
 

1063-7710/05/51

 

Acoustical Physics, Vol. 51, Suppl. 1, 2005, p. S1. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, Suppl., 2005, p. 5.
Original Russian Text Copyright © 2005 by Esipov, Nikolaev.

       
Dear Readers!
We have the pleasure of bringing to your notice a
special issue of Acoustical Physics, which is devoted to
the problems of geoacoustics. Today, these problems
are much discussed in the scientific literature. Acousti-
cal Physics also regularly publishes papers devoted to
this subject. A specific feature of the issue is that it
combines papers written by researchers who specialize
in seismoacoustics and physical acoustics but work at
institutions involved in different kinds of scientific and
engineering activities. The interest in geoacoustics is
connected not only with the physical processes that
accompany the propagation and interaction of waves
but also with the practical applications of the results of
research. For example, seismic activity manifests itself
primarily in the generation of elastic waves, which
travel long distances. On the other hand, seismoacous-
tic methods are much used as a sounding technique in
Earth studies and in seismic prospecting. In the last few
years, special interest has been attracted to studying the
mechanisms of acoustic intensification of oil produc-
tion. Such investigations have been carried out for 40
years, but the mechanisms underlying this effect are
still not clearly understood. The problems of geoacous-
tics are closely related to the problems of nondestruc-
tive testing of granular media, which are also discussed
in this issue. A granular medium with cracks is often
considered as a model of rock. It is well known that ran-
domly inhomogeneous granular media can not always
be described in terms of the classical models of contin-
S1-S $26.000001
uous media. A granular medium possesses a mesoscale
structure, which can be modified under the effect of a
load. Rock in a stressed state is the origin of acoustic
emission. The parameters of the latter can be used as a
source of information for finding mineral resources,
including hydrocarbon deposits. Moreover, rock fea-
tures an anomalously strong nonlinearity. For example,
the value of the nonlinear parameter typical of a granu-
lar medium is 2–3 orders of magnitude greater than that
of a homogeneous medium. This fact is important for
describing the nonlinear processes that determine the
acoustic effect on a medium. For example, according to
the papers presented in this issue, the effect of sound of
even a relatively low (medium) amplitude gives rise to
the “slow dynamics” of individual grains and cracks. In
addition to nonlinear problems, this issue presents
papers devoted to studying the propagation of seismic
waves in layered structures of rock, in particular, in
application to earthquake forecasting.

We hope that such a topical approach to represent-
ing the results of research in geoacoustics will be of
interest for the readers from the point of view of devel-
oping new ideas and solutions in this important area of
research.

I.B. Esipov and A.V. Nikolaev
(Compilers of the Issue)
 © 2005 Pleiades Publishing, Inc.
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Abstract—An improved model of physical processes that occur under an acoustic action (AA) is presented in the
context of both thermal AA mechanism and its nonthermal alternatives. It is assumed that the fluid in an oil pool
consists of light and heavy hydrocarbon phases, which are in thermodynamic equilibrium. External actions, such
as filtration or AA, can shift the point of equilibrium of the fluid fractions in such a way that the heavy fraction
may deposit on the pore walls or dissolve. In this case, the process of long-term mudding is governed by the inho-
mogeneity of the pressure field around the borehole and, correspondingly, by the change in the equilibrium con-
centration of the heavy impurity in the course of filtration. In the framework of the proposed model, the effect of
an acoustic action can manifest itself both indirectly, as a heating of the surrounding medium because of sound
absorption (which also changes the equilibrium concentration of impurity), and directly, as the dependence of the
equilibrium concentration and relaxation time on the average density of acoustic energy of ultrasonic vibrations.
The proposed model makes it possible to reproduce the characteristic features of the fluid filtration from the bore-
hole before and after the AA, including the long-term intensification of petroleum recovery from the collector with
a gradually decreasing recovery rate. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Although applied geophysics is in obvious need of
powerful physical methods aimed at the intensification
of petroleum extraction from boreholes under develop-
ment, it seems that none of the existing physical means
of enhancing the productive capacity of a reservoir has
been studied exhaustively. The difficulty of such a
study follows from the insufficient understanding of
processes occurring in the porous permeable space of
collectors. This difficulty is in full measure inherent in
the method of acoustic action (AA). The success of
using the AA depends on many factors, which include
the filtration and capacity properties of the medium, the
viscosity of reservoir fluid, the initial and current values
of the reservoir pressure, and the history of borehole
production rate variation. However, even ample statisti-
cal data on the use of the AA method and the experience
of specialists cannot guarantee a positive result of ultra-
sonic treatment (to our knowledge, the success of the
method is below 60–70%), not to mention a quantita-
tive evaluation of the effect of a possible use of AA.

Thus, there is an actual need to understand the phys-
ical mechanisms intensifying petroleum production
under an acoustic action on an oil pool from the bore-
hole.

At the moment, a number of different physical pro-
cesses and phenomena are being discussed that could
under certain conditions be responsible for the intensi-
1063-7710/05/51S1-S $26.000102
fication of petroleum production under AA [1–6].
Among the most probable action mechanisms, one usu-
ally mentions thixotropic variations in the reservoir
fluid, cavitation, and heating [3–6]. However, the exist-
ing appraisals of the roles that specific mechanisms
play in the intensification effect most often have a qual-
itative rather than a quantitative nature because of the
lack of a complete model of the intensification phenom-
enon (the existing models deal with only certain ele-
ments of the phenomenon).

In a recent paper [1], we attempted to quantitatively
estimate the net result of the AA, i.e., the increase in the
borehole production rate. In that paper, we considered
the simplest physical mechanism of such intensifica-
tion; namely, we assumed that petroleum viscosity
decreases solely due to heating caused by the action of
the acoustic source. To obtain a quantitative estimate,
we nevertheless had to model the whole set of physical
phenomena accompanying the acoustic impact in the
context of the thermal mechanism. Formulating the
unified sequence of physical problems, we took into
account the fact that the borehole source of acoustic
vibrations radiates acoustic waves to the surrounding
medium. Because of the absorptive property of the
medium, a portion of the mechanical energy is dissi-
pated and appears in the form of thermal energy. As a
result, a thermal source with certain thermal density
arises around the borehole and heats the surrounding
medium. As is known [2], the viscosity of hydrocar-
 © 2005 Pleiades Publishing, Inc.
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bons depends on temperature according to an exponen-
tial law; correspondingly, an increase in temperature
decreases the viscosity and increases the rate of perco-
lation around the borehole. Estimates given in [1]
showed that, in the framework of the thermal mecha-
nism, AA increases the temperature of the borehole
environment by 10–13°C, which has an experimental
support [7] and increases the borehole production rate
by 5–12% [1]. However, the relatively fast relaxation
(6–7 days) of the temperature field offers only a short
time for the positive effect.

Nevertheless, successful borehole experiments with
ultrasonic cleaning showed a long-term (several
months) increase in the borehole production rate. Fig-
ure 1 shows the characteristic average production rate
variation after AA as a function of time, which was
obtained from the data collected over ten boreholes.
This curve was constructed using the production rates
measured at ten boreholes of NGDU Izhevskneft’ after
the ultrasonic treatment of the bottom-hole region with
the goal of oil inflow intensification. The squares show
the normalized data on the production rate of one of the
boreholes, which offers a possibility to estimate the
quality of the initial data. As can be seen, the initial data
hardly can be considered as high-quality onnes; how-
ever, they are sufficient for judging the magnitude and
duration of the intensification caused by the AA. The
solid curve in Fig. 1 represents the average of the pro-
duction rates normalized by the initial value for ten
boreholes. The dashed line is the root-mean-square
approximation of the above curve with the exponential
function Q/Q0 = Aexp(–t/τ), where the parameters have
the following values: A = 1.23 and τ = 150 days.

From the data of Fig. 1 it follows that the average
production rate increase amounts to 30% and the
average duration of the positive effect of AA
amounts to 1.5–2 months.

It may seem that such experimental data are definite
evidence in favor of the fact that heating caused by the
AA is an insignificant mechanism among other phe-
nomena used in literature [3–6] to explain the long-
term effect of AA. The calculated values of the bore-
hole production rate increase because of the heating of
the fluid [1] support on the whole the widespread opin-
ion of specialists in petroleum production intensifica-
tion that heating gives only short-term and, hence,
small effect manifesting itself as a relatively small
amount of additionally accumulated petroleum due to
the decreasing viscosity of the reservoir fluid.

However, the dependence of hydrocarbon viscosity
on temperature is only one of the consequences of heat-
ing of the borehole environment under the action of
acoustic radiation.

In this paper, we give an improved model of the
physical processes occurring under AA in the frame-
work of the thermal mechanism. We assume that the
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
reservoir fluid is composed of light and heavy hydro-
carbon phases and these phases are in thermodynamic
equilibrium. External actions, such as filtration and AA,
can shift the point of equilibrium between fractions in
such a way that the heavy fraction can deposit on pore
walls or dissolve. In the framework of this model, we
managed to reproduce the features of the fluid filtration
from the borehole before and after the AA, including
the long-term increase in petroleum recovery from the
collector with a gradually decreasing recovery rate. An
important feature of the model is that it describes not
only the effect of AA and its consequences but also the
preceding processes of mudding of the borehole envi-
ronment, which make it necessary to apply the AA.

2. MODEL OF PHYSICAL PHENOMENA 
OCCURRING UNDER AA

The reservoir fluid is a very inhomogeneous
medium composed of different substances, such as gas,
water, light hydrocarbons, gums, oils, and pyrobitu-
mens. In the course of the fluid filtration, heavy hydro-
carbons slowly deposit on the walls of the pore space in
the form of a solid substance, which gradually reduces
the diameter of pores and, consequently, the conductiv-
ity and porosity of the medium. The proposed model
assumes that the reservoir fluid is composed of light
and heavy fractions of hydrocarbons. The concentra-
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Fig. 1. Variation of the borehole production rate after the
AA. The production rate is normalized by its value before
the AA. The solid line corresponds to the data averaged over
10 boreholes, the squares correspond to the data of a single
borehole, and the dashed line corresponds to the exponen-
tial approximation.
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tion of the heavy fraction (considered as an impurity) is
the ratio of the number of molecules of the dissolving
substance to the number of molecules of the solvent per
unit volume, C = NB/NA. At thermodynamic equilib-
rium, the relative concentrations of both phases are in a
certain balance. The state of thermodynamic equilib-
rium is characterized by the impurity equilibrium con-
centration C∗ . It is obvious that variations of thermody-
namic conditions in the collector should vary the impu-
rity equilibrium concentration, thus causing the current
concentration to relax to the equilibrium value. For
example, a pressure drawdown in the oil pool during
the well development varies the pressure field and, con-
sequently, the equilibrium concentration. A decrease in
C∗  means that the current concentration of impurity C
will tend to the equilibrium value at which excessive
liquid fraction of heavy hydrocarbon begins to deposit
in the form of a solid substance on the walls of the pore
space, thus degrading the filtration and capacity proper-
ties of the medium. A decrease in the pore radius
reduces the porosity and conductivity of the medium,
especially in the borehole environment, and apprecia-
bly affects the velocity of the fluid flow, thereby gradu-
ally decreasing the petroleum production rate. The
speed of this process can vary over an extremely wide
range, depending on the physical chemical properties
of the solvent and impurity, the stage of well develop-
ment, and the level to which the borehole production
rate has been reduced to the moment. Such a mudding
may continue for weeks, if not months.

In turn, an excess of the impurity equilibrium con-
centration over the current concentration (this effect
occurs under AA) stimulates the dissolution of the solid
phase of heavy hydrocarbons and the cleaning of the
pore channels. In particular, the acoustic waves gener-
ated by an ultrasonic borehole radiator are absorbed in
the surrounding medium thus forming a thermal source
distributed around the borehole. As a consequence, the
surrounding medium is heated and the fluid tempera-
ture changes, which, in turn, changes the equilibrium
concentration C∗ , causes heavy hydrocarbon fraction to
dissolve, cleans the pore channels, and improves the fil-
tration characteristics.

Thus, the cleaning of pores under AA, which is a
rapid process, especially in comparison with the pre-
ceding process of mudding, can explain the long-term
effect of AA in the framework of the same simple ther-
mal mechanism.

Consequently, the complete modeling of the pro-
duction rate behavior under the AA assumes the consid-
eration of the behavioral features of the fluid in a porous
permeable medium both without ultrasonic treatment
and under the conditions of stimulated petroleum pro-
duction. In the framework of the proposed model, the
following processes are to be simulated:
(i) the propagation of ultrasonic waves generated by
the borehole source (the simulation of this process is
accompanied by the corresponding calculation of the
distribution of sound energy density around the bore-
hole and by the evaluation of the distribution of thermal
sources);

(ii) the variation of the temperature field around the
borehole under the AA;

(iii) the fluid filtration and the evaluation of the fluid
flow through the borehole perforated interval;

(iv) the variation of the impurity concentration;
(v) the evaluation of the degree of either settling or

dissolution of the heavy hydrocarbon fraction and the
evaluation of the corresponding variations of the pore
radii, conductivity and porosity.

Certain characteristic times are inherent in all the
above processes. For example, if we assume that the
characteristic size of the problem (borehole diameter)
is L, then, the time of sound wave propagation will be
τs = L/c, where c is the sound velocity; the characteristic
heating time will be described by the expression τh =
L2/χ, where χ is the thermal diffusivity; the filtration
time will have the order of magnitude τf =
(L2ηm)/(ρc2k), where ρ and η are the density and vis-
cosity of the fluid, respectively, and k and m are the per-
meability and porosity of the medium; the characteris-
tic time of impurity diffusion will be τD = L2/D, where
D is the diffusion coefficient; the time of impurity
transfer will be τt = (L2η)/(k∆P), where ∆P is the pres-
sure differential; and the settling or dissolution time τc
will be given by a function of thermodynamic parame-
ters. Using the characteristic size of the problem L ~ 1 m
(this value is characteristic of boreholes) and setting the
values typical of productive oil pools for other parame-
ters, we estimate the above characteristic times as fol-
lows: τS ~ 10–3 s, τf ~ 1 s, τt ~ 103 s ~ 1 h, and τh ~ τD ~
106 s ~ 10 days. These estimates suggest the following
order of temporal scales of the above physical pro-
cesses: τs ! τf ! τt ! τD ~ τh ! τc. The difference in
these temporal scales makes it possible to divide the
complex problem into a number of independent prob-
lems that are mutually connected only through coeffi-
cients. In accordance with the above ideas of the phys-
ical processes occurring under the AA, below we for-
mulate and solve a number of problems, the solution to
each of them being a necessary component of under-
standing the whole the complex phenomenon, which
allows a qualitative evaluation of the effect of AA.

3. PROPAGATION OF ACOUSTIC WAVES
AND DISTRIBUTION OF ACOUSTIC ENERGY

The problem on the distribution of acoustic energy
density produced by an ultrasonic acoustic source in the
borehole environment was considered in papers [1, 8].
The acoustic field excited by a monochromatic source
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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can be completely and exactly calculated for both an
elastic medium with absorption [1] and Biot’s porous
permeable medium [8].

The term Biot’s medium refers to a fluid-saturated
permeable porous two-phase continuum composed of
an elastic skeleton and a fluid, which occupy connected

and interpenetrating regions. Let  represent the aver-
age displacements in a certain macroscopic volume that

contains both solid and liquid components and  rep-
resent the average displacements of the continuous liq-
uid phase in this volume. In the case of Biot’s medium,
the system of equations of motion has the form [9]

(1)

where we used the following notation:

Here, ρ is the average density of the porous medium
(ρ = (1 – m)ρs + mρf), ρf is the density of the fluid, ρs is
the density of the elastic skeleton material, m is the
porosity, k is the permeability, η is the dynamic viscos-
ity of the fluid, and a is the twisting parameter. Other
parameters (λf, µ, M, and β) characterize the elastic
properties of the skeleton and the fluid forming the per-
meable medium; these parameters can be determined
by testing the compressibility of stratum samples in
laboratory experiments [9, 10].

If we decompose each of the vector fields  and 
in Eq. (1) into the potential and solenoidal components
by introducing longitudinal and transverse potentials
according to the formulas

(2)

we can diagonalize the system of equations (1) and
reduce it to the system of independent wave equations

in transverse potential  (or potential , which is pro-

portional to ) and a pair of longitudinal potentials ϕ+
and ϕ–, which are linear combinations of potentials ϕ
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and θ. In the frequency domain, the corresponding
equations have the form

(3)

where c+(ω) and c–(ω) are the phase velocities of longi-
tudinal waves of the first and second kinds; cs(ω) is the
complex velocity of transverse waves; and α+(ω), α–(ω),
and αs(ω) are the corresponding attenuation coeffi-
cients. We illustrate the behavior of these quantities in
Fig. 2, which shows the frequency-dependent phase
velocities and the attenuation coefficients of different
waves for different porosities m = 10, 20, 30, and 40%.
In Fig. 2, the frequency f = ω/2π is normalized by Biot’s
characteristic frequency

(4)

To make the comparison of the quantities corre-
sponding to media with different porosities, we fixed
low-frequency limits of phase velocities.

From the above curves (and the corresponding
asymptotic expressions) it follows that, in the frame-
work of Biot’s model considered here, both phase
velocities and attenuation coefficients of all originating
waves behave as functions monotonically increasing
with frequency and approaching a certain finite limit. In
the low-frequency limit f ! fbio, the phase velocity and
the attenuation coefficient of the longitudinal wave of
the second kind exhibit a behavior different from that of
the phase velocity and attenuation coefficient of the
longitudinal wave of the first kind and the transverse
wave. In the latter case, the attenuation coefficient in
the low-frequency limit is quadratic in frequency and
the phase velocity tends to a finite limit. In contrast to
this behavior, both phase velocity and attenuation coef-
ficient of the longitudinal wave of the second kind are
proportional to the square root of frequency, which, at
low frequencies, transforms this wave into a filtration
process [9, 10].

Let us consider a fluid-filled borehole of radius R in
an external permeable Biot’s medium and let a mono-
chromatic point source be located at the axis of this
borehole. In this case, the acoustic field inside the bore-
hole is described by the ordinary wave equation and the
fields outside the borehole are described by Eqs. (3).

Owing to symmetry, the vector  in the cylindrical
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Fig. 2. Frequency dependent phase velocities (left) and absorption coefficients (right) of the longitudinal waves of the first (top) and
second (middle) kinds and the transverse wave (bottom) for different porosities m = 10, 20, 30, and 40%.
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Fig. 3. Distribution of the acoustic energy density for (a) the elastic model of the medium and (b) Biot’s model of a permeable
medium with m = 0.2 and k = 0.1 D.
coordinate system {r, ϕ, z} has only the azimuth com-

ponent  = (0, ψ, 0).

The boundary conditions at the borehole surface
consist in the continuity of the averaged normal
stresses, the absence of tangential stresses, the continu-
ity of the fluid pressure, and the continuity of the aver-
aged normal displacements. The solutions in the exter-
nal medium must tend to zero at infinity and the singu-
larity of the solution at the borehole axis must
correspond to the source singularity.

The solution to these equations satisfying the
boundary conditions at the borehole axis and at infinity
can be expressed in terms of cylindrical functions mul-
tiplied by arbitrary constants. Substituting this solution
into boundary conditions at the borehole surface, we
can determine both the potentials introduced above and
the vectors of average displacements of the elastic skel-

eton  and the fluid ; in the coordinate representa-
tion, these quantities are expressed in the form of Fou-
rier integrals over the wave number and are calculated
numerically.

At a given frequency, the distribution of acoustic
energy density around the borehole is given by the
expression

(5)

while the dissipated power equal to the power of ther-
mal sources is described by the dissipative function [9,
10] that can be represented in the form

(6)

Note that, in the framework of the elastic statement of
the problem, the dissipative function can be estimated
through the acoustic energy density αcE if the absorp-
tion coefficient α is known from experiments.

Not going into the details of numerical algorithm,
we present the comparison of the resulting distributions
of acoustic energy density and thermal source density
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2
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in the borehole environment for the models of an elastic
absorbing medium and the Biot’s porous permeable
medium model.

Figure 3 shows the calculated distributions of acous-
tic energy density in the borehole environment. The
problem’s statement corresponds to an ultrasonic point
source with power I = 1 kW at a frequency of 20 kHz
located at the axis of a fluid-filled borehole of radius
R = 8 cm. The parameters characterizing the elastic
properties of the surrounding medium and the proper-
ties of the reservoir and borehole fluids are identical for
both models (see table). The porosity and the perme-
ability of Biot’s medium amount to 20% and 100 mD,
respectively.

As may be seen from Fig. 3, the distribution of
acoustic energy density calculated for Biot’s medium is
almost identical to the result obtained for the elastic
model with absorption in both shape and scale (one to
several joulllles per cubic meter within ten centimeters
from the borehole).

However, the distributions of thermal source density
around the borehole appear to be drastically different
for these two models because of the different physical
mechanisms underlying the acoustic energy dissipation
in the elastic and Biot’s models. In the calculations, we
assumed that the energy of longitudinal and transverse
waves in the elastic medium is dissipated with the absorp-
tion coefficient α = 1 m–1 at a frequency of 20 kHz. On
the contrary, in Biot’s model, the energy dissipation is
caused by the motion of the reservoir fluid saturating
the permeable medium relative to the elastic skeleton.
Motion of this type corresponds to Biot’s wave of the

Table

Parameters Fluid Elastic medium

Density (kg/m3) ρf 1000 ρ 2100

Velocity (m/s) cf 1500 cI 4500

cs 2500

Dynamic viscosity (Pa s) ηf 0.01
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Fig. 5. Temperature field around the borehole after a 10-h-long treatment for (a) the elastic model of the medium and (b) Biot’s
model of a permeable medium.
second kind, which rapidly decays with distance from
the borehole (within few first centimeters for the
parameters used in the calculation). As a result, the
thermal source density is predominantly concentrated
in the immediate vicinity of the borehole (see Fig. 4b).

4. TEMPERATURE FIELD
AROUND THE BOREHOLE

UNDER THE AA

The time-dependent temperature field in the course
of borehole radiator operation, as well as in the course
of medium cooling after AA, can be obtained from the
predetermined distribution of thermal sources using a
finite-difference technique. The dynamics of the tem-
perature field after the AA was adequately studied in
papers [1, 8], and we will not dwell here on the details
of the problem’s statement and the solution tech-
niques.

Figure 5 shows a typical distribution of the temper-
ature field around the borehole against the background
level of 40°C in the case of a one-point ultrasonic action
during 10 h. The temperature field was calculated for
the thermal sources that were obtained by solving the
problem on the acoustic energy distribution in the elastic
medium and in Biot’s permeable medium (see Fig. 4). In
the first case, we found that the increase in temperature
at the borehole boundary after the 10-hour operation of
the radiator comes to nearly 10°C, which agrees well
with experimental data [7]. It should be noted that
Biot’s model gives rise to a thermal source density
exceeding by a factor of ten the corresponding values
for the elastic medium model, and it may seem that this
must lead to a much stronger heating (according to cal-
culations, the temperature field can reach hundreds of
degrees). However, experimental data show no such
great increase in temperature. The origin of this dis-
agreement possibly consists in the necessity to distin-
guish between open and closed porosities in the perme-
able medium. Calculating the dissipated energy, one
must take into account only the contribution corre-
sponding to the open porosity. In view of the strong
dependence of the calculated results on porosity and
permeability, this fact can noticeably reduce the level of
thermal sources. Another reason possibly lies in the fact
that the acoustic action is usually realized in cased
boreholes, where the fluid cross-flow between reservoir
and borehole is weaker because of the partial borehole
perforation, which also considerably (by a factor of ten
or more) reduces the efficiency of Biot’s wave genera-
tion because of different boundary conditions.
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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5. FLUID FILTRATION

In the problem at hand, the fluid filtration is the central
process and other processes are accompanying. The equa-
tion describing the fluid motion in a porous permeable
medium can be derived from the equation of continuity
for the fluid in the pore space, the Darcy law that relates

the filtration mass velocity  to the gradient of pressure
P, and the linearized equation of the fluid state that relates
the density and pressure deviations from the equilibrium
values through the square of sound velocity c:

(7)

Despite the fact that the model under consideration
treats the permeability k, porosity m, and viscosity η as
functions of coordinates and time, this equation consid-
ers the filtration as a process independent of variations
of these parameters, because it is assumed that the rate
of their variations is small, so that one can substitute the
current parameter values in the final result.

Supplementing Eq. (7) with the corresponding ini-
tial and boundary conditions, we obtain the problem on
the fluid filtration from the borehole of radius R through
the perforated interval of length h. The boundary con-
dition on the perforated interval of the borehole corre-
sponds to the pressure drawdown ∆P, the boundary
condition on the cased segment of the borehole is for-
mulated as the requirement that the normal component
of velocity be equal to zero (an, correspondingly, the
radial gradient of pressure), and the boundary condition
on the remainder of the calculation region is formulated
as the condition of free flow. With the pressure field
being calculated, one can determine the velocity field
using the Darcy law.

As in paper [1], the total production rate of liquid is
determined as the integral of the normal component of

the substance flow ρf( ) = ρfVn over the surface of the
perforated segment of the borehole of radius R:

(8)

6. TRANSFER AND DIFFUSION
OF HYDROCARBON IMPURITY

In the process of petroleum production, a pressure
drawdown springs up around the perforated segment of
the borehole, which gives rise to the macroscopic trans-
fer of the reservoir fluid with a touch of heavy hydro-
carbons. An inhomogeneous distribution of impurity
concentration in the solution causes the impurity to dif-
fuse from areas with higher impurity concentration to
areas with lower impurity concentration. In addition, a
portion of impurity can settle or dissolve at the walls of

V

m
∂P
∂t
------ div

kρ0c2

η
-------------gradP– 0.=

Vn

Q 2πRρ f zVn R z t, ,( ).d

0

h

∫=
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the pore space. Thus, we can formulate three main
mechanisms that vary the concentration of heavy
hydrocarbon impurity: the transfer with the flow of the
solution, the diffusion, and the settling/dissolution at
the walls of the pore space. Correspondingly, the equa-
tion of impurity concentration transfer in the reservoir
fluid can be represented in the form [12]

(9)

where  is the fluid filtration (transfer) rate and D is the
diffusion coefficient. The right-hand side of Eq. (9)
describes the relaxation (with characteristic time τc) of
the current impurity concentration in the solution to the
equilibrium concentration C∗ (P, T) due to the impurity
settling or dissolution at the walls of the pore space.

In the general case, the current and equilibrium con-
centrations do not coincide, which initiates the pro-
cesses of either heavy fraction settling, or dissolution
on the walls of the pore space. The impurity equilib-
rium concentration in the solution C∗ (P, T) determines
the direction and rate of the dissolving–settling pro-
cess; it is a function of fundamental thermodynamic
parameters such as, for example, pressure P and tem-
perature T. Within the framework of the linear approxi-
mation valid for not very large deviations from the cor-
responding equilibrium values, the equilibrium concen-
tration can be approximated by the linear function

(10)

where C0 is the equilibrium concentration at reservoir
pressure P0 and reservoir temperature T0; the dimen-
sionless parameters A and B are fixed in this model so
as to fit the calculated decrease in the oil production
rate before and after AA to experimental data.

7. CHANGES IN THE PORE RADIUS, 
PERMEABILITY, AND POROSITY

The amount of the impurity locally deposited or dis-
solved at pore walls in volume V0 per unit time is given
by the formula

(11)

In the form of solid phase with density ρs, this
amount must occupy a volume dVs per unit time:

(12)

This volume increment must cause a change in the
pore space volume at the expense of the substance
deposited at the pore walls. To determine the variation
of the pore radii (and, hence, porosity and permeabil-
ity), we consider the simplest model of a porous

∂C
∂t
------- V ∇ C D∆C–+

1
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P P0–
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medium in the form of cylindrical pore channels.
Within the framework of this model, the volume poros-
ity of the medium coincides with the open porosity and
is determined by the formula m = nπR2, where n is the
number of open pore channels per unit area. The per-
meability of the medium in this model is determined by
the formula k = mR2.

Thus, in the model under consideration, the surface
density of pore channels remains intact and is deter-

mined by the formula n = /(πk0), where m0 and k0 are
the initial porosity and permeability of the layer. Corre-
spondingly, the initial radius of pore channels is given

by the formula R0 = .

Under the condition that all dissolved or condensed
impurity is dissolved or deposited on the pore channel
walls uniformly, the change in the pore volume can be
represented as

(13)

Thus, in view of Eqs. (11)–(13), the kinetic equation
for the pore radius variation can be represented in the form

(14)

As can be seen from Eq. (14), the rate of pore radius
variation has the sign opposite to the sign of the differ-
ence between the current and equilibrium concentra-
tions, which corresponds to pore channel mudding in
the case of excess impurity concentration and pore
channel cleaning in the opposite case.

If the current concentration deviates from the equi-
librium value by a constant, then, as it follows from
Eq. (14), the variation of the pore radius in time is
described by the exponential law

(15)

where

(16)

The above kinetic equation (14) for the pore radius
variation was obtained within the framework of the sim-
plest model of porous medium. If necessary, one can use
more complicated models, such as, for example,

where the functions F(R/R0) and G(m/m∗ ) can take into
account other geometry of the pore space and the per-
colation effects.

8. RESULTS AND DISCUSSION

In the preceding sections, we considered the basic
points of the construction of an adequate mathematical
model for describing the physical processes that occur

m0
2

k0/m0

dVs nV0– 2πR R.d×=

dR
dt
-------

1
2
---R

ρ f
0
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-----
C C*–( )
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---------------------.–=

R R0 t/τeff–( ),exp=

τeff τc

ρs

ρ f
0

----- 2
C C*–( )

---------------------.=

m m0F R/R0( ), k k0G m/m*( ),= =
under AA. The validity of a model can be proved or dis-
proved by experimental data. In our case (see Fig. 1),
experimental data form evidence in favor of a pro-
longed (about 2 months) positive effect consisting in
the increased reservoir fluid income to the borehole
under AA. Let us show how such an effect can be
obtained from simulations with the use of the proposed
model.

In the proposed model, the key point that distin-
guishes it from the earlier model [1] consists in the
inclusion of the dynamics of the impurity settling–dis-
solving processes arising due to the difference between
the current impurity concentration and the equilibrium
impurity concentration for local thermodynamic condi-
tions. As we mentioned earlier, two circumstances
cause the change in these conditions in space and time,
namely, variations of the pressure distribution in the
fluid flow due to the slow dynamics of porosity and
variations of the temperature field under the AA.

In calculating the pressure field, we used the bound-
ary conditions corresponding to the reservoir pressure
P0 = 13 MPa and the pressure drop in the borehole ∆P =
4.4 MPa. The dynamics of the temperature field corre-
sponds to the results obtained in Sections 3 and 4 for the
acoustic action of the source with a power of 1 kW dur-
ing ta = 10 h. The reservoir temperature was set to T0 =
40°ë. The environment is considered as an elastic
medium with the absorption coefficient α = 1 m–1 at a
frequency of 20 kHz. With these parameters, the pres-
sure distribution before, during, and after the AA varies
only slightly (by few percents). The temperature near
the borehole increases during the AA by 16°ë; within
80 days after the termination of the AA, the temperature
relaxes to the initial level.

Figure 6a shows the radial distribution of equilib-
rium concentration occurring in the central plane of the
borehole perforated interval in accordance with the cur-
rent thermodynamic conditions in the fluid flow before
AA, during AA, and 80 days after AA. Figure 6b shows
the corresponding distributions of the current concen-
tration. We used the following parameters in the equa-
tion of equilibrium concentration (10): C0 = 0.2, A = 0.5,
and B = 8. The values of the diffusion coefficient and
relaxation time in Eq. (9) are D = 10–9 m2/s and τc = 1 ×
105 s [12]. We selected the values of parameters A and
B from considerations of qualitative agreement with the
data given in Fig. 1.

Indeed, if we use Eq. (16) for the effective time of
pore channel radius variation and estimate the non-
equilibrium state of concentration from the first term
of Eq. (10) for the specified parameters C0, A, P0, and
∆P, then we easily obtain the estimate C – C∗  =
C0A(P – P0)/P0 = 0.03, which, in view of the relation-

ship ρs/  = 2, yields the relationship τeff = 130τc.
Because τc = 1 × 105 s ≈ 1.15 days, this relationship pre-

ρ f
0
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Fig. 6. Radial distributions of (a) the equilibrium concentration and (b) the current concentration of impurity at the center of the
borehole perforated interval; curves 1, 2, and 3 correspond to the instants before AA, immediately after AA, and 80 days after AA.
cisely gives the experimentally observed duration τ =
150 days.

In the model under consideration, parameters A and
B are the fitting parameters. Parameter B is determined
from the characteristic time of the borehole production
rate degradation, while parameter B is determined from
the relative production rate increase after the AA. As
may be seen from Fig. 6a, for the parameters chosen,
the distributions of the equilibrium concentration
before AA and 80 days after AA (when the temperature
field is completely relaxed—see Fig. 5b) are both deter-
mined by the deviation of the current pressure in the
borehole environment from the reservoir pressure and
appear to be very similar, decreasing toward the bore-
hole. This fact results in a gradual settling of the impu-
rity at the pore walls. At the same time, the equilibrium
concentration in the borehole environment immediately
after the AA considerably (by a factor of four) exceeds
the equilibrium reservoir concentration, which is condi-
tioned by the temperature term in Eq. (10). Note that,
qualitatively, the current concentration (Fig. 6b)
behaves similar to the equilibrium concentration; the
only difference consists in the much smaller (by two
orders of magnitude) scale of variation and in the more
prominent difference between the concentration values
before and after the AA (the latter effect is caused by
change in the fluid flow velocity).

Figure 7 shows the radial distribution of porosity for
the same instants before and after the AA. In calcula-
tions, we set the reservoir porosity m0 = 0.2 and perme-
ability k0 = 0.1 D. According to the relationship R0 =

, these values correspond to the pore channel
radius R0 = 1 µm.

k0/m0
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Finally, Fig. 8 shows the net curves of the borehole
production rate variation before and after the AA for
different regimes of environment heating. The lower
curve 1 corresponds to the production rate dynamics
without AA and exhibits an exponential decrease.
Other curves in Fig. 8 show how this dynamics is
changed if the AA is carried out on the 45th day.

Curve 2 corresponds to the production rate variation
related to heating of the borehole environment in the
framework of the elastic model with absorption. Curve 3

Porosity
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64

2

3

1

0.05

Fig. 7. Radial distributions of porosity at the center of the
borehole perforated interval; curves 1, 2, and 3 correspond to
the instants before AA, immediately after AA, and 80 days
after AA.
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corresponds to heating in the framework of Biot’s
model with open porosity m = 0.05 and permeability k =
0.1 D. The upper curve 4 differs from curve 3 by the
assumption that the whole of porosity is assumed to be
open with m = 0.2. The sharp peak arises in this curve
due to the significant decrease in the fluid viscosity
under the conditions of a fast heating of the borehole
environment by more than 200 degrees, which occurs
for the specified model parameters. Integrally, the qual-
itative production rate behavior shown in Fig. 8 agrees
well with the experimental data given in Fig. 1.

Thus, we showed that the proposed model repre-
senting the physical phenomena accompanying the AA
in the framework of the thermal mechanism is able to
explain the long-term effect of AA.

9. CONSIDERATION OF NONTHERMAL 
MECHANISMS UNDER AA

An important feature of the model is that this model
includes the mechanism of slow mudding of the bore-
hole environment and, consequently, allows one to
investigate alternative mechanisms of AA.

As an example of a nonthermal mechanism of AA,
we consider one of the models related to the depen-
dence of the equilibrium concentration and relaxation

1

40 80 1200 160 200
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0.3

0.4
Fluid flow, kg/s
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Fig. 8. Dynamics of the fluid flow from the borehole (pro-
duction rate) before and after the AA for different regimes
of heating of the environment. The lower curve 1 corre-
sponds to the production rate dynamics without AA. Curve 2
corresponds to the heating according to the elastic model
with absorption. Curve 3 corresponds to heating in Biot’s
model with open porosity m = 0.05 and permeability k =
0.1 D. The upper curve 4 differs from curve 3 by the
assumption that all of the porosity is open, m = 0.2.
time of the intensity of AA. Here, one must take into
account two circumstances.

First, the process of heavy impurity deposition on
the pore walls can be considered as a second-order
phase transition related to of the change in the order
parameter of the impurity. In this case, relaxation time
τc in Eq. (9) becomes a function of temperature and
external acoustic field and can be represented in the
form [13]

(17)

Here, according to the Landau theory of the second-
order phase transitions, the first term describes the tem-
perature dependent behavior of relaxation time near the
critical point Tk, the second term corresponds to the
effective contribution of spatial fluctuations, and the
last term corresponds to the contribution of the external
acoustic field with normalized energy density E/E0.

Second, the impurity equilibrium concentration in
the solution C∗  that determines the direction and rate of
the dissolving–settling process is, in the equilibrium
state, a function of fundamental thermodynamic
parameters, such as pressure P and temperature T;
under the conditions of the ultrasonic radiator opera-
tion, it additionally depends on the acoustic energy den-
sity. We can illustrate this fact as follows. Linear expan-
sion (10) holds for the conditions of quasi-static equi-
librium. In the presence of rapidly varying acoustic
fields, one must average the corresponding expansion
over the oscillation period. This averaging results in
zero values of linear terms, so that the expansion of the
average equilibrium concentration in the field of an
acoustic wave will start from the terms quadratic in
pressure, which, being averaged over time, will be pro-
portional to the acoustic energy density. Taking this fact
into account, we can represent the expansion of the
equilibrium concentration in the form

(18)

where dimensionless parameters A, B and D are fixed in
this model so as to fit the calculated decrease in the
petroleum production rate before and after AA to
experimental data.

Figure 9 shows the characteristic distribution of
parameter τc around the borehole under ultrasonic treat-
ment. In the calculations, we used the following param-
eters in Eq. (18): Tc = 313 K (40°ë), τc = 103 s, τ0 = 106 s,
τE = 103 s, and E0 = 1 J/m3. It may be seen that, for these
parameters, the acoustic field can reduce the relaxation
time by two or three orders of magnitude. Such a
decrease in relaxation time can significantly increase
the speed of pore channel cleaning in the permeable
medium in the course of AA.
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Fig. 10. Spatial distribution of porosity for (a) thermal and (b) nonthermal mechanisms immediately after a 10-h-long AA.
Figures 10a and 10b show the spatial distributions
of porosity in the borehole environment that was calcu-
lated for thermal and nonthermal mechanisms of action
on the oil pool from the borehole for the moment imme-
diately following a 10-h ultrasonic treatment of the col-
lector’s perforated interval.

Figure 11 shows the comparison of the production
rates of a producing borehole that were calculated for
thermal and nonthermal mechanisms according to the
procedure of calculating the AA efficiency given in
the foregoing sections. The solid lines corresponds to
the production rate variation related to heating of the
borehole environment in the framework of the elastic
model with absorption with fitting parameters A = 0.5
and B = 12.0 for one of the solid lines and B = 8.0 for
the other. The dashed line corresponds to the problem
with a nonthermal mechanism with parameters A = 0.5
and D = 0.01.
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One can see from Fig. 11 that the agreement
between the calculated and experimental dynamics of
the borehole production rate variation can be achieved
using the corresponding parameters in Eqs. (17) and
(18) in the framework of both thermal and nonthermal
mechanisms of AA. This agreement is determined by
the identity of the behavior of the long-term process of
mudding. The difference consists in different sluggish-
ness of the processes occurring immediately after AA.
In the case of the thermal mechanism, the production
rate dynamics appears to be relatively long (several
days), which is related to the thermal field relaxation in
the borehole environment; in contrast, in the case of the
nonthermal mechanism of AA, the nondelay transition
to the mudding regime occurs immediately after the ter-
mination of AA.

Thus, we proposed a complex model that is able to
quantitatively reproduce the long-term effect of AA in
the framework of both thermal and nonthermal mecha-
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nisms with the appropriate choice of parameters. At the
same time, we emphasize that this model includes a
number of fitting parameters (A, B, D, and τc), whose
values are specified only from the condition of fitting
the result with experimental data. However, these
parameters are determined by the physical chemical
properties of petroleum and allow an independent eval-
uation. The consideration of this fact can give a more

Production rate, kg/s

0 40
Time, days
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160

0.2

12080

0.1

0.4
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Fig. 11. Borehole production rate as a function of exploita-
tion time for AA carried out on the 60th day. The solid lines
show two versions of calculations according to the thermal
mechanism with coefficients B = 12.0 and B = 8.0 (A = 0.5
in both versions). The dashed line corresponds to the non-
thermal mechanism of AA with a relaxation time depending
on the acoustic energy density and with D = 0.01.
objective estimate of the role of both thermal and alter-
native nonthermal mechanisms of AA.
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Abstract—The Frenkel–Biot theory is used to study the propagation of a longitudinal harmonic wave of the
first kind in an isotropic porous matrix with inclusions contrasting in elastic properties and hydrodynamic per-
meability. The generation of elastic waves of the second kind at the boundaries of inclusions is taken into
account. The effective wave number of the longitudinal wave is calculated using the equations of multiple scat-
tering theory. The characteristic size of inhomogeneities is assumed to be much greater than the size of pores.
The parameters of the model used for calculations correspond to sandstone with centimeter-scale inhomogene-
ities. The presence of such inhomogeneities is typical of sedimentary rocks. Calculations show that, in the fre-
quency range of acoustic logging, the effective attenuation factor of the longitudinal wave may noticeably
exceed the attenuation factors of longitudinal waves of the first kind in both matrix and inclusions. From the
results obtained, it follows that, when studying the propagation of elastic waves in fluid-saturated porous media,
it is necessary to take into account the hydrodynamic effects associated with the filtration overflows that arise
at the boundaries of inhomogeneities. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Many rocks contain mobile fluids in their pores. The
propagation of elastic waves in such media has a num-
ber of distinctive features as compared to a single-phase
elastic medium. A correct description of these features
is possible in the framework of the Frenkel–Biot theory
[1–5]. According to the latter, two longitudinal waves
propagate in a fluid-saturated porous medium. The lon-
gitudinal wave of the first kind in the geoacoustic fre-
quency range is associated with in-phase oscillations of
the solid skeleton and the fluid in the pores. The longi-
tudinal wave of the second kind corresponds to
antiphase particle displacements of the solid and fluid
phases, and, hence, this wave is characterized by strong
attenuation. As a rule, only longitudinal waves of the
first kind are recorded in geoacoustic measurements.
However, in an inhomogeneous medium, the genera-
tion of the rapidly attenuating longitudinal waves of the
second kind at the boundaries of inclusions leads to an
additional energy dissipation and to changes in the
amplitudes of the observed waves.

The propagation of elastic waves in a fluid-saturated
porous medium containing a crack in the form of a
plane-parallel liquid layer was studied in [6]. The crack
model in the form of a Biot medium with a very high
porosity was considered in [7, 8]. In [6, 7], it was shown
that the attenuation of elastic waves may be caused by
filtering flows of the fluid near the boundaries of inclu-
sions. The effective wave numbers of elastic waves
propagating in a periodically layered fluid-saturated
1063-7710/05/51S1-S $26.00 0115
porous medium were calculated in [9–12]. The propa-
gation of longitudinal waves in a medium containing
spherical inclusions that differ in the properties of the
fluid was first considered by White [13]. The results
obtained by White were refined in [14], where the
effective compressibility was determined for a water-
saturated medium containing spherical gas-filled
inclusions whose size was much greater than the char-
acteristic size of the pores. A complete solution to the
problem of elastic wave scattering by a fluid-filled
cavity in a fluid-saturated porous medium was
obtained in [15, 16], and the solution for the case of
porous inclusions with contrasting elastic properties,
in [17, 18]. B.Ya. Gurevich and his coauthors consid-
ered the propagation of elastic waves in fluid-satu-
rated porous media with weak-contrast spherical [19]
and spheroidal [20] inclusions. In [15], the multiple
scattering theory version proposed by Chaban [21]
was used to calculate the effective wave number of a
longitudinal wave of the first kind propagating in a
medium with pores and cavities.

This paper presents the calculation of the effective
wave number of a longitudinal wave of the first kind
propagating in a fluid-saturated porous medium with
spherical inclusions on the basis of the equations of the
multiple scattering theory [22]. The characteristic size
of inclusions is assumed to be much greater than the
size of pores. The inclusions differ from the matrix in
elastic and hydrodynamic properties. The second sec-
tion of the paper briefly describes the solution of the
© 2005 Pleiades Publishing, Inc.
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problem of elastic wave scattering by a single inclusion
in a fluid-saturated porous medium. The third section
presents the equations of the multiple scattering theory
and the results of calculations for inhomogeneous
rocks. The calculations are performed for the frequency
range typical of acoustic logging.

SCATTERING OF LONGITUDINAL ELASTIC 
WAVES BY A SPHERICAL INCLUSION

IN A FLUID-SATURATED POROUS MEDIUM

Consider a fluid-saturated porous medium (matrix)
containing a spherical inclusion with a radius a and
with elastic and hydrodynamic parameters different
from those of the medium. To describe the elastic wave
propagation in the saturated porous medium, we use the
equations of the dynamics of saturated porous media.
With thermoelastic effects being ignored, these equa-
tions have the form [2]

(1)

where Ui and Vi are the components of the displacement
vectors of the skeleton and the fluid in the pores,
respectively; ω is the cyclic frequency; ρ11 is the effec-
tive density of the elastic skeleton; ρ22 is the effective
density of the fluid; ρ12 is the apparent density of the
fluid;

and

The coefficient b characterizes the friction associ-
ated with the motion of the fluid relative to the skeleton:

b = , where η is the dynamic viscosity of the fluid,

m is the porosity, and Kpr is the permeability; A, N, Q,
and R are the elastic constants of the Biot theory; and
p is the pressure in the liquid. In what follows, we con-
sider only harmonic waves propagating with a fre-
quency ω.

Equations (1) have solutions in the form of one
transverse wave and two longitudinal waves. The dis-
placements of the skeleton and the fluid filling the pores
can be described by the scalar potentials, ϕ1 and ϕ2, of

ρ11

∂2Ui

∂t2
----------- ρ12

∂2Vi

∂t2
----------+ b

∂ Vi Ui–( )
∂t

-------------------------
∂τ ij

∂x j

--------,+=

ρ12

∂2Ui
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∂x j

-------,+=

τ ij δij A∇ U 2Neij δijQ∇ V;⋅+ +⋅=

s mp– Q∇ U R∇ V;⋅+⋅= =

eij ∂Ui/∂x j ∂U j/∂xi+( )/2.=

m2

ηK pr

------------
the longitudinal waves and by the vector potential Y =
ψeϕ of the transverse wave [4, 23, 24]:

(2)

where

Here, kj (j = 1, 2) are the wave numbers of the longi-
tudinal waves of the first and second kinds, respec-
tively; ξj satisfies the quadratic equation

eϕ is the unit azimuth vector in the direction; and the
factor exp(–iωt) is everywhere omitted.

The substitution of Eqs. (2) into system of equa-
tions (1) yields a system of Helmholtz equations [4, 16,
23, 24] for the potentials of the two longitudinal and
one transverse waves:

(3)

where  = [γ11 + γ12 + iγ(M3 – 1)].

The solutions to Eqs. (3) that are finite at the origin
of coordinates (inside the inclusion) and satisfy the

U ∇ϕ 1 ∇ϕ 2 ∇ Y,×+ +=

V M1∇ϕ 1 M2∇ϕ 2 M3∇ Y,×+ +=

M j

γ12 ξ jσ12– iγ+
γ22– ξ jσ12 iγ+ +

-----------------------------------------, j 1 2,= =

M3

γ12 iγ+
γ22– iγ+

----------------------,=

γ11 = ρ11/ρ, γ12 = ρ12/ρ, γ22 = ρ22/ρ, γ = b/ ρω( ),–

σ11 A 2N+( )/H , σ12 Q/H , σ22 R/H ,= = =

ρ ρ11 2ρ12 ρ22,+ +=

H A 2N 2Q R, ξ j+ + + k j
2H/ ρω( ).= =

σ11σ12 σ12
2–( )ξ j

2

+ σ11γ22 σ22γ11 2σ12γ12– iγ+ +( )ξ j

+ γ11γ22 γ12
2– iγ– 0;=

∆ϕ j k j
2+ 0, j 1 2;,= =

∆ψ 1
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---------------ψ– k3

2ψ+ 0,=

k3
2 ω2ρ

N
---------
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absorption condition away from the inclusion have the
form [16]

(4)

where (x) and jn(x) are spherical Hankel functions
of the first kind and Bessel functions and Pn(cosθ) and

(cosθ) are Legendre functions of a real argument.

An incident plane longitudinal wave of the first or
second kind also can be described by a series expansion
in spherical functions:

(5)

At the boundary r = a of the porous media, the fol-
lowing conditions should be satisfied [24–26]:

(6)

where the first and second conditions express the conti-
nuity of the normal component of the total stress tensor
and the continuity of pressure in the pores; the third
condition is the continuity of the tangential stress in the
skeleton; the fourth and fifth conditions describe the
continuity of the normal displacements of the skeleton
and the continuity of total displacements; and the sixth
condition expresses the continuity of the tangential dis-
placements of the skeleton.

Substituting Eqs. (4) and (5) into Eqs. (6), we obtain
a system of linear equations for determining the ampli-
tudes of scattered waves. The resulting solution is the
basic one for the equations of multiple scattering the-
ory, which will be used below to calculate the velocity

ϕ j
int An
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n 0=
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and attenuation of the effective longitudinal wave in an
inhomogeneous porous medium.

CALCULATIONS OF THE VELOCITY
AND ATTENUATION OF THE EFFECTIVE 

LONGITUDINAL WAVE PROPAGATING
IN AN INHOMOGENEOUS FLUID-SATURATED 

POROUS MEDIUM

To calculate the effective wave number, we use the
classical Waterman–Truell theory [22]. This theory
gives the following expression for the effective wave
number keff of an elastic wave propagating in a medium
with spherical inclusions:

(7)

Here, n0 is the density of the scattering centers,
which is related to the volume concentration of inclu-

sions Φ by the formula Φ = n0, and f(0) and f(π)

are the forward and backward scattering amplitudes
obtained from the solution of the single-particle prob-
lem, respectively.

The scattering amplitudes are expressed through the

coefficients  determined in the previous section:

(8)

Let us consider examples of calculation with Eqs. (7)
and (8) for specific types of fluid-saturated porous
media. The calculation of the effective wave number of
the longitudinal wave of the first kind is of most practi-
cal interest. Therefore, precisely this case will be con-
sidered below and the term “effective longitudinal
wave” will imply the effective longitudinal wave of the
first kind.

Consider the first example: the propagation of
waves in a porous medium containing inclusions that
differ in porosity and permeability from the matrix. We
assume that pores in the matrix and in the inclusion are
filled with the same fluid. The properties of rock are
assumed to be those of water-saturated sandstone. The

keff
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Fig. 1. Dependences of (a) the velocity and (b) the attenuation factor of the effective longitudinal wave on the volume concentration
of inclusions. The porosity of inclusions is (1, 2) 0.1 and (3, 4) 0.3; the permeability of inclusions is (1, 2) 5 × 10–15 and (3, 4) 1 ×
10–12 m2; the radius of inclusions is (1) 0.01, (2) 0.025, (3) 0.01, and (4) 0.025 m.
elastic constants A, N, Q, and R are calculated using the
known relations [4, 24]

(9)

where a0 = 1 – m – Ks/Kr, S0 = mKr/(mKr + a0K0), λs
and µs are Lame constants of the skeleton with empty
pores, Ks is the bulk modulus of the porous skeleton
with empty pores, Kr is the true bulk modulus of the
solid phase, and K0 is the bulk modulus of the fluid. The
elastic moduli of the skeleton with empty pores were
calculated by the self-consistent EMA method [27, 28].
The longitudinal wave velocity in the skeleton material
was taken to be equal to 5.5 km/s, the ratio between the
longitudinal and transverse wave velocities was 1.65,
the density of the skeleton material, 2.65 g/cm3, the lon-
gitudinal wave velocity in the fluid, 1.5 km/s, the den-
sity of the fluid, 1 g/cm3, and the viscosity, 0.001 Pa s.

Figure 1 shows the calculated dependences of the
velocity and attenuation factor of the effective longitu-
dinal wave on the volume concentration of inclusions.
The porosity and the permeability of the matrix are 0.2
and 5 × 10–13 m2, respectively, and the frequency is ω =
2π10000 s–1. The calculations show that the velocity of
the effective elastic wave weakly depends on the per-
meability of rock and can be calculated with an accept-

A λ K0a0
2S0/m, N+ µ,= =

Q a0K0S0, R mK0S0,= =
able accuracy by using a simpler model of a single-
phase elastic medium, at least in the geoacoustic fre-
quency range |k1a| < 1. The attenuation factor of the
effective longitudinal wave (Figs. 1b and 2) strongly
depends on both the concentration and size of the inclu-
sions. The attenuation of the effective longitudinal
wave is associated with the energy transfer from the
longitudinal waves of the first kind to the rapidly atten-
uating longitudinal waves of the second kind and
strongly depends on two diffraction parameters, |k1a|
and |k2a|. In the frequency range under consideration,
the inequality |k1a| < 1 is satisfied; however, for the lon-
gitudinal wave of the second kind, in the same fre-
quency range we have |k2a| ≥ 1, and the effective atten-
uation factor strongly depends on the radius of inclu-
sions and may exceed the attenuation factor of the
longitudinal wave of the first kind in both matrix and
inclusion. In this situation, the presence of inclusions
with porosity and permeability both higher and lower
than those of the matrix may lead to an increase in the
effective attenuation factor of the longitudinal wave in
the inhomogeneous medium. Note that the presence of
inhomogeneities on the order of centimeters in size is
typical of sedimentary rocks [29]. It is of interest to
study the frequency dependence of the attenuation fac-
tor. Figure 3 shows the frequency dependences of the
attenuation factor of the effective longitudinal wave.
The calculations were performed for water-saturated
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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porous sandstone with the matrix and inclusion porosi-
ties being 0.3 and 0.1, respectively, and the matrix and
inclusion permeabilities being 10–12 m2 and 5 × 10–15 m2,
respectively. The estimates obtained in [19] by using
the Born approximation for weak-contrast inclusions
showed that, in the region of very low frequencies,
where |k1a| ! 1 and |k2a| ! 1, the attenuation factor of
the effective longitudinal wave is αeff ∝  ω5/2, and in the
higher frequency region, where |k1a| ! 1 and |k2a| @
1 – αeff ∝  ω3/2. In the major part of the frequency range
under study, the second condition is satisfied and the
effective attenuation factor is αeff ∝  ω3/2 (see the inter-
val 700–6000 Hz in Fig. 3). The latter law is of a rather
general character: for example, the same law describes
the frequency dependence of the attenuation factor for
the Rayleigh and Stoneley surface waves propagating
along the boundary of a fluid-saturated porous medium
[30, 31]. In the region of very low frequencies, where
|k1a| ! 1 and |k2a| ! 1, the medium is described by the
equations of a fluid-saturated porous medium with a
certain effective permeability. In this case, the effective
attenuation factor is αeff ∝  ω2, as in the conventional
Frenkel–Biot model. Note that, in [19], the wave num-
bers of both the longitudinal wave of the first kind and
the transverse wave were assumed to be real and the
aforementioned mechanism was not taken into account.
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0.05 0.200.15
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Fig. 2. Dependences of the attenuation factor of the effec-
tive longitudinal wave on the volume concentration of
inclusions. The radius of inclusions is (1) 0.005, (2) 0.01,
(3) 0.015, (4) 0.02, and (5) 0.025 m.
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As the second example, let us consider the situation
where the inhomogeneities differ from the medium in
only the properties of the fluid filling the pores. Let the
inclusions be filled with a fluid whose compressibility
is much greater than that of the fluid in the surrounding
medium (the White model). This situation corresponds
to, e.g., gas bubbles in water or in oil. Figure 4 shows
the frequency dependences of the velocity and attenua-
tion factor of the effective longitudinal wave propagat-
ing in a water-saturated porous medium with gas-filled
inclusions. The properties of the skeleton correspond to
those of sandstone with a porosity of 30% and a perme-
ability of 5 × 10–13 m2. The longitudinal wave velocity
in gas is 500 m/s, and the density and viscosity of gas
are taken to be equal to 0.1 g/cm3 and 0.0001 Pa s,
which corresponds to, e.g., methane. Since the filler of
inclusions is much softer than that of the matrix, intense
hydrodynamic flows arise at the boundaries of inclu-
sions, which are associated with the energy transfer
from the longitudinal waves of the first kind to rapidly
attenuating longitudinal waves of the second kind.
These effects lead to a considerable velocity dispersion,
up to 30%, and a considerable (more than an order of
magnitude) increase in the attenuation factor of the
effective longitudinal wave in comparison with the
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Fig. 3. Frequency dependences of the attenuation factor of
the longitudinal wave of the first kind: the attenuation factor
(1) for the matrix without inclusions and for the inclusion
concentrations of (2) 0.1 and (3) 0.2; (4) the curve calcu-

lated by the formula α = , where α0 is the attenuation

factor at a given frequency.
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Fig. 4. Frequency dependences of the (a) velocity and (b) attenuation factor of the effective longitudinal wave in a medium with
gas-filled inclusions: (1) the matrix without inclusions; the inclusion concentrations are (2) 0.1, (3) 0.15, and (4) 0.2.
attenuation factors of longitudinal waves of the first
kind in the matrix and in the inclusions.

CONCLUSIONS

It is well known that rocks are rather complicated
objects of investigation, and this complexity is
largely determined by the presence of inhomogene-
ities of different scales. In this paper, in the frame-
work of the Frenkel–Biot theory, we considered the
propagation of longitudinal elastic waves in rock con-
taining mesoscale inhomogeneities [29], whose size
was assumed to be greater than the characteristic pore
size and smaller than or comparable to the acoustic
wavelength. It was shown that the presence of such
inhomogeneities may lead to considerable changes in
the kinematic and especially the dynamic parameters
of elastic waves. In this situation, the effective atten-
uation factor of the longitudinal wave may noticeably
exceed the attenuation factors of the longitudinal
waves of the first kind propagating in the matrix and
in the inclusions. Evidently, the aforementioned
mechanism of acoustic wave attenuation in rock is
not unique but is quite important. It should be taken
into account in interpreting the data of geoacoustic
measurements along with other hydrodynamic mech-
anisms of elastic wave attenuation [29, 32–24].
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Abstract—The motion of a liquid drop under the action of acoustic vibration is studied for two limiting cases:
the high-frequency case, when the effect of viscous forces can be ignored, and the low-frequency case, when
the viscosity is significant. Equations describing the motion of a drop in an axially symmetric capillary with a
varying cross section are derived by taking into account the hysteresis of the wetting angle. Numerical calcula-
tions are performed for cylindrical, conic, and corrugated capillaries. © 2005 Pleiades Publishing, Inc.
In the last few years, the interest in the problem of
vibration-wave action on porous media has quickened.
This is primarily related to the problem of increasing
the permeability of geological strata to oil. By now, the
physical basis of the vibration-wave action on porous
media is sufficiently well understood. A number of
monographs (e.g., [1–4]) and a comprehensive review
[5] were devoted to this subject. At the same time, the
specific physical mechanisms responsible for the
changes in the permeability of the medium, the roles of
these mechanisms, and their relative efficiencies are
still vague and, in the case of low-frequency vibrations,
largely unclear.

The efficiency of the known physical mechanisms
that increase the permeability of the oil pool structure
under the effect of acoustic fields with frequencies of
5–50 kHz is estimated in [6]. These mechanisms
include e.g., the change in the viscosity of free oil, the
acoustic flows in pore channels, and the excitation of
Biot waves of the second kind [7, 8], which give rise to
the motion of the fluid relative to the skeleton. Gener-
ally speaking, all of these mechanisms manifest them-
selves the stronger the higher the amplitude and fre-
quency of the acoustic action are. However, ultrasonic
waves are strongly attenuated in the medium and the
region of their action on the medium is very limited.

Low-frequency acoustic waves exhibit a much
weaker attenuation. Beginning in 1960s, the action of
low-frequency elastic vibrations on the face zone of an
oil pool by means of intrawell vibrators has found
application in oil production [2]. By now, ample exper-
imental data testifying to an increase in the permeabil-
ity of oil-containing strata under the effect of acoustic
waves are available (see [1–4, 9–12] and Proceedings
of the Workshop “Effect of Elastic Vibrations on Liquid
Flows in Porous Media” held within conference [13]).
1063-7710/05/51S1-S $26.000012
However, the physical mechanisms underlying a simi-
lar effect in the low-frequency region are still unknown.

