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Abstract—The influence of magnetic configurations with magnetic hills or wells on the parameters of a plasma
column and turbulence characteristics were studied in experiments in which the plasma was created and heated
by a microwave beam at the second harmonic of the electron cyclotron frequency. Calculations show that, for
〈β〉  = (1.5–2) × 10–3, a configuration with a magnetic well takes place and the Mercier criterion for stability of
the ideal MHD modes is satisfied. It is shown that the compensation of the Shafranov shift of the plasma column
by a transverse (vertical) field (Bv/B0 = 5 × 10–3) leads to a configuration with a magnetic hill in which the Mer-
cier stability criterion is violated in the central region of the plasma column. It is experimentally shown that the
stored plasma energy in the magnetic-hill configuration is reduced by one-half in comparison with the mag-
netic-well configuration. In the case of a magnetic hill, the energy of fluctuations increases both in the plasma
core and near the separatrix, and the quasi-regular components of the wavelet spectra grow. When the Shafranov
shift is compensated only partially (Bv/B0 ~ 3 × 10–3) and the system is near the instability threshold, the stored
plasma energy and the central electron temperature are somewhat higher, and the radiation power of fast elec-
trons from non-Maxwellian tails at the second harmonic of the electron gyrofrequency decreases. It is found
that the wavelet spectra of fluctuations change, the coherence coefficient for spectral components increases, and
the radial electric field near the separatrix decreases. © 2000 MAIK “Nauka/Interperiodica”.
1. In recent years, considerable efforts have been
made to experimentally investigate the influence of tur-
bulent processes on plasma confinement in magnetic
confinement systems [1], in particular, in stellarators
(see, e.g., [2–6]). However, for the most part, either
attention was focused on the global confinement and
stability for the purpose of attaining maximum β (this
problem in itself is of extreme importance but is not
connected directly with the turbulence characteristics
of the central part of the plasma column) or the experi-
ments were limited to studying turbulent processes in
the edge plasma. Here, we attempt to determine the
extent to which MHD activity (both at the edge and in
the core of the plasma column) affects plasma confine-
ment. To control MHD activity, we applied an external
vertical magnetic field Bv , which was used to correct
the position of the plasma column in view of the
Shafranov shift of the magnetic axis and the entire sys-
tem of magnetic surfaces because of the finite β effect.
This approach is based on the theoretical prediction
that, for specific values of β in the L-2M stellarator, the
vertical magnetic field can change a magnetic configu-
ration with a magnetic well to a configuration with a
magnetic hill in which the stability criterion for ideal
1063-780X/00/2601- $20.00 © 0001
MHD modes is violated in the central region of the
plasma column. Such a formulation of the problem
made it necessary to carry out measurements of the
dependences of the spectral and statistical characteris-
tics of plasma fluctuations on Bv along with parallel
measurements of macroscopic parameters of the
plasma, such as the stored plasma energy W and elec-
tron temperature Te.

In addition, it was necessary to measure the fluctua-
tion parameters independently in the core and at the
edge of the plasma. It is obvious that a comparative
analysis of the dependences obtained will allow us to
draw some inferences about the influence of MHD
activity on the plasma confinement, keeping in mind
that ideal MHD modes are excited in the core region
and, as shown in [5], resistive-ballooning modes are
excited at the edge. Finally, note that wavelet analysis
has been used to process the experimental data. This
technique, which was developed in the last few years,
allows one to obtain information on the spectra and
coherence of various spectral components with a high
time resolution [7]. The configurations of magnetic sur-
faces for the L-2M experimental conditions were
2000 MAIK “Nauka/Interperiodica”
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obtained by studying the plasma equilibrium using the
numerical procedure described in [8].

2. The main characteristics of the L-2M stellarator
are described quite comprehensively in [9]. The stellar-
ator has a high magnetic shear and a planar geometrical
axis. The polarity is l = 2, the number of helical periods
is N = 14, the major radius of the torus is R = 100 cm,
and the mean radius of the vacuum separatrix surface is
rs = 11.5 cm. The vacuum angle of the rotational trans-
form is i = 0.185 on the magnetic axis and 0.78 near the
separatrix. The magnetic axis of the vacuum magnetic
surfaces is shifted inward from the toroidal axis by
2.5 cm (R = 97.5 cm).

A plasma was created and heated with a 75-GHz
(λ = 4 mm) gyrotron. The experiments described below
were carried out at a power of 180–240 kW and dis-
charge duration of 10–12 ms. For a longitudinal mag-
netic field of B0 = 1.34 T, the electron cyclotron reso-
nance (ECR) at the second harmonic occurred at R =
100 cm. A linearly polarized microwave was launched
through a horizontal port of the vacuum chamber from
the low-field side. The plasma radius in these experi-
ments was controlled by a graphite limiter installed in
the horizontal port on the low-field side. The limiter
height was 70 mm, and its edge was shaped so as to
coincide with the last magnetic surface of the 11.5-cm
mean radius. The limiter was usually located 12 mm
inward from the separatrix surface and, in some cases,
this distance was increased to 30 mm. The plasma
parameters typical of these experiments were the fol-
lowing: the mean density was  ≈ (1–2) × 1013 cm–3,
and the central electron temperature was Te(0) =
0.7−0.8 keV. The thermal energy (energy content) of
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Fig. 1. The position of the instability domain in the (r, Bv)
plane (mean radius of the magnetic surface versus the cor-
recting vertical field) for 〈β〉  = 0.002 and a parabolic pres-
sure profile. In the hatched region, the Mercier stability cri-
terion is violated.
the plasma, W, was derived from diamagnetic measure-
ments. The electron temperature Te and its radial profile
Te(r/rs) were measured by a soft X-ray foil technique. In
addition, the Te(r/rs) profile was measured from the
intensity of emission at the second harmonic of the
electron cyclotron frequency at frequencies of 77–
80 GHz. We also recorded the emission from fast elec-
trons at a frequency of 71 GHz in the ECR region (tak-
ing into account the strong relativistic shift of their
gyrofrequency). The plasma radiation power was mea-
sured by a pyroelectric detector.

Fluctuations of the electron density in the hot
regions were studied by the phase-contrast technique
(small-angle scattering) using a scattered ordinary
wave that arose due to the splitting of linearly polar-
ized microwaves used for ECR heating of the plasma.
In this case, the amplitude of the density fluctuations
was proportional to the amplitude of the radiation fluc-
tuations [10].

The radial and poloidal structure of fluctuations and
turbulent particle transport at the plasma edge was stud-
ied with the help of movable Langmuir probes
described in detail in [5].

3. Applying the magnetic field Bv orthogonal to the
equatorial plane of the stellarator, we can shift the mag-
netic surface along the major radius.1 The inward shift
decreases the helical modulation of the field (i.e., the
ripple amplitude) and the trapped-particle density. The
outward shift leads to the formation of a magnetic well
in the central region of the plasma column (r/rs = 0.5 for
ε = Bv/B0 = 0.005). As the shift increases, the magnetic
well deepens and broadens. A similar effect occurs as a
result of a finite plasma pressure [8] because of the
Shafranov shift of magnetic surfaces.

Ideal MHD modes at the plasma edge near the sep-
aratrix in the L2-M stellarator are stabilized by the
magnetic shear. Resistive modes are not stabilized by
the shear. The formation of a magnetic well due to the
outward shift of the magnetic surfaces (caused by either
the vertical field or the Shafranov shift) leads to the sta-
bilization of both the ideal and resistive MHD modes in
the central region. If the vertical field is applied in such
a way as to decrease the Shafranov shift caused by the
plasma pressure, the depth of the magnetic well
decreases and the stability region becomes narrower.
Figure 1 shows the instability domain for ideal MHD
modes, which is calculated taking into account both the
finite plasma pressure and the vertical magnetic field.
The vertical field leads to the shift of the magnetic con-
figuration toward smaller values of the major radius,
thus compensating for the Shafranov shift. Figure 2
shows the results of calculations of the magnetic sur-
faces (with the finite plasma pressure taken into
account) for the case when the vertical field is absent
and for the case Bv = –40 G, when the plasma column

1 The initial shift of the magnetic axis in the vacuum magnetic con-
figuration is 2.5 cm for Bv /B0 = 0.005 (Bv ≈ 70 G).
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Fig. 2. Magnetic surfaces for 〈β〉  = 0.0025 and Bv = (a) 0 and (b) –40 G.
is near the instability threshold for ideal MHD modes.2

It is seen from Fig. 1 that, for Bv = –40 G, there is a nar-
row region in which the Mercier stability criterion [11]
is violated (r/rs ≈ 0.5). For Bv/B0 > –0.002, the plasma
column is stable because of the effect of self-stabiliza-
tion of ideal MHD modes.

Hence, for the vertical field compensating for the
Shafranov shift of the plasma column, one would
expect an increase in the level of density fluctuations in
the central region of the plasma column and deteriora-
tion of plasma confinement.

The plasma stability against MHD modes depends
on the radial profile of the plasma pressure [8]. By
shifting the resonance region across the plasma col-
umn, it is possible to change the temperature and pres-
sure profiles. Ray-tracing calculations using the proce-
dure described in [12] yield a peaked power deposition
profile with a 2–3-cm diameter for on-axis heating and
a hollow profile in the shape of a 2–3-cm-thick ring,
centered on the axis of the plasma column, for off-axis
heating. The power deposition densities in this case dif-
fer by one order of magnitude, attaining 40 W/cm3 for
on-axis heating. Calculations show that the total
absorption coefficient is about 0.86–0.98 and varies
only slightly as the resonance region shifts. The trans-
port rates and the profiles of the plasma parameters
were also calculated by the neoclassical transport
model with allowance for turbulent transport at the
plasma edge [13]. These calculations showed that vari-
ations in the power density by more than one order of
magnitude weakly affect variations in the mean and
maximum values of the temperature and the energy
confinement time.

2 The negative values of Bv correspond to the inward shift of the
magnetic configuration, and the positive values correspond to the
outward shift.
YSICS REPORTS      Vol. 26      No. 1      2000
4. Let us consider in more detail the results of the
measurements of the plasma parameters and turbulence
characteristics for different values of the vertical field
Bv . The measurements were performed for four field
values Bv = 0, –40, –70, and +70 G. The Mercier stabil-
ity criterion is satisfied for Bv = 0 and +70 G. The value
Bv = –40 G lies near the instability threshold, so that
MHD modes may become unstable in a certain region
of the plasma. At Bv = –70 G (Bv/B0 = –0.005), the cri-
terion is violated and the instability region expands
over the entire cross section of the plasma column
(Fig. 1).

Figure 3 shows the electron temperature profiles
obtained from the measurements of soft X radiation by
the foil technique for different positions of the resonant
point along the major radius. When the resonant point
lies on the axis of vacuum magnetic surfaces (B0 (R =
100 cm) = 1.3 T), the temperature profile in the core
plasma flattens. When the resonant point is shifted out-
ward, the temperature maximum is shifted outward by
2–3 cm from the vacuum magnetic axis, which can be
attributed to the effect of the Shafranov shift of the
magnetic axis. The flattened profile in the case when
the resonant point lies on the vacuum magnetic axis is
also explained by the Shafranov shift, keeping in mind
that the heating region has the shape of a ring. The par-
tial compensation of the Shafranov shift at Bv = –40 G
somewhat smoothes the temperature profile. It is seen
from the results presented that variations in the power
density caused by the shift of the resonant point result
in variations of the maximum temperature by a factor of
no more than 1.5, which agrees with calculations using
the neoclassical model [13].

The measurements of the temperature by the inten-
sity of emission at the second harmonic of the electron
cyclotron frequency (77 GHz), shifted by 2.7% from
the gyrotron frequency, show that the temperature
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Fig. 3. Electron temperature profiles for different values of the toroidal field Bv = (a) 0 and (b) –40 G. The positions of the resonant
points for the corresponding values of the toroidal field are marked on the abscissa.
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Fig. 4. Electron temperature measured by the intensity of
radiation at a frequency of 77 GHz, as a function of the tor-
oidal field.
increases with shifting the resonant point outward
(Fig. 4), which is qualitatively consistent with the
Shafranov (outward) shift of the magnetic axis. When
the Shafranov shift is partially compensated, the out-
ward shift of the resonant point is accompanied by a
decrease in the electron temperature (for B0 > 1.35 T).

It is seen from Fig. 5 that an increase in the toroidal
field (i.e., the outward displacement of the resonant
point) results in a nearly fourfold increase in the radia-
tive temperature of fast electrons.3 The compensation
of the Shafranov shift almost completely cancels the
dependence of the radiative temperature of fast elec-
trons on the position of the resonant point. The increase
in the radiative temperature of the fast electrons with
increasing the outward displacement of the resonant
point is apparently explained by the fact that the
Shafranov shift is accompanied by an increase in both
the trapped-particle density and the heating-power den-
sity. The compensation of the Shafranov shift results in
less efficient generation of fast electrons because of a
decrease in the power deposition density. (Note that our

3 The radiative temperature was calculated by the radiation power
of fast electrons within the receiver band assuming that the
plasma radiation is blackbody radiation.
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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previous experiments demonstrated that the radiative
temperature of fast electrons strongly increases with
the heating power [14].)

The higher value of the temperature measured by
the intensity of radiation at the second harmonic of the
electron cyclotron frequency as compared to that mea-
sured by the foil technique can be explained by the fact
that the former was determined in the initial stage of the
discharge, 1–2 ms after the electron density reached a
value of 1013 cm–3, whereas the latter was measured 5–
7 ms after the beginning of the discharge, when the
electron density grew to (1.2–1.5) × 1013 cm–3. It was
shown in [14] that the central temperature varies nearly
in inverse proportion to the mean electron density.

A greater inward shift of the magnetic axis (Bv =
−70 G) leads to an appreciable decrease in the maxi-
mum temperature (by a factor of 1.5), whereas the out-
ward shift (Bv = +70 G) reduces it only slightly (to 0.9).

