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Abstract—The results of processing the field test data obtained for the seismoacoustic system designed at the
Institute of Applied Physics of the Russian Academy of Sciences for the visualization of underground engineer-
ing structures are presented. The described experiment is the first demonstration of the use of a high-power,
high-stability transmitting–receiving system for producing a coherent insonification with a frequency of 195 Hz.
The receiving element of the system is a synthetic aperture array. With the use of focusing as a method of the
final signal processing, an image of a tunnel lying at a depth of 30 m is obtained in three spatial cross-sections,
which demonstrates the possibility of a three-dimensional, coherent, high-frequency seismic survey of engi-
neering structures. © 2001 MAIK “Nauka/Interperiodica”.
Along with the conventional problems facing the
engineering seismic survey, the problem of the detec-
tion of artificial inhomogeneities in shallow layers is
quite topical. It explains the permanent interest to the
development of new approaches to finding structural
anomalies [1] and to monitoring the geological medium
in both quiet and seismically active regions [2–5]. In
this paper, we present the results of the experiments on
the seismoacoustic survey with the use of highly stable
acoustic fields in combination with the methods of
coherent signal processing. This work is the first step
toward the development of a system of acoustic visual-
ization of natural and artificial underground inhomoge-
neities and, in prospect, toward the development of a
system for seismoacoustic tomography of the Earth’s
shallow structure.

Now, we briefly describe the geological conditions
at the experimental site and the main features of the
transmitting-receiving system. The field experiments
were carried out at a testing ground near Obninsk,
Kaluga region, in November–December 1997. The
object of investigation was a tunnel with a cross-section
of 2 × 3 m2 lying at a depth of 30 m. The data obtained
in a borehole located at a distance of 200 m from the
tunnel provide evidence that, with an increase in depth
from 0 to 40 m, the velocity of P waves grows from 500
to 1800 m/s, and the depths from 25 to 40 m correspond
to a limestone layer subjected to karst processes.

The radiator was designed on the basis of an electro-
magnetic hydroacoustic transducer mounted in a metal
cylindrical container whose diameter and height were
equal to 1.5 m. The container was buried in the ground
and filled with water. According to the results of the
1063-7710/01/4704- $21.00 © 20371
previous papers [6, 7], in this case the surface waves are
only weakly excited by the acoustic source, and the
acoustic energy is about evenly divided between P and
S waves. At a frequency of 195 Hz, the source radiated
about 100 W of acoustic power. A rubidium frequency
standard was used as the primary generator, which
determined the radiating signal and was also used in the
receiving channel to provide the synchronization of the
processes of radiation and recording. For receiving, we
used accelerometers with a sensitivity of 100 mV/ms–2;
their output signal was amplified, filtered, and fed to a
16-bit A/D-converter, which made it possible to obtain
a high signal-to-noise ratio. The measurement of the
seismoacoustic field was performed for two rectilinear
profiles, the positions of which are shown in Fig. 1. In
this figure, the layout of the investigated area is pre-
sented with a cross array and the projection of the cen-
tral axis of the main tunnel and its branches on the
Earth’s surface (the coordinates are given in meters).
The following designations are used: the source of the
signal (with the coordinates (0, 0)) is denoted by the
dotted empty circle, the tunnel at a depth of 30 m is
denoted by full circles, and the receiving array is
denoted by two intersecting straight lines.

The first profile is almost perpendicular to the tunnel
and has a longitudinal displacement of 12 m relative to
the source. Its length was 45 m, and the measurements
along it were performed with a step of 0.5 m. The sec-
ond profile is parallel to the tunnel. This profile was
investigated with a step of 1 m. Because of the high sta-
bility of radiation and reception, it was found to be pos-
sible to survey along both profiles by successive repo-
sitioning of a single geophone while retaining the
locking to the phase at the carrier frequency, which
001 MAIK “Nauka/Interperiodica”
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provided the possibility of the following coherent pro-
cessing, i.e., of synthesizing a cross array. Travelling
along both profiles with recording at every point of
reception was carried out with a fixed position of the
source (see Fig. 1). For an additional increase in the sig-
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Fig. 1. Schematic representation of the tunnel (full circles)
and the positions of the seismic source (empty circle) and
the receiving array (intersecting solid lines).
nal-to-noise ratio of the sounding signals, the coherent
accumulation of 64 pulses with durations of 10 periods
each and with the carrier frequency 195.31 Hz was per-
formed. The pulse duration ratio was equal to 25. The
records spoiled by the malfunction of equipment or by
an increase in the level of seismic noise were rejected
and replaced by the records obtained in repeated cycles
of measurements.

The result of recording the initial signal received by
transverse and longitudinal arms of the array is given in
the form of brightness pictures in Figs. 2a and 2b. In
these figures, the vertical axis corresponds to the time-
base of the oscillogram and the horizontal axis corre-
sponds to the number of the measuring point along the
profile (the steps of space quantization are 0.5 and 1 m).
The level of the signal is represented by the intensity of
the black color on the light background; the full
dynamic range of the signal level variation is 40 dB.
The observation of the phase variation clearly seen in
Fig. 2 is possible only owing to the use of the highly
stable seismic radiator in the experiment. The constant
slope of the phase variation gives the values of the
apparent velocity of waves: 460 m/s for the initial part
of the profile and 630 m/s for its terminal part. In the
middle of the profile, it is easy to see the presence of
strong phase fluctuations testifying to the interference
of many types of waves that contribute to the total seis-
mic response. From the view of the wave field dis-
played in the figures, it is impossible to make an unam-
biguous conclusion about the presence or absence of
any anomalies at the depths comparable with the hori-
zontal dimensions of the area under study.
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Fig. 2. Equiphase lines for the (a) transverse and (b) longitudinal arms of the array.
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The total number of spatial points to which the array
was focused in solving the three-dimensional problem
was equal to 130 × 90 × 40, the bandwidth was 40 Hz,
and the number of the frequency readings was 27. All
this forms the whole set of data. From the formal point
of view, the acoustical reconstruction of the image of
the inhomogeneous medium can be considered as a
matched signal reception from multiple scatterers with
the coordinates rm = (x, y, z)m. The model of the main
signal arrival received by the array is described as

,

where p is the index of the array element (receiver); rs ,
rap , and rm are the coordinates of the radiator, receiv-
ers, and scatterers, respectively; S0 is the radiated (ref-
erence) signal accurate to the amplitude-frequency dis-
tortion due to the attenuation and excitation of waves of
the useful type; and τ is the time delay of the received
signals. The algorithm of the acoustic image recon-
struction maximizes the energy of signals received in
the form of scattered waves from every point of space,
including the unknown coordinates of actual scatterers

(1)

or, in the frequency form,

(2)

where τu is the duration of the signal; Xp(f ) and X0(f )
are the Fourier spectra of the signal at the array and of
the reference signal, respectively; f0 and ∆f are the car-
rier frequency and the bandwidth of the signal; and τ0
is the trial delay.

For lack of reliable information about the depth
dependence of the elastic parameters of the medium, as
a zeroth approximation, it is possible to use a homoge-
neous model for which the following relation is valid:
τ0 = (|r – rap | + |r – rs |)/MC, where MC is the mean
velocity of propagation. The mean velocity can be
obtained by maximizing the functional

,

where the subscripts 1 and 2 correspond to the perpen-
dicular arms of the array and MC(FS12) is the median
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of the amplitude distribution of the focusings taken
over the whole space of focusings

The maximum-to-median ratio Q is one of the crite-
rions of the contrast, because the median gives the
mean probable level of the background of the image
and the peaks are additionally maximized when the
mean velocity is chosen correctly [8]. Figure 3 presents
the plot of the criterion Q as a function of the mean
velocity. One can see several maximums, which corre-
spond to the velocities 200, 340, 480, 580, and 1200 m/s.
Only the value 580 m/s was later used for focusing.

We now consider the results of focusing on the basis
of Eqs. (1) and (2). Figure 4a shows the image of the
tunnel cross-section in the XY plane at a depth of 30 m,
and Fig. 4b shows the tunnel cross-section in the XZ
plane at the point Y0 = 10 m. The YZ cross-section of the
tunnel for X0 = 30 m is given in Fig. 4c. The light
regions of the black and white representation of the
image correspond to the higher level of the scattered
field and reveal the outline of the main shaft of the tun-
nel and some of its branches. The maximal difference
in the signal levels represented by light and dark
regions of the monochrome images in Fig. 4 is 40 dB.
The incomplete visualization of the details of the struc-
ture is related to their shielding by the main body of the
tunnel with the given location of the source, or to
increased distances from the receivers and scatterers to
the source. However, the visualization system implies
signal radiation from several source positions, which
will later make it possible to obtain fuller and more
detailed images. As a whole, the obtained set of the tun-
nel cross-sections provides a qualitative picture of the
tunnel structure. One should note the correct values
obtained for the coordinates of the reference points of
the structure, although some distortions are also
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Fig. 3. Criterion Q as a function of the propagation velocity
of the seismic wave.
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Fig. 4. Brightness image of the tunnel cross-sections (the ratio of the levels of the black to white background is 40 dB): (a) in the
XY plane at the depth 30 m, (b) in the XZ plane at the point Y0 = 10 m, and (c) in the YZ plane at the point X0 = 30 m.
observed; for instance, the scale along Y axis in the XY
cross-section is distorted because of the finiteness of
the array aperture and the scattering by inhomogene-
ities in the medium near the Earth’s surface.

Summarizing the results of the experiments, we can
conclude that the use of a single buried source of vibra-
tions (of the pressure center type) with the seismo-
acoustic radiation power reaching several tens of watts
makes it possible to create a coherent, high-frequency
seismic field in the region of the Earth’s medium within
the radius 60–70 m and within the depth of the same
order of magnitude. The bistatic arrangement of the
source and the receiving array (a synthetic cross-
shaped aperture) allows one to obtain initial data on the
seismic signal scattered by an artificial inhomogeneity
(a tunnel at a depth of 30 m) and arriving together with
the reverberation noise transferred by the set of addi-
tively excited bulk and surface waves of various types.
In the course of secondary processing of the recorded
signals with the use of the method of focusing, it proves
to be possible to select the desired scattered signal on
the background of the interfering reverberation field
and to reconstruct the image of three spatial cross-sec-
tions of the underground engineering structure. The
comparison with the experimental data obtained for a
monostatic source–receiver arrangement shows the
way for further improvement of the quality of the
inhomogeneity image in seismic waves by selecting a
rational arrangement of the source–array system. In
particular, it is expedient to place the primary source
of a coherent seismic field between the transducers
forming the receiving array. The necessity of using a
number of positions for the source of vibrations is
obvious. The advantage of employing high seismic
frequencies about several hundreds of hertz should
also be noted. The accuracy of the localization of
engineering structures several tens of meters under-
ground is within one to two meters along the horizon-
tal and vertical axes.
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Abstract—An experimental setup and a technique for measuring the transient period before a stationary cav-
itation in a liquid by the evolution of the cavitation noise spectrum are described. The time dependences of
harmonic amplitudes both near the radiator and outside the cavitation region are presented. From the form
of these dependences, the characteristic transient periods preceding the stage of a fully developed cavitation
in water and in transformer oil are calculated. A formal scheme for describing the cavitation region is pro-
posed. © 2001 MAIK “Nauka/Interperiodica”.
Unlike the description of the behavior of a single
bubble in a sound field, the study of the cavitation pro-
cess by describing this phenomenon as a whole pre-
sents certain difficulties. Already for many years, the
dynamics of single cavities had been much studied both
experimentally and theoretically [1–3]. A whole set of
approximate equations were derived for describing the
behavior of bubbles of different nature, and practically
no considerable discrepancies were obtained between
theoretical and experimental results [1]. Although the
studies of the dynamics of isolated cavities are very
important for the understanding of the cavitation pro-
cess as a whole, there is still no complete formal
description of the cavitation region. A limited number
of theoretical papers describing various features of the
cavitation region can be found in the literature, and the
pioneering work by Rozenberg [4] must be mentioned
among them. Starting from the times of Blake and Wil-
lard who proposed several descriptive models of the
cavitation process, many researchers had been particu-
larly interested in the problem of the transient period of
cavitation. The determination of the characteristic tran-
sient periods preceding the stage of fully developed
cavitation in fluids is of fundamental significance for
the choice of optimal regimes in technologies using
ultrasonic cavitation [5, 6]. This is especially important
to sonochemistry for the initiation of fast chemical
reactions that have several stages [7]. Rapid photogra-
phy is the best-known method used for the investigation
of the process of the development of a cavitation
region. The initiation and development of cavitation
was recorded by Sirotyuk with the help of an SFR
superfast camera [8]. The cavitation was observed in
water, in the focus of an acoustic concentrator operat-
ing at a frequency of 500 kHz. It was found that, in
the case of the intensities used, the time of the cavita-
tion region formation in the concentrator focus was
1063-7710/01/4704- $21.00 © 0376
15–45 periods of ultrasonic oscillations. A similar
experiment was performed by Akulichev [9] who stud-
ied the initiation and development of a cavitation region
in the focus of a low-frequency (15 kHz) radiator. The
process of the development was recorded using an
SSKS-3 motion-picture camera with a recording speed
of 200000 frames per second, which provided an
opportunity to investigate in detail the behavior of a
single bubble within a single period and within many
periods. The number of cavitation bubbles increased
from period to period and reached saturation approxi-
mately after 10 periods.

However, such a technique can be used only in
transparent liquids and, what is most important, it
allows one to determine only the time of the formation
of the cavitation region, but not the transient period for
the stationary cavitation regime. As our measurements
have demonstrated, these times differ essentially. Here,
we investigate the evolution of the spectrum of cavita-
tion noise and make a conclusion about the transient
process preceding the regime of stationary cavitation
on the basis of the form of the time dependences of har-
monic amplitudes. Some modern representations used
for describing a cavitation region, which may be useful
to explain the experimental data, are given in the last
part of the paper.

The excitation of the cavitation in our experiments
was performed by an ultrasonic generator (Fig. 1). An
industrial ultrasonic generator of the UZGZ-4 type with
a power of 4 kW and a frequency of 18 kHz was used
to feed a PMS 15A-18 magnetostrictive transducer. The
magnetostrictive transducer was equipped with a
dumbbell-shaped titanium radiator. Its dumbbell shape
provided an opportunity to obtain an increase in the
amplitude of end vibrations by a factor of 1.5–2, while
the area of the radiating surface remained the same. The
2001 MAIK “Nauka/Interperiodica”
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end of the radiator was immersed in a plexiglas basin
with the dimensions 400 × 63 × 63 mm. The inlet aper-
ture of the basin had the diameter slightly exceeding the
diameter of the radiator end, which provided an oppor-
tunity to reduce capture of air from the liquid surface in
the cavitation regime. The basin was filled with the liq-
uid under investigation. We used settled boiled water
and transformer oil with a higher cavitation strength
compared to water. A spherical hydrophone with diam-
eter 7 mm and the resonance frequency 230 kHz was
used to measure the field of acoustic pressure in the
basin. The hydrophone size was small relative to the
ultrasonic wavelength λ = 8.3 cm. Therefore, its pres-
ence almost did not disturb the structure of the sound
field. On the other hand, it was sufficiently large to
measure the average field caused by the collapse of
many bubbles near its surface. Its high resonance fre-
quency provided the opportunity to detect the first
8−10 harmonics of the fundamental frequency with
equal sensitivity. The signal received by the hydro-
phone was fed to the input of a Tektronix TDS 520A
digital oscilloscope. The oscilloscope memory was
capable of storing four realizations of 50000 points.
The data from the oscilloscope memory were recorded
to the memory of a computer with the help of a code
written using LabView.

In studying the cavitation field, the hydrophone was
positioned at a fixed distance from the radiator surface
and in the basin center. First, the development of acous-
tic pressure oscillations at a fixed point of the field was
recorded starting from the moment of turning on the
ultrasonic generator. An analogous record at the same
point of the field was made for comparison after 5–7 s
after turning on the generator. It was visible in the oscil-
loscope screen that the signal structure after this time
interval almost did not change, and, therefore, this
record was considered to be the realization of the pro-
cess of stationary cavitation. The maximal length of the
process record was determined by the technical charac-
teristics of the oscilloscope. The total recorded realiza-
tion consisted of 50000 points. The horizontal scan was
selected to be equal to 10 ms per division, which made
it possible to record the data within the time interval
equal to 0.1 s. In this case, 28 points corresponded to
one period of oscillation with the frequency f = 18 kHz,
which provided an opportunity to determine 14 har-
monics of the fundamental frequency. Measurements
using scans twice as long were also performed, which
allowed us to record realizations two times greater in
length.

Multiple cavitation bubbles appeared near the radi-
ator immediately after the ultrasonic generator was
turned on. The cavitation region was about 10 cm in
length. Only single random bubbles were observed at
greater distances. The hydrophone was positioned both
in the cavitation region (2–4 cm from the radiator) and
at a distance of 10–15 cm from the lower boundary of
the bubbles. In the first case, a pronounced variability
of the wave profile was expected due to multiple bubble
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
collapse near the hydrophone. In the second case, cav-
itation noise of the whole cavitation region was
detected.

An emitter of ultrasonic oscillations has a finite
quality factor as any oscillating system does and, there-
fore, a certain time is needed for its oscillations to
become stationary. The analysis of the behavior of the
pressure amplitude in the process of turning on and off
the ultrasonic generator allowed us to estimate the tran-
sient period for the oscillation amplitude as approxi-
mately 80–85 oscillation periods. The fact that this
period turned out to be considerably shorter than the
characteristic times of cavitation development was
important for our experiments.

Already from the form of the pressure profiles
recorded at different instants of time after turning on
the ultrasound, it was possible to conclude that a certain
time is needed for the system to reach the stage of sta-
tionary cavitation (Fig. 2). At the beginning of the cav-
itation development, the wave has an almost sinusoidal
form disturbed by the oscillations due to bubble cavita-
tion (Fig. 2a). Intense bubble collapse near the hydro-
phone occurs rarely, and, therefore, the disturbances of
the wave profile are weakly pronounced. As cavitation
develops, the disturbances of the wave form become
stronger, and the detected wave becomes similar to a
sequence of pulses with the pulse rate equal to the fre-
quency of the initial harmonic wave (Fig. 2b). Each of
these pulses corresponding to the compression phase of
the ultrasonic wave is produced due to a strong collapse
of a cavitation bubble near the hydrophone. Thus, the
structure of the wave profile is quite complex and sub-
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Fig. 1. Experimental setup: (1) generator, (2) magnetostric-
tive transducer, (3) titanium radiator, (4) basin with a liquid,
(5) hydrophone, and (6) digital oscilloscope.
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Fig. 2. Pressure profile in water 4 cm from the radiator (a) 1 and (b) 90 ms after turning on the ultrasound. A harmonic oscillation
with the amplitude of the first harmonic is shown by the dashed line.
jected to fluctuations due to both the process of bubble
collapse and the chaotic character of bubble oscilla-
tions. Therefore, it is rather difficult to determine the
exact time intervals of the evolution of a wave profile
by its form. It is desirable to use some averaged quanti-
ties that characterize slow (compared to the period of
oscillations) evolution of the wave. On the other hand,
it is necessary to conduct averaging over time intervals
with the length considerably smaller than that of the
transient period of the cavitation process. In our case,
this time interval is about 50 periods of oscillations. As
the average quantities, we used the amplitudes of har-
monics calculated at a finite-length realization. For this
purpose, we used the spectral analysis of the obtained
realizations with the help of the fast Fourier transform.
In the nonstationary cavitation regime, a recorded real-
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Fig. 3. Spectral distribution of the cavitation noise in water
4 cm from the radiator surface, 18 ms after turning on the
ultrasound.
ization of the hydrophone signal was divided into equal
intervals with the number of selected points in each of
them equal to two to the power m (m is an integer). The
fast Fourier transform was applied within each interval,
which resulted in the spectrum of a specific time inter-
val. Such a scheme was also applied for the stationary
regime. The spectrum was calculated at each time inter-
val of the recorded signal realization, and then it was
averaged over the whole realization.

The resulting spectra have a form typical of the cav-
itation process (Fig. 3). The harmonics of the funda-
mental frequency (the second, third, etc.) are clearly
pronounced in the spectrum. The subharmonic f/2 and
its multiple frequencies are also present. A cavitation
noise characterized by an approximately constant spec-
tral density and extending to tens of megahertz is
present in the high-frequency region of the spectrum.
Figure 3 shows the spectrum in the frequency range up
to 300 kHz. The rise of the spectral amplitude in the fre-
quency range 200–230 kHz is related to the frequency
characteristic of the used hydrophone, which has natu-
ral resonance at these frequencies. As the cavitation
develops further, the relationship of the spectral ampli-
tudes changes and the form of the spectrum becomes
more and more similar to the spectrum corresponding
to the stationary cavitation.

In the case of cavitation in water, the amplitude of
the fundamental harmonic at the beginning of the pro-
cess is maximal. As one can see from Fig. 4, as cavita-
tion develops, the amplitude of the fundamental har-
monic decreases and reaches its value corresponding to
the case of stationary cavitation. Near the radiator, the
transient period for the stationary value is about 40 ms,
and, in this case, the value of the fundamental harmonic
amplitude in the stationary regime is only 25% smaller
than the initial value. Far from the radiator, outside the
cavitation region, the corresponding difference in the
values of the fundamental harmonic amplitude is
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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almost 400% and the transient period for the stationary
value is equal to 70 ms. It follows from Fig. 5 that the
amplitudes of the harmonics and the subharmonic grow
rapidly at the beginning and then decrease slowly,
approaching the values characterizing the stationary
cavitation. In this case, the characteristic transient peri-
ods for the stationary values of harmonics are 40–50 ms.
It should be noted that the amplitudes of harmonics
within the cavitation region differ little (by 30–60%)
from the corresponding stationary values, while outside
the cavitation region this difference is large (200–
300%).

In transformer oil near the radiator, the amplitude of
the fundamental harmonic grows as cavitation devel-
ops, while the amplitudes of the higher harmonics and
the subharmonic decrease and reach a stationary level
(Fig. 6).

Let us consider the results obtained by studying the
transient period for stationary cavitation in water. In the
course of cavitation development, the acoustic imped-
ance of the medium decreases, since the density and the
sound velocity decrease simultaneously. This in turn
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Fig. 4. Time dependence of the amplitude of the first har-
monic in water 4 and 18 cm from the radiator surface. The
cross indicates the amplitude value in the stationary cavita-
tion regime.
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leads to a decrease in the ultrasonic radiation efficiency.
This effect can be detected far from the cavitation
region. Near the piston surface, at distances smaller
than the wavelength, the motion of particles is directly
connected to the motion of the radiator surface. As a
consequence, the field near the radiator reaches its sta-
tionary value sufficiently fast. However, the amplitude
of harmonics far from the radiator depends on the radi-
ation from the whole bubble region, and the number of
bubbles increases as the cavitation process develops.
Therefore, the harmonic amplitudes grow at the begin-
ning and then become stable, following in such a way
the dynamics of the number of cavitation bubbles.
However, this mechanism does not quite agree with the
results obtained in transformer oil. To correctly explain
the phenomenon, it is necessary to perform additional
theoretical and experimental studies.

In this connection, we briefly review some results of
the theoretical description of the cavitation phenome-
non as a whole. Certain aspects of this problem are con-
sidered in a book by Akulichev, Alekseev, and Bulanov
[10]. It is well known that acoustic cavitation being of

1.5

1.2

0.9

0.6

0.3

0

n = 2

n = 3

4 cm

Amplitude, V

0

0.4

0.8

1.2

0.02 0.04 0.06 0.08 5

n = 2

n = 3

18 cm

Time, s

(a)

(b)

Fig. 5. Time dependences of the amplitudes of the second
and third harmonics in water 4 and 18 cm from the radiator
surface. The crosses indicate the values of harmonic ampli-
tudes in the stationary cavitation regime.
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stochastic nature occurs at relatively high intensities of
sound and is usually accompanied by many phenomena
of mechanical and general physical character. This
leads to the necessity to involve a very large number of
equations for obtaining a full description of a cavitation
region. Certainly, the consideration of separate compo-
nents of the process or its investigation on one or
another space–time scale, the selection of additional
conditions, etc., can considerably reduce the total num-
ber of control equations. However, in our opinion, the
complete set of equations that describes acoustic cavi-
tation must include three blocks of equations at the
minimum.

First, the set must include a wave equation, or, more
precisely, several equations describing the propagation
of a sound wave in a bubble medium. Since the bubbles
are distributed randomly in space, in the case of the
propagation of an acoustic wave in a randomly inhomo-
geneous medium, one should discuss only the statisti-
cal mean characteristics of the wave field. If the consid-
eration is restricted to the two first moments of the wave
field, such characteristics can be the average field and
the second-order correlation function of the sound
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Fig. 6. Time dependences of the (a) first, (b) second, and
third harmonics in transformer oil at the distance 2 cm from
the radiator surface. The cross indicates the values of har-
monic amplitudes in the stationary cavitation regime.
field. The average field 〈p(r, t)〉 obeys the equation of a
self-consistent field of the Dyson type, and the correla-
tion function 〈p(r1)p*(r2)〉 obeys the equation of the
Bethe–Solpeter type. In the latter case, if the problem is
formulated less rigorously, it is possible to introduce
the ray intensity function I(r, n) according to the rule

(1)

and use a transfer equation for it. Here, n is the unit vec-
tor directed along the vector r = (r1 + r2)/2, k = ω/c is
the wave number, and Ω is the spatial angle.

In the general case, the equation for the average
field, i.e., the first moment, has the form

(2)

Here, p0(r, t) and 〈p(r, t)〉  are the incident and average
fields, G0(r1, r2) is the Green function of free space, and
M(r1, r2) is the so-called mass operator. In the theory of
multiple scattering of waves, the mass operator is usu-
ally taken in the Bourret approximation. In the case of a
monodisperse size distribution of bubbles, it can be rep-
resented in a rather simple form: M(r1, r2) = nfsδ(r1 – r2).
Here, n is the number of bubbles per unit volume and fs

is the amplitude of sound scattering by a single bubble.
In the general case, the number of bubbles n is a func-
tion of space and time, and in the case of a monodis-
perse distribution, it is expressed through the function
of the size distribution g(r, t) in the following way: n =

. Here and below, the overbar means the time

averaging, or, more precisely, averaging over the time
comparable with the period of the field oscillations.
The angular brackets mean averaging over a spatial
coordinate. We note that, from here on, we do not men-
tion the indicated dependence on r and t on larger
scales to simplify the notations. As for the scattering
amplitude fs, in many cases it can be formally written in
the standard form

(3)

where ω0 is the so-called resonance frequency of a
single bubble and δ is the loss usually related to the
acoustic, viscous, and thermal losses of the oscillation
energy of a single bubble. The resonance frequency of
a single bubble expressed through its compressibility

β is generally represented by the formula  = (3/β –

2α/ )ρ–1 , where α is the surface tension. In the
stationary case of the propagation of an initially undis-
turbed plane wave, the solution of Eq. (2) usually leads
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to a renormalization of the wave number with the effec-
tive value written in the form

(4)

where cl is the sound velocity in a pure liquid.
One can see already from the relations given above

that it is necessary to know the dimensions of cavities,
their time distribution, and the time behavior in order to
determine the wave parameters of the field in a bubble
medium. Normally, liquids already contain some
microscopic nuclei in the form of microscopic bubbles.
For example, microscopic air bubbles distributed in

size according to the power law g( ) = A , where
A ≈ 10–9 and n ≈ 3–3.5 [11], exist even in settled tap
water. These microscopic cavities start to grow when
sound is turned on, and the values of their instantaneous
radius obeys an equation of the Rayleigh type. For
example, one of the modifications of this equation, the
Nolting–Napierce equation, has the form

(5)

This equation describes the time behavior of a single
bubble in an incompressible liquid under the effect of
monochromatic sound with the amplitude pm and fre-
quency ω. It is assumed in this case that a bubble with
the initial radius R0 behaves adiabatically (γ = cp/cv)
and the saturated vapor pressure inside it is equal to pv.
The static pressure in the liquid is equal to p0. There is
no exact analytic solution to this equation, but many
authors have conducted numerical calculations for this
equation with different parameters of the problem. The
radial oscillations of a bubble at small amplitudes pm
are of harmonic character. However, at moderate and
large amplitudes, multiple harmonics and subharmon-
ics arise and are especially noticeable at the stage of
bubble collapse. In particular, this can be seen in the
plots shown in Fig. 2. If the right-hand side of Eq. (5) is
equal to –∆p, the problem has the characteristic time τ
of collapse for a bubble with the radius R0:

(6)

This time is used in particular for the evaluation of the
collapse time of bubbles in an alternating pressure field.
In this case, ∆p represents various combinations of the
sound field amplitudes.

In the general case, equations of the type of Eq. (5)
provide an opportunity to determine not only the
instantaneous values of the cavity radii, but also the
time behavior of their values averaged over the period
of oscillations of the external field. In many cases, a

keff
2 ω2

cl
2

------ 4π Rg R( ) Rd

ω0
2/ω 1– iδ–

--------------------------------,∫+=

R R
n–

ρ RṘ̇
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noticeable change in the average size of bubbles occurs
within the time that proves to be much longer than the
characteristic times 1/ω or τ. For example, in the case
of a rectified gas diffusion, the characteristic transient
period before reaching the stationary regime at moder-
ate sound intensities can constitute several tens of min-
utes. In the case of vapor bubbles, the time required for
reaching the asymptotic size also turns out to be long
compared to the basic period of sound.

The third block of equations describing the develop-
ment of a cavitation region in time and space is a kinetic
equation. Like the previous equations, it can be written
for both the instantaneous values of the function of bub-
ble distribution in size g(r, R, t) and for the time-aver-
age values. We present here the kinetic equation for a
bubble medium in the most general and somewhat for-
malized form:

(7)

The second term on the left-hand side of this equation
is connected with the change of the function g(r, R, t)
due to the progressive motion of the gravity center of a
bubble. As is well known, a bubble in a sound field can
perform not only radial oscillations, but also oscilla-
tions characterized by the center of its gravity oscillat-
ing with velocity v and frequency ω. Moreover, the cen-
ter of a bubble can move in space in a certain direction
under the action of constant forces like the buoyancy
force or constant forces of the type of radiation pres-
sure, etc. The third term on the left-hand side of
Eq. (7) is connected with the natural change of the bub-
ble radius in time under the effect of sound. As for the
collision integral Stg on the right-hand side of the equa-
tion, it is connected with the processes of scattering, as
well as coalescence and splitting of bubbles. Here, we
give the part of the collision integral that leads to a
change in the average radius of bubbles on account of
the processes of their coalescence and splitting:

(8)

Here, σ is the capture cross-section (of scattering) and
|V1 – V2| is the relative forward speed of colliding bub-
bles.

The first term on the right-hand side of Eq. (8)
describes the increase in the number of bubbles with
radius  on account of collision and coalescence of

two bubbles with smaller radii  and  under the
condition that they combine into a single cavity. It is
assumed that two merging bubbles produce a new bub-
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ble with the radius  in such way that the condition of
retaining their total volume is satisfied:

(9)

The second term on the right-hand side of Eq. (8)
describes the decrease in the number of bubbles with
the radius  due to their collision with other bubbles
and their further merging into a cavity with a size dif-
ferent from . The last term on the right-hand side of
the collision integral (Eq. (8)) characterizes the sources
and sinks of phase inclusions with the radius  due to
various mechanisms. For example, it is well known
that, when a bubble reaches a certain size, at a corre-
sponding velocity of radial fluctuations, a spherical
instability of the bubble occurs. Under the condition

 > Rcr, an exponential growth is observed in the sec-
ond harmonic of the cavity surface oscillations, the lim-
iting critical radius being determined by the expression

(10)

where |δR| is the amplitude of bubble oscillations.
Finally, this leads to the destruction of the bubble sur-
face and to bubble splitting. As a result, not one but sev-
eral smaller bubbles are produced. In this case, the
source function Q can be written in the form

(11)

Here, Ni is the number of small bubbles with the radius

, which are produced in the process of the cavity

splitting, and g0( ) is the function describing their size
distribution.

Remember that bubbles in a liquid under the effect
of sound perform not only radial oscillations but also
translational motion. The forces of radiation pressure
arise between oscillating bubbles. These forces lead to
the interaction of bubbles. In the case of two bubbles
oscillating at a small distance from each other, the
forces have the character of attraction and are analo-
gous to the Bjerknes forces. In the case of a bubble
located at the point r1, the attractive force from the side
of the second bubble oscillating at the point r2 has the
form

(12)

The velocities of radial oscillations of the surfaces of

the bubbles  and  are determined as the result of
solving Eq. (5).

Both primary and secondary forces of radiation
pressure lead to the translationl motion of the gravity
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centers of bubbles, and the scattering of bubbles by
each other results from their interaction. Finally, this
leads to an additional term in the collision integral,
which takes into account the redistribution of the bub-
ble momentum. We will not present here this term,
which is to some extent analogous to Eq. (8). For
approximate calculations, we can use the so-called
τ-approximation in which both summands of the colli-
sion integral on the right-hand side of the kinetic equa-
tion (7) are replaced by their simple estimates:

(13)

Here, g0 is the stationary function of bubble size distri-
bution, τ1 is analogous to the mean free time of particles
in an ideal gas, and τ2 is the characteristic time of bub-
ble coalescence. The times τ1 and τ2 are usually long
compared to other characteristic times of the problem
(2π/ω, the transient period of oscillations, etc.), and the
kinetic equation can often be treated as a homogeneous
one, i.e., without the right-hand side. If coalescence and
the flare regime of cavitation are absent, when the aver-
age value of the forward speed of bubbles is almost zero,
Eq. (7) can be reduced to the following simple form:

(14)

It follows in particular from Eq. (14) that, in the station-
ary case, the distribution function for average values
reaches its minimum at the maximal velocities of sur-
face oscillations. It should be noted that, in the case of
acoustic cavitation with the average radius varying in

time, the velocity  reaches the highest values for
resonance bubbles. This means that the distribution
function must have a minimum at the resonance bub-
ble size [12].

As we have already mentioned above, in the case of
nonlinear oscillations of bubbles, new frequencies arise
due to the excitation of harmonics and subharmonics,
which are described in the framework of the nonlinear
equation (5). However, a sharp expansion of the range
of discrete frequencies also occurs as a result of bubble
interaction. The formation of zones analogous to those
formed in solids occurs in the vicinity of each fre-
quency. For example, it is easy to show that the inter-
action of two bubbles with the resonance frequencies
ω01 and ω02 due to the Bjerknes-type forces (Eq. (12))
leads to splitting and shifting of their eigenfrequen-
cies according to the law

(15)

Here, the coupling coefficients ε1 and ε2 are equal to

ε1, 2 = exp(ikL)/L, where L = |r1 – r2|. In the case of
n bubbles, each eigenfrequency is split into a region
consisting of n different but closely spaced frequencies.
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In closing our brief and schematic mathematical
description of a cavitation region, we note the specific
features of the stationary regime that occur in the case
of cavitation. As one can see from the above consider-
ation and from Eqs. (1)–(15), each block of equations
can be characterized by a whole set of its own charac-
teristic times. Single times of each set can widely differ
from each other and differ from the characteristic times
of other blocks of equations by several orders of mag-
nitude. For example, in the case of wave equations,
such times as the period of oscillations, the characteris-
tic time of the development of the nonlinear regime,
and the characteristic time of rescattering can be sev-
eral orders of magnitude smaller than the times τ1 and
τ2 mentioned above, which determine the time of the
variation of the function describing the bubble size dis-
tribution. In this case, such quasi-equilibrium situations
can take place as, e.g., in the cases of rectified gas dif-
fusion or directional thermal diffusion, when the sys-
tem rapidly reaches its stationary state in some indi-
vidual parameters. Then, a relatively slow adiabatic
change of these parameters occurs, and, within some
new characteristic time determined by other parameters
of the problem, the existence of a new stationary regime
becomes possible. In some cases, the existence of sev-
eral such quasi-stationary states is possible. Regret-
fully, at the moment we do not know or cannot calculate
some of the coefficients involved in Eqs. (1)–(15). For
example, we have no idea how to determine the exact
values of the coefficient Ni and the number i in Eq. (11),
which determine the avalanche character of bubble
multiplication. We note that, according to [4, 8], the
factor of bubble multiplication during the cavitation
time can reach a value of the order of 105. However, we
know neither the capture cross-section nor the proba-
bility of bubble coalescence. Therefore, we cannot even
approximately estimate the time within which the num-
ber of multiplying bubbles becomes stabilized at a
given pressure level. Thus, to correctly interpret the
results obtained in the first part of this paper, it is nec-
essary to conduct additional theoretical and experimen-
tal studies.
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Abstract—The effect of the diffraction focusing of an acoustic field on the space–time intensity distribu-
tion of narrow-band pulsed signals in multimode oceanic waveguides is analytically and numerically stud-
ied. The laws governing this effect and its specific features are illustrated by the results of calculations based
on the standard ray approximation and the mode theory for the acoustic field in an isovelocity waveguide.
© 2001 MAIK “Nauka/Interperiodica”.
It is well known [1] that the propagation of pulsed
acoustic signals in an oceanic waveguide is accompa-
nied by the formation of a space–time structure charac-
terized by a certain pattern of the lines of maximal field
intensity J(t, r0, z) at a fixed distance r = r0 in the prop-
agation time–depth plane (t – z). For each waveguide,
the pattern of such lines, which is called the t – z diagram
[2, 3], determines the dependence of the travel time t of
the pulsed signals on the reception depth z. Each line of
the t – z diagram connects the arrival times of the pulsed
signals of a similar type and actually describes the form
of the corresponding wave front in the waveguide
cross-section [1–3].

First proposed long ago [2] for describing the ray
structure of a field of pulsed signals at different depths,
now, the t – z diagrams find wide application in solving
urgent problems of ocean tomography [4, 5]. This fact
accounts for the attention given to the experimental and
theoretical studies of the laws that govern the formation
of the space–time distribution of the pulsed signal
intensity in oceanic waveguides [1, 4, 5]. One of the
most important directions of these studies is the theo-
retical description of the diffraction effects arising in
the formation of J(t, r0, z), where the diffraction effects
are understood as all possible deviations of J(t, r0, z)
from the t – z diagrams calculated in the geometrical
acoustics approximation [4–6]. However, in such a for-
mulation, the question about the adequacy of the descrip-
tion of the space–time structure of the field J(t, r0, z) with
the use of the ray-calculated t – z diagrams deals with
a rather fundamental problem on the limits of applica-
bility and on the correctness of the geometrical acous-
tics approximation for describing the acoustic fields in
oceanic waveguides [3, 7].

In this paper, without considering the whole diver-
sity of the conventionally considered diffraction effects
[3, 7], we will concentrate on the effect of the diffrac-
1063-7710/01/4704- $21.00 © 20384
tion focusing of acoustic fields [8–10] on the space–
time distribution of the pulsed signal intensities J(t, r, z)
in the oceanic waveguides. The reason is that, in con-
trast to other effects [3, 7], this effect occurs in both
refractive [8, 9] and isovelocity waveguides [10, 11]
and is most pronounced in the case of the multimode
propagation of cw acoustic signals; on the other hand,
it was not considered in the scientific literature except
in two papers [12, 13] where, however, some physically
unjustified conclusions had been made. As an illustra-
tive example, we consider the behavior of the field
J(t, r, z) in an isovelocity waveguide for which the
numerical calculations with the use of both the ray
approximation and the mode theory are considerably
simplified; this allows a direct comparison of the results
following from these two approximations.

Let us first dwell very briefly on the description of
the basic effects arising in the diffraction focusing of
the acoustic fields generated by a cw point source in
waveguides [8–11]. As shown in [8, 14], the interfer-
ence pattern of the acoustic field along the track in an
oceanic waveguide is rearranged with the minimal Rmin
and maximal Rmax spatial periods. This rearrangement
manifests itself as a partial repetition of the character-
istic features observed at 0 ≤ r ! Rmin in the spatial (in
the depth z and the horizontal distance r) distribution of
the sound field intensity. This repetition leads to the dif-
fraction focusing of the field in the corresponding inter-
vals of distances [8, 14]

(1)

In expression (1), the characteristic spatial periods
are determined by the following expressions [8–10, 14]:

(2)

mRmin r mRmax≤ ≤ m 1= 2…,( ).

Rmin min Rg l l 1; l 1 l 2+,+ +,( ){ } ,=

Rmax max Rg l l 1; l 1 l 2+,+ +,( ){ } ,=
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where the quantity

(3)

corresponds to the period of the rearrangement of the
interference structure formed by a pair of adjacent
modes with the characteristic interference periods

(4)

The frequency dependence of the horizontal wave num-
ber kl of the lth mode in Eq. (4) is determined by the
dispersion equation corresponding to the specific
waveguide.

Thus, here as in [8–10, 14], by analogy with the dif-
fraction imaging of periodic structures in optics [15],
the diffraction focusing of the acoustic field in a
waveguide means the formation of zones of enhanced
insonification. In this case, in contrast to refractive
focusing [3, 7] where the dependence of the spatial
period on the wavelength is determined by only a small
diffraction correction to the ray approximation, the spa-
tial period of the focusing significantly depends on the
wavelength λ [8–10, 14, 16].

The term diffraction focusing and the manifestation
of the corresponding effect can be explained on the
basis of the simplest model of an isovelocity waveguide
with a water layer of a depth H and with a rigid bottom.
In this case, the field of the point source is equivalent to
the field of a one-dimensional luminous lattice consist-
ing of real and imaginary sources [3, 7]. The aperture
of such a linear lattice is infinitely large, and, therefore,
the Fraunhofer zone is at infinity. The latter means that
the receiver is always in the Fresnel zone of such an
aperture. As a consequence, a periodic focusing of its
radiation should appear [15]. By analogy with the dif-
fraction of waves transmitted through a diffraction lat-
tice [15], the period of this focusing should be propor-
tional to the quantity H2/λ [10, 11, 16]. This statement
has been analytically proved in [17] by using the repre-
sentation of the field as the superposition of imaginary
sources [3]. It was shown that, for multimode signal
propagation, where λ/H ! 1, the diffraction focusing of
a cw radiation in an ideal waveguide occurs with the
spatial period 4H2/λ, which coincides with the period
Rmax obtained from the mode theory (Eq. (2)) [10].

In an arbitrary plane-layered waveguide, the diffrac-
tion focusing of a cw acoustic radiation will occur with
the spatial period Rmax given by Eq. (2); therefore, the
less the difference

(5)

between the maximal and minimal periods (2) (i.e., for
∆R/Rmin ! 1), the stronger the diffraction focusing.
However, when Rmin and Rmax given by Eqs. (2) differ
greatly but the condition ∆R/Rmin ≈ 1 is valid, the dif-
fraction focusing can, nevertheless, occur for certain

Rg l l 1; l 1 l 2+,+ +,( )
=  Rl l 1+, Rl 1 l 2+,+ / Rl l 1+, Rl 1 l 2+,+–

Rl l 1+, 2π/ kl kl 1+–( ),=

Rl 1 l 2+,+ 2π/ kl 1+ kl 2+–( ).=

∆R Rmax= Rmin–
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groups of the energy modes with relatively small
changes in the quantity Rg given by Eq. (3) [8, 9]. It is
clear that the greater the number of modes Lm = lb – ls in
every such group ls ≤ l ≤ lb, the more pronounced the
diffraction focusing of the field in the corresponding
intervals of horizontal distances:

(6)

where

(7)

and ls and lb correspond to the boundary values of the
mode numbers characterizing the specific group of
modes.

As is clear from expressions (1)–(7), the diffraction
focusing of the cw acoustic radiation is caused by the
constructive interference of adjacent pairs of construc-
tively interfering modes. Therefore, a noticeable man-
ifestation of this effect in the propagation of pulsed
signals is possible only in certain conditions that are
necessary for the realization of the constructive inter-
ference of the corresponding modal pulses.

In order to determine the conditions necessary for
the appearance of diffraction focusing of the pulsed sig-
nals, we consider the multimode propagation of a rather
narrow-band pressure pulse in an arbitrary plane-lay-
ered waveguide. In contrast to [18, 19], for the descrip-
tion of the temporal form of the initial pressure pulse
Ps(t), we will use the function

(8)

whose spectrum S(ω) depends on the cyclic frequency
ω as

Here, ω0 @ 1/T is the carrier frequency of the pulse
whose effective length is ∆t = 2T and Ω = 2/T is the fre-
quency characterizing the half-width of the spectrum;
the symbol c.c. in Eq. (8) designates a complex conju-
gate term; and p0 is the perturbation amplitude of the
pressure generated by the point source in free space on
the spherical surface of the radius R0.

Using the mode representation for the sound field in
the waveguide, the expression for the impulse pressure
wave P'(t, z, r) can be written as [7, 18]

(9)

(10)

mRs r mRb,≤ ≤

Rs min Rg l l 1; l 1 l 2+,+ +,( ){ } ,=

Rb max Rg l l 1; l 1 l 2+,+ +,( ){ } ,=
ls l lb≤ ≤( )

Ps t( ) S ω( )e iωt– ω c.Ò. +d

0

∞

∫ p0e t
2/T2– ω0t( ),cos= =

S ω( )
p0

2 πΩ
--------------- e

ω ω0–( )2/Ω2–
e

ω ω0+( )2/Ω2–
+

 
 
 
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P ' t r z, ,( ) R0 S ω( )p r z,( )e iωt– ω c.c.+d

0

∞

∫ 
 
 

,=

p r z,( ) πi ψl zs( )ψl z( )H0
1( ) klr( ).

l 1=

L ω( )

∑=



386 BORODINA, PETUKHOV
Here, the quantity p(r, z) together with the exponential
factor in Eq. (9) determines the field of the cw radiation
formed by all L(ω) propagating modes and ψl(z) are the
orthonormalized eigenfunctions of the waveguide,
which satisfy the standard boundary conditions at its
surface z = 0 and at the bottom z = H. In the far zone of
the point source klr @ 1, which allows one to use only
the main term of the asymptotics of the Hankel function

 [3], Eq. (10) can be reduced to a form conve-
nient for the subsequent analysis:

(11)

(12)

Furthermore, by analogy with [18, 19], we neglect
the dependence of the mode amplitude Al (ω, z, zs) on
the radiation frequency in a narrow range ω0 – Ω ≤ ω ≤
ω0 + Ω of its variation and expand the horizontal wave
number of the lth mode in a power series in (ω – ω0)
retaining the terms of no higher than the second order
of smallness:

(13)

where v l = dω/dkl is the group velocity of the mode.
Performing the integration in Eq. (9) with the use of
Eqs. (11)–(13), we determine the approximate expres-
sion for the temporal dependence of the pressure per-
turbation in the waveguide:

(14)

(15)

where

Using expressions for the space–time dependence of
the pressure perturbation in the modal pulse Πl(t, r, z)

H0
1 klr( )

p r z,( ) 1

r
------ Al ω z zs, ,( )e

i klr π/4+( )
,
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given by Eq. (15), we can derive some conclusions
which are of interest for the formulation of the condi-
tions necessary for the manifestation of the diffraction
focusing of the field in the total pulsed response P'(t, r, z)
given by Eq. (14). According to Eq. (15), as the dis-
tance increases, the intramode dispersion first leads to
an increase in the effective duration of each modal
pulse, ∆tl = 2Tl, and second to an additional decrease in
its amplitude as compared to the cylindrical decay law
r–1/2, the additional decrease being characterized by the
factor pl.