The character of the liquid motion in a crack
depends on the frequency of vibration of the crack
walls. In the low-frequency limit, the depth to which
vibrations penetrate into the liquid (the thickness of the
liquid skin layer) is usually much greater than the char-
acteristic thickness of cracks. In this case, the liquid
moves together with the crack surface as a single whole
and no mass transfer of the liquid phase occurs in the
solid matrix. Therefore, the problem of explaining the
increase observed in the permeability of the medium
under the action of low-frequency vibrations seems to
be nontrivial. To explain this effect, the theory of dom-
inant frequencies was proposed in [14–16]. This theory
is based on the assumption that a low-frequency seis-
mic wave may effectively generate ultrasonic vibra-
tions in the medium. However, in this case, it is neces-
sary to assume that the stresses and strains of the geo-
logical medium are related in a very particular way,
through an unusual relationship that is difficult to
explain. This assumption considerably reduces the
number of physical situations where such a mechanism
can be realized.

In the present paper, we study another possible
mechanism that may cause an increase in permeability.
This mechanism can be realized only in a partially
fluid-saturated porous medium. As is known, in oil pro-
duction, the basic method is the displacement of oil
from the porous collector by water, which is supplied
under pressure through the injection wells. This process
is accompanied by a number of adverse effects that
reduce the discharge of the oil well. In particular, these
effects include the formation of water films on the pore
walls and the appearance of trapped water drops in the
narrowed portions of the pores. The water films reduce
 © 2005 Pleiades Publishing, Inc.
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the effective radii of capillaries through which the oil
flows, while the trapped drops may completely block
the oil’s motion through the capillaries. The process of
eliminating the water films and drops from the
intrapore space may be called “water unclogging.” The
mechanisms of breaking submicron water films and a
systematic evaporation of trapped drops under the
effect of vibration were considered in [17]. Below, we
study in detail the mechanism of motion of individual
drops in capillaries of different shapes under the effect
of acoustic vibration.

The motion of trapped drops in a capillary under
vibration was first considered in [18]. Its essence is as
follows. Assume that a single drop is in the field of a
static force (e.g., pressure gradient or gravity), which,
however, does not exceed the static friction force. In
this case, the drop remains immobile. Now, let a low-
frequency alternating acoustic field be superimposed
on the given static field. Because a moving meniscus
exhibits a hysteresis of the wetting angle [19–21], the
dependence of the wetting angle on the velocity magni-
tude is of an ambiguous (hysteretic) character. The cap-
illary forces acting on the positive and negative menisci
of a drop are different. As a result, the initially immo-
bile drop moves in the direction of the aforementioned
static force. Thus, the effect of vibration is equivalent to
a reduction of the static friction [22]. Experimentally,
the motion of drops under vibration was observed for a
glycerin drop [23], a drop of 50% aqueous solution of
glycerin, and a water drop [24].

The formulation of the hydrodynamic problem in
the case of wetting a solid body when the meniscus, i.e.,
the line of contact between three phases, moves over a
solid surface is complicated by the stress singularity at
this line [25]. The dynamic wetting angle is determined
by the structure of the flow with a free surface in the
vicinity of the moving contact line. The determination
of the dependence of this angle on the velocity of the
meniscus motion presents an individual complicated
problem in each specific case [26]. We will consider
this dependence to be known and, for simplicity,
assume that the value of the wetting angle only depends
on the direction of motion and does not depend on the
velocity, i.e., that the change of the direction of motion
is accompanied by a jumplike change in the wetting
angle from one constant value to another.

An important factor that determines the motion of
the drop along a capillary under vibration is the viscos-
ity of the liquid. If the frequency of vibration is suffi-
ciently high and the depth of vibration penetration into
the liquid is small compared to the capillary radius, the
effect of viscous forces can be ignored. In this case, the
drop will move as a solid particle under the effect of the
static, oscillating, and capillary forces. Its motion can
be analyzed by considering an ordinary differential
equation of the second order with a hysteretic nonlinear
force. If the thickness of the skin layer is comparable to
or on the order of the capillary thickness, the viscosity
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
of the liquid should be taken into account. In this case,
the motion of the drop should be studied in terms of
hydrodynamic equations. In the Stokes approximation,
the motion of the drop is described by a differential
equation of the first order. In this paper, we present a
theoretical description of both situations: with and
without considering the viscous effects. We indicate the
necessary conditions for the drift of the drop in the
presence of vibration. We present analytical solutions
for specific regimes of the drop motion. We perform a
numerical study of the drop motion in cylindrical,
conic, and corrugated capillaries.

STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

Consider a drop in an axially symmetric capillary
with a varying cross section of radius r = R(z), where
z is the coordinate along the capillary axis. Let the walls
of the capillary perform harmonic vibrations in the
direction of the z axis according to the law

(1)

Owing to the symmetry of the problem, the velocity of

the liquid  and the pressure p are independent of the
polar angle. We assume that the liquid is incompressible.

To describe the motion of the liquid, it is convenient
to use the noninertial frame of reference, in which the
walls of the channel are at rest. In the cylindrical coor-
dinate system, the set of hydrodynamic equations has
the form

(2)

(3)

Here, G is the constant external force, which can be,
e.g., the gravitational force if the capillary is in the ver-
tical position.

The boundary conditions for the set of equations (2),
(3) include the conditions of no leaks and sticking to the
capillary walls:

(4)
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At the free surfaces Σ1 and Σ2, conditions for the normal
stress jump are satisfied:

(5)

where σ is the surface tension, R'(Σ1, 2) is the curvature
radius of the meniscus of the drop, P1, 2 are the pres-
sures on different sides of the meniscus, z1 and z2 are the
coordinates of the left and right ends of the drop, and θ1
and θ2 are the wetting (contact) angles for the left and
right menisci [20].

For a moving drop, in the general case, the wetting
angles of the positive and negative menisci are differ-
ent. Figure 1 shows, as an example, the result of an
experimental study of the hysteresis of the angles θ+

and θ– of the positive and negative menisci for the case
of an incomplete wetting in the water–paraffin system
[19]. One can see that the wetting angles depend on the
velocity of the meniscus motion relative to the wall.
This curve has an ambiguity region at zero velocity of
meniscus motion V = 0 (the so-called wetting angle
hysteresis). In the case of V ≠ 0, the wetting angle is
uniquely related to the velocity of motion and, at a cer-
tain velocity value, flattens out reaching constant values

 and  for the positive and negative menisci,

respectively. The values of  and  are determined
by both the sign and the velocity of the meniscus
motion. For simplicity, we assume that the wetting
angle rapidly reaches its limiting value (this idealiza-
tion corresponds to a Z characteristic of the hysteresis
curve). The expressions for θ1 and θ2 are determined as
follows:

(6)

where  and  are empirical constants and V1 and V2

are the velocities of the menisci.
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Fig. 1. Hysteresis of the wetting angle.
The mass of the drop m is expressed as

(7)

For the purpose of investigation, it is convenient to rep-
resent the continuity equations (2) in an integral form.
Integrating Eq. (2) with respect to r from the center of
the capillary to its wall with allowance for boundary
conditions (4), we obtain the equality

(8)

Here, the flux Q(t) plays the role of an auxiliary func-
tion.

Assume that the characteristic longitudinal dimen-
sion of the drop, L, far exceeds its transverse dimension
R0 (the characteristic thickness of the capillary): L @ R0.
In this case, the liquid motion in the drop can be con-
sidered as quasi-parallel (except for the small regions
on the order of the capillary thickness near the ends of
the drop). From the first equation of set (3), it follows
that, to an accuracy of about R0/L, the pressure is inde-
pendent of r. With all of the aforementioned assump-
tions, the set of equations (3) is reduced to a single
equation for the longitudinal velocity:

(9)

In combination with continuity equations (8) and
boundary conditions (4)–(6), it forms a set of equations
that will be solved below.

The problem contains two characteristic time scales:
the time of vorticity diffusion within a distance of about
the characteristic capillary radius R0, which is deter-

mined as τd = /ν, and the period of vibrations of the
channel walls T = 2π/ω. The problem can be simplified
in two limiting cases: in the case of high-frequency

vibrations, when ε = τd/T = ω/ν @ 1, and in the case
of low-frequency vibrations, when ε = τd/T ! 1. The
first of these inequalities describes the case of a skin
layer that is thin compared to the capillary thickness,
and the second inequality, the case of a thick skin layer.

THE MOTION OF DROPS
UNDER HIGH-FREQUENCY VIBRATIONS

Let ε @ 1. We solve the problem without consid-
ering the viscosity. In this case, the hydrodynamic
equations have a solution in which v z does not depend
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on r. Equations (8) and (9) are simplified and take the
form

(10)

(11)

Integrating Eq. (10) over z within the drop with allow-
ance for Eqs. (5) and (11), we obtain

(12)

We take into account that, by definition, we have

Then, with allowance for Eq. (11), we obtain

(13)

Equations (12) and (13) form a closed set of three equa-
tions in three unknowns: z1, z2, and Q. If the length of
the drop l = z2 – z1 is small compared to the character-
istic scale of the capillary radius variation (a short
drop), this set is reduced to a single equation. Indeed,
we denote z = (z1 + z2)/2; then,

and, after some transformations, we obtain

(14)

For θ1 and θ2, we use Eq. (6), where v 1 = v 2 = dz/dt. The
condition of mass conservation for the drop is
expressed as

and Eq. (14) takes the form
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Let us introduce the dimensionless drop displacements,
time, and capillary radius:

(16)

In terms of the new variables, Eq. (15) takes the form

(17)

The parameters involved in this equation are deter-
mined by the formulas

(18)

Parameter a determines the intensity of the vibration
action on the capillary, b and γ determine the capillary
forces, and g, the static (gravitational) force.

Now, we proceed to considering the drop motion in
capillaries with cross sections of different shapes.
Depending on the frequency of vibration action, the
regime realized in the capillary will be either nonvis-
cous, when the drop displacement is described by the
second-order equation (17), or viscous (this case will
be analyzed below). The boundary between the regimes
is determined by the value of ε. Let us estimate the
parameters of the capillaries and the fluid that are typi-
cal of oil pools. For example, for the radius of the cap-
illary cross section R0 = 10–3 cm, the threshold fre-

quency is f0 =  ~ 103 Hz (the kinematic viscosity

of the fluid is ν = 10–2 cm2/s). For such a capillary, the
nonviscous approximation is applicable for vibration
frequencies higher than 1 kHz, i.e., for high-frequency
sound and ultrasound, and the Stokes approximation is
applicable for f ! 103 Hz, i.e., for low-frequency sound.

A Cylindrical Capillary (Nonviscous Approximation)

Assume that the capillary radius R(z) = r0 is inde-

pendent of z. Then, in Eq. (17),  = 1, and this equation
takes the form

(19)
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We first consider the simplest case of g = 0. In this
case, Eq. (19) has the form

The second term on the right-hand side of this equa-
tion represents the static friction force. Although this
force acts only when the drop moves, to set the drop in
motion, it is necessary that the amplitude of the vibra-
tion action becomes greater than b. In view of the
expressions for a and b, we easily derive the condition
for the threshold amplitude of vibration:

(20)

Evidently, for high-frequency vibrations, much smaller
vibration amplitudes are necessary to initiate the drop
motion, as compared to the case of low-frequency
vibrations. When the vibration is sufficiently intense
(a > b), the drop behavior within one period of vibra-
tion is as follows: first, the drop is immobile, then it is
shifted in one direction, remains for some time in the
extreme position, and then returns to its initial position.
On the whole, it is clear that, in the absence of the static
force, the vibration does not cause any systematic dis-
placement of the drop.

In the presence of a mean external force acting on
the drop (g ≠ 0), the condition for the beginning of the
drop motion is less stringent:
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Fig. 2. Drop displacement versus time in a cylindrical cap-
illary.
It can be represented in the form

(21)

One can assume that the fluid motion in an oil pool
terminates when the external pressure in capillaries is
counterbalanced by the capillary pressure, i.e., when
the right-hand side of Eq. (21) is close to zero. Under
these conditions, for the drop motion to begin, a rela-
tively small vibration amplitude is required even at low
frequencies. Since low-frequency sound is character-
ized by weak attenuation, one can expect an increase in
the permeability of oil pool structures as a result of the
beginning of the drop motion at large distances (several
hundreds of meters) from the source of low-frequency
acoustic vibrations.

Figure 2 shows the displacement of a drop with time
for different combinations of the values of three param-
eters: a, b, and g. One can see that, all other conditions
being the same, the displacement of the drop is greater
when the vibration amplitude is higher (compare the
lower and intermediate plots) or the static force is stron-
ger (compare the intermediate and upper plots).

In the case of g = b, it is easy to obtain the solution
to equation (19) of the drop motion in a cylindrical cap-
illary. The solution has the form

The corresponding average velocity of drop dis-
placement is

(22)

Let us analyze the dependence of the dimensionless
parameters a, b, and g on the drop length l. According
to Eq. (18), the quantity a does not depend on l,
whereas b is inversely proportional to l. If we assume
that the static force G is the nonzero projection of the
gravity force and that P1 = P2, the quantity g, as the
quantity a, will be independent of l. Thus, the only
parameter that depends on the drop length is the param-
eter b, which determines the beginning of the drop
motion at a given a. This means that, at a given level of
vibration action, long drops will begin moving earlier
and stop later than short drops. Since the parameter g is
the same for different drops, the average velocity of
long drops will be higher than that of short drops. The
effect of coalescence of two different drops under the
effect of vibration was studied in [27].

A Conic Capillary

Let us consider a conic capillary. In this case, we
have
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where δ =  and α is the cone angle. We assume
that δ ! 1. In this case, Eq. (17) takes the form

(23)

One can see that, in the presence of conicity, an
additional average force arises in addition to g. The
direction of this force is determined by the sign of the
cone angle α. It may enhance the effect of the mean
pressure gradient or reduce it. Under actual conditions,
one can expect that the conicity of capillaries will
reduce the threshold amplitudes of vibrations that are
necessary to begin the filling of the capillaries in which
the additional force is added to the external pressure
gradient.

Figures 3 and 4 represent the numerical study of the
time dependence of the drop displacement in a conic cap-
illary for different values of the cone parameter δ. The
values of a and b were taken to be constant, and for the
static force two values were used: 0.3 (Fig. 3) and −0.3
(Fig. 4). This corresponds to the direction of the force
action along the axis from the cone vertex and to the ver-
tex, respectively. In the first case, the drop leaves the nar-
row part of the capillary faster when the cone parameter
is smaller. In the second case, the drop approaches the
vertex faster when the cone parameter is greater.

A Capillary with a Periodically Varying Radius

One can assume that, under actual conditions, the
radius of the capillary cross section may nonmonotoni-
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Fig. 3. Drop displacement versus time in a conic capillary
(the static force is directed toward the vertex).
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cally depend on the longitudinal coordinate. Let us con-
sider the effects that arise in this case. As a model, we
consider a capillary whose radius varies according the
harmonic law

(24)

We assume that the wavelength is  @ R0; i.e., the

radius of the capillary varies slowly. For this capillary,
Eq. (17) takes the form

(25)

One would expect that, in the absence of external
action, the drops will tend to occupy the positions cor-
responding to stable equilibrium. For a capillary with a
cross section varying according to Eq. (24), these posi-
tions are determined by the condition

In the case when the constant external pressure gradi-
ent g is nonzero, the drop will stay in this position as
long as
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Fig. 4. Drop displacement versus time in a conic capillary
(the static force is directed from the vertex).
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i.e., g = b(1 + α) corresponds to the threshold value for
the beginning of motion. If a vibration is superimposed,
the drop begins moving.

Figure 5 shows the time dependence of the drop dis-
placement in a capillary with sine-shaped walls for dif-
ferent values of the corrugation parameter. One can see
that, as this parameter increases, the motion of the drop
in the direction of the static force becomes progres-
sively less effective (the initial position of the drop cor-
responds to z = 0). At α = 0.5, starting from a certain
instant, the drop ceases moving.

THE MOTION OF DROPS
UNDER LOW-FREQUENCY VIBRATIONS

Consider now the case of vibrations with a suffi-
ciently low frequency, so that the time of vorticity dif-
fusion within a distance of about the characteristic cap-
illary radius is much smaller than the vibration period;

i.e., ε =  ! 1. This condition means the smallness

of the Reynolds number for the flow under study.

We seek the solution in the form of a series expan-
sion in the small parameter ε:

where v 1/v 0 ~ ε and p1/p0 ~ ε.
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Fig. 5. Drop displacement versus time in a capillary with a
sine-shaped boundary.
Equation of the Inertialess Approximation

In the zeroth order in ε, Eq. (9) takes the form

Its integration with allowance for boundary condition (4)
yields the expression for the velocity of the liquid:

Substituting this expression into Eq. (8), we determine
the relation between the liquid flow and the pressure
gradient:

(26)

Here, Q0 is the mass flux to zeroth order in ε. Then, we
integrate Eq. (26) with respect to z with allowance for
the dynamic boundary condition (5). As a result, we
obtain

(27)

This equation corresponds to Eq. (12).

Since the transverse dimension of the drop is much
smaller than the longitudinal dimension, the velocities
of the displacements of the drop ends can be deter-
mined as the average velocities in the corresponding
cross sections:

As a result, we obtain a set of equations for determining
the positions of the ends of the drop:

(28)

The set of equations (27), (28) is analogous to set (13),
(14) obtained in the absence of viscosity.
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By analogy with Eq. (14), in the short drop approx-
imation, from Eqs. (27) and (28) we obtain one equa-
tion for determining the coordinates of the center of
mass of the drop. This equation has the form

(29)

Unlike Eq. (14), Eq. (29) is a first-order equation. This
reflects the fact that, in the Stokes approximation, the
inertial force acting in the noninertial frame of refer-
ence is counterbalanced by the viscous force, which is
proportional to the velocity of the drop motion.

Changing to dimensionless variables (16), we repre-
sent Eq. (29) in the form

(30)

A Cylindrical Capillary (Viscous Approximation)

For a cylindrical capillary, Eq. (30) takes the form

(31)

Again, we first consider the simplest case of g = 0. For
the drop to begin moving (i.e., for dν/dτ to become non-
zero), the normalized vibration amplitude a should
exceed b. This leads to the necessity of satisfying con-
dition (20), which requires much smaller vibration
amplitudes for high-frequency vibrations, as compared
to low-frequency ones. In the presence of an external
force acting on the drop (g ≠ 0), the condition for the
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2νm
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beginning of the drop displacement is less stringent
(condition (21)).

To estimate the average velocities of the drop dis-
placement in the capillary, we numerically solve Eqs. (19)
and (31) with the following values of the parameters:
ω = 102 s–1; R0 = 10–3 cm, ν = 10–2 cm2/s, σ/ρ = 74 cm3/s2,
l = 10–1 cm, and ξ0 = 10–4 cm. We assume that G +

 = (cos  – cos ), i.e., b = g. Let us

compare the results of calculating the drop motion in a
cylindrical capillary near the displacement threshold in
the frameworks of the nonviscous and viscous models.
The results are shown in Figs. 6a and 6b, respectively.

One can see that the character of the drop motion
calculated with the given parameters is qualitatively
the same for the two models. However, considerable
quantitative differences are observed. From Fig. 6a,
one can see that the average velocity of the drop dis-
placement is 10–2 cm/s. In the Stokes model, the aver-
age velocity is about 10–4 cm/s. Thus, viscosity notice-
ably reduces the average velocity of the drop motion. At
the same time, the nonviscous model allows one to ana-
lyze all the main features of the drop behavior in a vibrat-
ing capillary.

P2 P1–
lρ

----------------- σ
ρlR
--------- θ+* θ–*

0.0035
0.0030
0.0025
0.0020
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0.0010
0.0005

η

(a)

4

3
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1

10 20 30 40

η

τ

(b)

Fig. 6. Drop coordinate versus time in a cylindrical capil-
lary: calculations with the (a) viscous and (b) nonviscous
models. The parameters of the liquid and the capillary
dimensions are as follows: ξ0 = 10–4 cm, ω = 102 s–1, R0 =
10–3 cm, l = 10–1 cm, σ/ρ = 74 cm3/s2, ν = 10–2 cm2/s, and
b = g.
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In the case of g = b, one can easily find the solution
to the equations of the drop motion in a cylindrical cap-
illary.

In the Stokes approximation, Eq. (31) can be repre-
sented in the form

This yields the average velocity

dη
dτ
------ a

τ for τ 0>sinsin

0 for τ 0.<sin



=

(32)

Now, let the external force be not compensated for
by the dry friction force; i.e., g ≠ b. We assume that the
external force is sufficiently strong, so that the condi-
tion g > a is always satisfied (this corresponds to a suf-
ficiently small amplitude of acoustic vibrations). In this
case, Eq. (32) can be represented as

v〈 〉 a
π
---R0ω
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2ω2ξ0

4πν
------------------.= =
(33)dη
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












=

Averaging Eq. (33) over the vibration period, we
obtain the expression for the average velocity of the
drop motion:

(34)

Within the vibration period, the drop displacement does
not exceed |g – b|. If the characteristic scale of the cap-
illary radius variation η is great compared to |g – b|, i.e.,
η0 @ |g – b|, expression (34) can be used to analyze the
drop motion in a capillary with a varying cross section.

The Motion of a Drop in a Quasi-Cylindrical Capillary 
(Viscous Limit)

Under actual conditions, capillaries have complex
shapes; in particular, bends and deviations from axial
symmetry are typical. Here, we ignore such complex
distortions of capillary shapes and consider the influ-
ence of the simplest distortion: the dependence of the
radius of the capillary cross section on the longitudinal
coordinate. In this case, the motion of a drop is
described by Eq. (31), and, for the average displace-

dη
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0 for b g a≥–

a2 b g–( )2–
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----------------------------------
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2
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+
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

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



=

ment velocity, we can use expression (34) with the fol-
lowing substitutions:

(35)

The expression for the effective average force acting on

the drop involves the additional term γ  caused by

the conicity of the capillary. This force represents the
effect of pulling the drops of wetting liquids into nar-
rower capillaries and pushing the drops of nonwetting
liquids out toward the expanded capillary portions. This
means that, in a capillary of varying cross section, the
stable equilibrium position of a wetting liquid drop cor-
responds to the minimum capillary radius while the
equilibrium position of a nonwetting drop corresponds
to the maximum radius. A drop remains near the equi-
librium position in the presence of an average pressure
gradient if the condition

is satisfied, where ηe is the coordinate of the corre-
sponding extremum.

Let us assume that a drop is near an extremum and
the external force corresponds to the displacement

threshold. If (ηe) = 1 (which is preset by the choice of
normalization), we have b = g. The motion of drops

b bR̂
3 η( ),

a aR̂
2 η( ),

g gR̂
2 η( ) γdR̂

dη
-------.+

dR̂
dη
-------

bR̂
3 ηe( ) gR̂

2 ηe( )>

R̂
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under vibration is different for wetting and nonwetting

liquids. In the case of a wetting drop, (η) near its
minimum is an ascending function of η. According to
Eqs. (34) and (35), the motion of the drop occurs until
the following condition is satisfied:

(36)

If, near the equilibrium position, condition (36) fails,
the drop begins moving. As the distance from the point
of equilibrium increases (the drop deviates from the

point of minimum (η)), condition (36) begins to be
satisfied and the drop stops.

In the case of a nonwetting drop, its equilibrium

position is near the maximum of (η). If the drop is
displaced from the equilibrium position under the effect
of vibration, condition (36) is not satisfied for smaller

values of (η) and, hence, the drop will continue mov-
ing away from the point of equilibrium. Thus, by apply-
ing a vibration, it is possible to eliminate a trapped drop
of a nonwetting liquid, whereas a drop of a wetting liq-
uid will remain near its stable equilibrium position.

R̂
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Fig. 7. Average velocity of the drop displacement versus
coordinate in a capillary with the cross section radius vary-

ing as (η) = , where q = 0.5 and η0 =

1000: (a) a wetting drop and (b) a nonwetting drop.
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Examples of such drop motion are shown in Fig. 7 for
a capillary with a monotonically varying radius

and in Fig. 8 for a capillary with a periodically varying
radius

From Figs. 7a and 8a, one can see that the vibration
pushes a wetting drop out of the narrowed portions of
the capillary; the drop then stops at some distance from
its initial position. In the case of a nonwetting drop
(Figs. 7b and 8b), under vibration it may infinitely
move away from the equilibrium position. This motion
will be of a monotonic character in a capillary with a
monotonically varying cross section and of oscillating
character in a capillary with a periodically varying
cross section.

CONCLUSIONS

Thus, we analyzed the motion of individual drops in
a porous medium under the effect of a low-frequency
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1 q/cosh η /η0( )2+
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Fig. 8. Average velocity of the drop displacement versus
coordinate in a capillary with the cross section radius vary-

ing as (η) = , where q = 0.5 and η0 =

1000: (a) a wetting drop and (b) a nonwetting drop.
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vibration. We assumed that the liquid wets the walls of
the pores. At the same time, it is well known that oil is
a nonwetting liquid for most rock types. Therefore, it is
necessary to separately specify the conditions under
which the mechanism considered above can lead to an
increase in the velocity of the oil flow. Three situations
are possible:

(i) Oil is mixed with water, and a suspension flows
through the capillaries. Unlike pure oil, the suspension
wets the walls of the capillaries. Thus, the vibration
action stimulates the flow of the suspension drops
trapped in the pores;

(ii) Water drops fill part of the pore volume and pre-
vent the flow of the oil phase (or suspension). In this
case, the vibration action cleans the pores;

(iii) If the seam pressure decreases, heavy oil frac-
tions deposit on the walls of the capillaries and the sur-
face of the collector becomes wetted.

The mechanism of drop motion under vibration that
was considered above is of a threshold character (the
sound wave amplitude should exceed a certain critical
value). At first glance, one may expect that this mecha-
nism manifests itself only under an intense acoustic
action on the oil pool. (For intrawell acoustic radiators,
the region of effective action is the near-well zone.)
However, it should be noted that, in our model, the
threshold level proves to be lower the larger (longer) the
drop is. Large drops may begin their motion even at a
relatively low vibration level at which smaller drops are
yet unable to move. If small drops occur in the way of
moving large drops, they will be gradually absorbed by
large drops and carried along by them. Hence, a moving
drop will grow and its velocity will increase. This sce-
nario of mass transfer seems to be quite realistic. In our
opinion, this is the most efficient physical mechanism
that allows one to explain the observed intensification
of the oil flow under a low-frequency vibration action
on an oil pool.
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Abstract—The existing approach to mitigating earthquakes and other catastrophic geological processes stip-
ulates the determination of the site, time, and strength of the anticipated event. However, the disastrous earth-
quakes of recent years clearly demonstrate that even the most advanced systems of monitoring and warning
for seismic and other geological hazards are insufficiently effective. However, by adding the monitoring of
the Earth’s acoustic field to the existing systems of observation of so-called precursors and by restricting the
observations to a certain region (thus excluding the task of determining the site), it is possible to provide a
more adequate forecast of earthquakes and other catastrophic geological processes in this particular region.
© 2005 Pleiades Publishing, Inc.
Numerous victims, huge destruction, and vast eco-
nomic losses caused by seismic impacts and other cat-
astrophic geological processes are determined to a con-
siderable extent by incorrect selection of the site,
design, and technology of construction of houses and
public and technical buildings. It is impossible to avoid
destruction of buildings constructed at sites with “poor”
geology unless the structure possesses a sufficient
strength reserve. Nor it is possible to eliminate the loss
of life if a disastrous earthquake takes them unawares
and if unexpected secondary catastrophes arise on eco-
logically hazardous objects. Therefore, the main task of
hazard forecasting is to provide a reliable warning con-
cerning the exact place and time of a disastrous earth-
quake or other geological cataclysm. This is a very
complicated problem; however, it can be simplified if
we exclude the task of determining the site of a possible
event by a priori selecting a certain region and carrying
out long-term observations of the seismic and geologi-
cal situation in this region. Then, the main effort can be
concentrated on determining the time of the onset of a
catastrophic development in this region. The corre-
sponding algorithm can be realized by organizing the
appropriate observation system, for example, within
the boundaries of a big city, industrial region, or a local
object of special importance—that is, immediately in
the vicinity of a site where a catastrophic geological
event has to be forecasted and mitigated.

In order to solve the problem of determining the
onset of a catastrophic event (e.g., an earthquake) in
such a preselected region, it is necessary to choose a set
of reliable and informative prognostic signs and adapt
the observation systems to monitoring the correspond-
ing characteristics. In the case of observations in large
1063-7710/05/51S1-S $26.000122
cities, one important prognostic sign is underground
acoustic noise, which can be monitored in deep wells,
on the Earth’s surface, and at the sea and ocean bottom.
The acoustic noise, representing stochastic oscillations
in a frequency range from 16 to 104 Hz, has a mechan-
ical nature, appears in the Earth’s solid crust at random
sites and at arbitrary moments of time, and generates
pulses of acoustic radiation (acoustic emission). The
frequent weak pulses merge into continuous noise,
from which narrow (1/3 octave wide) bands of the
underground hum (UH) can be separated with the aid of
analog filters. Such signals are usually very difficult to
detect because of their extremely low intensity. How-
ever, the recent progress in measuring equipment offers
a possibility to measure the previously inaccessible UH
parameters.

Acoustic signals have been successfully used for a
long time in seismic prospecting and in nondestructive
testing of materials and engineering structures. Instru-
ments employed in seismic prospecting are capable of
measuring the displacement velocities in a range of fre-
quencies below 200 Hz, while the nondestructive test-
ing involves the measurement of accelerations in the
ultrasonic frequency range (above 20 kHz). However,
the measurements of the UH in these frequency inter-
vals are not very effective. From the standpoint of solv-
ing the main problem posed above—to monitor UH for
seismic hazard warning—the most informative spectral
interval is the initial part of the acoustic frequency
range, which extends from 16 to 2500 Hz. Higher UH
frequencies are still difficult to observe, because the
amplitudes of displacements in a longitudinal acoustic
wave are extremely small—on the order of femtome-
 © 2005 Pleiades Publishing, Inc.
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ters (~10–15 m)—and rapidly decrease with increasing
frequency.

The detailed analysis of the UH and the detection of
its small variations have become possible owing to the
creation of geophones based on magnetoelastic acous-
tic crystal sensors. Using these devices, it is possible to
measure acoustic signals within 1/3 octave band at 30,
160, 500, and 1200 Hz. A special feature of such geo-
phones is a steep frequency characteristic, which pro-
vides for an increase in the sensitivity with the fre-
quency (60 dB per decade). This behavior is analogous
to the variation of the UH level. For this reason, the new
devices are capable of reliably detecting the character
of variation of even very low UH in the indicated fre-
quency bands. In an automated regime, geophones
measure the amplitudes of the particle velocity acceler-
ation [m/s3] (averaged over a minute time interval) in a
longitudinal acoustic wave of the UH. In the course of
processing, the data are averaged and compared with a
model process parameter—the calculated absolute rate
of variation of the relative volume strain of the Earth’s
crust under the action of the solar tide component,
which is used as an estimate for the energy of the solar
tide-induced deformation component and as an energy
model of the process modulating or initiating the UH,
which is separated from the total seismoacoustic noise.

As is known, the earthquakes are generated by
mechanical displacements in the Earth’s crust. Such
processes take place continuously, and their intensities
and amplitude–frequency characteristics depend on the
properties of the geophysical medium and the character
of variation of its stressed state. Tectonic processes lead
to the formation of large zones with significantly aniso-
tropic concentrations of internal stresses, which results
in the fracture of blocks in the Earth’s crust that is
accompanied by the liberation of mechanical energy in
the form of earthquakes. Precursors and the onset of
this fracture manifest themselves as changes in the
intensity of acoustic emission and can be revealed from
the related UH characteristics.

It should be noted that the difference between the
acoustic emission and the UH is rather conventional.
The concept of acoustic emission is somewhat broader
and refers to the entire spectrum of acoustic energy
radiated in the pulse form, whereas the UH implies a
conditionally separated average amplitude of harmonic
components of the acoustic emission in narrow bands
of the initial part (from 16 to 2500 Hz) of the acoustic
frequency range. Both the acoustic emission and the
UH are highly sensitive to changes in the stressed state
of the Earth’s crust, which accompany the geodynamic
processes. Assuming that the interactions involving the
rock pressure and the long-term compression of plat-
forms moving in the Earth’s crust are accompanied by
energy accumulation, we may conclude that a nonuni-
form unloading and the resulting anisotropic stress dis-
tribution in the foci prepare the conditions for a possi-
ble earthquake. These assumptions do not contradict
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
the well-known Gilbert–Reid model. Therefore, we
may ascertain that the liberation of acoustic energy
must take place primarily in the course of an anisotro-
pic change (decrease) of stresses in the Earth’s crust.
This is confirmed by the results of numerous experi-
mental investigations of a variable acoustic emission in
the regions with different characters of seismic activity,
such as central Russia, Belarus, California, North Cau-
casus, and Kamchatka.

The underground sound always accompanies and,
probably, precedes all seismic and large exogenous
geological events. A description of the underground
sound observations made in Italy at the end of the 19th
century was reproduced by G.H. Darwin in his book
“Tides and Kindred Phenomena in the Solar System.”
In particular, he wrote: “one de Rossi of Rome arranged
a microphone in a lone place 20 m deep under the
ground. The next night, he heard sounds that, in his
opinion, belonged to ‘natural telluric phenomena.’ De
Rossi described these sounds as ‘noises, shots fired sep-
arately and a volley, metal clangs, and ring bells.’ All
these sounds were absolutely incomprehensible and
mixed to reach maximum strength in irregular time
intervals. These noises sometimes became intolerably
loud, in particular, once in the midnight, half an hour
before a significant earthquake.” This is historical evi-
dence, but more than a century had to pass before inves-
tigations of the underground noise became possible.

Nowadays, some witnesses of earthquakes also
recall strange acoustic sensations related to such events.
For example, intense vibrations of the Earth’s surface in
the acoustic range were observed in the village of Garm
in Tajikistan two hours before the disastrous 1950
earthquake. Based on such evidence, Prof. Rikitaka
from the Institute for Earthquake Investigations
(Tokyo) suggested that the monitoring of vibrations in
the acoustic frequency range might be useful for earth-
quake forecasting. Witnesses also recalled “auditory
impressions” from catastrophic giant landslides, sinks,
and the like.

The natural underground sound appears as a
sequence of various acoustic signals differing in
rhythm, level, and frequency, rather than a monotonous
noise. These sounds mostly resemble knocking, thun-
der, grinding, hum, rustle, and so on. Therefore, it is not
surprising that separating components from this chaos
which are capable of notifying us about a forthcoming
seismic or other hazardous event is a very difficult task.
Apparently, this direction of research did not find prac-
tical development, because the relevant acoustic signals
mostly fall outside the sensitivity range of instruments
traditionally used in seismic and engineering investiga-
tions. For this very reason, the existing prognostic test-
ing grounds are still not equipped with instrumentation
for underground sound detection and recording.

Changes in the parameters of acoustic emission and
UH, as a kind of response to seismic events, tides, exog-
enous processes, and technogeneous impacts on the
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lithosphere, offer an important characteristic of the
geophysical medium. Recording and analysis of varia-
tions in the UH provide the possibility to detect the very
onset in the development of rock degradation, which is
a precursor of catastrophic earthquakes, rock shocks,
and other exogenous geological processes. Profound
UH investigation, including the online monitoring and
analysis of such signals by qualified specialists in
acoustics and seismology, offers essentially a new
approach to short-term hazard warning for earthquakes
and other geological events. Using electric signal
records carrying information abut the underground
sound, it is possible to build unconventional monitoring
systems—for example, utilizing multimedia computer
networks to image the volume sound—and to employ
the broad possibilities offered by the Web as a commu-
nication means for involving large number of experts in
the evaluation of the current seismic and geological sit-
uation.

The phenomenon of variation of the acoustic emis-
sion parameters can be used as an identification sign in
geophysical (in particular, seismic) monitoring of the
upper part of the Earth’s crust at sites most susceptible
to tectonic and exogenous processes, as well as at sites
of high technogenic activity, such as a megapolis, big
city, or a large industrial object.

Until recently, most specialists in geophysics and
seismology believed (and many still do) that the acous-
tic signal of natural origin detected in the upper part of
the Earth’s crust consists for the most part of an exoge-
nous noise. Indeed, for a long period of time, this delu-
sion did not meet any convincing objections. In order to
evaluate the ratio of exogenous and endogenous noise
in the upper part of the Earth’s crust, a large series of
experimental investigations was carried out and a num-
ber of relations concerning the laws of acoustic emis-
sion have been established, including those accompa-
nying the mechanical action upon the lithosphere in the
upper part of the Earth’s crust. The experiments per-
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Fig. 1. Noise amplitude measured in 1/3 octave bands at
(1) 33, (2) 160, (3) 580, and (4) 1250 Hz in a 930-m-deep
well (Pervomaœskaya, Belarus Republic).
formed in various regions, including the tests with
high-power vibrators, provided new data indicative of
the intensification of endogenous high-frequency noise
(i.e., of the natural acoustic emission) in response to
strong action upon the lithosphere. The results of these
investigations showed that geoacoustic monitoring can
be used as a means for the investigation of the state of
lithosphere, the evaluation of the level of technogenic
action, and the earthquake forecast.

The experimental measurements of acoustic signals
in a 930-m-deep well drilled in a homogeneous sedi-
mentary rock, which were performed in 1995 on the
territory of Belarus at a site remote from industrial
noise sources, objectively confirmed the existence of a
natural endogenous high-frequency noise. The varia-
tion of the amplitude of the underground acoustic sig-
nal in the frequency range from 33 to 1250 Hz was
measured along the depth of the well at 50-m intervals.
It was found that the noise level variations at 33 and
160 Hz were relatively small (not exceeding 3–4% of
the minimum noise level). In the vicinity of 580 Hz,
the deviations increased to 11%, and at 1250 Hz they
exceeded 100%. The low frequency noise decreased
with the depth, whereas the high-frequency noise was
minimum at the surface and significantly increased on
moving downward, especially at 1250 Hz (Fig. 1).

Similar data were obtained in the study of acoustic
emission signals in a well at Petropavlovsk-Kam-
chatski. The measurements were performed at 30, 160,
560, and 1200 Hz over a range of depths down to 1035 m.
By analogy with the results described above, the ampli-
tude of low-frequency (30 and 160 Hz) components ini-
tially decreased with increasing depth, while the high-
frequency (560 and 1200 Hz) components remained at
a low level. This behavior was observed down to a
depth of about 600 m. From this point downward, the
acoustic signal intensity increased in the entire spectral
range. The growth continued down to a depth of about
900 m and then decreased again.

An analysis of the results of experiments described
above showed that the character of changes in the
acoustic signal intensity with increasing depth had
much in common at all sites where the measurements
were carried out. This similarity was especially pro-
nounced at sites where the geological medium was not
subjected to significant technogenic action, which is
additional evidence for the natural origin of the acous-
tic emission. In practically all cases, the noise level ini-
tially decreased and then increased with increasing
depth. The noise measured at different sites varied in
amplitude, but this behavior remained the same. The
minimum noise level was virtually always observed at
a depth of 250–500 m. This result indicates that the
“exogenous” signal exhibits a decay with increasing
depth, which is accompanied by the appearance and
growth of an “endogenous” signal. Thus, acoustic sen-
sors occurring at a depth in excess of 250–500 m are
capable of detecting the acoustic emission (and the UH)
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free of both technogenic and exogenous interference. In
contrast, acoustic measurements at a relatively small
depth can be used to assess the state of the lithosphere
in its upper layers, which is especially important for
monitoring disastrous technogenic and natural exo-
genic geological processes.

A good illustration of the seismoacoustic emission
response to a technogenic action is offered by the
results of experiments performed in spring 2002 on an
oil field in Western Siberia. The experiments were
aimed at assessing changes in the endogenous acoustic
signal in the presence of surface vibrations. The geo-
logical section of the field mostly comprised clays,
shingle, sandstone, and aleurolites with collector beds
at a depth of 1650 and 1750 m. The acoustic emission
measurements were performed in a 1780-m-deep well.
The surface vibrations at a frequency varying from 10
to 33 Hz were generated by seismic sources of the
SVS24/RS27 type, whose synchronous operation pro-
vided a vertical vibrational load of 20 ts. The results of
these measurements confirmed that the internal acous-
tic vibrations could be initiated by an external vibra-
tional action applied at the surface. As can be seen from
the data presented in Fig. 2, the external mechanical
action produced a severalfold increase in the natural
seismoacoustic emission intensity at certain frequen-
cies (11 and 22 Hz at a depth of 1650 m; 10 and 20 Hz
at 1740 m).

By extrapolating the obtained experimental data,
one may expect that a technogenic physical (mechani-
cal) action upon a geological substrate in big cities,
which is mediated by the fields of vibrations and natural
and technogenic microseismic oscillations, is also
capable of generating acoustic emission in the upper-
most layers of the Earth’s crust (i.e., in the geological
medium). Taking into account the considerable inho-
mogeneity of the geological basis of big cities, which is
related to large variations in the geoengineering, hydro-
geological, and geocryological (for northern regions)
conditions, we may expect that investigations into seis-
moacoustic emission will provide a basic knowledge
for the understanding of the laws governing both
endogenous and exogenous geological processes in
such cities.

Variations of the acoustic emission can be also used
as an identification sign in the monitoring of distant
earthquakes. The results of experimental monitoring of
surface technogenic noise performed at the Moscow
Seismic Station by the Geophysics Service of the Rus-
sian Academy of Sciences showed that distant earth-
quakes influence the character of the acoustic emission.
The aim of these experiments was to assess the ability
to detect manifestations of endogenous and exogenous
processes by monitoring the variations in the back-
ground microseismic vibrations. The success was pro-
vided by the possibility of detecting seismic waves
propagating due to a distant earthquake.
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
Seismic waves caused by earthquakes can play the
role of natural sources of underground acoustic vibra-
tions (underground noise). This phenomenon is well
known at the epicenter and in the adjacent regions.
However, until very recently, there was some doubt
concerning the possibility that such seismic waves may
induce vibrations in the acoustic frequency range at a
significant distance from the epicenter. The results of
continuous monitoring of surface noise at the Moscow
Seismic Station provided convincing evidence for this
possibility.

The probability that a seismic wave from a strong
distant earthquake will pass through a seismic station in
a big city in the night (i.e., when technogenic noise is
minimal) is very small. Nevertheless, such an event was
recorded in the night on February 16–17, 1998. The
instruments detected a seismic wave caused by an
earthquake with a magnitude of 6.4–6.6 and a hypo-
center situated at a depth of 18 km in the northern part
of the Atlantic Ocean, which was accompanied by a
“powerful” outburst of acoustic emission in the four
1/3-octave low-frequency bands (30, 160, 500, and
1000 Hz). The arriving wave induced vibrations of the
base of the Moscow Seismic Station equipped with
standard seismometers of the SKD type (measuring
seismic waves in the traditional low-frequency range)
and a MAG-3S device operating in the acoustic fre-
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Fig. 2. Acoustic frequency characteristics measured at a
depth of (a) 1650 and (b) 1750 m in a 1780-m-deep well
(No. 3306, Gubkinskoe oil field) in response to the surface
vibration action (10–33 Hz): signals in the vertical and hor-
izontal directions.
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quency rage. The vibrations induced by the passage of
the seismic wave continued for more than 30 min. The
amplitude of vertical vibrations with a period of up to
20 s reached 40 µm at a maximum acceleration of 3.8 ×
10–6 m/s2. The acceleration of horizontal vibrations was
somewhat lower, not exceeding 3.0 × 10–6 m/s2 (north–
south) and 2.0 × 10–6 m/s2 (west–east). The seismic low-
frequency vibrations induced an increase in the acceler-
ation of vertical high-frequency background vibrations,
which exceeded the corresponding component in the
initiating wave (see table).

An analysis of the results of these measurements
showed that the induced acoustic emission process in
all four low-frequency bands exhibited a 10–30 min lag
behind the initiating seismic wave. The maximum lag
(30 min) was observed at 30 Hz, and the minimum
(10 min), at 1000 Hz (Fig. 3). Similar results were
obtained on the Borovoe Seismic Station (Northern
Kazakhstan), where the measurements were performed
in a 5–25 Hz band with the aid of a laser strain meter
arranged at a depth of 16 m in granite rock.

As can be seen from the results presented above,
observations in the continuous regime provided a
record of the acoustic emission induced by a remote
earthquake and confirmed the possibility of acoustic
emission generation by seismic waves propagating over
large distances from the epicenter. The results obtained
are interesting and even surprising, not only because
the effect was detected at a very large epicentral dis-
tance and the measurements were performed on the ter-
ritory of a megapolis (under conditions of strong tech-
nogenic activity). The main unusual result is that the
acceleration of the induced vibrations in the geophysi-
cal medium exceeded that in the initiating seismic
wave. Thus, the acoustic emission response to a seismic
action is an important characteristic of a solid medium,
which can be used as a criterion during a seismic mon-
itoring of the upper part of the Earth’s crust and in the
assessment of the seismic and geological risk at a given
site. Even separate cases of observations of such
extraordinary events can provide grounds for the for-
mulation of working hypotheses and planning the cor-
responding verification experiments.

The results of numerous, albeit short-term and
rather fragmentary investigations of the seismoacoustic

Characteristics of the seismic background signal and induced
seismoacoustic emission

Parameter
Frequency, Hz

30 160 500 1000

Seismic background signal, 
10–6 m/s2

15 6 0.6 0.05

Seismoacoustic emission, 
10–6 m/s2

24 8 0.7 0.1

Relative increase, % 60 33 16 100
emission and the UH, which have been performed since
1985 at various sites with the aid of magnetoelastic
acoustic geophones, were a base for undertaking long-
term (possibly “secular”) observations. Such experi-
ments were initiated in 1999–2000 at Obninsk, Petro-
pavlovsk-Kamchatski, and Kislovodsk. The latter two
sites—Petropavlovsk-Kamchatski and Kislovodsk, at
which the seismoacoustic monitoring is planned on a
secular basis—are located in regions of elevated seis-
mic activity, where catastrophic earthquakes are possi-
ble. This circumstance increases the probability of
observing the phenomena preceding earthquakes on the
background of regular UH variations, which can there-
fore serve as prognostic signs for short-term hazard
warning. The results of observations at Obninsk will
provide data on the UH variations under conditions of
a relatively low seismic activity, which must help in
elucidating the geophysical factors responsible for
these variations.

In order to establish the relationship between acous-
tic noise variations and seismic activity, the vertical
noise component has been continuously monitored
since the end of 2000 in a 70-m-deep well near Kislo-
vodsk (Northern Caucasus). Continuous monitoring of
acoustic noise (vertical component) in a 90-m-deep
well in Obninsk was started in September 2003. The
characteristics of the latter well are analogous to those
of the well in Kislovodsk. In the future, the acoustic
noise databases simultaneously accumulated in the
regions with low (Obninsk) and high (Kislovodsk)
seismic activities will provide a basis for the compar-
ative analysis, which will probably reveal synchro-
nous variations of the seismoacoustic parameters of
records made at the two sites with significant latitudi-
nal spacing. These experiments are also expected to
give information on the influence of remote techno-
genic activity on the seismicity. Figure 4 shows frag-
ments of the acoustic emission records made in Kislo-
vodsk during military operations in Iraq. A compara-
tive analysis of the acoustic emission variations in the
bands at 30 and 160 Hz in a period between March 17
and April 12, 2003, showed evidence for correlations
between the UH variations and the intense bombard-
ments that took place in the foothill regions of Iraq.
These results lead to the conclusion that even remote
technogenic mechanical action on the lithosphere can
lead to an increase in the seismoacoustic emission.

However, the description and formalization of the
signs of changes in the seismic and tectonic situation,
as correlated with the underground sound variations,
encounters considerable difficulties. The problem is
additionally complicated by the still limited possibili-
ties of recording and imaging of acoustic signals. Over-
coming these difficulties would provide for the possi-
bility of objectively detecting even very small changes
in the character of the underground sound preceding
earthquakes and other disastrous exogenous geological
processes. On this basis, it will be possible to create an
algorithm of recognition of the onset and development
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 3. Vertical components of (a) the seismic signal from a remote earthquake and (b–e) the induced seismoacoustic emissions in the
1/3 octave bands at 30, 160, 500, and 1000 Hz, respectively, measured at the Moscow Seismic Station (February 16–17 night, 1998).
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Fig. 4. Fragments of time series of the seismoacoustic emission measured in 1/3 octave bands at (1) 30 and (2) 160 Hz
in a 70-m-deep well in Kislovodsk during military operations in Iraq.
of such critical events. In connection with this, we can
only regret that UH investigations have not been prop-
erly developed for a long time and hope that modern
professional equipment created for the detection,
recording, processing, and display of acoustic signals
(in particular, their spectra) in the online regime, in
combination with novel geophones, will provide a
means for objective recording of even the finest
changes in the character of underground sound and
make possible the extraction of objective information
from these data. It should be noted that the aforemen-
tioned equipment is already available from many well-
known companies but is still not used in practical seis-
mology.

The phenomenon of significant temporal variation
in the UH, which sometimes (but not always) follows
tidal variations of gravity, has not been given an accept-
able description for quite a long time. Such a descrip-
tion was obtained only when a model (image) of the ini-
tiating process was taken in the form of a plot of the
time series of the absolute rate of variation of the rela-
tive volume strain of the Earth’s crust caused by the
solar component of tidal forces. The absolute rate of
variation of the relative volume strain serves as a con-
ditional measure of the liberated energy (work) spent
for the deformation of the medium under the action of
tidal forces. The proposed energy model is quite well
correlated (correlation coefficient, r = 0.6–0.8) with the
background variations of the underground sound in the
upper part of the Earth’s crust. It should be noted, how-
ever, that this correlation decreases and even vanishes
for certain periods of time in the vicinity of the vernal
and autumnal equinox days. Since the tidal strain is sta-
ble and can be calculated, the proposed energy model
can be used for evaluating the related UH variations.
On the background of these variations, all other possi-
ble changes can be recognized and identified. In partic-
ular, an increase in the UH intensity can be detected in
some frequency bands, which is probably related to a
change in the stressed state of a local volume of the
Earth’s crust immediately before earthquakes and
other exogenous geological processes. The observed
changes, representing direct consequences of distur-
bances in the Earth’s crust, can be considered as reli-
able early forerunners of such disastrous events.

The continuous series of data provided by the results
of acoustic monitoring in Obninsk and Petropavlovsk-
Kamchatski confirmed the existence and allowed the
evaluation of the relationship between the UH varia-
tions and the lunar and solar components of tidal strain
in the vicinity of two characteristic points of the annual
cycle—the vernal and autumnal equinox days.

Synchronous phase variation of the UH intensity
and the energy model parameter before and after the
equinox days cannot be related to any known exoge-
nous process. Moreover, the observed 12-h phase shift
excludes the possible influence of thermal stresses
(whose extrema are related either to the diurnal maxi-
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mum or to the nocturnal minimum of the Earth’s sur-
face temperature) and cannot change on the equinox
days. The coefficient of correlation between the UH
and the energy model parameters is 0.82 before the ver-
nal equinox and 0.81 after this day, while decreasing to
–0.13 on this day. A similar pattern is observed for the
autumnal equinox day, whereby the correlation coeffi-
cient is 0.63 one month before the equinox, drops to
0.02 on the equinox day, and increases to 0.87 in one
month after this day. Thus, the UH intensity variations
at the end of March, the beginning of April, the end of
September, and the beginning of October are not corre-
lated with the energy model, while a high correlation
with r = 0.63–0.87 is observed over all the remaining
time of the year.

A comparative analysis of the results of the UH
measurements in Obninsk and Petropavlovsk-Kam-
chatski to the energy model calculations revealed regu-
lar and stable (from the standpoint of a stochastic noise
process) coincidences of the amplitude and phase.
Depending on the site of measurements, these coinci-
dences (r = 0.6–0.8) are observed in various frequency
bands. This correlation is significantly improved for the
results of observations at greater depths, especially in
the high-frequency bands of the interval under consid-
eration. An analysis of data in comparison with the
energy evaluation of the lunar component of the tidal
wave revealed no stable correlations (the average corre-
lation coefficient was close to zero).

New experimental data obtained by seismoacoustic
monitoring in Obninsk and Petropavlovsk-Kamchatski
made it possible to check the adequacy of the proposed
energy model to the observed UH variations. For this
purpose, we used (i) a comparative and correlation
analysis of the results of UH measurements in the vicin-
ity of the vernal and autumnal equinox points and the
results of model calculations, (ii) the equinox day test,
and (iii) a comparative analysis of the periodograms
constructed for the new data. The aforementioned sim-
ilarity of the frequency spectra of the underground
sound in the frequency band at 1250 Hz and the spectra
of the solar tidal strain component (which appear much
like the power spectra of electric circuits with active
resistances) was also confirmed for the bands at 160
and 30 Hz. Then, it was natural to suggest that the work
of the tidal wave, which is continuously spent for the
deformation of the Earth’s crust, is converted into ther-
mal and acoustic energy. These energies must be pro-
portional to the square of the strain rate (i.e., to the
strain energy) rather than to the linear strain. However,
there is no principal error in using the absolute value of
the rate of variation of the relative volume strain of the
model medium (instead of the energy) for the qualita-
tive analysis of causal relations.

It should be noted that we failed to reveal a stable
relationship between the UH amplitude and the lunar
component of the tidal volume strain (whose ampli-
tudes are on the average two times greater than those
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
for the solar tidal strain), which has not yet been given
an acceptable explanation. It is hoped that the continu-
ously increasing volume of seismoacoustic data gained
in Obninsk, Petropavlovsk-Kamchatski, and in the
Northern Caucasus will help to remove this discrep-
ancy and provide additional information necessary for
improving and refining the proposed energy model and
for formulating reliable prognostic criteria.

At the same time, the adequacy of the proposed
energy model to the seismoacoustic process under con-
sideration is reliably confirmed by the coincidence of
the composition of predominating periods in the real
spectra of the UH variations (measured in various fre-
quency bands) and in the calculated energy of the solar
component of the tidal-wave-induced straining. The
main advantages of the proposed model are its simplic-
ity and the clear sense. This model must be helpful in
explaining some nonlinear stationary processes of
energy supply, conversion, and dissipation in the
Earth’s crust. In particular, this energy is partly liber-
ated in the form of “microscopic” earthquakes, which
superimpose to form the underground sound. The same
model can be used for developing a prognostic criterion
for the earthquake forecast. On the background of the
stationary UH variation process, which is close to the
proposed model, it is possible to reveal and evaluate the
anomalies preceding disastrous earthquakes.

Using the continuous and sufficiently long series of
data on the UH amplitude variation obtained at the seis-
mic stations in Obninsk and Petropavlovsk-Kam-
chatski, we have performed a mode detailed spectral
analysis of the acoustic oscillations. This analysis
revealed contrast differences in amplitudes of the main
periods, 12 and 24 h. The main periods of the UH
amplitude variations agree well with those in the pro-
posed energy model, a difference not exceeding frac-
tions of a percent. An analogous coincidence with the
main periods was also found using the data obtained
previously for a high-frequency band (1250 Hz)
observed over a 30-day period in a 930-m-deep well in
the Pripyat trough (Belarus). When the observation
time was increased up to 3 months, the same main peri-
ods were revealed for the low-frequency bands (30 and
160 Hz). In addition, separate frequency analysis of the
new 30-day intervals showed that the periodograms of
data obtained in Obninsk and Petropavlovsk-Kam-
chatski immediately on the vernal and autumnal equi-
nox days of 2000 significantly differ in amplitudes of
the main periods from the analogous periodograms
obtained in the subsequent periods of time.

According to the results of observations in Obninsk,
the amplitudes of the diurnal and semidiurnal periods in
the periodograms for the days close to the vernal equi-
nox (March 15 to April 15) are 236 and 38 times lower,
respectively, than those in the periodograms obtained in
the next month (April 15 to May 15) and are 294 and
69 times lower, respectively, than those in the peri-
odograms obtained in the following month (May 15 to
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June 15). Analogous differences in the amplitudes are
characteristic of the periodograms obtained using the
data for September and October, 2000, in Petropav-
lovsk-Kamchatski. Indeed, the amplitudes of the diur-
nal and semidiurnal periods in the periodograms in
September are 13.5 and 14.7 times lower, respectively,
than in October. The amplitude of shorter periods after
the equinox days also significantly increased: by a fac-
tor of 1.7 to 32 in Obninsk, and 6 to 55 in Petropav-
lovsk-Kamchatski. These significant variations in the
amplitude composition of harmonics of the UH varia-
tions are evidence that these variations are caused by
the solar tidal strain component rather than related to
the thermal noise or some antropogenous factor. The
antropogenous factors cannot vary as significantly
within two months (from March to April and May) or
even within one month (from September to October)
as does the UH variation amplitude. The diurnal tem-
perature gradients in these periods are also relatively
small and cannot account for significant variations in
the main UH harmonic amplitudes. Analogous
changes are observed in periodograms calculated for
the proposed energy model. Therefore, we may sug-
gest that the UH arises from telluric processes and,
hence, bears new, important independent information
concerning changes in the stressed state of the Earth’s
crust. This information can and must be used for fore-
casting earthquakes and other disastrous exogenous
geological processes.

A system of the seismoacoustic monitoring for a
megapolis, a big city, or a special industrial object should
be based on a measuring network including a series of
geophones arranged in deep (deeper than 1000 m) wells.
The maximum prognostic effect of the UH monitoring
can be obtained in combination with alternative meth-
ods of hazard assessment for earthquakes and other
disastrous exogenous geological processes. On the
other hand, the use of the UH monitoring data in the
general system of seismic and geoengineering monitor-
ing will increase the reliability of currently developed
algorithms of evaluation of the degree of seismic and
other hazardous factors for the objects of protection.
Therefore, the optimum monitoring scheme stipulates
the creation of complex centers for forecasting earth-
quakes and other disastrous exogenous geological pro-
cesses, which would ensure fast an effective organiza-
tion of the necessary methodological and research
works. An example is offered by the testing ground in
Parkfield (California, USA), whose control center col-
lects and analyses the whole body of seismic informa-
tion about the surrounding region. This allows the epi-
center to be determined and the shock intensity to be
evaluated within three to five minutes after the earth-
quake onset.

Although no testing grounds like that in California
have been created in Russia, there are many possibili-
ties for rapidly organizing a deep-well monitoring sys-
tem using acoustic detectors with the corresponding
characteristics. The development of a UH monitoring
system is currently in progress in Petropavlovsk-Kam-
chatski, which is the region of maximum seismic risk in
Russia. This gives hope for a revival of the state fore-
cast service on the new, advanced methodological and
technical level, and for the organization, already in the
nearest future, of a reliable system of early warning and
hazard mitigation in cases of earthquakes and other
disastrous exogenous geological processes.

Translated by P. Pozdeev
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Abstract—At the first stage of seismic action, the attenuation of acoustic waves in real (porous, creviced) rocks
is always related to the energy pumping to high-frequency (ultrasonic) modes, and only at the next stage are
these waves converted into chaotic thermal oscillations, so that the entire phenomenon refers to a basic problem
of nonlinear seismics. Several physical phenomena related to the excitation of ultrasound and the corresponding
transformations of the wave spectrum (including the dry friction in contacts, the instability of viscoelastic oscil-
lations, the seismic energy pumping to the rotational modes, and the resonance of gas bubbles in natural oil) are
considered in relation to the development of vibroseismic methods of acting upon a producing oil pool. The
results of experiments on the ultrasound-stimulated water displacement of natural (gas-saturated) oil from a
porous medium are presented, in which the oil recovery reached up to 90%. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The vibroseismic method of residual oil withdrawal
from a water-encroached oil pool was originally devel-
oped at the Schmidt Joint Institute of Physics of the
Earth [1]. This method is based on selecting a fre-
quency of the external acoustic action (typically within
6–20 Hz) capable of changing the oil–water balance in
the running well production rate, predominantly toward
increasing the oil yield. The observed effect is indica-
tive of variations in the water and oil phase conductivi-
ties. In addition, the field tests also showed significant
gas evolution, although variations in the average pres-
sure level were rather insignificant. The two phenom-
ena seem to be interrelated, and both are probably
caused by the action of ultrasound. Although the acous-
tic wave energy in the course of the vibroseismic action
is supplied to the oil pool predominantly with low-fre-
quency modes, the final effect is related to the acoustic
action and, hence, the operation of a commercial vibra-
tor must be accompanied by the corresponding evolu-
tion of the wave spectrum. This circumstance requires
the development of nonlinear mathematical models,
while retaining the wave front propagation according to
the linear elasticity theory.