Applying the vertical field strongly affects the
plasma energy (Fig. 6). For Bv = –40 G and Bv = 0,
there is little sense to talk about the change of the
plasma energy within the scatter in diamagnetic sig-
nals. At the same time, for Bv = –70 G, a significant
decrease in the plasma energy (to 150–200 J) is
observed in comparison to that for Bv = 0 and –40 G
(~300–320 J). A significant difference is also observed
in the time behavior of the plasma energy at various
values of the vertical field. For Bv = 0 and –40 G, the
plasma energy measured by the diamagnetic signal
reaches its steady-state value 4–5 ms after the begin-
ning of the discharge, whereas for Bv = –70 G, it
reaches a maximum value of 260–280 J in 4–5 ms and
then decreases to 180–200 J at the end of the discharge.
The time behavior of the mean density and radiation
loss is also different in these cases. For Bv = 0 and –40 G,
the electron density increases from 0.9 × 1013 to
(1.5−1.6) × 1013 cm–3 and the radiation power reaches
80–90 kW at the end of the discharge. For Bv = –70 G,
the density grows more rapidly, reaching (1.8–1.9) ×
1013 cm–3 at the end of the discharge and the radiation
power increases to 130 kW, which comprises 75% of
the heating power. At a vertical field of +70 G, when the
magnetic surfaces are shifted outward and a magnetic
well forms in the central region (r/rs ≤ 0.5) of the initial
magnetic configuration, the density increases from
1013 to 1.5 × 1013 cm–3 and the radiation power is less
than 70 kW. In this case, the plasma energy reaches its
steady-state value (~240 J) 4–5 ms after the beginning
of the discharge.

Hence, the strongest decrease in the energy and the
central temperature is observed for Bv = –70 G, i.e.,
when the Mercier stability criterion is violated.

5. The characteristics of turbulent plasma fluctua-
tions were measured under the same experimental con-
ditions as for the measurements of the energy, temper-
ature, and other macroscopic parameters of the plasma.
The measurements of the plasma-density fluctuations
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
show that the fluctuation energy in the plasma core
increases by a factor of 2 when the vertical field
changes from Bv = 0 to –70 G. In this case, the intensity
of noise grows continuously during the discharge. The
wavelet spectra of turbulent noise are shown in Fig. 7.
They are obtained for the same instants with averaging
over an interval of 1–3 ms. In the absence of a vertical
field, we observed a spectrum that dropped off contin-
uously at high frequencies and contained broadband
quasi-coherent oscillations at frequencies of about
50 kHz and low-intensity bands near 10 and 20 kHz.
For Bv = –40 G, a redistribution of noise energy over
the spectrum is observed. The maximum of broadband
quasi-coherent oscillations shifts to 60 kHz, and a sin-
gle broad band with a maximum near 15 kHz is seen at
low frequencies. For Bv = –70 G, the fraction of the
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Fig. 5. Radiative temperature of fast electrons, measured
from the intensity of radiation at a frequency of 71 GHz, as
a function of the toroidal field.

Fig. 6. Plasma energy measured from diamagnetic signals.
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energy of quasi-harmonics in the total noise energy is
substantially increased as compared to the previous
case. Two broad bands with peaks of spectral density at
7.5 and 25 kHz are clearly seen in the spectrum. The
increase in the energy of quasi-harmonics with increas-
ing the vertical field is also confirmed by the shape of
the time correlation functions: along with the central
peak, an appreciable excess of the correlation coeffi-
cient above the random noise is recorded at long corre-
lation times (0.1–1 ms).

Measurements of the bicoherence coefficient also
show that the nonlinear interaction of oscillations
changes when the vertical field is applied: the bicoher-
ence coefficient increases from 0.05 at Bv = 0 to 0.09–
0.12.
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Fig. 7. Wavelet spectra of the heating radiation transmitted
through the plasma.

Fig. 8. Wavelet spectra of the floating potential of a probe in
the edge plasma (r/rs = 0.86).
The wavelet spectra of fluctuations in the floating
potential in the edge plasma, which are shown in Fig. 8,
also demonstrate well-pronounced frequency bands.
Compensation of the Shafranov shift increases the
amplitude of fluctuations over the entire frequency
spectrum for the plasma radii 1 ≥ r/rs ≥ 0.86. Both the
plasma potential and the radial electric field decrease in
this case (Fig. 9). For Bv = –40 G, the radial and poloi-
dal coherence coefficients turn out to be higher than for
Bv = 0 (Fig. 10).

A comparison of the results of measuring the scat-
tering of the heating radiation and the electric-field
fluctuations in the edge plasma shows that the inward
shift of the plasma results in enhancement of turbulence
in both the core and edge plasma. Quasi-harmonic
structures are formed and a coupling appears between
the central and peripheral regions of the plasma col-
umn. Hence, under conditions when the Mercier stabil-
ity criterion for ideal MHD modes is violated, we
observe an increase in the energy of fluctuations in the
central region of the plasma together with energy redis-
tribution in the oscillation spectra and the formation of
quasi-harmonic structures. The instability conditions
for resistive MHD modes at the plasma edge are ful-
filled for any value of the vertical field, whereas the
ideal MHD modes are stable at the plasma edge
because of the high value of the shear. Nevertheless, an
increase in the fluctuation level and the energy redistri-
bution over the oscillation spectrum are also observed
at the plasma edge when the ideal MHD modes are
unstable in the central region of the plasma. This is evi-
dence that instabilities in the central region of the
plasma affect the edge plasma.

6. A comparison of the results of measuring the
energy and plasma turbulence in the presence of
the vertical field shows that the noise energy increases,
the turbulent spectra are regularized, and the stored
plasma energy decreases at the values of the vertical
field at which ideal MHD modes are unstable according
to the Mercier criterion. However, the reduction of the
plasma energy may also be attributed to an increase in
the electron density and energy loss because of a more
intense interaction with the chamber wall at the inner
circumference of the torus, especially for Bv = –70 G.
In this case, because of the imperfect fabrication and
assembly of the chamber, the vacuum separatrix mag-
netic surface probably intersects the wall even when the
limiter is 1.2 cm inside the separatrix. Therefore, it is
necessary to carry out an additional analysis to clear up
how the limiter and the shift of magnetic surfaces due
to the vertical field or the plasma pressure affect the
heating conditions and plasma confinement.

Our previous experiments showed that introducing
the limiter in the absence of a vertical field decreases
both the stored plasma energy and the rate at which the
electron density and radiation grow [9]. Measurements
with thermocouples showed that, as the limiter is
inserted into the plasma, the fraction of energy
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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absorbed by the limiter increases, reducing both the
recycling at the walls and the plasma radiation. How-
ever, the growth of the density and radiation during the
discharge usually does not decrease the plasma energy,
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Fig. 9. Floating potential of a vertically oriented probe as a
function of radius.
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because the diamagnetic signal remains constant up to
the end of the heating pulse even when the limiter is
removed from the separatrix. Under these conditions,
the plasma energy is nearly proportional to the square
of the plasma radius. The fact that the diamagnetic sig-
nal remains constant while the plasma radiation grows
indicates that the radiative loss does not contribute sub-
stantially to the energy balance. It is likely that, in this
case, the radiative loss occurs at the plasma edge and
affects only a narrow peripheral region (the effective
radius of the plasma depends only slightly on the size
of this region). When the diamagnetic signal falls dur-
ing the discharge, it is likely that the effective cross sec-
tion of the plasma decreases because of a decrease in
the central temperature accompanied by the growth of
the plasma density and expansion of the radiative-loss
region.

The shift of the magnetic surfaces by applying the
vertical field changes the depth to which the limiter is
inserted into the plasma and, consequently, changes the
ratio between the particle and heat fluxes onto the wall
and the limiter, which explains the change in the growth
of the density and radiation. It is evident that the depth
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to which the limiter is inserted into the plasma
decreases when the magnetic surfaces shift inward and
increases when they shift outward. As a result, the
mean plasma radius changes. From calculations using
the model [8], we obtain that when the limiter is located
1.2 cm inward from the separatrix surface the mean
radii of the last closed magnetic surfaces for the values
of the vertical field of +70, 0, –40, and –70 G are equal
to 8.6, 9.7, 10.5, and 10.8 cm, respectively (for 〈β〉  ≈
0.2%). Correspondingly, it was expected that, com-
pared to the case Bv = +70 G (when the radius is mini-
mum), the plasma energy in the last three cases should
be higher by a factor of 1.27, 1.49, and 1.56, respec-
tively. In fact, the measurements show that, for Bv = 0,
the plasma energy is higher by a factor of 1.25. For
Bv = –40 G, the energy increases by a factor of 1.38,
which is somewhat lower than the predicted value. For
Bv = −70 G, the maximum of the diamagnetic signal
increases insignificantly (by a factor of 1.17) and drops
to 0.83 at the end of the heating pulse. Thus, the shift of
the discharge conditions to the instability region for
ideal MHD modes results in a pronounced deviation
from the proportionality between the plasma energy
and the square of the plasma radius.

A somewhat different dependence of the plasma
energy on the vertical field is observed when the limiter
is located 3 cm inside the vacuum separatrix. In this
case, the mean radius of the last closed magnetic sur-
face for Bv = +70 G is equal to 6.2 cm and that for Bv =
–70 G is equal to 8.8 cm; i.e., the corresponding plasma
cross-section areas should differ by a factor of 2.
Indeed, we observe an increase in the plasma energy,
but by no more than a factor of 1.3. However, for Bv  =
–70 G and a limiter depth of 3 cm, the energy turns out
to be the same as for 1.2 cm, although one would expect
a reduction in the plasma energy by a factor of about
1.3 (according to calculations, the mean radii of the last
magnetic surfaces are 8.8 and 10.2 cm, respectively).
Calculations show that, for smaller radii, the pressure
growth leads to the stabilization of MHD modes and
the size of the instability region is reduced. Actually,
the measurements of scattering of the heating radiation
show that the fluctuation amplitude decreases as the
plasma cross-section area decreases.

An increase in the heating power to 220–240 kW at
Bv = –40 G leads to an increase in the plasma density to
(1.8–2.0) × 1013 cm–3 and in the radiation loss to 130–
140 kW; i.e., these quantities increase to the same lev-
els as for the discharge at Bv = –70 G and a heating
power of 180–190 kW. However, at a higher power, an
increase in the density and radiation loss does not lead
to a decrease in the plasma energy. In contrast, the
plasma energy increases to 500 J; i.e., the increase in
the power by even a quarter results in a twofold
increase in the plasma energy. The difference is that, for
Bv = –70 G, ideal MHD modes should be unstable over
the entire plasma cross section, except for the edge,
whereas, for Bv  = –40 G, instability should only occur
in a narrow region. There exists another peculiarity of
the plasma confinement that confirms the substantial
influence of the increase in the plasma density and radi-
ative loss on the plasma energy at a power of 220–
240 kW and Bv = –40 G. When the limiter depth
changes from 3 to 1.2 cm, the plasma energy increases
by a factor of 1.33 (from 375 to 500 J), i.e., nearly pro-
portionally to the cross-section area (the mean radius of
the boundary surface increases from 8.8 to 10.5 cm).
Note that such an increase in the plasma energy occurs
in spite of the fact that the radiation loss increases from
100 to 130–140 kW.

Hence, the analysis of the influence of various fac-
tors on plasma confinement shows that the lowest
energy is observed when the instability threshold for
ideal MHD modes is substantially exceeded over the
entire plasma cross section, except for the edge.

7. In conclusion, we summarize the main results of
the study. When the resonance region shifts along the
major radius, the stored plasma energy remains
unchanged to within the measurement error, although
the temperature profile in the plasma core (r/rs ≤ 0.5)
varies. The inward shift of the magnetic surfaces
caused by the vertical field that partially compensates
the Shafranov shift due to the finite plasma pressure
leads to a smoothing of the temperature profiles and the
suppression of emission from fast electrons.

The inward shift of the magnetic surfaces violates
the stability criterion for ideal MHD modes over the
entire plasma cross section, except for the edge region.
In this case, a decrease in the plasma energy and the
central electron temperature and an increase in the
mean electron density and radiative loss are recorded.
By analyzing the scattering of the heating radiation, it
is found that the fluctuation amplitude and the fraction
of quasi-harmonic components in the fluctuation spec-
trum in the central region of the plasma column double.
At the same time, an increase in the fluctuation level
and a redistribution of the energy over the fluctuation
spectrum are observed in the edge plasma. Presumably,
when the instability threshold for ideal MHD modes is
exceeded over the entire cross section (except for the
edge region), a decrease in the plasma energy is related
to plasma turbulence, which plays a decisive role in
reducing the plasma lifetime in a stellarator.
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Abstract—The dynamics of a capillary discharge is studied to achieve optimum conditions for the guiding of
ultrashort intense laser pulses. A dynamic regime is revealed in which, after a short transient process, the
discharge plasma is in dynamic and thermal equilibrium. Such plasma configuration is stable against MHD
perturbations. It is shown that the radial inhomogeneity of the discharge plasma composition can provide
the improvement of the focusing properties of a plasma waveguide. The radius of the region where electromag-
netic radiation is localized is governed by a contact discontinuity between the plasma that initially fills the chan-
nel and the plasma that is produced due to ablation of the capillary wall material. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Ultrashort laser pulses with intensities on the order
of 1018–21 W/cm2 [1, 2] are widely used in studies on the
higher harmonic generation, X-ray lasers, nuclear
fusion, and new methods of charged particle accelera-
tion [3–5]. In most applications, conditions should be
created for both focusing of laser radiation to a small
spot of radius r0 and transportation of the laser pulse

over many Rayleigh lengths (lR = π /λ, where λ is the
wavelength of laser light) without diffraction spread-
ing.

In the case of the laser wake-field accelerator
(LWFA) [3, 4, 6], it is necessary to provide transporta-
tion of the laser pulse in an underdense plasma over dis-
tances on the order of the acceleration length lacc ≈
(c/ωpe)(ω0/ωpe)2 without significant spreading. Here,
ωpe = (4πnee2/m)1/2 is the Langmuir frequency and ω0 is
the carrier frequency of laser radiation. The ratio

ω0/ωpe ~ , where ne is the electron plasma density,
should be as large as ≈10–100. On the other hand, if one
needs to get into the regime with a fairly high accelera-
tion rate, this ratio should not be too large, because the
electric field amplitude in a wake wave is proportional

to . Also, in order for the particles not to slip out of
the acceleration phase in the model of unlimited wake-
field acceleration, which can be realized in a nonuni-
form plasma with a density profile properly chosen [7],
laser pulses should be guided over distances longer
than lacc.