Thus, in contrast to the intermode dispersion lead-
ing to a divergence of modal pulses, the intramode dis-
persion promotes the appearance of the effect of dif-
fraction focusing of the sound field (Eq. (14)) because
of the increase in ∆tl. In this connection, we can state
that, for a group of modes with the numbers ls ≤ l ≤ lb
(Eqs. (6) and (7)), which is of interest for us, the dif-
fraction focusing will be noticeable if the divergence in
time of the centers (τl = 0) of the respective modal
pulses does not exceed half of the minimal effective
duration of one of the pulses:

(16)

where

Using expressions (6) and (16), we obtain the condition

(17)

which must be satisfied for the manifestation of the
diffraction focusing of the modal pulses belonging to
the corresponding group of modes with the numbers
ls ≤ l ≤ lb in a plane-layered waveguide.

On the other hand, the intramode dispersion, which
was ignored in [20, 21], prevents the manifestation of
the diffraction focusing because of the additional
decrease (characterized by pl) in the amplitude of each
modal pulse (see Eq. (15)). However, this fact does not
play any fundamental role, since it affects only the rel-
ative (with respect to the energy sum of modal pulses)
magnitude of the effect, which is mainly determined by
the dependence of the mode amplitudes (12) on their
number. In addition, the intramode dispersion can neg-
atively affect the diffraction focusing of the sound field
because of the additional change in the phase of each
modal pulse, this change being characterized by the
quantity

(18)

It should be noted that the presence of the second
term in Eq. (18) leads to a linear (in time) frequency

r
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modulation in each modal pulse. In this case, the carrier
frequency of the modal pulse

(19)

increases to the left of its center (τl = 0) and decreases
to the right of it when (dv l/dω)  > 0; in the case

(dv l/dω)  < 0, the situation is reversed. As is seen

from Eq. (19), the maximal difference of ωl from ω0 is
reached at the characteristic distances r = rl (at al = 1);
beginning from this, we obtain ωl  ω0 as r  ∞.

Thus, in order to determine the possibility of the
manifestation of the diffraction focusing of the sound
field in the case of the propagation of narrow-band
pulsed signals in multimode plane-layered oceanic
waveguides, it is necessary to carry out the correspond-
ing analysis of the dependences of Rg, Al, v l, dv l/dω,
and rl on the mode number l at the carrier frequency ω0,
which allows one to determine the mode groups for
which condition (17) is satisfied in a given interval of
horizontal distances.

It is evident from the foregoing that, in deriving con-
dition (17), we ignored the dependence of the mode
amplitude on the radiation frequency in the correspond-
ing range ω0 – Ω < ω < ω0 + Ω . With the use of analyt-
ical calculations without specifying the type of the
waveguide, the effect of the frequency dependence of
the mode amplitudes on the propagation of modal
pulses can be studied in the framework of the WKB
approximation for the mode representation of the sound
field [18, 22]. It can be easily shown that the inclusion
of this effect will lead to the appearance of corrections
that depend on the depths of the source zs and receiver z
but do not depend on the horizontal distance r to the
travel time of the modal pulse r/v l and to the quantity al
characterizing the changes in the pulse duration ∆tl and
in its phase ϕl. It is evident that, on the whole, such cor-
rections do not change the pattern of the phenomenon
and, therefore, are not taken into account in this study.

Now we quantitatively illustrate the manifestation
of the diffraction focusing of the sound field in the
space–time structure of the intensity of narrow-band
pulsed signals in an isovelocity waveguide represented
by a homogeneous water layer of depth H with the
sound velocity c0 and density ρ0 overlying a homoge-
neous liquid halfspace with the acoustical characteris-
tics c and ρ. This simple model of the waveguide is cho-
sen, since, in the framework of this model, the main
features of the diffraction focusing of cw acoustic sig-
nals are well understood [10] and, in addition, numeri-
cal evaluations of the sound field in an isovelocity
waveguide are considerably simplified not only in the
mode representation, but in the ray approximation as
well. The latter allows one to demonstrate rather clearly
the possibilities for these two theories to describe the
diffraction focusing of the sound field.

ωl ω0

al

1 al
2+

--------------
τ l

T2
-----+=

ω ω0=

ω ω0=
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With the aim to illustrate the structure of the first
zone of the diffraction focusing, which is necessary for
further analysis, we first consider the spatial distribu-
tion of the acoustic intensity normalized by the corre-
sponding geometric divergence at the specific carrier
frequency ω = ω0. This distribution is obtained using
both mode (Jm(r, z)) and ray (Jr(r, z)) theories:

(20)

(21)

The quantity p(r, z) in Eq. (20) is determined by
Eq. (11), and (r, z) in Eq. (21) by an expression (see
[17]) obtained using the representation of the sound
field as multiple reflections from the bottom but with-
out allowance for the ray displacement at the total
internal reflection [7].

For the numerical calculations of the spatial distri-
bution of the normalized intensity of the sound field
by the mode (Eq. (20)) and ray (Eq. (21)) theories, the

Jm r z,( ) r p r z,( ) 2,=

Jr r z,( ) 2H( )2 r2+ p r z,( ) 2.=

p
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Fig. 1. Spatial distribution of the normalized acoustic field
intensity calculated in the first zone of the diffraction focus-
ing: (a) the mode theory for Jm(r, z), Eq. (20), and (b) the ray
theory for Jr(r, z), Eq. (21).
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Fig. 2. Space–time distribution of the normalized intensity calculated for pulsed signals at T = 0.035 s: (a) the mode theory for
Jm(t, r, z), Eq. (22), and (b) the ray theory for Jr(t, r, z), Eq. (23); here  = τ/2T.τ
following parameters (as in [10]) were chosen: f = f0 =
300 Hz, zs = 9 m, H = 300 m, c0 = 1.45 km/s, c =
1.7 km/s, ρ0 = 103 kg/m3, and ρ = 1.6 × 103 kg/m3.

Figure 1 exhibits the results of numerical modeling,
which are presented in the r – z plane in the contrast
form with the dynamic range 20 dB. As follows from
Fig. 1, the intensity distributions Jm(r, z) and Jr(r, z)
(Eqs. (20) and (21)) in the first zone of the diffraction
focusing almost coincide. In this case, they are charac-
terized by two lines of maximal sound intensity. These
lines emerge from a point located near the pressure-
release surface and have opposite signs of the slope
angles in the r – z plane. A similar agreement of the spa-
tial dependences Jm(r, z) and Jr(r, z) is also observed in
other (m > 1) zones of the diffraction focusing. This is
a consequence of the fact that the field in these zones is
mainly formed by the modes of low numbers with shal-
low grazing angles. These modes correspond to the rays
with shallow grazing angles whose displacement at the
total internal reflection is small and can be neglected
[7]. Owing to the latter fact, the standard ray theory cor-
rectly describes the process of the formation of the dif-
fraction focusing zones of the sound field in the iso-
velocity waveguide.
Using the information on the interference pattern of
the sound field at a fixed radiation frequency in the first
zone of the diffraction focusing (Fig. 1), we now con-
sider the features of the space–time structure of narrow-
band pulsed signals with the same carrier frequency in
the first zone.

In solving this problem, numerical calculations of
the space–time distribution of the pulsed signal inten-
sity (normalized by the geometric divergence) were
carried out using the mode (Jm(t, r, z)) and ray (Jr(t, r, z))
theories:

(22)

(23)

Here, the dependence P'(t, r, z) in Eq. (22) is deter-
mined by Eq. (19) and Π(t, r, z) in Eq. (23) is deter-
mined by an expression (see [17]) where the field is
represented in the form of multiple bottom reflections
[7]. In deriving this expression in [17], we neglected the
displacement of rays, as well as the change in the tem-
poral form of the pulsed signals at the total internal
reflection from the bottom. The latter means that, at the
total internal reflection of a narrow-band signal with

Jm t r z, ,( ) r P ' t r z, ,( ) 2/ p0
2R0

2,=

Jr t r z, ,( ) 2H( )2 r2+ Π t r z, ,( ) 2/ p0
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ω0T @ 1 from the waveguide bottom, we neglect the
change in its envelope but take into account the change
in its phase.

The numerical calculations of the space–time distri-
bution of the normalized intensity of the pulsed signals
were carried out by Eqs. (22) and (23) for f0 = 300 Hz,
zs = 9 m, and for two values ∆t = 0.07 and 0.2 s of the
effective duration ∆t = 2T of the initial pressure wave (8).
Taking into account the spatial structure of the diffrac-
tion focusing zone of the sound field generated by the
cw source (see Fig. 1), the value of the horizontal dis-
tance (r = 72.5 km) was chosen so that the diffraction
focusing of the field was noticeable near the free sur-
face of the isovelocity waveguide (see Fig. 1).

The results of the numerical calculations of the
dependences Jm(t, r, z) and Jr(t, r, z) are presented in the
τ – z plane in Figs. 2 and 3 in the contrast form with the
dynamic range 20 dB; here, τ = t – t0 is the time mea-
sured from the minimal propagation time of pulsed sig-
nals t0. The analysis of these results allows one to make
the following conclusions.

First, up to the diffraction focusing zone, the space–
time field structure is separated into two characteristic
groups, one of which is formed by the modes of rela-
tively small numbers, l < 34, with large group velocities
and the maximum Al(zs, z = zs, ω) for l =16. The second
group is formed by the modes of relatively large num-
bers l > 34 with smaller values of group velocities and
the maximum Al(zs, z = zs, ω) for l = 50. The whole
space–time field structure formed by both the first and
the second mode groups consists of two systems of
crossing lines of maximal intensities. These lines have
hyperbolic form and emerge from the points located
near the free surface and the bottom, respectively.
These intensities correspond to the modal pulses with
minimal travel times.

Second, as can be expected, the diffraction focusing
of the sound field occurs only for the first group of
modes, 1 ≤ l < 34, and is characterized by enhanced
intensity near the free surface at r = 72.5 km. The
greater the characteristic duration of the initial pressure
pulse, the more pronounced the diffraction focusing;
the space–time structure of the field J(t, r, z) in the τ – z
diagram becomes more and more similar to the spatial
structure of the field J(r, z) of cw radiation presented in
the r – z plane (Fig. 1).

Third, on the background of the above-mentioned
hyperbolic lines of maximal values of the sound inten-
sity (typical of the dispersion of modes of a water wave
in an isovelocity waveguide, the travel times of these
modes decreasing with the increase in the radiation fre-
quency [3, 7]), the structure of the wave fronts typical
of such a waveguide is formed. This structure repre-
sented in the τ – z diagram has the form of a bundle
whose angle of incidence on the waveguide boundaries
increases with time. The corresponding structure of the
wave fronts is most pronounced in the τ – z diagram for
the second group of modes. Clearly, as the effective
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
duration of the initial pressure pulse increases, the man-
ifestation of the bundle structure of the wave fronts
becomes less pronounced in the τ – z diagram.

From the above discussion it follows that the dif-
fraction focusing has no relation to the formation of the
bundle structure of wave fronts in the τ – z diagram and,
therefore, the opposite statement made in [12, 13] is
incorrect. The latter is also confirmed by the results of
the numerical calculations of the space–time distribu-
tion of the sound intensity (normalized by the geomet-
ric divergence) with an incoherent summation of the
contributions of individual rays (Fig. 4).

As is seen from Fig. 4, the bundle structure of the
wave fronts typical of an isovelocity waveguide is
formed even by an incoherent summation of rays, when
the diffraction focusing of the field is absent. It means,

τ–
0.3

0 20 40

0.2

0.1

0
(b)

0.3

0.2

0.1

0
(a)

z, km

Fig. 3. Space–time distribution of the normalized inten-
sity calculated for pulsed signals at T = 0.1 s: (a) the mode
theory for Jm(t, r, z), Eq. (22), and (b) the ray theory for

Jr(t, r, z), Eq. (23); here  = τ/2T.τ
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Fig. 4. Space–time distribution of the normalized intensity calculated for pulsed signals at T = 0.035 s by the incoherent theory;
here,  = τ/2T.τ
in turn, that this wave front structure appears in the τ – z
diagram only when the conditions, which are necessary
for the formation of rays corresponding to construc-
tively interfering mode groups, are satisfied [3]. There-
fore, the corresponding lines in the τ – z diagram char-
acterize the usual dependences of the travel times of
rays, t(r, z), on the reception depth for different multi-
plicity of their reflection from the surface and bottom of
the oceanic waveguide at a fixed horizontal distance.
Such dependences are adequately described by the
approximate analytical expressions for t(r, z) presented
in our previous paper [17].

To conclude with, we analyze the differences in the
space–time field structures calculated by using the mode
(Jm(t, r, z), Eq. (22)) and the ray (Jr(t, r, z), Eq. (23)) the-
ories.

As follows from the results of calculations of the
dependences J(t, r, z) (Figs. 2, 3), errors in the ray
approximation are revealed in describing the space–
time field structure formed by both the first and the sec-
ond groups of modes. However, these errors are of the
energy type, since they manifest themselves mainly in
the magnitude of the sound intensity along the corre-
sponding lines in the τ – z diagrams. The structure of
the wave fronts is adequately described by both theo-
ries.

In addition, the ray approximation gives noticeably
greater errors in describing the space–time field struc-
ture of pulsed signals (Figs. 2, 3) than in describing the
spatial interference structure of the field generated by a
cw source (Fig. 1). This result is caused by the fact that,
in deriving the expression for Jr(t, r, z) (Eq. (23)), we
used some additional (as compared to Jr(r, z), Eq. (21))
approximations taken from [17] concerned with the
change of the temporal form of the profile of a narrow-
band pressure pulse at its total internal reflection from
the ocean bottom. Therefore, it is natural that, with an
increase in the effective duration ∆t = 2T of the initial
pressure pulse, the errors of the ray approximation in
describing the space–time field structure decrease down
to the minimum attainable as T  ∞ (see Figs. 2, 3).
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Abstract—Receiving electroacoustic transducers with sensing elements made of an elastic piezoelectric com-
posite material are described. The parameters of a composite material that exhibits a bulk piezoelectric effect
are presented. Results obtained by measuring the turbulent noise in a hydrodynamic channel with the use of
piezoelectric composite receivers are reported. The results are compared with those of the noise measurements
by a miniature piezoceramic receiver and are considered in the light of the known models of near-wall turbu-
lence. © 2001 MAIK “Nauka/Interperiodica”.
The measurements of wall pressure fluctuations in
turbulent boundary layer flows continue to attract the
interest of researchers [1]. The main instruments used
in such measurements are the pressure receivers repre-
sented by electromechanical and electroacoustic trans-
ducers. In recent years, elastic piezoelectric materials
have found expanding application in solving the prob-
lems of electromechanical and electroacoustic transfor-
mations. These materials include polyvinylidene fluo-
ride-type (PVDF-type) polymer films, which exhibit a
piezoelectric effect after being subjected to mechanical
and electric treatment [2], and the so-called piezoelec-
tric composites, which consist of fine-disperse solid
piezoelectric particles (usually, a piezoceramic powder)
distributed throughout a passive elastic polymer matrix
[3]. The properties of piezoelectric composites depend
on the properties of the piezoelectric powder; on the
concentration, shape, and distribution of its particles;
and, to a lesser extent, on the properties of the polymer
matrix. The new elastic piezoelectric materials are used
for the fabrication of mechanical vibration transducers
and sound receivers of various types for various pur-
poses [4, 5]. These materials also are of interest for
aerodynamic and hydrodynamic studies: receivers
made on their basis can serve for measuring pressure
fluctuations in a turbulent flow and for analyzing the
noise generated by a flow about an obstacle, as well as
for solving other similar problems. The advantages of
elastic piezoelectric receivers over the standard piezo-
ceramic ones are primarily related to the possibility of
varying their dimensions over wide limits: they can be
manufactured as small devices with the dimensions
within 1 mm and as distributed devices whose length
1063-7710/01/4704- $21.00 © 20392
may exceed 1 m. Such receivers can be in tight contact
with a surface of any shape, they can be easily mounted
on it and cause no significant distortions of the sur-
rounding acoustic field. In a water environment, their
small effect on the medium is additionally provided by
their relatively small wave impedance, which is closer
to the wave impedance of water than the impedance of
conventional active materials (piezoceramics). 

Receivers made of a piezoelectric polymer film with
dimensions about 1 mm2 were used by Nitsche et al.
[6, 7] for measuring wall pressure fluctuations, which
occurred in the turbulent boundary layer of an air flow
in the initial part of a wind tunnel and in the boundary
layer formed in a flow about an airfoil. The cited papers
present the rms values and oscillograms of the signal
fluctuations caused by a combined effect of pressure
fluctuations and tangential stresses; they describe the
experimental method used for separating these factors
and present the results of its application. However,
these studies did not include the spectral measure-
ments, which provide additional information on the
structure of the turbulent flow. The study of the spec-
trum of turbulent pressure fluctuations by not only
small-size receivers, but also by distributed receivers
that can be brought into coincidence with the flow
boundaries is quite promising for solving a number of
problems of acoustohydrodynamics. 

The effect of the receiver dimensions on the mea-
surements of the wall pressure fluctuations in a turbu-
lent boundary layer was considered in [8–12]. The data
presented in these publications testify that the true vari-
able pressure caused by the near-wall turbulence can be
measured only by a receiver whose dimensions are
001 MAIK “Nauka/Interperiodica”
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small relative to the characteristic scale of the local
pressure fluctuations. At high Reynolds numbers, in the

frequency range 2πf ≤ 0.1 /ν (ud is the dynamic flow
velocity and ν is the kinematic viscosity coefficient),
the pressure fluctuations are determined by the frozen
turbulence model. In this case, to measure the fluctua-
tions without distortions, it is necessary that the size d
of the receiver satisfy the condition d ≤ u/3f, where u
is the mean flow velocity and f is the frequency.
Numerical estimates show that, for a mean velocity of
10 m/s and frequencies below 3000 Hz, the turbulent
pressure fluctuations (the pseudosound) are recorded
without distortions by receivers whose sizes do not

exceed 1 mm. In the frequency range 2πf ≥ 0.1 /ν
where high-frequency fluctuations are caused by the
nonstationary processes of turbulence generation at the
boundary of the viscous sublayer, the resolution crite-
rion for small-scale fluctuations is expressed as d ≤
20–30ν/ud. Then, for u = 10 m/s and a limiting fre-
quency of 3000 Hz, the critical size of the receiver is
estimated as d ≈ 0.1 mm. These estimates offer the fol-
lowing conclusion: the greater the length of the receiv-
ing element, the weaker its response to the small-scale
disturbances and, hence, the smaller the contribution of
the pseudosound component to the total received signal
and the greater the proportion of the sound component
in the resulting spatial spectrum. 

Pressure receivers that have a sufficient length and
do not distort the shape of the surface contacting the
flow can be manufactured on the basis of elastic piezo-
electric materials. Conventional piezoceramics is of lit-
tle use for this purpose. Below, we describe the experi-
ments on the reception of noise generated by the near-
wall turbulence in a hydrodynamic channel with the use
of a distributed piezoelectric composite receiver; we
compare the results with those of the reception by a
conventional small-size piezoceramic receiver. The
sensing element of the distributed receiver was made of
a PKP-83 piezoelectric composite developed as a result
of the cooperation of the Acoustics Institute with the
Plastmassy Research and Production Association [13,
14]. According to the classification proposed in [3], this
material belongs to the composites of the (0–3) type.
The active piezoelectric component of this material is
lead titanate piezoceramic powder (its volume frac-
tion is 30%), and the passive polymer matrix is poly-
ester-polyurethane resin. The coefficient of the bulk
piezoelectric sensitivity of the PKP-83 composite is
gh = 70 mV m/N, which is superior to that of conven-
tional types of piezoceramics because of the large aniso-
tropy of the piezoelectric properties of the powder mate-
rial. The density of the composite is ρ = 3000 kg/m3,
which is half the density of piezoceramics, and the elas-
tic modulus is ch = 5.5 GPa, which is an order of mag-
nitude less than the corresponding parameter of piezo-
ceramics. The wave impedance of the composite mate-
rial is about 4000 kg/m2/s, so that its acoustic matching

ud
2

ud
2
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with water is better than in the case of piezoceramics by
almost a factor of five. The relative permittivity of the
composite is fairly low (ε = 18), which is usually consid-
ered as a disadvantage. As a rule, the piezoelectric ele-
ments are made in the form of plates whose thickness is
about 1 mm and area is (160–180) × (40–90) mm2; the
plates are polarized in the thickness direction by a
strong electric field. The reversible flexure radius of
such piezoelectric composite elements is 70 mm, and
their properties do not depend on hydrostatic pressure
up to 700 atm. 

The pressure receiver under study is schematically
represented in Fig. 1. Its sensing element consists of
two PKP-83 piezoelectric composite plates whose large
surfaces, 165 × 40 mm2 in area, are glued together. The
contacting plate surfaces are selected so as to have sim-
ilar polarization charges. The inner electrode is con-
nected to the central wire of the cable and the outer
electrodes are connected to the earthed screen braiding.
This structure provides a reduction of electromagnetic
interference. The sensing element is covered with a
polyurethane layer about 10 mm thick and the cable
passes through it. The overall dimensions of the
receiver are 230 × 65 × 20 mm3. 

The receiver was calibrated by sound signals in the
hydroacoustic tank of the Acoustics Institute. The sen-
sitivity of the receiver proved to be 70–80 µV/Pa in
the frequency range from 10 Hz to 3 kHz. With a fur-
ther increase in frequency, the sensitivity gradually
decreased, which can be explained by the high resistiv-
ity of the electrodes made of a conducting polymer. The
capacitance of the receiver was 2000 pF. The measure-
ments performed in a high-pressure tank showed that
the sensitivity and the capacitance remain constant
within ±15% when the hydrostatic pressure increases
up to 700 atm. 

For comparison with the piezoelectric composite
pressure receiver, we used a cylindrical hydrophone
made of TsTS-19 (lead zirconate titanate) piezoceram-

1

2

3

45

67

+–
+–

Fig. 1. Structure of a distributed piezoelectric composite
receiver: (1) piezoelectric plates, (2) inner electrode, (3) outer
electrodes, (4) polyurethane coating, (5) signal-transmitting
cable, (6) central wire, and (7) screen braiding. 
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ics. The diameter of the hydrophone was 1.5 mm and its
sensitivity was 3 µV/Pa. 

In the experiments on the reception of noise pro-
duced by the near-wall turbulence, we used a hydrody-
namic system described in our previous publication
[12]. The main working part of this system is the chan-
nel shown in Fig. 2. The channel has the form of a rect-
angular waveguide with length L = 3 m, width b = 7 cm,
and height h = 2 cm. The metal walls of the waveguide
are 3 to 5 cm thick and have polished inner surfaces.
The water flow in the channel issues from an elevated
water tank with a volume of 14 m3 placed at a height of
14 m. This kind of free water discharge due to the pres-
sure drop together with the solidity of the channel walls
provides a low level of intrinsic noise and vibration of
the channel. Two hydrodynamic parameters of the sys-
tem were measured in the course of the experiments:
the mean velocity u of the channel flow and the tangen-
tial stresses τ in the stationary flow region. The value of
u was estimated by the water discharge, and the value
of τ was estimated by the pressure drop along the work-
ing channel, which was measured by a pressure gauge.
Both these parameters were determined with an accu-
racy of 1–2%. Using the value of τ, we calculated the
dynamic flow velocity 

From the elevated tank, the water was supplied through
a vertical pipe to a damping tank 2 m3 in volume and,
then, to a wide horizontal pipe. The end of this pipe was
separated from the working channel by a contractor,
which reduced the flow cross-section by a factor of 20
and caused a corresponding increase in the flow veloc-
ity. A gradual decrease in the flow cross-section in the
contractor provided a low level of turbulence at the inlet
to the working channel. At the outlet, the flow velocity
gradually decreased as the flow passed through a dif-
fuser smoothly diverging at an angle of 3°. After the
diffuser, the water arrived at a damping tank and then
through the outlet pipe to a receiving tank. The outlet
pipe had a gate valve, which served for varying the flow
velocity u in the working channel from 1.5 to 12 m/s. 

ud τ /ρ( )1/2.=

C u

L

L'

D

1 2 1

3

Fig. 2. Schematic representation of the experimental hydro-
dynamic system: (L) working part of the hydrodynamic
channel, (C) contractor, (D) diffuser, (1) piezoelectric com-
posite pressure receivers, (2) miniature piezoceramic
receiver, and (3) reference receiver (hydrophone). 
In the experiments, the receivers intended for
detecting hydrodynamic noise were mounted on the
upper removable wall of the channel. They were fixed
in specially prepared holes so that their receiving sur-
faces (the plane of the distributed piezoelectric com-
posite receiver and the end of the cylindrical piezocer-
amic receiver) were flush with the surface around
which the water flowed. The reception was performed
at two distances 1 from the working channel inlet: l1 =
100h and l2 = 20h, which corresponded to the terminal
and initial parts of the working channel, respectively.
We used two identical distributed piezoelectric com-
posite receivers (Fig. 2). The position of the receiver at
the longer distance from the inlet corresponded to a
fully developed, uniformly turbulent flow (the inner
hydrodynamic problem). At the shorter distance from
the inlet, the boundary layers belonging to the upper
and lower walls did not intersect (the outer hydrody-
namic problem). The piezoceramic hydrophone that
was compared with the distributed receiver was placed
closer to the channel end. Owing to its small dimen-
sions, the piezoceramic receiver could detect the small-
scale pseudosound pressure fluctuations. Because of its
low sensitivity, the sound component of the hydrody-
namic noise, which was weaker than the pseudosound
component, affected this receiver to a lesser extent. The
sound pressure generated by the turbulent flow along
the whole channel was reliably detected by the distrib-
uted receiver, which, in principle, could also receive the
turbulent fluctuations. In addition to the receivers
installed in the working channel, one more receiver was
placed in the diffuser. The additional receiver was a
standard spherical piezoceramic hydrophone with a
diameter of 50 mm and a sensitivity of 100 µV/Pa. The
receiver mounted in the diffuser detected the sound
pressure almost exclusively, because the flow velocity
there was as low as 0.04 of the velocity in the working
channel and, hence, the turbulence was very small. The
corresponding characteristic frequencies of pseudo-
sound fluctuations were shifted to the infrasound range.
Thus, in compliance with its dimensions, this hydro-
phone detected only the sound waves generated by the
turbulence in the working channel. The pressure mea-
sured in the diffuser, psp, was recalculated to the sound
component psc of the pressure in the working channel
by the formula 

psc = pspSd/Sc,

where Sd is the cross-sectional area of the diffuser at the
hydrophone site and Sc is the cross-sectional area of the
working channel. In the setup used in our experiments,
the ratio Sd/Sc was equal to 22. 

In the previous experiments [12], the frequency
dependences of the measured sound pressure were
found to exhibit some peaks. The presence of the peaks
was explained by the formation of standing waves in
the region between two cross-sections with widely dif-
ferent areas (see Fig. 2). In our experimental setup, the
distance between these cross-sections was L' = 6.7 m, so
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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that one should expect the appearance of resonances at a
fundamental frequency of 125 Hz and at its harmonics. 

The electric signals from the receivers were sup-
plied to a specially designed multichannel amplifier
with a controlled gain coefficient of 10 to 100 and with
the intrinsic noise level no higher than 10 µV in the fre-
quency range 0.1–104 Hz. The amplifier output was
connected to a spectrum analyzer. 

In the experiments, we used the receivers described
above to determine the spectral characteristics of
hydrodynamic noise generated by the near-wall turbu-
lence in the channel. 

Figure 3 shows the levels of the output signal of the
distributed piezoelectric composite receiver that was
fixed in the terminal part of the working channel. The sig-
nal was recorded by the spectrum analyzer in 1/3-octave
frequency bands at different values of the mean flow
velocity. For comparison, the figure also shows the
spectrogram obtained with the zero flow velocity in the
channel. The data presented in Fig. 3 show that the
receiver provides a reliable measurement of the noise
produced by the flow about the surface: even at the low-
est flow velocity, the signal caused by the near-wall tur-
bulence exceeds the background noise signal by more
than 20 dB. The spectrograms exhibit peaks near the
frequency 100 Hz and at higher harmonics, which can
be explained by the aforementioned resonance of the
sound component of noise. 

Figure 4 compares the spectrograms of the output
signals of the distributed receivers fixed in the terminal
(l1 = 100h) and initial (l2 = 20h) parts of the working
channel. One can see that the difference in the readings
of the two receivers, which is determined by different
degrees of turbulence development and, hence, by dif-
ferent levels of pseudosound fluctuations at the receiver
sites, manifests itself only in the lowest frequency
range. At the frequencies 200 Hz and higher, the read-
ings of the receivers practically coincide. This means
that, at sufficiently high frequencies, the distributed
receivers are affected by the pseudosound component
to a lesser extent than by the sound component, as one
would expect according to theoretical predictions. 

Figure 5 presents the spectral characteristics of the
pressure measured in the working channel by the min-
iature and distributed receivers and by the hydrophone
fixed in the diffuser. The pressure values were calcu-
lated from the spectrograms of the output signals of the
receivers with allowance for their sensitivity and the
gain coefficients of the preamplifiers. The receivers
were fixed in the terminal part of the channel at l1 =
100h. At the flow velocity u = 10 m/s, the thickness δ of
the boundary layer formed in this part of the channel
was equal to half the channel height, i.e., δ = 1 cm. The
dynamic velocity determined by the value of the tan-
gential stress τ measured at these conditions was ud =
0.43 m/s. Thus, the Reynolds number was 

Re = udδ/ν = 4.3 × 103.
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
This value of Re in the channel corresponds to the for-
mation of a region with a logarithmic velocity profile
and with the spectrum of the pseudosound component
of pressure fluctuations decreasing with frequency
according to the law 

P(f ) ≈ f –1/2.
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Fig. 3. Spectrogram of the signal levels obtained from the
distributed piezoelectric composite receiver at different val-
ues of the mean flow velocity: u = (1) 10, (2) 9, (3) 7, (4) 5,
(5) 3.3, (6) 2.5, (7) 1.8, and (8) 0 m/s. 

Fig. 4. Spectrogram of the signal levels obtained from the
distributed receivers placed in the (1) terminal and (2) initial
parts of the working section at u = 9.5 m/s. 
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In Fig. 5, this dependence fitted to the experimental
value of the spectral component of pressure at a fre-
quency of 1000 Hz is represented by a solid curve. One
can see that the pressure fluctuation spectrum measured
by the miniature receiver obeys this dependence in the
frequency range 5 × 102 < f < 3 × 103 Hz. In this range
where the quasi-frozen turbulence model is applicable,
the miniature receiver satisfies the necessary condition
d < u/(3f ) and adequately measures the pseudosound
pressure fluctuations. At higher frequencies at which
the fluctuations are determined by the nonstationary
processes in the buffer zone and in the viscous sublayer,
to obtain the true spectrum of small-scale pseudosound
fluctuations with the use of a miniature receiver, it is
necessary to introduce some corrections into the
receiver signal [9]. The corrected dependence, which
was obtained on the basis of our experimental data by
correlating them with the results reported in [12], coin-
cides closely with the spectral pressure dependence
measured in the experiment. The dashed line in Fig. 5
shows the spectral characteristic of the sound compo-
nent in the working channel. This characteristic is
obtained by recalculating the pressure values measured
by the hydrophone in the diffuser. The curve exhibits

P
Pa

Hz
-----------,
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10–1
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102 103 f, Hz
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3

Fig. 5. Pressure spectra recorded by the (1) miniature and
(2) distributed receivers in the channel and (3) by the hydro-
phone in the diffuser at u = 10 m/s. The dashed line repre-
sents the level of the sound component. 
pronounced resonance peaks corresponding to the first
(125 Hz) and second (250 Hz) harmonics and smeared
(due to the 1/3-octave filtering) peaks at higher har-
monics. The presence of these peaks additionally con-
firms the assumption [10] that the measured spectrum
of turbulent noise is affected by the geometric parame-
ters of the hydrodynamic channel. 

To judge the pressure measurement by the distrib-
uted piezoelectric composite receiver under study, we
compare the spectral characteristic of noise measured
by this device with the spectra of the pseudonoise and
noise components measured by the miniature receiver
in the channel and by the hydrophone in the diffuser,
respectively. From Fig. 5, one can see that, in the low-
frequency range (f < 50 Hz), the distributed receiver
detects the pseudosound fluctuations. This fact can be
explained by a sufficiently large scale of turbulence in
this frequency range compared to the receiver dimen-
sions. At higher frequencies (50 < f < 100 Hz), the con-
tribution of the pseudosound fluctuations to the receiver
signal decreases, but it still remains significant. The dif-
ference observed in the low-frequency range between
the readings of the piezoelectric composite receivers at
l1 and l2 (Fig. 4) is explained by the variation of the
Reynolds number along the channel. Earlier [13], it was
shown that in the initial part of the channel, the low-fre-
quency pseudosound fluctuations are 5–7 dB lower
than in the terminal part. At frequencies above 200 Hz,
the piezoelectric composite receiver under study
receives almost exclusively the sound component of the
turbulent noise in the channel. This is evidenced by the
fact that the spectral characteristic of its readings coin-
cides with the spectrum recalculated from the readings
of the hydrophone fixed in the diffuser (see Fig. 5).
Thus, our experiments confirm the a priori evident
assumption that a distributed transducer of consider-
able length is not affected by small-scale pressure fluc-
tuations. The longer the receiver, the lower the frequen-
cies at which it ceases responding to such fluctuations.
Based on simple physical considerations, this fact can
be explained by the averaging of the effect of small-
scale fluctuations over the receiver area. It is also pos-
sible that a certain role in the suppression of the effect
of fluctuations is played by the relatively thick polyure-
thane coating of the sensing element. 

On the basis of the data obtained from our experi-
ments, we can conclude that the use of distributed
piezoelectric composite pressure receivers in underwa-
ter acoustics is possible and effective. The experiments
confirmed that the receiver under study possesses the
main property of distributed hydrophones: the immu-
nity from turbulent pressure fluctuations. This property
is primarily of interest for the reception of acoustic sig-
nals in the presence of turbulent hydrodynamic noise in
the case of a moving receiver or in the presence of a
flow around the receiver. It is well known that at high
speeds of motion, the level of such a pseudosound noise
can reach 120 dB. At the same time, experiments
showed that with increasing speed and increasing scale
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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of the fluctuations (i.e., in the lower frequency range),
the receiver under study becomes sensitive to pseudo-
sound. Thus, one can conclude that distributed piezo-
electric composite receivers can also serve for hydrody-
namic studies, e.g., for studying near-wall turbulence.
Depending on the relations between the receiver
dimensions (which can be easily varied in the course of
its fabrication), the flow velocity, and the frequency
range, such a receiver can detect the turbulent pressure
fluctuations, i.e., the pseudosound, or the sound gener-
ated by the flow itself. 

Other advantages of the receivers of the type under
study, namely, the advantages determined by the nature
of their material, are also important. They include high
compliance, compatibility with surfaces of complex
shapes, shock resistance, and relatively low wave resis-
tance in combination with a sufficiently high sensitivity. 
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Abstract—Experimental data obtained on the continental slope near the Kamchatka peninsula for the rever-
beration at the frequencies 230, 600, and 850 Hz in the cases of coincident and spaced source and receiver of
sound are presented. The data include the dependences of the reverberation level on time for both directional
and omnidirectional receiving systems, as well as the dependences of the reverberation level on the duration of
the probing pulses and on the sea depth at the source site. It is shown that, at the frequency 230 Hz, a substantial
contribution to the reverberation is made by the reflection and scattering on the shelf near the coastline and in
the region of the “depth drop.” At the frequencies 600 and 850 Hz, the predominant mechanism is bottom and
surface scattering in the region of the continental slope. © 2001 MAIK “Nauka/Interperiodica”.
In recent years, much attention has been given to the
studies of sound reverberation in shallow-water ocean
regions, including the coastal zones of the outlying seas
and the areas of the continental slope [1–10]. At low
frequencies (below 1 kHz), the reverberation is gov-
erned by sound scattering from the sea floor and the
rough water surface. If the sound signals are received
by acoustic systems located within coastal wedge zones
(at a shelf), substantial contributions can be made by
the local reflections from some areas of the coastal
slope and from the signals refracted by the coastal
wedge. For such regions, the reverberation characteris-
tics are difficult to predict, because there is no exact
solution to the problem of sound propagation in wedge-
shaped regions with realistic bottom parameters,
which, in addition, are not always known. The existing
approximate methods of estimating the reverberation
level in the coastal wedge [4, 11] are based on the ray
approach and use the effective sea-floor characteristics,
which are specified in an empirical way. However,
these methods provide no full description of the rever-
beration for all scattering areas of the bottom and sur-
face. Therefore, the experimental studies of the rever-
beration in coastal regions with different reliefs and
structures of the sea floor are quite important, because
nothing but the experiments can confirm or disprove the
proposed prognostic model of reverberation. Revealing
the empirical features for different characteristics of the
shelf and continental-slope reverberation is an unavoid-
able stage in constructing a computational model that
adequately describes the realistic reverberation-form-
ing mechanisms.

In this paper, we consider the results of the experi-
mental studies of the low-frequency reverberation,
1063-7710/01/4704- $21.00 © 0398
which were carried out in the mid-1980s in the north-
western Pacific on the continental slope near the Kam-
chatka peninsula. The main experimental results are
concerned with the intensity characteristics of the
reverberation. At distances of 25 to 75 km from the
coastline (as measured along the shortest path) at sea
depths of 200 to 3400 m, pulsed CW signals were trans-
mitted from a research vessel. The signals had the car-
rier frequencies 230, 600, and 850 Hz and durations
2–30 s. The sound sources, weakly directional in the
vertical and omnidirectional in the horizontal, were at a
depth of about 100 m. For sound reception, an omnidi-
rectional hydrophone was used that was deployed from
the vessel to a depth of 150 m; the horizontal distance
from the hydrophone to the vessel was about 100 m in
order to decrease the interfering noise. The sound sig-
nals were also received by a separate omnidirectional
hydrophone of a multielement horizontally elongated
antenna array, and by individual beams of this array,
which was bottom-moored in the region of the inclined
sea floor, at a depth of about 180 m near the depth drop
at the boundary between the shelf zone and the conti-
nental slope.

The region of the experiment was characterized by
an underwater sound channel with a shallow (70–75 m)
axis (Fig. 1a). Figure 1b shows the smoothed seafloor
relief that illustrates the bottom slopes on the path
along the shortest line to the coast. These slopes were
about 5° near the coast; they decreased to 0.2°–1° at the
shelf at distances up to 20 km (the sea depths h up to
200–250 m), and increased up to 10°–16° in the vicin-
ity of the depth drop (where the depth changed most
steeply) at distances of 20–30 km (at h = 300–2000 m).
In other directions, in some regions near the depth
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Vertical distribution c(z) of the sound speed and (b) the bottom profile along the shortest path to the coast for the region
of the experiment. The position of the transmitting–receiving system in the continental slope region is indicated.
drop, the slopes reached 25°–30°. Within the dis-
tances 30–80 km at h = 2–3.5 km, the slopes decreased
from 5° to 0.2°–0.5° and were no higher than several
tenths of a degree at 80–150 km from the coast at h =
3–3.5 km. For paths that were perpendicular to the
aforementioned one, at the shelf and at the continental
slope beyond the region of the depth drop, the bottom
slopes did not exceed several degrees in magnitude at
distances up to 150 km from the sound sources.
According to the synoptic measurements, the wind
speed was 3 to 6 m/s during the experiment and the
maximal height of surface waves (within a sequence of
10 waves) was 1.5–2 m (for both swell and wind-gen-
erated waves).

Figures 2 and 3 illustrate the time decay of the rever-
beration intensity. Here, reverberation envelopes
smoothed over 10 s and averaged over several realiza-
tions in the case of the reception by the omnidirectional
hydrophone deployed from the transmitting vessel with
the duration T0 = 10 s of the probing pulses are pre-
sented. The repetition period of the pulses was 300 s.
The time delays td measured relative to the initial
moment of transmission are represented by the abscissa
axes of the plots. On the ordinate axes, the values of the
total intensity IΣ, which is a sum of the reverberation
intensity Ir and the interference noise In, are shown in
decibels relative to 1 Pa2. At all three frequencies, the
0-dB level corresponds to –85 dB relative to the trans-
mission level (with an accuracy of 1 dB). At the fre-
quency 230 Hz (Fig. 2), for different sea depths h at the
transmission points and different distances from the
coastline, a rather sharp decrease in the reverberation
level is observed in the initial part (td & 30 s) of the time
dependence with a following considerable increase in
the level for higher td values corresponding to longer
distances from the coastline. At h = 3400 m (Fig. 2a),
the reverberation level is lower than that of the noise
within the range of delays td = 30–60 s. Within the
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
range td = 60–150 s, two reverberation maximums are
observed at td = 70–72 s and td = 100–103 s. The first
(the lower) maximum being corrected for the value

T0/2 (where  is the mean horizontal sound speed)c c
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Fig. 2. Examples of smoothed time dependences of the total
reverberation and noise intensity IΣ at the frequency 230 Hz.
Two averaged realizations, (a) and (b), are obtained for dif-
ferent distances r1 from the source to the coast (along the
shortest path), different sea depths h at the source site, and
different time lags ∆t: r1 ≅  (1) 71, (2) 34, and (3) 25 km;
h = (1) 3400, (2) 2000, and (3) 250 m; and ∆t ≅  (1, 2) 1 h and
(3) 10 min. The duration of the probing pulses is T0 = 10 s.
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corresponds to a distance of 46–49 km. According to
the map of the region at hand, this distance proved to be
close to that from the transmitting–receiving system to
the region of the depth drop with mean bottom slopes
of 20°–25°. The second maximum (with the same
correction) corresponds to a distance of 70–72 km,
which, up to 1 km, coincides with the minimal distance
r1 to the coastline, as the map indicates. These data
show that, for the time delays at hand, the reverberation
is mainly determined by the sound reflection and scat-
tering within a narrow coastal zone. The slow decay of
the reverberation level, which is observed for the delays
exceeding 110–120 s, is governed by the scattering and
local reflections in the coastal zone at distances from
the coastline that are longer than the minimal one (r1).
Similar conclusions were drawn from analyzing the
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Fig. 3. Examples of smoothed time dependences for the
reverberation intensity at the frequencies (1, 3) 600 and
(2, 4) 850 Hz, r1 ≅ (1, 2) 71 and (3, 4) 34 km, and h =
(1, 2) 3400 and (3, 4) 2000 m for two averaged realizations,
(a) and (b), obtained with a time lag of 1 h. T0 = 10 s.
experimental data [2] obtained in analogous conditions
of the continental slope near the Kamchatka peninsula
when the low-frequency reverberation was received by
a horizontal omnidirectional system and bistatic scat-
tering geometry took place (with spatially separated
transmission and reception points).

For different realizations from the sequence of pulses
separated by 300 s, the effective width of the second
reverberation maximum was estimated. According to
these estimates, in view of the coastline shape and the
positions of the 20–100-m isobaths, the dimensions of
the scattering coastal region proved to be no greater
than 15–45 km along the coastline and 4–7 km along the
scattering direction. As measured at a level of 6 dB
above the noise within the 2.5-Hz filter band, the time
of reverberation is 30–40 s, which corresponds to the
maximal distances 90–100 km from the coast with a
scattering region of 100–110 km along the coastline.
At td > 200–250 s, hardly any traces of the reverbera-
tion are observed, and the background noise predomi-
nates at a level of –(49–53) dB.

As the distance from the coast decreases according
to the profile of the continental slope, the sea depth
decreases, the reverberation maximum related to the
scattering and reflection from the narrow coastal region
is shifted towards lower time delays, and the rever-
beration intensity corresponding to this maximum
increases. At r1 = 34 km and h = 2000 m, the maximum
corresponds to the delays td = 50–52 s; at r1 ≅  25 km and
h ≅  250 m, it corresponds to td ≅  39–40 s. In view of the
aforementioned correction for T0/2, these values of td

correspond to the above values of r1 with an accuracy
of 1 km. In the first case (at r1 ≅  34 km), some realiza-
tions exhibit two unstable peaks at td = 34 and 66–70 s in
addition to the main maximum. These additional peaks
seem to be caused by local reflections at the shelf and
distant bottom regions near the depth drop. The reflec-
tion from the depth drop, which, in this case, was at a
minimal distance of 9 km, was masked by a high-level
near-field reverberation. In the second case (at r1 ≅  25 km
and h ≅  250 m) when both transmission and reception
points were located within the shelf zone, the main
maximum was accompanied by two relatively stable
peaks at td ≅  51 and 68 s. According to the map of the
region, both additional peaks are caused by the scat-
tering from the areas belonging to the bays. At h =
2000 and 250 m, the effective reverberation time is
equal to 70–80 s, which is lower than at h = 3400 m.
The noise level increases by 4–6 dB when the path runs
through the shelf zone. One can also notice that the
drift-caused decrease from 500 to 250 m in h, which
occurs in the vicinity of the depth drop, is accompanied
by an increase in the reverberation level at its maximum
while the distance from the coast changes insignifi-
cantly.

A somewhat different shape is exhibited by the
smoothed time dependences of the reverberation inten-

c
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sity at the frequencies f = 600 and 850 Hz (Fig. 3).
At the frequency 600 Hz, the intensity sharply decreases
in the initial part of the dependence (at td & 25–30 s).
After that, it decays relatively slowly. When h = 3400 m
and r1 ≅  71 km, within a range of 30 to 100 s, the rever-
beration level is considerably (by at least 15 dB) higher
than at the frequency f = 230 Hz. On the background of
the increased reverberation level, the 230-Hz maximum
caused by the reflection from the coast and correspond-
ing to td = 100–110 s was not observed. This maximum
is also absent at an even shorter distance from the coast
(r1 ≅  34 km, h = 2000 m). The contribution of the reflec-
tion and scattering from the coast area seems to mani-
fest itself in a slower decay of the reverberation level at
td > 30 s. Within the 2.5-Hz filter band, the traces of
reverberation are pronounced against the noise back-
ground up to tdmax ≅  150 and 120 s, at h = 3400 and
2000 m, respectively. The lower values of tdmax at h =
2000 m can be attributed to the somewhat higher level
of the interfering noise. At the frequency 850 Hz, the
reverberation decay curves seem to be even smoother.
In this case, within the range of delays 30–100 s, the
reverberation level is 7–15 dB higher than at f = 600 Hz,
and the decay is faster. No pronounced increase is
observed in the reverberation intensity at the delays that
correspond to the reflections from the coast. With the
experimentally observed noise level, the duration of the
reverberation signal increases up to about 160 s at the
frequency 850 Hz.