The vibroseismic method finds increasing use in oil
fields for the improvement of productivity. In applying
this method, it is important to select the optimum fre-
quency of the acoustic action. If the task is to provide
for the acoustic cleaning of the bottom-hole zone (e.g.,
removal of the skin zone [2]), it is recommended to use
ultrasonic frequencies. In contrast, the optimum work-
ing frequency for a heavy vibrator operating at the free
1063-7710/05/51S1-S $26.000131
surface of a pool area [1, 3] is much lower and usually
falls within 10–20 Hz. In the case of an immersed radi-
ator operating at the well bottom, preferred frequencies
are on the order of 200 Hz [4]. In each particular case,
the optimum frequency should be adjusted in situ [5].
Practical experience showed that the vibroseismic
method provides for an increase in the oil yield in the
total production of water-encroached pool regions.

An increase in the oil yield is possible, in particular,
when the seismic waves reaching an oil pool induce
ultrasonic oscillations with a wavelength comparable to
the average oil drop size [3]. Indeed, strains in such a
wave are realized only as a result of the relative dis-
placement of the edges of microcracks or collector
grains, which (according to the laws of dry friction) are
generating ultrasound. Another important factor is that
ultrasound stimulates the gas evolution from natural oil,
in particular, by increasing the oil saturation pressure
[6]. The appearance of a large amount of gas in the pool
favors an increase in the total pore pressure.

In a water-encroached oil pool, the evolved micro-
scopic gas bubbles are concentrated at the interface
between water and oil drops, which leads to an increase
in the mobility of oil drops in the water flow. In a fresh
oil pool, the gas bubbles predominantly stick to the solid
walls or pores, which results in a short-term increase in
the oil yield [7]. However, the subsequent growth of bub-
bles and their coalescence reduce the oil phase conduc-
tivity, while a long-term depletion of the reservoir is
additionally accompanied by an increase in the oil vis-
cosity. Therefore, it is necessary to keep the gas as long
as possible in the form of microscopic bubbles with the
aid of surfactants (including the natural ones) [8].
 © 2005 Pleiades Publishing, Inc.
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The above considerations show the importance of
the laboratory investigations into the properties of oil–
water flows under the action of ultrasound. Such exper-
iments elucidate the nature of events taking place in an
oil pool under the dynamic action in the course of oil
withdrawal. Below, we will summarize the main results
of the physical modeling of the process of ultrasound-
stimulated water displacement of oil.

BASIC CONCEPTS

As is well known [9], wave energy is effectively
transferred into soils at low frequencies on the order of
20–30 Hz. This can be related both to the stratification
of the surface layers and to the existence of dominant
resonance frequencies in sands and clays [10, 11]. On
the other hand, according to elasticity theory, the strat-
ification resonances of a geological section occur in the
region of 100–400 Hz [12], and the waves propagating
in an oil pool (as in a waveguide, which is softer than
the surrounding medium) must fall in the same fre-
quency interval. This implies that, in selecting the
working frequency, it is necessary to take into account
the position of the radiator (vibrator).

The experiments with wet sand on a seashore [10,
11, 13] showed that an acoustic source generated two
waves in this medium: fast and slow. The fast wave had
a higher frequency and a velocity of ~2 km/s, which
corresponded to a “frozen” state of the medium. How-
ever, this wave could not be unambiguously interpreted
as the first Frenkel–Biot wave, since the sand was only
partly saturated with water.

The main part of the strain energy was carried by the
slow wave propagating at ~200 m/s, whose spectrum
gradually transformed to a certain dominant frequency
component (~25 Hz), and it is this component that
propagates over large distances. The slow wave spec-
trum also contains high-frequency noise (~1 kHz),
which can be explained as being due to dry friction at
rough contacts between grains or crack edges. We iden-
tify the slow wave (which is the only wave observed at
long distances) with the second Frenkel–Biot wave [10,
13, 14]. This wave corresponds to developed deforma-
tions of the porous matrix and is observed in a system
of pores filled with air at a low pressure. Thus, the pres-
ence of a dominant frequency in the wave spectrum
may serve as additional evidence (besides the low
velocity) of the characteristic low-frequency wave of
the second type. Since the deformations in real geolog-
ical media necessarily involve relative displacements at
the contacts between structural fragments, they are
always accompanied by the generation of high-fre-
quency oscillations. It was found that the dominant fre-
quency corresponds to that of the acoustic emission
from the same sand. An external acoustic action upon
the sand at the dominant frequency leads to degradation
of the initial structure, whereby water-saturated sand
exhibits liquefaction. For comparison, the dominant
frequency of gravel is on the order of 10 Hz, while that
of clay is about ~40 Hz.

It was established that, during the operation of a
heavy vibrator at a selected low frequency in the region
of an oil pool [1], deep layers were “filled” with high-
frequency noise. This noise was added to the character-
istic noise of liquid flows accompanying the oil recov-
ery, where the latter noise was probably related to the
presence of gas bubbles in natural oil. Note that the oil
pools are always “noisy,” in contrast to water pools
where the gas content is extremely low [15].

The presence of gases is a very important factor for
the propagation of waves in rocks saturated with liquids.
The first fraction of gas saturation is always represented
by bubbles. The presence of gas bubbles dramatically
changes the situation for high-frequency modes. Indeed,
the propagation of a wave of the second type involves the
deformation of the porous matrix and, hence, the modifi-
cation of accompanying liquid flows in the system of
pores. However, in the presence of compressed gas bub-
bles, such flows (absorbing the wave energy due to vis-
cosity) are no longer necessary. Under conditions of the
gas bubble resonance, the second wave acquires [16] the
resonance frequency of these bubbles and, hence, has a
higher velocity. On the contrary, the velocity of the first
wave decreases as a result of an increase in the effective
compressibility of the liquid medium, and this wave exhib-
its stronger attenuation [16]. The results of model experi-
ments [17] showed that the seismic waves propagated at
the second characteristic wave velocity (~200 m/s) at fre-
quencies below the resonance, whereas, at higher fre-
quencies, they propagated at the first characteristic wave
velocity (~1500 m/s).

Another source of high-frequency noise can be
related to the dry friction, which is mathematically
equivalent [18] to the action of an oscillator. Richard and
Detournay [19] proposed a bidirectional oscillator model
describing intermittent slippage, in which the relation
between the normal and tangential stresses on the fric-
tion surface corresponded to the limiting cycles of high-
frequency noise depending on the velocity of particle
displacements in the incident wave. It is also known that
perturbations introduced by a source of the Van der Pol
type (as well as of some other types) give rise to a chaotic
noise smearing the spectra of acoustic signals [20].
These considerations agree with the aforementioned
experiments. As for the relationship between the normal
and tangential stresses, this hypothesis is necessary to
explain the fact that the dissipation coefficient is propor-
tional to the wave frequency due to the dry friction [11]
at a dilatant displacement of contacting hard particles.

GENERALIZED VISCOELASTIC MODEL

It should be noted that the size of sand grains is too
small to explain the low dominant wave frequency in
terms of their natural frequencies. It is more reasonable
to attribute the observed effect to a resonance viscoelas-
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tic interaction in a system of agglomerated wet grains.
Figure 1 shows a generalization of the rheological
Maxwell–Voigt model developed in [13, 21], where it
was originally suggested to add masses to the elastic
elements of a rheological scheme. According to Gam-
burtsev [22], an analogous combination underlies the
calculations of mechanical seismographs and their
electromechanical analogues.

The proposed model includes two elements with
viscosities µ1 and µ*, three elastic springs (with the
elastic moduli EI, EII and E*), and two oscillating
masses (MI and MII). According to the laws of rheology,
this scheme corresponds to the following relation
between stress σ and strain e:

(1)

where p is the running index of summation. Restricting
our consideration to the case of a planar one-dimen-
sional dynamics and passing to the time and coordi-
nates in a frame moving at an elastic velocity of c =
(EII/ρ)1/2 (ρ is the density) in Eq. (1), we obtain an equa-
tion describing the P-wave evolution:

(2)

Equation (1) is a generalization of the Burgers–
Korteweg–de Vries and Kuramoto–Sivashinsky equa-
tions well known in the nonlinear wave theory. The
selection of relation (1) and, hence, Eq. (2), can be
rationalized as follows. The dispersion curve of Eq. (2)
has two roots corresponding to the dependence of the
damping factor (Imω) on the wave number χ, where

(3)

If the coefficients AJ are selected so that the sum in
parentheses is negative between the two roots, the cor-
responding interval of wave numbers (Fig. 2) repre-
sents a region where the oscillations are unstable and
their amplitudes exhibit unlimited growth. However,
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Fig. 1. The model of a viscoelastic medium with internal
oscillators.
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the nonlinear term in Eq. (2) limits this growth due to
the energy pumping to high-frequency modes, where a
positive damping factor is ensured. This requires a spe-
cial selection of the parameters:

(4)

where θ is the relaxation time and κ is the internal
length (corresponding to a continuous description [13,
21] of the fragmentary medium). In the case of wet
clayey sand, the following estimates are valid: the
water-saturated clay viscosity, µI = 1–102 Pa s, and the
wet sand matrix viscosity, µ* = 104–105 Pa s. The ratio
of elastic moduli (quartz grains and sand particles) is on
the order of ~10–4 (the same as the viscosity ratio),
which implies that the model has a small parameter.
Malomed [23] wrote Eq. (2) in the following form:

(5)

where ε is a small parameter and ∆χ ~ ε is the width of
the instability interval. Let the instability center χd cor-
respond to the dominant frequency: ωd = χdc ~ ∆c/κII ~
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(c/κII)(µI/µ*), where ∆c is the dispersion (close to insig-
nificant for geomaterials).

With neglect of the odd-order derivatives (disper-
sion), Eq. (2) simplifies to yield

(6)

In this form, the P-wave evolution equation was used in
[24–33], where the following important result was
obtained: long waves are unstable and give rise to high-
frequency chaotic oscillations (related to the Goldstone
mode). This instability, called the soft turbulent mode
(STM), leads to the intense spatiotemporal chaos.
There was a discussion [24–33] concerning the possi-
bility of finding a form of the Ginzburg–Landau equa-
tion equivalent to Eq. (6), for which a wave with a dom-
inant frequency ωd would be stable over a certain time
interval. However, within the framework of this study,
it is sufficient that oscillations with a dominant frequency
ωd be accompanied by high-frequency noise, in agree-
ment with the experimental data [1, 3, 10].

In this respect, only one nontrivial numerical solu-
tion of Eq. (2) with retained dispersion term of the
third order was successful [34]. The results presented
in Fig. 3 show the transformation of the initial white
noise into a regular wave structure with a frequency of
ωd ~ 12 Hz existing for a certain finite period of time.
This pattern resembles the evolution of a seismic signal
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Fig. 3. Transformation of white noise [34] into the wave with
a frequency of 12 Hz at t = 0, 5/Imω, and 7/Imω.
to a dominant frequency in the case of wet sand [10].
After the third time interval (indicated in Fig. 3), the
wave structure lost stability and exhibited degradation.

Probably, STM instability accounts for the unsuc-
cessful attempts to follow, by means of numerical sim-
ulations using Eq. (2) with dispersion, the evolution of
an arbitrary harmonic wave to a dominant frequency.
The results of direct calculations using Eq. (6) per-
formed on a CRAY C-90 supercomputer [30] showed
that the instability is related to the appearance of high-
frequency limiting cycles.

THE LONG–SHORT WAVE RESONANCE MODEL

Sand grains in a weakly connected granular medium
are capable of kinematic rotation, even in the course of
wave-caused deformation. In this case, it is necessary to
use the Cosserat theory involving the angular moment
balance in addition to the momentum conservation. For
the P-waves, the two balances are related as [35]

(7)

(8)

where Φ is the angle of grain rotation; u is the displace-
ment; ν, δ, β, and a are the elastic constants; c1 and c2
are the wave velocities of the translational and rota-
tional modes,

(9)

J is the moment of inertia per unit grain volume; and A
and γ are the elastic moduli for the moment and anti-
symmetric stress components, respectively.

In Eqs. (7) and (8), the nonlinear terms correspond
to the elastic coupling:

(10)

Since the J value is small (being on the same order
of magnitude as the water conductivity of the medium),
the rotational mode can be identified with ultrasound,
while the translational mode corresponds to the seismic
wave. Figure 4 shows the dispersion curves for the lin-
ear variants of Eqs. (7) and (8):

(11)
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The energy transfer between various wave modes is
possible in the case of the so-called long–short wave
resonance (LSWR). In particular, it was suggested [35]
that the pumping of seismic energy to ultrasonic oscil-
lations can be realized provided that the group velocity
of ultrasound (cg) is equal to the seismic wave velocity
(c1): cg = cg ≈ c1  (at a wave number of χus = χ*).

The LSWR is usually considered from the stand-
point of the modulation of short-wave (optical) oscilla-
tions [36]. However, the inverse situation, whereby
short waves (high frequencies) are excited due to long
waves (low frequencies), is possible as well. As was
pointed out by V.I. Erofeev (private communication),
the excitation of ultrasound at the expense of the energy
of short waves requires the presence of another ultra-
sound oscillation. As can be seen from the above con-
siderations, this possibility is ensured in real oil pools.
The corresponding energy exchange coefficient
(~0.001) was calculated in [37].

The Cosserat mechanics in a viscoelastic variant was
also used for the generation of subharmonics [38], when
the resultant system corresponded to the Duffing equa-
tion. This effect was experimentally observed both under
laboratory conditions [39] and in the field test [10]. If the
translational mode is viscous while the rotational mode
is elastic, the rheological model corresponds to a slow
creep of the rock massive, in which the noise generation
has the form of a strange attractor [40].

LABORATORY INVESTIGATION
OF THE ULTRASOUND ACTION ON THE OIL 

RECOVERY FROM AN OIL POOL

Under laboratory conditions, natural oil was mod-
eled by a transformer oil saturated with natural gas
(propane) and containing (in some tests) surfactant
additives. The model oil was saturated with gas at a
pressure of P = 0.8–1.0 MPa and a temperature of T =

ω

ωs

ωus

ω0 2

χχ
*

Fig. 4. Dispersion curves for seismic and ultrasonic waves
showing the long–short wave resonance conditions [35].
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20–25°ë. The gas factor G (defined as the gas volume
per unit oil volume under normal conditions) was on
the average about 9.6 m3/m3. The oil saturation pressure
was determined both without ultrasound and under
(weak or strong) acoustic action [6].

Figure 5 presents the plots of the saturation pressure
versus the gas factor obtained under various conditions
and shows the corresponding linear (or polylinear)
approximations. As can be seen, the saturation pressure
in pure oil at the same gas factor increases with the
intensity of acoustic action, while the presence of a sur-
factant reduces this pressure by 0.1–0.2 MPa. Thus, the
introduction of foaming surfactants decreases the free
gas evolution from oil and retains gas in the form of
fine-disperse bubbles. However, at a high gas factor
(G > 35 m3/m3) and strong acoustic action, the presence
of foaming surfactants cannot prevent the conversion of
a fine foam into free gas. Under such conditions, the
saturation pressure significantly increases (the gas fac-
tor is doubled).

The producing oil pool was modeled (Fig. 6) by a
metal cylinder 5 filled with sand. The ultrasound was
generated by a source 12 positioned at the cylinder
input. Receiver 14 was placed at the output and inside
the cylinder. The model oil pool had a length of 0.495 m,
a diameter of 3.2 cm, a pore volume of 170 cm3, and a
permeability of 0.478 µm2. The ultrasound power in the
regimes of weak and strong acoustic action was 50 and
100 W, respectively. The pressure amplitude measured

1.0
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Gas factor, m3/m3
15 25 35 45
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1.2
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Fig. 5. Saturation pressure versus the gas factor for oil with
and without surfactant (SA) under weak (pus = 50 W) and
strong (pus = 100 W) acoustic action.
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Fig. 6. Schematic diagram of the experimental setup: (1–3) interconnected gas cylinders; (4) compressed nitrogen; (5) model oil
pool; (6) differential pressure gauge; (7) compressed propane; (8) gas/oil separator; (9) gas trap; (10) manifold; (11) cooler; (12)
ultrasound radiator; (13) generator; (14) ultrasound receiver.
by the output ultrasonic receiver in the regimes of weak
and strong action was 20 and 50 KPa, respectively. The
temperature during the experiment was maintained at a
constant level of 25°C.

The model pool 5 was initially washed, conditioned,
and filled with gas-free oil. Then, the gas pressure in the
cylinder was increased with the aid of piston up to a
typical reservoir pressure level of 1.2–1.25 MPa. First,
gas-free oil was displaced by the model gas-saturated
oil, and then the latter oil was displaced by water. The
model gas-saturated oil was prepared taking into
account that the propane vapor pressure at room tem-
perature (22°C) is 0.82 MPa. In order to accelerate the
saturation process, the gas pressure was increased to
1.82 MPa.

The conditions and results of all experiments are
summarized in the table. In the initial control experi-
ment (test 1/2) without acoustic action, the model pool
was flooded with water at a constant input pressure
(Figs. 7 and 8, curves 1, 3, 5, 7). Then the water supply
was terminated and the withdrawal was carried out
under conditions of reservoir pressure drop (the oil pool
depletion stage, curves 2, 4, 6, 8).

The subsequent experiments on the ultrasound-
stimulated water displacement of oil were performed
using the acoustic source at the pool input. In test 3/4,
the source was periodically switched on for 15–60 s
every 15 min over a total time of 7 h. Then, the ultra-
sound action was terminated and the withdrawal was
continued without external action. Tests 5/6 and 7/8
were conducted without large intervals between the
impulses of acoustic action: ultrasound was applied for
15 or 60 s every 15 min throughout the experiment.

Each impulse increased the reservoir pressure by
10–50%, depending on the impulse duration. This pres-
sure growth in the course of action led to the counter-
flow of water. In order to prevent this counterflow, the
water supply was interrupted during the acoustic
impulse (but the output fluid withdrawal was continued
until the pressure reached a reservoir level). The pres-
sure jump under the acoustic action, which was related
to the evolution of gas bubbles from oil and to an
Table

Test Ultrasonic action Surfactant
Gas factor G Displacement coefficient 

K upon breakthrough Final K
upon breakthrough of water final

1/2 No ultrasound No Maximum Not reached 37% 42%

3/4 60 s (aperiodic) No Sharp peak Minimum 48% 53%

5/6 15 s (15-min interval) No Moderate Maximum 38% 56%

7/8 60 s (15-min interval) 0.1 % Maximum Moderate 38% ~90%

9 No ultrasound; oil with
CO2 displaced by N2

3 % in oil Irregular pulsations of CO2 and N2 38% 40%
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005



NONLINEAR SEISMICS AND THE ACOUSTIC ACTION S137
increase in the total volume of the mixture) amounted
to 7%. Thus, oil was displaced from the pool not only
by the injected water but by the gas evolving from oil as
well.

Figure 7 shows typical plots of the oil displacement
coefficient K versus the ratio of the product volume to
the initial pore volume occupied by the model oil in the
pool. As can be seen, the acoustic action and water sup-
ply after water breakthrough were terminated (at K =
0.49), as reflected by the passage from curve 3 to
curve 4. Subsequently, in the regime of pressure drop
and pool depletion, the output fluid consisted predomi-
nantly of water with oil and gas admixtures, and the
total yield (0.53) was 8% higher than that in the refer-
ence test 1/2. This gain in the total yield can be
explained using the data of Fig. 8, which shows the
variation of the current gas factor G. As can be seen, the
gas factor was significant at the water breakthrough
moment (33.5 m3/m3) and increased to 127 m3/m3 upon
the pressure drop. Apparently, the acoustic action led to
the formation of a foamy layer consisting of micro-
scopic gas bubbles at the displacement front. In tests
3/4, there was virtually no gas breakthrough under the
acoustic action. At the pool depletion stage, the gas
bubbles merged into a free volume and evolved from
the bed.

In the reference tests 1/2 (Fig. 7, curve 1), the water
front reached the output at K = 0.37, while the gas fac-
tor was somewhat lower than in the previous case
(26 m3/m3). The final displacement coefficient was K =
0.42, which is 11% lower than in the case of water dis-
placement with a periodic acoustic action (curve 2).
The absolute maxima in the gas breakthrough are
observed in the depletion stage (decrease in the reser-
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Fig. 7. Oil displacement coefficient K versus the ratio T of
the product volume to the initial pore volume occupied by
the model oil in the pool (see the text for explanations).
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voir pressure) and are not accompanied by an increase
in the oil yield (Fig. 8), so that the energy of com-
pressed gas in this case was spent in vain.

The subsequent experiments (tests 5/6 and 7/8) were
performed in the presence of bound water, which occu-
pied 13.5% of the pore volume. Both experiments were
performed under the acoustic action over the entire dis-
placement period (i.e., until the water breakthrough
moment and the pool depletion onset). Note that the
intensity of the acoustic action was somewhat higher
than that in tests 3/4. When the reservoir pressure
exceeded 1.25 MPa as a result of the ultrasonic impulse
application, the water supply was terminated. The rela-
tive duration of the period of increased pressure (with
respect to the total flooding period) was within 0.15–0.2.

Test 7/8 differed from test 5/6 in that an aqueous
layer containing a foaming surfactant (similar to that
present in the natural oil) was introduced into the oil
pool. These experiments are illustrated by curves 5, 6
and 7, 8 in Figs. 7 and 8. The water breakthrough
moment corresponded to K = 0.37–0.4. When the water
front approached the output, the gas factor increased
only slightly: to 13.2 m3/m3 in tests 5/6 and to 20.2 m3/m3

in tests 7/8.
The results can be summarized as follows. The gas

saturation pressure in the pure oil and that with surfac-
tant for equal gas factors were virtually the same. This
fact, as well as the early water breakthrough in tests 5/6
and 7/8 as compared to tests 1/2 and 3/4, can be
explained by the presence of bound water in front of the
displaced oil. We may suggest that the acoustic action
leads to a partial restoration of the bound water mobil-
ity, which also accounts for the relative decrease in the
final displacement coefficient in tests 5/6, as compared
to tests 3/4 (compare curves 4 and 6 in Fig. 7).

In addition, the approach of the flooding front was
accompanied by a lower increase in the gas factor in tests
5/6 (20 m3/m3), as compared to tests 3/4 (33.5 m3/m3),
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Fig. 8. Current gas factor G versus the ratio T of the product
volume to the initial pore volume occupied by the model oil
(see the text for explanations).
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where a foamy layer consisting of microscopic gas bub-
bles was present at the displacement front. Apparently,
the enhancement of ultrasound at the oil pool input in
tests 5/6 led to the growth of gas bubbles and their coa-
lescence into a free volume outside the front, which was
confirmed by the reduced signal of the ultrasonic
receiver. For this reason, the gas factor at the water
breakthrough moment was lower in tests 5/6 than in
tests 3/4.

In tests 7/8, the gas factor at the water breakthrough
moment increases to 38 m3/m3, which means that the
surfactant stabilizes microscopic gas bubbles and pre-
vents this foam from degradation in the layer at the dis-
placement front under the acoustic action. At the deple-
tion stage, the gas factor was significantly lower in tests
7/8 than in tests 5/6 (compare curves 8 and 6 in Fig. 8),
which is naturally explained by the presence of the sur-
factant (retaining the gas in the liquid phases, predom-
inantly in oil). It should be recalled that the effect of
ultrasound on the oil saturation pressure decreases in
the presence of the surfactant. As a result, the oil dis-
placement coefficient in tests 7/8 reached almost 90%
(more precisely, 87%) against 54% in tests 5/6.

For comparison, the table shows the results of an
experiment (test 9) modeling an alternative technology,
whereby CO2-saturated oil is displaced by a nitrogen
(N2) layer in a flow of poly(isobitylene). This process
may also involve the formation of microscopic gas bub-
bles, but the comparison with the results of tests 7/8
shows the significant advantages of the ultrasonic action.

CONCLUSIONS

Real rocks, especially the porous collectors of oil
and gas, possess complicated rheological properties,
which clearly manifest themselves under the action of
ultrasonic and seismic waves. The related factors
include the dry friction at contacts, the viscoelastic
dynamic deformation, and the presence of internal
oscillators in the form of gas bubbles and solid frag-
ments. The resulting dynamics leads to characteristic
changes in the spectrum of acoustic vibrations, which
are very important from the standpoint of their dynamic
action upon underground objects, including oil and gas
bearing formations.

Ultrasound generated by a vibroseismic action upon
a producing oil pool stimulates the gas evolution from
natural oil, thus increasing the mobility of the residual
oil. The released gas forms a layer of microscopic gas
bubbles at the displacement front, thus enhancing the
displacement process. The higher the gas factor, the
more effective the ultrasound-stimulated oil outgas-
sing. The presence of foaming surfactants reduces this
effect. On the other hand, small additives of a foaming
oil and water soluble agent stabilize the microscopic
gas bubbles both at the displacement front and in oil at
the depletion stage, which sharply increases the final oil
recovery (up to 90%). The main problem arising in the
implementation of the proposed technology is to pro-
vide the effective generation of ultrasound in the oil
pool under a vibroseismic action.
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Abstract—It has been observed repeatedly that low-frequency (1–500 Hz) seismic stress waves can enhance oil
production from depleted reservoirs and contaminant extraction from groundwater aquifers. The physics coupling
stress waves to fluid flow behavior in porous media is not understood, although numerous physical mechanisms
have been proposed to explain the observations. To quantify the effects of low-frequency, dynamic-stress stimula-
tion on multiphase fluid flow and in situ particle behavior in porous media, laboratory experiments were conducted
with a core flow stimulation apparatus that allows for precise control and measurement of applied stress and strain,
static confinement, and fluid flow parameters. Results are reported for experiments on stimulated single-phase and
two-phase fluid flow behavior in 2.54-cm-diameter Berea sandstone cores. For all experiments, stimulation was
applied to the cores in the form of sinusoidal, axial, mechanical stress coupled to the solid porous matrix at fre-
quencies of 25 to 75 Hz. Applied stress RMS amplitudes ranged from 300 to 1200 kPa and, at these levels, pro-
duced coupled, pore-pressure fluctuations of much less than 1.2 to 4.8 kPa, respectively. During single-phase brine
flow, stimulation increased the absolute permeability of the rock by 10–20%. This was caused by mobilizing in
situ clay particles that were partially plugging the pore throats. During two-phase, steady-state, constant-rate flow
of oil–brine and decane–brine mixtures, stimulation caused significant changes in the bulk fluid pressure drop
across the core. The pressure changes showed a strong dependence on the viscosity of the nonwetting fluid phase
(oil or decane) relative to the wetting phase (brine). This may indicate that relative changes in the mobility of wet-
ting versus nonwetting fluid phases were induced by the dynamic stress. Under the specific experimental condi-
tions used, pore-scale particle perturbation and altered wettability are possible physical mechanisms that can
explain the results. © 2005 Pleiades Publishing, Inc.
1 INTRODUCTION

Numerous investigations have shown that seismic
waves (low-amplitude stress waves at frequencies of 1
to 500 Hz) can selectively increase the mobility and
transport of multiphase fluid components in porous
media such as rocks and soils [1–5]. Most of the prior
and ongoing research in this area has been focused on
increasing production from declining oil and gas reser-
voirs during field deployments of various surface and
downhole seismic sources. During several field tests by
the oil and gas industry [1, 2, 5], increases in oil pro-
duction rates by 20% or more have been reported. How-
ever, the majority of oil-field tests to date have been
performed with little or no guidance from laboratory
experimental data or theoretical predictions. Thus, field
tests have yielded mixed and unpredictable results,
mainly because the underlying physical mechanisms
for seismically enhanced fluid transport are not ade-
quately understood.

1 This article was submitted by the author in English.
1063-7710/05/51S1-S $26.000140
More recently, research has also begun to examine
the possibility of using seismic wave stimulation to
enhance the extraction of dense nonaqueous-phase liq-
uid (DNAPL) contaminants from groundwater aqui-
fers. In contrast to the numerous field tests already per-
formed on stimulated flow of oil, which is a light non-
aqueous-phase liquid (LNAPL), no field tests have
been performed yet on enhancing DNAPL extraction at
groundwater remediation sites in the United States.
Furthermore, only a limited number of laboratory
experiments have been performed on enhanced
DNAPL transport in unconsolidated sands or soils [6,
7]. The obvious practical value of harnessing the stress-
stimulated flow phenomenon has, over the past ten
years, motivated increased research interest in the sub-
ject. Despite this growth, the scientific community is far
from fully understanding the phenomenon.

Recent laboratory experiments on stimulated two-
phase fluid flow in rocks and sands [6–9] and theoreti-
cal studies on coupled stress/fluid flow dynamics [10–
15] have confirmed that the stress-stimulation phenom-
enon is observable at the bench scale, is reproducible,
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic diagram of dynamic-stress core flow stimulation apparatus.
and can be modeled. However, lab experiments have
produced mostly empirical data, and theoretical models
are still in the initial stages of development. Numerous
physical mechanisms have been proposed to explain
seismically enhanced NAPL mobilization, but no con-
clusive experimental laboratory or field data have been
collected that can prove which mechanisms dominate
under the widely varying physical conditions typically
encountered in the Earth.

Although “stress-wave propagation in saturated
porous media” and “multiphase porous fluid flow
dynamics” are each well-developed individual scien-
tific fields, they have not yet been cross-coupled suc-
cessfully. Initial theoretical work indicates that cross
coupling of stress waves with fluid flow can be modeled
using simplified physical conditions [10, 13, 15]. Under
more realistic conditions like those in the Earth, the
coupling is likely controlled by a combination of sev-
eral different mechanisms, each operating over a differ-
ent range of scale lengths. The stress-wave stimulated
porous flow phenomenon, then, needs to be understood
from the subpore scale (nm to µm) to the field scale
(m to km). This would allow the stimulated flow
response to be predicted for different combinations of
physical conditions and applied dynamic stress param-
eters.

This paper reports recent laboratory experimental
results of tests on core samples of Berea sandstone;
these results provide further evidence that low-fre-
quency stress stimulation can alter porous fluid flow
behavior. The data were obtained with a high degree of
accuracy and precision and demonstrate that the phe-
nomenon is readily induced and can be quantified. The
observed core-scale (cm) behavior supports two physi-
cal mechanisms that are likely to be important for
understanding how to predict and control the stress-
stimulated flow phenomenon on larger scales as well.
These are (1) in situ clay particle mobilization and
(2) pore fluid wettability alteration. Because the results
are still largely empirical, no proof can be presented yet
PHYSICS      Vol. 51      Suppl. 1      2005
that other physical mechanisms do not also partially
contribute to the observations.

LABORATORY APPARATUS

To investigate the effects of low-frequency stress
stimulation on porous fluid flow behavior in the labora-
tory, a specialized core flow apparatus was constructed
(Fig. 1). This apparatus is part of a unique, state-of-the-
art facility designed specifically for this purpose. The
main component of the system is a triaxial core holder
capable of applying up to 70 MPa axial and radial con-
fining pressure to a cylindrical core sample. The sample
is placed inside a horizontal Viton rubber sleeve
designed to hold cores 2.54 cm in diameter and up to
60 cm long. Distribution plugs at each end of the sleeve
accommodate fluid flow through the core. Radial con-
fining pressure is applied to the main hydraulic-fluid
chamber surrounding the sleeve. Static axial confine-
ment is applied separately by a hydraulic piston
attached to the inlet distribution plug (at the right end in
Fig. 1).

The apparatus was designed to study a wide range of
physical conditions under which stress stimulation may
prove to be a useful application. Specifically, the pres-
sure ratings are appropriate for simulating in situ over-
burden and pore-pressure conditions at crustal depths
of up to approximately 3 km. During the experiments,
constant-flow-rate pumps are used to produce pulse-
free flow of fluids through the core at flow rates ranging
from 0.02 to 200 mL/min. A back-pressure regulator at
the fluid outlet end of the apparatus provides precise
control over the static pore pressure during flow. The
permeability along the core sample is measured using
differential pressure gauges connected by tubing to taps
located every 5 cm along the length of the rubber con-
fining sleeve. The measured pressure drop across the
core is converted to permeability using Darcy’s law
[16].
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Fig. 2. Permeability changes during single-phase brine flow caused by release of in situ clay fines and subsequent mobilization by
low-frequency stress stimulation.
To dynamically stimulate the core samples, axial
stress cycling at frequencies from 1 to 500 Hz is pro-
duced by direct mechanical coupling of the core sample
to a Terfenol-D magnetostrictive actuator. The actua-
tor can deliver a dynamic force with a peak amplitude
as high as 900 N with a maximum displacement of
70 microns, producing axial strains as high as 10–4.
A load cell in series with the actuator, an LVDT
attached to the floating distribution plug, and strain
gauges attached to the core provide calibrated stress
and strain data during stimulation. The fluid-pressure
gauges are also used to estimate dynamic pore-pressure
fluctuations induced by the stimulation.

Another mode of stimulation that has been investi-
gated by other researchers [7, 8] is vibrating porous
samples during flow using shaker tables. The apparatus
used here (Fig. 1) has been designed to minimize this
type of excitation because it causes translational, non-
strain energy that does not typically occur at significant
depth in the Earth when a seismic wave propagates
through it. To maximize the mechanical stress compo-
nent of the dynamic stimulation and minimize the
vibrational component, the axial load piston at the inlet
(right) end of the core holder is locked in place mechan-
ically after the desired static axial confinement is
applied. This immobilizes the inlet end of the core, and
the particle acceleration induced by the actuator effec-
tively vanishes there. Thus, wave propagation does not
occur during stress stimulation because the core is sim-
ply being compressed and expanded like a spring. This,
in turn, partly avoids wavelength scaling issues when
comparing laboratory and field results.

EXPERIMENTAL RESULTS

Single-Phase Flow Experiments

Experiments were performed to investigate a physi-
cal mechanism proposed for increasing absolute per-
meability: mobilization of in situ clay particles by
stress stimulation. This mechanism has previously been
demonstrated as feasible using ultrasonic energy at
10 kHz and above [17–19] but had not been observed
at seismic frequencies of 100 Hz and lower. A Berea
sandstone core sample, 2.54 cm in diameter and 32 cm
long, with an initial permeability of approximately
800 millidarcies (md), was confined at 7 MPa static
radial and 5.5 MPa static axial pressures. Constant
flow of a 3 wt % brine solution was then initiated at a
rate of 10 mL/min. Brine was used to stabilize in situ
clay particles (fines) during permeability measure-
ments. At lower salinity, clay fines that are normally
attached to the pore walls will be released and plug the
pore throats during flow, thus decreasing the rock’s per-
meability. The permeability measurements for this
experiment are plotted in Fig. 2 for two separate 5-cm-
long sections of the core sample. The top plot is for an
“upstream” section closest to the fluid inlet, and the
bottom plot is for a “downstream” section closest to the
fluid outlet and the stimulation source. The measured
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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permeability K is normalized by the baseline perme-
ability Ki obtained during the initial brine flow.

To induce a controlled release of clay particles, one
pore volume of fresh water was flowed through the
core. This resulted in a decrease in absolute permeabil-
ity of approximately 20% across the entire core. The
upstream section was affected sooner than the down-
stream section because of the flow direction. After
returning to the 3 wt % brine flow and establishing a
new stabile permeability, continuous sinusoidal stress
cycling was initiated at 50 Hz and 300 kPa RMS stress
amplitude. No change in permeability was observed in
either core section until the stress amplitude was
increased to 600 kPa RMS, after which an increase of
9% was observed in the downstream core section. No
change was observed in the upstream core section until
the brine flow rate was dropped from 10 ml/min to
5 ml/min. At the lower flow rate, the upstream perme-
ability rose by 15%, and the downstream permeability
increased an additional 6% to a final value of 15%. This
means that the ability to mobilize clay particles that are
plugging pore throats is sensitive to the absolute pore
pressure and/or the fluid pressure gradient in the rock as
a function of length along the core. When the RMS
stimulation amplitude was increased to 900 kPa, an
additional 5% permeability increase was observed in
the upstream core section but not in the downstream
section. After turning off the stimulation and maintain-
ing constant brine flow, the permeability of the entire
core gradually dropped back to the prestimulation val-
ues over a period of 24 hours. This occurred because the
stimulation was not applied long enough to expel the
mobilized clay particles, and they subsequently
replugged the pore throats during continued flow.

Two-Phase Steady-State Flow Experiments

Experiments were performed to investigate dynamic
stress effects on steady-state, two-phase immiscible
fluid flow through Berea sandstone. The cores used
were again 2.54 cm in diameter and 32 cm long but had
an initial intrinsic permeability of 100 md. The samples
were confined at 7 MPa radial pressure and 4 MPa axial
pressure. Two constant-rate fluid pumps were used to
flow both immiscible phases through the core simulta-
neously at different flow-rate ratios. For the first exper-
iment, decane was used as the nonwetting fluid phase
and brine as the wetting phase. The second experiment
used ten-weight vacuum pump oil as the nonwetting
phase instead of decane. The reason for this was to
determine whether the viscosity of the nonwetting
phase has an effect on two-phase flow behavior induced
during dynamic stress stimulation. Decane was chosen
because it has a viscosity (approximately 0.9 cP) lower
than water (1.0 cP), and ten-weight oil, because its vis-
cosity (approximately 90 cP) is higher than that of
water. A different 100-md Berea core sample was used
for each experiment.
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
During two-phase flow, the total bulk fluid flow rate
was held constant, but the ratio of decane (or oil) to
brine flow rates was varied to investigate the depen-
dence of the stimulated flow behavior on water satura-
tion. For the decane–brine experiment, the bulk flow
rate used was 2.0 mL/min. To achieve similar pressure
drops for the oil–brine experiment, the bulk flow rate
was dropped to 0.5 mL/min. The procedure for both
experiments was to start the two fluids flowing at a
given flow-rate ratio and, then, wait until the bulk-fluid
pressure drop across the entire core stabilized at a con-
stant value, indicating that steady-state conditions were
achieved. Then, sinusoidal mechanical stimulation was
applied as before, and induced changes in the bulk-fluid
pressure drop were recorded. Stimulation frequencies
and RMS stress amplitudes were varied during the
decane–brine experiment while holding the flow-rate
ratio constant. During the oil–brine experiment, how-
ever, the same frequency and RMS amplitude were
used throughout.

The results for the decane–brine experiments are
shown in Fig. 3. Bulk-fluid pressure drops are plotted
versus flow time for the entire 32-cm core length (top
plot) and for a 5-cm-long section in the middle of the
core (bottom plot). The left half of each plot shows the
results when the decane fractional flow rate was 25% of
the combined bulk flow rate of 2.0 mL/min, and the
right half shows the results for 10% decane flow. Stress
stimulation treatments are indicated by the arrows, and
the frequency and RMS amplitudes used are labeled.

In general, stress stimulation caused the bulk fluid
pressure drop across the core to decrease. During 25%
decane flow, the pressure drops behaved erratically, but
there is a correlation between applied stress and sudden
decreases in pressure. During 10% decane flow, the cor-
relation is much clearer and the magnitude of the pres-
sure change increases with applied RMS stress ampli-
tude. Also, when the stimulation is turned off, the pres-
sure drops return rapidly toward their prestimulation
values. This behavior was not observed during flow
runs (not shown) where the decane fractional flow rate
was 50% or less. Figure 3 shows results only for stimu-
lation at 50 Hz. Additional runs (not shown) for 10%
decane flow were performed where the stimulation fre-
quency was varied from 25 Hz to 75 Hz while holding
the stress amplitude constant. The largest decrease in
bulk-fluid pressure drop was observed at 25 Hz, and the
smallest, at 75 Hz. Thus, lower frequencies were most
effective at inducing the observed pressure changes.

The results for the oil–brine experiment are shown
in Fig. 4. Bulk-fluid pressure drops across the entire
32-cm core length are plotted for four different oil frac-
tional flow rates (10, 30, 50, and 70% of the combined
bulk flow rate of 0.5 mL/min), indicated above each
plot. The plots are shifted to line up at the times when
stress stimulation was applied at 25 Hz and 1000 kPa
RMS stress amplitude. In contrast to the decane–brine
behavior (see Fig. 3), stimulation caused the pressure
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drop across the core to increase when flowing oil–brine,
and this behavior was observed for all fractional oil
flow rates. At each flow-rate ratio, stimulation was
applied continuously and turned off when the fluid
pressure drop leveled off at the new value, as indicated
by the “off” arrows. The pressures then decreased
toward the prestimulation values. These stimulation
cycles were repeated at least three times for each flow
rate, and the same behavior was observed each time.
The plot for 50% oil flow shows two of these cycles to
demonstrate the repeatability of the behavior. The
results for both sets of two-phase steady-state flow
experiments indicate that the wetting-phase and non-
wetting-phase relative fluid distribution may have been
changed during stress stimulation.

Stress/Strain and Pore Pressure Measurements

The various transducers described previously were
used to measure the static radial and axial confining
stresses and the applied dynamic axial stress during
core stimulation. Using strain-gauge measurements on
the core, estimates of the static and dynamic values for
Young’s modulus and Poisson’s ratio were obtained for
dry and saturated Berea sandstone. Pore pressure was
also monitored using an absolute-fluid-pressure gauge
connected to one of the taps on the rubber confining
sleeve.
Figure 5 shows one example of stress–strain mea-
surements obtained for a Berea sandstone core sample
before it was saturated with brine. The static axial stress
was increased in four increments up to a maximum of
approximately 1400 kPa and, then, reduced back to
zero in four similar increments. At each static stress
level, dynamic axial stress was applied at 10 Hz and
250 kPa RMS amplitude. The plot shows axial stress
versus axial strain during this stress cycling. The solid
curve represents increasing static stress up to the maxi-
mum, and the short-dashed curve shows the return to
zero. The open circles dots on the static curve indicate
when dynamic stress was turned on, and the black dots
indicate when it was turned off. The inset at the bottom
right shows one example of the dynamic stress–strain,
after removing the DC components, measured during
each of the eight stimulations. All eight dynamic loops
were nearly identical. The open circle in the dynamic
data corresponds to the start points on the static curve.
When the dynamic stress is turned off, the new static
values (black dots) fall inside the main static stress–
strain loop. When the static stress is then increased or
decreased, however, the values return to the main static
loop. This type of nonlinear hysteretic behavior is typi-
cal of rocks [20].

The dashed lines through the static and dynamic
stress-strain curves show linear fits to the measured
data. The slopes of these lines were used to estimate
Young’s modulus (E) for this sample of dry Berea sand-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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stone. The dynamic Young’s modulus is twofold larger
than the static value, as has been noted by others [21].
Similar data for radial versus axial strain also show hys-
teresis, but the static and dynamic Poisson’s ratios are
nearly identical. Additional dynamic measurements
obtained at different frequencies and amplitudes
showed that the dynamic Young’s modulus varies only
with applied strain amplitude and not with frequency,
whereas the dynamic Poisson’s ratio varies only with
frequency. When the sample is saturated with brine,
both the static and dynamic Young’s moduli are three-
to fourfold lower than their corresponding values for
the dry case. Clearly, the elastic properties of the rock
are strongly influenced by the frequency and amplitude
of dynamic stress oscillations as well as by the fluid
content of the pore space.

A major practical purpose of the stress, strain, and
pore-pressure measurement systems is to provide esti-
mates of stimulation parameters that cause observable
changes in fluid flow behavior under laboratory condi-
tions. Downhole stimulation sources to be used for field
testing can then be designed to generate similar mechan-
ical stress and/or pore-pressure perturbations within the
Earth’s crust. The mechanical-stress levels used in the
laboratory tests ranged from 300 to 1200 kPa RMS, and
the equivalent axial strains induced in the core were
roughly 3 × 10–5 to 8 × 10–5, respectively. Altered flow
behavior was observed only at RMS stress levels of
600 kPa and above. Because the stimulation was prima-
rily mechanical, pore-pressure oscillations are induced
through pore volume changes caused by deformational
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strain of the core’s solid matrix. Measuring dynamic
pore pressure during stimulated fluid flow is difficult
because the tubing connecting the core confinement
sleeve to the pressure transducers attenuates the signal
when the frequency is higher than about 1 Hz. Instead,
estimates for induced pore-pressure oscillations were
obtained by measuring the fluid pressure near the center
of the core at numerous static axial stress values. To get
accurate measurements, the fluid flow inlet and outlet
had to be closed to prevent fluid leakage from the core.
Figure 6 shows the pore-pressure data obtained.
Closed-system pressure is lower by a factor of 0.004
than the applied axial stress, as indicated by the linear
fit to the data. The coupling between matrix deforma-
tion and pore pressure will be much weaker when fluid
is allowed to escape from the core. Thus, the closed-
system measurements represent upper bounds for pore-
pressure oscillations during stimulated fluid flow, when
the system is open at each end of the core. In other
words, during steady-state fluid flow, dynamic axial
stress stimulation at a RMS amplitude of 600 kPa (the
threshold level at which altered flow behavior was
observed) will induce pore-pressure oscillations much
lower than 2.4 kPa in a 100-md Berea sandstone core.

DISCUSSION

The laboratory results presented here provide com-
pelling new evidence that low-frequency stress stimula-
tion can strongly influence both single-phase and two-
phase porous fluid flow behavior in sandstone cores.
Depending on the physical conditions, both long-term
(Fig. 2) and short-term (Figs. 3 and 4) changes in per-
meability and/or fluid mobility can be induced. This
variable behavior is similar to that observed during
numerous field tests on enhancing oil production with
downhole seismic sources. Clearly, the stimulated flow
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phenomenon can be observed over a wide range of size
scales, but major questions persist about what the pos-
sible physical mechanisms are that control the phenom-
enon and whether or not they are scale-independent.
The core flow tests reported here partially bridge the
scale range gap by investigating stress stimulation fre-
quencies below 100 Hz, which is where, in the field,
virtually all of the successful long-range reservoir stim-
ulation tests have been conducted.

The clay-fines mobilization experiment is a good
example of this. It is well known that ultrasonic waves
at 20 kHz and above are effective at removing clay par-
ticles from porous rocks. This phenomenon has been
investigated before [17, 19] and shown to depend on the
wavelength of the excitation relative to the sample’s
size, geometry, and acoustic properties. Thus, it is
somewhat surprising that 50-Hz stress cycling can pro-
duce similar effects on core samples that are roughly
the same size as those used in the ultrasonics experi-
ments. Because the wavelength at 50 Hz is orders of
magnitude larger than the sample size, wave propaga-
tion does not occur. The core is simply being strained
uniformly, as if it were a spring. Motion of clay parti-
cles relative to the fluid or porous matrix can occur,
however, if local fluid pressure differentials or particle
momentum perturbations are being generated within
the pore space. Two possible mechanisms that could
generate these dynamic effects are (1) phase delays
between the solid-matrix, clay-particle, and fluid
motions due to fluid viscoelastic effects and (2) pore-
scale turbulence generated by transient fluid motion
around the clay particles themselves. Both mechanisms
are supported by the observation that particle mobiliza-
tion is more effective at either lower absolute pore pres-
sures or lower fluid pressure gradients during flow. This
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may indicate that a fluid-dynamics-based mechanism is
more likely than a mechanical-strain-based mechanism
(i.e., pore expansion). Additional modeling and new
experiments will be needed to adequately investigate
these speculations.

A major practical implication of low-frequency par-
ticle mobilization is that a phenomenon that was previ-
ously thought to occur only at high frequencies and at
very short distances (10–20 cm or less) may prove to be
useful for improving formation permeability at much
larger distances, perhaps up to 1000 m from the stimu-
lation source. This could be used, for instance, to
improve the hydrodynamic conductivity of silty
groundwater aquifiers using a low-frequency seismic
source in a single water well.

The two-phase flow experiments demonstrated that
(i) low-frequency stress stimulation changes the bulk-
fluid pressure drop across porous core samples during
steady-state flow and (ii) the viscosity of the nonwet-
ting phase relative to the wetting phase determines
whether the pressure drop will increase or decrease.
Because of the imposed constant-rate steady-state flow
conditions, the pressure changes are in the directions
one would expect for increased nonwetting-phase satu-
ration in the core; that is, the ratio of flowing decane (or
oil) to flowing brine is increased inside the core by
dynamic stress stimulation, even though the injected
fluid composition is fixed by the pumps.

One possible explanation for this behavior is that
stimulation mobilizes the nonwetting fluid at the
expense of previously mobile wetting fluid, thereby
increasing the nonwetting-phase saturation of the bulk
fluid flowing through the core. Thus, decane–brine
pressures decrease because decane is less viscous than
brine, and oil–brine pressures increase because ten-
weight oil is more viscous than brine. This is specula-
tion, because the actual mobile-fluid saturation in the
core before and during stimulation could not be mea-
sured in these experiments. The data support this
hypothesis, however, if we assume that a single physi-
cal mechanism (one that controls fluid phase mobility
or, equivalently, the relative permeability of the rock to
the nonwetting phase) is responsible for both the
decane–brine and oil–brine observations.

One such mechanism is altered matrix wettability.
Berea sandstone is a highly water-wet rock, meaning
that water will spontaneously imbibe into and flow
through the rock more readily than decane or oil. Thus,
the connected flow paths through the pore space will
favor containing brine over decane or oil, and the rela-
tive brine saturation of the core may be significantly
different than that of the injected two-phase bulk fluid.
Based on independent empirical observations compar-
ing oil-wet and water-wet formation rocks [22], it has
been proposed that stress oscillations are capable of
temporarily changing a water-wet rock to become more
oil-wet (and vice versa for an oil-wet rock). This mech-
anism, then, could change the mobile-fluid composition
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as oil replaces some of the water in the flowing volume
of the rock core. Assuming that the flowing portion of
the core’s pore volume is constant (no change in abso-
lute intrinsic permeability), a change in bulk-fluid com-
position will change its effective viscosity and will thus
cause pressure drop changes across the core during
steady-state two-phase flow.

Other mechanisms that could cause effects such as
absolute permeability changes or induced emulsifica-
tion of the two-phase mixture would also cause pres-
sure drop changes, but these would cause the pressure
to change in the same direction regardless of the viscos-
ity of the nonwetting phase. Again, new modeling and
experimental efforts will be needed to prove or disprove
the altered wettability hypothesis. It is clear, however,
that low-frequency stimulation has a profound, repeat-
able effect on two-phase porous flow behavior that sup-
ports the hypothesis that a change in fluid distribution
is being induced inside the core.

Mobilization of nonwetting fluids has been pro-
posed to explain some of the field observations of
enhanced oil production caused by downhole seismic
sources [3]. Water floods are often used to displace
trapped oil pockets, but a large percentage of in-place
oil is bypassed by these floods. Stimulation may mobi-
lize the trapped oil by changing the formation wettabil-
ity and allowing it to be more efficiently swept by the
water flood. Thus, prior knowledge of a formation’s
state of wettability may be an important criterion for
selecting candidate fields that are likely to respond well
to seismic stimulation.

The dynamic mechanical stress levels used in the
core experiments (see Fig. 5) are significantly higher
than what existing downhole sources produce at dis-
tances in excess of 100 m. However, the pore-pressure
oscillations induced in the core by the applied mechan-
ical stress were extremely low (see Fig. 6), namely,
probably much less than 1 kPa RMS. For these two rea-
sons, it is likely that pore-pressure changes are more
important than mechanical strain for inducing
enhanced porous flow. Devices that couple energy effi-
ciently to the pore fluids may be preferred over devices
that produce primarily elastic strain energy. This
remains an open question, however, because mode con-
versions between various elastic wave types and how
these waves couple to the formation pore pressure are
strongly influenced by the physical conditions in the
fluid-bearing formations.

The one clear target that we can define for effective
wavefield parameters is that the source frequency range
should be low enough to allow energy to propagate to
the target zone, which may be up to several kilometers
from the source well, with little loss of amplitude due
to attenuation in the medium. The laboratory tests dis-
cussed above were all performed with stimulation fre-
quencies of 75 Hz or less and are, thus, scaleable to the
field. The stress–strain and pore-pressure measure-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
ments can provide input for theoretical and numerical
models for stimulated fluid flow.

CONCLUSIONS

Laboratory experiments on Berea sandstone cores
demonstrated that low-frequency (25 to 75 Hz), axial,
mechanical stress cycling at RMS amplitudes of 600 kPa
and higher can induce significant changes in single-
phase and two-phase fluid flow behavior through
porous media. During single-phase brine flow, dynamic
stress stimulation mobilized in situ clay fines that were
partially plugging the pores and increased the absolute
permeability of the samples by 15 to 20%. Possible
physical mechanisms that could explain this observa-
tion are (1) viscoelastic phase delays producing relative
motion between the pore matrix, fluid, and clay parti-
cles and (2) turbulence and particle agitation caused by
oscillating fluid-pressure gradients near the clay parti-
cles. During two-phase, steady-state flow of immiscible
decane–brine and oil–brine mixtures, stimulation
changed the bulk-fluid pressure drop across the cores in
a manner that suggests that the relative saturations of
the nonwetting (decane and oil) fluids was increased.
The viscosity of the nonwetting phase relative to the
wetting phase (brine) determines whether the pressure
drop will increase or decrease during stimulation.
Altered matrix wettability is one physical mechanism
that could explain these observations. The data pre-
sented are largely empirical, and additional experi-
ments and comparisons with theoretical and numerical
models will be required to prove or disprove these spec-
ulations. Accurate measurements of stress and strain
used during the experiments provided estimates of both
static and dynamic elastic properties of dry and satu-
rated Berea sandstone. Young’s modulus during 10-Hz
dynamic stress stimulation is twofold larger than the
static value. When the rock is saturated with brine, both
the static and dynamic moduli are three- to fourfold
lower than for the dry case. The mechanical strain of the
pore matrix caused by an applied dynamic stress of
600 kPa RMS was roughly 4 × 10–5. The coupled pore-
pressure fluctuations induced by this matrix deforma-
tion was estimated to be much lower than 2.4 kPa.
Existing seismic sources used successfully in the field
to enhance oil reservoir production cannot produce
stress and strain levels as high as those used in the lab-
oratory but can produce similar small pore-pressure
fluctuations. This may indicate that pore pressure is
more important than mechanical strain for enhancing
porous flow.
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Abstract—The observation of quasi-harmonic spectral components in the response of volcanic structures to
distant seismic events is reported. The resonance frequencies are associated with the presence of a magma cen-
ter and a magma chamber that contain gas cavities or bubbles. The presence of the region with a reduced density
in the vicinity of the Elbrus volcano is confirmed by independent gravimetric measurements and by the results
of analyzing the geological data. © 2005 Pleiades Publishing, Inc.
RESULTS
OF THE GEOLOGICAL-GEOPHYSICAL STUDY 

OF THE INTERNAL STRUCTURE
OF THE ELBRUS VOLCANO

The analysis of the field of tectonic fragmentation
[1] shows that the magma chamber of the Elbrus vol-
cano at depths lower than 3 km has the form of a single
center. Figure 1 shows the vertical section of this field,
which goes through Elbrus and is oriented along the
Caucasian ridge. One can distinguish (4) the region
interpreted as the maternal center, which in the past was
a magma source for volcanic chambers and paleoerup-
tions; (5) the region of anomalous fragmentation,
which is identified as the Elbrus volcanic chamber; (2,
3) one of the possible ways for the cross-flow of the pri-
mary magma into the volcanic chamber; and (1) the iso-
line of the field of tectonic fragmentation. The relief
along this profile is shown in the plot above the section.

The results of the analysis provide grounds to
assume that the magma chamber is located directly
under the Elbrus volcanic structure. Its lower boundary
lies at a depth of about 8 km. The western boundary of
the chamber is almost vertical, and the eastern bound-
ary is inclined at an angle of about 45°. At a depth of
approximately 5 km, the chamber width reaches 8 km
and gradually decreases in the direction toward the sur-
face. A sharp decrease in the chamber size starts from a
depth of about 2 km, and at a depth of 1 km, its charac-
teristic dimensions do not exceed 2 × 2.5 km.

The magma chamber of Elbrus lies closer to the west-
ern periphery of the maternal center and lies 10–12 km
higher than it. It is clear that the supply of the magma
material from the center to the chamber must go along
some weakened zones. Exactly this zone is determined
in the structure of the field of lithosphere tectonic frag-
mentation, being a mirror image of the weakened
(boundary) zone of the western edge of the Trancauca-
1063-7710/05/51S1-S $26.000149
sian transverse elevation. It can be observed from deep
levels (depths of 40–45 km) up to a depth of about 12 km
(figure).

This pattern agrees well with the data of gravimetric
observations. During the period of 1960–2001, it was
found that a negative gravitational anomaly occurs in
the Elbrus region [2]. A latitude-oriented region of min-
imum values of the local gravitational field exists. The
analysis of the reasons for the formation of this anom-
aly [2] revealed a relation of gravimetric data to the
depth of occurrence and size of inhomogeneities and
also their shapes and physical parameters of rocks.

It is natural to assume that, during many thousands
of years, the differentiation of materials took place, and
the magmatic mass had a variable density (light frac-
tions accumulated at the top and heavy ones went
down). It is also possible to assume that, in the upper
part of the magma chamber, the volatile fractions were
accumulated, which additionally affected the structure
of the gravitation anomaly.

The inhomogeneity shape and the density distribu-
tion inside it can be manifold. According to [2, 3], the
rocks under Elbrus are in a crystalline state. However,
they are heated up at least to the melting temperature of
diorites T = 1250°ë. Therefore, the thermal expansion
of rocks resulted in a considerable reduction of their
density. As for the chamber itself, the rocks in it are in
the state of magmatic melt. Therefore, in the process of
diorite transition from the crystalline state to the melt,
one can expect the next jump in density variation. For
example, at T = 1650°ë, the total decrease in the density
of diorite relative to its density at 0°ë reaches 490 kg/m3.

If we assume that the temperature of the magmatic
chamber is about 1650°ë, this geological-geophysical
interpretation corresponds to the most recent experi-
mental data obtained from the studies of the modern
structure of the gravitational field at the Earth’s surface,
 © 2005 Pleiades Publishing, Inc.
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ing the volcanic chambers; and (5) region of anomalously
low field values in the upper part of the crust: this region is
identified as the volcanic chamber.
which was studied in detail in 1994–2000 [4]. These
results agree well with the conclusions of [2, 3].

Let us turn our attention to the important fact that
the Elbrus lava has a porous texture and, consequently,
a very low density of 1800–2500 kg/m3. This texture
could be formed as a result of the surface flow of
magma enriched by volatiles. A sharp decrease of pres-
sure in the process of magma motion to the crater was
accompanied by effervescence of gases and boiling of
lava, which lead to the formation of cavities in the pro-
cess of its solidification. Thus, the low density of the
Elbrus lava and its porous texture clearly indicate that
magma containing a high percentage of gases accumu-
lated in the magmatic chamber of the volcano during a
long period of its activity. In the process of their devel-
opment, the gas formations concentrated at the ceiling
of the magmatic chamber and formed a resonant cavity
(or several cavities) of considerable dimensions, which
was surrounded by melt. Exactly these cavities, where
the accumulation of volatiles occurs under high pres-
sure, are associated by many researchers with potential
sources of explosion eruptions.

The magma center and the chamber, which are filled
with magma and volatiles, can be treated as resonance
structures of complex shapes. Under the effect of a
broadband seismic perturbation, these structures form
secondary geophysical fields in their vicinity, which
also contain information on the resonance properties of
inhomogeneities.

It is determined that the induced infrasound field in
the vicinity of the Elbrus volcano, which reflects the
dynamic properties of the magmatic chamber and cen-
ter, is characterized by the presence of quasi-harmonic
components [4, 5]. The presence of magma (its compo-
sition, temperature, and viscosity) determines the Q
factors of magmatic formations as resonance systems.
Moreover, the components connected with the presence
of “converted” waves (resulting from multiple reflec-
tions at the interfaces of the layered medium) exist in
the spectrum of induced infrasound processes. It is nec-
essary to note that, in the frequency range lower than 5–
10 Hz, converted waves are almost absent.