The diffraction spreading of laser pulses can be pre-
vented by either the self-focusing of high-power elec-
tromagnetic radiation in an underdense plasma [8, 9] or
the guiding of the laser pulse in a narrow channel (ini-
tially empty or prefilled with a plasma) [10]. The possi-

r0
2

ne
–1/2

ne
1 2/
1063-780X/00/2601- $20.00 © 20010
bility of the laser-pulse guiding due to relativistic self-
focusing and the electron acceleration in a relativistically
self-guided channel were demonstrated in [9] and [11],
respectively. This regime can be attained only with
laser light intensities above Pcr ≈ 16.5 (ω0/ωpe)2 GW.
The guiding of 2-TW 1-µm laser pulses can be
achieved if the electron density is higher than ne >
1019 cm–3. However, the guiding in such regimes can be
accompanied by the onset of various instabilities. It is
natural to expect that, instead of a regular wake field,
irregular Langmuir oscillations will be generated, as
was demonstrated by particle-in-cell simulations [12].

The laser-pulse guiding and the excitation of the
wake field with a regular structure can be provided in a
plasma-filled channel created in a dielectric (such a
channel can also be produced in a plasma). As a result,
the efficient acceleration of charged particles can be
achieved [12]. The experimental demonstration of the
laser-pulses guiding in a plasma waveguide formed
near the axis of the capillary discharge was reported
in [13].

Here, we present the results of MHD simulations
aimed at determining the optimum conditions for the
laser-pulse guiding and studying the influence of the
radial inhomogeneity of the discharge plasma composi-
tion on the properties of a plasma waveguide. The laser-
pulse guiding in capillary discharges is important for
the generation of wake fields with regular structures
and efficient acceleration of charged particles.

2. PLASMA WAVEGUIDE PARAMETERS

We write out the expressions for the acceleration
length lacc and the effective radius rw of the region in
which electromagnetic radiation is localized in a
000 MAIK “Nauka/Interperiodica”
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plasma waveguide with a parabolic electron density
profile ne(r) = ne(0) + (0)r2/2:

(1)

(2)

We assume that the channel radius R0 is larger than rw

and that the critical density ncr defined by the condition
ωpe = ω0 is higher than ne(0). In this case, the transverse
dimension rw of the region where electromagnetic radi-

ation is localized is proportional to [ne(0) / (0)]1/4,
where de = c/ωpe.

Conditions appropriate for the laser-pulse guiding
can also be reached in plasma waveguides with a step-
like radial electron density profile. If the plasma density
in the region r < r1 corresponds to ωp0 = (4πe2ne0/m)1/2

and, at distances larger than r1 from the axis of the sys-
tem, the Langmuir frequency is equal to ωp1 =
(4πe2ne1/m)1/2, where ne0 < ne1, then a laser pulse is radi-
ally localized in a region whose characteristic dimen-

sion r1 satisfies the condition r1 > c/(  – )1/2.

For lasers operating at wavelengths of 1 µm, it is
necessary to use waveguides in which r1 is on the order
of 10 µm (for plasma channels with parabolic density
profiles, we have rw ≈ 10 µm). The electron density at
the waveguide axis should be on the order of ≈1019 cm–3.
For CO2 lasers operating at wavelengths of 10 µm, it is
necessary to use waveguides with r1 on the order of
100 µm (this corresponds to rw ≈ 100 µm for plasma
channels with parabolic density profiles). In this case,
the electron density at the waveguide axis is on the
order of ≈1017 cm–3 (see the discussion in [14]).

Below, we will show that waveguides with the
parameters just mentioned can be produced in capillary
discharges. Simulations of the dynamics of capillary
discharges used to create an X-ray laser [15] revealed
regimes in which the plasma parameters are close to
those required for the guiding of laser pulses. Note that
smooth plasma density profiles with a local minimum
of the electron density on the channel axis are typical of
the late (but before the plasma starts to recombine)
stages of the capillary discharge dynamics. Since the
plasma dynamics in the capillaries show very compli-
cated dependence on the wall material, the plasma
composition inside the channel, and the parameters of
the external electric circuit [15, 16], Bobrova et al. car-
ried out a special investigation of the dynamics of such
discharges. One of the main objectives of our study is
to optimize the parameters of capillary discharges that
can be used to guide laser pulses.

ne''

lacc
λ

2π
------

ncr

ne 0( )
-------------

3/2

,=

rw λ R0( )1/2 ncr

2π2
ne 0( )

----------------------
1/4 ne 0( )

ne'' 0( )R0
2

--------------------
1/4

.=

de
2

ne''

ωp1
2 ωp0

2
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The quality of a plasma waveguide can be character-
ized by the ratio

(3)

where ne(rw) is the electron density at the boundary of
the region in which an electromagnetic wave is local-
ized and ne(r = 0) is the electron density at the capillary
axis. In experiments [13], h was apparently no higher
than several percent, because, for a nearly parabolic
electron density profile (which increases markedly near
the capillary wall), the diameter of the region where the
electromagnetic energy is localized was almost one
order of magnitude smaller than that of the capillary
channel. In investigating capillary discharge dynamics
numerically, Bobrova et al. [17] were faced with a sim-
ilar situation. For plasma waveguides with a small rel-
ative depth of the plasma density well, the nonlinear
effects are insignificant if a2 < h, where a = eE/meω0c is
the dimensionless wave amplitude. That is why we
need to study how to increase the value of h for plasma
waveguides in capillary discharges.

One of the possible ways to increase the parameter
h is to use the radial inhomogeneity of the discharge
plasma composition. Such an inhomogeneity is typical
of discharges in capillary channels prefilled with a
plasma whose elementary composition differs from
that of the capillary wall. In the course of ablation and
ionization of the wall material [15, 16], a cylindrical
boundary forms between the initial and ablated plas-
mas. In the absence of diffusion, this boundary can be
regarded as a contact discontinuity. Changing the com-
position of the gas that originally fills the capillary
channel, the gas density, and other discharge parame-
ters makes it possible to control both the radial position
of the contact discontinuity inside the channel and the
ratio between the electron densities on both sides of the
discontinuity.

Let us estimate this ratio under the natural assump-
tion that the pressure and the electron and ion tempera-
tures, Te and Ti, are all continuous at the discontinuity.
As will be shown below, this situation is typical of the
capillary discharges under consideration, because they
develop on time scales long enough for local dynamic
and thermal (due to heat conduction) equilibria to
establish. Let us denote the degree of ionization on both
sides of the contact discontinuity by z1 and z2 (sub-
scripts 1 and 2 will refer to the physical quantities on
different sides of the discontinuity). At the discontinu-
ity, the pressure balance condition can be written as

(4)

and the electron densities on both sides of the disconti-
nuity are equal to

(5)

h
ne r rw=( ) ne r 0=( )–

ne r 0=( )
-----------------------------------------------------,=

z1ni1Te ni1Ti+ z2ni2Te ni2Ti,+=

nem zmnim m 1 2,=( ).=
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Let the subscript 1 refer to the quantities on the inner
side of the discontinuity. Then, the above formulas
yield the following estimate of h:

(6)

For example, for z1 = 1 (a capillary channel is prefilled
with pure deuterium), z2 = 3, and Te = Ti, we have
h = 50%. Increasing Ti/Te in this example to 2 gives
h = 80%. Both of these values are much higher than
those attained in capillary discharges in which the
effect of the plasma-composition homogeneity was not
used.

3. PHYSICAL MODEL

The physical process that has a major impact on the
dynamics of the capillary plasma is the ablation of the
wall material under the heat flux from the plasma to the
wall. The ablated material, being heated and ionized,
forms a plasma with high electrical conductivity, which
leads to a significant redistribution of the electric cur-
rent between the plasma that initially fills the capillary
channel and the ablated plasma. In our model, the chan-
nel can be prefilled with either ionized or nonionized
gas and the discharge plasma may contain both ionized
and nonionized components. We study the dynamics of
a capillary discharge using the two-temperature one-
fluid MHD model in a one-dimensional approximation,
which is natural due to the large length-to-radius ratio
of the capillary channel.

The set of dissipative MHD equations used here was
described in our previous papers [15, 16]. Here, we
only present the assumptions under which they were
derived. We take into account all dissipative processes
in both ion and electron plasma components, in partic-
ular, the Nernst and Ettinghausen effects. The expres-
sions for the dissipative coefficients and the rate of heat
transfer between ions and electrons were taken from
[18], where the familiar set of Braginskii equations [19]
was generalized to the case of a plasma with a large
mean charge number of ions. As in [18], we take into
account the difference between the Coulomb loga-
rithms λee and λei for electron–electron and electron–
ion collisions, respectively, and the contribution of neu-
tral atoms to the electron–ion collision frequency at low
temperatures when z < 1.

The ion plasma component is assumed to be unmag-
netized. In the equation of state and the equation for the
degree of ionization, the approximation of local ther-
modynamic equilibrium is used separately for the elec-
tron and ion components. For the mean ion charge
number z > 1, the ionization state is determined from
the Raizer approximation and the mean-ion model. For
1 < z < Z/2, where Z is the atomic number of the chem-
ical element under consideration, the average ioniza-
tion potential is determined from the Sommerfeld for-

h
z2 z1⁄ 1–

z2 Te Ti⁄( ) 1+
---------------------------------.=
mula in the Thomas–Fermi model for an ion shell. For
Z/2 ≤ z ≤ Z – 1, the formula for the hydrogen-like ion-
ization potential with allowance for the screening of the
ion electric field by (Z – z – 1) electrons is used. The
hydrodynamic description can be applied to a noniso-
thermal plasma only when the electron density is not
too low. Consequently, we restrict ourselves to consid-
ering plasmas in which the degree of ionization z
exceeds a certain value z0. The simulations reported
below were carried out with z0 = 10–6. In the range
z0 ≤ z ≤ 1, we used the simplified Saha formula that
takes into account only neutral and singly ionized
atoms. The free electron gas was assumed to be ideal.

The radiation energy losses were described using a
simple model in which the Rosseland mean free path,
corresponding to absorption due to bremsstrahlung and
photoionization, was estimated from the Zel’dovich–
Raizer formula [20].

In simulations of plasma–wall interaction, the wall
material was regarded as a cold high-density neutral
gas. We assumed that the specific heat of evaporation of
the wall material is much less than the specific internal
energy of the plasma inside the channel. In the region
of neutral gas (where the density is high and the tem-
perature is low), the plasma electric conductivity was
assumed to be negligible. Unlike in [15, 16], the basic
set of equations used here accounts for the effects of ion
heat conduction.

Electron density fluctuations driven by possible
MHD instabilities can break the regular structure of a
plasma wave excited by a laser pulse and can prevent a
proper acceleration process. Consequently, it is neces-
sary to consider such dynamic regimes of the discharge
that are free of MHD instabilities. Let us describe one
way of suppressing MHD instabilities in a well-con-
ducting capillary discharge. Various MHD instabilities
are known to disrupt classical Z-pinches after the first
compression. At the same time, a sufficiently symmet-
ric first compression is achievable in many experi-
ments. We expect that the capillary discharge is free of
MHD instabilities for the regimes in which the electric
current in the plasma has already decayed after the first
plasma compression. In this case, the plasma density
profile can remain parabolic. Such a dynamic regime of
the capillary discharge can be attained by switching off
the electric current at a certain time. Note that
Z-pinches are stable during the first compression and
the following expansion up to the time at which the
pinch radius becomes maximum. Consequently, if the
electric current is switched off during the plasma
expansion, after the shock wave has converged on the
axis, then no MHD instabilities will occur. Even if
MHD instabilities have developed during the current
pulse, they are damped after the pulse is switched off.
For the current pulse to be aperiodic, the external elec-
tric circuit formed by the capacity of the source, C, and
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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Fig. 1. Results from numerical simulation of the dynamics of a capillary discharge in a channel with a diameter of 5.6 mm prefilled
with deuterium at a density of 3.5 × 10–7 g/cm3 for the discharge current amplitude I0 = 30 kA and characteristic decay time of the
current t0 = 23 ns: (a) contours of the decimal logarithm of the electron density (expressed in cm–3), (b) contours of the electron
temperature (expressed in eV), and (c) contours of the electric current flowing inside a region of radius r (in units of I0).
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the inductance of the circuit itself, L, should be supple-
mented by the resistance

(7)

in which case the current pulse is shaped as

(8)

where t0 = (LC)1/2 = t1/2/π and t1/2 is the half-period of the
current pulse in the absence of Ohmic resistance.

To describe the dynamics of a capillary discharge,
we introduce the dimensionless parameter

(9)

where tc is the time for which the shock wave reaches
the channel axis. This parameter represents the ratio of
the typical plasma time scale to the characteristic time
of the external electric circuit [16]. The shock wave
velocity in the channel should be on the order of the
Alfvén speed, vA = B/(4πρ0)1/2, where the magnetic
field is B = 2I0/cr0. For a constant value of tc/t0, the tra-
jectories of plasma elements in the (r–t) plane are found
to be self-similar. MHD simulations [16] showed that
the dynamics of shock waves in different capillary dis-
charges with the same value of tc/t0 remain the same.
This indicates that, under the condition tc /t0 ~ 1, the
plasma in experimental devices with parameters similar
to those considered below should be free of MHD
instabilities. We also chose the pulse to be short enough
so that MHD instabilities have no time to develop.
Then, after switching off the electric current, the
plasma remains stable. Below, we assume that the
parameter tc/t0 is constant. After switching off the cur-
rent, the capillary plasma is slowly cooled by the sur-

R 2 L C⁄( )1/2,=

I t( ) te
t /t0–

,∝

tc

t0
---

πρ0( )1 2/
cR0

2
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Fig. 2. Time evolution of the electron density ne and elec-
tron temperature Te at the channel axis for the same dis-
charge parameters as in Fig. 1.
rounding cold ablated plasma, so that the typical
plasma density and temperature profiles with a nearly
constant pressure will be established.