According to the time dependences IΣ(td), different
dependences of IΣ on the distance from the coast r1 (or
on the sea depth h under the vessel carrying the trans-
mitting system) are observed for different values of the
time delay td at the frequency 230 Hz (Fig. 4). In Fig. 4,
the experimental points are conventionally connected

by straight lines (a smooth curve is used for td = ,
i.e., for the delays corresponding to the reverberation
maximum). For greater time delays (120 to 150 s), the
value of IΣ, on the average, does not depend on h and r1,
while the levels of the reverberation and noise are com-
parable. For the delays td ≅  100 s, the maximal reverber-
ation level corresponds to h = 3400 m. The level of Ir is
noticeably lower at depths h = 200–2000 m. At small
delays (td ≅  30 s), the level of the near-field reverberation
weakly depends on h within a range of 300–3400 m.
However, this level increases by 5–6 dB in the shelf
zone (at h ≅  200 m). An increase in the reverberation
level is also observed at the shelf and in the vicinity of
the depth drop (h = 200–600 m) for td = 70 s. At the
maximums corresponding to the reflections from the

coast (td = ), the reverberation intensity increases
as the depth h and the distance from the coast decrease,
this behavior being quite explainable.

Additional information can be extracted from the
dependences of the reverberation intensity on the dura-
tion T0 of the probing pulses (Fig. 5). At the frequency
230 Hz (Fig. 5a), both at small delays (td = 30 s, the

td
max( )

td
max( )
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near-field reverberation) and at large ones (td = 120 s),
the values of IΣ, on the average, increase proportionally
to T0 beyond the reverberation maximum. The some-
what higher level of IΣ observed at T0 = 2 s can be
explained by the fact that the levels of reverberation and
noise are comparable in this case. At the reverberation
maximum (td ≅  100 s), the values of IΣ ≅  Ir increase pro-
portionally to T0 within the range of delays 2–10 s.
However, at higher T0 (up to 30 s), the reverberation
intensity remains nearly constant. This behavior can be
explained by the finite size of the effectively scattering
area, which is no greater than the size of the area cov-
ered by the pulse with a 10-s duration in the case of
back-scattering in the coastal region. Thus, being esti-
mated from the width of the reverberation maximum
and from the dependence of the maximal reverberation
level on the duration of the probing pulse, the dimen-
sions of the effectively scattering area prove to be
nearly the same at the frequency 230 Hz.

The reverberation intensity (Ir ≅  IΣ) increases pro-
portionally to the pulse duration T0 within the entire
range of T0 (2–30 s) for different time delays at the fre-
quencies 600 and 850 Hz (Fig. 5b). Such a proportion-
ality is evidence of a more uniform distribution of the
scatterers responsible for the reverberation at these fre-
quencies.

From the data on the reverberation at the three fre-
quencies, one can approximately estimate the fre-
quency dependence of the reverberation intensity for
the continental slope. The frequency dependence is
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Fig. 4. Dependence of the total intensity IΣ of reverberation
and noise on the sea depth h at the source site at the fre-
quency 230 Hz for different time delays: td = (s) 30, (e) 70,

(×) 100, (n) 120, and (h) 150 s; (d) td = .td
max
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strongly influenced by the nonmonotone time depen-
dence of Ir at the frequency 230 Hz, which leads to dif-
ferent rates of increase in the frequency dependences of
Ir at different time delays (Fig. 6). Thus, for the near-
field reverberation (td ≅  30 s), the experimental data
agree well with the frequency dependence Ir ≅  IΣ ~ f 4,
which corresponds to the bottom scatterers that are
small relative to the wavelength and to the resonant sur-
face scatterers (for a certain form of the spectrum of
surface elevations). The same frequency dependence
occurs at greater td for the frequencies 600 and 850 Hz.
At the same time, for the frequency band 230–600 Hz,
a weaker frequency dependence is typical, which is
related to an increase in the reverberation level at 230 Hz
due to reflection and scattering in the coastal zone. For
the delays that correspond to the reverberation maxi-
mum at 230 Hz, and for even larger delays, the rever-
beration intensity nearly does not change when the fre-
quency changes from 230 to 600 Hz (the experimental
values of IΣ obtained at these two frequencies are con-
nected by the dashed straight lines). At td = 70 s and h =
3400 m (Fig. 6b), reverberation peaks are observed that
are caused by the scattering in the vicinity of the depth
drop, and the reverberation intensity considerably
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Fig. 5. Dependence of the total intensity IΣ on the duration
of the probing signals at the frequencies (a) 230 Hz and
(b) 600 and 850 Hz for r1 ≅  71 km, h = 3400 m, and different
time delays: td = (s) 30, (×) 100, (n) 120, and (h) 150 s. The
solid curves show the dependences IΣ ~ T0 for the frequen-
cies (a) 230 and (b) 850 Hz. The dashed curves show the
dependence IΣ ~ T0 for the frequency 600 Hz. The levels of
the interfering noise are indicated as .
increases when the frequency changes from 230 to
600 Hz, though this increase is slower than Ir ~ f 4.

To estimate the parameters of the decay law for the
reverberation intensity Ir(t) in more detail, we used the
least squares method in approximating the dependence

Ir(t) by the expression Ir(t) = Ir0( t)–n ×  where
the value of  was specified to be 1.47 km/s. At the fre-
quency 230 Hz, the parts of the reverberation envelopes
that followed the maximum and corresponded to the
reflection from the coast were processed. At the fre-
quencies 600 and 850 Hz, the processing procedure
was performed for the delays from 20–30 to 150 s.
Prior to processing, the reverberation envelopes were
averaged over 5 s. Three modifications of the process-
ing procedure were used. First, the value of β was spec-
ified to be equal to the absorption coefficient in sea
water according to the formula β = 0.036f 3/2 (dB/km),
where f is measured in kilohertz and the exponent n was
determined. Second, the values of n were specified for
different laws of the spread of the wave front in the
course of the sound propagation and for different range
dependences of the effective coefficient of sound scat-
tering; in this case, the value of β was determined.
Third, with the use of the least squares method, all three
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Fig. 6. Frequency dependences of the total intensity IΣ for
r1 ≅  (a) 34 and (b) 71 km, h = (a) 2000 and (b) 3400 m, and
for different time delays td = (s) 30, (d) 50, (e) 70, (×) 100,
and (h) 150 s. The solid curves show the dependences
IΣ ~ f 4. T0 = 10 s.
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parameters (n, β, and Ir0) that govern the approximating
law were determined.

Processing the 230-Hz data provided unsatisfactory
results: the value obtained for n varied within wide lim-
its, from 3 to 8–12, and β took negative values for some
realizations. This situation evidences that the chosen
approximation is not adequate for the reverberation
caused by sound reflection and scattering in the coastal
region. If the values of β are chosen to be equal to the
absorption coefficients at the frequencies 600 and
850 Hz, the best approximation is obtained with the
values n = 1.7–2.8 and 2–3.7, respectively. For the
cylindrical and spherical spread laws, the values n > 1
and n > 2, respectively, can be observed only if the scat-
tering coefficient decreases as the distance increases.
On the other hand, the overestimated values of n can be
a consequence of underestimated values of β, which
ignore the additional attenuation caused by the leakage
of the sound energy into the sea floor. At n = 2 (the most
frequent case in approximating the experimental
dependence Ir(t)), the values β ≅ 0.03–0.08 dB/km
obtained by the least squares method are two to three
times higher than the absorption coefficient. These val-
ues of β agree well with the experimental estimates of
the effective coefficient of spatial sound attenuation in
the region at hand. Note that the chosen approximation
of Ir(t) with n = 2 corresponds to the 3/2 power law
(with the exponential factor) for the range dependence
of the direct field if the scattering coefficient is range-
independent. This approximation also agrees with the
cylindrical law of the wave front spread if the scattering
coefficient is inversely proportional to range.

The experimental data presented above are obtained
with nearly coincident transmission and reception
points, i.e., for the case of a monostatic reverberation.
Let us now consider the experiment with a widely
spaced transmitter and receiver, i.e., with a bistatic
geometry of scattering. Figure 7 shows the examples of
the reverberation envelopes obtained in this case. The
ordinate axis represents the values of Ir in decibels rel-
ative to the maximal level for each realization. The
abscissa axis shows the time delays that are measured
relative to the arrival time  of the direct signal. With
omnidirectional reception at the frequency 230 Hz
(Fig. 7a), the time dependences of the reverberation
intensity are similar in their shapes to those obtained
with the coincident transmitter and receiver. However,

the delay  ≅  32–34 s of the reverberation maxi-
mum formed by the reflection from the coast does not
depend on the minimal distance r1 from the coastline: it

is fully determined by the distance r2 = /2 (for
r2 < r1) from the receiving system to the coast. In
receiving with the system whose horizontal directivity
pattern (DP) has a main lobe approximately 8° in width,
the reverberation level, as measured relative to the level
of the direct signal, is significantly (by 15–25 dB for
different realizations) lower than that measured with

t̃ d

t̃d
max( )

ct̃d
max( )
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the omnidirectional receiver (Fig. 7a) at the same fre-
quency. The effective reverberation duration also
decreases from about 100 s to 40–50 s. These features
can be explained by the fact that the strongly scattering
area of the coastal zone becomes screened at  * 30 s,

and, at  ≅  20–30 s; the size of the scattering area is
reduced by the DP of the receiver. The reverberation
level is also lower relative to the noise level because of
the horizontal anisotropy of the reverberation, which is
much more pronounced than that of the interfering
noise.

At the frequencies 600 and 850 Hz, no pronounced
maximums occur in the reverberation envelopes
(Figs. 7b, 7c). The use of narrower DPs of the receivers
(with the widths 3° and 2° of the main lobes at f = 600
and 850 Hz, respectively) does not lead to a significant
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Fig. 7. Examples of time dependences of the total intensity
IΣ of reverberation and noise for spaced transmission and
reception points at the frequencies (a) 230, (b) 600, and
(c) 850 Hz for (1) omnidirectional and (2) directional
receivers: r1 ≅  (a) 71, (b) 31, and (c) 43 km; h = (a) 3400,
(b) 1400, and (c) 2500 m; T0 = 10 s. The approximating
curves are also presented.
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decrease in the reverberation level relative to that of the
noise. This may be due to a more uniform angular dis-
tribution of the reverberation in the horizontal, as com-
pared to the case with the frequency 230 Hz. The nor-
malized reverberation envelopes obtained with the
directional reception lie in Figs. 7b, 7c even higher than
those obtained with omnidirectional reception. This
behavior can be attributed to the deviation of the axis of
the array DP from the direction to the source of radia-
tion. The decay rate of the reverberation nearly does not
depend on the distance r1 from the sound sources to the
coast and on the sea depth h under the transmitting
vessel within the ranges r1 = 28–72 km and h = 1400–
3400 m. The estimates were obtained by the least
squares method for the approximating expression dif-
fering from that used in the monostatic case in replac-
ing ( td)–n by [ (  + 2D)]–n/2, where D is the dis-
tance between the source and the receiving array. For
both omnidirectional and directional reception, the esti-
mates agree well with the experimental data if the fol-
lowing values of the parameters are specified: n = 2, β =
0.04–0.05 dB/km at f = 600 Hz and β = 0.06–0.07 dB/km
at f = 850 Hz.

Thus, the experimental data presented above reveal
a number of features in the low-frequency reverbera-
tion at the continental slope of the northwestern Pacific.
At the frequency 230 Hz, a substantial contribution to
the reverberation is made by the sound reflection and
scattering within a narrow layer of the coastal zone. At
the frequencies 600 and 850 Hz, the scattering on the
bottom and the surface predominates in both shallow-
water and deep-water regions of the continental slope.
The data obtained can be used to develop computa-
tional models that describe the intensity characteristics
of the low-frequency reverberation on a continental
slope and in a shelf zone. The data can also be used for
estimating the interfering noise due to the reverbera-

c ct̃d c t̃d
tion, which influences the sonar systems operating in
such regions.
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Abstract—With the use of the one-dimensional Burgers equation, the evolution of a high-intensity noise with
periodically modulated intensity is analyzed. The nonlinearity is shown to lead to partial suppression of the
amplitude modulation and to the generation of a regular low-frequency component. The probability distribu-
tions and the power spectra of the field are studied. © 2001 MAIK “Nauka/Interperiodica”.
For high-intensity sound fields, the superposition
principle is known to be violated, and the harmonics of
the initial disturbance affect each other. Because of the
absence of dispersion, the synchronism conditions are
met for any arbitrary triplet of interacting collinear
waves. Therefore, at high Reynolds numbers, the num-
ber of interacting harmonics grows in an avalanche-like
manner [1, 2]. The higher the frequency of the new har-
monic combination, the more efficient its generation.
Hence, at the initial stage of the wave propagation, the
generation of the highest harmonics predominates,
which leads to the formation of discontinuities at which
energy dissipates. In the case of a monochromatic dis-
turbance, the wave transforms to a sequence of saw-
tooth pulses whose amplitudes do not depend on the
initial amplitude and are proportional to the wave
period. An arbitrary periodic wave acquires the same
universal shape. However, if the spectrum of the initial
signal contains nonmultiple frequencies, the nonlinear
interaction will lead to both sum and difference combi-
nation frequencies. In spite of the fact that the genera-
tion efficiency is lower for the low-frequency differ-
ence components than for the high-frequency sum
components, the low-frequency components attenuate
slower, and, hence, they predominate in the asymptotic
behavior of the sound field at long times. 

For the propagation of a modulated high-frequency
sound, the generation of the low-frequency compo-
nents is much studied [2–4], because this process is
what forms the basis for parametric sound emission. In
the evolution of high-intensity, quasi-monochromatic,
amplitude-modulated signals, the nonlinear effects are
more pronounced in the high-amplitude parts of the
wave. As a result, at the stage of developed discontinu-
ities, the amplitude modulation proves to be totally sup-
pressed. Since the generation efficiency for the low-fre-
quency component is proportional to the derivative of
the intensity of the high-frequency wave, nonlinear
attenuation leads to saturation in the generation process
1063-7710/01/4704- $21.00 © 20405
for the low-frequency components at the stage of devel-
oped discontinuities. The interaction between the low-
and high-frequency waves results in the coalescence of
discontinuities in the pump wave and the high-fre-
quency wave finally vanishes [5]. 

The objective of this paper is to analytically and
numerically study the evolution of high-intensity sound
signals that are harmonically modulated and have a
noiselike carrier. This carrier is supposed to be of two
widely different scales, the mean initial field being
equal to zero. In this case, unlike the case with quasi-
harmonic signals, the nonlinearity leads to a partial
suppression of the amplitude modulation. The nonlin-
ear processes also result in the generation of a nonzero
mean sound field that characterizes the large-scale
components of the wave. By asymptotically solving the
Burgers equation at high Reynolds numbers, in view of
the theory of random outliers, we analyze the properties
of the mean field and the power spectrum of the wave. 

The propagation of high-intensity plane sound
waves is known to follow the Burgers equation. Here,
we use this equation in its classical form [1] 

(1)

where v  = v(x, t) is the velocity field and ν is the vis-
cosity of the medium. Equation (1) is to be solved with
the following initial condition: 

(2)

where ψ0 is the potential. For the problem of evolution
of the sound signal, the initial condition v 0(x) corre-
sponds to the field at the sound source, x is analogous
to time, and the variable t in Eq. (1) is proportional to
the distance from the starting point. 

t∂
∂v

v
x∂

∂v
+ ν∂2v

∂x2
---------,=

v x 0,( ) v 0 x( )
dψ0 x( )

dx
-----------------,–= =
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We consider the case of infinitely high Reynolds
numbers when ν  0 and the solution of the Burgers
equation takes the form 

(3)

where y(x, t) is the coordinate y at which the function 

(4)

reaches its global maximum at fixed x and t. This solu-
tion is the limiting Hopf and Cole solution for ν  0.
At the same time, it can be treated as a generalized solu-
tion to Eq. (1) with ν = 0 and with the conservation con-
ditions at discontinuities. The aforementioned solution
is known as the Oleinik–Lax construction [6], which is
valid for both plane waves and one-dimensional waves
of nonplane geometric properties. Here, the variable t
plays the role of a normalized coordinate. For instance,
if the waves are spherical, t = σ0lnr/r0, where r0 denotes
the radius of the spherical sound source. 

In this paper, we consider the evolution of modulated
signals whose initial potential can be represented as 

(5)

where F(x) is the potential of the carrier signal with the
characteristic spatial scale l0, and M(x) is the modulat-
ing function with the spatial scale L0 @ l0. When L0 @
l0, Eq. (2) can be used to obtain the following form of
the initial velocity field: 

(6)

We assume that the carrier signal f(x) is a stationary
Gaussian noise with zero mean value, 〈f(x)〉  = 0, and
with the initial intensity spectrum 

(7)

Here, b0(k) is a nonnegative function rapidly decreasing
at k > k∗ , and the value of the exponent n meets the con-
dition n ≥ 2, which is typical of sound signals. 

Let us briefly describe the evolution of the station-
ary noise at high Reynolds numbers. The behavior of a
random field that obeys Eq. (1) is usually called the
Burgers turbulence. In the limit of infinitely low viscos-
ity (ν  0), the continuous initial field v 0(x) = f(x)
transforms to a sequence of sawtooth pulses that have

identical slopes  =  and random positions of

discontinuities. Because of the coalescence of disconti-
nuities, their number decreases, and, hence, the charac-
teristic spatial scale of the field l(t) increases. To statis-
tically analyze the random field v(x, t), it is advanta-
geous to use solutions (3) and (4), which reduce the
Burgers equation to the problem of finding the coordi-

v x t,( ) x y x t,( )–
t

------------------------,=

φ x y t, ,( ) ψ0 y( ) x y–( )2

2t
------------------–=

ψ0 x( ) M x( )F x( ),=

v 0 x( ) m x( ) f x( ),=

m x( ) M x( ), f x( ) F ' x( ).–≈ ≈

E0 k( ) 1
2π
------ f x( ) f 0( )〈 〉 eikx xd∫ α2knb0 k( ).= =

∂v x t,( )
∂x

-------------------- 1
t
---
nate of an absolute maximum of the function φ(x, y, t).
The statistical properties of the coordinate of the abso-
lute maximum, y(x, t), and, hence, those of the field
v (x, t), Eq. (3), can be studied by using the theory of
outliers in random processes [7, 8]. The evolution of the
field essentially depends on the behavior of the power
spectrum E0(k) (Eq. (7)) of the stationary noise in the
region of small wave numbers and also on the statistics
of the initial field when n ≥ 2 [7, 9–12]. For sound
fields, the situation when n ≥ 2 is most typical: there are
no large-scale components at low frequencies. Because
of multiple coalescence of discontinuities, at long
times, all statistical characteristics of the Burgers turbu-
lence become automodelling and are governed by a sin-
gle scale l(t), i.e., by the integral scale of turbulence [7].
If the statistics of the initial field is Gaussian, the inte-
gral scale l(t) evolves according to the expression 

(8)

Here,  and  are the variances for the velocity field
and its potential, respectively; l0 is the initial integral
scale; and tnnl is the characteristic time for the nonlinear
effects in the noise: 

(9)

At the stage of developed discontinuities, the spectrum
of the turbulence has the automodelling character: 

(10)

with universal asymptotic forms E(k, t) ~ t–3/2k–2 and
E(k, t) ~ t1/2k2 at high and low frequencies, respectively.
The spectral maximum is displaced toward low fre-
quencies ~l–1(t). The coalescence of the discontinuities
and the increase in the characteristic scale l(t) lead to a
slower attenuation of turbulence in comparison with the
periodic signal: 

(11)

Next, we consider the evolution of the modulated
noise, Eqs. (5) and (6), for which we have 〈v0(x)〉 =

〈ψ0(x)〉 = 0 as well. If L0 @ l0, the variances (x) and

(x) of the velocity and the potential are respec-
tively equal to 

(12)
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At the initial stage (t < tnnl), when the formation of the
discontinuities can be neglected, the Riemann equation
is applicable to the evolution of the initial field of the
modulated noise. In this case, the probability density
Wv(v ; x, t) has the following form (see [7], Chap. 4.1): 

(13)

where W0(z; x) and F0(v ; x) are the probability density
and the integral distribution function for the initial
velocity field v 0(x), respectively. 

Let us assume that the initial field v 0(x) has the vari-

ance (x) = M2(x), and its distribution function
W0(v ; x) can be represented as 

(14)

where (ξ) is a dimensionless function with zero
mean value 〈ξ〉  = 0, and unity variance 〈ξ 2〉  = 1. Then,
from Eq. (13), we find the probability density for the
Riemann wave: 

(15)

Equation (15) shows that, as a result of nonlinear evo-
lution, the probability density of the nonstationary Rie-
mann wave is distorted, this evolution being governed
by nothing but the single-point probability distribution
of the initial field and the shape of the modulating
function. Note that, for a stationary signal with M(x) =
const, we have a well-known result: the probability
density is conserved for the Riemann wave [7]. 

Let us consider the generation of the regular compo-
nent, i.e., the mean field 

(16)

By substituting Eq. (15) into Eq. (16) and changing to
a new integration variable, ξ = v /σvM(x – v t), we obtain 

(17)

where v(ξ, x, t) is the solution to the equation ξ =
v/σvM(x – vt). At the initial stage (t < tnnl), when the dis-
placement of the wave profile is much smaller than the
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characteristic scale L0 of the envelope, we can specify
ξ = v /σvM(x). Then, from Eq. (17), we obtain 

(18)

i.e., the mean field increases linearly with time and the
field profile is proportional to the derivative of the
squared envelope. 

When t > tnnl, both the nonlinear attenuation of the
carrier and the increase in the internal scale of the field,
which is caused by the coalescence of discontinuities,
become significant. For a nonstationary noise, energy
density (x, t) and the scale l(x, t) depend on the x
coordinate. If l(x, t) is much greater than the initial scale
l0 but much smaller than the modulation scale, one can
use the quasi-static approximation. Then, we can
assume that the integral scale l(x, t) of the carrier and
the energy density (x, t) obey Eqs. (8) and (11) and
are slowly varying functions of the x coordinate: 

(19)

(20)

It follows from Eq. (20) that nonlinear attenuation leads
to partial suppression of the amplitude modulation for
the wave with the noise carrier, (x, t) ~ M(x), while at

the input of the process, we have (x, 0) ~ M2(x). The
partial conservation of the modulation can be explained
by the fact that even at t @ tnnl, the noise energy

depends on the initial energy (x, t) ~ σvM(x)l0/t.

Note that for a quasi-harmonic signal, (x, t) ~ /t2,
which does not depend on the amplitude of the input
signal. 

We neglect the nonlinear distortions of the large-
scale component, which now coincides with the mean
field v l(x, t) = 〈v(x, t)〉, and use the Burgers equation (1).
Then, in the quasi-static approximation, we obtain the
following expression for v l: 

(21)

At the initial stage (t < tnnl), when the attenuation can

be neglected and (x, t) ~ M2(x), Eq. (21) is reduced
to Eq. (18). For a quasi-harmonic signal, the generation
terminates at t @ tnnl, because the energy density
becomes independent of the coordinate. However, for
the noise signal, the generation of the mean field (the
large-scale component) persists at the stage of devel-
oped discontinuities. 
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Fig. 1. (a) Profile of the initial velocity field v0(x), (b) its mean value 〈v0(x)〉  = 0 and variance σM, v  = σvM(x), σv  = 1 (statistical
averaging over 10000 realizations of the noise carrier). 
To analyze the statistical characteristics of the field
v(x, t) at the stage of developed discontinuities, we use
the asymptotic solution in the form of Eqs. (3) and (4).
In our recent paper [13], we used this procedure to con-
sider the evolution of pulsed noise signals. With modu-
lated signals, let us now assume that the modulating
function M(x) is periodic with a period L0 = 2π/k0 and
has a single maximum in a period at x = 0, where the

approximation M(x) = 1 – x2/2  + … is valid. In
numerical calculations, we specify M(x) = |sink0x/2|.
Figure 1 shows a realization of the initial field v 0(x) =
M(x)f(x) (Eq. (6)), where f(x) is a stationary Gaussian
noise with zero mean value σv = 1 (Eq. (7)), and with
the averaged parameters 〈v 0(x)〉  and σM, v . Because
mathematically the problem of evolution of a periodi-
cally modulated signal is close to that of evolution of a
noise pulse, here we follow the cited paper [13] and
present only the key points of the derivation procedure
for the probability characteristics of the field v(x, t). 

Let us consider the statistical characteristics of the
field at the stage of developed discontinuities when the
integral scale lM(x, t) (Eq. (19)) of the field is much
greater than the initial scale l0; i.e., for times when the
discontinuities in the noise carrier multiply coalesce.
For the asymptotic solution given by Eqs. (3) and (4),
this situation corresponds to times at which the parab-
ola in Eq. (4) is a smooth function on the scale of the
noise carrier. In this case, a large number of local max-
imums of the initial potential φ(x, y, t) “pretend” being
the absolute maximum of the function ψ0(y), and, to

L*
2

analyze the statistics, one can use the limiting theorems
of the theory of large outliers [7, 8]. 

Let us introduce the probability P(H, y, y + ∆y)∆H
that the function φ(x, y, t) has the absolute maximum
within the interval (y, y + ∆y), the value of this maxi-
mum falling within the interval (H, H + ∆H). This prob-
ability is expressed through the integral distribution
function: 

(22)

(23)

The probability that the coordinate of the absolute max-
imum lies within the interval ∆y and its value H lies
within (H, H + ∆H) is equal to the probability that the
value H lies within (H, H + ∆H) in the interval ∆y and,

in the remaining intervals , the value of the absolute
maximum is less than H. Let us choose the interval ∆y
so that l0 ! ∆y ! lM(x, t). Then, we can consider the
absolute maximums to be independent in the intervals

∆y and  and we obtain 

. (24)

The first factor in Eq. (24) stands for the probability
that the value of the absolute maximum falls within
(H, H + ∆H) on the interval (y, y + ∆y). The second fac-
tor means the probability that the value of the absolute
maximum is lower than H outside the interval (y, y + ∆y). 

Q H; ∆y( ) Prob φ x y t, ,( ) H< y y y ∆y+,( )∈,( ),=
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---------------------------.=
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According to definition (22), Q(H; ) is the prob-
ability that φ(x, y, t) never crosses the level H within
(y, y + ∆y). For times when the parabola is a slow func-
tion on the scale φ0(y) (lM(x, t) @ l0), only sufficiently
high-valued local maximum H @ σψM(x) can be the
absolute maximum of φ(x, y, t). Hence, the statistics of
crossings of the level H obeys the Poisson law. Now, the
integral distribution function of the absolute maximum
H coincides with the probability that there are no cross-
ings of the level H within the interval (∆y). This func-
tion has the form [7, 13]

(25)

where 〈N(H; ∆y)〉 is the mean number of crossings of the
level H from below to above for the function φ(x, y, t)
within the interval (∆y). 

If L0 @ l0 and lM(x, t) @ l0, the parabola and the enve-
lope M(x) are slowly varying functions on the scale of
φ0(y), and the mean number of crossings can be
expressed as [7, 13] 

(26)

This expression is obtained in view of the fact that the
probability distribution lies in a narrow interval ∆H at
H @ σψM(x) [13]. From Eqs. (24)–(26), we can derive
an expression for the combined probability of the value
and coordinate of the absolute maximum: 

(27)

(28)

Here, N∞(H) is the mean number of crossings of the
level H for the function φ(x, y, t) in an infinite interval: 

(29)

By integrating Eq. (27) with respect to H, we obtain the
following expression for the probability that the coordi-
nate of the absolute maximum falls within (y, y + ∆y): 

(30)

When M(x) = 1, Eqs. (28)–(30) describe the probability
characteristics for stationary noise [7], and the value H
of the absolute maximum in Eq. (28) is limited by a nar-
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row domain ∆H ! σψ at H = σψ  @ σψ. In

this case, for the coordinate of the absolute maximum
given by Eq. (30), the probability distribution is Gaus-
sian with the mean value 〈y〉  = x and variance 〈y2〉  = l2(t)
(Eq. (8)). 

For a modulated noise, one can distinguish three
characteristic stages of field evolution. At the quasi-

static stage (t ! tnnl( / )), the field is a sequence of
random pulses with the integral scale lM(x, t) (Eq. (19)),
which is much smaller than the modulation scale L0. At
this stage, the regular low-frequency component is gen-
erated, but its amplitude is lower than the characteristic
amplitude of the noise. At lM(x, t) . L0, the regular low-
frequency components predominate, and the field is
represented by a sequence of triangular pulses with the
period L0 and with weakly fluctuating positions of the
zeros and of the discontinuity coordinates. Since the
discontinuities move, they coalesce, and, for suffi-
ciently long times, the characteristic distance between
the discontinuities far exceeds L0. In this case, the
coherent components again become much smaller than
the zeroth component. The evolution of the modulated
random field, its mean value, and its variance are pre-
sented in Figs. 2 and 3 for the characteristic times. 

Let us use the solutions (28)–(30) to consider the
field properties at the aforementioned stages of evolu-
tion. In view of the fact that (x – y)/t ~ lM(t) and H @
(x – y)2/2t [7] in these expressions, the integral in Eq. (30)
has its peak values at the points y(x, t) = ymax, which sat-
isfy the transcendental equation 

(31)

At the quasi-static stage (when t is sufficiently small),
Eq. (31) has a single root, and by using the perturbation
method, we obtain 

(32)

For the mean number of crossings in an infinite inter-
val, we obtain the expression 

(33)

By substituting Eq. (33) into Eq. (28), we obtain that, at
t M(x)/2πtnnl @ 1 (lM(x, t) @ l0), the probability distribu-
tion P∞(H) is located within the narrow vicinity ∆H of
H0 @ σψM(x). If we represent H in the form 

(34)
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where H0 is the solution to the transcendental equation 

(35)

we conclude that z is double-exponentially distributed: 

(36)

By substituting these expressions into Eq. (30), we
obtain a Gaussian distribution for the y coordinate of the
absolute maximum with the variance lM(x, t) (Eq. (19))
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Fig. 2. (a) Profile of the velocity field v(x, t) at t = tmax,
(b) its mean value 〈v(x, t)〉  and variance. 
and the mean value 〈y〉  = ymax (Eq. (32)), where H = H0
(Eq. (35)) should be specified. It follows from solu-
tion (3) that the distribution of the velocity field is also
Gaussian with the variance given by Eq. (20) and the
mean value 

(37)

Thus, for the noise signal, the low-frequency com-
ponents are also generated at the stage of developed
discontinuities. The amplitude v l(x, t) (Eq. (37))
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Fig. 3. (a) Profile of the velocity field v(x, t) at t = 2tnnl(L0/l0)2,
(b) its mean value 〈v(x, t)〉  and variance. 
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reaches its maximal values at the times tmax when the
velocity is of the same order of magnitude as the ampli-
tude of the carrier. For the stage of developed disconti-
nuities, it is equivalent to the condition that the integral
scale lM(x, t) of the carrier and the scale L0 of the enve-
lope become of the same order of magnitude, and
hence, t . tnnl(L0/l0)2. 

Now let us consider the evolution of the large-scale
component. As time increases, the integral scale lM(x, t)
of the carrier becomes larger, and the intrinsic structure
of the signal fully vanishes at t . tnnl(L0/l0)2. The zero
values of the field v(x, t) lie in the vicinity of the maxi-
mums of the envelope M(x), yn = kL0. To find the prob-
ability distribution for the velocity field v(x, t), we start
by calculating the mean number of crossings of the
level H for the process φ(x, y, t). According to Eq. (31),
the extremum value of the integrand in Eq. (29) is
located near the points yn = kL0. By using the method of
steepest descent to estimate the integral in the vicinity
of these points, we represent the mean number of cross-
ings in an infinite interval as follows: 

(38)
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Fig. 4. Time dependence of the amplitude of the spectral
component that corresponds to the modulation frequency
(in the numerical experiment, k0 = 8). The amplitude
reaches its maximum at tmax . 6tnnl. 
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
Here,  = (x, σψt/H) is the effective number of maxi-
mums of M(x) that contribute to the total number N∞(H)
of crossings. As at the quasi-static stage, the probability
distribution P∞(H) (Eq. (28)) lies within the narrow
vicinity ∆H of H0 @ σψ, and the integral distribution
has the double-exponential form of Eq. (36), where H
and z are related by Eq. (34) and H0 is the solution to
the equation N∞(H0) = 1. 

By using the fact that the probability distribution
P∞(H) lies within the narrow vicinity of H0 and the
integral distribution has the double-exponential form
(Eq. (36)), we arrive at the following expression for
probability distribution of the coordinate y (Eq. (30)) of
the absolute maximum (which determines the field
v (x, t) given by Eq. (3) in a single-valued manner): 

(40)

(41)

Thus, a conclusion can be drawn that the zero values
of the field v(x, t) fall into a narrow interval of l∗  (H0 @
σψ) in the vicinities of maximums yn of the envelope, Pn

n n
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Fig. 5. Evolution of the power spectrum E(k, t) of the high-
intensity modulated noise with time: t = (1) 0, (2) 3tnnl,
(3) tmax, (4) tnnl(L0/l0)2, and (5) 2tnnl(L0/l0)2. 
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in Eq. (40) being the probability that, for the field at the
point x, the zero value lies within the nth period, i.e., at
the point yn = nL0. In view of definition (39) for , we
obtain for the mean field v l(x, t) = 〈v(x, t)〉: 

(42)

Since the modulating function M(x) and, hence, all sta-
tistical characteristics of the field are periodic functions
of x, it is sufficient for us to analyze the field evolution
within a single period, x ∈ (–L0/2, L0/2). 

According to Eqs. (40) and (41), the field behavior
is governed by the ratio of the characteristic scale l(t) .
l0(t/tnnl)1/2 to the modulation period L0. If this parameter
is not too large, the only summand Pn is significant
within the kth period. Therefore, the field v(x, t) is
quasi-periodic with the period L0: 

(43)

the zero points  being located in the vicinities of
the maximums yn = kL0 of the envelope M(x) and hav-
ing Gaussian distributions with variances l∗  .

L∗ . For the energy density, the same

expression as for the sawtooth periodic wave is valid:

 . /12t2. As in the case of the sawtooth periodic
wave, the mean field has a universal structure of the
form v l = (x – yn)/t. At the interval boundaries, when

x .  + kL0, only two summands predominate in

Eqs. (39) and (42), and 

(44)

With the use of Eq. (42), we obtain for the mean field 

(45)

where l(t) is determined by Eq. (41), and H0 .

σψ . Thus, the fluctuations of the disconti-

nuity positions lead to the same structure of the mean
field as for the field of the sawtooth wave in a medium
with a finite viscosity. 

The random character of the motion of discontinui-
ties in the sawtooth wave causes them to coalesce, and
the quasi-periodic structure proves to be destroyed at
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l(t) @ L0. In this case, the characteristic scale of the
field is 

(46)

which far exceeds the modulation period L0. The field

energy  is governed by Eq. (11),  . l2(t)/t2, and it
attenuates proportionally to 1/t with some logarithmic
corrections, i.e., in the same way as for the stationary
noise (11). 

To find the attenuation of the mean field, it is advan-
tageous to convert Eq. (39) to summation over the spa-
tial frequencies with the use of the Poisson summation
formula [15]: 

(47)

Then, from Eq. (42), we obtain for the mean field

(48)

and the mean field attenuates exponentially in time,
which means decay of the quasi-harmonic structure. 

The evolution of the spectrum of modulated noise
can be considered as follows. Because of the statistical
nonuniformity of the process v(x, t), the power spec-
trum E(k, t) should be sought by introducing the corre-
lation function of the second kind, which is determined
by averaging the correlation function 〈v(x + ρ, t)v0(x)〉
over the period L0 [14]. By virtue of the condition l0 ! L0,

we have E(k, 0) = E0(k) for the spectrum of the

input signal v 0(x) (Eq. (6)), where means the
corresponding quantity averaged over the period of the
modulating function. Thus, the spectrum of the input
signal without modulation coincides with the spectrum
of the carrier. The generation of the regular component
creates discrete components in the signal spectrum at
frequencies that are multiples of the modulation fre-
quency k = mk0, k0 = 2π/L0. Figure 4 illustrates the time
evolution of the spectral component that corresponds to
the modulation frequency k = k0. At the initial stage, the
amplitudes of these harmonics are governed by the
spectrum of the derivative of the squared modulating
function M(x) from Eq. (18), and they increase linearly
with time. At the quasi-static stage, the harmonic
amplitudes are determined by the spectrum of the mod-
ulating function from Eq. (37) and have a logarithmic
time dependence. At the stage of developed discontinu-
ities, when the quasi-static approximation is valid and
the integral scale lM(x, t) (Eq. (19)) of the carrier is
much smaller than the modulation period L0, a local
spectrum E(k; x, t) can be introduced that is locally
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automodelling and follows Eq. (10), where the integral
scale l(t) = lM(x, t) is a slowly varying function of the
coordinate. In this case, the power spectrum of the field
is obtained by averaging the local automodelling spec-

trum over the modulation period: E(k, t) = .
The power spectrum of the modulated wave can be
shown to have universal asymptotic forms, just as
the spectrum of the uniform noise at high and low

spatial frequencies: E(k) ~ k–2 t–3/2 and E(k) ~

k2 t1/2, respectively. 

Let us consider the spectrum at the evolution stage
when the intrinsic signal structure is fully degenerate
because of the coalescence of the discontinuities in the
carrier, and the field is quasi-periodic (Eq. (43)). The
coordinates xn of discontinuities in Eq. (44) are deter-
mined by the condition of coincidence for the global
maximums of φ(x, y, t) at two points: φ(xn, , t) =

φ(xn, , t). At this stage, the coordinates of the glo-

bal maximum  are equal to those of the maximum in

the potential within the nth period,  = yn = nL0 + ∆yn,
where ∆yn is the offset of the zero point of the sawtooth
wave from the maximum position nL0, and, according
to Eq. (42), ∆yn ! L0. 

Let Hn be the value of the absolute maximum within
the nth period. This value can be represented as 

(49)

where the values of zn are independent for different
periods and are double-exponentially distributed in
their probabilities (Eq. 36). For the coordinate of the
discontinuity xn, we now have 

, (50)

. (51)

To find the spectrum, let us consider the derivative
(x, t) = u(x, t) of the velocity field, which is a set of

delta-functions: 

(52)

where ηn = yn + 1 – yn = L0 + (∆yn + 1 – ∆yn) . L0 is
the distance between two zero points of the saw-
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tooth wave. For the Fourier transform of Eq. (52),
we obtain 

(53)

In view of evident relations between the power spectra
of the derivative and the process itself, we arrive at the
following expression for the power spectrum of the
field [15]: 

(54)

(55)

where the coordinates of discontinuities are determined
by Eqs. (50) and (51). In Eq. (53), we neglected the
amplitude fluctuations in the quasi-periodic wave,
which are caused by the fluctuations of zero points yn of
the sawtooth wave. We also neglect the fluctuations ∆yn
of the zero points in Eq. (50) determining the disconti-
nuity coordinates xn. Then, according to Eqs. (50) and
(51), the power spectrum is uniquely determined by the
characteristic function of the dimensionless potential zn
(Eq. (53)), which has the double-exponential probabil-
ity distribution (Eq. (36)): 

(56)

where Γ(z) is the gamma function. 
With the use of the Poisson summation formula, we

extract the discrete part of the spectrum from Eq. (54)
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as well as its continuous part
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Here, the quantity l(t) given by Eq. (41) characterizes
the displacement of the discontinuity. According to
Eq. (57), the discrete part of the spectrum is equal to the
spectrum of the sawtooth wave in a medium with a
finite viscosity. In this situation, the coherent structure
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is destroyed because of the random movements of the
discontinuities. The continuous part of the spectrum
has universal asymptotic forms both at low frequencies,
Ec ~ k2, and at high frequencies, Ec ~ k–2. 

At long times l(x, t) @ L0, the quasi-periodic struc-
ture totally decays. The characteristic scale l(t) of the
field starts to be much higher than the modulation
period. The field spectrum becomes automodelling and
obeys Eq. (10), where the integral scale of turbulence is
given by Eq. (47). The evolution of the spectrum is
illustrated by Fig. 5 for the initial disturbance at hand. 

To conclude with, let us discuss the main features of
the evolution of modulated signals with noise and
quasi-harmonic carriers in a nondispersive medium
with an infinitely small viscosity. For quasi-harmonic
signals, the combined effect of the nonlinearity and dis-
sipation leads to a full suppression of the modulation
amplitude at the stage of developed discontinuities. At
this stage, the generation of the difference-frequency
wave terminates. For long time intervals, the shape and
amplitude of this wave remains unchanged, because the
characteristic time of the nonlinear interaction is much
longer for the difference-frequency waves than for the
high-frequency ones. The long-time asymptotic behav-
ior of the waves depends on the frequency content of
the initial signal. If the spectrum of the initial distur-
bance consists of two multiple frequencies, k1 = nκ and
k2 = mκ (|n – m| ! n, m), the nonlinear interaction causes
the wave of the difference frequency k = |n – m|κ to
transform to a saw-tooth wave whose discontinuities,
however, will have a nonzero velocity. As a result of the
coalescence of discontinuities, the quasi-periodic struc-
ture (with the period L = 2π/k) will be destroyed, and,
asymptotically, the wave will be transformed to the
sawtooth structure with the period Lmax = 2π/κ. 

For waves with a noise carrier, only partial suppres-
sion of the modulation amplitude takes place, and,
hence, the generation of the difference-frequency
waves persists at the stage of developed discontinuities.
Because of the coalescence of the discontinuities of the
carrier, the field transforms to a quasi-periodic structure
with a period equal to that of modulation and with
weakly fluctuating positions of the zero points and dis-
continuities. Since the discontinuities move, they coa-
lesce, and, asymptotically, the field becomes noisy in
its nature. 

To numerically model the evolution of the modu-
lated noise, we used the asymptotic solution (3), (4) to
the Burgers equation, this solution being equivalent to
the Legendre transform. Since the function y(x, t) is
nondecreasing, one can construct a fast algorithm for
numerically solving the problem with O(N )
steps required for determining the coordinates of the

N2log
absolute maximum (here, N is the number of points at
which the initial disturbance is determined [16]). In
numerical experiments, the fast Legendre transform
allowed us to average over 10000 realizations of the
initial random disturbance. 
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Abstract—The characteristics of surface acoustic waves (SAW) propagating in a structure that consists of a
metal layer overlying an YX-cut quartz crystal are numerically analyzed for a wide range of operating temper-
atures. It is shown that the presence of a metal film of a certain thickness on the surface of an YX-cut quartz
crystal considerably improves the thermal stability of the characteristics of SAW propagating in such a struc-
ture. © 2001 MAIK “Nauka/Interperiodica”.
Piezoelectric quartz crystals represent one of the
most popular materials used in the SAW technology.
These crystals have been extensively studied both the-
oretically and experimentally and exhibit a high ther-
mal stability of their properties [1]. It was found that
some cuts of quartz crystals and some directions in
them are characterized by a zero first-order temperature
coefficient of delay (TCD(1)) of SAW (e.g., the ST,X-cut
of the quartz crystal) or by a close-to-zero value of this
coefficient (e.g., the AT,X-cut of the quartz crystal [2]).
One of the main technical characteristics in the SAW
technology is the sensitivity of the thermally stable
direction of the crystal to changes in the external tem-
perature. However, in the aforementioned cuts of the
quartz crystal, the thermal stability of SAW is observed
in only a narrow interval of operating temperatures near
room temperature (t0 = 25°C). The second-order tem-
perature coefficient of delay (TCD(2)) of SAW propa-
gating in these crystal cuts is relatively high: TCD(2) ≈
32 × 10–9 1/°C2 for the ST,X-cut and TCD(2) ≈ 28.4 ×
10–9 1/°ë2 for the AT,X-cut.

This paper presents a theoretical study of the SAW
characteristics in a structure consisting of a metal layer
overlying an YX-cut quartz substrate in a wide range of
operating temperatures t.

As a result of numerical calculations, we deter-
mined the materials of the film and the values of the
film thickness for which a thermal stabilization of SAW
is achieved in a wide temperature range. For example,
in the structure consisting of an aluminum film with
thickness h = 0.061λ (λ is the SAW wavelength) and an
YX-cut quartz crystal, the relative variation of the SAW
delay time ∆τ/τ0 [3] in the temperature interval from
–60 to +60°C was 2.5 times smaller than in the well-
known ST,X-cut quartz.

Let us first discuss the conditions for which we per-
form the numerical analysis of the properties of SAW
in a film–substrate system. In the presence of an isotro-
1063-7710/01/4704- $21.00 © 20415
pic metal film of a finite thickness on the surface of a
piezoelectric crystal, we will consider the problem on
the SAW propagation in the structure that consists of an
isotropic layer overlying a piezoelectric substrate. In
this case, we use the system of equations of the theory
of elasticity in combination with the electrostatic equa-
tion [4]:

. (1)

Here, Tij is the elastic stress tensor, ui represents the
mechanical displacements, D is the electric displace-
ment vector, ρ(m) represents the densities of the film and
substrate materials, τ is time, and xj are the coordinates.
The subscripts are i, j = 1, 2, 3; the superscript takes the
values m = 1 and 2 to indicate the film and substrate
materials, respectively.

Using the method described in [4, 5], we developed
an algorithm and a program for the numerical calcula-
tion of the main characteristics (the velocity Vl, the dis-
placement amplitudes ui, etc.) of SAW propagating in a
structure formed by a metal film and a YX-cut quartz
substrate; we carried out numerical analysis of the tem-

perature characteristics ( , , and ∆τ/τ0)
of SAW propagating in these structures for a wide
range of operating temperatures. In our calculations,
we took into account the following factors: the temper-
ature dependences of the quartz material constants Cijkl,
eijk, and εij; the thermal expansion of the crystal [2]; the
temperature dependences of the crystal density ρ and
the density of the layer material ρl; the temperature
dependences of the Lamé elastic constants of the iso-
tropic layer; the thermal expansion of the film; the vari-
ation of the film thickness h with temperature [3]; and
the presence of the initial thermal internal stresses in
the layered structure due to the difference between the
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coefficients of thermal expansion of the film and sub-
strate materials [6, 7].

The temperature coefficients of delay,  and

, of SAW propagating in the layered structure
can be calculated by the formulas [2, 8]

(2)

(3)

where τl and τ0 are the SAW delay times in the layered
structure at the operating and room temperatures,

respectively;  is the temperature coefficient of
velocity for SAW propagating in the layered structure

[2]; and  is the coefficient of thermal expansion of
the crystal in the direction of wave propagation.

If the film thickness h is much smaller than the sub-
strate thickness H, we can assume that, as the operating
temperature t varies, the substrate length varies in one
or another direction and the film length also varies. This
process should be accompanied by a variation of the
film thickness h [3].

To calculate the dependence of the SAW delay time
τl on the temperature t in the layered structure, we can
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Fig. 1. Dependences of the coefficients  (solid

curves) and  (dotted curves) of SAW on the relative

layer thickness for different metal films on the surface of a
YX-cut quartz crystal: (1, 11) Al, (2, 21) Ni, (3, 31) Cu, and
(4, 41) Au.