While characterizing the processes of formation of
the secondary (extremely low-frequency) wave fields in
the region of the volcanic structure, it is necessary to
take into account the fact that inhomogeneous rupture-
block structures are a kind of a filter for transverse
waves and weakly affect the longitudinal component.
Experimental studies demonstrated that, in the case of
an active seismic impact, the resonance structures of
the Elbrus volcano are responsible for the appearance
of longitudinal waves in the spectrum with the charac-
teristic frequencies in the range of 0.001–0.2 Hz. The
observations of induced infrasound fields in the vicinity
of the Elbrus volcanic center were conducted for many
big seismic events detected by the Baksan laser inter-
ferometer [5].
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Periods of resonance modes (in seconds) for magmatic formations of the Elbrus volcano according to deformographic obser-
vations

Period of the resonance mode (s) 70.7 68.1 66.0 64.0 61.8 59.4 56.7 52.2 49.9 45.7 44.0 42.4 40.6

Standard deviation (s) 0.4 0.3 0.5 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.4 0.2 0.2

Number of earthquakes 7 19 25 17 16 17 20 10 28 16 17 20 15
THE BAKSAN LASER INTERFEROMETER-
DEFORMOGRAPH

AND THE OBSERVATION RESULTS

The geodynamic observatory of Moscow State Uni-
versity is located in the Baksan Valley (Neutrino settle-
ment), 30 km south-east of Tyrnyauz and 20 km away
from the Elbrus volcanic structure. A broadband laser
interferometer-deformograph is installed at the mark of
650 m along the Main Gallery of the Baksan neutrino
observatory of the Nuclear Research Institute. It goes
down to 4200 m into the massif (the Andyrchi moun-
tain). The interferometer coordinates are 43°12′ lati-
tude, 42°43′ longitude, and 150°37′ azimuth.

The device is a double-pass unequal-arm Michelson
interferometer with a measuring arm 75 m in length.
The optical paths of the interferometer are completely
evacuated (the pressure p ≈ 5 × 10–5 mbar). An elec-
tronic detection system provides for the interferometer
operation in a wide frequency band, starting from
super-low frequencies (restricted only by the length of
a series of continuous measurements and the methods
used for spectral analysis) up to thousands of hertz. In
the normal mode of monitoring lithosphere deforma-
tions, the data acquisition is performed through three
channels: the low-frequency infrasound channel (from
0.1 Hz and lower), the infrasound channel (at a fre-
quency of 30 Hz within the band of 1 Hz), and the
acoustic channel (at a frequency of 1620 Hz within the
band of 0.5 Hz; the detection of quadrature compo-
nents) [6, 7].

In 2000–2001, the results of gravimetric data pro-
cessing indirectly confirmed the existence of a power-
ful (up to 15–20 km in diameter) zone of thinning under
Elbrus, which is characterized by a reduced elasticity
and increased viscosity of the heated substance. The
amplitudes of diurnal and semi-diurnal tidal waves
turned out to be understated to a certain extent relative
to the model values, which is evidence of the presence
of a zone with an anomalously low elasticity in the zone
crust. In the seismic range (periods of 50–100 s), a
series of resonance modes excited only by very close
and strong earthquakes were detected. Below, we ana-
lyze a series of events detected by the interferometer in
1998–2001.

The earthquakes used as the sources of external
excitation for the detection of resonances were condi-
tionally divided into three groups according to seismic
manifestations and distance.

The first group included the nine strongest earth-
quakes with magnitudes from 7.5 to 8.3 MW. Three of
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
them (at the Balleni Islands, March 25, 1998, 8.1 MW;
in Salvador, January 13, 2001, 7.7 MW; and in Peru,
June 23, 2001, 8.3 MW) belong to high-energy seismic
events. In this case, considerable amplitude values are
observed for the evaluated modes of induced oscilla-
tions in the region of the volcanic structure (one hun-
dred and more in the units of signal-to-noise ratio).

The second and most numerous group (20 events)
includes strong earthquakes with magnitudes from 6.8
to 7.6 MW.

Finally, the last group is composed of the earth-
quakes that happened “not far” from the Baksan Val-
ley. It includes four events: in Afghanistan, May 30,
1998, 6.6 MW; Turkey, August 17, 1999, 7.7 MW;
Baku, November 25, 2000, 6.3 MW; and Turkmeni-
stan, December 6, 2000, 7.0 MW. Here, the Turkish
earthquake (taking into account its closeness) can also
be treated as one of the strongest from the point of
view of its effect on the magmatic structures under
investigation.

Quantitative estimates for the resonance frequencies
excited by the aforementioned earthquakes and not
connected with the natural frequencies of the Earth’s
oscillations are given in the table. In this range, the low-
est-frequency mode with a period of ~71 s is excited only
by the strongest earthquakes (a magnitude of ~8 MW). It
is detected in the response spectrum for only seven
events. Then, a whole series of modes follows, which
are steadily detected for the majority of the strongest
earthquakes. It is interesting that the structure of the
modes excited by “close” earthquakes has some dis-
tinctive features: the extremely low-frequency modes
are absent while the modes whose periods fall within
40–58 s are well represented [8].

The positions of the central frequencies of spectral
lines fluctuate to a certain extent. This is likely to be
connected with the complexity of the shapes of the
magmatic chamber and center and their different orien-
tations with respect to the foci of different seismic
events. This means that the conditions for the interac-
tion of the wave front with the structure differ for dif-
ferent events, which influences the conditions for the
excitation of the natural frequencies of resonance struc-
tures.

The experimental data on the natural frequencies of
the magma center and chamber are the basis for the
development of the models for the evaluation of the
dimensions and physical properties of inhomogeneous
structures. At the same time, these data are clearly
insufficient to correctly solve the inverse problems of
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an exact reconstruction of the geometrical and physical
parameters of scattering objects.

NONLINEAR AND RESONANCE RESPONSES
OF A POROUS MEDIUM NEAR THE MELTING 

TEMPERATURE

The detected signals resulting from the scattering of
elastic waves by inhomogeneous geophysical struc-
tures in many cases contain surges at certain frequen-
cies. Lines in the spectrum of a scattered signal are
often explained by the resonance phenomena of the ori-
gin that is still not quite clear. One may assume that
there are inhomogeneities in the media, which either
reflect the waves at certain selected frequencies or form
resonators with discrete mode spectra in which the
energy of natural vibrations can accumulate.

In the experiments described above, in analyzing the
seismic signals received near the Elbrus volcano, spec-
tral lines were observed that represented the responses
to distant earthquakes. These lines could be associated
with the resonances of inhomogeneous structures under
Elbrus. However, estimates show that even the presence
of the magmatic center containing melted rock does not
cause any reflecting boundaries with a sufficient “con-
trast” in the impedance ρcl, where ρ is the density of the
medium and cl is the propagation velocity of longitudi-
nal waves. At the same time, a strong contrast arises for
transverse waves in the vicinity of the melting point,
where the shear modulus µ and, therefore, the veloc-
ity ct vanish. This feature can noticeably affect the
behavior of not only transverse but also longitudinal
waves.

An illustrative example of such an effect can be the
result known from the dynamic theory of elasticity [9].
If a spherical cavity with radius R vibrates in a medium
with a small value of the shear modulus µ, its natural
frequency ω0 and the attenuation coefficient δ are
expressed as

(1)

It is interesting that the length of the radiated longitudi-
nal wave

(2)

is greater than the radius of the vibrating cavity. The
relation λl/R @ 1 is characteristic of concentrated sys-
tems or Helmholtz resonators where the vibrating mass
is large and the elasticity is small. The attenuation of
vibrations during the period is equal to 2πδ/ω0 ! 1.
This means that the cavity vibrations decay slowly
loosing their energy for the radiation of longitudinal
waves. The Q factor of vibrations that determines the

ω0

2ct

R
-------, δ

2ct
2

clR
--------.= =

λ l π
cl

ct

---R @ R=
relative width of the spectral line of a frequency
response

(3)

is large. On the one hand, this means that the spectral
line of the response is very narrow. On the other hand,
the incident signal at the frequency ω0 is amplified by
the cavity by a factor of Q, which leads to a noticeable
growth of the component ω0 in the spectrum of the scat-
tered field.

Under actual conditions, it is necessary to take into
account the loss for the frequency-dependent friction in
the case of a shear deformation of the medium. More-
over, one needs to know how to calculate the response
to an incident pulsed or noiselike signal with a broad
frequency spectrum. Finally, in the case of strong
deformations, it is necessary to solve the problem in a
nonlinear formulation.

To develop a dynamic model for a porous medium
with the temperature close to the melting point, we con-
sider the basic problem on nonlinear oscillations of a
single spherical cavity.

We treat the continuous medium surrounding the
cavity as a very viscous isotropic liquid with a shear
modulus µ strongly depending on the prehistory of
local loading. The relation between the strain and stress
tensors, uik and σik, in such a medium in the case of
shear deformations is given by the expression

(4)

Here, τ is the temperature-dependent relaxation time.
The higher the temperature, the smaller the relaxation
time is in the general case. The process of approaching
the equilibrium state occurs according not to an expo-
nential but to a more complex law. In this case, the inte-
gral kernel in Eq. (4) must be changed for the function
G(ξ/τ) of a more complex form. If ωτ @ 1, where ω is
the frequency of the incident wave, the integral rela-
tionship of Eq. (4) can be represented in the form of a
series in powers of 1/τ:

(5)

In the opposite limit of low frequencies or small relax-
ation times, it is possible to use the expansion in powers
of τ:

(6)
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The first (principal) term in the expansion given by
Eq. (6) means that, in the limiting case ωτ ! 1, the
medium behaves as a liquid with the viscosity being the
product of the modulus of shear elasticity by the relax-
ation time: η = µτ.

In what follows, we assume that the shear modulus
is small in comparison with the bulk modulus, i.e., µ !
K. In this case, the wave equation for this medium takes
the form

(7)

Now, let us consider a spherical cavity in this
medium and assume that this cavity performs radially
symmetric vibrations excited by the pressure of the
incident wave. We assume that a compressible gas fills
the cavity. We write down the boundary condition at the
surface r = R by equating the components of the stress
tensor σrr on both sides of the boundary:

(8)

Here, P(t) is the external pressure of the incident
wave, p(t) is the gas pressure in the cavity, and U is the
radial velocity component. In the process of vibration,
the cavity emits a divergent spherical wave with the
potential that must satisfy the wave equation and be
described by the function

(9)

Substituting Eqs. (9) into Eq. (8) and assuming that r =
R, we reduce Eq. (8) to the form

(10)

Here, to abridge the expression, we used the following
notation for the differential operator:

(11)

The internal pressure of the gas varies in the process of
vibration of the spherical cavity that is accompanied by
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a variation of cavity volume. It is also possible to
express the pressure through the potential:

(12)

Here, cg and ρg are the sound velocity in the gas and its
density and ε is the nonlinear parameter [10], which, for
the equation of state in the form of an adiabatic, is equal
to (γ + 1)/2. Here, γ = cp/cv is the ratio of heat capacities
at constant pressure cp and constant volume cv.

Taking into account relation (12), we represent
Eq. (10) in the form

(13)

Ignoring the influence of nonlinearity and lag of
internal processes in the medium, i.e., assuming that
ε = 1 and τ  ∞, we first consider the simplest partic-
ular case. In this case, Eq. (10) takes on the form

(14)

As it follows from the structure of Eq. (14), the natural
frequency of vibrations and their attenuation are given
by the expressions

(15)
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The Q factor for the oscillation system described by
Eq. (14) is equal to

(16)

Equations (15) were obtained earlier in [11]. It is nec-
essary to note that they differ substantially from the
well known Eqs. (4), since, together with the shear vis-
cosity of the medium, they take into account the elastic-
ity of the gas within the spherical cavity. When the
medium melts and transforms into a liquid, ct  0 and
the first of Eqs. (15) transforms into the well-known
Minnaert formula for the resonance frequency of vibra-
tions of a gas bubble in a liquid [12]. The Q factor given
by Eq. (16) does not contain a singularity at ct  0 in
contrast to Eq. (6). The value of Q is large in all cases
and reaches its peak value equal to

(17)

when the shear elastic modulus of the medium van-
ishes.

We could not find any reliable modern data on the
temperature dependences of shear elasticity or propa-
gation velocity of transverse waves in the vicinity of the
melting temperature for magmatic rocks. As it is dem-
onstrated in the basic work [13], the shear elasticity of
polycrystalline materials can drop down noticeably
already at the temperatures much lower than the melt-
ing temperature. For rough estimations, we take that
ct ≈ cg = 300 m/s and ρ0/ρg = 3000. In this case, it fol-
lows from Eq. (15) that Rf0 ≈ 100 m/s; i.e., for frequen-
cies of about 0.1 Hz, the cavity radius must be about
1 km and the Q factor given by Eq. (17) is equal to 7.5.
As the shear elasticity decreases (or temperature
grows), the cavity size corresponding to the natural fre-
quency of 0.1 Hz decreases and the Q factor increases.

Now, let us consider the important limiting case of
low-frequency vibrations, when the characteristic time
variation of the cavity volume is large in comparison
with the characteristic time of relaxation processes in a
very viscous medium, ωτ ! 1. In this case, vibration
equation (13) takes the form

(18)
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Note that the term with the third derivative, in which the
coefficient (ct/cl)2ωτ is very small (in the approximation
under consideration), is omitted. The Q factor corre-
sponding to the oscillator described by Eq. (18) is equal to

(19)

Since the data on the shear elasticity and the relaxation

time are insufficient, we use the formula η = µτ or  =
η/τρ0. In this case, the natural frequency and the Q fac-
tor are written as

(20)

To estimate by Eqs. (20), it is necessary to have
numerical values for shear elasticity. As it is demon-
strated in [14], the results of recent measurements con-
tradict the common ideas concerning the increase in
viscosity with increasing pressure. For basalt lava at a
small pressure, an empirical formula [15] is valid:

(21)

where the constants η0 and b vary within the ranges
from 1.3 to 6 P and from 2.65 to 2.73 K, respectively.
One can readily see that, near the melting temperature,
which for basalt is equal to 1150 K, the viscosity is on
the order of magnitude of 104–105 Ps, and we can
ignore the viscosity in Eqs. (20) for the cavity radii
greater than 1 cm. This cannot be done for more viscous
melts.

Estimating the radius of the resonance cavity by
Eqs. (20) for a frequency of 0.1 Hz and the parameters
of the medium used above in estimates by Eqs. (15) and
(16), we obtain a value of about 20 m.

It is possible to imagine a different situation, where
not a single cavity but an extended region with
increased gas content vibrates in a melted magma. In
this case, the density of this region is somewhat smaller
than in the absence of volatiles, but the velocity of lon-
gitudinal waves may decrease rather strongly. Water
with gas bubbles can be an example. The sound veloc-
ity in it can decrease down to 30–40 m/s, which is much
smaller than the sound velocities in both pure water and
pure gas. Assuming that ρg/ρ0 = 1 and cg = 100 m/s in
Eq. (20), we estimate the radius of a gas-saturated
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region with a resonant frequency of 0.1 Hz and a size of
about 300 m.

If there is a geological structure containing a
strongly viscous liquid with gas-filled cavities (for
example, the magmatic chamber of a volcano or the
center of a mud geyser), a decrease in two parameters
must occur with temperature growth; i.e., the relaxation
time τ and the propagation velocity of shear waves ct
should decrease; at the same time, the size R of the gas-
containing cavity must increase. All three trends lead to
the growth of the Q factor (Eq. (20)) and, therefore, to
an increase in the intensity of the scattered field at low
frequencies corresponding to the resonances of the
oscillating system described by Eq. (18). In the cases,
where an incident wave is strong or the duration of
action on a high-quality resonance structure is suffi-
cient for considerable energy accumulation in the cav-
ity, the appearance of a nonlinear response at higher
harmonics and combination frequencies, which is
described by the nonlinear terms of Eq. (13), is possi-
ble. In all the cases, the increase in the structure
response, the appearance of the resonance peaks in the
spectrum of the scattered signal, and spectrum enrich-
ment with harmonics must be evidence of the tempera-
ture rise connected with the growing activity of geolog-
ical processes.

The linear response of the cavity is calculated by the
known formulas. In the particular cases, for the models
of Eqs. (14) and (18), the velocity potential of the radi-
ated wave is described by the expression

(22)

If the incident wave may be treated as stationary noise,
the correlation function for the scattered signal is equal to

(23)

where SP(ω) is the intensity spectrum of the incident
noise P(t) and K(ω) is the complex transfer function of
the system. In particular, for Eqs. (14) and (18), we have

(24)

For a concentrated system, the motion of which is
described by linearized Eq. (13), it is simple to obtain
generalized expression (24) and calculate the linear
spectral response
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In the presence of a weak nonlinearity, the response
also be can calculated analytically. In more complex
cases, where the contribution of nonlinear effects is
comparable in magnitude with the linear response, it is
necessary to use numerical simulation. These data will
be published later. Moreover, it seems to be important
to perform a generalization of the results presented
above to media containing cavities of different size dis-
tributed over the volume.
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Abstract—The informative parameters and the behavior of the acoustic emission that accompanies the defor-
mation and fracture of rock samples under various conditions of mechanical loading, thermal action, and
humidification are considered. The main directions of the development of models for the acoustic emission in
geological materials are analyzed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Acoustic emission (AE) is the phenomenon of emit-
ting elastic waves as a result of irreversible or partially
reversible changes in the structure of a solid under the
action of various external and internal physical factors.
It is commonly believed that this phenomenon was dis-
covered in the middle of the 19th century in connection
with tin deformation, which was accompanied by spe-
cific acoustic effects called tin cry.

In 1928, A.F. Ioffe published a paper on the mechan-
ical properties of crystals, which can be considered as
the beginning of research into the acoustic emission of
rocks [1]. This paper was the first to note that each par-
ticular event of stepwise deformation of rock salt is
accompanied by a “clock-tick-like noise” and indicated
the possibility of using this noise for studying the
nature and behavior of the deformation.

Later, from the mid-1950s, it was realized that AE
could become one of the most efficient means for real-
time monitoring of rock fracture. This was largely due
to the successful use of AE signals generated in a
stressed rock for predicting hazardous effects in coal
mines [2]. At the same time, a systematic study of the
AE behavior in rock samples was started [3], which
revealed a number of advantages of the AE method. In
particular, this method is capable of detecting individ-
ual fracture events, which is impossible with such inte-
gral rock damage indicators as nonlinear deformation
or variation in the propagation velocity and attenuation
of elastic waves. Location of AE sources allows one to
remotely determine the positions of fracture nuclei in
space and decide on their variation in the process of
loading. The latter circumstance favorably compares
the AE method with microscopy, which only gives the
fracture pattern for the moment when the experiment is
over and is an essentially destructive testing method,
because it uses thin sections.

The sources and mechanisms of AE in rocks are the
growth and closure of microcracks and macrocracks,
collapse of pores, twinning processes, motion of dislo-
1063-7710/05/51S1-S $26.000002
cations and their clusters and their outcrop at grain
boundaries, etc. [4–7]. It has been repeatedly noted that
AE is more pronounced the more inhomogeneous the
material is. The fracture of a perfect crystal occurs
abruptly and is not preceded by the AE. In an inhomo-
geneous material, the defects are activated as the load
(temperature) is increased and become capable of pro-
ducing AE signals long before the macrofracture occurs
[8, 9].

Elastic waves produced by defects propagate in the
bulk of the rock and undergo certain changes (attenua-
tion and variations in the frequency spectrum). On
reaching the surface, the elastic waves are received by
a transducer. In some cases (for example, at high tem-
peratures), an intermediate waveguide exists between
the rock and the transducer, for example, a steel or
quartz rod.

The signal received and converted to an electric
pulse is transmitted through a cable to a front-end
amplifier, which usually also acts as a preliminary
band-pass filter. The noise component of the AE con-
tains both high-frequency and low-frequency compo-
nents. The low-frequency noise is produced by the test
equipment used for loading the samples. The high-fre-
quency noise is generated by electron devices and elec-
tromagnetic interference [10].

The output signal of the preamplifier is applied to
the main amplifying and filtering unit. Further, the sig-
nal is sampled and digitized with the help of an analog-
to-digital converter (ADC) and recorded to a com-
puter’s hard disk. The sampling rate determines the
upper boundary of the frequency spectrum of the
recorded signal in accordance with the Nyquist theo-
rem. The waveform of a recorded AE signal is schemat-
ically shown in Fig. 1.

INFORMATIVE PARAMETERS
OF ACOUSTIC EMISSION

Acoustic emission produced in the process of defor-
mation and fracture of rock may conventionally be cat-
 © 2005 Pleiades Publishing, Inc.



        

DEFORMATION- AND FRACTURE-INDUCED ACOUSTIC EMISSION IN ROCKS S3

                                                                                     
egorized into two types: discrete and continuous. The
term discrete AE refers to the acoustic emission con-
sisting of individually distinguishable pulses; the term
continuous AE refers to the acoustic emission that has
the form of a continuous wave field or is recorded as a
single continuous noiselike signal.

The prevailing source of practically observed AE in
rocks is the stepwise development of cracks. The AE
produced in this process is discrete; therefore, it is the
discrete AE’s informative parameters that are predomi-
nantly used in geological monitoring. Among these
parameters, the main ones are as follows [4, 11]:

(i) the total acoustic emission count (total AE), i.e.,
the total number of AE pulses with an amplitude above
a given threshold (Ut in Fig. 1) observed during the
analysis time;

(ii) the acoustic emission count rate, i.e., the number
of AE pulses above a given threshold in unit time;

(iii) the number of acoustic emission pulses, i.e., the
total number of pulses in discrete AE during the analy-
sis time (for example, from the beginning of loading of
the sample until a specified stress is achieved);

(iv) the acoustic emission activity, i.e., the number
of AE pulses in a unit time;

(v) the amplitude of the acoustic emission signal,
i.e., the maximum value of the AE signal;

(vi) the acoustic emission energy, i.e., the acoustic
energy released by the AE source and carried by the
waves produced in the material;

(vii) the beginning of recording of the acoustic
emission signal, i.e., the time when the processor of the
AE receiver starts processing the AE signal after it
exceeds the threshold; and

(viii) the difference in arrival times of the AE signal,
i.e., the time interval between the arrival times of the
AE waves at the ith and jth receiving transducers.

The first four of the above parameters, to a certain
degree of time resolution, characterize the number of
elementary events of defect initiation and propagation
in the material. Their common disadvantage is their
certain ambiguity due to the dependence on the resolu-
tion of the AE receiving equipment.

The total count and number of AE pulses are time
integrals of, respectively, the count rate and the AE
activity and are the most widely used acoustic emission
monitoring parameters, which positively correlate with
the inelastic strain rate [12].

If the amplitude of the AE signal is known, the
energy of elementary fracture events can approximately
be evaluated.

The beginning of recording of the AE signal, which
indicates the time when the signal arrives at the recep-
tion point, allows us to compare the emission monitor-
ing data with conventionally studied rock parameters
(strain, stress, elastic wave velocity, etc.).
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If information on the velocities of elastic waves pro-
duced by a source and on the difference in their arrival
times at different AE receivers is available, coordinates
of the source can be retrieved. The minimum number of
receivers necessary to locate (determine the coordi-
nates) of a source in space is four; on a plane, three; on
a line (a rod sample), two. Since rocks exhibit velocity
anisotropy, it is commonly accepted that the minimum
number of receivers required to reliably locate a source
in space is six.

Location of AE sources plays the key role in study-
ing the redistribution of microcracks in the fracture pro-
cess. Location of the AE sources not only gives qualita-
tive information on the positions and shapes of the frac-
ture regions but also allows us to quantitatively
characterize the process of fracture localization in
space in terms of the point-to-point correlation integral
C(R) defined as

(1)

where NR(r < R) is the number of source pairs separated
by a distance r (shorter than the given R) and N is the
total number of events analyzed [12, 13].

If the source distribution is self-similar, C(R) is pro-
portional to RD, where D is the fractal dimension of the
distribution (0.0 ≤ D ≤ 3.0). The fractal dimension D is
defined as the slope of the plot C = f(R) on logarithmic
coordinates. Low values of D indicate the presence of
clustering, i.e., grouping of the sources, whereas D =
3.0 is characteristic of a uniform source distribution in
space without a pronounced clustering. At the same
time, D carries no information about the geometric
shape of the spatial distribution. In particular, D = 2.0
can refer to a uniform source distribution on a plane, as
well as to a clustered distribution in space. Similarly,

C R( )
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Fig. 1. Schematic view of the AE signal: Ut is the threshold
level for recording, UA is the amplitude of the signal, and
τ is its duration.
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D = 1.0 can refer to a distribution of sources on a line,
as well as to their strongly clustered distribution in
space [13]. Therefore, to best characterize the spatial
source distribution, the fractal dimension D must be
considered together with the general spatial source pat-
tern.

In experiments with hydraulic fracture of cubic sam-
ples, the fractal dimension of the spatial source distri-
bution was found to depend on the lateral pressure
applied to sample’s faces and on the type of rock. The
value the fractal dimension was found to be within 1.7
to 2.4 [14].

The measurements of signal arrival times allow us to
determine the distribution of time intervals between
consecutive AE events. This distribution is in a number
of cases exponential, which indicates that the AE flow
is characterized by the Poisson distribution law [15].
The AE events occur independently, and the AE history
exerts no effect on the current and future events.

In recent years, the understanding of the flow of AE
events as a Poisson process has undergone significant
changes. In particular, it was found that the distribution
is not exponential and the AE is not a Poisson process
[16]. As a possible alternative, it was proposed to
describe the AE process by the Polya distribution,
which allows for the correlation between events [17].

The non-Poisson nature of the flow of AE events is
taken into account in the so-called self-excitation
model [13]. In the framework of this model, which
relies on observations of AE emission in rocks under
different loading conditions, the probability that an
event occurs in a short time interval is

(2)

where the constant µ0 characterizes a stationary Poisson
process, p1t is the linear time trend component, ti is the
time when the ith event is recorded, the function g(t – ti)
characterizes the influence of previous events on the
event at time t (self-excitation), g(t) = a0exp(–βt), and

a0 and β are the constants. The integral s = (t)dt =

λ t( ) µ0 p1t g t ti–( ),
ti t<
∑+ +=

g
0

+∞∫

logN

logA

Fig. 2. Cumulative amplitude distribution of received AE
signals: A is the signal amplitude and N is the number of sig-
nals whose amplitude is lower than the given value.
a0/β characterizes the degree of self-excitation, i.e., the
effect of AE history on future events. This quantity can
be evaluated from the measured arrival times of the AE
signals.

A number of independent experimental works are
known to give evidence characterizing the distribution
of time intervals between consecutive AE events in
rocks and inhomogeneous materials as the power-law
scaling:

(3)

where N(τ) is the distribution of time intervals τ
between consecutive AE events and γ is the dimension-
less exponent. A power-law distribution similar to
Eq. (1) was obtained, in particular, in field measure-
ments of AE activity near the active volcano Stromboli
[18]. The critical exponent was found to be γ = 1.2 ± 0.1,
which is in good agreement with numerical simula-
tions of self-organizing criticality [19, 20]. At the
same time, when the AE threshold recording level was
changed, the N(τ) distribution deviated from the
power-law scaling.

The amplitude distribution of received AE signals
and its variation in the process of loading characterizes
the evolution of the fracture process in time. For exam-
ple, amplitude analysis reveals typical rock fracture
stages, in particular, transition of the fracture from one
hierarchy level to another [21].

The amplitude distribution of AE signals is usually
represented in logarithmic coordinates, in which the
abscissa axis represents the logarithm of the amplitude
or the amplitude in decibels; the ordinate axis, the log-
arithm of the number of events whose amplitude is
greater than that plotted on the abscissa axis (Fig. 2).
The plot constructed in this manner can be approxi-
mated by a straight line:

(4)

where UA is the amplitude of the AE signal, N is the
number of signals whose amplitude is greater than UA,
and a and b are constants. The b value, which enters
into Eq. (2), characterizes the slope of the amplitude
distribution.

Experiments show that the b value depends on the
type of rock and on experimental conditions. The b
value of a rock sample is often observed to decrease in
the process of loading the sample as it approaches mac-
rofracture. For example, in the process of loading a dol-
erite sample, its b value decreased from 0.3–0.9 at the
beginning of the experiment to 0.0–0.3 as the sample
approached the ultimate strength [22]. A similar
decrease in the b value before macrocracking was
observed in the hydraulic fracture of cubic tuff and
granite samples 100 mm on a side [14]. The increase in
the contribution of higher-amplitude events with
approaching the mechanical instability was observed in
a composite sample subjected to a static loading and
excited by elastic pulses [23].

N τ( ) τ γ– ,∼

Nlog a b UA,log–=
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The decrease in the b value when approaching the
ultimate strength is usually considered as a possible
precursor of macrofracture. Indeed, a decrease in the b
value means that the share of high-amplitude events in
the total AE flow increases. High-amplitude AE signals
are produced by large cracks; therefore, an increase in
the b value may be regarded as a result of crack coales-
cence, formation of higher rank cracks, and transition
of the fracture process to a higher hierarchy level with
the following macrofracture.

It was theoretically shown that attenuation of elastic
waves, as they propagate from the source (defect) to the
AE receiver, exerts a significant effect on the amplitude
distribution of the recorded AE signals [24, 25].

The numerical simulation of the amplitude distribu-
tion of received signals [26] has shown that a spatial
localization of sources (for example, their redistribu-
tion from a uniform distribution over the bulk of the
sample into a uniform distribution over a plane) reduces
the b value, as observed in experiments. The decrease is
observed in spite of the fact that all the sources continue
emitting with the same amplitude. It has been demon-
strated that calculations of the amplitude distribution of
sources must use true amplitudes of the emitted rather
than received signals [24–26]. It is also necessary to
allow for the attenuation of the AE signals in the pro-
cess of propagation from the source to the receiver.
Therefore, it is necessary to use multichannel AE mea-
surement systems to provide for the location of the
sources.

The most comprehensive idea of the AE process and
sources can be obtained from a detailed analysis and
interpretation of the received signal waveform. It is also
necessary to take into account that the waveform is
determined by not only the source but also by transfor-
mation of the signal as it travels from the source to the
receiver. Reflections of the signal are also of impor-
tance in testing the rock samples. Due to reflections,
after one or two periods of vibration, the signal mainly
characterizes the reflections rather than the source. The
conditions at the contact boundary between the trans-
ducer and rock and characteristics of the receiving
channel (receive transducer, filters, amplifiers, etc.)
also affect the recorded signal.

One of the most commonly used methods for pro-
cessing AE signals is Fourier analysis, which yields fre-
quency spectra of the signals and their variation in the
course of fracture evolution. A widely used version is
the windowed Fourier transform, which divides the sig-
nal into portions (time intervals) and performs the Fou-
rier transforms over each interval. Narrowing the time
window improves the time resolution, but this is
achieved at the expense of less adequate representation
of low frequencies [10].

Using power spectra of autocorrelation and cross-
correlation functions of two signals allows one to esti-
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mate their similarity through calculating the coherence
function Cxy( f ) [10]:

(5)

where f is the frequency; Γxx( f ) and Γyy( f) are autospec-
tral densities of signals x and y, respectively; and Γxy( f )
is their cross-correlation density. High values of the
coherence function indicate that waveforms of the sig-
nals are similar. If the signals are identical, their coher-
ence function is constant and equals unity.

In recent years, wavelet analysis, which was devel-
oped earlier in seismology, has been increasingly used
in AE studies. The wavelet analysis allows one, in par-
ticular, to increase the signal-to-noise ratio by creating
appropriate digital filters. The wavelet spectrum clearly
shows in what region and at what frequencies the signal
carries the local energy maximum. This feature may be
used, for example, to extract and filter out the reflected
waves [27]. The wavelet analysis was used to filter out
high-frequency and low-frequency noise and to identify
waves of different types that arrive after the longitudi-
nal wave [10]. At the same time, we should note that,
for the wavelet filter to be used in the automated mode
of operation, a physically justified model of noise for
the particular experiment must be available. Otherwise,
the wavelet analysis may produce unwanted artefacts.

The analysis of the moment tensor, similar to the
seismic moment tensor in earthquake mechanics, pro-
vides information on the source type and orientation.
The moment tensor Mpq(τ) is defined so that the dis-
placement un in the direction of coordinate xn at a given

spatial point  is written as follows:

(6)

where Gnp is the Green’s tensor and  is the position
vector. Summation is implied in indices that enter into
the expression twice.

At present, several moment tensor analysis methods
have been developed, which can be categorized into
two groups: absolute methods and relative methods.
The absolute methods yield absolute values of the
moment tensor, but they require calculation of the
Green’s function. The methods use the amplitude and
sign of the first arrival at several AE receivers or the full
waveform. In the latter case, the solution is sought for
by the method of successive approximations [28].

The relative methods apply to groups (clusters) of
sources whose size should not be greater than the pre-
dominant wavelength of the AE signals or the distance
between the cluster and the receivers. An advantage of
the relative methods is that they do not calculate the
Green’s function. The moment tensor is calculated rel-
ative to that of one of the sources of this cluster (refer-

Cxy f( )
Γ xy f( ) 2
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--------------------------------,=

x

un x t,( ) Mpq τ( ) ∂
∂ξq

--------Gnp x t τ ; ξ 0,–,( ) τ ,d

∞–

+∞

∫=

ξ



S6 LAVROV, SHKURATNIK
ence source). The moment tensor of the reference
source can be calculated by the absolute methods. The
accuracy of the relative method is determined by the
error within which the moment tensor of the reference
source is known [28].

THE MAIN FEATURES
OF AE IN ROCK SAMPLES

Staged Charater of the AE

One of the main distinctive features of AE in the
process of mechanical fracture is its staged character,
i.e., the dependence of the AE characteristics on the
sample fracture stage. Changes in the AE parameters
are often used to diagnose these stages. A regular
sequence of AE stages in the process of fracture evolu-
tion creates conditions for predicting catastrophic mac-
rofractures in inhomogeneous rocks.

The sequence of the AE stages with evolution of the
rock damage in the process of mechanical loading was
indicated in early experimental works [29]. For exam-
ple, the process preceding the macrofracture of samples
of low-strength coal subjected to uniaxial stress was
clearly divided into three stages: relatively low activity
(isolated groups of relatively weak pulses), high activ-
ity (a considerable amplitude of AE pulses), and
reduced AE activity (pulses of a relatively high ampli-
tude alternate with relatively weak signals). The third
stage terminates in the macrofracture of the sample.
Transitions between the AE stages are clear and step-
wise.

This staged character was absent in medium-
strength and high-strength coal, in which intermittent
AE activity was observed over the entire loading pro-
cess: the pulses followed in groups, the pulse rate and
amplitude in a group monotonically increasing with
approaching the macrofracture. In high-strength and
medium-strength coal, the AE appeared much later than
in low-strength coal. The groups of pulses were sepa-

Stress, AE activity

Strain

Fig. 3. Schematic generalized plots of the stress (dashed line)
and AE activity (solid line) versus the longitudinal strain in
the process of uniaxial loading of a rock salt sample [32].
rated by quiescence intervals. In each group except for
the last one, which ends up with the macrofracture, the
AE activity and amplitude first grow and then gradually
fall off [29].

The intermittent activity in medium-strength and
high-strength coal occurs because individual parts of the
sample sequentially lose their bearing strength. The high
AE activity in low-strength coal is observed almost from
the very beginning of loading due to the high initial con-
centration of cracks. An increase in the load continuously
creates fracture zones and releases energy, which
reduces the intensity of the final shock [29].

The alternation of high and low AE intensity inter-
vals in the process of deformation of coal samples was
also observed in [30]. Three stages of AE evolution
were distinguished. The initial stage, which approxi-
mately corresponds to elastic deformation of the sam-
ple, is characterized by insignificant AE activity. The
next stage, from the point where the sample reaches its
elastic limit to the point of ultimate strength (maximum
of the stress–strain curve), is characterized by a high
AE intensity. Beyond the ultimate strength, the AE is
characterized by a low intensity, similar to that at the
first stage. The beginning and end of each stage was
clearly seen as an inflection in the plot of the total AE
versus time.

The staged character of AE clearly manifests itself
in loading rock salt and salt rock samples. The number
of distinguishable stages for loading at a constant stress
rate (four stages) and at a constant strain rate (six
stages) is different [31]. The behavior of the AE activity
versus stress under these two conditions is also essen-
tially different. In particular, at a constant strain rate,
the maximum activity occurs beyond the ultimate
strength, on the falling part of the stress–strain curve,
whereas at a constant stress rate, the maximum activity
occurs at the maximum consolidation of the sample
(Fig. 3) [32].

A similar behavior was observed in stepwise load-
ing tests of salt with keeping the load constant at each
step until AE activity stabilizes [33]. The experiments
have shown that the stepwise increase in the AE activity
in response to a step in the loading is maximal when
consolidation of the sample is maximal. Also, begin-
ning with this moment, the AE activity falls off, as the
load is kept constant, not to the background level but to
a certain higher value. This circumstance was used as a
basis for a fundamentally new fast method to determine
the long-term strength of salt. On the whole, results
reported in [31, 33] have shown that each condition and
each stage of salt rock deformation refers to a particular
behavior of AE, informative parameters of which expe-
rience specific anomalous changes at the boundaries
between the stages. These changes can be used to iden-
tify each of the deformation stages; to determine the
limits of elasticity, the strength, and the long-term
strength; and to detect decelerating, steady-state, or
evolving creep.
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Note that the decay in the AE activity A at each stage
of the stepwise loading of rocks (i.e., at a constant load-
ing) usually obeys the Omori law (Fig. 4) [34]:

(7)

where N0, c, and p are constant values. As the rock
approaches the macrofracture, N0 increases and the
exponent p decreases [12, 35]. The decrease in p can be
regarded as a precursor of the forthcoming catastrophic
failure.

If the acoustic activity of rocks is low, for example
under triaxial loading, the recognition of acoustic emis-
sion stages is possible through the analysis of the sig-
nal’s fine structure, one of the informative parameters
being, in particular, the amplitude ratio of adjacent half-
periods of the AE pulse [36].

The staged character of AE and its relation to the
staged character of deformation and fracture of crystal-
line rocks (granite) was studied in detail in [37, 38]. In
addition to AE activity, the study used such parameters
as amplitude, duration, and rise time of the signal,
along with the number of its intersections of the thresh-
old level. At early loading stages, an insignificant AE
activity due to closure of existing pores and cracks was
observed. The beginning of microfracture, at which a
positive nonlinear component of cubic strain appears,
was accompanied by a peak in the AE activity. Also,
local maximums of the signal duration and number of
intersections of the threshold level were observed [38].

Concluding the review of data on the staged charac-
ter of AE, we should mention the phenomenon of still-
ness observed immediately before the macrofracture or,
in the case of loading on a rigid test facility, immedi-
ately after the peak stress [38]. The presence and dura-
tion of this stillness and its position relative to the peak
stress (before or after) is determined by the loading
conditions and the type of rock. This phenomenon is
observed in samples, as well as on a greater scale:
before shock bumps in mines and before earthquakes.
The stillness phenomenon seems to be a universal fea-
ture of the fracture process and is typical of not only the
AE but also of electromagnetic radiation that accompa-
nies the deformation and fracture of rocks [40].

Relation between the AE Characteristics
and the Rock Structure

Along with loading conditions, the AE behavior is
determined by the structure and properties of rock. In
particular, the more brittle the rock, the longer the dura-
tion of the acoustic stillness mentioned above. If the
rock is sufficiently plastic, the stillness may be absent
[39]. Plastic rocks (for example, rock salt) are charac-
terized by a more uniform energy release than that in
brittle rocks (for example, granite) during the entire
loading process. In brittle rocks, the most intense frac-
ture is observed at later deformation stages, closer to

A
N0

t c+( )p
-----------------,=
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the macrofractur. At this stage, the signal amplitude and
the AE activity of brittle rock sharply increase [41].

The degree of initial homogeneity exerts a strong
influence on the AE behavior. In more homogeneous
rocks, the AE begins later and the greatest part of
acoustic signals are observed immediately before the
complete failure of the sample, which hampers the pre-
diction of the macrofracture from AE data [42].

The homogeneity of rock is closely related to the
characteristic size  of grains that constitute the rock.
The influence of the grain size on AE was particularly
studied in [43, 44]. The experiments were conducted
with rocks of approximately the same composition but
different grain size and its variance: relatively evenly
graded granodiorite with  = 1 mm, evenly graded gray

granite with  = 3 mm, and unevenly graded pegmatite

with  = 20 mm and grain size scattered within 10 to
40 mm. The samples were tested under uniaxial load-
ing. The total number of AE signals recorded from the
onset of loading to the instant of fracture was the
greater, the coarser the rock was. The total number of
AE pulses recorded when loading granodiorite was
90% less than that in pegmatite and 60% less than that
in gray granite [42]. Coarser grained rocks are charac-
terized by higher AE energies [43, 44].

The AE under Cyclic Loading of Rock Samples
and Its Use for Estimating Past Mechanical Stresses

A cyclic uniaxial loading of rock samples is accom-
panied by the Kaiser effect: when the stress is smaller
than the maximum value achieved previously, the AE
activity is close to the background level and it abruptly
increases when the stress achieves this value [45–47].

d

d

d

d

Stress, AE activity

Time

A B

O

Fig. 4. Schematic generalized plots of the stress (dashed
line) and smoothed AE activity (solid line) versus time in
the process of (OA) monotonic loading and (AB) further
strain in the creep mode.
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A consequence of the abrupt increase in the AE activity
is an inflection (change in the slope) of the curve repre-
senting the total number of AE pulses versus stress and
schematically depicted in Fig. 5. The Kaiser effect is an
indication of the memory of rocks; i.e., their ability to
accumulate, store, and reproduce information about
thermodynamic actions they have experienced [48–50].
The Kaiser effect is observed in rocks of vastly differ-
ent origin and composition. In brittle crystalline rocks,
as the loading approaches the ultimate strength, the
effect manifests itself less clearly: the AE appears
before the memorized stress and strain level is
achieved. The memory degrades with increasing time
interval between the loading cycles and under the action
of such impairing factors as humidification and heating
between the mechanical and loading cycles or in the pro-
cess of loading [46, 48, 49]. In plastic rock salt, the Kai-
ser effect is clearly observed at all stages, including the
deformation beyond the ultimate strength [52].

Since the Kaiser effect was discovered in the early
1950s, it attracts the attention of researchers due to its
possible use for estimating the stress experienced by
rock in the Earth’s crust. However, the main difficulty
is that rock in the Earth’s crust is in a complex stressed
state, directions and proportions between the main
stress components being unknown in advance. Dedi-
cated laboratory experiments have shown that uniaxial
compression of samples of different orientations does
not allow one to determine the stress that affected the
rock in the massif. One of these experiments [53] sub-
jected a cubic sample to two cycles of uniaxial stress. In
the second cycle, the stress direction was perpendicular
to that in the first cycle. In the second cycle, the Kaiser
effect was absent. When the loading direction in the
second cycle was the same as that in the first cycle, the
Kaiser effect was clearly observed. High sensitivity of

Number of AE pulses

Strain

Maximum strain achieved 
in the first cycle

Fig. 5. Schematic generalized plots of the number of AE
pulses versus strain in the first (dashed line) and second
(solid line) loading cycles.
the Kaiser effect to the difference in directions of the
strain tensor’s principal axes in sequential loading
cycles was corroborated experimentally [54, 55] and by
numerical simulations of fracture under cyclic loading
[51, 55].

This sensitivity, on the one hand, is an obstacle for
the application of the Kaiser effect in stress measure-
ments (direction of the principal axes in the Earth’s
crust is usually known only approximately). On the
other hand, it seems possible to use the sensitivity to
accurately find the directions of these axes by testing a
series of samples oriented in different directions. The
Kaiser effect must be most clearly observed in the sam-
ple whose axis coincides with the direction of the max-
imum compression stress in the massif.

When the direction of uniaxial loading coincides
with that of the maximum principal compression stress
in the previous cycle of triaxial axisymmetric compres-
sion, the Kaiser effect is observed. However, it mani-
fests itself in a more complex fashion than under the
uniaxial compression. Specifically, the AE activity
increases gradually and the Kaiser effect is observed
when the amount of uniaxial loading reaches the value
equal to a linear combination of principal stresses of the
previous triaxial cycle, σ1 – (k + 1)σ3, where σ1 and σ3
are the principal stresses of the previous triaxial cycle
and k is the dimensionless coefficient characteristic of
the particular rock.

Thus, in the simplest version, uniaxial loading
allows us to obtain information about the combination
of principal stresses but not about each of them sepa-
rately. More sophisticated methods exist, which use a
series of triaxial tests with different lateral pressures
to scan the entire damage surface (the analogue of the
loading surface in the theory of plasticity) and thereby
retrieve the value of each of the principal stresses indi-
vidually [56].

The AE under Actions Other Than Mechanical Loading

The AE behavior considered above refers to various
conditions of mechanical loading of rocks. However,
being a consequence of continuity violation, AE in
rocks takes place under actions of other types, in partic-
ular, under humidification (or drying) or heating.

Humidification (drying) of rocks containing clay
minerals is accompanied by their swelling (shrinkage),
fracture, and acoustic emission. Experiments with silt-
stone have shown that the AE activity in the process of
swelling is much (several times) higher than that in the
process of shrinkage. At the beginning of swelling
(shrinkage), the AE activity increases, reaches its max-
imum, and then gradually falls off. A stabilization of
the swelling (shrinkage) deformation reduces the AE to
its background level [57].

Heating of rocks is accompanied by AE. The rea-
sons for the heating to cause fracture and AE may be
vastly different: temperature gradient in the sample due
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to its nonuniform heating, difference in elastic proper-
ties and in coefficients of thermal expansion of the
rock’s component minerals, evaporation of moisture
and explosion of gaseous or liquid inclusions, and
microfracture [58, 59]. Rocks of similar composition
and different grain size demonstrate the same behavior
as under the mechanical loading: coarser-grained rocks
exhibit higher AE activity and energy. Also, the AE
activity and energy of quartz-containing rocks are
higher due to the thermal expansion anisotropy of the
grains of this mineral [59].

Rocks subjected to cyclic heating with the tempera-
ture amplitude growing every cycle exhibit the so-called
AE memory effect: the AE is absent until the temperature
reahces the maximum value observed in the previous
cycle and, after that, it abruptly increases [58]

SIMULATION OF AE

The development of AE models is conducted in sev-
eral directions. First of all, we should mention the class
of models that simulate the emission of elastic waves
by developing defects, such as dislocations [5, 6] and
cracks [60, 61]. The crack shape is often idealized; for
example, disk-like cracks are considered [62]. Models
of this type can be used to calculate the waveform of AE
pulses.

Along with models of emitting cracks, analytical
models of rock damage are created that model the evo-
lution of AE activity in time disregarding the real emis-
sion mechanism. Such models rely on the results of the
fracture mechanics and relate the AE activity to the
total number of developing cracks or to the number of
jumps in the process of their propagation [63].

In recent years, a class of models has appeared, such
as power-law distributions of the AE source energy and
the time intervals between sequential signals [64],
which aim to give a mesoscopic description of the gen-
eral statistical properties of the process. An example of
work in this direction is the model that employs an anal-
ogy between mechanical fracture and fusion of fuse
links [65]. A characteristic feature of this model is that,
when the control parameter I (current, which is an ana-
log of mechanical stress) exceeds its critical value Ic,
elements of the model (fuse links) change their proper-
ties (are activated) rather than fail completely. This fea-
ture allows this model to simulate the AE at stages that
are far from macrofracture. The change in properties of
a particular element at I > Ic is accompanied by a redis-
tribution of the properties of the adjacent elements.
Combined with the redistribution of mechanical stress
caused by activation of the elements, this effect may
produce avalanche series of AE signals separated by
periods of relative quiescence.

At early fracture stages, only short series of AE
events are observed. After accumulating a certain dam-
age, AE activity grows and finally achieves a steady
state, in which the increase in the control parameter is
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
balanced by an increase in the damage. Simulations
have shown that, in the steady-state mode, the AE activ-
ity experiences significant fluctuations, and the ampli-
tudes and intervals between sequential signals are dis-
tributed by the power law [65].

Unlike the static model [65], the dynamic model
[66] is capable of modeling not only the AE activity, but
also the overall signal waveform. This is achieved by
solving the equations of motion for the two-dimen-
sional lattice subjected to antiplanar deformation.
Model [66] can also be used to obtain the power-law
distribution of the signal energy.

Along with analytical models, a significant role in
modern AE studies belongs to dedicated software pack-
ages. In [68], the displacement discontinuity method
(a version of the method of boundary elements) was
used to simulate brittle fracture of rock under various
loading conditions. It was assumed that the AE activity
is proportional to the number of microcracks activated
at the current loading stage. The simulation results have
shown good qualitative agreement with the experiment,
including the case of cyclic loading.

The discrete element method implemented in the
PFC software package is capable of simulating not only
AE kinetics but also a detailed signal waveform. This is
achieved through calculating the energy released in the
process of breaking the bonds between disk-shaped (or
spherical) particles that constitute the model rock [68].

CONCLUSIONS

The investigation of the mechanisms and behavior
of deformation and fracture of rocks under various
loading conditions is one of the foreground tasks in
geomechanics. The main method used in this area is
based on mechanical tests of samples supplemented by
various measurements. Until relatively recently, these
measurements determined only the longitudinal and
transverse deformations and the dynamics of acoustic
and electrical properties in the course of loading. As
follows from this review, acoustic emission is presently
becoming the most effective tool for solving research
problems in the physics of strength, plasticity, and frac-
ture of geological materials. This transition is facili-
tated by the progress in both the study of the AE phe-
nomenon in geological media and the development of
the equipment and techniques used for the acoustic
emission measurements.

Concluding this concise review, we emphasize that
it considered the AE behavior only in rock samples.
This is, on the one hand, due to space considerations
and, on the other hand, because the parameters and
space–time dynamics of geological material structure
in samples are different from those in the massif. Also,
one should keep in mind that laboratory methods of
experimental geoacoustics (including the AE methods)
significantly differ from the methods that study rocks as
they occur in nature (in situ). These differences prima-
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rily manifest themselves in the spectrum and propaga-
tion conditions of AE signals and in the intensity and
nature of interferences from which the signals must be
separated.
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Abstract—A brief review of investigations in the field of coherent seismoacoustics is presented, and the gen-
eral requirements for seismoacoustic wave radiators intended for solving problems of remote sounding are for-
mulated. The principle of operation of a novel high-power radiator created at the Institute of Applied Physics,
Russian Academy of Sciences, for generating low-frequency seismic waves is described, and the results of the
analytical and numerical modeling of this radiator are presented. The main element of the radiator is a piezo-
electric cylinder executing bending vibrations in a well filled with water. The concept of sectioning the radiating
cylinder for increasing the efficiency of excitation of various radiator modes and improving the matching the
radiator with the medium is formulated. The results of the field measurements of the space–time structure of
the seismic field generated by the sectioned radiator are presented. On the basis of these measurements, esti-
mates of the power, efficiency, and quality factor of the radiator are obtained. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The possibilities of using acoustic signals for
affecting the state of rock and diagnosing its structure
have been studied intensively over the last decades.
The results of these studies allow one to consider seis-
moacoustics as an independent and promising field of
geophysics. The solution of some of its most urgent
problems requires the use of intense acoustic signals in
the range of relatively low frequencies from ~10 to
~1000 Hz. Such signals are considered to be an effec-
tive tool for the remote acoustic action on oil pools that
is aimed at increasing oil recovery and for crosswell
sounding used for monitoring oil fields during exploi-
tation. The signals are also needed for solving prob-
lems of engineering seismic prospecting of mineral
resources (including the prospecting on the sea shelf)
and for the visualization of subsurface inhomogene-
ities in the construction of important structures. It is
expected that the methods of low-frequency seismoa-
coustics may be very efficient in solving the problem
of monitoring the condition of the Earth’s interior in
earthquake zones.

In recent years, a promising tendency appeared in
seismoacoustics, which is connected with the use of
controlled coherent radiators and related fundamental
possibility of using the coherent properties of received
signals for solving inverse problems. The high and
long-term stability of these radiators makes it possible
to realize coherent methods of forming and detecting
the signal field, which are nontypical for seismic inves-
tigations. This, in turn, allows one to increase the reso-
1063-7710/05/51S1-S $26.000023
lution of sounding in space and (or) time coordinates.
Another important feature is that the long-term accu-
mulation and application of special procedures of the
correlation analysis of coherent signals makes it possi-
ble to considerably increase the depth (range) of sound-
ing at relatively low radiation levels.

From the mid-1990s, field experiments have been
carried out at the Institute of Applied Physics of the
Russian Academy of Sciences, which have clearly
demonstrated the prospects of coherent methods of
seismoacoustic sounding [1]. These experiments used
previously designed high-power coherent hydroacous-
tic radiators (with various methods of matching them
with rock) and specially developed compact surface
vibration radiators. In these experiments, various
approaches to the solution of problems of coherent
sounding of the inhomogeneous medium were modi-
fied, which, in particular, were based on the employ-
ment of the signals modulated in a special way [2] and
on coherent methods of formation of an extended
receiving aperture (the aperture synthesis method com-
bined with the matched space–time filtering) [3]. For
instance, in one of the experiments in the Nizhni Novgo-
rod region, a geological relief was reconstructed to a depth
of about 2 km with a spatial resolution of the layered struc-
ture of ~10 m (at an operating frequency of 227 Hz) [2].

The results obtained show that the development of
high-power controlled coherent radiators of seismic
signals in the low-frequency range (up to ~1 kHz) and
the investigation of their radiating characteristics in
field experiments are of considerable interest for realiz-
ing the potential advantages of coherent seismoacous-
 © 2005 Pleiades Publishing, Inc.
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tics. Along with the adaptation of high-power hydroa-
coustic radiators for seismoacoustic investigations and
the development of surface vibration radiators of the
required frequency band [1], the problem of creating
special intrawell radiators is quite urgent. Their most
important field of application is the intensification of oil
production and the crosswell sounding of oil pools.

The known intrawell radiators that are used in prac-
tice do not meet the above-mentioned requirements.
For example, high-frequency (~10–30 kHz) piezoelec-
tric radiators of longitudinal waves, whose radiation is
localized in the so-called bottom-hole zone, serve
strictly for recovering its permeability (their typical
radiating power is ~1 kW and the radius of action is not
greater than ~1 m from the well axis) [4, 5]. Some
information is available about the employment of mag-
netostriction radiators [6], which also operate at rather
high frequencies (and have lower radiating power).
A considerable reduction in the operating frequency to
the values of about 1 kHz and lower is possible by using
the parametric generation of waves of difference fre-
quency inside the medium by employing the bihar-
monic operating mode of high-frequency piezoelectric
radiators, which undoubtedly is of interest from the
point of view of realization of the multifrequency
action on the producing layer, as well as from the point
of view of crosswell sounding [7]. A grave disadvan-
tage of this approach lies in the relatively low efficiency
of the parametric conversion, which is a “free parame-
ter” in theoretical estimates of the level of secondary
radiation (because it cannot be calculated with suffi-
cient definiteness owing to the uncertainty in the values
of the nonlinearity parameter of rock). Rather powerful
impact radiators (spark sources [8] or gas exploders
[9]) are, in principle, broadband and, therefore, lack the
necessary coherence and the possibility of choosing
(controlling) the radiated signals. It should be noted
that Vibroseis surface low-frequency (~10 Hz) radiators
[10], being an alternative to the intrawell radiators, also
have considerable drawbacks from the point of view of
realization of coherent approaches to problems of seis-
moacoustic sounding. In addition to the low value of
the transfer coefficient characterizing the radiating
power transfer into bulk P waves, they offer very lim-
ited possibilities for controlling the regimes of radiation
and formation of prolonged coherent packages (this is
caused in part by the unpredictable changes in the prop-
erties of subsurface soil under the action of intense
vibrations).

The obvious difficulty of developing high-power
low-frequency intrawell radiators consists in their lim-
ited transverse dimension, which cannot exceed the
inner diameter of the well (as a rule, 10–20 cm). This
means that the traditional approach based on the radia-
tion of cylindrically symmetric radial waves is not effi-
cient because of the decrease in power with the
decrease in frequency (probably, with the exception of
a parametric converter), and an alternative design
should be found. One of the solutions is the integration
of sectioned piezoelectric rings in a working volume (a
cylindrical column) in such a way that the radiator as a
whole executes bending vibration. The transmission of
vibration through the liquid filling the well to the walls
of the pipe casing results in the radiation of mainly
transverse S waves into the outer space. The most
essential point in this scheme is the generation of bend-
ing vibration free of the frequency-dependent restric-
tion of the power of radial vibration of the working sur-
face. The effective frequency range of radiation can be
reduced to hundreds and tens of hertz, which suggests
good prospects for this radiator for acoustic action and
crosswell sounding at distances above 1 km.

The first prototype of a powerful bending low-fre-
quency intrawell radiator created at the Institute of
Applied Physics to the order of OAO SibINKor
(Tyumen) was successfully tested in the autumn of
1999 at Samotlor deposit of Nizhnevartovsk basin [11–
13]. On the basis of this prototype, the institute devel-
oped and manufactured a modified variant of a bending
radiator [14] to the order of Shell International Com-
pany (Netherlands). In this paper, we describe the prin-
ciple of operation of this radiator and present the results
of its field tests. Some results of the analytical and
numerical modeling of the operating characteristics of
this radiator are also discussed.

THE PRINCIPLE OF OPERATION
AND THE ANALYTICAL MODEL

OF THE RADIATOR

The radiator is designed for the operation in a well
filled with liquid. It is assumed that the thickness of the
liquid layer ∆R between the radiating cylinder and the
steel pipe casing, which is the outer boundary of the
well, is considerably smaller than the cylinder radius R.
The cylinder vibration is transmitted through the water
to the pipe casing, whose motions eventually lead to the
radiation of seismic waves beyond the pipe, as is sche-
matically shown in Fig. 1.

The main element of the radiator is a cylindrical col-
umn consisting of washer-shaped piezoelectric plates.
A separate plate is shown in Fig. 2. One side of the plate
(side A) carries two electrodes divided by an insulating
strip, and the other side (side B) is covered with one
electrode. The plates are combined in pairs in such a
way that their sides A coincide. To all the sides B, the
ground potential is applied, and to sides A of different
electrodes, the potentials +V and –V are applied. As a
result, one half of the ceramic column contracts and the
other half expands. Periodic changes in the voltage V
excite bending vibration of the cylinder as a whole.

Some important characteristics of the radiator can
be estimated using the simplest analytical model. In
this model, we take into account that the length of the
radiating cylinder l is much greater than its radius R.
This condition allows us to use the thin rod approach
[15], in the framework of which the frequencies of nat-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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ural vibrations of a cylinder in air are expressed by the
formula

(1)

where m is the mass per unit length of the cylinder and
q is the moment of inertia of the cylinder cross section.
The quantity γ is a numerical coefficient, the values of
which for the natural frequencies corresponding to the
first four modes of bending vibration of the cylinder are
given in Table 1.

The design of the radiating cylinder is described in
detail in [14]. As indicated above, its main part is a cyl-
inder consisting of the piezoelectric plates shown in
Fig. 2. There is also a cylindrical compound layer and
an exterior steel tube, which also represents a cylindri-
cal layer. The moment of inertia of the cross section of
the cylindrical layer is expressed by the formula [15]

(2)

where R1 and R2 are the inner and outer radii of the layer
and E is the Young’s modulus of the layer material. The
coefficient q in Eq. (1) is the sum of the coefficients qs
of all layers of the radiating cylinder.

f
γ

2πl2
---------- q

m
----,=

qs E R2
4 R1

4–( )/4,=

1

2

3

4

Fig. 1. Schematic representation of the principle of opera-
tion of the radiator. Bending vibration of (1) the piezoelec-
tric cylinder acting through (2) water excite the vibration of
(3) the pipe casing. The latter vibration generates seismoa-
coustic waves in (4) the soil.
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Now we consider the operation of the radiator in a
well filled with water. First, we consider the simplest
case when we can neglect the vibration of the pipe cas-
ing (and, consequently, the surrounding soil). In this
approximation, the cylinder vibration leads only to the
flow of water in a narrow layer between the cylinder’s
and the pipe casing. A relatively simple analysis shows
that the dynamics of the radiating cylinder is described
in this case by the formulas determining the cylinder’s
vibration in air. The allowance for the influence of
water and presence of the well boundaries is achieved
by adding the added mass of liquid to the proper mass
of the radiator. The value of the added mass per unit of
the cylinder length for ∆R ! R is given by the expres-
sion

(3)

where ρw is the water density. The resonance frequen-
cies of the radiating cylinder in this model is given as
before, by Eq. (1), with the replacement of m by m + µ.

The radiating cylinder, being the main component of
the radiator, whose tests are discussed in this paper, had
the length l = 2.04 m and radius R = 0.073 m. The cyl-
inder’s mass per unit length was m = 99.8 kg/m, and the
width of the water layer between the cylinder and the
pipe casing was ∆R = 4 mm. The estimate of the added
mass calculated by Eq. (3) gives µ = 314.2 kg. Thus, the
inclusion of the added mass increases the effective
mass of the cylinder by a factor of four. According to

µ πρw
R3

∆R
-------,=

1

2 3

4

5

Direction of polarization

Side A Side B

Fig. 2. Piezoelectric plate: (1) hole at the center of the
piezoelectric plate, (2) the first sectioned electrode, (3) the
second sectioned electrode, (4) continuous electrode, and
(5) insulating strip.

