mar-
tensitic transition is accompanied by a large hysteresis,
while the hysteresis of the transition from the ferro-
magnetic cubic phase to the ferromagnetic quasi-cubic
one is very small. These facts are in good agreement
with experimental results on measuring the resistance
(see Fig. 1). For large x, the hysteresis regions of the
premartensitic and martensitic transitions partially
intersect. As a result, these transitions partially super-
impose on one another and are difficult to distinguish
experimentally (Fig. 1).

4. CONCLUSIONS

The experimental and theoretical study of the phase
diagram of Ni2 + xMn1 – xGa alloys in the interval 0 ≤ x ≤
0.1 conducted in this paper made it possible to reveal an
important specific feature in the behavior of these mate-
rials, consisting in the occurrence of static modulations
of the crystal lattice in the cubic and tetragonal phases.
The phenomenological theory of phase transitions of
Ni2 + xMn1 – xGa alloys made it possible to describe the
sequence of two structural transitions: from the cubic
lattice to the modulated phase with small tetragonal
distortions (the premartensitic transition), and then
from the modulated quasi-cubic to the martensitic
structure with large tetragonal distortions and modula-
tion. These transitions are accompanied by magnetic
orientational transitions.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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APPENDIX

When constructing the theoretical phase diagram, we
assumed that only the elastic moduli a and the constant of
exchange interaction α depended on temperature and
composition. Variations of other parameters in (12) can
lead to a qualitative change of the phase diagram. For
example, it is interesting to see how the phase diagram
of Ni2 + xMn1 – xGa changes when the parameters A and
D2, which are responsible for the modulation of the
crystal lattice, vary.

Figure 4 presents the phase diagram of Ni2 + xMn1 – xGa
on the coordinates a and A for b > 0, D2 > 0, and N1, 2, 3
< 0 in the case when the alloy is in the ferromagnetic
state. It is seen from the diagram that in this case the
material can be in one of five states. In the phase dia-
gram, OC is the line of the structural and magnetic ori-
entational first-order phase transitions from the high-
temperature cubic (austenitic) phase FC[111] to the low-
temperature (martensitic) phase FT[001], which is char-
acterized by large tetragonal distortions and no modu-
lation. The phase FC[111] is stable above the line GH,
and the phase FT[001] is stable below MI. It is seen by
the region of their intersection that this transition is
accompanied by a large hysteresis. On the curve OB,
the structural and magnetic orientational first-order
phase transitions from the symmetric phase FC[111] to
the modulated angular phase FCM[uuw] occur. The ini-
tial cubic phase is stable to the right of the curve JG,
while the modulated one is stable to the left of QF. We
note that the phase FCM[uuw] is not strictly cubic. It has
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Fig. 3. The T–x phase diagram of alloys Ni2 + xMn1 – xGa
for 0 ≤ x ≤ 0.1 (theoretical).
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small tetragonal distortions that appear along with the
modulation. In this phase, the magnitude of tetragonal
strains is determined by the parameter D2. If we set
D2 = 0, then there will be no tetragonal strains. On the
curve RX, the magnetic orientational second-order
phase transition from the angular phase FCM[uuw] to the
symmetric phase FCM[001] occurs. This phase transition
is caused by the interaction of the modulation order
parameter with the strain or magnetic order parameters.
The existence of this phase transition depends on the
magnitude of the interactions and, therefore, on the
magnitude of small tetragonal distortions in quasi-
cubic phases. RO is the curve of the martensitic and,
simultaneously, the magnetic orientational first-order
phase transition from the angular quasi-cubic phase
FCM[uuw] to the symmetric tetragonal phase FTM[001],
which has large tetragonal distortions. The existence of
this phase transition is also determined by the interac-
tion of the modulation order parameter with the strain
or magnetic order parameters. On the curve RD, the
martensitic phase transition from the symmetric quasi-
cubic modulated phase FCM[001] to the tetragonal sym-
metric phase FTM[001] occurs. It is accompanied by a
large jump of tetragonal strains. On this curve, no reori-
entation of the magnetization vector and, therefore, no
magnetic phase transition occur.

The analysis of the equations obtained by the mini-
mization of energy (12) shows that the location of point
R on the curve OD, the phase FCM[001], and the curve
of the orientational second-order phase transition RX
on the phase diagram strongly depend on the value of

X

K
D

L I
C
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O
G

FTM[001]

σ'

σ

ρ'

ρ

FT[001]

M

R

Q

FCM[uuw]

Jα B

F

Z N E P

Fig. 4. The phase diagram of the Ni–Mn–Ga alloy on the
coordinates a – A for b > 0, D2 > 0, and N1, 2, 3 < 0. Solid
curves are the curves of first-order phase transitions, dot-
and-dash curves correspond to the second-order phase tran-
sition, and dashed curves are the boundaries of stability
regions of the phases; σσ' and ρρ' are thermodynamic paths;
F denotes the ferromagnetic phase, M is the modulated
phase, C the phase with a cubic lattice, and T the phase with
a tetragonal lattice. The direction of the magnetization vec-
tor of the phases is indicated in square brackets.

FCM[001]

FC[111]
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the parameters D2 and N2. In the case of the phase dia-
gram in Fig. 4, we have D2 @ N2; thus, their location in the
phase diagram is mainly determined by the interaction of
the modulation and strain order parameters D2. It turns
out that, depending on the magnitude of this interaction
(and, therefore, on the magnitude of the tetragonal dis-
tortions, which are determined by this interaction in the
modulated phases), the phase FCM[001] can either be
present on the phase diagram or not. Correspondingly,
the martensitic transition on the curve RD can be either
accompanied by the magnetic orientational phase tran-
sition or not. Figure 4 presents a situation when the
parameter D2 is greater than a certain critical value at
which the phase FCM[001] still exists. If D2 is less than
this critical value, then the phase FCM[001] and the tran-
sition on the curve RX on the phase diagram do not
exist, since the tetragonal distortions in the premarten-
sitic phase are not large enough. In this case, the mar-
tensitic first-order phase transition from the angular
quasi-cubic phase FCM[uuw] to the symmetric tetragonal
phase FTM[001] with large tetragonal distortions occurs on
the curve OD. This phase transition is accompanied by the
magnetic orientational first-order phase transition at
which a reorientation of the magnetization from the
direction [uuw] to the direction [001] occurs. Depend-
ing on the parameter D2, the curve QX changes its loca-
tion on the diagram between the curves QL and QF. As
D2 increases, QX moves in the direction of QF (clock-
wise); however, even for very large values of D2, these
curves do not coincide; they rather converge asymptoti-
cally. The situation is different when D2 decreases. In this
case, the curve QX approaches the curve QL (anticlock-
wise), and they merge at a certain value of D2. Before they
merge, the orientational second-order phase transition on
the curve RX occurs; on the curve RD, the martensitic
transition occurs, which is accompanied by jumps of
the magnetization modulus and tetragonal strains, but
without reorientation of the magnetization. When the
curves QX and QL coincide, the martensitic transition
on the curve OD is accompanied by simultaneous
jumps of the orientation, magnetization modulus, and
tetragonal strains. Thus, depending on the parameters
of the problem, a structural first-order phase transition
occurs on the curve OD either from the phase FCM[uuw]
or the phase FCM[001] to the phase FTM[001]. The phase
FTM[001] has both large tetragonal distortions and mod-
ulation order. In Fig. 4, the phase FCM[uuw] is stable above
the curve QX, the phase FCM[001] is stable above QL and
below QX, and the phase FTM[001] is stable below KM. At
last, the curve OE corresponds to the structural first-order
phase transition between the martensitic tetragonal phase
FT[001] and the modulated tetragonal phase FTM[001]. This
transition is not accompanied by an orientational mag-
netic phase transition. The phase FT[001] is stable to the
right of the curve NM, and the phase FTM[001] is stable
to the left of PM. It must be noted that there exist equal
energy states FT[001], FT[010], FT[100], and so on in the
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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phase FT. All these solutions, except for FT[001], which
is connected with the transition to the modulated state
FTM[001], are stable to the right of the curve MZ and
become metastable on the curve OE. Thus, the degen-
eracy of solutions in the modulated phase due to the
crystal symmetry is removed.

For b > 0 and D2 < 0 in the angular modulated phase
on the curve RX, the magnetization vector is reoriented
to the [110] axis rather than to [001].

It is seen from Fig. 4 that when the modulation order
parameter is taken into account, the martensitic trans-
formation is accompanied either by a premartensitic
(with the thermodynamic path σσ') or a postmartensitic
(with the thermodynamic path ρρ') phase transition.
Thus, the variation of the parameter D2 determines the
properties of the martensitic transformation.

In addition to structural and magnetic orientational
phase transitions, the theory suggested in this paper
allows for a description of the magnetic phase transition
of the type disorder–order (the Curie point). Figure 5 pre-
sents the phase diagram on the coordinates α – A for the
case when the α – a diagram (for ψ = 0, see [5, 9, 11, 12])
contains a second-order phase transition from the para-
magnetic cubic phase to the ferromagnetic cubic phase.

It is seen that, in this case, seven equilibrium states
can exist. PC is a paramagnetic cubic phase. On the
curve OB, a structural first-order phase transition to the
modulated quasi-cubic paramagnetic phase PCM occurs,
in which small tetragonal distortions appear due to the
interaction of the modulation and strain order parame-
ters. Then, on the curve ML, a martensitic first-order
transition from the phase PCM to the tetragonal modu-
lated phase PTM with large tetragonal strains occurs.
OM is the curve of a magnetic second-order phase tran-
sition between the modulated quasi-cubic paramagnetic
(PCM) and ferromagnetic (FCM[001]) phases. On the
curve MQ, a similar transition between the tetragonal
modulated phases PTM and FTM[001] occurs. ON is the
curve of an orientational second-order phase transition
between the quasi-cubic modulated symmetric (FCM[001])
and angular (FCM[uuw]) phases. On the curves MN and NP,
a martensitic phase transition from these phases to the tet-
ragonal ferromagnetic phase FTM[001] occurs. OD is the
curve of structural and orientational phase transitions
from the ferromagnetic cubic phase FC[111] to the mod-
ulated quasi-cubic angular phase FCM[uuw]. Finally, a
magnetic second-order phase transition between the para-
magnetic, PC, and ferromagnetic, FC, cubic phases
occurs on the curve OC. The stability domain of the phase
PC is bounded by the curves OC and OI; of the phase
FC by OC and OH; of the phase PCM by OK, OQ, and
QR; of the phase PTM by OF and OU; of the phase
FTM[uuw] by OE, ES, and OG; of the phase FCM[001]
by OQ, QE, and EO; and of the phase FTM[001] by OF
and OT.

We note that, for the chosen value of the parameter a,
only premartensitic phase transitions to modulated
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
phases occur in the α – A diagram. However, for other
values of a, postmartensitic phase transitions emerge in
the α – A diagram.
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Abstract—In the framework of the Landau theory of phase transitions, the influence of the magnetoelastic
interaction on structural transitions in cubic ferromagnetics with a positive first magnetic anisotropy constant
is analyzed. It is shown that structural transitions are not accompanied by a reorientation of magnetization in
this case. The phase diagrams of such ferromagnetics either contain a termination point of the structural transi-
tion or a critical point in which the first-order transition is replaced by a second-order one. Magnetoelastic inter-
action also leads to the appearance of an interval of the ferromagnetic parameters in which a coupled first-order
structural–magnetic transition exists. The phase T–x diagram for Heusler Ni2 + xMn1 – xGa alloys is calculated,
which is in good agreement with the experimental phase diagram of these alloys. © 2001 MAIK “Nauka/Inter-
periodica”.
Magnetoelastic interaction in ferromagnetics makes
it possible to initiate structural transitions using a mag-
netic field. From this viewpoint, of special interest are
martensitic transformations in ferromagnetics, which
possess the properties of shape memory and huge mag-
netostriction. For example, such are Heusler
Ni2 + xMn1 – xGa alloys, in which a transition from the
cubic to the tetragonal phase occurs as the temperature
decreases [1–3]. The influence of magnetostriction on
structural transitions in cubic ferromagnetics with a
negative first magnetic anisotropy constant when the
magnetization in the initial phase is oriented along the
[111] axis was investigated in [4, 5]. In this case, struc-
tural phase transitions are accompanied by the appear-
ance of angular magnetic phases and a reorientation of
the magnetization. Experimental results that have been
recently obtained in [6] imply that, in the stoichiomet-
ric Ni2MnGa, the first anisotropy constant is positive;
i.e., the magnetization in the initial phase is oriented
along the [100] axis. In the present paper, we investi-
gate phase diagrams for this case.

In order to construct phase diagrams of a cubic fer-
romagnetic, we write out an expression for the free
energy that involves only the components of the order-
ing parameters responsible for the structural and mag-
netic transitions, which is usually used in the Landau
theory [3–5, 7]:
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vicinity of the Curie temperature T = TC, the exchange
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1020 BUCHEL’NIKOV et al.
esting to investigate phase diagrams both for TM < TC

(compounds close to stoichiometry) and for TM ~ TC

(compounds with x = 0.16–0.20). For definiteness, we
assume that the magnetostriction constant B > 0, and
the elastic modulus of the fourth order c > 0.

First, consider the case when TM < TC, i.e., when the
structural transition occurs in the ferromagnetic matrix.
Then, we can set m2 = 1 in (1) and change from the Car-
tesian components of the magnetization mx , my , and mz

to the polar (θ) and azimuth (ϕ) angles of this vector.
Minimization of the free energy over e2, e3, θ, and ϕ
leads to the following equilibrium states.

1. The cubic, C, and tetragonal, T, phases with the
magnetization along the [001] axis and strains deter-
mined by the equations

(2)

are stable for b ≤ 0 in the region described by the ine-
quality

(3)

For b ≥ 0, the regions of existence of these phases are
separated by the branches of the discriminant curve

(4)

of the cubic Eq. (2). Inside the region bounded by the
branches of curve (4), both phases are stable.
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Fig. 1. The phase diagram of a cubic ferromagnetic for
TM < TC on the coordinates a, b (C is the cubic phase with
small tetragonal distortions, T is the tetragonal phase, and R
is the orthorhombic phase). For all phases, the magnetiza-
tion is oriented along the [001] axis. Solid curves corre-
spond to phase transitions, and dashed ones are the curves
of the loss of stability of phases.
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2. The orthorhombic phase R with the magnetiza-
tion along the [001] axis (θ = 0) and strains determined
by the equations

(5)

is stable for

(6a)

and for 

(6b)

From symmetry considerations, it follows that in addi-
tion to the states considered above, ferromagnetics can
exhibit similar phases with the magnetization along the
[100] and [010] axes.

The analysis of distortions of the initial cubic lattice
in the phases C and T shows that these phases possess
the same tetragonal symmetry and differ only in the
magnitude of spontaneous strains. In the phase C, these
strains are determined by the strains of the cubic lattice
due to magnetostriction; in the phase T, they are deter-
mined by structural strains when passing to the marten-
sitic state. The curves of phase transitions between the
states C, T, and R are determined from the condition of
equality of the phase energy.

The phase diagram of the cubic ferromagnetic on
the coordinates a, b for TM < TC is presented in Fig. 1.
Depending on the magnitude of the elastic moduli of
the second (a) and third (b) order, the ferromagnetic
can exhibit the following structural transformations.
For b > 0, the first-order phase transition from the phase
C to the phase T occurs on the curve AE defined by the
equation

(7)

This transition is accompanied by a jump of the strains
e3 and is a martensitic transformation. From the sym-
metry point of view, it is an isostructural transition,
which has a termination point A with the coordinates
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transition from the phase C to T is smooth, without any
jump in the strain e3. For b ≤ 0, the martensitic transfor-
mation (the first-order structural phase transition) on
the curve CH occurs from the cubic phase C to the
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of the strains e2 and e3. On the curve CL, the second-

4cbe3
2 2b2e3– ab

6
3

-------Bc+ + 0,=

e2 –e3
2 a

c
---– e3

2b
c

------+±=

a
b2

4c
------

6
3

-------Bc
b

------, b–
16 6

9
-------------Bc2

 
 

1/3

,–<≤

a
6

9
-------Bc

b
------ 2

3
--- 6bB– ,+≤

16 6
9

-------------Bc2

 
 

1/3

b 0.≤<–

a
2
9
---b2

c
----- 6Bc

b
--------------.+=

6

AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001



THE INFLUENCE OF MAGNETOELASTIC INTERACTION 1021
order structural phase transition between these two
phases occurs. An expression for the curve of the first-
order phase transition (CH) can be found from the con-
dition of equality of the energy for the phases C and R.
The equation for the curve of the second-order phase
transition (CL) is determined by the equality in (3). The
critical point of the termination of the first-order phase

transition (C) has the coordinates ( /3 – 1/2)(B2c)1/3,

–(16 Bc2/9)1/3. The coordinates of the points A and C
are determined by the magnitude of the magnetostric-
tion B. For B = 0, the phase diagram coincides with the
diagram of the nonmagnetic cubic crystal [8].

Now consider the phase diagram of a cubic ferro-
magnetic for the case when the temperature of the mar-
tensitic (TM) and magnetic (TC) transitions become
comparable. In this case, in order to find equilibrium
states of the cubic ferromagnetic, the free energy (1)
must be minimized over the variables mx , my , mz, e2,
and e3. For definiteness, we assume that b > 0 and the
signs of the other constants remain the same as in the
case TM < TC.

The minimization of (1) yields the following equi-
librium states of the ferromagnetic.

1. The cubic paramagnetic phase (PC),

(8)

is stable for α ≥ 0, a ≥ 0.
2. The tetragonal paramagnetic phase (PT),

(9)

is stable for

(10)

3. The cubic ferromagnetic (FC) and tetragonal fer-
romagnetic (FT) phases with the magnetization along
[001],

(11)

with strains determined by the equations
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(13)

6

6

mx my mz 0, e2 e3 0,= = = = =

mx my mz 0, e2 0,= = = =

e3
b b2 4ac–+

2c
---------------------------------,–=

α 6Bb
3c

--------------, a≥ b2

4c
------,≤

a
b2

4c
------

6
4

-------α
B
--- c

b

2 c
----------– 

 
2

.–≥

mx my 0, mz
2 1

δ
--- α 2 6

3
----------Be3+ 

  ,–= = =

e2 0, ae3 be3
2 c3e3

3 6Bmz
2/3+ + + 0.= =

α 0, α 6b

54Bc2
--------------- 2δb2 12cB2 9δac–+( )≥≤

–
6

27Bc2
--------------- δb2 4cB2 3δac–+( )3/2

,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
and the phase FT is stable for

(14)

The stability region of the phases FC and FT is also
bounded by the inequalities

(15)

which follow from the condition  ≤ 1.

From symmetry considerations, it follows that in
addition to these states, the crystal can exhibit other
equilibrium phases with the energies and regions of sta-
bility coinciding with those described above. These are
tetragonal paramagnetic phases with strains along the
axes [100] and [010], cubic ferromagnetic phases with
magnetization along the axes [100] and [010], and tet-
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Fig. 2. The phase diagram of a cubic ferromagnetic for
TM ~ TC on the coordinates a, α (PC is the paramagnetic
cubic phase, PT is the paramagnetic tetragonal phase, FC is
the ferromagnetic cubic phase with small tetragonal distor-
tions, and FT is the ferromagnetic tetragonal phase). In the
FC and FT phases, magnetization is oriented along the [001]
axis. Solid curves correspond to phase transitions, and
dashed ones are the curves of the loss of stability of phases.
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ragonal phases with strains and magnetization along
the axes [100] and [010].

As in the case TM < TC, the analysis of strains of the
cubic lattice in the phases FC and FT determined by
Eqs. (12) shows that these phases possess identical tet-
ragonal symmetry. The phases FC and FT differ in the
magnitude of spontaneous strains e3. In the phase FC,
they are mainly determined by the magnetostriction,
whereas in the phase FT by structural distortions that
occur while passing to the martensitic state.

The phase diagram of the cubic crystal for the case
TM ~ TC on the coordinates a, α is presented in Fig. 2.
The following phase transitions are possible from the
paramagnetic cubic phase PC. On the curve BK deter-
mined by the equation a = b2/4c, the first-order struc-
tural phase transition to the tetragonal paramagnetic
phase PT with large distortions of the lattice occurs
(martensitic transformation). On the curve DM (α = 0),
the second-order phase transition to the ferromagnetic
cubic phase FC with small tetragonal distortions of the
lattice occurs. On the curve DB, the coupled structural–
magnetic first-order phase transition to the ferromag-
netic cubic phase FT with large tetragonal distortions of
the lattice occurs. The equation of this curve follows
from the equality of the energy of the phases PC and
FT. In addition to the transition PT  PC along BK,
the second-order isostructural magnetic phase transi-
tion from the paramagnetic tetragonal phase PT to the
ferromagnetic tetragonal phase FT can occur along the
curve BH. The equation of this curve follows from the
second condition of stability of the phase FT in (14)
when the inequality turns into equality. The first-order
isostructural phase transition between the ferromag-
netic phases FC and FT can occur along the curve GD.
The equation of this curve has the form

(16)

This transition is accompanied by a jump of the strain
e3 and is classified as a martensitic transformation. In
the a–α diagram, it can have the termination point G.
This situation occurs in the case when the point G is to
the right of the stability curve of the phases FC and FT
in (15) (for simplicity, this curve is not shown in the
phase diagram). The analysis of inequalities (15) and
Eq. (16) in combination with conditions (13) and (14)
of the stability of the phases FC and FT shows that the
termination point of the phase transition FT  FC
exists only for large values of the magnetoelastic con-
stant B ~ b3/c2. In this case, the transition between the
phases FT and FC to the left of the point G proceeds
smoothly, without jumps of the strain e3.

The region of absolute stability of the phase PC is
bounded by the lines OM and ON. For the phase PT,
this region is bounded by the curves LC and CH. The
phase FT is absolutely stable in the region to the left of
the curve GPH, and the phase FC above the curve
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6δ
------------------.–+=
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GFM. The points D and B are critical. At these points,
the second-order phase transition curves split into two
curves of first-order phase transitions. The coordinates
of these points are

In experimental studies of phase transitions in alloys
of the Ni2 + xMn1 – xGa type, the phase diagram is usu-
ally reconstructed on the temperature–concentration
(T–x) coordinates [3, 5]. In order to be able to compare
the theoretical results obtained in the present study with
the available experimental data, we present the theoret-
ical phase T–x diagram of the cubic ferromagnetic.

It follows from the experimental data [3, 5] that the
Curie temperature TC and the martensitic transforma-
tion temperature TM for Ni2 + xMn1 – xGa alloys vary
almost linearly with the concentration. We use this
result to construct the theoretical a–α phase diagram
(Fig. 2) on the coordinates T–x. For this purpose, we
write the coefficients a and α in the equation of the free
energy (1) in the form

(17)

where TM = TM0 + σx , TC = TC0 – γx, TM0 and TC0 are the
temperatures of the martensitic and magnetic transition
at x = 0, and σ and γ are proportionality coefficients.
TM0, TC0, σ, and γ are determined experimentally.

In order to calculate the phase T–x diagram, we use
the following values of the parameters involved in (1)
and (17) (see [3, 5, 6]):

a0 = 1011 erg/cm3, α0 = –109 erg/cm3,

TM0 = 202 K, TC0 = 375 K, σ = 700 K,

γ = 175 K, b = 3 × 1011 erg/cm3, (18)

c = 3 × 1012 erg/cm3, B = 1.5 × 107 erg/cm3,

K = 4 × 104 erg/cm3, δ = 109 erg/cm3.

Figure 3 presents the T–x phase diagram of
Ni2 + xMn1 – xGa alloys constructed numerically on the
basis of Eqs. (17) and (18). Since the magnetoelastic
constant B is small, the region in the vicinity of the
intersection of the temperatures TM and TC cannot be
shown on the scale of Fig. 3a. This region is shown in
Fig. 3b on a greater scale. The designations in Fig. 3 are
the same as in Fig. 2. It is seen from Fig. 3 that, for the
given values of the parameters, the region DB in which
the first-order coupled structural–magnetic phase tran-
sition can occur is confined within a very small interval
of concentrations around x ≈ 0.19. This interval
strongly depends on the magnitude of the magnetoelas-
tic constant B. As B increases, the interval in which the
coupled structural–magnetic phase transition exists
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Fig. 3. The theoretical T–x phase diagram of cubic ferromagnetic Heusler Ni2 + xMn1 – xGa alloys: (a) for 0 ≤ x ≤ 0.25 and (b) in the
region of the intersection of the temperatures TM and TC on a greater scale. The solid curve corresponds to the magnetic phase tran-
sition, dot curves correspond to the structural transition, and the dashed curves are the curves of the loss of stability of phases. The
other designations coincide with those used in Fig. 2.
also increases. The phase diagram presented in Fig. 3 is
in good agreement with the experimental T–x diagram
(see Figs. 5 and 4 in [3, 5], respectively).

The analysis of the influence of the magnetoelastic
interaction on the phase diagrams of cubic ferromag-
netics allows one to draw the following conclusions.

In contrast to the case of the negative cubic anisot-
ropy constant (K < 0), the structural phase transitions
for a positive first anisotropy constant (K > 0) are not
accompanied by reorientation of the magnetization.
This is due to the fact that already in the cubic phase the
magnetoelastic interaction decreases (strictly speaking)
the symmetry of the phase down to the tetragonal one.
The symmetry of the low-temperature phase is either
tetragonal (b > 0) or orthorhombic (b < 0). Due to the
fact that the high-temperature and low-temperature
phases contain the same symmetry elements (e.g., axes
of the second and fourth orders), no reorientation of
magnetization occurs in the case K > 0 under structural
transitions. When the symmetries of the high-tempera-
ture and low-temperature phases are identical (b > 0),
the curve of the structural phase transition can have a
termination point. To the right of this curve, the struc-
tural transition is accompanied by a jump of strains and
hysteresis, and behaves like a martensitic transforma-
tion. To the left of this point, no such transition occurs,
the strains vary smoothly from quasi-cubic to tetrago-
nal ones, and there is no hysteresis. For b < 0, the sym-
metries of the high-temperature and low-temperature
phases are not identical. In this case, for large |b |, the
structural transition between phases is a first-order tran-
sition (a martensitic transformation); for small |b |, it is
a second-order transition. Thus, there is a critical point
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
on the phase diagram for b < 0; at this point, the transi-
tion type changes. The coordinates of the termination
point of the structural transition (for b > 0) and the crit-
ical point (for b < 0) are determined by the magneto-
striction constant B. The magnetoelastic interaction
leads to the situation when first-order coupled struc-
tural–magnetic phase transitions occur in a certain
interval of the parameters of the cubic ferromagnetic.
The magnitude of the interval on the phase diagram in
which such transitions occur is determined by the mag-
nitude of the magnetoelastic interaction. The calculated
theoretical T–x diagram of the Heusler alloys
Ni2 + xMn1 – xGa is in good agreement with the phase
diagram obtained experimentally.
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Abstract—The kinetics of the formation of an anomalous state of a helium crystal with a fast-growing surface
are investigated. It is demonstrated experimentally that it is external supersaturation that is the determining fac-
tor of formation of an anomalous state. The dependence of the time of formation of anomalous state on temper-
ature and initial supersaturation is measured. The problem of crystal growth with the excitation of the first-
sound wave in the container is solved. This solution is used to determine the dependence of the kinetic coeffi-
cient of growth of anomalous facets on temperature and initial supersaturation. It is demonstrated that the
kinetic coefficient of facet growth decreases on approaching the boundaries of the region of the existence of an
anomalous state. The kinetic coefficient of growth of atomically rough surfaces in an anomalous state is deter-
mined by the damping of pressure oscillation. It is found that the value of the latter coefficient is three–four
times that of the respective value for the facets but is considerably, by an order of magnitude, less than the value
of the coefficient of growth of such surfaces in the normal state. Phenomena are treated which accompany the
spiral growth of facets, namely, the excitation of oscillations of a screw dislocation during spiral rotation and
the emergence of vortex rings in superfluid helium. The effect of these phenomena on the kinetics of facet
growth and on the formation of an anomalous state is discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The kinetic and thermodynamic properties of the
interface between liquid helium and its solid HCP
phase were the subject of intensive investigations fol-
lowing the theoretical prediction by Andreev and
Parshin [1] and experimental verification by Keshishev
et al. [2] of the quantum behavior of facet growth in the
atomically rough state. By now, a fairly comprehensive
picture has been formed of thermodynamic transitions
on the surface and of the kinetics of facet growth. Three
roughening transitions have been revealed: at TR1 = 1.3 K,
the faceting of the basal plane (c-facets) is observed;
then, at TR2 = 0.9 K, the side planes (a-facets) are fac-
eted [3–5]; and, at the temperature TR3 = 0.36 K, the

faceting of ( )-planes (s-facets) is observed [6].
The kinetics of crystal growth under conditions of
minor deviations from equilibrium (Dp < 1 mbar) are
defined by the state of the surface. Above the roughen-
ing transition in the atomically rough state, the rate of
growth is controlled by the scattering of quasiparticles
on the surface [7, 8] and by the dissipation in the
medium [9]. Below the roughening transition, in accor-
dance with the models of growth existing in classical
crystallography [10], the facet growth is associated
either with two-dimensional nucleation [10, 11] or with
topologically irremovable defects formed on the facet
by dislocations (spiral growth, Frank-Read sources
[10]). These models (with necessary correction for the
case of helium [12]) describe well most of the observed

1101
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phenomena. The only effect that drops out from the
general pattern was the burst-like growth of a disloca-
tion-free crystal facet in the temperature range from
2 mK to 0.25 K, which was observed by Ruutu et al. [12].

Another phenomenon, which does not fit the frame-
work of the known concepts either, consists in a sharp
acceleration of crystal growth by two–three orders of
magnitude (anomalous growth) under conditions of
fairly high supersaturation below the second roughen-
ing transition [13–16].

The investigation results revealed a number of fea-
tures of this transition: namely, (1) the acceleration of
growth occurs on the c- and a-facets simultaneously
[14]; (2) the crystal changes over to the state with fast-
growing facets only in the case of initial supersaturation
above a certain value of Dp*, which decreases monotoni-
cally with temperature (phase diagram [15, 17]; and
(3) away from the transition boundary, the rate of crys-
tal growth becomes so high that the growth becomes
oscillating, with the damping decrement of oscillation
decreasing away from the transition boundary [16].

In this paper, we give the results of studies into the
effect of the condition of crystal formation on the tran-
sition to anomalous state with fast-growing facets, as
well as the results of analysis of the kinetics of growth
after transition. Section 2 contains a brief description of
the experimental procedure. The results of checking the
hypothesis which relates the transition to the behavior
of crystal nucleation are described in Section 3. The
experimental data on the time of emergence of an
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental scheme: (1) pulsed infrared light-emitting diode, (2) lens, (3) capacitive sensor diaphragm, (4) tungsten needle,
(5) copper refrigerant conduit connected to a 3He bath, (6) objective, (7) CCD matrix. The optical axis is arranged horizontally. The
details of the optical cryostat [19] are not shown. Time diagrams: A, frame pulses of the video signal; B, high-voltage pulse; C, LED
flashes.
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anomalous state are given in Section 4. The results of
analysis of the pattern of crystal growth after transition
to anomalous state and in the closing stage of growth
are given in Section 5. Section 6 contains a discussion
of the experimental data and of the results of checking
some hypotheses; also treated in this section are the
processes which possibly initiate this transition.

2. EXPERIMENTAL PROCEDURE
The experimental apparatus and the container in

which the investigations were performed are described
in methodological papers [18–20] and in a number of
other papers [9, 21]. The investigations were performed
in an optical container (see Fig. 1), which made possi-
ble the filming of the crystal in the process of growth.
The inner volume of the container was 4 cm3. The
nucleation and subsequent growth of a crystal occurred
on a tungsten needle 4 whose point was located on the
optical axis of the container. Crystal production was
initiated by a high-voltage pulse applied to the needle.
The use of this procedure resulted in solving of the fol-
lowing problems:

(1) the effect of the wall is ruled out: the crystal
grows almost freely, without touching the container
walls;

(2) the emergence of crystal is easily synchronized
with the operation of the video system;

(3) the initial supersaturation in helium Dp0 may be
selected in the range from zero to the pressure of spon-
taneous crystal nucleation on the wall (0–15 mbar);

(4) one can change the conditions of crystal nucle-
ation by varying the pulse amplitude and duration.

This procedure made it possible (see [15, 17]) to
construct the phase diagram of the anomalous state and
film the fast crystal growth.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The crystals were grown from thermomechanically
cleaned helium. The experimental sequence was as fol-
lows (see the time diagrams in Fig. 1). First, desired
supersaturation was set up in the fluid. Then, a high-
voltage pulse B was supplied to the needle at the
moment of time synchronized with the video signal
(series of frame pulses A) with the delay t1. The first
LED flash of about 15 µs in duration was delayed by t2

relative to the high-voltage pulse (see the series C).
Subsequent flashes of lighting were synchronized with
the frame pulses of the video signal that followed with
a period of 20 ms. Therefore, the time interval between
the first two frames was less than 20 ms (and usually
amounted to 13.6 ms), and that between the subsequent
frames was equal to the frame pulse period. Because
the video picture is transmitted in half-frames, the odd
frames are shifted by one line on the vertical relative to
the even frames. The crystal growth was recorded in the
memory of a signal processor (the first five frames) [20]
and, if required, was simultaneously recorded on video-
tape. The minimal interval between the first and second
frames is limited by the duration of the synchronization
pulse and cannot be shorter than 2 ms. This time reso-
lution is insufficient to get an idea of the stage of fast
crystal growth. In order to solve this problem, we mod-
ified the procedure. The experiment in crystal growing
at a fixed temperature was repeated approximately
15 times; in so doing, the initial supersaturation in the
container, the voltage, and the duration of the high-volt-
age pulse were identical. It turned out that the curves of
pressure variation agreed within the measurement
accuracy, and the shape and orientation of crystals pho-
tographed with one and the same delay t2 were similar;
i.e., the process of growth was well reproducible. We
varied the flash delay with a step equal to the duration
of linear sweep of 64 µs to obtain a series of frames
SICS      Vol. 92      No. 6      2001
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Fig. 2. The emergence of an anomalous state as a function of external hydrostatic supersaturation and of supersaturation at the
moment of critical nucleation. Hollow points indicate anomalous growth, and solid points indicate normal growth; Dp0, initial
hydrostatic pressure; pel , addition due to electrostatic field.
which give an idea about the variation of crystal shape
in the mode of oscillating growth (see Fig. 7 below).
The curve of pressure variation is averaged over 16
measurements. One can see that the crystals produced
under identical conditions have one and the same orien-
tation.

The pressure drop accompanying the crystal growth
was measured synchronously with video recording by
a capacitive pressure cell located on the container. The
cell diaphragm is at a distance of approximately 1 cm
from the needle. This results in a delay of the order of
30 µs due to the propagation of the first-sound wave in
liquid helium. The response of the measuring path to a
step variation of pressure consists in a delay of 32 µs
and exponential relaxation with a single time constant.
Within a single series of experiments, the relaxation
constant remained the same. In different series, its
value was 54 or 77 µs. For exactly relating the pressure
values to the moment of filming the crystal in the stage
of fast growth, correction was performed consisting of
a time shift by 62 µs and compensation of the transient
characteristic.

Note that no special attention was given to the pulse
amplitude and duration in previous studies [15–17],
because the pulse had only to initiate the guaranteed crys-
tal nucleation. Therefore, the amplitude was taken to be
high and identical for all experiments, and the duration
was several milliseconds. In [15–17], the beginning of the
pulse was recorded, and the voltage was switched off at
the moment of filming the first frame.

3. THE EFFECT OF THE CONDITIONS
OF CRYSTAL NUCLEATION

These experiments were performed to check the
hypothesis that relates the emergence of an anomalous
state to the behavior of critical nucleation. Assume that
the nucleus emerges in the classical case with an
already faceted surface, and in the quantum case its sur-
face is in the atomically rough state, thus ensuring a
JOURNAL OF EXPERIMENTAL 
high growth rate. Indeed, in the classical case, the sub-
critical nucleus is in a close-to-equilibrium state, which
corresponds to the faceted form at the given tempera-
tures. In the quantum case, the nucleus emerges in the
final state. Note that the number of states of a nucleus
with a disordered surface is larger, because the entropy
of such a surface is higher than the entropy of a crystal
surface consisting of flat facets. Therefore, during tun-
neling, the nucleus in most cases will find itself in states
with an atomically rough surface. Of course, a state like
this is nonequilibrium, and the relaxation of the nucleus
to its equilibrium form will proceed simultaneously
with its growth. If the relaxation time is long (see the
footnote made by Nozieres and Uwaha in [22], p. 403),
the crystal surface will remain in the atomically rough
state until the termination of its growth. The relaxation
to the equilibrium form will manifest itself in the fact
that, because of the dynamic emergence of flat portions
on the surface, the rate of growth will be lower than the
rate of growth of atomically rough surfaces.

If this hypothesis is valid, then the boundary
between normal and anomalous growth is the boundary
of transition from classical to quantum nucleation. In
1972, Kagan and Lifshitz [23] have called attention to
the fact that the boundary is sharp and the transition
supersaturation increases with temperature, which
agrees qualitatively with the form of the phase diagram
in [17]. Then, instead of the external hydrostatic pres-
sure, the main parameter of the process is the sum of
this pressure with the electrostatic pressure of the pulse.
This fact was noted by Yu.M. Kagan, who suggested an
experimental investigation of the effect of the pulse
amplitude. If the foregoing hypothesis is valid, the
position of the boundary between normal and anoma-
lous growth must be defined by the sum of hydrostatic
and electrostatic pressures referred to above.

Figure 2 gives the results of measurements in which
these parameters were varied independently at two
temperatures. One can see in the graph that it is by the
hydrostatic pressure of the medium that the boundary
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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Fig. 3. An example of a record of the pressure drop in the container upon emergence of anomalous state with a delay of 36 ms at
T = 0.639 K. Prior to the moment of transition, one can see the crystal faceting characteristic of growth below the first and second
roughening transitions.
between normal and anomalous growth is defined. This
means that the hypothesis relating the effect of anoma-
lous growth to nucleation is invalid.

4. THE KINETICS OF EMERGENCE
OF ANOMALOUS STATE

Because, as has now become clear, the anomalous
state does not arise simultaneously with crystal, but
develops under the effect of external hydrostatic pres-
sure, it is of interest to determine the characteristic
times of this process. For this purpose, the pulse dura-
tion was reduced to 128 µs (two lines of linear sweep of
the video adapter), and the amplitude was selected such
as to guarantee the nucleation of crystal during this time.
The overall time of pressure recording was approximately
230 ms, and the crystal was photographed during the
first 80 ms.

Figure 3 illustrates the crystal growth in the case
when the transition to a state with a fast-growing sur-
face occurs 36 ms after the crystal nucleation. One can
see that the crystal first grows in the form of a hexago-
nal plate up to the moment of transition to an anoma-
lous state, after which it grows completely during
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
approximately 170 µs, which is accompanied by a drop
of pressure to that of phase equilibrium. This pattern is
typical for all observed series with long delay times.
Figure 4 gives the curves of pressure variation during
crystal growth with initial supersaturation above the
transition boundary. One can clearly see that, on
approaching the boundary supersaturation Dp*, the
delay time τjump between the crystal nucleation and the
beginning of fast growth increases. The magnitude of
pressure jump in the case of fast growth may be much
less than that of the initial supersaturation (see Fig. 4).
The general tendency toward increasing delay time
τjump as the boundary of anomalous region is
approached is illustrated by Fig. 5. Note that, for close
values of initial supersaturation Dp0, there nevertheless
exists a considerable scatter of the values of τjump. For
example, at Dp0 ≈ 4.8 mbar and T = 0.639 K, the value
of delay varies from experiment to experiment in the
range from 8 to 40 ms. As the temperature decreases,
the value of delay with the same initial supersaturation
decreases as well. However, one cannot unambiguously
infer if it is the temperature decrease that leads to the
reduction of the delay time, because, as is seen in
SICS      Vol. 92      No. 6      2001
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Fig. 4, a decrease in the boundary supersaturation Dp*
occurs simultaneously. If we combine the data of Dp*
for two different temperatures with the respective shift
of data, it will turn out that the data agree with one
another within the scatter. Therefore, it still remains to
be determined which factor defines the variation of
τjump, namely, the temperature or the proximity to the
transition boundary.

Prior to transition to the anomalous state, the crystal
grows rather slowly. Its shape, as follows from Fig. 3,
is almost invariable, which is indicative of the propor-
tionality of the rates of growth of the a- and c-facets.
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Fig. 4. Records of the pressure drop in the container during
the time of crystal growth at T = 0.639 K with different val-
ues of initial supersaturation. An increase in Dp0 leads to a
reduction of the time of emergence of anomalous state.
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Fig. 5. The time of emergence of anomalous state as a func-
tion of initial supersaturation at 0.639 K (circles) and at
0.484 K (triangles). The arrows indicate the position of the
boundary of anomalous region at these temperatures.
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For the case of crystal growth to supersaturation of
about 0.5 mbar, this fact was previously observed in
[21]. The results of filming demonstrate that the rate of
growth of the c-facet is lower than the rate of growth of
the a-facets, with the anisotropy of the rate of growth
Va/Vc being of the order of 2–3.5. As for the case of nor-
mal crystal growth, the rates of growth of equivalent a-
facets differ from one another by almost 50% in some
cases, which is indicative of the effect of surface
defects on the kinetics of growth. Figure 6 gives the
supersaturation dependence of the rate of growth for
crystals prior to transition and for crystals growing nor-
mally up to the pressure of phase equilibrium. Because,
as was already mentioned above, a considerable scatter
is observed of both the anisotropy of growth and of the
absolute values of the growth rate, the values of the
growth rate were averaged as follows. The time depen-
dence of pressure for seven series of measurements was
used to determine the variation of the crystal volume in
the process of growth. The quantity

(9c is the crystal volume) was taken to be the linear
dimension of crystal. We differentiate the function R(t)
to obtain the average rate of growth related to the rate
of growth of the a- and c-facets by relation (A.7). The
results obtained in crystals in which no transition was
observed until the termination of growth are indicated
by hollow points. Solid points indicate the results of
such treatment of three curves with the longest delay
times, as given in Fig. 4. One can see that these corre-
lations agree within the scatter. Therefore, prior to tran-
sition, the crystal growth does not differ qualitatively and
quantitatively from normal growth at small values of

R
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Fig. 6. The averaged rate of crystal growth in the normal
state (hollow points) at T = 0.639 K and the results of treat-
ment, by the same method (see the text), of three curves of
pressure drop given in Fig. 4 (solid points).
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Fig. 7. The oscillating crystal growth at T = 0.484 K and Dp0 = 3.6 mbar. One can see the kinetic faceting in the process of growth
and the rounding of crystal upon melting.
supersaturation. As observed by a number of researchers
[11, 12, 21], such a growth is due to well-known physical
mechanisms such as the spiral growth and the growth
induced by Frank-Read sources. The effect of defects
shows up, for example, in that the equivalent crystal
facets grow at different rates, which results in different
sizes of the side facets (see Fig. 3).

In summing up the results of these experiments, we
will formulate the main features of the process of emer-
gence of an anomalous state of a helium crystal with a
fast-growing surface.

(1) The transition to an anomalous state is realized
only if the initial supersaturation exceeds the boundary
supersaturation corresponding to the phase diagram in
[17], Dp0 > Dp*.

(2) The time of delay between the crystal nucleation
and beginning of fast growth increases with approach-
ing the transition boundary.

(3) The values of delay are characterized by consid-
erable scatter.
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(4) Prior to the beginning of fast growth, the kinetics
of facet growth are defined by the surface defects and
do not differ qualitatively and quantitatively from the
kinetics at small values (< 1 mbar) of supersaturations.

5. THE KINETICS OF CRYSTAL GROWTH
AFTER TRANSITION TO AN ANOMALOUS STATE

After transition to an anomalous state, the crystal
growth proceeds so rapidly that a radial acoustic oscil-
lation with a frequency of the order of 2–3 kHz is
excited in the container volume [16]. As a result, a pres-
sure gradient now exists in the liquid, and the readings
of the sensor located on the wall do not coincide with
the values of pressure on the crystal boundary. It is also
of importance that the crystal growth and melting are
asymmetric processes. During growth, the crystal
shape is defined (as is seen in Fig. 7) by the slow-grow-
ing facets. During melting, on the contrary, its shape is
a result of the melting of surfaces with a high value of
the kinetic coefficient of growth (in our case, of the
SICS      Vol. 92      No. 6      2001
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atomically rough regions). Therefore, the growth equa-
tions will include different kinetic parameters in the
stages of crystal growth and melting; also of impor-
tance is the ratio between the areas of slowly growing
facets and atomically rough regions. Below, we will
restrict ourselves to treating two stages of the process
of crystal growth, namely, the initial region of fast crys-
tal growth from the moment of nucleation to the begin-
ning of first melting and the end region in which the
pressure variation becomes small. In the former case, as
is seen in the photographs of the growth process (Fig. 7),
the crystal grows in the form of a hexagonal prism and
retains its shape, which makes it possible to determine
the kinetic coefficient of facet growth in the anomalous
state. In the latter case, the damping of oscillation of the
crystal-liquid system must be largely defined by the
kinetics of growth/melting of the atomically rough
regions of the crystal surface, which enables one to esti-
mate the effect of transition on the kinetics of atomi-
cally rough surfaces.

5.1. Crystal Growth after Nucleation

We will treat the spherically symmetric problem of
crystal growth in a container of radius R0, assuming that
the rate of facet growth V is proportional to supersatu-
ration,

(1)

where ρ is the density, s is the entropy per unit mass,
and ∆T and p denote the deviations of temperature and

V K
∆ρ
ρρ'
--------Dp K s s'–( )∆T

∆ρ
ρρ'
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K
, s

/m

2 6 8

10

5

15

20

4

0.484 K

0.639 K

Fig. 8. The dependence of the kinetic coefficient of facet
growth on initial supersaturation, determined in the first
stage of oscillating crystal growth. The hollow symbols
indicate the data obtained with the times of formation of the
anomalous state of less than 10 ms. The solid squares indi-
cate the results of treatment of the curves in Fig. 4. The
arrows indicate the boundary of the anomalous region for
the given temperatures.
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pressure from the line of phase equilibrium. The sym-
bols with primes indicate the solid phase, and those
without primes indicate the liquid phase. In the temper-
ature range for which this problem is treated, the entro-
pies of the solid and liquid phases are virtually the
same, and the measure of nonequilibrium is equal, to a
good accuracy, to p (for more detail, see [24]). The flow
equations for an ideally compressible liquid are as fol-
lows:

(2)

where c is the velocity of sound. The boundary condi-
tions

(3)

allow for the absence of liquid flow on the container
wall and for the equation of continuity on the crystal
boundary. In this problem, the crystal is treated as a
sphere of radius r0 with the isotropic coefficient of
growth K. The initial conditions at the moment of crys-
tal nucleation have the form

(4)

For small deviations of the crystal surface from the
equilibrium shape, Eqs. (2) with boundary conditions (3)
give the oscillating crystal growth with damping defined
by the value of the parameter K (see [16]). There is no
small parameter in the stage of interest to us, and it is nec-
essary to solve the nonstationary problem of crystal
growth simultaneously with that of the propagation of the
first-sound wave in the container volume. The numerical
calculation results are given in the Appendix.

Figure 8 gives the dependence of average values of
the growth coefficient on initial supersaturation at two
temperatures. One can see in the graph that the kinetic
coefficient of growth increases away from the transition
boundary, which agrees qualitatively with the behavior
of damping of pressure oscillation described in [16].
Nevertheless, the absolute values of K at T = 0.484 K
and Dp0 = 8 mbar are almost 40 times less than the
respective values for atomically rough surface at the
same temperature. The dark squares indicate the values
of K for the growth curves with jump delays of 14 to
240 ms relative to the moment of crystal nucleation
(Fig. 4). Within the scatter, these points agree with the
values determined with a short delay (< 10 ms), for which
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the transition to fast growth occurs at almost the same
degree of supersaturation at which the crystal nucle-
ation occurs. This means that the kinetic properties of
the surface in the stage of fast growth are defined by the
initial supersaturation in the liquid rather than by the
pressure at which the transition occurs.

5.2. Damping of Oscillation 
upon Termination of Growth

As was mentioned above, the crystal growth and
melting in the general case are due to the kinetics of the
entire crystal surface, and one cannot distinguish between
the contributions made by the facets and atomically rough
surfaces using the correlations p(t) alone. However, as the
pressure oscillation is damped, the moment comes when
the oscillation amplitude becomes so low that the melt-
ing–solidification of only the atomically rough regions is
sufficient to compensate for the variation of the liquid den-
sity. Below this amplitude of plow, the growth kinetics and,
consequently, the damping are defined by the kinetic coef-
ficient of growth of only the atomically rough regions.
By measuring the damping of pressure oscillation below
this threshold, one can determine the kinetic coefficient of
surface growth after a time of the order of 0.5–1 ms fol-
lowing the beginning of fast crystal growth.

The threshold pressure plow is determined from geo-
metric considerations. Because the rate of facet growth
is much lower than that for the rough regions, we will
assume the facets to be stationary. In this case, the crys-
tal growth is defined by the rough surfaces alone. The
boundary pressure corresponds to the situation when,
under conditions of maximal melting, the surface will
nevertheless still contact the side facet (we take the side
facets because, as is seen in Fig. 7, the transverse
dimension of crystal is greater than its thickness). We
assume the transverse dimension-to-thickness ratio to
be La/Lc = r to derive that, for the values of r = 2 to 4,
the plow/Dp0 ratio is in the range from 0.15 to 0.1. Fig-
ure 9a gives a record of pressure oscillation during
crystal growth, in which one can clearly see six periods.
The values of extreme amplitudes on a semilog scale are
given in Fig. 9b. One can see that the damping decrement
has one and the same value both above plow ≈ 1.5 mbar and
below this pressure. By the value of damping, one can
determine the kinetic coefficient of growth of atomi-
cally rough surfaces in an anomalous state, 1/K = 0.023 m/s.
This value is intermediate between the coefficient of
growth for anomalous facets (1/Kfacet = 0.071 m/s) and
the coefficient of growth for atomically rough surfaces
(1/Krough = 4.5 × 10–4 m/s) measured previously by the
crystallization-wave method [5] with small deviations
from equilibrium.

Therefore, the rate of growth of atomically rough
surfaces is higher than the rate of facet growth, which
agrees with the observed kinetic faceting of crystal in
the stage of growth and with the variation of the crystal
shape in the process of melting. The fact that the kinetic
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
coefficient of growth of an anomalous crystal surface is
much less than the coefficient of growth of a normal crys-
tal surface may have two interpretations. First, this
decrease in the surface mobility may be associated with
the variation of the physical mechanism responsible for
the motion of elementary surface defects, i.e., steps. With
such supersaturations and temperatures, the rate of sur-
face growth reaches the value of approximately 10 m/s,
and the rate of motion of the steps, as follows from the
results of estimating their mobility by the data of [5, 22,
25], becomes constant approaching the velocity of
sound. A similar case, as applied to spiral facet growth,
was treated by Ruutu et al. [12]. A theoretical analysis
of the latter study reveals that, in this “relativistic” sit-
uation, the mobility of the steps decreases. The second
possibility is associated with the variation of the state
of crystal and, as a result, of the kinetics of its surface.
In order to distinguish between these options, one must
measure the kinetic coefficient of growth under condi-
tions when the viscosity of the medium is fairly high
and the velocity of the steps is much lower than the
velocity of sound. As is demonstrated by the estimates,
in the case of supersaturation of up to 15 mbar, these
conditions are valid at a temperature above 0.6 K. In
this region, the damping of pressure oscillation is too
fast, which prevented the experimental determination
of whether the decrement varies at low amplitudes.
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Fig. 9. (a) Pressure oscillation during crystal growth deep in
the anomalous region. (b) The decrease of pressure ampli-
tudes with time, N is the number of oscillation half-period
of the curve in (a). The supersaturation region is shaded,
where a variation of the decrement of oscillation damping
should have been observed if the kinetic coefficient of
growth of atomically rough surfaces in anomalous state cor-
responded to the coefficient measured at low values of
supersaturation in normal crystals.
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6. DISCUSSION OF THE RESULTS

We will sum up the main features of the kinetics of
the formation of an anomalous transition. One can see
from the experimental results that the process that leads to
the emergence of an anomalous state is initiated by exter-
nal supersaturation. This process has a considerable dura-
tion in the vicinity of critical supersaturation Dp*; how-
ever, the process accelerates considerably away from the
phase boundary. As for the boundary between the anoma-
lous and normal regions, it is possibly kinetic. In other
words, this transition is not observed at Dp < Dp* only
because the time of the formation of a fast state becomes
longer than the time of crystal growth. The kinetics of
crystal growth before transition do not differ qualita-
tively and quantitatively from the kinetics of normal
crystal growth; i.e., the process leading to transition
does not reflect on the rate of facet growth before the
moment of transition. This behavior of the phenome-
non brings it even closer to the phenomenon of burst-
like growth of dislocation-free facets of crystal
observed in the temperature range from 0.02 to 0.25 K.
An assumption on the generality of the physical mech-
anisms of these phenomena was made previously in
[15] on the basis of the similarity of their phase dia-
grams.

Another qualitative aspect consists in that the varia-
tion of kinetics was not caused by the surface transition
alone. This inference was made in [16] on the basis of
the results of filming crystals in the mode of oscillating
growth. As is seen in Fig. 7, the melting of crystal
accompanied by disappearance of facets begins after
the growth stage. If the effect was associated with the
surface alone, the rate of facet growth in the next stage
of growth (that starts upon supersaturation that corre-
sponds in the phase diagram to the region of normal
growth) would be two–three orders of magnitude
lower, and the oscillation would cease. Because no such
situation is observed in the experiment, the reason for
high mobility has to do with the volume. This inference
is indirectly supported by the previously observed fact
that the transition occurs simultaneously on all facets,
as well as by the fact that the mobility of the atomically
rough surfaces of an anomalous crystal differs from
that of the atomically rough surfaces of a normal crys-
tal.

The observation of oscillating crystal growth reveals
that the time of existence of an anomalous state after its
emergence exceeds 3 ms (see Fig. 9). The results of
measurement of pressure variation after the completion
of crystal growth, associated with the flow of liquid into
the container, have led us to the conclusion that the kinet-
ics of facets become normal in approximately 100 ms.
Therefore, the relaxation of crystal to equilibrium state
occurs in a period of time less than 100 ms.

It follows from the foregoing that the effect resides
essentially in the variation of the bulk properties, is
kinetic, and shows up as acceleration of facet growth.
Based on the available experimental data, it is not yet
JOURNAL OF EXPERIMENTAL 
possible to define the type of rearrangement of volume
nor to determine whether it occurs in crystal or in liq-
uid. No explanation can be found for this phenomenon
within the framework of the existing models. There-
fore, we will treat the factors which were not included
in the classical model of spiral growth. According to
this model, it is assumed that the spiral center associ-
ated with screw dislocation is stationary. This assump-
tion is valid for the case of crystal growth at high tem-
peratures at which the phonon viscosity is very high. In
the case of helium at temperatures close to absolute
zero, the viscosity is low and decreases with tempera-
ture as Tn, where n = 3 to 5 [26–30]. This means that the
spiral rotation may bring about the excitation of dislo-
cation oscillation and additional dissipation associated
with dislocation friction. This process will cause, on the
one hand, the heating of crystal and, on the other hand,
the excitation of the dislocation subsystem of crystal.
For qualitative estimation of this effect, we will restrict
ourselves to the range of temperatures above 0.55 K,
where the velocity of individual steps is much less than
the velocity of sound up to supersaturation of the order
of 15 mbar, the corrections of Ruutu et al. [12] are
minor, and the classical relations for spiral growth are
valid. One can treat the motion of dislocation in Koe-
hler’s approximation of the string model [31] to derive
an approximate expression for the power transferred to
dislocation by the growth spiral,

(5)

Here, β is the line energy of a step; ω is the angular
velocity of rotation of the growth spiral; and A, B, and C
are the string model parameters defined by the expres-
sions

(6)

where ρ' is the solid helium density, b is the Burgers
vector, G is the shear modulus, and ν is the Poisson
ratio. The numerical estimate for the dislocation con-
centration Λ = 2 × 105 cm–2 (determined for crystals
grown on a needle [21] by the value of threshold super-
saturation from which the facet growth starts) indicates
that the additional dissipation associated with disloca-
tions is negligibly small. In this temperature range, up
to supersaturation of the order of 15 mbar, this contri-
bution does not exceed 1% of the energy of phase tran-
sition. Therefore, the energy of dislocation oscillation
excited by spiral growth is much less than the charac-
teristic energy of the process of growth. For this reason,
the foregoing mechanism will hardly have a consider-
able effect on the state of a crystal, and it is unlikely that
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this phenomenon will bring about the observed transi-
tion to the state with a fast-growing surface.

Another assumption of the classical model consists in
that the flow of liquid to the surface during spiral growth
is treated as laminar and irrotational. This is apparently
true of the growth of ordinary crystals, when the rate of
liquid flow to the boundary is low. In our case, the mobility
of the steps is high, so that their velocity may approach the
velocity of sound. The entrainment of liquid by the growth
spiral develops a disturbance of laminar flow, this possibly
leading to the generation of vortices. A vortex filament
attracted toward the solid boundary may in principle pro-
duce steps on the surface and, thereby, develop centers of
facet growth. Indeed, the flow of liquid in the vicinity of
the vortex core causes a reduction of pressure, i.e., pro-
motes the melting of crystal. As follows from estima-
tion, the production of steps at a distance of the order of
10–7 cm from the surface occurs without a threshold.
However, the numerical estimates of the possibility of
generation of vortices by growth spirals are very pessi-
mistic. We assume for the associated mass the values
obtained in [22, 32] and derive that the energy and
angular momentum of liquid are too low to produce a
vortex line issuing from the center of growth spiral and
closing on a spiral with the opposite sense of rotation
(Frank-Read source). The production of vortex rings by
a growth spiral remains an open question, because the
flow of liquid in the vicinity of a moving step is potential.
Therefore, it is unlikely that the spiral growth produces in
a superfluid vortices with a concentration sufficient to
cause a variation of the kinetics of facet growth.

7. CONCLUSION

The results of studies into the emergence of an
anomalous state of helium crystal with a fast-growing
surface, produced by a short electrostatic pulse in meta-
stable superfluid helium, have demonstrated that the emer-
gence of this state requires considerable time whose dura-
tion increases on approaching the boundary of the anom-
alous region. The results of observation of oscillating
crystal growth have demonstrated that this phenomenon is
not due to the variation of the surface properties alone.
Therefore, the anomalous state develops under the effect
of external supersaturation, which leads, as one can see
from the experimental data, to a variation of the bulk
properties of crystal or liquid. It follows from the
results of treating the phenomena accompanying the
spiral growth (dislocation oscillation and generation of
vortices) that these mechanisms will hardly lead to the
transition being observed. Moreover, both these mech-
anisms require the presence of a sufficient number of
dislocations. If this effect and the phenomenon of
“explosive” facet growth [12] are of the same physical
nature, the transition to the state with a fast-growing
surface is not at all associated with dislocations,
because, in the latter case, it is on the dislocation-free
facet that a fast growth is observed. Therefore, the
observed phenomenon cannot be explained within the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
known models by modifying those models and extend-
ing them to the case of helium crystal growth in a super-
fluid.
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APPENDIX

We will treat the spherically symmetric problem of
crystal growth in a container. In this approximation, we
ignore the nonsphericity of the container (the 1 : 2 ratio
of perpendicular dimensions) and replace a real crystal
growing in the form of a hexagonal prism with the
dimension ratio of 1 : k, where k = 2 to 3, by a sphere
of the same volume. The kinetic coefficient of growth
is taken to be isotropic. We will change over to a one-
dimensional problem using the substitution

(A.1)

reduce Eqs.(2)–(4) to the dimensionless form by the
replacement

(A.2)

and introduce the dimensionless parameter λ propor-
tional to the surface mobility,

(A.3)

Then, Eqs. (2) and boundary and initial conditions (3)
and (4) will take the form
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The solution of this problem gives the time dependence
of pressure on the container wall where the capacitive sen-
sor is located. Note that, in the case of fast growth with a
delay (see above), the initial value of the crystal radius was
taken to be finite and determined by the pressure at which
the fast growth started. Then, the signal was convolved
with the transfer function of the measuring system. By
way of illustration of the method, Fig. 10 gives the results
of calculation of the ratio between the amplitude of the
first minimum of pressure to initial supersaturation for
three values of initial supersaturation and for the integra-
tion constant of the transfer function of 54 µs used in the
given series of experiments. The amplitude ratio may be
used to determine the kinetic coefficient of growth if 1/K =
0.01–0.2 m/s.

Because the real crystal has the anisotropic coeffi-
cient of growth, we will give the relations that relate the
averaged kinetic coefficient of growth K0 to the coeffi-
cients of facet growth. For this purpose, one must use
the crystal shape to determine the ratio between the
average growth rates, Va/Vc = r. Then,

(A.7)
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Abstract—We measured the low-temperature specific heat of the layered organic superconductor κ-(BEDT–
TTF)2Cu(NCS)2 for the magnetic field directed along and across the conducting plane and found a difference
between the two measurements. Our data indicate the existence of a nodeless superconducting state at zero field
and low temperature. The field dependence of the specific heat anisotropy consists of two linear branches with
the crossover field equal to the upper critical field perpendicular to the conducting plane. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The problem of superconductivity in low-dimension
organic metals continues to attract much attention. A wide
discussion on the possibility of an unconventional super-
conducting state in the κ-(BEDT–TTF)2X compound
involves arguments both in agreement and in disagreement
with the hypothesis. For κ-(BEDT–TTF)2Cu(NCS)2,
there is extensive evidence in favor of the unconven-
tional character of superconductivity: NMR [1], high-
frequency conductivity [2], thermal conductivity [3],
and specific heat data [4]. As to the penetration depth
data, both the unconventional [5] and the conventional
[6] behavior have been reported. Recent data of Car-
rington et al. [7] support the presence of low-lying
excitations but do not give a definite answer as to their
origin.

The previously reported data [8] of the specific heat
of κ-(BEDT–TTF)2Cu(NCS)2 under the magnetic field
up to 6 T perpendicular to the conducting plane and the
temperature region 1.65–4.4 K demonstrated an almost
linear field dependence of the specific heat for the field
considerably below the perpendicular upper critical
field Hc2⊥ . Above Hc2⊥ , the specific heat is field-inde-
pendent within the experimental error. To obtain more
information about the character of the low-temperature
superconducting state, we performed specific heat mea-
surements under different orientations of the magnetic
field.

¶This article was submitted by the authors in English.
1063-7761/01/9206- $21.00 © 21035
2. EXPERIMENTAL

For the measurements, we used a modification of
the standard ac-modulation technique; the experimen-
tal details are described in [9] and [10]. One single
crystal with the total mass 0.45 mg was used. In addi-
tion to the specific heat, the magnetoresistance of the
sample was measured. The Dingle temperature
extracted from the Shubnikov–de Haas oscillation was
about 0.5 K. The specific heat was measured mainly for
the magnetic field orientation along and perpendicular
to the conducting plane. It was rather difficult to esti-
mate the absolute value of the sample specific heat
because of the small sample mass and an involved and
significant field dependence of the specific heat of the
thermometer. It was previously found that the specific
heat of the thermometer is isotropic in the magnetic
field. Our experimental setup makes it possible to rotate
the sample in situ. Calculating the difference between
the specific heat measured in the magnetic field parallel
and perpendicular to the conducting plane, C⊥  – C|| = ∆C,
we obtained a reliable value of the specific heat anisot-
ropy ∆C.

3. RESULTS AND DISCUSSION

In Fig. 1, we plot the low-temperature specific heat
anisotropy ∆C of the layered organic superconductor κ-
(BEDT–TTF)2Cu(NCS)2 divided by the temperature.
We can see that there are two regions for each curve in
Fig. 1: one is below Hc2⊥  (the upper critical field per-
001 MAIK “Nauka/Interperiodica”
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pendicular to the conducting layers) and the other is
above this field.

We first note that, except in the region near Hc2⊥ , all
the curves coincide with each other. Using the data
from [8], we can conclude that much below Hc2⊥ ,

(1)

and at all fields,

(2)

where A1 and A2 are some constants. The field depen-
dence of C⊥  coincides with the one reported in [8],
although it is different from the one reported in [4],
where a more abrupt increase of the electronic density
of states in the magnetic fields below 0.03 T was
observed.

The linear dependence of the specific heat on the
magnetic field follows from the London model. It gives
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Fig. 1. The anisotropy of the field dependence of the specific
heat at low temperatures. Inset: the extracted specific heat
perpendicular (C⊥ ) and parallel (C||) to the conducting lay-
ers.

Fig. 2. The angular dependence of the specific heat at 0.5 K
and various fields.
JOURNAL OF EXPERIMENTAL 
the electronic specific heat expressed as [11]

(3)

where Φ0 is the flux quantum, Hc2(T) is the upper criti-
cal field, and λ(T) is the effective penetration depth in
the plane perpendicular to the magnetic field. In the
BCS approximation, Eq. (3) leads to the following
field dependence of C⊥  (see [12]) at the temperatures
T/Tc ! 1:

(4)

with Cn being the electronic specific heat in the normal
state. We recall that the London model, which is valid
in the region Hc1 ! H ! Hc2, neglects the Pauli break-
ing effect and, therefore, Hc2 in Eq. (4) is actually the
orbital upper critical field.

We note that the applicability of the London model
does not depend on the superconducting pairing mech-
anism. The only important condition is a slow spatial
variation of the order parameter over the length scale of
the penetration depth. This condition is easily satisfied
if the penetration depth of the magnetic field is much
larger than the coherence length and the magnetic field
is much lower than the upper critical field. In our case,
the field dependence of the specific heat at low temper-
atures is almost linear up to the upper critical field.

Considerably above Hc2⊥ , the data for the tempera-
tures below 1.6 K almost coincide with each other. This
indicates a BCS-like nodeless low-temperature super-
conducting state with the final gap in the excitation
spectrum of the quasiparticle.

Using Eq. (4), we determined the upper critical field
at the zero temperature as Hc2⊥  (0.5 K) = 4 T. The same
value is obtained if we find the crossing point of the two
linear branches. This is less than the value of about 6 T
reported by Sasaki et al. [13] and that about 5 T
reported by Belin et al. [14], which were determined
from the magnetic torque and the heat conduction mea-
surements, respectively. On the other hand, this is very
close to the field of irreversibility at low temperatures
reported in [13].

We note that the specific heat dependences on the
magnetic field parallel to the layers is too strong for the
expected Josephson coupling between the layers (see
[15]). This problem requires a more detailed investiga-
tion of the low-temperature state for this orientation of
the magnetic field. At present, we do not have any rea-
sonable explanation of this fact.

The angular dependence of the specific heat is dem-
onstrated in Fig. 2. It is noteworthy that the specific
heat is almost independent of the angle in the region
±3° near the direction parallel to the conducting plane.
We do not know the reason for this behavior but it can
hardly be explained by the misalignment domain struc-

C H T,( )
TΦ0H

32π2
--------------- ∂2

∂T
2

--------- 1

λ 2
T( )

--------------
α Hc2 T( )

H
--------------------- ,–≈
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H

Hc2⊥ 0( )
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ture within the sample (with the planes inclined with
respect to each other): such a misalignment has not
been observed up to now [16].

4. CONCLUSION
In summary, we have demonstrated the nodeless

superconductivity in κ-(BEDT–TTF)2Cu(NCS)2. The
field dependence of the specific heat at the field direc-
tion parallel to the plane demonstrates the behavior that
seems to be incompatible with the Josephson coupling
between the layers. Further investigations are necessary
in order to solve this problem. In addition, we estimated
the upper critical field perpendicular to the layers to be
about 4 T.
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Abstract—A mechanism of the formation of an exponentially large number of metastable states in magnetic
phases of disordered Ising magnets as a result of condensation of fractal delocalized modes near the localization
threshold is suggested. The thermodynamic properties of metastable states are studied in the effective-field
approximation in the vicinity of transitions in magnets with zero uniform magnetization in the ground state such
as dilute antiferromagnets, spin glasses, and dilute ferromagnets with dipole interaction. These properties are
shown to determine the parameters of nonequilibrium processes in the glassy phase, namely, the shape of the
hysteresis loop, the thermodynamic values in field-cooled and zero-field-cooled regimes, and the thermorema-
nent and isothermal remanent magnetization values. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A characteristic feature of disordered magnets is the
appearance of many metastable states accompanying
magnetic transitions in them. These states cause irre-
versibility phenomena in the response of magnets to
changes in the external magnetic field and temperature,
such as the dependence of thermodynamic parameters
on the order and rate of these changes, the appearance
of hysteresis loops, whose shapes change depending on
the amplitude of the applied field, etc. [1–4]. The irre-
versibility phenomena are inherent in all known types
of magnetic disorder in the corresponding inhomoge-
neous magnetic phases, from dilute magnets with non-
magnetic atom impurities [2, 4] to spin glasses existing
in crystalline solid solutions of ferromagnets with anti-
ferromagnets [1, 3].

Evidences for the existence of metastable states,
whose number exponentially depends on the number of
spins, have been obtained in numerical studies of sev-
eral models of disordered magnets with short-range
exchange [5–8]. A theoretical description of related
nonergodicity phenomena in the majority of models
also requires the use of numerical methods, e.g., see [1,
4, 9].

The most important analytic results were obtained
for the Sherrington–Kirkpatrik spin glass model with
an infinite interaction radius. In this model, the noner-
godicity region was found to be bounded by finite fields
lower than the Almeida–Thouless HAT field [10]. The
thermodynamic parameters for field-cooled and zero-
field-cooled regimes with subsequently applying it [1]
were determined within the replica symmetry breaking
scheme [11] and using the concept of the hierarchy of
macroscopic relaxation times [12]. This is, however,
1063-7761/01/9206- $21.00 © 21038
not an exhaustive account of information about irre-
versible processes obtained in terms of this model.
Although this approach is extensively used in studying
other effective-field models, e.g., see [13, 14], it
remains unclear how the methods suggested in [11, 12]
can be used to describe all variety of irreversible pro-
cesses related to transitions between various metastable
states.

At the same time, a theoretical description of noner-
godic effects would be quite obvious and simple if the
physical properties of metastable states of disordered
magnets, their regions of existence, and points of pos-
sible phase transitions between them at H < HAT were
known. In infinite-range effective-field models, this
information can in principle be obtained by studying
(nonaveraged) equations for local magnetic moments.
The best known example of using this approach is the
Thouless–Anderson–Palmer (TAP) equations in the
same Sherrington–Kirkpatrik model [15]. Although the
number of solutions to these equations was shown to be
exponentially large [16], their explicit form could not
be determined by analytic methods. It is not even clear
how many of these solutions correspond to thermody-
namic potential minima and in what way barriers,
which diverge in the thermodynamic limit, appear
between them.

In addition, the results of studying TAP equations
for a large but finite interaction radius [17] cast doubt
on the possibility of using infinite-range models as a
good approximation for describing real disordered
magnets. In [17], attention was for the first time called
to consequences of the qualitative difference between
the spectrum of a Gaussian ensemble of random
exchange matrices in the Sherrington–Kirkpatrik
001 MAIK “Nauka/Interperiodica”
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model, in which all eigenvectors are delocalized, and
the spectrum of short-range matrices with localized
states at its tails [18]. According to [17], the condensa-
tion of local modes in a three-dimensional spin glass
with a fairly large but finite interaction radius can
change the character of the transition by excluding the
possibility of the condensation of delocalized modes if
the critical index of the localization radius ν > 2/3.
Although such a situation with the absence of metasta-
ble states can hardly arise in most real disordered mag-
nets, these results show that qualitative peculiarities of
the spectral characteristics of random exchange should
be taken into account.

At the same time, studies of the spectra of various
ensembles of short-range random matrices showed that
all of them had like structures with localized states near
the spectrum boundaries and a fractal structure of
eigenvectors near the localization threshold [18–20]. It
can therefore be assumed that the universal character of
irreversibility phenomena in disordered magnets with
different short-range random exchange is related pre-
cisely to the similarity of their spectral characteristics.
The general mechanism of the appearance of many
metastable states in such systems can be virtually
simultaneous condensation of a macroscopically large
number of almost overlapping and weakly interacting
fractal modes, which are close to the localization
threshold.

It should be noted that the finiteness of the interac-
tion radius by no means rules out the possibility of a
fairly accurate quantitative description of such a transi-
tion mechanism at the level of the effective-field
approximation. The matter is that a macroscopically
large number of condensing modes (order parameter
components) substantially decreases the number of
noncondensing modes with close eigenvalues (order
parameter fluctuations) in comparison with a homoge-
neous magnet of the same dimensionality. It can there-
fore be expected that the Ginzburg parameter should be
noticeably lower in such a transition than in homoge-
neous magnets for all ensembles of random short-range
exchanges.

Based on these ideas, we make an attempt to con-
struct a phenomenological effective-field theory of dis-
ordered Ising magnets with zero magnetization in the
ground state; this theory uses heuristic assumptions on
the form of fractal eigenvectors of exchange integral
matrices. Within this approach, we are able to naturally
explain the appearance of multiple metastable states in
inhomogeneous magnetic phases, and the use of some
simplifying assumptions allows a complete analytic
description of the thermodynamic properties of these
states in the vicinity of phase transitions to be obtained.
These results in turn make it possible to determine the
parameters of arbitrary irreversible processes and, in
particular, to obtain the first analytic expressions
describing the shape of hysteresis loops at an arbitrary
field amplitude and the field and temperature depen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
dences of remanent magnetizations in magnets of the
types specified above.

2. EFFECTIVE-FIELD APPROXIMATION
FOR DISORDERED ISING MAGNETS

The Hamiltonian of a disordered Ising magnet has
the form

(1)

where Jij is the matrix of random exchange integrals
and Si = ±1. In most realistic models, Jij is only nonzero
if the distances between lattice sites |ri – rj | do not
exceed several radii of the nearest crystal lattice coor-
dination spheres, and the Jij value itself is bounded,

Here, we will consider precisely such models. The
effective-field approximation for Hamiltonian (1)
reduces to replacing the Jij matrix by the projector onto
its maximum eigenvalue J,

(2)

Here,  are normalized eigenvectors of the Jij matrix
corresponding to the largest (generally, degenerate in
multisublattice antiferromagnets) eigenvalue J and α =
1, …, N0.

As a result, the Hamiltonian becomes a function of
the (multicomponent) order parameter,

,

and it only remains to calculate the entropy

(3)

to obtain the nonequilibrium thermodynamic potential

Minimizing F with respect to ηα allows us to obtain
equilibrium thermodynamic parameter values that cor-
respond to the deepest minimum and metastable state
parameters that correspond to shallower minima. In
particular, we can find the average spin values

(4)

The results obtained using this approximation may
give a qualitative and, in certain instances (at fairly

*
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large interaction radii or weak interactions of various
modes), a fairly accurate quantitative description of the
thermodynamics of second-order transitions in homo-
geneous magnets. We therefore believe that it would be
natural to apply the effective-field approximation to
models of disordered magnets with random exchange.
It would then be sufficient to average the results
obtained within the scheme described above over ran-

dom J and  values. The thermodynamics of disor-
dered magnets would then be qualitatively similar to
the thermodynamics of ideal magnetic crystals. In par-
ticular, in inhomogeneous magnetic phases, multiple
metastable states would be absent.

The most probable reason for the appearance of an
exponentially large number of metastable states is the
special structure of the spectrum and eigenvectors of
the Jij random matrix. Indeed, the eigenstates of the Jij

random matrix with the properties described above are
localized in the vicinity of the upper and lower spec-
trum boundaries [18]. The description of a transition in
a disordered magnet therefore requires that the maxi-
mum eigenvalue in (2) be replaced by a somewhat
smaller eigenvalue J at the localization threshold; that
is, the eigenvalue which is maximum among the eigen-
values with delocalized eigenvectors. This requirement
arises because a macroscopic phase transition can only
occur when the delocalized spin configuration under-
goes condensation, whereas the condensation of local
configurations with large eigenvalues (transition tem-
peratures) that precedes the macroscopic transition cor-
responds to a special transition to the Griffiths state,
which is not accompanied by noticeable anomalies of
thermodynamic values [21, 22]. However, note that,
according to [17], sequential condensation of local
modes in a three-dimensional spin glass with a fairly
large interaction radius can make delocalized modes
stable, and no macroscopic transition then takes place.
In this work, we assume that the interaction radius is
sufficiently small for such a transition to nevertheless
occur.

At the same time, it appears quite probable that, in
most random realizations, the condensation of a single
delocalized spin configuration with an eigenvalue clos-
est to the localization threshold is insufficient for stabi-
lizing the new phase. It is likely that, for dimension d >
2, the Jij eigenvectors have a fairly loose (fractal) struc-
ture near the threshold and almost decompose into sep-
arate localization regions only connected by quasi-one-
dimensional chains [19, 20]. In other words, there are
many sites with the structure resembling that of the per-

colation cluster [23], where N( )
2
 @ 1, whereas

N( )
2
 ! 1 on the other sites. This substantially distin-

guishes modes close to the localization threshold from
modes within the continuous spectrum and eigenfunc-
tions of translationally invariant Jij matrices, for which

N( )
2
 ≈ 1 on almost all lattice sites.

ci
α

ci
α

ci
α

ci
α
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Evidence for the existence of such a fractal structure
of modes at the localization threshold were obtained in
many numerical studies of various statistical ensembles
of short-range random matrices, see [19, 20]. Accord-
ing to (4), the condensation of one such mode results in
the appearance of fairly high mean spin values only on
a loose fractal structure, which is insufficient for stabi-
lizing modes with lower eigenvalues, which are gener-
ally localized on other fractal sets of sites. More
exactly, the condensation of the first delocalized mode

with vector  can only stabilize those modes with Jα < J
that noticeably overlap with it; that is, such modes that

 @ 1 for most of the sites where N( )
2
 @ 1. For

this reason, the condensation of the mode closest to the
localization threshold will, as temperature decreases,
be followed by the condensation of another loose mode
that almost does not overlap with the first one, next, a
mode that almost does not overlap with the first and
second modes undergoes condensation, etc.

Such a sequential condensation of nonoverlapping
modes with decreasing eigenvalues occurs until fairly
large mean spin values appear on almost all lattice sites.
Generally, in the intervals between the eigenvalues of
modes undergoing condensation, there can exist an
arbitrary number of modes that do not condense
because they substantially overlap with the already
condensed ones. In the effective-field approximation,
such modes are order parameter fluctuations, which can
be ignored.

The fractal structure of modes undergoing conden-
sation presupposes that their number should diverge as
N  ∞. Indeed, if we assume that the sets of sites on
which the modes under consideration are predomi-
nantly localized have fractal dimension df < d (that is,

the number of sites in these order regions is ), the
number of condensed modes N0 can be estimated at a

value of the order of .