TCDl
1( )

TCDl
2( )
use the Taylor series expansion of τl near the room tem-
perature t0:

(4)

If we neglect the higher orders in Eq. (4), we can rep-
resent the relative variation of the SAW delay time
∆τ/τ0 = (τl – τ0)/τ0 in the form

(5)

As one can see from Eqs. (2)–(5), to calculate the
temperature characteristics of SAW in the layered
structure, it is necessary first to solve the system of
equations (1) from which one can determine the veloc-
ity Vl of SAW in the layered structure for different val-
ues of the film thickness and for different operating
temperatures t.

According to [8], YX-cut quartz exhibits no thermal
stability of the SAW characteristics. For example, at
room temperature, the first-order temperature coeffi-
cients of delay of SAW take the following values:
TDC(1) = –22 × 10–6 1/°ë 1 for a free surface and

 = –22.3 × 10–6 1/°C for a coated (i.e., covered
with an infinitely thin metal film whose mass is negli-
gibly small) surface. A metal film of finite thickness h
(with a finite mass) covering the surface of an YX-cut
quartz crystal can noticeably change the SAW velocity
(making it smaller or greater, depending on the temper-
ature characteristics of the film and substrate materi-
als), and at some value of the thickness h, it can
improve the temperature characteristics of SAW propa-
gating in the structure.

Figure 1 shows the calculated dependences of

 and  of SAW on the ratio h/λ for differ-
ent film materials: aluminum (Al), gold (Au), copper
(Cu), and nickel (Ni) at room temperature. One can
see that, when the surface of a YX-cut quartz crystal
is covered with an aluminum layer of thickness h =

0.061λ, the value of  becomes zero (curve 1).

The corresponding value of  is 14.8 × 10–9 1/°ë2

(curve 11). A nickel layer (curve 2) of thickness h/λ =
0.045 reduces the absolute value of TCD(1) to –4.5 ×
10–6 1/°C but does not compensate it totally (i.e., to zero);

the corresponding value of  is 13 × 10–9 1/°C2

(curve 21). A copper layer (curve 3) with h/λ = 0.05 pro-
vides an almost total compensation of TCD(1); in this

case,  = 15.5 × 10–9 1/°C2 (curve 31). A gold
layer provides a compensation of TCD(1) at h/λ = 0.028
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(curve 4); in this case,  = 21 × 10–9 1/°C2

(curve 41).

It can be shown that, for a free surface of an YX-cut
quartz crystal, the calculated dependence of the relative
variation of the delay time ∆τ/τ0 given by Eq. (5) on the
temperature t (within the interval –60 to +60°C) is lin-
ear, and the value of the relative variation of the delay
time varies over wide limits. For example, at t =
−60°C, we have ∆τ/τ0 = 1942 × 10–6 and, at t = +60°C,
∆τ/τ0 = –767 × 10–6.

Figure 2 presents the calculated temperature depen-
dences of the relative variation of the delay time ∆τ/τ0

of SAW and the temperature dependences of 
(t varies from –60 to +60°C) for different materials of
the film covering the surface of the YX-cut quartz crys-

tal. All dotted lines in the figure represent , and
all solid lines represent ∆τ/τ0 of SAW. From Fig. 2, one
can see that the aluminum film (h/λ = 0.061) provides a
thermal stabilization of the YX-cut quartz crystal

(  = 0) at room temperature (curve 11). In addi-
tion, in such a structure, the range of variation of the
quantity ∆τ/τ0 (curve 1) within the temperature interval
from –60 to +60°C is much smaller (at t = –60°C, we
have ∆τ/τ0 = 81 × 10–6 and, at t = +60°C, ∆τ/τ0 = 21 ×
10–6) than in the case of a free surface of YX-cut quartz.
From Fig. 2 it also follows that gold films with h/λ =
0.028 (curves 2, 21), nickel films with h/λ = 0.045
(curves 4, 41), and copper films with h/λ = 0.05
(curves 3, 31), when deposited on the surface of an
YX-cut quartz crystal, also provide a thermal stabiliza-
tion of SAW in the crystal and reduce the value of ∆τ/τ0
of SAW in a wide temperature range from –60 to
+60°C.

In contrast to a free YX-cut quartz crystal, the pres-
ence of a metal film of a certain thickness on its sur-
face leads to a thermal stabilization of the characteris-
tics of SAW propagating in the resulting layered struc-
ture. For example, in the structure consisting of an
aluminum film with h/λ = 0.061 and a YX-cut quartz

substrate, we obtain  = 0.03 × 10–6, 1/°C and

 = 14.87 × 10–9 1/°C2. The corresponding val-
ues of other parameters are as follows: velocity Vl =
3.162 km/s, power flux angle [9] pfa = 0°, anisotropy
coefficient γ = 0.62, and electromechanical coupling
coefficient [9] K2 = 0.185%.

When the crystal surface is loaded with a film of a
finite thickness, not only the temperature characteris-
tics but also the velocity of SAW propagating in this
structure undergo some changes. It is of interest to con-
sider the changes that occur in the SAW velocity when
the surface of the YX-cut quartz crystal is covered with
a metal film of finite thickness.
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Figure 3 presents the dependences of the SAW veloc-
ity on the ratio h/λ in the structures: Al film + YX-cut
quartz, Au film + YX-cut quartz, Ni film + YX-cut
quartz, Cu film + YX-cut quartz, and Cr film + YX-cut
quartz. One can see that, unlike Al and Cr films, the
copper (Cu), nickel (Ni), and, especially, gold (Au)
films effectively reduce the velocity of SAW in the
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YX-cut SiO2; and Cr film + YX-cut SiO2.
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film–crystal structure. For example, in the presence of
a gold film whose thickness is equal to 0.01λ, the
SAW velocity in the structure decreases from 3.1605
to 2.945 km/s. This result is explained by the fact that
the velocity of the slow shear bulk wave in gold is
much lower than the velocity of the shear bulk wave
in YX-cut quartz. We note that, if the velocity of the
shear bulk wave in the film material is much higher than
in the substrate, only one surface acoustic wave can
exist in the layered structure. The existence of this wave
is possible only in a limited range of values of h/λ [4].
When the velocity of the shear bulk wave in the layer
material is close to that in the substrate material, the
dependence of the SAW velocity in the layered struc-
ture on the ratio h/λ can exhibit an anomalous behavior,
i.e., local maximums and minimums [10]. This effect is
observed in the case of chromium film (see Fig. 3).

The crystal cut and the direction of the SAW propa-
gation are usually described by three Eulerian angles
(φ, θ, Ψ) [4]. Numerical calculations showed that a
thermal stabilization of SAW by thin metal films is pos-
sible not only for YX-cut quartz (with the Eulerian
angles (0°, 90°, 0°)), but also for other orientations of
the quartz crystal, namely, the orientations with the
second Eulerian angle θ falling either within the inter-
val 10°–40° or 90°–120° (while the two other angles
are φ = Ψ = 0°).

Thus, our numerical experiment shows how a thin
metal (Al, Au, Cu, or Ni) film covering the surface of
an YX-cut quartz crystal affects the main characteris-
tics of SAW. For different metal films covering the sur-
face of a YX-cut quartz crystal, we determined the
thickness values with which it is possible to consider-
ably improve the thermal stability of SAW propagating
in such structures in a wide temperature range.
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Abstract—A method of forward-scattering location on the basis of resolving the arrival times of direct and
scattered signals is proposed. The method is specific in that it allows one to use a long sinusoidal probing signal.
The required time resolution of the signals produced by moving targets is achieved by processing the spectrum
of the received echo signals so as to broaden its effective bandwidth. The method is tested in both numerical
and full-scale acoustic experiments. For the first time, the forward-scattering location is implemented with the
use of long probing pulses in a narrow frequency band. © 2001 MAIK “Nauka/Interperiodica”.
The maximal signal scattered by a target is known to
come from the direction that coincides with the propa-
gation direction of the probing signal. The target loca-
tion that uses such signals is named the forward-scatter-
ing location (FSL). In addition to the maximal value of
the scattered signal, FSL is advantageous in that there
is no influence of the absorption on the relation
between the direct and diffracted signals. That is why
the FSL methods that use continuous probing signals
were developed and implemented. With such methods,
the target to be located is detected by its motion in the
field of the continuous insonification. This procedure is
performed by inverse aperture synthesis in the acoustic
dark field [1–4]. The aforementioned methods are not
always feasible for reasons that cannot be eliminated
with continuous insonification of the target. First, a
continuos probing signal creates a high-level reverber-
ation background, which makes detecting the target dif-
ficult or impossible. Second, the need in the aperture
synthesis to detect the target imposes stringent con-
straints on the stability of its motion.

The aforementioned restrictions can be circum-
vented by using pulsed probing signals with resolving
the targets in the arrival times of the signals scattered by
them. However, the use of a pulsed signal in the FSL
scheme is accompanied by technical difficulties. To
separate the scattered signal from the direct one propa-
gating in nearly the same direction, a high time resolu-
tion is required. For this purpose, one needs a much
broader frequency band than with continuous insonifi-
cation.

It was found [5] that a high spatial resolution can be
achieved by using a sinusoidal probing pulse. The
effective frequency band of the signal reception can be
increased by combined processing of the received and
probing signals [5]. The method has a high efficiency if
the probing signal is exactly known. This situation is
typical of mathematical modeling rather than in prac-
tice. A high uncertainty can be introduced by the fre-
1063-7710/01/4704- $21.00 © 20419
quency response of the transmitting circuit. In this
paper, we propose a method of increasing the effective
bandwidth of signal reception without relying on a
known form of the probing signal.

To make the reception bandwidth broader, we pro-
pose to process the echo signals in combination with
one of them, rather than with the probing signal. In con-
trast to the procedure considered in [5], the proposed
method leads to a pure interference location. With this
technique, an interval of delays is determined between
the selected (reference) signal and all other signals
rather than the absolute delay between the received sig-
nal and the transmitted one. In the FSL case, the direct
signal is most intense and is optimal as the reference
signal. Thus, the interference location allows one to
detect the weak scattered signal and to measure its
delay relative to the direct signal. Another advantage of
the proposed time selection of signals in the FSL con-
sists in the possibility to detect the signals from moving
targets. In contrast to the case of aperture synthesis, the
target becomes visible when it moves along an arbitrary
trajectory and, in the general case, nonuniformly.

The essence of the method is illustrated by the numer-
ical calculations in the mathematical modeling of the
problem. The results of computations are compared with
those of the experiment in an anechoic acoustic chamber.

Let us consider the basic theoretical concepts of the
method. The geometric difference in the path lengths of
the scattered and direct signals is determined from the
layout of the FSL, which is shown in Fig. 1. Let the dis-
tance between the sound source and the receiving
microphone be D and the scatterer be at the distance d
from the line (SR) connecting the source and the
receiver. Then, for the scattered and direct signals, the
difference in their path lengths is

. (1)∆ 2
D
2
---- 

 
2

d2+ D– 2
d2

D
-----≈=
001 MAIK “Nauka/Interperiodica”



 

420

        

ZVEREV 

 

et al

 

.

                                                                       
Note that, if the value of  is small, it is equal to the

angle at which the signal diffracted by the scatterer is
received, this angle being measured from the propaga-
tion direction of the direct signal. The lower this angle,
the higher the intensity of the scattered signal. That is
why one should try to observe the scatterer at the lowest

possible ratio . In this case, one can separate signals

with a low difference in the arrival times. Let d and D
involved in Eq. (1) have the values that are required to
successfully implement the FSL technique. Then, the
time interval between the arrivals of the direct and scat-
tered signals will be

, (2)

where c is the propagation velocity of the waves and ∆
is given by Eq. (1). A universal relation between the
time resolution and the required frequency band Ω has
the form

. (3)

Relation (3) is a consequence of the features of Fou-
rier-conjugated functions and cannot be overridden or
violated. The only way to achieve the required time res-
olution seems to have a sound source and a medium
that can transmit the frequency band Ω with no signifi-

d
D
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τ ∆
c
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Ω 2π
τ
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T

S R

Fig. 1. Layout of the experiment at the forward-scattering
location: S is the source, T is the scatterer, and R is the
receiving microphone. The dashed line (S–R) connects the
source and the receiver. The solid line indicates the scatterer
trajectory used in the numerical calculations and in the
experiment.
cant attenuation. However, this is not quite true. In view
of the nonlinearity of the problem, the high-intensity
probing signal can have a strongly nonuniform trans-
mitted spectrum, this nonuniformity being compen-
sated at the signal reception [5].

If the direct signal is received along with the identi-
cal one delayed by τ in time, the spectrum of the sum of
these signals as a function of frequency ω will be

, (4)

where S0(ω) is the complex spectrum of the probing
signal, which can be essentially nonuniform, and a is
the ratio of the scattered signal to the direct one.

To effectively broaden the frequency band involved
in the signal processing, the spectrum S(ω) of the
received signal should be transformed according to the
following formula [5]:

, (5)

where SR(ω) is the spectrum of the reference signal.
Procedure (5) changes the signal spectrum S(ω) in such
a manner that it becomes smoother. The best reference
signal is one whose spectrum coincides with S0(ω)
(correct to a constant delay). The question is how to
obtain this signal. In mathematical modeling, there is
no such question, because S0(ω) is the product of two
functions: the spectrum of the electric signal applied to
the transmitting circuit (it can be known) and the fre-
quency response of the transmitting circuit itself, which
is not known with the required accuracy within the
entire frequency band.

For the reference signal, we propose to use the sig-
nal received at a certain moment of time. To show that
such choice is sufficient, we imagine that the denomi-
nator of Eq. (5) contains the FSL signal received at the
moment when the scatterer was at a position between
the source and the receiver, precisely on the line con-
necting them. The spectrum of the signal received at the
moment of such an eclipse of the source by the scatterer
is obtained from Eq. (4) with τ = 0: it is just the desired

S ω( ) S0 ω( ) 1 a iωτ( )exp+[ ]=

SP ω( ) S ω( )
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Fig. 2. Results of calculations: (a) the geometric difference in the path lengths (in centimeters, along the horizontal axis) as a function
of the scatterer position (in ordinal numbers of the pulses) for the trajectory shown in Fig. 1; (b) the angle (in radians) of scatterer
deviation from the source–receiver line.
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001



        

HIGH-RESOLUTION INTERFERENCE ACOUSTIC LOCATION 421

                                            
spectrum S0(ω) that is appropriate to serve as the spec-
trum of the reference signal in Eq. (5).

More generally, the denominator of Eq. (5) involves
the spectrum of a signal received at an arbitrary
moment of time. Let the delay τ of the scattered signal
in Eq. (2) be a function of time t. In addition, let the
delay be a slowly varying function, so that the change
in τ does not exceed 2π/Ω (the interval of the delay res-
olution) within the pulse length. Then, one can substi-
tute τ(t) into Eq. (2). Taking Eq. (2) at t = t1 as the ref-
erence signal, we represent Eq. (5) in the form

(6)

As a rule, |a| ! 1, and Eq. (6) can be simplified:

(7)

The current spectrum of function (7) will include
two harmonic components with a time resolution of
2π/Ω; one of these components remains constant and
the other moves relative to the first component accord-
ing to the motion of the scatterer.

SP ω t,( )
S0 ω( ) 1 a iωτ t( )[ ]exp+[ ]
S0 ω( ) 1 a iωτ t1( )[ ]exp+[ ]
----------------------------------------------------------------.=

SP ω t,( ) 1 a iωτ t( )[ ]exp a iωτ t1( )[ ] .exp–+=
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Fig. 3. Form of the probing pulse used in the numerical
experiment. The horizontal axis shows the time recalculated
to the path length (in centimeters) with the use of Eq. (2).
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
The numerical simulation was carried out in accor-
dance with [5]. The direct and scattered signals, along
with noise, were modeled. The delayed scattered signal
was the result of diffraction by an inhomogeneity,
which moved along the trajectory shown in Fig. 1. The
motion of the scatterer followed a harmonic law. This
law corresponds to the experiments and, besides, con-
firms that the possibility for the signal to be detected
weakly depends on the character of the motion. Fig-
ure 2b illustrates the change in the scattering angle as a
function of the delay shown in Fig. 2a.

Figure 3 presents the form of the numerically mod-
eled probing pulse. As in [5], the signal is combined
with noise whose level is 40 dB lower than the signal
maximum. Figure 4 illustrates the results of the numer-
ical experiment. Figures 4a and 4b correspond to differ-
ent methods of signal processing. In Fig. 4a, the pro-
cessing method is the same as in [5]. As the reference
signal, we used the function S0(ω), which was known in
the mathematical modeling of the problem. Figure 4b
shows the result of processing with the use of one of the
realizations of the echo signal as the reference signal.
The selected time moment corresponded to zero delay.
This moment is indicated by the white horizontal bar in
Fig. 4b. Here, the noise is doubled in comparison with
Fig. 4a. The added noise corresponds to a fixed time
and, therefore, is fully correlated along the vertical
axis. The signal-to-noise ratio is 20 dB in Fig. 4a. This
ratio means that the scattered signal is always specified
to be 20 dB lower than the probing signal. The method
of signal processing, which is illustrated by Fig. 4a, is
characterized by the maximal noise immunity. With
other processing procedures, the noise immunity is
5−7 dB lower.

Let us consider the results of the physical experi-
ment performed in a damped unechoic chamber. In the
experiment, we used an electrodynamic loudspeaker
32
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Fig. 4. Numerically modeled FSL. In the horizontal: time recalculated to the difference in the path lengths (in centimeters) with
the use of Eq. (2). In the vertical: time in ordinal numbers of the pulses. The signal processing is performed according to (a) [5] and
(b) the proposed method.
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fed by an electric pulse of constant amplitude with a
duration of 1 ms and a carrying frequency of 5.3 kHz.
The receiving microphone was 3 m away from the
transmitter. Figure 5 shows the form of the pulse
received by the microphone. The loudspeaker had a
rather intricate frequency response, which is evidenced
by the long tail of the received signal. A sphere of
10 cm in radius served as the scatterer. The scatterer
was suspended on a thread of about 2 m in length. In the
course of the experiment, the scatterer swung freely
with an amplitude of about 30 cm by crossing the
source–receiver line in its periodic motion.

As one would expect, the scatterer is well seen when
it is in the vicinity of the source–receiver line. One can
increase the signal-to-noise ratio at the expense of the
time resolution. To do so, one can omit the noisy parts
of the spectrum. For the changes in the processing pro-
cedure not to affect the possibility to compare the mod-
eling and experimental results, the modeling procedure
was repeated in accordance with the processing tech-
nique used in the experiment. For this purpose, the

0 50 100 150 200
–2

0

2
×104

Fig. 5. Form of the probing pulse used in the acoustic exper-
iment. In the horizontal: time recalculated to the path length
(in centimeters) with the use of Eq. (2).
same frequencies were eliminated from the modeled
spectrum. The results are shown in Fig. 6. Figure 6a
illustrates the mathematical calculations, and Fig. 6b
presents the processed experimental data. From Fig. 6,
we eliminated the signal that corresponds to the spec-
trum of the second term on the right-hand side of
Eq. (7). The selection was performed in view of the dif-
ference in the signal signs: the negative components of
the spectrum were eliminated. Such a selection is use-
ful, because Fig. 6 was obtained by using a sum of two
echo signals as the reference signal. As a result, the sig-
nal-to-noise ratio is lower in Fig. 6, though there are no
light bars that correspond to the probing signals used in
the denominator of Eq. (6).

According to the data presented in the figures, the
theory and experiment are in good agreement. The dif-
ferences consist in that the experimental signal decays
as the scatterer moves away from the source–receiver
line, whereas the modeled signal does not exhibit such
a decay. The main advantage of the FSL is the use of the
maximal scattering. This advantage is evident from the
experimental data. One can also notice that the time
dependences of the echo signals become widely differ-
ent in Figs. 6a and 6b when the scatterer approaches the
source–receiver line. This difference is a consequence
of the fact that a point scatterer was implied in model-
ing, while a signal diffracted by a sphere of finite radius
was observed in the experiment.

The diffraction phenomena observed in the acoustic
FSL experiments confirm the possibility to experimen-
tally solve the diffraction problem in the case of for-
ward scattering, which was solved theoretically in [6].
The use of pulsed probing signals in the FSL consider-
ably extends the possibilities for the experimental stud-
ies of the sound diffraction by weakly scattering bod-
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Fig. 6. Results of the calculation and the experiment for the sum of two echo signals used as the reference signal. The axes are the
same as in Fig. 4.
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ies, which was previously analyzed mainly theoreti-
cally (see, e.g., [7]).
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Abstract—The sound field fluctuations caused by high-intensity, solitonlike, quasi-plane internal waves cross-
ing a fixed acoustic path at different angles are numerically modeled for natural conditions of the shelf zone of
the Sea of Japan. The horizontal refraction of sound is considered for the case of an acoustic path parallel to the
internal wave front. © 2001 MAIK “Nauka/Interperiodica”.
Internal waves are an important factor of vertical
mixing in the ocean. They also strongly affect sound
propagation. The effects of internal waves are most pro-
nounced in the regions of ocean shelves, seamounts,
and the continental slope, where internal waves are
enhanced and can reach very high amplitudes [1]. In the
shelf zone, the tidal energy is regularly transferred by
the tidal internal waves from the continental slope
towards the coast. While passing over the shelf, the
internal tides undergo a nonlinear transformation giv-
ing rise to trains of short high-intensity waves. Simi-
larly to the tidal wave, these short waves travel towards
the coast until they reach the coastal zone where further
energy transfer to even shorter waves and turbulence
takes place [2]. It is not uncommon that in the shelf
zones of open seas and oceans the amplitudes of the
internal waves are as high as 10 m or more. The size of
the train along its propagation direction depends on the
number of waves forming the train and vary from sev-
eral hundreds of meters to several kilometers. The
crests of the internal waves that propagate over a shelf
are usually parallel to the isobaths and follow the mean
features of the seafloor profile. Sometimes, the crests
remain nearly straight for many kilometers or even tens
of kilometers. Near the shelf edge, the crests often have
the shape of arches that are convex in the propagation
direction, which indicates the local character of the
internal wave sources.

Thus, the internal waves that are generated over the
shelf and near its edge cause pronounced deformations
of the pycnocline, which extend over large sea areas.
1063-7710/01/4704- $21.00 © 0424
Such a medium cannot be treated as a plane-layered
one for sound propagation. A number of researchers
(see, e.g., [3, 4]) studied sound propagation in such a
medium in terms of the geographical features of the
region. However, these studies almost completely
neglect the effects of the orientation of the sound prop-
agation path relative to the propagation direction of
internal waves. This dependence is the subject of our
paper.

To illustrate the aforementioned effects in numerical
experiments, we used the data that were obtained in a
special-purpose experimental study of internal waves,
which was carried out on the shelf of the Sea of Japan
in August and September, 1983 [5]. Figure 1 shows the
average hydroacoustic parameters for the experimental
site. These parameters were calculated from the
directly measured vertical profiles of the water temper-
ature and salinity. The internal waves were measured
from a vessel that went on linear tacks at a constant
speed with a towed distributed temperature sensor [6]
deployed in the temperature discontinuity layer. The
sensor covered the depths 12 to 23 m. The data obtained
in this way characterize the spatial variability of the
thermocline depths over the shelf and allow reliable
detection of the thermocline disturbances caused by the
train of internal waves. Each towing act consisted of
several (at least two) passages in opposite directions
across the isobaths of the continental slope through the
shelf from a point near the coast to a point beyond the
continental slope. One tack covered an area 30–40 km in
length. The main direction of towing coincided with the
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Hydroacoustic parameters of the experimental site. The plot at the bottom shows the vertical profiles of the sound speed c,

the buoyancy frequency N, and the normalized vertical displacements /  for the first gravity mode of the internal wave at a
distance of 6 km from the coastline.
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mean direction of the trains of high-intensity internal
waves that arrived at the coastal zone from the open sea.
This arrival direction was determined from the mea-
surements performed with a spatial array of distributed
temperature sensors in the previous summer season [7].
The temperature profile was measured at a speed of
about 3 m/s, which is an order of magnitude higher than
the propagation velocity of the internal waves. In tow-
ing, a train of high-intensity internal waves was
detected at a distance of about 6 km from the coastline,
at depths of 50–60 m. The train moved towards the
coast with a velocity of about 0.2 m/s. With these
experimental data, we calculated the time dependences
for the vertical displacements of water particles under
the effect of internal waves along the path 5 km in
length at a depth of 33.5 m (see Fig. 4a). In the calcula-
tions, we used the average vertical profiles of tempera-
ture and density in the region along with the depth dis-

tribution of the internal wave amplitude (z)/ ,
which was calculated with the computer code devel-
oped by Goncharov [8] (see Fig. 1). It was assumed that
the first gravity mode predominates in the internal-
wave field, as is typical of shallow-water regions. Fig-
ure 4a shows that the train itself is preceded by a
smooth rise of the thermocline followed by its sharp
sink, the latter, in fact, being the leading edge of the
train. The wave of maximal peak-to-peak amplitude
(the second one in the train, 7 m) is indicated by arrows
in the figure. This wave exhibits a sharp foot and a

Ã Ãmax
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smooth crest. Such features are typical of nonlinear
waves propagating in the subsurface thermocline and
characteristic of internal waves on the shelf [9].

Let us now consider the acoustic effects that can be
observed in the presence of the recorded internal
waves. In particular, let us analyze the sound field gen-
erated by a fixed bottom-moored sound source with a
frequency of 250 Hz. Let the field be received at a fixed
observation point located 5 km from the source (i.e., we
consider the sound field on a fixed propagation path).
For a plane-layered medium (both in shallow- and
deep-water cases), the sound field is known to consist
of a sum of waveguide modes that are depth dependent
and have constant amplitudes along the path (the ampli-
tudes exponentially decay in the presence of sound
absorption). In accordence with the cylindrical symme-
try of the problem, the wave fronts and curves of con-
stant amplitude are circles in the horizontal plane.
Internal waves cause some perturbation in the planar
structure of the plane-layered medium, which, how-
ever, are assumed to be sufficiently weak for the field to
be represented as a sum of modes. Let the disturbance
(in the depth or sound speed profile) depend on the dis-
tance from the sound source, and the dependence on the
transverse coordinate (with respect to the propagation
path) be neglected. Then, in terms of the normal-wave
description, the amplitudes of local modes (or refer-
ence modes, which are the solutions to the waveguide
problem for each cross-section of the waveguide) will
vary with distance (independently of the absorption),
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this variation being interpreted as the interaction (or
transformation) of the modes. The problem of finding
the weighting factors for the modes that travelled
through the irregular part of the waveguide is well
known and methods have been developed to solve it. In
particular, for a sufficiently narrow spatial spectrum of
the train (and a sufficient duration of the internal-wave
realization), the so-called resonant effects were
revealed: only individual pairs of modes interact, their
interaction depending on the sound frequency. These
effects manifest themselves in the resonant absorption
of sound generated by broadband sources [10, 11]. At
the same time, the wave fronts remain parallel in the
horizontal plane. Now, let the disturbance depend on
nothing but the transverse coordinate. In this case, the
sound field in the waveguide can be represented as a
sum of modes, each mode propagating over it own hor-
izontal ray (or a set of rays), and no transformation of
modes is observed. In this case, the wave fronts are not
parallel in the horizontal plane: the cylindrical symme-
try of the problem is violated. If the disturbance is arbi-
trary, both factors affect the structure of the sound field.

Apart from the practical importance of monitoring
internal waves on a shelf by acoustic methods, the
observation of the perturbations caused in the structure
of the sound-speed field by the trains of internal soli-
tons in a shallow sea allows one to consider the two
aforementioned cases in an explicit form and, thereby,
to experimentally solve one of the fundamental prob-
lems of shallow-water acoustics. Namely, such a study
can be performed by using an acoustic path that is par-
allel or perpendicular to the fronts of internal waves.

Let us represent the oceanic medium as a three-
dimensional underwater waveguide in the XYZ coordi-
nate system. The waveguide consists of a water layer of
density ρw(z) and the squared refractive index n2(z) +
µ(x, y, z, t), where n2(z) corresponds to the mean equi-
librium stratification of the layer (the corresponding
sound speed profile is c(z)) and µ(x, y, z, t) characterizes
the changes in the acoustic properties of the layer under
the effect of the train of internal waves. The water layer
is bounded by the pressure-release surface at z = 0 and
a homogeneous absorbing halfspace at z = H, i.e., by
the sea floor with the density ρ1 and the squared refrac-

tive index (1 + iα), where n1 = c(H)/c1 and the fac-
tor α determines the absorptive properties of the bot-
tom. In numerical calculations, we specified H = 60 m,
ρ1 = 2 g/cm3, c1 = 1750 m/s, and α = 0.02.

According to [12], the quantity µ(x, y, z, t) is deter-
mined by the parameters of the train:

(1)

n1
2

µ x y z t, , ,( ) 2δc x y z t, , ,( )
c z( )

---------------------------------–=

=  2QN2 z( )ζ x y z t, , ,( ).–
Here, δc is the sound speed variation caused by the
displacement of the constant-density interface, N(z) =

 is the buoyancy frequency determined by

the mean density stratification of the water layer, ρ is
the water density, g is the acceleration of gravity, Q ≈
2.4 s2/m is a constant determined by the physical prop-
erties of water, and ζ is the vertical displacement of the
water layers. The latter quantity can be represented as

, (2)

where u is the horizontal velocity of the soliton, which
in general depends on the coordinates (this depen-
dence, in particular, can be responsible for a distortion
of the wave front); r is the radius vector of the point

(x, y) in the horizontal plane; and Φ(z) ≡ (z)/
(see Fig. 1).

According to Eqs. (1) and (2), the disturbance
strongly depends on the propagation direction of the
internal wave. Here, two limiting cases exist: the inter-
nal waves cross the fixed acoustic path at right angles
or they propagate along the path. Let us consider these
cases separately. Let the aforementioned train of inter-
nal waves propagate along the Y axis and cross the fixed
path that coincides with the X axis. Because the path is
short, the disturbance depends only on the transverse
coordinate (X). (Within a distance of 5 km, the wave
front can be treated as a planar one.) In this case, to
describe the sound field in the waveguide, one can use
the theory of horizontal rays and vertical modes [13].
Then, the complex amplitude of the sound field can be
represented as

. (3)

Here, Anm(x, y) is the amplitude and θnm(x, y) is the phase
shift (eikonal) for the mth acoustic mode ψm(x, y, z),
which depends on the horizontal coordinates in a para-
metric manner. Let us introduce the notation ξm = qm +

i  for the eigenvalues of the Sturm problem in the

given cross-section of the waveguide (they are complex
because of sound absorption). Note that, in general,
several horizontal rays corresponding to a single mode
can arrive at the reception point. These rays have differ-
ent trajectories and, hence, different amplitudes and
phase shifts. That is why the summation in Eq. (3) is
performed over the vertical modes (the subscript m)
and over the horizontal rays (the subscript n).

g
ρ
---

zd
dρ

 
 

1/2

ζ x y z t, , ,( ) Φ z( )ζ r ut–( )=

Ã Ãmax

P r z,( ) Anm r( )ψm r z,( ) iθnm r( )[ ]exp
m

∑
n

∑=

γm

2
-----
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For the amplitude and the eikonal, one can obtain
ordinary equations of geometric acoustics:

(4)

(5)

For the case of internal solitons, their solutions can be
constructed by applying the theory of perturbations to
the effective refraction index [14]. Let us consider the
ray pattern for the case when the fixed path is crossed
by the aforementioned train of internal waves at right
angle. We assume that, along the path, the water parti-
cles oscillate synchronously (see Fig. 2a). Figure 3
illustrates the calculated sets of horizontal ray trajecto-
ries corresponding to the first and second vertical
acoustic modes. The calculations are performed for the
situations when the crest (region I in Figs. 2a, 4a) and
foot (region II) of the soliton are present on the path.
The source (i.e., the origin of rays for each ray set) was
assumed to be at the point x = 0, y = 0. As Fig. 3 shows,
the large-amplitude internal waves lead to the focusing
or defocusing of sound waves in the horizontal plane,
depending on whether the maximum or minimum of
the internal-wave field is present on the path at the
moment. Note that focusing or defocusing takes place
for all vertical modes simultaneously, which enhances
the fluctuations of the sound field at the receiver.

In view of the focusing and defocusing effects, let us
calculate the temporal fluctuations of the sound field
intensity for the case at hand, when the train of internal
waves crosses the fixed path. To be more accurate, we
use the parabolic equation in the horizontal plane with
vertical waveguide modes [15]. According to this
method, the received sound field can be represented as

(6)

where Fm(x, y) is the smoothly varying amplitude

(∂Fm/∂x ! Fm) and  is the real part of the eigen-
value for the waveguide without internal waves. Then,
for the function Fm(x, y), the following equation is
valid:

, (7)

where nq(x, y) = qm(x, y)/ . Because the characteristic
time scale of the variations of the refractive index (1)
due to the internal wave motion is much greater than
the time of the sound propagation along the path, the
quasi-static approximation can be used to calculate the
time dependence |P(r, z, t)| for the received sound field.

∇ rθnm( )2 qm
2 ,=

2∇ r Anm∇ rθnm Anm∇ r
2θnm qmγmAnm+ + 0.=

P r z,( ) Fm x y,( )ψm r; z( ) iqm
0( )

x ] ,[exp
m 0=

M

∑=

qm
0( ) qm

0( )

∂Fm

∂x
----------

i

2qm
0( )-----------

∂2Fm

∂y2
------------

iqm
0( )

2
---------- nq

2 x y,( ) 1–( )Fm+=

qm
0( )
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In this calculation, the eigenfunctions and eigenvalues
can be assumed to depend on time in a parametric way.

Figures 2c–2e show the dependences of the relative

amplitudes A (A = |P(t)|/ ) of the sound field cal-
culated for different depths of reception. Here and
below, the angular brackets stand for averaging over the
reception depths and the overbar indicates the time
averaging. According to Fig. 2, the internal waves per-
pendicularly crossing the fixed path at an angle of 90°
lead to intense variations of the sound field. The spec-
trum of these variations is shown in Fig. 5 as a solid
curve. The variations are caused both by the changes in
the interference pattern in the waveguide and by the
aforementioned focusing and defocusing effects. The
variations remain considerable even if the sound field is
averaged in the vertical. In Fig. 2b, the averaging result
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Fig. 2. (a) Time dependence ζ(t) of the vertical displace-
ments of water particles at 33.5 m depth on the fixed path
crossed at right angles by the internal waves. The arrows
indicate the maximal displacements caused by the passage
of the soliton. (b) Time dependence of the average relative
amplitude 〈A〉  of the sound field. (c–e) Time dependences of
the relative amplitude A of the sound field at the reception
depths 5, 30, and 55 m, respectively.
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(〈A〉 = 〈|P(t)|〉/ ) is shown for eleven horizons of
reception, from 5 to 55 m with a step of 5 m.

Now consider the second situation when the train of
internal waves moves along the path with the velocity
0.2 m/s; in other words, the path is assumed to be nearly
perpendicular to the coastline. For this situation, Fig. 4a
shows the vertical displacements of water particles
along the path at a fixed moment of time. In this case,
the disturbance depends on the distance from the
source. At the same time, the dependence on the trans-
verse coordinate can be neglected. The amplitudes of
the local modes change in distance, which testifies to
the interaction (transformation) of the modes. The
aforementioned horizontal refraction is absent, and the
wave train remains parallel to itself in the horizontal
plane.

Figures 4c–4e show the calculated variations of the
sound field amplitude A for the case of the train moving
along the path. In our situation with a relatively short
path and a relatively broad spatial spectrum of the soli-
ton train, a simultaneous interaction of many modes
takes place. Mathematically, the calculation consists in
solving the system of a large number of ordinary differ-
ential equations that describe the interaction of the
modes. It is advantageous to use the well-known
method of a parabolic equation (in the vertical plane)
[16] in this case. Such a calculation was performed. The
spectrum of the variations is shown in Fig. 5. Figure 4b

P t( )〈 〉
 presents the depth-averaged amplitude. As previously,
averaging was performed over eleven horizons. Note
that this time, averaging leads to a nearly total smooth-
ing of the sound field variations.

By comparing the calculations carried out for the
two limiting cases of longitudinal and transverse prop-
agation of the internal waves, we arrive at two main
conclusions.

First, the amplitude variations are much higher in
the transverse propagation than in the longitudinal one.

Second, the spectrum of the variations is much
broader for the transverse propagation than for the lon-
gitudinal one. In other words, high-intensity internal
waves crossing a fixed path at right angles cause high-
frequency variations of the sound field, which are
absent when the internal waves propagate along the
path.

Note that similar conclusions were obtained from
the numerical experiments [17] for the train of internal
waves measured on the New York shelf. However, addi-
tional enhancement of the variations because of hori-
zontal focusing was not considered in the cited publica-
tion.

To conclude, we emphasize once again that, in the
shelf zones, the internal waves strongly affect the low-
frequency sound field, and the magnitude of this effect
depends on both the amplitude of internal waves and
the direction of their propagation. The greater the angle
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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between the propagation directions of the internal and
sound waves, the greater the amplitude variations of the
sound field.
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Abstract—A spatially modulated structure arising in a layer of a cholesteric liquid crystal under the effect of an
ultrasonic wave is studied theoretically. The structure is described on the basis of the equations of fluid dynamics
for cholesteric liquid crystals. The equations are represented in terms of the angular variables. An anisotropic term
caused by the relaxation of the orientational order parameter is introduced into the stress expressions. The results
of calculations are compared with experimental data. © 2001 MAIK “Nauka/Interperiodica”.
Liquid crystals exhibit a variety of dissipative struc-
tures that may arise under external actions, including
the case of periodic deformation of a crystal in oscillat-
ing flows, viscous waves, and sound fields. Nematic
crystals with a simple structure have been thoroughly
investigated both experimentally and theoretically
[1–5]. The effect of sound on the structure of choles-
teric liquid crystals is less well understood. Experimental
studies [1, 6, 7] show that, when an ultrasonic wave is
incident on a layer of a cholesteric liquid crystal with
planar orientation of molecules, periodic distortions of
the cholesteric structure in the form of domains are
observed. The effect is of a threshold character. The form
of the resulting structure depends on the initial geometry
of the liquid-crystal sample, and its spatial period
decreases beyond the threshold of the effect.

An attempt to theoretically describe the appearance
of a spatially modulated structure in a layer of a choles-
teric liquid crystal in the case of the normal incidence
of an ultrasonic wave on it is made in [8]. The descrip-
tion is based on the equations of fluid dynamics for cho-
lesteric liquid crystals. In this study, a cholesteric liquid
crystal is treated as a twisted nematic crystal and the
stresses are represented in the Leslie–Eriksen form.
The perturbation method provides an opportunity to
separate the stationary distortions of the structure and is
used to determine the threshold of their appearance. It
is assumed that the pitch of the cholesteric helix is
much smaller than the thickness of the layer of the cho-
lesteric liquid crystal, and the role of the preliminary
tension of the layer is analyzed. The calculation pre-
dicts the appearance of a domain structure in the layer
of a cholesteric liquid crystal under the effect of ultra-
sound. At the same time, detailed comparison [7]
revealed a significant quantitative disagreement between
the calculations and the experimental data. This dis-
agreement shows that, in terms of the classical fluid
dynamics for cholesteric liquid crystals, it is impossible
1063-7710/01/4704- $21.00 © 0430
to adequately describe the domain structure formed in
the case of the compression of a cholesteric layer at
ultrasonic frequencies.

In this paper, the effect of ultrasound on a layer of a
cholesteric liquid crystal is treated from another point
of view. The relaxation processes leading to an anisot-
ropy of the dynamic elasticity are taken into account in
this study. The general pattern of the domain formation
is analogous to that described in [8]: in a sound field,
the random distortions of the cholesteric structure that
are periodic along the liquid crystal layer lead to oscil-
lating vortex flows and structure distortions, which
have the same spatial period. The convective interac-
tion of vortices and oscillating rotation angles of mole-
cules with the sound field leads to stationary moments
and flows increasing the structure distortion. In the case
of a sufficiently intense effect of sound, the destabiliz-
ing moments start to exceed the Frank elastic moments,
and a domain structure arises in the layer. In contrast to
[8], this paper takes into account the relaxation of the
orientational order parameter in the sound field, which
leads to an anisotropy of the dynamic modulus of elas-
ticity of the medium and changes the character of the
liquid motion. The convection of the azimuth rotation
of molecules in the cholesteric planes and the change in
the helix pitch in the case of layer tension in a sound
wave are taken into account in the equations of rotation.

Following [8], we represent the equations of motion
and the equations of molecule rotation in the form

(1)

where ρ is the density, v is the velocity, n is the director,

N =  – (rotv × n) is the rate of the director rotation

with respect to the surrounding medium,  is the strain

ρv̇ ∇ p– ∇σˆ F,+ +=

γ1N γ2 v̂ n⋅ n v̂ n⋅ ⋅( )n–[ ] ∇ i
∂g

∂∇ in
------------–

n∂
∂g+ + 0,=

ṅ
1
2
---

v̂
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rate tensor, p is the pressure, g is the density of the
Frank elastic energy, and  is the stress tensor.

In the stress tensor, we take into account the aniso-

tropic term δ  due to the relaxation processes in a
liquid crystal in a sound wave. We use the results of [9]

to derive the expression for δ  (the cited paper is
devoted to the study of the anisotropy of the acoustic
properties of a nematic crystal). According to [9], the

anisotropic part of the stress tensor δ  in a sound
wave with frequency ω can be presented in the form

where ∆E = DE , µ3 = DE , 2DE =

(E|| – E⊥  is the dispersion jump of anisotropy of
the elastic modulus of the nematic medium in the case
of its compression along (E||) perpendicular to (E⊥ ) the
crystal axis, µ3 is the bulk viscosity coefficient, and τ is
the relaxation time of the orientational order parameter.

Taking into account the anisotropy of the crystal
elasticity, we represent the stress  in the form

where αi are the Leslie viscosity coefficients. By anal-
ogy with nematic crystals, we assume that the viscosity
coefficient α3 is small and take it equal to zero. Then,
we obtain γ1 = –γ2 = γ.

The distorted structure of a cholesteric liquid crystal
is characterized by an additional free energy, i.e., the
Frank elastic energy G. In the two-constant approxima-
tion, the energy G has the form [10]

where K = K11 = K33 are the Frank elastic constants, λ =
K22/K, q0 = 2π/P0, and P0 is the pitch of the cholesteric
helix.

The force F involved in the equation of motion
arises in a distorted cholesteric structure and is deter-
mined by the variation of the density of the Frank elas-
tic energy g with respect to the displacements u:

(2)

In the unperturbed state, the director lies in the cho-
lesteric planes and rotates uniformly in passing from
one plane to another with the period P0. We set the
structure distortions by the angles θ and ϕ that deter-
mine the deviations of molecules from the unperturbed

σ̂

σ̂ a( )

σ̂ a( )

σ̂ a( )

δσij
a( ) ∆Euαα µ3v αα+( )nin j,=

ωτ( )2

1 ωτ( )2+
----------------------- τ

1 ωτ( )2+
-----------------------

) ω 0=
ω ∞=

σ̂
σij nin j ∆Euαα µ3v αα+( ) α1v αβnαnβnin j+=

+ α2Nin j α3N jn j α4v ij α5v iknkn j α6v jknkni,+ + + +

G g Vd

V

∫=

=  
1
2
---K div n( )2 λ n rot n q0+( )2 n rot n×( )2+ +{ } V ,d

V

∫

F
u∂

∂g– ∇ i
∂g

∂∇ iu
------------ ∆ ∂g

∂∆u
----------.–+=
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cholesteric plane and (in the plane) from the initial ori-
entation, respectively. A uniform rotation through the
angle ϕ shifts the cholesteric layers along the crystal axis
by the distance ϕ/q0, and a nonuniform rotation of mole-
cules along the layer leads to its distortion.

In the approximation quadratic in θ and ϕ, the Frank
elastic energy has the form

where n is the director in the unperturbed structure of
the cholesteric liquid crystal with the components n1
and n2 in the cholesteric plane, and ∇ || and ∇ ⊥ (∇ 1, ∇ 2)
are the gradients along and perpendicular to the axis of
the cholesteric circuit, respectively.

Let us take into account the possible tension of the
layer along the axis of the cholesteric crystal in the
expressions for energy. The layer tension occurs in par-
ticular in the case of nonparallel boundaries near the
Grangin lines and in a layer with paired disclinations
where the number of cholesteric layers changes. The
tension of the cholesteric structure does not affect the
form of hydrodynamic equations (1) but changes the
Frank elastic energy. We obtain a new expression for
the latter by maintaining the third powers of the vari-
ables in the energy expansion in angles. This leads to
the appearance of the term K (∇ ⊥ ϕ)2/2q0, where  =

−q0z  + ϕ is the total angle of molecule rotation,
which is a result of the rotation of molecules through
the angle ϕ and their displacement due to the layer ten-
sion, and  is the tensile strain. Eliminating the third
powers of the angles ϕ and θ, we obtain the following
expression for G:

(3)

The minimum of the elastic energy for the perturba-
tions of the angles θ and ϕ that are periodic along the
layer leads to the possibility of the formation of
domains of a square grid type at the critical tensile
strain δ0. The strain δ0, the structure wave number k0,
and the domain size d0 at the threshold of the effect are
determined by the expressions

(4)

Let us consider the normal incidence of an ultra-
sonic wave with the frequency ω and the amplitude of
particle velocity v 0 upon a layer of a cholesteric liquid

G
1
2
---K ∇ ⊥ ϕ( )2 λ ∇ ||ϕ( )2 ∇θ( )2 q0

2θ2+ + +{
V

∫=

+ 4q0θ n∇( )ϕ λ 1–( ) n1∇ 2θ n2∇ 1θ–( )2+ } dV ,

ϕ̃ z, ϕ̃
δz'

δz'

G
1
2
---K ∇ ⊥ ϕ( )2 1 δz'–( ) λ ∇ ||ϕ( )2 ∇θ( )2+ +{

V

∫=

+ q0
2θ2 4q0θ n∇( )ϕ λ 1–( ) n1∇ 2θ n2∇ 1θ–[ ] 2+ + } dV .

k0
2π
P0h

------------- 2λ
3 λ+
------------ 

 
1/4
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4h
------ 2λ 3 λ+( ),= =

d0
π 2
k0

---------- hP0
3 λ+
8λ

------------ 
 
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crystal of thickness h. We restrict ourselves to the fre-
quencies ω at which the viscous wavelength is smaller
and the sound wavelength is larger than the thickness of
the layer. The last inequality provides an opportunity to
replace the effect of sound by the average over the layer
in determining the threshold of the effect.

Describing the effect, we select the following geom-
etry. The z axis is directed along the normal to the layer
with the lower boundary of the layer corresponding to
the coordinate z = 0. The x and y axes lie in the plane of
the lower boundary of the layer. The unperturbed choles-
teric layers are parallel to the xy plane. We assume that

The inequality ηω/ρc2 ! 1 is valid at ultrasonic fre-
quencies. It provides the opportunity to eliminate the
acoustic modes from the equation of motion Eqs. (1) by
applying a double rot operation. In the equations, we
keep the quadratic terms proportional to the product of
the rotation angles of molecules θ and ϕ by the veloci-
ties and take into account the change of the wave num-
ber q0 due to the tension of the medium in the sound
field. Performing the necessary transformations, we
arrive at the following equations of rotation:

(5)

Here, Γθ and Γϕ are the elastic moments corresponding
to the angles θ and ϕ that are determined through free
energy (3) by the Euler equations

Here and below, the index α takes the values α = x, y,

and ∆⊥  =  + .