Table 1

Mode 1 2 3 4

γ 22.37 61.67 120.9 199.86
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Fig. 3. Finite-element model of the radiator (three views with different magnification): (1) radiating cylinder, (2) equipment con-
tainer, (3) shock-absorber, and (4) hanger.
Eq. (1), this means that, after the radiator is placed in
the well, its resonance frequencies decrease by half.

Obviously, in reality, the pipe casing and the soil do
not remain stationary. Moreover, numerical calculation
shows that, under the conditions of soft unconsolidated
soil at the testing area of the Institute of Applied Phys-
ics, the vibration amplitude of the pipe casing at the res-
onance frequencies may be of the same order of magni-
tude as the vibration amplitude of the radiating cylin-
der. Nevertheless, we will see that, even under these
conditions, Eq. (1) (with the addition of the added mass
given by Eq. (3) to m) adequately predicts the values of
the resonance frequencies. In a firmer soil, which is typ-
ical of the large depths where oil pools are usually
deposited, the accuracy of the discussed analytical
description can only be higher.

THE RADIATOR MODES AND THE CONCEPT
OF SECTIONING

The numerical modeling of the operation of our
radiator was performed by the finite-element method
using the ANSYS multi-purpose program package
[16]. The finite-element model of the radiator in air is
shown in Fig. 3. In addition to radiating cylinder 1, it
includes container for equipment 2, shock-absorber 3,
and hanger 4, by which the radiator is fastened to the
string of piping for lowering into the well.

For the analysis of the radiator operation in a well
filled with water, a more complex model was used. The
radiator shown in Fig. 3 was placed in a pipe casing
filled with water. The pipe casing was placed inside a
cylindrical volume of homogeneous soil 36 m high and
18 m in radius. The parameters of the soil were chosen
on the basis of information obtained during well drill-
ing at the testing area (see below). The absorption was
introduced into the elements modeling the soil. Near
the radiator, the absorption was very weak, but it grew
sharply as the boundary of the volume occupied by soil
was approached. This was done for the maximal atten-
uation of the waves reflected from the boundary. The
introduction of such an attenuation is a standard proce-
dure and makes it possible to model the radiator opera-
tion in an unbounded space.

One of the main goals of the modeling was to study
the modes of bending vibration of the radiator. The first
three modes are shown in Fig. 4 (for clarity, the vibra-
tion amplitudes are magnified compared to the real
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 4. The first three bending modes of the radiator.
ones). The forms of the modes in air and in a well with
water differ little. However, this cannot be said about
the resonance frequencies. The latter are given below in
Tables 2 and 3. Numerical modeling with the ANSYS
program package shows that the addition of the equip-
ment unit, shock-absorber, and hanger leads not only to
some change in the resonance frequencies of the modes
of the radiating cylinder predicted by our analytical
model. With these elements, the second mode of the
cylinder splits into two modes with similar forms of
vibration but noticeably different resonance frequen-
cies. To emphasize the closeness of eigenfunctions of
these modes determining the form of the rod vibration,
both modes will be called the second ones. For this rea-
son, in Tables 2 and 3, two resonance frequencies are
given for the second mode (certainly, with the excep-
tion of the rows corresponding to the analytical model).

Note the very good agreement between the mea-
sured values of the resonance frequencies and the val-
ues obtained with modeling by the finite-element
 PHYSICS      Vol. 51      Suppl. 1      2005
method. The analytical model overestimates the values
of the resonance frequencies in air. The reason is that it
does not take into account the influence of the equip-
ment unit, shock absorber, and hanger. These elements
increase the effective length of the radiator, which leads
to a decrease in the resonance frequencies compared to
the frequencies of the radiating cylinder (see Eq. (1)).
In a well filled with water, the analytical model works
better, since, in this case, the added mass of the water
layer, which is correctly taken into account by this
model, begins to play an essential part. Thus, using sim-
ple formulas (1)–(3), it is possible to estimate the reso-

Table 2.  Resonance frequencies of the radiator modes in air

Mode number 1 2 3

Eq. (1), f (Hz) 123 339 664

ANSYS, f (Hz) 78 169; 282 588

Measurements, f (Hz) 79 169; 284 597
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nance frequencies and judge the changes that will be
caused by the variation of one or another of the param-
eters of the radiating cylinder. The obvious restriction
of the analytical model is the fact that it does not predict
the splitting of the second mode.

Of even greater importance is the fact indicated at
the end of the previous section: the resonance frequen-
cies and forms of modes weakly depend on the soil
properties. This allows us to work out some universal

Table 3.  Resonance frequencies of the radiator modes in a
well filled with water (∆R = 4 mm)

Mode number 1 2 3

Eq. (1), f (Hz) 60 166 326

ANSYS, f (Hz) 49 110; 186 300

Measurements, f (Hz) 49 112; 185 285

Section 1

Section 2

Section 3

Section 4

Fig. 5. Scheme of radiator sectioning.
recommendations for the optimal excitation of individ-
ual modes. Note that the form of every mode is charac-
terized by a sequence of portions with curvature of dif-
ferent sign. The change of sign takes place at the points
of zero curvature, which are located near the mode
nodes. Within the part of the cylinder with the curvature
of the same sign, all the halves of the piezoelectric
plates (see above) lying to one side of the symmetry
plane of the radiating cylinder behave in the same way:
they simultaneously contract or expand. It is this con-
sideration that lies at the basis of the concept of section-
ing the radiator, that is, dividing it into sections, as
shown in Fig. 5. The boundaries of the sections are cho-
sen to be located near the nodes of the second and third
modes. For optimal excitation of a required mode, the
signs of the voltages should be selected in such a way
that, under the action of piezoelectric forces, the cylin-
der would bend reproducing the mode form. The field
tests described below confirmed that such sectioning
results in a considerable increase in the efficiency of the
radiator operation.

EXPERIMENTAL STUDY OF THE RADIATOR

Description of the Experiment

The experimental study of the radiator was carried
out at the testing area of the Institute of Applied Phys-
ics, 35 km away from Nizhni Novgorod. Beforehand,
three identical wells 20 m in depth were drilled and
equipped. Every well was cased with a steel pipe 168 mm
in diameter. The space between the pipe casing and the
well walls was filled with concrete. The layout of the
wells and the orientation of coordinate axes are shown
in Fig. 6. During the tests, the radiator was positioned
in well 1, and the receiving equipment was in one of the
two other wells at distances of 3 and 50 m from the radi-
ator. All three wells were filled with water. In describ-
ing the results, we use the Cartesian coordinate system
with the z axis directed vertically upward and the x axis
directed along the line passing through the three wells.
The y axis lies in the horizontal plane perpendicular to
the x axis (see Fig. 6).

From the analysis of the soil sample obtained from
the well drilling, rough estimates of the mean density of

y

x
z

3 m

Well 1 Well 2

50 m

Well 3

Fig. 6. Layout of wells at the testing area and the orientation
of coordinate axes.
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soil at the testing area (ρg = 1730 kg/m3), the mean
velocity of longitudinal seismic waves (cp = 550 m/s),
and the mean velocity of transverse waves (cs = 280 m/s)
were obtained.

The seismic waves were recorded by using an
intrawell geophone designed and tested at the Institute
of Applied Physics. This instrument consists of a spher-
ical geophone intended for measuring the acoustic
pressure inside a well filled with water and of three
orthogonally oriented piezoelectric accelerometers for
measuring the x, y, and z components of vibration dis-
placements of the well walls.

During all the measurements, the radiator was
located at a constant depth (its center was at a distance
of 11 m from the surface). The radiation occurred in
three regimes differing in the sets of signs of the volt-
ages applied to various sections of the radiator.

Regime 1. All the sections are fed in-phase. The
voltages applied to all halves of piezoelectric plates
located to one side of the symmetry plane of the radia-
tor are the same. Obviously, in this regime, the first
mode is excited most efficiently.

Regime 2. The voltage V is applied to sections 1 and
2, and the voltage –V is applied to sections 3 and 4. In
this case, the vibration, in which the curvatures of the
upper and lower halves of the radiator have opposite
signs, is excited best of all. In this regime, the second
mode is excited efficiently.

Regime 3. The voltage V is applied to sections 1 and
4, and the voltage –V is applied to sections 2 and 3. This
regime is optimal for exciting the third mode.

In the investigations the results of which are dis-
cussed below, the rms value of the voltage V was varied
in the range from 200 to 270 V.

For studying the frequency dependence of the char-
acteristics of seismic waves, signals with a rather slow
linear change of frequency (linear frequency modulated
(LFM) pulses) were radiated. The duration of every
pulse was 25.6 s. The frequency deviation within these
pulses was usually equal to two or three hundreds of
hertz. The operation of the radiator in the frequency
range from 20 to 500 Hz was investigated.

In every regime of radiation, two sets of measure-
ments were performed. In one set, the radiator vibrated
in the yz plane, and in the other set, in the xz plane. The
change of orientation was carried out by turning the
radiator about its axis through 90°.

For studying the spatial structure of the radiator
field, the vertical distributions of the field were mea-
sured by using the geophone placed in measuring
wells 2 or 3 shown in Fig. 6. The geophone was succes-
sively fixed at various depths at a step of 0.5 m (in well 2)
or 1 m (in well 3). In well 2, the measurements were
performed in the depth range from 0 to 13.5 m, and in
well 3, in the range from 3 to 15 m. For every geophone
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
position, the voltage at the radiator was measured along
with the signals at the outputs of the four geophone
channels: three components (x, y, and z) of acceleration
and the pressure. Some data obtained from these mea-
surements are presented in the next section.

Results of Measuring the Field Distribution
in the Vertical Plane

The measured dependences of the acceleration com-
ponents on time were converted (dividing by ω2, where
ω is the angular frequency) into the components of par-
ticle displacement in the medium. The displacements in
the directions x, y, and z will be designated below as sx,
sy , and sz, respectively. Figure 7 shows, as an example,
the displacements sx and sy measured by the geophone
in well 2 at a depth of 12 m. At the radiation of an LFM
pulse, every point in time is characterized by a corre-
sponding value of frequency. Therefore, in the dia-
grams of the dependences of displacement on time
shown in Fig. 7, the abscissa axis represents not the
time but the corresponding frequency.

The radiation was carried out in regime 2, and the
radiator oscillated in the yz plane. As could be expected,
under these conditions, the displacement amplitude in
the y direction exceeds the displacement amplitude in
the x direction. As was mentioned, regime 2 is optimal
for the excitation of the second mode. This agrees well
with the presence of maxima at frequencies of 180 and
110 Hz, i.e., the resonance frequencies of the two sec-
ond modes into which the second mode of the radiating
cylinder splits in the presence of the equipment unit,
shock-absorber, and hanger. We also note the broad
maximum at the resonance frequency of the third mode
280 Hz. This mode is excited, although not efficiently,
in regime 2 as well. The results of the tests in regime 1
(which are not presented here) confirm that, in this
regime, the first mode is excited best of all.

A more detailed pattern of the radiation field in
regime 2 is shown in Figs. 8–10. In Figs. 8 and 9, show-
ing the distributions of the components sx and sy at a dis-
tance of 3 m from the radiator (well 2), the maxima near
the frequencies of 110 and 180 Hz, which were present
in Fig. 7, are observed. Figures 8 and 9 also show the
dependence of the field amplitude on the depth. We dis-
cuss this dependence below, in the consideration of the
Fourier transform of the vertical distributions of the
field in well 2. Since the radiator oscillates along the y
axis, the displacement vector component sy predomi-
nates. In similar measurements, when the radiator
oscillates along the x axis, the diagrams of distribution
of the sx and sy components (which are not presented
here) are similar in appearance, with the only difference
that the sx component becomes dominant.

From Fig. 10 we see that, on the way from well 2 to
well 3, that is, at a distance of 47 m, the signal ampli-
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Fig. 7. Components of the displacement vector along the x axis (top) and y axis (bottom) as functions of radiation frequency. Radi-
ation regime 2. The radiator vibrates in the yz plane.

3

12

s x
, 1

0–
7  m

Frequency, Hz

2

1

0

10

8

6

4

60
80 100

120 140 160
180 200 220 240

D
epth, m

Fig. 8. Dependence of the displacement vector component along the x axis in well 2 (3 m from the radiator) on the depth and fre-
quency. Radiation regime 2. The radiator vibrates in the yz plane.
tude attenuates by two orders of magnitude. A substan-
tial dependence of attenuation on frequency manifests
itself in the shift of the maximum in the frequency
dependence of the sy component from 180 Hz at a dis-
tance of 3 m to about 170 Hz at 50 m. The measure-
ments show that, at a distance of 50 m, the sy compo-
nent predominates regardless of the orientation of the
symmetry plane of the radiator (i.e., regardless of the
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 9. The same as in Fig. 8 for the displacement vector component along the y axis.
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Fig. 10. The same as in Fig. 9 for measuring the seismic waves in well 3 (50 m from the radiator).
direction in which it vibrates). The explanation of this
rather unexpected effect requires a more detailed
knowledge of the soil structure at the testing area and a
modeling of the seismic field with consideration for this
L PHYSICS      Vol. 51      Suppl. 1      2005
information. Such investigations have not yet been con-
ducted.

Figures 11 and 12 show the distributions of the sx
and sy components in well 2 at the radiator operation in



S32 AVERBAKH et al.
3

12

s x
, 1

0–
7  m

Frequency, Hz

2

1

0

10

8

6

4

200

250

300

350

D
epth, m

Fig. 11. The same as in Fig. 8 for radiation regime 3.

6

12

s y
, 1

0–
7  m

Frequency, Hz

4

2

0

10

8

6

4

200

250

300

350

D
epth, m

Fig. 12. The same as in Fig. 11 for the displacement vector component along the y axis.
regime 3, that is, when the third mode is efficiently
excited. As is expected, the radiation is maximal at the
resonance frequency of this mode, 285 Hz. As in the
previous example, when the radiator oscillates along
the y axis, the sy component predominates. After rota-
tion of the radiator symmetry plane through 90° (in this
case, it oscillates along the x axis), the contribution of
the sx component, as might be expected, increases. In
the farther well, as in regime 2, the sy component pre-
dominates at any orientation of the radiator vibration
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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plane. The dependences of the amplitude of sy on fre-
quency and depth resemble the analogous dependences
for regime 2 shown in Fig. 10. Because of the frequency
dependence of attenuation, the maximum of sy at a dis-
tance of 50 m shifts to lower frequencies. In regime 3,
the magnitude of the shift is about 15 Hz.

On the basis of the results of mathematical simula-
tion, it is expected that the bending vibration of the
radiator primarily results in the generation of shear seis-
mic waves. The value of the phase velocity of shear waves
near the radiator is taken to be equal to cs = 280 m/s.
Then, the wavelengths at the resonance frequencies of
the first, second, and third modes (as a resonance fre-
quency of the second mode, we take 180 Hz) are equal
to λ1 = 5.6 m, λ2 = 1.5 m, and λ3 = 1 m, respectively.
Since the length of the radiating cylinder is 2.04 m, it is
obvious that, at the first-mode operation, the reactive
component of the seismic field predominates near the
radiator. At the operation at the second and third modes,
in contrast, a substantial contribution of the active com-
ponent can be expected. In the finite-element numerical
modeling, the travelling waves clearly manifest them-
selves even at a distance of 3 m from the radiator.
Hence, it follows that, using the Fourier analysis of the
vertical field distributions in well 2 shown in Figs. 8, 9,
11, and 12, it is possible to make conclusions regarding
the angular structure (radiation pattern) of the radiator.

In both radiation regimes, in the vertical field distri-
bution at a distance of 3 m from the radiator, we can see
the minima at the horizon of the radiator center (a depth
of 11 m). At a depth of about 8 m, we see maxima,
which can be interpreted as the manifestation of the
contribution of the waves travelling at the grazing
angles close to 45°. Symmetric (with respect to the
depth of the radiator center) maxima are observed at
depths of about 13 m. Here, it should be remembered
that the measurements of the field in well 2 were per-
formed only to this depth. So, one cannot state with
confidence that, beginning from the depth of 13 m, the
field amplitude steadily decreases.

For determining the radiation pattern of the radiator,
we calculated the spatial Fourier transform of the com-
plex field amplitude measured in well 2. For every fre-
quency (of the range corresponding to the radiated
LFM pulse), the spectrum was calculated by the for-
mula

(4)

where L = 13.5 m is the maximal depth to which the
field was measured, H(z) is the Hanning weighting win-
dow, and κ is the spatial frequency. Every harmonic
corresponding to |κ| < ks = ω/cs can be interpreted as the
amplitude of a plane wave travelling at the grazing
angle χ determined by the relation κ = kssinχ. The

Sy κ( ) H z( )sy z( )eiκ z z,d

0

L

∫=
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results are displayed in Figs. 13 and 14. The abscissa
axis, instead of the spatial frequency, represents the
corresponding grazing angle.

The field measurements were conducted in a depth
range in which the received signals were mainly formed
by the waves propagating in the direction toward the
surface. The contributions of only these waves—in our
designations they have positive grazing angles—are
shown in Figs. 13 and 14. As one would expect, in
regime 2, the maximal radiation was observed at fre-
quencies close to 180 Hz, and in regime 3, at frequen-
cies close to 285 Hz. The waves with maximal intensity
propagate in regime 2 at the angle χ ≈ 40°, and in
regime 3, at the angle χ ≈ 35°.

Note that, with an increase in frequency, in both
regimes, the grazing angles on the average decrease.
This is a reasonable and expected result. Indeed, with
the increase in frequency, the wave number ks = ω/cs

grows. However, the characteristic scales of the radiator
oscillation modes determining the scales of the trans-
verse structure of the seismic field (at least, near the
radiator) change to a much smaller degree. Roughly, it
may be thought that the spatial frequency κ correspond-
ing to the spectrum maximum is independent of ω.
Then, the grazing angle χ =  decreases
with the growth of ω. This is what we see in Figs. 13
and 14.

THE POWER, EFFICIENCY, AND QUALITY 
FACTOR OF THE RADIATOR

The data of the measurements of the vertical field
distributions in receiving wells 2 and 3 make it possible
to roughly evaluate the radiation power. For this pur-
pose, we will use the following formula for the energy-
flux density in a seismic wave. We consider a plane
shear wave travelling along the x axis. The particles of
the medium are considered as oscillating along the y
axis. Then, the projection of the energy flux density
vector on the x axis is

(5)

where ω is the angular carrier frequency, ρ is the den-
sity of the medium, cs is the velocity of shear waves,
and uy is the complex amplitude of the particle displace-
ment. If waves travelling at an angle to the x axis are
considered, formula (6) is modified in an evident way.
A similar formula exists for longitudinal waves (with
the replacement of cs and uy by the corresponding char-
acteristics of longitudinal waves, cp and ux), but it will
not be needed, because, in our case, the contribution of
shear waves to the total field is dominant.

In estimating the radiation power, we considered
waves measured by the geophone to be quasi-plane and

κ /ks( )arcsin

Gx

ω2ρcs
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Fig. 13. Radiation pattern in the vertical plane at a distance of 3 m from the radiator in the angle–frequency coordinates. Radiation
regime 2.
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Fig. 14. The same as in Fig. 13 for radiation regime 3.
used the above formula. In addition, we assumed that
the dependence of the displacement amplitude in the
horizontal plane on the azimuth angle θ is expressed by
the coefficient cosθ. In reality, the azimuth dependence
is, certainly, more complex. For example, from Figs. 9–
12, it is seen that, after the radiator rotation through
90°, no radical changes occur in the amplitudes of the
displacement components. Therefore, the available
data make it possible only to evaluate the order of mag-
nitude of the radiation power.

Using Eq. (6) and the experimental data, we inte-
grated the energy flux density vector over the cylindri-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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cal surfaces of radii 3 and 50 m surrounding the radia-
tor. In this way, we evaluated the energy fluxes through
these surfaces. Comparing the values of the fluxes
through these surfaces, we estimated the attenuation in
the medium. Then, knowing the energy flux through the
surface with the 3-m radius and the attenuation coeffi-
cient of seismic waves, we can evaluate the total radia-
tion power. And, finally, taking into account that the
increase in the applied voltage by a factor of n leads to
an increase in the radiation power by a factor of n2, we
predicted the radiation power for the case when a volt-
age of 1 kV is applied to the radiator.

It turned out that, with such a voltage applied in
regime 2, the value of the radiation power at the reso-
nance frequency of the second mode f = 180 Hz is equal
to 207 W. The attenuation coefficient at this frequency
is about 0.73 dB/m or 1.2 dB/λ (λ is the wavelength).
At the operation in regime 3, for the resonance fre-
quency of the third mode f = 280 Hz, the radiation
power is 1250 W and the attenuation coefficient is
1.3 dB/m or 1.3 dB/λ.

These values of the power are, presumably, underes-
timated, because the measurement of the vertical field
distribution was performed only to a depth of 14 m. In
the integration over the cylindrical surfaces, we did not
consider the contributions of the waves propagating
below this depth. The formal application of the above
procedure for calculating the power radiated in regime 1
(with the voltage of 1 kV applied to the radiator) at the
resonance frequency of the first mode 48.5 Hz gives a
value of 14 W.

To estimate the efficiency of our radiator, in the
experiments with the radiation of the third mode, accu-
rate measurements of amplitudes and phases of the cur-
rent and voltage delivered to the radiator were carried
out. It was found that, at a frequency of 280 Hz, the
radiator efficiency was 60%, that is, 60% of the con-
sumed power was converted into the radiation energy.

In the analysis of the forms of maxima of LFM sig-
nals measured in well 2, the estimates of the q factor of
radiator oscillations at the resonance frequencies of the
three bending modes were obtained. The results are
presented below (the symbol ∆f denotes the radiation
bandwidth by the 3-dB level):

regime 1: f = 48.5 Hz, ∆f = 1.2 Hz, q = f/∆f = 40;
regime 2: f = 180 Hz, ∆f = 9 Hz, q = f/∆f = 20;
regime 3: f = 280 Hz, ∆f = 25 Hz, q = f/∆f = 11.

CONCLUSIONS
The field tests of the prototype of the sectioned

intrawell radiator at the testing area of the Institute of
Applied Physics confirmed the feasibility and effi-
ciency of the proposed design. The experiment showed
that this radiator is capable of radiating high-power
low-frequency shear seismic waves in the frequency
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
range from 40 to 400 Hz, both at the resonance frequen-
cies and in relatively broad frequency bands in the
upper part of this range. The radiation power of the
manufactured prototype can reach ~1 kW with an effi-
ciency of 60%. The Q factor of the resonances of the
radiator varies from 11 to 40 for different modes.

An important result is the confirmation of the ade-
quacy of the finite-element and analytical models of the
radiator. The analytical model is intended for a prelim-
inary rapid evaluation of the main characteristics of the
radiator (resonance frequencies, amplitudes of forced
vibrations, etc.). It allows one to study their depen-
dences on the characteristic parameters of the radiating
cylinder (length, diameter, case thickness, etc.). The
final design of the radiator and the analysis of its main
operating and strength characteristics were performed
using the numerical finite-element model constructed
on the basis of the ANSYS program package. The use
of this modern powerful technology of engineering
analysis makes it possible to predict with a high accu-
racy the operating parameters of the radiator and to
optimize its structure for obtaining the required perfor-
mance.

The efficiency of the concept of sectioning the radi-
ator is demonstrated. The separation of the radiating
cylinder into sections, which are fed independently,
enables one to excite various modes of the radiator in
the optimal way. This offers additional possibilities for
matching the radiator parameters with the environment
and controlling the spatial characteristics of radiation.
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Abstract—Results of an experimental study of sound propagation in a granular medium are presented. It is
found that, in the case of excitation of a harmonic signal with a constant amplitude, the acoustic response of a
single grain strongly varies in time. The dependence of the harmonic component amplitudes in the response
spectrum on the level of signal excitation proves to be nonmonotonic and also strongly varies in time. The most
intense fluctuations are observed in the subharmonic component of the propagating signal. The intensity fluctua-
tion spectra of the harmonic components of the response are obtained for the frequency range of 10–4–10–1 Hz. A
possible mechanism that may be responsible for the slow fluctuations of an acoustic field in a granular medium
is discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

It is known that the character of propagation of
acoustic vibrations in granular media noticeably differs
from analogous propagation in continuous media. The
mechanical properties of granular media are deter-
mined to a great extent by the contacts between the
grains. The concentration of elastic deformation energy
in the regions of the contacts leads to anomalously high
values of the nonlinear acoustic characteristics of gran-
ular media, which is typical of many rocks, for example
[1–3]. This property of granular media allows us to
associate it with a wide class of media with the nonlin-
ear elasticity of structural type. While the nonlinear
acoustic properties of classical continuous media, such
as single crystals or homogeneous fluids, are deter-
mined by the special properties of deformation at the
molecular level, the corresponding characteristics of
granular media depend on their structure. In this sense,
the characteristics of granular media manifest them-
selves at a small-scale level, i.e., on the scales deter-
mined by the grain sizes [4]. This fact leads to essential
qualitative and quantitative differences, for example, in
the equations of state for the media. While the relative
strain of a continuous medium ∆ in the first approxima-
tion is proportional to the applied stress ∆ ≈ P, in the
case of spherical grains this relationship is more com-
plex: ∆ ≈ P2/3 [5]. Therefore, the propagation velocity
of acoustic waves in a granular medium c2 = ∂P/∂ρ ≈
P1/3 is a nonlinear function of the applied stress P. Cor-
respondingly, the nonlinearity parameter of the
medium ε = ρ0∂c2/∂P ≈ P–5/6 also strongly depends on
the applied stress. Here, ρ is the density of the medium
and ρ0 is its equilibrium value. It turns out that the non-
linear properties of granular media noticeably manifest
themselves even in the case of relatively deformations.
For example, nonlinear distortions in rocks are already
1063-7710/05/51S1-S $26.00037
noticeable at deformations of about ∆ ≈ 10–9 [6]. This is
evidence of the fact that the typical values of the non-
linearity parameter of granular media are 3–4 orders of
magnitude higher than the corresponding values of the
nonlinearity parameter in homogeneous continuous
media.

Lately, attention was given to the investigation of
the behavior of granular media on the single grain scale
[7–14]. It is noted that, under small stresses, noticeable
deviations from regular stress–strain relations are
observed [9, 14]. These relations are usually valid only
asymptotically for sufficiently large stresses, when a
granular medium can be considered to be well com-
pacted. In this case, the response to a cyclic loading in
such media is, as a rule, of a hysteretic character in the
stress–strain relation. This property of granular media
manifests itself in the peculiarity of nonlinear distor-
tions of acoustic waves, when the third harmonic of a
propagating acoustic signal grows proportionally to the
square of the signal amplitude and its level may domi-
nate over the level of the second harmonic [15]. It was
found that vibrations of a single grain in the acoustic
field of constant amplitude is subjected to slow fluctua-
tions [7]. In the present paper, we discuss the results of
an experimental study of slow fluctuations in the non-
linear vibrations of grains in a medium under the effect
of a propagating acoustic field and propose a possible
mechanism of these fluctuations in a granular medium.

EXPERIMENT

In our investigations, as a granular medium, we used
granite chips 1–2 cm in size. This medium filled a
round plastic container with a flat bottom (Fig. 1). The
diameter of the container was 20 cm, and the height was
25 cm. A circular piezoceramic plate with a thickness
of 12 mm and a diameter of 100 mm was placed on the
0 © 2005 Pleiades Publishing, Inc.
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container’s bottom. This plate was the source of acous-
tic signals. The plate radiation was monitored by an
accelerometer fixed directly at the plate. The acoustic
signals were received by two accelerometers of the
AR-18 type, which were positioned within the granular
medium at a distance of 7 cm from the source. A layer
of the granular medium with a thickness of about 10 cm
was lying over the receivers. The weight of the receiv-
ers was 1.2 g. The receivers were shaped as cylinders
with a length of 10 mm and a diameter of 6 mm. The
sensitivity of the receivers was 2.38 pC/g, and the elec-
trical capacitance of the receivers was equal to 830 pF.
Here, g is the acceleration of gravity. Thus, the dimen-
sions of the receivers were close to the size of the grains
surrounding them, and these receivers could be consid-
ered as elements of the medium itself. The receivers
were installed in the medium symmetrically with
respect to the source axis and oriented parallel to these
axis. The distance between them was also 7 cm. There-
fore, the receivers detected vertical accelerations. The
frequency characteristic of the receivers provided an
opportunity to efficiently detect the vibrations in the
frequency range up to 20 kHz.

Figure 2 shows the transient characteristic of the
medium in the range from 2 to 14 kHz. The choice of
the frequency range for investigation was substantiated
by the fact that the signals of lower frequencies were
poorly excited by this piezoceramic plate and the detec-
tion of higher frequency signals needed other kinds of
receivers with lower sensitivity. One can see that this
characteristic strongly varies with the signal frequency.
At the same time, the acoustic signal on the average
attenuates effectively (by 20 dB) in this frequency
range. This fact allows us to consider these changes in
the transient characteristic to be independent of the
container resonance, and, in the case of acoustic mea-

1

2

Fig. 1. Schematic diagram of the experimental setup:
(1) a piezoceramic plate and (2) the AR-18 receivers.
surements, there is no need to prevent signal reflections
from the container walls and the free surface of the
medium. In [7], this form of the transient characteristic
is associated with the interference of the signals arriv-
ing at the receiver by different paths. The fact that,
under the conditions of this experiment, we could trans-
mit the signal effectively from the source to a receiver
only in a relatively narrow frequency band did not per-
mit us to measure with an acceptable accuracy the
velocity of sound propagation by the determination of
the delay time in the process of propagation of a broad-
band acoustic signal. The width of the cross-correlation
function of the signal radiated by the piezoceramic
plate and the signal detected by one of the receivers
turned out to be close to the delay time of the maximum
of the measured function, which is evidence of the
instability of the process of signal propagation.

The variation of the received signal level as a func-
tion of the radiation level is shown in Fig. 3. This and
subsequent experiments were conducted with the radi-
ation of a tonal signal at a frequency of 5.6 kHz. One
can see that, on the whole, the behavior of the measured
dependence is the same for the signals detected by the
two receivers. However, the linear relation between
these two characteristics is valid only on the average
and on a large interval of measurement of the signal
amplitude. The specific features of this dependence for
different receivers are different, which is the evidence
of the independent character of signal propagation from
the source to each of the receivers. The maximum level
of the received signal corresponds to the piezoceramic
plate vibrations with an acceleration of 0.6 m/s2. In this
case, the amplitude of plate vibrations was as small as
5 Å. These parameters of plate vibrations correspond to
a radiation level of –10 dB. The level of grain vibrations
detected by the receivers was approximately 10 dB
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Fig. 2. Frequency response of a receiver in a granular
medium at a distance of 7 cm from the source. (1) The fre-
quency characteristic of the radiated signal and (2) the char-
acteristic of the detected signal.
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Fig. 3. Signal level at the receivers in a granular medium as
a function of radiation level. The straight line corresponds
to the direct proportionality. Curves (1) and (2) correspond
to different receivers.
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smaller. It is necessary to note that accelerometers were
sufficiently massive and responded to the acceleration
of the medium’s grains that were in contact with them.
The nonmonotonic character of the dependence of the
detected response level for a single grain on the load of
the medium was associated in [16] with the percolation
development of the bonds between the grains that trans-
mit the elastic signal between the source and a receiver.
This percolation chain of contacts between grains is
very sensitive to the load parameters. An increase in the
load leads to a chain rearrangement, which leads, in
turn, to variations in its effective elasticity. The fact that
this rearrangement occurs discretely is apparently
caused by the discrete number of contacts that transmit
the signal.

Below, we present the results of measuring the
acoustic field in the medium as a function of time. Fig-
ure 4 shows the time dependences of signal levels at
one of the receivers. The corresponding behavior of the
levels of harmonic components in the spectrum of
detected signals is also shown in this figure. Primarily,
we note that a subharmonic component appeared in the
–100
0 1000
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Fig. 4. Time dependence of harmonic signal components. (1) Signal level at the receiver in the granular medium at a frequency of
5.6 kHz, (2) second harmonic level at the receiver in the granular medium at a frequency of 11.2 kHz, (3) subharmonic level at the
receiver in the granular medium at a frequency of 2.8 kHz, and (4) third harmonic level at the receiver in the granular medium at a
frequency of 16.8 kHz.
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detected signal spectrum. The characters of signal fluc-
tuations at both receivers for the corresponding har-
monic components are similar. The signal level at the
fundamental frequency of 5.6 kHz changes randomly
by 5–6 dB. The fluctuation levels of harmonic compo-
nents are much higher. The most intense fluctuations
are those of the subharmonic component of the signal.
In this case, the level changes by orders of magnitude
in a jump. This fact is evidence of the forced excitation
of subharmonic components, when the conditions for
their excitation are of a threshold character [17].
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Fig. 5. Fluctuation spectrum for a signal in the granular
medium at a frequency of 5.6 kHz. Radiation levels of
(1) –10, (2) –15, and (3) –20 dB.
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Fig. 7. Fluctuation spectrum for the third harmonic of the
signal in a granular medium at a frequency of 16.8 kHz.
Radiation level of (1) –10, (2) –15, and (3) –20 dB.
SPECTRA OF ACOUSTIC FIELD FLUCTUATIONS

Figures 5–8 present the spectra averaged over 30
realizations for the fluctuations of the harmonic compo-
nents of a signal at a receiver for different radiation lev-
els. Spectral processing demonstrates that the spectrum
of signal fluctuations can be conditionally divided into
two characteristic parts: a low-frequency component
and high-frequency noise. The major part of fluctuation
energy is contained in low-frequency random oscilla-
tions. The spectrum of these fluctuations lies within the
range of f = 10–3–10–1 Hz and drops monotonically
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Fig. 6. Fluctuation spectrum for the second harmonic of the
signal in a granular medium at a frequency of 11.2 kHz.
Radiation levels of (1) –10, (2) –15, and (3) –20 dB.
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Fig. 8. Fluctuation spectrum for the subharmonic of the sig-
nal in a granular medium at a frequency of 2.8 kHz. Radia-
tion level of (1) –10, (2) –15, and (3) –20 dB.
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towards high frequencies according to the power law
S( f ) ≈ Af –n, where the power index n changes depend-
ing on the level of signal radiation and occupies the
range n = 1.7–2. In any case, n is always greater than
unity for the low-frequency part of the fluctuation spec-
trum. The power index in the frequency dependence of
the fluctuation spectrum tends to grow as the signal
level decreases. This is a consequence of the faster
decrease in the spectral density of fluctuations in the
high-frequency range f > 10–2 Hz in comparison with
the low-frequency part of the spectrum, which almost
does not change. It is interesting to note that the power
index in the frequency dependence for the low-fre-
quency part of the fluctuation spectrum of the acoustic
signal is close to the values n = 1.7–2.2 measured in
experiments with acoustic signal propagation through a
medium of identical glass balls [7]. This fact indicates
the generality of the mechanism of the low-frequency
intensity modulation of sound propagating through a
medium consisting of grains of different materials and
shapes.

The fluctuation spectrum of the signal at the second
harmonic that is given in Fig. 6 demonstrates that the
change in the signal level leads first of all to a decrease in
the low-frequency part of the spectrum f < 3 × 10–2 Hz.
In this case, the power index in the frequency depen-
dence of the fluctuation spectrum slightly decreases
with a decrease in the signal level and acquires values
within the range n = 2.3–2.0. The fluctuation spectrum
of the third harmonic, which is given in Fig. 7, behaves
in a similar way. Here, the power index n lies within the
range n = 2.3–2.1 as the signal level varies by 10 dB.
The high-frequency noise in this case is caused by the
electronic noise of the measuring circuit.

The fluctuation spectrum of the subharmonic com-
ponent of the signal (Fig. 8) looks differently. Here, at
high signal levels, one can separate two characteristic
ranges, namely, the low- and high-frequency ones. In
this case, the high-frequency part of the spectrum at
high signal levels has a portion with a spectral density
independent of frequency, which is typical of uncorre-
lated noise. While the spectral density of subharmonic
fluctuations in the low-frequency range f < 5 × 10–3 Hz
decreases monotonically with the decrease in the signal
level, this dependence in the high-frequency range f >
5 × 10–3 Hz is of a threshold character. As the signal
level changes by 5 dB, the spectrum in this frequency
range changes insignificantly. However, if the signal
decreases by 5 dB more, the spectral density of fluctu-
ations drops to become ten times smaller. This leads to
the fact that the frequency dependence of the fluctua-
tion spectrum for the subharmonic of the signal is on
the average flatter and the corresponding power index
of this dependence varies within the range n = 1.5–1.0
as the signal level decreases.

Apparently, the fluctuation spectrum of the detected
signal in the low-frequency range, where n > 1, must
reach a maximum or, at least, saturation. This is neces-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
sary because the intensity of fluctuations must remain
finite. In our experiments, it was impossible to obtain
reliable data to confirm this statement. To get complete
information on the character of the fluctuation spec-
trum, it is necessary to process much longer signal
records than those obtained in our experiments.

CONCLUSIONS

The conducted experimental investigations of
acoustic wave propagation in a granular medium with
the detection of the acoustic field by receivers whose
the dimensions are close to the grain size indicate the
statistical character of the propagation process. Under
these conditions, a receiver has a limited number of
contacts with neighboring grains and can be considered
as one of the elements of the medium. In the case of
excitation of a harmonic signal with constant ampli-
tude, the acoustic field in the medium strongly fluctu-
ates. Harmonic and subharmonic components are
excited in the medium even at small values of the
excited signal amplitude. The nonmonotonic character
of the dependence of the field level in the medium on
the amplitude of the excited signal indicates a consider-
able role of contacts between grains in the formation of
the acoustic field in a granular medium. In this case, the
acoustic perturbations are transmitted from one grain to
another only through the contacts, which occupy a very
small part of a grain and, therefore, cannot provide the
stability of the medium. Thus, one can state that a gran-
ular medium is in a metastable state and that an acoustic
field even with a relatively small amplitude can change
the structure of contacts. The structure of the contacts
forms chains transmitting signals from the source to a
receiver. The spatial density of these elastic chains is
determined by the dimensions of grains and the number
of contacts between them. A small displacement of
contacts between grains occurs under the effect of
acoustic vibrations, which can radically change the
structure of an elastic chain and, therefore, the elastic
properties of the medium. In this case, the acoustic
impedance of the medium changes. When a granular
medium is compacted, the number of contacts between
grains grows, which leads to the growth of the spatial
density of the elastic chains transmitting acoustic per-
turbations. In this case, the elastic properties of a
medium tend to saturation.

The process of thermal deformation arising at the
points of grain contacts, where the acoustic energy is
concentrated in the medium, is discussed as a possible
mechanism governing the slow changes in the contact
structure [7]. The stability of the frequency dependence
of the spectrum in a rather wide frequency range (10–3–
10–1 Hz) may be a consequence of the fractal character
of the elastic structure of the chains transmitting the
signals from the source to a receiver.

The noise-like spectrum of fluctuations in the high-
frequency range (over 10–1 Hz) can be related to the fast
hopping of contact points or their destruction under the
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load applied to the medium. In any case, this process is
similar to the acoustic emission that arises in granular
media under the effect of perturbations [18].

The excitation of the subharmonic component in the
spectrum of an acoustic signal is a threshold phenome-
non. It requires very intense acoustic fields for realiza-
tion. As a rule, this phenomenon is observed at phase
transformations. In the case of a granular medium,
where the elasticity is determined by the contacts
between grains, this threshold amplitude of vibrations
is the gravitational acceleration g. The fact that, at even
moderate signal amplitudes (0.5 m/s2), intense subhar-
monic components are present in the spectrum testifies
that the propagation of acoustic signals in a granular
medium is accompanied by the localization of the elas-
tic energy of acoustic vibrations at single grains.

Thus, the results obtained indicate a complex char-
acter of acoustic signal propagation in a granular
medium. The analysis of the acoustic field on the single
grain scale revealed the statistical character and the
strong nonlinearity of the propagation process, which
are realized even when the signal amplitude is rela-
tively small. The results of the experimental study pro-
vide an opportunity to develop a model of slow fluctu-
ations of acoustic field in a granular medium.
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Abstract—The process of earthquake origination is associated with the action of intrinsic forces of both natural
and artificial origin, which substantially change the stress fields in the Earth’s crust. These slow movements are
accompanied by acoustic noise (acoustic emission). Broadband measurements of acoustic emission from natu-
rally deposited rocks is an effective tool for an instrumental monitoring of the Earth’s crust that is aimed at
earthquake forecasting. Considerable advances in this direction have become possible with the development of
a new type of acoustic sensors with a velaccelerometric characteristic, for which the sensitivity increases by
three orders of magnitude when the frequency increases tenfold. In geoacoustic observation systems, this makes
it possible to considerably expand the amplitude–frequency range of investigation and creates new opportuni-
ties for a detailed analysis of the earthquake origination process. The results of observations of high-frequency
underground acoustic noise, which were carried out in various regions of the Earth, in wells and edits, with the
use of hardware/software systems containing new broadband magnetoelastic acoustic geophones, have con-
firmed experimentally its relation to slow deformations in the Earth’s crust. It turns out that underground hum
in the frequency range from 16 to 2000 Hz contains new independent information on changes in the stressed
state and is a sensitive indicator of tectonic and tidal movements. Practical investigations performed by
researchers from the Institute of Volcanology, Far East Division of the Russian Academy of Sciences, in Petro-
pavlovsk-Kamchatski have convincingly proved that acoustic noise variation may serve as a reliable seismic
alert. The present publication is devoted to the history of the development and application of magnetoelastic
geophones. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The results of research and design work forming the
basis of vector geoacoustics—a new promising branch
of geophysical instrumentation that uses the method of
magnetoelastic conversion of mechanical stresses into
electrical voltage—are considered. This method, which
has been recently recognized in measurement technol-
ogy, proved to be quite promising and was used to solve
many technical problems, where it successfully com-
peted with conventional methods for measuring forces
and vibrations. However, its application was confined
for a long time to measuring large static forces for inter-
nal mechanical stresses up to 108 Pa in a magnetoeleas-
tic transducer.

The research and design work performed by the
author of this paper confirmed the applicability and
efficiency of the magnetoelastic method for mechanical
stresses below 10−3 Pa. This indicated that the range of
mechanical stresses being converted was at least 220 dB
and formed the basis for the development of a new
trend in the force measurements and vibrometry. In par-
ticular, magnetoelastic conversion was used for design-
ing, fabricating, and testing acoustic sensors and geo-
phones, which reliably detect vibrating displacements
1063-7710/05/51S1-S $26.000043
in the frequency range from 16 to 2000 Hz for an elec-
tromechanic coupling coefficient of 10–3 V s3/m.

Geophones with magnetoelastic acoustic sensors
[1] can measure the parameters of motion in solid, liq-
uid, and mixed media in an amplitude range exceeding
260 dB. This is ensured by the shape of their ampli-
tude–frequency characteristic, for which the sensitivity
increases in proportion to the cube of frequency.
Acoustic vibrations with displacement amplitudes
greater than 10–4 m in the low-frequency region of the
frequency range and smaller than 10–15 m in its high-
frequency region can be measured simultaneously. The
need for such measurements is dictated by the very low
values of the background hum amplitudes in actual
geological media at frequencies up to 2000 Hz. Fine
variations of these amplitudes carry new independent
information on the changes in the stressed state of the
Earth’s crust and can be used for on-line control over a
local seismic hazard.

The first geoacoustic measurements were made by
the well-known Italian seismologist Professor Michel
Stefano de Rossi at the end of the 19th century [1]. He
obtained interesting data concerning the possibility of
short-term forecast of local earthquakes. Rossi used a
carbon seismic microphone invented by himself [2] and
 © 2005 Pleiades Publishing, Inc.
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the Bell telephone invented in 1876; however, the out-
standing achievements of the Italian seismologist were
undeservedly forgotten for a long time. Until recently,
seimologists all over the world have been using electro-
dynamic seimometers whose sensitivity increases in
proportion to the frequency of vibrations being mea-
sured. Such instruments cannot be used for measuring
the background vibrations in the acoustic frequency
range, since their amplitudes decrease by approxi-
mately three orders of magnitude as the frequency
increases only tenfold. High-frequency measurements
are also complicated by the fact that microseismic
vibrations with frequencies up to 10 Hz and amplitudes
of about 10–6 m are always present in the Earth’s crust.
For this reason, the limited dynamic range of analog
channels used for measuring the velocities of displace-
ments does not allow one to increase the amplification
coefficient. A small gain comes from the instruments
measuring the acceleration, which have a sensitivity
increasing in proportion to the squared frequency (i.e.,
increases by two orders of magnitude upon a tenfold
increase in frequency); however, their actual sensitivity
is insufficient for detecting the underground hum.

FUNDAMENTALS OF MAGNETOACOUSTIC 
CONVERSION

Instruments based on magnetostriction have been
used in hydroacoustics since 1920. The direct magneto-
striction effect discovered by Joule in 1847 is used in
hydroacoustic emitters, while the inverse effect discov-
ered by Villari in 1868 is used in receivers. These
effects have been studied comprehensively. Some
researchers believe that the magnetoelastic and magne-
tostriction effects are identical; however, no convincing
proof of this fact has yet been obtained. On the contrary,
there is obvious evidence that these effects often
accompany each other but have noticeable differ-
ences. For example, nickel is known to exhibit magne-
tostriction, whereas the magnetoelastic effect is not
observed in it. In contrast, electric steel with a high
concentration of silicon does not show any noticeable
magnetostriction after special mechanical, chemical,
and thermal treatment, while the magnetoelastic effect
clearly manifests itself in this material. In addition,
the frequency doubling effect observed in magneto-
strictive transducers is not typical of magnetoelastic
transducers.

Magnetoelastic conversion was first described in
[3], where a deformable element made of a ferromag-
netic material placed into a measuring coil was pro-
posed for measuring the mechanical stress. Subsequent
publications on magnetoelastic conversion appeared
only after 1953 [4]. However, magnetoelastic force and
moment meters appeared on the measuring instruments
market as early as 1954 under the commercial names
PRESSDUKTOR and TORDUCTOR, respectively;
these instruments were manufactured by ASEA (Vas-
teros, Sweden).
Magnetoelastic (magnetoanisotropic) conversion is
associated with intrinsic processes of interaction
between magnetic and mechanical fields, which occur
at the boundaries of ferromagnetic crystal structures.
A rigorous theoretical description of these processes
has not been obtained as yet, and experimental studies
involve considerable technical difficulties. Among the
theoretical studies devoted to the interaction of electro-
magnetic and force fields in ferromagnets, the works by
E.I. Kondorskiœ are of most interest [5]. In these works,
the conditions for the displacement of boundaries
between adjacent domains k and l are considered. Such
a displacement may take place if the free energy density
We of external forces has different values on different
sides of the wall separating the domains. The magnetic
domains forming a polycrystal structure of a ferromag-
net have a size of about 10–5 m and a uniform saturation
magnetization Ms; the average magnetization of the
entire volume of the ferromagnet may be zero for an
appropriate orientation of magnetic domains. The mag-
netic moment of each domain is determined by its vol-
ume V and by the magnitude and direction of magneti-
zation Ms, which can be noticeably changed only by
varying the temperature in the vicinity of the Curie
point. However, the free energy W of a domain in an
external magnetic field H changes due to the appear-
ance of a new term Wh representing the energy of the
magnetic moments of domains in the4 external field:

where µ0 is the magnetic constant (4π × 10–7 H/m). As
a result, the domains acquire an equilibrium state with
their arrangement other than in zero magnetic field. The
specific work done on the displacement of domain
walls is given by the expression

where Θk and Θl are the angles between vectors Ms in
domains k and l and the direction of magnetic field vari-
ation δH, which may differ from the direction of H in
the general case. If the displacement of the walls
between magnetic domains is caused by a change in the
uniform mechanical stress δσ, the work done on the
displacement of domain walls is given as

where ϕk and ϕl are the angles between the directions of
magnetization of domains k and l and the direction of
mechanical stress variation δσ, and λs is the magneto-
striction corresponding to the easy magnetization axis.
The reversible change in the volume of the kth domain
under the simultaneous action of magnetic field and

Wh µ0 MsHδV ,∫–=

δ We( )l We( )k–[ ] µ 0Ms Θkcos Θlcos–( )δH ,=

δ We( )l We( )k–[ ] 3/2λ s ϕkcos
2 ϕ lcos

2
–( )δσ,=
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mechanical stresses is described by the Kondorskiœ for-
mula

where Ckl = d/dn[(Wi)k – (Wi)l + dσkl(1/R1 + 1/R2)] is the
gradient of internal forces and R1 and R2 are the curva-
ture radii of the walls.

The Kondorskiœ formula yields a fundamental solu-
tion to the problem of reversible displacements of
domain walls in homogeneous ferromagnetic materials
when the magnetic stray fields can be ignored. The
main difficulty in the practical application of this for-
mula for specific materials is associated with the deter-
mination of the gradients of internal forces, which are
complex functions of the structural state of the sample
and the energy density Wi of internal forces. At the
same time, this formula explains the general regulari-
ties, which are independent of random properties of
individual samples. It can be seen, in particular, that
mechanical stresses play the same role as the external
magnetic field in the displacement of walls and in the
change of magnetization. This is confirmed experimen-
tally by the fact that an emf emerges in the measuring
coil connected with the sample upon a change in
mechanical stresses (in accordance with the law of
electromagnetic induction), as well as upon a change in
the magnetic field. Changing the conditions at the
boundaries between magnetic domains, the mechanical
stresses induce and/or facilitate the rotation of sponta-
neous magnetization vectors Ms, which gives rise to
electromagnetic induction. In all probability, this is the
mechanism of magnetoelastic conversion of a force
(mechanical stress) into an electric voltage; in this case,
many parameters determining the state and the behav-
ior of the ferromagnet in electromagnetic and mechan-
ical force fields change. It has been established experi-
mentally that the relation between mechanical stresses
and their electrophysical properties is quite stable in
some ferromagnets. This property is successfully
employed in a large group of magnetoelastic measuring
transducers.

MAGNETOELASTIC CONVERSION OF FORCE

During the three decades following the publication
of the results on magnetoelastic meters in 1954, the
main trends in research and design were formed and the
prospects of the development of the method for the
magnetoelastic conversion of force into an electric sig-
nal were determined. The unique potentialities of trans-
ducers developed by this time determined the main
fields of their application: the measurement of strong
forces (up to several millions of newtons) in rolling
mills and presses, the measurement of large moments at
propulsion shafts of large sea vessels, and the measure-

δnkl µ0Ms Θkcos Θlcos–( )δH[
lsk

∫
l k≠
∑=

+ 3/2λ s ϕkcos
2 ϕ lcos

2
–( )δσ ]dSkl/Ckl,
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ment of weight and force for heavy-duty metallurgical,
mining, and chemical plants. The operation principle
and the design of widely used force transducers are
described in detail in technical literature. Therefore,
below, we will consider only those fundamental and
structural results that can be used in some way in the
development of geoacoustic instruments.

From the variety of designs of magnetoelastic trans-
former force transducers (transducers with ac magneti-
zation, as well as those with magnetizing and measur-
ing coils), the following three groups with basically dif-
ferent designs can be singled out.

A representative of the first group of magnetoelastic
transformer force transducers is known as PRESS-
DUCTOR (Fig. 1a). This device was developed for
measuring very large compressive forces (from several
tens to several millions of newtons) [6]. The main
advantage of this transducer is its large rigidity and
durability. Its drawbacks include its inability to mea-
sure small and alternating forces, nonuniformity of the
mechanical stress field in the magnetic core, instability
of contact stresses at the surfaces of force application,
and nonlinearity of conversion due to the strong effect
of magnetostriction.

The second group (Fig. 1b) found its application in
transducers employed for measuring moderate tensile

W2

(a)

+ F

+ F

(b)
– F

– F

W1

W1

W2

± F(c)

W2 W1

Fig. 1. Schematic diagrams of magnetoelastic force trans-
ducers.
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forces [7]. The main advantage of this group of trans-
ducers lies in the possibility of a multiple increase in
their sensitivity by connecting several elementary cells
of the transducer in series. Such a connection does not
increase the cross-sectional area of the active zone of
the magnetic core, which makes it possible to reduce
the lower boundary of the measuring range to 300 N.
A further lowering of the boundary of the measuring
range in this group is hindered by the influence of the
uncompensated magnetostriction, which excites inter-
nal mechanical stresses in the active zone of the core.
These stresses vary at double the frequency of the mag-
netization current, reach values of 2.5 Pa, and bend the
initial segment of the static characteristic of conversion.
To ensure the linearity of such transducers, they must
be artificially loaded with a constant force reaching
25% of the measurement limit. This sharply reduces the
dynamic range and makes the measurement of alternat-
ing forces impossible.

In the third group (Fig. 1c), the force being mea-
sured is replaced by the moment. This immediately
made it possible to eliminate most of the above-men-
tioned drawbacks and opened new possibilities. The
most significant of these features are the conversion of
alternating forces, the reduction of the lower boundary
of the force measurement range to a few thousandths of
a Newton, the high linearity of conversion, the differen-
tial measuring technique, the invariance to ambient
temperature and electromagnetic fields, and the com-
pensation of the effect of internal magnetostriction. All
the three design groups belong to transducers of the
transformer type [8], in which the coupling between the
windings varies depending on the magnitude, direction,
and sign of mechanical stresses in the active zone of the
core. In the differential method of measurements, two
groups of windings are used. Some windings are
located in the compression zone, while others are in the
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Fig. 2. Elementary cell of a magnetoelastic transducer.
extension zone. The force being measured changes the
coupling between the primary and secondary windings
of the transducer. This coupling increases in the exten-
sion zone and decreases in the compression zone,
which makes it possible to implement the differential
method of measurement in the simplest way at the very
initial stage of conversion.

To obtain an analytical description of the operation
of a magnetoelastic force transducer, we can use its
electric model in the form of a transformer with varying
coupling between the primary winding W1 fed by alter-
nating current and the measuring secondary winding
W2 (see Fig. 1). The coupling between the windings
varies and depends on the force being measured, which
can be conveniently represented in the form of an aver-
aged mechanical stress σ in the zone of the windings;
this makes it possible to compare various designs of
transducers. In the case of a cantilever transducer, a
transition from the measured force F or bending
moment Mb to mechanical stresses σ is carried out
using the familiar formulas

σ = F/Sm or σ = Mby/Jx,

where Sm is the area of the active cross section of the
core, Jx is the moment of resistance of the cross section
to bending, and y is the distance from the neutral axis of
the core to the point of cross section under investiga-
tion.

We assume that mechanical stresses in the region of
the windings are uniformly distributed over the core
cross section, the magnetic permeability is independent
of magnetic induction B, and magnetostriction is
absent. The static characteristic of the transducer is
determined by the dependence of the output voltage U2
across the secondary winding on the mechanical stress
σ being measured:

U2 = w2dΦ2/dt = f(σ), (1)

where Φ2 is the magnetic flux through the plane of the
measuring winding W2 placed in holes B and D (Fig. 2)
and w2 is the number of turns in winding W2. The mag-
netic flux Φ2 is defined as

where S is the area of the diagonal plane bounded by
holes B and D with the measuring winding, B is the
magnetic induction in the diagonal plane, and n is the
normal to this plane. The magnetic induction arising in
the plane bounded by holes B and D due to current i1 in
the magnetizing winding W1 placed in holes A and C
cannot be determined, since the function describing the
variation of magnetic permeability from the longitudi-
nal to the transverse direction is unknown. For this rea-
son, the longitudinal (Φl) and transverse (Φt) magnetic
fluxes are determined through the plane bounded by
holes A and B (or D and C) and through the plane
bounded by holes A and D (or B and C), respectively.

Φ2 B S B n,( ),cosd

s

∫=
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The magnetic fluxes Φb and Φn can be determined
assuming that they are excited by equal and opposite
currents in two conductors, i1w1, passing through the
holes at corners A and C of rectangle ABCD:

(2)

In the absence of stray fields, in accordance with the
first Kirchhoff rule for a branched magnetic flux, we
can write

(3)

Solving Eqs. (2) and (3) together and performing
some simplifying transformations, we obtain the
expression for the flux through the plane of the second-
ary winding of the elementary transducer:

where µl and µt are the permeabilities along and across
the direction of the mechanical stress and h is the core
thickness.

For a multielement single-row transducer, allow-
ance should be made for the effect of the magnetizing
current in the nearest hole of the neighboring cell,
which doubles the first term in expression (2) for the
longitudinal flux Φl. In this case, the flux through the
plane of the secondary winding is

The static characteristic of the n-element single-row
force transducer with a series arrangement of the cells
is defined, in accordance with Eq. (1), as

or

where kn = µ0w1w2hn/2π, kl = ln(2b1cosα/dsin2α), and
kt = ln(2b1 /d) are constant structural coefficients.

For the linear segment of the transducer, we can
write

where k is the sensitivity factor depending on the elec-
trophysical properties and the state of the core material;
µl0 and µt0 are the initial values of the longitudinal and

Φn Bc S B n,( )cos Ba S B n,( ),cosd

s

∫+d

s

∫=

Φb Ba S B n,( )cos Bc S B n,( ).cosd

s

∫+d

s

∫=

Φ2 Φl Φt.+=

Φ2 µ0i1w1h/2π µl 2b1 α /dcot( )ln{=

– µt 2b1 α /dtan( )ln } ,

Φ2 µ0i1w1h/2π µl 2b1 α /d αsin
2

cos( )ln{=

– µt 2b1 α /dtan( )ln } .

U2n µ0w1w2hn/2πdi/dt=

× µl 2b1 α /d αsin
2

cos( )ln µt 2b1 α /dtan( )ln–{ } ,

U2n kndi/dt µlkl µtkt–( ),=

αtan

Kl kt– µl0kl0 µt0kt0 kσ,+–=
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transverse permeabilities in the absence of mechanical
stresses due to external forces, or

(4)

where U2 is the output voltage of the transducer, U0 is
the initial output voltage, and kf is the proportionality
factor between the force F being measured and the out-
put voltage U2. The initial output voltage U2 is deter-
mined to a greater extent by the anisotropy in the prop-
erties of the core; the proportionality factor kf depends
on the magnetoelastic sensitivity of the ferromagnetic
material. The design of the core affects the values of
both coefficients.

In the simplest case, the bending moment transducer
(Fig. 1c) has the form of a cantilever beam whose bend-
ing moment is produced by a force F applied to the free
end. The proportionality factor kf in Eq. (4) linearly
increases with the distance between the point of appli-
cation of the force on the core axis and the locus of the
holes with the windings, while the initial stress U0
remains unchanged. An increase in the distance
between the holes with the windings and the neutral
axis of the core also linearly increases the proportional-
ity factor kf without affecting the value of U0. An
increase in the number of turns w2 in the secondary
winding linearly changes the values of U0 and kf. The
total current i1w1 of the primary winding and its fre-
quency f also affect the value of U0. Figure 3 illustrates
this dependence.

MAGNETOELASTIC CONVERSION
OF ACOUSTIC SIGNALS

A magnetoelastic transformer-type transducer (see
Fig. 1c) developed as a small alternating force meter
and supplied with an inertial mass can be used in geo-
physics as a one-component accelerometer. In this case,
the upper frequency of the inertial force variation is
limited by the frequency of the magnetizing current,

U2 U0 k f F,+=
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Sσ = F(fi), U
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Fig. 3. Sensitivity of a magnetoelastic transducer as a func-
tion of the magnetization current frequency.
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and the accuracy of conversion is determined by the
instability of this current. Such a transducer has no
advantages over conventional piezoelectric crystal
accelerometers. It can be used in seismometry for con-
version of strong vibrations with frequencies up to
10 Hz. For higher frequencies, better results can be
obtained when magnetization by a direct current or per-
manent magnets is used [9, 10]. In this regime, the con-
version parameters are satisfactory at frequencies from
1 to 30 Hz and unique at frequencies exceeding 30 Hz.
This is due to the fact that, for magnetization by a con-
stant magnetic field, an increase in sensitivity upon an
increase in the frequency of vibrations to the principal
mechanical resonance is 60 dB per decade of frequency
growth.

By way of example, we can compare the efficiencies
of operation of a magnetoelastic transducer intended
for measuring the inertial force F emerging in inertial
mass m at a magnetizing current frequency of 250 Hz
(the maximal frequency of effective magnetization) and
at magnetization by a static field (velocity-acceleration
measuring mode) for inertial force F varying at a fre-
quency of 1 Hz (ω = 2π).

If the base of the transducer is displaced in accor-
dance with the law

This force, which varies with frequency ω = 2π, modu-
lates the constant magnetic flux Φ = Φ0kF, where k is a
constant coefficient characterizing the generalized
parameters of the transducer. For a constant magnetic
flux, the output voltage of the transducer is given by the
expression

Uout0 = dF/dt = kΦ0mω3X0cosωt.