4. CHANNELS WITH A PARABOLIC DENSITY 
PROFILE

We carried out an extensive series of simulations of
capillary discharges prefilled with deuterium in order to
determine conditions that are close to the optimum
ones and ensure the formation of waveguides for the
guiding of laser pulses with wavelengths on the order of
1 and 10 µm. In presenting the numerical results, we
start with the regimes in which the jump in the electron
density at a contact discontinuity separating the deute-
rium plasma from the ablated plasma lies far beyond
the region of radius rw [see (2)], where electromagnetic
radiation is localized. Numerical simulations of the dis-
charge dynamics in a deuterium-filled capillary chan-
nel allows us to optimize the electron density at the
channel axis and the radius rw of the region in which an
electromagnetic wave is localized. A capillary channel
was filled with preionized deuterium at a uniform den-
sity and temperature. The dimensionless parameter tc/t0
in (9) was set to be on the order of unity. Note that fill-
ing the channel with hydrogen or deuterium is prefera-
ble, because the energy losses through gas ionization
do not cause laser pulse depletion, although, in such
channels, the condition tc/t0 ~ 1 is far more difficult to
satisfy.

In the version of a CO2 laser, the channel radius was
R0 = 2.8 mm, the initial deuterium density was ρ0 =
3.5 × 10–7 g/cm3, and the electron temperature was
1.0 eV. The capillary walls were made of polyacetal
((CH2O)n). The wall material was modeled by a gas
with the mean atomic number Z = 7, mean mass num-
ber A = 14, and initial density ρ0 = 1 g/cm3. The electric
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Fig. 3. Radial profiles of the electron density ne and electron
temperature Te at t = 250 ns for the same discharge parame-
ters as in Fig. 1.
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with deuterium at a density of 4.5 × 10–5 g/cm3 for the current amplitude I0 = 10 kA and t0 = 10 ns: (a) contours of the decimal
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Fig. 5. Time evolution of the electron density ne and elec-
tron temperature Te at the channel axis for the same dis-
charge parameters as in Fig. 4.

current amplitude in the external circuit was I0 = 30 kA,
the characteristic decay time t0 of the discharge current
being 23 ns.

In Fig. 1, the evolution of the capillary discharge is
shown. Figures 1a and 1b present contours of the deci-
mal logarithm of the electron density and contours of
the electron temperature, respectively, and Fig. 1c pre-
sents contours of the electric current flowing inside a
region of radius r. In the first stage (about 100 ns), the
capillary plasma experiences relaxation oscillations
accompanied by the ablation and ionization of the wall
material. Then, the plasma density and temperature
approach their quasisteady profiles and the plasma
experiences residual small-amplitude acoustic oscilla-
tions. A contact discontinuity separating the deuterium
plasma that initially fills the capillary channel from the
plasma that is produced via ablation of the capillary
wall material is distinctly seen in Fig. 1a. Originally,
the discontinuity travels immediately behind the shock
front. After the shock wave has been reflected from the
channel axis, the contact discontinuity stops converg-
ing at a distance of about 1 mm from the axis and, then,
starts to expand toward the capillary wall. At the time
t ≈ 100 ns, the plasma ablated from the wall causes the
discontinuity to reverse direction: it starts to converge
slowly toward the axis. Near the capillary walls, the
electron density decreases, because the temperature
and the degree of ionization of the wall plasma both fall
off and its mass density grows toward the wall. After
the time t = 100 ns, the electric current vanishes and the
capillary plasma can be regarded as being in quasi-
equilibrium. Figure 2 shows the time evolution of the
electron density and electron temperature at the chan-
nel axis. The electron density is seen to be nearly con-
stant at the axis for about 100 ns after the time t =
150 ns, and the electron temperature decreases slowly.
Note that, for the electron density and electron temper-
ature to evolve in such a smooth fashion, the governing
characteristics of the current pulse, channel radius, and
initial gas density in the channel should be adjusted
accordingly. If these parameters were chosen inconsis-
tently, we observed relaxation oscillations in the course
of which the plasma density and plasma temperature
changed precisely on the time scale required for the
shock wave to propagate over a distance of about the
channel radius. In this case, the plasma density might
change by an order of magnitude. Since the character-
istic time required for a laser pulse to traverse a dis-
tance of about 10 cm (the supposed length of the chan-
nel) is 3 ns, we can assume that, as the pulse propagates
through the plasma, the plasma distribution inside the
channel is quasisteady. Consequently, such channels
can also be used to guide laser pulses. However, the
properties of the excited wake field will be very sensi-
tive to the stage at which the laser pulse enters the chan-
nel, which is difficult to predict. This circumstance is
unfavorable for LWFA operation. Hence, the parame-
ters of capillary discharges should be adjusted in a
proper manner in order to avoid undesirable dynamic
regimes with relaxation oscillations.

Figure 3 shows radial profiles of the electron density
and electron temperature at the time t = 250 ns. The
electron temperature is seen to decrease gradually from
the channel axis toward the wall. A contact discontinu-
ity between deuterium and ablated plasmas is at a dis-
tance r = 1.8 mm from the axis. In a deuterium plasma,
the electron density profile is parabolic, with a mini-
mum (ne = 2.0 × 1017 cm–3) at the center. The radius of
the region in which electromagnetic radiation is local-
ized is rw = 170 µm [see (2)] and the electron tempera-
ture is Te = 18 eV. We emphasize that rw is a function of

the time-dependent quantity /ne. In these simula-

tions, the quantity /ne is on the order of unity and
there exists the time interval (≈50 ns) within which it
changes insignificantly.

Now, we turn to the description of the results of sim-
ulations for the guiding of 1-µm laser pulses in capil-
lary discharges. This series of numerical experiments
was carried out with the channel radius R0 = 0.23 mm,
initial deuterium density ρ0 = 4.5 × 10−5 g/cm3, and
electron temperature 1.0 eV. The electric current in the
external electric circuit was computed from equation
(8) with I0 = 10 kA and t0 = 10 ns.

Figure 4 illustrates the results from tracing the evo-
lution of a capillary discharge numerically. The time
over which the shock wave converges to the discharge
axis and then is reflected from it is fairly short. There-
after, the plasma column experiences oscillations,
which are damped as time elapses. After the time t =
100 ns, the plasma is in quasi-equilibrium and the elec-
tron density and electron temperature slowly decrease.
From Fig. 4c, we can see that, in this stage, no current
flows in the plasma. A contact discontinuity between

ne''R0
2

ne''R0
2
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Fig. 6. Results from numerical simulation of the dynamics of a capillary discharge in a channel with a diameter of 0.6 mm prefilled
with deuterium at a density of 3.5 × 10–8 g/cm3 for the current amplitude I0 = 0.3 kA and t0 = 20 ns: (a) contours of the decimal

logarithm of the electron density (expressed in cm–3), (b) contours of the electron temperature (expressed in eV), and (c) contours
of the ion temperature (expressed in eV).
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deuterium and ablated plasmas stays near the capillary
wall, without being displaced toward the center. This
indicates that, after the transient process has come to an
end, the ablation of the wall material stops almost com-
pletely. Figure 5 shows the time evolution of the elec-
tron density and electron temperature at the channel
axis. At the time t = 100 ns, the electron density profile
is parabolic, with a minimum (ne = 2.0 × 1019 cm–3) at
the axis. The radius of the region where electromag-
netic radiation is localized is rw = 20 µm and the elec-
tron temperature is Te = 10 eV.

5. IMPROVEMENT OF THE PARAMETERS
OF A PLASMA WAVEGUIDE BY MEANS 

OF THE RADIAL INHOMOGENEITY 
OF THE PLASMA COMPOSITION 

IN A CAPILLARY DISCHARGE

We also simulated the dynamics of capillary dis-
charges with the purpose of forming a plasma
waveguide at the expense of a jump in the electron den-
sity at a contact discontinuity rather than due to a para-
bolic electron density profile near the discharge axis.
Let us consider the dynamics of a capillary discharge in
a channel with a diameter of 0.6 mm prefilled with deu-
terium at a density of 3.5 × 10–8 g/cm3, the initial
plasma temperature being Ti = Te = 1 eV. The electric
current amplitude in the external circuit was I0 = 0.3 kA
and the characteristic decay time of the discharge cur-
rent was 20 ns.

5
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Fig. 7. Time evolution of the electron density ne and elec-
tron and ion temperatures, Te and Ti, at the channel axis for
the same discharge parameters as in Fig. 6.
The results from simulating the evolution of this dis-
charge are illustrated in Fig. 6, which shows contours of
the decimal logarithm of the electron density (Fig. 6a)
and contours of the electron and ion temperatures
(Figs. 6b, 6c). We can see that a weak shock wave con-
verges from the capillary wall toward the discharge
axis, is reflected from an axial region at the time of
about t = 15 ns, and then starts to expand. A contact dis-
continuity between deuterium and ablated plasmas,
which is clearly seen in Figs. 6a and 6c, initially travels
behind the shock front. After the discontinuity has met
the expanding shock front, it continues to move inward
but at a lower speed. After the time t = 50 ns, the electric
current in the external circuit vanishes and the capillary
plasma can be assumed to be in quasi-equilibrium. In
this case, the contact discontinuity converges very
slowly toward the center. Figure 7 shows the time evo-
lution of the electron density and the electron and ion
temperatures at the discharge axis. After t = 50 ns, the
central electron density is seen to grow slowly: it dou-
bles over 50 ns. The central electron temperature
becomes maximum at the time at which the shock wave
arrives at the axis. Then, the electron temperature
decreases and, after t = 50 ns, it changes only slightly.
As the shock wave is reflected from the axis, the central
ion temperature grows very rapidly. It continues to
grow after the reflected shock wave has passed and
becomes maximum at t = 50 ns. Then, the ion temper-
ature starts to fall off slowly. Note that, after the electric
current has been damped, the difference between the
electron and ion temperatures at the channel axis
becomes maximum at about t = 50 ns. Figure 8 shows
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Fig. 8. Radial profiles of the electron density ne and electron
and ion temperatures, Te and Ti, at t = 50 ns for the same dis-
charge parameters as in Fig. 6.
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radial profiles of the electron density and the electron
and ion temperatures at t = 50 ns. A contact discontinu-
ity between deuterium and ablated plasmas is seen to
lie at a distance r = 0.1 mm from the channel axis. The
electron density in a deuterium plasma is nearly con-
stant and is equal to ne = 1.0 × 1017 cm–3. The radius of
the region where electromagnetic radiation is localized
is rw = 100 µm, which coincides with the distance from
the axis to the discontinuity. At t = 50 ns, the electron
density at the discontinuity is higher than that at the
axis by h = 75%. The electron temperature decreases
gradually from the axis toward the wall, being nearly
constant in the region between the axis and the discon-
tinuity. The ion temperature is constant inside the chan-
nel formed by the contact discontinuity, and, outside
the channel, it falls off. Note that the radial profile of
the ion temperature has a break at the discontinuity.

This example of the dynamic regime of a capillary
discharge shows that the radial inhomogeneity of the
discharge plasma composition may serve as a means
for forming higher quality plasma waveguides in the
axial regions.

6. CONCLUSION

We have investigated the dynamics of capillary dis-
charges using a one-dimensional MHD code in order to
predict optimum regimes for the guiding of ultrashort
intense laser pulses.

We have revealed a dynamic regime in which the
discharge plasma is in dynamic and thermal equilib-
rium after the termination of a short transient process.
In the initial stage, the plasma is rapidly compressed
(pinched) and a shock wave is reflected from the dis-
charge axis. After this transient process has come to an
end (when all of the MHD instabilities have been
damped), the plasma is in dynamic and thermal quasi-
equilibrium and is slowly cooled off. In this stage, the
electric current and Ampére force are both equal to
zero. Inside the channel, the plasma pressure is uniform
and the electron density profile is parabolic with a min-
imum at the axis, where the plasma temperature is
maximum.

Since such a plasma configuration is stable against
MHD modes, small perturbations of the plasma density
are damped. Consequently, we have shown that, in cap-
illary discharges, it is possible to achieve conditions
that are optimum for the guiding of ultrashort intense
laser pulses. In a certain range of the parameters of a
capillary discharge, laser pulses can be guided in a
region whose transverse dimension is about ten wave-
lengths of the laser light.

One way of improving the focusing properties of
plasma waveguides is to exploit the radial inhomogene-
ity of the discharge plasma composition. Such dis-
charges can be initiated in a capillary channel prefilled
with a plasma whose elementary composition differs
from that of the material of the capillary wall. The
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
radius of the region in which electromagnetic radiation
is localized is governed by a contact discontinuity
between the plasma that initially fills the capillary
channel and the plasma ablated from its wall. The
example we have investigated shows that laser pulses
can be guided in a cylindrical region whose transverse
dimension is governed by the position of a contact dis-
continuity and was found to be 100 µm for CO2 lasers.
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Abstract—An MHD model of the implosion of a dense hot plasma column is developed. Because of a better
description of radiation transport, this model has a higher spatial resolution compared to the previously devel-
oped, simpler, two-temperature model. The new model is applied to calculating the load (a single metal wire or
an X–pinch, in particular, a heterogeneous corona–core structure with a sharp boundary) of a nanosecond high-
voltage generator. An algorithm of the type previously used to solve the problem in the two-temperature model
is supplemented by the iteration procedure for calculating the quasisteady radiation under the assumption that
the plasma is optically thick. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For fifty years, experiments with pinches, which
have occupied a prominent place in plasma studies,
have generated a lot of rather sophisticated problems.
A combination of complicated processes (for many, it
is even difficult to make standard physical estimates)
allows few analytical solutions and should be studied
by numerical methods. The dense-pinch experiments
make it especially important to model the implosion of
radiating plasma loads in terawatt-power generators.

In [1], we proposed a radiative–collisional MHD
model of a hot dense axially symmetric plasma column
aimed at calculations of a single exploding wire. The
numerical algorithm was based on the simple free-point
method developed by D’yachenko [2] and further
improved by Jach [3]. This algorithm combines the
Euler and Lagrange approaches and, along with a high
calculation rate, ensures the possibility of calculating
strong deformations, describes well the distortion of
free boundaries, and simplifies the multifluid plasma
simulation. However, the use of this algorithm is
accompanied by the generation of specific numerical
instabilities (especially, angular ones). Moreover, the
scheme is nonconservative and imposes rather rigid
restrictions on the time step. The physical drawback of
the model is the assumption that there is complete equi-
librium between the plasma electrons and radiation; in
an optically thick plasma, this equalizes the tempera-
tures, Te = Tγ. At the same time, as will be shown below,
even in the inner plasma region, the temperature differ-
ence | |Tγ – Te, i | is comparable with |Te – Ti |. In the outer
(transparent) region, the electron–radiation system
becomes even farther from equilibrium. As the grid size
decreases, the grid transparency increases. As a result,
it becomes impossible to use the assumption that pho-
tons and electrons are in equilibrium, and a fairly strong
1063-780X/00/2601- $20.00 © 0021
smoothing in calculating the fields and the shape of the
plasma–vacuum boundary is required. Attempts to
eliminate these defects by decreasing the time step in
accordance with a decrease in the grid size lead to the
faster onset of the m = 0 mode of the plasma column
instability and an increase in both the maximum tem-
perature of the constrictions and temperature gradients.
This is clearly manifested by the increase in the growth
rate of instabilities near cold electrodes.