The suggested mechanism allows us to easily
explain the appearance of an exponentially large num-
ber of metastable states in inhomogeneous magnetic
phases. Indeed, the condensation of one mode in a zero
field results in the formation of two stable states related
to global spin flip, and each subsequent condensation
doubles their number. It follows that the condensation

of N0 modes results in the formation of  ~

exp( ln2) stable states. Each such state is related
to other via spin flips of independent groups of spins
corresponding to fractal modes. Precisely this structure
of spin configurations of ground states was observed in
recent numerical studies of a three-dimensional spin
glass model with binary random exchange [8], which is
unambiguous evidence in favor of the mechanism
under consideration.

ci
0

Nci
0ci
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As the eigenvectors of condensing modes  almost

do not overlap (that is,  ! 1 for most sites at α ≠ β),
our analysis can be considerably simplified. The space

of such  can be approximated by a set of nonoverlap-

ping (normalized)  vectors (  = 0 for α ≠ β),

which coincide with the  eigenvectors in the regions

of their predominant localization [where N( )2 @ 1]
and equal zero outside these regions. In the subspace

spanned by (clearly, orthogonal)  vectors, Jij is
almost diagonal,

Here, Jαβ ia a small nonnegative definite matrix,

It is then simple to determine the effective-field thermo-
dynamic potential, which depends on the multicompo-
nent order parameter

[θ(x) is the Heaviside step function] and the (quasi-)local
magnetizations

The potential has the form

(5)

(6)

Here, Trα denotes summing over the spin configura-

tions of those sites where  ≠ 0. Note that, according
to the aforesaid, Nα  ∞ as N  ∞ and

and the uniform magnetization is
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--- Nα Nβ Jδαβ Jαβ–( )lα lβ

α β, 1=

N0

∑–=

– T NαSα lα mα,( )
α 1=

N0

∑ NHm,–

Sα lα mα,( )

=  Nα
1– Tr αδ

Nα
1/2

lα Σei
α

Si,
δ

Nα mα ΣSiθ ei
α( ),

ln .

ei
α

Nα N ,≈
α
∑
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Equation (5) includes the dependence on a small ran-

dom matrix Jαβ and random vectors , the form of
which is determined by the type of the Jij ensemble of

random matrices. In some instances, the form of  can
be specified, as, e.g., in a spin glass with binary random
exchange,

where each configuration of bonds includes nonfrus-
trated d-dimensional clusters (that is, clusters charac-
terized by a unique spin configuration σi corresponding
to the energy minimum) and

It follows that delocalized eigenvectors with the largest
eigenvalues can approximately be constructed from
local spin configurations through combining certain
nonfrustrated d-dimensional clusters by branching
chains without closed loops, which are also nonfrus-
trated at any bond configuration [24]. As a result, the

form of  vectors will be

(7)

where  are the spin configurations constructed as
described above on nonfrustrated fractal subsets of
sites.

In dilute ferromagnets and antiferromagnets, vec-

tors  can also be represented in form (7) through
combining d-dimensional ferromagnetic (antiferro-
magnetic) clusters of the percolation cluster of bonds

by chains. In a dilute ferromagnet,  = 1, and in a

dilute antiferromagnet,  = . Note however

that expressions for  can substantially differ from (7)
for some actual bond configurations. We will neverthe-
less assume that, in most configurations, (7) fairly well

approximates  and can be used to estimate the
ensemble-average of the sums

(8)

We will show that the thermodynamics in the vicinity
of the transition to an inhomogeneous magnetic phase
weakly depends on the detailed form of random vectors

 and is only determined by several constants of form
(8).

The advantage of representing F by (5) is entropy
additivity. However, if Jαβ is an arbitrary random

m
Nα

N
-------mα .

α
∑≈

ei
α

ei
α

Jij Jmax,±=

Jijσi 2dJmaxσi.≈

ei
α

ei
α Nα

1/2– σi
α ,=

σi
α

ei
α

σi
α

σi
α 1–( )

kri

ei
α

ei
α

unα Nα
n/2 1–= ei

α( )n
.

i

∑

ei
α
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matrix, equation (5) is still difficult to analyze. To sim-
plify it, we can use the observation that the eigenvalues
of Jαβ distributed between zero and some J0 ! J should
condense to zero, because eigenvectors nonoverlapping
with all preceding eigenvectors become rarer as the dis-
tance to the localization threshold increases. As the
mean interval between neighboring eigenvalues is of
the order of 1/N, small eigenvalues of Jαβ may be of the
same order. This allows Jαβ to be approximately
replaced by the projector to some (random) rα vector
whose properties are determined by the type of the
ensemble of random matrices Jij,

(9)

Generally, the assumption that a single eigenvalue
of the Jαβ matrix is finite, and all the others are of the
order of 1/N, is fairly rough. This assumption leads to
the coincidence of the points of condensation of all
modes except one and makes the transition sharper,
whereas, in reality, the condensation of modes can take
place in the whole interval from T = J to T = J – J0. At
the same time, such an assumption allows a fairly sim-
ple analytic description to be obtained for the thermo-
dynamics of all metastable states. This description
qualitatively agrees with experiment and can be used as
a starting point for constructing a more accurate theory
taking into account the distribution of condensation
temperatures for fractal modes.

We will show that the form of rα in (9) can be found
taking into account that the Jαβ matrix determines the
type of the ground state of the crystal. As a result, ther-
modynamic potential (5) takes the form

(10)

The partial entropies (6) can be written as

where the ϕα and ψα values corresponding to the max-
imum are found from the equations

Jαβ J0rαrβ, rα
2

α 1=

N0

∑ 1.= =

F
J
2
--- Nα lα

2

α 1=

N0

∑–=
J0

2
----- Nαrα lα

α 1=

N0

∑ 
 
 

2

+

– T NαSα lα mα,( )
α 1=

N0

∑ NHm.–

Sα lα mα,( ) 2 max ϕmα ψlα+ ∫–ln=

– Nα
–1/2 θ ei

α( ) ϕ ψei
α Nα+( )coshln

i

∑ ,

ϕ, ψ
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(11)

Differentiating potential (10) with respect to lα and mα
yields the equation of state

(12)

Stable solutions to (11) and (12) corresponding to F
minima are determined by the condition of positive def-
initeness of the matrix

(13)

At H = 0 and T = 0, it follows from (11) and (12) that

We therefore have  stable solutions to (11) and (12)
that differ in signs of lα.

If the ensemble of random Jij matrices is such that,
in the majority of realizations, the transition to the state
with m = 0 occurs, than the energy for states with m = 0

can be minimized by setting  = cm. At
arbitrary signs of lα, this condition is satisfied by only
one rα vector,

(14)

Here, c' is the normalization constant.
We will confine our consideration to disordered

magnets with m = 0 in the ground state, such as dilute
antiferromagnets, spin glasses, and dilute ferromagnets
with dipole interactions [25]. By virtue of the proper-

ties of random vectors  in dilute magnets and binary
spin glasses discussed above, (14) can be written in the
form [see (7) and (8)]

(15)

mα Nα
1– ϕα ψαei

α Nα+( ),tanh
i

∑=

lα Nα
1– ei

α ϕα ψαei
α Nα+( ).tanh

i

∑=

J0Nα
1/2– rα Nβ

1/2rβlβ

β
∑ Jlα– Tψα+ 0,=

Tϕα H .=

Gαβ δαβ T 1 ei
α( )2

i

∑–




=

∫ × ϕα ψαei
α Nα+( )tanh

2
1–

J–




J0rαrβ.+

mα Nα
1– ei

α lα( ), lαsgn
i

∑ Nα
1/2– ei

α .
i

∑= =

2
N0

Nαrα lαα 1=

N0∑

rα c ' ei
α( )/ ei

α .
i

∑sgn
i

∑=

ei
α

rα u1α
Nα

Nβu1β
2

β
∑
----------------------

 
 
 
 
 
  1/2

.=
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To summarize, a study of metastable states in magnets
of the types specified above reduces to the search for
stable solutions of equations of state (11) and (12) with
rα in form (15). The spin configurations corresponding
to the lα and mα values obtained are determined by the
equation

(16)

Averaging the solutions over disorder reduces to

averaging over random  vectors and over J0 ! J.
Note that the localization threshold J is not a random
value and characterizes the whole ensemble of random
matrices Jij.

The smallness of J0 > 0 means that the correspond-
ing distribution function should have a fairly narrow
bounded support; that is, the possible J0 values should be

smaller than some  > 0 satisfying the condition  ! J.
In contrast to the case of the sums (8) of a macroscopic
number of terms, there is no reason to consider J0
fluctuations self-averaging; that is, to assume that

   as N  ∞. The thermodynamic
parameters of metastable and equilibrium states in an
inhomogeneous magnetic phases will therefore gener-
ally be non-self-averaging values, being determined by
different J0 values in different samples. Note that the
absence of self-averaging equilibrium parameters was
also observed in numerical studies of disordered mag-
netic models [1, 26].

3. THERMODYNAMICS IN THE VICINITY 
OF THE TRANSITION

In the absence of a field, equations of state (11) and
(12) have a unique paramagnetic solution at T > J and
many stable solutions at T < J. It follows that, at T = J
and H = 0, the transition from the paramagnetic to inho-
mogeneous magnetic phase occurs.

Consider the thermodynamics of the model in the
vicinity of these transitions. It is determined by the con-
dition

(17)

Equations (11), (12), and (15) then give equations for
the magnetizations of condensed modes mα,

(18)

and lα can be written through mα,

Si〈 〉 T Nα
1/2– ei

α lα u1α– mα

1 u1α
2–

-------------------------
α
∑=

+ Nα
1– θ ei

α( )
mα u1α lα–

1 u1α
2–

-------------------------.
α
∑

ei
α

J J

J0
k〈 〉 J0〈 〉 k

lα mα,  ! 1.

τmα
τ0u1α

2
mN

Nβu1β
2

β
∑
----------------------

u4αmα
3

3u1α
2

---------------+ +
u1α

2 H
J

------------,=
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(19)

Here, τ = 1 – J/T and τ0 = J0/J > 0.
Gaussian (13) can be rewritten as

It follows from (17) and (18) that H ! J, τ ! 1, and
τ0 ! 1. The last condition also follows from the small-
ness of τ.

It is natural to assume that the sums of a macro-
scopic number of terms (8) are self-averaging and can
be replaced by the mean values. On the assumption
that, for the majority of random realizations, approxi-
mation (7) is valid on the majority of sites, we obtain

Let us also assume that the  constants are indepen-
dent of mode numbers α; that is,

(20)

Generally, this approximation cannot qualitatively
change the results. Abandoning it would only lead to
some fluctuations in the solutions. At the same time, it
allows equations (18) to be substantially simplified and
makes them open to analytic treatment.

The  constant can be estimated from equation (7).
It follows from (7) and (8) that

where  and  are the fractions of positive and neg-

ative  values, and we always have  ≤ 1. In a dilute

dipole ferromagnet,  = 1. In a dilute antiferromagnet,

the  –  difference can be nonzero only because of
noncompensated spins on the surface of d-dimensional

antiferromagnetic clusters, on which  are predomi-

nantly localized. For this reason,  –  is of the
order of the ratio between the number of sites in
d-dimensional clusters and the number of sites on their
surface; that is,

where D is the mean diameter of d-dimensional clusters
(in lattice parameter units). Clearly, D is a function of
the concentration of antiferromagnetic atoms and tends
to infinity when the concentration tends to one.

u1α lα mα=
u1α

2 1–( )H
J

--------------------------
u3α u1α– u4α( )mα

3

3u1α
3

-----------------------------------------.+ +

T 1– Gαβ τ
u4αmα

2

u1α
2

---------------+
 
 
 

δαβ= τ0rαrβ.+

u4α 1, u3α u1α .= =

u1α
2

u1α
2 u1

2= N0
1– u1α

2 .
α
∑≡

u1
2

u1
2 N0

1– να
+ να

––( )2
,

α
∑=

να
+ να

–

ei
α u1

2

u1
2

να
+ να

–
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α

να
+ να

–

u1
2 D 2–≈ ,
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The  value in a binary spin glass depends on the

concentration of ferromagnetic bonds p;  = 1 for p >

1 – pc and  = D–2 for p < pc, where pc is the threshold
of percolation over bonds on a lattice of magnetic

atoms. At pc < p < 1 – pc, the dependence of  on p can
qualitatively be described by the formula

We will also replace Nα by their average values

The introduction of reduced magnetizations µα, 

in place of mα and the use of dimensionless field h =
H/J allows (18) to be written as

(21)

where

At τ > 0, Eqs. (21) have a single paramagnetic solu-
tion with equal µα = µ. Let us denote this solution by µ0.
It satisfies the equation

(22)

At τ < 0, up to  – 2 stable inhomogeneous solutions
can exist in addition to µ0. These solutions have the form

where σα = ±1, and ϕ = ϕ(τ, τ0, h, ∆) is the solution to
the equation

(23)

(24)

The ∆ parameter varies in the interval (–1, 1) and deter-
mines the degree of inhomogeneity of the metastable
state. The ∆ = ±1 values correspond to a paramagnetic
state with µα = µ. All states with equal ∆ have equal uni-
form magnetization values,

(25)

Edwards–Anderson parameters,

(26)

u1
2

u1
2

u1
2

u1
2

u1
2 p pc– D 2–+ 1 p– pc–( )

1 2 pc–
----------------------------------------------------------.=

Nα N /N0.=

µα mα /u1,=

u1

τµα τ0µ+
µα

3

3
------+ h,=

µ N0
1– µα .

α
∑=

τ τ 0+( )µ0
µ0

3

3
-----+ h.=

2
N0

µα τ– ϕsin 3σα ϕcos+( ),=

3τ0 3∆ ϕcos ϕsin+( ) 2τ 3ϕsin– 3h τ 1/2–= ,

∆ σα /N0.
α
∑=

µ τ– ϕsin 3∆ ϕcos+( ),=

q N 1– Si〈 〉 T
2

i

∑= m2– N0
1– µα

2

α
∑≈ u1

2µ2–

=  3τ ∆2 1–( ) ϕcos
2

1 u1
2–( )µ2,+
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and also the same thermodynamic potential

(27)

These states are stable at τ +  > 0, which is equiva-
lent to the inequality

(28)

As τ0 > 0, the left-hand side of (23) is a monotonically
increasing function of ϕ at |ϕ| < π/6, and there is there-
fore only one stable solution for ϕ at a given ∆ value,
which exists in the interval of fields h– < h < h+,

(29)

(30)

In this interval, solution (23) is fairly well approxi-
mated by the quadratic field function

(31)

which gives exact ϕ(h±) = ±π/6 and ϕ(∆hAT) = 0 values.

It follows from stability condition (27) and equali-
ties (23) and (25) that metastable states are stable in the
region

which is a band on the µ, h plane. Magnetization is a
monotonically increasing function of h and ∆ within
this band, and the field dependences of magnetization
are a family of nonintersecting curves bounded from
above and below by the µ0(h) curve, as is shown in
Fig. 1.

Clearly, the region of the existence of metastable
states in Fig. 1 determines the shape of the hysteresis
loop, which appears as a response to a slowly varying
external field, whose amplitude exceeds

(32)

The shape of the loop changes as temperature varies,
because, at –2τ < 3τ0, only a part of the metastable
states are stable at h = 0 (see Fig. 1a), whereas, at 3τ0 <
–2τ, all metastable states are stable at h = 0 (Fig. 1b).
Note that if the field amplitude is smaller than he, the
shape of the hysteresis loop is determined by the field
dependences of magnetization in the corresponding

4F
TN
------- τ0 u1

2τ+( )µ2= τq 3hµ– 4 2.ln–+

µα
2

ϕ π/6.<

h± 3hAT
∆
2
---= hc,±

hAT 3τ– τ0, hc τ–
τ0

2
---- 2τ

3
-----– 

  .= =

ϕ π
12hc

----------- 2h 3hAT∆-----–≈

–
4 2 3–( )∆hAT h+ h–( ) h h––( )

4hc
2 2 3–( )2

– ∆2hAT
2

--------------------------------------------------------------------------- ,

9 τ0µ h–( )2 4τ3,–<

he hc=
3hAT

2
---------------+ .
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A PHENOMENOLOGICAL THEORY OF METASTABLE STATES 1045
metastable states. Consider the equations for (dimen-
sionless) magnetic susceptibility χ = ∂µ/∂h,

and specific entropy S and specific heat capacity C,

These equations give an idea of the character of field
and temperature dependences of the thermodynamic
values in various metastable states. For instance, at the
boundaries of the stability region at h = h±, q and χ–1

have the smallest values,

(33)

and the magnetization, entropy, and heat capacity are
given by

(34)

As |h| approaches he given by (32), more and more uni-
form states with ∆  ±1 remain stable and their mag-

netization tends to µ0(±he) = ±2 . The magnetic
susceptibilities and heat capacities of these states, how-
ever, tend to limits different from the corresponding
values in the paramagnetic state,

In the middle of the stability band at ϕ = 0 or h = ∆hAT,
we have

As inhomogeneity decreases when ∆  ±1 or h 
±hAT, the µ, χ, S, and C values tend to their values for
the paramagnetic phase.

The Almeida–Thouless hAT field (30) determines the
phase transition point to the paramagnetic phase (accu-
rate to terms of the order of 1/N0). To show this, let us
find the ∆eq values corresponding to the deepest states.

χ 1– τ0=
2τ 3ϕcos

ϕcos 3∆ ϕsin–
-----------------------------------------,–

S 2
q u1
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2

--------------------,–ln=

C 1 χ+=
3
2
---

τ0 1 ∆2–( )
1 3∆ ϕtan–
-------------------------------- τ0– τ– .

q
9
4
---τ ∆2 1–( )=

1
4
--- 1 u1
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2
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--- 5 3∆±( ),+ln=

C
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τ
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1– τ τ 0 µ0
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2

τ τ 0 µ0
2+ +

-------------------------.=

µ ∆ 3τ– , q 3τ 1 u1
2∆2–( )–= = , χ 1– τ0 2τ ,–=

S 2
3τ
2
-----, C+ln

3
2
--- 1 ∆2 τ0

τ0 2τ–
----------------– 

  .= =
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Differentiating potential F (27) with respect to ∆ and
using (23), (25), and (26), we obtain

It follows that the smallest potential value is character-
istic of states with such ∆ for which ϕ = 0 at given τ and
h. Clearly, solutions to (23) with ϕ = 0 exist for ∆ =

h/hAT, which is only possible if h2 < . If h2 > ,
F(∆) has no minimum in the domain of definition of
∆2 < 1, and a minimum is attained at its boundaries at
∆eq = . It follows that transitions to the paramag-
netic state occur at h = ±hAT.

As ∆ is a rational value of the form 2n/N0 – 1 [see

(24)], ∆ cannot exactly equal h/hAT at all h2 < . For
this reason, ∆eq corresponding to the smallest F value is
determined by the condition of a minimum of |∆ –
h/hAT| and can be represented in the form

∂F
∂∆
------ NT ϕ ϕcos

3
sin–= , ∂2F

∂∆2
---------

ϕ 0=

0.>

hAT
2 hAT

2

hsgn

hAT
2

∆eq
2n
N0
------ 1– 

  θ N0
2– εn

2–( )
n 1=

N0 1–

∑=

+ ( h)θ h2 N0 1–
N0

--------------- 
 

2

– hAT
2 ,sgn

µ

0 hAT he h

(b)

hAT he h

(a) µ

Fig. 1. Field dependences of magnetization of metastable
(dashed lines) and stable (solid lines) states in the vicinity of
the transition for (a) 2τ < 3τ0 and (b) 3τ0 < –2τ.
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(a)

1
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1'

3'
2'

h

1

2

3

hAT hc he

(b)

1, 1'

1'

3'

τ

1

3, 

0

Fig. 2. (a) Field and (b) temperature dependences (at h = 0) of thermodynamic parameters in the FC and ZFC modes: (1) FC sus-
ceptibility, (1') ZFC susceptibility, (2) FC susceptibility, (2') ZFC susceptibility, (3) FC Edwards–Anderson parameter, and (3') ZFC
Edwards–Anderson parameter.
where

It follows that, at h2 < , a series of first-order transi-
tions occur between inhomogeneous states in the fields

The corresponding ϕeq value at h2 <  is

Substituting ∆eq and ϕeq into (25) and (26) yields equi-
librium µeq and qeq values for N0  ∞,

Differentiating µeq with respect to h, we obtain

The equilibrium entropy is found by differentiating the
equilibrium potential, which, accurate to terms of the

order of , has the form

εn
h

hAT

-------- 2n
N0
------–≡ 1.+

hAT
2

hn hAT
2n 1+

N0
--------------- 1– 

  .=

hAT
2
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3τ0

τ0 2τ–
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h
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Feq F ∆ h
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--------= 
 = TSconf ,–
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where configurational entropy Sconf is determined by
the logarithm of the number of states with equal
potentials F,

The Sconf value is of the order of N0/N and can be
ignored. For N0  ∞, this gives

The equilibrium heat capacity is given by

Note that µeq, qeq, and Seq are continuous at h2 = ,
whereas χeq and Ceq experience jumps in the transition
to the paramagnetic phase.

Note also that the mean equilibrium parameters are,
generally, unobservable values because of the presence
of macroscopic barriers separating metastable states.
Experimental values close to these parameters can,
probably, be obtained by cooling the system in a low
constant field (field cooled mode, FC) at temperatures
close to the transition temperature [1, 3], when the bar-
riers between metastable states are comparatively low,
and the system has sufficient time to attain the deepest
state (or a state close to it) if cooled fairly slowly. When
the system is cooled in the absence of a field to some
temperature at which the field is switched on (zero field
cooled mode, ZFC), the observed values differ from
equilibrium, because the system then reaches one of the
states with ∆ = 0 and remains in this state at h < hc (30)
(see Fig. 1), and the results of measurements corre-

Sconf N 1– N0

N0 1 ∆eq–( )/2 
 
 

.ln=

Seq 2
3τ
2
-----θ hAT

2 h2–( )+ln=
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2

2
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2–( ).–

Ceq
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2
---θ hAT

2 h2–( )=
µ0

2

τ τ 0 µ0
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-------------------------θ h2 hAT
2–( ).–
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2
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Fig. 3. (a) Field dependences of mTRM and mIRM and (b) temperature dependence of saturation magnetization.
spond to this state. Their values are obtained from the
general formulas at ∆ = 0 and ϕ = πh/6hc[see (31)].

If hc < h < he, the system relaxes to a state at the
boundary of stability region (on the lower branch of the
hysteresis loop) with

Substituting ∆ = ∆ZFC into (33) and (34) (with sign +)
gives thermodynamic parameter values to which the
values observed in the ZFC mode relax at hc < h < he.
Lastly, at h > he, the ZFC parameters correspond to the
paramagnetic state. The field and temperature depen-
dences of the thermodynamic parameters in the FC and
ZFC modes are shown in Fig. 2.

Similarly, proceeding from the intervals of the exist-
ence of metastable states (see Fig. 1) and their parame-
ters, we can find values determined in other arbitrary
nonequilibrium processes in inhomogeneous magnetic
phases. For instance, we can find the thermoremanent
magnetization (mTRM), which persists when the field is
switched off after an FC process, and isothermal rema-
nent magnetization (mIRM), which persists after cooling
in zero field and subsequent switching on of a field for
a finite time interval (longer than the time of intravalley
relaxation) [1, 3]. For instance, it is clear that mIRM is
nonzero only if h > hc, and the expression for this value
can be obtained from (25) at

The mTRM value can also be obtained from (25) by sub-
stituting

∆ZFC
2

3
-------=

h hc–
hAT

-------------.

∆IRM min 1
2hc

3hAT

--------------- 2

3
-------

h hc–
hAT

-------------, , 
  ,=

ϕ IRM ϕ h 0 ∆IRM,=( )≡
3πhAT∆IRM

12hc

-------------------------------.–≈

∆TRM min= 1
2hc

3hAT

--------------- h
hAT

--------, , 
  ,

ϕTRM ϕ h 0 ∆TRM,=( )≡
3πhAT∆TRM

12hc

--------------------------------.–≈
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The field dependences of mTRM and mIRM are shown in
Fig. 3a. At

mTRM becomes field-independent, and at

mIRM also becomes constant and coincides with mTRM.
The saturation magnetization in strong fields is given
by

for both values. Its temperature dependence is shown in
Fig. 3b.

4. CONCLUSION

The most important result of this work is a com-
plete, although qualitative, description of the properties
of all metastable states in magnetic phases of disor-
dered Ising magnets with m = 0 in the ground state. We
also showed how these properties are related to the
parameters of slow nonequilibrium processes. The
results given in Fig. 1 allow the description of an arbi-
trary fairly slow nonequilibrium process with all
sequences of heating, cooling, and field variation imag-
inable. Qualitative agreement of the parameters of
some such processes obtained in this work with exper-
iment and numerical calculations performed in [1–4] is
evidence that the approximations used in (7), (9), (15),
and (20) are justified and that the condensation of a
macroscopic number of fractal modes existing near the
localization threshold can indeed be the physical mech-
anism of the appearance of an exponentially large num-
ber of metastable states. Note once more that the struc-
ture of the set of ground states observed in numerical
calculations of the 3d spin glass model with binary
exchange [8] also lends support to the suggested mech-
anism.

It should also be stressed that all results obtained
within the framework of the accepted approximations
are expressed through the statistic characteristics of the

h hTRM> min
2hc

3
-------- hAT, 

 =

h hIRM> min 2hc he,( )=

µ∞
2

3τ0
--------θ 3τ0 2τ+( ) τ–( )3/2=

+ 3 τ0 τ+( )–[ ] 1/2θ –3τ0 2τ–( )
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matrix of random exchange interactions and contain no
phenomenological parameters. The suggested approach
can therefore be a starting point for constructing a more
accurate quantitative theory of the properties of metasta-
ble states of disordered magnets. Such a theory should
rely on detailed studies of the properties of the eigen-
vectors of random matrices Jij near the localization
threshold, which, are of necessity described at the level
of phenomenological assumptions in this work. The
goal of such a quantitative theory may, in particular, be
testing the universality of the properties of all disor-
dered magnets with m = 0 in the ground state, the
results for which, obtained using the accepted approxi-

mations, only differ by  constant values.
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Abstract—A model of a quantum dot for two interacting electrons is proposed and analyzed. The properties
of the ambient determining the form of the confinement potential for electrons are simulated using the electro-
static field of the image charge. Analytic expressions for the eigenvalues of each subsystem are derived taking
into account the external magnetic field and using the representation of the system Hamiltonian as the sum of
the Hamiltonians of the center of mass and of relative motion on the basis of the method of oscillator represen-
tation [M. Dineykhan and G. V. Efimov, Element. Chast. At. Yadra 26, 651 (1995); M. Dineykhan, G. V. Efimov,
G. Ganbold, and S. N. Nedelko, Oscillator Representation in Quantum Physics, Lecture Notes in Physics,
Vol. 26, Springer, Berlin (1995)]. The relative motion of electrons is responsible for a confinement potential
which differs from the parabolic confinement potential and is a function of the electron effective mass as well
as the characteristics of the image charge. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Advances in modern technology make it possible to
create semiconducting nanostructures (quantum dots)
[1–3] in which a finite number of electrons are “cap-
tured” in a bounded volume. A quantum dot is associ-
ated with a quantum well formed at the interface
between two finite-size semiconductors (such as GaAs
and GaAlAs) owing to different positions of the forbid-
den gaps on the energy scale in these semiconductors.
Besides, external contacts which make it possible to
control the properties of a quantum well also play an
important role. The presence of discrete energy levels
and even the manifestations of the shell structure which
was predicted [4, 5] and experimentally observed [6]
for quantum dots give grounds for treating them as arti-
ficial atoms. The possibility of monitoring and control-
ling the properties of quantum dots attracts consider-
able attention to these objects, which may be used,
among other things, as a new elemental basis for future
generations of computers [2].

Two-electron quantum dots are the simplest exam-
ple of such systems which can be used to trace the
peculiarities of even more intricate complexes.

Using the hypothesis that the effective electron con-
finement potential in a quantum dot corresponds to the
parabolic confinement potential, it is possible to describe
[7–9] the typical features of transport processes [10] and
spin oscillations in the ground state of a quantum dot in a
magnetic field [11]. However, electron correlations
may strongly affect the form of the confinement poten-
tial under certain experimental conditions. For exam-
ple, the description of experiments involving photoe-
1063-7761/01/9206- $21.00 © 21049
mission [12] in a quantum dot requires the introduction
of anharmonic corrections [13] to the parabolic con-
finement potential. A natural question arises concern-
ing the mechanism of the confinement potential forma-
tion in a quantum dot.

What must the conditions be for the formation of,
say, a parabolic confinement potential in a quantum
dot? Which parameters of the system may lead to the
suppression of anharmonism or, on the contrary, give
rise to these effects?

The present work aims at analyzing the mechanism
of formation of the confinement potential in a two-elec-
tron quantum dot in a constant external magnetic field.
The main components responsible for the formation of
the confinement potential in a quantum dot in the
so-called Coulomb-blockade regime include the exter-
nal voltage applied to the layered nanostructure and the
properties of contacts having various geometries and
connecting the quantum dot with the ambient [2, 3]. We
proceed from the fact that quantum-mechanical effects
play a significant role in the description of the mecha-
nism of quantum dot formation. Further, we assume
that a quantum well is homogeneous in its dielectric
properties, while the system on the whole is inhomoge-
neous, and the continuity conditions for the tangential
derivatives of potentials must hold. These assumptions
lead to the introduction of an effective positive image
charge which is associated with external factors.

This approach is well known in analyzing the prop-
erties of insulators in electrostatics [14]. Thus, we
assume that the image potential, which is created, for
one, due to a considerable difference in the permittivi-
001 MAIK “Nauka/Interperiodica”
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ties of the layers forming the quantum dot (e.g., a vac-
uum and a semiconductor or a semiconductor and an
insulator), plays a significant role in the formation of
the confinement potential.1 

We will consider a three-body Coulomb system in
an external magnetic field, which is formed by two elec-
trons and an image charge. It should be noted that in our
formulation of the problem, the image charge may also be
associated with an impurity in the quantum dot.

Our analysis is based on the oscillator representation
method [16], which was successfully applied for calculat-
ing the energy spectrum of the system controlled by the
Coulomb and power potentials as well as by the Coulomb
potential and the Yukawa potential [17]. The material lay-
out is as follows. In Section 2, the model Hamiltonian of
the three-body system, which can be divided into the
Hamiltonian of the center-of-mass system and the
Hamiltonian of relative motion, is considered. In Sec-
tion 3, the Hamiltonian of relative motion is analyzed.
Examples of calculation of the energy spectrum of a
two-electron system in the 2D case on the basis of the
results obtained in Section 3 are given in Section 4. The
main results are summarized in the Conclusion. Some
technical details of the calculations based on the oscil-
lator representation method are given in the Appendix.

2. FORMULATION OF THE PROBLEM

A quantum dot containing a few electrons may be
treated as a model of an atom in which the effective
positive image charge plays the role of the nucleus. Our
task is to determine the confinement potential for the
electrons proceeding from the Coulomb interaction
between the electrons and the image charge in the
quantum-mechanical formalism. For this purpose, we
consider a three-body system with the Coulomb inter-
action in an constant external magnetic field. Let m1,
m2, and m3 be the masses and –Z1e, –Z2e, and −Z3e the
charges of the particles. The Hamiltonian of the system
can be written in the form

(1)

Here, ε and ε0 are the relative and absolute permittivi-
ties and A(r) is the vector potential, which is defined in
the standard manner:

(2)

1 See, for example, the discussion on the role of image potentials in
the formation of excitons in nanostructures of the type of super-
lattices and quantum wells [15].

H
1
2
--- 1

m j

------ P j
e
c
--A r j( )+

2 1
4πεε0
--------------

Z1Z2e2

r1 r2–
------------------+

j 1=

3

∑=

–
1

4πεε0
--------------

Z1Z3e2

r1 r3–
------------------ 1

4πεε0
--------------

Z3Z2e2

r2 r3–
------------------.–

A r( )
1
2
--- B r×[ ] ,=
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where B is the external magnetic field strength. We
introduce the Jacobi coordinates {x, y} and the center-
of-mass coordinates R of the system:

(3)

The confinement potential in quantum dots is charac-
terized by a strong blocking along one of the three coor-
dinate axes (x, y, or z). As a result, low-lying quantum
excitations are determined by the properties of the con-
finement potential along the remaining two axes. Con-
sequently, quantum dots can be regarded from the geo-
metrical point of view as effective 2D systems. The
external magnetic field may be oriented, for example,
in a plane perpendicular to the plane of the quantum
dot. We assume that these planes intersect along a
straight line directed strictly along x; i.e., A(y) = 0. Tak-
ing into account this assumption, we can divide Hamil-
tonian (1) into two parts: the Hamiltonian of the center-
of-mass system

(4)

and the Hamiltonian of relative motion

(5)

Here, ωc = eB/cm* is the cyclotron frequency, m1 =
m2 = m* is the effective electron mass, and the follow-
ing notation has been introduced:

(6)

Due to the presence of the magnetic field, each Hamil-
tonian contains the components of the angular momen-
tum L = –i"[r × ∆r] along the z axis in the intrinsic
coordinate systems. Accordingly, operators  and Lz

are the angular momentum components in the coordi-

r1

m2

m1 m2+
-------------------x

m3

m1 m2 m3+ +
--------------------------------y R,+ +=

r2
m1

m1 m2+
-------------------– x

m3

m1 m2 m3+ +
--------------------------------y R,+ +=

r3
m1 m2+

m1 m2 m3+ +
--------------------------------– y R.+=

Hcm
1
2
---PQ

2 "
2

4
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mt

-------ωc
2ρQ
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2mt

---------"ωcLz+ +=
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1

2M
--------Px

2 1
2µ
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2 m∗ ρx
2

16
------ωc
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+
e2

4πεε0
--------------
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x
----------- e2

4πεε0
--------------
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--------------------–

–
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4πεε0
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------------------- 1

2
---"ωcLxz
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M
1
2
---m∗ m1m2
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ρQ
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nate systems of relative motion (r ≡ x) and of the center
of mass (r ≡ Q).

It should be noted that the Coulomb interaction
makes zero contribution to the Hamiltonian (4) describ-
ing the motion of the center of mass. Solutions for the
center-of-mass Hamiltonian in the presence of a para-
bolic confinement potential were considered for the
first time by Fock and are known in the literature and
the Fock–Darwin levels [18]. However, in the case
under investigation, in which the existence of a confine-
ment potential (e.g., parabolic confinement potential) is
not presumed a priori, the eigenvalues of the center-of-
mass Hamiltonian have the form

(7)

where N = 0, 1, 2, … is the radial quantum number and
M = 0, ±1, ±2, … is the angular momentum quantum
number. In contrast to the Fock–Darwin solutions,
which are determined by the parabolic confinement
potential and cyclotron frequency, the energy spectrum
of the motion of the center of mass in our model is
determined by the kinetic energy of electrons, the
cyclotron frequency and depends on the ratio of the
electron effective mass and the sum of the masses of the
system components. In order to analyze the Hamilto-
nian of relative motion, we go over to new variables

(8)

Further, we assume that the image charge Z3 depends
not only on the effective electric charge Q, but also on
the ratio of the permittivities of the media:

where ε and ε' are the relative dielectric constants, e.g.,
of a semiconductor and an insulator. The corresponding
Schrödinger equation for relative motion has the form

(9)

where f = , a* = aBεme/m* is the effective
radius of the system and aB is the Bohr radius. In the
next section, we will find the solutions of the
Schrödinger equation (9).
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3. ANALYSIS OF RELATIVE MOTION

3.1. Energy Spectrum of the Intrinsic System

In the two-center adiabatic approximation [19], the
wave function of the relative motion of a three-body
Coulomb system can be represented in the form

(10)

where Φ(r, z) is the wave function of the intrinsic sys-
tem. In the two-center approximation, variable r is con-
sidered as an external parameter; i.e., r = const. We
present vector z in the cylindrical system of coordi-
nates: z = {ρ, z, ϕ}. In this case, the wave function Φ(r, z)
assumes the form

(11)

Here, ϕ is the azimuthal angle and m is the magnetic
quantum number. Taking into account expression (11) and
simplifying the Schrödinger equation (9), we obtain

(12)

where Er(r) is the eigenvalue of the Hamiltonian of the
intrinsic system and parameter λ is defined as

Carrying out the substitution of variables

(13)

and going over to the parabolic system of coordinates
in Eq. (12), after relevant calculations, we obtain

(14)

Before defining the energy spectrum and the wave
function of the Schrödinger equation (14) using the
oscillator representation method [16], it is appropriate
to note that this method is based on the ideas and meth-
ods of the quantum theory of a scalar field. However, a
considerable difference between quantum field theory
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and quantum mechanics is that in the former case, the
quantized fields in the form of a set of an infinite num-
ber of oscillators for the ground state of a vacuum pre-
serve their oscillatory nature in the quantum-field inter-
action. In quantum mechanics, the behavior of the
eigenfunctions for most potentials differs from the Gaus-
sian behavior of the oscillator wave function. For this rea-
son, while applying the methods and ideas of quantum
field theory for solving quantum-mechanical problems,
the variables in the initial radial Schrödinger equation
should be changed so that the sought wave function would
display the Gaussian behavior at large distances, and the
transformed equation should be identified with the radial
Schrödinger equation in a space with a large dimension.
It should be noted that a similar idea was discussed for
the first time by Fock while solving the problem of the
spectrum of the hydrogen atom with the help of trans-
formation to the four-dimensional momentum space
[20].

Following Fock [21], we will assume that the
asymptotic behavior of the wave function of the intrin-
sic system is of the Coulomb type. In accordance with
what has been said above, we change the variables as
follows (see [16] for details):

(15)

Using the atomic system of units (" = e = c = 1), we
obtain from (14)

(16)

where d is the dimension of the auxiliary space, which
is given by

(17)

As a result of the change of variables, we obtain a mod-
ified Schrödinger equation in the d-dimensional auxil-
iary space Rd. It follows from Eqs. (16) and (17) that the
magnetic quantum number m appears in the definition
of the dimension d of the space. This approach makes it
possible to determine all the characteristics we are
interested in, including the spectrum and the wave
function, by solving the modified Schrödinger equation
for the ground state only in the d-dimensional auxiliary

ρk qk
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m Ψm q1

2 q2
2,( ), k 1 2.,= = =

1
2
--- ∂2

∂q j
2

--------
d 1–

q j

------------
q j∂
∂

+∑–




–
4Z1Z3λ q1

2 q2
2+( )

q1
2 q2

2+( )2
2 fr q1

2 q2
2–( ) f 2r2+ +

--------------------------------------------------------------------------------

– 4E q1
2 q2

2+( )

–
4Z2Z3λ q1

2 q2
2+( )

q1
2 q2

2+( )2
2 fr q1

2 q2
2–( )– f 2r2+

--------------------------------------------------------------------------------



Ψm q1

2 q2
2,( ) 0,=

d 2 2 m .+=
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space Rd. The wave function  of the ground

state in Rd is a function of variables  and  only. For
this reason, we identify the operator

(18)

with the Laplacian  in the auxiliary space Rd, which
acts on the wave function of the ground state, which is a
function of radius qk only. Proceeding from the modified
Schrödinger equation

(19)

in accordance with Eq. (16), we find that the energy
spectrum in Rd is equal to zero:

(20)

We will consider this relation as the condition for deter-
mining the energy spectrum Er of the Hamiltonian (12).
Following the oscillator representation method, we write
the canonical variables in terms of the creation and anni-
hilation operators in the Rd space:

(21)

where ωk is the oscillator frequency, which is yet
unknown. Substituting expressions (21) into Eq. (16)
and ordering in the creation and annihilation operators,
we obtain

(22)

Here, H0 is the Hamiltonian of two uncoupled oscilla-
tors,

(23)

and ε0(Er) is the ground-state energy in the zeroth
approximation of the oscillator representation [16, 22],
which has the form

(24)

The interaction Hamiltonian HI can also be represented
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tors. It contains no quadratic terms in the canonical
variables:

(25)

where we have introduced the following notation:

Here, :…: symbolizes normal ordering, and the follow-

ing notation has been used:  (see
also [17]). Some details of the representation of the
Hamiltonian in normal form are given in the Appendix.

The contribution of the interaction Hamiltonian HI is
considered as a small perturbation. In quantum field the-
ory, after representing the canonical variables in terms of
the creation and annihilation operators and representing
the interaction Hamiltonian in normal form, we find that
the requirement of the absence of second-degree field
operators in the interaction Hamiltonian is essentially
equivalent to renormalizations of the coupling constant
and the wave function [23]. Moreover, such a proce-
dure makes it possible to take into account the main
quantum contribution through the renormalization of
masses and through the energy of the vacuum. In other
words, all quadratic forms are completely included in
the Hamiltonian of a free oscillator. This requirement
makes it possible to formulate, in accordance with the
oscillator representation, the conditions

(26)

for determining the frequencies ω1 and ω2 of uncoupled
oscillators, which determine the main quantum contribu-
tion. Taking into account Eq. (24), we can use Eqs. (20)
and (26) for calculating the energy Er of the intrinsic sys-
tem as a function of parameter r. Since we are interested in
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the ground state, we will not consider radial perturbations
here. It was verified more than once by using the oscil-
lator representation for various potentials [17, 22, 24]
that the first-order correction associated with the interac-
tion Hamiltonian is identically equal to zero, while the
second-order correction is smaller than one percent. For
this reason, we will confine our analysis to the zeroth
approximation only.

In this approximation, energy Er is given by

(27)

We introduce new parameters

(28)

which can be determined from Eqs. (26) taking into
account expressions (24) and (27) as functions of quan-
tity r.

It should be noted that in the approach we used here,
the violation of spherical symmetry is controlled by
parameter ω–.

3.2. Structure of Confinement Potential

Let us now consider the problem of the confinement
potential. Taking into account Eq. (12), substituting
expression (10) into Eq. (9), and carrying out transfor-
mations (in the ordinary system of units), we obtain

(29)

where E is the energy spectrum of the initial system and
the quantity Vc(r) is precisely the required confinement
potential:

(30)

The first term in this expression, Er(r), is the potential (27)
created by the electrostatic field of the image charge, while
the second term is associated with the relative motion of
particles and is determined by averaging the total Hamil-
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Fig. 1. Dependences of (a) the oscillator frequency, (b) the potential created by the relative motion of electrons, and (c) the potential
created by the electrostatic field of the image charge on the separation between two electrons.
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tonian (9) over the wave function Φ(r, z) of the intrinsic
system. Obviously, the confinement potential obtained
contains various solutions depending on the form of Cou-
lomb interaction and on the magnitude of the magnetic
field. Here, we confine our analysis only to the spheri-
cally symmetric solution ω– = 0, i.e., ω1 = ω2 ≡ ω. In
this case, we have

(31)

where ω is defined by the equation

(32)

Thus, the confinement potential in our model of a two-
electron quantum dot differs from the parabolic con-
finement potential and is defined by expression (31)
and Eq. (32).

Considering the limit r ! 1 and expanding potential
Vc into a Taylor series in variable r, we obtain

(33)

where

(34)

Confining ourselves only to the second power in r in
Eq. (33), we obtain the parabolic confinement potential
with the confinement frequency ω0. It follows from
Eqs. (31), (33), and (34) that the properties of the
potential depend on the image charge and the effective
electron mass. This dependence is included in the final
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expression for the energy spectrum through parameters
ω0 and f. If the mass of the image charge is created by
all the electrons of the ambient medium or by heavy

ions, parameter f ≈ 1 (f = 1/  for m1 = m2 = m3). The
characteristic length of the quantum dot (well) [8, 9]
formed at the interface between two media,

is also a function of the image charge.

Using specific values of parameters in the case of a
quantum dot (e.g., Z1 = Z2 = Z3 = 1 and m1 = m2 = m3), we
can determine the dependence of the oscillator frequency
ω on the value of r appearing in Eq. (32). Accordingly, this
allows us to determine the dependence of the potential

(35)

created by the electrostatic field of the image charge, as
well as of the potential

(36)

associated with the relative motion of electrons, on param-
eter r. It can be seen from Fig. 1a that with increasing r, the
oscillator frequency ω decreases smoothly from 4.619
to 0. Potential Vrel is equal to zero at the origin, increases
over small distances, and then decreases rapidly upon a
further increase in r (Fig. 1b). Potential Er(r) is finite for
r = 0; i.e., it has no singularity, while for r = ∞, it
decreases as a Coulomb potential. The value of poten-
tial Vrel is an order of magnitude smaller than the abso-
lute value of Er(r). Thus, the main contribution to the
confinement potential is determined by the interaction
of the electrons in the electrostatic field of the image
charge.

3
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4. ENERGY SPECTRUM

In this section, the oscillator representation [16] is
used for calculating the energy spectrum of a two-elec-
tron system with potential Vc(r) (33). For illustration,
we consider the case when z = 0, i.e., a 2D system
which may serve as a model of a quantum dot. Accord-
ing to Eqs. (29) and (33), the Hamiltonian of the rela-
tive motion of the two-electron system has the form

(37)

where m = 0, ±1, … is the magnetic quantum number
and

(38)

The Schrödinger equation for Hamiltonian (37) assumes
the form

(39)

Here, Um is the energy parameter,

(40)

We will first consider a purely parabolic potential;
i.e., W = 0 and G = 0. In this case, we obtain the follow-
ing expression for the energy spectrum (see [9] for
details):

(41)
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Parameter x can be determined from the equation

(42)

Here, t = ωc/ω0 is the relative magnetic field strength
and g* is the effective Lande factor. Expression (41)
also includes the contribution from the Zeeman effect
associated with the spin interaction between the two elec-
trons in a magnetic field. Expressions (41) and (42) allow
us to determine the ground states of a quantum dot as
functions of its size k = l0/a* and the relative magnetic
field strength t.

Let us now calculate the energy spectrum of Hamil-
tonian (39). In this case, the change of variables is pre-
sented as follows:

(43)

where parameter α is associated with the behavior of
the wave function at large distances. The potential con-
tains anharmonic terms, and we will determine param-
eter α using the results obtained in [22]. For large val-
ues of ρ, the asymptotic form of the wave function is
determined by the anharmonic term Gρ4 with α = 1/3.
For small values of G and W, the true wave function
is closer to the Gaussian wave function and, hence,
α = 1/2. This limit corresponds to a parabolic confine-
ment potential. Thus, parameter α, which was initially
regarded as a variational parameter in the minimiza-
tion of the ground-state energy in the zeroth approxi-
mation [22], may change in the interval 1/3 ≤ α ≤ 1/2.
Figure 2 shows the dependence of parameter α on the
magnetic field strength t = ωc/ω0 for states with m =
–1, –2, −3, … . The results of analysis show that for
states with a small absolute value of the magnetic quan-
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tum number m, parameter α < 1/2. As the magnetic
field increases, parameter α asymptotically tends to the
limit α = 1/2 corresponding to a Gaussian wave func-
tion. It should be noted that in the oscillator representa-
tion, one can avoid the summation of series in the per-
turbation theory; i.e., the Dyson phenomenon problem
[25] can be bypassed successfully owing to the intro-
duction of parameter α.

After some transformations of Eq. (39), we derive
the modified Schrödinger equation

(44)

where d = 2 + 4α|m|. The ground-state energy in the
zeroth approximation is given by

(45)

and for the interaction Hamiltonian we have
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is used for determining parameter ω as a function of
energy Um as well as other parameters of the potential.

Taking into account Eqs. (47) and (45) and using nota-
tion (38), we obtain, after appropriate transformations, the
following expression for the energy spectrum:

(48)

Parameter z is determined from the equation

(49)

Obviously, the energy spectrum (48) differs from the
energy spectrum (41) determined by the parabolic
nature of the confinement potential. It follows from Fig. 3
that the dependences of the energy spectrum on the size
k = l/a* of the quantum dot and the relative magnetic
field strength t = ωc/ω0 for parabolic and quasi-para-
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Fig. 3. Energy spectra of the Hamiltonian of the relative motion taking into account the Zeeman effect as functions of the relative
strength t of the external magnetic field for (a) parabolic and (b) quasi-parabolic potentials calculated by using formulas (41) and
(48), respectively.
bolic potentials are similar. However, singlet–triplet
transition in weak magnetic fields in the case of a quasi-
parabolic potential occur at higher values of the mag-
netic field (cf. Figs. 3a and 3b). We expect that the con-
finement potential in weak magnetic fields will differ
from the parabolic confinement potential. At the same
time, an analysis of expressions (48) and (49) shows
that in strong magnetic field, ωc @ ω0 (i.e., in the limit
t  ∞), the contribution of the potential (33) associ-
ated with the quasi-parabolic structure is less notice-
able (z ~ 1). Thus, for strong magnetic fields, the
hypothesis on the parabolic nature of the confinement
potential for a two-electron system is obviously quite jus-
tified. In our calculations, we used the following parame-
ters typical of GaAs: effective mass m* = 0.067me and
g* = –0.44.

5. CONCLUSION

Proceeding from the assumption concerning the
existence of an image charge which may be due to a
large difference between the permittivities of the layers
forming a quantum dot or the presence of an impurity
in a semiconductor, we have formulated the model of a
two-electron quantum dot. The model makes it possible
to determine consistently the effective confinement
potential for electrons, which is a function of the elec-
tron effective mass and the characteristics of the image
charge.

Using the oscillator representation, we have analyt-
ically calculated the energy spectrum of a quantum dot
for various values of the magnetic field. The division of
the total Hamiltonian into the Hamiltonian of the cen-
ter-of-mass motion and the Hamiltonian of relative
motion gives two types of solutions. The energy spec-
trum of the center-of-mass Hamiltonian is harmonic
and determined by the kinetic motion of the electrons,
the cyclotron frequency, and the ratio of the electron
effective mass to the sum of the masses of the two elec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
trons and the image charge. It should be emphasized
that in contrast to the Fock–Darwin case, this solution
is independent of the confinement potential for elec-
trons. The second solution determines the confinement
energy. In the model proposed by us, the confinement
potential is completely determined by the interaction of
the electrons in the field of the image charge. The
results of analysis lead to the conclusion that the con-
finement potential in a quantum dot may differ signifi-
cantly from the parabolic potential (especially for small
values of the magnetic field), which can be verified
from an analysis of the spin oscillations of the ground
state of a two-electron system in magnetic fields. The
departure of the confinement potential from the para-
bolic confinement potential does not contradict the
Kohn theorem [26], which is valid in the case of the
electron–electron interaction, which is determined
exclusively by the relative distance.
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APPENDIX

An important element of calculations in the oscilla-
tor approximation [16] is the representation of canoni-
cal variables in normal form. We will give here the
details of this representation for various potentials. Let
us consider the quantity

(A.1)

I
q2

q4 2γxq2 γ2+ +
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∂ td
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where qj is a vector in the auxiliary space Rd. Taking
into account the relations (qj, ηj ∈  Rd)

(A.2)

substituting them into Eq. (A.1), and using expres-
sions (21) for the canonical variable qj, we carry out nor-

mal ordering over the creation ( ) and annihilation (aj)
operators. This gives

(A.3)

where

(A.4)

Using representation (A.3), we derive the expressions
(24) for the ground-state energy ε0(E) and (25) for the
interaction Hamiltonian HI.

While analyzing Hamiltonian (44) with a quasi-par-
abolic potential, we must present in normal form the
quantity q2τ, where τ may assume any value. For this
purpose, we will use the relation
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We will now give the details of calculating integrals
of the following form:

(A.6)

First of all, we carry out the substitution of variables:

(A.7)

In this case, integral (A.6) can be written in the form

(A.8)

where

We will consider the case when ω– = 0. In order to cal-
culate integral (A.8), we will use the following rela-
tions [27]:

(A.9)

Here, P2k(x) is a Legendre polynomial. Taking into
account these representations, we obtain from (A.8)
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------------------, ω–

ω1 ω2–
2

------------------,= =

d 2 2 m .+=

1

1 2xt t2+–
-------------------------------

tkPk x( ), t 1≤

t–1 k– Pk x( ), t 1,≥



k 0=

∞

∑=

xx2 jP2k x( )d

1–

1

∫ Γ j 1+( )
Γ 1 j k–+( )
---------------------------- Γ 1/2 j+( )

Γ k 3/2 j+ +( )
---------------------------------.=

J
γ2 m 1+( )

22 m 1+
------------------ 1–( ) j

m ! m j–( )!
-------------------------------

j 0=

m

∑=

× t ω+tγ–( ) t2 m 2 2k+ + t2 m 2k– 1+–( )expd

0

1

∫



k 0=

j

∑

+
Γ 2 m 2k– 2+( )

γω+( )2 m 1 k–+( )----------------------------------------


 Γ 1/2 j+( )
Γ 1 j k–+( )!Γ k 3/2 j+ +( )
-----------------------------------------------------------------.
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The next integral can be calculated exactly:

(A.11)

Using these relations, we arrive at expression (31) and
(A.6)–(A.11) for the confinement potential (33).
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Abstract—The existence of optical size resonances in atomic nanostructures is proved. The properties of opti-
cal size resonances strongly depend on the interatomic distances and on the polarization of an external radiation
field. The properties of linear and nonlinear size resonances are considered in the case of two-dimensional nano-
structures. The linear optical size resonances are described based on a closed system of equations for dipole
oscillators and nonlocal field equations taking into account the dipole–dipole interactions of atoms in the radi-
ation field. Using a stationary solution to these equations, it is demonstrated that two isotropic atoms with def-
inite intrinsic frequencies form an anisotropic system in the radiation field, possessing two or four size reso-
nances depending on whether the component atoms are identical or different. The nanostructure composed of
two different atoms possesses two size resonances with positive dispersion and two other resonances with neg-
ative dispersion. The frequencies of the size resonances significantly differ from the intrinsic frequencies of iso-
lated atoms entering into the nanostructure. By changing the angle of incidence of the external wave, it is pos-
sible to excite various size resonances. The properties of nonlinear optical size resonances excited by an intense
radiation field were theoretically and numerically studied using the modified Bloch equations and nonlocal field
equations. Dispersion relationships for the nonlinear resonances were derived and the inversion properties of
atoms in the nanostructure were studied for various polarizations of the external optical wave. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The optical properties of nanostructures obtained
using modern technologies, including aggregates [1, 2]
and dimers [3, 4] on the clean surface of solids,
ultrathin films [5, 6], quantum wires [7] and quantum
dots [8], near-surface atomic probe [9, 10], surface
clusters [11–13], etc., can serve as a basis for the devel-
opment of unique optical methods of investigation and
for the creation of unique optical devices. This paper is
devoted to a theoretical study of the interaction of two-
dimensional nanostructures with optical radiation. An
example of such a nanostructure is offered by a dimer
on the solid surface [4]. In our opinion, a complete
description of the optical properties of such nanostruc-
tures provides a basis for the knowledge of optical
properties of more complicated nanostructures.

Previously [14, 15], the near-field effect was pre-
dicted based on the description of dielectrics as a dis-
crete-continuous medium in contrast to the traditional
concept of a continuous dielectric [10, 16]. In [14, 15]
and in the subsequent papers [5, 6, 17], it was shown
that the structural factor related to a discrete distribu-
tion of atoms near the observation point significantly
affects the reflection and transmission properties of the
surface, the index of refraction of the subsurface layer,
the optical properties of thin films, and the lifetime of
an excited atom at the surface. In [18], the near-field
effect was used as a basis for recording quantum infor-
mation on individual atoms of a diatomic quantum
computer with the aid of intense quasiresonance radia-
1063-7761/01/9206- $21.00 © 21060
tion at a variable angle of incidence of an external elec-
tromagnetic wave. The readout of the recorded quan-
tum information can be performed with the aid of prob-
ing radiation, based on a solution obtained in [19] for a
system of equations for dipole oscillators.

In this paper, we will demonstrate that the internal
interaction between atoms in the radiation field may
significantly change the spectral properties of nano-
structures exposed to both weak and strong optical
fields. It will be shown that two identical or different
atoms possessing isolated resonances may acquire the
so-called size resonances in the field of optical radia-
tion, the frequencies of which strongly depend on the
interatomic distance and on the orientation of the nano-
structure axis relative to the direction of propagation of
the external wave.

2. LINEAR OPTICAL SIZE RESONANCES
IN DIATOMIC NANOSTRUCTURES

Let the origin of a coordinate system coincide with
atom 1 of a small diatomic object (nanoobject). Then
the vectors r1(0, 0, 0) and r2(0, R, 0) determine the posi-
tions of two atoms constituting this object, the linear
size of which is assumed to be considerably smaller
compared to the external radiation wavelength: k0R ! 1,
where k0 = ω/c, ω is the circular frequency of the exter-
nal radiation, and c is the speed of light in vacuum. 

We assume the positions of atoms in the object to be
fixed, for example, on a substrate, and the substrate
001 MAIK “Nauka/Interperiodica”
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effect to be taken into account in the corresponding val-
ues of the intrinsic frequencies of atoms and of the
widths of their energy levels.

The electric field strength of a light wave at any
observation point r at a tine instant t is determined by
the following equation:

(1)

where EI(r, t) is the electric field strength of the exter-
nal wave, Rj = |r – rj |, and pj is the induced dipole
moment of the jth atom.

The dipole moments of atoms can be represented in
the following form:

(2)

where e is the electron charge; uj and vj (j = 1, 2) are
some vector functions of time, the meaning of which
will be explained below. The equations of motion for
the dipole moments (2) are as follows:

(3)

where ω01 and ω02 are the intrinsic frequencies of atoms
1 and 2, respectively; m is the electron mass; E(rj , t) is
the field strength at the site of the jth atom; and γ0j =

2e2 /3mc3. The terms proportional to  in Eqs. (3)
take into account a radiation-induced retardation in the
diatomic system [20].

Let the field E(rj , t) in Eqs. (3) have the form

(4)

In addition, we assume that the functions uj and vj

are slowly varying with time, so that

(5)

Upon substituting expressions (2) into Eqs. (3), con-
ditions (5) allow the terms proportional to  and  to
be rejected. Let us introduce the notation

Omitting the factor exp(–iωt), we obtain the follow-
ing set of equations from system (3):

(6)

E r t,( ) EI r t,( )= rotrot
p j t R j/c–( )

R j

----------------------------,
j 1=

2

∑+

p j e u j iv j–( ) iωt–( )exp= c.c.,+

ṗ̇1 ω01
2 p1 γ01ṗ1 γ02p2+ + +

e2

m
----E r1 t,( ),=

ṗ̇2 ω02
2 p2 γ02ṗ2 γ01p1+ + +

e2

m
----E r2 t,( ),=

ω0 j
2 ṗ j

E r j t,( ) E0 r j t,( ) iωt–( )exp= c.c.+

u̇ j  ! ω u j , v̇ j  ! ω v j .

u̇̇ j v̇̇ j

u1 iv̇1– X1, u2 iv̇2– X2.= =

2Ẋ1 –iω γ01+( ) X1 –ω2 ω01
2 iωγ01–+( )+

+ γ02 Ẋ2[ ] γ 02iω X2[ ]–
e
m
----E r1 t,( ),=

2Ẋ2 –iω γ02+( ) X2 –ω2 ω02
2 iωγ02–+( )+
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where the symbol […] indicates that the corresponding
value is determined at the time instant t – R/c. Substi-
tuting expressions for the fields E0(r1, t) and E0(r2, t)
depending on the dipole moments of atoms 1 and 2 into
these equations, we obtain a self-consistent system of
equations determining the unknown functions X1 and
X2 at an arbitrary moment of time for a diatomic
nanoobject excited by pulsed or continuous fields.

2.1. Stationary Regime of Excitation 
of a Small Object

In the case of continuous irradiation of atoms of the
small object studied, we will assume that

(7)

and that the fields E0(r1, t) and E0(r2, t) are independent
of time. Taking this into account in Eqs. (6), we obtain
the following system of equations:

(8)

According to Eq. (1),

(9)

where β = x, z; (j) = (rj); γ = x, y, z; the quantities

(10)

determine contributions of the Coulomb and retarding
polarization fields in Eqs. (8).

It is convenient to solve Eqs. (8) with an allowance
for relationships (9) and (10) separately for the y and β
components of the dipole moments. Taking into

account that  = e , we obtain the following formu-
las:

(11)

+ γ01 Ẋ1[ ] γ 01iω X1[ ]–
e
m
----E r2 t,( ),=

Ẋ1 Ẋ2 0= =

X1 –ω2 ω01
2 iωγ01–+( )

  γ 02 i ω X 2 –  ik 0 R ( ) exp 
e
m

 ---- E r 1 ( ) ,= 

X

 

2

 

–

 

ω

 

2

 

ω

 

02
2

 

i

 

ωγ

 

02

 

–+

 

( )

  γ 01 i ω X 1 –  ik 0 R ( ) exp 
e
m

 ---- E r 2 ( ) .=

E0
y 1( ) E0 I

y= 2GeX2
y+ ik0R( ),exp

E0
β 1( ) E0 I

β= FeX2
β ik0R( )exp ,–

E0
y 2( ) E0 I

y ik0 R⋅( )exp= 2GeX1
y ik0R( ),exp+

E0
β 2( ) E0 I

β ik0 R⋅( ) FeX1
β ik0R( ),exp–exp=

E0
y E0

y

G
1

R3
-----= i

k0

R2
-----, F– G

k0
2

R
----–=

p0 j
y X j

y

p01
y α eff

y 1( )E0 I
y , p02

y α eff
y 2( )E0 I

y ,= =

p01
y α eff

β 1( )E0 I
β , p02

β α eff
β 2( )E0 I

β ,= =
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where αeff are the effective polarizabilities taking
into account the mutual influence of atoms 1 and 2 in
JOURNAL OF EXPERIMENTAL 
the diatomic object studied. These quantities are
expressed as
(12)

α eff
y 1( ) α1

1 α2 2G
2i
3
-----k0k02

2+ 
 + ik0 R⋅( ) ik0R( )expexp

1 α1α2 2G
2i
3
-----k0k01

2+ 
  2G

2i
3
-----k0k02

2+ 
  2ik0R( )exp–

-----------------------------------------------------------------------------------------------------------------------------,=

α eff
y 2( ) α2

ik0 R⋅( ) α1 2G
2i
3
-----k0k01

2+ 
  ik0R( )exp+exp

1 α1α2 2G
2i
3
-----k0k01

2+ 
  2G

2i
3
-----k0k02

2+ 
  2ik0R( )exp–

-----------------------------------------------------------------------------------------------------------------------------,=

α eff
β 1( ) α1

1 α2 F
2i
3
-----k0k02

2– 
  ik0 R⋅( ) ik0R( )expexp–

1 α1α2 F
2i
3
-----k0k01

2– 
  F

2i
3
-----k0k02

2– 
  2ik0R( )exp–

--------------------------------------------------------------------------------------------------------------------,=

α eff
β 2( ) α2

ik0 R⋅( ) α1 F
2i
3
-----k0k01

2– 
  ik0R( )exp–exp

1 α1α2 F
2i
3
-----k0k01

2– 
  F

2i
3
-----k0k02

2– 
  2ik0R( )exp–

--------------------------------------------------------------------------------------------------------------------,=
where k01 = ω01/c, k02 = ω02/c; α1 andα2 are the isotropic
polarizabilities of atoms 1 and 2 determined without
allowing for the mutual influence. For atoms 1 and 2
with the isolated resonances ω01 and ω02, the isotropic
polarizabilities are given by the formula

. (13)

Let us consider two different atoms possessing isolated
resonances with the wavenumbers k01 = 89000 cm–1 and
k02 = 92000 cm–1. An analysis of formulas (12) shows
that the size resonances in a diatomic object with R =
1 nm correspond to  = 86988.152 cm–1,  =

93904.548 cm–1,  = 88324.489 cm–1, and  =
92648.712 cm–1. The full width at half-maximum
(FWHM) of these size resonances corresponds to  =

0.00281 cm–1,  = 0.00007 cm–1,  = 0.00045 cm–1,

and  = 0.00273 cm–1. The values of y and β com-
ponents of the effective polarizabilities of atoms 1 and
2 in the diatomic nanoobject differ from one another,
which indicates the presence of an induced anisotropy
in the nanostructure studied. Moreover, the size reso-
nances  and  possess a negative dispersion, while
the dispersion of other size resonances is positive. In
the case of two identical atoms with α1 = α2 = α and
ω01 = ω02 = ω0, expressions (12) yield

α j
e2

m
---- 1

ω0 j
2 ω2– iωγ0 j–

---------------------------------------=

k01' k02'

k03' k04'

∆k01'

∆k02' ∆k03'

∆k04'

k02' k03'
(14)

where it is assumed that k0 · R = 0, which means that
the incident wave is directed along the normal to the
diatomic object axis. A numerical analysis shows that
the effective polarizabilities of atoms 1 and 2 in the
diatomic nanoobject studied for various frequencies of
the external field are virtually independent of the angle
between vectors k0 and R. A consistent interaction of
atoms in the object studied leads to the appearance of
two size resonances with a positive dispersion and the
wavenumbers 85775 and 95569 cm–1 for k01 = ω/c =
89000 cm–1.

2.2. Optical Field Outside a Small Object

Let us calculate the field at an observation point r in
the wave zone where k0|r – r1| @ 1 and k0|r – r2| @ 1.
For such observation points, the major role in Eq. (1)
belongs to the terms proportional to 1/Rj. The electric

α eff
y α

1 α 2G
2i
3
-----k0k01

2+ 
  ik0R( )exp–

----------------------------------------------------------------------------,=

α eff
β α

1 α F
2i
3
-----k0k01

2+ 
  ik0R( )exp+

------------------------------------------------------------------------,=
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and magnetic field strengths at the observation point r
are given by the expressions [16]:

(15)

The induced dipole moments of atoms 1 and 2 in the
small diatomic object studied are determined by formu-
las (15) at the time instants t – R1/c and t – R2/c. The
expressions for these moments are as follows:

(16)

where γ indicates the component (x, y, or z) of the
induced dipole moment of the jth atom and Rj = |r – rj|.
The field strength at the observation point r can be
determined by substituting expressions (15) into the
energy conservation law written in terms of the Poynt-
ing vector and a unit normal vector for the surface of a
sphere with the radius R1. In the wave zone, however,
the E and H values are approximately equal and the
intensity of dipole radiation of a diatomic nanoobject is
given be the formula

(17)

where θ0 is the angle between vectors X1 and R1, dΩ0

is the element of a solid angle in the direction of vector
R1, and X1 and X2 are vectors determined for the effec-
tive polarizabilities.

A numerical analysis of formula (17) showed that
the direction of maximum dipole radiation is deter-
mined by the sin2θ0 law for various values of amplitude
of an external field propagating along the z axis. For the
intrinsic resonance frequency, when k0 = (0, 0, 89000 cm–1)

and E0I = (1/ , 1/ , 0) CGSE units, the Imax value at
θ0 = π/2 is 1.64 × 10–13 erg/s. For the size resonance fre-
quency, where k0 = (0, 0, 93904 cm–1), the same E0I at
θ0 = π/2 yields Imax = 1.62 erg/s. For the other size res-
onance with k0 = (0, 0, 88324 cm–1), we obtain Imax =
0.28 erg/s.

Thus, by changing the external field frequency so as
to make it coinciding with one of the size resonance fre-
quencies of the nanoobject studied, we increase the
dipole radiation intensity by approximately 12 orders
of magnitude.

E r t,( )
n1 n1 p1×[ ]×

c2R1

---------------------------------–=
n2 n2 p2×[ ]×

c2R2

---------------------------------,–

H r t,( )
p1 n1×

c2R1

-----------------=
p2 n2×

c2R2

-----------------.+

p j
γ ω2 p0 j

y–= ik0R j( )exp iωt–( )exp c.c.,+

dI
ω4e2

4πc3
-----------|X1 ik0– R1( )exp=

+ X2 ik0R2–( )|exp 2 θ0sin
2

dΩ0,

2 2
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3. NONLINEAR INTERACTION OF OPTICAL 
RADIATION WITH A DIATOMIC NANOOBJECT

Now let us consider the properties of a nanoobject
consisting of two different atoms in the field of an
intense wave. The Hamiltonian of the system is

(18)

where  is the unitary operator; ω01 and ω02 are the fre-
quencies of intrinsic transitions in atoms 1 and 2,
respectively; d1 and d2 are the dipole moment operators
of the atoms

(19)

determined by the real ( , ) and imaginary ( ,

) parts of the complex dipole transition moments of
atoms 1 and 2; and σαj are the effective spin operators
of the jth atom (j = 1, 2; α = 1, 2, 3) obeying the rela-
tionships

(20)

where δjk is the Kronecker delta symbol. The electric
field strengths E1 and E2 at the sites of atoms 1 and 2
satisfy Eqs. (1), where the induced dipole moments p1
and p2 of the atoms depend nonlinearly on these fields.
For the same arrangement of atoms in the system as in
Section 2, the field components E1 and E2 are described

by expressions (9) with the corresponding  substi-

tuted for e , where

(21)

and 〈σαj〉  are the average values of the corresponding
operators σαj. Omitting the symbol 〈…〉  and using the
commutation relationships (20), we obtain the follow-
ing equations of motion:

(22)

where

, (23)

H
1
2
---"ω01 Î=

1
2
---"ω02 Î

1
2
---"ω01σ31

1
2
---"ω02σ32+ + +

– d01' E1' σ11⋅ d01'' E1σ21⋅+

– d02' E2' σ12⋅ d02'' E2σ22⋅ ,+

Î

d1 d0 j' σ11= d01''– σ21, d2 d0 j' σ12= d02''– σ22

d01' d02' d01''

d02''

σ1 j σ2k,[ ] 2iσ3 jδjk, σ2 j σ3k,[ ] 2iσ1 jδjk,= =

σ3 j σ1k,[ ] 2iσ2 jδjk,=

P j
γ

X j
α

P j d0 j' σ1 j〈 〉= d0 j'' σ2 j〈 〉 ,–

σ̇1 j ω0 jσ2 j–=
2
"
---d0 j'' E jσ3 j⋅+ ,

σ̇2 j ω0 jσ1 j=
2
"
---d0 j' E jσ3 j⋅+ ,

σ̇3 j
2
"
---d0 j''–= E jσ1 j

2
"
---d0 j' E jσ2 j⋅ ,–⋅

E j e' ie''–( ) E0 j' iE0 j''–( )= iωt–( )exp c.c.+
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e' – ie'' is the complex polarization vector of the field on

atoms of the object,  – i  is the complex field
amplitude, and ω is the external field frequency. We
introduce the following notation:

(24)

where

(25)

In addition, we introduce the following transforma-
tion:

(26)

Using Eqs. (22) with notations (24) and (25) and
taking into account the conditions

, (27)

we obtain a system of equations

(28)

Conditions (27) imply that, for (e' )2 + (e'' )2 = 1,

(29)

which shows that the induced dipole moments of the
nanoobject are parallel to the complex polarization vec-
tor inside the object.

In the general case, Eqs. (28) must be supplemented
with relaxation terms containing the characteristic
times of phase ( ) and energy ( ) relaxation of the
jth atom in the nanoobject. Finally, we obtain a set of
equations

(30)

E0 j' E0 j''

χ1 j a1 j ωtcos= a2 j ωt,sin–

χ2 j a3 j ωtcos= a4 j ωt,sin–

a1 j
2
"
--- d0 j' e'E0 j'⋅ d0 j' e''E0 j''⋅–{ } ,=

a2 j
2
"
--- d0 j' e'E0 j''⋅( ) d0 j' e''E0 j'⋅+{ } ,=

a3 j
2
"
--- d0 j'' e'E0 j'⋅ d0 j'' e''E0 j''⋅–{ } ,=

a4 j
2
"
--- d0 j'' e'E0 j''⋅ d0 j'' e''E0 j'⋅+{ } .=

σ1 j u j ωtcos= v j ωt,sin–

σ2 j u j ωtsin= v j ωt, σ3 jcos+ w j.=

a3 j a2 j, a4 j– a1 j= =

u̇ j v j –ω0 j ω+( )= a2 jw j,–

v̇ j u j ω0 j ω–( )= a1 jw j,+

ẇ j a2 ju j= a1 jv j.–

d0 j'' e''⋅ d0 j' e', d0 j' e''⋅⋅ d0 j'' e'⋅ 0,= = =

T2 j' T1 j'

u̇ j ∆ jv j–= a2 jw j–
u j

T2 j'
-------,–

v̇ j ∆ ju j= a1 jw j

v j

T2 j'
-------,–+

ẇ j a2 ju j= a1 jv j–
w j w0 j–

T1 j

-------------------,–
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where ∆j = ω0j – ω is the detuning of the jth atom from
resonance and ω0j is the initial value of inversion of the
jth atom.

Let us separate the variables uj and v j in the values
a1j and a2j entering into Eqs. (28) and (30). Taking into
account Eqs. (1), we obtain the following expression
for the field at the site of atom 1:

(31)

where x0, y0, z0 are the unit vectors of the correspond-
ing coordinate axes and

(32)

Note that the complex polarization vector  – 
of the external wave in our analysis may, in the general
case, not coincide with the polarization vector e' – ie''
of the field inside the nanoobject. An analogous
expression can be obtained for the field E2 at the site
of atom 2. Substituting EI(1)  EI(2) and p02  p01,
we obtain

(33)

where E0I is the real amplitude of the external wave and
k0 is the wavevector of this wave with the modulus k0 =
ω/c. Expressions (31) and (33) are valid for diatomic
systems the dimensions of which are either smaller
than or comparable with the wavelength of the external
radiation. These expressions can be transformed in the
following manner. Let us separate a negative-frequency
part proportional to exp(–iωt) and take a scalar product
of both parts of these expressions by (e' + ie''). Taking
into account that k0 · R = 0, k0R  0 and neglecting
the retarding interaction of atoms, we may put F = G =
1/R3 in Eqs. (31) and (33). Eventually, we arrive at the
equations

(34)

E1 y0= E1
y 1( ) 2G ik0R( ) iωt–( )p02

yexpexp+( )

+ x0 EI
x 1( ) F ik0R( ) iωt–( )p02

xexpexp–( )

+ z0 EI
z 1( ) F ik0R( ) iωt–( )p02

zexpexp–( ) c.c.,+

p02
1
2
--- u2 iv 2–( ) d02' id02''–( ),=

EI 1( ) eI' ieI''–( )E0 I 1( )= iωt–( ).exp

eI' ieI''

E2 y0 E0 I ik0 R⋅( )exp iωt–( ) eIy' ieIy''–( )exp(=

+ 2G ik0R( ) iωt–( )p01
y )expexp

+ x0 E0 I ik0 R⋅( )exp iωt–( ) eIx' ieIx''–( )exp(

– F ik0R( ) iωt–( )p01
xexpexp )

+ z0 E0 I ik0 R⋅( ) iωt–( ) eIz' ieIz''–( )expexp(

– F ik0R( ) iωt–( )p01
z ) c.c.,+expexp

E0 j' AE0 I= Bu j+ , E0 j'' CE0 I= Bv j,+
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determining the quantities a1j and a2j. For k ≠ j, the
coefficients in (34) are given by the formulas

(35)

where d0k is the modulus of the dipole transition
moment of the kth atom.

The field dependence in the equations of motion
(28) and (30) is determined by the values

(36)

which strongly depend on the interatomic distance and
the orientation of dipole moments relative to the polar-
ization vector of the external wave. Expressions (30)
and (34) form a closed system of equations for deter-
mining the field and atomic variables of the diatomic
nanoobject studied. Below, we will obtain some partial
solution to these equations.

3.1. Stationary Solution

Let us consider a stationary solution to Eqs. (30) and
(34) for the conditions  =  =  = 0. Equation (34),
with an allowance for (36), leads to a system of nonlin-
ear algebraic equations. The uj and v j values are given
by the formulas

(37)

Substituting expressions (36) into these relation-
ships, we obtain a closed system of equations for the
unknowns u1, v 1 and u2, v 2, which can be solved
numerically for various values of the parameters B and
C determined by the direction of field polarization
inside the nanoobject. Using the uj and v j determined
from these equations, we may find the inversions ω1
and ω2 of the atoms by the formula

A e' eI'⋅= e''+ eI''⋅ , C e' eI''⋅= e'' eI' ,⋅–

B d0kG ey'( )2
ey''( )

2
+[ ] 1

2
--- ex'( )2

ex''( )
2

+[ ]–




=

–
1
2
--- ez'( )2

ez''( )
2

+[ ]




,

a1 j
2
"
---d0 j' e' AE0 I Buk+( )⋅= ,

a2 j
2
"
---d0 j' e' CE0 I Bv k+( )⋅= ,

u̇ j v̇ j ẇ j

u j

∆ ja1 jT2 j'2 a2 jT2 j'+
D j

-----------------------------------------w0 j,–=

v j

a1 jT2 j' ∆ ja2 jT2 j'2–

D j

-----------------------------------------w0 j,=

D j 1 ∆ j
2T2 j'2+= a1 j

2 a2 j
2+( )T1 jT2 j' .+

w j

1 ∆ j
2T2 j'2+

D j

-----------------------w0 j.=
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In the case of a nanoobject comprising atoms 1 and 2

exposed to a weak field such that (  + )T1j  ! 1,
we may use expressions (37) for solving Eqs. (12).

3.2. Nonstationary Solution for T1j  ∞,   ∞

Let us solve Eqs. (28) (subscript j omitted) on
assuming that the light pulse duration is relatively short
τ ! T1,  and we may neglect the relaxation pro-
cesses. Moreover, we will also assume that the values
a1 and a2 remain constant (time-independent) during
the time interval τ.

Let us write Eqs. (28) in the matrix form:

(38)

where  is the matrix

(39)

A solution to Eq. (38) is obtained with the aid of the
transformation

(40)

where u0, v 0, and w0 are the initial values of u, v, and w,
respectively.

Using the roots λi of the characteristic equation

 = 0, we may represent the operator exp( )
in the following form [21]:

(41)

Using expressions of the roots of the characteristic
equation,

(42)

we can transform Eq. (41) to

(43)

a1 j
2 a2 j

2 T2 j'

T2 j'

T2'

d
dt
-----

u

v

w 
 
 
 
 

M̂
u

v

w 
 
 
 
 

,=

M̂

M̂
0 ∆– a2–

∆ 0 a1

a2 a1– 0 
 
 
 
 

.=

u

v

w 
 
 
 
 

M̂t( )
u0

v 0

w0 
 
 
 
 

,exp=

λ Î M̂– M̂t

M̂t( )exp
M̂ λ j Î–
λ i λ j–

------------------ λ it( ).exp
i j≠
∏

j

∑=

λ1 0, λ2 3, i ∆2 a1
2 a2

2+ + iΩ,±≡±= =

M̂t( )exp M̂
2 1

Ω2
------ 1 Ωtcos–( )= M̂

1
Ω
---- Ωt Î ,+sin+
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Fig. 1. Nonlinear resonance in an isolated two-level atom (atom 1): (a) frequency dependences of  u1, v1, and w1 for the initial inver-
sion w01 = –1 (atom in the ground state); (b) the same for w01 = 1 (atom in the excited state). Numerical calculations were performed

for k01 = 89000 cm–1, d01 = 7 × 10−18 CGSE units, T11 =  = 2.24 × 10–8 s, E0I = 3.32 × 10–3 CGSE units, k0 = ω/c,   f01 = 1. The

external wave is linearly polarized, with the polarization vector  being parallel to the vector  d01 = ;  = 0.

T21'

eI' d01' d01''

4
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0

0.9
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0.5
where according to (39),

(44)

Using Eq. (43), we may study the inversion of the
atom-observer. Substituting matrices (39) and (44) into
(43), we obtain an expression for the inversion of a two-
level atom in the field of a single rectangular pulse:

(45)

For a2 = 0 (i.e., for a real amplitude and polarization
of the field acting upon the atom), expression (45) coin-
cides with the formula for inversion following from the
Rabi solution [22].

A solution to the modified Bloch optical equations (38)
for the time t > τ (pulsed radiation switched off) can be
readily obtained by putting a1 = a2 = 0 in matrices (39)
and (44).