X X0 ωt, we have Fsin m2X0 ωt.sin= =

100
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Fig. 4. Comparative characteristics of sensitivity of (1) a
velaccelerometer, (2) a velocimeter, and (3) an accelerometer.
For a varying magnetic flux due to magnetizing current
of frequency 250 Hz (ωn = 2π 250), the output voltage is

Uout250 = kΦ0mω2X0(sinωntcosω + ωntcosωntsinωt).

Since ωn @ ω, we can write

Uout250 = kΦ0mω2X0ωncosωntsinωt.

Comparing the amplitude values of the output voltage
for various regimes of magnetization, we can easily
verify that

Uout250/Uout0 ≈ ωn/ω = 250.

In other words, the magnetization at a frequency of
1 Hz by an alternating current of frequency 250 Hz
leads to a gain, which is numerically equal to the fre-
quency of the magnetization current. However, such a
regime creates additional difficulties and noise, since it
requires a stable ac source of comparatively high power
and gives rise to intrinsic noise from the magnetostric-
tion and Barkhausen effects.

Transducers with a wide frequency band require the
regime of a constant magnetic flux. Although such a
regime sets a limit of approximately 10 Hz on the lower
frequency of effective conversion, it has indisputable
advantages at high frequencies. In particular, Fig. 4
shows the characteristic of a velaccelerometer (1),
which shows a sensitivity growth rate of 60 dB per
decade of the frequency increase in the force being
measured to the resonance frequency of 2500 Hz and
makes it possible to compensate for an analogous
decrease in the level of the underground hum in actual
geological media. The sensitivity characteristics of the
accelerometer (3) and velocimeter (2) are also shown
for comparison.

The complete independence of the transducer with a
magnetic flux produced by a high-energy permanent
magnet paved the way for designing multipurpose
acoustic detectors operating in the low-frequency
region of the acoustic frequency range, in which the
range of displacements being measured may exceed
260 dB. This is ensured by the sharp (as ω3) ascent of
the amplitude–frequency characteristic of the trans-
ducer with frequency, the high frequency of the
mechanical resonance, the low level of intrinsic noise,
the absence of power consumption, the thermal endur-
ance, strength, stability, and unlimited service life.

MAGNETOELASTIC SENSORS

Among the various possible designs of magne-
toelastic sensors, we consider the structural schemes
forming the basis of magnetoelastic acoustic seismom-
eters (geophones) of various purpose. The first and sim-
plest design of a sensor (Fig. 5a) is formed by a cylin-
drical magnetoelastic element 1 (other shapes of the
cross section are also possible) with a length-to-equiv-
alent diameter ratio of about 10 [11]. The magnetoelas-
tic element is magnetized in the axial direction by a
magnetic field produced by permanent magnet(s) 2
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 5. Magnetoelastic sensor with (a) an axial sensitivity and (b) a transverse sensitivity.
embedded in casing 3. Measuring coil 4 is wound on
this element. Upon a change in the axial force applied
to the end of magnetic element 1, the magnetic flux in
it changes, and an emf induced in measuring coil 4
serves as the output signal. The output signal is propor-
tional to the rate of variation of the applied force. Along
with the obvious advantages of the design of this sim-
plest axial sensor, it has a serious drawback, namely,
the sensitivity to an applied varying magnetic field
whose effect is difficult to get rid of (especially at fre-
quencies below 10 Hz). Another design of a sensor
(Fig. 5b) is distinguished by the fact that two symmetric
measuring coils 4 and 5 are coupled with magnetoelastic
element 1 that has a rectangular or other cross section.
Each coil embraces the same cross-sectional area of
magnetoelastic element 1 magnetized by permanent
magnet(s) 2. Coils 4 and 5 are connected in series,
which virtually eliminates the effect of external mag-
netic fields and axial force. In this design, the input
quantity is the transverse and not axial force. Although
we obtain a gain in noise immunity, the design of the
sensor with a transverse transducer is inferior to the
design with an axial transducer in simplicity and rigid-
ity of the magnetoelastic element, which lowers the
mechanical resonance frequency and the upper limit of
the conversion frequency. Both schemes of sensors are
used for designing geophones.

Magnetoelastic conversion forms the basis of acous-
tic geophones determining the displacement vector
components in a solid medium in a rectangular or other
coordinate system. The use of the same type of trans-
ducers makes it possible to obtain practically identical
transfer characteristics in all components. However, a
combination of two types of transducers (axial and
transverse) should be used in some cases associated
with a limited space (wells) [1]. Without dwelling on
design features, let us consider the possibility of
designing multicomponent sensors, proceeding from
the fact that the sensitive magnetoelastic element is
magnetized by a permanent magnet. This will be
denoted conditionally by poles N and S.
STICAL PHYSICS      Vol. 51      Suppl. 1      2005
The problem of determining the displacement vec-
tor projection onto a horizontal plane for particles of the
medium in a wave field can be solved by using any of
the two above-mentioned sensors. Figure 6 shows the
diagrams of decomposition of the horizontal compo-
nent of an acoustic signal in orthogonal directions of
the longitudinal axes of axial-sensitivity transducers.
The scheme of decomposition into two X and Y compo-
nents can be implemented either using two transducers
(Fig. 6a) or four pairwise coaxial transducers (Fig. 6b).
In the latter case, the main disadvantage of axial trans-
ducers is compensated for, since the emfs induced by
the longitudinal component of the external magnetic
field in coaxial coils Ux1 and Ux2 or Uy1 and Uy2, con-
nected in series or against each other, are mutually
compensated, while the desired signals are added.
When a narrow directional pattern is necessary, the
number of coaxial pairs can be increased. Supplement-
ing any of the schemes shown in Fig. 6 with one or two
vertical coaxial transducers, it is possible to record
three projections of a space vector.

The sensitive element of the magnetoelastic trans-
ducer for an intrawell sensor shown in Fig. 7 has the
form of a beam with a cross section in the form of a
rectangular cross. If its longitudinal axis coincides with
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Fig. 6. Connection of axial-sensitivity sensors.
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the vertical, the difference in the emfs induced in coils
Ux1 and Ux2 is proportional to the component corre-
sponding to horizontal direction H1, while the differ-
ence in the emfs induced in coils Uy1 and Uy2 is propor-
tional to the component corresponding to horizontal
direction H2. The emf of the winding embracing the
entire cross section of the sensitive element is propor-
tional to the vertical component V of the space vector.
The combined sensor has drawbacks typical of axial
and transverse transducers. The axis (vertical) compo-
nent V in it has a broader frequency band but is not pro-
tected against the external magnetic field. The two hor-
izontal components H1 and H2 are well protected from
external magnetic fields but are frequency-limited to a
certain extent. In spite of this, such a compromise
proved to be quite effective for seismic measurements
in wells, since electromagnetic noise in wells is insig-
nificant while the frequencies of the signals under study
are practically within the frequency range of magne-
toelastic combined sensors.

MAGNETOELASTIC GEOPHONES

Geoacoustic instruments are used for seismic pros-
pecting of minerals, in engineering seismometry, and in
seismology. In seismic prospecting, seismometers
(geophones) are used in large groups on the surface.
The working conditions determine the main require-
ments for surface instruments. Above all, this is a small
mass, reliability, and low cost. In connection with the
development of high-resolution seismic prospecting in
recent years, elevation of the upper frequency (up to
250 Hz) of the detectable reflected signal has become a
vital problem. This increases the resolution of seismic
prospecting by the method of reflected waves and
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Fig. 7. Combined magnetoelastic sensor with a transverse
sensitivity and an axial sensitivity.
increases the elaboration depth of well logs being stud-
ied.

Figure 8 shows the block diagram of a one-compo-
nent magnetoelastic geophone intended for surface
detection of reflected waves in the frequency range up
to 2500 Hz with a displacement amplitude range
exceeding 240 dB. The geophone consists of magne-
toelastic element 1, permanent magnet 2, pole pieces 3,
external core 4, measuring coil 5, casing 6, preampli-
fier 7, and gasket 8. The geophone is connected to the
ground via rod 9. It should be noted that, instead of the
casing of the geophone, its sensitive element is directly
connected to the object under investigation (ground).
This makes it possible to increase the actual frequency
range to the maximal possible extent and to consider-
ably suppress the effect of atmospheric acoustic noise
during surface measurements. Preamplifier 7 ensures
the matching of the signal from the measuring coil of
the geophone with an extended transmission line.

For three-component measurements of acoustic
emission and for reflection seismic prospecting with
vertical seismic profiling, the combined magnetoelastic
sensor shown in Fig. 7 is supplied with an inertial mass
and is fixed in a high-strength sealed casing. The sche-
matic diagram of an intrawell three-component magne-
toelastic acoustic geophone of the MAG-3S type is
shown in Fig. 9. The geophone consists of sensitive ele-
ment 1, heavy-duty permanent magnet 2, lower pole
pieces 3, a high-strength casing and external core 4,
inertial mass 5, vertical component measurement coils 6,
preamplifier unit 7, upper pole piece 8, and sealed con-
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Fig. 8. Schematic diagram of a surface magnetoelastic geo-
phone.
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nector 9. The amplitude–frequency characteristic of the
MAG-3S geophone makes it possible to detect acoustic
signals in the range from 16 to 1250 Hz, as well as seis-
mic-prospecting signals of any frequency, which can be
excited by a seismic vibrator. Axial-sensitivity one-
component transducers (see Fig. 5a) can also be used
for constructing multicomponent geophones and
acoustic antennas, in which the displacement vector of
the net mass can be decomposed into the required num-
ber of components along preset directions. The magne-
toelastic transducer makes it possible to design geo-
phones in which the sensitive element is in direct con-
tact with the medium being controlled and ensures a
rigid connection of several sensitive elements to the
same inert mass. Such a connection is possible in view
of the large linear conversion range ensuring indepen-
dent measurement of weak high-frequency signals
against the background of large and slowly varying
static loads (e.g., from thermal deformations in struc-
tural elements) and high-intensity low-frequency vibra-
tions. Multielement antenna systems for passive and
active location of noisy and moving objects in the fre-
quency range from 30 to 3000 Hz in liquid media can
be constructed on the basis of a magnetoelastic trans-
ducer with direct action of a force on the sensitive ele-
ment. Such systems can be used for determining not
only the azimuth of propagation of vibrations but also
the direction to the source.

It was noted above that magnetoelastic geophones
can be successfully used for detecting reflected waves
in vertical seismic profiling. Three-dimensional mea-
surements of the displacement vector by one-compo-
nent magnetoelastic sensors in an intrawell geophone
have no fundamental limitations. However, the avail-
able materials and technologies ensure the required
conversion parameters only for a comparatively large
inertial mass and for a large size of the sensing element.
In this connection, a slight difference in the amplitude–
frequency characteristics of the vertical and horizontal
channels was accepted in designing a three-compo-
nent magnetoelastic geophone for intrawell applica-
tion [12]. The mechanical resonance has a frequency
of about 1.2 kHz for the vertical component and about
350 Hz for the horizontal component. The mechanical
resonance frequency of horizontal components can be
increased by raising the structural rigidity of a modified
sensor [13]. The features of intrawell magnetoelastic
geophones make it possible to use these instruments not
only for solving prospecting and engineering problems
but also for solving fundamental problems related to
monitoring the variations of the stressed state of the
medium for forecasting purposes [14]. In addition, a
high-strength magnetoelastic sensor with a very large
linear conversion range makes it possible to use a large
inertial mass (up to several tons) for performing unique
experiments (e.g., the detection of dynamic gravita-
tion).
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AMPLIFICATION AND FORMATION
OF OUTPUT SIGNALS

The source of the output voltage in a magnetoelastic
acoustic sensor is an inductive–resistive element (cop-
per coil wound on a ferromagnetic core), whose resis-
tance varies from 100 to 5000 Ω depending on the
design. Like any resistive element, it is characterized by
a certain level of thermal noise voltage. According to
the Nyquist–Johnson, the mean square of thermal noise
voltage U across the terminals of the electric coil of
resistance R in thermal equilibrium at absolute temper-
ature T is U2 = 4kTRδf, where k = 1.38 × 10–23 J/K is the
Boltzmann constant; δf is the frequency band in hertzs,
in which the thermal noise voltage is measured. At
room temperature T = 293 K, we have 4kT = 1.62 ×
10–20 V2/Hz Ω . A 5000-Ω conductor at room tempera-
ture has an rms thermal noise of about 0.7 µV in a fre-
quency band up to 10000 Hz and 7 nV in a band of
100 Hz. According to its spectral composition, thermal
noise belongs to the Gaussian white noise type. It is
associated only with physical phenomena and cannot
be reduced. Schottky noise emerging due to fluctua-
tions of the current passing through a conductor and
flicker noise emerging due to fluctuations of the resis-
tance of the sensor coil are also of this type. Their total
amplitude is much smaller than that of thermal noise.
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Fig. 9. Schematic diagram of an intrawell magnetoelastic
geophone.
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The total intrinsic noise of a magnetoelastic trans-
ducer in the frequency range from 16 to 2000 Hz with
a measuring coil whose resistance is up to 5 kΩ does
not exceed 0.2 µV under normal conditions; this noise
is of the white noise type and depends on the frequency
band being measured. Consequently, in designing the
analog part of the amplification channel, one must
ensure an input noise from the preamplifier (PA) at the
same level and the required amplification. In addition to
signal amplification, the PA must ensure optimal
matching of the output resistance with the extended
cable transmission line, which may be 5000 m long.
The coasting cable has a resistivity of 25.5 Ω/km of the
conducting core and large distributed capacitance and
inductance. The amplification coefficient of the PA may
reach 60 dB; its transmission band ranges from 10 to
5000 Hz and the output resistance does not exceed
10 Ω . In the PA circuit developed by us, two opera-
tional dc amplifiers are used. The first amplifier
(153UD5A) is connected as a noninverting amplifier
with a coefficient of 40 dB, while the second amplifier
(544UD1A) is connected as an inverting amplifier with
a coefficient of 20 dB and is supplemented with high-
power transistors. After preamplification, the broad-
band geophone signal is additionally amplified by a
matching amplifier with coefficients of 6, 12, 26, 32, or
38 dB. The matching amplifier has a band from 10 to
5000 Hz and intrinsic input noise below 5 µV. Its output
resistance is also designed for operation with a cable
transmission line up to 5 km long.

In the simplest monitoring system, amplified signals
are fed to the input of a three-channel four-band analog
amplifier, in which the signals are additionally ampli-
fied by 34 dB in 1/3 octave bands with central frequen-
cies of 30, 160, 500, and 1000 Hz. Then, these signals
are detected and slightly filtered to ensure the suppres-
sion of the carrier frequency but preserve the dynamics
of its amplitude fluctuations. The resulting low-fre-
quency dc signals are converted into a digital form and
recorded by a PC according to the program developed
for continuous and prolonged monitoring. This pro-
gram also provides the computation and recording of
the minute average signal amplitude in each of the
12 channels.

CONCLUSIONS

Magnetoelastic geophones had been successfully
tested under field conditions for 15 years in various
regions of the Northern Hemisphere in wells, edits, and
mounds. Occasional monitoring was carried out in con-
tinental regions of central Russia, Belarus, and North-
ern Caucasus, as well as on the Pacific coast of Califor-
nia (USA), Honshu island (Japan), and Petropavlovsk-
Kamchatskii. Currently, continuous monitoring of
underground sound is carried out in central Russia
(Obninsk), the northern Caucasus (Kislovodsk), and
Kamchatka (Petropavlovsk-Kamchatskii). Each study
of broadband underground sound confirms in some way
or another its natural origin. The relation between this
sound and the tidal variation of gravity always mani-
fests itself in a certain way. However, the nature of this
relation remains enigmatic. In particular, a daily peak in
underground noise is observed in almost all cases.
Many researchers attribute this peak to anthropogenic
noise. However, after continuous monitoring in sum-
mer and in winter, it was found that the daily peak in
winter is observed at midnight rather than during the
daytime. The variation of the daily peak phase in under-
ground sound was found to occur during vernal and
autumnal equinoxes. These data suggested an energy
model of the variation of underground hum on the basis
on the variation of the strain rate magnitude associated
with the solar component of tide [15–17]. All this has
made it possible for the researchers from the Institute of
Volcanology, Far East Division of the Russian Acad-
emy of Sciences, Petropavlovsk-Kamchatskii, on the
basis of the data of a continuous geoacoustic monitor-
ing carried out by a magnetoelastic geophone in a deep
well since the end of 2001, to regularly submit conclu-
sions concerning possible seismic hazards to the local
commission on earthquake forecast. With rare excep-
tion, all submitted conclusions (exceeding 40 in num-
ber) were confirmed by subsequent events.

Destructive earthquakes occurring in 2003 in Cali-
fornia (United States) and Iran proved that earthquake
forecasting remains an urgent problem. Its solution
requires that all available means, including geoacoustic
monitoring by magnetoelastic geophones, be used.
Geoacoustics is the most effective instrument for study-
ing the earthquake origination processes. This method
has become practicable after the development of mag-
netoacoustic geophones, which ensure reliable mea-
surements of displacements with amplitudes smaller
than 10–12 m in a solid medium. Magnetoelastic geo-
phones made it possible to automatically determine the
amplitudes of low-intensity underground sound and the
direction to its source; this, in turn, opens up new pros-
pects for estimating the anisotropy of the stressed state
of minerals at the measurement site. This can be done
using a magnetic geophone recording three compo-
nents of the acoustic signal vector. Three components
are mechanically formed in the total inertial mass and
are singled out by three individual coils, each of which
is connected with the orthogonal axes of the directional
pattern. The signal detection scheme is determined by
the specific measurement problem. The simplest moni-
toring can be carried out using the scheme of analog
separation of several frequency bands and digital
recording of the signal amplitude averaged over a cer-
tain period in each band. The position of the geophone
and the frequency bands for monitoring can be chosen
using an information system with a digital amplitude–
frequency analyzer in real time. The time of averaging
can be operatively varied in accordance with the scale
and task of monitoring.

The technique and strategy proposed for earthquake
forecasting are rather simple. The extent of seismic risk
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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for a specific territory (a large city or an atomic power
plant) is determined by the methods of classical seis-
mology, for which a seismic hazard control system is
developed. Magnetoelastic geophones are installed in
three deep wells on this territory. Each geophone is
connected with the monitoring center via a mobile
communication system ensuring high-quality transmis-
sion of three signals in frequency bands from 16 to
2000 Hz. At the monitoring center, acoustic signals can
be authentically reproduced and recorded on a digital
medium and then placed on local computer networks
and Internet using modern computer processing equip-
ment. A real-time visual observation system can be
developed on the basis of conventional multimedia
computers.

Analysis of underground hum variations in the cho-
sen frequency bands at all points of observation (Insti-
tute of Volcanology, Far East Division of the Russian
Academy of Sciences, Petropavlovsk-Kamchatskii) is
the first statistically verified stage of earthquake fore-
cast. The analysis was carried out in comparison with a
model series on a time interval of 30 days, which was
renewed every day. At this stage, an indication of a pos-
sible earthquake is the gradual disappearance of the
pronounced daily variation of the underground sound
amplitude in individual frequency bands (over months
or weeks). A stable observation of this feature is a
premise of transition to the next stage of forecasting.
The models of prediction features of the second and
third stages of the forecast can be substantiated after
carrying out a statistical analysis of the actual origina-
tion and evolution of earthquakes recorded by magne-
toelastic geophones at a special test site (e.g., the USGS
test site in Parkfield, California). A feature of the sec-
ond stage may be a sharp and substantial increase in the
underground hum amplitude level in most of the fre-
quency bands (this stage lasts for 12 h according to the
data from Nagano prefecture, Japan, 1996). The obser-
vation at the second stage should be performed in real
time on a monitor screen during a time interval of about
five days with renewal every 6 min. The second feature
is, in turn, a premise of transition to the third (final)
stage and consists in an avalanche-like increase in seis-
moacoustic emission in high-frequency bands immedi-
ately before an earthquake (the duration of this stage is
on the order of tens of minutes or minutes according to
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
the data of underground observations). The final stage
is accompanied by a sound specific for each observa-
tion point. This feature must be observed on the screen
of a monitor within an approximately two-hour time
window with a 10-s renewal interval.

REFERENCES
1. A. S. Belyakov and A. V. Nikolaev, Izv. Ross. Akad.

Nauk, Fiz. Zemli, No. 7, 74 (1993).
2. M. S. Rossi, Dell’osservatorio ed archivio geodinamico

(Dalla Tipogr. Della Pace, Roma, 1883).
3. F. V. Maœorov, Tr. Tsentr. Aerogidrodin. Inst., No. 445

(1939).
4. O. Dahle and B. Dahle, SE Patent No. 151267 (12 May

1953).
5. E. S. Kukharkin, Fundamentals of Engineering Electro-

physics (Nauka, Moscow, 1969) [in Russian].
6. O. Dahle, ASEA J. 32 (9), 115 (1959).
7. A. S. Belyakov, SU Patent No. 155014 (1963).
8. A. S. Belyakov and T. D. Belyakova, Available from

VINITI, No. 5 (1983), p. 128.
9. A. S. Belyakov et al., SU Patent No. 1376763 (1986).

10. A. S. Belyakov and T. D. Belyakova, in Devices and
Methods for Earthquake Registration (Nauka, Moscow,
1987), pp. 52–55 [in Russian].

11. A. S. Belyakov, in Instrumental and Experimental
Methodical Investigations in Seismometry (Nauka, Mos-
cow, 1993), pp. 18–20 [in Russian].

12. I. P. Bashilov and A. S. Belyakov, RF Patent No. 1721564
(1993).

13. A. S. Belyakov, RF Patent No. 1 833 501 (1992).
14. A. S. Belyakov and A. V. Nikolaev, Izv. Ross. Akad.

Nauk, Fiz. Zemli, No. 8, 79 (1995).
15. A. S. Belyakov, V. S. Lavrov, A. V. Nikolaev, and

L. L. Khudzinskiœ, in Seismic Devices (Obshch. Inst.
Fiz. Zemli Ross. Akad. Nauk, Moscow, 1998), pp. 83–86
[in Russian].

16. A. S. Belyakov, V. S. Lavrov, A. V. Nikolaev, and
L. L. Khudzinskiœ, Izv. Ross. Akad. Nauk, Fiz. Zemli,
No. 12, 39 (1999).

17. A. S. Belyakov, V. S. Lavrov, A. V. Nikolaev, and
L. L. Khudzinskiœ, Dokl. Akad. Nauk 375 (4), 531
(2000).

Translated by N. Wadhwa



  

Acoustical Physics, Vol. 51, Suppl. 1, 2005, pp. S54–S60. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, Suppl., 2005, pp. 66–73.
Original Russian Text Copyright © 2005 by Dryagin, Kuznetsov, Starodubtsev, Rok.

        
Search for Hydrocarbons by the Method of Induced 
Seismoacoustic Emission in Wells

V. V. Dryagin*, O. L. Kuznetsov**, A. A. Starodubtsev*, and V. E. Rok**
* ZAO Intensonik & Co., ul. Amundsena 100, Yekaterinburg, 620016 Russia

e-mail: dryagin@sky.ru
** All-Russia Geosystems Research Institute, Varshavskoe sh. 8, Moscow, 113105 Russia

Received November 1, 2004

Abstract—Regular specific features have been observed for the first time in the response of a fluid-saturated
porous medium to a high-intensity seismoacoustic field. Experimental investigations show that the observed
behavior can serve as a basis for a new effective complex technology capable of detecting hydrocarbons and water
in the near-well zone and selectively restoring the fluid conductivity in oil pools. © 2005 Pleiades Publishing, Inc.
The transfer and conversion of energy in a multi-
component and heterophase porous geological medium
are accompanied by the emission of seismoacoustic
and electromagnetic waves, which can provide impor-
tant information about the mechanical, geochemical,
and electromagnetic processes in this medium and
about its nonlinear properties [1]. In recent years, much
attention has been devoted to theoretical and experi-
mental investigations of changes in the seismoacoustic
activity of geological media in response to various arti-
ficial external actions.

The acoustic emission in a complex heterogeneous
medium can be induced by an elastic impulse capable
of initiating stepwise slippage at the contacts between
blocks, which is accompanied by elastic vibrations
whose spectrum is enriched with high-frequency com-
ponents. An increase in the amplitude and frequency of
vibrations usually takes place at the final stage of rock
fracture and in the course of crack growth. For example,
it was demonstrated [2, 3] that the amplitudes of elastic
vibrations of active blocks in a mountain mass at char-
acteristic quasi-resonance frequencies can be two to
three times greater than the amplitude of external
action, which is explained by the release of energy
stored in the geological medium.

A vibroseismic action from the Earth’s surface upon
oil fields, which is used in the technology of increasing
the producing oil pool recovery, is also based on the
radiation and reradiation of elastic energy in a broad
frequency range.

There are various descriptions of the mechanisms of
elastic energy transformation in a mountain mass,
which are based on the interaction of static stresses in
this mass with elastic vibrations in local foci exhibiting
maximum stress concentrations or containing hydro-
carbon fields. Such foci are characterized by altered
local conditions of the interaction between solid ele-
ments of the medium at the contact zones. According to
1063-7710/05/51S1-S $26.000054
the concept of the transformation of seismic energy
radiated from an on-ground vibrator toward a produc-
ing oil pool, which is presented in [4], the vibrations of
geological blocks at their resonance frequencies are
sequentially excited in the characteristic interval from
10 to 30 Hz. In turn, the resonance vibrations of these
geological blocks occurring in the stressed state lead to
their decomposition, which is accompanied by the
acoustic emission in the high-frequency range (10–30
kHz). The volume density of the acoustic energy at each
stage of transformation significantly increases at the
expense of the energy gained from the stressed state of
rocks, which leads to breakage of various filtration bar-
riers hindering the flow of fluids through capillaries of
the porous medium. It was suggested that the approach
proposed in [4] can be used not only to solve the prob-
lem of increasing the oil pool discharge by seismic
methods but also to search for zones of increased oil
saturation and to monitor such zones in the course of
the field development. All these tasks can be accom-
plished by a complex method based on the analysis of
seismoacoustic emission (SAE) in a broad range from
extremely low (seismic) to ultrasonic frequencies.

The excitation of acoustic emission in a geological
medium under the action of low-frequency elastic
waves was also attributed [5] to the process of pore
opening in the course of rock microfracture caused by
pressure variations. The transformation of the energy of
an elastic wave propagating deep in the Earth is also
accompanied by the excitation of vibrations in a wide
range from infrasonic to hypersonic frequencies.
According to the concept developed in [6], the SAE
represents the high-frequency noise response of a
deformed cracked medium and the frequency range of
such response extends from seismic (15–300 Hz) to
high (>1 kHz) acoustic frequencies. It was shown that
anomalous SAE variations can be related, in addition to
 © 2005 Pleiades Publishing, Inc.



        

SEARCH FOR HYDROCARBONS S55

       
purely technical factors, to a change in the dynamic
conditions for fluids occurring in cracked media.

The mechanisms of the enhancement of ultrasonic
vibrations in the course of vibrational action from the
Earth’s surface upon hydrocarbon collectors possessing
a block structure were theoretically studied in [7]. This
interaction was subdivided into three stages, including
(i) the transfer of weak harmonic vibrations to the col-
lector blocks, (ii) the excitation of microscopic vibra-
tions in these blocks in the fluid flows, and (iii) the
onset of elastic resonance vibrations accompanied by
the emission of ultrasonic waves into the surrounding
fluid. These waves are capable of breaking dense oil
films in interblock contacts of the collector, which
favors the restoration of the fluid conductivity and
improves the oil filtration in the oil pool. Thus, the
energy pumping from low to high frequencies via the
induced vibrations of blocks leads to the generation of
acoustic waves in the interblock fluid with an intensity
on the order of 10–1 W/cm2, which is sufficient for
breaking dense films and restoring the oil filtration. The
frequency range of these vibrations extends up to sev-
eral hundred or a few thousand hertz.

The patented “Anchar” technology [8] intended for
the direct exploration of hydrocarbon fields is also
based on their response to the vibrational action from
the Earth’s surface. According to this method, the prob-
ing vibrations in a geological medium are produced by
a seismic vibrator operating for 3 min. The comparison
of the signals detected by acoustic receivers before and
after this action provides information sufficient to judge
on the presence of a hydrocarbon field. The idea of the
proposed technical solution consists in that, in response
to the probing vibrational action, a geological medium
containing hydrocarbons produces a secondary emis-
sion that begins immediately after the onset and contin-
ues for some time after the termination of this action.
An interesting feature is that the vibrator and the
response detector operate in the same infrasonic fre-
quency range (1–4 Hz). This approach was inspired by
the ideas of M.A. Sadovskii and A.V. Nikolaev formu-
lated as long ago as in 1982, according to which any
geological medium produces seismic emission and
external actions stimulate the sources of microseismic
noise. These acoustic sources exhibit maximum inten-
sity in the regions of gas and oil fields. 

Another method based on the detection of natural
and induced SAE signals under seismic vibrations
excited for oil and gas prospecting was patented in [9].
This method also uses the analysis of the dynamics of
the induced SAE to judge on the presence of hydrocar-
bons.

The results of our investigations of the acoustic
emission in wells showed that the response signal can
be induced by a high-intensity (8–10 W/cm2) acoustic
action used for the restoration of the fluid conductivity
in the near-well zone of a producing oil pool [10, 11].
The proposed method of acoustic action was intended
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
to improve this characteristic both in the near-well zone
and in more distant regions of the oil pool. Indeed, the
hydrodynamic data obtained upon the acoustic action
throughout the producing oil pool with interlayers on
one of the oil fields in the Perm region revealed an
increase in fluid conductivity by 80–130% in the near-
well zone and by 40–160% in the far zone. These
results confirm that the acoustic action at a given inten-
sity leads to profound changes in the properties of a sat-
urated porous medium.

In our experiments, the SAE signals were detected
and recorded with the aid of a device placed in a well,
comprising a transducer, an acoustic sensor, and the
corresponding control and data acquisition systems.
The device was programmed for cyclic operation, each
cycle including a record of the initial SAE signal, an
acoustic action, and repeated signal recording at prese-
lected points over a preset interval of depths. In terms
of geophysics, this method may be called seismoacous-
tic emission logging (SAEL) in the course of logging–
acoustic action–logging cycles. The combination of
two functions—high-power acoustic action and high-
sensitivity SAE detection—in the same device allows
the SAE signal profile over the well depth to be
obtained both within and outside the producing oil
pool. The SAE signal is monitored before, during, and
after the acoustic action.

It was established that an acoustic action upon the
near-well space leads to a change in the SAE signal.
The maximum contribution to this change was due to
variations in the properties of fluids occurring in the
pore space of the collector, which was confirmed by
other methods of geophysical investigations of the
wells in the course of a complex (influx–composition)
study of the field development. In a collector saturated
with oil and/or gas, the acoustic action led to an
increase in the SAE intensity, whereas water-saturated
collectors exhibited a decrease in this intensity.

As is known [12, 13], an acoustic action upon a
fluid-saturated collector leads to changes in some prop-
erties and in the state of the fluid. The possible manifes-
tation include oil outgassing, an increase in fluidity and
a decrease in viscosity of oil, a change in the phase state
of hydrocarbons, etc. The observed effects are corre-
lated with the total energy and spectrum of SAE and
with the character of collector saturation. The SAEL
approach to investigations of the current state of the
collector saturation consisted in the measurement and
analysis of changes in the SAE signal and in establish-
ing relations between these changes and the character
of the fluid saturating the near-well space of the produc-
ing oil pool, as monitored by independent (geophysi-
cal) methods.

The SAEL procedure was as follows. The initial
SAE signal spectrum in the acoustic and ultrasonic fre-
quency range was measured at a preset well depth with
the aid of an AAV-400 programmed instrumentation set
[14, 15]. Then, a controlled high-power acoustic action
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Fig. 1. Seismoacoustic emission of well no. 1125 (Bystrinskoe field) with a water-saturated collector (2049.5 m): SAE signals
(a) before and (b) after acoustic action; (c) the difference in the SAE frequency spectra measured before and after the acoustic
action.
upon the near-well zone was produced with the aid of
acoustic radiators at preset points of the well. Immedi-
ately after the termination of the acoustic action, the
SAE signal was measured again and the absolute and
differential SAE characteristics were determined.

Although the oil and gas fields are characterized by
anomalously high seismoacoustic noise levels, the
dynamics of the observed secondary emission can be
clearly distinguished on this background. This dynam-
ics exhibits opposite trends, depending on the character
of collector saturation. In the case of an oil-saturated
collector, the secondary emission increases, while in a
water-saturated collector it decreases. This behavior of
the secondary acoustic emission underlies the proposed
technology of selective restoration of the fluid conduc-
tivity of producing oil pools, which combines the
acoustic monitoring of the character of collector satura-
tion and the selective action upon the oil pool by an
intense acoustic field.

The potential of the proposed method of restoration
of the fluid conductivity in producing wells can be illus-
trated by the results obtained at the Bystrinskoe oil field
in Western Siberia. We have studied two regions of one
producing oil pool in this field, which were spaced
approximately by 10 km. Both wells were character-
ized by conventional geophysical methods in the course
of regular schedule production maintenance.

Prior to the acoustic action, the well was character-
ized by the background SAE signal profile measured
throughout the perforation zone and the adjacent top
and bottom regions of the pool. The measured signals
were processed online using a fast Fourier transform
(FFT) program, and the corresponding waveforms and
frequency spectra were obtained in the range from
10 Hz to 22 kHz with various degrees of averaging. The
SAE signal monitoring and processing was performed
at all preselected points used for constructing a logging
spectrogram and the corresponding logging integral
SAE energy profiles in preset spectral intervals.

The subsequent acoustic action consisted of the
cycles of short-term probing and immediate SAE
response monitoring at each point of a selected interval
of well depths, followed by an analysis of the signal
dynamics. The first well (no. 1125) was characterized
by geophysical methods as providing a water flow. Fig-
ure 1 shows a typical SAE time series measured in the
middle of the producing oil pool (at a depth of 2049.5 m)
before and after the acoustic action and also shows the
corresponding difference spectrum obtained upon FFT
processing with complete averaging over a total record-
ing time of 15–30 s. The signal amplitudes were mea-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 2. Seismoacoustic emission of well no. 1964 (Bystrinskoe field) with an oil-saturated collector (2064.5 m): SAE signals
(a) before and (b) after acoustic action; (c) the difference in the SAE frequency spectra measured before and after the acoustic
action.
sured at the output of the intrawell device. The spectral
harmonics are expressed in the acceleration units with
allowance for the device sensitivity and the transmis-
sion function of the data recording system.

Similar measurements were performed in another
well (no. 1964) of the same oil pool, which were also
preliminarily characterized by geophysical methods
and classified as oil-producing. As can be seen from the
data for this well measured in the middle of the produc-
ing oil pool (at a depth of 2064.5 m) and presented in
Fig. 2, there is an increase in the SAE signal intensity
upon the acoustic action. This increase was observed
over the entire producing oil pool thickness. The main
contribution to the total signal energy and to the incre-
ment for both wells was provided by the high-fre-
quency components (1–7 kHz).

The initial SAE spectra measured in the two wells of
the same pool are much alike and reflect the character-
istic features of the given pool. In contrast, changes
observed upon the acoustic action in the two cases
exhibit opposite trends in their dynamics and signifi-
cant differences in magnitude. For well no. 1125 with a
water-saturated collector, the integral SAE energy
decreases by a factor of 4.4, whereas this energy in the
well No. 1964 with an oil-saturated collector increases
by a factor of 1.96 (for the indicated depths).
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
It should be noted that the SAEL investigations in
the two wells described above were performed under
conditions of a short-term depression, which favored
the influx of the fluid from the pool to the well. For this
reason, it was not excluded that the SAE signals con-
tained components related to the fluid filtration in the
pore space and in the perforations. An analysis of such
signals was performed in [16] based on the spectra of
acoustic and electromagnetic noise caused by fluid fil-
tration in the pools.

However, the results of a series of experiments per-
formed in various (pressure observation, monitor,
killed, and unperforated) wells, where the process of
filtration in the pore space was eliminated, gave essen-
tially the same results. For example, the unperforated
monitor well no. 20020 (Bavly, Tatarstan) was checked
for the collector saturation character by SAEL in com-
parison with geophysical methods. In an oil pool pre-
liminarily characterized by low oil production, the
induced SAE signal upon the acoustic action exhibited
a strongly anomalous character (Fig. 3.). The anoma-
lous time series displayed separate pulses with high-
frequency filling and a repetition rate of about 3–7 Hz.
This pattern is analogous to that observed on the day-
time surface by means of the “Anchar” technique.
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Fig. 3. Seismoacoustic emission of well no. 20020 (Bavly field) with an oil-saturated collector (1754 m): SAE signals (a) before
and (b) after acoustic action; (c) the difference in the SAE frequency spectra measured before and after the acoustic action.
The results of subsequent monitoring in a different
well of the same pool upon the seismoacoustic perfora-
tion showed evidence of an increase in the oil yield.
Analogous results were obtained in various oil fields of
Western Siberia, Kazakhstan, and Komi Republic.

In the course of SAEL, it was possible to calculate
the SAE energy in a certain frequency interval (selected
by experts upon preliminary online analysis of the sig-
nal). This energy was assigned to the given point and
recorded in the logging diagram synchronized with the
device propagating in depth of the well. Using the
resulting logging diagrams obtained by conventional
geophysical methods, it was possible to perform a com-
parative analysis with allowance for the preceding
investigations. As can be seen from such a comparative
logging diagram presented in Fig. 4, the SAE signals
measured before and after the acoustic action outside
the layer corresponding to the collector are virtually the
same. At the same time, a strong anomaly in the signal
measured upon the acoustic action cloosely coincides
with the oil-saturated collector layer identified using
the conventional logging techniques.

The general algorithm of the collector saturation
characterization by means of the SAEL can be illustrated
by an example of identification of the oil- and water-sat-
urated collector layers in the same well (Fig. 5). This is
essentially a kind of water–oil contact profiling, which
is important in solving the geological problems
encountered in the field development.

According to the proposed algorithm, the SAE sig-
nals are measured before and after the acoustic action,
and then the absolute and relative SAE energy differ-
ences are calculated with allowance for the statistical
spread of the background. The background spread
depends on the general tectonic situation and exhibits
an individual character for each field, typically ranging
from a fraction of percent to about ten percents. Only
the SAE signals exceeding the background spread are
accepted as reliable (see “Oil” and “Water” curves in
Fig. 5). The oil saturation coefficient was calculated
using the “Oil” profile and normalized to the peak in
this curve, which was considered corresponding to the
absolute oil saturation coefficient determined by geo-
physical or other standard methods.

The data presented in Fig. 5 were obtained in well
no. 141 at the Mamontovskoe oil field in Western Sibe-
ria and compared to the results of geophysical investi-
gation using the well radiation data according to the ter-
minal and electrical casing logging. The logging was
performed over new (unperforated) intervals, so as to
provide for an objective comparison of various methods
of evaluation of the collector saturation. The results
fully confirmed the validity of the saturation assess-
ment based on the SAEL algorithm.
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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SAEL
Taking into account that the effects described above
were observed in all wells where the SAEL measure-
ments were performed and the results could be checked
by independent methods, we can conclude that the pro-
posed method is applicable to evaluation of the charac-
ter of the collector saturation. According to this
method, a reliable criterion for the assessment of the
collector saturation is offered by the difference between
the integral SAE energies determined before and after
the acoustic action upon the near-well zone.
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Abstract—Regular specific features have been observed for the first time in the response of a fluid-saturated
porous medium to a high-intensity seismoacoustic field. Experimental investigations show that the observed
behavior can serve as a basis for a new effective complex technology capable of detecting hydrocarbons and water
in the near-well zone and selectively restoring the fluid conductivity in oil pools. © 2005 Pleiades Publishing, Inc.
The transfer and conversion of energy in a multi-
component and heterophase porous geological medium
are accompanied by the emission of seismoacoustic
and electromagnetic waves, which can provide impor-
tant information about the mechanical, geochemical,
and electromagnetic processes in this medium and
about its nonlinear properties [1]. In recent years, much
attention has been devoted to theoretical and experi-
mental investigations of changes in the seismoacoustic
activity of geological media in response to various arti-
ficial external actions.

The acoustic emission in a complex heterogeneous
medium can be induced by an elastic impulse capable
of initiating stepwise slippage at the contacts between
blocks, which is accompanied by elastic vibrations
whose spectrum is enriched with high-frequency com-
ponents. An increase in the amplitude and frequency of
vibrations usually takes place at the final stage of rock
fracture and in the course of crack growth. For example,
it was demonstrated [2, 3] that the amplitudes of elastic
vibrations of active blocks in a mountain mass at char-
acteristic quasi-resonance frequencies can be two to
three times greater than the amplitude of external
action, which is explained by the release of energy
stored in the geological medium.

A vibroseismic action from the Earth’s surface upon
oil fields, which is used in the technology of increasing
the producing oil pool recovery, is also based on the
radiation and reradiation of elastic energy in a broad
frequency range.

There are various descriptions of the mechanisms of
elastic energy transformation in a mountain mass,
which are based on the interaction of static stresses in
this mass with elastic vibrations in local foci exhibiting
maximum stress concentrations or containing hydro-
carbon fields. Such foci are characterized by altered
local conditions of the interaction between solid ele-
ments of the medium at the contact zones. According to
1063-7710/05/51S1-S $26.000054
the concept of the transformation of seismic energy
radiated from an on-ground vibrator toward a produc-
ing oil pool, which is presented in [4], the vibrations of
geological blocks at their resonance frequencies are
sequentially excited in the characteristic interval from
10 to 30 Hz. In turn, the resonance vibrations of these
geological blocks occurring in the stressed state lead to
their decomposition, which is accompanied by the
acoustic emission in the high-frequency range (10–30
kHz). The volume density of the acoustic energy at each
stage of transformation significantly increases at the
expense of the energy gained from the stressed state of
rocks, which leads to breakage of various filtration bar-
riers hindering the flow of fluids through capillaries of
the porous medium. It was suggested that the approach
proposed in [4] can be used not only to solve the prob-
lem of increasing the oil pool discharge by seismic
methods but also to search for zones of increased oil
saturation and to monitor such zones in the course of
the field development. All these tasks can be accom-
plished by a complex method based on the analysis of
seismoacoustic emission (SAE) in a broad range from
extremely low (seismic) to ultrasonic frequencies.

The excitation of acoustic emission in a geological
medium under the action of low-frequency elastic
waves was also attributed [5] to the process of pore
opening in the course of rock microfracture caused by
pressure variations. The transformation of the energy of
an elastic wave propagating deep in the Earth is also
accompanied by the excitation of vibrations in a wide
range from infrasonic to hypersonic frequencies.
According to the concept developed in [6], the SAE
represents the high-frequency noise response of a
deformed cracked medium and the frequency range of
such response extends from seismic (15–300 Hz) to
high (>1 kHz) acoustic frequencies. It was shown that
anomalous SAE variations can be related, in addition to
 © 2005 Pleiades Publishing, Inc.
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purely technical factors, to a change in the dynamic
conditions for fluids occurring in cracked media.

The mechanisms of the enhancement of ultrasonic
vibrations in the course of vibrational action from the
Earth’s surface upon hydrocarbon collectors possessing
a block structure were theoretically studied in [7]. This
interaction was subdivided into three stages, including
(i) the transfer of weak harmonic vibrations to the col-
lector blocks, (ii) the excitation of microscopic vibra-
tions in these blocks in the fluid flows, and (iii) the
onset of elastic resonance vibrations accompanied by
the emission of ultrasonic waves into the surrounding
fluid. These waves are capable of breaking dense oil
films in interblock contacts of the collector, which
favors the restoration of the fluid conductivity and
improves the oil filtration in the oil pool. Thus, the
energy pumping from low to high frequencies via the
induced vibrations of blocks leads to the generation of
acoustic waves in the interblock fluid with an intensity
on the order of 10–1 W/cm2, which is sufficient for
breaking dense films and restoring the oil filtration. The
frequency range of these vibrations extends up to sev-
eral hundred or a few thousand hertz.

The patented “Anchar” technology [8] intended for
the direct exploration of hydrocarbon fields is also
based on their response to the vibrational action from
the Earth’s surface. According to this method, the prob-
ing vibrations in a geological medium are produced by
a seismic vibrator operating for 3 min. The comparison
of the signals detected by acoustic receivers before and
after this action provides information sufficient to judge
on the presence of a hydrocarbon field. The idea of the
proposed technical solution consists in that, in response
to the probing vibrational action, a geological medium
containing hydrocarbons produces a secondary emis-
sion that begins immediately after the onset and contin-
ues for some time after the termination of this action.
An interesting feature is that the vibrator and the
response detector operate in the same infrasonic fre-
quency range (1–4 Hz). This approach was inspired by
the ideas of M.A. Sadovskii and A.V. Nikolaev formu-
lated as long ago as in 1982, according to which any
geological medium produces seismic emission and
external actions stimulate the sources of microseismic
noise. These acoustic sources exhibit maximum inten-
sity in the regions of gas and oil fields. 

Another method based on the detection of natural
and induced SAE signals under seismic vibrations
excited for oil and gas prospecting was patented in [9].
This method also uses the analysis of the dynamics of
the induced SAE to judge on the presence of hydrocar-
bons.

The results of our investigations of the acoustic
emission in wells showed that the response signal can
be induced by a high-intensity (8–10 W/cm2) acoustic
action used for the restoration of the fluid conductivity
in the near-well zone of a producing oil pool [10, 11].
The proposed method of acoustic action was intended
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
to improve this characteristic both in the near-well zone
and in more distant regions of the oil pool. Indeed, the
hydrodynamic data obtained upon the acoustic action
throughout the producing oil pool with interlayers on
one of the oil fields in the Perm region revealed an
increase in fluid conductivity by 80–130% in the near-
well zone and by 40–160% in the far zone. These
results confirm that the acoustic action at a given inten-
sity leads to profound changes in the properties of a sat-
urated porous medium.

In our experiments, the SAE signals were detected
and recorded with the aid of a device placed in a well,
comprising a transducer, an acoustic sensor, and the
corresponding control and data acquisition systems.
The device was programmed for cyclic operation, each
cycle including a record of the initial SAE signal, an
acoustic action, and repeated signal recording at prese-
lected points over a preset interval of depths. In terms
of geophysics, this method may be called seismoacous-
tic emission logging (SAEL) in the course of logging–
acoustic action–logging cycles. The combination of
two functions—high-power acoustic action and high-
sensitivity SAE detection—in the same device allows
the SAE signal profile over the well depth to be
obtained both within and outside the producing oil
pool. The SAE signal is monitored before, during, and
after the acoustic action.

It was established that an acoustic action upon the
near-well space leads to a change in the SAE signal.
The maximum contribution to this change was due to
variations in the properties of fluids occurring in the
pore space of the collector, which was confirmed by
other methods of geophysical investigations of the
wells in the course of a complex (influx–composition)
study of the field development. In a collector saturated
with oil and/or gas, the acoustic action led to an
increase in the SAE intensity, whereas water-saturated
collectors exhibited a decrease in this intensity.

As is known [12, 13], an acoustic action upon a
fluid-saturated collector leads to changes in some prop-
erties and in the state of the fluid. The possible manifes-
tation include oil outgassing, an increase in fluidity and
a decrease in viscosity of oil, a change in the phase state
of hydrocarbons, etc. The observed effects are corre-
lated with the total energy and spectrum of SAE and
with the character of collector saturation. The SAEL
approach to investigations of the current state of the
collector saturation consisted in the measurement and
analysis of changes in the SAE signal and in establish-
ing relations between these changes and the character
of the fluid saturating the near-well space of the produc-
ing oil pool, as monitored by independent (geophysi-
cal) methods.

The SAEL procedure was as follows. The initial
SAE signal spectrum in the acoustic and ultrasonic fre-
quency range was measured at a preset well depth with
the aid of an AAV-400 programmed instrumentation set
[14, 15]. Then, a controlled high-power acoustic action



 

S56

        

DRYAGIN 

 

et al

 

.

          
600

16.4 16.5

mV

Time, s

400

200

0

–200

–400

–600

600

33.0 33.1

mV

400

200

0

–200

–400

–600

0.5Ö–5

0 2000

m/s2

0

–0.5Ö–5

–1.5Ö–5

–2.0Ö–5

–2.5Ö–5

–3.0Ö–5
16.6 33.2

–1.0Ö–5

4000 6000 8000
Frequency, HzTime, s

(a) (b) (c)

Fig. 1. Seismoacoustic emission of well no. 1125 (Bystrinskoe field) with a water-saturated collector (2049.5 m): SAE signals
(a) before and (b) after acoustic action; (c) the difference in the SAE frequency spectra measured before and after the acoustic
action.
upon the near-well zone was produced with the aid of
acoustic radiators at preset points of the well. Immedi-
ately after the termination of the acoustic action, the
SAE signal was measured again and the absolute and
differential SAE characteristics were determined.

Although the oil and gas fields are characterized by
anomalously high seismoacoustic noise levels, the
dynamics of the observed secondary emission can be
clearly distinguished on this background. This dynam-
ics exhibits opposite trends, depending on the character
of collector saturation. In the case of an oil-saturated
collector, the secondary emission increases, while in a
water-saturated collector it decreases. This behavior of
the secondary acoustic emission underlies the proposed
technology of selective restoration of the fluid conduc-
tivity of producing oil pools, which combines the
acoustic monitoring of the character of collector satura-
tion and the selective action upon the oil pool by an
intense acoustic field.

The potential of the proposed method of restoration
of the fluid conductivity in producing wells can be illus-
trated by the results obtained at the Bystrinskoe oil field
in Western Siberia. We have studied two regions of one
producing oil pool in this field, which were spaced
approximately by 10 km. Both wells were character-
ized by conventional geophysical methods in the course
of regular schedule production maintenance.

Prior to the acoustic action, the well was character-
ized by the background SAE signal profile measured
throughout the perforation zone and the adjacent top
and bottom regions of the pool. The measured signals
were processed online using a fast Fourier transform
(FFT) program, and the corresponding waveforms and
frequency spectra were obtained in the range from
10 Hz to 22 kHz with various degrees of averaging. The
SAE signal monitoring and processing was performed
at all preselected points used for constructing a logging
spectrogram and the corresponding logging integral
SAE energy profiles in preset spectral intervals.

The subsequent acoustic action consisted of the
cycles of short-term probing and immediate SAE
response monitoring at each point of a selected interval
of well depths, followed by an analysis of the signal
dynamics. The first well (no. 1125) was characterized
by geophysical methods as providing a water flow. Fig-
ure 1 shows a typical SAE time series measured in the
middle of the producing oil pool (at a depth of 2049.5 m)
before and after the acoustic action and also shows the
corresponding difference spectrum obtained upon FFT
processing with complete averaging over a total record-
ing time of 15–30 s. The signal amplitudes were mea-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 2. Seismoacoustic emission of well no. 1964 (Bystrinskoe field) with an oil-saturated collector (2064.5 m): SAE signals
(a) before and (b) after acoustic action; (c) the difference in the SAE frequency spectra measured before and after the acoustic
action.
sured at the output of the intrawell device. The spectral
harmonics are expressed in the acceleration units with
allowance for the device sensitivity and the transmis-
sion function of the data recording system.

Similar measurements were performed in another
well (no. 1964) of the same oil pool, which were also
preliminarily characterized by geophysical methods
and classified as oil-producing. As can be seen from the
data for this well measured in the middle of the produc-
ing oil pool (at a depth of 2064.5 m) and presented in
Fig. 2, there is an increase in the SAE signal intensity
upon the acoustic action. This increase was observed
over the entire producing oil pool thickness. The main
contribution to the total signal energy and to the incre-
ment for both wells was provided by the high-fre-
quency components (1–7 kHz).

The initial SAE spectra measured in the two wells of
the same pool are much alike and reflect the character-
istic features of the given pool. In contrast, changes
observed upon the acoustic action in the two cases
exhibit opposite trends in their dynamics and signifi-
cant differences in magnitude. For well no. 1125 with a
water-saturated collector, the integral SAE energy
decreases by a factor of 4.4, whereas this energy in the
well No. 1964 with an oil-saturated collector increases
by a factor of 1.96 (for the indicated depths).
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
It should be noted that the SAEL investigations in
the two wells described above were performed under
conditions of a short-term depression, which favored
the influx of the fluid from the pool to the well. For this
reason, it was not excluded that the SAE signals con-
tained components related to the fluid filtration in the
pore space and in the perforations. An analysis of such
signals was performed in [16] based on the spectra of
acoustic and electromagnetic noise caused by fluid fil-
tration in the pools.

However, the results of a series of experiments per-
formed in various (pressure observation, monitor,
killed, and unperforated) wells, where the process of
filtration in the pore space was eliminated, gave essen-
tially the same results. For example, the unperforated
monitor well no. 20020 (Bavly, Tatarstan) was checked
for the collector saturation character by SAEL in com-
parison with geophysical methods. In an oil pool pre-
liminarily characterized by low oil production, the
induced SAE signal upon the acoustic action exhibited
a strongly anomalous character (Fig. 3.). The anoma-
lous time series displayed separate pulses with high-
frequency filling and a repetition rate of about 3–7 Hz.
This pattern is analogous to that observed on the day-
time surface by means of the “Anchar” technique.
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Fig. 3. Seismoacoustic emission of well no. 20020 (Bavly field) with an oil-saturated collector (1754 m): SAE signals (a) before
and (b) after acoustic action; (c) the difference in the SAE frequency spectra measured before and after the acoustic action.
The results of subsequent monitoring in a different
well of the same pool upon the seismoacoustic perfora-
tion showed evidence of an increase in the oil yield.
Analogous results were obtained in various oil fields of
Western Siberia, Kazakhstan, and Komi Republic.

In the course of SAEL, it was possible to calculate
the SAE energy in a certain frequency interval (selected
by experts upon preliminary online analysis of the sig-
nal). This energy was assigned to the given point and
recorded in the logging diagram synchronized with the
device propagating in depth of the well. Using the
resulting logging diagrams obtained by conventional
geophysical methods, it was possible to perform a com-
parative analysis with allowance for the preceding
investigations. As can be seen from such a comparative
logging diagram presented in Fig. 4, the SAE signals
measured before and after the acoustic action outside
the layer corresponding to the collector are virtually the
same. At the same time, a strong anomaly in the signal
measured upon the acoustic action cloosely coincides
with the oil-saturated collector layer identified using
the conventional logging techniques.

The general algorithm of the collector saturation
characterization by means of the SAEL can be illustrated
by an example of identification of the oil- and water-sat-
urated collector layers in the same well (Fig. 5). This is
essentially a kind of water–oil contact profiling, which
is important in solving the geological problems
encountered in the field development.

According to the proposed algorithm, the SAE sig-
nals are measured before and after the acoustic action,
and then the absolute and relative SAE energy differ-
ences are calculated with allowance for the statistical
spread of the background. The background spread
depends on the general tectonic situation and exhibits
an individual character for each field, typically ranging
from a fraction of percent to about ten percents. Only
the SAE signals exceeding the background spread are
accepted as reliable (see “Oil” and “Water” curves in
Fig. 5). The oil saturation coefficient was calculated
using the “Oil” profile and normalized to the peak in
this curve, which was considered corresponding to the
absolute oil saturation coefficient determined by geo-
physical or other standard methods.

The data presented in Fig. 5 were obtained in well
no. 141 at the Mamontovskoe oil field in Western Sibe-
ria and compared to the results of geophysical investi-
gation using the well radiation data according to the ter-
minal and electrical casing logging. The logging was
performed over new (unperforated) intervals, so as to
provide for an objective comparison of various methods
of evaluation of the collector saturation. The results
fully confirmed the validity of the saturation assess-
ment based on the SAEL algorithm.
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Fig. 4. Logging profiles of well no. 20020 (Bavly field): NGL, neutron gamma logging; ARL, apparent resistance logging; GL,
gamma logging; BCG, background SAE signal before acoustic action; SAEL, seismoacoustic emission logging upon acoustic
action; the left-hand column shows the geological column with a depth scale (m) and indicates the oil-saturated collector.
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Fig. 5. Seismoacoustic emission logging algorithm: BCG, background SAE signal before acoustic action; SAE, seismoacoustic
emission signal upon acoustic action; Pabs, absolute SAE energy difference before and after acoustic action; Prel, SAE energy dif-
ference relative to background; Oil, positive energy difference minus statistical spread of background; Water, negative difference
minus statistical spread of background; Ksat, oil saturation coefficient calculated using the “Oil” curve and normalized to the max-
imum oil saturation according to independent geophysical data; the right-hand scale indicates the depth (m).

SAEL
Taking into account that the effects described above
were observed in all wells where the SAEL measure-
ments were performed and the results could be checked
by independent methods, we can conclude that the pro-
posed method is applicable to evaluation of the charac-
ter of the collector saturation. According to this
method, a reliable criterion for the assessment of the
collector saturation is offered by the difference between
the integral SAE energies determined before and after
the acoustic action upon the near-well zone.
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Abstract—A nonlinear equation is obtained for waves propagating in porous media of arbitrary consolidation
(relative rigidity) saturated with live (i.e., air-bearing) oil. The equation describes the evolution of fast and slow
Biot–Frenkel longitudinal acoustic waves propagating in both directions and allows one to analyze the reflected
waves and their interaction. For a wave of the second kind, the diffusion coefficient is determined. The depen-
dences of the dispersion and dissipation parameters on the rigidity of the oil pool structure and on the depth of
the oil pool occurrence are analyzed. © 2005 Pleiades Publishing, Inc.
The presence of gas bubbles (even in small propor-
tion) in the fluid of an oil deposit leads to a radical
change in the acoustical characteristics of the saturated
porous medium.1 Experiments [1] show that the pres-
ence of gas bubbles is the factor responsible for
changes in the reflection properties of saturated porous
media and in the sound absorption and wave velocity in
them.

The efficiency of the action of elastic vibrations on
oil pools is determined by the choice of the optimum
frequency [2] and by the intensity of the acoustic sig-
nal. In the experiments on the intensification of oil pro-
duction, the intensity of the elastic vibrations acting on
oil pools was on the order of I ~ 1–100 kW/m2 [3],
which corresponds to the pressure drop in an acoustic
wave δP = (2Iρ10c)1/2 ≈ 1–10 atm. Here, ρ10 and c are
the density of the skeleton of the porous medium and
the velocity of sound propagation in it, respectively.

The influence of gas bubbles on the acoustic proper-
ties of the medium was analyzed in [4–7] in the frame-
work of the linear theory. In [5], the higher derivative
with respect to time was taken into account in the rela-
tion between pressure and density of a gas-bearing
medium and nonlinear waves propagating in such
media were analyzed. In this analysis, pores were
assumed to be isolated and the effect of interphase
interaction caused by liquid flows was ignored. In [4],
nonlinear waves propagating in a fluid-saturated soft
ground were considered. Experimental data for pres-
sure waves in a porous medium saturated with a gas-
bearing fluid were reported in [8].

1 For oil with gas bubbles, we use the term “live oil,” as is custom-
ary in both Russian and English-language literature (in contrast to
still, i.e., degassed oil).
1063-7710/05/51S1-S $26.000061
In this paper, we analyze nonlinear equations that
describe the waves propagating in saturated porous
media in terms of the generalization [4] of the Biot–
Frenkel theory with allowance for the Biot apparent
mass and the Rayleigh equation for individual bubbles.
The gas bubbles determine to a great extent the com-
pressibility of the fluid itself.

To take into account the effect of gas bubbles, we
use the cell model approximation. In this model, the gas
content is determined from the relation

(1)

Here, R is the current size of a gas bubble; b is the cur-
rent size of the cell containing this bubble; n and N are
the numbers of bubbles in a unit volume and in a unit
mass of the fluid, respectively; and ρ2 is the density of
the mixture,

(2)

where ρL and ρg are the densities of the liquid and gas-
eous phases of the fluid, respectively.

The relation between the current R and equilibrium
R0 radii of a bubble and the pressure in the bubble is
determined by the formula

(3)

where the subscript 0 refers to the equilibrium state and
γ is the adiabatic index of the gaseous phase.

ϕ R3

R3 b3–
-----------------

4πR3

3
------------n

4πR3

3
------------ρ2N

ρL ρ2–
ρL ρg–
-----------------.= = = =

ρ2 1 ϕ–( )ρL ϕρg,+=

Pg0

Pg
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 
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  3 ρ20

ϕ0ρ2
-----------

1 ρ2/ρL( )–
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 © 2005 Pleiades Publishing, Inc.
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From Eq. (3), we derive the nonlinear dependence
of the pressure in the gaseous phase on the fluid density
variation:

(4)

(5)

Here, c0 and cL0 are the velocities of sound in the
fluid-with-bubbles mixture and in the liquid phase of
the fluid.