In the model of an exploding wire proposed in this
paper, an important factor is the corona–core structure.
The need for this modification follows from direct
observations of such structures in recent experiments
[4, 5], in which the modern method of X-ray backlight-
ing (with an X-pinch used as a small-size source of
probing radiation) was employed. In the images of a
discharge produced by the explosion of metal wires, a
dense and relatively hot core surrounded by a plasma
corona (an optically observed plasma column) is
clearly seen. The plasma density sharply drops
(approximately 100 times) at the core–corona interface,
which is typical of liquid–vapor phase transitions [6].
According to [4, 5], the occurrence of such a structure
is associated with the specific features of incomplete
evaporation of metal during the electric explosion, end-
ing in the boiling of the core [6]. It is also found [7]
that, during the interaction of the core with a compres-
sion wave arriving from the corona, hydrodynamic
instabilities occur at the boundary. Presumably, these
are the Rayleigh–Taylor and Richtmeier–Meshkov
instabilities. In the above papers, it was noted that the
highly nonlinear behavior of these phenomena may be
related to the experimentally observed fine structure of
hot points emitting X radiation.
2000 MAIK “Nauka/Interperiodica”
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2. PHYSICAL MODEL AND NUMERICAL 
SCHEME

The three-temperature model is based on the axially
symmetric equations incorporating the electron and ion
temperatures Te, i and the radiation temperature Tγ.
These equations generalize the two-temperature model
[1] and go over to this model at Tγ = Te . The methods
described in [1] are used in solving the MHD equations
of continuity and motion

(1)

where n is the density of ions with the average charge
Z, v is the plasma mass velocity, p = pi + pe is the pres-
sure (due to specific features of the difference scheme,
the pressure also includes the pressure part related to the
artificial Neuman–Richtmeir viscosity), P = Pi + Pe is
the shear-viscosity tensor, and d/dt = ∂t + v · — is the sub-
stantial derivative. The axial symmetry of the Z-pinch
implies that v and j have the form v = {vr, 0, vz}, and the
magnetic field is B = {0, Bθ, 0} = Beθ. Note that,
because of the large value of Z, we have Πe/Πi .

Z3 ; thus, we must incorporate the electron vis-
cosity (which is usually neglected in the case of a low-
Z plasma). In practice, this means that we should per-
form summation of the contributions from particles of
both species to three (from five) nontrivial magnetic
viscosity coefficients (seemingly, incorporation of the
current velocity in Pe is beyond the accuracy of the
model). We also neglect the radiation pressure.

In our new model, the thermal terms are modified.
Taking into account the plasma quasineutrality, we
can write the heat transport equations in the form1 

(2)

Here, Cve, i are the specific heats of electron and ion flu-
ids per particle, ue, i are the electron and ion velocities
related to the mass and current velocities by v = ui +
(Zme /mi)ue and u = ue – ui = – j /eZn; de, i /dt = ∂t +
ue, i · — are the substantial derivatives, εZ is the interpolated

1 We draw attention to the misprints in [1]: the thermal-force power
in the equation for Te was erroneously omitted, and the thermal
force in the motion equations was written incorrectly. In fact, they
were used, as in this paper.

dn
dt
------ n—– v,⋅=

min
dv
dt
------ — p part+( )– — P 1

c
--- j B,×+⋅+=

me mi⁄

CveZn
deTe

dt
---------- — qe⋅+ pe—– ue

j2

σ
---- Pe : —ue+ +⋅=

– n CveTe εZ+( )dZ
dt
------ Qγ– R– u Qe i– ,–⋅

Cvin
diTi
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ionization potential as a function of Z, qe = que + qTe and
qi = qiT are the heat fluxes, R = Ru + RT is the sum of
the e–i friction force and the thermal force, Qe − i =
3n(Te – Ti)/2τei is the e–i heat transfer power, and Qγ is
the power of the radiative cooling of electrons. The
thermal fluxes and thermal force are

and the drift components are

The transport coefficients are taken from [8–10], the
classical part of the conductivity (which plays the
major role in a dense plasma) is taken from [11], and
the anomalous conductivity was the same as in [1]. In
the equation of state, we take into account that the ion
component is nonideal and incorporate the effects of
the quantum degeneration of electrons [12].

The electrodynamic effects are described based on
the equation for the magnetic-field generation, which
follows from the Maxwell equations (in the quasisteady
approximation) and Ohm’s law:

(3)

The resulting equations for the magnetic field are

(4)

The description of radiation is based on the equations
for the optically thick medium

(5)

where κγ = 16ΣSBlR /3 is the radiative heat conductiv-
ity and ΣSB is the Stefan–Boltzmann constant. The
Planck- and Rosseland-averaged photon mean free
paths lP, R are taken from [13], where they were approx-
imated by power law functions of the type

A detailed description of ionization, excitation, and
emission requires a very cumbersome set of equations,
which essentially complicates the algorithm; therefore,
we used the averaged-ion model, as was done in [1].
This model is based on the solution to the equation for
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the averaged-charge kinetics

, (6)

in which the rates of the electron-impact ionization Rion,
photorecombination Rphr, and three-body recombina-
tion R3r were taken from [14]. The ionization energy as
a function of Z was obtained by the linear interpolation
of the data for free multicharge ions; we also included
the correction for the decrease in the ionization thresh-
old and the vanishing of the upper levels under the
action of ion microfields (these corrections were taken
from [15]).

We assume that, at the sharp free plasma boundary
r = a(z, t), the azimuthal components of both the
magnetic field B = 2I/ca and the full stress tensor
−pδik + Πik + (BiBk – B2δik /2)/4π are continuous and
the normal components of the heat flux are absent,
n · qe, i = 0. The condition for the emission of radiation
into vacuum is

We note that the assumption of a sharp boundary com-
pletely ignores the most rarefied region of the corona,
which nevertheless contributes to the current. This
allows us to use the adopted simple description of the
radiation transport and neglect the current instabilities
and generation of the beams of accelerated particles,
which are not yet completely understood. To some
extent, such an approach corresponds to experiments
with preliminary cleaning of the wire surface of impu-
rities [16]. On large time scales, the use of the continu-
ity condition for the full stress tensor also meets diffi-
culties; therefore, at the vacuum boundary, we used a
simple condition p = 0 (the field B is continuous, and
the viscous stress is substantially less than the pressure,
because the deformation rates are much lower than the
collision frequencies).

We assumed the electrodes to be perfectly conduct-
ing rigid plates; the plasma was assumed to flow freely
along their surface:

Here, the subscript max stands for the maximum abso-
lute value of the derivative outside the boundary cells.
On the axis, we set standard symmetry conditions

For numerical calculations, we used a modification
of the algorithm described in [1]. In addition to the
technical refinements, we introduce the iteration proce-
dure in order to solve the equation for the radiation tem-
perature. Because the radiation transport processes pro-
ceed on time scales much shorter than MHD processes,
the simultaneous solution to the time-dependent radia-
tive and hydrodynamic equations meets some difficul-

dZ
dt
------ Rion Rphr– R3r–( )Z=

κγ—nTγ– 2ΣSBTγ
4
.=

v z Π rz Π zz Er —zTγ 0,= = = = =

—zTe i, max.=

v r B —rTe i γ, , —r p 0.= = = =
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ties. To overcome them, at each step, we first calculated
the contribution from the radiative heat transport
assuming that Tγ = Te taken from the previous step; after
that, the difference analogue of equation (5) was solved

as a linear algebraic system with respect to . From
the obtained distribution of the radiation temperature,
we found more accurate values of the electron temper-
ature and once again calculated the diffusion term; the
process was iterated until the required accuracy was
reached. During almost the entire calculation proce-
dure, two to three iterations were made at each time
step. A thin layer near the surface in which radiative
loss is comparable to surface losses requires special
consideration. In this layer, whose thickness is on the
order of the photon mean-free-path length, weak
absorption of photons arriving from the plasma interior
cannot compensate for radiative cooling of electrons;
thus, the diffusion approximation used in (5) is violated
[17]. However, as was noted in [8], the transparency
conditions are less rigid than the requirement for the
relative smallness of lR; therefore, we equated the
cross-section-integrated radiation power from the outer
layer of thickness D to the diffusion flux on its inner
boundary. As is seen in (5), their ratio is characterized
by the parameter ξ = lPlR/DLT, where LT . Te/ |—Te |.
This allows us to find the position of the boundary at
which surface losses begin to dominate over volume
losses. Then, we artificially decreased the photon tem-
perature by introducing the factor (1 + ξs)–1 (where the
power index s lies between one and two) before the dif-
fusive term and the source in (5). Thus, Qγ went over to
the expression for the radiative loss in a transparent
medium and the convergence of iterations at the bound-
ary between the optically thick and transparent plasma
improved. In addition, in equations (5) and (2), we
introduced the factors limiting the heat fluxes to their
maximum attainable physical values.

Calculations were carried out on both long- and
short-size grids. In the first case, a Pentium personal
computer was quite sufficient, whereas, in the second
case, we needed an Alpha working station. This
allowed us to trace the changes in rather complicated
algorithm features (that are characteristic of cell
schemes) as the spatial resolution was improved. We
also attempted to replace the iteration procedure by
introducing nonsteady radiation transport; however, we
succeeded only with the use of the Alpha station and
only for a long-size grid; the decrease in the grid size
required an excessive decrease in the time step.

3. SIMULATION OF A DENSE Z-PINCH
IN AN EXPLODING-WIRE DISCHARGE

We start with the same problem as in [1]. In the ini-
tial state, about 10 ns after the current (which is
assumed to be uniform over the wire cross section) has
reached 10 kA, we have a cylindrical plasma column
500 µm in diameter, which is formed as a result of the

Tγ
4



24 IVANENKOV, STEPNIEWSKI
0

0.02

–0.02

r,
 c

m

t = 38 ns

–0.20 –0.15 –0.10 –0.05 0 0.05 0.10 0.15 0.20
z, Òm

0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5
ne, Òm–3

0

0.02

–0.02

r,
 Ò

m

t = 38 ns

–0.20 –0.15 –0.10 –0.05 0 0.05 0.10 0.15 0.20
z, Òm

0 10 20 30 40 50 60 70 80 90
Te, eV

Fig. 1. Example of distributions of the electron density and temperature in the problem without a core.
explosion of a tungsten wire 20 µm in diameter and
4 mm in length. The plasma density decreases with r by
a parabolic law and vanishes at the column surface. The
plasma particles and radiation have the same initial
temperatures .2 eV. The seed perturbation for the onset
of instability was given in the same way as in [1]—as
small (1–3%) random nonuniformities (with a charac-
teristic scale length of 10–100 µm) of the initial distri-
butions of the density and temperature. We calculated
the plasma evolution for the sinusoidal discharge cur-
rent with a 300-kA amplitude and 100-ns half-period.

Qualitatively, the solution did not differ fundamen-
tally from the results of calculations by the two-temper-
ature model [1]. The difference mainly resulted from
the decrease in the time step caused by the fact that the
radiation and electrons are not in equilibrium. There-
fore, we used a shorter size grid, which, on the one
hand, increases the resolution of the scheme, but, on the
other hand, increases the growth rate of MHD instabil-
ities. As a result, the distributions of thermodynamical
parameters obtained differed from those in [1] by larger
gradients and the shape of the sharp free boundary was
more irregular. The irregular shape of the solution to
the three-temperature problem was most pronounced
near the electrodes, which were assumed to be cold.
Naturally, in this case, the temperature of constrictions
was from one-and-a-half to two times higher than that
obtained in the two-temperature model and reached the
maximum value (150–200 eV) for a shorter time (about
5 ns).
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Fig. 2. Time dependence of spatial distributions of the electron temperature in the plasma column with a core.
Figure 1 presents as an example the results of calcu-
lations performed for the 31 × 700 grid. Now, we will
go over to the simulation of an explosion of a one-and-
a-half times thicker tungsten wire. The model assumes
the existence in the initial state of a core from a cold
dense substance (a detailed analysis, experimental
background, references, as well as the two-temperature
version of the solution to the core problem, are pre-
sented in [4]). This problem needs the improvement of
the model of radiation transport. In order to model the
core, we introduced into the initial parabolic distribu-
tion a tenfold jumplike increase in the density in the
region .80 µm in diameter in the vicinity of the axis.
Other parameters were the same. Calculations were
carried out on both the long-size (13 × 299) and short-
size (21 × 500 and 31 × 700) grids. Further, we will
ASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
focus on the simpler results obtained for the long-size
grid.

The results of calculations are presented in Figs. 2–4.
Figure 2 shows the evolution of the electron tempera-
ture distribution in the course of plasma heating by the
current compressing the plasma. The distributions pre-
sented in Fig. 2 refer to the stage of the propagation of
an MHD shock toward the axis (16.2 ns), the instant the
shock arrives at the corona–core boundary (23.2 ns),
the instant of the first compression (29.5 ns), and the
subsequent evolution of the constriction (43.6 ns).
Complex structures that are finally formed from the
constrictions are shown in Fig. 3 at the instant when the
current is close to maximum. The specific features of
the plasma evolution associated with the introduction
of a core into the model were discussed in detail in
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Fig. 3. Distribution of the electron temperature and density and the magnetic field at the final stage of calculation: (a) overall picture
and (b) magnified images of the region of the strongest compression.
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[4, 5, 7]. Initially, these features manifest themselves in
the low-temperature emission from the core. When the
shock front reaches the corona–core boundary, the
shock decays into a wave reflected from the core and a
HYSICS REPORTS      Vol. 26      No. 1      2000
compression wave propagating into the core. These two
waves are very different: the reflected wave has a broad
front and is similar in many respects to the initial
corona compression wave, whereas the passed wave
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Fig. 4. Behavior of the plasma-column shape and spatial distribution of the calculation points on the 13 × 299 grid.
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Fig. 5. Azimuthal magnetic field of a two-wire X-configuration (a) inside and (b) outside the intersection region.