In order to obtain an expression for the force F
according to Eq. (2), it is necessary to proceed to the
material angular variables θm and ϕm in the expression
for the Frank elastic energy and to exclude the molecule
rotations connected with rotation of the medium as a
whole. This transition is performed by substituting the
angles θ and ϕ in the form

n1 nx, n2 ny, ∇ 1 ∂x, ∇ 2 ∂y.= = = =

γ1 ϕ t, q0v z q0uzzv z–
1
2
--- rot v( )z–+

--+ nxny v xx v yy–( ) nx
2 ny

2–( )v xy+ Γϕ– 0,=

γ1 θ̇ nαv z α,– θv zz–( ) Γθ– 0.=

Γϕ ∇ ∂g
∂∇ϕ
-----------

ϕ∂
∂g

–=

=  K 1 δz'–( )∆⊥ ϕ λϕ zz, 2q0nαθ α,+ +[ ] ,

Γθ ∇ ∂g
∂∇θ
-----------

θ∂
∂g– K ∆θ q0

2θ– 2q0nαϕ α,–[= =

+ λ 1–( ) nx
2θ yy, ny

2θ xx, 2nxnyθ xy,–+( ) ] .

∂x
2 ∂y

2

θ θm nαuz α, ,–=

ϕ ϕ m q0uz–
1
2
--- ux y, uy x,–( )–=
into Eq. (3).
Now, we fix the variables θm and ϕm in the elastic

energy and substitute the latter in Eq. (2). Then, we
obtain

Expressing Γθ and Γϕ from Eqs. (5) through viscous
moments, we arrive at the set of equations of motion

(6)

where g = ρ[(v∇ )v + v(∇ v)] is the convective force,
 = ϕ,t + q0v z – Ωz is the material rate of rotation of

molecules ϕm about the z axis, Ωz = (rotv)z = (v y, x –

v x, y) is the z component of the angular velocity of the

medium rotation, and  is the differentiating operator

Next, we linearize the set of Eqs. (5) and (6) with
respect to the angular variables and the velocity pertur-
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1
2
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4
---α5+ 

  ∆⊥– η∂ z
2– Ωz

–
1
4
--- nx

2 ny
2–( ) α5 ∂x

2 ∂y
2–( )Ωz α6 v

xy z
2,

v zz xy,+( )–




+
α6

2
----- 3∂x

2 ∂y
2+( )v x y, 3∂y

2 ∂x
2+( )v y x,+( )





+ α5nxny∂x∂yΩz

=  
1
2
---γ ∆⊥ ϕ̇m nxny ∂x∂yϕ̇m

1
2
---∆⊥ v xx v yy–( )++





–

+
1
2
--- nx

2 ny
2–( )∆⊥ v xy



 1

2
---α6∂z v zz nyθ x, nyθ y,–( )[ ]–

+ ∂z rot g( )z, div v 0,=

ϕ̇m

1
2
--- 1

2
---

D̂1

D̂1
2α4 α5 2γ+ +

4η
----------------------------------∆⊥

2=

+
α4 α5/2 3/8α1+ +

η
--------------------------------------------∆⊥ ∂z

2 ∂z
4,+

η 1
2
--- α4 α6/2+( ).=
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001



EFFECT OF AN ULTRASONIC FIELD 433
bations δv by considering the velocity of the medium
motion and the medium compression in an incident
sound wave as the coefficients depending on time and
coordinates. We represent θ, ϕ, and δv as the sums of the
stationary and oscillating at the sound frequency terms:

where the subscript 2 indicates the stationary part and
the prime indicates the oscillating one. We separate the
equations for stationary and nonstationary variables
from the set of Eqs. (5) and (6). Let us consider the
structure distortions with the minimal free energy,
when the angle θ is given in the form θ = nατα, where
τα and ϕ vary slowly along the crystal axis. We also
assume the velocity perturbations to change slowly
with the functions. We average all terms in equations
for ϕ and v over the helix pitch P0 and eliminate the
elastic moments, which are small in comparison to the
viscous ones, from the equation for oscillating vari-
ables.

Analyzing the effect, we restrict ourselves to the
total reflection of sound from the boundary z = h and
assume the boundary to be rigid. In this case, the sound
field in the layer is determined by the standing wave

where c is the sound velocity.

Formulating the equations of motion, we take into
account the relation

which allows us to eliminate the terms containing the
convection θ from the equations of fluid dynamics (the
angular brackets here mean averaging over the layer
thickness, and the overbar means averaging over the
period of acoustic oscillations).

Performing the necessary transformations, we
obtain the following self-consistent set of equations for
θ', ϕ, , , θ2, ϕ2, v 2, z, and Ω2z:

θ θ2 θ', ϕ+ ϕ2 ϕ', δv+ v2 v',+= = =

v z 2v 0 ωt ω z h–( )/c[ ]sin ,sin=

v ∇( )θ'〈 〉
θ'v zz〈 〉

--------------------------
kshsin

2〈 〉

kshcos
2〈 〉

------------------------ ksh( )2
 ! 1,∼ ∼

v z' Ωz'

θ t,' nαv z α,'– θ2v zz– 0,=

ϕ t, q0 v z' v z+( ) Ωz'–+ 0,=

ρ∂t∆ η D̂1–( )v z' ∆Euzz µ3 α6+( )v zz+( )[ ]∆ ⊥=

× nαθ2 α,〈 〉 α 6∂z
2 v zz nαθ2 α,〈 〉( ),–

ρ∂t η 1
4
---α5+ 

  ∆⊥– η∂ z
2– Ωz'

=  
1
2
---α6∂z v zz nxθ2 y, nyθ2 x,–〈 〉( ),–

γ ϕ z,' v z' v z+( ) q0uzzv z'– q0v 2z Ω2 z,–+[ ]
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Here,  is the differentiating operator:

In Eqs. (7) and the following, the velocity v z and its
derivatives with respect to z refer to the sound wave in
the layer and the angular brackets mean averaging over
the helix pitch.

We assume stationary perturbations to be zero at the
boundaries:

and determine the oscillating variables  and θ' as a
particular solution to the corresponding inhomoge-
neous equations. In this case, we ignore the effects in
the boundary layers with thicknesses smaller than the
viscous wavelength. The condition for the existence of
a nonzero solution to Eqs. (7) corresponds to the
threshold of the domain formation.

In order to estimate the threshold of the effect, we
represent stationary perturbations as depending on the
x and y coordinates and consistent with the zero bound-
ary conditions

where kx and ky are the wave numbers determining the
form of the domain structure and kz = 2π/h; in this case,

∂α = ikα and ∆⊥  =  –  = –k2.

We assume that the following inequalities are valid:

(8)

and consider the formation of the structure of the
square grid type. In the case of such a structure, the
terms
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averaged over the helix pitch vanish, and as a conse-
quence, the rate of the medium rotation also vanishes;

 = 0.

From the next to last equation of Eqs. (7), we obtain
a relation for the rate of stationary rotation of molecules
with respect to the cholesteric liquid:

(9)

where A = (4η + α5)/(2γ + 4η + α5).
If the conditions given by inequalities (8) are valid, the

sound field in the cholesteric layer leads to the following
oscillations of the velocity  and the angles θ' and ϕ':

Here, we used the notations

The parameter σ has the meaning of the wave num-
ber of the viscous wave propagating along the z axis.

The averaged terms in the stationary equations of
the set of Eqs. (7) are equal to

(10)

where
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m0 = v 0/c is the Mach number in the sound wave inci-
dent on the layer of a cholesteric liquid crystal, and
µ3, 0 = DEτ is the viscosity coefficient µ3 at low fre-
quencies (ωτ ! 1).

Substituting the averaged products from Eqs. (10)
into stationary Eqs. (7) and using Eq. (9), we arrive
at the self-consistent system of equations for ϕ2, θ2,
and v 2, z with the coefficients containing the external

action :

(11)

To determine the value of m0 at which perturbations
with the wave number k start to increase, we equate the
determinant of the system of Eqs. (11) to zero. As a
result, we obtain

The wave number k at the effect threshold and the
threshold value of m0, th are determined by the minimi-
zation of m0(ω, k) with respect to k.

The final expression for m0 as a function of the crys-
tal parameters and the cell geometry is cumbersome.
We present a simplified expression for m0, which was
obtained by taking into account the inequality

(12)

and inequalities (8). Their validity for the typical
parameters of a crystal, the helix pitch, the layer thick-
ness, and the frequencies considered below is proved
by direct testing.

If inequalities (8) and (12) hold, the expression for
m0(ω, k) can be reduced to the form

(13)

The function F(ω, ξ) determines the dependences of
m0 on frequency through the dimensionless parameter
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Ω = 4σ4/  and on the wave number k through the ratio
ξ = k/k0:

Here, a = ρ/(ητ ), the parameter δ determines the
ratio of the layer tension to the critical δ0 at which the
structure of a cholesteric liquid crystal becomes unsta-
ble in the absence of external action: δ = /δ0.

The analysis of Eqs. (7) shows that the convection of
perturbations of the angle ϕ' and the layer tension in a

sound wave, as well as the stationary moments γ ,
destabilize the structure of a cholesteric liquid crystal,
whereas the flows v 2z stabilize it. The main action turns
out to be related to the convection of both ϕ' and ten-
sion. The angular moments produced by these mecha-
nisms are a factor of q0/kz @ 1 greater than the moments
caused by the gradients of the velocities of stationary
flows, and only they are taken into account in the deri-
vation of Eq. (13).

The wave number of the domain structure at the

effect threshold kth and the period d = π /kth are
determined by the minimization of the function F(ω, k)
with respect to the wave number k. The equation for kth

obtained by differentiating the function F(ω, k) does
not have a solution in a closed form. Therefore, we
restrict ourselves to the analytical representation of the
results for high and low frequencies.

In the case of high frequencies, when Ω @ 1, the
size of domains is estimated by the formula

(14)

where d0 is the domain size in the case of a static ten-
sion of the layer (Eqs. (4)). For the real values of the
parameter a @ 1 (a ≈ 6 for the parameters of the crystal
and the layer thickness considered below), the domain
size approaches the value of d0. The function F(ω, kth)
at high frequencies is approximated by the formula
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At low frequencies, when Ω ! 1, the domain size
and the function F(ω, k) are approximated by simple
relations

The dependences of the reduced domain size d/d0

and the reduced Mach number  =

m0/  on Ω for a = 1 and dif-
ferent values of the layer tension δ, which are calcu-
lated with the help of Eq. (13), are given in Figs. 1 and
2. One can see from Fig. 1 that, in the case of large
values of Ω , the domain size does not depend on fre-
quency for any δ and is determined by Eq. (14). On the
curve (Ω) (Fig. 2), it is possible to separate the fre-
quency range where the threshold of the effect weakly
depends on frequency.

Let us compare the theoretical results with the
experimental studies of the effect of ultrasound on the

d
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Fig. 1. Dependence of the reduced domain size d/d0 on the

parameter Ω = 4σ4/  for different values of tension in the

layer: δ = (1) 0.2; (2) 0.5; and (3) 0.9.

k0
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Fig. 2. Dependence of the reduced threshold  on the

parameter Ω = 4σ4/  for different values of tension in the
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structure of cholesteric liquid crystals in the frequency
range 0.3–3.6 MHz [1, 7]. The formation of the domain
structure of the type of a square grid with the sides par-
allel and perpendicular to the lines of rubbing of the
boundary surface was indicated there. The grid appears
only in single parts of the cholesteric layer. The domain
dimensions are proportional to (P0h)1/2. The threshold
velocity amplitude v0, th and the size of domains almost
do not depend on frequency. The value of v0, th weakly
depends on the layer thickness h. The threshold inten-
sity of a sound wave incident upon the layer of a cho-
lesteric liquid crystal is about Ith ~ 10–5–10–4 W/m2. The
experimental pattern of the effect of ultrasound on a
cholesteric layer qualitatively corresponds to the theory
developed for a stretched structure. In the experiment,
stretched regions are apparently bound by disclina-
tions.

We conducted numerical analysis of the solution for
the parameters of a cholesteric liquid crystal equal to
typical values for nematic crystals: K33 ≈ 0.5 × 10–11 N,
α4 ≈ γ1 ≈ 0.1 Pa, α6 ≈ 0, ρ ≈ 103 kg m–3, the sound veloc-

0 2 4
0.2

1.0

2.0

1

2

d/d0

1

2
3
4

0 2 4 f, MHz

10–4
m0, th

f, MHz

Fig. 3. Dependence of the reduced domain size d/d0 on the
frequency f for different values of tension: δ = (1) 0.5 and
(2) 0.9. The layer thickness and the helix pitch are h =
22 µm and P0 = 4.3 µm.

Fig. 4. Dependence of the threshold amplitude m0, th on the
frequency f for different values of tension: δ = (1) 0; (2) 0.5;
(3) 0.7; and (4) 0.9. The layer thickness and the helix pitch
are h = 22 µm and P0 = 4.3 µm.
ity c = 1.5 × 103 m/s [10], DE = 107 N/m2, and τ = 3 ×
10–8 s [11, 12]. We determine the value of λ by compar-
ing the theoretical expression for the domain size with
experimental data. The experimental size of the domain
structure arising in a layer of a cholesteric liquid crys-
tal with thickness h = 22 µm and the helix pitch P0 =
4.3 µm under a static tension is given in [7]: d0 ≈ 18.5 µm.
Setting the theoretical size d0 given by the last formula of
Eqs. (6) equal to the experimental one, we determine the
ratio of the elastic moduli: λ = K22/K33 ≈ 2.8 × 10–2. This
value of λ is used for numerical calculations. The criti-
cal tension at the same values of h, P0, and λ is equal to
δ0 ≈ 0.02.

It is impossible to conduct numerical comparison of
the theoretical results with experimental data without
using free parameters, because we have to assume that
in the experiment the tension δ is undetermined.
Indeed, the domain size d0 in the case of a stretched
cholesteric layer and the critical tension δ0 are deter-
mined from the form of the Frank energy and related to
the crystal parameters by Eqs. (4). The value of d0 given
in [7] provided an opportunity to simultaneously deter-
mine the parameter λ and the critical tension δ0 ≈ 0.02.
At the same time, the static tension  = 0.046 given in
[7] exceeds the value of δ0 more twice and disagrees
with the value of d0. Therefore, we conduct the numer-
ical calculation of m0 and d for different values of ten-
sion and indicate the values of δ at which the theoretical
results agree with the experimental data.

The theoretical size of the domains and the effect
threshold for the layer thickness h = 22 µm and the
helix pitch P0 = 4 µm in the frequency range from 0.3
to 6 MHz are given in Figs. 3 and 4, which present the
frequency dependences of d/d0 and m0, th for different
values of the tension parameter. In the indicated fre-
quency range, the calculations for all values of δ show
a weak dependence on frequency for both the size of
the domain structure and the threshold of the effect,
which agrees with the experimental results. The
domain size d = d0 coincides with the domain size given
in [1, 7] for a fully developed structure. In the case of
the theoretical sound intensity at the effect threshold

Ith = ρc3 , we obtain the order of magnitude given
in [7], Ith ~ 10–5 W/m2, for the relative values of tension
δ ≈ 0.7–0.8.

In closing, we present the estimates obtained for the
parameters of a cholesteric liquid crystal layer and the
sound frequencies considered above:

which testify to the validity of inequalities (4) and (12)
and the legitimacy of using Eq. (13) in numerical cal-
culations.

δz'

m0 th,
2

kth

q
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Abstract—Results of experimental studies of nonlinear acoustic effects, namely, the attenuation of a weak
ultrasonic pulse under the action of an intense low-frequency pumping wave and the limitation of the ultrasonic
pulse amplitude in rod-type resonators made of unannealed and annealed polycrystalline zinc, are presented.
The measurements are performed for the first four longitudinal modes of the rods with the frequency of the
ultrasonic pulses varying from 40 kHz to 1 MHz. An analytical description of this effect is presented in the
framework of the phenomenological equation of state allowing for dissipative nonlinearity. A modification
of the Granato–Lucke dislocation theory that explains the experimentally observed amplitude and fre-
quency dependences of the coefficient of nonlinear attenuation of ultrasonic pulses is proposed. Estimates
for the parameters of the modified model are obtained from the comparison of theoretical and experimental
data. © 2001 MAIK “Nauka/Interperiodica”.
The acoustic properties of polycrystals are deter-
mined mainly by dislocations, i.e., linear defects of the
crystal lattice of a solid [1–4]. Their motion and inter-
action with point defects (impurity atoms) lead to the
phenomenon of dislocation internal friction. In order to
explain it, Granato and Lucke proposed a dislocation
theory of absorption [1–4]. The basic ideas and conclu-
sions of this theory, which are used in this paper, are
briefly described below.

In the Granato–Lucke theory, it is assumed that a
polycrystal contains a dislocation network. Each dislo-
cation is represented in the form of a string of length LN
determined by the network intersection points. In the
absence of stress, the string is also fixed by impurity
atoms in addition to the intersection points of the net-
work. The distance between the impurity atoms is LC
(LC ! LN). The application of a shear stress τ leads to an
elastic shear strain γ0 and also to a dislocation strain γd
related to the dislocation displacement in a polycrystal.

In the case of a small dynamic stress, the dislocation
loops LC being fixed by the impurity atoms oscillate
and the friction force proportional to the velocity of the
dislocation loop motion is applied to them. The dis-
placement ξ = ξ(y, t) of a dislocation loop under the
stress τ is determined by the equation of transverse
oscillations of a string

(1)

with the zero boundary conditions ξ(0, t) = ξ(LC, t) = 0,
where A = πρb2 is the effective mass of the unit length
of a dislocation; C = 2Gb2/(1 – ν) is its effective ten-
sion; B is the friction force per unit length and unit
velocity of a dislocation; G, ν, and ρ are the shear mod-
ulus, Poisson ratio, and crystal density, respectively;

Aξ tt Bξ t Cξ yy–+ bτ=
1063-7710/01/4704- $21.00 © 20438
b is the magnitude of the Burgers vector; and y is the
coordinate along the dislocation line. (It should be
noted that, in contrast to the coefficients A and C, the
coefficient B responsible for the damping properties of
a dislocation is not determined. It is assumed in the
model that this coefficient is constant and can be deter-
mined experimentally. From the results of measure-
ments of ultrasonic wave attenuation, it was found that
the values of the coefficient B for many metals lie
within the range 5 × 10–6–8 × 10–5 Pa s [2–5].)

The oscillation of dislocations leads to absorption
and velocity dispersion of elastic waves. In the case of
polycrystals containing dislocation loops of equal
length LC , the attenuation factor α(ω) and the phase
velocity C⊥ (ω) of a shear wave with the frequency ω are
determined by the expressions

(2)

(3)

where ΩC = (π/LC)(C/A)1/2 = [2/(1 – ν)]1/2(C⊥ /LC) is
the resonance frequency of the principal mode of a
dislocation loop with the length LC , C⊥  = (G/ρ)1/2 is
the shear wave velocity for an ideal crystal, d = B/A,
and Λ is the total length of a moving dislocation line
in a unit volume of the polycrystal or the dislocation
density. In the case of copper or zinc (b ≅  3 × 10–10 m)
at LC = 10–7 m, the resonance frequency ΩC of a dislo-
cation loop is sufficiently high and reaches a value of
about 3.9 × 1010 Hz. In this case, the damping parame-
ter d lies within the range 2.5 × 109–4 × 1010 Hz [1–5].

α ω( )
4C⊥

2 Λ
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Under relatively high stresses, the dislocations
behave as follows. When the stress increases (the load-
ing stage) and exceeds a certain threshold, the disloca-
tion loops separate from the impurity atoms and their
length increases from LC to LN. This leads to a sharp
increase in the dislocation strain at constant stress. At
the unloading stage, i.e., when the stress decreases, the
presence of impurity atoms does not affect the disloca-
tion motion, and the loops with length LN return to the
initial state and become fixed to the impurity atoms.
A similar motion of dislocations occurs during the next
half-period, so that, in the case of a high stress, an elas-
tic hysteresis takes place in the dependence τ = τ(γ, γt)
(γt is the strain rate).

The dislocation-caused internal friction manifests
itself not only for shear waves but for longitudinal
waves as well. In this case, the conclusions of the dis-
location theory remain valid in passing from the shear
stress τ and strain γ to the longitudinal stress σ and
strain ε through the replacement of τ and γd by Rσ and
εd/R, respectively; here, R is the orientation factor tak-
ing into account the misfit between the applied and act-
ing stresses in the plane of the dislocation glide (R ≅  0.2
for polycrystals [5]).

The Granato–Lucke theory adequately explains the
effect of both amplitude-independent and amplitude-
dependent internal friction in many (but not all) poly-
crystals. For example, it was discovered [7–11] that
some metals (annealed copper, zinc, and lead) and
rocks (granite and marble) have also dissipative nonlin-
earity in addition to hysteretic nonlinearity. In this con-
nection, for the development of the dislocation theory it
is necessary to conduct detailed experimental studies of
nonlinear effects in such polycrystals in which other
effects not described in the framework of the Granato–
Lucke theory take place along with the conventionally
studied manifestations of internal friction [1–4, 6]. In
this sense, the study of the interaction and self-action of
acoustic waves with various frequencies and ampli-
tudes is promising.

This paper continues our previous papers [7–13]
and presents the results of an experimental study and an
analytical description of the effects of interaction and
self-action of longitudinal acoustic waves in rod-type
resonators made of polycrystalline zinc (99.95% Zn).
Two rods with square cross-sections with 8 mm sides
and length L = 35 cm were used in the experiments. The
rods were cut from the same zinc plate. The first rod (1)
was the reference one and the second rod (2) was
annealed for 50 h at a temperature of 350°ë. A metallo-
graphic analysis showed that the structure of unannealed
zinc contained grains about 50 µm in size and the
annealing caused an increase in the grain size by a fac-
tor of ten and greater [8]. The following nonlinear
effects were studied in the experiments described here:

(i) the attenuation of a weak ultrasonic pulse in the
field of an intense low-frequency pumping wave (the
sound attenuation by sound);

(ii) the limitation of the ultrasonic pulse amplitude.
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
A block scheme of the experimental setup is given
in Fig. 1. A piezoceramic pumping radiator (1) exciting
a resonator (2) was glued to a massive metal load (3) in
such way that the boundary condition at one end of the
rod was close to the condition at an absolutely rigid
boundary. A piezoceramic radiator (4) for the genera-
tion of ultrasonic pulses and an accelerometer (5) for
measuring the pumping wave amplitude were glued to
the other end. Their total mass was sufficiently small,
and this boundary was close to an acoustically soft one.
An accelerometer (6) that was sensitive to the longitu-
dinal (along the rod) component of acceleration was
glued to the lateral side of the rod, near the pumping
radiator (for receiving and measuring the amplitude of
ultrasonic pulses transmitted through the rod). The
pumping radiator excited low-frequency resonance
oscillations in the rods at the frequencies of the first four
longitudinal modes: F1 ≅  2750, F2 ≅  8250, F3 ≅  13350,
and F4 ≅  18850 Hz.

Let us consider the results of studying the nonlinear
sound attenuation by sound. In this series of experi-
ments, the radiator (1) excited a low-frequency pump-
ing wave (at the frequency of one of the first four lon-
gitudinal modes) in the rods and another radiator (4)
simultaneously excited a weak ultrasonic pulse. The
pulse was detected by the accelerometer (6) after its
transmission through the rod, and the signal was fed to
a spectrum analyzer where the measurement of its
amplitude was performed. The frequency f of ultrasonic
pulses varied within the range from 40 kHz to 1 MHz,
and their duration was about 400 µs.

With an increase in the strain amplitude εm of the
pumping wave in the resonator, a decrease in the ampli-
tude U2 of the received ultrasonic pulse was observed in

1

2

3

4

5

6

Fig. 1. Schematic diagram of the experiment.
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Fig. 2. Dependence of the nonlinear attenuation coefficient of an ultrasonic pulse on the strain amplitude εm of the pumping wave
at different excitation frequencies Fp of resonators made of (a) unannealed and (b) annealed zinc. The straight lines correspond to

the dependences (a) χ(L) ~  and (b) χ(L) ~ .εm
3/2 εm

2

addition to the effects described in [10]. Figure 2 shows
the dependences of the coefficients χ(L) = ln[U0/U2] of
the nonlinear attenuation of ultrasonic pulses (U0 is the
pulse amplitude without pumping) on the strain ampli-
tude εm of the pumping wave at various excitation fre-
quencies Fp of the resonators made of unannealed and
annealed zinc (p is the number of a longitudinal mode).
(Figures 2a and 2b present the results of measuring the
nonlinear attenuation of ultrasonic pulses with the fre-
quencies f1 = 237 kHz for unannealed zinc and f2 =
312 kHz for annealed zinc.) It follows from Fig. 2 that
the coefficient of nonlinear attenuation of ultrasonic
pulses for both rods is a power function of the strain
amplitude εm of the pumping wave and does not depend
on its frequency Fp . In the case of unannealed zinc, we
have

χ(L) ~ (4)

and for annealed zinc, we have

χ(L) ~ . (5)

Similar amplitude dependences of the coefficients
of nonlinear attenuation were observed for the pulses
with other frequencies f (in the range indicated above).

Figure 3 presents the dependences of the coeffi-
cients of nonlinear attenuation of ultrasonic pulses on

εm
3/2

εm
2

the frequency f for unannealed and annealed zinc at a
constant amplitude εm of the resonator excitation for the
first mode (p = 1). From these figures, it is possible to
derive the following approximate dependences of the
coefficients χ(L) of nonlinear attenuation of ultrasonic
pulses on the frequency f
for unannealed zinc

(6)

and for annealed zinc (in the frequency range from 90
to 900 kHz)

(7)

where n ≈ 0.5.
The effect of sound attenuation by sound is inertia-

less; i.e., the pulse amplitude variation occurs simulta-
neously with the variation of the strain amplitude of the
pumping wave. Therefore, this effect cannot be
explained by thermal (inertial) processes connected
with the increase in the attenuation coefficient of sound
due to the rod temperature increase caused by the
pumping wave absorption. The sound attenuation by
sound in zinc cannot be explained by the interaction of
acoustic waves at hysteretic nonlinearity as well, since,
according to the results of the first series of experiments
[10], this should lead to the dependence of the nonlinear

χ L( ) f at f 250 kHz,≤∼
χ L( ) const at f 250 kHz,≥∼

χ L( ) f n,∼
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attenuation coefficient of ultrasonic pulses on the pump-
ing wave frequency. This effect could be explained in the
framework of the Granato–Lucke dislocation theory,
when a modulation of the function of the dislocation
distribution in length occurs under the effect of an
intense pumping wave because of the periodic separa-
tion of the dislocation loops from the impurity atoms.
As the strain amplitude of the pumping wave grows, the
time-average length of the loops increases and their aver-
age resonance frequency decreases. In this case, as fol-
lows from Eq. (2) (at ω ! ΩC), the average attenuation
coefficient of a high-frequency wave also increases and
its dependence on the amplitude εm must correspond to
the amplitude dependence of the hysteresis loss deter-
mined by the pumping wave attenuation (see Fig. 4 in
[10]). However, there is no such correspondence: the sat-
uration of the hysteresis loss occurs at large amplitudes,
and the sound attenuation by sound increases monotoni-
cally. (This is especially clear from the comparison of
Fig. 2 with Fig. 5 from [9], where the amplitude-depen-
dent internal friction of lead was studied.)

It was demonstrated earlier [7–9, 11–13] that, in
order to explain the nonlinear attenuation of a weak
ultrasonic pulse under the action of an intense low-fre-
quency pumping wave (which was observed in some
metals and rocks), it was necessary to assume that sim-
ilar polycrystals have a dissipative nonlinearity leading
to the dependence of the attenuation coefficient of the
wave on its strain amplitude. In the cited publications
[7–9], the sound attenuation by sound was described
within the framework of the following phenomenolog-
ical equation of state:

(8)

where E is Young’s modulus and the constants s and g
are determined by matching the analytical and experi-
mental dependences of χ(L) on εm.

The selection of the nonlinear term ρβg|ε|Sεt in Eq. (8)
is determined by the fact that the coefficient of nonlin-
ear attenuation of a weak ultrasonic pulse does not
depend on its amplitude and is a power function of the
strain amplitude of the pumping wave (but not of the
strain rate amplitude of this wave, since it does not
depend on the wave frequency). Substituting Eq. (8)
into the equation of motion ρUtt = σx(ε, εt) (ε = Ux and
U is the displacement), we obtain a wave equation with
nonlinear dissipation for the strain ε:

(9)

where C0 = (E/ρ)1/2 is the longitudinal wave velocity in
the rod (C0 ≅  3.85 × 105 cm/s).

This equation describes the nonlinear attenuation of
a weak ultrasonic pulse in the field of an intense low-
frequency wave and determines the experimentally

σ ε εt,( ) Eε βρ 1 g ε S+( )εt,+=

εtt C0
2εxx– βεxxt βg ε Sεt( )xx,+=
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established dependences of the nonlinear attenuation
coefficient χ(L) on the strain amplitude εm of the pump-
ing wave. Thus, substituting

(10)

ε x t,( ) ε1 x t,( ) ε2 x t,( ),+=

ε1 x t,( ) εm K px Ωpt,sincos=

K p Ωp/C0, Ωp 2πFp,= =

ε2 x t,( ) 1/2( )ε2 x( ) j ωt kx–( )[ ]exp c.c.,+=

ω 2πf=

logχ(L)

0

–0.5

–1.0

0

–0.5

–1.0
5 6

log f/1 [Hz]

(a)

(b)

Fig. 3. Dependences of the nonlinear attenuation coeffi-
cient of an ultrasonic pulse on the frequency f (a) for unan-
nealed zinc at εm ≅  7.6 × 10–6 and (b) for annealed zinc at

εm ≅  1.5 × 10–7. The dots represent the experimental data
and the lines represent the calculation by Eq. (28).
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into Eq. (9) and taking into account that KpL = π(p –
1/2), ω = C0k @ Ωp, |ε1(x, t)| @ |ε2(x, t)|, and ε2x ! kε2,
we obtain an equation for the pulse amplitude ε2(x):

(11)

where δ = βω2/2 , a0 = π–1 dθ =

π−1/2 , θ = Ωpt, and s > –1.

The linear attenuation of a pulse at the frequency
f1 = 237 kHz in unannealed zinc and at the frequency
f2 = 312 kHz in annealed zinc was δ1L ≅  0.35 and
δ2L ≅  0.45. This corresponds to β1 ≅  5 × 102 cm2/s and
β2 ≅  3.8 × 102 cm2/s.

From Eq. (11), we determine the expression for the
nonlinear attenuation coefficient χ(L) of an ultrasonic
pulse:

(12)

It follows from this expression that, at s = 3/2 in the
case of unannealed zinc and at s = 2 in the case of
annealed zinc, the analytical dependences of χ(L) on εm
coincide with the experimental ones [Eqs. (5) and (6)].
However Eq. (12) gives a quadratic dependence of χ(L)
on the frequency ω of the pulse, and this does not cor-
respond to the experimental results. In this connection,
Eq. (8) must be modified in such a way that not only the
amplitude but also the frequency dependences deter-
mined experimentally be adequately described by the
analytical dependences.

Here, we modify the Granato–Lucke dislocation
theory to describe the experimentally established
amplitude and frequency dependences characterizing
the nonlinear sound attenuation by sound. We also
assume that, in the process of separation of the disloca-
tion loops from impurity atoms, the lengths l of dislo-
cations are characterized by the distribution function
N = N(l) depending on the pumping wave strain. If the
amplitude εm increases, the change in the distribution
function must correspond to the change in the hystere-
sis loss determined from the pumping wave attenua-
tion. It is presumed that, at small amplitudes εm, the
hysteresis loss is absent and the function N(l) is equal
to the initial one determined by the impurity atoms. As
the strain amplitude increases, the growth and satura-
tion of the hysteresis loss is observed and N(l) must
transform from the initial distribution function to a ter-
minal one that does not depend on the medium defor-
mation and is determined by the dislocation network.
Since the sound attenuation by sound is also observed
after the saturation of the hysteresis loss, we can
assume that, at a large amplitude of the pumping wave,
N(l) does not depend on the deformation and corre-
sponds to the distribution function determined by the
dislocation network. (It is assumed in the Granato–
Lucke theory that, after the separation from the impu-

dε2/dx δ 1 ga0εm
S K pxcos S+[ ]ε 2,–=

C0
3 θsin S

0

π∫
Γ s 1+( )/2[ ]
Γ s 2+( )/2[ ]
------------------------------

χ L( ) gβω2L

2πC0
3

----------------- Γ s 1+( )/2[ ]
Γ s 2+( )/2[ ]
------------------------------ 

 
2

εm
S .=
rity atoms, the lengths of all dislocations are identical
and equal to LN.)

According to Eq. (8), we assume that the disloca-
tions have a dissipative nonlinearity, i.e., the coefficient
B of the dislocation damping is not constant but
depends on the dislocation displacement ξ:

(13)

where B0 is the damping coefficient at small dislocation
oscillations and µ is the dimensionless coefficient of
dissipative nonlinearity. In this case, the dislocation
motion is described by the nonlinear equation

(14)

Deriving the equation of state for a polycrystal contain-
ing a large number of dislocations, we determine its
strain γ under the action of the stress τ as the sum of the
elastic strain γ0 = τ/G and the dislocation strain γd [1–4]:

(15)

It is impossible to obtain an exact analytical solution
to Eq. (14), and, therefore, we will use an approxima-
tion by assuming (as in the Granato–Lucke theory) that
the dislocation oscillations at the principal mode pre-
dominate, i.e.,

(16)

Solving Eq. (14) by the perturbation method, i.e., by sub-
stituting ζ(t) = ζ0(t) + ζ1(t), (|ζ0| @ |ζ1|) into Eqs. (14) and
(16), we obtain the equations for the zeroth ζ0 (at µ = 0)
and first ζ1 approximations:

(17)

(18)

where d0 = B0/A, η = , and Ω(l) =

(π/l)(C/A)1/2 = [2/(1 – ν)]1/2(C⊥ /l) is the resonance fre-
quency of the principal oscillation mode of a disloca-
tion after its separation from the impurity atoms. From
Eqs. (17) and (18), we obtain

(19)
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where λ2 = 4Ω2 –  and D[ζ0(t)] = |ζ0(t)|S.
Substituting Eqs. (19) and (20) into Eqs. (15) and

(16) and changing from shear stress τ and strain γ to the
longitudinal stress σ and strain ε in the rod [1, 2], we
obtain (for a small concentration of dislocations) the
equation of state for a polycrystal in the form σ = σ(ε):

(21)

where

(22)

Substituting Eq. (21) in the equation of motion, we
obtain a nonlinear wave equation

(23)

This equation describes the nonlinear sound attenua-
tion by sound, as well as Eq. (9), but in contrast to the
latter, Eq. (23) can give (depending on the damping
parameter and the dislocation distribution function)
another (different from quadratic) dependence of the
nonlinear attenuation coefficient on the frequency of
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the ultrasonic pulse. Let us demonstrate this by calcu-
lations.

Substituting Eq. (10) into Eqs. (22) and (23), we
obtain an expression for D[ζ0(t)] and an equation for
the complex amplitude ε2(x) of an ultrasonic pulse

(24)

(25)

where

Assuming in Eq. (25) that ε2(x) = a(x)expjψ(x), we
obtain the equations for the amplitude a(x) and phase
ψ(x) of a pulse (for Ωp ! Ω and d0Ωp ! Ω2):

(26)

(27)

In the absence of the pumping wave, the first terms
on the right-hand sides of Eqs. (26) and (27) are respon-
sible for the attenuation and the change in the propaga-
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tion velocity of a weak elastic wave in a polycrystal
with dislocations whose distribution function is deter-
mined by the impurity atoms. (At εm = 0, these equa-
tions yield Eqs. (2) and (3) for the attenuation coeffi-
cient and the correction to the phase velocity of a small-
amplitude wave.) In the case of relatively small ampli-
tudes εm (before saturation of the hysteresis loss), the
distribution function depends on the pumping wave
strain, and the first terms on the right-hand sides of
Eqs. (26) and (27) also contribute to the nonlinear
attenuation and the variation of the propagation veloc-
ity of the pulse. In the range of amplitudes εm, which
corresponds to the saturation of the hysteresis loss, the
distribution function is determined by the dislocation
network and does not depend on the strain, and, there-
fore, these terms can be ignored in describing the non-
linear attenuation and the variation of the pulse velocity
(for relatively large εm). Thus, the nonlinear attenuation
and the variation of the propagation velocity of an ultra-
sonic pulse are mainly determined by the second
terms on the right-hand sides of Eqs. (26) and (27).
From Eq. (27), we determine the coefficient of nonlin-
ear attenuation of an ultrasonic pulse:

(28)

where

(29)

It follows from Eq. (28) that, at equal lengths of dis-
locations (N(l)dl = (Λ/LN)δ(l – LN)dl, ΩN = [2/1 –
ν]1/2(C⊥ /LN), the sign of the nonlinear attenuation coef-
ficient of an ultrasonic pulse depends on the frequency

ω: χ(l) > 0 in the ranges 0 < ω < Ω1 = (−d0 + [  +

4 ]1/2)/2 and ω > Ω2 = (d0 + [  + 4 ]1/2)/2, and
χ(l) < 0 in the range Ω1 < ω < Ω2; i.e., generally speak-
ing, not only the sound attenuation but also the amplifi-
cation of sound by sound can be observed in polycrys-
tals. One can also see from Eq. (28) that, at low fre-

quencies (ω ! Ω* = /d0, Ω0 is the minimal resonance
frequency of dislocations), we have χ(L) ~ ω2, whereas
at high frequencies (ω @ Ω2) – χ(L) ~ ω–2. Therefore,
the intermediate dependences of χ(L) on ω can be
observed in the intermediate frequency range. Their
specific form is determined by the damping parameter
and the dislocation distribution function. Figure 3
shows the dependences of the nonlinear attenuation
coefficient of a pulse on the frequency f with the param-
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eters d0 = 5 × 109 Hz, ν = 0.25, C⊥  = 2.4 × 103 m/s, and
R = 0.2 for the cases

(a) s = 3/2, εm = 7.6 × 10–6, N(l) = , 

l1 ≤ l ≤ l2, l1 = 7 × 10–7 m, and l2 = 7 × 10–5 m; 

(b) s = 2, εm = 1.5 × 10–7, N(l) = , 

l1 ≤ l ≤ l2, l1 = 9 × 10–7 m, and l2 = 5 × 10–5 m.
One can see from Fig. 3 that, in the case of such a

choice of the damping parameter d0 and the distribution
functions N = N(l) for unannealed and annealed zinc,
the analytical dependences of χ(L) on ω are close to the
experimental ones. Therefore, it is possible to introduce
the effective parameter of dissipative nonlinearity g =
geff(ω) into the equation of state, Eq. (8), in order to
describe the dissipative nonlinearity of the polycrystal.
This parameter is determined from the comparison of
Eqs. (12) and (28):

(30)

where

(31)

From Eq. (30) it follows that geff(ω) ≅  const > 0 at

low frequencies (ω ! Ω* = /d0) and, when the fre-
quency ω grows, the parameter geff(ω) decreases.

Now after the experimental and analytical depen-
dences of the coefficient χ(L) on the amplitude εm and
the frequency ω are matched, we can try to determine
the free parameter of the equation of state (21). In this
case, it is the product of the coefficient of dissipative
nonlinearity µ of a dislocation by the dislocation den-
sity Λ. Substituting the measured data into Eqs. (29)
and (30), we obtain µΛ ≅ 2 × 1010 m–2 for unannealed
zinc and µΛ ≅ 1010 m–2 for annealed zinc. If we assume
that in unannealed zinc, Λ ≈ 1014 m–2, and in annealed
zinc Λ ≈ 1010 m–2, we obtain the following values of the
coefficients of dissipative nonlinearity of dislocations:
µ1 ≈ 2 × 10–4 and µ2 ≈ 1, respectively. Finally, we deter-
mine the values of the effective parameter of dissipative
nonlinearity from Eqs. (30) and (31):

geff(ω1) ≅  8.4 × 108 for unannealed zinc and

geff(ω2) ≅  2.6 × 1012 for annealed zinc.

Let us consider the nonlinear limitation of the
amplitude of ultrasonic pulses. The equations of state (8)
and (21) and the wave equations (9) and (23) corre-
sponding to them describe not only the action of an
intense pumping wave on the attenuation of a weak
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ultrasonic pulse, but also the action of an intense pulse
on itself. Such an effect, called self-action, is also
caused by the dissipative nonlinearity and manifests
itself in the dependence of the coefficient of wave atten-
uation on its amplitude, which can lead to a nonlinear
limitation of the wave amplitude or to self-saturation of
the medium. In this connection, experiments on the
self-action of ultrasonic pulses were conducted using
the same unannealed and annealed zinc rods in order to
verify additionally and independently the validity of
Eqs. (9) and (23). In these experiments, a pumping radi-
ator (1) excited ultrasonic pulses with the carrier fre-
quency f about 100 kHz and the duration 500 µs in a
rod (2). The pulses were received at the opposite end of
the rod by a piezoelectric accelerometer (5). The rela-
tive values of the following quantities were measured
with the help of an oscilloscope: the amplitude V1 of the
voltage at the radiator, which was proportional to the
amplitude of the displacement of one end of the rod
(x = 0), and the amplitude V2 of the voltage at the accel-
erometer, which was proportional to the amplitude of
the displacement of the other end of the rod (x = L). Pre-
liminary testing of the radiator–receiver system demon-
strated its linearity. The check experiments with a
glass rod also showed no deviations from the depen-
dence V2 ~ V1.

Figure 4 presents the dependences of the amplitude
V2 on the amplitude V1 for rods made of unannealed and
annealed zinc. One can see from this figure that the
dependence V2 ~ V2(V1) is nonlinear, and the amplitude
V2 of the pulse transmitted through the rod grows
slower than the initial amplitude V1; i.e., the effect of a
nonlinear limitation of the pulse amplitude is observed.
Let us first describe this effect in the framework of the
phenomenological equation of state (8) and the wave
equation (9) following from it. Assuming in Eq. (9)

(32)

and taking ω = C0k, ε2x ! kε2, and ψx ! k, we obtain an
equation for the strain amplitude of the acoustic wave

(33)

where 

The solution to this equation has the form

(34)

where ε0 = ε2(x = 0) is the initial wave amplitude.
By comparing the analytical expression (34) with

the experimental data, it is basically possible to deter-
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mine the parameters s and g of the dissipative nonlin-
earity of the equations of state for unannealed and
annealed zinc. However, since the measurements were
relative, it is possible to determine only the exponent s.
It follows from Eq. (34) that, for small amplitudes ε0, 1

and for g > 0, s > 0, when ga1  ! 1, the wave atten-
uates according to the law

(35)

Let us divide Eqs. (34) and (35) by one another and
introduce the notations Z = ga1ε0, 1[1 – exp(–sδL)], P =
ε(L)/ε2, 1(L), and W = ε0/ε0, 1. Then, we obtain (for
ZWS ! 1):

(36)

Using the experimental data (Fig. 4), we plot the depen-
dence of ln[lnW/P] on lnW (Fig. 5). From this figure, it
follows that s ≅  3/2 for unannealed zinc and s ≅  2 for
annealed zinc.

Thus, the results of the experiments on the nonlinear
limitation of the amplitude of ultrasonic pulses testify
that the exponents of the dissipative acoustic nonlinear-
ity of unannealed and annealed zinc coincide with
those obtained from the experiments on the sound
attenuation in water.

Now, let us describe the processes of the self-action
of ultrasonic pulses within the framework of the wave
equation (23) obtained from the modified Granato–
Lucke dislocation theory. Substituting Eq. (33) into
Eq. (23) and performing simple calculations, we obtain

ε0 1,
S

ε2 1, x( ) ε0 1, δx–( ).exp=

W /Pln[ ]ln Z/s[ ]ln s W .ln+=

1

2

logV2 [V]
4

2

0

–2
1 2 3 4 5

logV1 [V]

Fig. 4. Dependences of the amplitude of the accelerometer
signal V2 on the amplitude of the radiator oscillations V1 for
the rods made of (1) unannealed and (2) annealed zinc. The
straight lines correspond to the dependence V2 ~ V1.
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an expression for D[ζ0(t)] and the equations for the
amplitude and phase of an ultrasonic pulse:

(37)

(38)

(39)

where

The first terms on the right-hand sides of Eqs. (38) and
(39) (as in Eqs. (26) and (27)) are responsible for the
linear attenuation and the variation of the propagation
velocity of ultrasonic pulses and the second terms
describe their nonlinear absorption and velocity varia-
tion. However, in this case, in contrast to the sound
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Fig. 5. Dependences of ln[lnW/P] on lnW for (1) unannealed
and (2) annealed zinc. The straight lines correspond to the
exponent values s = (1) 3/2 and (2) 2.
attenuation by sound, the dislocation distribution func-
tion is determined apparently by the impurity atoms
rather than by the dislocation network. This is con-
nected with the fact that as the frequency of an acoustic
wave grows, the hysteresis loss caused by the separa-
tion of the dislocation loops from the impurity atoms
decreases [9, 10]; i.e., no separation of dislocations
occurs at ultrasonic frequencies. Comparing Eqs. (33)
and (38), it is seen that they have the same structure,
and, therefore, the solutions to these equations coin-
cide. It follows also from Eq. (38) that, at equal lengths
of dislocation loops, the sign of the nonlinear term
depends on the frequency of the ultrasonic pulse and,
hence, for ω < Ω , the nonlinear limitation of the pulse
amplitude must be observed, whereas for ω > Ω , the
self-saturation of the polycrystal should be expected. In
the experiment, the frequency of ultrasonic pulses was
relatively low, and the effect of the nonlinear amplitude
limitation was observed.

Thus, in this paper, we presented the results of
experimental studies of the following nonlinear acous-
tic effects: sound attenuation by sound and amplitude
limitation of an ultrasonic pulse in unannealed and
annealed polycrystalline zinc. The analytical descrip-
tion of these effects was conducted in the framework of
a phenomenological equation of state, which contains
the dissipative acoustic nonlinearity. A modification of
the Granato–Lucke dislocation theory was suggested
on the basis of this equation. The modified theory
explains the amplitude and frequency dependences
observed in the experiment for the nonlinear attenua-
tion coefficient of ultrasonic pulses. The basic issues of
this modification are the following assumptions:

(i) the dislocations possess a dissipative nonlinearity;

(ii) the function of the dislocation distribution in
length becomes sufficiently wide after the separation of
dislocations from the impurity atoms.