The parameters of the medium that vary in the
course of wave propagation can be taken into account
in the framework of the Rayleigh approximation,
which describes the dynamics of the bubble behavior
in a cell [8]:

(6)

Here,  is the velocity of the bubble surface and P is
the pressure in the liquid part of the fluid inside a cell;
in addition, 〈P〉  = P2 is the pressure in the liquid–gas
mixture, which is determined as the average pressure in
the cell:

(7)

Integrating over the cell volume and using Eqs. (1)
and (6), we obtain

(8)

Note that, in the framework of the cell model, we
have ϕ0 < 8/27. For greater ϕ0, it is necessary to take
into account the interaction between bubbles.

The system of equations that determines the kine-
matic and dynamic properties of the saturated porous
medium depending on the velocities v 1 and v 2 and den-
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Ṙ

P2
4π

3 b3 R3–( )
------------------------- P r( ) r.d

R

b

∫=

P2 P R( )
ρL0R0

3ϕ0ρ20
----------------–=

× 1
3
2
---ϕ0

1/3– 
  1

δρ2

ρ20
--------+ 

  ρ̇̇ 1
6ϕ0ρ20
---------------- ρ̇( )2+ ,

P R( ) Pg
4µ*

3ϕ0ρ20
----------------ρ̇ 1

δρ2

ρ20
--------+ 

  ,+=

µ* µ 1
m0R0

2

4k0
------------+ 

  .=
sities ρ1 and ρ2 of the phases and on the pressure in the
mixture δP2 can be written in the form

(9)

where c10 is the longitudinal velocity in the matrix,

Here, α, ωc, ν, k0, Kb, and β1 are the factor of apparent
mass of the liquid, the Biot frequency, the kinematic
viscosity of the liquid, the permeability of the medium,
and the bulk modulus and compressibility of the matrix,
respectively; ε is the arbitrary relative rigidity of the
matrix.

Equations (9) are derived without considering the
hydrodynamic nonlinearity. The operators of differenti-
ation with respect to time, ∂/∂t, and coordinate, ∂/∂x, are
replaced by the frequency and wave number operators,
ω = i∂/∂t and k = –i∂/∂x. In the linear case, this corre-
sponds to harmonic changes in the wave: exp(iωt – ikx).

We write the rheological equations for the variations
of the matrix density and the effective stress:

(10)

(11)

where cm0 = c10(1 – m0) is the longitudinal wave veloc-
ity in the matrix and exx is the strain of the porous
medium in the wave. We note that, in the case under
consideration, ε is not a small parameter.

We solve system of equations (9) in combination
with Eq. (8), which retains the nonlinear terms involved
in δPg (see Eq. (4)). In the low-frequency limit, when

ρ20m0
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ωc @ ω and α* = iωc/ω, we obtain a nonlinear equation
in ω, k, and δP2:

(12)

(13)

In the linear approximation in δP2/ρ20 , when the
right-hand side of Eq. (12) can be ignored, the expres-
sion enclosed in the square brackets becomes equal to
zero. The solution of the biquadratic equation in the
wave number k determines the spectrum of Biot waves
propagating in the porous medium saturated with a gas-
bearing fluid:

(14)

Here, c1(ω) is the velocity of the fast wave (wave of
the first kind, according to Biot), whose frequency dis-
persion is determined by the dependence of β(1) and β(2)

on c0(ω). The solution K– determines the diffusion
wave, which is a wave of the second kind (according to
Biot), whereas K+ is the wave of the first kind that is
observed in experiments at low frequencies.
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The wave equation can be obtained as follows: we
factorize the left-hand side of Eq. (12) by replacing the
expression in square brackets with the expression (k2 –

)(k2 – ) and by applying the substitution k =
−i∂/∂x, ω = i∂/∂t. Then, we obtain

(15)

Here,

is the low-frequency diffusion coefficient for the wave
of the second kind and

is the nonlinear factor.

Multiplying Eq. (15) by (ω) and replacing ω with
the operator of differentiation with respect to time, we
arrive at a sixth-order equation. This equation describes
the waves propagating in both directions, which is
important for considering the reflection and refraction
of waves.

Equation (15) is nonlinear for waves of both the first
and the second kinds. The nonlinear term corresponds
to the interference interaction of the waves of the first
and second kinds. When the right-hand side of Eq. (15)
is ignored, the solution to the equation is a superposi-
tion of solutions describing the waves of both kinds.

The equation can be simplified if we consider a
wave propagating in only one direction. We pass to this
case by using the following representations:

Then, Eq. (12) takes the form

(16)
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Fig. 1. Structure of the wave at different distances Z = (a) 0.25, (b) 1, (c) 2, (d) 4, and (e) 6; Re = 25 and σ = 4.48.
Expanding K+ in powers of ω, we obtain

Changing to the low space δk = –i∂/∂x and time ω =
i∂/∂t coordinates, we obtain a nonlinear differential

k K+ δk ωρ20c0
2ρ10

1– c+0
2– ωr

2 ω2 iωωcδ–[ ] .+≅–
equation for the wave of the first kind that propagates in
one direction:
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(17)

Introducing the variable

and changing to dimensionless variables u/u0 = u*,

where u0 =  is the scale of velocity and δP0

is the amplitude of the initial disturbance, we represent
Eq. (17) in the standard dimensionless form:

where t* = tc+ , x* = (x – tc+)/l0, l0 is the length scale
of the initial disturbance and σ and Re are the parame-
ters that determine the dispersive and dissipative prop-
erties of the medium in the presence of a travelling
acoustic wave. For a liquid with bubbles, the corre-
sponding parameters σL and ReL are determined by the
expressions

This form of expressions is convenient for analyzing
the influence of the porous skeleton on the character of
wave propagation in a saturated porous medium. First
if all, one can see that (σ/σL) ! 1 and Re/ReL ! 1; i.e.,
the presence of the porous skeleton deteriorates the dis-
persive–dissipative properties of the medium.

Let us make some estimates for a situation close to
field experiments. We take the intensity of the acoustic
action to be equal to I ≈ 1–100 kW/m2 [2], which yields
δP0 ≈ 1–10 atm; for the depth of the oil pool occurrence
H ≈ 102–3 × 103 m, we have P0 ≈ ρ10gH = 0.25 atm. Let
the bubble radius be R0 ≈ 10–4 m and the signal have the
characteristic frequency ν = 1/τ ≈ 102–103 Hz (its dura-
tion is τ). Then, l0 ≈ Ò1τ ≈ (1–10) m. We also accept that
γ = 1, ϕ0 ≈ 10–2–10–3, and ν* ≈ 10–(4–3) m2/s. Then,
σL ≈ (7–5) × 10(4–5)H–1/2 and σL/Re ≈ (1–1.7) × 10–4H–1/2.
Let us assume that ρ10/ρ20 = 2.5, m0 = 0.25 c10 = 3 ×

+
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103 m/s, and k0 ≈ 10–(10–12) m2. In this case, for the dis-

persion, we obtain σ ≈ σL00.4[1 + 7.5 × 103ε ]–1 =
(2.8–2) × 10(4–5)H–1/2[1 + 7.5ε/H]–1; σ/Re ≈ σL/ReL = 2 ×
108 k0 = 2 × 10–(2–4) m2.

The values of these parameters determine the condi-
tions of signal propagation. In the region where σ/Re = 1
or smaller, the wave propagates in the oscillating wave
packet mode (when σ < 14). We performed calculations
for the signal at σ = 4.48 and Re = 25 for different

dimensionless distances Z = (γ + 1)u0(x/2τ ) in the
dimensionless time T = t/τ (x is the distance from the
source and t is the arrival time of the wave front). In
Fig. 1, the black lines represent the wave profile at exci-
tation. Figure 2 shows the results of calculations for a
sequence of pulses separated by such time intervals
that, at distances corresponding to the formation of the
oscillatory mode, the wave causes continuous vibra-
tions of the oil pool and stimulates intense changes in
the parameters of the medium so as to enhance the oil
production.

When σ > 14, the initial signal breaks into solitons
(see, e.g., [9]), whose effect on the pool may be of a
shaking character. The number of shakes NS per cycle
can be approximately determined as NS ≈ σ/10. The
duration of the signal in each of the solitons τs can be
approximately estimated as the duration of the initial
signal τ divided by the number of solitons NS: τs =
10τ/σ = (4–5) × 10–(3–4)H1/2[1 + 7.5ε/H]. One can see
that the duration of a soliton increases with the depth H.
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Abstract—The interrelated elastic and inelastic fast and slow effects of acoustic wave interaction with cracks
are discussed from a unified point of view. Special attention is given to the dissipative manifestations of the
presence of cracks and to the effects of the symmetrically time-reversible slow dynamics observed for acousti-
cally activated cracks. These effects can be more pronounced than the conventionally discussed nonlinear elas-
tic effects (such as higher harmonic generation). Taking into account the main geometric features of cracks, a
thermoelastic mechanism is proposed to consistently interpret the experimental data. Consequences of the
results of these studies for seismics are discussed, and the possibilities of using the observed effects for nonlin-
ear acoustic diagnostics of cracks are discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Today, it is generally recognized that the presence of
cracks causes considerable changes in the linear and
nonlinear acoustic properties of solids (as compared to
perfect crystals and homogeneous amorphous materi-
als). In particular, one should note the high level of
acoustic nonlinearity and its nonclassical character
(e.g., nonmonotonic and fractional-power amplitude
dependences for the harmonics of the signal), an
enhanced absorption of elastic waves, the dependence
of dissipation on the wave amplitude and on the static
pressure on the sample, and pronounced effects of slow
dynamics (the memory for the preliminary acoustic
activation and the logarithmic behavior in time). When
the concentration of cracks is relatively high, the linear
elastic moduli of the material may also be noticeably
reduced, but, in the case of a low defect concentration,
the elasticity of the material remains almost the same
while the absorption and the nonlinear properties may
already be noticeably changed.

Evidently, all these manifestations are associated
with the relative “softness” of cracks, although some of
the conventional reasoning leaves a number of signifi-
cant questions open to discussion. The popular radio
engineering analogy is based on the statement that
cracks can be considered as diode-like elements: under
tensile stress, they are easily opened, and under com-
pression stress, they are closed, so that, under compres-
sion, the material behaves as an intact solid. For suffi-
ciently large strains, this interpretation of the nonlinear-
ity of cracks may be useful, but the question of how the
cracks can considerably change their state under mod-
1063-7710/05/51S1-S $26.000067
erate strains on the order of 10–6 or less remains open,
because, at such strains, the acoustic nonlinearity of the
material usually becomes noticeable. Many of the
defect models predict [1] that a crack can be almost
completely closed when the mean compression strain
in the material is approximately equal to the crack’s
aspect ratio d/L, where d and L are the characteristic
values of the opening (thickness) and the diameter of
the crack, respectively. Typical values of this ratio for
cracks, e.g., in rock, are within 10–4–10–3. For the
acoustic parameters (such as absorption or elastic mod-
uli) of cracked media, this leads to their pronounced
dependence on the applied pressure until the mean
strain of the material reaches 10–4–10–3. Then, the pres-
sure-dependent parameters flatten out approaching the
values typical of the homogeneous material, which tes-
tifies that the cracks are completely closed (see, e.g.,
[2]). An acoustic action on the material with moderate
mean strains ε ~ 10–6–10–5 also leads to noticeable
changes in the time-average elasticity and dissipation
(which can be observed by the changes in the parame-
ters of the resonance peaks of a weaker probing wave,
as described in, e.g., [3]). If we assume that the change
in the properties of the material in the presence of such
small strains is associated with the closure of the nar-
rowest cracks with the aspect ratio d/L ~ 10–6 or
smaller, we obtain that, for the millimeter or submilli-
meter cracks, which are typical of rock, their average
opening d is about the atomic size or smaller. This con-
clusion is physically meaningless and points to the
necessity to improve the aforementioned radio engi-
neering analogy.
 © 2005 Pleiades Publishing, Inc.
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We note that, in view of the enhanced dissipation of
elastic waves in cracked media, models that ascribe this
loss to the friction and/or adhesion hysteresis at the
crack surfaces were developed within the last 40 years
(see, e.g., [4, 5]). Such models give reasonable esti-
mates of losses for waves of sufficiently large ampli-
tudes, including the prediction of an almost constant Q
factor of a material in a wide frequency range. How-
ever, in the framework of these models, no explanation
can be found for the low-amplitude (linear) absorption.
The following citation from [4] clarifies the problem:
“…For the range of strains used in our experiments, an
upper limit of interface displacement [at a crack sur-
face] ranges from 10–12 cm in the low strain amplitude
experiments… The displacements are so small [3–4
orders of magnitude smaller than the atomic size] that
the friction characteristics of the interfaces should be
quite different from what would be observed in a mac-
roscopic friction experiment…” The atomic-force
microscopy data obtained in recent years demonstrate
the threshold character of the friction-hysteresis loss,
whose manifestation requires that the absolute dis-
placement at the contacting surfaces exceeds the atomic
size (see, e.g., [6]). On the other hand, the loss observed
in the experiment is much greater than that in homoge-
neous materials even for ultimately small wave ampli-
tudes, which points to the presence of a nonthreshold
mechanism of elastic energy dissipation by the cracks.

One version of such a nonthreshold thermoelastic
mechanism of loss in solid bodies with cracks was pro-
posed by Savage [7]. Unlike the insignificant role of
such a loss in a homogeneous solid, the presence of
cracks strongly increases the loss owing to the intro-
duction of the additional scale characterizing the inho-
mogeneity of thermoelastic fields and being much
smaller than the elastic wavelength. The frequency
dependence of this loss has a maximum which corre-
sponds to the coincidence of the thermal wavelength
with the characteristic diameter of a crack. The analysis

(a)

(b)

~L

d

L
~ 

( L

l << L

Fig. 1. Crack with wavy surfaces (a) without an internal
contact and (b) with an internal contact with the dimensions

 × l. When   l, the line contact transforms to a point
contact.
L̃ L̃
performed in [7] shows that such a mechanism predicts
reasonable values for the elastic wave dissipation in the
seismic frequency range. Assuming a wide distribution
of cracks in size, in this model it is also possible to
obtain an almost constant value of the Q factor in a
broad frequency range. However, since, in the frame-
work of this mechanism, the maximum energy loss rap-
idly decreases with decreasing diameter of the crack (as
the inverse cube of the diameter), the approximately
constant Q factor of rock observed in the frequency
range from hertz to megahertz can be explained only by
assuming the presence of unreasonably high concentra-
tions of extremely small cracks. In addition, to explain
the pronounced amplitude dependence of absorption in
cracked media for moderate strain amplitudes ε ~ 10−6,
the thermoelastic mechanism [7] requires the assump-
tion that high concentrations of cracks with unlikely
small aspect ratio d/L are present.

In this paper, we discuss the mechanism of acoustic
nonlinearity of cracks that eliminates the aforemen-
tioned discrepancies and allows us from a unified point
of view not only to consider the linear (small-ampli-
tude) absorption and its fast amplitude-dependent vari-
ations but also to take into account the effects of slow
dynamics. In addition, we present the results of experi-
ments on the nonlinear interaction of acoustic waves
with cracks in rods and plates. These results agree well
with the proposed interpretation.

BASIC GEOMETRIC FEATURES OF CRACKS 
AND THEIR PHYSICAL CONSEQUENCES

As was noted above, a crack is a planar defect of a
solid with a small aspect ratio d/L ! 1 (its typical val-
ues are d/L ~ 10–4–10–3). Hence, for a complete closure
of a crack, it is necessary to produce a mean strain in the
material on the order of d/L. This estimate weakly
depends on the details of the crack model [1] and
proves to be much greater than the typical acoustic
wave amplitudes ε ~ 10–6–10–5 at which the aforemen-
tioned nonlinear elastic and dissipative effects become
noticeable. Another important feature of cracks, which
follows from their images obtained with optical, elec-
tron, and atomic-force microscopies and agrees well
with the known models of crack formation, is that the
contacting surfaces of cracks are usually wavy rather
than flat (i.e., their shape resembles a series of ridges
and valleys rather than a set of local peaks and dips).
When the crack is formed, these initially matched wavy
surfaces not only move in different directions along the
normal but also are shifted in the tangential direction
forming internal contacts. Because of the wavy curva-
ture of the crack surfaces, the resulting contacts are not
of a point character but are extended in one direction, as
shown in Fig. 1 [8]. It is essential that, in the vicinity of
a contact, the local distance between the crack surfaces

(or their mutual penetration)  is much smaller than thed̃
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average distance d of the crack opening. Owing to this
geometry, the vicinity of the contact is more sensitive to

external stress (by a factor of about d/  @ 1) than the
crack as a whole. Therefore, the state of the contacts in
a crack may considerably change in the presence of a
relatively weak mean strain in the medium: ε ~ 10–6–
10–5 (which is much smaller than the strain ε ~ d/L ~
10–4…10–5 necessary for a complete closure of the
crack).

In connection with this, a question arises as to
whether these contacts, which are very small compared
to the whole crack, are capable of absorbing a consid-
erable amount of acoustic energy. For the manifestation
of the commonly discussed friction and adhesion losses
at the contacts, it is necessary (as was noted above) that
the displacements of the surfaces in the contact region
be greater than the atomic size a. For a crack with a
characteristic diameter L, the mean strain ε (be it com-
pression or tension) produced in the medium may cause
a maximum displacement of the contacting surfaces of
the crack (in either the tangential or the normal direc-
tion) on the order of ∆ ~ εL [8–10]. As noted in [9], this
estimate does not depend on the details of the crack
model and agrees well with the above statement that an
mean compression strain of about the aspect ratio of the
crack, ∆ ~ d/L, causes the displacement of contacting
surfaces ∆ ≈ d, which results in a complete closure of
the crack. On the other hand, the condition that ∆
exceeds the atomic size a (∆ > a) determines the thresh-
old mean strain εth > a/L, below which the displacement
of the surfaces occurs on a subatomic scale. For the typ-
ical value a ~ 3 × 10–10 m and crack size L ~ 10–3 m, the
threshold mean strain is εth ~ 3 × 10–7 (which agrees
well with the threshold of the amplitude-dependent loss
observed experimentally). Below this value, the adhe-
sion and friction losses on the crack surface cannot be
activated.

At the same time, even for a much smaller strain, a
channel for a rather effective dissipation of the acoustic
wave energy is formed owing to the locally enhanced
thermoelastic loss. This possibility was demonstrated
in [7] with the use of the exact solution obtained for an
elliptic crack. Indeed, in the presence of stress and
strain inhomogeneities (due to the microstructure of the
material), the gradients of temperature variations
induced by an elastic disturbance are determined not by
the elastic wavelength but by the much smaller inhomo-
geneity scale L or by the thermal wavelength δ itself
[11]. When the crack size L and δ coincide, the elastic
energy loss at the crack as a whole is maximum [7]. A
similar result can be obtained without specifying the
crack model in detail, by estimating the temperature
gradients and the corresponding losses in the vicinity of
the crack on the basis of the approach used in [11] in
application to losses in polycrystals. When applied to a
crack, this approach yields the following approximate

d̃
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expressions for the elastic energy loss W per period for
the low-frequency limit (L ! δ), the high-frequency
limit (L @ δ), and the vicinity of the relaxation maxi-
mum (L ~ δ) [8]:

(1)

(2)

(3)

where ω is the circular frequency, T is the temperature,
α is the coefficient of volumetric thermal expansion, K
is the bulk modulus, ρ is the density, C is the specific
heat, ε is the mean strain in the medium, κ is the thermal
conductivity coefficient, and ωL is the characteristic
thermal relaxation frequency corresponding to the size
L of the crack. For example, for L ~ 1 mm, the relax-
ation frequency ωL falls within (10–1–1) rad/s for most
types of rock and metals. In determining the low-fre-
quency loss (1), by analogy with [11], we took into
account that the crack size L is the characteristic scale
within which the elastic stress changes from the mean
value σ to zero at the free boundaries of the crack. In
deriving the high-frequency asymptotics (2), we used
the fact that different crack models identically predict a

tip stress concentration of the form σtip ~ σ/  [12]
(where the distance r is measured with respect to the
crack tip). Precisely this region gives the main contribu-
tion to the high-frequency dissipation. Expression (3) for
estimating the maximum loss is obtained from the con-
dition of equality of the low- and high-frequency
asymptotics, which is achieved when the characteristic
thermal wavelength coincides with the size of the
defect. Solutions (1)–(3), being independent of the
details of the crack model, agree well with the exact
solution [7] obtained for elliptic cracks.

To obtain similar estimates of the thermoelastic loss
at the internal contact, it is necessary to take into
account the stress distribution between the contact itself
and the arc stiffness of the crack as a whole. For the
contacts, which are soft compared to the crack rigidity,
this leads to the situation where the stress σc at the con-
tact exceeds the mean stress σ by a factor of about
L/l  @ 1; i.e., σc ~ σ(L/l) (but not proportional to (L/l)2,
as assumed in, e.g., [5]). The region of the near-contact
stress localization penetrates into the material to a
depth of about the contact width l ! L [13]. (We note
that the aforementioned features of the stress distribu-
tion do not depend on the details of the crack and con-
tact models.) Then, the application of the approach
used in [11] leads to the following expressions for the

WLF 2πωT α2K2/κ( )L5ε2, ω ! ωL κ / ρCL2( ),≈≈

WHF 2πT α2K2/ρC( ) κ / ρCω( )[ ] 1/2L2ε2, ω @ ωL,≈

Wcrack
max 2πT α2K2/ρC( )L3ε2, ω ωL,≈≈

r/L
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thermoelastic energy loss per period at a contact of

length  and width l:

(4)

(5)

(6)

Structurally, these expressions resemble Eqs. (1)–(3),
although the high-frequency asymptotics of the contact
loss is ~ω–1, which differs from ω–1/2 obtained for nar-
row cracks. This is caused by the difference in the char-
acters of stress concentration at the contact and at the
crack perimeter, near which the high-frequency loss at
the crack as a whole is localized: the latter is described
by Eq. (2) obtained under the condition δ ! L. The
comparison of Eqs. (3) and (6) for the loss in the vicin-
ity of the relaxation maximum leads to a result that is
unexpected at a first glance: for contacts with the length

 ~ L, the maximum loss at the crack as a hole and at
a narrow contact with a much smaller area prove to be
on the same order of magnitude, although the relax-
ation maximum for the narrow contact l ! L may lie at
a point whose coordinate on the frequency axis is 4–6
orders of magnitude greater and fall in the kilohertz or
even megahertz frequency range. Expressions (1)–(6)
for losses per period at a single crack or at a contact
make it possible, for a given defect concentration, to
estimate the damping decrement in the medium by the
known relation θ = W/(2Welast), where Welast is the elastic
energy in the wave per unit volume of the material and
W is the energy loss per period in the same volume.

Consequences for the Small-Amplitude Absorption

The expressions presented above point to the neces-
sity to reconsider the popular assumption that the ther-
moelastic loss is insignificant for, e.g., seismic waves.
For small-amplitude waves (ε ≤ 10–7–10–9), the afore-
mentioned thermoelastic loss mechanism may even
predominate. From Eqs. (1)–(6), it follows that cracks
with several soft contacts may cause a noticeable ther-
moelastic absorption in a frequency range extending
over several orders of magnitude (from the relaxation
frequency of the crack to the relaxation frequencies of
the contacts). Consider a crack of size L containing a

single contact of width l ! L and length  ~ L. This
contact, in the vicinity of its relaxation frequency ωl,
causes a dissipation that is approximately equal to the
dissipation caused by N = (L/l)3 @ 1 microcracks of size
l with the same relaxation frequency [7]. The equivalent
number of microcracks N may be great: for the typical
ratio L/l ~ 102 observed for real cracks, this number is
N ~ 106. In view of the wide distribution in size of

L̃

WLF 2πωT α2K2/κ( )l2 L̃L2ε2,≈

ω ! ωl κ / ρCl2( ),≈

WHF 2π/ω( )κT αK /Cρ( )2 L̃ L/l( )2ε2, ω @ ωl,≈

Wcont
max 2πT α2K2/ρC( ) L̃L2ε2, ω ωl.≈≈

L̃

L̃

cracks in real rocks, for realistic crack concentrations,
the aforementioned mechanism predicts a weakly vary-
ing damping decrement in a wide frequency range,
from fractions of hertz to ultrasonic frequencies. This
result agrees with [7], but it was obtained without
assuming unreasonably high concentrations of microc-
racks to account for the high-frequency loss.

The Possibility of Observing Nonlinear Effects
at Moderate Amplitudes

Another important consequence of the above con-
sideration is the conclusion that moderate mean strains
ε ~ 10–6–10–5, which often are too small to cause any
noticeable changes in the state of the crack as a whole,

can considerably change the dimensions l and  of
individual contacts between the crack surfaces.
According to Eqs. (4)–(6), these changes may notice-
ably affect the dissipation of a weak probing wave
(even if the adhesion-hysteresis and friction losses
remain insignificant for this wave). Specifically, this
mechanism (possibly, along with other mechanisms of
amplitude-dependent dissipation) predicts that, in
cracked media, favorable conditions may be formed for
the acoustic analog of the Luxembourg–Gorki effect,
which was one of the first manifestations of the nonlin-
ear interaction of waves observed experimentally [14].
The effect consists in the amplitude modulation transfer
from one intense radio wave to another harmonic wave
as a result of their interaction in the ionospheric plasma
(this effect was first detected in 1933 for the radiation
of high-power radio stations in Luxembourg and in
Gorki). In this effect, the presence of components with
frequencies ω1 ± Ω in the spectrum of the modulated
intense wave leads to the appearance of modulation
components with frequencies ω2 ± nΩ (n = 1, 2, …) in
the initially harmonic wave of frequency ω2. Such a
cross-modulation is caused by the changes induced at
low frequencies nΩ in the absorption of the probing
wave (because of the nonlinearity of the plasma). Small
variations in the propagation velocity were insignifi-
cant for this effect [15]. (A similar effect of sound-by-
sound amplitude modulation was observed in a field
experiment for the interaction of seismoacoustic waves
in a sandy ground with a dissipative acoustic nonlinear-
ity [16].) Below, we present the results of observation
of the elastic wave interaction in samples with single
cracks, including the cross-modulation of the Luxem-
bourg–Gorki type and the effects of the “slow dynam-
ics” of acoustically activated cracks, for which the
aforementioned features of cracks and contacts play an
important role.

L̃
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EXPERIMENTAL RESULTS
AND THEIR INTERPRETATION

Observation of the Analog of the Luxembourg–Gorki 
Cross-Modulation for Elastic Waves at Cracks

The experiments (including the acoustic analogue of
the Luxembourg–Gorki effect [8, 17]) were performed
with the interaction of longitudinal resonance modes in
glass rods (8 mm in diameter and 25–30 cm in length)
containing one to three thermally initiated curved
cracks with a size L of about 2–4 mm. The schematic
diagram of an experiment is shown in Fig. 2. In these
experiments, the amplitudes and frequencies of acous-
tic waves were measured with accuracies of ±0.01 dB
and ±0.5 Hz, respectively. Figure 3a shows an induced
modulation spectrum observed for the probing wave
with the amplitude ε ~ 10–8 under the effect of an
intense pumping wave that was amplitude-modulated
with a frequency of several hertz. In the reference sam-
ple without cracks, the level of the modulation compo-
nents (because of the background nonlinearity of the
material and the equipment) was 25–40 dB lower than
that in the sample with cracks. The resonance curves
obtained for the probing wave with different levels of
intense sinusoidal pumping at another mode (Fig. 3b)
clearly demonstrate that the pumping primarily affects

⇒

1

εp ~ 10–6–10–5

2

3

4

5 6

7

ε ~ 10–9–10–8

⇐

Fig. 2. Schematic diagram of the experiment: (1) loading
mass with a piezoelectric transducer, (2) modulated pump-
ing with εp ~ 10–6–10–5, (3) a glass rod 8 mm in diameter
and 30 cm in length, (4) cracks made by a thermal shock,
(5) accelerometer and the source of the probing wave with
ε ~ 10–9–10–8, (6) the shape of the nonmodulated transmit-
ted probing signal, and (7) the shape of the modulated
received probing signal.
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the Q factor of the resonance while the change in its
position plays a secondary role. The damping decre-
ment of the probing wave and the levels of the modula-
tion components depend (nonmonotonically in many
cases [17]) on the pumping amplitude, but, with respect
to the amplitude of the weak probing wave, these levels
are linear. Quantitative estimates by Eqs. (4)–(6) for
two or three cracks of millimeter size with internal line
contacts show that, for the probing wave, this mecha-
nism may cause a change of about 10% in the Q factor
of the sample under study (with the initial value Q ~
300–350) as a result of “turning on and off” the contacts
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Fig. 3. Experimental observation of the Luxembourg–
Gorki effect for acoustic waves. (a) Modulation spectrum
of the probing wave at the second mode of the resonator
(F = 11 kHz) with the amplitude ε ~ 10−8 under the effect
of the 3-Hz-modulated intense (εp ~ 10–6) pumping at the
first mode (F = 3.6 kHz); the inset shows the relative levels
of the pumping and probing waves. (b) Resonance curves of
the probing wave for different levels of the pumping wave;
the curves demonstrate more than 10% variations of the Q
factor for the probing mode in contrast to the virtually
invariable resonance frequency; the inset shows the same
curves in the normalized form.



S72 ZAŒTSEV et al.
by the pumping wave. The decisive role of the crack for
this effect was demonstrated by independent experi-
ments with a glass plate that had a cut into which a
metal plate could be inserted (and then eliminated) to
form an artificial cracklike defect (Fig. 4). The results
of this reference experiment correlate with the results
of other experiments with real cracks, because they
show that, for the effects under investigation, the con-
tribution of the possible manifestations of nonlinearity
at the points where radiators and receivers are attached
to the sample (as well as the nonlinearity of the trans-
ducers themselves) is insignificant. Indeed, in the com-
parison of samples with real cracks and without them,
the attachment areas inevitably were different and, in
principle, they could be responsible for the difference
in the results. In the experiment with the artificial defect
(controlled by the plate inserted into the cut), the sam-
ple under study, together with the radiators and the
receiver, was the same and, hence, the observed nonlin-
ear effects were definitely associated with the manifes-
tation of the nonlinearity of the cracklike defect.

Induced Transparency and Induced Dissipation

To understand the following experimental results
[18] obtained for resonators of the aforementioned
type, it is necessary to remember that the frequency
corresponding to the maximum thermoelastic absorp-
tion, ω = ωl ≈ D/l2 (D = κ/ρc is the thermal diffusivity),
at the internal contact of the crack is determined by the
contact width l, and that, when l is on the order of one
or several microns, this frequency estimated for glass
falls into the kilohertz frequency range. As was noted

–90

47400 47600

Spectral amplitude, dB

Frequency, Hz
47800

–100

–80

–70

–60

–50

–40

Fig. 4. Example of the Luxembourg–Gorki cross-modula-
tion in a glass plate with an artificial cracklike defect in the
form of a cut with an inserted plate (the dashed line refers
to the cut with the inserted plate, and the solid line, to the
cut without the plate).
above, a moderate mean strain ε ~ 10–6–10−5 can con-
siderably change the width of the contact in the crack,
which is also true when the action is of an oscillating
character. For example, for a contact with the equilib-
rium compression strain ε0 under the effect of the stress
σ0, where these quantities are related by the Hertz law

ε0 ~  [11], an oscillating stress σw comparable to σ0

may considerably reduce the mean compression of the
contact 〈ε〉 , as schematically illustrated in Fig. 5. It
should be noted that such a demodulation (rectification
of oscillations) had been observed for both the macro-
scopic contact nonlinearity of contacting surfaces [19]
and the so-called ultrasonic mode of atomic-force
microscopy [20]. A consequence of such an average
decrease in the contact width should be a shift of the
relaxation maximum ωl of thermoelastic loss toward
higher frequencies (see the inset in Fig. 4). As a result
of this upward shift of ωl, the Q factor of the resonator
for oscillations with frequencies below ωl should
increase while, for higher frequency modes, to which
the relaxation maximum has become closer, the Q fac-
tor may decrease. Among several samples with cracks
(the parameters of contacts in the cracks were for the
most part random), we succeeded in finding a sample
that clearly demonstrated the aforementioned behavior.
From Fig. 6, one can see that, in this sample, at the first
longitudinal resonance lying below 4 kHz, the Q factor
increased (from 98 ± 1 to 117 ± 1) under the effect of
the pumping field whose frequency was an order of
magnitude higher, whereas at the next resonance
observed at about 10 kHz (as well as at other higher fre-
quency resonances), the Q factor simultaneously
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Fig. 5. Schematic representation of the softening of a Hert-
zian contact by an oscillating action because of the asymmet-
ric dependence of its compression on the applied elastic
stress. The unperturbed static equilibrium position A = (σ0,
ε0) and the shifted position B = (〈σ〉 , 〈ε〉 ). In the case of the
contact between the surface reliefs in the form of hemi-
spheres of radius R that move a distance of 2∆ closer to each
other under the action of a force F, the compression strain is
ε0 = ∆/R and σ0 = F/R2, where these quantities are much
smaller than the local strain and stress at the point of contact.
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decreased (from 154 ± 1 to 115 ± 1). In contrast to the
aforementioned opposite changes in the Q factors, the
resonance frequencies of all observed peaks were
simultaneously shifted downward, as one would expect
because of the “softening” of the contact with an aver-
age decrease in its width.

A further increase in the wave amplitude σw > σ0

should switch the contact to the clapping regime. For
this case, the Hertz law predicts that the average rigid-
ity, as well as the contact width, should again increase.
Then, one should expect a nonmonotonic behavior of
the parameters of the probing resonance with increas-
ing pumping amplitude: a tendency for an increase in
the resonance frequency and an increase in the Q factor
of the resonance after its decrease at smaller pumping
amplitudes. All these features were also observed in the
experiment, which can be seen in Fig. 7. The inset in
Fig. 7 represents the calculated (by the Hertz model)
variation of the period-average compression of the con-
tact 〈ε〉  as a function of the oscillating stress amplitude
σw normalized to the static stress σ0.
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Fig. 6. Resonance curves of the probing wave simultaneously
measured at different modes under the effect of pumping. The
mode at the frequency F = 3.7 kHz exhibits a dissipation
decrease, whereas, for the mode with F = 11.5 kHz, the loss
increases. Unlike the opposite changes in losses, the fre-
quencies of both modes are shifted downward. The pump-
ing level (at F = 40–50 kHz) is ε ~ 10–6.
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The Slow Dynamics of Dissipative and Elastic 
Properties with a Logarithmic Time Dependence

The effects of the slow, logarithmic in time, dynam-
ics are characterized by the remarkable similarity for a
wide variety of materials with imperfect (defect) struc-
tures (a logarithmic creep, ageing, magnetic relaxation,
etc.). Recently, a relaxation characterized by a logarith-
mic time dependence was observed in acoustically acti-
vated rock [21]. As a rule, such a behavior is ascribed to
the complex relaxation dynamics of systems with a
wide distribution of certain energy barriers characteriz-
ing the microstructural bonds in the material. The acti-
vation breaks these bonds, which later gradually
recover under the effect of temperature fluctuations.
The logarithmic-type relaxation is formed for a certain
broad spectrum of these energy barriers, whose nature
and relation to the microstructure of the material
remain open to question [21]. Such a mechanism evi-
dently implies a considerable asymmetry of the activa-
tion and relaxation processes (i.e., a fast breaking of
bonds and a slow recovery). Note that, in addition to
rocks with multiple defects [21], a slow relaxation and
memory effects were observed for an ultrasound-acti-
vated single crack [22], for which the threshold of para-
metric generation of subharmonics and higher harmon-
ics of the “reading wave” retained for several minutes a
memory for the action of the other intense pumping
wave.

In our experiments with samples containing single
cracks, a slow drift of acoustic parameters was also
observed. To reveal the features of these effects, the
shape of the resonance peaks of the weak probing wave
ε < 10–8 was recorded. Its behavior was studied for the
first time both in the course of the activation of the sam-
ple by the pumping wave at another frequency (with
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typical strains ε ~ 10–6–10–5) and after the pumping was
switched off. The experiments revealed a slow dynam-
ics for both dissipation (the Q factor of the probing res-
onance) and elastic properties (the position of the reso-
nance peak). Figure 8 presents the corresponding
dependences of the variations of the probing resonance
maximum (proportional to the variations of the Q fac-
tor) and the shift of its position on the frequency axis,
δf/f0, as functions of the logarithm of the time interval,
which was measured beginning from the instant of
switching on or off the pumping wave. The logarithmic
behavior of a single crack proved to be similar to the
slow dynamics of the ensemble of numerous cracks in
a rock sample [21]. However, an unexpected result was
the symmetric reversibility of the logarithmic behavior;
i.e., the slopes of the dependences obtained in the
course of the activation and after its termination proved
to be identical with a high accuracy. This does not agree
with the hypothesis of breaking and recovery of some
hypothetical bonds (inside the crack). At the same time,
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in the context of the above discussion of the crack fea-
tures, the reversible logarithmic behavior immediately
follows from the locally cylindrical symmetry of heat
flow propagation in the vicinity of the crack. Precisely
the quasi-cylindrical geometry is characteristic of the
areas of intense heat generation in the regions of stress
concentration along the perimeter of the crack and at
the line contacts, whose close-to-cylindrical character
was independently determined from other consider-
ations (see above). The deformation of the contacts
under thermal stresses should lead to consequences
similar to the “fast” effects governed by the action of
elastic stresses on the contacts and should result in their
displacements on the nanometer scale. From simple
estimates, one can find that thermal strains can reach
comparable values at the expense of temperature inho-
mogeneities on the order of ∆T ~ 0.1–1 K at the crack.
Indeed, for a typical coefficient of thermal expansion
α ~ 3 × 10–6 K–1 and a typical crack size L ~ 3 × 10–3 m,
the resulting thermal displacement is αL∆T ~ 10–9–10–8 m.
Direct observations [23] of the surfaces of activated
cracks by infrared cameras confirmed the possibility of
their heating several degrees and higher. The logarith-
mically slow and time-reversible character of the local
heating ∆T of the center of the heat generation region in
the two-dimensional (cylindrical) geometry immedi-
ately follows from the solution of the heat conduction
equation ∂T/∂t – D∆⊥ T = Q/(ρC) with a cylindrical
source Q(r, t) localized in a region of radius r ≤ l. For
heating, the asymptotically logarithmic solution has the
form [18]

(7)

where k is the spatial harmonic of the Fourier transform
QF(k) of the cylindrical source with respect to the radial
coordinate. This solution is applicable to times up to t ≤
L2/D. Above this limit, the heat flow from the crack as
a whole begins propagating as a heat flow from an
object localized in three-dimensional space, and the
local heating becomes saturated. For the subsequent
cooling after switching off the source Q(r, t) at the
instant t = t0 (t0 ≤ L2/D), we again arrive at an asymptot-
ically logarithmic solution:

(8)

which is valid for l2/D ! t – t0 ≤ t0 and has the same coef-
ficient multiplying the logarithmic factor as in Eq. (7).
Thus, the observed symmetry of logarithmic activation
and relaxation (Fig. 8) and the observed saturation of
the logarithmic behavior at activation (within expected
times on the order of hundreds of seconds for glass
samples) are convincing arguments in favor of the pro-
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posed thermoelastic mechanism of the logarithmic
slow dynamics.

The universality of this behavior was confirmed by
the experiments with a bulk (36 × 7 × 6 cm) steel sam-
ple containing a single crack about 1 cm in size. Figure 9
shows the symmetric and logarithmic-in-time dynam-
ics observed for one of the resonances of the probing
wave in this sample. Figure 9a displays a sequence of
amplitude–frequency curves recorded for two neigh-
boring resonances at a step of 1 s in the course of the
acoustic activation of the sample by the pumping wave
and the subsequent relaxation (after the pumping was
turned off). Figure 9b shows the time dependences of
the amplitude of one of the resonances (F = 56408 Hz)
with the time measurements starting from the instants
of turning on and off the pumping wave for the respec-
tive curves. In Fig. 9, as in Fig. 8 for the glass sample,
the symmetry of the activation and relaxation processes
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
is clearly pronounced. The characteristic times of the
slow processes in Fig. 9 are smaller than those in Fig. 8,
which agrees well with the proposed thermoelastic
mechanism (in view of the difference in the thermal
conductivities of glass and steel).

Observation of a Memory in the Nonlinearity
of a Crack

The slow dynamics considered above is actually
related to the variations of the linear acoustic properties
of the sample with a crack (i.e., its resonance frequen-
cies and Q factors). Attempts to detect slow effects in
the nonlinear response (to compare our results with
[22]) were hindered by the fact that the variations of
nonlinearity-generated harmonics were determined to a
considerable extent by variations of the sample reso-
nance parameters, which masked the changes in the
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nonlinearity of the crack. Using the Luxembourg–
Gorki cross-modulation effect, for one of the glass res-
onators with a crack, we managed to demonstrate the
memory associated with precisely the nonlinearity of
the crack for the preceding acoustic activation. Figure 10
shows the cross-modulation spectra of the probing har-
monic wave with frequency f2 = 11015 Hz that were
obtained immediately after turning on the intense mod-
ulated pumping wave (with a carrier frequency f2 ≈
3800 Hz and a modulation frequency F = 2 Hz) for the
sample preliminarily being “at rest” and the spectra
obtained for the same sample several minutes after the
pumping was turned on. One can see a considerable dif-
ference between these spectra in the level of the second
modulation component (more than 15 dB), which testi-
fies to a significant change in the character (parity) of
nonlinearity. At the same time, the amplitude variations
of the fundamental harmonic and other components
were insignificant: this suggests that the linear charac-
teristics of the given resonance varied only slightly and,
therefore, could not selectively affect the second-order
components.

The possibility of a change in the character (parity)
of nonlinearity agrees well with the aforementioned
nonmonotonicity of the dependence of the average con-
tact width on the pumping amplitude (see the inset in
Fig. 7). As long as the amplitude of the modulated (with
frequency F) pumping does not pass through the mini-
mum of this dependence, the modulation of the average
contact width mainly contains the F harmonic. After
passing through the minimum, the induced increase in
the contact width occurs twice within the modulation
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Fig. 10. Luxembourg–Gorki cross-modulation spectra of
the probing wave for the sample that was preliminarily at
rest (the dashed line) and for the same sample that was
under the action of the pumping wave for several minutes
(the solid line). The noticeable selective changes in the level
of the second-order modulation components testify to the
change in the character (parity) of the nonlinearity of the
crack and to its memory for the activation.
period, which leads to a sharp growth of the 2F har-
monic in the contact modulation. Such a passage of the
“operating point” through the minimum may be caused
by a change in the pumping amplitude itself or a change
in the initial contact compression due to thermoelastic
effects at constant pumping amplitude.

CONCLUSIONS

In the series of experiments with glass and steel
samples with cracks, we studied such effects as the
time-reversible slow logarithmic dynamics of the elas-
tic and inelastic properties of acoustically activated sin-
gle cracks, as well as a number of important features of
“fast” nonlinear effects: the modulation spectrum trans-
fer of the Luxembourg–Gorki type due to the interac-
tion of acoustic waves at the cracks and the slow
dynamics of this effect; the nonmonotonic amplitude
behavior and the manifestation of the crack state
changes of opposite character for different frequencies
of the probing wave (i.e., the simultaneous observation
of the induced clarification for some probing modes
and absorption for other probing modes). The mecha-
nism of acoustic wave interaction with cracks that was
proposed to explain the experimental results is at vari-
ance with the commonly accepted idea that the role of
thermoelastic effects is insignificant, including the case
of the linear (small-amplitude) absorption of elastic
waves in rock. The results obtained above give an
insight into the physics of both fast and slow wave pro-
cesses in cracked media. The observed nonlinear acous-
tic effects, which exhibit a high sensitivity to the pres-
ence of cracks in solids, offer considerable promise for
the development of new nonlinear-modulation methods
for detecting cracks and cracklike defects.
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Abstract—Results of experimental and theoretical studies of acoustoseismic wave fields generated by surface
seismic vibrators are presented. In experiments with high-power seismic vibrators operating in a frequency
range of 5–10 Hz, acoustic waves were recorded at distances up to 50 km from the source. The long-range sound
propagation from seismic vibration sources was observed in a near-surface waveguide arising due to tempera-
ture inversion. The effect of the acoustoseismic induction, i.e., excitation of surface seismic waves by the acous-
tic wave arriving from the vibrator, was also detected. The results of mathematical modeling of the acoustoseis-
mic field generation by an operating seismic vibrator are presented. They include the modeling of the radiation
of a harmonic acoustic wave’s by the vibrator, its trapping by the near-surface waveguide, the long-range low-
frequency acoustic wave propagation in the presence of the waveguide, and the induction of a surface seismic
wave by the arriving harmonic acoustic wave. It is shown that a seismoacoustic wave propagating at the bound-
ary between the elastic earth and the atmosphere is an analog of the Stonely wave that appears in the presence
of a near-surface low-temperature layer in the atmosphere. © 2005 Pleiades Publishing, Inc.
Seismic sources operating on the day surface in con-
tact with two elastic media, namely, the Earth and the
atmosphere, generate seismic and acoustic waves inter-
acting at the boundary between these media in the
course of their propagation. Many publications are
devoted to studying acoustoseismic wave fields. These
publications consider both the theoretical aspects of the
generation and propagation of waves from different
sources and the results of experiments related to moni-
toring of atmosphere, seismic prospecting, and vibra-
tional probing of the Earth. It is well known that surface
explosions give rise to seismic waves, as well as to an
intense sound wave propagating along the free surface
and inducing a surface seismic wave [1, 2]. The latter is
recorded in seismograms with the arrival times equal to
the travel time of the sound wave between the explosion
and the recording point. Theoretical works [3, 4] con-
sidered the processes of acoustic wave radiation by a
harmonic source of a force acting on the elastic half-
space. The energy estimates were obtained, which
showed that the acoustic radiation of real vibrators
makes a small part of the seismic radiation energy, and
the reception of the acoustic radiation at distances of
tens of kilometers was assumed to be impossible.

1. EXPERIMENTAL INVESTIGATIONS
OF ACOUSTOSEISMIC FIELDS

OF VIBRATION SOURCES

The excitation of acoustic waves by a vibration
source and their long-range propagation was first
1063-7710/05/51S1-S $26.000078
detected in geophysical experiments with a GRV-50
hydroresonance vibrator, which were carried out by the
Institute of Computational Mathematics and Mathe-
matical Geophysics, Far East Division, Russian Acad-
emy of Sciences, near Kamenka, Novosibirsk Region
[5, 6]. At a distance of 20 km from the vibrator, three-
component seismometers recorded the surface seismic
waves induced by the arriving acoustic wave (in what
follows, these waves are called seismoacoustic waves).
Later, this effect was observed in experiments with
high-power low-frequency vibrators, TsV-100 and
TsV-40, at distances as far as 50 km [7]. In contrast to
the seismic waves, which have constant amplitudes and
arrival times, the seismoacoustic waves had large
amplitude variations (down to complete disappearance)
and noticeable variations of the arrival times (units of
seconds).

The radiation of the acoustic waves by the high-
power seismic vibrators is caused by the fact that, under
the operation of a vibrator at infrasonic frequencies, the
ground surface around the source with an area of 100–
200 m2 oscillates as a large-scale membrane of an infra-
sonic acoustic transmitter. These oscillations are syn-
chronous with the variation of the signal frequency
radiated by the vibrator and generate acoustic waves in
the atmosphere with the same law of frequency varia-
tion (sweep-signals) as that in the generated seismic
waves.

The propagation of the acoustic waves of infrasonic
frequencies (5–10 Hz) over distances of several tens of
kilometers is possible due to the refraction of sound
 © 2005 Pleiades Publishing, Inc.
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waves in the atmosphere. Two mechanisms of this phe-
nomenon are known: temperature inversion in an air
layer near the earth surface and the presence of wind
whose velocity increases with height. In the experi-
ments carried out in calm summer weather, when seis-
moacoustic waves were recorded, a rapid decrease in
temperature was observed near the ground at night,
which resulted in the formation of a near-surface
waveguide. The second mechanism of refraction,
related to the presence of wind, appeared in experi-
ments carried out along the Bystrovka–Klyuchi track (a
distance of 50 km). In this case, appearing and disap-
pearing seismoacoustic waves correlated with the wind
direction from the vibrator or toward the vibrator [7].

The acoustoseismic wave fields generated by the
high-power vibrators were investigated in detail during
the work on the profile recording of vibrators and
explosions from quarries of the Kusbas Basin in the
field season of 2001. For temporal and coordinate ref-
erencing of the recording systems and the sources, the
GPS system was used, which made it possible to
exactly determine all distances, both between the vibra-
tor and the seismic array and between the sensors in the
array, and, in particular, the orientation of the seismic
arrays of the recording systems.

The works were carried out using a TsV-100 vibra-
tor (the vibroseismic test site, Far East Division, Rus-
sian Academy of Sciences, at Bystrovka, Novosibirsk
Region) and a VIRS-K recording system. Seismoa-
coustic waves were recorded at three points of the pro-
file: p. Mayak (the distance from the vibrator 28.5 km),
p. Stepnoi-2 (31.1 km), and p. Evsino (40.8 km). In all
cases, we used a linear seismic array of five three-com-
ponent SK-1P seismometers with the X component ori-
ented along the array, Y component oriented across the
array, and Z component along the vertical; the distance
between the sensors was 200 m. At different points of
recording, the arrays were differently oriented with
respect to the vibrator. At p. Mayak, the direction of the
array deviated from the vibrator azimuth by 8 degrees
and at p. Stepnoi, by 38 degrees. The layout of the seis-
mic array arrangement is shown in Fig. 1.

The three-component vibration seismograms were
obtained at all points of recording and contained two
groups of waves: seismic waves and seismoacoustic
ones. Figure 2 exhibits seismograms and their frag-
ments for p. Mayak (a distance of 28.5 km). This figure
contains the survey seismograms with a duration of
200 s and their 12-s fragments for groups of seismic
and seismoacoustic waves. The seismic waves had typ-
ical velocities of 5.8–6.4 km/s and arrived at the point
of recording within 4.4–5 s, while the seismoacoustic
waves arrived within 84–86 s, which corresponds to an
acoustic wave velocity of 331–339 m/s. The seismoa-
coustic waves are recorded only on X and Z compo-
nents, and they are absent on the Y component. The
wave train has a duration of about 2 s and consists of 1–
2 peaks of oscillations. The amplitudes of these waves
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
are 3–5 times smaller than those of seismic waves. The
polarization of seismoacoustic waves has a pronounced
elliptic character.

At p. Stepnoi at a distance of 31.1 km, the time of
appearance of the seismoacoustic wave on the seismo-
gram is 90–92 s, which corresponds to the velocity of
the arriving acoustic wave of 338–345 m/s. At this
point, the seismoacoustic waves are recorded on all X,
Y, and Z components. It is interesting that, in the mea-
surement session of 2 a.m., the amplitudes of these
waves were 2–4 times greater than the seismic wave
amplitudes the on the Z component and comparable
with them on the X and Y components. The wave has an
elliptic polarization in both the ZX plane and the ZY
plane. The appearance of seismoacoustic waves on both
horizontal components is related to the deviation of the
array direction from the vibrator azimuth by 38 degrees.

The difference in the directivity of the seismic
arrays with respect to the direction to the vibrator at dis-
tances of 28.5 and 31.1 km (Fig. 3), allowed us to reveal
the character of the excitation of the surface seismic
wave by the arriving acoustic wave.

Considering the variability in the trains of oscilla-
tions in the seismoacoustic wave, one can see the shift
of the train as a whole in time from sensor to sensor and
the displacement of the maximum amplitude within the
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Fig. 1. Layout of the seismic array arrangements at
p. Mayak at a distance of 28.5 km and at p. Stepnoi at a dis-
tance of 31.1 km: (1) seismic array with five three-compo-
nent seismometers, (2) front and propagation direction of
the acoustic wave, and (3) direction to the vibrator; X, Y, and
Z are the directions of seismometer components.
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Fig. 2. Three-components seismograms at a distance of 28.5 km from the vibrator (top), a fragment of the seismogram for a group
of seismic waves (bottom left), and a fragment of the seismogram for a group of seismoacoustic waves (bottom right); X1–X5, Y1–Y5,
and Z1–Z5 are the components of five seismometers.
train. In addition, the lag of the amplitude maximum in
time is evident. Such a character of the propagation of
trains of oscillations takes place if the phase and group
velocities of a traveling wave are different. The direct
determination of the phase velocity by measuring the
phases of oscillation for individual sensors is inapplica-
ble in our experiments. The oscillation frequency in the
seismoacoustic wave is 6–8 Hz, which corresponds to a
wavelength of 40–50 m at a velocity of 330 m/s for the
inducing acoustic wave. The separation between sen-
sors is 200 m; i.e., 4–5 wavelengths fit in between them.
As a result, an ambiguity of an integer number of peri-
ods arises in determining the phase difference between
sensors and, therefore, an ambiguity in the determina-
tion of the phase velocity. Therefore, for the determina-
tion of the phase and group velocities of a seismoacous-
tic wave, the seismogram envelopes of oscillation trains
were analyzed. Figure 4 shows the plots of the enve-
lopes and the envelopes squared of the seismograms for
the Z component for five sensors of the array located at
p. Mayak at a distance of 28.5 km.

For determining the phase velocity, time points of
local maxima were found on the amplitude plots for
each sensor. With these points, line hodographs were
constructed. The phase velocity determined from the
hodograph for a seismoacoustic wave is 327–334 m/s.

In order to determine the group velocity, time points
of maxima were found on the plots of amplitude
squared (energy) for each sensor. A plot of energy for
every seismogram has one pronounced maximum. The
points for this maximum fall on the line hodograph.
Determined from this hodograph, the group velocity of
a seismoacoustic wave is 260–275 m/s.

The difference between phase and group velocities
in a seismoacoustic wave means the presence of disper-
sion, as well as that the process of acoustoseismic
induction has a two-wave character. An arriving acous-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 3. Polarization curves of seismoacoustic waves in the ZX plane at a distance of 28.5 km from the vibrator for five three-com-
ponent seismometers of the seismic array.
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Fig. 4. Envelopes (left) and envelopes squared (right) of the seismograms for the Z component of five seismometers at a distance of
28.5 km from the vibrator.
tic wave travels along the surface with the velocity of
sound in air, i.e., at about 330 m/s (or somewhat greater
with a favorable wind). It induces a surface seismic
wave of an elliptic polarization (of the Rayleigh wave
type), in which the phase characteristics of the oscilla-
tion train propagate with the sound velocity while the
transfer of the train energy occurs with the velocity of
the Rayleigh wave. The latter is determined by the elas-
tic properties of the ground in the upper part of the sec-
tion.

Similar calculations of phase and group velocities of
a seismoacoustic wave were performed for p. Stepnoi
(at a distance of 31.1 km). Determined on line hodo-
graphs, the phase and group velocities along the array
are 437–451 and 317–333 m/s, respectively.

When the directions of the sound wave and the seis-
mic array coincide, the phase velocity of waves at the
array coincides with the sound velocity in air, and the
group velocity, with the Raylegth wave velocity in the
ground. When the directions of the array and the sound
wave do not coincide, the phase and group velocities at
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
the array will be inversely proportional to the cosine of
the angle between these directions; i.e., it will be
higher. Therefore, from the data on the phase and group
velocities along the array at p. Stepnoi and the known
azimuth of the vibrator, one can determine the velocity
of sound and of the Rayleigh wave:

(1)

where Vph and Vgr are the phase and group velocities
along the array, c and VR are the velocity of sound in air
and the Rayleigh wave velocity in the ground, and α is
the angle between the direction of the array and the
source azimuth.

For the above values of the phase and group veloci-
ties at p. Stepnoi, the sound velocity and the Rayleigh
wave velocity computed from Eqs. (1) are 345–356 and
250–262 m/s, respectively. For p. Mayak, the sound
velocity and the Rayleigh wave velocity almost coin-
cide with the values of the phase and group velocities,
respectively, since cos(8°) = 0.99.

c V ph α( ); V Rcos Vgr α( ),cos= =
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Table 1.  Velocity characteristics of seismoacoustic waves

L, km Vsa , m/s Vph , m/s Vgr , m/s c , m/s VR , m/s

Kamenka, 20 339–348 – 261–282 – 261–282

Mayak, 28.5 339–344 327–334 260–275 327–334 260–275

Stepnoi, 31.1 338–342 437–451 317–333 345–356 250–262
The data on the velocities charactering the process
of acoustoseismic induction and the characteristics of
seismoacoustic waves are given in Table 1. The latter
also gives the computed velocity of the arriving acous-
tic wave Vsa determined from the distance of the record-
ing point from the vibrator and the travel time of the
seismoacoustic wave.

From Table 1, one can see that the data obtained at
distances of 20–30 km from the vibrator have much in
common. Namely, the velocity of the arriving sound
wave that was determined from the travel time of the
seismoacoustic wave is equal to or somewhat higher
than the sound velocity in air, which is explained by the
presence of the wind. The sound velocity at the point of
recording correlates with the sound wave velocity
along the propagation track: in the absence of the wind,
it is equal to the sound velocity (p. Mayak), and in the
presence of the wind (p. Stepnoi), it is higher by 5–10 m/s.
The fact that the velocity of the arriving acoustic wave
is close to the sound velocity points to the near-surface
character of its propagation. If this wave propagated
with refraction far from the surface, its arrival time
would be greater because of the increased path length
and decreasing sound velocity due to the decrease in
temperature with height. As a result, the velocity of the
arriving acoustic wave would be lower.

The values of phase and group velocities at the array
depend on the array orientation with respect to the
direction of the sound wave propagation (Table 1). The
velocity of the surface Rayleigh waves at all three
points of recording are close to 250–280 m/s. This is
explained by the fact that the region with a radius of 20–
40 km from the Bystrov test site has the same geologi-
cal structure and velocity characteristics in the upper
part of the section. In particular, for the grounds of the
upper part of the section with the velocity of longitudi-
nal waves Vp =400–500 m/s, the velocity of the surface
Rayleigh waves is within Vs = 220–270 m/s, which
agrees well with experimental results.

In addition to the very fact of recording seismoa-
coustic waves at long distances from the vibrator, the
result of major interest is the detection of the two-wave
character of the acoustoseismic induction process. This
result agrees well with the physical concept of this pro-
cess, i.e., the manifestation of both velocity character-
istics of the exciting acoustic wave (the sound velocity
in air) and the specific velocity of free surface waves in
the ground (the velocity of the Rayleigh wave) in the
induced surface wave. The difference between the
phase and group velocities points to the nonlinear dis-
persion law for seismoacoustic waves and requires sep-
arate theoretical consideration. However, the basic fea-
tures of the process of excitation and propagation of the
acoustoseismic wave field generated by a vibrator can
be obtained from the results of mathematical modeling
with rather simple models.

RESULTS OF MATHEMATICAL MODELING

In studying the acoustoseismic fields generated by
high-power seismic vibrators, one can single out three
interconnected processes: (i) the process of radiation of
acoustic waves by a vibration source operating on the
free surface, (ii) the process of long-range acoustic
wave propagation from the vibration source along the
surface, and (iii) the process of exciting surface seismic
waves by a harmonic acoustic wave arriving at the point
of recording.

Acoustic Wave Radiation by a Vibrator in the Presence 
of a Near-Surface Low-Velocity Layer

The mathematical modeling of the processes of
infrasonic wave radiation into the atmosphere by oper-
ating vibration sources is the subject of a series of
works [8–10]. As a model, two homogeneous media are
considered: an elastic medium and a gaseous medium
contacting along a plane interface. For the elastic half-
space, dynamic equations of elasticity with constant
parameters (density and longitudinal and transverse
wave velocities) are solved, while for the gaseous
medium, the wave equation is solved with constant
density and sound velocity. The boundary conditions
are the equality of normal components of stresses and
sound velocities at the interface between the two media.
As a source, a harmonic point force is considered,
which acts along the normal to the interface of two
media. In [8], asymptotics were found for the acoustic
and seismic bulk waves in the far zone and the corre-
sponding radiation powers. The solution is given in the
form of integral representations, which, for some rela-
tionships between the parameters of the media, allows
the analytical representation

(2)Wa 3.16
ρ
ρ1
----- P2ω2

πρ1V p
3

---------------; Ws 0.085
P2ω2

πρ1V p
3

---------------,= =
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where Wa and Ws are the radiation powers of acoustic
and seismic waves; P is the force amplitude; ω is the
frequency; ρ1, Vp, Vs are the density and the velocities
of the longitudinal and transverse waves in the elastic
half-space; and ρ is the density of air.