–0.4
has a much narrower front and at first seems to be less
intense in a dense core medium. For a time of 5–10 ns,
the core is heated by the ionizing wave of radiative heat
conduction, which precedes the shock. Then, the accel-
erated and amplified shock wave reaches the core axis
and reflects, which results in the strong heating of the
core. This can be seen from a comparison of the tem-
perature distributions corresponding to 23.2 and
29.5 ns. In addition, the distribution corresponding to
23.2 ns shows the presence of emission from the core
surface when the shock formed by the corona compres-
sion wave decays. This emission, which manifests itself
in the figure as a thin hot-plasma layer, lasts for .10 ns
(on the order of magnitude, this time is equal to the
front width, .70 µm, divided by the front velocity,
.5 × 105 cm/s).

After 30 ns, the temperature maximum is on the axis
and a part of the current, which previously flowed
through the corona, starts to flow through the core. The
onset of the m = 0 mode of the MHD instability pro-
ceeds in a much more complicated fashion (see Fig. 4)
than in models without a core. Finally, as in those mod-
els, alternating regions of a compressed and rarefied
plasma are formed; however, in the constriction
regions, .100 µm in size, complex structures are pro-
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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duced in the form of several hot subpoints surrounded
by a less dense substance of the heated core. Presum-
ably, the nature of this phenomenon is the same as that
of the phenomenon observed in experiment [7]. How-
ever, in our model, the situation is strongly simplified:
actually, there is an approximately hundredfold drop at
the corona–core interface, the core being a two-phase
vapor–liquid medium [6]. The model also fails to
describe the possible bursts of hydrodynamic turbu-
lence [7]. This complicates the comparison between
our model and the experiment.

It is also of interest to mention the results of calcu-
lations for a shorter size grid. In this case, we observed
the onset of an instability with a smaller space and time
scales. As a result, the maximum temperature and den-
sity in constrictions somewhat exceeded those obtained
with a long-size grid. At the same time, the growth rates
of numerical instabilities were also higher, so that we
were forced to stop calculations in the earlier stage. We
note that the plasma parameters calculated on the long-
size grid are of the same order as for shorter size grids
and the cell size affects the results only through the spa-
tial resolution of the scheme. Regardless of the cell
size, in all of the calculations, the values of Z were
below 25, which was still far from the experimentally
observed ion charge numbers.

4. SIMULATION OF THE X-PINCH

It is of interest to try to apply our model to the
X-pinch occurring as a result of an explosion of two or
four crossed wires in a diode. The three-dimensional
geometry makes this problem very complicated to
solve. As the first step, we can approximate the plasma
configuration with the region between the surfaces of
two coaxial cones. However, in this case, the magnetic
field is completely absent in the inner vacuum region
and cannot prevent the expansion of the heated plasma
into the cone. To overcome this, we use the following
qualitative method. We consider the plane of two initial
crossed straight wires and assume that the actual
plasma configuration can be replaced with the region
between two cones touching the plasma columns on the
inner and outer sides. As for the magnetic field, we take
the exact expression for the azimuthal component Bθ of
the field of the initial wires. This field can be easily
found by solving the magnetostatic Ampere equation.
Thus, for two straight current filaments crossed at an
angle of 2α (the wire positions are described by the
equation r = |z | ), we have the following expres-
sion for the components of the magnetic field:

αtan

Br Ic
1– α 2αr 1 2θcos 2θsin–+( )sin[{sin=

× s–
1–

s+
1–

+( ) 4⁄ z α θcossin
2 α θsincos
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1–
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,

where 

This procedure can be extended to a more complex
configuration in which the field of a similar pair of
wires located in the perpendicular plane is added to the
above field to produce the four-wire configuration and
to any even number of the crossed current filaments. In
the limit of large values of |z |, these solutions go over to
the well-known formulas by Syrovatskiœ [18] for the
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Fig. 6. The behavior of the shape of the X-pinch plasma and
the distribution of the calculation points.
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magnetic field of an arbitrary number of parallel cur-
rent filaments equidistantly located along the cylinder
generatrix. In our case, only the azimuthal component
of three magnetic field components was used and the
boundary conditions B = Bθ on the inner and outer
plasma–vacuum interfaces r = aext, int(z, t) (in place of
B = 2I/ca with a one-wire load) were imposed. The rest
was the same as in the problem based on equations
(1)−(6).

Such an approach coarsens the model and restricts
its applicability to the region near the wire intersection.
Thus, if we expand the solution for the two-wire con-
figuration with respect to azimuth, the m = 0 harmonic
is dominant only in this region, whereas the amplitude
of the m = 2 harmonic increases with distance from the
intersection point (the m = 1 harmonic and other odd
harmonics can be excluded if we assume the problem to
be symmetric with respect to the plane perpendicular to
the current filaments). The difference is clearly seen
even in the behavior of the magnetic field component
Bθ inside and outside the intersection region (Fig. 5),
where the m = 2 mode is present even at the point of fil-
ament intersection, z = 0. As a first step, we will restrict
ourselves to the simplified model and will describe only
the most important intersection region. In order to
avoid extra difficulties in solving the problem, which is
rather complicated in itself, we do not include the core
in our consideration. For the same purpose, we also do
not include the complete set of the magnetic field com-
ponents in the model. It is hard to estimate the inaccu-
racy of our approach in advance; however, the results
presented below can serve to obtain such an estimate.

The initial configuration of the calculation points is
shown in Fig. 6. Calculations carried out on both the
rough (15 × 251) and finer (21 × 500) grids show the
fundamental difference in the dynamics of a two-wire
X-pinch and a single-wire system. First, the geometry
of the intersection region turns out to be unfavorable for
the formation of an MHD shock. In contrast to the sim-
ilar problem for the Z-pinch, the shock wave is not only
late to originate, but its intensity is very weak. The per-
turbations penetrate into the plasma not with a defocus-
ing shock wave but with a heat-conduction wave; this is
seen even in the calculation-point distribution in Fig. 6.
The low intensity of the shock wave leads to its decel-
eration and a slowing-down of the compression process
as a whole. The final instant (63 ns after the current
passes its maximum) corresponds to a slightly more
than twofold compression of the constriction. Note
that, in this case, the constriction extends in the
z-direction and the azimuthally asymmetric modes
become important. The regions most remote from the
point of intersection are where the highest plasma
parameters are attained (Fig. 7). However, the values of
these parameters are modest compared to those
obtained for a single-wire configuration.

It is of interest to compare the results with previous
attempts to calculate the X-pinch [19]. The model pro-
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posed in [19] surpasses our model in the accuracy of the
description of radiation transport and atomic processes;
however, both models are comparable in the descrip-
tion of the pinch dynamics. Note that the geometrical
configuration of the plasma in [19] represented the
region between the surfaces of two coaxial cones and
the magnetic field in the inner vacuum region was com-
pletely absent. The main factor contributing to the inac-
curacy of the model in [19] in the late stage of compres-
sion near the pinch cross is the plasma expansion into
the inner vacuum region. In contrast to this, the more
adequate description of the magnetic field in our model
allows us to approach the situation in which the 3D
effects manifest themselves in the X-pinch dynamics
more clearly.

5. CONCLUSION
The main advantage of the three-temperature model

developed in this paper is the possibility of taking into
account small-scale nonequilibrium processes in the
electron–radiation system. In order to study these pro-
cesses, the time step must be substantially reduced.
This leads to an increase in the spatial resolution of the
scheme and, consequently, to a more detailed descrip-
tion of the distribution of the plasma parameters and the
shape of the free plasma boundary. This is manifested
most clearly in calculations of the corona–core system.
The shape of the corona–core was still too blurred and
did not allow us to adequately describe the fine pro-
cesses of the onset of the surface hydrodynamic insta-
bilities that were observed in [7]. Presumably, we
revealed a tendency toward the formation of a fine
structure of hot points. By partially taking into account
the 3D structure of the magnetic field, we obtained a
much stronger compression than in the previous X-
pinch model [19]. Nevertheless, in our model, the
amplitude of the shock wave is low, which may be due
to an incomplete and insufficiently accurate consider-
ation of 3D effects. On the whole, the three-tempera-
ture model can be considered appropriate for solving
the problem of pinch dynamics, but the formulation of
the problem should be more adequate for actual exper-
iments.
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Abstract—Perturbation theory is applied to derive the dispersion relation describing the propagation of
magnetohydrodynamic waves in a plasma in the helical magnetic field of a stellarator. The correction to the
eigenfrequency, δω, introduced by a small deviation of the magnetic surfaces from being cylindrical is found.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Alfvén and magnetosonic branches of magneto-
hydrodynamic (MHD) waves are of interest mainly
because they are used for RF heating of plasmas in
fusion devices (see, e.g., [1–3]). MHD oscillations of
the plasma column in an axisymmetric magnetic field
have been studied quite thoroughly (see, e.g., [4–7] and
the literature cited therein).

Here, we study analytically the problem of MHD
eigenmodes of the plasma column in a stellarator with
allowance for the deviation of the magnetic surfaces
from being cylindrical. We consider electromagnetic
waves with a frequency on the order of the ion cyclo-
tron frequency in a plasma whose pressure is low in
comparison with that of the external magnetic field, in
which case the electron inertia can be neglected in
studying MHD oscillations. We assume that the plasma
is fully ionized. Under these assumptions, we can apply
perturbation theory to derive the dispersion relation for
MHD waves and to determine the correction to the fre-
quency of eigenmodes that results from the deviation of
the stellarator magnetic surfaces from being cylindri-
cal. We show that this correction is a second-order
quantity in the small parameter characterizing the mag-
netic field nonuniformity.

2. FORMULATION OF THE PROBLEM

We consider the propagation of MHD waves with
a frequency ω ! |ωce |, ωpe (where ωcα and ωpα are the
cyclotron and Langmuir frequencies of the particles of
species α with α = e for electrons and α = i for ions)
in a plasma column in a coaxial ideally conducting
metal chamber. The entire system is in a constant
magnetic field B0 = erB0r + eϕB0ϕ + ezB0z written in
cylindrical coordinates (r, ϕ, z). In the paraxial
approximation, the magnetic field of an l ≥ 2 stellara-
1063-780X/00/2601- $20.00 © 0033
tor can be simplified to [8]

(1)

where e(r) ≡ lblIl(ksr)/B00, (r) ≡ lbl (ksr)/B00, bl =

8Jb (ksb)(lc)–1, B00 is a uniform magnetic field pro-
duced by the toroidal coils, θ = ϕ – αz, α = 2π/L, ks =
αl, L is the pitch of the helical winding, b is the radius
of a thin helical coil with the current J (in our problem,
b is assumed to be equal to the radius of the metal
chamber), Kl(ξ) and Il(ξ) are modified Bessel functions,
and the prime denotes the derivative with respect to the
argument. Under the assumption that the helical-coil
currents are lower than the toroidal-coil currents, the
quantities e and  can be regarded as small parameters
of the problem, e ! 1 and  ! 1, which allows us to
apply perturbation theory. The magnetic surfaces of the
magnetic field (1) are described by the equation

(2)

where r0 should be treated as the “number” of the mag-
netic surface. We assume that the equilibrium plasma
density n(r, ϕ, z) is a function of the magnetic surface,
n(r, ϕ, z) = n(r0). For r0 = b, equation (2) describes the
outermost magnetic surface, which is assumed to coin-
cide with the inner surface of the metal chamber. The
density profile is assumed to be such that the funda-

mental Alfvén resonance (AR), at which (r) = ,

and the satellite AR [9], at which (r) = (Nz ± Ns)2, are
both absent. Girka and Stepanov [10] solved a similar
problem—the propagation of MHD waves in a plasma
column in a rippled magnetic field.

For the confining magnetic field (1) written in cylin-
drical coordinates, all nine elements of the plasma
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dielectric tensor are nonzero. However, we can intro-
duce a local coordinate system that is associated with
the lines of the external field (1) and in which the
dielectric tensor can be simplified to

the remaining components being equal to zero,

.
For a cold plasma in which collisions are neglected,

the elements of the dielectric tensor are

(3)

Here, the cyclotron frequency ωcα is defined in terms of
the total magnetic field B0(r, ϕ, z) from (1): ωcα =

eB0/(mαc), where B0 = {  +  + }1/2. The basic
vectors of the local coordinate system are chosen as fol-
lows: the vector e3 = B0/B0 is directed along a magnetic
field line, the vector e1 = —r0/ |—r0 | is perpendicular to
the magnetic surface formed by this line, and the vector
e2 = e3 × e1 is such that the basic vectors form a right-
hand triple.

We expand the elements of the plasma dielectric
tensor in powers of the small parameters e and :

(4)
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(10)

where  = ωci(B00) and NA(r) = ωpi(r)/  is the
Alfvén refractive index.

The angular dependence in expansion (4) is gov-
erned by the symmetry of the confining magnetic field
(1). This symmetry enables us to seek a solution to the
Maxwell equations for the axial component of the mag-
netic field of an MHD wave in the form

(11)

where B~(r) = B(0)(r) + B(2)(r); B(2) ~ e2B(0); B(±) ~
eB(0); m is the azimuthal wavenumber; kz is the axial
wavenumber of the fundamental mode of an MHD
wave; and B(0)(r) is the fundamental mode amplitude,
which is assumed to be known from the solution to the
problem of the propagation of an MHD wave in a
straight magnetic field (in the zeroth approximation).
The amplitudes B(±)(r) of the satellite modes and the
small second-order correction B(2) to the amplitude of
the fundamental mode can be evaluated from perturba-
tion theory. Such an approach to solving the Maxwell
equations is usually referred to as the Floquet–Bloch
method (see, e.g., [11]). Here and below, we neglect
small second-order terms proportional to exp[±2ilθ],
which make a small contribution (whose order is higher
than e2) to the final expression for the eigenfrequency.