M̂
2

∆2 a2
2–– a1a2 ∆a1–

a1a2 –∆2 a1
2– ∆a2–

∆a1– ∆a2– –a1
2 a2

2– 
 
 
 
 
 

.=

w
1

Ω2
------ 1 Ωtcos–( )=

× –∆a1u0 ∆a2v 0– a1
2 a2

2+( )– w0[ ]

+
1
Ω
---- Ωt a2u0 a1v 0–( )sin w0.+
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Let us consider another property of solution (40). If
the light pulse acting upon the two-level atom is not
rectangular, the interval τ can be divided into smaller
intervals during which the values ,  and a1, a2 are
constant. Then the solution to Eq. (38) can be presented
in the following form:

(46)

Let us also determine the area of the light pulse in
the modified Bloch equations using the values a1 and a2
characterizing the polarization and amplitude of the
radiation pulse. Using the roots (42) with ∆ = 0, we may
determine the pulse area as

(47)

The mutual influence of atoms in the nanoobject
exposed to intensive pulsed radiation can be deter-
mined using solution (40) for variables u1, v 1 and u2, v 2
determined at various time instants with the aid of
expressions (36).

E0' E0''

u t( )
v t( )
w t( ) 

 
 
 
 

M̂ t '( ) t 'd

∞–

t

∫ 
 
 

 
u0

v 0

w0 
 
 
 
 

.exp=

θ t( ) a1
2 t '( ) a2

2 t '( )+ t 'd .

∞–

t

∫=
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Fig. 2. Nonlinear optical size resonances in a diatomic nanoobject composed of two identical atoms, for various polarizations of the
external radiation: (a) frequency dependences of u1, v1, and w1 of atom 1 for the linear polarization with vector  directed along

the object axis; (b) the same for  ⊥  R. Numerical calculations were performed for d01 = d02 = d0 = 7 × 10–18 CGSE units, T11 =

T12 = 2.24 × 10–8 s, E0I = 3.4 × 10–3 CGSE units, f01 = f02 = f0 = 1,  =  = 2.1 × 10–14 s; C = 0, A = 1, w01 = w02 = 1, B = d0G (a)

and –(1/2)d0G (b).

e0 I'

e0 I'

T21' T22'

0.9999

0.9997

0.9999

0.9997
4. NONLINEAR OPTICAL SIZE RESONANCES
IN A NANOOBJECT COMPOSED 

OF TWO IDENTICAL ATOMS

Let us numerically investigate the stationary solu-
tion (37) for two identical atoms with the intrinsic fre-
quencies ω01 = ω02. For this purpose, we will compare
the spectral properties of the system to the analogous
properties of isolated atoms in the field of intense radi-
ation.

Figure 1 shows the characteristic plots of the quan-
tities u1, v 1, and w1, for example, for atom 1 not inter-
acting with atom 2 and excited only by the field of an
external wave. The dipole transition moment of this
atom d01 is determined using a formula for the oscilla-
tor strength f01 [23] corresponding to the frequency ω01

or the wavenumber k01 = ω01/c = 89000 cm–1. The
energy relaxation time T11 is equal to the lifetime of the
excited state of atom 1 and the phase relaxation time is

 = T11. The field amplitude E0I was selected suchT21'
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
that the value (2d01/")2T11  would be comparable
with unity. As the field E0I grows, the maximum u1, v 1,
and w1 values and the resonance width significantly
increase. Depending on the initially selected value of
inversion ω01, we may obtain either positive (Fig. 1a) or
negative (Fig. 1b) dispersion.

Figure 2 shows the results of another numerical
experiment, in which the optical properties of a
diatomic nanostructure with the interatomic distance
R = 1 nm were studied in the field of intense radiation
with an allowance for the mutual influence of atoms 1
and 2. The behavior of atoms in this object is described
by functions (37) in combination with relationships
(36) depending on the dipole orientation in the radia-
tion field. Let us assume that the polarization vectors of
the external wave and the internal field inside the
nanoobject coincide, being parallel to the induced
dipole moments of atoms. In this case, according to for-
mulas (35), we have for the linearly polarized wave A = 1,
C = 0, and B = d0G (for  || R) or B = –d0G/2 (for

T21'

e0 I'
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Fig. 3. Nonlinear optical size resonances in a diatomic nanoobject composed of two identical atoms for various polarizations of the
external radiation and various initial inversions of atoms 1 and 2: (a) polarization  || R; (b) polarization ⊥  R (for a linearly

polarized wave with  || 0x). Numerical calculations were performed for f0 = 1, E0I = 3.4 × 10–3 CGSE units, w01 = –1, w02 = 1.

e0 I' e0 I'

e0 I'

w

w

e0I parallel to the x axis). As is seen in Fig. 2, the diatomic
nanoobject composed of identical atoms exhibits two
nonlinear size resonances at k1 = 92160 cm–1 and k2 =
87500 cm–1 corresponding to two directions of polar-
ization of the external wave:  || R and  ⊥ R
(instead of a single resonance k01 observed for the iso-
lated atoms).

The properties of nonlinear size resonances differ
from those of the linear size resonances corresponding
to solution (14). These differences are as follows.

1. The positions of nonlinear size resonances
strongly depend on the external field amplitude. As the
field amplitude E0I varies from 3.4 to 0.034 CGSE

units, the nonlinear resonance at  || R shifts from
k1 = 90590 cm–1 to k1 = 92160 cm–1 (Fig. 2a). An anal-
ogous situation takes place for another size resonance
corresponding to the polarization  ⊥ R (Fig. 2b).

2. The width of the nonlinear size resonances is con-
siderably (103 times) greater than the width of the linear
size resonances and strongly depends on the field
amplitude E0I.

e0 I' e0 I'

e0 I'

e0 I'
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3. The width and position of the nonlinear size res-
onance strongly depends on the transition oscillator
strength. For example, a 10-fold decrease in the oscil-
lator strength f0 leads to an approximately 10-fold nar-
rowing of the nonlinear resonance and shifts the nonlin-
ear resonance maximum to k1 = 89160 cm–1 instead of
k1 = 90590 cm–1 for f0 = 1 and E0I = 3.4 CGSE units.

4. A decrease in the oscillator strength and the exter-
nal field amplitude leads to a dispersion dependence for
uj and v j typical of the isolated resonance (at k01 =
89000 cm–1) of noninteracting atoms.

5. The dispersion relationships of u1, v 1 and u2, v 2
for atoms 1 and 2 of the nanoobject differ if their initial
inversions are not the same. Figure 3 shows these rela-
tionships calculated for particular conditions of the
numerical experiment. Here, the nonlinear size reso-
nances occur near the intrinsic resonance (at k01 =
89000 cm–1).

6. The minima of inversion correspond to the size
resonances occurring on the left and on the right of the
intrinsic resonance at k01 = 89000 cm–1, depending on
the external wave polarization and amplitude.
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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Fig. 4. Nonlinear optical size resonances in a diatomic nanoobject composed of two different atoms for two different polarizations
of the external radiation relative to the object axis and a fixed external field amplitude: (a) polarization  || R; (b) polariza-

tion  || x. Numerical calculations were performed for f01 = f02 = 1, d01 = 7.06 × 10–18 CGSE units, d02 = 6.95 × 10–18 CGSE
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103, B2 = 6.09 × 103 (a); B1 = –3.54 × 103; B2 = –3.47 × 103 (b).
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5. NONLINEAR OPTICAL SIZE RESONANCES
IN A NANOOBJECT COMPOSED

OF TWO DIFFERENT ATOMS

Consider a nanoobject to be composed of different
atoms 1 and 2 possessing isolated resonances with the
wavenumbers k01 = 89000 cm–1 and k02 = 92000 cm–1.
In Section 2, we have studied the properties of linear
optical resonances in an analogous diatomic object
exposed to a low-intensity radiation field. Let us con-
sider properties of the same object in a stationary radi-
ation field, taking into account the inversion of atoms
described by solution (37). Figures 4 and 5 present the
results of numerical experiments obtained for various
polarizations of the external field and various initial
inversions.

As is seen from Fig. 4, the case of e0I || R (when the
linearly polarized external wave has the wavevector
k0I ⊥ R and the real vector  is directed along the axis
of the diatomic nanoobject with the size R = 1 nm) is
characterized by the appearance of two pronounced
maxima of v 1 and v 2 for the wavenumbers 87 500 and

e0 I'
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93000 cm–1. For the other polarization (Fig. 4, e0I || R),
the maxima of v 1 and v 2 are observed at 88500 and
92500 cm–1.

Thus, exposed to an intense radiation field, a two-
level nanoobject composed of two different atoms
exhibits (as well as in the linear case) four size reso-
nances. The shapes and positions (on the wavelength
scale) of these resonances strongly depend on the exter-
nal field amplitude. The inversions of the two atoms
significantly differ for the same frequencies of the
external field. As is seen from Fig. 5, the spectral prop-
erties of such a nanoobject significantly depend on the
initial inversions of both atoms.

6. CONCLUSION

Thus, we proved the existence of optical size reso-
nances in atomic nanostructures. The size resonance
frequencies significantly differ from the intrinsic fre-
quencies of isolated atoms. The proof was presented for
diatomic nanoobject representing dimers on a sold sur-
face, with a fixed arrangement relative to the surface
SICS      Vol. 92      No. 6      2001



1070 GADOMSKY, IDIATULLOV
u, v , 104

8

0

–8

υ 2

u1

w2
1.0

0

–1.0

(b)

(a)

4

–4

υ 1

u2

w1

96

u, v , 104

8880

8

0

–8

υ 2

u1

k0, 103 Òm–1

4

–4

υ 1

u2

96

w2

8880
k0, 103 Òm–1

w1

84 92 100

0.5

–0.5

1.0

0

–1.0

0.5

–0.5

Fig. 5. Nonlinear optical size resonances in a diatomic nanoobject composed of two different atoms for different initial inversions
of atoms 1 and 2: (a) polarization  || R; (b) polarization  || x. Numerical calculations were performed for the same parameters

as indicated in caption to Fig. 4, except for w01 = –1, w02 = 1.
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crystallographic axes and the intrinsic frequencies and
polarizabilities of atoms determined by their interac-
tion with the surface. In this system, it is possible to
study dimers with the aid of an external optical radia-
tion field polarized in various directions. An example is
offered by the experiment [4] with arsenic dimers on a
clean GaAs surface. We have already performed
numerical calculations showing the presence of optical
size resonances in N-atomic nanostructures such as
liner atomic chains and fullerenes.

The linear optical size resonances exhibit a high
selectivity and the resonance width is determined by
the radiation decay time of dipole oscillators. The non-
linear optical size resonances are characterized by a
markedly greater width, which is related to a resonance
excitation transfer between two closely spaced atoms.
The nature of optical size resonances is determined by
the electric dipole–dipole interaction of atoms in the
radiation field. We separate the static and dynamic
interaction components for atoms in a nanostructure.
The static component, independent of the radiation
field, leads to a change of the intrinsic atomic frequen-
cies and determines the phase relaxation times  and

. The dynamic part of the interatomic interaction

T21'

T22'
JOURNAL OF EXPERIMENTAL 
depends on the radiation field and significantly modifies
(at small distances) the optical spectrum of the nano-
structure, which no longer contains intrinsic frequen-
cies and displays only the size resonances.

The number of resonances in a nanostructure
depends on the number of atoms and on whether these
atoms are identical or different. A diatomic nanostruc-
ture consisting of identical atoms exhibits two size res-
onances instead of one intrinsic resonance. In the case
of different atoms forming a diatomic nanoobject, there
appear four size resonances instead of two intrinsic res-
onances.

The variable field of a nanoobject in the wave zone
is strongly dependent on the frequency of the external
field. When this frequency coincides with that of one of
the size resonances, the field strength in the wave zone
increases by approximately 12 orders of magnitude as
compared to the value in the same nanostructure
observed at the intrinsic resonance frequency.

Various size resonances of a nanoobject can be
excited by changing the polarization of the external
field. This implies that various optical size resonances
can be studied by changing the angle of incidence of an
external wave on the nanoobject. The properties of size
resonances also strongly depend on the interatomic dis-
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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tance in the nanostructure, on the electric field strength
in the external wave, and on the initial conditions.

We believe that the existence of optical size reso-
nances in nanostructures opens wide possibilities in the
study of such objects with aid of optical radiation. This
may lead to the development of unique optical methods
of investigation (e.g., optical holography of nanostruc-
tures) and unique optical devices (e.g., a nanodimen-
sional light polarizer).
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Abstract—The effect of strong terahertz radiation on the current–voltage characteristics in one-dimensional
superlattices is studied using the method of two-time nonequilibrium Green’s functions. It is shown that the
broadening of discrete spectrum lines due to elastic scattering plays a fundamental role in this problem. A new
phonon-free type of photon-induced charge transfer in the hopping mode is predicted. Under certain conditions,
the constant components of current and electric field may have opposite directions in this regime. The phonon-
free current cannot be described in principle in the formalism of the one-time density matrix and reflects the
two-time nature of correlation functions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nonlinear dynamics of charged particles in semi-
conducting superlattices (SL) in strong dc and ac electric
fields has been studied intensely both theoretically and
experimentally [1–23]. Interesting experimental results
[1–5] stimulated the application of various theoretical
approximations based on the balance equation [6–9] or
tunneling [10–12]. Most theoretical publications [13–20]
are devoted to the solution of the Boltzmann equation
for one-dimensional models in the relaxation-time
approximation. Only a few publications [21–23] deal
with quantum effects in current transport in SLs in the
presence of electromagnetic radiation.

We will consider the current transport along the nor-
mal to the SL layers for a low concentration of charge
carriers (with Boltzmann’s statistics). If the Bloch fre-
quency Ωdc = eEdcd/" (d is the SL period and Edc is a dc
electric field) is higher than the reciprocal relaxation
time 1/τ, it is convenient to use the Stark ladder repre-
sentation. The electron transport is carried out through
inelastic transitions between the levels of this ladder
due to phonon absorption and emission. If an additional
ac component of the electric field is also present, an addi-
tional channel for current transport due to the absorption
and emission of photons is opened. In this case, the photon
absorption under certain conditions may be more effective
than photon emission; as a result, the constant component
of the electric current is directed opposite to the constant
component of the field [1].

In the presence of a strong magnetic field directed
along the electric field (and across the SL layers), the
electron spectrum is discrete in the 3D case also due to
the Wannier–Stark and Landau quantization. In this
case, the level broadening due to elastic scattering plays
1063-7761/01/9206- $21.00 © 21072
a fundamental role. The electron transport cannot be
studied using the perturbation theory in elastic scatter-
ing. The summation of an infinite set of diagrams
required in this case leads to a nonanalytic dependence
of the electron state lifetime on the electron–impurity
interaction constant. For a continual electron spectrum
(e.g., in 3D systems in zero magnetic field) with Stark
localization, the perturbation theory in the electron–
impurity interaction can be used and the analysis can be
confined to the one-time density matrix f(k, t) (k is the
wave vector) [24]. In the presence of an alternating electric
field component with frequency ωac, the distribution func-
tion is periodic f(k, t) = f(k, t + 2π/ωac), and the time
dependence of current can be analyzed by studying the
Fourier components fm(k, ωac) (m is the number of the
Fourier component). In all previous publications [21–
23], this approach or the Boltzmann equation in the
relaxation-time approximation was used. This method
effectively leads to the Esaki–Tsu theory [25] taking
into account the alternating component of the field. The
same result was obtained using two-time Green’s func-
tions and the Kadanov–Beym approximation [26–28].

In this paper, we will show that such a semiphenom-
enological approach is not satisfactory for systems with
a discrete spectrum, for which a consistent inclusion of
the lifetime of electronic states is of fundamental
importance. On the microscopic level, the lifetime is
associated with the introduction of an additional time t–
having the meaning of the duration of an act of scatter-
ing (t–  0 in the density matrix approximation). As
a result, we obtain the transport equation for the two-
time Green’s function f(k, t, t–), which is the main
object of our investigation. It should be noted that the
application of the Kadanov–Beym assumption trans-
001 MAIK “Nauka/Interperiodica”
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forms this equation into a kinetic equation of the Boltz-
mann type for the standard one-time density matrix.
The transport equation obtained describes the hopping
as well as the band nature of transport in various limit-
ing cases. Besides, it takes into account the effect of an
electric field on scattering processes and level broaden-
ing due to scattering. It will be proved that the two-time
nature of the distribution function leads to a steady cur-
rent induced by photons. The analysis will be carried
out using a 1D model. A more realistic case of the dis-
crete spectrum of 3D systems in a magnetic field is only
slightly more complicated technically since it requires
the application of the Wigner representation but basi-
cally does not differ from the model considered here.

In Section 2, Dyson equations for two-time Green’s
functions are considered and the symmetry relations for
these functions are presented. The expression for the
density of states (Green’s function G+) is derived in
Section 3. In Section 4, the transport equation for the G–

component is analyzed without using the Kadanov–Beym
assumption. The computation of the phonon-free contri-
bution is carried out in Section 5. The results of numerical
calculations are given in Section 6.

2. BASIC EQUATIONS

We study the nonlinear transport in a narrow-band
SL with an electric field applied only along the z axis,
which is directed across the layers. The analysis will be
based on the Keldysh technique developed for two-time
Green’s functions G±. The Dyson equations for such
Green’s functions have the form [28]

(1)

We will use below the following energy–momentum
relation for the SL:

(2)

where d is the SL period, m* is the effective mass, ∆ is
the width of a miniband, and k⊥  is the momentum in the
xy plane of the layers. Field E(t) is the sum of a constant
and a varying (in time) component which are directed

i"
t∂
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along the z axis. The eigenenergies Σ± are considered in
the Born approximation and will be given below.

In the presence of an electric field, Green’s func-
tions G and energies Σ are nondiagonal in the momen-
tum representation, but obey the translational symme-
try relations,

(3)

with the vector potential A(t) defined by the relations

Relation (3) makes it possible to simplify Eq. (1):

(4)

It is convenient to write the second symmetry rela-
tion by introducing a new notation for Green’s func-
tions:

(5)

Then condition G(x, x') = –G*(x', x) for the initial
Green’s function leads to

(6)

and relations (4) and (5) lead to the following set of

Dyson’s equations for :
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It is more convenient to calculate  using a
slightly different form of Dyson’s equations, which can
be obtained by summing Eq. (7) with a complex conju-
gate equation and carrying out the substitution t  t '
(see Appendix A). For a low electron concentration, we

have  ! , where  describes the density of

electron states, while  plays the role of a two-time

density matrix (see below). The roles of  and 
interchange upon a transition from electrons to holes.

The quantity ε(k) can be eliminated from the left-
hand side of Eq. (7) using the substitution

(8)

where

(9)

In accordance with Eq. (6), we have the symmetry rela-
tion

(10)

The eigenenergies in the Born approximation can be
expressed in terms of Green’s functions:

(11)

In the case of elastic scattering at ionized impurities, we

can use the simplest model in which function  is
replaced by a constant scattering parameter U deter-
mining the white-noise pair correlator [28]. For scatter-
ing at polar optical phonons, we have
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where Mq is the matrix element of the electron–phonon
interaction for phonons with the wave vector q. For the
sake of simplicity, we consider the interaction with
ordinary bulk phonons disregarding their renormaliza-
tion due to the SL potential. This is immaterial since we
are studying the phonon-free contribution to current
under the effect of terahertz radiation.

3. CALCULATION OF DENSITY OF STATES 
(GREEN’S FUNCTION G+)

It was noted above that in the case of a low charge
carrier concentration, G+ @ G– since G– is proportional
to the electron concentration. In this limit, we can omit
the contributions proportional to G– (and Σ–) on the
right-hand side of Eq. (7) for G+, which leads to the fol-
lowing closed equation for G+:

(13)

Going over to g+, we obtain

(14)

In this equation, the phase factor

(15)

has been introduced to describe the effect of the electric
field on scattering.

In the range of quantizing electric fields in which we
are interested (when Ωdcτ @ 1), it is convenient to go
over to the Fourier representation in kz , which corre-
sponds to a transition from the momentum representa-
tion to the Stark ladder:
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The convenience of the Stark ladder representation for

Ωdcτ @ 1 is due to the fact that  @  (l ≠ 0) under
such conditions. The latter inequality indicates a transi-
tion to the hopping transport region over the levels of
the Stark ladder; the current in this case is proportional
to the probability of transitions between these levels.

In the subsequent analysis, it is convenient to use the
time variables

(17)

where time T describes variations of  on a macro-
scopic scale and t–, on a microscopic scale (of the order
of the interaction time).

Let us now consider the 1D model in which the
dependence on k⊥  is absent. This model was used in
[13–20] for studying the transport in SLs. In the follow-
ing analysis, we assume that the lifetime of electronic
states is associated only with elastic scattering. The
field dependence of the lifetime can be analyzed using
Eq. (14) both in the hopping and in the band modes. For
Ωdcτ ! 1, it is convenient to use the momentum repre-
sentation, while for Ωdcτ @ 1, we write Eq. (14) in the
Stark representation (16). For g0 @ gl , we have

(18)

where U is the coupling constant for elastic scattering,
Ωac = eEacd/" for Eac(t) = Eaccos(ωact). The kernel of
the integral equation has the form
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This function is periodic in T; i.e.,

(20)

which allows us to go over to the Fourier representation

(21)

The Fourier components satisfy the equation
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with the kernel

(23)

Finally, introducing the quantity
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we obtain the following equation for this quantity:
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In the transition to the Laplace representation, we con-
fined our analysis to the region t– > 0. The solution can
be continued to the region t– < 0 using relation (10). It
can be seen from Eq. (27) that for m ≠ 0, all h0m = 0. If,
however, m = 0, Eq. (25) can be presented in compact
form for an arbitrary width of a miniband also:

(28)

with a kernel

(29)

where Jk(x) are Bessel’s functions.

Using the integral equation (28), we can find the
dependence of the density of states on the frequency
ωac of the ac component of the field and the Bloch fre-
quencies Ωdc and Ωac. The field dependence of the den-
sity of states calculated numerically using Eq. (28) has
the form of a main peak and a number of auxiliary
peaks displaced relative to it by integral values of Ωdc

and ωac . It is most significant that the density of states
has no “tails” in the intervals between the peaks. This
can be demonstrated analytically using Eq. (27) in the
narrow-band limit. In this case, we obtain the well-
known result independent of the field,

, (30)

with a typical nonanalytic dependence on the coupling
constant U. A similar result was obtained by us earlier
for zero alternating field [29]. After the inverse transi-
tion to the time representation,

(31)

we obtain an oscillating time dependence decreasing with
time according to a power law. Such a slow decrease in
time leads to sharp peaks in the energy space of the density
of states. Analytic continuation s  iω in (30) leads to
the following expression for the density of states:

(32)
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of the pole approximation leading to an exponential
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time dependence  and, hence, to Lorentzian tails
for the density of states.

4. CALCULATION
OF GREEN’S FUNCTION 

We will calculate the Green’s function  using
Eq. (A.1) from Appendix A. For a nondegenerate elec-
tron gas, we can omit the contribution Σ–G– on the
right-hand side of Eq. (A.1), which leads to the linear
equation (A.2) for G–. The method for solving this
equation is similar to that used in Section 3 and will not
be repeated here. In contrast to the calculation of the
density of states, we must take into account the inelastic
scattering responsible for energy dissipation. Below,
we will consider the interaction with polar optical
phonons without taking into account their dispersion
and the coupling constant independent of q. From
Eq. (A.3) in Appendix A, we obtain

(33)

which corresponds to Eq. (18) for , where

(34)

(35)

Equation (33) may be used for determining both 

and the current density depending on . Using the
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Fourier representation (21), we obtain the following

equation for  from Eq. (33):

(36)

where

(37)

with the field-dependent function I0(t) (29). The linear
integral equation (36) should be solved taking into

account the additional condition  = 1.

It is now expedient to go over to the Fourier repre-
sentation in time and to introduce the frequency distri-
bution f00(ω):

(38)

Then we obtain the following equation for f00(ω) from
Eq. (36):

(39)

with the additional constraint

(40)

Equation (39) is the main result of this research.
Together with Eq. (40), it determines the frequency (ω) or
time (t–) dependence of the distribution function, which

reflects the two-time nature of correlator . In the
case of elastic scattering, when F+(ω) = F–(ω), we have a
simple solution (f00(ω) = 1); i.e., the two-time nature of
the distribution function is immaterial. The Kadanov–
Beym approximation corresponds to the case when the
trivial solution f00(ω) = 1 is valid for inelastic scattering
also (see [26–28]). On the contrary, Eq. (39) has no triv-
ial solution for inelastic scattering (i.e., in the presence
of energy dissipation). However, such an approxima-
tion can be used if we disregard the dependence of

 on t–. In this case, Eq. (33) leads to a standard
kinetic equation for the one-time density matrix [22]. If
this approximation is used, the current can be determined

from the density matrix components .
Such an approximation was proposed long ago by Polya-
novskii [21] and was used by us [22, 23] for analyzing
the cyclotron–Stark–phonon–photon resonance in SLs.
However, the two-time approximation proposed here
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makes it possible to consider completely new physical
properties associated with the dependence of the distri-
bution function on t–. These properties have no ana-
logue when the standard density matrix [22] or Boltz-
mann equation is used [17, 18, 20]. It will be shown in
the next section that the inclusion of the two-time
nature of Green’s functions is not just of academic
interest, but leads to a basically new contribution to cur-
rent which does not appear when the one-time approx-
imation is used.

5. APPLICATION: PHONON-FREE CURRENT

Here, we will apply the formalism developed above
for describing the photon-induced contribution to cur-
rent. For this purpose, we will use the relation between
the steady-state current and the Green’s function g–:

(41)

where n is the electron concentration or, in the Fourier
representation (16) and (21),

(42)

where ns is the 2D electron density. The quantity (t– = 0)
was calculated in Appendix B. From Eq. (B.8), we
obtain (see also [23])

(43)

The matrix elements

(44)

are equal to δm, 0 in the limit of zero alternating field
component (Ωac  0). Components Pl = ±1, m were
obtained by applying the Fourier transformation to the
right-hand side of Eq. (B.1) and taking into account
the two-time nature of the correlation functions. Using the
symmetry of matrix elements P–1, –m = , S–1, –m =

, we can reduce the expression for current to the
form

(45)

In [22, 23], we studied the transport in SLs in the inter-
action with polar optical phonons. These calculations
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can be repeated using the new approximation. However,
it is much more interesting to consider the phonon-free
contribution which emerges only when the two-time
approach is used. In the case of elastic scattering from
impurities, we obtain

(46)

Equations (42)–(46) describe the transport to a SL with
an arbitrary width of minibands in a quantizing electric
field, when Ωdcτ > 1. It can be seen from Eq. (46) that
the matrix elements Pl = ±1, m = 0 when the Kadanov–

Beym approximation is used and  = . This
means that the phonon-free contribution to current is
equal to zero in the one-time density matrix approxima-
tion.

Let us now carry out the Fourier transformation of
the right-hand side of Eq. (B.1) in T and retain only the

components  with m = 0 for a strong terahertz
field:

(47)

with the matrix elements
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In this equation, the following notation should be used:

(49)

We will confine our subsequent analysis to the limit of
narrow minibands. Then the first nonvanishing contri-
bution in ∆ from (B.6) has the form

(50)

This relation can be simplified using the equality

(51)

In this case, we have

(52)

We can now obtain from (45) the expression for current
in the form

(53)

Here, the relaxation time τac removing the divergence at
resonance points Ωdc = kωac has been introduced phenom-
enologically in the same way as in [23]. This attenuation
has a completely different source than the lifetime which

can be expressed in terms of  (see also [22], where τac

is described on the level of microscopic theory).
In the limit of narrow minibands (∆  0), the

kinetic equation (39) has an exact analytic solution:
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Fig. 1. Dimensionless current density jz/j0 as a function of the dc electric field component for Eac = 10 kV/cm, /ω0 = 0.01, T = 4 K
and τac = 0.5 (a) and 1 ps (b). The optical phonon energy used as the energy scale is "ω0 = 35 meV. The solid and dashed curves are
obtained from Eq. (53) for ωac/ω0 = 0.1 and 0.2, respectively. The thin vertical line on the left-hand side of the figure marks the

boundary Edc = 4" /ed below which our approximation is inapplicable. The thin solid line shows the current for  Ωac = 0. This

current vanishes in fields Edc > 4" /ed. The positions of resonances in Fig. 1a are also marked by vertical lines.

U

U

U

Such a thermodynamically equilibrium distribution
function is realized if the charge carrier thermalization
time at a level of the Stark ladder is shorter than the
time of hopping between the levels (the latter time
determines the current in the system). If this condition
is violated, the transport becomes of a non-Markovian
type and the distribution function should be determined
numerically from (39) and (40). It should be noted that
inelastic scattering is controlled by the thermalization
of carriers at a level of the Stark ladder, occurring in the
intervals between the jumps.

The phonon-free current vanishes if we switch off the

alternating field (Ωac  0) since  = 0

for 2Ωdc >  (see (32)). This means that in a strong
electric field, when the transport has the form of jumps
over the levels of the Stark ladder, elastic scattering
does not lead to the emergence of current (i.e., no elec-
tron delocalization takes place). In the previous studies
of transport in SLs in the presence of electromagnetic
radiation [1–4, 10, 12, 17, 18, 20, 30–32], the following
formula derived in [33, 34] was used:

(55)

This formula gives jz(Ωdc, Ωac = 0) ≡  ≠ 0
which contradicts the result obtained above using two-
time Green’s functions. It is this fundamental differ-
ence from the available results that indicates that the
contribution to current obtained above and referred to
as phonon-free is new in principle.

g00
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U
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=  Jk
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jz
dc( ) Ωdc( )
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The expression (53) for current may be interpreted
in the framework of hopping transport between the lev-
els of the Stark ladder with photon emission and
absorption. The current–voltage characteristic has the
form of a set of sharp peaks having a width of the order

of 2  (on the Ωdc scale) and separated from one another
by ωac. The presence of an additional phonon contribution
to current leads to the emergence of a background filling
the deep valleys between the peaks.

6. NUMERICAL RESULTS AND DISCUSSION

We also numerically calculated the photon-induced
current from (53). We confined ourselves to the case
when the thermalization at a level of the Stark ladder is
quite rapid and the equilibrium distribution (54) can be
applied.

Figure 1a shows the current–voltage characteristic (53)
for ωac/ω0 = 0.1. We use the "ω0 energy scale (ω0 is the
optical phonon frequency), although phonons do not par-
ticipate explicitly in the charge transport, and introduce
the constant j0 = ens∆2/16"2ω0 having the dimensions of
current density. It was noted above that the phonon-free
current is absent for Ωac  0 as well as in a strong

field Edc > 4" /ed. In the region of weak fields Edc <

4" /ed, the transport is of the band type and not of
the hopping type, and the results obtained above are not
valid under these conditions. In Fig. 1a, the region of
such weak fields is separated by a vertical line. Photon-
induced current peaks are centered at points Ωdc = kωac

and marked by vertical segments. The peaks are sepa-
rated by regions of zero current, in which the densities
of the initial and final states do not overlap during hop-

U

U

U

SICS      Vol. 92      No. 6      2001



1080 BRYKSIN, KLEINERT
ping. It should be noted that photon-induced jumps are
also realized in the case of localization in disordered
systems and can be described using the balance equa-
tion [35]. The current peak width depends on the life-
time of electrons on the levels of the Stark ladder.

For τac  ∞, expression (53) for current is simpli-
fied (see Appendix C):

(56)

where ν = Ωdc/ωac , ν' = Ωac/ωac , and

Naturally, this expression diverges when ν is equal to
an integer. This is demonstrated in Fig. 1b, where τac is
doubled as compared to Fig. 1a. In this case, regions are
formed in which the alternating field induces a direct
current flowing against the dc component of the field.
Such a negative current is induced as a result of photon
absorption and the motion of carriers up the Stark lad-
der. This clearly distinguishes the phonon-free current
from the phonon contribution for which the current is
always positive since the processes of phonon emission
always have a higher probability as compared to the
absorption processes, and an electron on the average
moves down the ladder.

The effect of the level width of the Stark ladder on
the current–voltage characteristic is illustrated in Fig. 2.
The current peaks are well resolved when the condition

jz

πensU∆2

8"
2ωac

2
----------------------

Jν ν'( )J–ν ν'( )
πνsin

------------------------------F ν( ),=

F ν( )
"ωac ν k–( )/2kBT[ ]sinh

π ν k–( )
-----------------------------------------------------------

k ∞–=

∞

∑=

× ωg00
+ ω

ωac

2
-------- ν k–( )– 

  g00
+ ω

ωac

2
-------- ν k–( )+ 

  f 00 ω( ).d

∞–

∞

∫

4.5

1.5

0.5

–0.5

–1.5

2.5

0 5 10 15 20

3.5
j z

/j
0

Edc, kV/cm

Fig. 2. Dimensionless current density jz/j0 as a function of

electric field for Eac = 10 kV/cm, /ω0 = 0.02, T = 4 K,
and ωac/ω0 = 0.1. The solid and dashed curves were plotted
using Eq. (53) for τac = 1 ps and 0, respectively.

U
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8 /ωac < 1 is satisfied. The solid curve corresponds to

the same parameters as in Fig. 1b, but the value of  is
doubled. The level width is close to 2.8 meV. In this case,
there are no zero-current regions. In the limit of not

very small values of parameter 8 /ωac, the results in
general do not differ considerably from those obtained
by the method of one-time density matrix [22, 23]. The
dashed curve in Fig. 2 gives the phonon-free contribution
to current in the case of a large attenuation (τac = 0). In this
limit, the current–voltage characteristic for the phonon-
free contribution is similar to the electron–phonon res-
onance [36].

7. CONCLUSION

In this work, the nonlinear transport under the effect
of dc and ac electric fields in systems with a discrete
electron spectrum is studied for one-dimensional SLs.
In such systems, the level broadening of the density of
states due to elastic scattering (e.g., from ionized impu-
rities) plays a fundamental role. The Keldysh method is
used to derive the system of Dyson equations for the
density of states and the two-time electron distribution
function. These equations are analyzed in the limit of
strong field (Ωdcτ > 1), when the Wannier–Stark quan-
tization is significant. It is shown that the density of
states has the form of a set of narrow and sharp peaks.
An analytic solution of the transport equation is obtained
in the limit of narrow minibands of the superlattice. We
did not use the Kadanov–Beym approximation since the
two-time nature of Green’s functions plays the major role.
The effectiveness of the proposed method is demon-
strated for the photon-induced phonon-free hopping
transport between the levels of the Stark ladder. This con-
tribution to current cannot be obtained using the method of
a one-time density matrix or through the Kadanov–Beym
approximation, which is employed in most theoretical
publications. An important property of phonon-free cur-
rent is the possibility of its flowing opposite to the dc elec-
tric field accompanied by the absorption of the electro-
magnetic energy. We believe that the experimental inves-
tigations of phonon-free current transport will clarify the
nature of two-time transport for which the finiteness of the
scattering act duration must be taken into consideration.

Many years ago, phonon-free transport was studied for
the localization in disordered systems on the basis of the
balance equations for the electron density at a lattice site
[35]. The relations obtained in [35] have a structure similar
to Eq. (53). The main difference is that the degree of local-
ization in systems with a Stark ladder is associated with
the magnitude of electric field: as the field becomes
smaller, a transition from the hopping to band transport
takes place. The proposed method allows in principle to
describe both these modes and a transition from one
mode to the other in the region Ωdcτ ≈ 1.
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APPENDIX A

Kinetic Equation for G–

In this Appendix, we present the intermediate results
which were used in deriving the kinetic equation for

. We sum system of equations (7) and the com-
plex-conjugate system, where the substitution t  t '
is made:

(A.1)

Using Eq. (8), we can now go over from G± to g±. Tak-
ing into account only the main contribution for a non-
degenerate electron gas, we obtain from Eq. (A.1)
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∂– 

  A t' t,( )∇ k+ + g– k t t',( )

=  t1 Dq
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∞–

t'

∫



q

∑

× g_ k q
1
2
---A t1 t',( ) t t1,+ + 

  g+ k
1
2
---A t1 t,( ) t1 t',+ 

 
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(A.2)

where the quantity  is defined by relation (15). In
the special case of a one-dimensional system, using
Eq. (16), we obtain

(A.3)

where the quantities Al(t, t '|t1) and Bl(t, t '|t1) are defined
by relations (34) and (35).

APPENDIX B

Solution of Kinetic Equation

In this Appendix, we solve analytically the kinetic

equation for Green’s function . Introducing the
new variables T and t– in accordance with relations (17),
we obtain from Eq. (A.3)

– Dq
+ t' t1–( )Φt1t'* k q t t', ,( )

× g+ k q
1
2
---A t1 t,( ) t1 t',+ + 

 

× g– k
1
2
---A t1 t',( ) t t1,+ 

 

– t1 Dq
+ t1 t–( )Φt1t k q t t', ,( )d

∞–

t

∫

× g+ k q
1
2
---A t1 t',( ) t t1,+ + 

  g– k
1
2
---A t1 t,( ) t1 t',+ 

 

– Dq
– t' t1–( )Φt1t'* k q t t', ,( )

× g– k q
1
2
---A t1 t,( ) t1 t',+ + 

  g+ k
1
2
---A t1 t',( ) t t1,+ 

 




,

Φt1t

t∂
∂

t'∂
∂

ilΩdc

ωac

2
-------- t t'+( ) 

  ωac

2
-------- t t'–( ) 

 coscos+ +

× gl
– t t',( ) t1 D– t1 t–( )Al t t' t1,( )g0

– t t1,( )g0
+ t1 t',( )[d

∞–

t'

∫=

– D+ t' t1–( )Bl t t' t1,( )g0
+ t1 t',( )g0

– t t1,( ) ]

– t1 D+ t1 t–( )Al t t' t1,( )g0
+ t t1,( )g0

– t1 t',( )[d

∞–

t

∫

– D– t' t1–( )Bl t t' t1,( )g0
– t1 t',( )g0

+ t t1,( ) ] Pl t t',( ),≡

gl
– T 0,( )

Td
d

i
dAl T( )

dT
-----------------+ gl

– T 0,( )

=  t1d

0

∞

∫ D– t1–( )Al t t t t1–,( )g0
– T

t1

2
--- t1–,– 

  g0
+ T

t1

2
--- t1,– 

 



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(B.1)

where the right-hand side of the equation is denoted by
Pl(T). The quantity Al(T) is defined by the equation

(B.2)

and satisfies the relation

(B.3)

The linear differential equation (B.1) can be solved easily,

(B.4)

and constant C is defined by the periodicity condition,

(B.5)

Integrating with respect to T in (B.4) and (B.5) using
the relation

(B.6)

and carrying out the Fourier transformation

(B.7)

– D+ t1( )Bl t t t t1–,( )g0
+ T

t1

2
---– t1, 

  g0
– T

t1

2
--- t1–,– 

 

+ D– t1( )Bl t t t t1–,( )g0
– T

t1

2
---– t1, 

  g0
+ T

t1

2
--- t1–,– 

 

– D+ t1–( )Al t t t t1–,( )g0
+ T

t1

2
---– t1–, 

 

× g0
– T

t1

2
--- t1,– 

 




Pl T( ),≡

dAl T( )
dT

---------------- lΩdc lΩac ωacT( )cos+=

Al T
2π
ωac

--------+ 
  Al T( ) 2πl

Ωdc

ωac

--------.+=

gl
– T 0,( ) iAl T( )–[ ]exp=

× C T 'Pl T '( ) iAl T '( )[ ]expd

0

T

∫+
 
 
 

,

C 1 2πil
Ωdc

ωac

--------– 
 exp–

1–

=

× T 'Pl T '( ) iAl T '( )[ ] .expd

2π/ωac–

0

∫

il
Ωac

ωac

-------- ωacT( )sin 
 exp

=  Jk l
Ωac

ωac

-------- 
  ikωacT( )exp

k ∞–=

∞

∑

Pl T( ) Plm imωacT( ),exp
m ∞–=

∞

∑=
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we obtain the final result that we employed in Section 5:

(B.8)

APPENDIX C

Alternative Expression for Current

In this Appendix, we present a form of current den-

sity other than (53) for /ωac ! 1 and ωacτac  ∞.
In this case, expression (53) can be written in the form

(C.1)

where

(C.2)

The other (field-dependent) factor in Eq. (C.1) has the
form

(C.3)

Since the level width for the density of states is of the

order of  and is larger than ωac, the index k of Bessel’s
functions can be replaced by –ν. As a result, we obtain

(C.4)

(C.5)

Relations (C.2), (C.4), and (C.5) lead to an expression for
current in form (56) if we use relation (54) for f00(ω).

gl
– T 0,( ) i Plm Jk l

Ωac

ωac

-------- 
  Jk' l

Ωac

ωac

-------- 
 
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∞

∑
m ∞–=

∞

∑–=

×
i m k k'–+( )ωacT[ ]exp

lΩdc k m+( )ωac+
--------------------------------------------------------.

U

jz

ensU∆2

8"
2

------------------AB,=

A
1

ωac

--------
Jk'

2 ν'( )
ν k'+
---------------

k' ∞–=

∞

∑=

=  
π

ωac πνsin
-----------------------Jν ν'( )J ν– ν'( ).

B
1

ωac

--------
Jk

2 ν'( )
k ν+
-------------- ωd

2π
-------g00

+ ω( )g00
+ ω ωac k ν+( )+( )

∞–

∞

∫
k ∞–=

∞

∑=

× f 00 ω ωac k ν+( )+( ) f 00 ω( )–[ ] .

U

B Jν
2 ν'( )F ν( )/ωac,≈

F ν( )
1

ν k–
----------- ωd

2π
-------g00

+ ω( )g00
+ ω ωac k ν+( )+( )

∞–

∞

∫
k ∞–=

∞

∑=

× f 00 ω ωac k ν+( )+( ) f 00 ω( )–[ ]

=  2
"ωac ν k–( )/2kBT[ ]sinh

ν k–
---------------------------------------------------------- ωd

2π
-------
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∞

∫
k ∞–=

∞

∑

× g00
+ ω

ωac

2
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ωac

2
-------- ν k–( )+ f 00 ω( ).
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Abstract—The temperature dependences ρab(T) of Nd2 – xCexCuO4 + δ single crystals with 0 ≤ x ≤ 0.20 are
studied and analyzed on the basis of the concepts in the theory of disordered 2D systems. The results are com-
pared with the data obtained for other copper-oxide HTSC. It is found that a transition to the superconducting
state in the optimal doping region 0.14 ≤ x ≤ 0.18 occurs only in crystals with a fairly small degree of dis-
order (kFl ≥ 2, where l is the mean free path). This transition is compatible with the weak 2D-localization mode
as long as the localization radius is longer than the characteristic size of a Cooper pair. The superconducting
transition temperature in the optimal doping region increases monotonically with the parameter kFl character-
izing the degree of disorder in the crystal. The degradation of superconducting properties upon a further
increase in the doping level (x > 0.18) is apparently associated with a transition from 2D to 3D conductivity in
the single crystal. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that superconductivity emerges in a
wide range of copper-oxide HTSC compounds as a
result of doping the initial dielectric matrix with nonis-
ovalent impurities. By way of a simple example, we can
mention the doping of the dielectric system La2CuO4
with strontium (which leads to the emergence of holes
[1]) or of the dielectric Nd2CuO4 with cerium, leading
to the emergence of electrons [2] in CuO2 planes. A
comparative analysis of phase diagrams Tc(x) for the
superconducting transition temperature as a function of
the dopant concentration for these two systems is given
in the review by Dagotto [3].

As a result of the substitution of Sr2+ for La3+ (Ce4+

for Nd3+) and the migration of extra holes (electrons) to
CuO2 planes, the buffer layer between these planes
acquires a potential of charged impurity centers distrib-
uted randomly in the lattice. The disorder generated by
this random impurity potential hinders the free motion
of carriers and may lead to their localization. Conse-
quently, the insulator–superconductor transition is
closely related to the insulator–metal transition [4].
This is analogous to the doping of semiconductors with
acceptors or donors, the essential difference being that
HTSC materials display clearly manifested 2D proper-
ties of charge carriers in macroscopic 3D crystals. For
this reason, it is natural to use the ideas developed in the
physics of disordered 2D systems [5] for studying
transport phenomena in these materials. An analysis of
1063-7761/01/9206- $21.00 © 21084
the effect of disorder introduced in the course of doping
on the transport properties of HTSC (the magnitude
and temperature dependence of resistivity, the presence
or absence of superconductivity, and the superconduct-
ing transition temperature) has been carried out by
many authors.

For example, Beschoten et al. [6] investigated the
emergence of the superconducting transition upon an
increase in the doping level of calcium in the insulator
Bi2Sr2PrCu2O8. The substitution of Ca2+ for Pr3+ gener-
ates holes and leads to the insulator–superconductor
transition in Bi2Sr2(Pr1 – zCaz)Cu2O8 for z = zc = 0.52.
The authors of [6] considered the closeness of this tran-
sition to the insulator–metal transition and found that
superconductivity in this case coexists with the spatial
localization of charge carriers for z > zc.

Mandrus et al. [7] studied the degradation of super-
conductivity in the Bi2Sr2(Ca1 – xYx)Cu2O8 system upon
an increase in yttrium concentration. The authors ana-
lyzed the temperature dependence of resistivity in the
ab plane for 0.2 ≤ x ≤ 0.8 and attributed the disappear-
ance of the superconducting transition for xc = 0.45
directly to the metal–insulator transition due to a
decrease in the concentration of holes and their local-
ization in the fluctuations of the random potential cre-
ated as a result of substitution of trivalent yttrium for
bivalent calcium.

Schlenga et al. [8] studied in detail the resistance
and magnetoresistance for a series of monocrystalline
001 MAIK “Nauka/Interperiodica”
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La2 – xBaxCuO4 – δ samples with the barium concentra-
tion x = (0.05 ± 0.01)–(0.075 ± 0.01) in the region of the
insulator–metal transition induced by the substitution
of Ba2+ for La3+. Analyzing the temperature depen-
dence ρab(T), the authors observed a gradual transition
from strong to weak localization (and superconductiv-
ity) upon an increase in x. The absence of a sharp con-
centration boundary for the insulator–metal transition
was attributed to the 2D-type conductivity in the sys-
tem.

The dependence of resistivity ρab in the normal
phase (for fixed temperature T = 40 K) on the strontium
concentration for a series of La2 – xSrxCuO4 samples
with x < 0.15 presented by Karpinska et al. [9] led to the
conclusion that an insulator–metal transition occurs for
x = 0.05. For samples with Sr concentration in the imme-
diate vicinity of this transition (x = 0.048 and x = 0.051),
the temperature dependence of resistivity ρab was mea-
sured in magnetic fields up to 8.5 T at low and ultralow
temperatures down to 30 mK. It was found that the nor-
mal state of these samples after the destruction of
superconductivity by a magnetic field is insulating
(ρ  ∞ for T  0); i.e., the magnetic field-induced
superconductor–insulator transition takes place.

Fukuzumi et al. [10] thoroughly investigated the
process of replacement of copper in the CuO2 plane by
another element (zinc in the present case). As an isova-
lent impurity, zinc does not change the initial concen-
tration of carriers but, being a strong scatterer with a
short-range potential, causes a disorder in the system
due to a difference in ion cores. The temperature depen-
dence of the resistivity was measured in the ab plane
for La2 – xSrxCu1 – zZnzO4 single crystals with 0.1 ≤ x ≤
0.3 and for YBa2(Cu1 – zZnz)3O7 – y single crystals with
an oxygen concentration varying from 6.63 to 6.93
0.06 ≤ y ≤ 0.37) for various concentrations of Zn (z ≤
0.04). It was shown that the introduction of even a few
percent of Zn increases the residual resistance sharply,
decreases Tc, and leads to a superconductor–insulator
transition. The lower the hole concentration in the
matrix (Sr concentration in the La system or the oxygen
concentration in the Y system), the easier the supercon-
ductivity degradation; i.e., the superconductor–insula-
tor transition requires a lower concentration of Zn.

In the present work, we study the effect of doping as
well as various annealing conditions (oxygen concentra-
tion) on the transport properties of Nd2 – xCexCuO4 + δ sin-
gle crystals, separating (whenever possible) these two
ways of introducing disorder in the system. A transition
from the dielectric to the superconducting state upon a
change in the annealing conditions in Nd2 – xCexCuO4 + δ
was also studied earlier [11–14], but no systematic studies
were carried out (to our knowledge) for Nd2 − xCexCuO4 + δ
single crystals in a wide range of cerium concentration
under optimal annealing (δ  0).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. EXPERIMENTAL RESULTS AND DISCUSSION

2.1. Doping with Cerium

We measured the resistivity ρab in the CuO2 planes
for optimally annealed monocrystalline films of
Nd2 − xCexCuO4 + δ with 0.12 ≤ x ≤ 0.20. The technique
of growth, the conditions of annealing, and other char-
acteristics of these samples are described in [15, 16].
The samples having the highest value of Tc for a given
x are regarded as optimally annealed. The temperature
dependences ρab(T) in the temperature range T = 1.4–
300 K are presented in Fig. 1. The figure shows for
comparison the results obtained for an undoped bulk
single crystal of Nd2CuO4 at T = 116–300 K.

Figure 2a shows the dependence of resistivity on the
Ce concentration for our series of the samples. Besides,
the available data for the best single crystals of
Nd2 − xCexCuO4 + δ with x = 0.14 [14] and 0.16 [12] are
also presented. The values of ρab(T) are taken for T =
Tc for superconducting samples and at T = 4.2 K for
nonsuperconducting ones. In the same form, Fig. 2a
presents the results obtained by Fournier et al. [17] for
epitaxial monocrystalline Pr2 – xCexCuO4 films with
0.13 ≤ x ≤ 0.20 (dashed curve).

Figure 2b presents the phase diagram Tc(x) for the
same samples as in Fig. 2a. Besides, the results
obtained in [18] are presented, which are the same for
Nd- and Pr-containing systems with x = 0.15: Tc = 24 K
(ρab = 8 × 10–5 Ω cm at T = 50 K). The Tc(x) dependence
for the Nd system is in accord with the phase diagram
available for the best polycrystalline samples of
Nd2 − xCexCuO4 + δ [2, 3]. Note that not only are the
dependences ρab(x) and Tc(x) in the Nd and Pr systems
similar qualitatively, but the numerical values of these
quantities are also close in samples with close stoichio-
metric compositions in oxygen (δ  0). Slightly
lower values of ρab for x < 0.18, as well as systemati-
cally higher values of Tc for the Pr system, are probably

100
T, K

0 50 150 200 250 300

x = 0
0.12

0.15

0.17
0.18

0.20
10–1

ρab, mΩ cm

100

10–2
10–1

100

101

ρab, Ω cm

Fig. 1. Temperature dependences of resistivity ρab of
Nd2 − xCexCuO4 + δ samples with various Ce concentra-
tions.
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Fig. 2. Dependences of (a) resistivity ρab and (b) superconducting transition temperature Tc on the cerium concentration x: our
results (light circles), the results obtained in [12] (light squares) and [14] (light triangles) for the Nd system; dark rhombi correspond
to the results obtained in [17] for a Pr system, while the asterisk corresponds to the results from [18] for Nd- and Pr systems.
due to a better quality of epitaxially grown films of
Pr2 − xCexCuO4.

The following three segments can be singled out on
the ρab(x) curve for Nd2 – xCexCuO4 (Fig. 2a): a sharp
decrease in the resistivity of samples with a lower (x <
0.12–0.14) doping level (ρab = 26.5 Ω cm for Nd2CuO4
at T = 116 K, which is more than four orders of magni-
tude larger than the value of ρab for x = 0.12); a compar-
atively weak dependence ρab(x) for samples with 0.14 ≤
x ≤ 0.18, and a noticeably sharper (as compared to 1/x)
decrease in the value of ρab in the region with a higher
doping level (x > 0.18). A decrease in the resistivity by
several orders of magnitude upon an increase in the Ce
concentration from x = 0 to x = 0.12–0.14 is undoubt-
edly associated with the transition from the strong
exponential localization mode to the weak logarithmic
localization mode for charge carriers in cuprate planes
(insulator–metal transition in a disordered 2D system).
This is confirmed by the temperature dependence of
resistivity. For x = 0, we have ρab ∝  exp(–EA/kT) with
EA ≈ 60 meV [19]. On the other hand, the effects of
weak 2D localization (logarithmic increase in ρab upon
a decrease in temperature and a negative magnetoresis-
tance) are clearly manifested in the sample with x =
0.12 [16].

Indeed, it was mentioned above that the substitution
of Ce4+ for Nd3+ leads, on the one hand, to the emer-
gence of electrons in the CuO2 plane, and on the other
hand, to a disorder generated by the random distribu-
tion of Ce ions. As in the case of semiconductors, local-
ization or delocalization of charge carriers is deter-
mined by the ratio of the kinetic energy (Fermi energy
εF) and the potential energy of interaction of electrons
with impurities (random potential amplitude γ) [20].
For 2D systems, εF ∝  ns, where ns is the 2D electron
JOURNAL OF EXPERIMENTAL 
concentration, and the amplitude γ of impurity potential
fluctuations is proportional to Ns, where Ns = ns is the
surface density of impurities [21]. Obviously, γ @ εF for
low electron concentrations, which corresponds to an
insulator (strong localization). For high concentrations,
εF @ γ, the quasi-metallic mode for the mean free path
is realized with quantum interference corrections due to
the weak localization effects. The condition εF @ γ cor-
responds to the “flooding” by electrons of the potential
relief at the bottom of the band, where conduction is
observed (the two-dimensional pdσ band formed by the
electron states in the CuO2 plane [22]).

An Anderson-type insulator–”metal” transition
takes place in the region γ ≈ εF. The parameter charac-
terizing the extent of disorder may be the 2D conduc-
tivity σ2D in dimensionless units: g = hσ2D/e2. A transi-
tion from strong localization to metal-type conduction
with weak localization effects in a 2D system corre-
sponds to the condition g ≈ 1. In the “metallic” region
(g @1), we have [5]

(1)

where kF = (2πn)1/2 is the Fermi quasimomentum and l
is the mean free path.

The ρab(T) curve for a sample with x = 0.12 (which
does not undergo a superconducting transition) clearly
displays segments typical of metal-type conduction and
corresponding to a semiconductor with the minimum
value of ρab ≈ 8 × 10–4 Ω cm at T ≈ 150 K (Fig. 1). The
estimate

(2)

σ2D
e

2

h
----kFl,=

σ2D ρab
–1

c=
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001



EFFECT OF DISORDER ON THE TRANSPORT PROPERTIES 1087
of the partial conductivity in a CuO2 layer, where c = 6 Å
is the separation between cuprate planes, shows that
this value of resistivity corresponds to kFl ≈ 2. In actual
practice, a superconducting transition is observed only
in samples with a high metal-type conductivity g =
kFl @ 1 (10 ≤ kFl ≤ 25) for samples with 0.14 ≤ x ≤ 0.18.
The data for stoichiometric Nd systems with a Ce con-
centration between x = 0.12 (kFl ≈ 2) and x = 0.14 (kFl ≈
10) are not available in the literature. In a Pr system
whose crystal structure and physical properties are
close to those of a Nd system, a clearly manifested
superconducting transition with Tc = 8 K is observed in
a sample with x = 0.13 (kFl ≈ 3.4) [17] (see Figs. 2a and
2b). Thus, we can assume that doping the stoichiomet-
ric samples of Nd or Pr systems with cerium leads to a
transition from an Anderson-type insulator to a super-
conductor for kFl > (2–3).

A noticeable decrease (to about one-sixth) in the
value of ρab upon a slight variation of x from 0.18 to
0.20 (see Fig. 2a) is accompanied by a decrease in Tc ,
which is apparently associated with the second metalli-
zation stage [4], i.e., the activation of charge transfer
between CuO2 layers and a transition from the 2D to 3D
conduction. This is how Eliashberg interpreted in his
review [4] the experimental results obtained by
Sreedhar and Ganguly [1] on the “anomalous” degrada-
tion of the superconductivity for a high hole concentra-
tion (x > 0.3) in the La2 – xSrxCuO4 system: the disap-
pearance of the superconducting transition is accompa-
nied by a decrease in resistivity ρab to a fraction of its
initial value. The transition from a 2D- to 3D-type of
conduction in the La system for x ≈ 0.3 [23] and in the
Nd system for x ≈ 0.18 [19] is manifested in the change
in the temperature dependence of resistivity along the c
axis from insulator- to metal-type and in a strong
decrease in the anisotropy ρc/ρab.

2.2. The Role of Nonstoichiometry

We also analyzed the ρab(T) dependence in the
Nd2 − xCexCuO4 + δ system for various concentrations δ
of oxygen (different annealing conditions) for a fixed x.
Figure 3 presents our results obtained for x = 0.18: in
the absence of annealing, for an intermediate annealing
mode (Tc = 4 K), and for optimal annealing in vacuum
for 40 min at 800°C (Tc = 6 K).

It is well known that Nd2 – xCexCuO4 + δ samples
which are not subjected to annealing are not supercon-
ducting even at a close-to-optimal doping level (0.14 ≤
x ≤ 0.18). The formation of a phase with zero resistivity
requires annealing the samples in nitrogen [11], argon
[11, 12, 14], or in vacuum [13] for lowering the oxygen
concentration. According to modern concepts [11, 13],
the main role of annealing lies in the removal of
“excess” nonstoichiometric oxygen (δ  0). Excess
oxygen, occupying the apex oxygen sites, which are
vacant in optimally annealed Nd2 – xCexCuO4 + δ, cre-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ates a random impurity potential which localizes elec-
trons supplied by cerium. As excess oxygen atoms are
removed during annealing, the disorder in the system
decreases and the mean free path increases. The
decrease in the extent of disorder must lead to a transi-
tion from the strong localization mode to a mode of
weak localization of charge carriers in cuprate planes
for kFl ≈ 1.

According to Sadovskii [24], superconductivity is
observed in disordered systems when the carrier local-
ization radius Rloc exceeds the size ξ of a Cooper pair.
For small mean free paths, in the so-called “dirty” limit,
when l < ξ0 (ξ0 is the coherence length in the pure sub-
stance), we have ξ = (ξ0l)1/2. For the carrier localization
radius in 2D systems under weak localization condi-
tions (kFl > 1), the following estimate is valid [5]:

(3)

As we go over to the weak localization regime, the cor-
relation length ξ increases with l according to a power
law, while the localization radius increases exponen-
tially. For this reason, the condition Rloc > ξ may be
attained even for kFl of the order of several units.

Indeed, a Nd1.82Ce0.18CuO4 + δ single crystal is
superconducting even for kFl = 2.5 (see Fig. 3). In
Nd2 − xCexCuO4 + δ samples with x = 0.15 [14] and 0.18
[12], in which the oxygen concentration decreases as a
result of annealing, a superconducting transition was
also observed only for kFl > 2. For example, Tanda
et al. [12] presented the ρab(T) dependences for eight
samples with x = 0.18 at various stages of annealing
from samples in the insulator phase to superconducting

Rloc l
π
2
---kFl 

  .exp≈

100
T, K

2000 300

ρab, mΩ cm

100

101

10–1

10–2

1

2

3

Fig. 3 Temperature dependences of resistivity ρab of
Nd1.82Ce0.18CuO4 + δ samples for various annealing modes:
(1) in the absence of annealing (Tc = 0), kFl = 0.25; (2) at
intermediate annealing (Tc = 4 K), kFl = 2.5; (3) at optimum
annealing (Tc = 6 K), kFl = 25.
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Fig. 4. Temperature dependences of the resistivity ρab of a Nd1.82Ce0.18CuO4 + δ sample (sample 2 in Fig. 3) in a magnetic field (a)
parallel and (b) perpendicular to the ab plane.
samples: 0.1 ≤ g ≤ 3.5. They noted that at the boundary
of the disorder-induced transition from the supercon-
ductor to the insulator, the resistivity of the sample cor-
responds to kFl ≈ 3 (R2D = ρab/c = 8.5 kΩ).

Thus, a change in the disorder in the
Nd2 − xCexCuO4 + δ system both due to doping (variation
of x for δ ≈ const), as well as due to annealing (variation
of δ for x = const), leads to the emergence of a super-
conducting transition only in crystals with a high conduc-
tivity. In all the publications mentioned above [6–10, 12,
14], it was established experimentally that the maxi-
mum surface resistance R2D in the normal phase, from
which a transition to the superconducting phase is still
possible, is close to the universal theoretical value  =

h/(2e)2 (  = 4e2/h). This quantity corresponds to the
conductivity quantum of a Cooper pair with a charge 2e
and emerges in the Bose scenario of the transition from
a superconductor to an insulator upon an increase in
disorder [25]. Tanda et al. [12] consider this fact as a
serious argument in favor of precisely the Bose sce-
nario of the superconducting transition. However, the
conductivity of a Fermi gas above the boundary of the
insulator–metal transition (kFl ≥ 1) attains approxi-
mately the same value. Besides, the temperature and
magnetic-field dependences of resistivity ρab in the nor-
mal phase clearly display the features typical of the
weak localization effects for Fermi particles in a disor-
dered system. Weak localization defects will be dis-
cussed in greater detail below.

2.3. Effects of Weak 2D Localization

The suppression of superconductivity by a magnetic
field allows us to analyze the properties of the normal
state of a superconductor below the superconducting
transition temperature (T < Tc). Experiments on the
Nd1.82Ce0.18CuO4 + δ single crystal with Tc = 6 K (sam-
ple 3 in Fig. 3) in a magnetic field (up to 12 T) perpen-

R2D*

σ2D*
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dicular to CuO2 planes revealed a logarithmic increase
in resistivity ρab upon cooling (0.2 K ≤ T ≤ 5 K) as well
as a clearly manifested negative magnetoresistance in
fields B > Bc2 (Bc2 = 3–4 T) [16]. These facts were inter-
preted by us as manifestations of the effects of weak 2D
localization for the metal-type conduction (kFl = 25)
along cuprate planes.

In the present work, we analyzed the magnetoresis-
tance of a Nd1.82Ce0.18CuO4 + δ sample with a lower
value of Tc = 4 K (sample 2 in Fig. 3) and a broad (∆T ≈
10 K) superconducting transition, which is apparently
associated with a larger disorder in the system (kFl =
2.5). We measured resistivity ρab in a magnetic field up
to 5 T perpendicular (B ⊥  ab) and parallel (B || ab) to a
CuO2 plane in the temperature range 1.4 K ≤ T ≤ 30 K.
Owing to a high extent of disorder, the logarithmic
increase in ρab is observed upon a decrease in tempera-
ture even in zero magnetic field. As a result, the ρab(T)
dependence for B = 0 has the shape of a curve with a
peak at T ≈ 14 K (Figs. 4a and 4b).

It can be seen from Fig. 4a that the magnetic field
parallel to CuO2 planes gradually suppresses supercon-
ductivity and virtually does not affect the resistance in
the normal phase at T ≥ 14 K. Figure 4b demonstrates,
on the one hand, a more rapid degradation of supercon-
ductivity by the transverse magnetic field, which is
associated with anisotropy of the upper critical field in
layered cuprate superconductors [26]. On the other
hand, for B ⊥  ab, a stronger effect of the magnetic field
on the segment describing the decrease in ρab upon
cooling in the normal phase is observed: as the value of
B increases, the segment is displaced towards lower
temperatures. Such a behavior is attributed to the sup-
pression of the quantum correction to conductivity
associated with weak localization [16].

It can be seen from Fig. 4b that the transverse mag-
netic field B = 2 T suppresses the weak localization
effect almost completely, while the longitudinal field
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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virtually does not influence this effect up to B = 5 T.
Such an anisotropy of magnetoresistance is typical just
of 2D systems [27].

3. CONCLUSION

An analysis of the publications devoted to the study
of electrical conductivity of copper-oxide HTSC and
our results obtained for Nd2 – xCexCuO4 + δ single crys-
tals leads to the following conclusions concerning the
effect of disorder on the transport in these systems. In
layered HTSC crystals, spatial separation of charge car-
riers and charged impurities takes place: electrons (in
Nd systems) or holes (in La systems) do not remain in
the bound state at Ce4+ or Sr2+ ions, but go over to CuO2
planes. Charge carriers in a “perfect” crystal are delo-
calized in the ab plane and localized in the c direction.
The situation is similar to that observed in semicon-
ducting superlattices or multilayer heterostructures
with selective doping in barriers; i.e., an HTSC crystals
may be regarded as a system of multiple quantum wells
(CuO2 layers) separated by doped layers of Nd or La
oxides [28].

For a low concentration of charge carriers, the ran-
dom potential of ionized impurities or nonstoichiomet-
ric defects leads to their strong localization and to the
temperature dependence of conductivity typical of
insulators. Upon an increase in the charge carrier con-
centration of charge carriers and the Fermi energy, a
transition to the weak localization mode occurs in the
vicinity of the universal value σ2D ≈ e2/h of 2D conduc-
tivity of a CuO2 layer (kFl ≈ 1). In the range of weak
localization, a superconducting transition may occur
when the localization radius exceeds the characteristic
size of a Cooper pair. This condition is usually
observed even for small values of parameter kFl ≥ 2–3.
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Abstract—The de Haas–van Alphen effect in quasi-two-dimensional metals is studied at arbitrary parameters.
Oscillations of the chemical potential can substantially change the temperature dependence of harmonic ampli-
tudes that is commonly used to determine the effective electron mass. The processing of the experimental data
using the standard Lifshitz–Kosevich formula can therefore lead to substantial errors even in the strong har-
monic damping limit. This can explain the difference between the effective electron masses determined from
the de Haas–van Alphen effect and the cyclotron resonance measurements. The oscillations of the chemical
potential and the deviations from the Lifshitz–Kosevich formula depend on the reservoir density of states that
exists in organic metals due to open sheets of the Fermi surface. This dependence can be used to determine the
density of electron states on open sheets of the Fermi surface. We present analytical results of the calculations
of harmonic amplitudes in some limiting cases that show the importance of the chemical potential oscillations.
We also describe a simple algorithm for a numerical calculation of the harmonic amplitudes for arbitrary res-
ervoir density of states, arbitrary warping, spin-splitting, temperature, and Dingle temperature. © 2001 MAIK
“Nauka/Interperiodica”.
¶ The quantum magnetization oscillations (or the de
Haas–van Alphen (dHvA) effect) were discovered long
ago [1] and have been widely used as a powerful tool in
studying the Fermi surfaces and single electron proper-
ties in metals [2]. In a 3D metal, a good quantitative
description of this effect is given by the Lifshitz–
Kosevich (LK) formula [3]. In two- or quasi-two-
dimensional compounds, deviations from the LK for-
mula are possible for three reasons: the harmonic
damping in the 2D case is different, the impurity scattering
cannot be described by the usual Dingle law, and the
chemical potential also becomes an oscillating function of
the magnetic field. The first problem is important only
when the harmonic damping is weak and can be easily
solved using the 2D harmonic expansion [2]. The second
problem concerns the accurate calculation of the density
of states (DOS) with electron–electron interactions and
the impurity scattering. The electron–electron interactions
are not very important if many Landau levels (LLs) are
occupied (we consider the case where the Fermi energy
eF is much greater than the LL separation and the tem-
perature). In the 3D case, the impurity scattering adds
an imaginary part iΓ(B) to the electron spectrum, which
means that the electron can leave its quantum state with
the probability w = Γ(B)/π" per second. Assuming this
energy level width Γ(B) to be independent of the mag-

¶ This article was submitted by the author in English.
1063-7761/01/9206- $21.00 © 21090
netic field B, one obtains the Dingle law of harmonic
damping [4]

where Al is the amplitude of the harmonic number l and
ωc = eB/m*c is the cyclotron frequency. This Dingle
law has been proved by many experiments on 3D met-
als. In the 2D case, this law may be incorrect and the
problem of the DOS distribution in 2D metals has not
been solved yet, although many theoretical works have
been devoted to this subject (for example, [5–7]). The
problem is complicated because even the exact calcula-
tion of the pointlike impurity scattering is not sufficient
because the long-range impurities (and probably, the elec-
tron–electron interactions) are also important in the 2D
case [8]. The procedure of extracting the DOS distribution
from the dHvA measurements was recently proposed in
[9]. In the present paper, we focus on the third question:
we assume the Dingle law to be valid and consider the
influence of the chemical potential oscillations on the
harmonic amplitudes of the dHvA oscillations in this
approximation. Because we consider the quasi-2D
case, the Dingle law is not a bad approximation. We
show that the chemical potential oscillations substan-
tially change the temperature and the Dingle tempera-
ture dependence of the harmonic amplitudes even in the
limit of a strong harmonic damping. Therefore, the esti-
mate of the effective electron mass based on the LK for-

Al ∝ 2πlΓ /"ωc–( ),exp
001 MAIK “Nauka/Interperiodica”



        

THE INFLUENCE OF THE CHEMICAL POTENTIAL OSCILLATIONS 1091

                                                      
mula can lead to an error of up to 30%. This can explain
the difference between the effective electron masses
obtained from the dHvA effect and from the cyclotron
resonance measurements (for example, in [10] and
[11]). This problem was examined numerically by Har-
rison et al. [12] at zero warping W of the Fermi surface
(FS). In this paper, we derive explicit formulas describing
the quantum magnetization oscillations at arbitrary
parameters. We study the result analytically in some limit-
ing cases. This shows the importance of the chemical
potential oscillation effect on harmonic amplitudes.

The energy spectrum of the quasi-two-dimensional
electron gas is given by

(1)

where W is the warping of a quasi-cylindrical FS. The
DOS distribution with the impurity scattering can be
written as

where for E @ "ωc, the oscillating part of the DOS is [13]

(2)

In this formula, g = B/Φ0 is the LL degeneracy, the fac-
tor cos(2πlµeB/"ωc) is due to the spin splitting, and the
factor J0(πlW/"ωc) comes from the finite warping W of
the quasi-cylindrical FS. J0(x) is the zero-order Bessel
function. The last factor in (2) is the usual Dingle fac-
tor.

The nonoscillating part of the DOS is given by

where nR(E) is the ratio of the reservoir density of states to
the average DOS on the quasi-2D part of the FS. The res-
ervoir DOS occurs in quasi-2D organic metals because of
open sheets of the FS. These quasi-one-dimensional states
do not directly contribute to the magnetization oscilla-
tions because they form the continuous spectrum and
the nonoscillating DOS.

If the DOS is known, one can calculate the thermo-
dynamic potential

(3)
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where µ(B) is the chemical potential and the oscillating
part of the thermodynamic potential is given by [13]

where λ ≡ 2π2T/"ωc . The total particle number is usu-
ally constant,

This is an equation for the chemical potential as a func-
tion of the magnetic field. Separating the oscillating
part of the DOS and substituting

(where εF is the Fermi energy at zero magnetic field),
we obtain

(4)

We next use the fact that the relative reservoir DOS
nR(E) does not change appreciably at the scale of T or
|µ – εF| < "ωc/2 (this is true if many LLs are occupied
because nR(E) changes substantially at the Fermi energy
scale). It then follows that nR(E) ≈ nR(εF) = const ≡ nR. The
left-hand side of (4) can be simplified, and after the
insertion of (2), we obtain the equation for the oscillat-
ing part  of the chemical potential,

(5)
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This nonlinear equation cannot be solved analytically
without any approximations, but it determines oscilla-
tions of the chemical potential with arbitrary parame-
ters (it is only assumed that eF @ T, "ωc).

The magnetization oscillations at the constant elec-
tron density N = const are given by

The oscillating part of the magnetization is 

(6)

where µ(B) is given by Eq. (5) and involves the depen-
dence of the magnetization on the reservoir DOS.
Equations (5) and (6) describe the magnetization oscil-
lations at arbitrary parameters. The only approximation
used in deriving these formulas is the Dingle law of
harmonic damping. In quasi-2D organic metals with
the warping W > TD, the Dingle law is believed to be a
sufficiently good approximation.

Equations (5) and (6) are a good starting point for
numerical calculations. It follows that in the limit
W/µ ! 1, the oscillating parts of the magnetization and
the chemical potential are related simply by

(7)

For zero warping, this was obtained in [9].

Nonlinear equation (5) for  can be solved ana-
lytically only in some simple approximations. We do
this to illustrate the influence of the chemical potential
oscillations on the temperature and the Dingle temper-
ature dependence of the harmonic amplitudes. We thus
consider zero warping, zero spin splitting, and zero

M
d Ω Nµ+( )

dB
---------------------------–

N const=
= ∂Ω

∂B
-------

µ N, const=
–=

– ∂Ω
∂µ
-------

N B, const=

N+ 
  dµ

dB
-------

N const=

∂Ω
∂B
-------

µ N, const=
.–=

M̃ B( ) ∂Ω̃
∂B
-------

µ N, const=
–=

=  
2g
πB
-------εF

1–( )l 1+

l
------------------ λ l

λ lsinh
----------------

l 1=

∞

∑

× 2πl
µeH
"ωc

---------- 
  2πlΓ

"ωc

------------– 
 expcos

× 2πl
µ B( )
"ωc

------------ 
  J0 πl

W
"ωc

--------- 
 sin





+
W
2µ
------ 2πl

µ B( )
"ωc

------------ 
  J1 πl

W
"ωc

--------- 
 





,cos

M̃ B( )
εF

B
----- 2g

"ωc

--------- 1 nR+( )µ̃ B( ).=

µ̃ B( )
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temperature. The sum in the right-hand side of Eq. (5)
can then be calculated and we obtain

(8)

where x ≡ 2π (B)/"ωc, y ≡ 2πεF/"ωc, and b ≡ 2πΓ/"ωc.
For a very large electron reservoir nR = ∞, we have

x = 0, which implies the case of a fixed chemical poten-
tial. In this case, the magnetization is given by [13]

(9)

The temperature dependence of the harmonic
amplitudes is given by the LK formula

(10)

It is also possible to solve Eq. (8) analytically at
nR = 0 and nR = 1. At zero electron reservoir nR = 0, the
solution to this equation is 

It describes oscillations of the chemical potential. The
magnetization at zero electron reservoir is given by the
formula

(11)

which coincides with (9) after the phase shift y  y + π
and the sign change   . This implies that the
harmonic damping law

(12)

does not change and only the sign of all even harmonics
is reversed. This symmetry between the cases of the
fixed chemical potential µ = const and the constant par-
ticle density N = const is a feature of the special expo-
nential law of the harmonic damping. Any finite tem-
perature and the electron reservoir density break this
symmetry.

We now consider the intermediate case where nR = 1.
Equation (8) then becomes

(13)

This gives

For the magnetization, we obtain

(14)

x
2
---

1
1 nR+( )

------------------- y x+( )sin

y x+( )cos eb+
------------------------------------ 

  ,arctan=

µ̃

M̃ B( )
2gεF

πB
----------- ysin

eb ycos+
---------------------- 

  .arctan=

Al T( )
2π2Tl/"ωc

2π2Tl/"ωc( )sinh
------------------------------------------.=

x
2
--- πµ̃ β( )

"ωc

---------- ysin

eb ycos–
---------------------- 

  .arctan= =

M̃ B( )
2gεF

πB
----------- ysin

eb ycos–
---------------------- 

  ,arctan=

M̃ M̃–

Al ∝ 
1
l
--- lb–( )exp

xsin
xcos

----------- y x+( )sin

y x+( )cos eb+
------------------------------------= .

x e b– ysin( ).arcsin=

M̃ y( )
gεF

πB
-------- e b– ysin( ).arcsin=
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To determine how the harmonic damping has changed,
we must calculate the amplitudes of the first several
harmonics of this expression. The amplitude of the first
harmonic is

and after the integration by parts, we obtain

This is a superposition of two elliptic integrals,

(15)

For b @ 1, the deviations of A1(b) from the LK for-
mula are small,

.

In the opposite limit b ! 1, we obtain

(16)

This is substantially different from the LK dependence
A1(b) = exp(–b) ≈ 1 – b. For example, the value A1(0) is
4/π times larger than the LK prediction.

A stronger deviation from LK formula (12) can be
seen in the amplitudes of the next harmonics. All even
harmonics vanish because expression (14) possesses

the symmetries (π – y) = (y) and (–y) = (y).
The amplitude of the third harmonic can also be cal-

culated. For b @ 1 and e–b ! 1, we have

This result is in contrast to the cases where nR = 0
or nR = ∞, where we had A3(b) = e–3b/3. This is not sur-
prising because in the symmetric case nR = 1, the oscil-
lations must be much smoother and more sinusoidal.
Therefore, the first harmonic must increase and the
higher harmonics must decrease. For b = 0, we have

(17)

which is ~2.35 times less than the LK prediction A3(0) =
1/3 and has the opposite sign. In the case where nR = 1,
the first harmonic is therefore increased while the
amplitudes of the others are strongly decreased com-
pared to the cases of zero and infinite electron reservoir.
The deviation from the LK formula reduces as the
warping of the FS increases. The above analysis also
shows that at low temperature and low Dingle temper-

A1 b( ) 1
π
--- e b– ysin( ) ysinarcsin y,d

π–

π

∫=

A1 b( ) 4
π
--- ye b– ydcos

2

1 e 2b– ysin
2

–
-----------------------------------

0

π/2
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A1 b( ) 4
π
--- ebE e b–( ) 2 bK e b–( )sinh–[ ] .=

A1 b( ) e b–= e 3b– /8 …+ +

A1 b( ) 4
π
--- 1 b

4

2b
----------ln 1

2
---– 

 – O b2( )+
 
 
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M̃ M̃ M̃ M̃

A3 b( ) e 3b– /12– O e 5b–( ).+=

A3 0( ) 4
3π
------ 3y y ydcoscos

ycos
---------------------------------

0

π/2

∫ 4
9π
------,–= =
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ature, the harmonic ratios can give a quantitative esti-
mate of the electron reservoir density that is much more
precise than just an observation about the slope of mag-
netization oscillations.

To include the correct temperature dependence,
warping, and spin-splitting and to consider an arbitrary
reservoir density, one can perform numerical calcula-
tions based on solving Eq. (5) for the chemical poten-
tial and inserting this solution in formula (6) for the
magnetization. This can be easily done for arbitrary
parameters that are available experimentally. The tem-
perature dependence of the first three harmonic ampli-
tudes is given in the figure for the following set of param-
eters close to the real experiments on α-(BEDT-
TTF)2KHg(SCN)4: the reservoir density nR = 1, the dHvA
frequency F = 700 T, the effective mass m* = 2m0, the
Dingle temperature TD = 0.2 K, and the warping W = 1
K. We see a substantial deviation from the LK depen-
dence. As T  0, the obtained amplitude of the first
harmonic is about 1.1 times larger than the LK predic-
tion. If we also let TD  0 and W  0, their ratio
becomes 4/π = 1.27, in agreement with analytical
result (16). The second harmonic amplitude is close to
zero at T = 0. The amplitude of the third harmonic
changes its sign at T ≈ 0.8 K and deviates very strongly
from the LK formula. It is damped much more strongly
than the LK predictions. At T = 0 and W = 0, it also coin-
cides with prediction (17).