The first assumption provides the amplitude depen-
dences of the coefficient of nonlinear attenuation of an
ultrasonic pulse under the action of an intense low-fre-
quency pumping wave, which agree with the experi-
mental data, while the second assumption provides the
corresponding frequency dependences. The compari-
son of the experimental data with the analytical calcu-
lations showed that the annealing of zinc leads to
changes in the parameter and the exponent of the dissi-
pative nonlinearity of a dislocation, as well as in the
dislocation distribution function. This is evidence of
the fact that the dissipative acoustic nonlinearity is a
structure-sensitive characteristic of zinc (and also of
some other metals and rocks), which allows one to
expect that the effects of nonlinear sound attenuation
by sound and the self-action of acoustic pulses can be
used for an acoustic diagnostics of the dislocation
structure of polycrystals.
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Abstract—A multibeam echo sounder of a new generation has been developed at the Shirshov Institute of Ocean-
ology on the basis of a transmitting device and a receiving multielement array installed on the Akademik Ioffe
research vessel. This development makes it possible to measure the angular spectrum of bottom-scattered acoustic
signals. The analysis of the spectrum records obtained in the North Atlantic during the vessel motion demonstrates
a possibility to use triply-scattered signals (bottom–surface–bottom) for the determination of the coefficient of
sound reflection in the case of an oblique incidence on the bottom, whereas similar measurements with a conven-
tional technique require the utilization of horizontally separated transmitter and receiver. The results of calculating
the reflection coefficient from the experimental data are presented. © 2001 MAIK “Nauka/Interperiodica”.
The coefficient of sound reflection Vb(θ') and the
scattering coefficient mb(θ', θ) belong to the acoustic
parameters of the ocean bottom. Here, θ' is the angle of
incidence of a plane wave at the bottom and θ is the
scattering angle. In the general case, the measurement
of these parameters needs spatially separated transmit-
ters and receivers of sound, which is a serious engineer-
ing problem [1, 2]. The purpose of this study is to dem-
onstrate that the utilization of triply-scattered acoustic
signals (bottom–surface–bottom) considerably facili-
tates the measurement of these parameters.

Let us consider the case of a combined transmitter–
receiver located near the surface. In the case of the uti-
lization of a pulsed sounding signal, the leading edge of
a triply-scattered signal is most informative for param-
eter evaluation. The shortest propagation path of a tri-
ply-scattered pulse is shown in Fig. 1a: it corresponds
to a double reflection, from the bottom and the surface,
and a scattering from the bottom. In the case of a flat
(on the average) bottom at depth H and a homogeneous
medium, the propagation time of a signal along this

path is tA = (3/cosθ' + 1/cosθ)H/c, θ' = ,

where c is the sound velocity in water. The intensities

of single- and triply-scattered signals I(1) and  are
described by the formulas given in [3]. If one uses the
transmission arrays that are directional in the vertical
plane, it is possible to show that

(1)

1
3
--- θtan 

 arctan

IA
3( )

Vb
2 3

IA
3( )

I 1( )-------
Gt θ θM–( )
Gt θ' θM–( )
---------------------------

mb θ θ,( )
mb θ' θ,( )
--------------------- θcos

θ'cos
------------- 

 
3

=

× Vs θ'( ) 2– β ctA 2H/ θcos–( )( ).exp
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Here, Gt is the amplification factor of the transmitting
array; Vb and Vs are the reflection coefficients of the
bottom and the surface, respectively; β is the attenua-
tion coefficient of sound in water; and θM is the orien-
tation of the maximum of the array directivity pattern.
An expression for the absolute value of the coefficient
of reflection from a rough surface can be obtained by
solving a model problem on the determination of the
total intensity of sound scattered in the specular direc-
tion from a rough surface that is on the average flat and
absolutely soft.

An unknown function mb(θ', θ) is involved in Eq. (1).
Making certain assumptions on the character of scatter-
ing from the bottom, one can try to determine such an
approximation of the angular dependence of the scat-

tering coefficient, within which the quantity 

depends only on the angles θ and θ', or on the parame-

mb θ θ,( )
mb θ' θ,( )
---------------------

(a) (b)

θ
θ
θ'

Fig. 1. Sound propagation paths in the case of triple scatter-
ing from the surface and bottom of the ocean.
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ters that can be evaluated from the data of the same
measurements. Let us consider two limiting cases.

(1) Scattering occurs only from the rough surface of
the bottom, and the sound transmitted into the bottom
thickness attenuates. This model is probably suitable
for the bottom consisting of basement rock. If it is pos-
sible to use the Kirchhoff approximation, then we have

(2)

where δ is the rms inclination of the bottom surface that
can be evaluated according to the width ∆θ of the func-
tion I(1)(θ) at the level 0.5 of the maximum. It is known
that ∆θ ≈ 3δ.

(2) Scattering occurs from the inhomogeneities of
the bottom bulk. According to [4], in the case of shal-
low-water oceanic regions the experimental frequency–
angle dependences of the backscattered field are
described well by the model of anisotropic bulk inho-
mogeneities. Using the formulas obtained in [4] and
assuming that klsinθ @ 1, where k is the wave number
and l is the horizontal dimension of the bottom inhomo-
geneities, we obtain

(3)

Calculating the reflection coefficient of the bottom
by Eq. (1), it is natural to use the first maximum of the
scattered signal intensity at the receiving array output
I(t) as I(1). The problem of selecting the delay time t at

which  must be measured is more difficult, because

at t = tA, we have  = 0. If the reflection from the bot-
tom and surface is close to coherent, it is possible to use
the estimate t = tA + τ, where τ = τ0. It can be readily
demonstrated that τ0 is determined by the delay at the
edge of the boundary of the first Fresnel zone in the
plane of the ray incidence, and it has the form τ0 =

, where rF =  is the

length of the first Fresnel zone and f is the frequency.
In practice, the response maximum I(t > tA) can be
attained at τ > τ0 because of the scattering. On the other
hand, in the case of a small deviation of the bottom sur-
face from the horizontal plane, tA changes. Therefore,
we suggest that the first maximum of the function I(t)

in the vicinity of tA be used as  in the calculations by
Eq. (1).

It is doubtful that a triply scattered signal can be
used effectively to evaluate the bottom parameters at a
delay exceeding that corresponding to the first maxi-
mum of I(t), because it propagates along many paths.
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An exception is the situation when the reflection from
the bottom is close to coherent or the bottom scattering
indicatrix is sufficiently narrow. One can expect in this
case that the signal propagating along the path B shown
in Fig. 1b noticeably exceeds the background signal.
The possibility to evaluate the angular dependence V
using the signal propagation along the aforementioned
path was first demonstrated in our previous paper [5].
In the geometry described above, the maximal intensity
of the scattered signal is observed at t = tB , where tB =
4H/(ccosθ) and is described by the expression

(4)

where I0 is the radiation intensity of an isotropic sound
source at the distance r0, S is the bottom area from
which a scattered signal is received, and Gr is the
amplification factor of the receiving array.

Since the expression for the coefficient of the back-
scattering from the surface ms as the function of the
wind speed v  is known, Eq. (4) can be used for the inde-
pendent evaluation of the coefficient of reflection from
the bottom in the angular sector {0, δs} where ms is not
too small. Here, δs is the rms inclination of the sea sur-
face. In the case of the Neumann–Pierson wave spec-
trum, we have δs ≈ 0.04v 1/2 (δs is in radians and v  is in
meters per second). The comparison of Eqs. (1) and (4)
in the indicated angular sector allows one to verify the
validity of the model selected for evaluating |Vs(θ')|2, or
(if, for example, it is possible to reliably estimate the
bottom reflection coefficient from granulometric data)
to estimate mb(θ', θ). It is necessary to note that for

small θ, we obtain tB  tA and I(3) ≈  + .

From the aforesaid, we can state that it is possible to
obtain approximate estimates of the angular depen-
dence of the coefficient of sound reflection from the
bottom by using standard of specialized equipment of
a ship, including the case of ship motion. An a priori
evaluation of the error in the determination of the
reflection coefficient by the suggested method is diffi-
cult even in the case of a bottom that is on the average
flat, and this can apparently be done only by a compar-
ison with known measurement techniques or with the
estimates obtained from granulometric measurements
of the bottom structure.

Here, we present only some qualitative consider-
ations.

(i) It is necessary to use pencil-beam arrays with a
low level of sidelobes. The maximal directivity is deter-
mined by the condition that the far wave field not
extend beyond the depth in the region of measurements.

IB
3( ) I0

r0
2

16H4
------------- θGr θ( )Gt θ θM–( )cos

4
=

× Sms θ θ,( ) Vb θ( ) 4 4βH/ θcos–( ),exp
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Fig. 2. Average intensity of the scattered signals of a multibeam echo sounder as a function of time and incidence angle.
(ii) Tone-pulsed signals (linear FM pulsed signals at
low frequencies) must be used. Their duration and off-
duty factor are determined by the penetration depth of
the signal into the bottom and by the maximal angle θ
at which the suggested method works. At this time,
there are not enough data for estimating this angle.

(iii) At large values of the Rayleigh parameter for
the bottom and surface, the function determined
according to Eq. (1) has the meaning of the effective
reflection coefficient [1], whose difference from the
reflection coefficient depends on the width of the array
directivity pattern and on the signal length.

Considering the standard ship equipment, sonars
with rotating antennas and multibeam echo sounders,
which provide the output and recording of received sig-
nals, are suitable for the indicated measurements.

The calculations of the coefficient of reflection from
the bottom were performed according to the data of
measurements of the bottom-scattered signals of a
multibeam echo sounder carried by the Akademik Ioffe
research vessel. The echo sounder was redesigned by
the employees of the Laboratory of Scattering and
Reflection of Sound of the Shirshov Institute of Ocean-
ology, Russian Academy of Sciences. The receiving
and transmitting arrays of the echo sounder consisted
of 3 × 57 and 3 × 35 elements, respectively. The arrays
were directed perpendicularly to each other in the hor-
izontal plane. The operational frequency was 15 kHz,
θM = 30°, and the resolution in the tilt angle was Ω =
0.7°. The measurements were conducted in the North
Atlantic in the process of the ship’s movement with a
speed of 8 knots. The depth in the region of measure-
ments was 500 m and the bottom was on average flat.
According to the available data [6], sand sediments pre-
vail in the region of measurements. Figure 2 shows the
intensity (averaged over 30 realizations) of a received
signal in the polar coordinate system where the arrival
time of a signal (measured from the moment of the
emission of the probing pulse) is plotted along the
radius, and the angle θ is measured from the vertical
downward direction. The degree of darkening is pro-
portional to the intensity. The calculated curve tA(θ) is
given in the left part of the figure. One can see that the
upper boundary of triply scattered signals closely coin-
cides with this curve. At the same time, in a certain
interval of angles, one can see triply scattered signals
with the delay times described by the formula t = tB.
The size of this interval coincides with the estimate for
obtained δs with the wind speed recorded during the
measurements.

The curve |Vb(θ)| calculated by Eq. (4) is shown by
a solid line in Fig. 3. In this case, we used the measured

values of the intensity  = 〈I(t = tB)〉 , where 〈〉  meant
averaging over 30 sequential probing pulses, the area of
the scattering bottom region was taken as S =
4∆Ω(H/cosθ)2 (∆ is the width of the directivity pattern
of the transmitting array in the horizontal plane), and an
empirical estimate of β was used. The shading indicates
the region corresponding to the absolute values of the
reflection coefficients calculated by Eqs. (1) and (4)
for single probing pulses. The calculation according
to Eq. (1) was conducted for several versions of |Vs(θ)|,
including |Vs(θ)| = 1 and |Vs(θ)| = , where  is the
effective coefficient of reflection from the surface.
A formula for this coefficient is given in [1], and the
scattering coefficient is determined in the Kirchhoff
approximation. However, the closest coincidence with
the results of calculation according to Eq. (4) was
attained using the sum of the coherent coefficient of
reflection and the coefficient of scattering of a plane
incident wave in the specular direction (under the
assumption of a normal distribution of the surface

IB
3( )

Vs
e Vs

e
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roughness and a Gaussian correlation coefficient).
According to [7], we have

(5)

.

Here, σ is the rms deviation of the surface from a plane,
L is the interval of the spatial correlation of roughness,
C is the Euler constant, and Ei is the integral exponent.
The values of σ and L can be calculated through the
selected spectrum of wind waves, which is usually
approximated by a function of the wind speed v. For
example, for the Neumann–Pierson spectrum, we
obtain σ ≈ 0.0018v 2.5 and L ≈ 0.044v 2 (δ and L are
expressed in meters and v  is expresses in meters per
second).

The same Fig. 3 shows for comparison the dashed
curve that is calculated according to the well known
formula for a plane boundary of two liquid layers with

Vs
e 2

2kσ θ'cos( )2–( )exp=

× 1
2kL θ'cos( )2

8π
------------------------------ Ei 2kσ θ'cos( )2 )

+

--– C 2 2kσ θ'cos( )ln– 


0.2

20

|V‚|

40 60 θ, deg

0.4

0.6

0.8

1.0

Fig. 3. Angular dependence of the measured absolute
value of the effective reflection coefficient of the ocean
bottom. Shading corresponds to the calculation by Eq. (1),
the solid line represents the calculation by Eq. (4), and the
dashed line represents the calculation for a plane boundary
between water and a liquid layer whose parameters are
taken from [6].
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the following parameters: the sound velocity in the
lower layer is equal to 1670 m/s, the density ratio of the
lower and upper layers is equal to 1.92, and the losses
in the lower layer are 0.5 dB/(m kHz). One can see that
the curves are quite close to each other. The limiting
value of the incidence angle for which it is possible to
obtain an estimate for the reflection coefficient is deter-
mined by the recording time window selected in the
experiment, and it can be apparently increased in spe-
cially arranged measurements.

The evaluation of the precision and applicability
limits of the suggested method needs a large amount of
measurements in various regions of the ocean. In prac-
tice, currently it is possible to conduct them only in the
process of the ship motion. Apparently, the comparison
of the results obtained in this way with the data of the
model calculations taking into account the granulomet-
ric data is the most adequate approach, because in this
case, the estimate of the reflection coefficient is aver-
aged over the bottom region far exceeding the region
studied by a standard measurement procedure. Cer-
tainly, this does not eliminate the necessity of compar-
ative measurements in stationary monitored conditions.
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Abstract—A new analytical approach is developed for the description of standing waves caused by arbitrary
periodic vibration of a boundary. The approach is based on the nonlinear evolution equation written for an aux-
iliary function. This equation offers the possibility to study not only the steady-state acoustic field, but also its
evolution in time. One can take into account the dissipative properties of the medium and the difference between
one of the resonant frequencies and the fundamental frequency of the driving motion of the wall. An exact non-
steady-state solution is derived corresponding to the sawtooth-like periodic vibration of the boundary. The max-
imal “amplitude” values of the particle velocity and the energy of a standing wave are calculated. The temporal
profiles of standing waves at different points of the layer are presented. A new possibility of pumping a high
acoustic energy into a resonator is indicated for the case of a special type of the wall motion having the form
of an “inverse saw.” Theoretically, such a vibration leads to an “explosive instability” and an unlimited
growth of the standing wave. For a harmonic excitation, the exact non-steady-state solution is derived as well.
The standing wave profiles are described by Mathieu functions, and the energy characteristics by their eigen-
values. © 2001 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Standing waves are of great interest for nonlinear
science and its applications [1, 2]. Theoretical and
experimental studies have been made during the last
few decades (see, for example, [3–6]). Scientific inter-
est is stimulated by the possibility to accumulate con-
siderable energy in a high-Q resonant system and to
form conditions for the observation of well-defined
nonlinear phenomena even with a weak driving source.
In such a system, the linear losses are weak and the
nonlinear absorption plays the role of a limiting factor.

The Q-factor shows how many times the amplitude of
the stationary wave is higher than the amplitude of vibra-
tion of the boundary. Because of nonlinear absorption,
the Q-factor of a given resonator depends on this ampli-
tude. As a stationary regime is approached, the ampli-
tude of a standing wave increases and nonlinear effects
become more and more important. The wave profiles,
the Q-factor, and all other characteristics of the wave
field now depend on time.

However, the non-steady-state nonlinear vibrations
in cavities have been studied much less than the station-
ary ones. The main objective of this work is to develop
an analysis of the transient processes in a one-dimen-
sional layer and to derive the corresponding analytical
results.

1 This article was submitted by the authors in English.
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SIMPLIFIED EVOLUTION EQUATION

It is evident that in a linear one-dimensional system,
a standing wave can be composed of two plane waves
propagating in opposite directions. This idea has been
generalized for a nonlinear standing wave between
rigid immovable walls [7] where the vibration in the
layer is described as the sum of two Riemann or Burg-
ers travelling waves. These waves can be distorted sig-
nificantly by a nonlinear self-action, which results in
the formation of a sawtooth-like profile in place of the
initial harmonic one with no contribution made by the
cross-interaction of the initial harmonic waves. In other
words, each wave is distorted by itself during the prop-
agation, but no energy exchange occurs between them.
A similar approach has been used [8] to describe the
nonlinear field between two parallel rigid planes; in this
case, the nonlinear Brillouin modes are formed by two
strongly distorted waves intersecting at equal angles the
axis of a waveguide. Despite the existing works, this
idea is not well proven and needs to be considered in
more detail.

The explanation given below is valid when any non-
linear equation describing nondispersive waves in a qua-
dratic nonlinear medium is used. Here, to be specific, a
model one-dimensional equation is analysed [9]:

(1)∂2 p

∂x2
--------

1

c2
----∂2 p

∂t2
--------–

ε
c4ρ
--------∂2 p2

∂t2
-----------.–=
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Here, p is the acoustic pressure, c and ρ are the sound
velocity and the density of the medium, and ε is the
nonlinearity. Equation (1) can govern the Riemann
waves propagating in opposite directions, as well as the
interaction between them. The solution is sought for by
a successive approximation method:

. (2)

Let the first-approximation solution be a sum of two
waves:

(3)

The second approximation is derived from the inhomo-
geneous linear equation

(4)

the right-hand side of which is calculated on the base of
the first-approximation solution (3)

(5)

In the context of the approximate method (2), the four
terms on the right-hand side of Eq. (4) can be consid-
ered as “external forces” exciting the second-approxi-
mation forced waves at the frequencies of second har-
monics 2ω1 and 2ω2, as well as at the sum (ω1 + ω2) and
difference (ω1 – ω2) frequencies.

It is important that the excitation of secondary
waves can have a resonant character or a nonresonant
one. The first two “forces” given by Eq. (5), F(2ω1) and
F(2ω2), lead to the resonant excitation. The corre-
sponding forced waves

(6)

increase in time. The amplitudes grow linearly with
time t like the amplitude of forced vibration of a pendu-
lum at the coincidence of the eigen- and driving fre-
quencies.

In contrast to systems with one degree of freedom,
the resonance in spatially distributed systems occurs at
the coincidence of the velocities of motion of both driv-
ing force and exciting wave [9].
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Unlike solution (6) that increases in amplitude with
t, the partial solution of Eq. (4) corresponding to other
two forced waves excited by the forces F(ω1 ± ω2) from
Eqs. (5)

(7)

have amplitudes independent of t.
The comparison between the resonant (6) and non-

resonant (7) solutions shows that after several periods
of vibration, (ω1, 2t) @ 1, the waves described by Eq. (7)
become much weaker than the resonant waves (6) and
cannot participate significantly in the nonlinear energy
exchange. Consequently, each of the two waves propa-
gating in opposite directions generates its higher har-
monics (6), but the cross-interaction processes (7) can
be neglected if the waves are periodic in time. This con-
clusion is easily seen to be valid for periodic waves
intersecting at any sufficiently large angles depending
on the acoustic Mach number [8].

Let us now start with the derivation of the simplified
evolution equation by taking into account, as the first
step, the nonlinear processes only. We consider a plane
layer. Its left boundary can vibrate according to the law

(8)

where A is a characteristic amplitude, u is velocity, and
f is a periodic function of its argument with the period
2π. The right boundary is immovable:

(9)

In order to apply the boundary conditions (8) and (9)
to the wave equation (1), we write this equation as a
Riemann one for the velocity. This can be done at the
same time for right- and leftgoing waves by using in
Eq. (1) the relation p = ±ρcu, where the plus sign is
taken for the rightgoing and the minus sign for the left-
going waves, and making the rescaling x  µx, where
µ is a small parameter. Neglecting the terms O(µ2), after
the restitution µx  x, we obtain the nonlinear equa-
tion [10] for Riemann waves

(10)

The upper (lower) sign in Eq. (10) corresponds to the
wave propagating in the positive (negative) direction of
the x axis. The solution to Eq. (10) exists in the implicit
form. The sum of two solutions can be written as

(11)
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where F is an auxiliary function describing the profile
of a nonlinear traveling wave. One can see, that solu-
tion (11) satisfies the boundary condition (9). Condi-
tion (8) applied to Eq. (11) gives the functional equa-
tion

(12)

Here, the function f(ωt) is known, and the function
F(ωt) must be calculated.

The functional equations of implicit form are com-
plicated and cannot be solved analytically. In the sim-
plest case, if we set the nonlinearity ε = 0 and the func-
tion f = sin(ωt) in Eq. (12), the functional equation

(13)

can be solved easily. Its solution

(14)

consists of the partial solution of the inhomogeneous
equation (13) and the general solution of the corre-
sponding homogeneous equation.

Here,

where

is the fundamental resonance frequency. If the driving
frequency approaches a resonance one, ω  nω0, the
non-steady-state process comes into play. To show this,
let us set in solution (14):

(15)

Solution (14) with Eq. (15) has an uncertainty of the

-type. Solving this uncertainty, we obtain

(16)
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Solution (16) describes the resonant vibration with an
increasing amplitude. This simple example illustrates a
surprising, at first sight, fact that the functional equa-
tions like Eqs. (12) and (13) can describe not only the
steady-state vibration, but also different transient pro-
cesses.

Let us now pass to the nonlinear functional equa-
tion (12). It can be reduced to the simplified evolution
equation, if the length of the resonator is small in com-
parison with the nonlinear length, and the frequency of
vibration of the left boundary differs weakly from the
resonant frequency

(17)

Here, Fmax is the maximal value of the function F, and
∆ is a discrepancy. The second condition (17) corre-
sponds to the fundamental resonance (n = 1), for defi-
niteness. With such restrictions, the right-hand side of
Eq. (12) can be expanded in a series:

It is evident that F is a quasi-periodic function whose
parameters slowly vary in time. Therefore,

where µ ! 1 is a small parameter the physical meaning
of which will be clear later. Equation (12) will have the
form

(18)

Introducing new dimensionless variables and constants

one can rewrite Eq. (18) as

(19)

It is now evident that the small parameter µ can play the
role of any small number: ∆, M, or U ~ M.

In recent works [11, 12], an equation similar to
Eq. (19) was derived with allowance made for the dis-

L ! 
c2
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∆ π
ω ω0–

ω0
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F ωt π ∆ πε
c
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c
--F+–=

≈ F ωt π+( ) F ωt π–( )–[ ]

+ ∆ πε
c
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A
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sipation and the finite displacement of the vibrating
boundary:

(20)

where ϕ'(ξ) is a periodic function and

is the dimensionless number determining the weak
absorption of a wave passing through the length L of
the resonator. However, the volume nonlinearity was
not considered in [11, 12].

The main objective of this study is the simultaneous
consideration of the weak effects of dissipation and
nonlinearity. Because all the phenomena leading to a
progressive distortion of the wave are supposed to be
weak, the corresponding terms in the evolution equa-
tion must be additive [9, 10]. So, combining Eqs. (19)
and (20), we obtain:

. (21)

Equation (21) was named the “inhomogeneous Burgers
equation with a discrepancy” [13]. Its main properties
were studied in [13–15].

∂U
∂T
------- D

∂2U

∂ξ2
--------- Mϕ ξ( )∂U

∂ξ
------- ∆∂U

∂ξ
-------+––

M
2
-----ϕ ' ξ( ),=

D
bω2

2c3ρ
-----------L ! 1=

∂U
∂T
------- ∆∂U

∂ξ
------- πεU∂U

∂ξ
------- D

∂2U

∂ξ2
---------––+

M
2
----- f ξ π–( )=
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NON-STEADY-STATE SOLUTION
FOR A SAWTOOTH-LIKE MOTION

OF THE BOUNDARY

Equation (21) can be solved exactly for the most
interesting resonant case (∆ = 0) for some special types
of vibration of the boundary. These exact solutions can
help in understanding the general physical properties of
forced nonlinear vibrations of resonators; moreover,
the corresponding motion of its wall can be realized in
experiments.

Let the boundary execute a sawtooth-like periodic
motion:

(22)

Seeking for the solution to Eq. (21) in the form

(23)

giving ∂2U/∂ξ2 = 0, we obtain the ordinary differential
equation

(24)

Its solution

(25)

describes the increase with the time T in the amplitude
of the auxiliary function U (Eq. (23)) up to the limiting
value (M/2ε)1/2.

f ωt( ) 1 ωt
π
------– 

  ωt( )sgn , π ωt π.≤≤–=

U a T( )ξ
π
---, f–

ξ
π
---, π ξ π,≤ ≤––= =

∂a
∂T
------ εa2+

M
2
-----.=

a
M
2ε
----- εM

2
--------T 

 tanh=
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The form of the standing wave in the layer is deter-
mined by solution (11), where one can neglect small
nonlinear terms, if the vibration within a time of order
of one period is considered. Taking into account the
periodicity of F, we write Eq. (11) as

(26)

The temporal profiles of the standing wave given by
Eqs. (23), (25), and (26) are shown in Fig. 1 for differ-
ent cross-sections of the resonator: x = L/8, L/4, L/2,
3L/4, and 7L/8. The form of forced nonlinear vibration
of the particle velocity varies at the transition from one
cross-section to another. In the middle of the layer, each
period consists of alternating positive and negative rect-
angular regions, which have equal durations and
“amplitudes”.

At approaching the end x = L, the positive region
becomes narrow, but its height increases up to the mag-
nitude twice exceeding the magnitude in the middle
point x = L/2. The negative region decreases in magni-
tude, but expands in duration. The complete area (the
integral of u over the period) is equal to zero.

At approaching the other end, x = 0, the narrowing
and growth of the negative region take place. At both
ends, x = 0 and L, the motion disappears and u = 0 in
accordance with the boundary conditions (8) and (9).
For the driving wall, this satisfaction of condition (8)
should not be taken literally; it means that the ampli-
tude of wall vibration is small in comparison with the
characteristic magnitude of u in the layer.

The mean volume density of acoustic energy

(27)

u cU ωt kx–( ) cU ωt kx+( ).–=

ρu2 ρ
2π
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has a maximum at the center of the layer, kx = π/2, and
equals zero at both ends. The whole energy in the vol-
ume V of the resonator, when calculated by integration
of Eq. (27) over x, equals 

(28)

The ratio of “amplitudes” of the standing wave and the
vibration of the boundary

is shown in Fig. 2 for different values of 2εM. At
steady-state regime,

(29)

If nonlinear effects were negligible, the Q-factor would
not depend on the amplitude A of excitation and would
be equal to [12]

The linear Q-factor is determined by quite different
physical quantities than the nonlinear one (Eq. (29)). In
particular, it depends on the effective viscosity b and on
the frequency ω.

For the amplitude A = 10 cm/s, the nonlinear evalu-
ation is Q ≈ 37. On the other hand, at typical frequen-
cies about 4 kHz in the air-filled resonator, the linear
Q-factor is much higher: it is on the order of 103–104.
However, at high values of the linear Q-factor, the
amplitude of the standing wave increases with time,
and nonlinear absorption comes into play necessarily,
leading to a considerable decrease in the Q-factor.

It must be noted here that some techniques are
invented to suppress the nonlinear absorption [1, 2], but
this paper is devoted to the common simplest resona-
tors and more complicated systems are not considered
here.

The excitation of the layer by a sawtooth-like
motion (Eq. (22)) discussed above is similar to that at
the harmonic excitation (see below). There exists, how-
ever, another form of sawtooth-like vibration providing
a radically new regime of amplification of a standing
wave. Let us consider the so-called “inverse saw”
motion of the driving wall,

instead of the “common saw”, Eq. (23). The ordinary
equation for the amplitude a(T)

E
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2
--------

ωt
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bω2L
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differs from Eq. (24) only by a sign, but it describes a
radically different phenomenon:

(30)

One can see that amplitude (30) increases indefinitely at

Such an “explosive instability” in the solution to the
inhomogeneous equation (21) was discussed in [15].
This phenomenon can be explained as follows: the
energy transmitted from the source to the smooth sec-
tions of the profile of the travelling wave U does not
have enough time to reach the leading shock front and
to be dissipated at it. Therefore, the unlimited growth of
amplitude (30) goes on, and only some other nonlinear
phenomena (for example, the nonlinearity of the mov-
ing boundaries [2]) can be a possible mechanism of
limitation. This regime must be investigated in more
detail. Anyway, it seems promising for the pumping of
high acoustic energy to a limited volume of the
medium.

STANDING WAVE EXCITED
BY HARMONIC VIBRATION

For the harmonic vibration of the wall, the right-
hand side of Eq. (21) takes the form –(M/2)sinξ. For
this case and some other cases, the linearization can help
in solving the inhomogeneous Burgers equation (21).
Using the transformation

(31)

one can reduce the nonlinear equation (21) to a linear
one:

(32)

By the substitution

where λ is a constant, we derive an ordinary differential
equation for the function y(z):

(33)

At zero discrepancy, ∆ = 0, Eq. (33) transforms to the
canonical form of the differential equation for
Mathieu’s function. This is exactly the resonant case
which must be studied in detail.

a
M
2ε
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--------T 
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---------------.
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W
1
4
---λDT– 
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ξ
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For zero initial condition U(T = 0, ξ) = 0, the solu-
tion to Eq. (32) can be written as a series of even
Mathieu’s functions [15]:

(34)

where

The notations used here correspond to those from the
book by Strutt [16] (see also [17]).

From Eqs. (31) and (34), the excitation of the trav-
elling wave [15] U(T, ξ) is found, and U is here an aux-
iliary function for the construction of the standing
wave profile during its approaching the steady-state
condition. The stationary solution is the limit of Eq. (34)
at T  ∞ [14]:

(35)

At q @ 1, solution (35) takes the form [15]

and at q  ∞, it does not depend on the linear absorp-
tion (i.e., on q) at all:

(36)

In Figs. 3a and 3b, the development of the periodic
temporal profiles of the standing wave is shown for the
harmonic vibration of the left-hand wall of the resona-
tor, in the middle cross-section (x = L/2, Fig. 3a) and
near the right-hand end (x = 7L/8, Fig. 3b). The profiles
are constructed after the calculation of series (34), with
allowance for transformations (26) and (31), at the tran-
sient moments of slowly varying time: DT = 0.15, 0.3,
0.5, and 0.9. For the parameter q (Eq. (32)), the value
q = 20 was taken.

The curves in Fig. 3, in contrast to the ones in Fig. 1,
are smoother, because the formation of the shock front
in the travelling wave U at given moments DT is in pro-
cess. Even at DT  ∞, the shock front for q = 20 will
have a finite width.

At DT  ∞, the standing wave reaches its station-
ary condition. The steady-state profiles are smoothed at
finite magnitudes of the parameter q, but discontinuities
appear at q  ∞.

The steady-state profiles are shown in Fig. 4 for an
extremely high harmonic excitation corresponding for-
mally to q  ∞. The sum (26) of two travelling waves

W a2n
1
4
---λ2n q( )DT– ce2n

ξ
2
--- q, 

  ,exp
n 0=

∞

∑=

a2n ce0
ξ
2
--- q, 

  ξd

0

2π

∫ / ce2n
2 ξ

2
--- q, 

  ξd

0

2π

∫= .

U
2D
πε
------- d

dξ
------ ce0

ξ
2
--- πεM

2D2
-----------, 

  .ln=

U
2M
πε
-------- ξ

2
--- 3 2 qξ–( )exp

1 2 2 qξ–( )exp+
--------------------------------------------–cos , 0 ξ π,≤ ≤=

U
2M
πε
--------

ξ
2
--- ξ , π ξ π.≤ ≤–sgncos=



458 RUDENKO et al.
described by Eq. (36) is used. The standing wave in
Fig. 4 has the shape similar to that in Fig. 1 for saw-
tooth-like excitation. Only the tops of the positive and
negative pulses here are not flat; their form of an arc is
described by trigonometric functions. In Fig. 1, the

maximal peak of u/c tends (at T  ∞) to , and

in Fig. 4 it equals to .

The calculation of the acoustic energy accumulated
in the resonator is more complicated here than for saw-
tooth-like excitation (see above). The steady-state solu-
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Fig. 3.
tion (35) is described by the ordinary differential
equation

(37)

which follows from Eq. (21) at T  ∞, ∆ = 0 and
f (ξ) = –sinξ. Integrating Eq. (37), we obtain

(38)

Since the mean value is  = 0, it follows from Eq. (38)
that the constant C is equal to

Thus, the constant C is proportional to the density of
acoustic energy. Using transformation (31), we reduce
the nonlinear equation (38) to a linear one for Mathieu
functions:

(39)

where z = ξ/2. Comparing Eqs. (39) and (33), we con-
clude that the energy is proportional to the eigenvalue
λ0 of the Mathieu function ce0 [14]:

The total energy of the resonator, in accordance with

formulas (26) and (27), equals to E = ρc2V × 2 .
At a weak excitation λ0 ≈ –q2/2 [16], a well-known

linear result appears:

Using another asymptotics for the eigenvalue λ0 at q @ 1
[17], for strong boundary vibration we derive

(40)

When q  ∞, the factor 2/π in the first leading term
in brackets in Eq. (40) differs from the result given by
Eq. (28), where at T  ∞ the corresponding factor is
equal to 1/3.

Thus, the comparison of the results for sawtooth-
like and harmonic excitations described above shows
their qualitative similarity.

Using solution (34) supplemented by transforma-
tions (26) and (31), one can calculate numerically all
other characteristics of the standing waves in the layer
for both the transient regime and the steady-state one.
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The arbitrary relationship between nonlinearity and
competitive dissipation processes can be considered. In
this paper, however, we have restricted our consider-
ation to the description of the new approach and to the
most general analytical results. More particular numer-
ical studies can be performed as a continuation of this
work.

CONCLUSIONS

A new analytical approach to the theory of non-
steady-state forced vibration in a layer of a nonlinear
dissipative medium is developed on the basis of the
simplified evolution equation for the auxiliary function
describing two nonlinear waves propagating in oppo-
site directions. This approach is explained and justified
for the periodic vibration of a wall. A new equation is
derived for standing waves, which is known in the non-
linear wave theory as the “inhomogeneous Burgers
equation with a discrepancy”. Three types of the wall
motion are considered: (i) the vibration of sawtooth-
like form, (ii) the vibration of the form of an “inverse
saw”, and (iii) the harmonic vibration. For the “inverse
saw” motion, the “explosive instability” is progressing
in the resonator, leading to an infinite increase in the
standing wave amplitude within a finite time. For the
other two regimes, i.e., the sawtooth-like and the har-
monic regimes, the transient and steady-state vibrations
are studied. The temporal profiles are constructed for
different cross-sections of the layer. The nonlinear
Q-factor and the total energy in the resonator are calcu-
lated. For the harmonic motion, the main characteris-
tics can be expressed through Mathieu functions and
their eigenvalues.
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Abstract—Results of a computer simulation of an impedance absorber for longitudinal plane elastic waves
incident on a free boundary of a rigid body are presented. The absorbing elements are mechanical resonators
(of the elasticity–mass type) with two degrees of freedom and, hence, with two resonance frequencies, which
correspond to the normal and tangential oscillations of the resonator. Formulas for calculating the absorber effi-
ciency as a function of frequency and angle of incidence of longitudinal waves are derived with allowance for
the absorption of both longitudinal and shear waves at their reflection from the absorbing surface. These for-
mulas are used to solve the problem of synthesizing optimal absorbers that are characterized by the maximal
average value of the absorption coefficient in preset ranges of frequency and angle of incidence. The possibility
of increasing this average value by increasing the loss coefficient of the resonators or by using two types of res-
onators with different resonance frequencies is studied. The results of the calculations are presented in graphic
form. © 2001 MAIK “Nauka/Interperiodica”.
To reduce the levels of reflected waves of different
nature, it is common practice to use various absorbing
devices specially designed for this purpose and
mounted on the surfaces or boundaries of bodies [1–5].
This paper studies the possibility of designing absorb-
ers for plane longitudinal waves incident on a plane free
boundary of a rigid body with an arbitrary angle of inci-
dence. This problem is of both theoretical and practical
interest. Its solution is important in view of the need for
noise and vibration control in thick-walled structures
used in construction, as well as the need to develop
absorbers for Lamb waves. To our knowledge, such a
problem is considered for the first time in this paper.

The problem has a specific feature that complicates
its practical solution, namely, the transformation of an
incident elastic wave of any polarization into two
reflected waves (one longitudinal and one transverse)
[6]. The ratio of the amplitudes of the reflected waves
strongly depends on the angle of incidence of the initial
wave and on Poisson’s ratio. The second feature is that
regular rigid bodies have large wave impedances for
longitudinal and shear waves, i.e., the impedances that
can be several ten times as great as the wave impedance
of water. These features must be taken into account in
selecting the absorbing elements of the absorber. These
elements should simultaneously affect the normal and
tangential displacements of the surface, and they
should have a sufficiently large impedance.

Such elements in the form of mechanical resonators
with two oscillation polarizations and, hence, with two
1063-7710/01/4704- $21.00 © 20461
resonance frequencies were considered in the previous
publications [7, 8]. It was shown that the use of such
elements in a wide frequency range and in a wide range
of angles of incidence allows one, in particular, to con-
struct special kinds of polarizers for both longitudinal
and transverse waves, so that the reflected wave will
have the same polarization as the incident wave. The
consideration was performed on the assumption that
the acoustic loss in the resonators was zero. One can
expect that the introduction of a nonzero loss will allow
one to use the resonators for the development of
absorbers of elastic waves incident on a free boundary
of a rigid body. This paper presents a numerical simu-
lation of absorbers for the case of the incidence of lon-
gitudinal waves.

The reflection coefficients for an incident longitudi-
nal wave can be calculated by the formulas derived ear-
lier [7]:

(1)

(2)
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where D± = bsin4θ0[4  ± (1 – )2]; G =

4bcosθ0sin3θ1(1 – ); and b = =  (ct

and cl are the velocities of transverse and longitudinal
waves, respectively, and ν is Poisson’s ratio. In Eqs. (1)
and (2), R11 and R12 are the reflection coefficients for
the longitudinal and transverse waves; θ0 is the angle of
incidence of the longitudinal wave; θ1 is the angle of
reflection of the transverse wave, which is determined

as usual from the relation ktsinθ1 = klsinθ0; and  =

Zn and  = Zt are the normal and tangential imped-
ances of the resonators, respectively. These impedances
are expressed in units of the longitudinal wave imped-
ance of the elastic medium, and they can be represented
in the form [8]

(3)

where  = ω/  is the dimensionless complex fre-

quency;  = ω0t  is the complex resonance
frequency of the tangential oscillations of the resona-
tor; the quantity ω0r is defined in [7] (see Eq. (20)
there); η is the loss coefficient normalized to the elas-
ticity of the resonator; and a2 is the ratio of the normal
and tangential elasticities of the resonator, so that the
complex resonance frequency of its normal oscillations

 is determined by the relation  = a2 . The

quantity  can be represented in the form  =

Ω/ , where Ω = ω/ω0t. The quantity X =
ω0rms0/ρc1 is the dimensionless inertial impedance of
the resonator per unit area of the body boundary at the
tangential resonance frequency of the resonator; here,
m is the specific mass of the resonator and s0 is the rel-
ative area occupied by the resonator. In this notation,
the dimensionless resonance frequencies are deter-
mined by the equalities Ωr = 1 and Ωn = a.

To characterize the efficiency of the simulated
absorbers, we will use the absorption coefficient αl for
the incident longitudinal wave. This quantity is related
to the corresponding energy fluxes El = |R11|2 and Et =

|R12|2 [6] by the formula

αl = 1 – (El + Et). (4)

From Eqs. (1)–(4), one can see that the efficiency of
the absorbers depends on the angle of incidence θ0 and
the frequency Ω of the wave and on the resonator
parameters a2 and η.

As a generalized measure of the efficiency, one can
use the quantity αl averaged over the frequency range

θ0cot θ1cot θ1cot

θ1cot
2 ct

cl

--- 1 2ν–
2 1 ν–( )
--------------------

Z11
0

Z22
0

Zn
iXΩ

1 Ω2
/a2–

-----------------------, Zt
iXΩ

1 Ω2
–

---------------,= =

Ω ω0t

ω0t 1 iη+

ω0n ω0n ω0t

Ω Ω
1 iη+

b θ1cos
θ0cos

-----------------
and the range of the angles of incidence. This quantity
can be represented in the form

(5)

where M and N are the numbers of the frequency values
and the values of the angles of incidence within the
intervals Ω1 < Ω < Ω2 and 0° < θ0 < 90°, respectively.
The frequencies Ω1 and Ω2 are the boundaries of the
frequency range of interest. In calculating the values of

, we used a linear scale for the values of θ0 and a log-
arithmic scale for the values of Ω with M = N = 50.

In synthesizing an absorber for incident longitudinal
waves, we used the following parameters of the resona-
tors: a2 = 16; η = 0.1, 0.3, 0.6, and 0.9; and ν = 0.31. The
dimensionless resonance frequencies were Ωt = 1 and
Ωn = 4. In addition, we used Ω1 = 0.5, Ωt = 0.5 and
Ω2 = 2, Ωn = 8. Thus, the frequency range over which
the absorber efficiency was averaged covered four
octaves.

Using Eqs. (1)–(5), we solved the problem of syn-
thesizing an absorber on the basis of the optimization of
the quantity  through selecting the value of the param-

eter X = Xm that provides the maximal value  = max.
As an example, Fig. 1 presents a three-dimensional fre-
quency-angular dependence of the quantity αl for η =
0.1 (in this case, Xm ≅  0.15 and  ≅  0.147). The x axis
represents the quantity θ0 (in degrees), the y axis repre-
sents , and the z axis represents the quantity αl.
The resonance frequencies correspond to the values

 = 0 and  ≈ 0.6. Figure 2, which refines the
quantitative relations, represents the sections of the
function α1(Ωm, θ0n) in the form of the contours of its
constant values indicated by the corresponding num-
bers. The analysis of the two figures shows that the sur-
face α1(Ωm, θ0n) has two maximums, which correspond
to the resonance frequencies of the resonators. The cor-
responding angular dependence of the absorber effi-
ciency exhibits some specific features: near the tangen-
tial resonance, it has a maximum at the angles of inci-
dence θ0 ≅  60°, while near the longitudinal (normal)
resonance, at these angles, a relative minimum is
observed. The maximal values at these frequencies
occur in the cases of the normal incidence (θ0 = 0°,
α1 = 0.4) and the grazing incidence (θ0 ≡ 85°, α1 = 0.7).

One of the ways to improve the frequency character-
istic of the absorber is the broadening of the resonance
curves of the resonators for both tangential and normal
resonances. This can be achieved by increasing the loss
coefficient of the resonators η. The synthesis of absorb-
ers for the values η = 0.3, 0.6, and 0.9 was performed
as described above. The results of solving this problem
are generalized in Table 1.

α1 MN( ) 1– α1 Ωm θ0n,( ),
m 1=

M

∑
n 1=

N

∑=

α1

α1

α1

α1

Ωlog

Ωtlog Ωnlog
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Fig. 1. Efficiency of the optimal absorber for longitudinal waves as a function of frequency and angle of incidence (the loss coeffi-
cient of the resonator is η = 0.1).
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Fig. 2. Constant efficiency lines for the same absorber as in Fig. 1.
From Table 1, one can see that as the loss coefficient
increases, the average efficiency of the absorber also
increases; however, in this case, it is necessary to
increase the optimal value of the inertial impedance of
the resonators Xm. It should be noted that when the
SICS      Vol. 47      No. 4      2001
parameter η increases, the form of the surface α1(Ωm,
θ0n) undergoes noticeable changes. This can be seen
from Figs. 3 and 4, which are analogous to Figs. 1 and
2, respectively. The main difference consists in the
absence of any manifestation of the tangential reso-
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Fig. 3. As in Fig. 1, but for η = 0.9.
nance at higher η: an increase in frequency is accompa-
nied by an almost steady growth of the efficiency up to
the frequencies close to the normal resonance. In this
case, the form of the surface with a maximum near θ0 ≅
60° is retained; the maximums that occur at the fre-
quencies near the normal resonance are also retained,
but their values increase and become close to unity.

We note that when one selects a narrower band-
width of the absorber efficiency Ω2 – Ω1 and when the
frequency band lies near the normal resonance fre-
quency, the average efficiency of the absorber  can
be considerably increased even with relatively small
values of η.

One more method of increasing the efficiency of the
absorber (especially, when η is small) can be the use of

α1

Table 1

η 0.1 0.3 0.6 0.9

Xm 0.1504 0.2290 0.2996 0.4345

0.1467 0.3123 0.4393 0.5104α i

Table 2

η 0.1 0.3 0.6 0.9

Xm1 0.2695 0.3566 0.6030 0.6752

Xm2 0.1078 0.1458 0.1786 0.2008

0.2686 0.4866 0.6030 0.6581α i
two (or more) types of resonators with different reso-
nance frequencies. For example, to eliminate the dip in
the frequency characteristic of the absorber in the mid-
dle of the frequency band (Figs. 1, 2) with a simulta-
neous increase in the entire bandwidth, it is possible to
use additional resonators with the normal resonance

frequency Ωn =  and, correspondingly, with the tan-

gential resonance frequency Ωt = 1/ . Then, the spec-
trum of the resonance frequencies will be determined
by the sequence

(6)

The subscript 2 refers to the resonators already consid-
ered, and the subscript 1 refers to additional resonators.

The formulas for the total impedances of the resona-
tors have the form

(7‡)

(7b)

Here, the quantities Xj = ω0t2mjsj/ρc1 (j = 1, 2) are the
inertial impedances of the resonators.

As before, Eqs. (1)–(7) were used to solve the prob-
lem of synthesizing the absorber by optimizing the
quantity  through the determination of the parame-

ters Xj = Xmj, which provide the maximal value  =

a

a

Ωt1 1/ a, Ωt2 1, Ωn1 a, Ωn2 a.= = = =

Zn

iX1Ω

1 Ω2
/α–

---------------------
iX2Ω

1 Ω2
/α2–

-----------------------,+=

Zr

iX1Ω

1 αΩ2
–
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iX2Ω

1 Ω2
–
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α1

α1
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Fig. 4. As in Fig. 2, but for the case of Fig. 3.

Fig. 5. As in Fig. 1, but with the use of two types of resonators (the loss coefficient of the resonators is η = 0.1).
max. The results obtained by solving this problem are
presented in Table 2, which is analogous to Table 1.

The form of the surface α1(Ωm, θ0n) and its sections
are shown in Figs. 5 and 6, respectively, for η = 0.1.
Additionally, we note that  ≈ 0.3 and  ≈
–0.3. One can see that the latter figures noticeably dif-

Ωt1log Ωn1log
STICAL PHYSICS      Vol. 47      No. 4      2001
fer from Figs. 1 and 2: the frequency dependence now
has four peaks, although the first two of them (the tan-
gential resonances) almost coincide; the heights of the
peaks are approximately 1.5 times greater than in the
case with only one type of resonator. The comparison
of the data presented in Tables 1 and 2 shows that with
two types of resonators, the average value of the effi-
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Fig. 6. As in Fig. 2, but for the case of Fig. 5.