Formulas (2) are valid for the following velocity

relationships: Vp =  Vs = c, where c is the sound
velocity in air.

The power ratio of seismic and acoustic waves does
not depend on frequency and is Wa/Ws = 0.0186; i.e.,
approximately about 2% of the total radiation power is
associated with the acoustic waves. Assuming that the
parameters of the problem include the vibration source
with the force amplitude P = 100 t, the density and the
sound velocity in gas ρ = 1.2 kg/m3 and c = 340 m/s, the
density and the velocity of longitudinal waves in the
ground ρ1 = 2000 kg/m3 and Vp = 588 m/s, we obtain
Ws = 94 W and Wa = 2.1 W at a frequency of 6 Hz and
Ws = 261 W and Wa =5.8 W at a frequency of 10 Hz.

The directional pattern of the acoustic radiation
from the vibration source changes noticeably when a
near-surface low-velocity air layer appears in the atmo-
sphere due to the temperature inversion or when a layer
of cold air with a lower sound velocity appears near the
surface. Let us consider the formation of the directional
pattern of a point source located near the surface in the
ray approximation.

Let a gaseous medium with a low-velocity layer 0 <
z < h of thickness h with a sound velocity c1 be formed
above the elastic half-space z < 0 in the cylindrical
coordinate system r, φ, z. A half-space with the sound
velocity c2 lies above this layer, and the gas density in
the whole gaseous medium is the same ρ (Fig. 5).
A point source is located at the point z = r = 0.

In the ray approximation, the wave field consists of
rays launched from the source and rays refracted and
reflected at the boundaries of media. It is known that, in
the presence of a low-velocity layer, there exists a lim-
iting angle of reflection and that all rays with grazing
angles smaller than this angle undergo total internal
reflection in the layer. The value of this angle is deter-
mined by Snell’s law and depends on the ratio of veloc-
ities c1 and c2. The acoustic field at long distances from
the source is formed by the waves with grazing angles
smaller than the critical one, and they undergo a total
internal reflection in the layer. The transmitted waves
are inhomogeneous with a real wave vector in the radial
direction and an exponential decay along the z axis. The
part of the acoustic energy falling into the waveguide is
determined in the ray approximation by the ratio of the
solid angle, in which waves undergo supercritical
reflection, to the solid angle of the half-sphere:

(3)

where Wa and Wc are the total power of acoustic radia-
tion and the power trapped by the waveguide, R0 is the

3 3

Wc

Wa

------- h
R0
----- α( )sin

2 c2 c1–( )
c2

-----------------------,≈= =
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radius from the origin of coordinates to the point of tan-
gency where the wave has the critical angle of reflection
from the upper boundary of the layer, h is the thickness
of the low-velocity layer, and c1 and c2 are the velocities
of sound waves in the layer and the half-space, respec-
tively.

As seen from Eq. (3), the value of the wave energy
in the layer does not depend on its thickness and is
determined only by the ratio of the sound velocities.

In spite of the fact that the coefficient in Eq. (3) is
small for small sound velocity differences, the presence
of the waveguide affects the acoustic wave amplitudes at
long distances from the source. Comparing the acoustic
wave amplitude at the distance R in the half-space with-
out the waveguide and that with the waveguide, with
allowance for the cylindrical symmetry of the channel,
we obtain

(4)

where A0 is the amplitude of the acoustic wave at the
distance R in the half-space and Ac is the amplitude of
the wave in the waveguide at the same distance R.

Table 2 presents the numerical values of the veloci-
ties, the ratio of powers, and the ratio of amplitudes at
a distance of 30 km from the source for two tempera-
ture differences in the layer, 5 and 10°ë, and for three
values of the layer thickness, 25, 50, and 100 m. The
temperature coefficient of the sound velocity in air is
0.59 m/s deg, and the sound velocity is 331 m/s at 0°ë.

As seen from Table 2, for the temperature difference
of 5–10°ë, the limiting angle of reflection is 8–11 deg
and the waveguide can trap from 13 to 20% of the
acoustic power. This is a considerable value if we take
into account that this power remains in the waveguide.
As follows from the geometry of the problem and
Eqs. (3), the value of the acoustic power in the layer
does not depend on the layer thickness but is deter-
mined by the velocity (or temperature) difference. It
should be noted that the amplitude ratio at the point of
recording with (or without) the waveguide has greater
values for smaller layer thickness. This is explained by

Wa A0
2 R( )2πR2, Wc Ac
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Fig. 5. Schematic diagram of calculating the energy of
acoustic field in the near-surface layer.
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Table 2.  Power and amplitude ratios for the acoustic wave at a distance of 30 km from the source

∆T, °C c1, m/s c2, m/s h, m α Wc/W0 R0, m R, km Ac/A0

5 331 334 10 7.8 0.13 75 30 19.9

5 331 334 25 7.8 0.13 188 30 12.6

5 331 334 50 7.8 0.13 376 30 8.9

5 331 334 100 7.8 0.13 752 30 6.3

10 331 337 10 11 0.19 53 30 23.6

10 331 337 25 11 0.19 133 30 14.9

10 331 337 50 11 0.19 267 30 10.5

10 331 337 100 11 0.19 534 30 7.4
the fact that, the smaller the layer thickness, the smaller
the distance to the point of the waveguide formation
(R0) is and the smaller the distance at which the law of
amplitude decay corresponding to cylindrical geometry

of the waveguide  begins to work instead of  for

the spherical geometry without the waveguide. This
explains a fact known from acoustics: the rapid forma-
tion of a near-surface waveguide when only a slight
cooling occurs near the surface. The same is true for the
experiments with vibrators.

Propagation of Acoustic Waves
in the Near-Surface Waveguide

The long-range propagation of acoustic waves from
a vibrator is related to the presence of waves that retain
their energy in the waveguide without radiation into the
overlying half-space. The modeling is simplified by the
fact that, at long distances from the source, the spheri-
cal wave field is locally plane and permits a two-dimen-
sional modeling.

Let us consider the two-dimensional problem for the
above model of a gaseous half-space with a low-veloc-
ity layer overlying a rigid half-space. The gaseous
medium occupies the upper half-space 0 < z and con-
tains a low-velocity layer 0 < z < h of thickness h. The
sound velocity in the layer is c1, in the half-space above
the layer, c2; the gas density in both the layer and the
half-space is ρ.

The wave equations for the pressure in the layer and
the half-space and the relation between the velocities
and pressures have the form

(5)

1

R
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R
---

1
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where p1(z, x, t) and p2(z, x, t) are the pressures in the
layer and the half-space and u1(x, y, z) and u2(x, y, z) are
the vectors of the velocities in the layer and the half-
space, respectively.

The boundary conditions are as follows: at the
boundary with the rigid half-space, the zero value of the
normal component of the velocity, and at the boundary
between the layer and the upper half-space, the equality
of the pressures and the normal velocity components in
the first and second media:

(6)

where uz1(z, x, t) and uz2(z, x, t) are the vertical compo-
nents of the velocity vectors.

The solution can be represented as the superposition
of plane homogeneous waves in the layer with real
wave vectors and an inhomogeneous wave in the upper
half-space with a real wave vector directed along the x
axis and an exponential amplitude decay along the z
axis:

(7)

where a1 and a2 are the amplitudes of plane waves in the
layer, b1 is the wave amplitude in the half-space h < z,
ω is the frequency, k is the projection of the wave vector
on the x axis, k1 is the projection of the wave vector on
the z axis, and α is the attenuation coefficient along the
z axis in the upper half-space.

From wave equations (5) with allowance for bound-
ary conditions (6) and the form of the solution, we
obtain the relation between the wave vectors and the

uz1 z x t, ,( ) z 0= 0=

uz1 z x t, ,( ) z h= uz2 z x t, ,( ) z h==

p1 z x t, ,( ) z h= p2 z x t, ,( ) z h= ,=

p1 z x t, ,( ) iωt ikx–( )exp=

× a1 ik1z–( )exp a2 ik1z–( )exp+( );

p1 z x t, ,( ) b1 iωt ikx–( ) αz–( ),expexp=
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Table 3.  Numerical values of the wave numbers and attenuation coefficients for the half-space and the layer

∆T, °C c1, m/s c2, m/s h, m f, Hz k, 1/m k1, 1/m α, 1/m 2π/k, m 2π/k1, m 1/a, m

5 331 334 10 6 0.113 0.015 0.002 55.1 417 441

5 331 334 25 6 0.113 0.014 0.005 55.1 440 188

5 331 334 50 6 0.113 0.012 0.008 55.1 506 113

5 331 334 100 6 0.113 0.009 0.012 55.1 681 82

10 331 337 10 6 0.113 0.021 0.004 55.1 300 225

10 331 337 25 6 0.113 0.019 0.009 55.1 330 102

10 331 337 50 6 0.113 0.015 0.014 55.1 408 67

10 331 337 100 6 0.113 0.01 0.018 55.1 595 53
frequency, i.e., the dispersion equations characteristic
of the waveguides:

(8)

The relationships of the wave amplitudes in the
layer and the half-space are given by the expressions

(9)

Equation (8) can be solved numerically. The results
of calculations with the layer parameters taken from
Table 2 and at a frequency of 6 Hz are given in Table 3.

As follows from Table 3, for small velocity differ-
ences, an almost plane wave is formed in the layer. The
values of the wave number k1 and the attenuation coef-
ficient α are close one another and much smaller than
the horizontal wave number k. The corresponding
wavelengths and typical dimensions also differ widely.
On the whole, the following tendencies are observed:
the greater the velocity difference between the layer
and the half-space and the greater the layer thickness,
the smaller the penetration of the inhomogeneous wave
into the half-space (i.e., the parameter 1/α). Quantita-
tive estimates show that, at temperature differences of
5–10°ë, the energy of the acoustic field is concentrated
in the region within 100–200 m above the earth surface,
in the low-velocity layer and in the half-space near the
layer boundary. The maximum energy density is con-
centrated in the low-velocity layer, and the maximum
pressure amplitude of the acoustic wave is reached near

ω2

c1
2

------ k
2

k1
2;

ω2

c2
2

------+ k2 α2;–= =

k1

ω2 c2
2 c1

2–( )

c1
2c2

2
-------------------------- k1

2
–

------------------------------------------ k1h( ).cot=

a1 a2;=

a1e
ik1h–

a2e
ik1h

+ b1e αh– ;=

k1

ρω
------- a1e

ik1h–
a2e

ik1h
–( ) b1

α
iρω
---------e αh– .=
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
the lower boundary of the layer, at the surface of the
elastic half-space.

The Process of the Excitation of Seismoacoustic Waves

According to solution (7), in the low-velocity layer,
an almost plane wave propagates with a velocity close
to the sound velocity in air. The effect of the sound
wave propagating in the layer on the underlying elastic
half-space consists in that pressure wave (7) travels
along the interface z = 0 and induces a strain wave. The
problem of generating a surface seismic wave in the
elastic half-space by the acoustic wave propagating in
air can be considered using the model of an elastic half-
space with a free boundary at which normal stress is
given in the form of a traveling wave [11].

Consider the plane problem for a homogeneous iso-
tropic elastic half-space z > 0 with parameters λ, µ and
ρ. The acoustic wave propagating along the boundary in
the direction of the x axis is taken into account in the
boundary conditions for the normal stress at the surface
of the elastic half-space (at z = 0). It is a harmonic
acoustic wave with a constant velocity c equal to the
sound velocity in air and with the pressure amplitude p
and frequency ω.

It is necessary to solve the Lame equations with the
boundary conditions

(10)

(11)

Here, k = ω/c is the wave number of the acoustic wave,
c is the sound velocity in air, u is the displacement field,
and txz and tzz are the tangential and normal components
of the stress tensor.

The solution to problem (10) with boundary condi-
tions (11) can be represented in the form of plane
waves. Introducing the notations γ = Vs/Vp and θ = c/Vs,

λ µ+( )graddivu µ∆u ρ∂2u

∂t2
--------–+ 0,=

txz z 0= 0, tzz z 0= p i ωt kx–( ).exp= =
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we represent the solution for the displacement field
components ux and uz in the form

(12)

where

(13)

Solution (12) depends on the relative values of the
velocities of longitudinal and transverse waves in the
ground and the velocity of the acoustic wave. It is pos-
sible to single out three regions of parameters that
determine different types of solutions.

Region I: Vp < c, 1 < γθ < θ. Solution (11) is the
superposition of constant-amplitude longitudinal and
transverse waves propagating under different angles to
the free surface and transferring the energy in the direc-
tion of the wave vectors. The polarization of the dis-
placement field at the half-space surface has the form of
degenerate ellipses with variable slope:

(14)

Region II: Vs < c < Vp, γθ < 1 < θ. Solution (11) is
the superposition two waves: a surface wave, which
propagates with the velocity c along the x axis and has
an amplitude exponentially decaying with depth, and a
transverse wave, which has a constant amplitude and
propagates downward under an angle. The polarization
of the displacement field at the half-space surface
remains elliptic with a variable slope of the ellipse:

(15)

Region III: 0 < c < Vs, γθ < θ < 1. The acoustic wave
propagates above the half-space in which the velocities
of longitudinal and transverse waves are greater than
the sound velocity in air. In this case, a surface wave
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propagating with the velocity of the acoustic wave is
induced in the half-space. The displacement field
amplitudes exponentially decay with z > 0, and the
energy flux along the z axis in the region of z > 0 is
absent. The induced surface wave is elliptically polar-
ized. In this region of parameters, Vs and Vp have the
values at which the sound velocity coincides with the
velocity of the Rayleigh surface wave. Solution (11)
has a singularity at this point, since the Rayleigh func-
tion entering into the denominator of the coefficient C
is equal to zero. As the parameters of the half-space
approach these values, the displacement field amplitude
increases infinitely. Physically, this corresponds to the
resonance excitation of a surface wave with a constant
influx of energy from the acoustic wave:

(16)

This suggests that, when an acoustic wave propa-
gates above the rigid half-space (with high velocities of
longitudinal and transverse waves compared to velocity
c), a surface wave propagating with the sound velocity
in air is induced. In the case of a half-space in which the
Rayleigh wave velocity is equal to the sound velocity in
air, a resonance absorption of the acoustic wave energy
takes place and a resonance build-up of amplitude
occurs for the surface wave propagating along the x
axis. In the case of a pressure-release half-space (with
low values of Vp and Vs compared to c), both the surface
wave and the waves propagating at an angle to the free
surface and transporting the energy from the acoustic
wave into the half-space are induced.

Figure 6 shows the polarization curves obtained
from solution (7) for air with a low-velocity layer near
the surface and from solution (12) for the three afore-
mentioned regions with different relative values of the
sound velocity in the layer and the velocities of the lon-
gitudinal and transverse waves in the elastic half-space.
The scale of polarization ellipses in the elastic half-
space was increased for clarity. In the low-velocity
layer, an almost plane wave propagates with a linear
polarization. In the upper half-space, the polarization is
also elliptic with a small value of the elliptic Z axis and
with an exponential decay along the vertical. In the
elastic half-space, the polarization varies from linear
(region I) to elliptic (regions II and III). A stationary
wave in X direction is observed only in region III. This
wave can be considered as a variant of the Stonely wave
in the case of the presence of a low-velocity gaseous
layer near the boundary of the elastic half-space. In the
two other regions, plane waves propagating downward
at different angles are present.

In conclusion, we note that the solution to prob-
lem (10) with boundary conditions (11) is the superpo-
sition of the solutions to an inhomogeneous system of

ux z 0=  = Ck 2 θ2 2 1 γ2θ2– 1 θ2–––[ ] ω t
x
c
--– 

 sin

uz z 0= Ckθ2 1 γ2θ2– ω t
x
c
--– 

  .cos=
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Fig. 6. Polarization curves for the acoustic wave propagating in air with a low-velocity layer near the surface and for the surface
wave induced in the elastic half-space.
equations with a nonzero right-hand side and a homo-
geneous system of equations with a zero right-hand
side. The solution to the inhomogeneous system is pre-
sented above: it describes the induced surface wave that
propagates with the velocity of the sound wave c along
the surface. As is known, the solution to the homoge-
neous system of equations is the Rayleigh wave with
the velocity VR.

Thus, in the general case, in the characteristics of
the seismoacoustic wave generated by the acoustic
wave due to the interaction with the elastic half-space,
one can expect manifestations of a two-wave process,
i.e., the relation of its characteristics to the sound veloc-
ity in air c and to the velocity of the Rayleigh wave VR.
This result of modeling is confirmed by experiments
recording the surface waves induced by the acoustic
radiation of a vibrator, the data of which are presented
above.
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Abstract—General approaches to solving the problem of nonlinear acoustic spectroscopy of defects in geoma-
terials are considered. Expressions that relate the nonlinear response (scattering at combination frequencies) to
the position, orientation, and nonlinear characteristics of narrow cracks are obtained. The expressions describe
a broad class of nonlinear interactions at a crack. The nonlinearity caused by the contact of uneven rough edges
of a crack is analyzed in detail. The results of the analysis are compared with the results obtained earlier from
considering micromechanical models and with experimental data. The satisfactory agreement between the the-
oretical and experimental values of Landau’s moduli suggests that the mechanism of contact nonlinearity may
manifest itself in the process of fracture of polycrystalline rock, when narrow cracks with uneven edges are
formed. Numerical examples demonstrate the possibility of determining the orientation and position of a nar-
row crack. The procedure of solving the problem of crack localization is illustrated by the example of a crack
in a thin rod. The importance of taking into account the phase data in the determination of the crack coordinate
is pointed out. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Today, the nonlinear diagnostics of defects in mate-
rials and structures is the subject of numerous publica-
tions (for example [1, 2]). In comparison with homoge-
neous solids (metals, glass, and crystal bodies), struc-
turally inhomogeneous geomaterials (rocks) differ by
the high level of nonlinearity and a vast variety of non-
linear effects [1]. It was demonstrated that nonlinear
effects, such as harmonic generation and intermodula-
tion, can be more sensitive to the presence of poten-
tially dangerous defects like cracks than the changes in
the linear parameters of a system, for example, the
velocities of wave propagation, Q factors of oscilla-
tions, etc. As a rule, experiments are directed at the
demonstration of the feasibility of defect detection
without determining its size and location within a sam-
ple. Basically, to localize a defect, methods analogous
to those used in the problems of pulsed ranging and
acoustic tomography can be applied [3–5]. For exam-
ple, in [6, 7], the position of a crack with large wave
dimensions was determined by measuring the linear
backscattering at different location angles [6] or the
scattering at a combination frequency [7]. In the latter
case, it was possible to separate the scattering by a lin-
ear inclusion and by a crack.

Evidently, nonlinear effects manifest themselves to
the greatest extent with increasing strain amplitudes.
The strain amplitude reaches its peak at the natural fre-
quencies of a sample, which correspond to the reso-
nances of vibration modes. In this paper, we consider
1063-7710/05/51S1-S $26.000088
the general approach to solving the problem of nonlin-
ear mode spectroscopy. We assume that nonlinear dis-
tortions and mode interaction occur at the inclusions of
the crack type and that the elastic matrix itself repre-
sents a linear elastic body (below, we explain why this
assumption is justified). In this case, nonlinear effects
should be considered as the effects caused by processes
of nonlinear scattering of elastic waves by inclusions. It
is possible to calculate the scattering field by consider-
ing it as a field generated by the reaction forces. The
amplitudes of these forces must satisfy the solution to a
self-consistent problem with corresponding boundary
conditions [8, 9]. The vibration response of a finite-size
body to the forces applied to it can be calculated using
the Green function formalism for the region external
with respect to the inclusion [10, 11]. It is important in
this case that nonlinear distortions be absent in this
region and the matrix be considered as a linear elastic
solid (see the above assumption). Therefore, in the case
of a known Green function, the determination of linear
and nonlinear scattering needs the determination of the
secondary force producing this scattering field. The
Green function itself, in the general case, can be repre-
sented in the form of a series in the mode contributions
(see [10], Chapter 13), which are determined from the
solution to the linear problem of acoustic spectroscopy
[12, 13].

In the problems of fracture mechanics, the division
of a solid volume containing a crack into three regions
is used [14] (Fig. 1). The stress in the zone of the pro-
cess is nonlinear and determined by the adhesion
 © 2005 Pleiades Publishing, Inc.



        

NONLINEAR ACOUSTIC SPECTROSCOPY OF LOCAL DEFECTS IN GEOMATERIALS S89

                                                       
Crack

1

23

3 2
1 Ellipsoidal

cavity

r

k2

L2 L1

k1

Fig. 1. Separation of the region near the crack tips into three subregions (see also [14], Fig. 4). Region 1 corresponds to the process
region or the adhesion region. Region 2 is the universal region of elasticity. Region 3 is the external region of elastic deformations.
At the left, the equivalent spring–lever model is shown (see explanations in the text). The elliptical geometry provides a correct
description of the strain field in regions 2 and 3. The singularity near the crack tips (region 1) is restricted by the presence of a “beak”
(the Khristianovich hypothesis [16]).
forces, which can be of various origins [15, 16]. The
dimensions of this zone can be estimated by the spatial
scale within which the stress exceeds the elasticity
threshold in the surrounding matrix and a microplastic-
ity is observed (see [14], p. 10). The term “universal
region of elasticity” means that the variation of stress
has a universal character and is inversely proportional
to the square root of the distance to the process region,
which is the source of deformations (Fig. 1). The value
of singularity depends on the character of the crack
load, symmetry, etc. [15, 16], analogously to the distri-
bution of the stress field in the vicinity of the points of
dislocation fixation (see [11], Chapter 4).

Thus, the concentration of stress near a crack tip is
local and provides an opportunity to consider a solid in
region 3 (Fig. 1) as a linear elastic body obeying
Hooke’s law. The growth of stress near the crack tip can
be described quantitatively if the crack is changed for
an elliptical hole in the solid. Inglis was the first to indi-
cate this opportunity (see [14], Sections 2 and 3). The
ratio of the stress peak to the stress at infinity (applied
to a crack) is equal to the ratio of the ellipse semiaxes.
Therefore, the well-known property of a crack as a con-
centrator of stress [14, 15] is described mathematically
within the framework of the model of an elliptically
shaped hole. The stress amplification at the tip of a
crack can also be described by a simple lever–spring
model that is demonstrated in Fig. 1 at the left. The
spring k1 describes the force arising in the case of defor-
mation of the crack tip, and the spring k2 describes the
stiffness of the material filling the crack (in the case of
a hole, k2 = 0). The ratio L2/L1 is equal to the ratio of the
ellipsoid semiaxes and determines the amplification
factor. The difference of the stiffness k2 from zero limits
the amplification factor (in the limit k2  ∞, the
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
deformation of the “crack” tips becomes infinitely
small, and the nonlinear effects vanish).

If the wave dimensions of the crack are small and
the observation point is in the far wave field of the scat-
terer, a simplified description is possible. In this case,
the crack reaction can be changed (in what sense will be
explained below) for the force vector applied to the
crack center. After the determination of the value and
direction of the vector, it is easy to calculate the pertur-
bations in the elastic matrix, which are generated by the
crack, if the Green function is known. The nonlinear
properties of the scatterer apparently can be taken into
account using the characteristics of the filling (the
spring k2).

The paper is organized as follows. In the first sec-
tion, we consider the general theory of scattering of
elastic waves by cracks. The cracks are simulated by
oblate ellipsoids. The expressions obtained provide an
opportunity to describe a wide class of nonlinear inter-
actions, which is important for describing a complex
nonlinear reaction of geomaterials. In the second sec-
tion, we treat the particular case of a contact nonlinear-
ity that may occur in the contact of rough surfaces
resulting from a local fracture of a heterogeneous
medium, such as rock. A comparative analysis of the
expressions from the first sections and those obtained
earlier is presented, and the features of the general char-
acter are indicated. A comparison with the measure-
ment data for the third-order elasticity moduli in the
Westerly granite allows us to assume the presence of a
contact nonlinearity in this type of granite. Further cal-
culations are performed for the parameters of the West-
erly granite. In the third section, we consider an exam-
ple of crack localization in a thin rod and indicate the
general principles of solving the problem of defect
localization.
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SCATTERING OF ELASTIC WAVES
AT NARROW CRACKS

The general structure of the scattering field of a
monochromatic wave in the case of an arbitrary geom-
etry of the inclusion can be written in the form of an
integral expression [17]:

(1)

where ∆u(x) is the vector of the additional displace-
ment at the point with the coordinate x because of the
scattering by the inclusion concentrated within the vol-
ume V, v(x) is the displacement vector within the inclu-
sion, ρ is the density of the medium, #ijpq is the elastic-
ity tensor [11], and Gki(x|x) is the Green function
describing the displacement component k in the case of
the force action in the i direction. The quantities
marked with tilde correspond to the material parame-
ters of the inclusion. If the inhomogeneity is small, v(x)
may be changed for the displacement vector in the inci-
dent wave (the Born or Rayleigh approximation),
which provides an opportunity to obtain closed expres-
sions for the scattered field.

The first term in Eq. (1) determines the dipole scat-
tering caused by the excess or lack of mass in the vol-
ume V. The second term is associated with the change
of the volume V, and in the case of a liquid medium it
would correspond to monopole (isotropic) scattering.
Equation (1) is analogous to Eq. (23.64) in [18], which
describes the sound scattering at an elastic inclusion in
a liquid. Nonlinear effects manifest themselves more
strongly the higher the amplitude of deformation of the
volume V. Therefore, of most interest is the case of

 ! #ijpq. Here, as in the acoustics of liquids [18],
the second term in Eq. (1) makes the major contribution
to the scattering field.

Various crack models [19] actually differ in the way

of representation of  through the shear and bulk
moduli of the inclusion with allowance for its geome-
try. Bearing in mind the convenience of representation
of integral (1), we use the Eshelby results [20] that were
obtained for quasi-static deformations of a crack.

Eshelby suggested trying the solution in the form of
sections, lacings, and superpositions of deformations
caused by these virtual states. The total strain is repre-
sented in [20] in the form of the superposition of the

strain transformation tensor  in the absence of the

matrix and the restrictive strain tensor  determined
by the presence of the matrix. The latter quantity is
homogeneous inside and outside the ellipsoidal inho-

mogeneity. Thus, in the presence of exterior strains 

∆uk x( ) ω2 ρ̃ ρ–( )v i ξ( )Gki x x( ) -

V

∫=

– #̃ijpq #ijpq–( )
∂v p

∂ξq

---------
∂Gki x x( )

∂ξ j

------------------------ x,d

#̃ijpq

#̃ijpq

eij
T

eij
C

eij
A

produced by a distant source, the quantity  + 
describing the total strain is continuous at the passage
through the inhomogeneity boundary. The stress inside
and outside the inhomogeneity must be balanced,
which leads to the condition

(2)

where eA, C, T =  +  + , λ and µ are the
Lame coefficients of the matrix, and λ1 and µ1 are the
Lame coefficients of the inclusion (they determine the
stiffness k2 in Fig. 1).

An advantage of Eshelby’s model is the fact that the
bulk reaction force f acting from the inclusion upon the
elastic matrix is expressed with the help of the tensor

 according to the expression

(3)

where

(4)

Thus, the scattering given by Eq. (1) and determined
by the change of the volume is expressed as

(5)

where Fi(x0) = V0fi(x0) is the reaction force and V0 is the
volume occupied by the crack. In the case of a circular
crack with the radius r0, which is simulated by an oblate
ellipsoid with the ratio of semiaxes α ! 1, we have V0 =

4π α/3. In Eq. (5), x0 corresponds to the crack “cen-
ter” and the fact that the crack has small wave dimen-
sions is explicitly taken into account.

One can see from Eq. (2) that the expression for
stress is inhomogeneous for the internal and external
regions. The meaning of this notation is that part of

strains ( ) for the external region is not related to any
stress in the external region and reflects the fact of the
presence of the inhomogeneity with a preset geometri-
cal shape. In other words, it is assumed that the pro-
cesses of fracture results in the violation of continuity
of the medium and a cavity is formed, which is stable
with respect to infinitely small deformations. The strain

 itself also may be considered as the one needed for
restoring the continuity of the medium (the crack col-
lapse). The processes of fracture are, evidently, inelas-
tic in their nature. Therefore, in Hooke’s law, the strains

in the external medium are  +  – . A more
detailed discussion can be found in [20].

The major problem in the procedure of solution [20]

lies in searching for the relation between the strains 

and . Eshelby demonstrated that, in the coordinate

eij
A eij

C

λ1 eA eC+( )δij 2µ1 eij
A eij

C+( )+

=  λ eA eC eT–+( )δij 2µ eij
A eij

C eij
T–+( ),+

e11
A C T, , e22

A C T, , e33
A C T, ,

eij
T

f i

∂σij
T

∂x j

---------,=

σik
T λeTδik 2µeik

T+( ).=

∆uk x( ) Fi x0( )Gki x x0( ),=

r0
3
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system connected with an ellipsoidal inhomogeneity,
this relation is linear and has the form

(6)

where the nonzero values of the fourth-order tensor Sijkl
are elliptical integrals (see [20], Eq. (3.8)) and equal to
[19]:

(7)

In Eq. (7), standard two-index notations are used [11,
19]: 11 ⇒ 1, 22 ⇒ 2, 33 ⇒  3, 23 ⇒  4, 31 ⇒  5, and
12 ⇒  6. The quantities in Eq. (7) are as follows: Ia =

, Ic = 4π – 2Ia, Iac = , Iaa =

π – 3Iac/4, Iab = Iaa/3, Sa = , R = , Q =

, and ν = . The quantity α is the ratio

eij
C Sijklekl

T ,=

S11 S22 QIaa RIa, S12+ S21 QIab RIa,–= = = =

S13 = S23 = QIacα
2 RIa, S31 = S32 = QIac RIc,––

S33 Q
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-------------------------------------------------------------.= =

2πα α αSa–arccos( )
Sa

3
---------------------------------------------------

Ic Ia–

3Sa
2

--------------

1 α2–
1 2ν–

8π 1 ν–( )
-----------------------

3R
1 2ν–
--------------- λ

2 λ µ+( )
---------------------
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of the semiaxes of an oblate ellipsoid (it is assumed that
the section across the smaller semiaxis is a circle).
Equations (7) are written down under the assumption
that the x3 axis is directed along the normal to the crack
simulated by an oblate ellipsoid.

Most interesting is the analysis of very thin cracks
with 10–4 ≤ α ≤ 10–2, which are formed in the case of
brittle fracture [15, 21–23]. In the limit α  0, the

nonzero quantities Sij are S33 . 1, S31 = S32 . , and

S44 = S55 . . This means that compression–

tension strains across the normal to a narrow crack and
torsional strain of such a crack do not play any signifi-
cant role. One can see this also from Fig. 2, where the

relations between the strains  and  are shown as
functions of α and relative stiffness of filling λ1/λ =
µ1/µ.

Equations (2) with allowance for Eqs. (6) and (7) are

solved for  at preset values of , λ1, µ1, λ, and µ.
Equations (7) are valid for 0 ≤ α ≤ 1, which makes it
possible to study the effect of the crack shape on the lin-
ear and nonlinear scattering. The case α = 1 corre-
sponds to a spherical inclusion.

ν
1 ν–
------------

3 2ν–
4 1 ν–( )
--------------------

eij
T eij

A

eij
T eij
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A nonlinear response from an inclusion can be
treated as a small perturbation of the boundary condi-
tions given by Eqs. (2), if nonlinear distortions are rel-
atively small [24]. Let us assume that the equation of
state allows us to determine the functions λ1(eij) and

µ1(eij), where eij =  +  correspond to linear defor-
mation of a crack (zero approximation). In this case,
using the Born approximation for describing the non-
linear distortions, Eq. (2) for perturbations is repre-
sented in the form

(8)

where the quantities marked with  correspond to the
perturbations caused by nonlinear distortions. The

right-hand side of Eq. (8) contains the quantity 
obtained by solving the linear problem. In the general
case, the quantities in the tensor cijkl may depend on
both the amplitude and the strain rate (nonlinear hyster-
esis) [2, 25]. If we restrict ourselves to analyzing the
quadratic nonlinearity, the fourth-order tensor cijkl is a

linear form, cijkl = cijklmn × (  + ). The examples
considered below only refer to the case of quadratic
nonlinearity.

The reaction force  responsible for the nonlinear
scattering and applied to the elastic matrix is apparently

determined by Eq. (3) in the case of changing  for

, where  = λ δij + 2µ . The nonlinear scatter-
ing field is determined by Eq. (5) with substitution of fi

for .

The above expressions are written in the coordinate
system connected with the crack. To take into account
the crack orientation in the solid, it is necessary to rep-
resent these expressions in the coordinate system con-
nected with the solid. To make further analysis more
convenient, it is expedient to write down Eqs. (2) and
(8) in the matrix forms and use the matrix unitary trans-
formations of rotation.

Let us introduce two auxiliary matrices written
down with two-index notations:  = (λ1 – λ) + 2(µ1 –

µ)δij,  = λ + 2µδij for i, j ! 3 and  = 2(µ1 – µ)δij,

 = 2µδij for 3 < i, j ≤ 6. Equations (2) and (8) are rep-
resented as follows:

(9)

(10)

where the matrix elements  are determined by Eqs. (7)
and the elements of the matrix  describe the quadratic

eij
C eij

A

λ eC eT–( ) λ1eC–( )δij

+ 2 µ eij
C eij
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b̂ij

âŜ b̂+( )eT âeA,–=

âŜ b̂+( )eT ĉ ŜeT eA+( )2
,–=˘

Ŝ
ĉ

nonlinear perturbations in the strain tensor . The
strain tensors are represented as the vectors composed

of the quantities  written down using standard two-
index notations. Multiplying the left- and right-hand

sides of Eqs. (9) and (10) by the inverse matrix (  +

)–1, we obtain a solution in the form (the inverse matrix
exists if the shear modulus µ in the solid surrounding the
defect is nonzero; see the discussion below)

(11)

(12)

where the fourth- and sixth-order transfer matrices are

(13)

(14)

(15)

and  = Iijkl = δijδkl represents a unit diagonal matrix.

The product of the matrices eA determines the
strain tensor inside the crack.

Equations (11) and (12) are written down in the
coordinate system with the axes coinciding with the
principal axes of the ellipsoid. To describe the crack
rotation with respect to the global coordinate system
connected with the sample, it is necessary to use the
unitary transformations of rotation. It seems that the
simplest technique is the rotation of the local coordi-
nate system connected with the crack in such way that
the direction of the axes coincide with the direction of
the axes of the global coordinate system and then, after
solving Eqs. (11) and (12), to perform the inverse trans-
formation of rotation. The local coordinates  in Eqs. (2)

and (8) depend linearly on the global coordinates,  =

xj, where the matrix  describes the unitary trans-
formation of rotation. The rule for the transformation of
the stress and strain tensors has the form [19]

(16)

where  = .

Details concerning the transformation of rotation
can be found in many books (see [12], p. 41, and [19],
p. 14). The transformation of the clockwise rotation of
the crack normal about the x2 axis through an angle ϑ  is
described by the expression

(17)
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In a more general case, the matrix  is the product of
matrices of the form of Eq. (17), which describe rota-
tion in the three Euler angles [26].

Equations (11) and (12) taking into account the
transformations of rotation formally remain the same,
but the transfer matrices have to be redetermined:

(18)

(19)

where  =  and  = . By virtue
of the unitary property of the transformation of rotation

(Eq. (17)), the matrix of the inverse transformation 

is the transposed matrix .

The matrix equations (18) and (19) determine the

strains eT and  in the global coordinate system con-
nected with the solid containing the crack. The tensor
of external deformations eA and its gradients are
assumed to be known and preset in the global coordi-
nate system. Taking into account Eq. (4), the quantities

∂ /∂xj are determined by differentiating Eqs. (18) and
(19) with respect to the global coordinates xj:

(20)

(21)

Equations (20) and (21) determine the vector of bulk
reaction force (3) and scattering field (5) with allow-
ance for the position, orientation, and filling character-

istics of the inhomogeneity. The transfer matrix  in
Eq. (20) may be treated as a T-matrix in the general the-
ory of scattering [9]. This means that, in the general
case, in describing the scattering by a crack with finite
wave dimensions, it is possible to use the procedure
proposed above with just the only difference that the
transfer matrix must be determined according to [9].

It is necessary to note that the analysis of the limit-
ing case µ, λ1, µ1  0 is impossible within the frame-
work of the quasi-static solution of Eq. (2), since, in this

case, the added stiffness is equal to zero and   ∞.
This singularity arises due to two factors. First, there is
the impossibility of a stable existence of the cavity in
the absence of shear rigidity of the medium and stiff-
ness of the inhomogeneity. Second, the absence of iner-
tial terms (added mass) at µ = µ1 = 0 and λ1  0 leads
to the infinite growth of the oscillation amplitude at a
finite value of the acting force (the value of the input
impedance of the inhomogeneity relative to the acting
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ÛeA,=˘

T̂
4( )

U'ˆ T̂0
4( )
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force tends to zero). At µ > 0, the inverse matrix (  +

)–1 involved in Eqs. (11) and (12) exists and  is
finite.

Figure 2 presents a linear response of the inhomoge-
neity for important particular cases of deformation. The
following values for the Lame coefficients were used
for calculation: λ = 14 GPa and µ = 24 GPa. They cor-
respond to the Westerly granite (see below). The scat-
tered field is proportional to the volume V0 occupied by
the inhomogeneity (Eq. (5)). Therefore, the quantities

 given in Fig. 2 were multiplied by α to exclude the
dependence on V0 in the case of variation of α.

Since the relation is linear (Eq. (11)), the reaction

force in the case of a plane wave exp(–iωt + ikr) is

equal to the value of  multiplied by the volume V0

and the wave number k = ω/c, where c is the propaga-
tion velocity of the wave. Therefore, the reaction force
for the strains e33, e13, and e23 has the same order of
magnitude as for a spherical cavity of the same radius
(Figs. 2a and 2b). One can see that a thin crack almost
does not “notice” other types of deformations (Figs. 2c
and 2d). This explains the well-known fact of the strong
dependence of the elastic properties of solids on the
concentration of thin cracks and the appearance of elas-
tic anisotropy in the case of oriented cracks [21, 27, 28].
One can see that the finite value of inhomogeneity stiff-

ness limits / , as well as the parameter α.

The values of /  presented in Fig. 2 are multi-
plied by α, and α ! 1 in the case of brittle fracture.
Therefore, the strains within the crack may be 1/α @ 1

times greater than the strains in the incident wave .
This allows us to assume the existence of a nonlinear
response in the case of crack deformation caused by

nonzero  and  = . The physical reasons for the
appearance of nonlinearity in the process of crack
deformation may be different. It can be microplasticity
in the process zone, roughness of the contact surface at
crack edges, surface tension in the liquid inside the
crack, etc. [15]. Without going into the details of these
processes, it is possible to develop their phenomenolog-
ical description by presetting the dependences λ1(e, )
and µ1(e, ) and assuming the medium around a crack
to be linear. Further, we will consider the nonlinearity
arising at the contacts of rough edges of a crack [29]. In
this case, the nonlinear response is apparently propor-
tional to the number of contacts. The number of con-
tacts also determines the linear compressibility of the
crack and is characterized by the ratios λ1/λ and µ1/µ.
As one can see from Fig. 2, the crack filling reduces the
coefficient of strain amplification, which has the order
of magnitude of 1/α in the absence of filling. Thus, we
have two competing mechanisms and, therefore, we

âŜ

b̂ eij
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eij
A
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can expect a peak of contact nonlinearity at λ1/λ ~ α
and µ1/µ ~ α.

CONTACT-TYPE NONLINEARITY

Acoustic nonlinearity at the contacts of rough sur-
faces was considered in [30], where the case of homo-
geneous deformations in a thin rod was analyzed, and
in [31] for three-dimensional deformations of a general
form. If the contact area is much smaller than the area
of the crack and the deformations of contacts are linear,
it is possible to use Hertz’s theory [29]. In this case, a
power dependence of stress on strain takes place. Both
models [30, 31] have one common disadvantage: the
reaction of a crack to a shift is not taken into account.
This corresponds to a situation where the crack edges
are as if fixed with respect to shear deformations. As a
result, both models take into account only bulk defor-
mations of a crack [30, 31]. On the other hand, as one
can see from Fig. 2, the shear strains e13 and e23 are also
important.

The classical approach to analyzing the effects of
anharmonicity consists in consequently taking into
account the terms of the potential energy expansion,
which are proportional to the third, fourth, etc., powers
of strain [11, 32]. If the material filling the crack is iso-
tropic, the free energy (accurate to cubic terms) is

(22)

where A, B, and C are Landau’s moduli [11]. It is
assumed that the quantities are A, B, C @ λ, µ and that,
in the process of determination of the strain tensor,
there is no need in distinguishing the points before and
after the deformation (see [11], Sections 1 and 26), eij =

 + . In this case, the “physical nonlinearity”

[24] prevails.
Let us write down the right-hand side of Eq. (8) in

the form  = cijklmn(  + )(  + ) and use the
thermodynamic relation for the variation of free energy
d% = σijdeij. As the result, we obtain six independent
coefficients

(23)

The coefficients of the form of c111223 with an uneven
number of identical indices are equal to zero. Other
nonzero quantities, cijklmn, can be obtained from the
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spherical symmetry (the isotropy of the elastic proper-
ties of the crack filling) by a cyclic rearrangement of the
indices and a substitution of the form of 11 ⇔ 22. It is
necessary to note that the terms c121212, c232323, and c131313
are equal to zero; i.e., shear strains, as one would expect
proceeding from the ideas of symmetry, are not accom-
panied by quadratic nonlinear distortions. Equation (22)
describes a nonlinear interaction between three shear
strains (c122331), between shift and expansion–compres-
sion (c112323 and c111313), and between the expansion–
compression waves. The interaction of the form 12 ⇒ 12
manifests itself in the case of taking into account the
terms cubic with respect to the dependence σij(emn).

To calculate the nonlinear response of a crack, it is
necessary to set realistic values for the Landau’s moduli
A, B, and C. These values can be determined from the
theoretical model based on the micromechanics of inter-
action of small components with a further integration
with corresponding distribution functions and from the
experiment. The first case needs knowledge of the con-
tact geometry, the distribution function for the shapes of
these contacts, and the heights of roughness. Since there
is no reliable information on these values, various ideal-
izations are used [30, 31], and the error of the final result
is totaled from the errors of all used approximations.
Therefore, it is preferable to determine the values of A,
B, and C from experimental data. Below, we reproduce
some results of [31] to demonstrate how it is possible to
obtain a theoretical estimate for the value of C and how
this value is related to the considerations of the previous
section and to experimental data.

The starting point for the analysis in [31] is the
assumption on the crack reaction only to the deforma-
tions connected with variation of the volume. In this
case, the variation of the crack volume is written down
as the Taylor series with respect to the stress applied
along the normal to the crack (α ! 1), ∆V/V0 = aσ33 +

b /2 + …, where V0 = 4πr0α/3 is the volume occu-
pied by the elliptical inhomogeneity. These strains must
be added to the strains of the medium around the crack,
∆eij . (∆V/V0)δ3iδ3j (Fig. 2a). Ignoring intermediate
transformations, we write down an equation for the

unperturbed stress σ33 as a function e33 =  (the term
∝∆ e33 corresponds to linear scattering):

(24)

(25)

(26)
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where K = λ + 2µ/3 is the bulk modulus, E = 3K(1 – 2ν)
is the Young modulus, r0 is the crack radius, l is the
average height of the inhomogeneity, d0 is the average
value of the distance between the crack edges, d0 =
4αr0/3, and x = d0/l. Exact numerical values in Eq. (25)
depend on the shapes of contacting inhomogeneities,
the distribution functions, etc. [31]. Therefore, the
dependence on the average height of inhomogeneities l
and the ratio of semiaxes α are of major interest.

Taking into account Eq. (23) we obtain

(27)

One can readily see that the maximum of C takes place
at x = 1/2 [31].

It is interesting to clarify what value of λ1/λ, µ1/µ
(Fig. 2) corresponds to x = 1/2. Let us treat the crack
filling as a spring with the stiffness k2 = 6/(1 – ν2)d0,

where 6 = π  is the crack area and  is the Young
modulus corresponding to λ1 and µ1. The inequality

 ≤ E is valid, since the area of a real contact for rough
surfaces is a small part of 6. We use Eq. (24) and write
down an expression for : /E = 3πα/8 . 1.18α ≈ α.
Hence, the maximum at x = 1/2 corresponds to balanc-
ing the springs k1 and k2 in the lever–spring model

shown in Fig 1. The condition /E ≈ α also means that
the area of real contact is α ! 1 times smaller than the
crack area 6, since the inhomogeneities apparently
have the same elastic parameters as the matrix.

The ratio of the average height of inhomogeneities l
to the size of the defect r0 almost does not depend on r0
(scale invariance takes place) [23] and is 10–4 ≤ l/r0 ≤
10–2. Thin cracks are formed in the case of brittle frac-
ture of crystalline or polycrystalline solids. The Poisson
ratio in polycrystalline rocks is ν . 0.1–0.2 [33]. Then,
Eq. (27) may be additionally simplified (ν = 0.15, α =
8l/3r0, x = 1/2):

(27')

This quantity is noticeably greater than the modulus of
C for pure metals, alloys, etc., excluding those with
structural inhomogeneities (see [34], Table IV, and
[35], Table VI, last column). It is interesting to compare
the value given by Eq. (27') with the measured data
[34], where experimental values for all three Landau’s
moduli in rock samples were obtained. Among the data
given in [34], we choose those corresponding to West-
erly granite. The reasons for this choice are as follows.

In the general case, cracks in rocks are oriented cha-
otically [21, 22]. Therefore, it is difficult to evaluate A,
B, and C for a single crack proceeding from the exper-
imental data obtained for an ensemble of cracks. How-
ever, Westerly granite has an internal structure formed
due to the scaling of biotite [36] and the presence of ori-

C
32K 1 ν–( )5r0x

π2
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E
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E
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ented cracks. This fact allows us to assume that the
major part of cracks is oriented in one direction. In this
case, the values of the Landau’s moduli [34] must be
divided by the volume concentration of cracks to obtain
the estimates for the moduli A, B, and C for a single
crack (see table).

Taking into account the strong dependence of the
modulus C on α and l/r0 in Eq. (27) and also the signif-
icant variations of these parameters [22, 23], we can
state that a satisfactory qualitative agreement between
the data of [34] and the estimate given by Eq. (27') is
observed. Thus, we may assume that the nonlinearity
observed in [34] was caused by contact phenomena,
and the moduli A and B describe the effects caused to
the shift, which was not taken into account in simple
models [30, 31].

There are many possibilities for the separation of the
nonlinear response [1, 7, 37–41]. The most effective
methods are based on analyzing the combination fre-
quencies [7, 39–41]. We will use the signal of intermod-
ulation to determine the nonlinear scattering at a crack.

The calculation was performed in the following way.
It was assumed that two monochromatic plane waves
with frequencies f1 and f2 and parallel wave vectors prop-
agate in an infinite solid containing a crack. The wave
frequencies were set in such a way that f2/f1 = 1.01 (the
specific value of this ratio in the case of an infinite solid
does not matter). Both waves lead to crack deformation.
The amplitudes of external strains in both waves were

set  = 10–8, which is typical of ultrasonic measure-
ments. The material parameters of the solid corre-
sponded to Westerly granite (table). The relative stiffness
of the inclusion was set λ1/λ = µ1/µ = α, which corre-
sponds to the maximum nonlinear response (Eq. (27)).
The bulk reaction force corresponding to linear scatter-
ing is determined according to Eqs. (3) and (20) for the
frequency f1 = 1 kHz. The bulk reaction force correspond-
ing to nonlinear scattering is determined by Eqs. (3) and
(21) for the difference frequency f2 – f1. The total value
of the reaction force is proportional to the volume occu-
pied by the inhomogeneity. Therefore, for definiteness,
the crack radius was set to r0 = 1 mm and α = 10–3.

eij
A

Evaluation of the Landau’s moduli for a single crack in
Westerly granite. The data are obtained by multiplying A, B,
and C (see [34], Table IV) by 100, which corresponds to the
volume concentration of cracks equal to 1% [ibid.]. The scat-
ter in the values of C within the model given in [31] corre-
sponds to the variation of the parameters α = 10–2–10–4 and
l/r0 = 10–2–10–4 in the case of brittle fracture of granite

K
(GPa)

µ
(GPa)

A
(GPa) × 105

B
(GPa) × 105

C
(GPa) × 105

29.9 23.6 –14 –20 –1.2

Expected value (27′): –4.5 × (10–1–103)
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Fig. 3. Angular dependence of the reaction force. The angle ϑ  corresponds to the inclination of the crack with respect to the x3 axis,
as it is shown in the right upper corner of each of the plots. The waves propagate along the x3 axis. The ratio of the ellipsoid semiaxes

is α = 10–3. The radius is r0 = 1 mm. The polar diagram demonstrates the dependence of the induced force amplitude

 on the angle ϑ . Indices 1–3 refer to the three cases considered.F1
2

F2
2

F3
2

+ +˘ ˘ ˘
The dependence of the reaction force on the angle of
incidence of plane waves is given in Fig. 3. The projec-

tions  ≡ V0 for nonlinear scattering are negligibly

small with respect to  ≡ V0, and, therefore, they
are not presented in the plots. In the case of linear scat-
tering, only two projections F1 and F3 are nonzero,
which follows from the symmetry of the problem: the
wave vector of a plane wave is orthogonal to the x2 axis
for any ϑ .

F2
˘ f 2

˘

F3
˘ f 3

˘

Linear and nonlinear scattering is proportional to

the amplitude of the external strain  to the power cor-
responding to Eqs. (20) and (21). As one can see from
Fig. 3, the reaction force responsible for the nonlinear
scattering may be greater than the linear reaction force
even in the case of moderate strains. However, it is nec-
essary to note that the calculation was performed for the
“optimal” value of the filling stiffness (k1 = k2, Fig. 1,
see also the discussion after Eq. (27)). We can also see
that both the amplitude (polar diagram in Fig. 3) and the

eij
A
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direction of the vector of the reaction force (Fig. 3,
curves 1–3) depend on the angle ϑ . This allows us to
expect a good “sensitivity” of nonlinear scattering to
the parameter ϑ  in solving the problems of nonlinear
resonance spectroscopy in the three-dimensional case.

As one can see from Fig. 3, the nonlinear reaction
force has a magnitude of 10–3 N at the frequencies
~10−3 Hz. In [42], the mechanical characteristics of a
sample of Westerly granite were measured. A labora-
tory sample was a cylinder with a diameter of 50 mm,
length of 100 mm, and mass of about 519 g. Sample
strains were 10–8 under a force of 10–2 N in the fre-
quency range of 104 Hz. The dynamic range of mea-
surements [42] was about 60 dB. Therefore, the value

of the reaction force  ~ 10–3 (Fig. 3) must ensure a
reliable detection of the nonlinear response of a labora-
tory sample with the same dimensions and mass as in
[42].

CRACK LOCALIZATION WITHIN A THIN ROD

Let us consider longitudinal vibrations of a thin rod
with free ends as an example for the application of the
expressions obtained above. The equations of motion
for this vibrating system has the form (the x3 axis is
directed along the rod) [43]

(28)

with the boundary conditions

(29)

where ρ is the density of the rod material, S is the cross-
section area, E is the Young modulus of the rod mate-
rial, L is the rod length, and u3(x, t) are the displace-
ments along the rod, which are assumed to be uniform
in the cross-section. The force F3(x3, t) in Eq. (28) cor-
responds to either an external force exciting rod vibra-
tions or the reaction forces due to inhomogeneities.

Let us assume that rod vibrations are excited by a
concentrated force with unit amplitude that is applied in
the section x3F of the rod, F3(x3, t) = cos(ωt)δ(x3 – x3F),
where δ(x) is the Dirac delta function. Applying a stan-
dard technique of integral transformations (for exam-
ple, see [44], Eq. (45)), we obtain an expression for the
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Green function of Eq. (28) with the boundary condi-
tions given by Eq. (29):

(30)

where k = ω/cl(1 – iη/2); cl is the phase velocity of the

longitudinal wave: ρ  = E and η is the tangent of the
loss angle [43, 44], which corresponds to linear attenu-
ation in the rod material (η ! 1). The quantities marked
with (·)' are (x3 ! x3F):  = L – x3F,  = x3, and

(x3 ≥ x3F):  = x3F,  = L – x3. The Green function
of Eq. (30) does not contain a dependence on the trans-
verse coordinates of the force x1F and x2F if the rod is
thin with respect to the longitudinal wavelength:
max(|x1|), max(|x2|) ! cl/ω.

The strain tensor in the rod is  = ∂u3/∂x3 and

 = –ν  (the Poisson effect [11]). Shear strains are

apparently absent, and  = 0 for j = 4, 5, 6. The non-

zero values of ∂ /∂xn in Eqs. (20) and (21) correspond
to j = 1, 2, 3 and n = 3. Therefore, the two quantities

(31)

(32)

completely determine the reaction forces acting on the
rod in the section of crack localization x3c. Multiplying
the Green function by the corresponding reaction

forces F3 ≡ f3V0 and  ≡ V0, where f3 = ∂ /∂xj

(Eq. (20)) and  = ∂ /∂xj (Eq. (21)), we determine
the displacements caused by the scattering.

Let us consider the excitation of rod vibrations by

two tonal force sources  and  applied to the rod
end x3F = 0. For definiteness, we assume the force fre-
quencies satisfy the condition ω2 > ω1. We also assume
that, in our imaginary experiment, a sensor detects the
acceleration of the rod end x3 = L (Fig. 4, diagram at the
top). The amplitude of rod vibrations at the combina-
tion frequency ω3 = ω2 ± ω1 is determined by the values
of the reaction forces (Eq. (21)) and the Green function
(Eq. (30)) at the point of crack localization:
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Fig. 4. Frequency response in the vicinity of the second mode resonance (m = 2). The calculation is performed for different coordi-
nates x3c of the crack position along the rod. The plots correspond to the loss factor η = (a) 0.001 and (b) 0.01. The ordinate gives
the acceleration at the difference frequency relative to acceleration at the first mode resonance ω1 = πcl/L. The amplitudes of exter-

nal forces are  = 1 N. The rod length is L = 1 m. The material parameters are the same as those used in calculations of Fig. 3.

The angle of crack inclination to the rod axis is ϑ  = 0.

F3
1 2,( )
where zj = kjx3c and kj = ωj/cl, j = 1, 2, 3.

The boundary conditions given by Eq. (29) are
homogeneous. The distribution of displacements at the
resonance frequencies kjL = πn (ωn = πncl/L) is sym-
metric with respect to the rod center for the modes with
even numbers and antisymmetric for the modes with
odd numbers. Simple transformations of the trigono-
metric functions involved in Eq. (33) demonstrate that,
in the case of nonlinear interaction of resonance modes
with the same parity, the response A(ω3) is symmetric
for a crack equidistant from the rod center x3 = L/2. In
the case of interaction of modes with different parity,
A(ω3) differs in its sign.

The next two figures demonstrate examples of cal-
culation for the rod response at the difference fre-
quency ω3 = ω2 – ω1. In numerical experiments, the
frequency ω1 was fixed and coincided with the reso-
nance frequency of the first mode ω1 = πcl /L. The fre-
quency ω2 was varied in the vicinity of the resonance
frequency of the third (Fig. 4) and fourth (Fig. 5)
modes: ω2 = πncl /L + ∆ω, where n = 3, 4 and ∆ω !
πncl /L is the value of frequency mismatch.

In the case of nonlinear interaction of the first and
third modes, the vibration corresponding to the reso-
nance of the second mode is excited. One can see from
Eq. (33) (the term in parentheses in the numerator) that
the amplitude of the reaction force tends to zero in the
case of crack localization exactly at the rod center. In
this case, one can see in Fig. 4 a deep gap at the reso-
nance frequency of the second mode (∆ω = 0). The gap
is the narrower and deeper the higher the Q factor of rod
vibrations is. The values of the Landau’s moduli A, B,
and C used in the calculation are large relative to λ and
µ (table). Therefore, the maximum displacements of
the crack position from the rod center lead to a signifi-
ACOUSTICAL PHYSICS      Vol. 51      Suppl. 1      2005
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Fig. 5. The possibility to determine the crack position relative to the rod center at homogeneous boundary conditions. The depen-
dence of the values of sinz1, cosz2, and cosz3 involved in Eq. (33) on the crack position is shown at the top. The quantity A(ω3) has
different signs in the hatched regions A and B. This provides an opportunity to use the phase data for refining the defect position.
cant increase in the response at the resonance fre-
quency.

The response A(ω3) is also minimal in the case of the
crack position at the displacement node of the second
mode, x3c = L/4, 3L/4, when the value of the Green
function (Eq. (30)) is minimal. A reduction of the non-
linear response in this case and the symmetry of the
amplitude response at an equal distance from the crack
to the rod center are clearly visible in Fig. 4.

As one can see from Eq. (33), the amplitude of the
nonlinear response A(ω3) is proportional to the product
of three resonance factors (the denominator of Eq. (33)).
A strong dependence of A(ω3) on the vibration decre-
ment is illustrated by the plots given at the left and right
in Fig. 4. Note that the values of acceleration at the dif-
ference frequency that are given in Fig. 4 are normal-
ized to the resonance response of the first mode. There-
fore, in the case of one-order-of-magnitude growth of
the vibration decrement, the amplitude of the nonlinear
response decreases by two orders of magnitude.

As we have already noted above, a nonlinear inter-
action of modes with different parity provides an
opportunity to eliminate the ambiguity of the crack
position with respect to the rod center. This is shown in
Fig. 5, which corresponds to the interaction of the first
and fourth modes. Solid thick lines in Fig. 5 demon-

strate the distribution of the quantities (x3) and

∂ (x3)/∂x3 involved in Eq. (21). Two versions of the

e33
A

e33
A
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crack location symmetric with respect to the rod center,
x3c = 0.1L and 0.9L, are marked with vertical lines. The
dot-and-dash horizontal lines correspond to zero val-
ues. The broken line demonstrates the distribution of
displacements in the mode excited as the result of non-
linear interaction. This term is present in Eq. (30) and
determines the mode amplitude. The quantity A(ω3) has
different signs in the hatched regions.

Hence, the frequency dependence of the vibration
phase differs for x3c = 0.1L and 0.9L. The phase of
vibrations at the difference frequency in this case is
determined with respect to the phase of vibrations in the
first mode, whose frequency is constant and coincides
with the resonance one.

The amplitude dependence of the response at the
difference frequency for two versions of the crack posi-
tion is given in Fig. 5a. There are no significant differ-
ences in the amplitude dependences. The frequency
dependence of the phase at the difference frequency is
given in Fig. 5b. The phase response differs for the two
versions, which can be used to eliminate the ambiguity
in the determination of the crack position.

Thus, analyzing the nonlinear interaction of many
mode pairs, it is possible to obtain exhaustive informa-
tion on the position of a crack. The above simple exam-
ple of longitudinal vibrations of a thin rod allowed us to
demonstrate the general procedure of solving the prob-
lem of nonlinear acoustic spectroscopy.
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CONCLUSIONS

In this study, we have considered approaches to
solving the problem of nonlinear acoustic spectroscopy
of local defects. A theoretical model is proposed, which
provides an opportunity to describe a broad class of
problems on the nonlinear interaction of elastic waves
in solids at narrow cracks with the minimal amount of
a priori information. The problem of determining the
position, orientation, and material parameters of a
crack is reduced to determining the application point,
magnitude, and direction of the vector of the induced
force or the reaction force of the crack to an elastic
matrix, which can be considered as a linear elastic
solid.

Both the magnitude and the direction of the reaction
force vector exhibit a strong dependence on the type of
interacting waves and their wave vectors with respect to
the normal to the crack. This allows us to expect a high
sensitivity of the method of nonlinear acoustic spec-
troscopy in measuring the corresponding parameters.
The value of the reaction force for the Westerly granite
is estimated using the published experimental data. It is
demonstrated by a numerical example that, at small
strains on the order of 10–8, which are typical of acous-
tic measurements, and at frequencies of about 103 Hz,
the amplitude of the nonlinear reaction force at optimal
conditions is such that it is possible to reliably detect
the nonlinear vibration response of a laboratory sample.

The problem of nonlinear resonance interaction of
longitudinal waves propagating in a thin rod is consid-
ered as an example of crack localization. This example,
permitting an analytical solution, illustrates the method
for reconstructing the crack position. In addition, it is
demonstrated that the phase data allow one to eliminate
the ambiguity arising in the case of symmetric bound-
ary conditions.
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