To conclude, it was shown both analytically and
numerically that the oscillations of the chemical poten-
tial are essential for the temperature dependence of har-
monic amplitudes of dHvA oscillations in quasi-two-
dimensional compounds. The accurate determination
of the effective electron mass from the dHvA effect
should take this effect into account. This can be done by a
simple numerical calculation based on Eqs. (5) and (6).
The oscillations of the chemical potential depend on the
reservoir density of states in accordance with Eq. (5). This

2
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Temperature dependence of harmonic amplitudes. The
solid lines are the numerical results (for nR = 1, m* = 2m0,
TD = 0.2 K, and W = 1 K; see text) and the dashed lines are
the LK prediction at the same parameters. Their strong devi-
ations are clearly seen, especially for higher harmonics.
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fact may be used for estimating the reservoir density of
states in organic metals.
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Abstract—We present the results of analyzing the arrival directions of cosmic rays with energies E0 ≥ 4 ×
1017 eV and zenith angles θ ≤ 45° detected at the Yakutsk setup during 1974–2000. It is shown that increased
particle fluxes exceeding the anticipated random distribution levels by (4–5)σ arrive from the galactic plane
at E0 ≈ (2–4) × 1018 eV and from the supergalactic plane at E0 ≥ 8 × 1018 eV. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Revealing the sources of ultrahigh energy cosmic
rays (E0 ≥ 1017 eV) presents a difficult problem in astro-
physical research. Investigations in this direction have
been conducted for more than four decades all around
the world, but the origin of these cosmic rays is still
unclear. On the global scale, the cosmic rays do not
contradict the concept of isotropic distribution, but in
the region of extremely high energies (E0 ≥ 1019 eV)
there is a weak correlation between the arrival direc-
tions and both the galactic (see, e.g., [1, 2]) and the
supergalactic planes [3, 4]. It was reported [5, 6] that
clusters were observed in the directions of arrival of the
primary particles with energies E0 ≥ 1019 eV. Moreover,
a correlation was found between individual clusters and
pulsars situated on the entrance side of the local arm of
the Galaxy [5]. There are some indications that cosmic
rays of extremely high energies may originate from gal-
axies with active nuclei [7, 8]. Previously [9], it was
demonstrated that particles with energies E0 ≥ 1019 eV
arriving from the equatorial region of a supergalaxy are
characterized by a higher flux (as compared to other
directions) and by a time-dependent intensity. Data pre-
sented below pour additional light on the problem of
the origin of the ultrahigh energy cosmic rays.

2. COSMIC RAY CHARACTERISTICS STUDIED, 
RESULTS AND DISCUSSION

Below we report on extensive air showers (EASs)
with energies E0 ≥ 4 × 1017 eV and zenith angles θ ≤ 45°
detected at the Yakutsk setup during 1974–2000. We
studied correlations between the cosmic ray arrival
directions and the galactic and supergalactic planes.
The analysis involved the data for EASs with the direc-
tions of arrival determined by not less than five detec-
1063-7761/01/9206- $21.00 © 20887
tors and the axes falling within the central circle with a
radius of ≤1700 m. These events provide for a mini-
mum error in determining the main EAS parameters
(arrival direction, axis coordinates, E0, etc.). The pri-
mary particle energies were determined using the rela-
tionships

(1)

(2)

(3)

where ρs, 600(θ) is the density of charged particles mea-
sured by the on-ground scintillation detectors at a dis-
tance of R = 600 m from the shower axis.

Figure 1a shows the fraction r = N(|bG(SG) | ≤
10°)/Nall (Nall is the total particle number) of the primary
particles arriving from equatorial regions (|bG(SG)| ≤ 10°)
of the Galaxy (G) and supergalaxy (SG) plotted versus
the primary energy E0. Solid and dashed lines indicate
the values for an isotropic flux calculated by the Monte
Carlo method. The north pole of the supergalaxy has
the galactic coordinates bG = 6.32° and lG = 47.37° [10].
Figure 1b presents an energy spectrum of the cosmic
rays measured at the Yakutsk setup [11].

As is seen in Fig. 1, there is a tendency toward sys-
tematic increase in rSG with the energy for E0 ≥ 5 ×
1018 eV, although the statistical accuracy is insuffi-
ciently high. At first glance, the Galaxy exhibits no
excess flux on the disk side. However, there is a slight
increase in rG for E0 ≤ 4 × 1018 eV which (as will be

E0 eV[ ] 4.8 1.6±( ) 1017 ρs 600, 0°( )( )×=
1.0 0.02±

,

ρs 600, 0°( ) m 2–[ ] ρ s 600, θ( )= secθ 1–( )1020
λρ

------------ ,exp

λρ g/cm2[ ]
=  450 44±( ) 32 15±( ) ρs 600, 0°( )( )log+ ,
001 MAIK “Nauka/Interperiodica”



888 GLUSHKOV, PRAVDIN
shown below) is nevertheless indicative of a certain role
of the Galaxy in the origin of particles with these ener-
gies.

Let us consider this situation in more detail. Fig-
ure 2a shows the distributions of arrival directions with
respect to latitude (at a step of ∆b = 5°) for 319 EASs
with E0 ≥ 8 × 1018 eV in the galactic and supergalactic
coordinates. The top curves (1) show the experimen-
tally observed (Nexp) and anticipated random (Nran) dis-
tributions; the bottom curves (2) present deviations of
the number of observed events from that expected, plot-

ted in units of the standard σ = , nσ = (Nexp –
Nran)/σ. Curves 2 in Fig. 2a correspond to the average
behavior of nσ upon smoothening using a Fourier series
with five harmonics.

The values of Nran were determined by playing the
number of showers randomly distributed over the celes-
tial sphere. The procedure was as follows. For each
measured EAS, the real arrival time and azimuth (deter-
mined in a horizontal coordinate system) were replaced
at random to determine 500 directions in the galactic
and supergalactic coordinates. The resulting distribu-

N ran

1018

JE
3 0,

 e
V

2 /(
m

2  s
r 

s)

E0, eV

1024

1025
1

2

3

1'
3'

1017 1019 1020

G

SG

0.2

0

0.4
r

(a)

(b)

Fig. 1. (a) The fraction r (relative to the total number) of the
primary particles arriving from equatorial regions (|b| ≤ 10°)
of the Galaxy (G) and supergalaxy (SG) plotted versus the
primary particle energy E0. Solid and dashed lines indicate
the values for an isotropic flux calculated by the Monte
Carlo method. (b) An energy spectrum of the cosmic rays
J(E) ∝  E–γ measured on the Yakutsk setup [11]. Solid
curves show the approximations according to the power
law: (1) E0 < 1018.0 eV (γ1 = –3.05 ± 0.04); (2) 1018 ≤ E0 <

1019.0 eV (γ2 = –3.34 ± 0.05); (3) E0 ≥ 1019.0 eV (γ3 =
−2.53 ± 0.25); (1', 3') proposed galactic and supergalactic
components, respectively.
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tions of random events were normalized to real with
respect to the absolute value.

As is seen, the supergalactic plane exhibits a signif-
icant excess of events. In the latitude band ∆bSG = –10–
0°, there are 65 EASs instead of expected 35, which

corresponds to a relative excess of (65 – 35)/  ≈ 5σ.
The galactic plane exhibits no effects in this energy
range, except for a weak (≈2σ) positive deviation in the
latitude band ∆bG = –5–0°.

Figure 2b shows distributions of the arrival direc-
tions for 874 EASs with E0 = (3–4) × 1018 eV. These
curves exhibit a relative maximum of rGin comparison
with the anticipated isotropic flux density (Fig. 1a). The
events in the galactic plane (|bG| ≤ 5°) exhibit a signifi-

cant peak exceeding the expectation by (121–87)/  ≈
3.6σ. The supergalactic plane is not manifested in this
energy range.
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Fig. 2. Data for EAS with (a) E0 ≥ 8 × 1018 eV and (b) E0 =

(3–4) × 1018 eV: (1) plots of arrival directions versus lati-
tude in the galactic (G) and supergalactic (SG) coordinates
showing experimental data (Nexp histograms), figures indi-
cate the total number of showers) and anticipated random
distributions (Nran curves) for isotropic fluxes; (2) devia-

tions nσ = (Nexp – Nran)/ plotted as histograms and

averaged curves.
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The above data reveal the following pattern. In the
energy range E0 ≤ (6–8) × 1018 eV, the primary particles
are apparently mostly generated in the Galaxy. An
increase in their fraction in the disk (rG) can be inter-
preted as due to a decrease in the degree of directed par-
ticle motion “smearing” caused by the galactic mag-
netic field. A sharp change in shape of the energy spec-
trum (Fig. 1b) and a strong correlation of the arrival
direction with the supergalactic plane for E0 ≥ (0.8–1) ×
1019 eV are indicative of the predominantly extragalac-
tic origin of these particles.

The galactic plane is almost perpendicular to the
supergalactic plane (Fig. 3a). We may use this circum-
stance to refine some details in Fig. 2. Figure 4 shows
the distributions without events for |bSG(G) | ≤ 10° in the
supergalactic (galactic) plane. As is seen, the distribu-
tions in Figs. 2 and 4 are similar, but the latter curves
exhibit a stronger correlation in the cases indicated
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120150180210240

S

0 2 4 kpc

(b)

CG

Fig. 3. (a) A schematic diagram showing the mutual
arrangement of the galactic (G) and supergalactic (SG)
Milky Ways: CG(CSG), centers ACG (ACSG), anticenters;
NG(NSG), north poles; OO', line of intersection of the galac-
tic and supergalactic planes; S, point of observation; dashed
areas indicate visible sectors for Yakutsk EAS setup; (b) a
schematic diagram of the galactic spiral [12].
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above. The supergalactic latitude band ∆bSG = –10–0°
exhibits 56 EASs (expected, 28) with E0 ≥ 8 × 1018 eV,

which corresponds to an excess of (56 – 28)/  ≈
5.3σ, while the galactic plane (|bG| ≤ 5°) shows a peak
of 105 EASs for E0 = (3–4) × 1018 eV with an excess of

(105–68)/  ≈ 4.5σ. Figure 5 presents a diagram of
the arrival directions for EASs with E0 = (3–4) ×
1018 eV plotted on the celestial sphere in the galactic (G)
and supergalactic (SG) coordinates.

This increase in correlations may, at first glance,
appear rather unexpected—especially for the galactic
EASs with E0 = (3–4) × 1018 eV. What can be the influ-
ence of the supergalaxy, which has a markedly greater
volume and contains the Galaxy as a part? This is only
possible provided that particles in this range also origi-
nate from outside the Galaxy.

In this context, it was especially of interest to study
the distributions of events in the latitude band with
|bSG(G)| ≤ 10°, which are depicted in Figs. 6 and 7. As is
seen, all distributions in Fig. 6 are different from those
considered above. The first feature to be noted is that
the observed patterns are strongly different from those
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anticipated for the random events. For example, the
data in Fig. 6a(G) give χ2 = 50 for n = 30 degrees of free-
dom (random probability, P ≈ 10–2) and in Fig. 6a (SG),
χ2 = 55 (P ≈ 3.5 × 10–3). According to Fig. 6b we observe
for the Galaxy (G) χ2 = 77 (P < 10–5) and for the super-
galaxy (SG) χ2 = 85 (P < 10–5). Secondly, the distribu-
tions are not similar to those presented in Fig. 2. This
result may seem surprising because the data depicted in
Fig. 6 present only a part of the total set depicted in Fig. 2.
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Let us consider the distribution of arrival directions
presented in Fig. 7. Since the planes of the supergalaxy
and Galaxy are mutually almost perpendicular, the pat-
tern of events in the |bSG| ≤ 10° band with different bG

(Fig. 6(G)) presents in fact a distribution along the
supergalactic disk with respect to the latitude lSG and
vice versa, the pattern of events in the |bG| ≤ 10° band
with different bSG (Fig. 6(SG)) presents essentially a
distribution along the galactic disk with respect to the
longitude lG. The lSG value is counted clockwise from
the direction to the supergalaxy center (Fig. 3a).

Figure 8 shows the distributions of arrival directions
for EASs from the supergalactic and galactic disks (|b| ≤
10°) plotted versus the longitude coordinate. The data
in Fig. 8a(SG) can be interpreted as follows. In the
supergalactic disk sector studied (lSG ≈ 0–130°), the rel-
ative intensity of cosmic rays with E0 ≥ 5 × 1018 eV var-
ies in a smooth manner (spline curve 2 in Fig. 8a). An
increase in the flux at lSG ≈ 90°, where the supergalactic
and galactic planes intersect, is most probably due to an
additional contribution due to the particles arriving
from the galactic disk. The peak observed in Fig. 8a (G)
at lG ≈ 137° also corresponds to the intersection of these
planes.

Now let us proceed to the analysis of data in Fig. 8b
showing the arrival directions for EASs with E0 = (2.5–
4) × 1018 eV. The first peak in the galactic disk (see the
nτ distribution) at lG ≈ 70° is apparently due to an
increased flux of particles originating from the exit of
the galactic local arm. This is well illustrated in Fig. 3b,
schematically depicting a spiral structure of the Galaxy
[12], where a galactic disk sector observed at the
Yakutsk setup is shaded. The fourth peak at lG ≈ 180° is
related to a high intensity of emission from the anti-
center, where the particle absorption in the disk is at
minimum. This behavior is also quite possible if the
particles arrive from outside the Galaxy. As for the
peaks at lG ≈ 110 and 155°, these features can be attrib-
uted to the other arms of the Galaxy. The magnetic
fields of arms in the galactic disk are schematically
depicted in Fig. 9e [13], where open and dark circles
indicate the field orientation outward and inward rela-
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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supergalactic (SG) coordinates for events in the latitude band |bSG(G)| ≤ 10°.
tive the figure plane and the field strength is propor-
tional to the circle area.

Figure 9 shows distributions of the n values with
respect to the longitude lG for EASs arriving with vari-
ous energies from the equatorial region (|bG| ≤ 10°) of
the Galaxy. These data refer to events with the zenith
angles θ ≤ 60° and the shower axes falling inside the
entire perimeter of the Yakutsk setup. Smooth curves
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show the spline functions constructed using a Fourier
series with 13 harmonics. Note a special sequence of
changes in the histogram fragments. The aforemen-
tioned excess of particles arriving from the anticenter
with E0 = (2.5–4) × 1018 eV is also observed at higher
energies (Fig. 9a). This flux decreases at E0 < 2.5 ×
1018 eV (Fig. 9c) and completely vanishes in the region
of E0 ≈ (1–1.5) × 1018 eV (Fig. 9d). In contrast, the
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Fig. 9. Distributions of EAS versus longitude lG for cosmic
rays arriving from the galactic disk (|b| ≤ 10°) with various
energies: (a) E0 ≥ 1018.6 eV; (b) E0 = 1018.4–18.6 eV;

(c) E0 = 1018.2–18.4 eV; (d) E0 = 1018.0–18.2 eV. (e) Dia-
gram of arrangement of the galactic magnetic arms [13]:
(s) field directed outward; (d) field directed inward; arrows
indicate the line of intersection of the galactic and supergalactic
planes (lG ≈ 137°); figures indicate the total numbers of events.
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direction of lG ≈ 75° exhibits a minimum at E0 ≥ 5 ×
1018 eV, which changes to maximum when the primary
particle energy decreases to E0 ≈ 2 × 1018 eV (Fig. 9c).
Pronounced peaks are observed in the sector ∆lG ≈ 105–
145° for the events with E0 < 4 × 1018 eV (Figs. 9b–9d).
For E0 = (2.5–4) × 1018 eV, the excess in the number of
observed events (690) over the random distribution

(581) in this sector amounts to (690–581)/  ≈
4.6σ.

The positions of these peaks correlate with the
arrangement of galactic magnetic arms (Fig. 9e).
Therefore, it is not excluded that these peaks, as well as
the dynamics of their variation for E0 < 4 × 1018 eV, are
related to the activity of these arms. The role of individ-
ual galactic arms in the origin of cosmic rays in various
energy intervals is probably different.

In the range of energies E0 ≥ 4 × 1018 eV, the contri-
bution of the Galaxy is apparently not as large. The
minimum observed in Fig. 9d for lG ≈ 75° is most prob-
ably due to a relatively strong absorption of extragalac-
tic particles by the Orion arm (see Fig. 3b) as compared
to adjacent parts of the galactic disk. Note also a mini-
mum at lG ≈ 137° in Fig. 9b, which corresponds to the
intersection of galactic and supergalactic planes (line
SO in Fig. 3a). We may suggest that this minimum is
related to an increase in the flux of particles from equa-
torial regions of the supergalaxy, because these parti-
cles are more strongly absorbed in the supergalactic
disk.

The data presented in Fig. 8b(SG) (curves 2) show
that the number of events in the latitude band |bSG| ≤
10° also exhibits a minimum in the direction of inter-
section with the galactic disc at lSG ≈ 90°. This mini-
mum can also be explained by the fact that particles
arriving from outside the Galaxy exhibit a stronger
absorption in the galactic disk then in the adjacent
regions. In the direction toward the center of the super-
galaxy (lSG ≈ 0°), we observe a clearly pronounced peak
with the observed frequency exceeding the random value

by (46–25)/  ≈ 4σ in the angular sector ∆lSG = 15°.
Based on the fact that curves 2 in Fig. 8b(SG) cer-

tainly reveal a supergalactic structure, we must admit
that particles with the energies E0 = (2.5–4) × 1018 eV
may arrive from extragalactic sources. In this case, the
fraction of these particles may be comparable with the
Galaxy contribution. Assuming that this fraction
accounts for half of the events, the energy spectrum in
Fig. 1b can be represented as a sum of the galactic (1')
and extragalactic (3') components. The former spec-
trum (1') does not contradict the hypothesis [14] that
the galactic primary particles may be predominantly
neutrons with a spectrum of this very shape. This is
indicated by an additional radiation observed [14] at the
AGASA setup near the Galaxy center with an excess of
4.1σ over the anticipated isotropic flux. This result was

581

25
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confirmed and refined by the SUGAR group [15].
Unfortunately, the Yakutsk group cannot see the galac-
tic center.

The aforementioned significant correlations
between the arrival directions of cosmic rays and the
galactic and supergalactic planes were revealed due to
a very large statistics of EASs observed on the Yakutsk
setup (a total of about 37 000 for E0 ≥ 1018 eV) and a
very rigid selection of events for the analysis. Unfortu-
nately, no analogous data were reported for the AGASA
setup, which is similar to ours with respect to the type
of detectors and the method of EAS data processing.
Recent report [6] only pointed out that two clusters
were observed at E0 ≥ 4 × 1019 eV in the direction close
to the supergalactic plane.

At first glance, the results obtained at the Yakutsk
and AGASA setups are at variance as far as the possible
role of the supergalaxy in the origin of extremely high
energy cosmic rays is considered. However, in fact
there are no discrepancies. This is confirmed by Fig. 10,
showing the distribution of arrival directions for EASs
with E0 ≥ 1019 eV in the supergalactic coordinates, plot-
ted at a ∆bSG = 10° step using the data reported by both
the Yakutsk and AGASA groups. We obtained a distri-
bution analogous to that measured on the AGASA
setup by adding three distributions reported in [6]. The
histograms 2 show the values of nσ representing devia-
tions of the number of observed events from that for
isotropic fluxes (analogous to the histograms in Fig. 2b).
The number of analyzed events is the same for both set-
ups. In our set, we employed the EASs with θ ≤ 60°
detected over the entire circle area (even for the shower
axes falling outside the setup perimeter).

As is seen, despite a difference in the initial distribu-
tions 1 in Fig. 10, the distributions 2 are similar to one
another. Note certain important features. First, both dis-
tributions 2 show a (1.8–2.1)σ excess in the number of
measured events over isotropic fluxes in a latitude band
of |bSG| ≤ 10°. Second, there are dips indicative of –1.5σ
deficiency in the events occurring symmetrically rela-
tive to the supergalactic plane at |bSG| ≈ 10–20°.
Observed against these minima, the peaks of excess
radiation originating from the supergalactic plane
become more significant. Some other details in the two
distributions 2 are also coinciding to a certain extent,
thus showing evidence that these features are not acci-
dental.

A comparison of our data presented in Figs. 2 and
10 shows the inexpediency of using the |bSG| ≈ 10° step
because this decreases significance of the results. The
real experimental accuracy, especially that ensured by
a rigid selection of events for the analysis, is not worse
than 1–2°.

The fact that the arrival directions of the primary
particles with energies E0 ≥ 8 × 1018 eV are correlated
with the supergalactic disk orientation suggests that the
particles of extragalactic origin must be electrically
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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neutral. Otherwise, particles bearing the electric
charge z would move in the magnetic field by a tra-
jectory with a curvature radius (depending on the
energy E0)

(4)

According to this, even the trajectories of protons mov-
ing in the galactic magnetic field (H ≈ 3 × 10–6 Gs) with
energies on the order of 1019 eV would have a curvature
radius of approximately 3 kpc (which is considerably
smaller than the galactic disk radius of ~15 kpc).
The intergalactic magnetic fields, albeit weak (H ≈
9 × 10−10 Gs), still give for these protons R ≈ 10 Mpc,
which is also significantly smaller than the supergalac-
tic disk diameter of ~60 Mpc). Under these conditions,
the cosmic rays would “forget” their origin and their
arrival directions would exhibit no correlations with the
Galaxy and supergalaxy structure, which is not the case
in the experiment.

The primary particles can hardly be neutrons.
Indeed, the neutrons with E0 ~ 1019 eV possess a
Lorentz factor on the order of 1010 and can cover before
decay only a distance on the order of 100 kpc, which is
significantly smaller than supergalaxy size. We believe
that the ultrahigh energy cosmic rays consist of some
other neutral particles. This conclusion is based on a
complex analysis of the spatial and temporal structure
of EASs observed at the Yakutsk setup [16–18]. The
results of these investigations showed that the experi-
mental data for E0 ≤ (1–3) × 1018 eV agree with calcu-
lations according to the QGSJET model [19] assuming
a composition of the primary particles varying from a
mixture enriched at E0 ~ 1017 eV with heavy nuclei (z =
10–30 fraction accounting for 63 ± 7% [20]) to a mix-

R R0/300Hz.=
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ture enriched with protons at E0 ~ 1018 eV. In the region
of E0 ≥ (3–5) × 1018, the showers develop differently,
significantly changing their transverse structure. These
changes cannot be described within the framework of
the QGSJET model (irrespective of the composition of
primary particles, from protons to iron nuclei), thus
requiring other concepts concerning the development
of extended air showers in the regions of extremely
high energies.

3. CONCLUSION

As is seen from the data presented above, cosmic
rays with energies E0 ≈ (3–5) × 1018 eV exhibit correla-
tions in their arrival directions with galactic and super-
galactic structure. This behavior gives certain grounds
to believe that the primary particles with these energies
may be of both galactic and extragalactic origin. As for
the energy range E0 ≥ 8 × 1018 eV, there are indications
of the predominantly extragalactic origin of these cos-
mic rays.

The experimental facts presented above, together
with the results reported in [16–18], show evidence in
favor of a hypothesis that the extragalactic primary
radiation may contain a neutral component. On their
way to Earth, these neutral particles may “transillumi-
nate” a large-scale structure of the Universe, probably
covering a region of space markedly exceeding the vol-
ume of a supergalaxy.
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Abstract—The optimum conditions for a prolonged holding of charged particles resonantly trapped from the
galactic plasma by nonlinear waves and for the acceleration of these particles to high energies by the surfatron
mechanism are established. The density of particles trapped by the plasma waves of large amplitude and by the
quasitransverse magnetosonic shock waves is estimated. Various reasons leading to possible breakage of the
process of surfatron acceleration of cosmic rays in the Galaxy are considered. Within the framework of the sur-
fatron acceleration mechanism, galactic cosmic rays originate predominantly from the interstellar plasma and
their energy spectrum is formed in two stages. In the first stage, some of the galactic plasma particles are accel-
erated from thermal energies to 1015 eV/nucleon; in the second stage, the cosmic rays may continue gaining
energy up to 1019 eV/nucleon and above. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the main problems in any theory explaining
the origin of cosmic rays is the mechanism of accelera-
tion of charged particles entering into these rays. As
was noted in [1, 2], the most studied acceleration pro-
cesses can be reduced to mechanisms of two types:
(i) acceleration caused by the electric field induced by
a variable magnetic field and (ii) acceleration due to
collisions with moving inhomogeneities of a magnetic
field. However, these mechanisms may provide for an
increase in the charged particle energy only up to
~1012 eV/nucleon [3, 4]. Explaining the presence of
particles with greater energies in the spectrum of cos-
mic rays requires searching for new acceleration pro-
cesses.

In recent years, actively discussed as a method of
the collective acceleration of charged particles in a
weakly magnetized collisionless plasma is the so-
called surfatron mechanism (surfing) [2, 4–11], which
can provide for a relatively high rate of energy gain by
charged particles. According to this mechanism, the
particles are trapped by a potential wave running in the
plasma across a weak magnetic field and accelerated in
the direction along the wave front. The moving positive
potential jump can accelerate ions, while the negative
jump accelerates electrons.

Below we will consider two types of wave potential
perturbations most frequently encountered in a colli-
sionless plasma: (i) a longitudinal plasma wave and
(ii) a quasitransverse magnetosonic shock wave (MSSW).
A periodic plasma wave containing both positive and
negative potential jumps is capable of accelerating both
ions and electrons. In contrast, an MSSW comprises a
positive potential jump and accelerates only ions.
1063-7761/01/9206- $21.00 © 20895
In the galactic plasma, the stationary plasma waves
and MSSWs may appear as a result of anomalous phe-
nomena such as supernova and nova explosions, vigor-
ous processes in unstable stars, flares in quiet stars of
the Sun type, and some other analogous pulsed pro-
cesses. In addition, nonlinear plasma waves moving at
a subluminal speed may form as a result of the electro-
magnetic energy conversion in hybrid resonance layers
[4], due to nonlinear plasma oscillations generated by a
high-energy branch of the cosmic ray spectrum (wake
waves [12]), or upon a strong relativistic magnetic
dipole radiation emission from pulsars [2, 4].

A large (in principle, unlimited) duration of the pro-
cess of particle acceleration by surfing is provided by a
particle–wave synchronism stably maintained as a
result of the particle outrunning the wave being pre-
vented by deviations along the front in a constant mag-
netic field [11]. The particle accelerator based on this
principle is called Surfatron [7], and the corresponding
mechanism is referred to as the surfatron acceleration
or surfing. It must be noted that the mechanism of par-
ticle acceleration operative in the Surfatron was origi-
nally considered by Sagdeev [13] within the framework
of an analysis of the ion motion in the MSSW front.

The surfatron acceleration mechanism under con-
sideration takes place in a weakly magnetized plasma.
The substance in the Galaxy frequently occurs in the
plasma state both in stellar atmospheres and in the inter-
stellar medium [2]. Typical values of the plasma parame-
ters for a stellar atmosphere are offered by those of the
upper chromosphere of the Sun (density, n0 ~ 109 cm–3;
temperature, T ~ 10 eV; magnetic field strength, B0 ~ 1 Oe)
and the solar wind (n0 ~ 10 cm–3; T ~ 10 eV; average
magnetic field strength, B0 ~ 10–4 Oe). In the Galactic disk
001 MAIK “Nauka/Interperiodica”
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and its environment, the substance predominantly occurs
in the state of so-called hot gas [2] representing a com-
pletely ionized plasma with the following typical param-
eters: n0 ≈ 3 × 10–3 cm–3; T ~ 100 eV; magnetic field
strength, B0 ≈ 3 × 10–6 Oe.

Estimates of the energy of cosmic rays, obtained in [4]
for the charged particles accelerated by means of surf-
ing in the nonlinear plasma waves in the galactic
plasma, amount to % ~ 1017–1021 eV. This result sug-
gests that the mechanism of surfatron acceleration is a
promising approach to explaining the formation of the
high-energy branch of the spectrum of cosmic rays.
Despite this optimism, however, there are several ques-
tions concerning features of the surfatron acceleration
of cosmic rays in the Galaxy. What is the source of cos-
mic rays involved in the surfing process? Whether or
not the source power is sufficient to provide for the
observed density of cosmic rays? Is there any differ-
ence in the mechanism of acceleration for electrons and
ions? What is the role of relativistic particle emission
for the surfatron acceleration of cosmic rays in the Gal-
axy? These and some other questions will be consid-
ered below.

The paper is organized as follows. In Section 2, we
will establish optimum conditions for the surfatron
acceleration mechanism and consider the properties of
nonlinear waves by which the charged particles are
trapped and accelerated. An important characteristic of
the surfatron acceleration process—the density of par-
ticles trapped by a nonlinear wave—will be estimated
in Section 3. Section 4 is devoted to elucidating the pos-
sible reasons capable of breaking the particle accelera-
tion process. The energies of cosmic rays gained as a
result of the acceleration by surfing in the Galaxy are
estimated in Section 5. The main conclusions following
from this investigation are summarized in Section 6.

2. CONDITIONS NECESSARY
FOR THE SURFATRON 

ACCELERATION PROCESS
As noted above, consideration will be restricted to

analysis of the charged particle acceleration by surfing
in the plasma waves and quasitransverse MSSWs. In
both cases, we will assume the stationary waves to be
plane. The motion of articles will be described either in
a laboratory frame (where the plasma is resting as the
whole) or in the wave frame. Consider a wave moving
in the laboratory frame in the direction opposite to the
x axis at a phase velocity u not exceeding the speed of
light c. The characteristic conversion factor for the pas-
sage from one to another frame is

The surfatron acceleration takes place upon trap-
ping of a small group of particles by a potential wave
moving in the plasma across a weak magnetic field. As
is known [2, 4-11], a necessary condition for the long-

γ f 1/ 1 β2– , β u/c.= =
JOURNAL OF EXPERIMENTAL 
term (“eternal”) acceleration of the trapped particles is
provided by R ≥ 1, where

E0 being the maximum value (amplitude) of the electric
field strength in the wave and B, the magnetic field
strength at a point (in the wave frame) of the electric
field maximum. According to the formulas of the field
transformation on the passage from one frame to
another, the magnetic field strengths are related as

where B0 is the magnetic field strength in the laboratory
frame; the electric field E0 is the same in both frames of
reference.

Let us check whether the condition R ≥ 1 holds for
the longitudinal plasma waves of large amplitude prop-
agating in a galactic plasma. We will consider a plasma
with the particle density n0, the temperature T ! mc2,
and the longitudinal wave frequency

for the most typical interstellar medium with

where

e and m being the electron charge and mass, respec-
tively, and B0 the magnetic field strength in the resting
plasma. In this case, we may ignore the effect of mag-
netic field on the dispersion properties of the plasma
and take ω ≈ ωpe .

The maximum theoretically possible amplitude of
the electric field strength in the stationary nonlinear
plasma wave is [14]

.

Taking this expression into account, the parameter R
can be readily presented in the following form:

This relationship indicates that the necessary condition
R > 1 is fulfilled if

The right-hand part of this inequality can be written as

R E0/B,=

B γ f B0,=

ω ωpe
2 ωce

2+=
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where θe = T/mc2 is a dimensionless temperature nor-
malized to the electron rest energy. Below we will
assume that the plasma pressure in the galactic plasma
is on the order of the average magnetic field pressure:

This assumption is acceptable for the Galaxy [1, 2] and
can be recognized as valid in the circumsolar plasma
(the chromosphere of the Sun, solar corona, and solar
wind). Under these conditions, we obtain

where vTE =  is the thermal velocity of electrons.
Now the condition R > 1 can be expressed in terms of γf

in a form more convenient for practical use:

(1)

The temperature of particles in the circumsolar
plasma is T ≈ 10 eV, while that in the interstellar plasma
of the galactic disk is T ≈ 100 eV. Thus, the galactic
plasma is characterized by the parameter

Substituting this value into relationship (1), we obtain esti-
mates for the maximum value of the conversion factor

and for the minimum value of this factor

Thus, we arrive at a conclusion that there is a lim-
ited, albeit sufficiently broad, range of plasma wave
velocities in which the wave may provide for a pro-
longed (“eternal”) acceleration of the trapped particles.
As is seen, this regime may be realized for both relativ-
istic and nonrelativistic waves in the galactic plasma,
but the rate of acceleration is significantly higher in the
latter case. Indeed, for a plasma wave moving in the
laboratory frame in the direction opposite to the x axis
and the transverse magnetic field B0 directed in the z
axis, the field accelerating particles in the surfing mode
will be directed (in the wave frame) along the y axis and
equal to

This formula indicates that, for a given n0 and the
most optimum value of R ~ 1 [10], the accelerating field
Ey determining the surfatron acceleration is markedly
greater for a relativistic plasma wave (γf > 1) than for a
nonrelativistic wave (γf ≈ 1).

n0T B0
2/8π.∼

ωce
2

ωpe
2

-------- θe

v TE
2

c2
--------- ! 1,∼ ∼

T /m

ωpe
2

ωce
2

-------- 1
θe

----- γ f 1–( )>∼
ωce

2

ωpe
2

--------> θe.∼

θe 2 10 4– –10 5–( )× .≈

γ f 5 103–104( )×≈

γ f 1 2 10 4– –10 5–( )× .≈–

Ey βB
βE0

R
---------

mc
eR
-------

ωpe γ f 1–( ) γ f 1+
γ f

-----------------------------------------------= = = .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Let us proceed to determining conditions for a pro-
longed acceleration of nuclei by surfing in quasiperi-
odic MSSWs. These waves represent essentially a propa-
gating jump of the magnetic field strength [13, 15]. Usu-
ally, both the wave front amplitude and width are
related to the magnetic field jump. One of the main
MSSW characteristics is the Alfvén Mach number

where

is the Alfvén velocity and M is the ion mass. The
MSSWs with a Mach number }A < 3 are called lami-
nar, while the waves with }A > 3 are referred to as tur-
bulent.

In a laminar MSSW, the magnetic field and potential
profiles are approximately coinciding. A potential jump
in the wave is ϕA ≈ %_/e and the jump width is approx-
imately d = c/ωpe [13, 15] (here, %_ = Mu2/2 is the
kinetic energy of a flow incident onto the wave front in
the wave frame). Therefore, the electric field strength
can be expressed as

and the conversion parameter R = E0/B for a laminar
wave is

Substituting the values of parameters of the circumso-
lar and interstellar plasma into this formula, one can
readily see that R < 1 provided that }A < 3. Thus, lam-
inar MSSWs cannot feature a prolonged acceleration
regime.

In the case of a turbulent MSSW, the potential jump
amplitude is approximately the same as that for the
laminar wave, but the jump width becomes signifi-
cantly smaller than that of the magnetic field strength.
The potential jump takes place at the front end, where
the magnetic field strength is almost equal to that
behind the front. On the scale of the potential jump
(which is on the order of the Debye radius d ~ vTE/ωpe),
the magnetic field remains virtually constant and the
jump is referred to as isomagnetic [8, 9, 15]. For a tur-
bulent MSSW with a jump width of d ~ vTE/ωpe , the
parameter

is determined by the relationship

}A u/v A,=
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Under the assumptions made above for the galactic
plasma,

we obtain that

Thus, in a turbulent MSSW (}A > 3) propagating in a
galactic plasma, the regime of prolonged acceleration
for ions can be realized provided that the potential jump
width is sufficiently small:

An analysis of the data of laboratory and satellite mea-
surements [9, 15] allows us to conclude that such small
width of the isomagnetic potential jump is quite possi-
ble for MSSWs in practice.

3. CALCULATION OF THE DENSITY
OF CHARGED PARTICLES TRAPPED

BY A WAVE

Now we will estimate the density of charged parti-
cles trapped into the potential well of a wave. Assuming
that the particles are trapped from a plasma, the density
of such particles in the laboratory frame is determined
by the density of particles moving in the plasma at a veloc-
ity close to the wave velocity. Now we will separately con-
sider the trapping of plasma electrons and ions, assuming
that their velocities are distributed according to the
Maxwell law.

First, let us consider the conditions for trapping
electrons from the plasma. The density of electrons nT

trapped by a nonlinear plasma wave obeys the relation-
ship

(2)

As is seen, a considerable proportion of electrons can
be trapped by a wave only in a nonrelativistic case, that
is, for γf – 1 ~ θe . According to relationships (1), a pro-
longed acceleration regime in this case is still possible.
Thus, a relativistic wave is characterized by a maxi-
mum accelerating field at an almost zero density of
electrons, while a nonrelativistic wave may trap a large
density of electrons but provides for a low acceleration
rate. The main conclusion from this analysis is that,
provided relationship (1) is satisfied, an electron con-
centration observed in cosmic rays (ne ~ 10–12 cm–3) can
be ensured by the partial resonance trapping of elec-
trons from the galactic plasma into a nonrelativistic
plasma wave.

Let us determine the density of trapped ions. Evi-
dently, the proportion of ions trapped from plasma by a
nonlinear plasma wave is negligibly small. Indeed, this
density is determined by formula (2), where the exponent
is M/m times greater than that in the case of electrons

ωce/ωpe v TE/c,∼

R }A
2
.∼

d }A
2
v TE/ωpe.<

nT n0 γ f 1–( )/θe–{ } .exp∝
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because the θe value has to be replaced by θi = T/(Mc2),
which is M/m times smaller than θe.

In order to find the density of ions trapped from
plasma by a quasitransverse MSSW, we might use the
results reported in [8], where the nT value was calcu-
lated as a function of the electric field strength at the
potential jump, the potential amplitude, the tempera-
ture, and the mass of ions incident onto the shock wave
front. However, we will restrict the consideration to
obtaining rough estimates of the density of trapped ions
using the formula

As is seen, the nT/n0 ratio is determined primarily by the
exponent Mu2/2T. For a galactic plasma, this value can
be written as

which shows that the density of ions in a laminar
MSSW (}A < 3) provides for an ion density observed
in the cosmic rays (ni ~ 10–10 cm–3). The same conclu-
sion would be obtained based on the results of a stricter
analysis [8]. Using the above formula to estimate the
density of particles for a turbulent MSSWs (}A > 3), we
establish that the observed ion density can be provided
for waves with the Mach number below 5.

In the Galaxy, the wave may trap particles both from
the plasma and from galactic cosmic rays. Evidently,
the latter implies trapping by relativistic plasma waves.
Let us evaluate the density of trapped particles in this
case as well. As is known [1, 2], the energy distribution
function of cosmic rays in the laboratory frame can be
written as

where K is a proportionality factor [particles/(cm2 sr s)],
k is the exponent, % is the energy, γ = %/mrc2 is the
dimensionless energy, and mr is the mass of particles
(electrons or ions).

Apparently, in the wave frame all particles which
move at velocities sufficiently close to zero will be
trapped. Based on the results obtained previously [10],
the scatter in dimensionless energy in the case of 1 ≤ R
≤ 2 and eZϕA/(mrc2) > 1 (Z is the charge number) may
be limited by two characteristic quantities: (i) ∆γ ~ 1
(rest particle energy) and (ii) ∆γ ~ γf (energy of particles
moving at a wave velocity). In the former case, the
dimensionless momentum of trapped particles varies
between zero and px = ±1 (accordingly, the dimension-

less energy γ varies from 1 to ). By the same token,
in the latter case, the momentum varies from zero to
px = ±βγf and the energy, from γ = 1 to γf .
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In the laboratory frame, the dimensionless energy
varies from γ = γf /2 to 2.5γf  in the former case and from

γ = 1 to  in the latter case. Accordingly, the density
of trapped particles in the laboratory frame in the
former case is

and that in the latter case is

The  value is comparable with the density of the
corresponding component observed in the cosmic rays.
Although the probability of trapping such a large num-
ber of particles in the wave is evidently small, we will
consider this value as limiting.

Thus, the above analysis revealed that the number of
electrons trapped by a nonrelativistic plasma wave
from the galactic plasma in the regime of prolonged
acceleration is sufficient to provide for the density of
electrons observed in the cosmic rays. The necessary
amount of ions can be trapped in the MSSW fronts at a
Mach number not exceeding 5. The regime of pro-
longed acceleration can be realized only for turbulent
MSSWs in the interval 3 < }A < 5. For a relativistic
plasma wave, the number of particles (both electrons
and ions) trapped from the galactic plasma is negligibly
small. In this case, however, the particles can be
trapped from cosmic rays. A wave of sufficiently large
amplitude can trap a considerable amount of particles
from this source.

4. POSSIBLE FACTORS LIMITING
THE PARTICLE ACCELERATION TIME

For any process of particle acceleration, an impor-
tant role is played by the initial stage usually involving
the so-called injection problem [1, 2]. We all demon-
strate that, in the case of particle acceleration by the
surfatron mechanism, the rate of energy gain is so high
that the acceleration proceeds in the injectionless mode
(i.e., the injection problem is completely eliminated).
Let us compare the rate of energy gain by particles
involved in the surfing process to the rate of energy loss
by accelerated particles for the ionization and collision
events. The maximum level of energy losses takes place
in the nonrelativistic energy range (for protons in the
atomic hydrogen medium, %H ≈ 60 keV [1]). The max-
imum loss in the gas medium can be expressed as [1]

(3)
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where n0 is the gas density and v  is the velocity of ions
with the charge number Z (for protons, v  ≈ 3 × 108

cm/s). In a fully ionized gas, the velocity v  in formula
(3) has to be replaced by vTE [1].

Let us determine the ratio of WI to the rate WS of
energy gain by surfing. In the nonrelativistic case (γf ≈
1), the latter value obeys the relationship

Taking into account that, for an electron temperature in
the range Te ~ 10–100 eV the particle velocity is on the
order of v  ~ vTE, we obtain for the WI/WS ratio

Here, Ee = e/  is the electric field generated by an elec-
tron at a distance of r0 from its center, where r0 = e2/(mc2)
is the classical electron radius. Since the Ee value is
extremely large (Ee ~ 1016 CGSE units), the above ratio
for the galactic plasma is significantly lower than unity
in the entire range of parameters β, θ, charge numbers Z,
and magnetic field strengths B0.

Now let us analyze the possible factors that can
hinder the theoretically unlimited growth in the energy
of particles trapped in the potential wave and acceler-
ated by the surfatron mechanism. The first circum-
stance is the finite size of a region in which the plasma
wave may spread in a real case. The second factor is the
radiative loss of energy by the accelerated particles.
The third reason is the wave damping as a result of the
energy loss for the acceleration of charged particles.

Let us consider the particle energy limitation related
to finite dimensions of the region of wave spreading. In
the surfatron mechanism, a particle is accelerated in the
direction perpendicular to the wave propagation, while
the particle is trapped and carried by the wave. Thus, in
the laboratory frame, the particle performs a two-
dimensional motion by (i) drifting with the wave in the
propagation direction and (ii) shifting in the transverse
direction due to the acceleration by surfing. For a non-
relativistic velocity, the transverse wave size is more
important [6, 8, 9]. This is related to the fact that the
particle velocity in the transverse direction may rapidly
exceed the wave propagation velocity; therefore, a pro-
longed acceleration will only be possible provided that
the transverse size of a region occupied by the wave is
greater than the longitudinal size. Here, it would be
expedient to recall a conclusion made in [6], according
to which restrictions related to the transverse wave size
can be removed to a certain extent for a sufficiently
high curvature of the potential wave front.
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For a relativistic wave, the path traveled by a particle
in the transverse direction in the laboratory frame is
smaller than the longitudinal distance traveled with the
wave. Indeed, for an immobile observer (occurring in
the laboratory frame), a wave propagating at a velocity
of u ≈ c for a time t would cover a distance of Lx = ut ≈
ct. Passing to the wave frame and assuming that the par-
ticle accelerated by surfing has reached a relativistic
stage, we obtain for the particle velocity components

In the wave frame, according to the Lorentz transfor-
mation, the corresponding time interval amounts to
tW = t/γf . During the time tW , the particle in the wave
frame would travel in the transverse direction a distance
of Ly ≈ ctW . According to the Lorentz transformation
rules, the transverse path observed in both frames must
be the same. This implies that, in the laboratory frame,
the particle travels a distance of Ly ≈ ct/γf = Lx/γf , which
is γf   times shorter than Lx .

Now let us estimate the energy of a particle trapped
by a nonlinear wave and accelerated due to surfing for
a time t during which the wave travels a distance of
Lx = ut. The rate of the energy gain by the particle must
be the same in both frames, but the expression is sim-
pler in the wave frame, where this rate is eZEyv y

(Ey = βB = βγfB0, B0 being the magnetic field strength
in the laboratory frame). As was demonstrated in [10],
the velocity v y of a trapped particle accelerated by surf-
ing approaches within a short time (on the order of a
cyclotron period) the speed of light. Putting v y ≈ c in
the above expression, we obtained that the energy
gained by the particle for the time t is

(4)

In the case of a nonrelativistic plasma wave and qua-
sitransverse MSSWs propagating in the galactic plasma
at a nonrelativistic velocity, the particle acceleration
time will be restricted (see above) by the transverse sys-
tem size Ly ≈ ct . Using Eq. (4) with γf ≈ 1, we obtain for
the corresponding particle energy

(5)

where Ly ≈ Lxc/u @ Lx .
For a relativistic plasma wave (β ≈ 1), the accelera-

tion time is limited by the longitudinal size Lx = ct. In
this case, Eq. (4) yields

(6)

where B0 is expressed in oersteds (Oe), Lx in parsecs (pc),
and % in electronvolts (eV). Here, a particle in the rela-
tivistic wave will shift in the transverse (acceleration)
direction by a distance that is γf times shorter than Lx.

Thus, the maximum energies of particles acceler-
ated by surfing across the nonlinear plasma waves can
be limited as a result of a finite size of the region featur-

v x 0, v y c.≈≈

% eZβγ f B0ct.≈

% eZβB0Ly,≈

% 1021Zγ f B0Lx,≈
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ing favorable wave propagation conditions. For a limit-
ing energy gained during acceleration in a nonrelativis-
tic wave, the most critical parameter is the transverse
size Ly given by formula (5). For a relativistic wave, the
maximum energy is limited mostly by the longitudinal
size Lx of the possible wave propagation region
described by formula (6).

A part of the energy of particles accelerated by surf-
ing up to relativistic and ultrarelativistic velocities is
spent for radiation. We will consider the energy lost by
accelerated particles for the radiation of three types.
The first radiation is related to the surfatron accelera-
tion process as such. As is known [2, 4–11], a particle
in the course of surfing moves (in the wave frame) pre-
dominantly in a constant homogeneous electric field
Ey  = uB/c = βγfB0. Indeed, an ideally trapped particle
reaching the relativistic or ultrarelativistic acceleration
stage is subject in this frame to no forces other than that
of the electric field Ey . The constant power of radiation
due to the surfatron acceleration of the particle in the
constant homogeneous electric field is [10]

Since the radiation power is inversely proportional to
the squared particle mass, a significant role in practice
is played only by the acceleration of electrons, so that
we may put mr = m and Z = 1.

Let us estimate the ratio of the radiation power WE

to the rate WS of the energy gain for electrons acceler-
ated by surfing in a plasma wave. Assuming the veloc-
ity components of trapped electrons to be v x = 0 and
v y = c [10], we obtain WS = eEyc. Therefore, the radi-
ated to gained power ratio is

For the parameters β, γf  and the B0 values employed,
the power radiated by accelerated electrons in the Gal-
axy is negligibly small as compared to the rate of
energy gain. Thus, the radiation from electrons (and the
more so from ions) accelerated by surfing in the electric
field Ey can be ignored.

The absence of the effect of a magnetic field on the
ideally trapped particles accelerated by the surfatron
mechanism leads to an important conclusion that this
process is not accompanied by synchrotron (magnetic
bremsstrahlung) radiation from electrons. As is known
[1, 2], the main part of cosmic radiation in the RF range
is due to cosmic rays, the major contribution being due
to the synchrotron radiation of relativistic electrons mov-
ing in the galactic magnetic fields. It was suggested [3]
that electrons in the Galaxy, losing energy for the synchro-
tron radiation, cannot gain energies exceeding 1015 eV. It
appears that electrons experiencing acceleration by the
surfatron mechanism generate, despite the presence of a
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magnetic field, no synchrotron radiation and, hence, are
not subject to this restriction. Indeed, electrons accelerated
by surfing may, in principle, acquire an arbitrarily high
energy on moving across the magnetic field with the
wave. These electrons produce no synchrotron radiat-
ing as long as they are trapped in the wave.

Another possible radiation from particles moving in
a plasma medium is related to their retardation as a
result of the wave excitation in the plasma [14]. Let us
estimate the energy loss for a plasma wave observed
from the laboratory frame. As above, we will consider
a stationary stage of the surfing process and assume the
particle velocity to be close to the speed of light.

According to [14], the power WR of the radiation of
this type for particles with a mass mr @ m is described
by a formula similar to Eq. (3):

Here Λ = mc2/"ωpe and it is assumed that the particle
velocity obeys the requirements

Note that the latter formula can be used only for elec-
trons with v  ≈ c [14].

Let us estimate the ratio of the radiation power WR

to the rate WS of the particle energy gain during surfing
in a plasma wave. For the particles with v  ≈ c, the radi-
ated to gained power ratio is

For the plasma parameters employed, this ratio is neg-
ligibly small because lnΛ < 100. Thus, the particle
retardation as a result of the wave emission during
motion in the plasma can be ignored as well.

In the Galaxy, relativistic electrons may lose energy
as a result of the scattering on photons, which is
referred to as Compton energy losses [1, 2, 16]. The
powers of synchrotron and Compton radiation in the
Galaxy are proportional to the squared particle energy
and exhibit comparable values for electron energies below
%m ~ 1011 eV [1,2, 6]. Above the %m level, the Compton
losses cease to depend on the energy and remain virtually
constant [16].

As above, let us compare the power of Compton
radiation to the rate of the particle energy gain due to
the surfatron acceleration process. According to [1, 2,
16], for % < %m the rate of Compton energy losses is
~10−16%2 GeV/s (% is the electron energy in GeV). The
ratio of the rate of energy losses as a result of the Comp-
ton scattering under conditions typical of the Galaxy
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(B0 ≈ 3 × 10–6 Oe, %m ~ 102 GeV, γf  > 1) to the rate of
the electron energy gain due to acceleration is negligi-
bly small. Therefore, we may neglect the Compton
energy losses for electrons accelerated by surfing in the
relativistic plasma waves.

Thus, we come to a conclusion that the energy
losses related to the main three types of radiation gen-
erated by particles accelerated according to the surfa-
tron mechanism can be ignored.

Finally, let us evaluate the energy limitation as a
result of the wave damping caused by the trapped parti-
cles. Since we are speaking of the maximum energies, we
will consider the case of particles trapped by a relativistic
wave. As was demonstrated in Section 3, this can take
place only for particles in the cosmic rays. The relativ-
istic plasma wave damping can be roughly estimated
using the relationship

where τ = eB0t/mrc is the dimensionless time; the angle
brackets denote averaging with respect to the wave-
length λ = u/ωpe. Taking into account that, in the relativis-
tic stage (β ≈ 1), the energy in the laboratory frame is

,

and, hence,

we obtain

The wavelength-averaged density 〈nT〉  is rather dif-
ficult to evaluate because all the trapped particles accel-
erated by surfing tend to gather at a special point in the
potential profile, in which the strengths of electric and
magnetic fields are equal E0 = B (in the wave frame) [10].
In a rough approximation based on a thorough analysis of
the surfing process performed in [10], we may take

where n is the density of particles in a negligibly small
vicinity δx of the special point. The δx/λ ratio can be
estimated using the relationship

where R ≈ 1 (optimum surfing regime) and, hence,

Note that R  1 at least in the course of the wave
damping, since we are considering a final stage of the
electric field decay in which the particles “fall out” of
the potential well [4, 10]. Taking for simplicity
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we obtain an expression for the limiting energy

Since E0 ≈ B = γf B0, we finally arrive at

Assuming that the trapped particle density n is compara-
ble with that observed in cosmic rays (n ~ 10–10 cm–3) and
substituting B0 ≈ 3 × 10–6 Oe and γf ~ 102–104, we obtain
an estimate for the limiting energy %m ~ 1015–1019 eV.
This estimate shows that, even when a greater part of
the particles from cosmic rays are trapped in a plasma
wave, the particles may gain an energy up to 1019 with
an allowance for the wave damping. Apparently, a
much lower fraction of particles are usually trapped
and, hence, the wave damping does not prevent parti-
cles from acquiring a still greater energy.

We did not consider some other factors that may
restrict the time or reduce the efficiency of the acceler-
ation process. These may include the nuclear and pho-
tonuclear interactions of the ion component of cosmic
rays with an interstellar medium, the nuclear fragmenta-
tion processes, the presence of a nonzero angle between
the wave propagation direction and the magnetic field vec-
tor (oblique wave) [9], the wave front deviation from plane
geometry (these factors were partly considered in [6]), the
effect of inhomogeneity in the plasma density and mag-
netic field strength distribution, the instability of the
plasma–nonlinear wave–accelerated article system, etc.

5. ESTIMATES OF THE PARTICLE ENERGY 
GAINED BY SURFING

In order to provide for optimum surfing conditions, the
nonlinear plasma waves in the Galaxy must be capable of
spreading over sufficiently extended regions with a quasi-
homogeneous magnetic field. It was suggested [1] that
such regions may exist in the spiral arms of the Galaxy.
The magnetic field must be quasihomogeneous upon
large-scale averaging. The spatial dimensions of mag-
netic fields in the spiral arms are comparable to the size
of these arms, with a thickness of 200–500 pc and a
length on the order of 103–104 pc.

Now let us estimate the energy the particles may
acquire as a result of acceleration by the surfatron mecha-
nism in various regions of the Galaxy. First, consider the
particles accelerated in a stellar atmosphere (exemplified
by the chromosphere of the Sun). The acceleration of pro-
tons by surfing in the chromospheric plasma was consid-
ered in detail previously [9]. It was established that pro-
tons trapped in a turbulent MSSW with an isomagnetic
potential jump may acquire an energy on the order of
10 GeV, while the energy gained in a laminar MSSW
may be on the order of 10 MeV. By the same token, one
may readily check that energies of the same order can
be gained by protons accelerated by surfing in interstel-

%m E0
2/n.≈

%m γ f B0( )2≈ /n.
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lar MSSWs propagating in the solar system (i.e., in the
solar wind plasma).

Let us consider the acceleration of electrons in a cir-
cumsolar plasma by means of surfing in a nonrelativistic
plasma wave. Substituting typical parameters of the chro-
mospheric plasma (β0 ≈ 10 Oe, β ~ 10–2, Ly ~ 109 cm) or
the solar wind (β0 ≈ 10–4 Oe, β ~ 10–2, Ly ~ 10 AU ~
1014 cm) into formula (5), we obtain a value on the
order of % ~ 1010 eV for the energy of electrons accel-
erated by surfing in nonrelativistic plasma waves in the
vicinity of the Sun.

Thus, charged particles in the circumsolar plasma
can be accelerated by surfing up to an energy on the
order of 10 GeV/nucleon. As was pointed out in [1], a
product of the characteristic scale by the magnetic field
entering into formulas (4)–(6) for some other stars may
be greater by three orders of magnitude. Therefore, we
may conclude that particles accelerated by the surfatron
mechanism in a stellar atmosphere may gain an energy
of up to 1013 eV/nucleon.

Note that a source of the stellar cosmic rays are par-
ticles originating deep in the stars and then leaving
them to be accelerated in the solar plasma atmosphere
from thermal to relativistic energies as a result of surf-
ing across the nonlinear waves generated by flares or
other powerful perturbations in the circumsolar plasma.
Subsequently, these high-energy particles may be car-
ried out to the interstellar space: electrons, by nonrela-
tivistic plasma waves and ions, by magnetosonic shock
waves.

Let us estimate the energies of electrons and ions
trapped from interstellar plasma and accelerated in
nonrelativistic nonlinear waves (γf ≈ 1) propagating in a
plasma of the galactic disk. As was demonstrated in Sec-
tion 3, electrons of the interstellar plasma can be also
trapped in this system and accelerated in the plasma
waves. Substituting the corresponding parameters (B0 ≈
3 × 10–6 Oe, β ~ 10–2, Ly ~ 100 pc ~ 1020 cm) into for-
mula (5), we estimate the electron energy at % ~ 1015 eV.

As was demonstrated in Section 3, the ions may be
trapped in a sufficient amount by MSSWs with the
Mach numbers below 5. In a laminar MSSW (}A < 3),
a small proportion of ions continuously incident onto
the wave front are also trapped and accelerated to an
energy of % ≈ %_(M/m) [13]. For example, a shock
wave with }A = 2 and T ~ 100 eV in the interstellar
plasma accelerates protons up to an energy of

Upon a prolonged acceleration by surfing in a turbulent
MSSW (for 3 < }A < 5), a limiting energy of protons in
the interstellar plasma can be estimated by formula (5).
Taking }A = 5, n0 = 3 × 10–3 cm–3 and the typical values

% Mu2 M/m( ) }A
2
T / 8πn0T /B0

2( ) M/m( )≈≈

≈ }A
2
T M/m( ) 1 MeV.≈
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of B0 = 3 × 10–6 Oe, β = }AvA/c ≈ 2 × 10–3, and Ly ~
100 pc ≈ 3 × 1020 cm into formula (5), we estimate the
ion energy at % ≈ 1015 eV.

Thus, the charged particles trapped by nonrelativis-
tic nonlinear waves from the galactic plasma can be
accelerated by surfing in the Galaxy up to an energy of
% ~ 1013 eV/nucleon in the stellar atmospheres and up
to % ~ 1015 eV/nucleon in the galactic disk.

Acceleration of these particles to still higher ener-
gies can be provided only by the relativistic plasma
waves (γf  > 1). To this end, particles acquiring relativistic
energies as described above must be trapped again by rel-
ativistic plasma waves and continue gaining energy in the
new stage of surfing. Thus, we conclude that cosmic rays
may acquire large energies (% > 1015 eV/nucleon) only
upon several stages of the surfatron acceleration. We
may suggest that the acceleration of particles proceeds
in most cases in two stages. In the first stage, ions and
electrons are trapped by nonrelativistic waves from the
galactic plasma and accelerated by surfing to relativis-
tic energies. In the second stage, these particles con-
tinue gaining energy by surfing in a relativistic plasma
wave.

We believe that nonlinear plasma waves continu-
ously appear in the Galaxy and most probably possess
isotropic directions and a sufficiently broad range of
velocities. Under these conditions, particles trapped in and
then lost from one wave may be resonantly trapped by
another (newly created) nonlinear wave moving in a favor-
able direction at an appropriate velocity. This acceleration
process can be multiply repeated in a “relay” mode.

Note that, on leaving a trapping wave, particles will be
held by a magnetic field within a certain region deter-
mined by their Larmor radius. Then the particles are either
trapped by another appropriate relativistic plasma wave so
as to continue gaining the energy, or they lose the previ-
ously acquired energy via various channels. Apparently, in
the interruptions between acceleration stages, the energy
is more rapidly lost by relativistic and ultrarelativistic elec-
trons. Indeed, such particles moving in the galactic mag-
netic field will intensively lose energy by producing syn-
chrotron radiation.

Let us estimate the energies gained by particles
accelerated in the second stage of surfing in a relativis-
tic plasma wave propagating over a distance character-
istic of the Galaxy. Substituting a magnetic field
strength of B0 ≈ 3 × 10–6 Oe and a characteristic size
comparable with the galactic disk dimensions Lx ≈ 300 pc
into formula (6), we obtain for γf ≈ 10–104 an estimate
of % ≈ 3Z(1016–1019) eV. Therefore, the proposed
mechanism of the charged particle acceleration by the
surfatron mechanism provides an explanation for the
formation of a high-energy part of the spectrum of cos-
mic rays observed in the Galaxy.

Thus, upon considering the formation of the energy
spectrum of cosmic rays we may conclude that the whole
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
spectrum is formed in two stages. In the first stage, the par-
ticles of interstellar plasma belonging to a far “tail” part of
the Maxwell distribution function are trapped by nonrela-
tivistic waves and accelerated by surfing in an injection-
less mode up to an energy of % ~ 1015 eV. In the second
stage, these particles are trapped by relativistic plasma
waves and continue gaining energy by surfing up to
% ~ 1019 eV. Here, a noteworthy fact is that the bound-
ary energy of % ~ 1015 eV separating the two stages
falls within the region of inflection in the energy spec-
trum of cosmic rays, after which the spectrum slope
becomes steeper [2].

An important question concerning the shape of the
energy spectrum of cosmic rays requires special analysis.
However, preliminary conclusions formulated in [4] sug-
gest that the differential energy spectrum corresponding to
the surfatron acceleration mechanism is described by a
power law with the exponent k = 3 close to that
observed in experiment.

6. FINAL REMARKS
AND PRINCIPAL CONCLUSIONS

The results of this investigation of the process of
surfatron acceleration of particles showed that many
problems related to the acceleration of cosmic rays in
the Galaxy can be solved within the framework of this
mechanism. First, the charged particles are trapped by
plasma waves directly from the galactic plasma at an
amount sufficient to provide for the observed density of
cosmic rays in the Galaxy. Second, the same mecha-
nism may account for the injectionless particle acceler-
ation from thermal energies in the plasma to a limiting
energy in the cosmic rays. Third, there are no principal
differences in the acceleration of various charged parti-
cles: both electrons and nuclei are accelerated in a similar
manner to the same limiting energies (per unit charge).
Since the particles are trapped by a wave in a resonant
manner and the acceleration rate is constant, there is no
danger for complex nuclei to break in the course of accel-
eration. Finally, according to the results obtained in [4],
the differential energy spectrum of cosmic rays corre-
sponding to the surfatron acceleration mechanism is
close to that observed in experiment (a power law with
an exponent close to k ≈ 3).

Thus, summarizing the results of this investigation
we may conclude the following:

1. The main source of cosmic rays is represented by
the interstellar plasma. The cosmic rays formed in the
plasma atmospheres of stars are partly carried away by
nonlinear waves into the interstellar medium. Within
the framework of the surfatron acceleration mecha-
nism, a problem concerning the primary or secondary
origination of the electron component in the cosmic
rays [1] is solved in favor of the primary electrons.

2. The high-energy part of the spectrum of cosmic rays
in the Galaxy is formed in two stages. In the first stage, a
small part of the charged particles of the galactic plasma
SICS      Vol. 92      No. 6      2001
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are trapped by nonrelativistic nonlinear waves and accel-
erated by the surfatron mechanism from thermal energies
to an energy of % ~ 1013 eV/nucleon in star atmospheres
or up to % ~ 1015 eV/nucleon in the galactic disk. In the
second stage, these particles can be trapped by relativis-
tic plasma waves and continue gaining energy by surf-
ing up to % ~ 1016–1019 eV/nucleon. A remarkable fact
is that the boundary energy separating the two stages
falls within the region of inflection in the energy spec-
trum of cosmic rays [2].

3. The maximum energy of particles accelerated by
surfing in the nonlinear plasma waves is limited by
dimensions of the region of wave propagation. During
the surfatron acceleration, the energy losses of relativ-
istic particles related to the known radiation types and
the damping of nonlinear weaves as a result of the
energy being spent for the acceleration of particles can
be ignored in the first approximation.

4. The surfatron acceleration is not accompanied by
the synchrotron radiation, which is the most effective
channel of energy loss for the accelerated relativistic
particles. For this reason, electrons (as well as nuclei)
in the Galaxy can be accelerated by the surfatron mech-
anism up to an energy of % ~ 1019 eV.
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Abstract—We discuss the interpretation of the non-Abelian Stokes theorem for the Wilson loop in the Yang–
Mills theory. For the “gravitational Wilson loops,” i.e., holonomies in curved d = 2, 3, 4 spaces, we then derive
“non-Abelian Stokes theorems” that are similar to our formula in the Yang–Mills theory. In particular, we derive
an elegant formula for the holonomy in the case of a constant-curvature background in three dimensions and a
formula for small-area loops in any number of dimensions. © 2001 MAIK “Nauka/Interperiodica”.
¶ 1. INTRODUCTION

One of the main objects in the Yang–Mills theory
and in gravity is the parallel transporter along closed
contours, or the holonomy. In the Yang–Mills theory, it
is conventionally called the Wilson loop; it can be writ-
ten as a path-ordered exponential

(1)

where xµ(τ) with 0 ≤ τ ≤ 1 parametrizes the closed con-

tour,  is the Yang–Mills field (or connection), and Ta

are the gauge group generators in a given representa-
tion r whose dimension is d(r). For d-dimensional vec-
tors in curved Riemannian spaces, the “gravitational
Wilson loop,” or holonomy, can also be written as a
trace of the path-ordered exponential of the connection
given by the Christoffel symbol,

(2)

One can also consider parallel transporters of spinors in
a curved background: the holonomy is then defined not
by the Christoffel symbols, but by the spin connection
(see the precise definitions below).

The Yang–Mills Wilson loop is invariant under
gauge transformations of the background field Aµ; the
gravitational Wilson loop is invariant under general
coordinate transformations, or diffeomorphisms, pro-
vided the contour is transformed as well.

¶ This article was submitted by the authors in English.

Wr
1

d r( )
----------TrP i τ xµd

dτ
--------Aµ

a Tad∫° 
  ,exp=

Aµ
a

Wvector
G 1

d
--- P τdxµ

dτ
--------Γµd∫°– 

 exp
κ

κ

.=
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It is generally believed that, in three and four dimen-
sions, the average of the Wilson loop in pure Yang–
Mills quantum theory exhibits the area law behavior for
large and simple (e.g., flat rectangular) contours. This
must be true not for all representations, but only those
with a nonzero “N-ality”; in the simplest case of the
SU(2) gauge group, these are the representations with a
half-integer spin J.

One of the difficulties in proving the area law for the
Wilson loop is that it is a complicated object by itself:
it is impossible to compute it analytically in a general
non-Abelian background field, not to mention averag-
ing it over an ensemble of configurations.

A decade ago, we suggested a formula for the Wil-
son loop in a given background belonging to any gauge
group and any representation [1]. In this formula, the
path ordering along the loop is removed at the price of
an additional integration over all gauge transformations
of the given non-Abelian background field, or more
precisely, over a coset depending on the particular rep-
resentation in which the Wilson loop is considered.
Furthermore, the Wilson loop can be presented in the
form of a surface integral [2], see the next section. We
call this representation the non-Abelian Stokes theo-
rem. It is quite different from previous interesting state-
ments [3–6] that were also referred to as the “non-Abelian
Stokes theorem,” but which involved surface ordering.
Our formula has no surface ordering. A classification of
“non-Abelian Stokes theorems” for arbitrary groups and
their representations was recently given by Kondo et al.
[7] who used the naturally arising techniques of flag
manifolds.

Although these formulas do not usually facilitate
finding Wilson loops in particular backgrounds, they
001 MAIK “Nauka/Interperiodica”
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can be used in averaging Wilson loops over ensembles
of Yang–Mills configurations or over different metrics,
and in more general settings, see, e.g., [7–11].

The main aim of this paper is to present new formu-
las for the gravitational holonomies in curved d = 2, 3, 4
spaces; these formulas are similar to our non-Abelian
Stokes theorem for the Yang–Mills case. We get rid of
the path ordering in Eq. (2) and write the holonomies as
exponentials of surface integrals. Instead of the path
ordering, we have to integrate over certain covariantly
unit vectors (for d = 3) or covariantly unit (anti)self-
dual tensors (for d = 4). Remarkably, these formulas put
parallel transporters of different spins on the same foot-
ing. In particular, holonomies for half-integer spins are
presented in terms of the metric tensor (and its deriva-
tives) only, but not in terms of the vierbein or the spin
connection.

In addition to a purely theoretical interest, we have
a practical motivation in mind. Recently, it was shown,
both on the lattice [13, 14] and in the continuum [12, 13],
that the SU(2) Yang–Mills partition function in d = 3 can
be exactly rewritten in terms of local gauge-invariant
quantities given by the six components of the dual space
metric tensor. This rewriting can be useful in investigating
the spectrum and the correlation functions of the theory
directly in a gauge-invariant way, but it is insufficient
for studying the interactions of external sources
because these couple to the Yang–Mills potential and
not to gauge-invariant quantities. The present paper
demonstrates, however, that a typical source, i.e., the
Yang–Mills Wilson loop, can be expressed not only
through the potential (or connection) but also through
the metric tensor, which is gauge-invariant. Thus, not
only the partition function, but also the Wilson loops in
the d = 3 Yang–Mills theory can be expressed through
local gauge-invariant quantities. A detailed formulation
of the resulting theory is given elsewhere.

Although the main content of the paper is the non-
Abelian Stokes theorems for holonomies in 3 and 4
dimensions, we add three short sections with relevant
material. For completeness, we add the Stokes theorem
in two dimensions, compute the holonomy in the spe-
cial case of a constant curvature with a cylinder topol-
ogy in three dimensions, and give a general formula for
the “gravitational Wilson loop” for small loops in any
number of dimensions.

2. NON-ABELIAN STOKES THEOREM 
IN THE YANG–MILLS THEORY

Let τ parametrize the loop defined by the trajectory
xµ(τ) and let A(τ) be the tangent component of the
Yang–Mills field along the loop in the fundamental rep-
resentation of the gauge group,

A τ( ) Aµ
a tadxµ

dτ
--------, Tr tatb( )

1
2
---δab.= =
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Gauge transformations of A(τ) are given by

(3)

Let Hi be the Cartan subalgebra generators (i =
1, …, r, where r is the rank of the gauge group) and the
r-dimensional vector m be the highest weight of the
representation r in which the Wilson loop is considered.
The formula for the Wilson loop derived in [1] is a path
integral over all gauge transformations S(τ) that are
periodic along the contour:

(4)

We stress that Eq. (4) is manifestly gauge invariant,
as is the Wilson loop itself. For example, in the simple
case of the SU(2) group, Eq. (4) becomes

(5)

where τ3 is the third Pauli matrix and J = 1/2, 1, 3/2, …
is the “spin” of the representation of the Wilson loop
considered.

The path integrals over all gauge rotations in Eqs. (4)
and (5) are not of the Feynman type: they do not contain
terms quadratic in the derivatives in τ. Therefore, a cer-
tain regularization of these integrals is implied ensuring
that S(τ) is sufficiently smooth. For example, one can

introduce quadratic terms in the angular velocities iS
with small coefficients eventually set equal to zero; see
[1] for details. Equation (5) was derived in [1] in two
independent ways: (i) by a direct discretization and (ii)
by using the standard Feynman representation of path
integrals as a sum over all intermediate states, in this
case for the axial top supplemented by an action of the
“Wess–Zumino” type. Another discretization leading
to the same result was recently used by Kondo [7].
A similar formula has been used by Alekseev, Faddeev,
and Shatashvili [16] in deriving a formula for group
characters to which the Wilson loop is reduced ifor a
constant A field (which is the case actually considered
in [16]). In [17], Eq. (4) was rederived in an indepen-
dent way specifically for the fundamental representa-
tion of the SU(N) gauge group. Finally, another deriva-
tion of a variant of Eq. (5) using lattice regularization
was recently given in [18].

The second term in the exponent in Eqs. (4) and (5)
is in fact a “Wess–Zumino”-type action, and it can be
rewritten not as a line but as a surface integral associ-
ated with a closed contour. For simplicity, we consider

A τ( ) S τ( )A τ( )S 1– τ( ) iS τ( ) τd
d

S 1– τ( ).+

Wr DS τ( )∫=

× i τTr miHi SAS 1– iSṠ
1–

+( )[ ]d∫( ).exp

WJ DS τ( )∫=

× iJ τTr τ3 SAS
†

iSṠ
†

+( )[ ]d∫( ),exp

Ṡ
†
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the SU(2) gauge group and parametrize the SU(2)
matrix S in Eq. (5) by Euler’s angles,

(6)

The derivation of Eq. (5) implies that S(τ) is a periodic
matrix. This means that α ± γ and β are periodic func-
tions of τ with the period 4π.

The second term in the exponent in Eq. (5), which
we denote by Φ, is then

(7)

The last term is a total derivative and can be actually
dropped because α + γ is 4π-periodic, and therefore,
does not contribute to Eq. (5) even for half-integer rep-
resentations J. We note that α can be 2π-periodic if γ
(which drops from Eq. (7)) is 2π-, 6π-, …-periodic. If
α(1) = α(0) + 2πk, α(τ) makes k windings. The integra-
tion over all possible α(τ) implied in Eq. (5) can be
divided into distinct sectors with different winding
numbers k.

Introducing a unit 3-vector

(8)

we can rewrite Φ as

(9)

where we integrate over any spanning surface for the
contour (we call it a “disk”), and n or α and β are con-
tinued to the interior of the disk without singularities.
We denote the second coordinate by σ such that σ = 1
corresponds to the edge of the disk coinciding with the
contour and σ = 0 corresponds to the center of the disk.
See [14] for the details on the continuation to the inte-
rior of the disk.

S i
γτ3

2
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†

( )d∫ τ α̇ β γ̇+cos( )d∫= =
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2
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We note that if the surface is closed or infinite, the
right-hand side of Eq. (9) is the integer topological
charge of the n field on the surface,

(10)

Equation (9) can also be rewritten in the form that is
invariant under surface reparameterizations. Introduc-
ing the invariant surface element

(11)

we can rewrite Eq. (9) as

(12)

For the Wilson loop, we then obtain [1]

(13)

The interpretation of this formula is obvious: the
unit vector n plays the role of the instant direction of
the color “spin” in the color space. However, multiplying
its length by J does not guarantee that we deal with a true
quantum state from the representation labelled by J; this is
achieved only by introducing the “Wess–Zumino” term in
Eq. (13) that fixes the representation to which the probe
quark of the Wilson loop belongs to be exactly J.

Finally, we can rewrite the exponent in Eq. (13) such
that both terms appear to be surface integrals [2],

(14)

where

is the covariant derivative and

is the field strength. Indeed, expanding the exponent in
Eq. (14) in powers of Aµ, we observe that the quadratic
term cancels while the linear term is a total derivative
reproducing the Aana term in Eq. (13); the zero-order
term is “Wess–Zumino” term (9) or (7). We note that
both terms in Eq. (14) are explicitly gauge invariant. We
call Eq. (14) the non-Abelian Stokes theorem. We stress
that it is different from the previously proposed Stokes-
like representations of the Wilson loop based on order-
ing elementary surfaces inside the loop [3–6]. For a fur-
ther discussion of Eq. (14), see [18].
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We now briefly discuss gauge groups higher than
SU(2): for this purpose, we must return to Eq. (4). It is
valid for any group and any representation, however, its
surface form depends explicitly on the group represen-
tation in which the Wilson loop is considered. Equa-
tion (4) says that one can in fact integrate not over all
gauge transformations S but only over those that do not
commute with the combination of Cartan generators
miHi , where m is the highest weight of a given repre-
sentation. In the SU(2) case, one has

because SU(2) has the rank 1 and there is only one Car-
tan generator. In the SU(2) case, one therefore inte-
grates over the coset SU(2)/U(1) for any representation;
this coset can be parametrized by the n field as
described above.

For higher groups, there are several possibilities of
taking cosets: a particular coset depends on the repre-
sentation of the Wilson loop. For example, in the case
where the Wilson loop is in the fundamental represen-
tation of the SU(N) group, the combination miHi is pro-
portional to one particular generator of the Cartan subal-
gebra that commutes with the SU(N – 1) × U(1) subgroup.
(For SU(3), this generator is the Gell–Mann λ8 matrix
or a permutation of its elements.) For the fundamental
representation of the SU(N) group, the appropriate
coset is therefore given by

A possible parametrization of this coset is given by a

complex N-vector uα of the unit length, uα = 1. To be
specific, the Cartan combination in the fundamental
representation can always be set equal to

miHi = diag(1, 0, …, 0)

by rotating the axes and subtracting the unit matrix. In
this basis, uα is just the first column of the unitary

matrix S† and  is the first row of S. Unitarity of S
implies that

In this parametrization, Eq. (4) can be written as

(15)

Using the identity

(16)
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--------uα
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αuβ,d∫exp

∇ µ( )β
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α iAµ
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α
.–=

eij∂i u†∇ iu( ) eij ∇ iu( )† ∇ ju( ) u†∇ i∇ ju+[ ]=

=  eij
i
2
--- u†Fiju( )– ∇ iu( )† ∇ ju( )+ ,
JOURNAL OF EXPERIMENTAL 
we can present Eq. (15) in a surface form,

(17)

where Fµν is the field strength in the fundamental rep-
resentation. Equation (17) was first published in [17],
however, with an unexpected overall coefficient 2 in the
exponent. Equation (17) presents the non-Abelian
Stokes theorem for the Wilson loop in the fundamental
representation of SU(N). In the particular case of the
SU(2) group, transition to Eq. (14) is achieved by iden-
tifying the unit 3-vector

where

(18)

It must be mentioned that the quantity

(19)

appearing in Eq. (17) is the topological charge of the 2-
dimensional CPN – 1 model. For closed or infinite sur-
faces, Q is an integer.

In the case where the Wilson loop is taken in the
adjoint representation of the SU(N) gauge group, the
combination miHi in Eq. (4) is the highest root. Only
group elements of the form exp(iαiHi) commute with this
combination (these elements belong to the maximum
torus subgroup U(1)N – 1). In the case of the adjoint repre-
sentation, one therefore integrates over the flag manifold
[19, 7]

3. “GRAVITATIONAL WILSON LOOPS”

An object similar to the Wilson loop of the Yang–
Mills theory also exists in gravity theory. It is the paral-
lel transporter of a vector on a Riemannian manifold
along a closed contour, also called a holonomy. The
holonomy is trivial if the space is flat but becomes a
nontrivial functional of the curvature if it is nonzero. In
the remaining sections, we present new formulas for
the parallel transporters on d = 2, 3, 4 Riemannian man-
ifolds.

We first recall some notation from differential
geometry. We use [20] as a general reference book. Let

W fund
SU N( ) DuDu†δ u 2 1–( )∫=

× i Sµν 1
2
--- u†Fµνu( ) i ∇ µu( )† ∇ νu( )+d∫ 

  ,exp

na uα
† τa( )β

α
uβ,=

uα

β
2
--- i

α γ+
2

-------------– 
 expcos

β
2
--- i

α γ–
2

------------ 
 expsin

 
 
 
 
 
 
 

,=

2iu†∂τu α̇ β 1–cos( ) α̇ γ̇+( ).+=

σd τeiji∂iuα
† ∂ ju

αd∫ 2πQ=

SU N( )/U 1( )N 1– FN 1– .=
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gµν = gνµ (µ, ν = 1, …, d) be the covariant metric tensor,
with the contravariant tensor gµν being its inverse,

gµνgνκ = . The determinant of the covariant metric ten-
sor is denoted by g. The Christoffel symbol is defined as

(20)

The action of the covariant derivative on a contra-
variant vector is defined as

(21)

The commutator of two covariant derivatives deter-
mines the Riemann tensor,

(22)

A contraction of the Riemann tensor gives the symmet-
ric Ricci tensor,

(23)

Its full contraction is the scalar curvature

(24)

The parallel transporter of a contravariant vector
along a curve xµ(τ) is determined by solving the equa-
tion

(25)

The solution can be written using the evolution operator

(26)

where v λ(0) is the vector at the starting point of the
contour and v λ(τ) is the parallel-transported vector at
the point labelled by τ. The evolution operator can be
symbolically written as a path-ordered exponential of
the Christoffel symbol,

(27)

We define the “gravitational Wilson loop” as the
trace of the parallel transporting evolution operator
along the closed curve xµ(τ) with xµ(1) = xµ(0),

(28)

δµ
κ

Γνκ
µ gµλΓλ νκ,

gµλ

2
------- ∂νgλκ ∂κgλν ∂λgνκ–+( ),= =

Γνκ
κ ∂νg

2g
--------.=

∇ ρ( )λ
κv λ ∂ρδλ

κ Γρλ
κ+( )v λ .=

∇ ρ∇ σ[ ] λ
κ Rλρσ

κ gκκ 'Rκ 'λρσ= =

=  ∂ρΓσλ
κ ∂σΓρλ

κ– Γρτ
κ Γσλ

τ Γστ
κ Γρλ

τ .–+

Rλσ Rλκσ
κ , Rρ

κ Rλρσ
κ gλσ .= =

R Rλσgλσ Rκ
κ .= =

dxµ

dτ
-------- ∇ µ( )λ

κv λ τ( ) 0.=

v κ τ( ) WG τ( )[ ] λ
κ
v λ 0( ),=

WG τ( )[ ] λ
κ

P τ xµd
τd

--------Γµd

0

τ

∫–
 
 
 

exp
λ

κ

.=

Wvector
G 1

d
--- WG 1( )[ ] κ

κ
.=
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This quantity is diffeomorphism-invariant: the
metric tensor is transformed under coordinate
changes xµ  x 'µ(x), but if the contour is changed, as

xµ(τ)  x'µ(x(τ)),

the gravitational Wilson loop or the holonomy remains
the same. In this respect, the gravitational holonomy is
different from the Yang–Mills loop which is invariant
under gauge transformations without changing the con-
tour.