Fig. 7. As in Fig. 5, but for η = 0.9.
ciency has become almost twice as great. For a higher
loss coefficient (η = 0.9), the form of the surface
changes insignificantly, but the values of α1(Ωm, θ0n)
increase, which can be seen from Fig. 7.
In closing, it should be noted that by using the
described methods of synthesizing absorbers for longi-
tudinal waves, it is possible to obtain a high efficiency
of these absorbers in a preset frequency range and a
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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preset range of the angles of incidence. The narrower
these ranges, the higher the efficiency that can be
achieved by the proposed methods.
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Abstract—Effect of strong acoustic nonlinearity on the efficiency of heating of a biological tissue by high-
intensity focused ultrasound in the modes of operation used in real clinical setups is studied. The spatial distri-
butions of thermal sources and the corresponding temperature increments caused by ultrasonic absorption are
analyzed. Numerical algorithms are developed for simulating the nonlinear focusing of ultrasound in the cal-
culations of both the heat sources on the basis of the Khokhlov–Zabolotskaya–Kuznetsov-type equations and
the temperature field in a tissue on the basis of an inhomogeneous thermal conduction equation with a relax-
ation term. It is demonstrated that in the mode of operation typical of acoustic surgery, the nonlinearity
improves the locality of heating and leads to an increase in the power of thermal sources in the focus by approx-
imately an order of magnitude. The diffusion phenomena in the tissue lead to a smoothing of the spatial tem-
perature distributions, as compared to the distributions of thermal sources. In the case of one-second exposure
in the nonlinear mode of focusing, the maximal temperature in the focus exceeds the values obtained in the
approximation of linear wave propagation by a factor of three. © 2001 MAIK “Nauka/Interperiodica”.
Utilization of high-intensity ultrasound for therapy
is a rapidly developing field of modern medical science
[1–4]. One of the mechanisms of ultrasonic action on a
tissue is its heating due to the absorption of the energy
of the ultrasonic waves. The thermal mechanism is used
in two modes of operation. The first mode is a hyper-
thermic one when the tissue is affected by low-intensity
ultrasound of about 1–10 W/cm2 during 30–60 min,
which provides the heating of the tissue up to 42–45°C
[2]. However, it is difficult to maintain the temperature
within the necessary narrow range during the total time
of exposure. An alternative is the mode with high-
intensity but short-time irradiation. In this mode
called acoustic surgery, the irradiation of a tissue is
performed over several seconds using an intense
focused ultrasonic beam with the intensity in the focus
500–2000 W/cm2. In this case, localization of the
heated region and a rapid increase in temperature up to
60–90°C, which causes the necessary destruction of
the tissue, are obtained. For example, the mode of
acoustic surgery can be used for therapy of cancerous
growths [3, 4].

The effects of acoustic nonlinearity start to play a
considerable role in the case of such a high ultrasonic
intensity. They lead to the appearance of additional
higher harmonics in the initial wave spectrum, the for-
mation of shock fronts in the wave profile, and, corre-
spondingly, the increase in the absorption of the ultra-
sonic wave energy and in the efficiency of tissue heat-
ing [5–8]. Despite the fact that the nonlinear effects in
the diagnostic and therapeutic applications of ultra-
sound have been greatly studied (see the review in [5]),
1063-7710/01/4704- $21.00 © 20468
they are rarely taken into account in calculating the irra-
diation doses and the parameters of ultrasonic setups in
real clinical experiments, and they are almost never
used for the optimization and increasing the efficiency
of heating. The purpose of this work is the investigation
of the effects of acoustic nonlinearity in the process of
the tissue heating by a high-intensity focused ultrasonic
beam in the modes of operation characteristic of real
clinical setups [3, 7].

The problem is divided into two parts in order to
develop a theoretical model of the heating process. In
the first part, the nonlinear propagation of a focused
acoustic beam in a tissue is studied and the spatial dis-
tribution of thermal sources is calculated. In the second
part, the temperature field is calculated for the known
distribution of sources. The acoustic field is simulated
for the case of a piston piezoelectric radiator with the
radius r0 = 4.2 cm, the focal distance F = 15 cm, and the
frequency f0 = 1.7 MHz (Fig. 1), which is used in the
ultrasonic clinical setup at the Institute of Cancer Stud-
ies in Sutton [7]. The power of the source is selected in
such a way that the field intensity in the focus calcu-
lated in the linear approximation is IF = 1500 W/cm2. It
was found experimentally that in the case of the time of
ultrasonic irradiation about 1 s, this mode provides the
necessary destruction of soft tissues [3]. With the radi-
ator intensity determined in such a way, the calculation
of the acoustic field, the thermal sources, and the tem-
perature field is performed both taking and not taking
into account the effects of acoustic nonlinearity. The
comparison of the simulation results for these two cases
provides an opportunity to obtain the quantitative esti-
001 MAIK “Nauka/Interperiodica”
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mates of the role of acoustic nonlinearity in the effi-
ciency of thermal action of ultrasound upon a tissue.

ACOUSTIC FIELD

The propagation of an intense focused acoustic
wave in a tissue is described in the parabolic approxi-
mation by the nonlinear evolution equation of the
Khokhlov–Zabolotskaya–Kuznetsov type [8]

(1)

where p is the acoustic pressure in the beam; z is the
coordinate along the beam axis; c0 = 1614 m/s is the
propagation velocity of longitudinal acoustic waves in
the tissue; ρ0 = 1214 kg/m3 is the equilibrium density;
ε = 4.78 is the nonlinearity factor of the tissue [7]; τ =
t – z/c0 is the time in the moving coordinate system; and
∆⊥  is the Laplacian with respect to the transverse coor-
dinates, which, in the case of an axisymmetric beam
considered here, has the form ∆⊥  = ∂2/∂r2 + 1/r∂/∂r. The
linear operator Labs describes the absorption of a wave
in compliance with the power law characteristic of bio-
logical tissues:

(2)

where the power index η is close to unity, α is the
absorption coefficient at a frequency f, and α0 is the
absorption coefficient at the selected frequency f0 [2].
For a tissue of liver type, the values of the parameters η
and α0 at the selected radiation frequency 1.7 MHz are
equal to η = 1.266 and α0 = 8.42 m–1 [7], respectively.
Equation (1) takes into account the nonlinear, dissipa-
tive, and diffraction effects.

In the case of a focused piston radiator under study,
we have

(3)

and an exact analytical solution for the acoustic field
can be obtained only at the beam axis and in the focal
plane z = F in the linear approximation. It is impossible
to obtain an analytical solution for the field in the whole
space. Therefore, in order to determine the spatial dis-
tribution of thermal sources, the acoustic field of the
radiator given by Eq. (3) is simulated numerically in the
case of both linear and nonlinear propagation of waves.

Several approaches had been developed for the
numerical solution of the problem of the focusing of
intense acoustic beams. They use either the temporal
finite-difference schemes of a direct integration of
equations of the type of Eq. (1) [9–11] or the spectral
schemes based on solving a system of coupled nonlin-
ear equations for the amplitudes of the harmonics of the
initial wave [7–9, 12–16]. The temporal approach is
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more suitable for investigating the focusing of pulses
[10, 11], and the spectral approach is more suitable for
describing periodic waves [12–16], as well as in the
case when the frequency power law governing the
absorption in the medium differs from the quadratic
one and the operator Labs in Eq. (1) has an integral form.
In this paper, we use the spectral approach.

In order to construct a numerical algorithm, we
change to dimensionless variables in Eq. (1):

(4)

Here, P = p/p0 is the acoustic pressure normalized to the
initial amplitude p0 at the source; θ = ω0τ is the dimen-
sionless time, where ω0 = 2πf0; Z = z/F is the propaga-
tion coordinate normalized to the focal length; and R =
r/r0 is the transverse coordinate normalized to the radi-
ator radius. Three dimensionless parameters, namely, N
(nonlinearity), G (diffraction), and A (absorption),

(5)

characterize the relations between the four characteris-
tic spatial scales of the problem: the focal length F, the

diffraction length zd = ω0 /2c0, the length of shock for-

mation zn = ρ0/εω0p0, and the absorption length for

the radiation frequency za = . Then, the boundary
condition given by Eq. (3) can be represented in the
form

(6)

The values of the dimensionless parameters of diffrac-
tion and absorption, which are determined by Eq. (5),
are equal to G = 38.7 and A = 1.25, respectively. We use
the exact solution to the linearized Eq. (4) at the beam
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axis for a piston radiator (Eq. (6)) to estimate the inten-

sity at the source I0 = /2c0ρ0 according to the inten-
sity IF = 1500 W/cm2 preset in the focus at Z = 1:

(7)

Setting Z = 1 in Eq. (7), we obtain I0 = IFexp(2α0F)/G2 =
12 W/cm2, which corresponds to the pressure ampli-
tude p0 = 0.7 MPa and the value of the nonlinearity
parameter N = 1.07. The parameter N is taken equal to
zero in calculating the linear focusing.

We seek the solution to Eq. (4) in the form of the
Fourier series expansion:

(8)

where Cn is the complex amplitude of the nth harmonic
in the spectrum of a propagating wave. Substituting
expansion (8) into Eq. (4), we obtain a set of coupled
equations for the amplitudes of harmonics

(9)

where , , and  are the operators describing
the diffraction, nonlinear, and dissipative phenomena
for the nth harmonic, respectively, and K' and K'' are the
dimensionless real and imaginary parts of the wave
number; the latter quantities have the following form in
the moving coordinate system: 

(10)

The frequency dependence of the absorption K'' is sim-
ulated by Eq. (2), and the dispersion of sound velocity
K' is calculated according to the known dependence (2)
using local dispersion relations of the Kramers–Kronig
type [17].

The numerical integration of Eqs. (9) is conducted
for a finite number of the first harmonics nmax. For n >
nmax, the amplitudes Cn are assumed to be zero. To pro-
vide the stability of the numerical scheme at the stage
of the developed shocks, an additional artificial viscos-
ity proportional to the squared frequency is introduced:
K''(n)art = A1n2. Since biological tissues consist mainly
of water, the coefficient A1 is selected to be equal to the
absorption coefficient in water αw(f0) = 7.23 × 10–4 cm–1:
A1 = 1.08 × 10–2.
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The method of splitting in the physical factors is
used at each step of integration along the axis from the
layer Z to the layer Z + hZ. This technique is realized in
three stages. At the first stage, the diffraction effects
described by the operator Ldiff are taken into account for
each harmonic. An absolutely implicit difference
scheme is used at the distances close to the radiator, and
after that, the Crank–Nicholson scheme is used [18].
The solution obtained for the diffraction problem at a
new layer Z + hZ is taken as the initial condition for the
second stage of taking into account of the nonlinear
effects described by the system of coupled nonlinear
equations ∂Cn/∂Z = Lnonl. The system is solved for each
node of the grid constructed in R by the Runge–Kutta
method with the fourth-order precision [18]. The repre-
sentation of the solution in the form of the Fourier
series in a complex form (Eq. (10)) provides an oppor-
tunity to avoid the use of an iteration procedure in sim-
ulating the nonlinear operator. The necessity of this
procedure arises in the case of the Fourier series
expansion in the real form [12, 13]. The solution of
the nonlinear problem is used as an initial one for the
third stage when the dissipative phenomena described
by the set of equations ∂Cn/∂Z = Labs are taken into
account. Here, the exact result Cn(Z + hZ, R) =
Cn(Z, R)exp(hZ(–K''(n) + iK''(n) + iK'(n)) is used for
each node of the grid and each harmonic.

From the determined amplitudes of harmonics, the
intensity of each nth harmonic In = 4|Cn|2I0, the total
intensity of the wave

(11)

and the power of thermal sources

(12)

where α(nf0) is the absorption coefficient at the nth har-
monic (Eq. (2)), are calculated.

The following values of the basic parameters of the
scheme were used: the limits of integration with respect
to the longitudinal coordinate 0 ≤ Z ≤ 1.8, the spatial
window in the transverse coordinate 0 ≤ R ≤ 2.5, the
step of the grid along the beam axis hZ = 0.25 × 10–4 for
the implicit scheme and hZ = 10–4 for the Crank–
Nicholson scheme, and the step of the grid in the trans-
verse coordinate hR = 10–3.

The calculation of the focusing of an acoustic beam
in a nonlinear mode when a shock front is formed in the
wave profile needs rather long computer time. A vari-
able number of harmonics n(Z, R) is used to reduce the
time of calculation in the scheme for different Z and R.
The necessary number n is controlled in such way that
when the amplitude of the last harmonic exceeds a cer-
tain preset value, the number of harmonics is gradually
increased up to the maximal value nmax = 1000. Even

I z r,( ) In z r,( ),
n 1=

∞

∑=

qv z r,( ) 2 α n f 0( )In z r,( ),
n 1=

∞

∑=
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with such an optimization, the time of calculation for
the nonlinear problem by a Dec Alpha XP 1000 com-
puter was about 40 h.

One can see from Eq. (12) that a nonlinear transfor-
mation of the wave energy up the spectrum leads to an
increase in the absorption of the ultrasonic wave energy
because of the growth of the absorption coefficient with
frequency (Eq. (2)). In the case of a strong manifesta-
tion of the nonlinear effects and the appearance of
shocks in the wave profile, the heating of the tissue
increases most strongly in the focal region. Let us con-
sider some theoretical estimates. As is well known, the
absorption at shocks does not depend on the value of
the absorption coefficient of the medium and is deter-
mined by the wave amplitude and the value of the non-
linear parameter ε [5]. In the case of a linearly propa-
gating harmonic wave, the heat release in the focus, qv =

2α0I = 2α0 /2c0ρ0, is proportional to the wave inten-
sity or the squared pressure amplitude pA, whereas in
the case of the shock front formation, the heat release at
the shock is proportional to the third power of its ampli-
tude Ar:

(13)

where zn = ρ0/εω0pA is the length of shock formation
in a plane wave with the amplitude pA. As one can see
from Eq. (13), the ratio of absorption at the shock to its
linear value is determined by the third power of the
shock front amplitude and the ratio of the characteristic
scales of absorption and nonlinearity in the tissue:

(14)

We take into account in Eq. (14) that the shock
amplitude in the focus can attain the value 3pA due to
the more effective focusing in the nonlinear mode [16]
and calculate the nonlinear scale corresponding to the
intensity 1500 W/cm2 in the tissue. As a result, we
obtain zn = 1.2 cm and qv , shock/qv = 7. With allowance
for the contribution of absorption at low frequencies
given by Eq. (2), we can expect that, in the mode of
developed shocks, the heating efficiency must increase
by approximately an order of magnitude. The longitu-
dinal dimension of the focal region of the considered
radiator, which is determined by half the maximal
intensity level (7), can be estimated approximately as
6F/G = 2 cm. Since the size of the focal region is
greater than the length of shock formation zn for a wave
with the intensity IF = 1500 W/cm2, we can expect that
the mode of developed shocks is realized in the focus
and the efficiency of the tissue heating is considerably
increased.

pA
2

qv shock,
ω0

2π
------

εAr
3

6c0
4ρ0

2
-------------

Ar/ pA( )
12πzn

-------------------
pA

2

c0ρ0
----------,= =

c0
3

qv shock,

qv

----------------
Ar/ pA( )3

12π
--------------------- 1

α0zn

----------.=
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TEMPERATURE FIELD

We use the inhomogeneous Pennes equation of heat
conduction [19] to calculate the temperature field

(15)

where T = T(r, t) is the tissue temperature, T0 = 36.6°C
is the equilibrium temperature, cv = 3.81 × 106 J/(°ë m3)
is the heat capacity of a unit volume, k = K/cv = 1.3 ×
10−7 m2/s is the thermal diffusivity [7], K is the heat
conductivity of the tissue, and ∆ is the Laplacian. The
first term on the right-hand side of Eq. (15) describes
the process of diffusion, and the second term describes
the cooling due to the intense heat transfer on account
of the blood vessels present in both the heated region
and outside it [2]. The characteristic time of the latter
process for a liver-type tissue is equal to τ = ρbcv /wcvb =
250 s, where ρb, cvb, and w are the density, the heat
capacity, and the velocity of the blood flow, respec-
tively [7]. The function qv(z, r) describes the field of
thermal sources caused by the absorption of an ultra-
sonic wave (Eq. (12)). For a numerical simulation, it is
convenient to reduce Eq. (15) to a dimensionless form:

(16)

Here,  = t/t0 is the time normalized to the characteris-

tic heating time t0 = 1 s; = (T – T0)/T0 is the dimen-
sionless temperature normalized to the equilibrium
value T0; the dimensionless coefficients α = kt0/F2 and

β = kt0/  describe the diffusion along and across the
beam axis, respectively; and γ = I0t0F/(cvT0) is the
dimensionless coefficient characterizing the power of
the thermal sources.

As in the case of the acoustic field, we use the tech-
nique of splitting with respect to physical parameters in
order to solve Eq. (16) numerically. At each time step
h  in passing from the time layer  to the layer  + h ,
the problem is solved in two stages. At the first stage,
the influence of the cooling process and the thermal
sources is taken into account according to the equation

∂ /∂  = /τ + γ (R, Z), which has an exact solution

(17)

Solution (17) is taken as the initial temperature dis-
tribution for solving the diffusion part, which is approx-
imated by the implicit longitudinal–transverse scheme
providing the second-order precision in both time and
spatial coordinates [18].
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The following basic parameters of the scheme were
used: the spatial window in the longitudinal coordinate
0.4 ≤ Z ≤ 1.6, the spatial window in the transverse coor-
dinate 0 ≤ R ≤ 0.2, the grid step in the longitudinal coor-
dinate hZ = 2 × 10–3, the grid step in the transverse coor-
dinate hR = 10–3, and the time step h  = 1.5 × 10–2.t̃
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Fig. 2. Wave profiles in the focal region of the beam (P = p/p0)
in the case of a nonlinear mode of focusing at various dis-
tances from the radiator Z = z/F (numbers at the curves) and
from the beam axis: R = r/r0 = (a) 0, (b) 0.01, and (c) 0.02.
INFLUENCE OF NONLINEAR EFFECTS
ON ACOUSTIC FIELD CHARACTERISTICS 
AND ON TEMPERATURE DISTRIBUTION

IN TISSUE

The results obtained from the simulation of Eqs. (1)
and (15) provide an opportunity to investigate the influ-
ence of acoustic nonlinearity on the temporal and spa-
tial characteristics of an ultrasonic beam, on the distri-
bution of thermal sources, and on the evolution of the
thermal field in the tissue. Figure 2 shows the profiles
of an acoustic wave in the focal region at various dis-
tances along and across the beam axis, which are calcu-
lated with allowance for nonlinear effects. One can see
that a shock front arises in the wave profile and the pro-
file shape is characterized by a considerable asymmetry
of the positive and negative phases. The positive peak
value of the profile in the focus is almost three times as
great as the peak value obtained under the approxima-
tion of linear wave propagation. The total pressure dif-
ference in the profile of a nonlinear wave is one and a
half times greater than the corresponding value in the
case of the linear wave propagation. One can also see
that a considerable manifestation of nonlinear effects
occurs only in a small spatial region near the focus:
r/r0 = 0.02, 0.95 < z/F < 1.05, which corresponds to
dimension scales of approximately 1.5 mm in the trans-
verse direction and 1.5 cm in the longitudinal direction.
One can expect a considerable increase in the efficiency
of the tissue heating precisely in this region.

In the nonlinear mode of ultrasonic wave propaga-
tion in a tissue, the spectrum of the wave acquires new
higher harmonics. Figure 3 presents the distributions of
the amplitudes of the first three harmonics in a nonlin-
ear beam (the solid curves 1, 2, and 3) and the distribu-
tion of the amplitude of the fundamental harmonic in
the case of linear propagation (the dashed curve 1') in
the focal plane and along the beam axis. One can see
from these figures that the amplitudes of higher har-
monics are sufficiently large and their spatial distribu-
tions in the focal region are narrower than the distribu-
tions for the fundamental frequency in both longitudi-
nal and transverse directions.

As the frequency grows, the absorption increases.
However, at the same time the diffraction effects
become weaker and the beam focusing improves.
Therefore, we can expect that near the focus, the total
intensity of the wave calculated in the nonlinear case by
the sum of the intensities of all harmonics differs from
the intensity of the first harmonic obtained in the case
of linear wave propagation. Figures 4 and 5 present the
spatial distributions of the wave intensity and the power
of thermal sources in the focal plane z = F and along the
beam axis for the linear (curves 1) and nonlinear
(curves 2) modes of focusing. One can see that in the
case of the nonlinear wave propagation, a small (about
15%) increase in the amplification factor in the focus is
observed along with an improvement of the spatial
localization of the beam in comparison to the linear
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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Fig. 3. Spatial distributions of the pressure amplitudes of the
first three harmonics P = 2|Cn|, n = (1) 1, (2) 2, and (3) 3 in
a nonlinear beam and (1') the amplitudes of the fundamental
harmonic in the case of linear propagation: (a) in the focal
plane z|F| = 1 and (b) along the beam axis.
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Fig. 7. Spatial temperature distributions in the focal region for the (a) linear and (b) nonlinear modes of focusing in the case of the
irradiation time 0.8 s.
case. At the same time, the nonlinear effects lead to a
considerable increase in the power of thermal sources
in the focal region of the beam. The efficiency of heat-
ing increases by almost an order of magnitude, which
agrees with the theoretical estimates given above. Thus,
the intensity used is close to optimal in terms of the
realization of the mode of local tissue heating in the
focus due to the absorption at shock fronts. A shock
arises close to the focus, and, therefore, one obtains no
additional losses of wave energy and no increase in
heating in the prefocal region.

Figure 6 shows the dependences of temperature on
time in the focus for the linear (curves 1) and nonlinear
(curves 2) modes of focusing with the exposures 0.5
and 0.8 s. As one can see, even with that short irradia-
tion times, the diffusion of heat manifests itself quite
strongly and the dependence T(t) differs from the linear
one. The high spatial gradient in the distribution of
thermal sources in the nonlinear mode (Fig. 5) ampli-
fies the diffusion process. Therefore, despite the fact
that the power of thermal sources in the focus for the
linear and nonlinear modes of heating differs by an
order of magnitude, the increase in temperature differs
by only a factor of three.

Figure 7 illustrates the two-dimensional spatial dis-
tributions of temperature calculated for the irradiation
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time 0.8 s in the linear and nonlinear modes of wave
propagation. One can see that in the case of the nonlin-
ear mode, the region of strong heating (over 75°ë) is
considerably wider in both longitudinal and transverse
directions and shifted slightly towards the radiator. In
contrast, the region with moderate temperature in the
case of the nonlinear propagation is narrower than in
the linear mode, which is caused by a better localization
of heating.

CONCLUSIONS

The theoretical approach, the numerical algorithm,
and the computer codes developed in this study provide
an opportunity to effectively investigate the problems
of focusing of a high-intensity acoustic beam in a bio-
logical tissue and the corresponding tissue heating in
the conditions of strong manifestation of the effects of
acoustic nonlinearity. A numerical simulation of the
acoustic and temperature fields in a biological tissue is
conducted for the conditions characteristic of real clin-
ical setups used in ultrasonic surgery. The predictions
made with the use of two models, which do and do not
take into account the acoustic nonlinearity of the tissue,
are compared. It is demonstrated that nonlinear effects
lead to an increase in the power of thermal sources in
the focus by approximately an order of magnitude and
to a certain improvement of the locality of heating. The
heat diffusion in the tissue leads to smoothing of the
spatial distribution of temperature compared to the dis-
tribution of thermal sources, the diffusion processes
being more pronounced in the nonlinear mode of focus-
ing. With the acoustic nonlinearity taken into account,
the maximal temperature increment in the focus several
times exceeds the value obtained in the approximation
of linear wave propagation; i.e., the role of nonlinear
processes is of fundamental significance.
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Abstract—Expressions for calculating the directional characteristics of an array of sound receivers posi-
tioned in a waveguide with impedance walls are obtained from the solution to the problem on the diffraction
of a plane sound wave by the waveguide open end with impedance flanges. The waveguide can be of a finite
length, and, in this case, it can be considered as an open cavity in an impedance screen. The solution of the
integral equation for the sound pressure distribution over the opening area is reduced to the solution of an
infinite system of algebraic equations for the coefficients of the field expansion in normal waveguide waves.
Examples of calculated directional characteristics are presented for arrays with receivers positioned at dif-
ferent distances from the opening and for different values of the impedances of the waveguide walls and
flanges. © 2001 MAIK “Nauka/Interperiodica”.
The solution to the problem on the diffraction of a
plane sound wave by a flanged open end of a waveguide
with impedance walls and impedance flanges was
obtained by Shenderov [1]. In the cited paper, this solu-
tion was used to calculate the scattering pattern for a
wave incident on a screen with a slit, including the
backscattering pattern and the “form-function” that
describes the backscattered amplitude as a function of
the slit width relative to the wavelength. Additionally,
this solution can serve as the basis for determining the
directional characteristics of an array of sound receiv-
ers positioned inside an open waveguide with imped-
ance flanges. Note that for an unflanged waveguide
with impedance walls, an exact (but very cumber-
some) analytical solution was obtained by Rawlins [2]
who used the Wiener–Hopf method. For flanged
waveguides, the solution can be obtained only using a
numerical procedure that reduces the integral equation
governing the sound field in the slit to an infinite system
of algebraic equations in the coefficients of the sound
field expansion in normal waveguide waves. A similar
method was used for waveguides with rigid flanges
[3–5]. The sound emission by a source located in an
arbitrarily shaped cavity in the impedance screen was
considered by Peplow and Chandler-Wilde [6] with the
use of integral equations.

This paper deals with the problem schematically
represented in Fig. 1. An array of sound receivers is
located inside a waveguide of width d with impedance
walls. A plane sound wave propagates from the lower
halfspace and is incident on an infinite impedance wall
(screen) with a slit connected with the waveguide. The
waveguide can be both semi-infinite (Fig. 1a) and of a
finite length (Fig. 1b). In the latter case, the waveguide
appears as an open cavity in the screen. All walls (the
1063-7710/01/4704- $21.00 © 20476
screen, every waveguide wall, and the waveguide bot-
tom) can be characterized by different values of imped-
ance. The desired quantity is the directional pattern of
the array in the lower halfspace. If we set the depth of
the cavity in Fig. 1b to zero, we reduce the problem to
the problem on the sound diffraction by an impedance
insert in a plane screen whose impedance differs from
that of the insert.

We represent the boundary conditions at the screen
surface and waveguide walls in the form

Here and below, p is the sound pressure in the lower
halfspace; p2 is the sound pressure in the waveguide; ρc
is the wave resistance of the medium; k = ω/c;

Zp is the impedance of the screen; Z1 and Z2 are the
impedances of the left- and right-hand waveguide
walls, respectively; and Zb is the impedance of the bot-
tom of the cavity shown in Fig. 1b. We assume that all
quantities vary in time as exp(–iωt).
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Fig. 1. Reference system. An array of sound receivers in (a) a semi-infinite waveguide and (b) an open cavity. The wide arrow shows
the compensation direction.
Inside the waveguide, we represent the field as the
expansion in normal waves of the waveguide with
impedance walls (see the previous paper [7]):

Here, γn =  are the wave numbers of normal
waves; ψn(x) are the eigenfunctions of the waveguide
with impedance walls,

and βn are the eigenvalues obtained as solutions to the
transcendental equation

The quantities Ab(γn) given by the expression

are the reflection coefficients of the cavity bottom for
normal waves. The coefficient q is zero for the semi-
infinite waveguide and unity for a finite-length
waveguide. Note that the solution for the semi-infinite
waveguide cannot be obtained as a particular case of
the problem on the finite-length waveguide for h = ∞,
because backward waves can appear in such an
approach for zero-valued losses. In addition, backward
waves cannot be eliminated by setting the cavity bot-
tom impedance so as to ensure that the bottom will
totally absorb the incident sound, because this approach
eliminates a single normal wave rather than all normal
waves simultaneously. A specially introduced coefficient
q allows a universal representation of the solutions to
both problems shown in Figs. 1a and 1b.
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The coefficients An satisfy the infinite system of
equations obtained in [1]

where

(1)

The function Ap(γ) appearing on the right-hand side
of the system for argument γ = sinα0 determines the
sound reflection coefficient of the screen and is given as
follows:

(2)

In order to obtain the directional pattern of the array
located inside the waveguide, one must calculate the
sound fields at the points where the receivers are
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Fig. 2. Directional patterns of a point receiver located at the axis of a semi-infinite waveguide at different wave distances to the slit.
The numbers near the curves indicate the wave distance ky; w1 = w2 = wp = 0.7 – i0.2; M = 1.
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Fig. 3. Directional patterns of a point receiver located at the axis of a semi-infinite waveguide at different wave distances to the slit.
The numbers near the curves indicate the wave distance ky. The impedances of all surfaces are close to the impedance of an acous-
tically soft surface: w1 = w2 = wp = 0.1 – i0.1; αc = 90°; and M = 1.
located, multiply them by the coefficients fm and
exp(iϕm), which determine the amplitude and phase dis-
tributions of the array, and, finally, add up the resulting
values. The coefficients of the amplitude and phase dis-
tributions can be introduced to control the form of the
directional pattern and the direction of its main lobe.
For example, to steer the main lobe of the directional
pattern through an angle αc, one must set ϕm =
kxmcosαc, where xm are the coordinates of the receivers,
m = 1, 2, …, M, and M is the number of receivers. Nor-
malizing the directional pattern by its maximal value in
the free field, we obtain

In decibels, the directional pattern will be determined
in the form

As in [1], we used the reduction method to solve
system (1). The eigenvalues βn were calculated by the

D α0( ) f m iϕm( )p2 xm y,( )/ f m

m 1=

M

∑exp
m 1=

M

∑ .=

R α0( ) 20 D10 α0( ).log=
method described in the previous paper [7]. The calcu-
lations were carried out using a PC with 450-MHz
CPU. The calculation time for the directional pattern at
a given value of kd was 0.1 s for kd < 5. For kd = 10, the
calculation time varied between 0.2 and 0.3 s; for kd =
40, it was about 2 s; and for kd = 100 it varied between 5
and 6 s. All calculations were carried out for the uni-
form amplitude distribution, i.e., it was assumed that
fm = 1.

Figure 2 shows the directional patterns of a point
receiver located at the axis of a semi-infinite impedance
waveguide for different sizes of the waveguide cross-
section and for different wave distances between the
receiver and the slit in the screen. In these calculations,
we assumed that the waveguide walls are characterized
by complex-valued impedances with nonzero real parts
in order to take into account the sound absorption by
walls. For complex-valued wall impedances, all eigen-
values βn and wave numbers of normal waves γn are
complex; therefore, all normal waves attenuate in the
waveguide, i.e., no purely propagating waves exist in
the waveguide. However, if Reβn > k, the imaginary
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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Fig. 4. Directional patterns of a point receiver located at the axis of a semi-infinite waveguide at different wave distances to the slit.
The numbers near the curves indicate the wave distance ky. The impedances of all surfaces nearly coincide with the impedance of
an acoustically hard surface: w1 = w2 = wp = 100.0 – i0.2; αc = 90°; and M = 1.
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20.0, kl = 18.0, M = 12, w1 = w2 = wp = 0.7 – i0.2, and αc = 90°. The dotted curves correspond to the directional patterns in free space.

0 30

R
(α

0)
, d

B

α0

60 90 120 150 180

kd = 1

ky = 0

4

0 30 60 90 120 150 180

kd = 20

ky = 0

5

10

2

0

–2

–4

–6

2

0

–2

–4
part of the wave number γn drastically increases, which
causes an increase in the attenuation of the correspond-
ing normal wave. This phenomenon is similar to a tran-
sition from propagating normal waves to nonpropagat-
ing waves in a waveguide with lossless walls. For slits
of small wave size (kd = 1), the excitation of only the
first oscillating mode is noticeable in the waveguide,
and even this mode is strongly attenuating. For this rea-
son, the amplitude of the received signal strongly
decreases with increasing distance between the receiver
and the slit, i.e., with an increase in ky.

Owing to the fact that, for slits of small wave size,
the amplitudes of all modes with numbers exceeding
unity are small, the directional patterns are smooth
nonoscillating functions. With an increase in the wave
size (see curves for kd = 20), higher oscillating modes
appear and the directional patterns exhibit an oscillat-
ing behavior.

For grazing incidence (at angles close to α0 = 0° or
180°), the levels of the directional characteristics tend
to vanish. This is related to the fact that the reflection
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
coefficient of the screen Ap determined by Eq. (2) tends
to –1 with increasing angle of sound incidence, inde-
pendently of the screen impedance (excluding the case
of a perfectly hard screen, i.e., w = ∞); i.e., the total
sound pressure tends to zero near the screen. The exci-
tation of various modes in the waveguide is character-
ized by the coefficients Bn, which, according to Eq. (2),
are proportional to the magnitude of the total field near
the screen. Therefore, the directional patterns are char-
acterized by low levels at grazing angles of incidence.

These features are more prominent when the imped-
ances of the waveguide walls and flanges are close to
the impedance of the acoustically soft surface (Fig. 3).
At kd = 1, the received signal shows a strong decrease
(about 25 dB in the example under consideration) even
for small distances between the receiver and the slit. At
the same time, if the waveguide width exceeds the
wavelength, the amplitude of sound pressure in the
waveguide varies only slightly even for considerably
long distances to the slit; however, the directional pat-
terns become highly nonuniform in this case. The reason
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the case of the surface impedances being close to the impedance of an acoustically soft surface; kd = 40.0, kl = 36.0, M = 24, w1 =
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is that a wide waveguide allows low attenuation propaga-
tion for several oscillating modes, which can be easily
distinguished in the plots corresponding to kd = 20.

For a wide waveguide, noticeable oscillations occur
also for impedances close to the impedance of the acous-
tically hard surface (Fig. 4). Note that the zeroth normal
wave propagates almost without attenuation in
waveguides with such impedance walls. As a result, the
received signal shows only small losses even for the
observation points located far away from the slit. Unlike
the case shown in Fig. 3, the signal here appears quite
measurable even for angles deviating from 0° and 180°
by only 5°–10°, although the directional characteristic
tends, as earlier, to zero for lower grazing angles.

Figure 5 sows directional patterns of a planar array
of receivers located inside the waveguide. These curves
make it possible to trace the pattern deformation versus
the distance between the array and the slit. In this and
all subsequent figures, the dashed line corresponds to
the directional pattern of the array in free space. In this
example, we consider a waveguide of width kd = 20.0
and set the wave size of the array (kl) equal to 18.0. The
array consists of M = 12 elements, so that the interele-
ment wave distance is kl/(M – 1) = 1.56. For such an
interelement distance, the directional pattern of the
array nearly coincides with the pattern of a continuous
linear antenna. The array characterized by the above
dimensions occupies almost the whole waveguide
cross-section.

For large distances between the array and the slit,
the main lobe somewhat widens and the lateral lobes
become smoother. The signal level in the direction of
the main lobe decreases appreciably only for long dis-
tances between the array and the slit.

For impedances close to the impedance of the
acoustically hard surface (Fig. 6), the pattern is almost
independent of the distance between the array and the
slit. In this case, almost all energy is carried by the first
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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Fig. 8. Directional patterns of the receiver array located inside a semi-infinite waveguide with different compensation angles αc. The
impedances of all surfaces are close to the impedance of an acoustically soft surface. The dotted curves correspond to the directional
patterns in free space. Schematic diagrams showing the direction of sound incidence are presented near the corresponding plots: the
main lobe steering angle is (a) smaller than the angle of geometric shadowing, (b) coincides with the angle of geometric shadowing,
and (c, d) exceeds the angle of geometric shadowing; kd = 40.0, kl = 36.0, M = 24, w1 = w2 = wp = 0.1 – i0.1, ky = 10.0, and αg = 101.3°.
oscillation mode, which nearly coincides with the pis-
ton mode in a waveguide with hard walls. An array of
size exceeding the wavelength practically rejects all
higher oscillation modes. Therefore, it is impossible to
screen the array for decreasing the side-lobe levels with
the use of lateral screens with hard walls.

The use of sound-absorbing side walls allows one to
decrease the side-lobe levels (Fig. 5), whereas in the
case of hard walls (Fig. 6), these levels vary only
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
slightly even if the distance between the array and the
slit is twice as large as the waveguide width.

Figure 7 shows similar patterns for an array in a
waveguide with walls whose impedances are close to
the impedance of an acoustically soft surface. Here, the
main lobe somewhat widens and the lateral lobes
smooth, as in the case of sound-absorbing walls.

Studying the deformation of the directional pattern
is of special practical interest for arrays with an elec-
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tronically steered beam, especially in the case when the
beam is partially incident on the waveguide wall. Geo-
metrically, the maximal possible steering angle αg for
which the whole array is seen from the observation
point is shown in Fig. 1a. This angle is determined by
the relationship  = π/2 ± (d – l)/(2y). In the exam-
ples shown in Figs. 8 and 9, this angle was 101.3° and
the pattern was steered through angles exceeding π/2.

For steering angles αc smaller than αg (see the
curves for αc = 0° and 100°), the diagram varies
slightly, as should be expected. With increasing αc, the
array is partially shadowed by the screen edge and the
pattern is distorted. For αc = 150°, almost half of the
array is in the geometric shadow. As a result, the
amplitude of the received signal decreases, the pattern
is strongly distorted, and an additional lobe appears
due to the sound reflection from the waveguide wall in
the direction specular to the direction of the main lobe.
A schematic diagram of sound reflection is shown in
Fig. 8.

The curves in Fig. 8 were calculated for impedance
walls that nearly perfectly reflect sound. Figure 9 shows
another case corresponding to sound-absorbing walls.
Calculations were carried out for w = 1.0 – i0.1. With

αgtan
this impedance, the side walls are characterized by a
reflection coefficient as small as 0.05 for the sound
wave incident along the normal to the wall. In this case,
the specular lobe decreases and the main lobe level and
its width nearly coincide with the corresponding values
for the waveguide with sound-absorbing walls.

The results presented in this paper were calculated
for a semi-infinite waveguide; however, all above
expressions are valid for a finite-length waveguide, i.e.,
for an open cavity in an impedance screen. Therefore,
there is no extra difficulty for determining the effect of
a back screen on the directional pattern of the array and
on its sensitivity for arbitrary surface impedances. One
can determine actual angles of survey by taking into
account the diffraction by the edges of lateral screens.
In the process of steering the directional pattern, the
diffraction causes phase distortions in the received sig-
nal, and these distortions are nonsymmetric relative to
the direction to the source. As a result, the main lobe is
deflected from the compensation direction, i.e., errors
occur in the determination of the direction to the
source. The above formulas are sufficient for calculat-
ing these errors. The results of such calculations will be
described in following publications.
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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Much attention is currently attracted to the problems
of the determination of the dynamic and acoustic char-
acteristics of floating airdromes and other floating
structures on a water surface.

A special feature of contact-boundary problems of
this type is the possibility of the localization of waves
propagating in the liquid–structure system [1].

The results of solving such problems show the need
to determine the conditions for the existence of a dis-
creet spectrum of natural vibration frequencies of such
a system (liquid–structure), which can produce the
effects of wave localization and resonance. The condi-
tions obtained below are similar to the conditions of the
appearance of localized modes of vibration in continu-
ous media with inclusions [2].

The purpose of this paper is to solve the problem of
finding the upper and lower boundaries of the discreet
spectrum, the cutoff frequencies corresponding to these
boundaries, and, consequently, the frequency ranges in
which the propagation of flexural gravity waves is pos-
sible. The corresponding natural modes of vibration are
also determined.

In investigations performed by other authors (for
example, in [3, 4]), the possibility of the existence of
natural frequencies in such systems was not estimated,
not even by the numerical method.

We consider the propagation of flexural gravity
waves in a thin plate–liquid system. The propagation of
waves occurs in a layer of an ideal incompressible liq-
uid of depth H. A plate of infinite length and a finite
width 2a floats on the surface of this layer. The coordi-
nate system is chosen so that the y axis is directed along
the length of the plate and the z axis is directed upward
and passes through the middle of the plate. The upper
boundary of the layer outside the region –a ≤ x ≤ a is
free. The motion of the liquid is assumed to be a poten-
tial one. The potential of the velocity of liquid particles
is Φ(x, y, z, t). Disturbances acting in the liquid gener-
ate vibrations of the plate that are described by the dis-
placement ζ(x, y, t). Cooperative vibrations of the liq-
uid and the plate result in a system of surface waves
1063-7710/01/4704- $21.00 © 20484
propagating along the x and y axes. The vibrations of
the liquid are assumed to be periodic along the y axis
with the wave number m and have the frequency ω. We
use the approximation of the theory of long waves in
shallow water (kH ! 1, where k is the wave number)
and seek the potential in the form

We divide the region from –∞ to +∞ along the x axis
into three parts.

The first and third regions (designated below by the
indices 1 and 3) correspond to the free water surface.
The velocity potential of water particles in these
regions can be written as

(1)

For the second region (the plate on the surface of the
liquid), we have the system of equations

(2)

where h is the plate thickness, D is the flexural rigidity,
ρ1 is the density of the plate material, and ρ is the water
density.

Using the second equation of system (2), for solving
the first equation we derive the following expression
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with respect to the potential (here, the solution for ζ is
taken in the form ζ(x, y, t) = ζ(x)exp(imy + iωt)):

(3)

As the boundary conditions, we take the equality of
the potentials and paticle velocities of the liquid and the
plate for x = ±a and the zero values of the cutting force
(F) and the bending moment (M) at the edges of the
plate. For instance, for x = a, we have

(4)

In addition, the following conditions should be
imposed: for y = ±∞, the potential should be limited
and, for x = ±∞, the Sommerfeld condition should be
satisfied.

We seek the solution for the potential in Eqs. (1) and
(3) in the form

(5)

Then, Eqs. (1) and (3) are reduced to algebraic equa-
tions of the second and sixth degrees with respect to αj.
Omitting the subscript j, we have

α2 –  for regions 1 and 3, (6)

 for region 2, (7)
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Equation (6) has two roots that are equal in magni-
tude but opposite in sign; the roots are either real or
imaginary. Equation (7) has six roots, four of which are
always complex (in the form of ±u ± iv) and the
remaining two are either real or imaginary. The fre-
quency at which the solution passes from the real to the
imaginary domain (or in the opposite direction) is the
cutoff frequency of the liquid–structure system.

The expression for the cutoff frequency in the
regions of free liquid surface on both sides of the plate
can be derived from Eq. (1) and is written as

(8)

Similarly, from Eq. (3) we obtain the cutoff frequency
for the region corresponding to the infinite plate float-
ing on the water surface:

. (9)

The lower bound of the discrete spectrum is the cut-
off frequency of a waveguide (plate) infinite in one
direction, and the upper bound is the cutoff frequency
of the medium outside the plate, i.e., in our case, the
cutoff frequency of the infinite shallow reservoir.

The localization of waves in the plate region can
take place only when the natural real discrete frequency
of the system lies within

(10)

In this case, on the free water surface on both sides of
the plate only the attenuation of waves is possible,
whereas in the plate itself, travelling waves propagate.

Further analysis of the existence of a discrete spec-
trum of the system was performed numerically. In the
course of solving the problem on eigenvalues, it was
established that there is at least one natural frequency
of the plate–liquid system that exists only for ωp < ωw
and lies in the range determined by Eq. (10).

As additional investigations showed, the limits of
the discrete spectrum, i.e., the corresponding cutoff fre-
quencies, are not natural frequencies of the plate–liquid
system.

When the compressibility of the liquid is taken into
account, the dispersion dependence representing the
frequency versus the wave number will have an addi-
tional branch, which begins above the upper cutoff fre-
quency; i.e., this branch lies outside the range in which
wave localization is possible.

The figure represents the corresponding mode of
natural vibrations. It is symmetric, localized, and atten-
uates exponentially along the x axis.

In conclusion, we summarize the results obtained
from the numerical investigation of the effect of some

ωw m gH .=

ωp m
H Dm4 ρg+( )
m2ρ1Hh ρ+

----------------------------------=

ωp ω̂ ωw.< <
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parameters of the system on the existence and position
of the natural frequency:

(1) As m (the wave number along the y axis)
decreases, the natural frequency of the system grows.
When the existence of several cutoff frequencies is pos-
sible in the range between the cutoff frequencies, the
distance between them increases and the range itself is
shifted to the left along the frequency axis.

(2) A decrease in the depth of the reservoir results in
similar effects.

–a

+ax

y

Figure.
(3) A decrease in the width of the plate causes a shift
of the natural frequency to the right and an increase in
the distance between the natural frequencies when
there are several.

(4) For the existence of the described localization
effect, the plate thickness should fall within a very nar-
row interval (in the case studied above, it should be
within 1 ± 0.2m).
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A special direction of research in molecular physics
of liquids is related to the acoustic measurements of
their shear viscoelastic properties. The measurements
of the shear dynamic properties of liquids represent one
of the direct methods for studying the nature and char-
acter of the processes of rearrangement of intermolec-
ular structure in them. In recent years, much attention
was given to viscoelastic liquids with a non-Newtonian
behavior [1–3]. According to the existing concept of
the nature of liquids, the shear elasticity of liquids
should be observed under shear oscillations with the
periods comparable with the time intervals between the
liquid particle jumps from the temporary equilibrium
states, these intervals being identified with the relax-
ation time of the nonequilibrium state. The relaxation
time is estimated by the self-diffusion rate, and the cal-
culations for low-viscosity liquids yield values of about
10–10–10–12 s [1]. Hence, the shear elasticity of such liq-
uids should be observed at the frequencies of shear
oscillations of 1010–1012 Hz. However, experiments
[4, 5] showed that all liquids without exception exhibit
shear elasticity at a frequency of 105 Hz. This fact sug-
gests that a previously unknown, low-frequency vis-
coelastic relaxation process occurs in liquids. Presum-
ably, this process is caused by collective interactions of
large groups of molecules whose relaxation time can
exceed the time intervals corresponding to the temporal
stability of individual molecules by many orders of
magnitude. One of the characteristic features of the
shear mechanical properties of regular liquids is the
small value of the mechanical loss tangent (  < 1).
According to the Maxwell rheological model, this
means that the relaxation frequency of the process of
interest is lower than the frequency used in the experi-
ment. Our previous experiments [6, 7] were performed
at a frequency of 74 kHz. Hence, for a better under-
standing of the nature of the low-frequency viscoelastic
relaxation process, one should study the frequency
dependence of shear elasticity below 74 kHz.