To simplify the set of Maxwell equations, note that,
in studying fast magnetosonic (FMS) and Alfvén
branches of MHD waves, the electron inertia can be
neglected. For MHD waves in the frequency range
under consideration, we have ε3  ∞; i.e., we can
approximately set E3 = 0, which allows us to express Ez

in terms of Er and Eϕ :

(12)
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Er, and Eϕ in cylindrical coordinates:

(13)

Here, the elements a13 = B0r/B00 and a23 = B0ϕ/B00 of the
matrix for transforming from a local to a cylindrical
coordinate system can be calculated from the formula

aki = ( , ei), where  (k = r, ϕ, z) are the unit vec-
tors of the cylindrical coordinate system and εkl =

aki alj are the elements of the plasma dielectric ten-
sor in cylindrical coordinates.

To solve the problem, we substitute expansions (11)
for the fields of an MHD wave into equations (13) and
impose the following boundary conditions:

(i) The wave fields should be finite over the entire
volume inside the chamber.

(ii) The tangential component of the electric field
should vanish at the inner surface of the metal chamber.

(iii) If there is a vacuum gap between the plasma
column and the chamber, then the tangential compo-
nents of the electric and magnetic fields of an MHD
wave should be continuous at the plasma–vacuum
boundary; specifically, in local coordinates, the contin-
uous components are E2 and B3.

3. ZEROTH APPROXIMATION

In the zeroth approximation, the amplitude of the
fundamental harmonic of the electric field of an MHD
wave can be expressed in terms of B(0) from the solution
to equations (13):

(14)
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where

and NZ = kzc/ω is the axial refractive index for the wave.
The axial component B(0) of the magnetic field of the
wave satisfies the equation

(15)

which has the following solution that is finite at the cyl-
inder axis: B(0) = A0 f0(r), where A0 is an integration con-
stant. For an arbitrary density profile, equation (15) can
be solved numerically (see, e.g., [7] and subsequent
papers), so that f0(r) can be assumed to be a known
function.

In the zeroth approximation, the problem is treated
in cylindrical geometry and the boundary conditions
yield the following dispersion relation for an MHD
wave in a uniform magnetic field:

(16)

where

(17)

The solution ω = ω0 to (16) is assumed to be known.
Note that, for a circular cylinder, we have Ez = 0 not
only in the plasma but also in the vacuum gap, in which
case the dispersion relation can be derived with no
regard for the condition that Ez and Bϕ are continuous at
the circular cylindrical plasma–vacuum boundary.

4. FIRST APPROXIMATION

Now, we solve the Maxwell equations in the first
approximation. The amplitudes of the first satellite har-
monics of the wave electric field are expressed in terms
of the magnetic field as

(18)

(19)

where k± = k⊥ (kz  ks) and µ(±) = µ(kz  ks).
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The first-order functions G±(r) and F±(r) are related
to the wave electric field components, which were
found in the zeroth approximation, by

(20)

(21)

where  = (kz  ks)c/ω.

The amplitudes of the satellite harmonics of the
axial component of the wave magnetic field satisfy the
equation
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where

(23)

This equation can be solved by the method of varying a
constant:

(24)

Here, A(±) is an integration constant; (r) is the gen-
eral solution to equation (22) with a zero right-hand
side (this solution is finite at r = 0, whereas the second

solution (r) diverges toward the plasma axis); and
g±(r) is a particular solution to the inhomogeneous
equation (22):

(25)

where

(26)

(27)

and W( , ) = (r) d (r)/dr – (r) d (r)/dr

is the Wronskian of the functions  and .

With the boundary conditions imposed, allowing for
small first-order terms does not change the dispersion
relation but makes it possible to find the amplitudes A(±)

of the first satellite harmonics. In the boundary condi-
tions, we single out the terms proportional to exp[i(kz 
ks)z + i(m ± l)ϕ] to obtain

(28)

where D± = D(0)(ω0, kz  ks, m ± l).

We will say a few words about the polarization of
the satellite harmonics. The analysis of this question in
the zeroth approximation shows that the harmonic
polarization can be described merely by examining the
behavior of the first term on the right-hand side of (24).
Equation (15) implies that the plasma region transpar-
ent to the given wave is determined by the condition
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in which  > 0 are hatched. The current radius nor-
malized to the radius b of the metal chamber is plotted
on the abscissa, and the ordinate is the axial wavenum-
ber kz normalized to the Alfvén wavenumber kA(0) =
ωωpi(r = 0)/(cωci) taken at the plasma axis. The radial
density profile is assumed to be parabolic, n(r) =
n0(1 – r2/b2), and the wave frequency is chosen to be
ω = 0.3ωci. In region I, the wave polarization corre-
sponds to the Alfvén wave (AW), and in region II, it
corresponds to the FMS wave.

As an example, we consider a wave with a suffi-
ciently small axial wavenumber kz of the fundamental
mode (see the horizontal solid line in the diagram).
Near the plasma axis, the polarization of the fundamen-
tal mode coincides with that of the FMS wave. The
opaque region for the fundamental mode lies farther
away from the axis. In region I, the polarization of the
fundamental mode coincides with that of the AW.
Finally, there is another opaque region near the metal
chamber. The polarization of one of the satellite modes
with the axial wavenumber kz – ks (the lower horizontal
dashed line) coincides qualitatively with that of the fun-
damental mode. Near the axis, the second satellite
mode with the axial wavenumber kz + ks (the upper hor-
izontal dashed line) is polarized in the same manner as
the AW, whereas the plasma region near the chamber
wall is opaque to this mode.

We can see that the polarization of the satellite
modes can differ from that of the fundamental mode.
Depending on the relation between kz, ks, and kA(0), the
mutual polarization of the fundamental and satellite
modes may differ from what we have just analyzed.
Note, in particular, that, if a dashed line does not cross
the hatched region, then the corresponding satellite
mode propagates as a surface wave.

5. SECOND-ORDER APPROXIMATION

Now, we solve the Maxwell equations in the second-

order approximation in the small parameters ε and .
Second-order corrections to the amplitude of the funda-
mental harmonic of the wave electric field can be
expressed in terms of the magnetic field in the same
manner as those in the first-order approximation [see
(18) and (19)]:
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where the second-order functions G(2)(r) and F(2)(r) are

(31)

(32)

The equation for the correction B(2) to the amplitude
of the fundamental harmonic of the axial magnetic field
of the wave is similar in structure to equation (15) for
the fundamental-harmonic amplitude B(0), but its right-
hand side is nonzero:
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Equation (33) can also be solved by the method of vary-
ing a constant:

(35)

Here, A(2) is an integration constant and g(2)(r) is a par-
ticular solution to the inhomogeneous equation (33):
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(r) is a solution to equation (15) that is linearly inde-
pendent of f0(r) and has a singularity at r = 0, and the

Wronskian W0 of the functions (r) and f0(r) is
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In the second-order approximation, the boundary
conditions give the following dispersion relation for an
MHD wave in the helical magnetic field (1):
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We seek a solution to (39) in the form ω = ω0 + δω,
where
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and the second-order term D(2) is

(41)

If the dependence D(0)(ω) is not specified analyti-
cally [e.g., when the distribution f0(r) of the fields is

B 2( ) r( ) A 2( ) f 0 r( ) g 2( ) r( ).+=

g 2( ) r( ) D1 r( ) f 0 r( ) D2 r( ) f̃ 0 r( ),+=

D1 r( ) + 2( )
r( ) f̃ 0 r( )W0

1– f 0 f̃ 0,( ) r,d

b

r

∫–=

D2 r( ) + 2( )
r( ) f 0 r( )W0

1– f 0 f̃ 0,( ) r,d

0

r

∫=

f̃ 0

f̃ 0

f̃ 0 f̃ 0

D 0( ) D 2( )+ 0.=

δω D 2( ) ∂D 0( )/∂ω( ) 1–
ω ω0=–=

D 2( ) k ⊥ c
ω

-------- le
2ksb
----------- Er

+( ) Er
–( )–( ) ie2

4ks
2

--------
d2Eϕ

0( )

dr2
--------------+=

+
iee
2ks

------- 1 l2

ks
2b2

----------+
 
 
  ie2

4ks
2b

-----------–
 
 
  dEϕ

0( )

dr
------------

+
ie

2ks

-------
dEϕ

+( )

dr
------------

dEϕ
–( )

dr
------------+ 

  il2
e

2
e

2–( )
4ks

2b2
--------------------------Eϕ

0( )–+

+
mµ
k ⊥ b
--------g 2( ) 1

k ⊥
-----dg 2( )

dr
----------- µG 2( ) F 2( )+

k ⊥
----------------------------

r b=

.+ +
found numerically], then the derivative ∂D(0)/∂ω can be
evaluated from perturbation theory [10]:

(42)

Here, the operator  is

(43)

The constant A(2) in (35) cannot be found exclu-
sively from the boundary conditions. On the other
hand, the structure of the dispersion relation (39) and
correction (40) are independent of A(2). To evaluate the
constant A(2), we must use a condition similar to the
normalization condition for the wave function in per-
turbation theory in quantum mechanics. In our prob-
lem, this condition implies that the electromagnetic
wave energies calculated in the zero- and second-order
approximations are equal to each other.

6. SIMPLE ANALYTIC ESTIMATES

We employ the results obtained to study how the
nonuniformity of the confining magnetic field affects
the dispersion properties of MHD waves in a stellarator
plasma with a uniform density profile. In this case, equa-
tion (15) for B(0) has an exact solution: f0(r) = Jm(k⊥ , r),
where Jm(k⊥ r) is the Bessel function. We consider
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the propagation of axisymmetric (m = 0) small-scale
(k⊥ b @ 1) MHD waves in an l = 2 stellarator with a large
pitch of the helical winding (ksb ! 1), in which case we
have

(44)

For FMS waves with frequencies above the ion
cyclotron frequency (Ω = ω/ωci @ 1) and with a long
axial wavelength [kz/ks ! (kAb/Ω)2], the dispersion rela-
tion has the solution

(45)

(46)

where j1, s is the sth root of the first-order Bessel func-
tion, J1(jl, s) = 0.

For Alfvén waves having frequencies on the order of
the ion cyclotron frequency and propagating nearly
along the magnetic field (kz @ kA, jl, s/b), the correction
to the frequency

(47)

has the form

(48)

In deriving this correction, we assumed that
(kz/kA)2(kzb/jl, s)2 × (ksb)2/24 @ 1.

7. CONCLUSION
We have studied the propagation of MHD waves in

a plasma inhomogeneous in three dimensions in a
straight stellarator. We have shown that the symmetry
of the confining magnetic field and the smallness of the
current in the helical winding make it possible to
reduce the problem of MHD eigenmodes in a stellara-
tor plasma inhomogeneous in three dimensions to a
problem that is inhomogeneous in one (radial) direction
and has a well-known solution. We have found the dis-
tribution of RF fields with allowance for the first-order
additive corrections to the amplitudes of the satellite
harmonics [see (18), (19), and (24)–(27)]. We have
determined the correction δω (40) to the eigenfre-
quency of an MHD wave and have shown that this cor-
rection is a second-order quantity in the parameter ε
[see (1)], characterizing the smallness of the helical-
coil currents in comparison with the currents flowing in
the solenoidal coils, which produce the toroidal mag-
netic field. We have derived simple asymptotic expres-
sions (46) and (48) for the correction δω in the case of
a plasma with a uniform density profile. The smallness
of this correction, |δω| ! ω0, makes it possible to esti-

D 0( ) J0' k ⊥ b( ) Jl k ⊥ b( ).–= =

ω0 j1 s, c/ bNA( ),≈

δω ε2

2 ksb( )3
------------------

ωpib
c

----------- 
 

2 8
ksb
-------+ 

  ω0,≈

ω0 1 kA/kz( )2–[ ]ωci≈

δω
ωci

------- ε2

24
------

kz
2

kA
2

-----
kzb
jl s,
------- 

 
2 1

2
---

jl s,

ksb
------- 

 
2

+
 
 
 

.–≈
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
mate the applicability range of the model of a straight
magnetic field in studying MHD waves in stellarators.

It is well known that, in an axial magnetic field, the
spectra of MHD oscillations of a plasma cylinder are
degenerate with respect to the sign of the axial wave-
number kz, ω0(–|kz|) = ω0(|kz|). Consequently, in the res-
onant case in which the axial wavelength of an MHD
wave is twice as long as the pitch of the helical winding
(2kz – ks) and the azimuthal wavenumber is equal to
one-half of the poloidal number of the helical-field
periods (2m = l), the correction δω may become infi-
nitely large, because expression (28) for A(±) contains a
resonant denominator (the problem of how to make the
spectra of MHD waves nondegenerate in the resonant
case with the help of a rippled magnetic field was inves-
tigated by Girka et al. [12]). However, the correction
does not become larger because of the difference in the
eigenfrequencies of the waves with opposite signs of
the azimuthal wavenumber. In order of magnitude, the
nonreciprocity effect for MHD waves with opposite
signs of m can be estimated as

(49)

If the nonreciprocity effect for an MHD wave whose
fundamental mode satisfies the resonance conditions
2kz = ks and 2m = l is sufficiently weak [i.e., the differ-
ence in (49) is much smaller than correction (40) esti-
mated for an axisymmetric mode], then the above anal-
ysis cannot be applied to this wave: the effect of the
nonuniformity of the stellarator magnetic field on the
eigenfrequency should be described using the perturba-
tion theory for degenerate spectra, in which case the
correction to the eigenfrequency introduced by the
magnetic field nonuniformity turns out to be a small
(first-order) quantity.
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Abstract—A study is made of the features of wave processes in the individual flows of self-gravitating dust
grains in a plasma and the electric and gravitational interactions in a system of several dusty plasma flows. It is
shown that, in a dusty plasma, Debye screening can substantially weaken the electric coupling between
the beams of self-gravitating grains, without affecting the gravitational forces between them, and that the
electrostatic perturbations are exchanged between the grain flows via gravitational fields, as happens in vacuum.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Flows of charged dust grains are frequently encoun-
tered in the universe. Characteristic examples of such
flows are planetary rings and comet tails, in which the
particles interact with each other via electric and grav-
itational fields. If the density of charged grains is suffi-
ciently high, then they can be regarded as a plasma
component; the plasma in which the gravitational inter-
action is important is called a self-gravitational dusty
plasma (SGDP). 

The problem of the interaction between two flows of
an SGDP was studied by Gisler et al. [1] under the
assumption that the flows are unbounded and interpen-
etrating. Such a simplified model is unsuitable when
the distance between the beams is large, as is usually
the case in the universe. In our earlier papers [2, 3], we
analyzed waves in a system of spatially separated
beams of an SGDP in vacuum. 