The parallel transporter of a covariant vector is given
by the transposed matrix; its trace coincides with that of
the matrix used in transporting contravariant vectors.

4. RELATION OF GRAVITY QUANTITIES
TO THOSE OF THE YANG–MILLS THEORY

We now show that the “gravitational Wilson loop” is
not only analogous to, but directly expressible through,
the Yang–Mills Wilson loops of the SU(2) group. For

this purpose, we introduce the standard vierbein  and
its inverse eAµ such that

(29)

We decompose the vector experiencing the parallel
transport in vierbeins, v λ = cAeAλ, with the reciprocal
decomposition

(30)

and insert this in Eq. (25) defining the parallel trans-
port. We then have

(31)

where we introduced the spin connection

(32)

and used the fundamental relations

(33)

(34)

eµ
A

eµ
Aeν

A gµν, eµ
AeBµ δAB,= =

eAµeAν gµν, deteµ
A g.= =

cA eκ
Av κ ,=

0
dxµ

dτ
-------- ∇ µ( )λ

κcAeAλ=

=  
dxµ

dτ
-------- eAκ∂µcA cA ∂µeAκ Γµλ

κ eAλ+( )+[ ]

=  
dxµ

dτ
--------eBκ ∂µδBA ωµ

BA+( )cA,

ωµ
AB ωµ

BA–
1
2
---eAκ ∂µeκ

B ∂κeµ
B–( )= =

–
1
2
---eBκ ∂µeκ

A ∂κeµ
A–( )

–
1
2
---eκ

AeBλeλ
C ∂κeλ

C ∂λeκ
C–( )

∂µeAκ Γµλ
κ eAλ+ ωµ

ABeBκ ,–=

∂µeAκ Γµκ
λ eλ

A– ωµ
ABeκ

B.–=
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One can introduce the SO(d) “field strength”

(35)

related to the Riemann tensor as

(36)

The above material is common for any number of
dimensions. To proceed further, we consider the cases
where d = 3 and d = 4 separately. The case where d = 2
is considered in Section 6.

4.1. d = 3

In three dimensions, one can immediately identify
the spin connection with the SU(2)-valued Yang–Mills
field as

(37)

Working in three dimensions, we denote the Lorentz
indices by i, j, … = 1, 2, 3 and the flat triade indices by
a, b, … = 1, 2, 3. Recalling the generators in the J = 1
representation,

(38)

we can rewrite the last parenthesis in Eq. (31) as

(39)

which is the standard Yang–Mills covariant derivative in
the adjoint representation. In the fundamental (spinor)
representation, the Yang–Mills covariant derivative is

(40)

which coincides with the known expression for the cova-
riant derivative in the spinor representation in a curved
space.

The standard Yang–Mills field strength is directly
related to that in Eq. (35),

(41)

It follows from Eq. (36) that

(42)

We next consider the parallel transporter of a 3-vec-
tor in a curved space, as defined by Eq. (25). In accor-
dance with Eqs. (31) and (39), solving Eq. (25) is

^µν
AB ∂µ ωµ+ ∂ν ων+,[ ] AB=

=  ∂µων
AB ∂νωµ

AB– ωµ
ACων

CB ων
ACωµ

CB–+

^µν
AB

eκ
Aeλ

B Rκλµν ,–=

^µν
AB

Rκλµν eAκeBλ ,–=

^µν
AB

eAµeBν R.=

Ai
c 1

2
---e

abcωi
ab.–=

Tc( )ab
iecab, TcTd[ ]– iecdf T f ,= =

∂iδ
ab ωi

ab+ ∂iδ
ab iAi

c Tc( )ab
Di( )ab,≡–=

∇ i( )β
α ∂iδβ

α iAi
c σc

2
----- 

 
β

α

– ∂iδβ
α 1

8
---ωi

ab σaσb[ ] β
α
,+= =

α β, 1 2,,=

Fij
a ∂iA j

a ∂ j Ai
a– e

abcAi
bA j

c+
1
2
---e

abc^ij
bc

.–= =

e
abcFij

a ek
bel

c Rijkl.=
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equivalent to solving the Yang–Mills equation for the
parallel transporter,

(43)

whose solution is

(44)

where the subscript “1” indicates that the path-ordered
exponential is taken in the J = 1 representation. The
parallel transport of a contravariant vector is therefore
given by

(45)

which immediately implies the sought relation between
the “gravitational” and Yang–Mills parallel transporters,

(46)

The relation becomes especially neat for the Wilson loops,
i.e., for the traces of parallel transporters along closed con-
tours. Because the vierbeins take identical values at the

end points of a closed contour, , we obtain

(47)

In a similar way, one can show that the same equation
is valid for the gravitational parallel transporter of covari-
ant vectors and, more generally, for parallel transporters of
any integer spin J. In this case, the Yang–Mills Wilson
loop must be taken in the same representation as the grav-
itational one,

(48)

It is understood that the right-hand side of Eq. (48)
is expressed through the Yang–Mills field equal to the
spin connection in accordance with Eq. (37), while the
left-hand side is expressed through the Christoffel sym-
bols, that is, through the metric. It must be stressed that
the spin connection is defined via the vierbein, which is
not uniquely determined by the metric tensor. The Wil-
son loop, being a gauge-invariant quantity, is neverthe-
less uniquely determined by the metric tensor and its
derivatives. This is the meaning of Eq. (48).

For a half-integer J, there is no way to define the
parallel transporter other than through the spin connec-
tion. Nevertheless, as we show in Section 8, where we
present the holonomy for any spin in a surface form, the
“gravitational Wilson loop” is also expressible through
the metric tensor and its derivatives, even for half-inte-
ger spins.

dxi

dτ
------- Di( )abcb 0,=

ca τ( ) W1
YM τ( )[ ] ab

cb 0( ),=

W1
YM τ( )[ ] ab

P i τ xid
τd

-------Ai
cTcd∫ 

 exp
ab

,=

v k τ( ) ca τ( )eak τ( )=

=  eak τ( ) W1
YM τ( )[ ] ab

el
b 0( )v l 0( ),

W1
G τ( )[ ] l

k
ek

a τ( ) W1
YM τ( )[ ] ab

ebl 0( ).=

ek
a 1( ) ek

a 0( )=

Wvector
G 1

3
--- W1

G[ ] k
k 1

3
--- W1

YM[ ] aa
W1

YM.= = =

WJ
G WJ

YM.=
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4.2. d = 4

In four Euclidean dimensions, the rotation group
is SO(4), with its algebra isomorphic to that of
SU(2) × SU(2), and therefore, all irreducible represen-
tations of SO(4) can be classified by (J1, J2), where
J1, 2 = 0, 1/2, 1, … label the representations of the two
SU(2) subgroups. For example, the 4-vector representa-
tion whose parallel transporter was considered in the
beginning of this section transforms in the (1/2, 1/2)
representation of SU(2) x SU(2). Because of this, it is

convenient to decompose the spin connection  into
self-dual and anti-self-dual parts using ‘t Hooft’s η and

 symbols

(49)

(50)

We use the capital Latin characters to denote flat
4-dimensional vierbein indices, A, B, … = 1, 2, 3, 4,
while a, b, … = 1, 2, 3; σa are the three Pauli matrices.

The spin connection  transforms in the 6-dimen-
sional representation of SO(4), which can be decom-
posed into the sum (1, 0) + (0, 1) of the adjoint repre-
sentations of the two SU(2) subgroups. We write

(51)

The SO(4) “field strength” in Eq. (35) is then decom-
posed as

(52)

where

(53)

(54)

are the usual Yang–Mills field strengths of the SU(2)

Yang–Mills potentials  and . We stress that 6 × 4 =

24 variables  equivalent to 2 × 3 × 4 = 24 variables

 and  are defined by only 4 × 4 = 16 tetrades 
via Eq. (32), and therefore, not all of them are indepen-
dent.

ωµ
AB

η

ηaAB 1
2i
-----Trσa σA+σB– σB+σA––( ),=

σA± iσ 1,±( ),=

ηaAB 1
2i
-----Trσa σA–σB+ σB–σA+–( ).=

ωµ
AB

ωµ
AB 1

2
---πµ

aηaAB 1
2
---ρµ

aηaAB.––=

^µν
AB 1

2
---Fµν

a π( )ηaAB 1
2
---Fµν

a ρ( )ηaAB,––=

Fµν
a π( ) ∂µπν

a ∂νπµ
a– e

abcπµ
bπν

c ,+=

Fµν
a ρ( ) ∂µρν

a ∂νρµ
a– e

abcρµ
bρν

c+=

πµ
a ρµ

a

ωµ
AB

πµ
a ρµ

a eµ
A
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Contracting Eq. (36) with the η and  symbols, we
obtain

(55)

(56)

We now return to the parallel transporter of a 4-vec-
tor. As shown in the beginning of this section, finding
this parallel transporter is equivalent to solving the
equation

(57)

We represent the 4-vector cA as a combination of two
spinors,

(58)

Inserting this in Eq. (57) and decomposing  as in
Eq. (51), we obtain

(59)

Using the definition of the η-symbols in Eqs. (49)
and (50), it is easy to verify that this equation is satis-
fied provided the spinors χ and ψ satisfy

(60)

(61)

The expressions in square brackets are identical to
the Yang–Mills covariant derivatives, with the role of

the Yang–Mills potentials played by  and ,
respectively. Equations (60) and (61) define the Yang–
Mills parallel transporters in the fundamental represen-
tation. Their solution can be written as evolution oper-
ators,

(62)

(63)

η

Fµν
a π( )

1
2
---ηaABeAκeBλ Rκλµν ,=

Fµν
a ρ( )

1
2
---ηaABeAκeBλ Rκλµν .=

dxµ

dτ
-------- ∂µδAB ωµ

AB
+( )cB 0.=

c
A χa

† σA+( )β
αψβ, χα

† ψβ 1
2
---cA σA–( )α

β
,= =

α β, 1 2.,=

ωµ
AB

dxµ

dτ
-------- ∂µ χ†σA+ψ[ ] ---





–
1
2
--- πµ

aηaAB ρµ
aηaAB+( ) χ†σB+ψ[ ]





0.=

dxµ

dτ
-------- ∂µδβ

α iπµ
a σa

2
----- 

 
β

α

– χβ 0=

or
dxµ

dτ
--------χα

† ∂µδβ
α iπµ

a σa

2
----- 

 
β

α

+ 0,=
←

dxµ

dτ
-------- ∂µδβ

α iρµ
a σa

2
----- 

 
β

α

– ψβ 0.=

πµ
a ρµ

a

χα τ( ) Wπ τ( )[ ] γ
αχγ 0( )=

or χα
† τ( ) χγ

† 0( ) Wπ† τ( )[ ] α
γ
,=

ψβ τ( ) Wρ τ( )[ ] δ
βψδ 0( ),=
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(64)

(65)

Returning to the 4-vector cA in Eq. (58), we see that its
evolution is determined by

(66)

We now choose a closed contour and take the trace
of the evolution operator. The “gravitational Wilson
loop” for a 4-vector is then given by

(67)

Its generalization to the holonomy in an arbitrary rep-
resentation (J1, J2) is obvious,

(68)

Thus, the holonomy in the (J1, J2) representation in
a curved d = 4 space is equal to the product of two
Yang–Mills Wilson loops, with the role of the Yang–

Mills potentials played by the self-dual  and anti-

self-dual  parts of the spin connection. In Section 9,
we show that both Wπ and Wρ can be written in terms
of the metric tensor.

5. SMALL WILSON LOOPS

For small-area contours, the “gravitational Wilson
loop” can be expanded in powers of the area. The most
straightforward way to do this is to use the path-ordered
form of WG in Eq. (27). We take a square contour of the
size a × a lying in the 12 plane and expand the path-
ordered exponential in powers of a. After some simple
algebra, we obtain the first nontrivial term of this
expansion, which happens to be O(a4),

(69)

Wπ τ( )[ ] γ
α

P i τdxµ

dτ
--------πµ

a σa

2
-----d∫ 

 exp
γ

α

,=

Wρ τ( )[ ] γ
α

P i τdxµ

dτ
--------ρµ

a σa

2
-----d∫ 

 exp
γ

α

.=

cA τ( ) Wvector τ( )[ ] ABcB 0( ),=

Wvector τ( )[ ] AB

=  
1
2
---Tr Wπ† τ( )σA+Wρ τ( )σB–[ ] .

W 1
2
--- 1

2
---, 

 
G 1

4
---eAκ 1( ) Wvector 1( )[ ] ABeκ

B 0( )=

=  
1
4
--- Wvector 1( )[ ] AA 1

2
---TrWπ · 

1
2
---TrWρ.=

W J1 J2,( )
G WJ1

π WJ2

ρ ,=

WJ
π ρ, 1

2J 1+
---------------Tr 2J 1+( )W

π ρ, .=

πµ
a

ρµ
a

Wvector
G 1

d
--- Wvector

G[ ] κ
κ

1
a4

d
-----Rλ12

κ Rκ 12
λ+= =

=  1
2 ∆S( )µν ∆S( )µ'ν'

4d
--------------------------------------Rκλµν Rρσµ'ν'g

κρgλσ ,–
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where (∆S)µν is the surface element lying in the µν
plane. We note that the first correction to the holonomy
is negative-definite. We emphasize that the first-order
term in ∆S is in general present in the expansion of the
parallel transporter; however, it vanishes after taking

the trace owing to the identity  ≡ 0, and therefore,
the expansion of the trace starts with the (∆S)2 term.

In three dimensions, Eq. (69) can be further simpli-
fied because the Riemann tensor is expressed through
the Ricci tensor via

(70)

Because the Riemann tensor is antisymmetric with
respect to each pair of subscripts, we can replace

(71)

Introducing the dual surface element

(72)

we have

(73)

which as a matter of fact is the Einstein tensor. For the
parallel transporter of an arbitrary spin J, the factor 2 in
the numerator of Eq. (69) must be replaced by J(J + 1).

Combining all the factors, we obtain

(74)

This is our final expression for the trace of the spin-J
parallel transporter for small loops in a curved d =
3 space. We note that Eq. (74) is invariant under diffeo-
morphisms.

6. GRAVITATIONAL WILSON LOOP
IN TWO DIMENSIONS

In a curved d = 2 space, the trace of the parallel
transporter along a closed loop can be computed exactly
for any metric and can be presented in the form of a
“Stokes theorem”. The result is related to the Gauss–Bon-
net theorem and is generally known: we present it here for
the sake of completeness.

Rκµν
κ

Rijkl Rikg jl Rilg jk R jlgik+–=

– R jkgil
R
2
--- gilg jk gikg jl–( ).+

gkmgln 1
2
--- gkmgln gknglm–( )

=  
1

2g
------e

kli
e

mnjgij.

∆Spq
e

pqr∆Sr,=

e
kli

e
pqrRklpq 4 Rir 1

2
---Rgir– 

  ,–=

WJ
G

1
2J J 1+( )

3g
------------------------ Rir 1

2
---Rgir– 

 –=

× gij R js 1
2
---Rg js– 

  ∆Sr∆Ss.
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The key observation is that in two dimensions, spin
connection (32) has only one component,

(75)

In this section, all indices take only two values 1, 2. In
accordance with Eq. (31), the parallel transporter of a
vector is determined by the equation

(76)

which is solved by

(77)

According to the general theorem in Section 4, the
gravitational Wilson loop is equal to the Yang–Mills
one, and we obtain

(78)

where

(79)

This formula is not fully satisfactory because the holon-
omy is expressed through the spin connection and not
through the metric. Expressing it through the metric
can be achieved if we apply the Stokes theorem and
write Eq. (79) in a surface form. We have

(80)

where dS is the element of the spanning surface for the
contour. Introducing the field strength related to the
Riemann tensor,

(81)

and noticing that the commutator term is zero in two
dimensions, we rewrite Eq. (80) as

(82)

where

ωi
ab

e
abωi.=

dca

dτ
--------

dxi

dτ
-------ωie

abcb– 0,=

ca τ( ) Wab τ( )cb 0( ),=

Wab τ( ) γ τ( )cos γ τ( )sin

γ τ( )sin– γ τ( )cos 
 
 

,=

γ τ( ) τ xid
τd

-------ωi.d

0

τ

∫=

W1
G 1

2
---Waa 1( ) Φ,cos= =

Φ γ 1( ) τ xid
τd

-------ωid

0

1

∫ 1
2
--- xi

eabωi
ab.d∫°= = =

Φ 1
2
--- Seabe

ij∂iωj
ab,d∫=

Fij
ab ∂iωj

ab ∂ jωj
ab ωi

acωj
cb ωj

acωi
cb–+–=

=  Rij
klek

ael
b,

eabek
ael

b
ekl g,=

Φ 1
2
--- S gR, W1

Gd∫ Φ,cos= =

R 1/2( )e
ij
eklRij

kl=
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is the scalar curvature. It is gratifying that the holon-
omy is expressed through the Einstein-Hilbert action,
which is known to be a total derivative in two dimen-
sions. Needless to explain, Eq. (82) is diffeomorphism-
invariant.

In two dimensions, there is essentially only one
component of the Riemann tensor,

(83)

(see [20]). Taking this into account, it is easy to verify
that for small areas, the expansion of Eq. (82) gives the
same result as Eq. (69) written for small loops.

7. AN EXAMPLE OF BIG LOOPS:
A CONSTANT-CURVATURE BACKGROUND

IN THREE DIMENSIONS

In three dimensions, the Riemann tensor is express-
ible through the Ricci tensor, see Eq. (70). Therefore,
the diffeomorphism-invariant information about curved
spaces is fully contained in the three eigenvalues of the
symmetric Ricci tensor,

(84)

with the scalar curvature being the sum of the three,

For example, the de Sitter S3 space corresponds to

In this section, we consider another constant-curvature
case, namely, the cylinder space S2 × R characterized
by

We show that the parallel transporter in these spaces can
be computed for any form of the contour and any metric
and that the gravitational Wilson loop is given by an ele-
gant formula.

A general metric can be considered as the one
induced by six external coordinates wA(x1, x2, x3),

(85)

In the special case of the cylinder space S2 × R, it is suf-
ficient to use only four external coordinates wa (a = 1, 2,
3) and w4 subject to the constraint

(86)

An example of such external coordinates is given by

(87)

R1212
1
2
---Rg=

R j
i λδ j

i ,=

R λ1 λ2 λ3.+ +=

λ1 λ2 λ3 R/3 const.= = = =

λ1 λ2 R/2 const, λ3 0.= = = =

gij ∂iw
A∂ jw

A, A 1 … 6., ,= =

wa( )2

a 1=

3

∑ 2
R
---.=

w1 2 3, , x( ) 2
R
---

x1 2 3, ,

r
------------, w4 x( ) 2

R
--- r,ln= =
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leading to the metric tensor

(88)

A simple calculation using formulas from Section 3
shows that this metric indeed gives a zero eigenvalue of
the Ricci tensor with the other two eigenvalues equal to
the constant R/2. Because the eigenvalues of the Ricci
tensor are diffeomorphism-invariant, a general change
of coordinates xi  yi(x) in Eq. (87) results in the
same eigenvalues. Therefore, the most general descrip-
tion of the cylinder spaces S2 × R is given by

(89)

(90)

where ya(x) are three arbitrary functions of the coordi-
nates xi. We note that gij is given by the product of two
matrices

and hence,  is itself a determinant (of the matrix M).
Our aim is to calculate the Wilson loop for any con-

tour in any metric (89) corresponding to the cylinder
spaces. We use the diffeomorphism invariance of the
Wilson loop. If we compute it for a general contour in
some metric representing cylinder spaces, the most
general case is recovered by diffeomorphisms of both
the contour and the metric. We start with the specific
metric given by Eqs. (87) and (88).

Given metric tensor (88), we construct a vierbein
corresponding to it. This is, of course, not unique but
any choice of the vierbein suits us. We choose

(91)

Given the vierbein, we construct the spin connection
(or the Yang–Mills field) from its definition (32) and
obtain

(92)

which happens to be the field of the Wu–Yang mono-
pole; the scalar curvature R has dropped from the spin
connection. According to the theorem in Section 4, the
gravitational Wilson loop is equal to the Yang–Mills

gij
2
R
--- 1

r2
----δij, g

2
R
--- 

 
3/2 1

r3
----.= =

wa x( ) 2
R
---

ya x( )
y x( )

------------, w4 x( ) 2
R
--- y x( ) ,ln= =

gij
2
R
---

∂iy
a∂iy

a

y2
-------------------,=

g
2
R
--- 

 
3
2
---

1
3!
-----e

ijk
eabc

∂iy
a∂ jy

b∂kyc

y 3
------------------------------=

=  
1
2
--- R

2
---e

ijk
eabc∂iw

a∂ jw
bwc∂kw

4,

Mi
a ∂iy

a/ y ,=

g

ei
a 2

R
---

1
r
---δi

a, ei
ae j

a gij.= =

Ai
a 1

2
---e

abcωi
bc– e

aij x
j

r2
----,= =
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Wilson loop, provided the Yang–Mills potential  is
the spin connection of the metric under consideration.
Therefore, all we have to do is to compute the Wilson
loop for a general contour in the field of the Wu-Yang
monopole.

This task is easily solvable if we use another invari-
ance, the gauge invariance of the Wilson loop. It is well
known that the Wu–Yang monopole in hedgehog gauge
(92) can be transformed to the string gauge where the
potential has only one nonzero component along the
third color axis (plus a Dirac string). In this gauge, the
Yang–Mills potential is basically Abelian, and the Wil-
son loop in any representation J is therefore given by

(93)

In the last equation, we used the normal Stokes the-
orem for the circulation and also used the fact that in
the string gauge, the magnetic field of the monopole is
the Coulomb field of a point charge; dSi is the element
of the spanning surface for the contour and is orthogo-
nal to the surface.

Equation (93) is the gravitational Wilson loop for arbi-
trary contours but in a specific metric given by Eq. (88).
To generalize it to the general metric given by (89), it
only remains to perform the general coordinate trans-
formation of Eq. (93). To this end, it is convenient to
use, instead of dSi , its dual dSij such that dSi = eijkdSjk.
We recall that under a general coordinate transforma-
tion xi  yi(x), the contravariant vector transforms as

and the antisymmetric contravariant tensor transforms
as

The flux in Eq. (93) is therefore given by

(94)

This equation takes a more symmetric form in terms of
external coordinates (89),

(95)

Ai
a

WJ
G WJ

YM 1
2J 1+
--------------- imΦ( ),exp

m J–=

J

∑= =

Φ xiAi
3d∫° Si

xi

r3
----.d∫= =

Vi Vk∂kyi

dSij dSmn∂myi∂ny j.

Φ Si
xi

r3
----d∫ Sij

eijk
xk

r3
----d∫= =

Smneijk∂myi∂ny jyk

y 3
---------------------------------.d∫

Φ 2
R
--- 

 
2
3
---
1
2
--- Skeabce

ijk∂iw
a∂ jw

bwc,d∫=

wa2

a 1=

3

∑ 2
R
---.=
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Equations (93) and (95) are our final result for the
gravitational Wilson loop in the cylinder S2 × R space
of the constant curvature R. The Wilson loop implicitly
depends on the metric through Eq. (89). We now make
several comments.

(i) The parallel transporter must depend on the met-
ric along the contour but not on the spanning surface for
the contour, because this surface can be drawn arbi-
trarily. This is indeed so despite the surface form of the
result because

(96)

Therefore, the flux in Eq. (95) can be presented as a cir-
culation of a certain vector.

(ii) The flux in Eq. (95) has the form of a well-
known expression for the winding number of a map-
ping S2 ° S2. For a closed or infinite surface, the wind-
ing number is normalized as

(97)

(iii) For small contours, Eqs. (93) and (95) repro-
duce the result of the previous section. To check this,
we rewrite the general small-loop expansion (69) for
the specific metric in Eq. (87). We find

(98)

Inserting this in Eq. (69) and then performing a general
coordinate transformation xi  yi(x), we obtain, after
some simple algebra,

(99)

which exactly coincides with the expansion of Eq. (93)
in the small loop area ∆S up to the second order.

8. THE NON-ABELIAN STOKES THEOREM
IN d = 3 GRAVITY

In Section 4, we have shown that the gravitational
Wilson loop viewed as a functional of the metric is
equal to the Yang–Mills Wilson loop viewed as a func-
tional of the Yang–Mills potential, provided this poten-
tial is set equal to the spin connection corresponding to
the metric in question.

∂k eabce
ijk∂iw

a∂ jw
bwc( ) 0.=

1
8π
------ 2

R
--- 

 
3/2

× Skeabce
ijk∂iw

a∂ jw
bwcd∫ Q integer.= =

Rklpq
1

Rr6
--------ekluxu

epqv xv , gij R
2
---r2δij.= =

WJ
G 1

J J 1+( )
6

--------------------
epquyu∂iy

p∂ jy
q∆Sij

y 3
---------------------------------------------

 
 
 

2

,–=
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We now present the Yang–Mills Wilson loop in
terms of our non-Abelian Stokes formula, see Eq. (14):

(100)

We next replace the surface element by its dual dSij =
eijpdSp with the aim to rewrite this representation for the
Wilson loop in terms of the metric of the curved three-
dimensional space. To this end, we first decompose the
integration unit vector n in the dreibein:

(101)

The new 3-vector m is a covariant unit vector. Because
the background metric gij is fixed, we only change the
integration variables from n to m as

(102)

We next use relation (42) of the field strength 
computed from the spin connection

to the Riemann tensor. The first term in the exponent of
Eq. (100) becomes

(103)

Using

(104)

Equation (103) can be continued as

(105)

The combination of the covariant Riemann tensor and
two antisymmetric epsilon symbols has been encoun-
tered in Section 5: in three dimensions, it gives the Ein-
stein tensor, see Eq. (73). We thus obtain

(106)

where  is the Ricci tensor and R =  is the scalar
curvature.

WJ
G metric[ ] WJ

YM spin connection[ ]=

=  Dnδ n2 1–( )∫
× iJ

2
----exp S2 ij Fij

a na– e
abcna Din( )b D jn( )c+[ ] .d∫

na miei
a,=

nana mim jei
ae j

a mim jgij 1.= = =

Dnδ n2 1–( )…∫
=  Dm gδ mim jgij 1–( )…∫

Fij
a

Ai
a 1/2( )e

abcωi
bc=

first term dSpe
ijp–=

× 1
2
---– 

  e
abcmnen

aRkij
l el

beck.

e
abcebleck 1

g
-------e

lkmem
a , g detei

a,= =

first term dSpe
ijp 1

2 g
----------Rijkle

klmgmnmn.=

first term dSp g Rδn
p 2Rn

p–( )mn,=

Rn
p Rk

k
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We now turn to the second term in the exponent in
Eq. (100) and again use decomposition (101). We exploit
fundamental relation (33) that can be presented as

(107)

where

is the Yang–Mills covariant derivative and

is the gravitational covariant derivative. The second
term is therefore given by

(108)

Gathering Eqs. (102), (106), and (108) together, we
finally obtain a non-Abelian Stokes theorem for the
gravitational Wilson loop or the trace of the spin-J par-
allel transporter along a closed contour:

(109)

Several comments are in order here.
(i) The holonomy, which was defined as a path-

ordered exponential, is expressed here by a simple
exponential of an integral over the spanning surface for
the closed contour. That is why we call our formula a
“Stokes theorem.” The price to pay is the functional
integration over the covariantly unit vector m defined
on the surface.

(ii) Equation (109) is invariant under diffeomor-
phisms in the sense that the holonomy remains invari-
ant under a general coordinate transformation

and the appropriate change of the surface.
(iii) The parallel transporter depends only on the

contour but must not depend on the spanning surface.
The surface integral in Eq. (109) has the form

(110)

and the condition that it does not depend on the form of
the surface is

(111)

or equivalently,

(112)

D j
bb'nb' ek

b ∇ j( )l
kml,=

D j
bb' ∂ jδ

bb'
e

bcb'A j
c+=

∇ j( )l
k ∂ jδl

k Γ jl
k+=

second term dSpe
abcek

ael
ben

c
e

ijpmk ∇ i( )l'
l=

× ml' ∇ j( )n'
n mn'

=  dSp ge
ijp

eklnmk ∇ im( )l ∇ jm( )n.

WJ
G Dm gδ mim jgij 1–( )∫=

× i
J
2
---exp Sk g Rδp

k 2Rp
k–( )mp[d∫

+ e
ijk

epqrm
p ∇ im( )q ∇ jm( )r ] .

xi x'i xi( )

Sk gVk,d∫

∂k gVk( ) 0,=

∇ k( )l
kVl 0,=
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because

The verification of Eq. (112) is rather lengthy and we
relegate it to the Appendix.

(iv) With condition (112) or equivalently (111) sat-
isfied, the surface integral can be written as

(113)

proving that it depends only on the contour, as it should
be. However, the vector field Bi cannot be uniquely
determined from the metric tensor and the covariantly
unit vector m.

(v) The following comment is closely related to the
previous one. Parallel transporters of integer spins
1, 2, … are defined via Christoffel’s Γ symbols and
hence by the metric tensor, while parallel transporters
of half-integer spins 1/2, 3/2, … are not: they are
defined via the spin connection that is not uniquely con-
structed from the metric. Nevertheless, it should be
expected that the holonomy for half-integer spins, being a
diffeomorphism-invariant quantity, can be expressed
through the metric only. Equation (109) solves this non-
trivial problem: only the metric and its derivatives are
involved. The solution is possible only with the holonomy
represented in the form of a surface integral, as in Eq.
(109). One cannot solve this problem in a contour form
because it is not uniquely expressible through the met-
ric. If that were possible, one would be able to write a
parallel transporter in terms of the metric along an open
contour as well, but that is not so for half-integer spins.

(vi) Equation (109) solves another long-standing
problem in the Yang–Mills theory. It was recently
shown [12–14] that the SU(2) Yang–Mills partition
function in three dimensions can be exactly rewritten in
terms of gauge-invariant quantities given by the six com-
ponents of the dual space metric tensor. The usual argu-
ment why this rewriting is not very useful is that external
sources couple to the Yang–Mills potential and not to
gauge-invariant quantities. However, we now have dem-
onstrated that a typical source—the Yang–Mills Wilson
loop—can be expressed not only through the potential but
also through the metric tensor, which is gauge-invariant.
Thus, not only the partition function, but also the Wilson
loops in the d = 3 Yang–Mills theory can be expressed
through local gauge-invariant quantities.

9. THE NON-ABELIAN STOKES THEOREM
IN d = 4 GRAVITY

The aim of this section is to express the holonomy

 in the representation (J1, J2) in a curved d = 4
space through the metric tensor and its derivatives.

Γ kl
k Γ lk

k ∂l g.ln= =

Sk gVkd∫
=  Ske

ijk∂ jBkd∫ xiBi
˙d∫°–=

W J1 J2,( )
G
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Equation (68) presents the holonomy in terms of the
(anti)self-dual parts of the spin connection. The latter is
not uniquely determined by the metric, which is not sat-
isfactory. In addition, we would like to eliminate the
path-ordering in the Yang–Mills Wilson loops Wπ, ρ

entering Eq. (68). Both goals are achieved via the non-
Abelian Stokes theorem similar to that of the previous
section, which we now derive.

We start by applying representation (14) to the
Yang–Mills Wilson loop Wπ,

(114)

where

is the covariant derivative with respect to the self-dual

part of the spin connection and  is the appropri-
ate field strength (53); it is related to the Riemann ten-
sor via Eq. (55). We next introduce the antisymmetric
tensor

(115)

The first term in Eq. (114) can be written as –Rκλµν−
mκλ. The tensor mκλ has actually only two independent
components. To see this, we introduce two covariant
projector operators

(116)

(117)

satisfying the projector conditions

(118)

(119)

(120)

 are (covariantly) orthogonal projectors, each hav-
ing three zero and three nonzero eigenvalues. They project
a general antisymmetric tensor into (covariantly) self-dual

WJ
π Dnδ n2 1–( ) i

J
2
--- Sµν Fµν

a π( )na–[d∫
exp∫=

---+ e
abcna Dµ π( )n( )b Dν π( )n( )c ] 

 ,

Dµ
ab π( ) ∂µδab

e
acbπµ

c+=

Fµν
a π( )

mκλ 1
2
---naηaABeAκeBλ .=

Pκλµν
+ 1

4
---ηaABηaCDeκ

Aeλ
Beµ

Ceν
D=

=  
1
4
--- gκµgλν gκνgλµ– geκλµν+( ),

Pκλµν
– 1

4
---ηaABηaCDeκ

Aeλ
Beµ

Ceν
D=

=  
1
4
--- gκµgλν gκνgλµ– geκλµν–( ),

Pκλµν
± gµµ'gνν'Pµ'ν'ρσ

± Pκλρσ
± ,=

Pκλµν
± gµµ'gνν'Pµ'ν'ρσ

± 0,=

Pκλµν
± gκµgλν 3.=

Pκλµν
±
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and anti-self-dual parts, respectively. It is easy to verify
that the tensor mκλ introduced in Eq. (115) is self-dual,

(121)

and satisfies the normalization condition

(122)

which follows from the normalization n2 = 1. There-
fore, mκλ indeed has only two independent degrees of
freedom in a given metric. We change the integration
variables in Eq. (114) from n to mκλ,

(123)

We now compute the covariant derivative of mκλ as

(124)

where in the last equation, we have used fundamental
relation (33). We now insert the decomposition of the

spin connection  into the self-dual and anti-self-

dual parts, Eq. (51). Using the relations for the η, 
symbols,

(125)

(126)

it is easy to see that only the self-dual piece of  sur-
vives in Eq. (124), giving

(127)

In other words, the gravitational covariant derivative of
mκλ is expressed through the Yang–Mills covariant
derivative of the n field entering the second term in
Eq. (114).

Pκλµν
– mκλ 0,=

mκλ mκλ Pκλµν
+ mκλ mµν 1,= =

Dnδ n2 1–( )…∫
=  Dmκλ g∫ δ Pκλµν

– mµν( )δ mκλ mκλ 1–( )…

mκλ
;µ ∂µmκλ Γµν

κ mνλ Γµν
λ mκν+ +=

=  
1
2
---ηaAB ∂µnae

Aκ
eBλ na ∂µeAκ Γµν

κ eAν+( )eBλ+[

+ naeAκ ∂µeBλ Γµν
λ eBν+( ) ]

=  
1
2
---ηaAB ∂µnaeAκeBλ[

– naωµ
ACeCκeBλ naeAκωµ

BCeCλ– ] ,

ωµ
AB

η

ηaABηbAC δabδBC
e

abcηcBC,+=

ηaABηbAC δabδBC
e

abcηcBC,+=

ηaABηbAC ηaACηbAB,=

ωµ
AB

mκλ
;µ

1
2
---ηaABeAκeBλ ∂µδab

e
acbπµ

c+( )nb=

=  
1
2
---ηaABeAκeBλ Dµ π( )n( )a.
SICS      Vol. 92      No. 6      2001



918 DIAKONOV, PETROV
Using consecutively Eqs. (125) and (127), we
finally rewrite Eq. (114) in terms of the metric:

(128)

Similarly, Wρ is obtained by integrating over the anti-
self-dual covariantly unit tensors:

(129)

As derived in Section 4.2, the gravitational holon-
omy in the representation (J1, J2) is the product of the
two components,

(130)

Equations (128), (129), and (130) constitute the “non-
Abelian Stokes theorem” for the holonomy in a curved
d = 4 space. It expresses the holonomy via surface inte-
grals over spanning surfaces for the contour and pre-
sents the holonomy in terms of the metric tensor and its
derivatives only, without referring to the spin connec-
tion, even for half-integer representations (J1, J2).

10. CONCLUSION

The main results of this paper are the non-Abelian
Stokes theorems for holonomies: the Yang–Mills Wil-
son loop (Eq. (14)) and the traces of parallel transport-
ers in curved d = 3 (Eq. (109)) and d = 4 (Eqs. (128) and
(129)) spaces. In all these cases, the path-ordered expo-
nentials of the connections are replaced by ordinary
exponentials of surface integrals, which, however, do
not actually depend on the way the surface is spanned
on the contour. The price to pay for the removal of path-
ordering is high: we obtain functional integrals instead.
In the simplest case of the SU(2) Yang–Mills theory,
this is an integral over a unit 3-vector n “living” on the
surface; for the d = 3 Riemannian manifold, this is an
integral over a covariantly unit 3-vector m, and for d = 4,
one integrates over (anti)self-dual covariantly unit ten-
sors.

In spite of the occurrence of functional integration,
we believe that our formulas are aesthetically appeal-
ing. Compared to path-ordered exponentials, they are
better suited to averaging over quantum ensembles of
Yang–Mills fields or over various metrics. We hope that

WJ1

π Dmκλ gδ Pκλµν
– mµν( )δ mκλ mκλ 1–( )∫=

× i
J1

2
----- Sµν Rκλµν mκλ ---–d∫

exp

–
1
2
--- geκρστgλλ 'm

κλ 'mλρ
;µ mστ

;ν 
 .

WJ2

ρ Dmκλ gδ Pκλµν
+ mµν( )δ mκλ mκλ 1–( )∫=

× i
J2

2
----- Sµν Rκλµν mκλ ---–d∫

exp

+ 
1
2
--- geκρστgλλ 'm

κλ 'mλρ
;µ mστ

;ν 
 .

W J1 J2,( )
G WJ1

π WJ2

ρ .=
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elegant formulas can also be used in more general set-
tings.

In addition to the general non-Abelian Stokes for-
mulas, we have presented holonomy as a surface inte-
gral for a specific background, namely, for a constant-
curvature d = 3 space with the cylinder topology S2 × R.
The “gravitational Wilson loop” is given by a formula
for the character whose argument is the winding num-
ber of external coordinates, see Section 8.

Parallel transporters of integer spins have a dual
description: such a transporter can be defined either as
a path-ordered exponential of Christoffel symbols or as
a path-ordered exponential of the spin connection in the
appropriate representation. In Section 4, we have
shown that these representations are equivalent. Even
though the spin connection is not uniquely determined
by the metric tensor, this equivalence implies that the
holonomy written in terms of the spin connection can
in fact be expressed through the metric only.

For half-integer spins, the situation is far less trivial
because the only way to define the holonomy is via the
spin connection, and it is not at all clear beforehand that
the holonomy can be uniquely written through the met-
ric tensor and its derivatives. The non-Abelian Stokes
theorem proved in this paper demonstrates that this
rewriting can be achieved, but only with the holonomy
presented in the surface form. Although the surface
integral does not depend on the way one draws the sur-
face and can actually be written as an integral along the
contour, the contour form is not uniquely defined by the
surface one, which reflects the ambiguity in determin-
ing the spin connection from the metric.

This finding has an interesting implication for the
Yang–Mills theory in three dimensions, which can be
identically reformulated as a quantum gravity theory
with the partition function written as a functional inte-
gral over the metric tensor of the dual space [12, 13,
14]. This metric tensor is local and gauge invariant (in
the Yang–Mills sense). However, one might wish to cal-
culate the average of the Wilson loop, which is origi-
nally defined by the Yang–Mills potential, but not by
the metric tensor. In the “quantum gravity” formula-
tion, the Yang–Mills Wilson loop becomes a parallel
transporter in the gravitational sense. It is therefore
very important that the Yang–Mills Wilson loop in any
representation can be expressed through the gauge-
invariant metric tensor. Thus, not only the partition
function but also the Wilson loop can be presented in
terms of local and gauge-invariant quantities. This sub-
ject is described in more detail elsewhere [15].
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APPENDIX

Proof that Eq. (109) does not depend 
on the surface

The path-integral representation for the “gravita-
tional Wilson loop” in Eq. (109) must not depend on the
choice of the spanning surface for a given contour, but
only on the contour itself. To prove that this is so, we
verify Eq. (112),

(131)

where

(132)

To simplify the notation, we denote covariant deriv-
atives by “;” (see [20]). Explicitly, the covariant deriv-
atives of a scalar, a vector, and a tensor are given by

(133)

The ordinary derivative of a convolution of two tensors
can be written as a sum of covariant derivatives,

(134)

We apply the covariant derivative to the first term of
the vector Vk,

(135)

The covariant derivative of the Einstein tensor is
known to be zero [20, Eq. (92.10)]. Therefore, only the
second term survives in Eq. (135).

We next apply the covariant derivative to the second
term of Vk as

(136)

The first term here vanishes for the following reasons.
Differentiating the condition that mi is a covariantly
unit vector, we obtain

(137)
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∇ k e
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p ∇ im( )q ∇ k∇ jm( )r.

0 ∂k mim jgij( )=

=  2gij ∇ km( )im j 2 ∇ km( )imi,=
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because the covariant derivative of the metric tensor is
zero. This implies that the three vectors (∇ 1, 2, 3m)i are
not linearly independent, because three linearly inde-
pendent vectors cannot be orthogonal to a given vector
(in this case, mi) in three dimensions. The first term in
Eq. (136) is the antisymmetrized product of these three
linearly dependent vectors and is therefore zero.

The second term in Eq. (136) contains the commu-
tator of covariant derivatives, equal to

(138)

where Rtskj is the Riemann tensor. Therefore, the second
(and the only nonzero) term in Eq. (136) can be written
as

(139)

We next use Eq. (70) to express the Riemann tensor
through the Ricci and metric tensors and write the prod-
uct of two epsilon symbols as a determinant made of
Kronecker deltas. Performing all convolutions, we
obtain that Eq. (139) can be identically rewritten as

(140)

Here, the first term is zero because of Eq. (137) and in
the second term, we use

This gives

(141)

which cancels exactly with Eq. (135). Thus,  = 0,
q.e.d.

REFERENCES

1. D. Diakonov and V. Petrov, Pis’ma Zh. Éksp. Teor. Fiz.
49, 284 (1989) [JETP Lett. 49, 323 (1989)]; Phys. Lett.
B 224, 131 (1989).

2. D. Diakonov and V. Petrov, in Nonperturbative Approaches
to Quantum Chromodynamics: Proceedings of the Inter-
national ECT* Workshop, Trento, 1995, Ed. by D. Dia-
konov, p. 36; hep-th/9606104 (1996).

3. M. B. Halpern, Phys. Rev. D 19, 517 (1979).

4. I. Ya. Aref’eva, Theor. Math. Phys. 43, 353 (1980).

5. N. Bralic, Phys. Rev. D 22, 3090 (1980).

6. Yu. A. Simonov, Yad. Fiz. 50, 213 (1989) [Sov. J. Nucl.
Phys. 50, 134 (1989)].

e
ijk ∇ k∇ jm( )r

=  
1
2
---e

ijk ∇ k∇ j[ ] s
rms 1

2
---e

ijkgrtRtskjm
s,=

e
ijk

epqrg
rtRtskjm

pms ∇ im( )q.

gqs Rδp
i 2Rp

i–( ) gps Rδq
i 2Rq

i–( )–[ ]

× mpms ∇ im( )q.

qpsm
pms 1.=

Rδq
i 2Rq

i–( ) ∇ im( )q,–

∇ k( )l
kVl
SICS      Vol. 92      No. 6      2001



920 DIAKONOV, PETROV
7. K.-I. Kondo and Y. Taira, hep-th/9911242.

8. D. Diakonov and V. Petrov, Phys. Lett. 242, 425 (1990).

9. A. M. Polyakov, Nucl. Phys. (Proc. Suppl.) 68, 1 (1998);
hep-th/9711002 (1997).

10. C. Kortals-Altes and A. Kovner, hep-ph/0004052 (2000).

11. B. Broda, E-print archives, math-ph/0012035.

12. R. Anishetty, S. Cheluvaraja, H. S. Sharatchandza, and
M. Matur, Phys. Lett. B 341, 387 (1993).

13. D. Diakonov and V. Petrov, Zh. Éksp. Teor. Fiz. 118,
1012 (2000) [JETP 91, 873 (2000)]; hep-th/9912268.

14. R. Anishetty, S. Cheluvaraja, and H. S. Sharatchandza, 
Phys. Lett. B 373, 373 (2000).
JOURNAL OF EXPERIMENTAL 
15. D. Diakonov and V. Petrov, Phys. Lett. B 493, 169
(2000); hep-th/0009007.

16. A. Alekseev, L. Faddeev, and S. Shatashvili, J. Geom.
Phys. 5, 391 (1989).

17. F. A. Lunev, Nucl. Phys. B 494, 433 (1997);
hep-th/9609166 (1996).

18. D. Diakonov and V. Petrov, hep-lat/0008004 (2000).

19. A. M. Perelomov, Generalized Coherent States and
Their Applications (Springer-Verlag, New York, 1986);
Phys. Rep. 146, 135 (1987).

20. L. D. Landau and E. M. Lifshitz, The Classical Theory
of Fields (Nauka, Moscow, 1988; Pergamon, Oxford,
1980).
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001



  

Journal of Experimental and Theoretical Physics, Vol. 92, No. 6, 2001, pp. 921–929.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 119, No. 6, 2001, pp. 1067–1076.
Original Russian Text Copyright © 2001 by Rubin, Sakharov, Khlopov.

                                      

GRAVITATION, 
ASTROPHYSICS
The Formation of Primary Galactic Nuclei 
during Phase Transitions in the Early Universe

S. G. Rubina, b, *, A. S. Sakharovc, **, and M. Yu. Khlopova, b, d, ***
aMoscow Engineering Physics Institute, Moscow, 115409 Russia

bCenter for Cosmoparticle Physics “Cosmion,” Moscow, 125047 Russia
cLabor für Höchenergiephysik, ETH-Hönggerberg, HPK-Gebäude, CH-8093, Zürich, Switzerland

dInstitute for Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
*e-mail: serg.rubin@mtu-net.ru

**e-mail: sakhas@particle.phys.ethz.ch
***e-mail: mkhlopov@orc.ru

Received February 8, 2001

Abstract—A new mechanism describing the formation of protogalaxies is proposed, based on the second-order
phase transition in the inflation stage and the domain wall formation upon the end of inflation. The presence of
closed domain walls with the size markedly exceeding the cosmological horizon at the instant of their formation
and the wall collapse in the postinflation epoch (when the wall size becomes comparable with the cosmological
horizon) lead to the formation of massive black hole clusters that can serve as nuclei for the future galaxies. The
black hole mass distributions obtained do not contradict the available experimental data. The number of black
holes with M ~ 100 solar masses (M() and above is comparable with the number of galaxies in the visible Uni-
verse. Development of the proposed approach gives grounds for a principally new scenario of galaxy formation
in the model of a hot Universe. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the past decade, investigations into the nature of
active galactic nuclei exhibited a considerable progress.
Now there is virtually no doubt that the centers of gal-
axies contain massive black holes [1]. It is the existence
of black holes with masses on the order of 106–108 M(

in the galactic nuclei and the accretion of matter onto
these holes that is believed to account for the physical
nature of their activity. A possible explanation for the
formation of such supermassive black holes assumes
the collapse of a large number of stars caused by their
high concentration at the galaxy center. However, the
mechanism of galactic nuclei formation is still unclear.
According to Veilleux [2], there are serious grounds to
believe that the formation of stars and galaxies pro-
ceeded simultaneously. Stiavelli [3] considered a
model of galaxy formation around a massive black hole
and presented arguments in favor of this model (see
also [4]). Each of the two approaches has certain advan-
tages, while not being free of drawbacks.

The problem of the possible “primordial” black hole
(PBH) formation is still open. In contrast to the case of
“secondary” black holes, which are related to the evo-
lution of stars and stellar systems, there is no convinc-
ing astronomic evidence for the existence of PBHs.
Restrictions posed by the astronomic data on the PBH
concentration offer a unique source of information on
the inhomogeneity of the early Universe [5] and on the
physical processes accounting for this inhomogeneity
1063-7761/01/9206- $21.00 © 20921
[6]. Generally speaking, the PBH mass may be arbi-
trary, ranging from the Planck value (or even below [7])
up to a mass contained within the contemporary cos-
mological horizon. However, in most cases the astro-
physical effects related to the presence of PBH are
restricted to masses much lower than the solar mass.
The reason is that the mechanism of PBH formation is
usually related to the development of inhomogeneities
bounded by the cosmological horizon. The data of
observations concerning the distribution of light ele-
ments and the spectrum of cosmic microwave radiation
pose very rigid restrictions on the magnitude of inho-
mogeneities existing in the pregalactic stage following
the first second of expansion of the Universe. Thus,
realistic mechanisms of PBH formation have to be
apparently related to very early (t ! 1 s) stages of the
evolution of the Universe—when the mass contained
within the cosmological horizon and limiting the possi-
ble PBH mass was significantly lower than the solar
mass. Nevertheless, the actively discussed possibility
of a genetic relationship between quasars and active
galactic nuclei, on the one hand, and the existence of
PBHs with much greater masses, on the other hand [8],
becomes a subject for detailed investigations [9–11].

Below we will consider a new mechanism describ-
ing the early formation of PBHs, which serve as the
nucleation centers in the subsequent formation of gal-
axies. This mechanism may prove to be free of disad-
001 MAIK “Nauka/Interperiodica”
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vantages inherent in the models based on the concept of
a single PBH being a nucleus of the future galaxy.

Previously [11] we proposed a new mechanism of
PBH formation that opens the possibility of massive
black hole formation in the early Universe. The mech-
anism is based on the possibility that black holes are
formed as a result of a collapse of closed walls formed
during a second-order phase transition. The masses of
such black holes may vary within broad limits, up to a
level on the order of 108 M(.

Let us assume that a potential of the field system
possesses at least two different vacuum states. Then
there are two possible distributions of these states in the
early Universe. The first possibility is that the Universe
contains approximately equal numbers of both states,
which is typical of a temperature-controlled phase tran-
sition under usual conditions. The alternative possibil-
ity corresponds to the case when the two vacuum states
form with different probabilities. In this case, there
appear islands of less probable vacuum state sur-
rounded by the sea of another, more probable vacuum
state. As was recently demonstrated [12], an important
condition for this distribution is the existence of valleys
in the scalar field potential during inflation. Then the
background de Sitter fluctuations in this massless scalar
field lead to the formation of islands representing one
vacuum in the sea of another vacuum. This phase tran-
sition takes place after the end of inflation in the Fried-
mann–Robertson–Walker Universe. After the phase
transition, the two vacuum states are separated by a
wall; the size of this wall may be significantly greater
as compared to the cosmological horizon at that period
of time. At some instant after crossing the horizon, the
walls begin to contract because of the surface tension.
As a result, provided that friction is absent and the wall
does not radiate a considerable part of its energy in the
form of scalar waves, almost all energy of this closed
wall may be concentrated within a small volume inside
the gravitational radius. This is a necessary condition
for black hole formation.

The mass spectrum of black holes formed by this
mechanism depends on parameters of the scalar field
potential determining the direction and size of the
potential valley during inflation and the postinflation
phase transition. Although we deal here with the so-
called pseudo-Nambu–Goldstone field, the proposed
mechanism possesses a sufficiently general character.

The presence of massive PBHs is a new factor in the
development of gravitational instability in the sur-
rounding matter and may serve as a basis for new sce-
narios of the formation and evolution of galaxies.

2. THE FORMATION OF CLOSED WALLS
OF A COMPLEX FIELD

Now we will describe a mechanism accounting for
the appearance of massive walls with the size markedly
JOURNAL OF EXPERIMENTAL 
greater than the horizon at the end of inflation. Let us
consider a complex scalar field with the potential

(1)

where ϕ = reiθ. We assume the mass of the radial field
component r to be sufficiently large, so that the com-
plex field would occur in the ground state even before
the end of inflation. Since the minimum of potential (1)
is degenerate, the field has the form

with the phase θ acquiring the meaning of a massless
field.

For the following considerations, it should be noted
that, using expression (1) in the inflation period, we
ignored the term

(2)

reflecting the contribution of instanton effects to the
Lagrangian renormalization. Since the parameter Λ
appears as a result of the renormalization, its value can-
not be large and we may quite reasonably assume that
Λ ! H, f. The omitted term (2) begins to play a signifi-
cant role in the postinflation stage, when the Hubble
constant sharply decreases with time (H = 1/2t during
the radiation dominated epoch).

Let us assume that a part of the Universe occurring
inside the contemporary horizon was formed NU

e-folds before the end of inflation. As was demon-
strated in [13], the quantum field fluctuations during
inflation are rapidly transformed into a classical field
component, while the massless field values in the
neighboring causality-disconnected regions with the
size H–1 differ on the average by

(3)

after a single e-fold. In the next time step ∆t = H–1 (i.e.,
during the next e-fold) each causality-connected
domain is divided into ~e3 causality-disconnected sub-
domains; the phase in each of the new domains differs
by ~δθ from that in the preceding step. Thus, more and
more domains appear with time in which the phase dif-
fers significantly from the initial value. More precisely,
the probability of finding the phase θ is [14–16]

(4)

where N is the number of e-folds remaining to the end
of the inflation period and θU is the random phase value
at the instant of formation of the causality-connected
domain corresponding to a visible part of the contem-
porary Universe. Without a loss of generality, we may
select 0 < θU < π. Below we will demonstrate that a par-

V ϕ( ) λ ϕ 2 f 2/2–( )2
,=

ϕ f / 2( )eiθ,≈

δV θ( ) Λ4 1 θcos–( )=

δθ H/2πf=

P θ N,( ) 1

2πσN

-----------------
θU θ–( )2

2σN
2

----------------------–
 
 
 

,exp=

σN
H

2πf
--------- NU N– ,=
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ticular value of the initial phase significantly affects the
evolution of the Universe in the postinflation epoch.

The probability of finding a certain phase obeys the
Gaussian distribution (4) and, hence, the phase aver-
aged over the entire space equals the random initial
phase θU. A principally important point is the appear-
ance of domains with the phases θ > π. Appearing only
after a certain period of time during which the Universe
exhibited exponential expansion, these domains turn
out to be surrounded by a space with the phase θ < π.
These very domains lead in what follows to the forma-
tion of large-scale structures. Note that the phase fluc-
tuations during the first e-folds may, generally speak-
ing, eventually transform into fluctuations of the cos-
mic microwave radiation, which will lead to imposing
restrictions on the scaling parameter f. This difficulty
can be avoided by taking into account interaction of the
field ϕ with the inflaton field (i.e., by making parameter
f a variable).

Initially, the potential (1) possessed a U(1) symme-
try and the phase θ corresponded to a massless scalar
field. Owing to the term (2), the symmetry is broken
after the end of the inflation period: the potential of
the θ field acquires minima at the points θmin = 0, ±2π,
±4π, …, and the field acquires the mass mθ = 2f/Λ2.
According to the classical equation of motion,

(5)

the phase performs decaying oscillations about the
potential minimum, the initial values being different in
various space domains. Moreover, domains with the
initial phase π < θ < 2π perform oscillations about the
potential minimum at θmin = 2π, whereas the phase in
the surrounding space tends to a minimum at the point
θmin = 0. Upon ceasing of the decaying phase oscilla-
tions, the system contains domains characterized by the
phase θmin = 2π surrounded by the space with θmin = 0.
Apparently, on moving in any direction from the inside
to the outside of the domain, we will unavoidably pass
through a point where θ = π because the phase varies
continuously. This implies that a closed surface must
exist which is characterized by the phase θwall = π. The
size of this surface depends on the moment of domain
formation in the inflation period, while the shape of the
surface may be arbitrary. A principal point for the sub-
sequent considerations is that the surface is closed.

Thus, we obtained a field configuration connecting
various vacuum states of the potential (2). A rigorous
classical solution of this problem possessing a transla-
tional symmetry in the two directions in space (flat
wall) is well known [17]:

(6)

where d is the wall thickness. Since the thickness of a
closed wall is related to microscopic parameters of the

θ̇̇ 3Hθ̇ dδV
dθ

----------+ + 0,=

θwall x x0–( ) 4
x x0–

d
------------- 

 exp ,arctan–=
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theory, whereas the characteristic wall size is a priori
unlimited, expression (6) is applicable to within a suf-
ficiently high accuracy in the case under consideration.
As can be readily shown, the wall possesses an energy
concentrated where the phase is θ = π [17]. Thus, we
obtained a mechanism providing the formation of
domains surrounded by closed walls. The surface energy
of a wall depends on the Lagrangian parameters, while
the wall size is determined by the time of crossing the
phase value equal to π during the inflation period.

3. DOMAIN WALL DECELERATION 
DURING MOTION THROUGH A PLASMA

The first- and second-order phase transitions lead to
the formation of a field walls separating one vacuum of
this field from another. One of these mechanisms was
described in the preceding section. In turn, the walls are
moving at a subluminal velocity and interact with the
surrounding plasma. Depending on the character of this
interaction and the shape of the field potential, there are
two possible situations. In the first case, the plasma par-
ticles pass through the wall, falling into a different vac-
uum and acquiring a certain mass. This situation corre-
sponds to an electroweak phase interaction [18],
whereby the corresponding Higgs field is responsible
for a mechanism of the fermion mass production. In the
opposite case, the particle mass is not changed upon
going from one to another vacuum (an example is
offered by the case of interaction with an axion wall).
In the former case, the interaction with the medium
leads to a significant retardation of the domain wall,
while in the latter case, the walls are virtually transpar-
ent for the medium provided that the parameters are
given reasonable values.

All considerations are conveniently conducted in
the resting wall frame. The probability of a particle
scattering from the plane resting wall is

(7)

where dn(k) is the distribution of incident particles with
respect to momentum and M is the matrix element for
the particle transition from a state with the energy ε and
momentum k to the state with the energy ε' and
momentum k' upon interaction with the potential U =
U(z) describing the plane wall. The pressure produced
by incident particles upon the wall is related to the rate
of their momentum transfer to the wall,

(8)

where S is the wall area. Let us select the Lagrangian of
the particle–wall interaction in the following form rep-
resenting a classical configuration of the complex field
phase:

(9)

dw dn k( )2πδ ε ε'–( ) M 2 d3k'

2εV 2π( )3ε'
----------------------------,=

p
1
S
--- dwqz, qz∫ kz' kz,–= =

Lint i∂zθ z( )Jz, Jµ ψγµψ. ˙= =
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Calculating a matrix element for the particle scatter-
ing from the wall with the transition from the initial
momentum k to final momentum k',

, (10)

we obtain

(11)

In deriving formula (11), we took into account that
the laws of the energy–momentum conservation lead to
the following relationships:

according to which a nonzero contribution to the pres-
sure is only due to the reflected particles with  = –kz.
Therefore, the pressure of incident particles upon the
wall can be written as

(12)

Let us determine the distribution of the incident par-
ticles with respect to the transverse momentum dn(k).
In the resting plasma frame,

(13)

Here and below, the subscript 0 denotes quantities
determined in the resting plasma frame. Assuming the
plasma temperature T to be significantly greater as
compared to the fermion masses and normalizing it to
the total particle density,

we obtain C ≈ 20π2. In addition, it is evident that

(14)

where the incident particle momentum in the resting
wall and plasma frames (in the latter frame, the wall
moves at a velocity v ) are related as

(15)

M k'〈 | Lintd
4x k| 〉∫=

M 2 8 4π( )6Sδ 2( ) q||( )kz
2 1
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Integrating the pressure (12) with resect to the
momentum of the incident particle, we obtain

(16)

This formula was derived with allowance for the
Lorentz invariance of the phase volume 

 

d

 

3

 

k

 

'/

 

ε

 

'. Numer-
ical calculation of the integral in (16) presents no diffi-
culties, but we are interested in analytically estimating
the pressure produced by the medium upon the wall.
For this purpose, note that the walls are formed at tem-
peratures 

 

T

 

 ~ 

 

Λ

 

 and the wall thickness is 

 

d

 

 = 

 

f

 

/2

 

Λ

 

2

 

.
Therefore, there is a large parameter

using which we may obtain a sufficiently reliable esti-
mate of the integral. According to (16), the most effec-
tive scattering takes place for an incident particle
momentum of

At the same time, it is evident that

Using these relationships, we may estimate the inte-
gral in (16). A final expression for the pressure pro-
duced by the surrounding medium upon the domain
wall is as follows:

(17)

4. CONDITIONS FOR PRIMORDIAL 
BLACK HOLE FORMATION

After heating of the Universe, the evolution of
domains formed with the phase 

 

θ

 

 > 

 

π

 

 and which
sharply increased in volume during the inflation period
proceeds on the background of the Friedmann expan-
sion and is described by the relativistic equation of
state. First, an equilibrium state with the “vacuum”
phase 

 

θ

 

 = 2

 

π

 

 inside the domain and the 

 

θ

 

 = 0 phase out-
side is established at 

 

T

 

 ~ 

 

Λ

 

. A closed wall correspond-
ing to the phase 

 

θ

 

 = 

 

π

 

 is formed in the transition region
with a width of ~1/

 

m

 

 ~ 

 

f

 

/

 

Λ

 

2

 

, which separates the
domain from the surrounding space. The surface
energy density on the wall amounts to ~ 

 

f

 

/

 

Λ

 

2

 

.
It must be noted that the process of establishing the

equilibrium (“vacuum”) phase values may acquire a
protracted character. If the stage of coherent phase
oscillations about the equilibrium values is sufficiently
long, the energy density of these oscillations may
become dominating and determine the dust period of

p kz( ) 32C
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expansion. Let us consider the factors influencing the
cosmological evolution of such a wall.

1. First, note that the domain size immediately after
the end of inflation markedly exceeds the horizon size
in the Friedmann expansion stage. The overall contrac-
tion of the closed wall may begin only when the hori-
zon size Rh will be equal to the domain size. Up to this
moment, the characteristic domain size increases with
the expanding Universe because we assumed that the
existing field contribution to the total energy–momen-
tum tensor is small as compared to that of the inflaton
field. Accordingly, the field gives also a small contribu-
tion to the total energy density of the Universe upon
heating, when the energy density of inflaton transforms
into the energy density of relativistic particles. Evi-
dently, internal stresses developed in the wall after
crossing the horizon initiate processes tending to mini-
mize the wall surface. This implies that the wall tends,
first, to acquire a spherical shape and, second, to con-
tract toward the center. For simplicity, below we will
consider the motion of closed spherical walls.

2. Since the energy of the surrounding plasma rap-
idly decreases, the wall energy may become at a certain
time instant comparable with the energy of the sur-
rounding medium. Simultaneously, the domain sepa-
rates from the general expansion process and its radius
Rw may become smaller than Rh.

3. The wall energy is proportional to its area at the
instant of crossing the horizon. By the moment of max-
imum contraction, this energy is virtually completely
converted into kinetic energy. Should the wall by this
moment be localized within the limits of the gravita-
tional radius, a PBH is formed.

4. Contracting under the action of internal forces,
the wall moves through the surrounding plasma. The
resulting force of friction may, under certain condi-
tions, become significant and lead to a uniform (nonac-
celerated) contraction of the wall. In this case, the
potential energy of the wall is dissipated in the sur-
rounding medium. Only when the wall would decrease
to a certain small size Rf, will the internal forces propor-
tional to the surface curvature dominate and the wall
will again contract with acceleration to supply the nec-
essary energy to the center sufficient to form a PBH.

The above considerations show that the energy con-
centrated in the course of wall contraction can be deter-
mined using the condition

(18)

where σ = 4Λ2f is the surface energy density of the
wall. A condition of PBH formation is that

(19)

It is assumed that the spherical wall contracts until
reaching a size on the order of the wall thickness.

Let us determine the values of Rh, Rw , and Rh for a
system with Lagrangian (1). Consider a domain with a

E 4πR2σ, R≈ min Rh Rw R f, ,( ),=

Rmin d∼ rg< 2E/mpl
2 .=
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certain phase appearing N e-folds before the end of
inflation. The domain size at the end of inflation period is

(20)

where H is the Hubble constant at that time instant. By
the moment of crossing the horizon, the domain will
expand to acquire the characteristic size

(21)

Below we assume that a visible part of the Universe is
formed N = NU = 60 e-folds before the end of inflation.

The second characteristic size Rw is determined
from the condition that the wall energy (18) is equal to
the energy of plasma contained in the domain bounded
by the closed wall:

,

where

is the plasma density during the radiation dominated
epoch. Taking into account that σ = 4Λ2f, we obtain the
critical wall size corresponding to the domain separat-
ing from the general expansion:

(22)

As is known, the temperature in the Robertson–Walker
Universe during the radiation-dominated epoch varies
with time as

(23)

Taking into account that an increase in the wall radius
up to the instant of separation from the general expan-
sion is proportional to the scaling factor

(24)

we arrive at the desired relationship for Rw(N):

(25)

An expression for the characteristic wall size (radius)Rf

above which the friction is significant can be obtained
by equating the pressure developed by the internal
forces pint = 2σ/Rf to that produced by the surrounding
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e2N

2HN
------------.≈

EV ρ4π
3

------R3=

ρ π2

30
------g*T4=
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3σ
ρ
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360Λ2 f

π2g*T4
------------------- Λ2 f

T4
---------.≈= = =

T
45

32π2g*
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  1/4 mpl

t
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medium on the moving wall. Using relationship (17)
for the latter pressure, we obtain

(26)

The above considerations do not take into account the
effect of a gravity field on the wall dynamics. There-
fore, the obtained relationships are valid provided that
the initial wall size is much greater than the gravita-
tional radius. Generally speaking, the gravitational
radius may be comparable with (or even exceed) the
wall size for a sufficiently large domain size. In this
study, we deal with smaller domains for which the
intrinsic gravity field does not affect the wall evolution.
Now we proceed to the study of PBH cluster formation
in the early evolution stage of the Universe.

5. CORRELATIONS 
IN THE BLACK HOLE DISTRIBUTION

Previously [11] we have studied a new process
involving the formation of uncorrelated PBHs in the
Universe. It was demonstrated that a model with rea-
sonably selected parameters readily provides for the
formation of 1011 massive (1030–1040 g each) black
holes, which is precisely equal to the number of galax-
ies in the visible Universe. In that analysis, we did not
take into account correlations (inherent in this mecha-
nism) between the formation of a massive black hole
and the appearance of smaller black holes surrounding
it. This correlation is related primarily to certain fea-
tures of the above-discussed process of the formation of
domains with the phases θ > π. Apparently, the appear-
ance of such domains creates prerequisites for the for-
mation of new smaller domains inside.

Let us estimate the mass distribution of these daugh-
ter domains. Consider a region with a size on the order
of H–1 and a phase within π < θ0 < π + δ (where δ =
H/2πf is the average phase jump during the H–1 time
period) formed during the inflation period as a result of
fluctuation in a certain region of space with the phase
θ < π. During the next e-fold, this space domain will
separate into e3 subdomains and some of these will
acquire a phase θ1 in the interval π – δ < θ1 < π. Upon
the subsequent phase transition, these domains will be
separated by walls from the external region. Similar
transitions, with crossing the phase θ = π in the reverse
direction, will take place in each subdomain during the
next e-fold. Thus, a structure of the fractal type appears
which reproduces itself in each time step on a decreas-
ing scale.

Let ζ denote the number of subdomains formed in
each step, around which a wall may form with time.
Apparently, this value obeys the inequality 1 < ζ ! e3.
In the subsequent estimates, we will assume that ζ ≈ 2–3.
Since each causality-connected domain touches
approximately six neighboring domains, we can hardly

R f
π7σd4

10γ
---------------.=
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expect ζ to be greater for a total number of ~e3 ≈ 20.
The mass of the future black hole (if it would actually
form) is determined by the area of a closed surface with
the phase θ = π. The ratio of areas of the initial (mother)
and daughter domains is readily estimated: the initial
area after a single e-fold is

and the daughter subdomain area is

Therefore, the ratio of masses of the black holes
belonging to two sequential generations is

(27)

for their relative number assumed to be

(28)

As is readily seen, the number and mass of black holes
appearing upon the jth e-fold after the initial domain
formation are determined by parameters of the largest
black hole genetically related to the primary domain in
which the phase originally exceeded π. It is evident that

(29)

Excluding j from these relationships, we obtain the
desired black hole mass distribution in a cluster:

(30)

The total mass of the cluster can be expressed through
the mass M0 of the largest initial black hole:

(31)

As is seen, the total mass of the black hole cluster is
only one and a half to two times greater than the largest
initial black hole mass. The number of daughter black
holes depends on the factors considered in the previous
section.

6. DISCUSSION OF RESULTS

In the preceding sections, we considered only the
principal possibility of the formation of domain walls
connecting adjacent vacuum states. We have used the
formulas derived above to estimate efficiency of the
proposed mechanism of black hole cluster formation.
The numerical calculations were performed for the fol-
lowing values of parameters (which are consistent with
the observed anisotropy in the cosmic microwave radi-
ation): the Hubble constant at the end of inflation,
H = 1013 GeV; Lagrangian parameters, f = 1.77H and
Λ = 5 GeV. The initial phase, at which the visible part

S0 e2H 2– ,≈

S1 H 2– .≈

M j/M j 1+ S j/S j 1+ e2≈ ≈

N j 1+ /N j ζ .=

N j ζ j, M j M0/e2 j.≈≈

Ncl M( ) M0/M( ) 1/2( ) ζln .≈

M tot M0 ζ M1 ζ2M2 …+ + + M0= =

+ ζe 2– M0 ζe 2–( )2
M0 …+ + M0 1 ζ /e2–[ ] 1–

.=
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of the Universe is formed by the time tU ≈ 60H–1 to the
end of inflation controls the number of domains and,
accordingly, the number of closed walls formed in the
postinflation stage. This random value, not related to
the Lagrangian parameters, must be selected taking
into account the data of observations on the abundance
of black holes in the Universe. We will use the numeri-
cal value θU = 0.05π, which ensures a sufficiently large
number of massive black holes, while the presence of
numerous smaller black holes does not contradict
experimental restrictions.

Figure 1 shows the results of numerical calculations
constructed in a logarithmic scale. The bottom horizon-
tal line shows the wall thickness. As is seen, the condi-
tion of wall existence (the characteristic domain size
must exceed the wall thickness) is fulfilled for the
domains with masses exceeding 1015 g. The domains of
lower energies possess (for the parameters selected)
dimensions below the wall thickness. This implies that
the wall formation is impossible and the domain exhib-
its only fluctuations in the energy density. During con-
traction, the wall energy is eventually completely con-
verted into radiation.

The necessary condition for black hole formation as
a result of the domain wall collapsing is that the gravi-
tational radius of the domain must be greater than the
wall thickness. As is seen from Fig. 1, this condition is
fulfilled for black holes with masses ≥1025 g. Therefore,
the proposed mechanism of black hole formation leads
to a nontrivial situation: massive PBHs exist in the
complete absence of black holes possessing masses
below this threshold. Note that the most significant
observational restrictions concerning the PBH abun-
dance refer to the mass region ~1015 g (which cannot
form for the parameters selected). Since the gravita-
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Fig. 1. Plots of the characteristic domain size (inclined solid
line) and gravitational radius (dashed line) versus the
domain mass. Horizontal line indicates the wall thickness.
See the text for numerical values of parameters.
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tional radius is proportional to the wall surface area, the
plots corresponding to the domain size and its gravita-
tional radius must intersect. This intersection actually
takes pace at a wall mass of ~1035 g. For greater masses,
the gravity effects have to be taken from the very begin-
ning, which will limit from above the possible PBH
masses. According to formula (26), the friction
becomes significant only for supermassive walls, the
number of which is negligibly small.

Figure 2 shows the PBH mass distribution calcu-
lated for the selected parameters (see also the discus-
sion in [11]). As is seen, the PBH masses fall within the
range from 1025 to 1035 g. The initial phase θU was
selected so as to provide that the number of massive
PBHs (~1035 g) was equal to the number of galaxies in
the visible part of the Universe. The total mass of black
holes amounts to ~1% of the contemporary baryonic
contribution.

The results of calculations are sensitive to changes
in the parameter Λ and the initial phase θU. As the Λ
value decreases to ≈1 GeV, still greater PBHs appear
with a mass of up to ~1040 g. A change in the initial
phase leads to sharp variations in the total number of
black holes. As was shown in Section 5, each domain
generates a family of subdomains in close vicinity. The
total mass of such a cluster is only 1.5–2 times that of
the largest initial black hole in this space region. Thus,
our calculations confirm the possibility of formation of
the clusters of massive PBHs (~100 M( and above) in
the earliest stages of evolution of the Universe at a tem-
perature of 1–10 GeV. These clusters represent stable
energy density fluctuations around which increased
baryonic density may concentrate in the subsequent
stages, followed by the evolution into galaxies.
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Fig. 2. Primordial black hole mass distribution in the Uni-
verse.
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7. CONCLUSION
This paper proposes a new mechanism for the for-

mation of protogalaxies, which is based on the cosmo-
logical inferences of the elementary particle models
predicting nonequilibrium second-order phase transi-
tion in the inflation stage period and the domain wall
formation upon the end of inflation. The presence of
closed domain walls with the size markedly exceeding
the cosmological horizon at the instant of their forma-
tion leads to the wall collapse in the postinflation epoch
(when the wall size becomes comparable with the cos-
mological horizon), which results in the formation of
massive black hole clusters that can serve as nuclei for
the future galaxies. The black hole mass distributions
are calculated, which do not contradict the available
experimental data. The number of black holes with M ~
100 M( and above is comparable with the number of
galaxies in the visible Universe. A mechanism of decel-
eration of the wall motion is considered, and it is shown
that this process may affect only the dynamics of col-
lapse of supermassive walls.

Development of the proposed approach gives
grounds for a principally new scenario of galaxy forma-
tion in the model of a hot Universe. Traditionally, the
hot Universe model assumes a homogeneous distribu-
tion of matter on all scales, whereas the appearance of
observed inhomogeneities is related to the growth of
small initial density perturbations. However, an analy-
sis of the cosmological inferences of the theory of ele-
mentary particles indicates the possible existence of
strongly inhomogeneous primordial structures in the
distribution of both the latent mass and baryons. These
primordial structures represent a new factor in the the-
ory of galaxy formation. Topological defects such as
the cosmological walls and filaments, primordial black
holes, archioles in the models of axion cold latent mass
[19, 20], and essentially inhomogeneous baryosynthe-
sis (leading to the formation of antimatter domains in
the baryon-asymmetric Universe) [12, 21] offer by no
means a complete list of possible primary inhomogene-
ities inferred from the existing elementary particle
models.

The proposed approach discloses a number of inter-
esting aspects in this direction. Indeed, this model pro-
vides for a possibility of the quantitative analysis of
correlations in the formation of massive PBHs and the
primary inhomogeneity of the latent mass and baryons.
Originally inherent in this mechanism is the inhomoge-
neous phase distribution, which eventually acquires
(similar to what takes place in the invisible axion cos-
mology) a dynamical sense of the initial amplitude of
the coherent oscillations of a scalar field. Irrespective of
the efficiency of dissipation of the energy of these oscil-
lations, the regions of closed wall formation must be
correlated with the regions of maximum energy density
of the latent mass. If these oscillations are not decaying,
their energy density may provide for the contemporary
latent mass density. Inhomogeneity in the initial ampli-
JOURNAL OF EXPERIMENTAL
tude of these oscillations would then imply an inhomo-
geneity in the initial energy density and, hence, regions
of black hole formation will become the regions of
increased latent mass density. A qualitatively similar
effect (albeit not as pronounced) takes place in the dis-
sipation of coherent oscillations at the expense of parti-
cle production. An increase in the oscillation energy
density transforms into a local increase in the density of
latent mass particles produced in this region.

In the class of spontaneous baryosynthesis models,
a change in the phase determines the production of
excess baryons. Therefore, in addition to an increase in
the latent mass density, the regions of massive PBH for-
mation may be characterized by a higher baryon den-
sity. Inside a closed wall, where the phase is θ > π, the
same mechanism leads to the production of excess anti-
baryons [12]. However, this antimatter domain will sur-
vive only provided that its size is sufficiently large [22].
Thus, development of the proposed approach may lead
to a number of interesting scenarios of initial stages in
the formation of protogalaxies, depending on the selec-
tion of particular elementary particle models and their
parameters. This study presents the first step in this
direction.
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Abstract—Deep inelastic scattering events of a longitudinally polarized electron by a polarized proton with a
tagged collinear photon radiated from the initial-state electron are considered. The corresponding cross section
is derived in the Born approximation. The model-independent radiative corrections to the Born cross section
are also calculated. The obtained result is applied to the elastic scattering. © 2001 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The idea of using radiative events (events with the
emission of an additional tagged photon) in lepton–
hadron interaction to expand the experimental possibil-
ities for studying different topics in high-energy phys-
ics has become quite attractive recently.

Photon radiation from the initial e+e–-state in the
events with missing energy has been successfully used
at LEP in measuring the number of light neutrinos and
in searching for new physical signals (for a recent pub-
lication, see, e.g., [1]). The possibility to undertake the
bottonium spectroscopy studies at B-factories by using
the hard photon emission from the electron or the
positron was considered in [2]. An important physical
problem of the total hadronic cross section scanning in
the electron-positron annihilation process at low and
intermediate energies by means of the initial-state radi-
ative events was extensively discussed in [3].

The initial-state collinear radiation is very important
in certain regions of the deep inelastic scattering (DIS)
at the HERA kinematic domain. It leads to a reduction
of the projectile electron energy and therefore, to a shift
of the effective Bjorken variables in the hard scattering
process compared to those determined from the actual
measurement of the scattered electron alone. That is
why the radiative events in the DIS process

(1)

must be carefully taken into account [4].
In addition, the measurement of the energy of the

photon emitted very close to the incident electron beam
direction [5, 6] allows studying the overlap of the kine-
matical photoproduction region Q2 = –(k1 – k2)2 ≈ 0 and
the DIS region with small transferred momenta (Q2

about several GeV2) within the high-energy HERA
experiments. These radiative events can also be used
for independently determining the proton structure

e– k1( ) p p1( ) e– k2( ) γ k( ) X px( )+ + +

¶This article was submitted by the authors in English.
1063-7761/01/9206- $21.00 © 20930
functions F1 and F2 in a single run without lowering the
beam energy [5, 7]. The high-precision calculation of
the corresponding cross section (taking the radiative
corrections (RC) into account) was performed in [8].

In this paper, we investigate the events for deep-
inelastic radiative process (1) with a longitudinally
polarized electron beam and a polarized proton as a tar-
get. As in [8], we suggest that the hard photon is emit-
ted very close to the direction of the incoming electron

beam (θγ =  ≤ θ0 with θ0 ! 1) and the photon
detector (PD) measures the energy of all photons inside
a narrow cone with the opening angle 2θ0 around the
electron beam. The scattered electron 3-momentum is
fixed simultaneously.

We consider the longitudinal (along the electron beam
direction) and perpendicular (in the plane (k1, k2))
polarizations of the proton. In Section 2, we derive the
corresponding cross sections in the Born approxima-
tion, and in Section 3, we calculate the different RC
contributions to the Born cross section. The total radia-
tive correction for different (exclusive and calorimeter)
experimental conditions for the scattered electron mea-
surement is given in Section 4. Our results can be
applied to the cross section of process (1). We consider
the target proton at rest and also the colliding electron-
proton beams. In Section 5, we apply the results
obtained in Section 4 to describe the quasi-elastic scat-
tering using the relation between the spin-dependent
proton structure functions and the proton electromag-
netic form factors in this limiting case.