The presence of the low-frequency shear elasticity
was revealed by the resonance method with the use of a
piezoelectric quartz resonator. The method is as fol-

θtan
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lows. A 18.5° X-cut quartz crystal with zero Poisson’s
ratio oscillates at its fundamental resonance frequency.
The horizontal surface of the crystal is in contact with
a liquid layer covered with a solid strap. The liquid
layer experiences shear strains, and shear standing
waves are excited in it. The parameters of the resonance
curve of the system can vary depending on the thick-
ness of the film. Equating the impedances of the piezo-
electric quartz and the liquid, one can derive the follow-
ing expressions for the complex shift of the resonance
frequency of the oscillatory system [6]:

(1)

where G* = G' + iG'' is the complex shear modulus of
the liquid, S is the area of the strap, H is the thickness
of the liquid layer, M is the mass of the quartz crystal,
f0 is its resonance frequency, α and β are the attenuation
coefficients, κ* is the complex wave number, and ϕ* is
the complex phase shift due to the reflection of the
shear wave from the liquid–strap boundary. Separating
Eq. (1) into the real and imaginary parts, we obtain two
expressions for the frequency shifts:

From these expressions, one can see that the frequency
shifts perform damped oscillations, and with the
increase in the film thickness, they tend to some limit-
ing values. When the thickness of the liquid layer is

∆ f * SG*κ*

4π2M f 0

--------------------1 2κ*H ϕ*–( )cos+
2κ*H ϕ*–( )sin

--------------------------------------------------,=

∆f '
S

4π2M f 0

--------------------=

× G 'β G"α+( ) 2βHsin G 'α G"β–( )Sh2αH+
ch2αH 2βHcos–

------------------------------------------------------------------------------------------------------------,

∆f " S

4π2M f 0

--------------------=

× G"β G 'α+( ) 2βHsin G"α G 'β–( )Sh2αH+
ch2αH 2βHcos–

------------------------------------------------------------------------------------------------------------.
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much less than the shear wavelength and the strap is
practically at rest, we obtain the following expressions
for the real shear modulus and the mechanical loss tan-
gent:

(2)

(3)

The imaginary frequency shift is equal to the variation
of the resonance half-width. From Eq. (2), one can see
that, if the liquid under study possesses a measurable
shear modulus, the real frequency shift must be
inversely proportional to the thickness of the liquid
layer.

In this paper, we describe the study of the viscoelas-
tic properties of liquids by the resonance method at a
frequency of 40 kHz. In studying the shear elasticity of
liquids in a wide frequency range, it is impossible to
perform all measurements with a single measuring sys-
tem and even with measuring systems of a single type.
For every frequency range, it is necessary to develop
special measuring systems. The experiments at 40 kHz
were performed by the resonance method using a setup
with a piezoelectric crystal whose mass was 13.81 g.
The contact area was 0.2 cm2. An important advantage
of the resonance method is that it has no limitations for

G '
4π2M f 0∆f 'H

S
---------------------------------,=

θtan G"
G '
-------

∆f "
∆f '
---------.= =

Viscoelastic properties of liquids at the frequencies 40 and
74 kHz

Liquids
40 kHz 74 kHz

G ' tanθ G ' tanθ

Petrolatum 1.13 0.60 1.36 0.50

Ethylene glycol 0.39 0.72 0.91 0.24

Diethylene glycol 0.51 0.44 1.22 0.31

Triethylene glycol 0.74 0.65 1.28 0.27

PES-1 1.26 0.18 9.63 0.11

PES-2 0.97 0.19 4.81 0.63

PES-3 0.85 0.21 3.45 0.87

Decane 0.46 0.38 0.54 0.22

Undecane 0.54 0.33 0.58 0.18

Dodecane 0.56 0.32 0.62 0.15

Tridecane 0.58 0.23 0.65 0.15

Pentadecane 0.63 0.13 0.70 0.09

Dibutyl phthalate 0.65 0.29 0.97 0.11

Oleic acid 0.76 0.23 1.63 0.91

Butyl alcohol 0.94 0.22 1.03 0.10
the viscosity of the liquid under study. The viscosity of
the liquid can vary from 10–2 to 105 P. The disadvantage
of the method is that it is realized at a fixed frequency,
which cannot be varied. The thickness of the liquid
layer is determined by the interference method. The
positive shift of the resonance frequency of the oscilla-
tory system testifies to the presence of a shear elasticity.
The objects of the studies were different liquids: hydro-
carbons, polyethylsiloxanes (PES), glycols, etc. The
interest in studying the shear mechanical properties of
these liquids is caused, first, by their wide use in engi-
neering. Second, the study of the homologous series of
different liquids is of special interest, because a change
in the number of links of the chain is accompanied by
changes in the shape and size of molecules and in the
character of their interaction. All this leads to changes
in the viscoelastic properties of liquids of the homolo-
gous series. For all liquids studied in our experiment,
we obtained linear dependences of the resonance fre-
quency shift on the inverse thickness of the liquid layer.
Figure shows the dependences of the frequency shift on
the inverse thickness of the liquid layer for three PES
liquids. According to Eq. (2), the linearity of the depen-
dences testifies to the presence of the bulk shear elastic-
ity. Using Eqs. (2) and (3), we calculated the values of
G' and . The results are presented in the table. For
comparison, in the second column of the table, we
show the values of G' and  obtained earlier [7, 8]
at a frequency of 74 kHz.

One can see that, for all liquids studied in our exper-
iment, the calculated values of the elastic modulus are
smaller than the values obtained at 74 kHz. The
mechanical loss tangents are greater than at 74 kHz. For
example, for ethylene glycol, the real shear modulus is
0.39 × 105 Pa at the frequency 40 kHz and 0.91 × 105 Pa
at 74 kHz. The mechanical loss tangent is 0.72 at
40 kHz and 0.24 at 74 kHz.

From the simple Maxwell rheological model with a
single relaxation time, it follows that at the relaxation
frequency, the mechanical loss tangent is equal to unity.
Hence, the relaxation frequencies of all liquids studied
in the experiment lie below 40 kHz. Therefore, it is of
interest to study the shear elasticity at lower frequen-
cies.

From the results of this study, we can draw the fol-
lowing conclusions:

(i) All liquids studied in the experiment possess
measurable shear moduli at the given frequencies of
shear oscillations.

(ii) The presence of the low-frequency shear elastic-
ity in regular and low-viscosity liquids means that the
values of the shear stress relaxation time estimated on
the basis of the time within which single liquid mole-
cules remain in the temporal equilibrium states are

θtan

θtan
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wrong and confirms the hypothesis that the dominant
role is played by the collective interactions of large
groups of molecules.

(iii) To obtain a full description of the low-fre-
quency relaxation process in liquids, it is necessary to
perform comprehensive studies for different frequen-
cies, temperatures, shear angles, etc.

0 0.5 1

50

100

150
∆f ', Hz

1/Η, µm–1

PES-3

PES-2

PES-1

Dependence of the real part of the resonance frequency shift
on the inverse thickness of the liquid layer for polyethylsi-
loxane liquids (PES) at a frequency of 40 kHz.
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Various ultrasonic methods of measuring the levels
of liquids in tanks have been actively developed in
recent years [1–3]. One of the methods is echo sound-
ing with the use of a reference arm for determining the
sound velocity ë in air [4, 5]. The use of the reference
arm in stationary conditions makes it possible to reduce
the measurement errors to the error in determining the
length of the reference arm. However, under real condi-
tions, because of heating, high water content, and con-
tinuous agitation of the liquid itself, the use of this
method for measuring the levels of heavy petroleum
products is associated with a number of difficulties,
such as the presence of temperature gradients and con-
vection, as well as a high vapor content in air inside a
tank. The purpose of this paper is to make an experi-
mental estimate of the errors associated with the use of
the method of echo sounding for measuring the level of
the liquid in a real tank with fuel oil with allowance for
the temperature dependence of the sound velocity. The
experiments were performed in a storage tank with fuel
oil with a capacity of 1000 t and a height of 10.7 m. 

In the measurements, we used a special automated
system. An ultrasonic pulse was excited by a radiator
and recorded by a receiver of original design made on
the basis of piezoceramics with the maximum of the
amplitude–frequency response in the range 54–58 kHz.
The amplitude of the exciting pulse was about 200 V,
and the duration of the pulse was about 20 µs. The radi-
ator and the receiver were installed on a common base
with a reference reflector being rigidly attached to it at
a distance of hr = 1000 ± 0.2 mm. From the piezoelec-
tric receiver, the amplified signal was fed to an A/D
converter of the controller of a computer and was
recorded in a digital form in the computer memory. The
clock rate of the A/D converter was 500 kHz. The time
of arrival of the reflected signal was calculated by a spe-
cial algorithm on the basis of the recorded ensembles of
realizations. The main operations of the algorithm were
as follows: the determination of the level of the back-
ground noise for every realization and the detection; the
averaging over the given number of realizations N; the
determination of the common envelope of the signal
(the demodulation); the identification of the pulses cor-
responding to the reflections from the reference reflec-
1063-7710/01/4704- $21.00 © 20490
tor and the liquid surface by integral properties; and the
calculation of the times of arrivals of the signals from
the reference reflector tr and from the fuel oil surface ts
(by the level of 1.5% of the pulse amplitude). During
the measurements, a base with the radiator, receiver,
and reference reflector attached to it was installed in the
upper access opening of the tank. 

Under laboratory conditions (at a constant tempera-
ture and in the absence of convection), the experimental
error of measurements did not exceed 1.2 cm for the
distance to reflecting surface h = 10 m. The sensitivity
of the system was 0.2 mm for h = 2 m and 1 mm for h =
10 m. The measurements in a tank were performed for
various levels of fuel oil in winter with the temperature
of outside air from –10 to –20°C. The temperature of
transducers was 15–25°ë and was actually equal to the
temperature in the upper part of the tank (T0). The tem-
perature of the fuel oil surface (T2) varied from 70°ë
(for minimal levels) to 35°ë (for a full tank). 

The position of the level was checked by a special
lead-and-line with an accuracy of 0.3 cm. The sensitiv-
ity of the measuring system in the case of the measure-
ments in a tank with h = 10 m was 5 mm.

For calculating the temperature correction to the
sound velocity, the measurements of air temperature
variation from the fuel oil surface to the upper part of
the tank along the axis of the ultrasonic beam were per-
formed. Figure 1 shows the typical dependences for
three values of h (x is the distance from the radiator to
the point of measurement). In the dependences
obtained for h ≥ 5.5 m, the variation of the air tempera-
ture can be represented in the form of two linear sec-
tions (in the upper part of the tank and near the liquid
surface) and a section with a relatively constant temper-
ature in the middle part of the tank. The total change in
the temperature ∆T = T2 – T0 is equal to 40–50°C. 

The table shows the experimental values of the tem-
perature and the sound velocities Cs and Cr calculated
from ts and tr, respectively. 

For all h, the experimental values of Cr are 2–3 m/s
greater than the values calculated theoretically from the
values of T0 and the temperature profile at x = 0–1 m.
This result is connected with the fact that the measure-
ment of Cr makes it possible, if only in part, to take into
001 MAIK “Nauka/Interperiodica”
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account the influence of uncontrollable parameters
(humidity and chemical composition of air) on the
speed of sound [1, 6]. 

Figure 2 displays the experimental dependences of
the difference ∆C = Cs – Cr and the value of the temper-
ature correction to the sound velocity 

which was calculated from the temperature profiles, as
functions of h. In the calculations, we assumed that

C(x) = C0 , and, for T = 273 K, C =
331.45 m/s [7]. As is seen from the figure, the temper-
ature correction ∆CT makes 80–90% of the experimen-
tal difference ∆C, and a good correlation between them
is observed. In terms of distance, the differences ∆C
and ∆CT for h = 10 m correspond to the distances ∆h =
43 cm and ∆hT = 37.5 cm, respectively. Thus, taking
into account the temperature, one can increase the
accuracy of the level measurement by a factor of 5–6.
The difference ∆Cp = ∆C – ∆CT (Fig. 2) can be regarded
as a systematic error of the considered method due to
the influence of humidity varying with height and the
air convection, which are difficult to take into account. 

The described experiments have shown that, in the
measurements in a tank, the value of the root-mean-
square deviation of the experimental values of the
velocity, σ(Cs), which characterizes the random com-
ponent of the error, considerably increases. The values
of σ(Cs) were calculated by ten measurements with N =
100 for every measurement. The duration of one mea-
surement for N = 100 was 5 s, and the interval between
the measurements was 100 s. Under laboratory condi-
tions, in the absence of temperature gradients and con-
vection, σ(Cs) was 0.2 m/s for h = 10 m. The growth of
σ(Cs) in the tank measurements was determined mainly
by the changes in the propagation conditions of the
ultrasonic pulse with time due to convective flows. 

Figure 2 also displays the summary absolute error in
determining the velocity ∆Cd + σ(Cs). When the dis-
tance to the fuel oil surface is 10 m, the error is close to
3 m/s, which corresponds to an absolute error of 8.3 cm
in determining h, or a relative error of 0.8%. These val-
ues are likely to be close to the limiting errors of this
method in measuring the level of heavy petroleum
products. 

In the measurements in a tank for h exceeding 5–6 m,
the appearance of false echo-pulses with the amplitudes
(Uf) reaching 0.02–0.05 s of the amplitude of the main

reflected pulse ( ) was observed in some cases. The
false pulse was about 6 ms ahead of the main pulse
reflected from the fuel oil surface, which corresponds
to two meters of distance and approximately coincides
with the beginning of the second region of the sharp
increase in temperature (Fig. 1). The appearance of a

∆CT
1
h
--- C x( ) xd

0

h

∫ C0,–=

T0 ∆T x( )+[ ] /T0

U
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false pulse can be explained by the formation of a gas
layer adjacent to the surface of the fuel oil and charac-
terized by an acoustic impedance (Zl) noticeably differ-
ent from the acoustic impedance of the main volume of
gas (Zg). This layer can be caused by steady convective
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Fig. 1. Temperature of air in a tank for various distances to
the surface of fuel oil: (j) 9.96, (s) 6.5, and (+) 2.85 m.

Fig. 2. Dependences of the parameters determining the dif-
ference between the theoretical and experimental sound
velocities ∆C on the distance h.

Experimental values of the temperature and the sound velo-
cities Cs and Cr for various distances to the fuel oil surface h

h, m T0, K ∆T, K Cs, m/s Cr, m/s

1.64 296 30 363.6 353.9

2.85 296 33 363.5 353.1

4.97 294 39 360.1 346.9

6.50 293 42 359.2 345.7

8.15 293 43 359.4 345.2

9.53 294 43 360.8 346.3

9.96 294 47 361.3 345.7
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flows in a tank, which arise at certain temperature con-
ditions and fuel oil levels. We will estimate the possible
changes in the impedance at the boundary of such a
layer. The amplitude ratio of the false pulse and the
pulse reflected from the fuel oil surface is determined
by the relation 

(10)

where R, W, and W* are the coefficients of reflection
and transmission at the gas–layer boundary, and ρl, Cl
and ρg, Cg are the density and sound velocity corre-
sponding to the layer and the gas above it, respectively. 

Using the results of paper [1] and assuming that the
changes are caused by the difference in the tempera-
tures of the layer and the adjacent gas δT and by the
presence of vapor, we obtain 

where δρ and δC are the changes in the density and
velocity in passing from gas into the layer; Mv and Mg
are the molar masses of vapor and gas, respectively; Q
is the specific heat of vaporization; and ξ is the mass
fraction of vapor in the mixture. 

For fixed values of U/  and ξ = 0.12 (which corre-
sponds to a temperature of 50°ë), the temperature dif-
ference δT is 10–20 K, which is in good agreement with
the results of the temperature measurements.

From the results of this study, we draw the following
conclusions on the possibility of using the method

Uf
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2ρg
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Mg Mv–
RT
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δT
4T
------,–≈ ≈=

U

under consideration for measuring the levels of heavy
petroleum products: 

(1) Taking into account the temperature profile of
the air column above the liquid, it is possible to consid-
erably reduce the error of measurement. However, the
presence of convective flows of air with high vapor con-
tent restricts the accuracy of the level measurement to
the value of the order of 10 cm for a base of 10 m. 

(2) In tanks of large capacity with low levels of liq-
uid and sufficiently high temperature gradients, the
appearance of additional reflections is possible due to
the gas stratification in temperature and density of sat-
urated vapor above the liquid. 
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Rostislav Yur’evich Popov
(On His 70th Birthday)
On January 21, 2001, Rostislav Yur’evich Popov, a
well-known scientist working in ocean acoustics and
the head of a laboratory of the Andreev Acoustics Insti-
tute, turned seventy.

Popov graduated from the Physics faculty of Mos-
cow State University in 1954. His first job was at the
Publishing House for Foreign Literature where he held
710/01/4704- $21.00 © 20493
the position of a scientific editor in physics until 1962.
Then, he moved to the Acoustics Institute, which has
become his permanent place of work.

Popov’s scientific interests lie with the basic prob-
lems of ocean acoustics. Popov has studied the space–
time variability of sound fields in the ocean, the fluctu-
ations of tone and broadband signals transmitted
through long distances in the deep ocean and on the
coastal shelf, the characteristics of reverberation sig-
nals and the specific features of bottom reverberation,
the correlation between different kinds of signals, and
many other phenomena. He obtained a number of
important results that have found practical application.
In 1975, Popov defended his candidate dissertation. In
1981, he received the title of senior researcher. Popov
is the author of about 100 scientific papers and reports;
he supervises the work of postgraduate students and
applicants for scientific degrees.

Ocean acoustics is a science mainly based on the
results of experimental studies. Being one of the lead-
ing specialists in underwater acoustics, Popov headed
many oceanic expeditions that were carried out on the
research ships of the Acoustics Institute to the Atlantic,
Indian, and Pacific oceans. He prepared and supervised
the experimental studies of acoustic characteristics of
several ocean regions under large cooperative projects
of different organizations, such as the Vostok-81
project. Popov also supervised comprehensive research
projects, the results of which were used in the develop-
ment of new underwater acoustic systems.

Rostislav Yur’evich Popov has authority with his
colleagues as a competent scientist and a benevolent
and kind person. We wish him good health, success,
and further achievements in his creative work.

Translated by E. Golyamina
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Konstantin Dmitrievich Sabinin
(On His 70th Birthday)
November 26, 2000 marked the 70th birthday of the
well-known Russian oceanologist Konstantin Dmit-
rievich Sabinin, Doctor of Physics and Mathematics,
Professor, and head of the Oceanology Laboratory of
the Andreev Acoustics Institute.

Sabinin was born in 1930 to the family of an out-
standing biologist Dmitriœ Anatol’evich Sabinin. In
1953 he graduated with honors from Moscow State
University, as one of the first graduates of the Oceanol-
ogy department. Then he joined the staff of the depart-
ment and taught and conducted research under the
guidance of one of the founders of Russian oceanology,
Nikolaœ Nikolaevich Zubov. Sabinin received his Can-
didate of Science degree in 1960. His thesis was based
on oceanographic observations in the Arctic.

Starting from 1961 and continuing up to this day,
Sabinin’s scientific activities have been connected with
the Andreev Acoustics Institute where he heads the lab-
oratory founded on the suggestion by Leonid Maksimo-
063-7710/01/4704- $21.00 © 20494
vich Brekhovskikh for acoustic-oceanologic research. In
1978 Sabinin defended his thesis for the degree of Doc-
tor of Science, which was devoted to the properties of
internal waves in the ocean. It included the results of
multiple original full-scale observations in the Atlantic,
Pacific, and Indian oceans. Sabinin received the title of
Professor of Acoustics in 1988. During the past few
years, he has combined his job at the Acoustics Institute
with research activities at the Institute of Space
Research, Russian Academy of Sciences, where he is
developing new techniques of sea monitoring which
combine remote satellite and acoustical methods.

The major topic of Sabinin’s work for many years
was specifically internal waves in the ocean. However,
the area of his research interests was always very broad
and included the wave variability of the ocean, synoptic
eddies and lenses, processes on the shelf, various inter-
actions of waves, techniques of oceanic measurements,
and the influence of various wave motions on sound
propagation in the ocean. At the same time, acoustic
signals were considered by Sabinin as a powerful tool
for investigation of the ocean.

Almost from the very start of his research expedi-
tions in the ocean, Sabinin turned his attention to short
internal waves, which were on average hardly notice-
able and therefore escaped the attention of many
observers. Short internal waves have a nonlinear nature
and play an important role in the formation of the
appearance of the ocean. The work in this direction of
research coincided with the growth of interest in non-
linear waves in general and in nonlinear effects in oce-
anic motions in particular. Later on, observations on
short internal waves allowed him to reveal the relation-
ship between these waves and the currents and ther-
mocline structure in the ocean. A logical consequence
of these studies was the discovery and detailed descrip-
tion of intense nonlinear waves that arise under the
effect of tides in the Indian Ocean and have the charac-
ter of internal solitons. Short internal waves together
with internal tides considerably influence the propaga-
tion of acoustic signals in the ocean due to their rela-
tively large intensity and regular structure.

In the last decade, Sabinin has been giving more and
more attention to the application of acoustic methods to
the investigation and monitoring of the ocean. Under
his initiative, the research vessel Akademik Nicolaœ
Andreev took part in the first international global exper-
iment on acoustic thermometry of the ocean in 1990,
which was headed by Walter Munk. This experiment
001 MAIK “Nauka/Interperiodica”
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was the start of a long-term research program ATOC
(Acoustic Thermometry of the Oceanic Climate). Col-
laborating actively in the Arctic part of this program,
Sabinin has shown that using the acoustic halinometry
developed by him, it is possible to monitor the salinity
of the upper layer of icy seas, which is especially impor-
tant for the Arctic Ocean, where monitoring of this char-
acteristic (which is very important for the oceanic cli-
mate) by other methods is almost impossible.

Nowadays, using his vast knowledge of various
fields of oceanology and abundant experience in oce-
anic research, Sabinin is successfully developing a
complex monitoring of sea areas that combines acous-
tic, satellite, and traditional oceanographic measure-
ments into a unified system of observations on the state
of the sea medium and the processes in it.

Many of Sabinin’s publications are devoted to vari-
ous features of internal waves and other oceanic
motions. He realized his long-term desire to illustra-
tively explain the observed properties of internal waves
and processes in the ocean in the book Waves within the
Ocean (Gidrometeoizdat, 1992; in collaboration with
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
K.V. Konyaev). Seven of Sabinin’s students have
received the degrees of Candidate of Science under his
supervision, and three of his close collaborators
became Doctors of Science.

Sabinin is a cochairman of the seminar “Dynamics
of Natural Media.” He is a member of the Scientific
Council of the Andreev Acoustics Institute and the
qualification councils at the Acoustics Institute and
Moscow State University. He is a member of the
National Oceanographic Committee, the Russian
Acoustical Society, and the Editorial Board of the Mor-
skoœ Gidrofizicheskiœ Zhurnal (Marine Hydrophysical
Journal) of the National Academy of Sciences of
Ukraine. Sabinin collaborates actively with many for-
eign researchers and in particular with researchers from
the Woods Hole Oceanographic Institute (USA), where
he carried out long-term studies.

We wish Konstantin Dmitrievich Sabinin further
success in his creative work.

Translated by M. Lyamshev
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St. Petersburg Workshop on Computational 
and Theoretical Acoustics Held in 2000
by the Scientific Council on Acoustics
of the Russian Academy of Sciences
In 2000, the regular session of the St. Petersburg
workshop on computational and theoretical acoustics
of the Scientific Council on Acoustics of the Russian
Academy of Sciences took place. The information on
the previous sessions was published in Acoustical
Physics: 43, 575 (1997) and 46, 718 (2000). Below, we
briefly review the reports presented at the workshop in
2000.

Two reports by I.V. Andronov were devoted to wave
propagation along a narrow crack in an elastic plate in
contact with an acoustic medium. The author studied
the propagation of symmetric and antisymmetric waves
an showed that a symmetric wave exists at any param-
eters of the plate–medium system and at any frequen-
cies, whereas an antisymmetric wave is possible only
when the density of the acoustic medium is not too high
and only in a limited frequency range. The author con-
sidered the energy flows transferred by symmetric and
antisymmetric waves and also the forms of the plate
displacements corresponding to these waves.

The propagation of waves of different origin in
smoothly inhomogeneous stratified media was consid-
ered by A.V. Aref’ev. This study was based on the
space–time ray approach and the use of the two-scale
asymptotic expansion technique. Aref’ev studied sur-
face waves propagating along a free boundary of an iso-
tropic viscoelastic halfspace (the vector problem) and
high-frequency acoustic oscillations in a weakly non-
stationary acoustic waveguide (the scalar problem).
The author called the latter quasi-normal waves.
Aref’ev determined the factor describing the wave
attenuation along the ray for Love and Rayleigh waves
and derived the expression for their stray components.
He obtained the high-frequency asymptotic expansions
for quasi-normal waves of a surface oceanic waveguide
in the case of the violation of adiabatic conditions.

The report presented by V.S. Buldyrev and
N.G. Gel’freœkh was devoted to the study of the asymp-
totics of the scattered field in the insonified region in
the context of the problem of sound diffraction by a thin
elastic shell. The boundary condition for the sound
pressure was derived for the case of sound diffraction
1063-7710/01/4704- $21.00 © 20496
by a convex cylindrical shell described by the Kirch-
hoff–Love equations. The method of reference prob-
lems was used to obtain the formal asymptotic solution
in the insonified region. This solution contained a wave
associated with the propagation of longitudinal vibra-
tions along the shell. In his other report, V.S. Buldyrev
considered the equations with pseudo-differential oper-
ators in the theory of wave propagation and constructed
asymptotic solutions to such equations.

S.V. Romashkin studied the scattering properties
of an infinite periodic plane lattice of elastic cylinders
with the linear-slip boundary conditions between the
cylinders and the elastic medium. Such a model can be
used for simulating the scattering properties of a sys-
tem of inclusions in a medium when the interface
between them is not clearly defined. The problem on
the interaction of a longitudinal elastic plane wave
with such a lattice was solved by the method of sepa-
ration of variables. An infinite system of linear alge-
braic equations was obtained in a matrix form, which
included the matrix characterizing the state of the
interface. A numerical analysis of the transmission
and reflection factors was performed for different
combinations of the parameters of the lattice, the
interface, and the medium. The results of this study
can be used in the applied problems of nondestructive
testing of metal products.

M.A. Lyalinov considered the scattering of a steady-
state plane acoustic wave by the vertex of an arbitrary
pyramid (a regular trihedral cone) with the Dirichlet
boundary conditions at its faces. An integral transform
was used to separate the radial variable, and the
Dirichlet boundary problem was formulated for the
Laplace–Beltrami–type operator on a unit sphere con-
taining a hole made by an infinite cone. The main result
of this study is related to the explicit solution of the
problem on the diffraction by a sphere with a triangular
hole. At first, the author considered the axisymmetric
incidence of a plane wave and constructed the exact
solution to the problem for the spectral function. Then,
he discussed the generalization of the solution to the
case with a nonaxisymmetric incidence and a poly-
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hedral regular pyramid. A closed expression was pro-
posed for the scattering diagram of a diverging spheri-
cal wave originating from the pyramid vertex.

The report by V.D. Luk’yanov and G.L. Nikitin was
concerned with the solution of the problem on the
acoustic wave radiation by a spherical shell surround-
ing the vertex of a perfectly rigid infinite cone. The
shell separates two different acoustic media, which
occupy the space outside the cone. The oscillations that
occur in the system are excited by an external force
applied to the shell. An exact analytical solution of this
problem is derived, and on its basis, the directional pat-
terns of the acoustic radiation produced by the shell are
obtained. The dependences of the excitation coeffi-
cients of spherical harmonics on the frequency of the
driving force are calculated.

V.D. Luk’yanov considered the problem on the
acoustic wave excitation by thin elastic bodies and
obtained the energy relation that follows from the
energy conservation law and relates the characteristics
of the driving force applied to the body to the parame-
ters of the acoustic field generated by this body. To
obtain an identity of the type of the optical theorem, the
problem of wave radiation is replaced by the equivalent
problem on the scattering of specially selected waves
and then the energy conservation law is applied to the
scattering problem.

The report by É.P. Babaœlov was concerned with the
determination of the natural frequencies of a thin spher-
ical shell in a compressible medium for the first two
modes of vibration. The author determined the condi-
tions at which the natural vibrations of the shell are ape-
riodic in the absence of losses in both the shell material
and the surrounding medium.

The report presented by S.A. Nazarov and
I.V. Kamotskiœ was devoted to the edge effects in the
theory of thin plates and to the localization of eigen-
functions near the edges. The authors determined and
justified the asymptotic representations of the eigen-
functions localized in the vicinity of the edge of a thin
plate, or near a single point at the edge (away from the
aforementioned sets, the functions attenuate according
to the exponential law). These eigenfunctions are
closely related to the boundary layer phenomenon.
They appear when the region is of a trap type. Specific
examples were calculated for the Helmholtz equation
in a thin cylinder with a small perturbation of the lateral
surface; the Dirichlet boundary conditions were set at
the cylinder ends, and the Neumann conditions were set
at the edge.

E.L. Shenderov considered the diffraction of sound
by an elastic cylinder placed near an elastic halfspace.
The solution of the problem is based on a relation of the
Helmholtz integral equation type and on the use of the
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
Green’s function for an elastic halfspace. Such a func-
tion is represented in the form of a Sommerfeld integral
along a contour on the complex plane of the angles of
the wave incidence on the halfspace boundary. An inte-
gral equation is obtained for the distribution of the
sound pressure on the cylinder surface; this equation is
reduced to an infinite system of equations in the expan-
sion coefficients of the Fourier series expansion of the
aforementioned distribution. The results are valid for
the diffraction of cylindrical and plane waves. In addi-
tion, they describe the scattered field in the case of the
diffraction of a spherical wave when the transmission
and reception points are far from the cylinder and lie in
one plane that is perpendicular to the cylinder axis. The
author calculated the two-point scattering diagrams and
the backscattering diagrams as well as the frequency
characteristics of the backscattered wave amplitude.
The results show that the dependences of the scattered
wave amplitude on the angle of incidence and on fre-
quency exhibit an oscillatory behavior, which is
explained by the resonance properties of the cylinder
and by the interference of multiply scattered waves
between the cylinder and the plane.

The report presented by E.V. Ivanova was con-
cerned with high-frequency free vibrations of plates in
the Reissner-type theory. This theory is known to con-
tain three spectra of natural frequencies: one low-fre-
quency spectrum and two high-frequency ones.
Ivanova considered the high-frequency natural vibra-
tions of plates. Using an asymptotic analysis, she
showed that the changes that occur in the quantities
determining the stress–strain state of the plate in the
cases of high-frequency and low-frequency vibrations
are essentially different. In the case of high-frequency
vibrations, functions of the boundary-layer type are
absent, whereas other functions, which rapidly vary
with the spatial coordinates and penetrate through the
whole plate region, are present. An approximate formu-
lation of the problem on high-frequency natural vibra-
tions of a plate was proposed, this formulation contain-
ing only the functions that slowly vary with the spatial
coordinates. The proposed formulation of the problem
is of the fourth order in time and describes only the
high-frequency vibrations.

A.V. Pyshin obtained some strict solutions for the
forced vibrations of bounded rods and beams. He ana-
lyzed the possibility of an analytical solution of the
problem on the longitudinal vibrations of a rod with a
varying cross-section. He determined two classes of
dependences of the rod cross-section on the longitudi-
nal coordinate for which the differential equation
describing the longitudinal vibrations of the rod had a
solution representable in terms of elementary func-
tions. It was shown that, for a particular case of a rod
being a fusiform body of revolution, the differential
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equation describing its longitudinal vibrations can also
be solved in terms of elementary functions. The author
determined the eigenvalues of the problem on the lon-
gitudinal vibrations of a rod with free ends. He consid-
ered the problem on the forced longitudinal vibrations
of a fusiform rod with free ends under a concentrated
longitudinal force applied in an arbitrary cross-section
of the rod. The solution to the problem (the Green’s
function) was obtained in the form of an infinite series
expansion in eigenfunctions, and it was also repre-
sented in terms of elementary functions.
The participants of the workshop are grateful to the
Deputy Director of the Institute of Problems of
Machine Science of the Russian Academy of Sciences
D.A. Indeœtsev for his assistance in organizing the
workshop. We invite all those interested in the work-
shop to join in the next session.

D.P. Kouzov and E.L. Shenderov

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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The 8th International Workshop 
on Modern Acoustics—Nondestructive Evaluation
The 8th International Workshop on Modern Acous-
tics—Nondestructive Evaluation was held in Nanjing
(China) October 28–31, 2000. It was organized by Nan-
jing University and supported by the National Science
and Technology Ministry, the National Natural Science
Foundation, and other institutions from China, as well
as by foreign institutions and societies. Professor Shu-Yi
Zhang (China) and Dr. R.L. Thomas (USA) co-chaired
the workshop. Over 120 researchers and experts from
Belarus, Belgium, Great Britain, Germany, Canada,
China, Korea, Malaysia, Russia, Singapore, the United
States, the Republic of South Africa, and Japan took
part, and over 120 papers in physical acoustics, nonde-
structive evaluation, laser ultrasonics, photoacoustics,
medical acoustics, and other fields were presented.
Invited lecturers delivered over 30 lectures. Oral pre-
sentations and poster papers were also given.

Below we give a brief review of several papers
which characterize to a certain extent the workshop
agenda and its scientific level.

A paper by R. Wei (China), “Unity of Soliton and
Chaos in Faraday Wave Experiment,” presented the
results of numerical experiments characterizing the for-
mation of solitons and chaos in Faraday waves. A pos-
sibility of coexistence of solitons and chaos was dem-
onstrated. It was stressed that solitons and chaos are the
phenomena prevailing in the experiments with Faraday
waves.

W. Eisenmenger (Germany) presented a paper
“High Precision Acoustic Measurements in ESWL,
HIFU, and SBSL with the Fiber Optic Probe Hydro-
phone (FOPH)” that was devoted to the description of a
fiber-optic probe hydrophone (FOPH) and its applica-
tions to extracorporeal shock-wave lithotripsy (ESWL),
highly focused ultrasound (HIFU), and single bubble
sonoluminescence (SBSL). The characteristics of a
fiber-optic probe hydrophone were compared with the
parameters of a probe hydrophone manufactured using
a PVDF piezoelectric polymer film. The fiber-optic
hydrophones developed by Eisenmenger provide an
opportunity to measure an acoustic field with a spatial
resolution of ±0.05 mm within the frequency band up
to 60 MHz. They have a broad dynamic range and can
be used to measure shock waves in fluids with ampli-
tudes up to 5 atm.
1063-7710/01/4704- $21.00 © 0499
A paper by L. Sui, G. Miao, and R. Wei (China)
“The Surface Wave and Transport in Oscillated Granu-
lar Materials” aroused considerable interest. The paper
presents the results of an experimental investigation of
the surface instability in a granular medium and of the
transport of its particles (grains) under the effect of
vibrations in an oscillating medium. A phenomenon of
grain transfer upwards, along an oblique plane, under
the effect of vibrations was discovered. A diagram in
the f–Γ phase plane, which describes the transport of
granular materials, was presented. Here, f is the vibra-
tion frequency, Γ = 4π2f 2A/g is the dimensionless accel-
eration, A is the vibration amplitude, and g is the accel-
eration of gravity. It was found that the rate of grain
transport increases with the growth of the acceleration Γ.
The dispersion of the velocity of a surface wave in
quartz sand was measured and compared to the disper-
sion of surface waves in water and viscous oil. It was
demonstrated that the viscosity coefficient in a granular
medium increases with the increase of vibration fre-
quency, whereas it is frequency independent in the
aforementioned liquids. It was also found that the value
of the dimensionless acceleration Γ increases with the
growth of vibration frequency at a constant depth of the
granular medium, the surface wavelength increases
with the increase in depth at a constant vibration fre-
quency, and the value of the dimensionless acceleration
is almost independent of the surface wavelength. The
authors explained the discovered phenomenon theoret-
ically.

Q. Cheng and M. L. Qian (China) delivered the lec-
ture “Laser-Interferometric Technique for the Acoustic
Pressure in the Spherical Resonant Field.” Pressure at
the center of a spherical vessel filled with a liquid and
performing resonant spherically symmetric oscillations
was measured. These measurements may be important
for the investigation of sonoluminescence arising in the
process of ultrasonic cavitation. The study is especially
important in the case of the collapse of a single cavita-
tion bubble. A laser interferometric technique was used
to measure the pressure without violating the field pat-
tern. The technique was based on the observation of the
refraction index of light in a liquid within the region of
varying pressure. Measurements and calculations were
conducted. The numerical and experimental data were
compared with the experimental results obtained by
2001 MAIK “Nauka/Interperiodica”
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using a miniature hydrophone made on the basis of a
piezoelectric film.

The paper “Study of the Characters of Acoustic
Fields Radiated by a Bifrequency Focused Ultrasonic
Transducer” by H. Shi and Z. Shang (China) presented
the results of theoretical and experimental studies of an
acoustic field in water that was generated by a radiator
operating at two frequencies simultaneously and pro-
vided the focusing of sound waves. The calculations
were performed under the assumption that the electro-
mechanical coupling within the radiator is absent; i.e.,
the radiation and focusing of sound fields at two fre-
quencies is performed as if by two identical indepen-
dent transducers positioned in the same region of the
liquid and operating at different frequencies. The calcu-
lations and experiments were conducted for the fre-
quencies 400 and 800 kHz in water. A good agreement
of theoretical and experimental results was observed.
For example, the calculated value of the position of the
focal region was z = 4.2 cm, and the experimental one
was z = 4.4 cm. The diameter of the focal region was
0.61 cm. The spectrum of the sound field in the focal
region was studied. As should be expected, the compo-
nents of the combination frequencies caused by the
nonlinear interaction of sound waves at basic frequen-
cies were observed along with oscillations at two basic
frequencies 400 and 800 kHz. The importance of inves-
tigating the acoustic field in the case of simultaneous
focusing of sound waves at two frequencies was
stressed. The reason for this is the fact that the efficiency
of two-frequency ultrasonic cavitation is 2–5 times
higher than the cavitation efficiency in the case of a sin-
gle frequency. This fact is important for medical appli-
cations including the problems of the control of malig-
nant growths and their destruction.

H. D. Liang, M. Halliwell, and P. N. T. Wells (Great
Britain) presented a paper “Continuous-Wave Ultra-
sonic Tomography in Nondestructive Testing.” The
paper describes a technique for nondestructive testing
of defects in rotating parts of machines in the case of
the excitation of ultrasonic vibrations in them by prob-
ing signals of large duration. Such signals can be
treated as continuous tone signals. It was noted that the
scattering of an ultrasonic wave by the defects located
in various parts of a tested object is accompanied by
different Doppler frequency shifts, and this effect
serves as the distinguishing feature. It is possible to plot
the pattern of the distribution of defect locations
according to the trajectories of the frequency shifts of
ultrasonic signals, and, from the scattered signal ampli-
tude, one can judge the defect size.

A paper by X. Liu, Z. Liu, and C. Li (China) “The
Application of Solitons in the Ultrasonic Testing Signal
Processing” shows the possibility of using a soliton as
a testing signal in ultrasonic nondestructive testing. It is
noted that, in the case of ultrasonic testing of parts
made of coarse-grained materials, difficulties arise
because of the very small signal-to-noise ratio, which is
governed by the high noise level due to the scattering of
the testing signal by the structural inhomogeneities of
the material. It is demonstrated that the application of a
soliton as a testing signal leads to the increase of the
signal-to-noise ratio and to a considerable decrease in
the noise influence. This provides an opportunity to
increase the efficiency of the flaw detection. The
increase in the signal-to-noise ratio is connected with
the specific features of the soliton propagation in a
granular medium. Results of numerical simulations and
experiments are presented.

In his paper “Time-Varying Diffraction Tomogra-
phy: A New Form of Acoustic Imaging,” W. S. Gan
(Singapore) developed a theory for a new type of ultra-
sonic tomography in nondestructive testing. A soliton is
used as a probing signal. The soliton signal has an
advantage over the commonly used signals, since a
soliton propagates to relatively longer distances with-
out distortions. The theory is based on the solution of a
nonlinear Schrödinger equation. The time variability of
the function describing the probing signal is taken into
account. The solution of the inverse problem is per-
formed using the reconstruction algorithm based on the
solution of the Marchenko equation. It is possible to
obtain an exact solution describing the reconstructed
wave field. In this case, it is also possible to reconstruct
the wave field arising in the presence of a time-varying
object in the medium. The theory describes the pro-
cesses in four dimensions (space–time scales). The
developed theoretical approach is realized in the exper-
iments on monitoring the work of a human heart.
A method for obtaining a solitonlike probing signal
with the help of an array of ultrasonic transducers was
discussed.

Three papers presented the results of the application
of the wavelet analysis to signal processing in ultra-
sonic nondestructive testing. A paper “Wavelet-Trans-
form Analysis of Ultrasonic Guided Waves in Pipes
with Defects” by D. Ta, Y. Liang, and Z. Liu (China)
can be an example. Pipes are the main element of struc-
tures and devices used in oil, chemical, and other indus-
tries. Flaw detection in pipes is a very important issue.
Two waves (modes) can propagate in a pipe at moderate
frequencies. The signals propagating in a pipe by dif-
ferent modes have different group velocities. The sig-
nals reflected by defects are nonstationary and can
propagate with different group velocities. The applica-
tion of the wavelet analysis provides an opportunity to
analyze the nonstationary signals reflected by the
defects and to determine the defect positions.

Several papers considered various problems of laser
ultrasonics and optoacoustics. In the paper “Laser and
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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Particle Beam Ultrasonics” by L. M. Lyamshev (Rus-
sia), the generation of ultrasound in condensed media
by harmonically modulated or pulsed laser and pene-
trating radiation, i.e., beams of particles (electrons, pro-
tons, heavy ions, and synchrotron radiation), and also
by single high-energy particles, was considered. The
basic laws governing the formation of acoustic signals
and directivity patterns of acoustic sources excited by
laser radiation and particle beams were discussed. The
influence of the particular features of radiation absorp-
tion in a medium on the characteristics of acoustic sig-
nals and on the formation of sound sources was consid-
ered. Laser optoacoustic diagnostics of the radiation
structure of an unstable cavity laser was discussed.
A possibility of the detection of dark matter particles
with the help of space-borne acoustic sensors was con-
sidered. The dark matter constitutes up to 90% of the
substance in the Universe, but it is still “invisible” to
researchers. There is only a so-called circumstantial
evidence of its existence.

A paper by M. Somekh, M. Clark, and S. D. Sharp-
les (Great Britain) “Laser Ultrasonic Microscopy” dis-
cussed a possibility for the development of laser-acous-
tic microscopy grounded on the laser excitation and
focusing of surface acoustic waves. According to the
authors, laser-acoustic microscopy using surface waves
will provide an opportunity to increase the sensitivity,
selectivity, and noise immunity of ultrasonic micros-
copy. Examples of applications of the suggested laser
ultrasonic microscopy technique to the investigation of
the structure of various objects were given.

M. Mackenzie (Great Britain) described some
important applications of laser pulsed photoacoustics
in his paper “Applications of Pulsed Photoacoustics.”
These applications concern medicine and environmen-
tal monitoring. In the first case, a noninvasive optoa-
coustic technique for blood tests was described. The
technique is based on the study of the characteristics of
an acoustic signal excited optically in the tissues of a
human finger inserted into a special photoacoustic cell.
It is possible to determine the glucose content in blood
and monitor in real time the dynamics of its variations.
The second example concerned the monitoring of
hydrocarbons in water.

The paper “Interfacial Acoustic Waves in Gas and
Liquid excited by the Surface Transient Grating
Method” by H. Bill, E. Ivakin, E. Chernukho, V. Kry-
lovich, A. Rubanov, and A. Sukhodolov (Belarus) pre-
sented the results of theoretical and experimental stud-
ies of acoustic waves at the solid–gas and solid–liquid
interfaces. Acoustic waves were excited by a thermal
grating produced by laser radiation in a solid at the
interface. Calculations and experiments were con-
ducted for acoustic waves in a gas (from 2 to 6 MHz)
and liquids (from 6 to 15 MHz).
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
A paper by K. Van de Rostyne, C. Glorieux, W. Lau-
riks, and J. Thoen (Belgium) “Laser Ultrasonics Gener-
ated Interface Waves for Soft Matter Investigation” was
devoted to a similar problem. Rayleigh and Scholte
waves can be excited by laser radiation at the solid–gas
and solid–liquid interfaces. Rayleigh waves propagate
mainly in a solid, while Scholte waves propagate in a
liquid. If the parameters of a liquid and a solid are close
to each other, the characteristics of the Scholte waves
become sensitive to the changes in the parameters of
the media, as do the Rayleigh waves in a solid. The sur-
face waves were excited by laser pulses. The major
attention was given to the study of acoustic waves and
the media parameters in the case when surface acoustic
waves were excited at the interface between a liquid
and a “soft” solid.

Two papers on medical acoustics should be men-
tioned. A paper by T. Li (Japan) “Theoretical Modeling
and Error Analysis of Measurement of the Artery Elas-
ticity” presented a theory of propagation of acoustic
oscillations in a tube simulating an artery. The propaga-
tion velocity of oscillations in a tube was studied as a
function of the pressure inside the tube, its diameter,
wall thickness, and the elasticity modulus of the tube
material. The purpose of the study was to estimate
when one should expect changes in the artery (tube)
parameters in the case of atherosclerosis, when the
thickness of artery walls and the value of arterial pres-
sure change depending on the stage of the illness (ath-
erosclerosis).

W. T. Shi, F. Forsberg, J. B. Liu, and B. B. Goldberg
(USA) presented the paper “Nonlinear Imaging Using
Subharmonic Signals from Microbubble Contrast
Agents.” According to the authors, a new method for
ultrasonic imaging of objects is suggested. Its basis is
the utilization of microbubbles introduced into an
object, testing of the object with bubbles by a two-fre-
quency ultrasonic signal, and the detection of the sub-
harmonic signal arising due to the nonlinear scattering
of ultrasonic waves by a resonant bubble. Multiple
experiments were conducted, including experiments on
dogs. The experiments demonstrated high efficiency of
the new method of ultrasonic imaging. This fact is
determined in particular by the high signal-to-noise
ratio. It was noted that the suggested method can be
effective for monitoring small-volume flows of blood in
deep biological tissues.

A paper by Y. Yan, D. Zhang, and X. Gong (China)
“Acoustic Nonlinear Parameter Tomography of Biolog-
ical Tissues in the Reflection Mode” described the tech-
nique of nonlinear acoustic tomography using a
reflected mode or reflected waves, which was sug-
gested by the authors. The acoustic nonlinear paramet-
ric tomography was described in the literature for the
first time in 1980. It involved the observation of
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changes of the nonlinear parameter of a medium (a bio-
logical tissue) in the transmission mode, i.e., in an
acoustic wave of finite amplitude transmitted through
an object. The authors of this paper considered the pos-
sibility of developing the nonlinear parameter tomogra-
phy of a biological tissue using a reflected finite-ampli-
tude wave. They also took into account the fact that a
biological tissue is a layered medium. The results of a
theoretical analysis and experiments using samples of
biological tissues (pig liver, tongue, and adipose tis-
sues) were presented.
The workshop was well organized. Excursions
around some places of interest in Nanjing were offered.
The participants appreciated greatly the efforts under-
taken by the organizers and, first of all, by Prof. Shu-Yi
Zhang, the cochairperson of the workshop and Director
of the Institute of Acoustics of Nanjing University.

L. M. Lyamshev

Translated by M. Lyamshev
ACOUSTICAL PHYSICS      Vol. 47      No. 4      2001
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