2. BORN APPROXIMATION

The spin-independent part of the DIS cross section
for the experimental setup considered here was recently
investigated in detail [8]. We now consider the spin-
dependent part of the corresponding cross section that
is described by the proton structure functions g1 and g2.
Because the opening angle of the forward PD is very

p1k1
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small and we consider only the cross section where the
tagged photon is integrated over the solid angle covered
by the PD, we can apply the quasi-real electron method
[9] and parametrize these radiative events using the
standard Bjorken variables

(2)

and the energy fraction of the electron after the initial-
state radiation of a collinear photon

(3)

where ε is the initial-electron energy and ω is the
energy deposited in the PD.

An alternative set of kinematic variables that is spe-
cially adapted to the collinear photon radiation is given
by the shifted Bjorken variables [5, 10]

(4)

The shifted and standard Bjorken variables are related
by

(5)

At fixed values of x and y, the lower limit of z can be
derived from the constraint on the shifted variable ,

In the Born approximation, we determine the DIS
cross section in radiative process (1) in terms of the
contraction of the leptonic and hadronic tensors as1

(6)

where α( ) is the running electromagnetic coupling
constant that takes the vacuum polarization effects into
account and the Born leptonic current tensor is given by
[11]

(7)

where Ω covers the solid angle of the PD.

1 In what follows, we are only interested in the spin-dependent part
of the cross section.
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ŷd x̂d ŷ
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For the initial-state collinear radiation considered in
this paper, the quantities Rt and Rs can be written as

(8)

In accordance with the quasi-real electron approxi-
mation [9], the trivial angular integration of the Born
leptonic tensor gives

(9)

where m is the electron mass.
We write the spin-dependent part of the hadronic

tensor in the right-hand side of Eq. (6) as

(10)

where M is the proton mass and S is the proton polar-
ization 4-vector. In writing expressions (7) and (10), we
assume that the polarization degree of both the electron
and the proton is equal to 1.

Our normalization is such that the proton structure
functions g1 and g2 are dimensionless and in the limit-
ing case of the elastic scattering (   1) they are
expressed in terms of the proton electric (GE) and mag-
netic (GM) form factors as

(11)

It is convenient to parametrize the proton polariza-
tion 4-vector in terms of the 4-momenta of the reaction
under study [12],

(12)
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Fig. 1. The dependence of e1 on the energy fraction of the tagged photon z1 = 1 – z for different values of x, y, and V. The upper set

corresponds to V = 10 GeV2 and the lower one to V = 100 GeV2. The maximum value of z1 is y(1 – x)/(1 – xy).
where u = –Q2, τ = M2/V, and we neglect the electron
mass. The 4-vector of the longitudinal proton polariza-
tion has the respective components

(13)

for the target at rest and the colliding beams. Here,
E1(p1) is the proton energy (3-momentum) and n1 is the
unit vector along the initial electron 3-momentum
direction. The 4-vector of the perpendicular proton

polarization  is the same in both these cases,

(14)

where n2 is the unit vector along the scattered electron
3-momentum direction. It is easy to verify that S||S⊥  = 0.

Using the definitions of the DIS cross section in
Eq. (6), leptonic and hadronic tensors (9) and (10), and the
parametrization of the proton polarization in Eq. (12),
after simple calculations we derive a spin-dependent
part of the cross section of process (1) with a tagged
collinear photon radiated from the initial state,

(15)

(16)

(17)
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where

It is helpful to recall that the unpolarized DIS cross
section is proportional to σT(1 + eR), where R = σL/σT.
For the events with the tagged collinear photon [5], we
have

Because the quantities e1 and e2 strongly depend on
z, the determination of the proton structure functions g1
and g2 is possible by measuring the z-dependence of
cross section (15) in a single run without lowering the
electron beam energy. The quantity e1 is proportional to
τ and is therefore very small under HERA conditions.
Thus, the separation of g1 and g2 in the DIS process
with the longitudinally polarized proton is possible in
experiments with the target at rest and low values of V
(up to 20 GeV2). At HERA, the cross section of this
process can be used for measuring the structure func-
tion g1 only. This can be seen in Fig. 1. On the other
hand, Fig. 2 shows that the experiments with the tagged
photon and the perpendicular proton polarization can
be used to measure both g1 and g2 in a wide range of
energies (provided that Q2 is not large).

3. RADIATIVE CORRECTIONS

We restrict ourselves to the model-independent
QED radiative corrections related to the radiation of the
real and virtual photons by leptons. The remaining
sources of RC in the same order of the perturbation the-

e1
4τ̂ x̂

2 x̂ ŷτ̂ ŷ 2–+
------------------------------, e2

2
ŷ
---,= =

R̂
g2 x̂ Q̂

2,( )

g1 x̂ Q̂
2,( )

----------------------, τ̂ M2

V̂
-------, V̂ zV .= = =

e
2 1 ŷ–( )

1 1 ŷ–( )2+
----------------------------.=
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Fig. 2. The quantity e2 at different values of x and y as a function of z1 = 1 – z.
ory, such as the virtual corrections with a double photon
exchange mechanism and the bremsstrahlung of the
proton and partons, are more involved and model-
dependent. They are not considered here. Our approach
to the calculation of the RC is based on taking into
account all the essential Feyman diagrams that describe
the observed cross section in the chosen approxima-
tion. To avoid cumbersome expressions, we retain the
terms accompanied by at least one power of large loga-
rithms in the RC. In the considered case, three different
types of such logarithms appear,

(18)

In the chosen approximation, we additionally

neglect the terms of the second order , m2/ε2 , and
m2/Q2 in the cross section.

The total RC to cross section (15) includes the con-
tributions of the virtual and soft photon emission and
also the hard photon radiation.

As one can see, we use the standard gauge-invariant
expression for the hadronic tensor. The leptonic tensor
was calculated in accordance with the QED rules. The
complete set of Feynman diagrams for the calculation
of the radiative correction caused by the real photon
emission is taken account. Taking the loop correction
into account involves the gauge invariant method for
solving both the infrared and the ultraviolet divergence
problems The results obtained in our paper are there-
fore gauge-invariant. We begin with calculating the vir-
tual and soft corrections.

3.1. Virtual and Soft Corrections

To calculate the virtual- and soft-photon emission
corrections, we start from the expression for the one-
loop corrected Compton tensor with a heavy photon for
the longitudinally polarized electron [13]. For the hard
collinear initial-state radiation considered here, this

L0, LQ
Q2

m2
------, Lθln

θ0
2

4
-----.ln= =

θ0
2 θ0

2
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Compton tensor can be written as

(19)

where δ is the fictitious photon mass and the tensor 
is defined in Eq. (9).

To eliminate the photon mass, we must add the con-
tribution of the additional soft photon emission with
an energy less than ∆ε, ∆ ! 1. This contribution was
found in [14] and the corresponding procedure of the
photon mass elimination was described in [15]. The
result is

Lµν
V α

2π
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B α2
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d3k
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∫+=

× T
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(20)

where ε2 is the scattered electron energy and θ is the

electron scattering angle (θ = ).

The angular integration with respect to the hard
tagged photon over the solid angle of the PD gives
(within the chosen accuracy)

(21)

Using the right-hand side of Eq. (21) instead of 
in the right side of Eq. (6), we derive the contribution of
the virtual and soft corrections to Born cross section
(15) as

(22)

where Σ||, ⊥ ( , , ) are defined in Eqs. (16) and (17).

3.2. Double Hard Bremsstrahlung

We now consider the emission of an additional hard

photon with the 4-momentum  and an energy higher
than ∆ε. To calculate the contribution from the real hard
bremsstrahlung, which in our case corresponds to the
double hard photon emission with at least one photon
seen in the forward PD, we specify three kinematical
domains: 

(i) both hard photons hit the forward PD—i.e., both
are emitted within a narrow cone around the electron

beam ,  ≤ θ0;

(ii) one hard photon is tagged by the PD and the
other is collinear to the outgoing electron momentum

 ≤ ,  ! 1;
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Y
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3
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(iii) an additional photon is emitted at large angles
(i.e., outside both narrow cones defined above) with
respect to both incoming and outgoing electron
momenta.

The contributions of regions (i) and (ii) contain qua-
dratic terms in the large logarithms L0 and LQ, whereas
region (iii) contains terms of the order L0Lθ, which can
give an even larger numerical contribution if 2θ0 >
εθ0/m.

We refer to the third kinematical region as the semi-
collinear one. Beyond the leading logarithmic accu-
racy, the calculation can be performed using the results
in [16] for the leptonic current tensor with the longitu-
dinally polarized electron for the collinear as well as
semicollinear regions.

The contribution of kinematical region (i), where
both hard photons hit the PD and each has an energy
higher than ∆ε, can be written as

(23)

The double-logarithm terms in the right side of Eq. (23)
are the same for the polarized and unpolarized cases,
whereas the one-logarithm terms are different. In Eq. (23),

we use the notation (z) for the Θ part of the second-
order electron structure function D(z, L) [17],

(24)
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To calculate the contribution of kinematical region
(ii), we can use the quasi-real electron method to
describe the radiation of both collinear photons. This
contribution to the observed cross section depends on
the event selection, in other words, on the method of
measuring the scattered electron.

For the exclusive event selection, where only the
scattered electron is detected, but the photon emitted

almost collinearly (i.e., within the opening angle 
around the scattered electron momentum) goes unno-
ticed or is not taken into account in calculating the kine-
matical variables, we have, in accordance with [9],

(25)

where y1 is the energy fraction of the photon radiated
along the 3-momentum k2 relative to the scattered elec-
tron energy (y1 = /ε2) and

The upper integration limit in Eq. (25) can be found
from the condition of the inelastic process occurrence

 = (M + µ)2, where µ is the pion mass. Taking into
account that q = zk1 – (1 + y1)k2 for kinematics (ii), we
obtain

for the proton target at rest and

for the HERA collider, where c = cosθ. In writing this
limit for HERA, we neglect the electron energy and the
proton mass compared to the proton beam energy. We
note that for the exclusive event selection, the parame-
ter  is purely auxiliary and does not enter the final
result when the contribution of region (iii) is added.
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From the experimental point of view, a more realis-
tic measurement method is the calorimeter event selec-
tion, where the photon and the electron cannot be dis-
tinguished inside a narrow cone with the opening angle
2  along the outgoing electron momentum direction.
Therefore, only the sum of the photon and electron
energies can be measured if the photon belongs to this
cone. In this case, we obtain

(26)

For the calorimeter event selection, the parameter 
is physical and the final result depends on it (see below).

To calculate the contribution of region (iii), we can
use the quasi-real electron method [9] and write the lep-
tonic tensor in this region (which describes the col-
linear photon radiation with the energy fraction 1 – z
and the noncollinear photon radiation with the 4-

momentum ) as

(27)

In the general case of the noncollinear photon radi-
ation with the 4-momentum k, the contraction of the

leptonic tensor (k1, k2, k) and the hadronic one is
given by

(28)

θ0'

dσ|| ⊥,
ii ) cal,
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(29)

The contraction of the shifted leptonic tensor

(zk1, k2, ) entering the definition of the leptonic
tensor in region (iii) and the hadronic tensor can be
obtained from Eqs. (28) and (29) by the substitution

(30)

We use the approach developed in [8] to extract the
leading contributions (those proportional to lnθ0 and

ln ) to the respective cross section and to separate the
infrared singularities. We write the cross section as

(31)
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where

For the proton target at rest, we have

and for the HERA collider conditions,

The dependence on the infrared auxiliary parameter
∆ and on the angles θ0 and  is contained in the first
two terms on the right-hand side of Eq. (31), whereas
the quantities Z||, ⊥  do not contain the infrared and col-
linear singularities. They can be written as

(32)

where we use the same notation as in [8], namely,
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For the proton target at rest and the HERA collider,
the respective upper integration limits in the right-hand
side of Eq. (32) are

4. THE TOTAL RADIATIVE CORRECTION

The total RC to Born cross section (15) is given by
the sum of the virtual and soft corrections and the hard-
photon emission contribution. The last one is different
for the exclusive and calorimeter event selection. In the
considered approximation, it is convenient to write this
RC as

(34)

The first term Σi is independent of the experimental
selection rules for the scattered electron and is given by

(35)
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----------------------

α2

4π2
-------- Σi|| ⊥, Σ f || ⊥,+( ).=

Σi|| ⊥, L0
1
2
---L0Pθ

2( ) z( ) 1 z2+
1 z–
-------------+





=

× 5 zln 2F z( )– Yln
2

2 z Ylnln–
π2

3
-----–+

+ 2Li2
1 c+

2
----------- 

  3 z2+
2 1 z–( )
------------------- zln

2
+

–
2 3 2z– 3z2+( )

1 z–
------------------------------------ 1 z–( )ln

+
3 20z– z2+

2 1 z–( )
----------------------------




Σ|| ⊥, x̂ ŷ Q̂
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where the quantity P(1)(x) is defined by relations (24)

and the quantities xt, yt, and  depend on u = x1/z.

On the other hand, the second term in the right-hand
side of Eq. (34), denoted by Σ f, explicitly depends on
the event selection rule. It includes the main effect of
the scattered-electron radiation. For the exclusive event
selection, where only the scattered bare electron is
measured and any photon that is collinear to its
momentum direction is ignored, this contribution is

(36)

In this case, as mentioned above, the parameter 
that separates kinematical regions (ii) and (iii) is not
physical, and we see that the final result does not con-
tain it. However, the mass singularity that is related to
the scattered electron radiation exhibits itself through
LQ in the right-hand side of Eq. (36).

The situation is quite different for the calorimeter
event selection, where the detector cannot distinguish
between the events involving a bare electron and events
where the scattered electron is accompanied by a hard
photon emitted within a narrow cone with the opening
angle 2  around the scattered electron momentum
direction. For this experimental setup, we derive

× (37)

For the calorimeter setup, the parameter  defines
the event selection rule and is therefore physically
meaningful. The final result depends on it. However,
the mass singularity due to the photon emission by the
final electron is cancelled in accordance with the
Kinoshita–Lee–Nauenberg theorem [18]. The absence
of the mass singularity clearly indicates that the term
containing ln  in the right-hand side of Eq. (37) arises
due to the contribution of kinematical region (iii),
where the scattered electron and the photon radiated
from the final state are well separated. That is why no
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× dy1 LQ Yln 1–+( )P 1( ) 1
1 y1+
-------------- 

  y1

1 y1+
--------------+

0

y1max

∫

× Σ|| ⊥, xs ys Qs
2, ,( ).

θ0'

θ0'

Σ f || ⊥,
cal P z L0,( )=

2 1 c–( )
θ0'

2
------------------- dy1P 1( ) 1

1 y1+
-------------- 

 

0

y1max

∫ln

× Σ|| ⊥, xs ys Qs
2, ,( ) 1

2
---Σ|| ⊥, x̂ ŷ Q̂

2, ,( )+ .

θ0'

θ0'
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question arises as to determining the quantity ε2 that
enters the expression for y1max.

Comparing our analytical results for the RC due to
the real and virtual photon emission with similar calcu-
lations for the unpolarized case [8], we see that within
the leading-log accuracy (double-logarithm terms in
our case), these RCs are the same for the spin-depen-
dent and spin-independent parts of the cross section of
radiative DIS process (1). The difference appears at the
level of the next-to-leading-log accuracy (single loga-
rithmic terms in our case). That is true for the photonic
corrections in an arbitrary order of the perturbation
theory.

We note that the correction to the usually measured
asymmetry, which is the ratio of the spin-dependent
part of the cross section to the spin-independent one, is
not large because the main factorized contribution due
to the virtual and soft photon emission trends to cancel-
lation in this case. If the experimental information
about the spin observables is extracted directly from the
spin-dependent part of the cross section (see [19] for
the corresponding experimental method), this cancella-
tion does not occur and the factorized correction gives
the basic contribution.

5. THE CASE OF QUASI-ELASTIC SCATTERING

In the previous sections, we considered the tagged-
photon events in the DIS process. These events can be
used to measure the spin-dependent proton structure
functions g1 and g2 in a single run without lowering the
electron beam energy. In the quasi-elastic case, where
the target proton is scattered elastically,

(38)

the tagged-photon events can also be used to measure
the proton electromagnetic form factors GE and GM.
Our final results obtained in Section 4 can then be
applied using relation (11) between the spin-dependent
proton structure functions g1 and g2 and the proton elec-
tromagnetic form factors in this limit. In this case, we
can therefore use all the formulas in Section 4 with Σ||, ⊥
and G||, ⊥  entering the definition of Z||, ⊥  replaced by

 and , respectively,

(39)

e– k1( ) p p1( ) e– k2( ) γ k( ) p p2( ),+ + +

Σ|| ⊥,
el G|| ⊥,

el

Σ||
el x y Q2, ,( ) 4πα2 Q2( )

y 4M2 Q2+( )
-------------------------------=

× 4τ τ 1 1
y
---–+ 

  GMGE 1 y
2
---– 

  1 2τ+( )GM
2–

× δ 1 x–( ),
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(40)

(41)

where

and the form factors in the right-hand side of Eq. (41)

depend on .

The description of the form factors is a very impor-
tant test for any theoretical model of strong interactions
[20]. The proton magnetic form factor GM is known
with a high accuracy in a wide range of the momentum
transfer, while the data about the electric form factor GE

are very poor. The recent experiment at the Jefferson
Lab on the measurement of the ratio of the recoil proton
polarizations performed by the Hall A Collaboration
[21] improves the situation in the region up to Q2 ≈
3.5 GeV2, but the higher momentum transfer region
remains unexplored. The use of radiative events (38),
with both the polarized and unpolarized proton target,
at accelerators with a high-intensity electron beam (for
example, CEBAF) can open new possibilities in the
measurement of GE as compared to both the Rosen-
bluth method [22] and the method based on measuring
the recoil proton polarization ratio [23].

Σ⊥
el x y Q

2, ,( ) 8πα2 Q2( )
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------------------------------- M2

Q2
------- 1 y 1 τ+( )–[ ]=

× 1 y
2
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2 1 2τ+( )GMGE– δ 1 x–( ),
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2
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2

+
-----------------------=
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----------+
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Ãt B 2V̂ ũ t̃+ +( )– ,=

D⊥ KB
uq̃2

V
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Abstract—A new method for calculating the density matrix of a quantized electromagnetic field which inter-
acts with the environment in the presence of kinetic processes in the medium is suggested. This method accu-
rately takes into account photon–photon quantum correlators and possesses certain symmetry properties, which
substantially facilitate the summation of the Feynman diagrams that arise in the calculations. Forward scattering
of resonance radiation by two-level gas atoms in a magnetic field is considered as an application. Insufficiency
of a semiclassical description of this coherent process in excited media with the use of the unique tensor index
of refraction is shown to follow from quantum electrodynamics. The introduction of one more function depend-
ing on the frequency of irradiation and the concentration of excited atoms is necessary. Experiments that simul-
taneously determine both this additional function and the standard refractive index of the medium are specified.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Work [1], which called attention to the special fea-
tures of the Hanle effect in forward scattering, initiated
an unremitting flow of studies [2–11]. The characteris-
tic feature of this effect as distinguished from the stan-
dard Hanle effect [12] is the coherence of secondary
radiation sources. As a rule, two aspects of the problem
are considered: linear scattering with the purpose of
diagnosing scattering media [9–11] and nonlinear mag-
netooptical effects with the purpose of studying their
characteristic features [1–8].

In both theoretical and experimental studies, the
influence of excited atoms on the processes under study
has not been given due attention. It was implicitly and
sometimes explicitly [2, 4] assumed that the influence
of excited atoms through medium polarization depend-
ing on the difference nµ – nm (nµ and nm are the concen-
trations of nonexcited and excited atoms, respectively)
can only weaken the observed effects.

In reality, and we call attention to this circumstance,
the role played by excited atoms under the conditions
of coherence of secondary radiation sources is much
more important even in linear scattering processes, to
which our consideration will be confined. Consistent
quantum electrodynamics, which deals with quantized
electromagnetic fields, shows that, in this case, the scat-
tering medium cannot be described with the use of one
polarization or refractive index tensor, and we must
introduce one more function depending on the electro-
magnetic field frequency. A similar situation arises in
studying the effects of selective reflection of resonance
radiation from excited media [13, 14]. It follows that
we are dealing with the general properties of the evolu-
tion of quantized electromagnetic fields in excited dis-
persing media. The Hanle effect in forward scattering is
1063-7761/01/9206- $21.00 © 20940
convenient in that it allows various characteristics of
media, including those that are not described by their
indexes of refraction, to be diagnosed with the use of
existing experimental units by observing mutually
orthogonal scattered light polarizations.

Recall that the index of refraction in a natural way
appears in classical optics in describing the determinis-
tic (not fluctuation) radiation component by excluding
the dynamic variables of the medium from the Maxwell
system of equations. Such a procedure cannot be
applied to field operators in quantum electrodynamics
in the presence of absorbing media. The index of
refraction in quantum electrodynamics is naturally
present in the method of Green quantum functions [15].
Such a calculation procedure has already been used in
several optical works [16–20]. The problem, however,
persists, and its essence is as follows. We cannot obtain
closed equations for quantum-averaged values because,
in deriving them, the chain of Bogolyubov equations
has to be closed by correlator breaks. In the Green func-
tion technique, an equivalent procedure is the neglect of

 correlators, where  ( ) is the
operator of annihilation (creation) of a photon in the
state with wave vector k and polarization index λ.
Arguments of one or another kind are used to justify the
assumption that these correlators play a comparatively
unimportant role (all k and λ are equal) in the final
equations. At the same time, the presence of induced
radiation processes in excited media causes the appear-
ance of correlators of just this type. Their coefficients
are singular because of the presence of δ functions that
ensure that the conservation laws be obeyed. For this
reason, the possibility of ignoring such correlators is far
from obvious.

α̂kλ
+ α̂kλ

+ α̂kλα̂kλ〈 〉 α̂ kλ α̂kλ
+
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To retain these correlators and elucidate the role that
they play, we use another technique for excluding
medium parameters from the calculation scheme. Let ρ
be the density matrix of the atoms + electromagnetic
field system. After summing over the parameters of
medium atoms, the density matrix of an electromag-
netic field in a medium, ρph = Spaρ, arises in a natural
way. The mean field characteristics are found by apply-
ing the standard procedure,

where  is the operator of electromagnetic field
strength. This technique does not involve breaking pho-
ton–photon correlators.

Below, we describe a new method for deriving a
closed equation for ρph . This method possesses internal
symmetry, which substantially facilitates calculations.

Attempts at finding equations for the density matri-
ces of subsystems (such as the photon field) interacting
with the environment were made in [21–23]. The form
of the equations and the absence of symmetry relations
impeded going beyond perturbation theory. To over-
come these difficulties, the method of Γ operators was
developed in [13, 14]. Experience shows that familiar-
izing oneself with the method that uses the abstract Γ
space involves serious difficulties. This prompted us to
develop another independent method for calculating
ρph which has similar symmetry properties.

We use the method of matrix Green functions devel-
oped in [24] for calculating quantum means. We will
show that some of its modification allows ρph to be cal-
culated. Such a calculation scheme requires certain
nonobvious preliminary constructions and for this rea-
son has remained undemanded.

Consistently taking into account photon–photon
correlators has nonobvious consequences, such as the
insufficiency of describing the optical properties of
excited media by a unique polarization tensor. What is
more, the existence of such a tensor would contradict
the fundamentals of quantum electrodynamics. This
assertion can be illustrated by the example that admits
elementary analysis, see below.

2. PRELIMINARY ANALYSIS

Some properties of light passed through a thermally
excited gas layer in a magnetic field can be predicted
based on the following nonrigorous semiquantitative

analysis. Let us use the  matrix theory, and let ρ be the
density matrix of the medium + field system after
switching on the interaction Hamiltonian. The ρph den-
sity matrix of the photon subsystem can always be writ-
ten [14] as the sum of two terms,

(1)

%̂
ν

〈 〉 Spph%̂
ν
ρph, %̂

ν
%̂

ν '
〈 〉 Spph%̂

ν
%̂

ν '
= = ρph,

%̂
ν

Ŝ

ρph ρph
c( )= ρph

n( ).+
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The  term describes electromagnetic field scatter-
ing not accompanied by changes in the initial state of

the medium (coherent scattering channel). The  term
describes processes that change the state of the medium
(incoherent scattering channel). Sum (1) shows that there
is no quantum (described by wave functions) interfer-
ence phenomena between these channels because
medium atomic functions in finite states are orthogonal.

Let  =  be the operator of the number of
photons in the state corresponding to the (k, λ) mode.
It follows from (1) that

(2)

This shows that, if (k, λ) is the mode to which pho-
tons are scattered from the (k0, λ0) initial state as a

result of their interaction with the medium, the 〈 〉
mean in this mode is representable by the sum of two
positive definite terms. This conclusion is of fundamen-
tal importance. The positive definiteness of the terms
in (2) follows from the possibility in principle of mea-
suring them. A formal proof of this statement can be
found in [13].

Next, consider the result of scattering of transverse
(λ = 1, 2) photons on two structurally identical atoms,
one of which is not excited and occurs at point R1, and
the other is excited and occurs at point R2. The atoms
will be assumed to be two-level but possessing Zeeman
sublevels. Let the scattered light be in quasi-resonance,
|k – ωmµ| < k, with the ωmµ frequency of optical transi-
tions in atoms, " = c = 1. The resonance condition com-
plicates the analysis and, generally, makes perturbation
theory inapplicable. For preliminary analysis purposes,
we will proceed as follows. Let us use perturbation the-
ory retaining ±i0 terms, which arise as a consequence
of the adiabatic hypothesis, in resonance denominators.
In a more complete theory, these terms will be replaced
by ±iγ/2 (γ is the width of the atomic energy levels)
because of the presence of mass operators. The colli-
sional width will always be assumed to exceed the radi-
ation width. The signs of i0 and iγ/2 should coincide
because of the causality principle. It follows that taking
into account i0 terms, which will immediately be
replaced by iγ/2, allows us to predict the structure of the
final equations in a more elaborate theory.

We assume that each atom has one valence electron.
The spin effects are ignored. In the second quantization
representation, the Hamiltonian of the system is written as

ρph
c( )

ρph
n( )

N̂kλ α̂kλ
+ α̂kλ

N̂kλ〈 〉 N̂kλ〈 〉 c( )
= N̂kλ〈 〉 n( )

+ ,

N̂kλ〈 〉 c( )
SpphN̂kλρph

c( ),=

N̂kλ〈 〉 n( )
SpphN̂kλρph

n( ).=

N̂kλ

Ĥ Ĥ
0

= Ĥ '+ ,

Ĥ
0 ε jb̂ j

+
b̂ j

j

∑= ε jβ̂ j
+
β̂ j

j

∑ k α̂kλ
+ α̂kλ

1
2
---+ 

  ,
kλ
∑+ +
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Here, V = LxLyLz is the normalization volume, εj are the
allowed atomic energy values taking into account the

presence of a magnetic field, and  ( ) and  ( )
are the operators of annihilation (creation) of the first
and second atom states corresponding to these energy
levels. In this special problem, all operators can be con-
sidered belonging to Bose–Einstein fields. Further,

where ψi is the wave function of an atom in the state

with energy εi , and  are the unit vectors of linear
polarization of photons.

The  matrix will be calculated accurate to third-
order perturbation theory,

Standard calculations show that, for the coherent chan-
nel [14],

(3)

where N0 is the number of photons in the scattered
mode. Here, it is taken into account that, by virtue of
Zeeman splitting, only the εm and εµ sublevels are in
resonance with frequency k, and, for this reason, only
these sublevels are retained in (3).

For the incoherent scattering channel, we have

(4)

The  term is not of interest to us because
it does not describe scattering processes. Explicit cal-
culations of (4) with retention of terms fourth-order in
charge [as in (3)] yield

Ĥ '
Pij

λ k( )
2kV

--------------
ij

∑–=

× e
ik R1⋅

b̂i
+α̂kλ b̂ j e

ik R2⋅
β̂i

+
α̂kλβ̂ j+( ) H.c.+

b̂ j b̂ j
+ β̂ j β̂ j

+

Pij
λ k( ) e

m
---- ψi* r( )p̂ek

λeik r⋅ ψ j r( ) r, p̂d∫ i∇ r,–= =

ek
λ

Ŝ

Ŝ 1 Ŝ
1( )

Ŝ
2( )

Ŝ+ + +
3( )

.=

N̂kλ〈 〉 c( )
Ŝ

2( )
N̂kλ Ŝ

2( )〈 〉 4π2 Pmµ
λ* k( )Pmµ

λ0 k0( )
2kV

-------------------------------------- = =

× δ2 k k0–( )
i k0 k–( ) R1⋅[ ]exp

k ωmµ– iγ/2+
----------------------------------------------

+
i k0 k–( ) R2⋅[ ]exp

ωmµ k– iγ/2+
----------------------------------------------

2

N0,

N̂kλ〈 〉 n( )
Ŝ

1( )
Ŝ

3( )
+ N̂kλ Ŝ

1( )
Ŝ

3( )
+〈 〉 0.≥=

Ŝ
1( )

N̂kλ Ŝ
1( )〈 〉

Ŝ
1( )

N̂kλ Ŝ
3( )〈 〉 c.c.+ 8π3i–=
JOURNAL OF EXPERIMENTAL 
(5)

Let us analyze (3)–(5) taking into account that scat-
tering occurs forward. If the incoherent channel is
absent, then only coherent scattering channel does,

according to (3), participate in the formation of 
for the (k0, λ) scattered mode. This mode differs from
the initial (k0, λ0) mode by its polarization, which is
perpendicular to that of the latter. According to (3), if
k = ωmµ, then the amplitudes of waves scattered on dif-
ferent atoms are algebraically summed. This means
that, in the presence of many scatterers and at their low
concentration,

(6)

However, if |k – ωmµ| > γ/2, then, again according to (3),
the amplitudes of scattered waves are subtracted from
each other, and, for extended media, we should expect

(7)

The difference between (6) and (7) is at variance
with calculations based on the standard quantum Green
function methods with the use of refractive index κ
of the medium related to polarization operator Π as
κ = 1 – Π/k2 [15]. Such calculations using the proce-
dure of breaking photon–photon correlators show [20]
that Π ∝  nµ – nm for all frequencies.

It may seem that our analysis is incomplete because
of the neglect of the incoherent scattering channel. Can
taking this channel into account restore agreement
between the theories? At first sight, this is precisely
how matters stand, because the sum of (3) and (5) gives
a complete result, which only differs from (3) in the
sign of iγ/2 in the denominator in the second term.
According to this expression, the amplitudes of scatter-
ing of optical waves on excited and nonexcited atoms in
the k = k0 direction are in antiphase for all frequencies.
This implies (7), which seemingly restores agreement
between the theories. Such a conclusion would be erro-
neous. The matter is that (5) is negative at k = k0, and
this contradicts the positive definiteness of the contri-

bution of the incoherent scattering channel to .
The positive definiteness is restored by consistently

taking the  term in (4) into account. This in turn
means that terms sixth-order in charge, which determine
the sign of the final result, should be included in (4).
Clearly, sixth-order terms in the incoherent channel
exceed fourth-order terms in magnitude, and perturba-
tion theory becomes inapplicable. The elementary sum-

× Pmµ
λ* k( )Pmµ

λ0 k0

2kV
---------------------------------

2

N0

×
δ2 εµ εm– k0–( )δ k k0–( )

k ωmµ– iγ/2+
-----------------------------------------------------------

× i k0 k–( )– R2 R1–( )⋅[ ]exp c.c.+

N̂kλ〈 〉

N̂kλ〈 〉 c( )
nµ∝ nm.+

N̂kλ〈 〉 c( )
nµ∝ nm.–

N̂kλ〈 〉

Ŝ
3( )
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mation of the Feynman diagrams resulting in the
replacement of i0 by iγ/2 does not change the situation.
We must use other additional summation methods.

To summarize, calculations of incoherent channel
contributions to resonance scattering when the medium
contains excited atoms always require going beyond
perturbation theory and taking into account infinite
subsequences of Feynman diagrams. At the same time,
the positive definiteness of the incoherent scattering
channel is evidence of the inequality

for

The example considered above shows that the pro-
cess that changes polarization for orthogonal to initial
when light passes through an excited resonance medium
in a magnetic field cannot be described with the use of
standard refractive index and medium polarizability,
which depend on nµ – nm. It will be shown that the inten-
sity of light passed through a medium with scattering but
without polarization changes (λ = λ0) admits such a
description, and the refractive index can then appropri-
ately be used.

It follows that studying the optical properties of
excited isotropic resonance media by quantum electrody-
namics requires at least two functions depending on k to
be used simultaneously. The absence of one of them
would contradict the fundamentals of quantum theory.
Explicit equations for these functions are given below.

Note that calculations of these equations requires
the use of quantized field theory methods. Our results
cannot be obtained in semiclassical theory dealing with
nonquantized fields. The usual assertion that, in strong
fields, the results of quantum optics using coherent [25]
states and those of classical optics should coincide,
because perturbation theory series in these theories
only differ by vacuum terms, which are of little conse-
quence, is inapplicable because of the inapplicability of
perturbation theory.

Consider the results of semiclassical theory in more
detail. According to this theory, the light scattering
mechanism is the induction of dipole moments of
atoms by radiation undergoing scattering and then the
induction of radiation by induced and therefore time-
depended secondary wave dipole moment.

If a classical electromagnetic wave falls on a two-
level atom in the excited state ψm, and the strength of
this wave is described by the formula

N̂k0λ〈 〉 N̂k0λ〈 〉 c( )
nµ∝ nm+≥

k ωmµ= , λ λ 0.≠

%ν 1
2
---%0

ν
eiωt e iωt–+( ),=
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then, according to [26], the induced dipole moment in
the units that we use equals

If the atom occurs in the ground state ψµ, the external
field induces the dipole moment

If the excited and nonexcited atoms are situated close to
each other, then, in the quasi-resonance approximation,
ω ≈ ωmµ, and the resultant dipole moment is given by
the sum

We see that all dipole moment components are fully
compensated. For this reason, the scattering amplitude in
extended media is determined by the nµ – nm difference,
and, when nm  nµ, scattering disappears according to
semiclassical theory.

The theory of the Hanle effect based on the semi-
classical approach taking into account the presence of
excited atoms is described in [4], where it is shown that,
in agreement with the semiclassical analysis performed
above, the Hanle effect is determined by the nµ – nm dif-
ference not only in the linear approximation but also in
the approximation of an arbitrary order nonlinear with
respect to field %0.

Next note that the same semiclassical theory can be
used to obtain a different result. Let the energy widths
of atoms be zero. A system comprising an excited and
a nonexcited atom does not possess dipole scattering.
Suppose that an extraneous particle approaches one of
the atoms. The energy level of the atom shifts under
such perturbation. The resonance frequencies of the
excited and nonexcited atoms cease to coincide. This
means that waves scattered in antiphase by the excited
and nonexcited atoms cease to strictly compensate each
other because of different energy denominators in the
scattering amplitudes. Dipole scattering appears. What

dm
ν e ψm*rνψµ rd∫ e2

8π
------–= =

× %0
ν ' µ rν ' m〈 〉 m rν µ〈 〉

ν '

∑

× eiωt

ωmµ ω– iγ/2–
----------------------------------- e i– ωt

ωmµ ω iγ/2–+
------------------------------------+ 

  c.c.+

dm
ν e2

8π
------ %0

ν '
m rν ' µ µ rν m

ν '

∑–=

× eiωt

ωµm ω– iγ/2–
----------------------------------- e i– ωt

ωµm ω iγ/2–+
------------------------------------+ 

  c.c.+

dm
ν dµ

ν+
e2

8π
------ %0

ν ' µ rν ' m m rν µ
ωmµ ω– iγ/2–

--------------------------------------------


ν '

∑–=

+
µ rν ' m * µ rν m *

ωmµ ω iγ/2+ +–
--------------------------------------------------

 eiωt c.c.+
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is more, if the scattered light frequency falls within the
detuning of the resonance frequencies (see figure),
then, because of a change in the sign of one of reso-
nance denominators, waves scattered by the atoms
become synphase and are arithmetically summed.
A flash of scattered light occurs.

Such an elementary consideration in terms of semi-
classical theory shows that the intensity of light scat-
tered in resonance by two atoms one of which is excited
should be proportional to the nµ + nm sum. Unfortu-
nately, formally taking into account collisional pro-
cesses in semiclassical theory by the introduction of a
collisional width leads to a different result, see above.
This leads us to conclude that, in the semiclassical the-
ory of radiation, widths of atomic levels in the presence
of excited media are not always correctly taken into
account.

Consistent quantum electrodynamic theory has no
such shortcomings. This theory will now be constructed.

3. DENSITY MATRIX 
OF THE PHOTON SUBSYSTEM

3.1. Basic Propositions of the Theory

Consider a gas comprising two-level, but possessing
Zeeman sublevels, atoms each with one valence electron.
The transverse electromagnetic field will be assumed to be
in quasi-resonance, |k – ωmµ| < k, with optical atomic tran-
sitions. Taking into account translational degrees of free-
dom, let us write the Schrödinger equation in the form

i
∂Ψ
∂t

-------- ĤΨ, Ĥ Ĥ0 Ĥ ',+= =

Ĥ0 Ĥa Ĥ ph+ , Ĥa εi p( )b̂ip
+

b̂ip,
ip

∑= =

Ĥ ph k α̂kλ
+ α̂kλ

1
2
---+ 

  ,
kλ
∑=

Ĥ '
e
m
---- ψ̂+ r R,( )p̂Â r( )ψ̂ r R,( ) rd R,d∫–=

R1 R2k0

εm

εµ εµ

εm

Scheme of energy levels corresponding to arithmetic sum-
mation of the amplitudes of light reflected by excited and
nonexcited atoms.
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Here, εi(p) = εi + p2/2M, p is the momentum of the

atom, M is the mass, and  ( ) are the operators of
annihilation (creation) of an atom in the state with
momentum p and internal state described by wave
function ψi . In the absence of thermal degeneracy, all
operators can be considered belonging to the Bose–
Einstein field.

Hamiltonian  responsible for interaction of medium
atoms with the reservoir can be introduced into the
Schrödinger equation. We will not do this explicitly, but
it will be assumed that the reservoir maintains the con-
centration of excited atoms at a constant level and
broadens their energy levels.

Let us rewrite the Schrödinger equation in the inte-
gral form

(8)

where Ψ0 is the initial state of the system before switch-

ing on Hamiltonian ,

(9)

The solution to (8) can be written in the form

(10)

3.2. Green Matrix Functions 

Let

Let us introduce the eigenfunctions and eigenvalues of
free field operators

Here, the argument of the photon field is N = ,

, …, where  are the occupation numbers of

states (kj, λj), and the argument of the atomic field is
N = , , …, where  are the occupation
numbers of states (ij, pj). Put

(11)

ψ̂ r R,( ) ψi r R–( )eip R⋅

V
-----------b̂ip,

ip

∑=

Â r( )
ek

λ

2kV
--------------eik r⋅ αkλ

kλ
∑= H.c.+

b̂ip b̂ip
+

H̃

Ψ Ψ0= &r
0
Ĥ 'Ψ, i

∂Ψ0

∂t
---------- Ĥ

0Ψ0–+ 0,=

Ĥ '

i
∂&r

0

∂t
--------- Ĥ

0
&r

0
– I .=

Ψ Ψ0= &r+ Ĥ 'Ψ0, i
∂&r

∂t
--------- Ĥ&r– I .=

&ll '
0

&v ac
0 &r

0 &a
0
, &a

0
– &r

0+
.= =

Ĥ phΦN εph N( )ΦN, ĤaχN εa N( )χN.= =

Nk1λ1

Nk2λ2
Nk jλ j

Ni1p1
Ni1p2

Ni jp j

&21
0 &v ac

0
iZΨ0Ψ0+–= , &12

0
iZΨ0Ψ0+,–=

Ψ0 ΦN0
iεph– N0( )t[ ]χ N0'

iεa– N0'( )t[ ] ,expexp=
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where the N0 and  vectors correspond to the initial
states of the system and Z is an arbitrary dimensionless
constant. By definition,

(12)

where θ> = θ(t – t ' ) and θ< = θ(t ' – t), θ is the Heaviside
function. It follows from (12) that

(13)

and

(14)

The  and  functions possess retarded and advanced
characters. They satisfy (9).

3.3. Matrix Green Functions &ll '

We will define these functions as solutions to the
integral equation

(15)

where  = δll '(–1)l + 1 and the repeat subscripts imply
summation.

Consider the following question. What are the prop-

erties of operator  that ensure that the &ll ' function
will possess algebraic properties (13), (14) inherent in

the  function?

Let us act on Eq. (15) from the left by the matrix [24]

and, from the right, by the matrix  = . Equating
the elements of the obtained matrix equation taking
into account (13) and (14) yields four equalities:

(16)

(17)

(18)

where the notation

(19)

is used. It follows from the equality &a =  that

(20)

N0'

&11
0 &21

0 θ>= &12
0 θ<+ , &22

0 &21
0 θ<= &12

0 θ>,+

&11
0 &22

0
+ &12

0 &21
0

+=

&11
0 &12

0
– &r

0
= , &11

0 &21
0

– &a
0
.=

&r
0 &a

0

&ll ' &ll '
0

= &ll1

0 σl1l1

3( )+ Ĥl1l2
' &l2l ' ,

σll '
3( )

Ĥll ''

&ll '
0

Û
1

2
-------= 1 1–

1 1 
 
 

Û
1–

Û
+

&12 &21 &12
0

= &21
0 &12

0 &21
0

+( )Ĥa' &a+ + +

+ &r
0
Ĥr' &12 &21+( ) &r

0
Ĥ21' Ĥ12'–( )&a,+

&r &r
0 &r

0
Ĥr'&r+= , &a &a

0 &a
0
Ĥa' &a,+=

Ĥ11' Ĥ22'– Ĥ21' Ĥ12' ,–=

Ĥr' Ĥ11' Ĥ12'+= , Ĥa' Ĥ11' Ĥ12'–=

&r
+

Ĥa' Ĥr'
+

= .
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Equation (16), in turn, yields

(21)

Conditions (18)–(20) can be satisfied by requiring that

(22)

Equations (17) are now equivalent to differential equa-
tion (10). It follows from (21) and (11) that

where Ψ satisfies (8).

We have shown that the ΨΨ+ product, where Ψ is
the solution to (8), can be found by solving integral
equation (15) under condition (22). We have

(23)

Averaging in (23) is performed over atomic variables in
both quantum and statistical senses.

3.4. Averaging over an Ensemble of Systems

Let us use the notation &ll ' |Z = 0 = ∆ll ' . Retaining only
the first term of the expansion of &ll ' in powers of Z, we
obtain

(24)

All matrix  elements are equal. According to (23),

Let us solve (15) iteratively setting Z equal to 0. This
yields

(25)

Next, we will differentiate the iterative series with
respect to Z and then set Z = 0. We arrive at

(26)

The structure of series (26) is identical to that of series
(25) with sequential replacement of each ∆0 matrix by
ρ0 in such a way that each term of (26) necessarily con-
tains the ρ0 matrix, but only raised to the power one.

&12 1 &rĤr'+( )&12
0

1 Ĥa' &a+( ) &rĤ12' &a,–=

&21 1 &rĤr'+( )&21
0

1 Ĥa' &a+( ) &rĤ21' &a.+=

Ĥll '' δll 'δ t t '–( )Ĥ '.=

&12 iZΨΨ+,–=

ρph iZ 1– &12〈 〉 , t t '.=

&ll ' ∆ll '= iZρll '– , &ll '
0 ∆ll '

0= iZρll '
0 ,–

ρll '
0 Ψ0Ψ0+.=

ρll '
0

ρ12〈 〉 ρ ph, ∆12〈 〉 0.=
t → t '

∆ ∆0= ∆0σ 3( )Ĥ '∆0+

+ ∆0σ 3( )Ĥ '∆0σ 3( )Ĥ '∆0 …+

ρ ρ0= ρ0σ 3( )Ĥ '∆0 ∆0σ 3( )Ĥ 'ρ0 …+ + +
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Let us average (25) and (26) after multiplying them by

the exp[i (t – t')] operator from the left. Consider this

procedure as applied to the  matrix. Because

we have

Further, according to (11) and (24),

,

and, taking into account (14), we obtain

The other  elements are determined by equali-
ties (12). These elements are related by Eqs. (13). This
means that

Let us return to series (26) and average the third term
(second-order perturbation theory). We will use the inter-
action representation

Taking into account a stochastic (Gaussian) distribution
of atoms over degrees of freedom yields

where

Other possible terms of the performed factorization
give zero as the end result. Let us introduce the notation

(27)

Ĥa

&ll '
0

&r
0

iθ t t '–( ) χN 'ΦNχN '
+ ΦN

+

NN '

∑–=

× i εa N '( ) εph N( )+[ ] t t '–( )–{ } ,exp

iĤa t t '–( )[ ] &r
0

exp〈 〉

=  i ΦNΦN
+ iεph N( ) t t '–( )–[ ]θ t t '–( )exp

N

∑– ∆r
0〈 〉 .=

ρ12
0〈 〉 Φ N0

ΦN0

+ iεph N0( ) t t '–( )–[ ]exp=

∆21
0〈 〉 ∆ r

0〈 〉 ∆ a
0〈 〉–= , ∆12

0〈 〉 0, ∆a
0〈 〉= ∆r

0〈 〉 +
.=

∆ll '
0〈 〉

∆ll '
0 ∆ll '

0〈 〉 iĤa t t '–( )–[ ] I .exp=

iĤat( )ψ r R,( ) iĤat–( )expexp ψ̂ X( ),=

X r R t, ,{ } .=

ψ̂+ X1( )p̂Âψ̂ X1( )ψ̂+ X2( )p̂Âψ̂ X2( )〈 〉

=  p̂ÂG21 X1 X2,( )p̂ÂG12 X2 X1,( ),–

G12 X2 X1,( ) i ψ̂+ X1( )ψ̂ X2( )〈 〉–= ,

G21 X1 X2,( ) i ψ̂ X1( )ψ̂+ X2( )〈 〉–= .

3l1l2
t1 t2,( ) e

m
---- 

 
2

–=

× p̂ÂG21 X1 X2,( ) ∆l1l2

0 t1t2( )〈 〉∫
× σl2l2

3( ) p̂ÂG12 X2 X1,( )dr1dR1dr2dR2.
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The expression to be calculated takes the form

This formula was obtained in [13] by the method of Γ
operators. The term describing the second order of the
iterative series for the ρll ' matrix is calculated in a sim-
ilar way. We eventually have

(28)

(29)

The odd terms of the iterative series vanish if the
medium initially does not possess coherent properties.
Equations (28) and (29) found in second-order perturba-
tion theory contain 〈∆0〉 and 〈ρ0〉 as right-hand multipliers.
They are replaced by complete functions 〈∆〉  and 〈ρ〉  as a
result of taking into account subsequent perturbation
theory terms and the Dyson summation of Feynman

diagrams. The derived equations are exact if  and

 are understood to be complete expressions for
polarization operators. In the simplest, so-called one-

loop approximation, we have (27) for , and a simi-

lar equation for  in which  is replaced by 〈ρ0〉 .
It follows from the vanishing of  that 〈∆ 12〉  =

 = 0. Therefore,

Equations of the algebraic structure of Eqs. (28) and
(29) were considered in [13]. Following the reasoning
of [13], we obtain

(30)

This system of equations shows that the evolution of a
quantum field in a medium is generally governed by

two operators,  and . The impossibility of using
a unique medium polarization tensor is now made obvi-
ous. Coherent scattering processes are described by the

 operator, and incoherent processes including

∆ll1

0〈 〉σ l1l1

3( ) 3̂l1l2 ∆l2l '
0〈 〉 .

∆ll '〈 〉 ∆ ll '
0〈 〉= ∆ll1

0〈 〉σ l1l1

3( ) 3̂l1l2 ∆l2l '
0〈 〉 ,+

ρll '〈 〉 ρ ll '
0〈 〉= ρll1

0〈 〉σ l1l1

3( ) 3̂l1l2 ∆l2l '
0〈 〉+

+ ∆ll1

0〈 〉σ l1l1

3( ) 3̂l1l2

ρ
∆l2l '

0〈 〉 ∆ ll1

0〈 〉σ l1l1

3( ) 3̂l1l2 ρl2l '
0〈 〉 .+

3̂ll '

3̂ll '
ρ

3̂ll '

3̂ll '
ρ

∆0〈 〉
∆12

0〈 〉

3̂12

∆11〈 〉 ∆ r〈 〉 , ∆22〈 〉– ∆a〈 〉 , ∆a〈 〉 ∆ r〈 〉 +,= = =

3̂11 3̂r, 3̂22 3̂a= = , 3̂a 3̂r
+
.=

ρ12〈 〉 ρ 12〈 〉 c( )= ρ12〈 〉 n( )+ ,

ρ12〈 〉 c( ) 1 ∆r〈 〉 3̂r+( )= ρ12
0〈 〉 1 3̂a ∆a〈 〉+( ),

ρ12〈 〉 n( ) ∆r〈 〉 3̂12
ρ

∆a〈 〉 ,–=

∆r〈 〉 ∆ r
0〈 〉= ∆r

0〈 〉 3̂r ∆r〈 〉 ,+

∆a〈 〉 ∆ a
0〈 〉= ∆a

0〈 〉 3̂a ∆a〈 〉 .+

3̂r 3̂12
ρ

3̂r
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induced radiation, by the  operator. Induced radi-
ation processes are incoherent because, while chang-
ing the state of atoms, they disturb the phase of the
atom + field wave function and do not interfere with
coherent scattering processes [27]. As shown below, the
standard refractive index arises as some combination of

 and .

Equation (27) is valid if n γr /γ < 1, where n is the
total concentration of scatterers, Â = 2π/k, and γr(γ) is
the radiation (total) width of excited atom energy lev-
els. Below, in accordance with this equation, we give

expanded formulas for  and  in the energy rep-
resentation

We have [13]

(31)

Here, nm(nµ) is the concentration of excited (nonex-
cited) atoms on Zeemen sublevels, γ = γm + γµ , and γm, µ
are the collisional widths of the corresponding energy
levels. For a plane parallel scattering layer of thickness L
with symmetry axis z [13],

Further,

(32)

3̂12
ρ

3̂r 3̂12
ρ

Â
3

3̂r 3̂12
ρ

f E( ) eiEt f t( ) t.d

∞–

∞

∫=

3̂r E( ) α̂k1λ1
Ar E Ĥ ph–( )α̂k2λ2

+[
k1λ1k2λ2

∑=

+ α̂k1λ1

+ Cr E Ĥ ph–( )α̂k2λ2
] ,

Ar
k1λ1k2λ2 E( )

Pmµ
λ1 k1( )Pmµ

λ2* k2( )
2 k1k2

-----------------------------------------
mµp

∑=

×
nm p( )δL k2 k1,( )

E ωmµ k1 k2+( ) p/2M iγ/2+⋅+ +
-----------------------------------------------------------------------------------,

Cr
k1λ1k2λ2 E( )

Pmµ
λ1* k1( )Pmµ

λ2 k2( )
2 k1k2

-----------------------------------------
mµp

∑=

×
nµ p( )δL k1 k2,( )

E ωmµ– k1 k2+( ) p/2M iγ/2+⋅–
----------------------------------------------------------------------------------.

δL k1 k2,( ) δ k1x k2x,( )δ k1y k2y,( )θL k1z k2z–( ),=

θL q( ) e iqz– zd
Lz

-----

0

L

∫ 1 e iqL––
iqLz

-------------------.= =

3̂12
ρ

E( )

=  α̂k1λ1

+ A12 E E '–( ) ρ12
0 E '( )〈 〉 E 'd

2π
--------α̂k2λ2∫

k1λ1k2λ2

∑
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where

3.5. Coherent Scattering Channel

Let the scattered flux of photons be in the initial
Fock state (k0, λ0),

We will be interested in the density of photons that passed
through a plane parallel scattering layer of thickness L.
The photon density operator will be written as

In accordance with (30), in the lowest order with respect
to the concentration of scattering particles, we have

(33)

Consider the contribution of the second term in (33) to

. Equation (31) yields

(34)

Note that the term with k1 = k2 = k0 written separately
in the polarization operator makes a zero contribution
to the result of calculations because of smallness of its
statistical weight when Lz  ∞. It follows that no

+ α̂k1λ1
C12 E E '–( ) ρ12

0 E '( )〈 〉 E 'd
2π
--------α̂k2λ2

+ ,∫

A12
k1λ1k2λ2 E( ) 2π

Pmµ
λ1* k1( )Pmµ

λ2 k2( )
2 k1k2

-----------------------------------------nm p( )
mµp

∑–=

× δγ E ωmµ–
p k1 k2+( )⋅

M
-----------------------------– 

  δL k1 k2,( ),

C12
k1λ1k2λ2 E( ) 2π

Pmµ
λ1 k1( )Pmµ

λ2* k2( )
2 k1k2

-----------------------------------------nµ p( )
mµp

∑–=

× δγ E ωmµ
p k1 k2+( )⋅

M
-----------------------------+ + 

  δL k2 k1,( ),

δγ E( ) i
2π
------ E i

γ
2
---+ 

 
1–

E i
γ
2
---– 

 
1–

– .=

ρ12
0 E( )〈 〉 2πδ E Ĥ ph–( ) N0| 〉 N0〈 | .=

n̂
λ1λ2 r( ) 1

V
---=

× α̂k1λ1

+ i k1 k2–( ) r⋅–[ ]α̂ k2λ2
.exp

k1k2

∑

ρ12〈 〉 c( ) ρ12
0〈 〉 ∆ r

0〈 〉 3̂r ρ12
0〈 〉 ρ 12

0〈 〉 3̂a ∆a
0〈 〉 .+ +=

n̂
λ0λ0 r( )〈 〉

n̂
λ0λ0 r( )〈 〉

c( ) 1
V
--- Spph ∆r

0〈 〉∫=

× α̂k0λ0

+ i k0 k2–( ) r⋅–[ ]α̂ k2λ0
exp

k2

∑

× α̂k0λ0
Ar

k0λ0k2λ0α̂k2λ0

+ α̂k2λ0

+ Cr

k2λ0k0λ0α̂k0λ0
+[ ] ρ 12

0〈 〉 Ed
2π
------.
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mode should be treated separately in the summation
over k2 in (34). The technique of the further calcula-
tions was described in [13, 14]. According to (33), we
eventually have

(35)

n̂
λ0λ0 r( )〈 〉 z ∞→

c( ) N0

V
------=

× 1 2πL Pmµ
λ0 k0( )

2k0

-------------------
2

nµ p( ) nm p( )+( )
mµp

∑–
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Consider the scheme of calculations of 
for polarization of transmitted light perpendicular to
polarization of incident radiation (λ ≠ λ0). According
to (30), the diagonal element of this value is given by

As a result,

× δγ k0 ωmµ–
k0 p⋅

M
-------------– 

  .

n̂λλ r( )〈 〉 c( )

ρ12〈 〉 c( ) ∆r
03̂r ρ12

0〈 〉 3̂a ∆a
0〈 〉 .=
(36)

n̂λλ r( )〈 〉 z ∞→
c( )

=  
N0

V
------L2 Pmµ

λ* k0( )Pmµ
λ0 k0( )

2k0
----------------------------------------

nµ p( ) nm p( )–( ) k0 ωmµ– k0 p/M⋅–( ) iγ nµ p( ) nm p( )+( )/2–

k0 ωmµ– k0– p/M⋅ 2 γ2/4+
--------------------------------------------------------------------------------------------------------------------------------------------------

mµp

∑
2

.

We will discuss this result below. Here, we will only
note that, if |k0 – ωmµ – k0 · p/M| > γ, the terms in (36)
depend on the nµ – nm difference. At the same time, if
|k0 – ωmµ – k0 · p/M| < γ, they depend on the nµ + nm sum.

3.6. Incoherent Scattering Channel

First note that the contribution of the incoherent
channel to the diagonal element of 〈nλλ(r)〉  is positive
definite at any λ. This follows from the preliminary
analysis of the problem given in Section 2, and this was
independently proved for (30) in [13]. It follows that
Eqs. (35) and (36) determined by the coherent scatter-
ing channel estimate the sought values from below.
However, for λ = λ0 the term taking into account the
role played by the medium has a negative sign in (35), and
the positive definite term from the incoherent channel
can compensate it. For this reason, the contribution of
the incoherent channel is of special interest.

In accordance with (30) and (32), let us calculate the
expression

(37)

Note that although the incoherent channel is respon-
sible for the contribution of induced processes to the
overall scattering intensity, the term with k1 = k2 = k0

in the  operator makes no contribution because of
the smallness of its statistical weight. Formally, this

term contains the  multiplier and vanishes as V  ∞.

n
λ0λ0 r( )〈 〉 z ∞→

n( )
Spph α̂k0λ0

+ α̂k1λ0

k1

∑∫=

× i k1 k0–( ) · r[ ]exp ∆r
0〈 〉 α̂ k1λ0

+

× A12
k1λ0k0λ0∫ ρ12

0〈 〉 E 'd
2π
--------α̂k0λ0

∆a
0〈 〉 Ed

2πV
---------- c.c.+

3̂12
ρ

Lz
1–
Such a form of calculations of induced radiation is typ-
ical of media of finite dimensions. For the same reason,

the term with C12 contained in  falls out of calcula-
tions.

Subsequent transformations of (37) with ignoring
spontaneous radiation give an almost obvious result,

The sum of this expression and (35) can be written as

(38)

where

as V  ∞, and (k0) is simply the diagonal element
of the standard index of refraction of the medium which
can be obtained in terms of the theory described in [15].
Like medium polarizability, this index of refraction
depends on the nµ – nm difference and the concentra-
tions of atoms on the lower and upper atomic transition
levels. According to (38), the medium becomes less
active as nm  nµ.

3̂12
ρ

n̂
λ0λ0 r( )〈 〉

n( )
4πL

N0

V
------=

× Pmµ
λ0 k0( )

2k0

-------------------
2

nm p( )δγ k0 ωmµ–
k0p
M

---------– 
  .

mµp

∑

n̂
λ0λ0 r( )〈 〉

c( )
n̂

λ0λ0 r( )〈 〉
n( )

+

=  
N0

V
------ 1 2k0L Im κ

λ0 k0( )–[ ] ,

κ
λ0 k0( ) 1

1
k0
---- pd

2π( )3
------------- Pmµ

λ0 k0( )
2k0

-------------------
2

∫
mµ
∑–=

×
nµ p( ) nm p( )–

k0 ωmµ– k0– p/M iγ/2+⋅
---------------------------------------------------------------,

κ
λ0
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Another conclusion follows from (36). The intensity
of light that passes through the medium with a 2π
change in its linear polarization direction is determined
by the nµ + nm sum under the conditions of resonance
with some Zeeman frequency k = ωmµ and does not
decrease as nm  nµ. Taking into account the contri-
bution of the incoherent channel cannot change this
result, because this contribution is positive definite.

We arrive at the conclusion that this intensity cannot
be described by the refractive index of the medium that
contains excited atoms. Its description requires the use
of another medium characteristic, which depends, in
particular, on the nµ + nm sum.

4. CONCLUSION

The results of this work, in particular, formulas (36)
and (38), were obtained in the quasi-resonance approx-
imation for two-level scatterers. It was assumed that the
interaction of an excited atom with radiation caused
light scattering or induced radiation. Absorption was
ignored. It follows that the eventual formula would be
substantially different if the medium contained scatter-
ers with an equidistant energy spectrum.

This insufficiency of the description of the optical
properties of excited dispersing media in a semiclassi-
cal radiation theory is caused by not taking into account
the photon–photon correlators. Like the medium refrac-
tive index, the new characteristic of the medium that
appears in our analysis, which depends on the nµ + nm

sum, depends on the Planck constant only through
oscillator strengths. This is quite natural, if the essen-
tially quantum two-level object of scattering is taken
into account. Note that the dependence of the refractive
index on the nµ – nm difference is also a consequence of
quantum theory. Such a difference cannot be obtained
for light scattering on classical oscillators.

In this work, we did not explicitly take into account
the role played by the incoherent channel in the forma-
tion of the intensity of light scattered with a π/2 change
in polarization. We only noted that this role was posi-
tive definite and required going beyond the scope of
perturbation theory. By analogy with studies performed
in [14], it can be expected that taking this channel into
account would result in an observable frequency broad-
ening of scattered light because of a change in the num-
ber of quanta in the system. This effect would be deter-
mined by the coefficient of absorption of photons by
the medium.

In testing the suggested theory, studying the Hanle
effect in a longitudinal magnetic field may be useful.
We call attention to works [10, 11], in which an electric
discharge in inert gases served as a scatterer. In such
experiments, the existence of a noticeable fraction of
excited scatterers should be expected. A series of exper-
iments with different discharge currents would be of
interest, because the dependences of passed light inten-
sities with different λ on nµ and nm are qualitatively dif-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ferent. If, in addition, side scattering intensities of spec-
tral lines related to the 3S  3P and 3P  3D tran-
sitions are measured, for instance, when discharges
occur in He, then the relative occupancies of the lower
nµ and upper nm energy levels, transitions between
which are responsible for the Hanle effect, can be deter-
mined.

Such an experiment would not only allow us to
refine the rules governing the Hanle effect in forward
scattering but would also call attention to the general
features of constructing quantum electrodynamics for
excited dispersing media.
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Abstract—The asymptotic resonant charge exchange theory is developed for slow collisions of atoms and ions
with valent p-electrons. Because of a small rotation angle of the molecular axis in the course of the p-electron
transition, the resonant charge exchange cross section is not sensitive to the rotational energy of colliding par-
ticles, and the cross sections are nearly equal for cases “a”, “b”, and “d” of the Hund coupling, and also for
cases “c” and “e” of the Hund coupling. The cross sections of the resonant charge exchange process are evalu-
ated under various conditions and for various elements of the periodical table with p-electron shells of atoms
and ions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The resonant charge exchange process corresponds
to the tunnel transition of a valent electron from the
field of one atomic core to another in the course of a
collision of an ion with the parent atom. Under real
conditions, one can consider nuclei to move along clas-
sical trajectories [1–3]: at small collision velocities
compared to a typical atomic velocity, the rate of this
process can be expressed through the parameters of a
molecular ion consisting of the colliding atom and its
ion [4, 5]. In particular, for the transiting s-electron and
structureless cores, with only two electron terms of the
molecular ion involved in this process, the probability
Pres of the electron transition from one core to another
after the collision is given by [4]

(1)

where R(t) is the distance between the nuclei, t is time,
ρ is the impact parameter of the collision, ζ(ρ) is the
exchange phase, and the ion–atom exchange interac-
tion potential is defined as

, (2)

εg(R) and εu(R) being the energies of the even and odd
states of the molecular ion. These states are character-
ized by different symmetries of the electron reflection
with respect to the symmetry plane, which is perpen-
dicular to the line joining the nuclei and bisects it.

In reality, the resonant charge exchange cross sec-
tion is large compared to a typical atomic value of this
dimensionality. This implies that transitions at large
separations give the leading contribution to the cross

Pres ζsin
2 ρ( ), ζ ρ( ) ∆ R( )

2
------------ t,d

∞–

∞

∫= =

∆ R( ) εg R( )= εu– R( )

¶This article was submitted by the author in English.
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section. This fact is the basis of the asymptotic theory
of the resonant charge exchange [6, 7], where the cross
section is expanded with respect to a small parameter
that is inversely proportional to the typical separation
for the electron transition. Within the framework of the
asymptotic theory, the cross section of this process is
expressed through the collision parameters and the
radial wave function parameters of the transiting valent
electron in the atom when the electron is located far
from the core. In particular, for the s-electron transition
between structureless cores, the cross section of the res-
onant charge exchange is [7]

(3)

where C = 0.577 is the Euler constant and the exchange

phase for the free motion of the nuclei R = 
is given by [7]

(4)

Here, v  is the collision velocity, γ2/2 is the atom ioniza-
tion potential or the electron binding energy, and A is
the asymptotic coefficient of the electron wave function
in this atom; we use atomic units where " = me = e = 1.
The asymptotic parameters of the atom are contained in

σs 2πρ ρ ζsin
2 ρ( )d

0

∞

∫
πR0

2

2
---------= = ,

ζ R0( ) e C–

2
------- 0.28,= =

v 2t2 ρ2+

ζ ρ( ) ∆ R( )
2

------------ td

∞–

∞

∫ 1
v
---- πρ

2γ
------∆ ρ( )= =

=  
1
v
---- π

2γ
------A2e 1/γ– ρ2/γ 1/2– ργ–( ).exp
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the normalized radial wave function of the electron at
large distances r from the core,

(5)

In particular, A = 2 for the hydrogen atom [8].

We note that the small asymptotic theory parameter
is 1/R0γ, and because the asymptotic theory involves the
information about the electron location far from the
core, we can keep only two expansion terms in the
expression for the cross section, as we did in Eq. (3).
This corresponds to the asymptotic theory accuracy for
the transition of a valent s-electron in the range 1–5%
[9] for the eV-collision energies.

For a transiting p-electron, the asymptotic theory of
the resonant charge exchange process becomes cum-
bersome [10, 11] because, on the one hand, the electron
transfer process is entangled with the rotation of the
molecular axis, and on the other hand, the fine splitting
of the ion and atom levels can be important in this pro-
cess. The above formulas for the s-electron transition
were used in some recent calculations [12–14] as
model ones for the evaluation of the cross section of
this process for the transiting p-electron. This leads to
an uncontrolled error that is absent in the asymptotic
theory. We note that the contemporary computer tech-
nique allows us to formulate the asymptotic theory in a
simple way and to exhibit various aspects of the process
under consideration. In this paper, we present the
asymptotic theory for the resonant charge exchange
process with the transiting p-electron. We are guided
mostly by the ground states of the colliding ion and
atom and focus on the cross section averaging over the
directions of the initial momenta.

2. RESONANT CHARGE EXCHANGE 
WITH THE TRANSITING p-ELECTRON

FOR LIGHT ATOMS

We first consider the case of a small spin–orbit split-
ting of atom and ion levels and neglect relativistic inter-
actions. This corresponds to the LS-coupling scheme
for the atom. At large separations, the quantum num-
bers of the molecular ion are the atom quantum num-
bers LSMLMS (the orbital momentum, spin, and their
projections on the molecular axis) and the same quan-
tum numbers of the ion lsmms. The atom orbital and
spin momenta L and S are given by the sum of the elec-
tron orbital and spin momenta le and 1/2 and of the
respective momenta of the atomic core l and s. The
atom spin S and the spin of the other atom core s are
then summed into the total spin I of the molecular ion.
The atomic wave function is then expressed through
parameters of the core and the valent electron by means
of the genealogical or Racah coefficients [15, 16]. The

ψ r ∞( ) Ar1/γ 1– e rγ– .=
JOURNAL OF EXPERIMENTAL 
ion–atom exchange interaction potential is then given
by [10, 17]

(6)

where n is the number of identical valent electrons of

the atom,  is the genealogical (Racah) coefficient
[15, 16], the square brackets are the Clebsch–Gordan
coefficients that are responsible for the summation of
the electron and ion orbital momenta into the atom
orbital momentum, and  is the exchange interaction
potential for one valent electron located in the field of
structureless cores. We note a weak dependence of the
exchange interaction potential on the total spin I of the
molecular ion. Indeed, the level splitting corresponding
to different total spins of the molecular ion is deter-
mined by the exchange of two electrons and varies at
large separations R as exp(–2γR). Therefore, Eq. (6)
contains the average spin of the molecular ion. Next,
because the exchange interaction potential 

decreases as R–µ with increasing µ, we are restricted by
the term with the minimum value of µ in Eq. (6). As a
result, for the valent p-electron, we have [10, 17]

(7)

where [7]

(8)

is the exchange interaction potential for a valent s-elec-
tron [7] with the same asymptotic radial wave function.

Formula (6) allows one to construct the matrix of the
exchange interaction potential of an ion and an atom
with valent p-electrons. Below, we represent these
matrices in the case where the atom and the ion are in
the ground electron states. One can be convinced of the
identity of the transiting electron and the hole. In accor-
dance with Eq. (6) for atoms of group 3 (with one
valent p-electron) and atoms of group 8 (with one
valent p-hole) in the periodical table of elements, with
the ground states of the atom and the ion given by 1S
and 2P, the exchange interaction potential of the inter-
acting atom and the ion is given by the matrix

, (9a)

where ML is the orbital momentum projection for the
atom (elements of group 3) or the ion (elements of
group 8). 

∆ leµ lms LMLS,,( ) I 1/2+
2s 1+
----------------n Gls

LS( )2
=

× le l L

µ m m µ+

le l L

µ ML µ– ML

∆leµ,

Gls
LS

∆leµ

∆leµ

∆10 R( ) 3∆0= , ∆11 R( ) 6
Rγ
-------∆0,=

∆0 A2R 2/γ( ) 1– e–Rγ 1/γ( )–=

∆ ML( )
ML 1–= ML 0= ML +1=

∆11 ∆10 ∆11

=
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For elements of groups 4 and 7 of the periodical
table, with the ground electron states of the atom and
the ion given by 3P and 2P, the matrix of the exchange
interaction potential, in accordance with Eq. (6), is

(9b)

where m and ML are the projections of the orbital ion
and atom momenta. 

For elements of groups 5 and 6 of the periodical
table with the atom and ion ground states 4S and 3P, the
matrix of the exchange interaction potential is given by

(9c)

As the quantization axis, we take the direction on which
the projection of the electron momentum is zero. We let
θ denote the angle between the quantization and molec-
ular axes. By definition, the exchange interaction
potential ∆(θ) of the atom and its ion with valent p-elec-
trons is equal to

where  is the Wigner rotation function [20] and
Y1M(θ) is the spherical function; it follows that
4π|Y1M(θ)|2 is the probability of finding a state with the
momentum projection M at the angles θ and ϕ with
respect to the molecular axis. The spherical function
satisfies the normalization condition

It follows that for groups 3 and 8 of the periodical
table of elements, the exchange interaction potential of
an atom and a parent ion is given by

(10a)

Matrix (9b) gives the ion–atom exchange interaction
potential as a function of the angles between the quan-

∆ m ML,( ) 5
3
---=

×

ML 1–= ML 0= ML +1=

m 1–= ∆10 ∆11 ∆10

m 0= ∆11 2∆11 ∆11

m 1= ∆10 ∆11 ∆10

,

∆ m( ) 7
3
--- m 1–= m 0= m 1=

∆11 ∆10 ∆11

= .

∆ θ( ) 1
3
--- dM0

1 θ( ) 2

M

∑ ∆1M=

=  
4π
3

------ Y1M θ ϕ,( ) 2∆1M,
M

∑

dM0
1 θ( )

θ Y1M θ( ) 2cosd

1–

1

∫ 1
4π
------.=

∆ θ( ) ∆10 θcos
2

= ∆11+ θsin
2

.
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tization and molecular axes for elements of groups 4
and 7 of the periodical system,

(10b)

where θ1 and θ2 are the respective angles between the
molecular axis and the quantization axes for the atom
and the ion, with zero electron momentum projection
on the quantization axis. For groups 4 and 7 of the
periodical system, the exchange interaction potential
is similar to that for atoms of groups 3 and 8 and is
given by 

(10c)

Although we are restricted by the ground states of
the ion and the parent atom, this is a general scheme of
constructing the ion–atom exchange interaction poten-
tial. Being averaged over the total quasimolecule spin I,
the exchange interaction potential depends on the ion
(m) and the atom (ML) angular momentum projections
on the molecular axis. This corresponds to the LS-cou-
pling scheme for atoms and ions, which means neglect-
ing the spin-orbital interaction. Therefore, the above
expressions correspond to the hierarchy of the interac-
tion potentials

(11)

where Vex is the typical exchange interaction potential
for valent electrons inside the atom or the ion, U(R) is
the long-range interaction potential between the atom
and the ion at large separations R, and ∆(R) is the
exchange interaction potential between the atom and
the ion. Within the framework of the LS-coupling
scheme for atoms and ions, we assume the excitation
energies inside the electron shell to be relatively large.
This criterion is fulfilled for light atoms and ions. In the
same manner, one can construct the exchange interac-
tion potential matrix for excited states within a given
electron shell.

Because the exchange interaction potential is deter-
mined by the transition of one electron from the valent
electron shell and the transiting electron carries a cer-
tain momentum and spin, additional selection rules
apply for the one-electron interaction. In particular, for
the transition of a p-electron, the selection rules are
given by

(12)

These selection rules follow from the properties of the
Clebsch–Gordan coefficients entering Eq. (6). If these
conditions are violated, the ion–atom exchange interac-
tion potential is zero at the scale of one-electron inter-
action potentials. In Table 1, we list the states of atoms
and their ions with valent p-electrons for which the

∆ θ( ) 5
3
---=

× ∆10 θsin
2

1 θ2sin
2 ∆11+ θ1cos

2 θ2cos
2

+( )[ ] ,

∆ θ( ) 7
3
--- ∆10 θcos

2 ∆11 θsin
2

+( ).=

V ex @ U R( ), ∆ R( ),

L l– 1, S s– 1/2.≤≤
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ion–atom one-electron exchange interaction potential
is zero.

When a valent p-electron transits from one atomic
core to the other in the course of collision, the processes
of charge exchange and the electron momentum rota-
tion are entangled. One can partially separate these pro-
cesses because the charge exchange proceeds in a nar-
row range of separations R where the molecular axis

turns at a small angle of the order 1/ . Indeed, the
range of distances ∆R between the nuclei where the
charge exchange phase ζ varies considerably is ∆R ~
1/γ, which corresponds to the rotation angle ϑ  ~ v t/R ~

1/  ! 1. This fact allows us to simplify the deriva-
tion of the resonant charge exchange cross section.
Below we find the cross section averaged over angles
between the collision impact parameter and the quanti-
zation axis on which the orbital momentum projection
is zero.

Proceeding in this way, we orientate the quantiza-
tion axis with respect to the direction of the collision
impact parameter as the motionless axis; the average
cross section of the resonant charge exchange is then
given by

(13)

where ϑ  and ϕ are the polar angles of the impact param-
eter direction with respect to the quantization axis
direction and σ(ϑ , ϕ) is the charge exchange cross sec-
tion at a given direction of the collision impact param-
eter. We first consider the cases where the momentum
projection on the molecular axis is conserved in the
course of the electron transfer. This corresponds to a
small rotational energy and, under condition (11), is
determined by the condition

(14)

which means that the rotational energy v /ρ at the clos-
est approach distance is small compared to the long-

R0γ

Rγ

σ 1
4π
------ σ ϑ ϕ,( ) ϑcosd ϕ ,d

0

2π

∫
1–

1

∫=

v
ρ
----  ! U ρ( ) ∆ ρ( ),,

Table 1.  The ion and parent atom states with valent p-elec-
trons. The one-electron transition is forbidden between these
states and the exchange interaction potential of the ion and
the parent atom is zero

Electron configuration
and ion state

Electron configuration
and atom state

p2(1D) p3(4S)

p2(1S) p3(4S)

p2(1S) p3(2D)

p3(4S) p4(1D)

p3(4S) p4(1S)

p3(2D) p4(1S)
JOURNAL OF EXPERIMENTAL 
range splitting U(ρ) of molecular levels for states with
different projections of the orbital momentum on the
molecular axis or to the exchange interaction splitting
∆(ρ). Criterion (14) corresponds to cases “a” and “b” of
the Hund coupling [18, 19]. For the free motion of col-
liding particles, the current angle θ between the
molecular and quantization axes and the angle ϑ
between these axes at the closest approach distance
are related by

(15)

where α and ϕ are the polar angles of the molecular
axis with respect to its direction at the closest approach
distance; we have sinα = v t/R, where v  is the collision
velocity, t  is time, and R is the current distance between
the colliding particles.

Using Eqs. (15) and (10), we can represent the
exchange phases in the form of an expansion in the
small parameter of the theory 1/ργ if criterion (14) is
satisfied. For elements of groups 3, 5, 6, and 8 of the
periodical system, we have

(16a)

This expression applies to large collision impact
parameters, and ζ(ρ, 0) is the phase of the charge
exchange process when the quantization axis has the
same direction as the molecular axis at the closest
approach distance; ζ(ρ, 0) = 3ζ0(ρ) for elements of
groups 3 and 8 and ζ(ρ, 0) = 7ζ0(ρ) for elements of
groups 5 and 6, where the charge exchange phase ζ0 is
given by Eq. (4) and is related to the s-electron transi-
tion with the same asymptotic parameters γ and A. For
atoms of groups 4 and 7, the charge exchange phase at
large impact parameters of the collision is given by

(16b)

where ϑ1, ϕ1 and ϑ2, ϕ2 are the respective polar angles
of the quantization axes of the atom and the ion relative
to the molecular axis at the closest approach distance.

We now determine the average cross section from
formula (13) using formula (4) for the cross section at
a given angle and the dependence ζ ∝  exp(–γρ) for the

θcos ϑcos αcos= ϑ α ϕ ,cossinsin+

ζ ρ ϑ ϕ, ,( ) ζ ρ 0,( )=

× ϑcos
2 1

γρ
------ ϑcos

2
–

1
γρ
------ ϑsin

2
2 ϕcos

2
+( )+ .

ζ 5ζ0 ρ( ) ϑ 1sin
2 ϑ 2sin

2 1
γρ
------+





=

× 2 ϑ 1cos
2

2 ϑ 2cos
2 ϑ 1sin

2
+ + ϑ 2cos

2[

+ ϑ 1cos
2 ϑ 2sin

2 ϑ 1sin
2 ϑ 2sin

2 ϕ1cos
2 ϕ2cos

2
+( )–

+ 2ϑ 1 2ϑ 2sin ϕ1cos ϕ2cossin ]




,
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exchange phase. For elements of groups 3, 5, 6, and 8
of the periodical system, this gives

(17)

where R0 = . The same expression applies to
elements of groups 4 and 7 with the integration over
four angles ϑ1, ϕ1, ϑ2, ϕ2; here σs is the cross section in
Eq. (3) for the transiting s-electron with the same
asymptotic parameters as for the p-electron. Table 2
contains these reduced cross sections depending on the
parameter R0γ. The value of Σ3 in Table 2 gives /σs for
elements of groups 3 and 8 of the periodical table, the
value of Σ4 is /σs for elements of groups 4 and 7, and
the value of Σ5 gives /σs for elements of groups 5 and
6. In addition, this table contains the reduced cross sec-
tions Σ10 and Σ11 corresponding to the respective pro-
jections 0 and 1 of the orbital momentum on the impact
parameter direction.

We also consider the opposite case to (14), where

(18)

In this case, the exchange phase for elements of groups
3, 5, 6, and 8 is given by

(19)

instead of (16a). The corresponding reduced average

cross section is denoted by  in Table 2. This corre-
sponds to cases “b” and “d” of the Hund coupling, and
according to the data in Table 2, the results for this case
practically coincide with case “a” of the Hund cou-
pling. The value  in Table 2 is

Comparing it to the average cross section one testifies
to the sensitivity of the cross section to different meth-
ods of averaging.

3. RESONANT CHARGE EXCHANGE 
WITH THE TRANSITING P-ELECTRON FOR 

HEAVY ATOMS

In considering the resonant charge exchange pro-
cess, we follow the general scheme of classifying the
limiting cases of momentum coupling in diatomic mol-
ecules. This scheme is given in Table 3 [18, 19]. The
cases of the Hund coupling unify different relations
between energetic parameters of colliding particles. An
important energetic parameter of the quasimolecule

σ
σs

----- 1
2π
------=

× 1
1

γR0
---------

ζ R0 ϑ ϕ, ,( )
ζ0 R0( )

---------------------------ln+
2

ϑcosd ϕ ,d

0

2π

∫
0

1

∫

2σs/π

σ

σ
σ

v
ρ
----  @ U ρ( ) ∆ ρ( ).,

ζ ρ ϑ ϕ, ,( ) ζ ρ 0,( )= ϑcos
2 2

γρ
------ ϑsin

2
+ 

 

Σ3
d

Σ

Σ Σ10= /3 2Σ11/3.+
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consisting of colliding particles is the interaction poten-
tial Ve between the orbital angular momentum of the
electrons and the molecular axis. This includes the
exchange interaction potential Vex inside the atom and
the ion due to the Pauli exclusion principle, the splitting
of the molecular ion levels due to the long-range inter-
action U(R), and the exchange interaction potential
∆(R) between the ion and the atom. Within the frame-
work of Hund schemes, we compare this interaction
potential to the relativistic interaction δf given by the
sum of spin–orbit interactions of the individual elec-
trons and other relativistic interactions and the rota-
tional energy given by Vr = vρ/R2 for the free motion of
colliding particles. For colliding atomic particles, in
contrast to a molecule, different types of the Hund cou-
pling can be realized on one classical trajectory of parti-
cles. We use the general Nikitin scheme [21–23], which
relates the characters of the momentum coupling of col-
liding atomic particles moving along one trajectory. The
problem under consideration is simpler because we are
interested in the behavior of colliding particles on the
trajectory element where the electron transition occurs.
Only one type of the momentum coupling is realized on
this part of the trajectory.

Above, we considered the cases where relativistic
interactions are negligible and the projection of the

Table 2.  The reduced cross sections of the resonant charge
exchange

R0γ 6 8 10 12 14 16

Σ10 1.40 1.29 1.23 1.19 1.16 1.14

Σ11 1.08 0.98 0.94 0.92 0.91 0.91

1.19 1.08 1.04 1.01 0.99 0.95

Σ3 1.17 1.09 1.05 1.03 1.02 1.01

1.16 1.08 1.04 1.02 1.01 1.00

Σ4 1.50 1.32 1.23 1.18 1.14 1.12

Σ5 1.44 1.29 1.22 1.17 1.14 1.11

Σ1/2 1.18 1.10 1.07 1.05 1.04 1.03

Σ3/2 1.18 1.10 1.06 1.04 1.03 1.02

1.16 1.09 1.06 1.04 1.03 1.02

Σ

Σ3
d

Σ3/2
e

Table 3.  The Hund coupling cases

Hund coupling case Relation

a Ve @ δf @ Vr

b Ve @ Vr @ δf

c δf @ Ve @ Vr

d Vr @ Ve @ δf

e Vr @ δf @ Ve

e' δf @ Vr @ Ve
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956 SMIRNOV
orbital electron momentum on the molecular or the
motionless axis is conserved in the course of the elec-
tron transfer, which corresponds to cases “a”, “b”, and
“d” of the Hund coupling and is realized for light
atomic particles. In what follows, we are guided by
heavy atoms and examine the cases where relativistic
interactions are important.

In the collisions of heavy atomic particles, the rela-
tivistic interactions are dominant, and therefore, the jj
coupling scheme becomes valid for an individual
atomic particle. The quantum numbers of the interact-
ing atom and ion are therefore given by J and MJ, the
total atomic electron momentum and its projection on
the molecular axis for the atom, and also by the respec-
tive ion quantum numbers j and mj. At large separa-
tions, these quantum numbers are related to a molecular
ion consisting of the ion and the parent atom. We note
that the total momentum J and its projection on a given
direction MJ are the quantum numbers of an individual
atomic particle in both momentum coupling schemes

Table 4.  The ground states of atoms with p-electron shells in
the framework of the LS and jj coupling schemes and the ion–
atom exchange interaction potential ∆ for the Hund coupling
cases “c” and “e”

Shell J LS-term jj-shell ∆

p 1/2 2P1/2 [1/2]1 ∆1/2

p2 0 3P0 [1/2]2 ∆1/2

p3 3/2 4S3/2 [1/2]2[3/2]1 ∆3/2

p4 2 3P2 [1/2]1[3/2]3 0

p5 3/2 2P3/2 [1/2]2[3/2]3 ∆1/2

p6 0 1S0 [1/2]2[3/2]4 ∆3/2
JOURNAL OF EXPERIMENTAL 
(LS and jj), which simplifies the analysis in the general
case. Next, taking the relativistic effects into account
reduces the atom symmetry. For this reason, on the one
hand, the ion–atom exchange interaction potential is
expressed through the one-electron exchange interac-
tion potential in a simpler way, and on the other hand,
the prohibition of some one-electron transitions
strengthens in the presence of relativistic interactions
because of a weaker mixing of states in this case. Table 4
contains parameters of the electron shells for the
ground electron states of atoms and ions with p-elec-
tron shells. We note that for the jj-coupling, the similar-
ity between the transitions of the p-electron and the
p-hole is lost because of different signs of the spin–
orbit interaction potential for the electron and the hole.
Hence, the ion–atom exchange interaction potential is
different in the cases where the p-electron shells of the
atom and its ion are replaced by shells consisting of
identical p-holes. Moreover, for group 6 of the periodi-
cal system of elements, the one-electron ion–atom
exchange interaction potential is zero if the atom and
the ion are found in the ground states. We note that for
all the groups in the periodic table of elements with
valent p-electrons, the ion–atom one-electron exchange
interaction potential is not zero for light atoms if atoms
and their ions are found in the ground states.

It follows from the data in Table 4 that the ion–atom
exchange interaction potential is simpler in the pres-
ence of relativistic interactions because of a lower sym-
metry of atomic particles in this case. For the LS-cou-
pling scheme for individual atomic particles, we were
restricted by the ground states of atomic particles
because of a cumbersome problem, but the presence of
relativistic effects simplifies this problem. As a demon-
stration of this, Table 5 contains the matrix of the
exchange interaction potential for elements of group 5.
Table 5.  The exchange interaction potential for atoms of group 5 of the periodical system of elements whose atomic electron
shell is p3 and their ions have the electron shell p2

LS 4S3/2
2D3/2

2D5/2
2P1/2

2P3/2

jj

3P0 ∆3/2(+) 0(+) 0(+) 0(+) 0(+)

3P1 ∆1/2(+) ∆3/2(+) ∆3/2(+) ∆3/2(+) 0(+)

3P2 ∆1/2(+) ∆3/2(+) ∆3/2(+) ∆3/2(+) 0(+)

1D2 0(0) ∆1/2(+) ∆1/2(+) ∆1/2(+) ∆3/2(+)

1S0 0(0) ∆1/2(0) ∆1/2(0) ∆1/2(+) ∆3/2(+)

1
2
--- 

  2 3
2
--- 

 
3/2

1
2
--- 

  3
2
--- 

  2

3/2

1
2
--- 

  3
2
--- 

  2

5/2

1
2
--- 

  3
2
--- 

  2

1/2

3
2
--- 

  3

3/2

1
2
--- 

  2

0

1
2
--- 

  3
2
--- 

 
1

1
2
--- 

  3
2
--- 

 
2

3
2
--- 

  2

2

3
2
--- 

  2

0
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The notation for the ion and atom electron terms used
in Table 5 applies to the LS- and jj-coupling schemes.
The values of the exchange interaction potentials are
given assuming that the jj momentum coupling scheme
applies, and it is indicated in parentheses whether this
potential is zero (0) or nonzero (+) for the LS-coupling
scheme. In particular, for the ground atom and ion
states, the exchange interaction potential occupies one
cell in Table 5, while within the framework of the
LS-coupling scheme, it is given by matrix (9c).

We note that for the jj-coupling scheme, the p-elec-
tron shell of an atom or an ion is separated into two
independent subshells with j = 1/2 and j = 3/2. Hence,
the difference between the numbers of electrons in
these subshells for the interacting ion and the atom can-
not exceed one. This is the criterion of the one-electron
transition replacing Eq. (12) for the LS-coupling
scheme. If this criterion is not satisfied, the one-elec-
tron ion–atom exchange interaction potential is zero; oth-
erwise, it is equal to ∆1/2 or ∆3/2 depending on the momen-
tum of the transiting electron (see Tables 4 and 5).

We now focus on elements of groups 3 or 8 of the
periodical table, where one transiting p-electron (or p-
hole) is located in the field of two structureless cores. If
the spin–orbit splitting of the electron levels is large
compared to the electrostatic ion–atom interaction, the
quantum numbers of the molecular ion are jmj, the total
electron momentum and its projection on the molecular
axis. The exchange interaction potential  pertain-
ing to the jj-coupling scheme for atoms and ions and the
exchange interaction potentials ∆1m pertaining to the
LS-coupling schemes are related by

This follows from the relation between the electron
wave functions for the respective states. For the
exchange interaction potentials , where mj = σ + µ
in accordance with the properties of the Clebsch–Gor-
dan coefficients, this gives

(20)

where ∆10 and ∆11 are given by Eqs. (7) and (8).

By analogy with the previous operations, if the
molecular axis is at the angle θ to the quantization axis

∆ jm j

∆ jm j

1
2
--- 1 j

σ µ m j
µ
∑

2

∆1µ.=

∆ jm j

∆1/2 1/2,
1
3
---∆10=

2
3
---∆11,+

∆3/2 1/2,
2
3
---∆10=

1
3
---∆11,+

∆3/2 3/2, ∆11= ,
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on which the angular momentum projection is zero, the
exchange interaction potentials are given by

(21)

This corresponds to elements of groups 3 and 8 of the
periodical system and gives the exchange phases for
case “c” of the Hund coupling,

(22)

where ζ0(ρ) is the charge exchange phase for the tran-
siting s-electron with the same asymptotic parameters
A and γ as defined in accordance with Eq. (4) and ϑ , ϕ
are the polar angles of the impact parameter direction
with respect to the quantization axis. Table 2 contains
the reduced cross sections Σj = /σs, where the aver-

age cross section  for a given total momentum is
determined by formula (13). As can be seen, the differ-
ence of the average cross sections for different total
momenta is small compared to the accuracy of deter-
mining the cross sections, and we neglect this differ-
ence. One can determine the cross sections for case “e”
of the Hund coupling, where because of a large rota-
tional energy, the momentum projection on the motion-
less axis is conserved for the state with j = 3/2. In

Table 2,  is the reduced cross section of the resonant
charge exchange for the state with j = 3/2 in case “e” of the
Hund coupling. According to the data in Table 2, the con-
nection between the molecular and motionless axis is not
essential for the cross section of this process.

Thus, one can see that the molecular axis rotation
gives a small contribution to the resonant charge
exchange cross section. That is, the difference between
cases “a”, “b”, and “d” of the Hund coupling, as well as
between cases “c” and “e”, is not essential for this pro-
cess. Next, according to the data in Table 2, the differ-
ence between the cross sections for cases “a” and “c”
of the Hund coupling is not significant for atoms of
groups 3 and 8 of the periodical system of elements,
and it is essential for atoms of groups 4, 5, 6, and 7.
Thus, the transition between these coupling cases
results from the competition between the splitting U(R)
due to a long-range ion–atom interaction, the splitting
∆(R) due to the exchange interaction, and the fine level
splitting δf. Tables 6 and 7 contain these values for
atoms of groups 3 and 8 of the periodical system of ele-

∆1/2
1
3
---∆10=

2
3
---∆11,+

∆3/2 θ( ) 1
6
--- 1

2
---+ θcos

2

 
  ∆10=

+ 1
3
--- 1

2
---+ θsin

2

 
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ζ1/2 ρ ϑ,( )
ζ0 ρ( )

----------------------- 1
4
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------,

ζ3/2 ρ ϑ,( )
ζ0 ρ( )

-----------------------+ 1
2
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3
2
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2
+= =

+
1

ργ
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2
--- 9

2
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2 3
2
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2 ϕcos
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σ j
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e

SICS      Vol. 92      No. 6      2001



958 SMIRNOV
ments. Next, the long-range splitting of levels depends
on the atom and ion states. If atoms and ions are found
in the ground states, the long-range splitting U(R) of
atomic levels for elements of groups 3, 4, 6, and 7
results from the interaction of the ion charge with the
atom quadrupole moment and is given by

(23a)

where R is the distance between the interacting parti-
cles and 〈r2〉  is the mean square of the electron orbit
radius of the valent electron in the atom. The long-

U R( ) 5 r2〈 〉
6R3

-------------,=

Table 6.  Parameters of the resonant charge exchange pro-
cess for collisions of atoms of group 3 of the periodical sys-
tem with their ions at the energy 1 eV in the laboratory coor-
dinate system

B Al Ga In Tl

, 10–14 cm2 1.1 1.8 2.0 2.2 2.1

γR0 12 14 14 15 14

∆σ/ , % 0.7 0.5 0.4 0.3 0.4

δf, cm–1 15 112 826 2213 7793

U(R0), cm–1 360 350 320 330 390

∆(R0), cm–1 11 5 3 2.5 2

σ

σ

Table 7.  Parameters of the resonant charge exchange pro-
cess for collisions of atoms of group 8 of the periodical sys-
tem with their ions at the energy 1 eV in the laboratory coor-
dinate system

Ne Ar Kr Xe

, 10–15 cm2 3.3 5.8 7.5 10

γR0 11 12 13 14

∆σ/ , % 0.8 0.5 0.4 0.3

δf, cm–1 780 1432 5370 10537

U(R0), 10–3 cm–1 5 4 2 2

∆(R0), cm–1 13 8 5 3

σ

σ

JOURNAL OF EXPERIMENTAL 
range splitting of ion levels for elements of groups 4
and 7, where the quadrupole momenta of the atom and
the ion is not zero, is determined by the interaction of
the quadrupole momenta, and the long-range ion–atom
interaction potential V(R) is then given by

(23b)

where Qa and Qi are the respective quadrupole
momenta of the atom and the ion, which are ±2〈r2〉/5 for
states with zero orbital momentum projection and

/5 for states for which the orbital momentum
projection on the motionless axis is 1. Expression (23b)
relates to elements of groups 4 and 7 of the periodical
system, where the quadrupole moment of atoms and
ions is not zero. Next, the splitting of ion levels for ele-
ments of groups 5 and 8, whose atoms have zero qua-
drupole moment, is given by

(23c)

where β is the atom polarizability. The value ∆σ/  in
Tables 6 and 7 characterizes the error in the cross sec-
tion arising from using only the exponential depen-
dence of the exchange phase ζ(ρ) ∝  exp(–γρ), as we did
in Table 2.

The data in Tables 6 and 7 show the role of different
interactions for the resonant charge exchange process
involving real ions and atoms. In particular, it follows
from these tables that the long-range splitting of molec-
ular terms is important for elements of group 3 and is
negligibly small compared to the exchange interaction
potential for molecular ions of rare gases. In addition,
in Table 8 we give the average cross sections of the res-
onant charge exchange processes for elements with
valent p-electrons. We note that in accordance with
Eqs. (3) and (4), the cross section σ of this process
depends on the collision velocity v  as [1, 5]

(24)

V R( )
QiQa

R5
------------,=

4+− r2〈 〉

U R( ) 12β r2〈 〉( )2

25R8
---------------------------,=

σ

σ π
2γ2
-------- C

v
----,ln

2
=

Table 8.  The parameters of the cross section of the resonant charge exchange for elements with valent p-electrons of atoms
and ions at the collision energy 1 eV

Element B C N O F Ne Al Si P

σ, 10–15 cm2 11 8.6 6.2 6.6 4.9 3.3 18 15 11
α = –dlnσ/dlnv 0.16 0.16 0.16 0.16 0.17 0.18 0.15 0.14 0.14

Element S Cl Ar Ga Ge As Se Br Kr

σ, 10–15 cm2 10 8.0 5.8 20 18 13 13 10 7.5
α = –dlnσ/dlnv 0.15 0.15 0.16 0.14 0.13 0.14 0.14 0.13 0.15

Element In Sn Sb Te I Xe Tl Pb Bi

σ, 10–15 cm2 22 19 17 16 13 10 21 20 22
α = –dlnσ/dlnv 0.14 0.13 0.13 0.13 0.13 0.14 0.14 0.13 0.12
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where C is a constant. The first order of the asymptotic
theory allows us to represent this relation as

(25)

Table 8 gives the parameters of this formula at the col-
lision energy 1 eV in the laboratory coordinate system.

4. CONCLUSION

We have developed the asymptotic theory for the
resonant charge exchange process in slow collisions of
an ion and a parent atom with the transiting p-electron.
The cross section of this process is not sensitive to the
relation between the rotational and other interactions of
the colliding particles and inside them, but can depend
on the spin–orbit interaction. We have two limiting
cases that correspond to cases “a”, “b”, and “d” and
cases “c” and “e” of the Hund coupling, or to the LS-
and jj-coupling schemes for isolated colliding atomic
particles. For elements of groups 3 and 8 of the period-
ical system, the average cross sections of the resonant
charge exchange are nearly equal for these limiting
cases of the momentum coupling, while for other
groups the difference between the cross sections for
different coupling schemes exceeds the accuracy of the
evaluation of these cross sections. The accuracy of the
asymptotic theory of the resonant charge exchange
with the transiting p-electron is worse than that in the
case of the transiting s-electron (1–5% [9]) and is esti-
mated as ~10% at eV energies.
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Abstract—Simple analytical expressions are obtained for the rate of the inverse stimulated bremsstrahlung
absorption under electron scattering from a Coulomb center with charge Z in the presence of the electromag-
netic field. The initial and final values of electron energy are assumed to be small compared to the Rydberg
energy Z2 (atomic units are used throughout). Single-photon processes of absorption and induced radiation of
photon by electron are treated. It is assumed that the electromagnetic field frequency ω is rather low, so that the
condition Zω/p3 ! 1, where p is the electron momentum, and the condition "ω ! p2 are valid. However, this
frequency is assumed to be fairly high compared to the electron–Coulomb center collision frequency: ω @ νei .
The dependences of the rates of photon absorption and induced radiation on the angle θ between the direction
of incident electron and the electromagnetic field polarization vector (assumed to be linearly polarized) are
obtained. It is demonstrated that, for any angles θ, the rate of photon absorption is higher than the rate of
induced radiation and, therefore, the Marcuse effect for slow electrons (electromagnetic field amplification) is
absent. It is further demonstrated that a slow electron on the average absorbs double ponderomotive energy per
collision with an ion (Coulomb center) in Maxwellian plasma. This agrees both with the known results calcu-
lation for fast electrons and with the known results of the calculation based on the classical Boltzmann kinetic
equation for plasma. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that a free electron cannot really
absorb or radiate photons of an external monochro-
matic electromagnetic field. However, in the presence
of a Coulomb center of potential Z/r, such processes are
possible (here and throughout, we use, as a rule, the
atomic system of units, e = me = " = 1, and take into
account the Planck constant only in Section 2). We
assume that the electromagnetic field is rather weak, so
that only single-photon processes of photon absorption
and induced radiation occur (the first-order perturba-
tion theory with respect to external electromagnetic
field). The respective upper constraint on the field
strength will be given below. The rate of the photon
absorption and induced emission was calculated by
Marcuse [1] for fast electrons using the perturbation
theory with respect to the Coulomb potential as well.
We will write p for the initial electron momentum
(prior to scattering) and p' for the final electron momen-
tum (after scattering), the condition of validity of the
Born approximation for the Coulomb potential has the
form p @ Z, p' @ Z. A detailed description of the corre-
sponding results obtained by Marcuse can be found in
monograph [2]. It has been found that, in a certain
range of angles θ between the initial electron momen-
tum p and the vector of magnetic field strength E (in all
instances, we will assume the electromagnetic field to be
linearly polarized), the rate of photon absorption, wa, is
1063-7761/01/9206- $21.00 © 20960
less than the rate of induced photon radiation, we, so
that the electromagnetic radiation increases (this is pre-
cisely the so-called Marcuse effect). However, in the
case of integration with respect to all angles assuming
a uniform angular distribution of electrons, this effect
disappears and, conversely, an electron extracts the
electromagnetic energy from radiation; i.e., the radia-
tion is absorbed. If the rate of absorption of electromag-
netic energy is averaged over the electron velocities
assuming their Maxwellian distribution, the average
energy absorbed by the electron in a single collision
with a Coulomb center is E2/2ω2, where ω is the elec-
tromagnetic field frequency; i.e., the average energy is
equal to the double average ponderomotive electron
energy Up = E2/4ω2. This value coincides exactly with
that yielded by the Boltzmann equation for elastic scat-
tering of classical electrons by multiply charged ions in
plasma [3, 4] when treating the high-frequency conduc-
tivity of plasma (here, the high frequency implies the
validity of the inequality ω @ νei , where νei is the elec-
tron-ion collision frequency).

This paper deals with the investigation of the oppo-
site limiting case of slow electrons, p ! Z, p' ! Z, when
the quasiclassical approximation is valid. Of course,
the photon energy is always assumed to be small com-
pared to the electron energy, i.e., "ω ! p2. In addition
to this criterion, however, there is the classical dimen-
sionless parameter β = Zω/p3, which does not contain
001 MAIK “Nauka/Interperiodica”



        

ABSORPTION OF ELECTROMAGNETIC ENERGY 961

                                                                      
the Planck constant. In [5], we treated the limiting case
of high frequencies, namely, Zω/p3 @ 1 (which does not
contradict the above criterion "ω ! p2, because p ! Z).
In so doing, the scattering of electrons through large
angles is significant.

In practice, however, the inverse limiting case of low
radiation frequencies is realized, Zω/p3 ! 1, if one has
in mind the frequencies of typical laser light sources
and the electron temperatures of multiply charged laser
cluster plasma of tens of electron-volts and higher [6].
Therefore, we treat the problem for slow electrons in
just the above-identified limiting low-frequency case of
Zω/p3 ! 1. The electron scattering through small
angles in the process of photon absorption or emission
is important.

We will first turn to the solution of this problem
within the classical field theory (Section 2). In text-
books on the classical field theory (see, for example,
[7]), one can find results only for the electromagnetic
energy loss averaged over the angle θ. Therefore, it is
of interest to derive simple analytical expressions for
energy loss with a fixed value of this angle. Of course,
within this classical approach, the rates of induced
emission and absorption of a photon are equal, because
the Planck constant is zero within the classical field the-
ory.

One could calculate the work of an electron in an
external field directly as well and, thereby, determine
directly the difference between the rates of photon
emission and absorption. For this purpose, however,
one must solve a linear differential equation for small
perturbation of the coordinate of an electron, scattered
from a Coulomb center, by a variable electromagnetic
field, which is a fairly complicated problem. Appar-
ently, it would be much simpler to turn to the known
results of quantum electrodynamics [8] for spontane-
ous bremsstrahlung under electron scattering from a
Coulomb center, use the well-known rules to change
over to induced radiation [2], and perform the neces-
sary simplifications of the results in the quasiclassical
limit. In Section 3, this is done for total rates of photon
absorption and emission, averaged over the angle θ,
and in Section 4, for rates with a fixed value of this
angle between the direction of incident electron and the
polarization vector of electromagnetic field. At the
same time, the known results of Marcuse for fast elec-
trons are given in all instances for comparison.

In conclusion, the results obtained are compared
with the known results for the average increase of the
electron energy in Maxwellian plasma during a single
collision with an ion in the presence of external electro-
magnetic field. For both fast and slow electrons, this
increase in energy is equal to the double average pon-
deromotive energy, which is in good numerical agree-
ment with the results of the calculation based on the
Boltzmann kinetic equation for classical electrons
[3, 4].
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. CLASSICAL APPROACH

Within the classical field theory (see formula
(67.10) in [7]), we will start from the spectral radiation
density. We divide this quantity by "ω to derive the
number of photons of frequency ω emitted spontane-
ously by an electron to the solid angle dΩ ,

(1)

Here, the quantity rω is the Fourier component of the
classical radius vector of an electron during its motion
in the field of the attracting Coulomb center of charge
Z, e is the polarization vector of the emitted spontane-
ous photon, and c is the velocity of light.

Upon transition to induced processes of photon
emission or absorption, one must perform the following
substitution in the foregoing expression (for more
detail, see monograph [2]):

where E is the amplitude of strength of the external
variable electric field and ω is the field frequency. Then,
we derive a simple expression for the number of pho-
tons subjected to induced emission or absorption,

We will assume that the electron is scattered in the
xy plane. Then, the Fourier component of its radius vec-
tor is represented as the expansion in unit vectors in this
plane,

The expressions for the Fourier components of projec-
tions of the electron radius vector are well known [7],

Here, the notation

is introduced.

The quantity ε is the eccentricity of the hyperbolic
path followed by an unperturbed electron in the field of the

Coulomb center. The function  is the cylindrical
Hankel function, and ρ is the impact parameter.
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Unit vectors along the x, y axes can be represented as

where ϑ  is the electron scattering angle, i.e., the angle
between the initial electron momentum p and its final
momentum p'. Then, we derive

Here, θ' is the angle between the final electron momen-
tum p' and the vector of electric field strength E. We use
the formulas of spherical trigonometry, which relate the
angles θ, θ', and ϑ  with one another, to derive

(2)

Here, ϕ is the angle between the projection of the vector p'
on the plane perpendicular to the vector p and the line
of intersection of this plane with the plane of the vec-
tors p and E.

The averaging over the angle ϕ is elementary, and
Eqs. (1) and (2) yield

(3)

The angle ϑ  of Coulomb scattering of electron is
related to the impact parameter ρ and eccentricity ε by
the known simple relations

This enables one to reduce the averaging of rate given by
Eq. (3) over the angle ϑ to integration with respect to the
impact parameter ρ; for this purpose, one must multiply
dimensionless expression (3) by 2πnipρdρ and integrate it
with respect to all impact parameters. Here, ni is the spa-
tial concentration of Coulomb centers, from which the
given electron is scattered. From integration with
respect to ρ we will then turn to integration with respect
to ε, using the relation ρdρ = a2εdε.

As a result, we derive the number of photons sub-
jected to induced emission (absorption) per unit time,
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(4)

The above-identified Fourier components are simpli-
fied in the β ! 1 limit,

Here, K0(x) and K1(x) are Macdonald functions.
We substitute these quantities into Eq. (4) to calcu-

late the arising integrals. In so doing, one must ignore a
part of terms in Eq. (4) containing smallness of the
order of β ! 1. As a result, we derive

We calculate dimensionless integrals to a desired accu-
racy with respect to β,

Here, γ = 1.781… = expC and C = 0.577… is Euler’s
constant. We derive

(5)

This result is new and is the key result in this section. It
gives the angular distribution for photon absorption or
induced emission by an electron under scattering from
a Coulomb center in the presence of electromagnetic
field. Because the logarithm argument is great, the pro-
cess of photon absorption or emission takes place
mainly when the electron moves normally to the field
polarization (θ = π/2).
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The absorption or induced emission taken singly
may show up indirectly, for example, in the Boltzmann
kinetic equation when treating radiation processes in
plasma. Of most interest is, of course, their difference
proportional to the electromagnetic wave absorptivity
being measured.

We average expression (5) over the angle θ to derive

(6)

On returning from induced to spontaneous radiation,
the substitution [2]

must be performed; we find from Eq. (6)

The energy radiated by an electron per unit time (it does
not contain the Planck constant) is obtained from the
foregoing formula as a result of multiplication by "ω,

We divide this expression by nip to derive exactly expres-
sion (70.21) from [7] for effective radiation of low fre-
quencies, as is to be expected.

3. QUANTUM APPROACH:
TOTAL RATES

In the quantum approach, the rates of photon
absorption and induced emission are different from
each other. Treated in this section is a simpler problem
of calculating the total rate integrated with respect to
the angle θ between the initial direction of electron
motion and the polarization vector of electromagnetic
radiation, assuming that β = Zω/p3 ! 1. The cross sec-
tion of spontaneous photon radiation by an electron
with initial momentum p and final momentum p' under
scattering from a Coulomb center with charge Z is
given by the known relation of quantum electrodynam-
ics [8] (in what follows, we assume the Planck constant
to be equal to unity),

Here, we used the notation

Ne a,
2πZ2niE

2

3 pω4
"

2
----------------------- 2 p3

γZω
----------ln .=

E2 8ω3
"dω

πc3
---------------------

Ne a, dω
16Z2ni

3c3
" pω

-------------------- 2 p3

γZω
----------ln .=

dEω dω
16Z2ni

3c3 p
---------------- 2 p3

γZω
----------ln .=

dσω
64π2Z2

3c3
----------------- p

p p p '–( )2
-------------------------=

× d F x–( ) 2/dx
1 2πν'–( )exp–[ ] 2πν( )exp 1–[ ]

---------------------------------------------------------------------------------dω
ω

-------.

ν Z
p
---=  @ 1, ν ' Z

p '
----=  @ 1
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and introduced a reduced notation for the complete
hypergeometric function F(–x) = F(iν, iν', 1; –x) and its
argument

The transition to induced emission is achieved by the
substitution [2]

Then, we derive the following compact expression for
the rate of induced photon emission averaged over all
angles:

(7)

The rate of photon absorption is given by a similar for-
mula in which one needs only to replace the factor
exp(–2πν) by exp(–2πν') (for detailed explanation of this
difference, see the discussion of formula (92.8) in [8]).

The hypergeometric function entering expression (7)
may be simplified, under condition x @ 1, by transition
to a combination of hypergeometric functions with the
argument 1/x ! 1,

Here, Γ(z) is the gamma function. Use is also made of
the condition ν' – ν ! 1 equivalent to the condition of
low field frequency Zω/p3 ! 1.

The hypergeometric function is further simplified
using Stirling’s formula for gamma functions of large
arguments ν, ν' @ 1. We derive

(8)

Here, the notation  = (ν + ν')/2 is introduced. As is to
be expected, asymptotic representation (8) of the
hypergeometric function is symmetric relative to the
permutation of its first two indices ν  ν'.

The corrections in Eq. (8) when calculating the rate
given by Eq. (7) have a relative smallness 1/ν2 ! 1 or
(Zω/p3)2 ! 1. Therefore, these corrections do not con-
tain terms linear with respect to the emitted photon fre-
quency ω. This is very important because, when the rate
of photon absorption is subtracted from the rate of its
induced emission, the main parts of the rates cancel out,
and it is the small parts, which are linear with respect
to ω, that remain.
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We substitute Eq. (8) into (7) to find for the rate of
induced photon emission

(9)

Here, p' ≈ p – ω/p. We expand Eq. (9) in terms of the
small quantity Zω/p3 ! 1 to derive

(10)

We similarly calculate the rate of photon absorption.
Instead of Eq. (9), we derive an expression that differs
only by the form of the exponent,

(11)

Now p' ≈ p + ω/p. Note that here we corrected the mis-
print made in the respective expression (56) in [5]. We
expand Eq. (11) in terms of the small quantity Zω/p3 ! 1
to derive

(12)

One can see that, if the additions linear with respect to
frequency are ignored, expressions (10) and (12) coin-
cide with classical expression (6), as must be the case.

We subtract Eq. (10) from (12) to find the difference
defining the rate of inverse stimulated bremsstrahlung
absorption, averaged over all angles,

(13)

We multiply this expression by the frequency ω to
obtain the energy absorbed by an electron per unit time.
On averaging this energy over the Maxwellian distribu-
tion at some average electron temperature T, we derive
(with logarithmic accuracy) the average energy being
absorbed in the form

Because the average number of electron collisions
with Coulomb centers (ions) per unit time is given by
the known relation of the kinetic theory of plasma [3, 4]

where Λ = T3/2/Zω is the Coulomb logarithm (in the
case of plasma, the Coulomb logarithm contains the
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plasma frequency instead of Zω, see [4]), the previous
expression may be transcribed in the form

and, therefore, the quantity E2/2ω2 is the average
energy absorbed by a slow electron in a single collision
with a Coulomb center. Turning back to the discussion
in the Introduction, one can conclude that the foregoing
quantity is exactly equal to the respective energy for a
fast electron, as well as to the respective energy derived
from the solution of the classical Boltzmann kinetic
equation for Maxwellian plasma [3, 4].

This result is valid in the high-frequency limit of
ω @ νei , when the time between two successive colli-
sions of an electron with Coulomb centers is much
longer than the period of laser field oscillations [4]. In the
opposite low-frequency limit of ω ! νei, ω in the forego-
ing expression must be replaced by νei (see the deriva-
tions in [6]). Then we find that the energy absorption is
independent of the electromagnetic field frequency and
is defined by the expression

In real cases, for example, in the interaction between
ultrashort laser pulses and large atomic clusters, both
the high-frequency and low-frequency limits with
respect to the collision frequency between free elec-
trons and multiply charged ions inside a cluster may be
realized.

4. QUANTUM APPROACH:
ANGULAR DISTRIBUTIONS

In this section, which is the key section of the paper,
we obtained the rates of photon absorption and of
induced emission by an electron scattering from a Cou-
lomb center in the presence of the electromagnetic field
with a fixed angle θ between the initial direction of the
electron momentum p and the vector of electric field
strength E.

The rate of electron transition from the initial state
with momentum p to the final state with momentum p'
in the first order perturbation theory with respect to the
field of electromagnetic wave is given by the Fermi
golden rule,

(14)

Here, the perturbation has the form of dipole interac-
tion between an electron and the electromagnetic field,
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where e is the unit vector of field polarization and E is
the amplitude of the field strength.

Because the matrix element of the coordinate oper-
ator is related to the matrix element of the momentum
operator by the known relation of quantum mechanics,

the transition rate given by Eq. (14) may be written as

The expression for the matrix element of the momen-
tum operator is given in [8]. We derive (in the case of
induced emission)

Here, as above,

In addition, new notation is introduced,

As above, the angle between the vectors p and p' (scat-
tering angle) is indicated by ϑ . We expand the scalar
products of the vectors to derive the rate of induced
photon emission (14) 

Here, we introduce the angle θ' between the vectors p'
and e. We express the differential of the solid angle in
terms of the differential of the variable x,
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determined as in Section 2), we will derive the rate of
induced photon emission in the form

(15)

Here,

In the Appendix, a new asymptotic representation is
derived for the complete hypergeometric function, which
is adequate for the parameters in the problem being
treated,

(16)

Here, as above, K0(z) is the Macdonald function with
zero index, and

Representation (16) is valid with relative accuracy
(ν − ν')2 ! 1, which enables one to include correctly
both the main terms in the rate (15) and the corrections
linear with respect to frequency ω, which define the dif-
ference between the rates of photon absorption and
induced emission.

We will first turn to the term A in Eq. (15). We sub-
stitute Eq. (16) into (15) to derive
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readily make sure that the term  makes a
small contribution to the rate of induced photon emis-
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sion, which proportional to ω2. We ignore this term to
derive

Here, we use the notation

The integral is calculated as in Section 2. We derive

Let us now turn to the calculation of B in Eq. (15).
We substitute Eq. (16) into the first term in Eq. (15) to
find

On substituting this expression into Eq. (15), we find

The calculation of the integrals the way it was done in
Section 2 (here, both integrals introduce comparable
contributions) gives

We substitute the obtained results into Eq. (15) and per-
form expansion in terms of ω/p2 ! 1 with an accuracy
within terms linear with respect to frequency to find the
rate of induced photon emission,

(17)

A
πE2niZ

2 2πν 2πν–( )exp

ω4 p
-------------------------------------------------------------= ν2 t t

b2

t
-----– 

  K1
2 νt( ).d

b

∞

∫

b
p p '–

pp '
-------------- ! 1.=

A
πE2niZ

2 2πν 2πν–( )exp

ω4 p
------------------------------------------------------------- 2

γbν
---------ln 1– 

  .=

iZ
x
----- p' ϑ p–cos( )F x–( ) 2 p p'

ϑ
2
---F ' x–( )sin

2
+

2

=  
p p'
πx
-------- 

 
2

2πν( )exp

× ν' ν–( )2K0
2 2ν

x
------- 

  bν( )2K1
2 2ν

x
------- 

 + .

B
πE2niZ

4 2πν 2πν–( )exp

ω4 p2 p'
-------------------------------------------------------------=

× t 2tK0
2 νt( ) ω

p p't
---------- 

 
2

+ K1
2 νt( ) .d

b

∞

∫

B
πE2niZ

2 2πν 2πν–( )exp

ω4 p
-------------------------------------------------------------.=

we θ( )
πE2niZ

2

ω4 p
-------------------- 1 πZω

p3
-----------+ 

 =

× 2 θcos
2 2 p3

γZω
----------ln 1– 3ω

2 p2
--------– 

  θsin
2

+ .
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The rate of photon absorption is found similarly,

(18)

On averaging over the angle θ, we obtain from Eqs. (17)
and (18) the expressions of the previous section (Eqs. (10)
and (12), respectively), as is to be expected.

We subtract Eq. (17) from (18) to find the rate of
inverse stimulated bremsstrahlung absorption,

(19)

One can see that this quantity is always positive; i.e.,
the Marcuse effect is not observed for slow electrons.
We average Eq. (19) over the angle θ to derive expres-
sion (13) from the previous section, as is to be
expected.

One can further see from Eq. (19) that the rate of
inverse stimulated bremsstrahlung absorption is maxi-
mum when the initial direction of electron is normal to
that of polarization of electromagnetic field.

The results obtained may be used in analyzing the
heating of the electronic component of clusters in the
field of high-power laser radiation [6, 9, 10].

In conclusion, note that also of interest is the analo-
gous problem in which two laser fields are involved
rather than one, with one of those fields being much
more intense than the other. The respective problem of
absorption and amplification of a weak electromagnetic
field in the kinetic theory of plasma was treated by
Chichkov and Uryupin [11].
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APPENDIX

We will derive the asymptotic representation (16)
for the complete hypergeometric function used in this
study.

It is advisable that the hypergeometric function
F(iν, iν', 1; –x) with a great argument x @ 1 should be
first expanded in terms of hypergeometric functions
with a small argument,

wa θ( )
πE2niZ

2

ω4 p
-------------------- 1 πZω

p3
-----------+ 

 =

× 2 θcos
2 2 p3

γZω
---------- 1– 3ω

2 p2
--------+ln 

  θsin
2

+ .

wT wa= we–
3πE2niZ

2

ω3 p3
----------------------- θsin

2
.=

F iν iν ' 1; x–, ,( ) Γ i ν ' ν–( )( )
Γ iν '( )Γ 1 iν–( )
--------------------------------------x iν–≈
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We introduce into treatment, as in Section 2, the small
difference ∆ν = (ν' – ν)/2 ! 1 and the average value of

 = (ν' + ν)/2 and transcribe this expression ignoring
the terms of the order of (∆ν)2 ! 1,

(A.1)

We now treat each of the two new hypergeometric func-
tions,

(A.2)

With ν @ 1, this gives, in the zero approximation,
the modified Bessel function,

A first-order correction with respect to ν – ν' ! 1 in the
denominator in Eq. (A.2) gives the following combina-
tion of modified Bessel functions:

Here, as in the main text, the quantity γ is the logarithm
of Euler’s constant. A correction of the next order with
respect to ν – ν' = Zω/p3 ! 1 is real and, in combination
with the included terms, gives a contribution to (A.1)
that is quadratic with respect to frequency ω. As was

× F iν iν 1 i ν ν'–( ); 1
x
---–+, , 

 

+
Γ i ν ν '–( )[ ]

Γ iν( )Γ 1 iν '–( )
--------------------------------------x iν '– F iν' iν' 1 i ν' ν–( ); 1

x
---–+, , 

  .

ν

F iν iν ' 1; x–, ,( ) πν( )exp
4π∆ν

---------------------x iν–=

× ν'
ν
----exp 2i∆ν– γ ν

x
-------ln 

 

× F iν iν 1 i ν ν'–( ); 1
x
---–+, , 

 

– ν
ν'
----exp 2i∆ν γ ν

x
-------ln 

 

--× F iν' iν' 1 i ν' ν–( ); 1
x
---–+, , 

  .

F iν iν 1 i ν ν'–( ); 1
x
---–+, , 

 

=  1 ν2/x
1! 1 i+ ν ν'–( )[ ]
---------------------------------------+

+ ν2 ν i–( )2/x2

2! 1 i+ ν ν'–( )[ ] 2 i ν ν'–( )+[ ]
-------------------------------------------------------------------------- …+

F 0( ) iν iν 1 i ν ν'–( ); 1
x
---–+, , 

  I0
2ν

x
------- 

  .=

F 1( ) iν iν 1 i ν ν'–( ); 1
x
---–+, , 

 

=  i ν' ν–( ) K0
2ν

x
------- 

  γν
x

------- I0
2ν

x
------- 

 ln+ .
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done in all instances above, we ignore such a correc-
tion.

We further include first-order corrections with
respect to 1/ν ! 1 in the numerator in Eq. (A.2),

We collect all first-order corrections to derive the
asymptotic representation for the first hypergeometric
function entering Eq. (A.1),

(A.3)

The second hypergeometric function in the right-hand
part of (A.1) is derived from (A.3) by permutation of
indices ν  ν'.

We substitute Eq. (A.3) and the analogous second
hypergeometric function in (A.1) to derive, after expan-
sions in terms of ∆ν ! 1,

Here, z = .

We are interested in the following regions of argu-
ment and indices of the hypergeometric function:

(A.4)

Thus, the quantity  may be both greater and smaller
than ν. Indeed, in calculating the integrals of modified
Bessel functions, the values of the variable x of the
order of ν2 are important.

In satisfying these conditions, one can ignore the
modified Bessel functions I0, I1, and I2 in the preceding
expression (they have smallness of the order of 1/ν ! 1);
then, we derive the final asymptotic representation for
the complete hypergeometric function,

(A.5)

used in the main text.

F 2( ) iν iν 1 i ν ν'–( ); 1
x
---–+, , 

  i
x
-- I2

2ν
x

------- 
  .–=

F iν iν 1 i ν ν'–( ); 1
x
---–+, , 

 

=  I0
2ν

x
------- 

  i
ν
x
--- I2

2ν
x

------- 
 –

+ i ν ν'–( ) K0
2ν

x
------- 

  γν
x

------- I0
2ν

x
------- 

 ln+ .

     

F iν iν' 1; 1
x
---–, , 

  πν( )exp
π

---------------------x iν–=

× iK0 z( ) 1

x
-------+ 

  1
z
--- I0 z( ) I1 z( )–

z
2
--- I2 z( ) 2

γz
-----ln+

 
 
 

.

2ν/ x

x @ 1, ν ν' @ 1,,

ν ν '–  ! 1, x @ 
ν
νln

--------.

x

F iν iν' 1; 1
x
---–, , 

  i
πν( )exp

π
---------------------x iν– K0

2ν
x

------- 
  ,≈
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Abstract—An investigations is made of the steady-state structure of a plasma inhomogeneity arising as a result
of high-frequency heating and additional ionization of a background magnetized plasma by the near-zone field
of a magnetic-type source (ring electric current). It is assumed that the source axis is parallel to an external mag-
netic field; the source frequency belongs in the low hybrid band. The main attention is focused on the particular
case (important for possible applications) when the characteristic longitudinal and transverse scales of density
distribution considerably exceed the corresponding scales of distribution of the electron temperature and of the
source field. Simplified equations for the near-zone field of the source, the electron temperature, and the plasma
density are written for this particular case. Based on the numerical solution of these equations, steady-state dis-
tributions of plasma parameters in the formed plasma inhomogeneity are found. It is demonstrated that a plasma
inhomogeneity proves to be markedly extended along the external magnetic field. It is found that, for the values
of the source current that are attainable under the conditions of active ionospheric and model laboratory exper-
iments, the maximum plasma density in a nonuniform plasma may appreciably exceed the background value.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nonuniform plasma structures, developed in a mag-
netized plasma by the fields of electromagnetic
sources, are of considerable interest in the context of
problems associated with high-frequency heating of
plasma, with improvements in the methods of “active”
plasma diagnostics, and with the artificial effect on the
parameters of ionospheric plasma. The singularities
associated with the development of such plasma struc-
tures were subjected to both experimental and theoreti-
cal investigations (see [1–12] and the references cited
in these papers). Particular interest is aroused by the
possibilities of developing strong disturbances of
plasma as a result of nonlinear ionization effects in the
near zone of the sources, i.e., the region which is usu-
ally characterized by the maximal values of the electric
field intensity.

Of the studies pertaining to the above-mentioned
scope of problems, note the theoretical investigation
(performed by Mareev and Chugunov [10]) of the
steady-state structure of high-frequency discharge in
the near-zone field of an electric-type antenna operat-
ing in a rarefied neutral gas in the presence of external
constant magnetic field. Note, however, that no theoret-
ical models are in fact available at present that would
describe the processes of discharge structures forming
in the near-zone field of radiators located in the already
existing (background) magnetoactive plasma. At the
same time, it is such formulation of the problem that is
1063-7761/01/9206- $21.00 © 20969
characteristic of a number of laboratory [8, 10, 11] and
ionospheric [9] experiments, in which it was demon-
strated that an additional ionization of background
plasma in the field of an antenna (of both electric and
magnetic types) may serve as an efficient method of
developing strong disturbances of plasma extended
along the external magnetic field. The presence of such
nonuniform plasma formations, as is demonstrated in
[13], leads to a considerable increase in the power of
radiation of the sources in some frequency bands, as
well as to a number of other interesting effects [14].

This paper deals with the investigation of the
steady-state structure of a nonuniform plasma forma-
tion developed in the case of additional ionization of a
background magnetized plasma by the near-zone field
of a magnetic-type source (ring electric current). We
will restrict ourselves to treating the case in which the
source frequency ω belongs in the whistler (lower
hybrid) band,

(1)

where ωH and ωp denote the gyrofrequency and the
plasma frequency of electrons, respectively, and ΩH is
the gyrofrequency of ions. Note that the specific nature
of nonlinear effects in this range, which is of great interest
from the viewpoint of various applications [10, 13], is
largely due to the presence of the resonance cones of
the sources [10, 15].

ΩHωH( )1/2
 ! ω ωH ! ωp,<
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2. BASIC EQUATIONS

We will treat the given ring electric current (har-
monic in time: (∝ exp(iωt)) of the density

(2)

where I0 is the amplitude of total current, a is the char-
acteristic scale of current distribution over the trans-
verse coordinate ρ (ρ, ϕ, and z are cylindrical coordi-
nates, and δ is Dirac’s delta function). It is assumed that
the z axis is directed along the external magnetic field,

The maximum value of the density of the given current
specified in the form of Eq. (2) is evidently attained at

Note that the diffusion of current over the cross section
is necessary for eliminating the singularity of the field
on resonance cones of the source.

A cold magnetized plasma, in which the source is
located, is described by the permittivity tensor

(3)

In the frequency band given by Eq. (1), the compo-
nents of the tensor (3) have the form [16]

(4)

provided that the additional conditions νe ! ω and νe !
ωH – ω (νe is the effective frequency of electron colli-
sions) are valid.

In what follows, the characteristic source scale a is
in all instances taken to be small compared to the elec-
tromagnetic wavelength

which enables one to use the quasi-electrostatic approxi-
mation for describing the near-zone field. Within this
approximation, the equations for the field in the near zone
of a magnetic-type source are written as [10, 15]

(5)

j r( ) ϕ0

2I0

a2
-------ρ ρ2

a2
-----– 

  δ z( ),exp=

B0 B0z0.=

ρ a0 a/ 2.= =

ε̂
ε ig– 0

ig ε 0

0 0 η 
 
 
 
 

.=

ε
ωp

2

ωH
2 ω2–

------------------- 1 i
νe

ω
-----

ωH
2 ω2+

ωH
2 ω2–

-------------------–
 
 
 

,=

g
ωp

2ωH

ωH
2 ω2–( )ω

---------------------------- 1 i
2νeω

ωH
2 ω2–

-------------------– 
  ,–=

η
ωp

2

ω2
------ 1 i

νe

ω
-----+ 

  ,–=

λ 2π
k0 ε g– 1/2
------------------------,∼

E –∇ψ ik0A, B– rot A,= =
JOURNAL OF EXPERIMENTAL 
(6)

where the vector potential A in its turn satisfies the
equation

(7)

ψ is the scalar potential, and k0 = ω/c is the wave num-
ber in free space.

We will use the balance equations for density and
energy [17] in order to describe the steady-state distri-
bution of plasma density N and electron temperature Te

in a nonuniform plasma formation arising as a result of
heating and additional ionization of background
plasma in the source field. The equation for steady-state
distribution of N has the form

(8)

where Ge and Gi denote the flux density of electrons and
ions, respectively; νi is the rate of ionization of neutron
molecules by electron impact; νa is the rate of electron
attachment; α is the coefficient of electron-ion recom-
bination; and qext is the intensity of the external source
which maintains the equilibrium value of plasma den-
sity N0,

(the subscript zero indicates the background values of
the respective quantities).

We will write the equation for steady-state distribu-
tion of temperature Te. We will assume that the follow-
ing correlations are valid in the nonuniform plasma for-
mation:

(9)

Here, νin, νen, and νei denote the rate of collision of ions
and electrons with neutral molecules and ions, respec-
tively (νe = νen + νei), and δenand δei are average relative
fractions of the energy lost by electrons in collisions
with neutral molecules and ions. The last inequality in (9)
enables one to disregard the heating of ions [17]. We
further assume that the characteristic scale of nonuni-
formity of the field amplitude considerably exceeds the
transverse scale of the electron thermal conductivity,
and it is possible to disregard the heat flux across the
transverse magnetic field in the balance equation for
energy. As a result, we have the following equation for
the electron temperature [17, 18]:

(10)

where κe|| is the electron thermal conductivity along the
external magnetic field; Γe|| is the longitudinal compo-
nent of the vector Γe; βe|| is the component of the ther-

div ε̂∇ψ( ) ik0div ε̂A( ),–=

∆A 4π/c( )j,–=

divGe divGi ν i να–( )N α N2–= = qext,+

qext α0N0 νa0 ν i0–+( )N0=

νei ! νen, δenνen ! ω, δeiνei ! ν in.

1
N
---- ∂

∂z
----- κ e||

∂Te

∂z
-------- βe||+ Γ e|| 

  Γ e||

N
-------

∂Te

∂z
--------–

– δenνe Te Te0–( ) 2Q
3N
-------+ 0,=
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mal force tensor for electrons  (βe|| = ( )zz); Te0 is
the background value of the electron temperature, taken
to be equal to the neutral temperature; and

is the time average power of Joule heating. The quantity

 may be represented as

(11)

where e is the absolute value of electron charge and m
is the electron mass. In deriving formula (11), we used
expressions (4) for the components of the plasma
dielectric tensor.

In order to avoid misunderstanding, note that, in
changing over to a simplified form of Eq. (10) for the
energy balance equation, we ignored some unimportant
terms of the order of (δenνeN)–1divGe. These terms are
small if the inequalities

are satisfied; these inequalities are always valid under
conditions of real interest to us, in which a nonuniform
plasma formation is developed in the ionosphere or in a
laboratory plasma which simulates the situation in the
ionosphere.

In the case of weakly ionized plasma treated here,
the expressions for the electron and ion flux density
may be written as

(12)

where φ is the potential of the electric field arising in

the plasma due to the presence of nonuniformity; 

and  are the tensors of diffusion and mobility for

electrons, respectively;  and  are the respective

tensors for ions; and  is the tensor of thermodiffu-
sion for electrons. In the case of azimuthally symmetric
plasma formations, we can restrict ourselves to analyz-
ing only the behavior of the diagonal components of
these tensors. The respective components, as well as
the quantities κe|| and βe|| entering Eq. (10), allow the
following representation:

β̂e β̂e

Q
3
2
---νeNQ̃ E( )=

Q̃ E( )

Q̃ E( ) e2

3mω2
--------------

ωH
2 ω2+( )ω2

ωH
2 ω2–( )2

------------------------------- Eρ
2 Eϕ

2+( )=

+ 4
ωHω3

ωH
2 ω2–( )2

--------------------------Im EρEϕ*( ) Ez
2+ ,

ν i νa–  ! δenνe, αN  ! δenνe

Ge Nb̂e∇φ D̂e∇ N D̂e
T( ) N

Te

----- ∇ Te,––=

Gi Nb̂i∇φ–= D̂i∇ N ,–

D̂e

b̂e

D̂i b̂i

D̂e
T( )
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(13)

Here,  and  are thermodiffusion relations given
by the formulas

(14)

KD, κ0, and β0 are coefficients dependent on the form of
the function νe(Te); Ti is the ion temperature (Ti = Te0);
and M is the ion mass; the symbols “||” and “⊥ ” indi-
cate, as usual, the directions along and across the exter-
nal magnetic field, respectively.

Equations (5)–(8) and (10), along with relations (11)–
(14), enable one to investigate the steady-state structure of
a plasma inhomogeneity arising in an undisturbed (back-
ground) plasma as a result of nonlinear ionization effects
in the near zone of a high-frequency source of the mag-
netic type. The results of solving these equations are
largely defined by the dependence of the quantities
appearing in them on temperature and other factors.
Therefore, in order to obtain any results, these depen-
dences must be defined concretely.

We will treat ionization effects which occur in the
air at typical discharge temperatures of the order of Te ~
5–10 eV. In this case, the temperature dependence of
quantities appearing in Eqs. (8) and (13) may be
approximately described by the following model
expressions [17, 19]:

(15)

De|| KD

Te

mνe

---------, De⊥
Teνe

mωH
2

-----------,= =

Di||
Ti

Mν in

------------, Di⊥
Ti

Mν in

------------ 1
ΩH

2

ν in
2

-------+
 
 
  1–

,= =

be||
e
Te

-----De||, be⊥
e
Te

-----De⊥ ,= =

bi||
e
Ti

----Di||, bi⊥
e
Ti

----Di⊥ ,= =

De||
T( ) ke||

T( )De||= , De⊥
T( ) ke⊥

T( )De⊥= ,

κ e|| κ0

NTe

mνe

----------, βe|| β0Te.= =

ke||
T( ) ke⊥

T( )

ke||
T( ) 1

Te

νe

-----
dνe

dTe

---------, ke⊥
T( )– 1

Te

νe

-----
dνe

dTe

---------,+= =

νe 2 10 7– NnTe 1 Te
1/2+( ) 1–×= ,

ν i 2.7 10 8–×= Nn Te/I( )1/2

× 1 2Te/I+( ) I/Te–( )exp ,

νa βa Te( )Nn= ,

α 2.5 10 7–×= 0.026/Te( )1.2

+ 1.1 10 7–× 0.026/Te( )0.7,
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in which the quantities νe, νi, and νa are expressed
in s−1, Te in eV, α in cm3 s–1, the concentration of neutral
molecules Nn in cm–3; I is the effective ionization potential
of neutral molecules, hereinafter taken to be I = 14 eV.
We will assume the attachment coefficient βa to be

For the quantity δen(Te), we will use the approximation
given in Fig. 1. In the electron temperature range Te =
1–10 eV, this correlation is in adequate agreement with
the experimental data for air available in the literature
[20]. With the adopted form of the function νe(Te), the
quantities KD, κ0, and β0 in Eq. (13) may be approxi-
mately assumed to be independent of Te for the values
of electron temperature being treated, 

3. FIELD AND ELECTRON TEMPERATURE 
DISTRIBUTION

The solution of the set of equations (5)–(8) and (10)
is a fairly complicated problem. In this paper, we will
restrict ourselves to treating a particular case, which is
of importance from the standpoint of possible applica-
tions, when these equations may be investigated within
some simplified approach. We will assume that the
characteristic longitudinal and transverse scales lN || and
lN⊥  of the plasma density distribution considerably
exceed the respective scales of electron temperature
distribution (lT || and lT⊥ ) and of source field distribution
(lE || and lE⊥ ). In view of obvious relations

βa 3 10 13– 1 10 Te Te0–( )+[ ]×=

at Te0 Te 10 eV.≤ ≤

KD 1, κ0 1.5, β0 1/3.–≈≈≈

lE || η– /ε( )1/2∼ a

0

0.04

4
Te, eV

δen

0.08

8

Fig. 1. The model temperature Te dependence of the average
fraction of energy lost by an electron upon collision with
neutral molecules in air. It is assumed within the model
employed that δen  0.1 at Te  ∞.
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(compare with [10]) and lT⊥  ~ lE⊥  ~ a, the formulated
condition is written as

(16)

In this case, as a first approximation, one can ignore the
space derivatives of the plasma density N in Eqs. (6)
and (10).

As a result, Eq. (6) for the potential ψ takes the form

(17)

where

it is taken into account that in the case being treated

Next we ignore the small terms corresponding to the
inclusion of collisions in expressions (4) for the compo-
nents of the dielectric tensor and derive the following
formulas for γ and γg:

(18)

As is seen from Eq. (18), the quantities γ and γg in the
frequency band given by Eq. (1) do not depend on the
plasma density.

As for Eq. (10), the terms N–1Γe||∂Te/∂z and
N−1∂(βe||Γe||)/∂z in this equation may be ignored along
with the derivatives of density N. As one can readily
see, in the case of (16), the maximal contributions by
these terms with respect to the term containing the ther-
mal conductivity κe|| are small quantities of the order of

/κ0 and , respectively. Finally, we derive

(19)

The solution of Eq. (19) must satisfy the following con-
ditions:

(20)

Therefore, the distributions of the near-zone field of a
magnetic-type source and of the electron temperature,
when conditions (16) are valid, are described to a first
approximation by equations which are independent
(with due regard for relations (18)) of the plasma den-
sity.

lN || @ max lT || η /ε–( )1/2, a{ } , lN⊥  @ a.

γ21
ρ
--- ∂

∂ρ
------ ρ∂ψ

∂ρ
------- 

  ∂2ψ
∂z2
---------– k0γg

21
ρ
--- ∂

∂ρ
------ ρAϕ( ),=

γ2 ε/η , γg
2– g/η ;= =

Aρ Az 0.= =

γ ωH/ω( )2 1–[ ] 1/2–
= , γg γ ωH/ω( )1/2.=

ke||
T( ) β0ke||

T( )/κ0

∂2Te

∂z2
---------- 1

Te

-----+ 1
Te

νe

-----–
∂νe

∂Te

-------- 
  ∂Te

∂z
-------- 

 
2 mνe

2

κ0Te

-----------+

× Q̃ E( ) δen Te Te0–( )–[ ] 0.=

∂Te

∂z
-------- 0 at z 0;= =

Te Te0 at z ∞.
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We will now turn to seeking the solution to equa-
tions for the near-zone field. One can readily see that
the Fourier transforms of the field and current, 

are related by

whence, after performing inverse Fourier transforma-
tion, we have

(21)

Here,

(22)

where

erfc(ξ) is the complementary error function:

Expressions (21) and (22) make it possible to calcu-
late the distribution of the field components in the near
zone of the source given by Eq. (2). Further we substi-
tute the appropriate distributions into formula (11) for

the quantity  to find the solution of Eq. (19) that
would satisfy conditions (20). The distribution of the
field components and of the electron temperature was
calculated numerically for specified values of the
parameters

The size of the source was taken to be a = 2 m. Note
that, in this case, the above-identified values of the
dimensionless parameters characterizing a background

E n( ) E r( ) ik0n r⋅( )exp r,d∫=

j n( ) j r( ) ik0n r⋅( )exp r,d∫=

E n( ) i
4π

ω n · n( )
--------------------- n n ε̂j n( )⋅( )

n ε̂n⋅( )
----------------------------- j n( )– ,=

Eρ iE0–
γg

2

1 γ2+
-------------- F1

1( ) iγ 1–+ F1
2( )( ),=

Eϕ E0F1
1( ),=

Ez z( )sgn E0=
γg

2

1 γ2+
-------------- F0

1( ) F0
2( )–( ).

E0 I0π
1/2k0/c,=

Fm
1 2,( ) ξ1 2, erfc ξ1 2,( ) ξ1 2,

2 imζ+( )exp ζ ,d

0

2π

∫=

m 0 1,,=

ξ1 = 
z iρ ζcos–

a
----------------------------, ξ2 i

γ z ρ ζcos–
a

-----------------------------,=

erfc ξ( ) 2

π1/2
-------- τ2–( )exp τ .d

ξ

∞

∫=

Q̃

k0a 0.02= , ω/ωH 0.34,=

ωp0/ωH 3.5, νe0/ωH 8.6 10 5– .×= =
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plasma correspond to the conditions of active experi-
ments in the Earth’s ionosphere at an altitude of ~150 km
(see [9, 17]): N0 = 3 × 105 cm–3 and B0 = 0.5 G (we will
further indicate the values of Te0 = 0.07 eV, νe0/νin = 7.6,
and νin/ΩH = 0.63).

The results of calculating the field components are
given in Figs. 2–4. The dependences of the absolute
values of the field components on the coordinates ρ and
z are given, as well as the isolines corresponding to
these dependences. In addition, Fig. 5 gives analogous

graphs for the quantity  that characterizes the spatial
distribution of the power of Joule heating in the plasma.
As is demonstrated by the data presented here, the
power of Joule heating exhibits local maxima at ρ = a0 (in
the z = 0 plane) and at the focal point ρ = 0, z = γ–1a0,
which is the vertex of a convergent resonance cone for
a ring source with the maximal value of current density
at ρ = a0, z = 0. A divergent resonance cone originating
on the source and a divergent resonance cone with the
vertex at the focal point prove to be less pronounced,
although the absolute value of the field and the value of

 decrease along the generatrices of these cones at a
slower rate than in the other directions (see Figs. 2b, 4b,
and 5b).

As for the distribution of the electron temperature
Te(ρ, z), it is characterized by the presence of a maxi-

Q̃

Q̃

0.70

0.
45

0.
20

0.45

0.
20

5

4

3

2

1

0 1 2 3
ρ/a

z/a (b)

4

2 2
1

3

ρ/a

0.5

0

Eρ/I0, Ω/m

z/a

(a)

Fig. 2. The space distribution of the radial component of the
near-zone electric field of the source given by Eq. (2) at γ =
0.36, γg = 0.62, k0a = 0.02, a = 2 m; (a) the dependence of
|Eρ| on the coordinates ρ, z; (b) |Eρ| level lines.

0
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974 KUDRIN et al.
mum at the origin of the reference frame ρ = 0 and z = 0,

in spite of the nonmonotonic behavior of the  func-
tion in the neighborhood of this point. This singularity
of the Te profile is attributed to the fact that the temper-
ature distribution is markedly affected by the longitudi-
nal electron heat conduction. The dependence of the
maximal electron temperature Te(0, 0) on the source
current I0 is given in Fig. 6. Figure 7 gives the temper-
ature distribution on the transverse and longitudinal
coordinates, which corresponds to the value of current
I0 = 76 A. One can readily see that the transverse scale
of temperature distribution is defined by the source size
(lT⊥  ~ a0), and the longitudinal scale of temperature dis-
tribution is defined by the characteristic length of elec-
tron heat conduction along the external magnetic field,

It must be emphasized that the results obtained are
valid only if conditions (16) are satisfied. We will see
below that, as the temperature Te increases, inequalities
(16) cease to be valid with the necessary margin. There-
fore, for relatively high temperatures (for Te > 10 eV),
the theoretical model being treated needs to be consid-
erably refined.

Q̃

lT || Te/mνe
2δen( )1/2∼ .

0.05

0.05

0.10

0.25
0.40

0.10

0.05

5

4

3

2

1

0 1 2 3
ρ/a

z/a (b)

1
22

4

0

0.5

(a)Eϕ /I0, Ω/m

ρ/a
z/a

Fig. 3. The space distribution of the azimuth component of
the near electric field of the source given by Eq. (2). The val-
ues of parameters are as given in Fig. 2; (a) the dependence
of |Eϕ| on the coordinates ρ, z; (b) |Eϕ| level lines.

0
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4. PLASMA DENSITY DISTRIBUTION

An analysis of the results of solving the equation for
the electron temperature Te reveals that the characteris-
tic dimensions  and lT⊥  of the region with a higher
value of Te satisfy the condition

which is transformed into the inequality

upon substitution of the background value De||, 0 of the
diffusion coefficient De||. It is natural to assume that an
analogous inequality

(23)

is valid for the characteristic dimensions of a region
with a higher plasma density. As we will see below, this
assumption is supported by the results of calculating
the density distribution.

One can readily demonstrate [21] that, given the
validity of condition (23) and of the inequality

,

the density balance equation (8) may be approximately
represented as

lT ||

lT ||
2 /lT⊥

2
 * De||/Di⊥ ,

lT ||
2 /lT⊥

2
 @ De|| 0, /Di⊥

lN ||
2 /lN⊥

2
 @ De||/Di⊥

ωHΩH @ Te/Ti( )νenν in 1 ΩH
2+ /ν in

2( )

Fig. 4. The spatial distribution of the longitudinal compo-
nent of the near electric field of the source given by Eq. (2).
The values of parameters are as given in Fig. 2; (a) the depen-
dence of |Ez| on the coordinates ρ, z; (b) |Ez| level lines.
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(24)

where

(25)

Without dwelling on the details of deriving Eq. (24),
note that it is derived from the initial equation (8) if we
set

in the expression for the flux Ge in Eq. (12), which is
approximately valid if condition (23) is satisfied (for
details, see [18, 21]). We will further take into account
the fact that, in the case given by (16), the thermodiffu-
sion term in Eq. (24) admits the representation

In the heated part of the nonuniform plasma formation,
the contribution of this term considerably exceeds the
contribution made by the proper diffusion terms. In
view of this, we will replace the quantities given by
(25) by their background values

It is obvious that such a replacement, which is exact
outside of the heating region, has no appreciable effect
on the behavior of the left-hand side of Eq. (24) for the
steady-state distribution of plasma density. We derive

(26)

where

The concrete form of the functions ν(r) and α(r) is
defined by the dependence on temperature Te(r) of the
quantities entering these functions.

Because the quantities ν(r) and α(r) differ consider-
ably from their background values ν0 and α0 only in the
heating region, whose dimensions lT || and lT⊥  are small
compared to the dimensions lN || and lN⊥  of the nonuni-
form plasma formation, the functions

div⊥ D⊥ ∇ ⊥ N( ) ∂
∂z
----- D||

∂N
∂z
------- 

 +

+ div D̂e
T( ) N

Te

----- ∇ Te 
 

+ ν i νa–( )N α N2– qext+ 0,=

D⊥ De⊥= 1
Ti

Te

-----+ 
  , D|| De|| 1

Ti

Te

-----+ 
  .=

∇φ Ti/eN( )∇ N–=

div D̂e
T( ) N

Te

----- ∇ Te 
  N div D̂e

T( ) ∇ Te

Te

---------- 
  .≈

D⊥ 0 2De⊥ 0,= , D||0 2De|| 0,= .

D⊥ 0∆⊥ N D||0
∂2N

∂z2
--------- ν r( )+ + N

– α r( )N2 qext+ 0,=

ν r( ) ν i νT–= νa– , νT div D̂e
T( ) ∇ Te

Te

---------- 
  .–=

∆ν r( ) ν r( )= ν0, ∆α r( )– α r( ) α0–=
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are characterized by the δ-function-like behavior against
the background of the N(r) distribution. Therefore, the
above-mentioned functions may be replaced by some
model distributions fν(r) and fα(r) decreasing fairly rapidly
away from the point r = 0 and satisfying the conditions

Fig. 5. The spatial distribution of the  function corresponding
to the components of the near electric field given in Figs. 2–4:

(a) the dependence of  on the coordinates ρ, z;

(b)  level lines.
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Fig. 6. The maximum electron temperature Te, max = Te(0, 0)
as a function of the source current I0.
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Fig. 7. The distribution of the electron temperature Te(ρ, z) on the transverse and longitudinal coordinates at I0 = 76 A: (a) Te(ρ, 0),
(b) Te(0, z).
(27)

We will select the distributions fν(r) and fα(r) in the
form

(28)

where ρ0 and z0 must satisfy the inequalities

and the constants  and  are defined by the formulas

(29)

f ν r( ) rd∫ ∆ν r( ) rd∫= ,

f α r( ) rd∫ ∆α r( ) r.d∫=

f ν r( )
ν̃ ν0–

ρ/ρ0( )2 z/z0( )2+[ ] 1/2
cosh

2
----------------------------------------------------------------,=

f α r( )
α̃ α0–

ρ/ρ0( )2 z/z0( )2+[ ] 1/2
cosh

2
----------------------------------------------------------------,=

ρ0 ! lN⊥ , z0 ! lN ||,

ν̃ α̃

ν̃ ν0=
3

π3ρ0
2z0

---------------- ∆ν r( ) r,d∫+

α̃ α0=
3

π3ρ0
2z0

----------------∆α r( ) r,d+

74
0

I0, A

Nmax/N0

76 78

10

20

30

Fig. 8. The maximal plasma density Nmax as a function of
the source current I0 (N0 is the density of background
plasma).
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which follow from (27). In the problem treated here, it
is convenient to set

and change in Eq. (26) to new coordinates x, y, and ,
where

We will finally derive

(30)

where

and  denotes the Laplace operator in the new coordi-
nates.

Equation (30) proves to be very convenient for
numerical investigation. An analysis of this equation
reveals that, for a given value of the source current I0
(i.e., for a known form of Te(r) distribution), it has a spa-
tially localized, spherically symmetric (in the x, y,  coor-
dinates) solution of  which satisfies the conditions

(31)

Equation (30) was solved numerically for the same
values of the source dimensions and of the parameters
for the background plasma as those used in the previous
section to search for the Te(r) distribution. The con-
stants  and  for each given value of the source cur-
rent I0 were calculated by formulas (29) with due regard
for the respective Te(r) distribution. As follows from the
performed calculations, the solution of Eq. (30) has a
maximum value at r = 0. The dependence of the maxi-

ρ0 a0, z0 a0 D||0/D⊥ 0( )1/2= =

z̃

z̃ z D⊥ 0/D||0( )1/2= .

D⊥ 0∆̃N
ν̃ ν0–

r̃/a0( )cosh
2

----------------------------+ N
α̃ α0–

r̃/a0( )cosh
2

----------------------------N2–

+ ν i0 νa0–( ) N N0–( ) α0 N2 N0
2–( )– 0,=

r̃ x2 y2 z̃2+ +( )1/2
=

∆̃

z̃
N r̃( )

∂N
∂r̃
------- 0 for r̃ 0;= =

N N0 for r̃ ∞.

ν̃ α̃
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mal plasma density Nmax on the source current is given
in Fig. 8. Figure 9 gives the spatial distribution of den-
sity for two cases of Nmax/N0 = 10 and 30 which corre-
spond to the values of source current I0 ≈ 77 and 78 A. One
can readily see that the distributions of plasma density
obtained satisfy all the restrictions specified above.

Note that the process of formation of density distur-
bance exhibits a threshold behavior. The value of cur-
rent I0 = 75 A (in this case, Te, max = 7.4 eV), to which
corresponds a relative disturbance of density at the cen-
ter Nmax/N0 = 1.001, may be interpreted as the threshold
of development of plasma inhomogeneity. As follows
from the calculation results, in the case of a slight
excess of the threshold value of current, the increase in
the ionization rate is largely compensated by an
increase in thermodiffusion loss, and the increase in the
plasma density in the plasma inhomogeneity is largely
due to a decrease in the recombination coefficient
(∂α/∂Te < 0). In our case, this behavior is observed for
I0 values at which Nmax/N0 < 10. For these values, the
conditions of validity of the approximate description
employed by us (see inequalities (16)) are satisfied with
a very large margin.1 As I0 increases, a sharp increase
in the plasma density in the plasma inhomogeneity
occurs, which is due to a faster rise of the ionization
rate compared with thermodiffusion loss. Although, in
this case, the characteristic scales of distribution of
plasma density and electron temperature approach each
other, conditions (16) are still valid at Nmax/N0 < 50,
though with a smaller margin. As the source current
continues to increase, inequalities (16) cease to be
valid, and the theoretical model employed becomes
inadequate. Nevertheless, as revealed by the foregoing
treatment, this model, in spite of the existing restric-
tions, enables one to describe the steady-state structure
of a plasma inhomogeneity with a fairly strong distur-
bance of density.

Note that, under conditions of increasing transverse
dimension a of the source, accompanied by an appre-
ciable decrease in the contribution made by trans-
verse thermodiffusion to the ionization balance, much
lower values of the source current I0 are required to pro-
vide for the given disturbance of plasma density
Nmax/N0. For example, for a = 3 m and for the above-
identified values of parameters of background plasma,
the relative disturbance of density Nmax/N0 = 10 is
attained at I0 = 46 A (instead of I0 = 77 A in the case of
a = 2 m).

1 We do not dwell on the analytical calculation of the quantity
Nmax, which may be performed for the given conditions. When
model representations (28) are used, the appropriate treatment is
performed the way it was done in [22] for a high-frequency dis-
charge in rarefied gas in the absence of external magnetic field.
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5. CONCLUSION

We have suggested a theoretical model which
enables one to investigate the steady-state structure of a
plasma inhomogeneity arising upon additional ioniza-
tion of a magnetized background plasma by the near-
zone field of a magnetic-type source, under conditions
when characteristic spatial scales of density distribu-
tion exceed considerably the size of the heating region.
Within this model, it proves possible to study the
dependences of all basic characteristics of a steady-
state nonuniform plasma formation on the parameters
of the source and background plasma. One can see from
the treatment results that the characteristics of a non-
uniform plasma formation are largely defined by the
dependence of the coefficients of transport in a magne-
toactive plasma on the electron temperature. It must be
emphasized that the presence of nonuniformity of the
electron temperature necessitates the inclusion of ther-
modiffusion in analyzing the distribution of plasma
density.

In conclusion, note that the results of our calcula-
tions demonstrate that a magnetic-type source placed in
a magnetized plasma is capable of maintaining a non-
uniform plasma formation markedly extended along
the external magnetic field; the density of plasma in this
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Fig. 9. The spatial distribution of plasma density: (a) the
N(ρ, z)/N0 distribution for Nmax/N0 = 30; (b) the density dis-
tribution along the z axis (ρ = 0) for Nmax/N0 = 10 (curve 1)
and for Nmax/N0 = 30 (curve 2).
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formation considerably exceeds the background value.
This fact is of interest in view of the possibility of
appropriate experiments in cosmic and laboratory
plasma, as well as from the standpoint of analyzing the
operation of some devices designed to produce a dense
plasma.
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Abstract—The paper deals with the results of experimental investigation of the dynamic behavior of macro-
particles charged by way of photoemission, under conditions of microgravity. The experimental data have been
obtained for bronze particles subjected to solar radiation in a buffer gas at a pressure of 40 Torr (Mir space sta-
tion). Different procedures for determining the transport properties of macroparticles by analyzing video
records of experiments are treated. The velocity distribution, the temperature, the charge, the friction coeffi-
cient, and the dust particle diffusion coefficients are found. The results of comparing the experimental and the-
oretical estimates demonstrate that the dynamic behavior of macroparticles under the conditions of investiga-
tions are defined by the process of their ambipolar diffusion. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Photoemission is one of the main mechanisms of
charging dust particles under space conditions. Macro-
particles several microns in size may acquire a positive
charge of the order of 102–105 times the electron charge
and form gas, liquid, or crystal dust structures [1–4].
The phase state of such structures is closely associated
with the processes of macroparticle diffusion.

The diffusion is a nonequilibrium process caused by
thermal motion of particles, which is one of the main
sources of energy loss (dissipation) in plasma-dust sys-
tems. Both suspended macroparticles of matter in
buffer gases (Brownian motion) and the gas molecules
proper or particles of the plasma component (self-diffu-
sion) may diffuse. In the case of plasma-dust clouds
consisting of charged macroparticles, ions, and elec-
trons, the transport properties of the system may be
affected considerably by combined diffusion transfer of
particles of unlike charge (ambipolar diffusion).

Most of the known methods of experimental deter-
mination of the diffusion coefficients of ions and elec-
trons are based on the results of indirect measurements
of microparticle mobility in external electric fields [5].
Such methods are unfit for use in the diagnostics of par-
ticles in plasma because they introduce considerable
perturbations in the system being investigated. For
determining the transport characteristics of weakly
interacting macroparticles, extensive use is made of the
methods of correlation spectroscopy of photons, whose
range of validity is restricted to the short-range order of
interparticle interaction [6, 7]. The simplest and most
obvious method of diagnostics for dust systems is the
analysis of mean-square shifts or of particle density
gradients using video recording of experiments. The
1063-7761/01/9206- $21.00 © 20979
main difficulties arising in solving these problems are
associated either with the need for correct identification
or with the lack of a sufficient number of particles in the
volume being analyzed.

This paper describes the results of investigating the
transport properties of macroparticles charged by way of
photoemission, under conditions of microgravity. The
experimental data were obtained for bronze particles sub-
jected to solar radiation (Mir space station, 1997).

2. EXPERIMENT

The experiments were performed aboard the Mir
space station. A detailed description of the experimen-
tal setup was given in [2]. The main element of the
working chamber was a glass ampoule with bronze par-
ticles coated with a monolayer of cesium. The particles
were placed in a buffer gas (neon) at a pressure P of
about 40 Torr. The parameters of particles are given in
Table 1.

The ampoule was a cylinder, one end of which was
a flat uviol window intended for illumination of the par-
ticles by solar radiation (Fig. 1a). The particles in the
ampoule were additionally illuminated by a sheet laser
beam (“laser knife”) whose width did not exceed
200 µm. A semiconductor laser with an operating
wavelength of 0.67 µm was used for this purpose. The
image was recorded by a CCD camera, the signal from
which was recorded on magnetic tape (frame frequency
of 25 s–1). The videocamera field of vision was a rect-
angle of approximately 8 × 9 mm (Fig. 1); the video-
camera was set on the ampoule center, with a depth of
focus for the selected diaphragm setting of 16 being
approximately 9 mm (see Fig. 1a). The video records
were later processed using special computer codes
001 MAIK “Nauka/Interperiodica”
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enabling one to identify the shifts of individual parti-
cles in the videocamera field of vision. In the presence
of intense fluxes of solar radiation, the number of parti-
cles recorded by the videocamera was defined by the
depth of focus of the video system, which made it pos-
sible to follow the positions of individual particles dur-

ing periods of time t > 5τ (where τ =  is the decel-
eration time and ν+ is the collision frequency of dust
particles and buffer gas molecules) sufficient for analy-
sis of the transport characteristics of the system. The
number of identified particles was less than 40% of the
total number of particles recorded by the videocamera
at the initial moment of time.

The first stage of the experiment involved the obser-
vation of the behavior of macroparticles under condi-
tions of microgravity in the absence of solar radiation
(“dark” mode). During the time of observation (15 to
20 min), the number of particles in the field of vision of

ν+
–1

Videocamera 

60 mm

∅ 30 mm

.

.

.

x1 x2x1x2

y2

y1

x, mm
86420

2

4

6

8
y, mm (b)

(‡)

field of vision 

Fig. 1. (a) The geometric dimensions of the working
ampoule and (b) the mechanical trajectory of macroparticles
after the system is subjected to the effect of radiation.

Table 1.  The average radius rp of bronze particles with the
density ρ and the work function W. The limiting charge Zmax
(7) of the particles and the friction coefficients ν+1 (Stokes'
formula) and ν+2 (free-molecular mode)

rp, µm ρ, g/cm3 W, eV Zmax(e) ν+1, s–1 ν+2, s–1

37.5 8.2 1.5 6.9 × 104 7.7 7.8
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the video system did not vary appreciably. The dust
concentration n0 was determined by the particles enter-
ing the plane of the laser knife and was in the range
from 200 to 400 cm–3.

The second stage of the experiment involved the
observation of the behavior of macroparticles under
conditions of illumination of the dust cloud by solar
radiation. In the initial state, the bronze particles were
located on the ampoule walls and, therefore, the exper-
iments were performed in accordance with the follow-
ing scheme:

(1) dynamic effect (impact) on the system with the
illuminator shutters closed;

(2) exposure in darkness for a period of 2–4 s @ τ in
order to reduce the particle velocity acquired from the
initial impulse (impact);

(3) illumination of the ampoule by solar radiation;
(4) relaxation of the particles to the initial state

(departure to the walls), after which the illuminator
shutters closed.

The time of particle departure to the ampoule walls
was 3 to 5 min, this being more than three orders of
magnitude less than the time of total diffusion loss of
macroparticles at room temperature because of their
Brownian motion. The vectors of particle velocity in the
initial stage of illumination were directed chaotically.
Some time (~1–3 s) after the effect of solar radiation, the
particle motion assumed a clearly defined direction
towards the ampoule walls. Figure 1b gives the trajecto-
ries of 40 particles after the system was subjected to the
effect of radiation.

3. DETERMINATION OF TEMPERATURE
AND VELOCITY SPECTRA OF DUST PARTICLES

An analysis of video records of the experiments
revealed irregular variations of the magnitude and
direction of the velocity of individual particles against
the background of their combined drift motion. Such
irregular fluctuations of the velocity of particles reflect
their kinetic temperature, which, for the Maxwellian
velocity spectrum (Vx, Vy), may be derived from the
estimation of dispersion as [8]

(1)

where m+ is the mass of a dust particle and 〈  〉  describes
averaging over the ensemble and in time, assuming that

the system is ergodic. The quantity 〈Vx(y)〉  =  is the
drift velocity of regular drift of particles, against whose
background the thermal motion of particles occurs.
Determining the temperature from relation (1) for dif-
ferent samplings of particles (20 to 60) gives Tx ≈ 51 eV
and Ty ≈ 22 eV with an accuracy of 5%, which is much
higher than their room temperature T ≈ 0.03 eV. In so
doing, the recorded values of particle velocity distribu-
tion (Vx, Vy) in both the x- and y-direction were close to

T x y( ) m+ V x y( )
2〈 〉 V x y( )〈 〉 2–{ } ,=

Vd
x y( )
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Fig. 2. Experimental spectra of velocities Vx (a) and Vy (b) for particles from various regions indicated in Fig. 1b: regions  x1, x2 (n);
regions x2, y2 (m). Dashed curves describe the approximation of experimental data by the Maxwellian distribution with temperatures
Tx ≈ 51 eV (a) and Ty ≈ 22 eV (b).
Maxwellian, with the temperature derived by formula (1).
The particle velocity spectra f(Vx) and f(Vy) are given in
Figs. 2a and 2b for different regions of the measuring
volume, marked in Fig. 1b as x1, in Fig. 2a as x2, and
in Fig. 2b as y1 and y2. The values of drift velocity of
particles for these regions corresponded to

Note that the dust particles in plasma may have other
than uniform distribution of irregular kinetic energy over
degrees of freedom (i.e., Maxwellian spectra with Tx ≠ Ty

are possible) and the value of kinetic temperature of
macroparticles may considerably exceed that of the
temperature of the gas surrounding them. These effects
may be associated, for example, with fluctuations of the
particle charge or with the spatial inhomogeneity of the
parameters of the plasma-dust system [9–13]. The
anomalous “heating” of macroparticles was repeatedly
observed in experiments in studying dust structures in
laboratory plasma [12–15].

4. DIFFUSION OF MACROPARTICLES

Because the plasma-dust system being treated con-
sists of positively charged macroparticles and photo-
electrons emitted by them, one can assume that the
transport properties of such a system will depend on the
ambipolar diffusion of particles. As a result of the consid-
erable difference between the mobility of electrons µe and
that of dust particles µ+, the components of such a system
will separate in the entire volume of the ampoule and a
negative surface charge will arise on the walls. The arising
electric field of polarization interferes with further separa-
tion of charged components. As a result, electrons and
heavy particles may diffuse “together,” with some
effective coefficient Da of ambipolar diffusion. The
quantity Da is defined by the diffusion coefficient of a

Vd
x1

0.011 cm/s, Vd
x2

0.0145 cm/s,= =

Vd
y1

0.0072 cm/s, Vd
y2

0.0061 cm/s.= =
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slower component and, in the absence of magnetic and
external electric fields, may be written in the form [5, 16]

(2)

where De and D+ are the coefficients of free diffusion of
electrons and particles, respectively; in the presence of
a Maxwellian velocity spectrum, the latter coefficients
obey the relation

(3)

where Te(+), me(+), and νe(+) denote the temperature,
mass, and collision frequency (coefficient of friction)
with buffer gas neutrals for electrons and particles.
Because µe @ µ+, the coefficient of ambipolar diffusion
may be written as

whence, in view of formula (3), we have

(4)

where Z is the macroparticle charge in elementary elec-
tron charges (e). The temperature Te of photoelectrons
leaving the particle surface depends on the particle
material and, in most cases, is in the range from 1 to 2 eV
[17, 18].

Note that relations (2)–(4) are valid only for the case
of weakly ionized plasma-dust system, when the dissi-
pation is defined by buffer gas neutrals and the colli-
sions of charged components are unimportant. On the
other hand, the coefficient of ambipolar diffusion
describes polarization effects which are impossible in a
rarefied plasma with a low density of charged compo-
nents. The particle diffusion of such a plasma is defined
by coefficients (3).

Da Deµ+ D+µe+{ } / µ+ µe+{ } ,=

De +( ) Te +( )/νe +( )me +( ),=

Da D+ Deµ+/µe,+≈

Da 1 ZTe/T++( )D+,≈
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5. DETERMINATION OF THE COEFFICIENTS
OF FRICTION AND FREE DIFFUSION

OF MACROPARTICLES

The direct determination of the diffusion coeffi-
cients of macroparticles by treating the video records of
experiments is complicated by a number of difficulties,
the main one of which is caused by the impossibility of
identifying the motion of individual particles during a
period of time sufficient for the diagnostics of their param-
eters. It is this fact (associated with the narrow field of
vision bounded by the “laser knife” plane) that served as
the reason for the unsuccessful attempt at determining the
free diffusion coefficient D+ of macroparticles in the
“dark” mode. The illumination of dust cloud by solar radi-
ation brings about an expansion of the measuring volume,
which enables one to follow the motion of a fairly large
number of particles for a period of time sufficient for
the diagnostics of their parameters.

Given the particle temperature, the free diffusion
coefficients D+ may be estimated using relation (3).
However, in spite of the close values of the friction
coefficients ν+1 (Stokes’ formula [19]) and ν+2 (free-
molecular mode [20]), which are given by different the-
oretical models (see Table 1), the value of ν+ depends,
to a large measure, on the accuracy of determining the
effective size of particles and on the pressure of the sur-
rounding gas. Therefore, the data about the coefficient
ν+ call for an independent experimental verification.

The coefficients of friction ν+ and diffusion  of
macroparticles may be recovered using the results of

measuring temperature and velocity  of the regu-
lar drift of particles (see Section 3),

(5)

D+
x y( )

Vd
x y( )

D+
x y( )

t( )
∆r t( )2〈 〉 Vd

x y( )
t( )

2
–
2t

-----------------------------------------------,=

15 × 10–6

10 × 10–6

5 × 10–6

0 1 2 3 4 5 6
t/τ

D+
x(y), Òm2/s

x1

x2

D+
x

D+
yy2

y1

Fig. 3. The experimentally obtained dependence of 

and of the results of its approximation (broken lines) by
curves (6) on the characteristic parameter t/τ (on the number
of deceleration times) for different regions of the measuring
volume x1, x2, y1, and y2, (Fig. 1b).

D+
x y( )
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where 〈∆r(t)2〉  is the mean-square shift of individual
particle in the direction of the x (or y) axis, and the
quantity

corresponds to relation (3). The function  for the
thermal motion of particles may also be represented as

(6)

Figure 3 gives the time dependence of  for differ-
ent regions of the measuring volume (x1, x2, y1, and y2,
Fig. 1b) and the results of the closest approximation of

these dependences by curves (6) at  = 3.1 s–1 for

 ≈ 51 eV and  ≈ 22 eV. Therefore, we can derive

for the coefficients of free diffusion of particles.

6. MACROPARTICLE CHARGE

Data on the macroparticle charge Z are required for
determining the ambipolar diffusion coefficient Da

from relation (4). The limiting estimate of the dust par-
ticle charge Zmax = 69000 may be derived from the con-
dition of equality of the surface potential φS to the quan-
tity hνmax – W [2, 3],

(7)

where hνmax is the maximal quantum energy, which, in
our case, corresponds to the wavelength λmin ≈ 0.3 µm
and is defined by the transmission function of the experi-
mental chamber. A more exact estimate of the charge Z
may be obtained as a result of analysis of the time depen-
dence of the relative variation of the particle concentration
n(t)/n0 [2]. The experimental dependences n(t)/n0 are
given in Fig. 4. The initial concentration of macroparticles
n0 ≡ n(t = 0) was close to 1.95 × 102 cm–3.

In the case when the electric field forces acting on an
individual macroparticle on the side of other particles are
balanced by the friction forces, the dependence n(t)/n0
may be approximated by the following function [2]:

(8)

where ω0 =  is the dust frequency at t = 0.
Relation (8) enables one to determine ω0 by way of
optimal matching of the experimental and prediction
data. This may give the value of the macroparticle
charge for the given initial concentration n0. The results

D+
x y( )

t ∞( ) D+
x y( )

=

D+
x y( )

t( )

D+
x y( )

t( ) D+
x y( )

1
1 ν+t–( )exp–

ν+t
----------------------------------– 

  .=

D+
x y( )

ν+
exp

T+
x

T+
y

D+
x

1.4 10
–5

 cm
2
/s, D+

y
6.2 10

–6
 cm

2
/s×≈×≈

Zmax hνmax W–( )rp/e,=

n t( )/n0 1 3ω0
2
t/ν++( )

–1
,=

Ze( )2n0/m+
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of approximation of the experimental dependence
n(t)/n0 by function (8) is given in Fig. 4 for

Proceeding from the obtained values of n0 = 195 cm–3

and ω0 = 0.2 s–1, the particle charge may be estimated as

The results of test calculations of the dependence
n(t)/n0 by the method of molecular dynamics are given
in Fig. 4 for a system of particles with Z = 40300 at n0
= 195 cm–3 and ν+ = 3.1 s–1. The three-dimensional sys-
tem of equations of motion was solved for a cylindrical
ampoule (Fig. 1a) with due regard for Fbr of the thermal
motion of particles under conditions of their initial
velocity being equal to zero and absorption of macro-
particles on the cylinder walls,

(9)

Here,

is the parameter of electric interaction and r is the dis-
tance between a pair of interaction particles. An analy-
sis of the solution of Eqs. (9) for different parameters of
particles has revealed that the dependence n(t)/n0 is
defined by the ratio between the eigenfrequency ω0 and
the friction coefficient ν+. The thermal motion of parti-
cles has no appreciable effect on the variation of the
concentration n(t)/n0 with their kinetic temperatures of
up to 50 eV.

One can readily see (Fig. 4) that, for times t < 15τ =

( )
–1

 ≈ 5 s, bronze particles move in a mode close to
that given by Eq. (8). A further decrease in the particle
concentration at t > 10 s leads to a reduction of the
forces of interparticle interaction and, accordingly, to
agreement between the experimental data and the
results of calculations by the method of Brownian dynam-
ics (9) and approximation (8).

Note that the effects of polarization of unlike charges
were not included explicitly in any of the numerical prob-
lems given by Eqs. (8) and (9). Nevertheless, these effects
indirectly influence the value of the equilibrium charge
of dust particles. The particle potential φS reaches a
steady-state value as a result of balance between the elec-
tron recombination on the particle surface and the photoe-
mission flux from the particle. In so doing, the floating
potential φw of the ampoule wall surface is defined by the
photoelectrons escaping from the particles. The electric

ν+
exp

3.1 s
–1

, ω0 0.2 s
–1

.= =

Zexp ω0/e( ) m+/n0 4.03 10
4
e.×= =

m+

d
2rk

dt
2

---------- = Φ r( )
j

∑
r rk r j–=

rk r j–
rk r j–
-----------------

– m+ν+

drk

dt
-------- Fbr.+

Φ r( ) eZ( )2

r
2

-------------=

ν+
exp
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field arising in the ampoule prevents some of the emitted
electrons from leaving the dust cloud. The presence of
photoelectrons returning to the surface of macroparticles
may cause a considerable reduction of their equilibrium
charge relative to the limiting value Zmax given by Eq. (7).
For the conditions being treated (n0 ≈ (1–3) × 102 cm–3),
the determination of the charge from the balance equa-
tion gives Z ≈ (3.5–5) × 104e [2], which corresponds to
the value of Zexp obtained as a result of measurements.

7. EXPERIMENTAL ANALYSIS
OF AMBIPOLAR DIFFUSION

OF MACROPARTICLES

One can use the measurement results given in Sec-
tions 3–6 to determine the ambipolar diffusion coeffi-
cient Da for macroparticles from relation (4) for the
known temperature of electrons in the system of dust
particles emitting those electrons. The temperature Te

of electrons in the system being treated may differ from
the temperature of photoelectrons leaving the particle
surface. In the absence of electric fields, the electron
energy relaxation time (the time during which the
energy of an electron decreases by a factor of approxi-
mately 2.78) is defined as

where τ = , δ–1 is the number of effective collisions
and the effective relaxation length is Λu ≈ (0.8–1)λδ–1/2,
λ is the mean free path of an electron with an energy
equal to the initial energy [5]. For neon, δ = 10–4, and the
relaxation distance Λu [cm] ≈ 10 to 12/P [Torr] under
the pressure being treated has a value of approximately
0.25 to 0.3 cm, exceeding the average distance lp ≈ 0.15
to 0.18 cm between the dust particles which are the
background electron sources. Hence we derive that, in
the absence of electric fields, the electron energy loss
over distances of about ~lp/2 will amount to approxi-

τu τδ–1
,≈

ν+
–1

1.0

0.2

0.6

n/n0

0 40 80 120
t, s

Fig. 4. The relative concentration n(t)/n0 as a function of
time t: points, experiment; bold line, method of molecular
dynamics; fine line, approximation (8); broken line, region
of ambipolar diffusion.
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Table 2.  The results of measurements of the charge Zexp, the friction coefficient , the temperature (Tx, Ty), the free dif-

fusion coefficient ( , ), and the ambipolar diffusion coefficient Da for bronze particles

Zexp(e)  , s–1 Tx, eV Ty, eV , cm2/s , cm2/s Da, cm2/s

4.03 × 104 3.1 51 22 1.4 × 10–5 6.2 × 10–6 (1.1–2.1) × 10–2

ν+
exp

D+
x D+

y

ν+
exp D+

x D+
y

mately 30% of the initial energy of photoelectrons at
the dust particle surface. Note that, in the presence of
electric fields E, an electron may further acquire an
additional stochastic energy ε which is some function
of the quantity Eδ–1/2 [5]. Therefore, a rigorous determi-
nation of the electron temperature in a system of emit-
ting dust particles calls for solving the complete kinetic
equation. Therefore, in order to estimate the value of
the ambipolar diffusion coefficient Da , we will assume
that the temperature of electrons in the system does not
actually differ from the temperature of photoelectrons
at the particle surface, whence we find, for Te ≈ 1–2 eV,
Da ≈ (1.07–2.14) × 10–2 cm2/s.

Because the loss of charges in the experiment under
consideration are associated with their diffusion
towards the walls, one can write an additional estima-
tion formula allowing for the average rate of diffusion
loss of dust particles in order to check the correctness
of determining the ambipolar diffusion coefficient [5],

(10)

where νd is the frequency of diffusion drifts and Λ is
some characteristic scale. For a cylindrical volume of
radius R and length L = 4R, the quantity Λ ≈ R/2 = 0.75 cm
(Fig. 1) to an accuracy of up to the coefficient 2 [5].
A more accurate determination of Λ requires the solu-
tion of the diffusion equation for macroparticles with
concrete boundary conditions. The frequency of diffu-
sion drifts may be estimated by the rate of variation of
the relative particle concentration n(t)/n0 (Fig. 4). The
charge polarization effects responsible for ambipolar
diffusion of particles show up during comparison of the
predicted and experimentally obtained n(t)/n0 curves.
The experimentally obtained n(t)/n0 curve at t < 10 s
agrees well with the exponential solution n = n0exp(–νdt)

of Eq. (10) with νd ≈ 3ω2/  = 0.05 s–1 (Fig. 4), from
which we derive the independent estimate –Da = Λ2νd ≈
1.97 × 10–2 cm2/s for the coefficient of ambipolar diffu-
sion. This result fully agrees with the estimates given at the
beginning of the paragraph. This leads one to assume that
the electron temperature in the system of dust particles
was close to the photoelectron temperature at the parti-
cle surface.

One can readily see that the derived coefficient Da is
much higher than the free diffusion coefficient D+ and
agrees with the theoretical predictions given by Eq. (4)
within the accuracy of determining characteristic diffu-

dn/dt nνd nDaΛ
2
,–≡–=

ν+
exp
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sion distance Λ, the assumption Te = 1 to 2 eV, and the
errors in measuring the particle parameters (Z, T, ν+).
Therefore, one can conclude that the process of ambi-
polar diffusion was observed in the present experiment,
i.e., that the density values of charges of both signs
were high enough for a substantial space charge to form
as a result of the charge separation, this space charge
leading to the emergence of an electric field of polariza-
tion.

8. CONCLUSION

The objective of this study was to investigate experi-
mentally and theoretically the transport properties of mac-
roparticles charged by way of photoemission under the
effect of solar radiation, under conditions of microgravity.
In order to solve the problem set, we treated the data
(video records) of experiments performed aboard the Mir
space station with bronze particles in a buffer gas (neon)
at a pressure of 40 Torr.

Different procedures for determining the transport
characteristics of macroparticles by analyzing video
records of experiments were treated. The velocity dis-
tribution, the temperature, the charge, the friction coef-
ficient, and the diffusion coefficients for dust particles
have been found (Table 2). The results of comparing the
experimental and theoretical estimates have demon-
strated that the dynamic behavior of macroparticles
under the conditions of our investigations were defined
by the process of their ambipolar diffusion. The results
of analyzing the experimental results leads one to con-
clude that the electric interaction between particles has
no considerable effect on the transport characteristics
of plasma-dust systems with the parameter of interpar-
ticle interaction
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Abstract—The paper describes the results of investigation of a discharge arising in vacuum on the surface of
solid dielectric materials when irradiated by intense (up to 25 MW/cm2) electromagnetic centimeter wave radi-
ation. When the density of the microwave energy flux exceeds some threshold value depending on the target
material, a discharge emerges in the vicinity of the surface. Its emergence is associated with the evaporation of
the target material and the breakdown of evaporated matter. The thus forming plasma initially has the form of
a thin (on the wavelength scale) layer with the electron density of the order of 1016 cm–3. It is demonstrated
experimentally that effective generation of multiply charged ions occurs in the plasma. The measured energy
distribution of ions in expanding plasma agrees with the predicted distribution obtained in solving the problem
on quasineutral expansion into vacuum of a localized bunch of collisionless plasma with cold ions. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, a marked increase of interest has been
observed in the investigations of a discharge arising in
vacuum in the vicinity of the surface of solids when irra-
diated by intense electromagnetic radiation. This interest
is due, on the one hand, to progress reached in the devel-
opment of high-power microwave oscillators, which
made it possible to investigate the discharge at high val-
ues of microwave radiation heretofore inaccessible (of
the order of tens of megawatts per square centimeter)
and, on the other hand, to the possible practical applica-
tion of such discharge for modifying the surface of solids
[1, 2] and for developing ion sources. It appears of
interest to investigate this discharge from the stand-
point of high-power electronics, because the develop-
ment of a discharge at outlet windows and insulators of
REB oscillators may restrict the power and duration of
microwave pulse. This paper gives the results of inves-
tigation of a discharge arising on the surface of dielec-
tric materials when irradiated by powerful quasioptical
beams of electromagnetic waves; in particular, the
paper contains the first experimental data pertaining to
the behavior of the expansion of a multicomponent
plasma and to the efficiency of generation of multiply
charged ions.

2. EXPERIMENTAL RESULTS
AND THEIR DISCUSSION

The experiments were performed using high-power
short-pulse microwave carsinotron radiation. Radiation
with the frequency of 10 GHz and pulse duration of
40 ns was formed into a quasioptical beam of linearly
1063-7761/01/9206- $21.00 © 20986
polarized electromagnetic waves and focused to a vac-
uum chamber (the intensity in the focal region reached
25 MW/cm2). The cross-sectional area of the focal spot
was 10 cm2. The pressure in the chamber was main-
tained at a level of p ≈ 10–3 to 10–5 torr.

When dielectric materials were brought into the
focal region of the microwave beam, a discharge
occurred on their surface (the discharge was registered
by a flash of light), with the radiation intensity at the
moment of emergence of the discharge exceeding some
threshold value dependent on the target material and
independent of the residual gas pressure in the range
employed in the experiment (p < 10–3 torr). For exam-
ple, the threshold value of the intensity during the
emergence of the discharge was 20 MW/cm2 on Teflon,
8 MW/cm2 on glass, and 2 MW/cm2 on Plexiglas. A pho-
tograph of the discharge is given in Fig. 1. The plasma
glow was a plurality of filaments extended in the direction
of the electric field of the wave. The characteristic trans-
verse dimension of filament was 0.1–0.2 cm, the mean
distance between filaments was 0.2–0.4 cm, and the
length of filaments was defined by the transverse
dimensions of the microwave beam and reached several
centimeters (up to 10 cm).

The space-time characteristics of discharge lumi-
nescence were investigated using a high-speed elec-
tron-optical streak camera. The velocity of discharge
propagation on the dielectric surface from the focal spot
center in the direction of the electric field of the wave
reached 108 cm/s, and the velocity of motion of the ion-
ization front toward the incident microwave was Vz ≈
3 × 107 cm/s. Figure 2 gives a characteristic optical
001 MAIK “Nauka/Interperiodica”



        

MICROWAVE DISCHARGE ON A DIELECTRIC SURFACE IN VACUUM 987

                                                                    
scan of a discharge that illustrates its propagation
toward microwave radiation.

The development of a discharge at a fairly high power
of radiation was accompanied by complete shielding of
microwave radiation. Characteristic oscillograms of a
transmitted microwave signal are given in Fig. 3. These
measurements were performed with the aid of a cooled,
fast-neutron, germanium microwave detector and special
calorimeters. Given a high oscillator power, the transmis-
sion factor through a plasma layer decreased more than 50
times after approximately ten nanoseconds.

The observed development of a discharge may be
associated only with the breakdown of evaporating
matter of the dielectric target. The intrinsic absorption
of microwave radiation by the dielectric is too low even
for its appreciable heating. Batanov et al. [3] have
assumed that, in the case of high intensity of microwave
radiation, a secondary-emission discharge arises on the
dielectric surface in vacuum, whose electrons bombard
the surface to cause an appreciable increase in the elec-
trical conductivity in the thin surface layer (the so-
called induced conductivity). It was the absorption of
microwave energy in this layer that apparently resulted
in its heating and evaporation with subsequent breakdown
of the vapors. The amount of evaporated matter in our
experiments was estimated by the variation of pressure in
the chamber after each discharge and by the recoil
momentum acquired by the target during evaporation of
matter. The pressure was measured with the aid of an open
ionization lamp at several distances from the discharge at
the moments of time 2, 3, and 30 ms after the termination
of the microwave pulse, when the plasma no longer
affected the accuracy of measurement. The pressure incre-
ment was (4–8) × 10–5 torr at a background pressure of
4 × 10–4 torr. The estimate of evaporated target matter
for the experimental conditions varies from 6 × 1017 to
1.5 × 1018 particles per shot. The mass of evaporated mat-
ter was estimated by the recoil momentum (acquired by
the target after the microwave shot and measured using a
pendulum sensor) and found to agree with the estimate
made by the pressure increment.

The expansion of evaporating matter into vacuum
proceeds at a speed of the order of the sound velocity
corresponding to the evaporation temperature. For a
constant evaporation rate, this process is described by
self-similar expansion wave [4],

(1)

where N(x, t) describes the spatial distribution of vapor
density, x is the distance from the target, t is the time
from the beginning of the evaporation process, N0 is the
density of vapors at the target surface, Vs is the velocity
of sound in vapors at the target surface, and γ is the adi-
abatic exponent in vapor treated as ideal gas. The den-
sity of the vapor flux from the target is in this case equal
to the product N0Vs. For estimation, we assume that
Vs ≈ 105 cm/s to find that the vapor density at the target

N x t,( ) N0 1 γ 1–( )x
γ 1+( )Vst

-------------------------– 
  2/ γ 1–( )

,=
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Fig. 1. A photograph of a discharge on Plexiglas, taken
along the axis of a microwave beam. The dark strip at the
frame center is the shadow of a Langmuir probe, and the
arrow on the left indicates the direction of the microwave
electric field.
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t

Fig. 2. An optical scan of a discharge. The z axis corre-
sponds to the coordinate perpendicular to the target plane,
and the t axis indicates time.
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Fig. 3. Oscillograms of (a) incident and transmitted micro-
wave radiation for different values of microwave radiation
power; (b) 4 MW/cm2, (c) 12 MW/cm2.
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reached values of (1–5) × 1019 cm–3 characteristic of air at
atmospheric pressure. The vapors expanded to take up,
during the characteristic time of discharge development
τi ≈ 10–8 s, a region of thickness lg ≈ 5 × 10–3 cm. Within
this region, the vapor density decreases rapidly away from
the target, so that, even at a distance of lg/2, the effective
frequency ν of collisions between electrons and vapor
molecules comes to be of the order of the cyclic field fre-
quency ω. Estimates indicate that, for the intensity of
microwave radiation characteristic of the experiment,
the frequency νi of ionization by electron impact in an
undisturbed field reached values of the order of 1010 s–1 in
dense gas at the dielectric surface and of 1011 s–1 in the
region of its maximum, where ν ≈ ω. The breakdown
of vapors in these conditions occurs very rapidly (dur-
ing a time of less than 1 ns), and the plasma being thus
formed proves to be localized initially in a thin layer
with a thickness of the order of 10–3 cm, in which the
collision frequency of electrons is of the order of the
field frequency. The plasma density in this layer contin-
ues to increase until, because of its screening effect, the
microwave field intensity in the vicinity of the target
decreases to a level at which the ionization frequency
turns out to be of the order of the characteristic fre-
quency νloss of loss of plasma from the breakdown
region. Estimates indicate that the main loss of plasma
in the region of maximum of ionization is due to its
ambipolar diffusion, and νloss ≈ 109 s–1. This value of the
ionization frequency in the region being treated is
attained with a microwave electric field amplitude of
the order of several kV/cm, while the undisturbed value
of amplitude is approximately 100 kV/cm. The thin (on
the wavelength scale) plasma layer may provide for a
corresponding decrease in the field amplitude owing to
reflection of incident radiation. One can use the known
formulas for the reflection factor Γ of the thin plasma
layer,

(2)
Γ J

1 J+
------------, J–≈ ic

2
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Nedx
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Fig. 4. Oscillograms of (a) microwave radiation transmitted
through plasma and (b) plasma potential.
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to demonstrate that the desired decrease in the field
amplitude occurs if the total number of electrons per
unit area of the layer reaches a value of the order of

Here, c is the velocity of light in vacuum, Ne is the elec-
tron density, and Nc is the critical plasma density. Inte-
gration is performed over the entire thickness of the
plasma layer; E and E0 denote the complex amplitude
of electric field in plasma and the amplitude of incident
plane wave, respectively.

Therefore, the breakdown of a thin layer of vapor in
the vicinity of the target must bring about, during a
time of the order of 1 ns, the formation of a plasma
layer 10–3 cm thick with an electron density of the
order of 1016 cm–3, which shields the target from inci-
dent microwave radiation. Because of shielding, the
ionization processes must decelerate considerably, but
the plasma layer will expand first because of diffusion
and then, when the plasma extends outside of the vapor
cloud, its free expansion will begin at the ionic-sound
velocity, which is apparently registered by the streak
camera as the ionization front motion.

Movable electric probes were used to investigate the
plasma potential and the characteristics of plasma
expansion. The plasma potential Uplas was measured by a
solitary probe of high load resistance (several megaohms)
placed in the vicinity of the dielectric (a typical oscillo-
gram of the potential is given in Fig. 4). The measure-
ment results demonstrated that the plasma potential
increased rapidly after a dense plasma was formed,
reached a value of several kilovolts, and was main-
tained at this level for a long time. The high potential of
the plasma points to a high electron temperature. In all
probability, this high potential is developed by the
plasma on the periphery of the discharge, where the
plasma density is low, and the microwave field ampli-
tude at a distance of quarter the wavelength from the
dense plasma layer (i.e., at the antinode of the standing
wave being formed) may even exceed the incident wave
amplitude. Therefore, the electron temperature here is
maintained at a high level (of the order of oscillatory
energy of electrons, which amounts to several keV).

In addition, the ions escaping from the discharge
were subjected to time-of-flight and energy analysis.
The measurements were performed using a five-chan-
nel ion analyzer enabling one to determine the time that
ions with different energies arrived at the analyzer. The
analyzer was located at a distance of approximately 3 m
from the discharge. The collimator axis of this instru-
ment coincided with the direction of the electric vector
in the wave. The analyzing element of the instrument
was provided by a capacitor which deflected the ions to
an angle defined by their energy. The particles were fur-
ther delivered to five cylindrical capacitors separating
ions of certain energy and were registered by a second-
ary-emission multiplier (SEM). A typical oscillogram

50cNc/ω 2 1013 cm 2– .×≈
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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of the SEM current IV(t) is given in Fig. 5. The peaks in
the oscillogram correspond to ions whose energy per
unit elementary charge was defined by channel tuning
(the oscillogram in Fig. 5 corresponds to tuning the
channel to the energy of singly ionized ions of 200 eV).
Assuming that the ions fly from the target to analyzer
uniformly for a large part of the track [5], one can fur-
ther determine their velocity by the time of arrival of
ions at the analyzer. Therefore, a quite certain ratio
between the ion charge and its mass may be assigned to
each peak in the SEM current oscillogram, which
enables one to identify ions. The results of such identi-
fication are given in Fig. 5. The first (by the time of
arrival) two peaks correspond here to ions of atomic
and molecular hydrogen, and the next three peaks are
associated with carbon ions with the charge numbers
+3, +2, and +1, respectively. The results of these mea-
surements lead one to conclude that multiply charged ions
are effectively formed in the discharge plasma; the values
of density of carbon ions with charges of 1, 2, and 3 are
comparable.

By varying the channel tuning, one could determine
the dependence of the time of arrival of ions of each type
on their energy W. The measured respective dependence
for singly ionized carbon ions is given in Fig. 6 (points).
Also given in Fig. 6 for comparison is a prediction curve
obtained assuming that ions expand with a constant
velocity (W ∝  t –2). Such a dependence may also be
obtained using the solution of the problem on the
expansion of a localized plasmoid to vacuum [5]. The
agreement between the predicted and experimentally
obtained results points to the validity of the initial
assumption of the inertial behavior of ion expansion
that was used in the identification of ions.

Figure 7 gives the energy distribution (points) of C+

ions registered by the analyzer and a curve correspond-
ing to the dependence proportional to 1/W. In the
energy range W < 3 keV, the experimental points coin-
cide well with this curve; in the case of high values of
energy, the points lie much lower than the curve. This
means that, in the above-identified range, the energy spec-
trum of ions arriving at the analyzer is inversely propor-
tional to energy; at high values of energy, this spectrum
decreases much more abruptly. Such an energy distribu-
tion of ions, experimentally recorded away from the
plasma source, may be obtained in solving the problem
on expansion of a quasineutral bunch of collisionless
plasma with cold ions, if the initial velocity distribution
of electrons along the collimator axis (i.e., in the direc-
tion of the electric vector in incident electromagnetic
wave) is defined by the expression

(3)

where V0 is the velocity of electrons of energy m /2 ≈
3 keV. It is interesting to note that, in accordance with
the results of Ignat’ev and Rukhadze [6], it is the form-
ing of just such a distribution function that one should

f V( ) V0
2

V2–[ ]
–1/2

,∝

V0
2
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Fig. 5. An oscillogram of the SEM current of ion analyzer.
The oscillograph scan, 10 µs per division.
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Fig. 7. The energy distribution of C+ ions.
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expect in the case of gas ionization in superstrong
microwave fields in which the free oscillation energy of
electrons is much higher than 100 eV. In this case, the
value of V0 is defined by the amplitude of the oscillation
velocity of electrons. Under experimental conditions,
the direction from the discharge plasma to the ion ana-
lyzer coincided with the direction of polarization of
incident microwave radiation, and the characteristic
values of the oscillatory energy of electrons reached
several kiloelectron-volts. Therefore, one can assume
that the ions registered by the analyzer accelerated as a
result of expansion of the plasma formed on the dis-
charge periphery where the collision frequency of elec-
trons is low compared with the field frequency, and the
amplitude of electric field is of the order of its ampli-
tude in an incident electromagnetic wave.

3. CONCLUSION
The investigation results have demonstrated that the

plasma arising in the vicinity of a dielectric target in
vacuum when irradiated by intense electromagnetic
radiation is characterized by a number of unique prop-
erties that may define the future uses of this plasma.
The plasma turns out to be substantially nonequilib-
rium, with its density reaching the value of 1016 cm–3.
The volume and shape taken up by the plasma may vary
depending on the shape and size of the microwave
JOURNAL OF EXPERIMENTAL 
beam and the target. In the experiments described in
this paper, the plasma had the form of a thin disk
approximately 10 cm in diameter.
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Abstract—A set of gasdynamic equations is given in the general form for matter with an arbitrary equation of
state in the case when the entropy equation is used instead of the energy equation. In the ideal gas approximation
in view of viscosity, a numerical investigation is performed of non-steady-state two-dimensional flows in a
channel with a cavity. The calculation results have demonstrated that, given the flow velocity and the geometry
of channel and cavity, pressure pulsations arise that are due to the departure of vortices from the cavity into the
main flow. The values of the amplitude and frequency of pressure pulsations are determined. If measures are
taken aimed at limiting the departure of vortices from the cavity, for example, a baffle is installed to restrict the
interaction between the main flow and gas in the cavity, one can considerably increase the flow velocity in the
channel, unaffected by the cavity. Such non-steady-state flows may be realized in MHD-generator channels,
resonators of gas flow lasers, gas ducts for ventilation and gas transport systems, mufflers, whistles, etc. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

By now, a large number of experimental and predic-
tion studies have been performed to investigate sub-
sonic steady-state flows in smooth-walled channels of
different shapes [1]. Such flows are realized in the sub-
sonic part of a two-dimensional Laval nozzle, in vane
channels of turbines and compressors, in chemical
reactors for the deposition of thin films, etc. Along with
this, the study of non-steady-state flows is of certain
scientific and practical interest. Here, one can single
out the problem of gas flow past a cavity in a channel.
The solution of this problem will help explain the orig-
ination of vortices in liquid or gas flows and study in
detail the generation of the so-called vortex sound.
Numerous technical devices exist in which at least one
wall has a closed or open cavity, which may bring about
the emergence of the non-steady-state flow mode in the
device. Such devices include MHD-generator chan-
nels, resonators of gas flow lasers, whistles, gas ducts
for ventilation and gas transport systems, mufflers, and
others. In a number of cases, for example, in pulse-peri-
odic gas lasers during the imposition of discharge, the
flow in the resonator is non-steady-state and character-
ized by the inleakage of flow into the cavity and by pos-
sible emergence of acoustic disturbances in the flow.
The treatment of such flows will enable one to estimate
the effect of the non-steady-state characteristics of flow
or of the geometry of the flow passage, for example, on
the parameters of radiation being generated, on the
electrode processes in lasers and MHD generators, and
so on. The parameters of such systems may be esti-
1063-7761/01/9206- $21.00 © 20991
mated analytically only in simple cases. The numerical
calculation of such flows helps in analyzing the dynam-
ics of disturbances in gas and liquid, calculating the
parameters of acoustic disturbances, and studying the
effect on these parameters of the characteristics of flow
in the real geometry of the flow passage.

At present, mathematical simulation is widely used
for numerical analysis of hydrogasdynamic problems;
fairly extensive literature is available on the subject.
The monograph by Godunov et al. [2] may be cited as
an example. The set of equations employed includes
equations of conservation of mass, momentum, and
total energy and is closed by the equation of state. The
energy equation may be written in several equivalent
forms; however, it is usually written in terms of specific
energy or temperature. In [3, 4], the equation for
entropy (which has a simpler form) was used instead of
the energy equation, and the density ρ (or pressure P)
and the entropy S were used as the independent thermo-
dynamic variables. This approach is more advisable
because, for example, under conditions of adiabatic
contractions and expansions, only ρ changes in the
variables, while in the case of (ρ, T) both variables
change (ρ, S). We will also adhere to this approach.
Given in this paper is the set of equations in the vari-
ables (ρ, S) and (P, S) in the general case of matter with
an arbitrary equation of state. Within the ideal gas
model in view of viscosity, numerical simulation was
performed of subsonic gas flow in a square channel
with an inner cavity, simulating the flow passage of the
resonator of a gas laser. It is the objective of this study
001 MAIK “Nauka/Interperiodica”
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to perform a numerical investigation of non-steady-
state flows in a channel with closed cavity, which may
cause the emergence of acoustic vibrations.

2. EQUATIONS OF GAS DYNAMICS

The set of equations of gas dynamics includes the
continuity equation

(1)

the equation of motion

(2)

and the energy equation, which may be written in sev-
eral equivalent forms, with the simplest form being

(3)

Here, ρ is the density; u is the velocity vector; P is the
pressure; T is the temperature; S is the entropy; and F
and Q denote the density of power and thermal effect on
the flow due to external sources and dissipation pro-
cesses (viscosity and thermal conductivity), respec-
tively.

The following arguments may be advanced in favor
of the equation of entropy instead of energy: first, the
equation for entropy is written in a simpler form, namely,
only convective transfer S on space coordinates is
observed in the absence of heat sources; and, second, in
processes with constant entropy, the set of equations (1)–
(3) reduces in fact to the solution of two equations (1) and
(2). The model being treated may be especially efficient
when used in a weakly compressed liquid, i.e., when
the velocity of gas particles is much lower than that of
sound. This enables one to study the propagation of
hydrodynamic disturbances both in gas and in liquid.
This set of equations will be especially simple in the
case when the velocity of sound is constant and no
source-related terms are present.

We will use the equation defining the velocity of
sound as the equation relating the pressure and density,

(4)

The velocity of sound c and the quantities appearing in
the set of equations when this replacement is made are
calculated using the thermodynamic functions. In the
general case of matter with an arbitrary equation of
state, (ρ, u, S) or (P, u, S) may be selected as indepen-
dent variables for the set of equations (1)–(4). We will
discuss these two cases in more detail. Assume that
(ρ, u, S) are selected as independent variables and the
internal energy E is the preassigned function of ρ and

dρ
dt
------ ρdiv u+ 0,=

du
dt
------ 1

ρ
---+ —P

1
ρ
---F,=

dS
dt
------

Q
ρT
-------.=

c2 ∂P
∂ρ
------ 

 
S

= .
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S: E = E(ρ, S). Then, in view of Eq. (4), we have for the
pressure gradient 

In view of this, the set of equations (1)–(3) will be writ-
ten as

(5)

where dϕ = dρ/ρ. In so doing, the velocity of sound, the
temperature, and the derivative of pressure with respect
to entropy at constant density are determined from the
thermodynamic relations

(6)

In the case of ideal gas, the expression for internal
energy has the form

(7)

where E0, S0, and ρ0 are some reference values of
energy, entropy, and density, respectively; γ is the adia-
batic exponent; CV = R/(γ – 1); and R is the gas constant.
Then, we use formulas (6) to derive expressions for
temperature, velocity of sound, and the partial deriva-
tive of pressure with respect to entropy,

The pressure is determined using the equation of state

The set of equations (5) is written in the variables
(ϕ, u, S), which may be used for calculation in the case
of a homogeneous medium. In the case of multicompo-
nent media, it is more convenient to replace ρ by P,
because the pressure is continuous on the contact sur-
face. We will write the set of gasdynamic equations in
the independent thermodynamic variables (P, u, S) and
assume that the enthalpy h is preassigned as a function
of P and S. Then, the equation of state will be repre-
sented as ρ = ρ(P, S). We differentiate this expression

—P c2—ρ=
∂P
∂S
------ 

 
ρ

+ —S.

dϕ
dt
------ div u+ 0,=

du
dt
------ c2—ϕ 1

ρ
--- ∂P

∂S
------ 

 
ρ
—S+ +

1
ρ
---F,=

dS
dt
------

Q
ρT
-------,=

c2 ∂
∂ρ
------ ρ2 ∂E

∂S
------ 

 
S S

= ,
∂P
∂S
------ 

 
ρ

∂2E
∂ρ∂S
-------------ρ2,=

T
∂E
∂S
------ 

 
ρ

= .

E E0
ρ
ρ0
----- 

  γ 1– S S0–
CV

-------------- 
  ,exp=

T T0
ρ
ρ0
----- 

  γ 1– S S0–
CV

-------------- 
  , c2exp γRT ,= =

1
ρ
--- ∂P

∂S
------ 

 
ρ

γ 1–( )T .=

P ρRT .=
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with respect to time and take into account Eq. (4) defin-
ing the velocity of sound to derive

In view of this, Eqs. (1)–(3) transform to

(8)

The velocity of sound, the temperature, the density, and
the derivative of density with respect to entropy at con-
stant pressure are determined from the thermodynamic
relations

(9)

In the case of ideal gas, the expression for enthalpy has
the form

where h0 is some reference value of enthalpy, and CP =
Rγ/(γ – 1). Then, formulas (9) yield

The equation of state enables us to determine the den-
sity as

In Eqs. (5) and (8), the equations of motion and conti-
nuity without sources form a set of equations of nonlin-
ear acoustics. Energy equation (3) may be solved inde-
pendently if the velocity of sound is known at every
space point or if a relation is available that relates the
velocity of sound to hydrodynamic quantities (for
example, the Poisson adiabat).

3. FORMULATION OF THE PROBLEM

We treat, within the framework of the equations
given above, a two-dimensional problem of gas flow in
a square channel with a closed cavity in a side wall. The
singularity of the effects observed in this case consists

dρ
dt
------

1

c2
----dP

dt
-------=

∂ρ
∂S
------ 

 
P

+
dS
dt
------.

1

c2
----dP

dt
------- ρdiv u+

∂ρ
∂S
------ 

 
P

Q
ρT
-------,–=

du
dt
------

1
ρ
---—P+

1
ρ
---F,=

dS
dt
------

Q
ρR
-------.=

c2 1

ρ2
-----/

∂2h

∂P2
--------- 

 
S

,
∂ρ
∂S
------ 

 
P

– ρ2 ∂2h
∂P∂S
-------------,–= =

T
∂h
∂S
------ 

 
P

,
1
ρ
--- ∂h

∂ρ
------ 

 
S

= = .

h h0
P
P0
----- 

  γ 1–( )/γ
=

S S0–
CP

-------------- 
  ,exp

T T0
P
P0
----- 

  γ 1–( )/γ
=

S S0–
CP

-------------- 
  , c2exp γRT ,=

∂ρ
∂S
------ 

 
P

ρ
R
---.–=

ρ P/RT .=
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in that, on the one hand, the cavity is an acoustic reso-
nator with eigenfrequencies νi and, on the other hand,
vortices may arise and be carried away by the flow of
gas or liquid past that cavity. The periodic departure of
the formed vortices from the cavern will lead to pres-
sure pulsations. The eigenfrequencies of the acoustic
resonator are defined by its characteristic dimensions lr

and velocity of sound c and may be represented in the
general form as [4]

where φ(cαi/lr) is some numerical coefficient and αi is
the damping factor for vibrations with the frequency νi.
The frequency of pressure pulsations, governed by the
periodic departure of vortices arising in the cavity, is
proportional to the quantity VF/lr , where F is some
coefficient depending on geometry. This system may be
treated as a self-oscillatory nonlinear system [4]; i.e.,
the resonator eigenfrequencies and the formation of a
vortex structure in the flow are interrelated. We will treat
such a system within the ideal-gas model. For this pur-
pose, we will write the set of gasdynamic equations (5) in
view of Eqs. (6) and (7) in the form

(10)

where Q is the heat released by the work of viscous
forces, µ is the viscosity coefficient, and λ is the ther-
mal conductivity coefficient for gas. We will restrict
ourselves to the case in which the gas flow velocity is
much lower than the velocity of sound c0. In this case,
one can ignore the heat released under conditions of
viscous dissipation. We will likewise ignore the thermal
conductivity. The term related to viscosity is determin-
ing in a very thin layer. For the characteristic geometric
dimensions and gas dynamic parameters treated by us,
the thickness of laminar boundary layer was δ ≈ 0.003 m
[5]. In view of these assumptions, the set of equations
(10) will be written as

(11)

ν i
c
lr

---φ c
lr

---α i 
  ,=

dϕ
dt
------ div u+ 0,=

du
dt
------ c2—ϕ+

µ
ρ
---∆u=

1
3
---µ

ρ
---— div u( ),+

dS
dt
------

λ
ρ
---∆T

T
-------=

Q
ρT
-------,+

dϕ
dτ
------

∂V x

∂x
---------

∂Vy

∂y
---------

βV x

x
---------+ + + 0,=

dV x

dτ
--------- ∂ϕ

∂x
------+

ν
c0
----

∂2V x

∂x2
-----------

∂2V x

∂y2
-----------+

 
 
 

=

+
ν

3c0
--------

∂2V x

∂x2
-----------

∂2Vy

∂y∂x
------------+

 
 
 

,
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where β = 0, 1 for plane and cylindrical geometry,
respectively; Vx and Vy are the components of the veloc-
ity vector u along the x and y axes, respectively, nor-
malized to the sound velocity c0; and ν= η/ρ is the kine-
matic viscosity. The variable τ = c0t is introduced
instead of time. The set of equations (11) is used to per-
form a numerical analysis of the dynamics of nonsta-
tionary interaction of gas flow in a square channel with
a cavity. We will write Eqs. (11) in a compact matrix
form,

(12)

where

The initial conditions are preassigned in the form

The form of the boundary conditions depends on the
concrete formulation of the problem.

4. NUMERICAL MODEL

The total approximation technique [9] is used to find
the numerical solution of Eq. (12). Two problems are
solved successively at the step ∆τ,

(13)

(14)

dVy

dτ
--------- ∂ϕ

∂y
------+

ν
c0
----

∂2Vy

∂x2
-----------

∂2Vy

∂y2
-----------+

 
 
 

=

+
ν

3c0
--------

∂2Vy

∂y2
-----------

∂2V x

∂x∂y
------------+

 
 
 

,
∂S
∂t
------ 0,=

dΦ
dτ
------- AΦ ψ+ + 0,=

Φ
ϕ
V x

Vy 
 
 
 
 

, A

0
∂
∂x
------ ∂

∂y
-----

∂
∂x
------ 0 0

∂
∂y
----- 0 0

,= =

Ψ

βV x

x
---------

ν
c0
----∆V x

ν
3c0
--------∂div V

∂x
-----------------+

ν
c0
----∆Vy

ν
3c0
--------∂div V

∂y
-----------------+

.=

Φ x y 0, ,( ) Φ0 x y,( ).=

∂Φx

∂τ
--------- Ax

∂Φx

∂x
--------- Ψx+ + 0,=

∂Φy

∂τ
--------- Ay

∂Φy

∂y
--------- Ψy+ + 0,=
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where 

For Eqs. (13) and (14), use is made of the explicit two-
step difference scheme of [6–8] modified for this prob-
lem,

where

Φx
ϕ
V x 

 
 

= , Φy
ϕ
Vy 

 
 

,=

Ax
V x 1

1 V x

= , Ay
Vy 1

1 Vy

,=

Ψx

βV x

x
---------

ν
c0
---- ∆V x

∂divV
3∂x

---------------+ 
 

,=

Ψy

0

ν
c0
---- ∆Vy

∂divV
3∂y

---------------+ 
  .=

Φ̃xk 1±
τ ∆τ+ Φxk 1±

τ=  ± Bxk 1±
τ Φxk 1±

τ Φxk
τ–

∆x
-----------------------------∆τ Ψxk

τ ∆τ ,+

Φ̃yk 1±
τ ∆τ+ Φyk 1±

τ=  ± Byk 1±
τ( )

Φyk 1±
τ Φyk

τ–
∆x

-----------------------------∆τ Ψyk
τ ∆τ ,+

Bxk 1±
τ

V xk 1± V xk+
2

---------------------------- 1

1
V xk 1± V xk+

2
----------------------------

,=

Byk 1±
τ

Vyk 1± Vyk+
2

---------------------------- 1

1
Vyk 1± Vyk+

2
----------------------------

,=

Ψxk
τ

βV x

x
---------

ν ∆V x
∂div V

3∂x
----------------+ 

 
k

,=

Ψyk
τ

0

ν ∆Vy
∂div V

3∂y
----------------+ 

 
k

,=
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The expressions for  and  are similar to

those for  and , but are constructed with due

regard for the form of  and . 
The foregoing scheme is of the second order of

accuracy with respect to the space coordinates and of
the first order with respect to time [9]. The conditions
of stability of the scheme are valid with a margin.

We will calculate the boundary conditions using
Eqs. (1) and (2) written in the characteristic form,

(15)

For visualizing the velocity field, we will calculate
the quantities

and construct vector diagrams of the vector field ( , ).
By way of a test, a calculation was performed of

one-dimensional flat, cylindrical, and spherical sound
pulses on the condition that the velocity of sound is much
higher than the rate of displacement of gas particles. Such
calculations were performed in accordance with the pro-
cedure described in [6]. The results obtained (gasdynamic
parameters of pulses) were compared with analytical
expressions [10], and the laws of conservation in this
case were checked for validity. In order to check the
computer codes, the flow rate in the inlet and outlet
cross sections was monitored. The calculation results
demonstrated that, at τ ≥ 20, the values of flow rate
agreed within 1%. The viscous steady-state plane-par-
allel flow in the channel was calculated as well, and a
parabolic velocity profile was obtained to a good accu-
racy [12].

5. NUMERICAL CALCULATION RESULTS
Within the problem set, we will treat the flow of air

in a square channel with a cavity in a side wall, which
simulates the flow passage of a gas laser. A schematic
diagram of such a device is given in Fig. 1. The follow-
ing geometric dimensions and parameters of flow and

Φ̃˜ xk

τ ∆τ+
Φxk

τ=  + Axk
τ ∆τ+ Φ̃xk 1+

τ ∆τ+ Φ̃xk 1–
τ ∆τ+

–
2∆x

-----------------------------------∆τ Ψ̃xk
τ ∆τ+ ∆τ ,+

Φ̃˜ yk

τ ∆τ+
Φyk

τ=  + Ayk
τ ∆τ+ Φ̃yk 1+

τ ∆τ+ Φ̃yk 1–
τ ∆τ+

–
2∆x

-----------------------------------∆τ Ψ̃yk
τ ∆τ+ ∆τ ,+

Axk
τ ∆τ+ V xk 1

1 V xk

,= Ayk
τ ∆τ+ Vyk 1

1 Vyk

.=

Ψ̃xk
τ ∆τ+ Ψ̃yk

τ ∆τ+

Ψxk
τ Ψyk

τ

Φ̃xk 1±
τ ∆τ+ Φ̃yk 1±

τ ∆τ+

dϕ
dτ
------

dV x

dτ
---------±

V xβ
x

---------+ 0,
dx
dτ
------ V x 1,±= =

dϕ
dτ
------

dVy

dτ
---------±

Vyβ
y

---------+ 0,
dy
dτ
------ Vy 1.±= =

V x
V x

V x
2 Vy

2+
----------------------,= Vy

Vy

V x
2 Vy

2+
----------------------=

V x Vy
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cavity were selected for calculation: the channel length
along the flow L = 0.3 m, the channel width H = 0.1 m,
the cavity length lc = 0.13 m, the cavity height hc =
0.04 m, and the length and height of the throat connect-
ing the channel and the resonator cavity lth = 0.1 m and
hth = 0.03 m. The pressure Pout at the channel outlet was
taken to be 0.1 atm with a temperature of 300 K. The
inlet velocity was varied from 10 to 100 m/s. The cal-
culations were performed in a square mesh grid. The
step in space was assumed to be ∆h = 0.002 m, and the
step in time ∆τ = CC∆h, where CC is the Courant num-
ber. It was assumed that CC = 0.9 [8, 9]. The calculation
was performed during a period of time τ ≈ 0–0.02 s. In
the inlet cross section, the velocity was preassigned,
and in the outlet cross section, the pressure. With t = 0
in the calculation region, zero velocity was preas-
signed, and the pressure was assumed to be equal to the
outlet pressure. The flow relaxed to a steady state in
periods of time of about L/V. The transition process
caused pressure pulsations which either decayed or did
not decay. It has been assumed that, if the pulsation
amplitude continues to decrease over periods of time
τ @ L/V, such a vibrational process is decaying, and
conversely, if the amplitude did not change with time,
pressure pulsations occur in the flow. Also performed
for monitoring were calculations during a period of time
considerably exceeding L/V (≈0.6 s), whose results dem-
onstrated the presence or absence of pressure pulsa-
tions, depending on the selected parameters.

The calculation results demonstrate that, in the
entire range of the treated parameters of the problem,
the pressure oscillation with a frequency ν ≈ 800 Hz
arises during the initial period in the cavity over its
entire depth, with the amplitude of this oscillation
reaching a value of 8% pressure at the channel outlet.

lth

hc

hth

lc

L

A
B

C

y

x
H

1

2

u

Fig. 1. The channel and cavity scheme: L and H, the channel
length and width, respectively; lc and hc, the length and
width of the resonator cavity, respectively; lth and hth, the
length and width of the throat connecting the channel and
resonator cavity, respectively. The broken line indicates two
baffles (1, 2). The circles indicate the points A, B, and C,
where the pressure pulsations are calculated.
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In the course of time, depending on the velocity of flow
in the channel, this oscillation may either decay (at V ≤
40 m/s) or its amplitude reaches some steady-state
value, and this oscillation is imparted to the main flow
(V ≥ 60 m/s). Figures 2 and 3 give fragments of the pat-
tern of velocity field ( , ). An analysis of the
velocity field in the channel and cavity reveals that a
vortex forms in the cavity. With a main flow velocity of
up to 40 m/s, this vortex is in the cavity and its center is
stationary (Fig. 2). When the velocity increases from 40
to 60 m/s, the vortex moves in the cavity; simulta-
neously, much smaller vortices are formed in the cavity.
The vortices, which form in the vicinity of the flow, are
carried periodically one by one into the main flow;
therefore, as the velocity increases, the decay of pres-
sure pulsations becomes weaker. When the inlet veloc-
ity reaches a value of about 60 m/s, all of the vortices
formed in the cavity depart periodically one by one into

V x Vy

Fig. 2. A fragment of the pattern of velocity field ( , )
in the cavity and channel with the inlet velocity of flow of
20 m/s.

Vx Vy

–0.08

–0.04

0

0.04

0.08

δP
/P

ou
t

0 0.002 0.004 0.006 0.008 0.010
t, s

Fig. 4. The pressure pulsations (δP/Pout) as a function of
time, with the inlet velocity of 60 m/s, at the points A, B, and
C (Fig. 1). Dot-and-dash curve, at point A; solid curve, at
point B; dashed curve, at point C.
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the main flow. In so doing, the secondary vortex that
forms at the left-hand wall of the throat is comparable
in magnitude to the initial vortex (Fig. 3). From this
moment on, the pressure oscillation ceases to decay.
The flow in the channel starts “making noise.” The cal-
culation results demonstrate that the period of repeti-
tion of the velocity field pattern corresponds to a fre-
quency of approximately 800 Hz. One can assume that
the periodic departure of vortices from the cavity main-
tains the pressure oscillation. Figure 4 gives the pat-
terns of pressure distribution as a function of time at the
points A, B, and C (Fig. 1). One can see that the oscil-
lation occurs with a frequency of ≈800 Hz. The calcu-
lations performed with a finer mesh grid produced the
same results.

We performed calculations of flow as a function of
the geometric dimensions of the cavity. It has been
found that an increase in the cavity height hc by approx-

Fig. 3. A fragment of the pattern of velocity field ( , )
in the cavity and channel with the inlet velocity of flow of
60 m/s.

Vx Vy

Fig. 5. A fragment of the pattern of velocity field ( , )
in the cavity and channel in the presence of baffles on the
side of undisturbed flow. The inlet velocity of flow, 60 m/s.

Vx Vy
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imately 20% causes very little change in the frequency
but leads to a decrease in the value of critical velocity
at which the pressure pulsations cease to decay. In our
case, this critical velocity is 20 m/s. Analogously, a
20% increase in the width of the resonator cavity leads
to a decrease in the critical velocity by half.

The calculation results have demonstrated that one
can substantially reduce the pressure pulsations if a thin
baffle 1 1 cm in size or less is installed between the cav-
ity and channel on the side of undisturbed flow at the
beginning of the cavity (see Fig. 1). As a result, the baf-
fle stabilizes the initial flow in the cavity and prevents
the origination of vortices in the vicinity of the main
flow in the cavity. Therefore, the velocity at which the
pressure oscillation decays increases to 100 m/s (no
calculations were performed at higher values of veloc-
ity). The pattern of velocity field in this case is similar
to that given in Fig. 2. The provision of yet another baf-
fle (shown at 2 in Fig. 1) at the end of the cavity no
longer affects the behavior of flow in the channel; how-
ever, two conjugate vortices are formed in the cavity
(Fig. 5).

Note that, because the cavity dimensions are not
small compared with the region under investigation, it
would be more correct to treat the entire region as a
complex acoustic resonator, when the channel length
along the flow L and the channel width H affect the crit-
ical velocity and the frequency of pressure oscillation.
Therefore, the obtained results are qualitative and, for a
concrete device, calculations must be made with due
regard for concrete geometry.

This procedure is also suitable for investigating a
non-steady-state flow of liquid in a channel with a cav-
ity, if the equation of state for ideal gas is replaced by
the respective equation for liquid in the form of Tate’s
formula [11].

6. CONCLUSION
In this paper, a set of gasdynamic equations is given

in the general form with an arbitrary equation of state
for the case when the entropy equation is used instead
of the energy equation. In the ideal gas approximation
in view of viscosity, a numerical investigation is per-
formed of a non-steady-state two-dimensional subsonic
flow in a channel with a cavity, simulating the flow pas-
sage of the resonator of a gas laser. It has been found
that, in such cases, given some velocity of incident
flow, pressure pulsations may arise in this flow that are
defined by the characteristics of undisturbed flow and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
by the geometry of the flow passage. The frequency and
amplitude of these pulsations have been analyzed. It
has been found that a 20% variation of the geometric
dimensions of the cavity causes the critical velocity, at
which acoustic disturbances occur, to vary by a factor
of two. The calculation results have demonstrated that
the pressure oscillation is associated with the departure
of vortices arising in the cavity and that the frequency
of this oscillation coincides with the frequency of
departure of vortices from the cavity. The provision of
baffles in the closed cavity in the vicinity of the flow
may considerably reduce the effect of the cavity on the
main flow and increase the critical velocity of flow at
which pressure pulsations arise in the channel.
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Abstract—The results of experiments devoted to the study of spectral, spatial, and time characteristics of a
spectrally bright point x-ray source based on a vacuum diode with a laser-plasma cathode and a titanium needle
anode with a photon energy approximately equal to 4.5 keV are presented. The experimental results revealed a
considerable difference between the electron emission from laser plasma in a strong electric field and the explo-
sive electron emission and demonstrated the effectiveness of laser plasma as an electron source. The optimiza-
tion of the laser radiation power density, the accelerating voltage, and the interelectrode spacing made it possi-
ble to create a point x-ray source whose spectral brightness exceeds available sources in the class of small-size
pulse x-ray instruments (tubes with explosive cathodes). It has been proved experimentally that the maximum
contrast of the characteristic lines of the anode material is attained in the case of an optimal choice of acceler-
ating voltage. The x-ray source has the following parameters: (1) spectral brightness of the K-lines of titanium
of the order of 1021 photons/cm2 s sr keV; (2) emitting region size of 250 µm; and (3) laser pulse duration less
than 20 ns. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The microscopy of stationary and moving objects
with high gradients of density and refractive index
(which include crystalline structures, high-temperature
plasma, and biological media) requires the use of
pulsed, spectrally bright, and high-contrast sources of
x-ray radiation. Nowadays, x-ray tubes with explosive
cathodes, as well as plasmas produced by a high-power
laser radiation, are widely used for generating short
x-ray pulses. Each of these sources undoubtedly has its
own advantages and drawbacks. The broad spectrum of
laser plasma radiation, the considerable amount of
power required for attaining the high electron tempera-
ture, and the displacement of the radiation maximum to
the range of a few kiloelectronvolts hamper the creation
of a small-size, high-efficiency, and contrast source of
x-ray quanta. In x-ray tubes with an explosive electron
emission, the lower working voltage threshold is not
lower than 50 kV, which deteriorates the contrast of the
characteristic line emitted by elements with a small
atomic number. Stable explosive electron emission is
impossible in the range of accelerating voltages ≤20 kV;
this complicates the synchronization of the source with
diagnostic equipment. For this reason [1–4], one of the
promising trends in creating a small-size, spectrally
bright, and contrast x-ray source is the study of a vacuum
diode with a laser-plasma cathode, which emits radiation
in the wavelength range determined by the anode mate-
rial. X-ray diodes with laser-plasma cathodes have the
following advantages.
1063-7761/01/9206- $21.00 © 20998
(1) The electron temperature, concentration, and
expansion velocity of a laser plasma, which exceed the
corresponding parameters of a cathode plasma formed
during explosive electron emission by at least an order of
magnitude (under similar conditions for applied voltage
and electrode geometry) determine the high emissivity of
a laser-plasma cathode, thus increasing the total discharge
current and the spectral brightness of the source.

(2) A high emissivity of a laser-plasma cathode is
observed even for low values of working voltage. For
example, for U = (3–4)U0 (U0 is the excitation thresh-
old of the characteristic radiation from the anode mate-
rial), the ratio of the characteristic radiation intensity to the
bremsstrahlung intensity attains its peak value [5]. As the
voltage increases, the radiation yield in the K-lines attains
saturation or even starts to decrease [6]. At the same time,
the bremsstrahlung yield only increases with the volt-
age. Consequently, the maximum contrast of radiation
in the K-lines is attained by applying the optimum volt-
age used in our experiments.

(3) The possibility of operating in the point source
mode is ensured by a needle-shaped anode.

(4) The control of the accelerating voltage and the
use of various materials for the anode make it possible
to obtain high-contrast x-ray line emission in a fairly
wide spectral range.

(5) Finally, such diodes are distinguished by stabil-
ity of the output parameters, simplicity of phasing with
diagnostic equipment, and low operation costs.
001 MAIK “Nauka/Interperiodica”
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2. ESTIMATION OF THE EMISSIVITY
OF A LASER-PLASMA CATHODE

When laser radiation with a low power density (the
characteristic fluxes used in our experiments are
1010–1012 W/cm2) acts on a plane target, the character-
istics of the formed plasma may be estimated to a high
degree of accuracy using self-similarity [7]. For such
fluxes, the laser energy is absorbed in the plasma
corona owing to the backward bremsstrahlung mecha-
nism. In this case, the electron temperature of the
plasma in the absorption region is defined as

where P is the laser radiation density at the target in
W/cm2, λ is the laser wavelength in micrometers, A and
Z are the atomic mass and number of the target,  is
the average charge of plasma ions, Λ is the Coulomb
logarithm, and L is the scale of density inhomogeneity
in micrometers, corresponding to the diameter of the
focal spot of the laser beam (in the case of a plasma
pulse of a nanosecond duration).

Thus, for P = 1010 W/cm2 and λ = 1 µm, the temper-
ature of the laser plasma at the aluminum target is 30–
35 eV. A further expansion of the plasma cloud leads to
its adiabatic cooling, and the electron temperature at a dis-
tance of several millimeters from the target is T ≤ 10 eV.
The total number of particles in the plasma is given by [8]

where EL is the laser radiant energy, γ is the adiabatic
exponent equal to 1.3–1.4, k is the Boltzmann constant,
and the coefficient 1/2 takes into account the kinetic
energy of the plasma. For the degree of ionization  =
3–4, the total number of electrons in the plasma may be
as large as 3 × 1015.

If we apply voltage U to a spherical plasma cloud,
the number of electrons escaping from the cloud due to
the acceleration of charges in the external electric field
is such that their charge Q = UR, where R is the radius
of the cloud. Coulomb forces prevent a further emission
of electrons from the cloud. The current increases due
to an increase in the number of electrons being acceler-
ated:

where v  is the plasma expansion velocity. This relation
shows that for a constant accelerating voltage, the dura-
tion of the x-ray pulse is determined by the laser plasma
expansion velocity. For R = 2 mm (half the anode–cathode
distance) and U = 20 kV, the charge is Q = 13.3 CGS
units, which is equivalent to 3 × 1010 electrons. In this
connection, only a small fraction (~10–5) of the total
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number of electrons present in the plasma participate in
the generation of x-rays at the anode. It should be noted,
however, that the above estimate is rough. In order to con-
struct a more comprehensive model, we must consider a
number of factors, which are associated with

(a) the limitations introduced by the characteristics
of the electric circuit of the source (the upper bound
imposed on the number of electrons participating in the
generation of x-rays, by the capacitance of the dis-
charge circuit and the effect of the circuit inductance on
the shape and duration of a current pulse);

(b) the functional dependence of the perveance (pro-
portionality factor in the 3/2 law) of the electron flow
on the source geometry, the velocity of the current-
removal boundary [9], and also with the possible non-
monotonic potential distribution in the interelectrode
space [10];

(c) a decrease in the volume charge in the gap
between the electrodes due to levelling out of the con-
ductivities of the metal and the laser plasma [11], lead-
ing to an increase in the emissivity of the cathode;

(d) recombination during the expansion of laser
plasma, which in turn leads to a decrease in the number
of electrons being accelerated in the interelectrode gap.

3. EXPERIMENT

The experimental setup is presented in Fig. 1. The
discharge circuit of the source [1] possessed a low
inductance and consisted of an earthed titanium (alumi-
num) target serving as a cathode and a titanium anode
having the shape of a cone with a tip diameter of 250 µm
and a 5-nF capacitor whose charge, corresponding to
10–4 C (1015 electrons for U = 20 kV), limited the num-
ber of electrons from the laser plasma, which were
accelerated by the electric field. The voltage across the
capacitor was maintained by a dc voltage source in the
range 3–26 kV. The charging time of the capacitor was

e
_

λ = 1.06 µm

Anode, Ti

Cathode, Ti

+ 22 kV

Fig. 1. Geometry of an x-ray source with a titanium anode
and a laser-plasma titanium cathode.
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determined by a high-resistance resistor of 100 MΩ
which excluded the effect of the voltage source on the
discharge of the circuit. The current in the diode circuit
was measured with the help of the Rogowski loop and
independently by the method of voltage drop across the
standard low-inductance resistor of 10 mΩ. We used a
neodymium laser (λ = 1.06 µm) with the following
parameters: pulse duration of 10 and 30 ns and the
energy variation in the range 10–3–1 J. The laser beam was
focused to the plane anode to form a spot with a radius of
approximately 100 µm. The maximum power density of

2.748 2.752 2.756
λ, Å

0.7

0.8

0.9

1.0
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1.4
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si
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TiKα1 TiKα2

Fig. 2. Spectrogram and densitogram of emission of doublet
lines Kα1 (2.749 Å) and Kα2 (2.752 Å) by a titanium anode.
The spectrogram was obtained by firing 30 laser pulses on
crystalline mica spectrograph with double focusing in the
VII order of reflection. The radius of the spherical surface of
the crystal R = 100 mm; a = 111.5 mm and b = 96.6 mm are
the distances from the center of crystal bending to the source
and the photographic film, respectively. The backward lin-
ear dispersion Dx = 7.373 × 10–3 Å/mm, the working voltage
of the source is 22 kV, the laser pulse energy EL = 0.27 J, the
pulse duration τ = 10 ns, the laser beam diameter at the tar-
get is 150 µm, and the power density P = 1.5 × 1011 W/cm2.
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laser radiation at the target was P = 1012 W/cm2. The pres-
sure in the discharge chamber was 10–5 torr. Electrons
emitted from the laser plasma formed at the cathode
were accelerated by the electric field towards the tita-
nium anode, initiating x-ray radiation in the character-
istic K- and L-lines of titanium as well as the x-ray
bremsstrahlung with a peak at λ [nm] = 1.86/U (U is
measured in kilovolts) [12].

The x-ray radiation intensity was measured with the
help of silicon p–i–n diodes (Quantrad 100-PIN-250).
The diodes facing the titanium anode were protected by
filters with a cutoff energy approximately equal to
3.6 keV (100 µm of beryllium and 6 µm of aluminum)
and 5.2 keV (200 µm of beryllium and 20 µm of alumi-
num). In turn, the diode intended for measuring the
intensity of radiation emitted by the laser plasma was
placed behind the anode of the source. The characteris-
tic radiation and bremsstrahlung emitted by the anode
in the direction of the p–i–n diode were cut by a spe-
cially bent lead screen. The photosensitive surface of
the diode was coated with a mylar film. The quantum
yield of x-rays in the K-lines of the anode (hν(Kα) =
4.51 keV and hν(Kβ) = 4.93 keV) was determined from
the difference in signals from the diodes facing it from the
known value of the response, equal to 0.2 C/J. The spatial
distributions of x-ray radiation emitted by the laser
plasma (cathode) and the titanium anode were regis-
tered by a multiframe pinhole camera with filters 10 µm
of beryllium (the cutoff energy E ≈ 1 keV) and 10 µm
of beryllium with 15 µm of titanium (E ≈ 3.8 keV) on
UVVR and DEF x-ray films. X-ray bremsstrahlung was
registered on a DEF film (which is more sensitive to hard
radiation) mounted behind the UVVR film serving as an
extra filter. The pinhole camera was arranged relative to
the electrodes in such a way that the magnification of
the objects was Γ≈ 4.

The emission spectrum (Fig. 2) in the region of
K-lines was recorded on the UVVR film with the help
of a crystalline mica spectrograph (with a double inter-
planar spacing of 19.9 Å) with double focusing. The
electron temperature of the cathode plasma was mea-
sured from the peak of the spectral distribution with the
help of an x-ray spectrograph based on a transmission
diffraction grating with a period of 1.4 µm [4]. The dis-
persion and spectral resolution of such a spectrograph
were 20 Å/mm and ~10 Å, respectively.

4. DISCUSSION OF EXPERIMENTAL RESULTS

In our experiments, we studied the spectral, spatial,
and time characteristics of a pulsed point x-ray source
based on a vacuum diode with a laser-plasma cathode and
a needle-shaped anode. In the case of a titanium anode and
a laser-radiation power density of 4.2 × 1011 W/cm2 at the
anode, the spectral brightness of the radiation source in
the K-lines was 1.3 × 1021 photons/cm2 s sr keV, which
corresponds to 1.6 × 1011 x-ray quanta per pulse. The
radiation was formed by the doublet Kα1 (2.749 Å) and
 AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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(a)

(b)

(c)

(d)

Anode (Ti) Cathode (Ti)

4 mm

Fig. 3. Spatial distribution of the x-ray radiation emitted by
the anode and laser plasma. The working voltage of the
source is 22 kV, the laser radiant energy EL = 0.33 J, and the
pulse duration is 10 ns. The separation from the source to
the pinhole camera aperture is 1 cm and the magnification
Γ = 4. The images were obtained after 15 shots. (a) UVVR
film, Be filter of thickness d = 10 µm, the diameter D of the
camera aperture is 130 µm, the diameter 2r of the focal spot of
the laser beam at the target is 180 µm, and the density P of laser
radiation is 1.3 × 1011 W/cm2; (b) UVVR film, Be, d =
10 µm, D = 190 µm, 2r = 100 µm, P = 4.2 × 1011 W/cm2;
(c, d) Be, d = 10 µm, and Ti, d = 15 µm, D = 130 µm, 2r =
100 µm, P = 4.2 × 1011 W/cm2; UVVR film (c), and DEF
film mounted behind the UVVR film (d).
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Kα2 (2.752 Å) and the Kβ line (2.514 Å). Microdensito-
metric measurements proved that bremsstrahlung is
negligibly weak as compared to the characteristic radia-
tion in the range 2.4–3 Å (Fig. 2). An analysis of the spa-
tial distribution of x-ray radiation emitted by a titanium
cathode and anode revealed that for a power density of
laser pulse at the cathode lower than 5 × 1011 W/cm2, the
radiation intensity of the cathode plasma for λ < 3.5 Å is
much lower than the intensity of characteristic radia-
tion and bremsstrahlung emitted by the anode (Fig. 3).
The electron temperature T ≈ 70 eV of the titanium
cathode plasma measured with the help of an x-ray
spectrograph from the spectral distribution peak for
P = 1011 W/cm2 is in good agreement with the model
estimates [7]. The x-ray radiation intensity emitted by a
source with a needle-shaped anode decreases sharply
from the tip of the anode to its bottom (Fig. 3). This
allowed us to estimate the source size, which amounted
approximately to 250 µm. The obtained images of the dis-
charge gap also confirmed the absence of additional
sources of radiation, indicating the absence of the pinch
effect.

In order to optimize the diode characteristics, we
measured the intensity of x-ray radiation as a function
of the laser radiant energy, accelerating voltage, and the
distance between the target (cathode) and anode. In these
experiments, the laser beam was focused on a plane alu-
minum target to form a spot of diameter 2r = 130 µm; the
light pulse duration was 30 ns.

The dependence of the x-ray intensity on the accel-
erating voltage for the electrode spacing l = 2.2 mm
laser radiation energy EL = 0.2 J is presented in Fig. 4.
The laser energy was Q = 200 mJ to within ±5%).
A strong increase in the x-ray radiation emitted by the
anode is observed in the range of accelerating voltages
U = 10–20 kV, above which the growth becomes
slower. This is in accord with the condition that the
maximum contrast of the characteristic radiation lines
is attained when the accelerating voltage is three to four
times higher than the line excitation thresholds. For this

10

I, rel. units

U, kV
5 15 20 250

2

4

6

Fig. 4. X-ray radiation yield from a vacuum diode with a
laser-plasma cathode as a function of the applied accelerat-
ing voltage U (l = 2.2 mm, EL = 0.2 J).
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Fig. 5. Dependence of x-ray yield (a) and current in the x-ray source circuit (b) on the electrode spacing  l (EL = 25 mJ, U = 19 kV).
reason, we carried out our subsequent experiments for
a voltage of 19 kV.

The dependences of the x-ray intensity and the cur-
rent pulse amplitude on the electrode spacing l for a
fixed laser energy EL = 25 mJ and voltage U = 19 kV
are presented in Fig. 5. It can be seen that the current
pulse amplitude in the diode circuit correlates with the
intensity of x-ray radiation.

Figure 6 shows the dependence of the x-ray inten-
sity on the laser pulse energy for the anode–cathode
spacing l = 2.2 mm and for the accelerating voltage
U = 19 kV. The presence of peaks on the dependences
presented in Figs. 5 and 6 indicates the extremum of the
perveance of the electron flow emitted by the source
and the optimal conditions for generating x-rays in
given intervals of EL and l.

In order to study the processes occurring in the elec-
trode gap during the acceleration of electrons from the
cathode plasma undergoing hydrodynamic expansion
and to estimate the stability of the source operation and
the possibility of its synchronization with the complex
of the diagnostic equipment, we measured the time
shift of the x-ray pulse emitted by the source relative to
the radiation emitted by the laser plasma. The depen-
dence of the delay time td for the peak of the x-ray diode
pulse relative to the peak of plasma radiation on the
laser energy for the constant anode–cathode separation
l = 2.2 mm and the voltage U = 19 kV is shown in Fig. 7a.
For laser radiation energies at the target up to EL =

102

EL, mJ
1 10 103 1040

40

80

120

I, rel. units

Fig. 6. Dependence of the x-ray yield from the diode on the
laser radiant energy (l = 2.2 mm, U = 19 kV).
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300 mJ, the peak of the pulse emitted by the diode is
delayed relative to the peak of the x-ray pulse emitted
by the laser plasma, this delay becoming smaller upon
an increase in EL . For EL > 300 mJ, the peak of the pulse
under investigation leads the peak of the plasma pulse.
In our opinion, this advance is associated with specific
experimental conditions (the relation between the elec-
trode spacing and the laser pulse duration). As the
energy of laser radiation increases, the velocity of the
current-removal boundary increases, and the discharge
gap is filled with laser plasma more rapidly, while the
action of the laser pulse on the cathode still continues.

The time delay td between the peaks of x-ray pulses
emitted by the diode and the plasma was also measured
for various electrode spacings and a constant laser
energy. Figure 7b shows the dependence of the delay
time td for EL = 25 mJ. This dependence for low laser
radiation energies is defined as td = 12 [ns/mm]l [mm].
The obtained coefficient of 12 ns/mm is much larger
that the value 0.25 ns/mm expected for the acceleration
of free electrons by a potential difference of 19 kV. This
is explained by the screening of the field applied to the
plasma. Electrons reaching the anode are essentially
the electrons from the surface layer of the plasma cloud
experiencing hydrodynamic expansion. The total num-
ber of electrons in a current pulse is estimated by a
quantity of the order of 1015, although only a small frac-
tion of these electrons (10–4–10–3) is accelerated to the
excitation energy required for generating x-ray quanta
in the K-lines of the anode. For l > 7 mm, a two-peak
structure of the pulse is observed. This indicates the
presence of a group of “fast” electrons leaving the
plasma much earlier than the main part of plasma elec-
trons.

The duration of an x-ray pulse from the source
under investigation for a fixed power density of laser
radiation at the target and a fixed potential at the anode
increases with the interelectrode spacing (from 18 ns
for l = 1 mm to 28 ns for l = 7 mm) (Fig. 8) and
decreases upon an increase in the laser power density
for fixed l and U.

The intensity of x-ray radiation depends on the state
of the surface of the cathode. Repeated impacts in the
same region of the cathode lower the intensity of x-ray
radiation.
AND THEORETICAL PHYSICS      Vol. 92      No. 6      2001
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5. CONCLUSION

Thus, our investigations have led to the creation of a
pulse point source of x-rays emitting in the range of
K-lines of Ti with a pulse duration shorter than 20 ns
and a spectral brightness of 1021 photons/cm2 s sr keV.
The source is superior to the commercially available
x-ray tubes with explosive cathodes, having a spectral
brightness of 1015–1017 photons/cm2 s sr keV. The
parameters of our source demonstrate the prospects of
its application for studying rapid processes and in
microscopy of moving objects. In turn, the optimiza-
tion of the parameters of electrical circuit of the source
for its operation in the frequency mode makes it possi-

1021 10 103 104–20
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(‡)

62 8 100
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4
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Fig. 7. Dependence of the delay time td of the x-ray pulse
peak relative to the peak of the x-ray pulse emitted by
plasma on (a) the laser energy (l = 2.2 mm, U = 19 kV) and
(b) the distance l (EL = 25 mJ, U = 19 kV).

4
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Fig. 8. Dependence of the duration of an x-ray pulse emitted
by the vacuum diode on distance l (EL = 25 mJ, U = 19 kV).
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ble to apply the source in the x-ray structural analysis
of stationary objects and in lithography, where the
x-ray radiation dose is one of the applicability criteria.
for example, when x-ray pulses repeated at a frequency
of 100 Hz, the spectral brightness of such a source in
the units adopted for a comparative analysis of contin-
uous-wave sources of x-rays (synchrotrons and x-ray
tubes) are of the order of 107 photons/mm2 s mrad2

(0.1% of the line width), which corresponds to the
spectral brightness of tubes with a rotating anode [13].
The study of various operating conditions of the source
(for various electrode spacings, power densities of laser
radiation, and the voltages across the electrodes)
proved that the attainment of optimal characteristics of
radiation (spectral brightness, pulse duration, and delay
time) is a self-consistence problem which must be
solved individually for special purposes.
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