On the other hand, in reality, the beams are propa-
gating in a space that is filled with an ion–electron
plasma, in which case the overall picture of the interac-
tion between dusty plasma flows changes substantially,
because Debye screening has no impact on the gravita-
tional interaction and the wave perturbations of the
grain density are exchanged between the flows via
gravitational fields, as they do in vacuum. 

We should also take into account the fact that the
oscillations of the charged grain density give rise to
electric fields. Consequently, if the distance between
the flows is not too large, the gravitational perturbations
in one of the flows (due to, e.g., a massive body flying
nearby) will induce space-charge waves in each of the
remaining flows. Our purpose here is to study such
wave perturbations. 
1063-780X/00/2601- $20.00 © 20041
2. LOW-FREQUENCY ELECTRIC 
AND GRAVITATIONAL FIELDS INSIDE 

AND OUTSIDE THE FLOW OF AN SGDP 

We consider a cylindrical beam of radius a. Let the
density of the grains (each having mass M and charge
Q) in the beam be N. We assume that the entire space
(including the region occupied by the beam) is filled
with an electron–ion plasma. Let the densities of the
plasma particles (whose charges are ±e and masses are
me and mi) be ne and ni . We will be interested in the
waves whose frequencies are low enough that the elec-
tron and ion densities obey the Boltzmann distributions 

where ΨE and ΨG are the electric and gravitational
potentials and n0 and T are the unperturbed density and
temperature of the plasma electrons and ions. Since the
electron and ion masses, me and mi, are small in com-
parison with the grain mass, the related quantities in the
Boltzmann distributions can be neglected. We also con-
sider small perturbations with respect to which the
problem can be linearized, so that 

Another simplifying assumption is that there exists
a constant, infinitely strong magnetic field aligned with
the beam axis. This allows us to consider only longitu-
dinal displacements of the charged particles, so that the
space-charge waves in the dust plasma component can
be described by a conventional set of equations, which
consists of the equation of motion 

(1)

ne n0 eΨE meΨG+( ) T⁄exp ,=

ni n0 eΨE– miΨG+( ) T ,⁄exp=

ne i,  . n0 1 eΨE T⁄±( ).
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the continuity equation 

(2)

the Poisson equation for the electrostatic potential 

(3)

(where λD =  is the plasma Debye radius),
and the Poisson equation for the gravitational potential 

(4)

(where G is the gravitational constant). 
The gravitational interaction between the grains is

incorporated into our model by introducing the gravita-
tional acceleration (–∂ΨG/∂z) into the equation of
motion and through Poisson’s equation for the gravita-
tional potential ΨG. 

The beam is assumed to be straight and sufficiently
thin (the corresponding restrictions on the beam radius
will be formulated below). We assume that the oscilla-
tory and unperturbed velocities of the particles, V and
V0, are all constant over the entire beam cross section
and are directed along the z-axis. In the acceleration
associated with the external force Fext, we also take into
account only the z-components of the electric and grav-
itational fields, 

We consider the wave perturbations that are produced
by a Fourier component of the external force Fext(ω,
k)exp[i(kz – ωt)]. We single out the factor exp[i(kz –
ωt)] in V, N, ΨE, and ΨG and pass over from equations
(1) and (2) to a set of two algebraic equations. To do
this, we take into account the fact that the longitudinal
electric field in a filamentary beam is proportional to
the linear charge-density gradient πa2QN, so that we
have ∂ΨE/∂z = iγEkπa2QN. A similar relationship is
valid for the gravitational field, ∂ΨG/∂z = iγGkπa2GMN.
Here, the dimensionless coefficients γE and γG should
be found by solving Poisson’s equations (3) and (4). 

First, we single out the oscillating factor exp[i(kz −
ωt)] in ΨE and N in order to convert equation (3) to the
form 

(5)

where p2 = k2 + 1/ . For Fourier amplitudes, we adopt
the same symbols ΨE and N that were used above for
the corresponding complete functions. 

Neglecting variations in N over the beam cross sec-
tion, we can readily obtain general solutions to equa-
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tions (5) in terms of the modified Bessel functions Iµ
and Kµ: 

The integration constants Ci are found from the bound-
ary conditions ΨE(0) ≠ ∞ and ΨE(∞) = 0 and from the

condition that ΨE(r) and (r) be continuous at r = a.
As a result, we obtain 

(6)

(7)

where W(pa) = K0(pa)I1(pa) + K1(pa)I0(pa) is the
Wronskian for equation (5) at r = pa. 

The expansion of ΨE in the limit r  0 and its
asymptotic behavior in the limit r  ∞ are 

(8)

(9)

From (8), we can readily evaluate ΨE at the beam
axis at small pa ! 1, ΨE(0) = –2πQNa2ln(pa), and find
the coefficient γE = –2ln(pa). We can also formulate the
condition for the beam to be “filamentary,”

 ~ −  ! 1, where the variations

in ΨE(r) over the beam cross section should be small.
As a result, we arrive at the condition pa ! 1 and, for

long-wavelength perturbations such that k !  and

p ≈ , we obtain a ! λD, which indicates that the
beam radius should be much smaller than the plasma
Debye radius. Under these conditions, the potential ΨE

can be approximated by 

(10)

(11)

Equation (4) for ΨG can be solved in an analogous
manner for the relevant parameters. We present here
only the expression for ΨG(0) and the asymptotic behav-
ior of the gravitational potential in the limit r  ∞: 

(12)
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(13)

From (12), we get γG = 2ln(ka). For the gravitational
field, the condition for the beam to be filamentary is
less restrictive than that for the electrostatic field: the
potential ΨG(r) can be assumed to be uniform over the
entire beam cross section if ka ! 1. 

Figure 1 shows profiles of the potentials ΨE(r/a) and
ΨG(r/a) for different values of pa and ka. 

Given the coefficients γE and γG, we can easily write
out the desired set of algebraic equations corresponding
to (1) and (2): 

Here, as before, the functions and the related Fourier
amplitudes are denoted by the same symbols. These
equations have the solution 

(14)

where D = (ω – kV0)2 – [ln(ka)  – ln(pa) ] is

the determinant of the algebraic equations and ωp =
(4πQ2N0/M)1/2 and ωG = (4πGMN0)1/2 are the Langmuir
and Jeans frequencies of the beam grains. 

First, note that a purely gravitational perturbation
(ΨE, ext = 0) gives rise to an alternating electric field in
the beam. In fact, substituting N from (14) into the for-
mula Ez = ∂ΨE/∂z = iγEkπa2QN yields 

Second, self-gravitation manifests itself as free
oscillations in the beam. The dispersion relation for the
natural oscillations follows from the condition D = 0, 
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For –ln(pa)  > ln(ka) , this is the familiar disper-
sion relation but with a reduced effective Langmuir fre-
quency of the beam. An interesting feature of the beam
in an SGDP is the existence of a critical wavelength of
perturbations, λcr , which corresponds to a zero effec-
tive Langmuir frequency of the beam (ωp, eff = 0): 

For –ln(pa)  < ln(ka) , the effective Langmuir fre-
quency of the beam becomes imaginary, which corre-
sponds to the Jeans instability of the beam with the

growth rate ν = (ka/2)[–ln(pa)  + ln(ka) ]1/2. The
perturbations that are growing at this rate are carried
away by the beam with the velocity V0. 

3. WAVE PERTURBATIONS IN A SYSTEM 
OF SEVERAL COLLINEAR BEAMS OF AN SGDP 

Now, we analyze a more complicated system, i.e.,
one that consists of several narrow straight beams of
charged dust grains of radius a. Let the beams be ori-
ented along the z-axis and lie in the xz plane. Let the
distance between neighboring beams be l. Since the
entire space (including the regions occupied by the
beams) is filled with a plasma, the beams interact with
each other through electric and gravitational fields.
We turn to formulas (10) and (11) to represent the
electric potential of the resulting field inside the jth
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Fig. 1. Dimensionless potentials ΨE (above the abscissa)
and ΨG (below the abscissa) versus the distance r/a for dif-
ferent values of pa and ka. 
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beam as 

(16)

where the first term on the right-hand side stems from
the potential of the jth beam and the second term
accounts for the contribution of the remaining beams
(whose centers are at the points x = xi (i ≠ j)) to the
electric field at the point x = xj. In order of magnitude,
the number of electrically interacting beams is equal to
λD/l. 

The gravitational potential is described by a similar
formula: 

(17)

Note that the number of beams interacting gravitation-
ally is larger and is proportional to ~λ/l @ λD/l (of
course, for long-wavelength perturbations, we have
λ @ λD). 

A complete set of equations describing the longitu-
dinal oscillations of interest to us consists of, first, the
linearized equations of motion and the linearized conti-
nuity equations for dust grains in the beams [equations
(1) and (2) should be written for each of the beams]
and, second, equations (16) and (17), which couple the
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Fig. 2. The dependence y(x) ~  demonstrating a weak-

ening of the electromagnetic forces with increasing the dis-
tance between the beams (the ratio l/λD). 
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--------
dust densities Ni in different beams and the electric and
gravitational potentials, ΨE, j and ΨG, j, in the selected
beam. Since such a beam–plasma system is, as a rule,
described by a very large number of equations, it can-
not be analyzed directly from conventional approaches. 

As a simple example, we consider two beams of an
SGDP. Let V01 and V02 be the unperturbed velocities of
the grain beams and N01 and N02 be their unperturbed
densities. Let us assume that the external force
−(Q/M)∂ΨE, ext /∂z – ∂ΨG, ext /∂z affects only the first
beam. We can readily show that the perturbed density
of each of the beams satisfies the set of algebraic equa-
tions 

(18)

(19)

where D1 and D2 are the determinants of the sets of
equations describing the perturbations in each of the
beams in an SGDP: 

Although the external force acts only upon the first
beam, the perturbation of its density, 

,

gives rise to electric and gravitational fields in the sec-
ond beam, which, in turn, perturb its density, 

(20)

where D0 is the determinant of equations (18) and (19), 
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According to (20), the perturbations of the density
in the first beam induce the density perturbations in the
second beam via electric and gravitational fields, so

that we can write N2 =  + ; moreover, the ratio 

decreases as the distance l between the beams
increases. We introduce the dimensionless variables

y =  and x = . Figure 2 shows the depen-

dence y(x) for different distances between the beams:
l = 0.1λD, l = λD, and l = 10λD. We can see that, as l
increases, the electromagnetic interaction between the
beams sharply weakens, so that the wave perturbations
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of the density of the first beam perturb the density of the
second beam mainly via gravitational fields. 

Hence, Debye screening can substantially weaken
electric coupling between the beams of dust grains in
an SGDP, without affecting the gravitational forces,
which thus might become dominant at distances as long
as l @ λD, even though the electric fields play a govern-
ing role in the interaction between closely spaced
beams. 
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Abstract—The stability of an anisotropic ion distribution with unoccupied regions (holes) in velocity space is
studied. Such distributions are expected to form near the neutral plane of the Earth’s magnetotail. It is shown
that, in such systems, electrostatic waves can be excited. The growth rate and propagation direction of these
oscillations are determined by the parameters characterizing the ion hole, as well as by the relation between the
electron and ion temperatures. The solution to the quasilinear equation for the waves propagating perpendicular
to the current sheet is found, and the energy of the excited oscillations as a function of the parameters of the ion
hole is evaluated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of the particle dynamics in a collisionless
plasma have shown that the nonadiabatic motion of
ions in the magnetic field reversal region leads to the
formation of non-Maxwellian ion distributions [1–4].
Near the neutral sheet, such distributions are character-
ized by the presence of unoccupied (or strongly
depleted) regions (holes) in velocity space, which are
produced because ions with open (Speiser) trajectories
leave the region of a low magnetic field. The specific
property of this distribution function is an unusual ori-
entation (with respect to the magnetic field) of the ion
hole in velocity space. In contrast to the classical loss
cone (whose axis is directed along the magnetic field),
the unoccupied region typical of the velocity distribu-
tion function in question lies in the vicinity of the plane
perpendicular to the magnetic field; moreover, this
region is asymmetric with respect to the magnetic field
direction. An analysis of the experimental data obtained
when the Galileo spacecraft traveled near the current
sheet of the Earth’s magnetotail at distances from 35 to
87 Earth radii confirmed the non-Maxwellian nature of
the ion distribution function, as well as the presence of
ion holes in velocity space [5].

Previous investigations carried out for a narrow hole
in velocity space [6] have shown that such functions are
sources of free energy for the excitation of electrostatic
oscillations, which, in turn, can affect physical pro-
cesses in the plasma near the neutral sheet. The purpose
of this study is to investigate the excitation of electro-
static oscillations in the neutral sheet of the Earth’s
magnetotail due to the presence of ion holes of arbitrary
size in velocity space.
1063-780X/00/2601- $20.00 © 0046
2. FORMULATION OF THE PROBLEM

Numerical simulation of the particle motion in the
field of the Earth’s magnetotail given by the Tsyga-
nenko model [7] showed that the ion orbits in the
plasma sheet are mainly of the closed type. Particles
with such orbits repeatedly intersect the magnetic field
reversal region; as a result, their distribution becomes
isotropic and they fill the major part of phase space. The
rest of the ions have strongly elongated orbits that are
extended toward the Earth and, consequently, are effi-
ciently carried away from the system. The rate of parti-
cle exchange between these two regions of phase space
is relatively low [8]; this leads to the formation of ion
holes in velocity space. The distribution function
obtained by numerical calculations [1, 2] is plotted
schematically in Fig. 1a. Here, we use the Sun–Earth
magnetic coordinate system, in which the x-axis is
directed along the Earth–Sun line, the z-axis is in the
South–North direction (which is perpendicular to the
current sheet), and the direction of the y-axis is chosen
such that it forms a right-hand triple with the x- and
z-axis. In order to describe such an ion distribution in
velocity space, the distribution function is usually
assumed to be Maxwellian in the region occupied by
particles with closed trajectories. In our model, we
assume that, outside this region, the ions are absent,
because they are efficiently carried away from the sys-
tem. The separating surface is taken to be a one-sheet
hyperboloid with the angular parameter θ0 and radius
v0; in the azimuthal direction, the separating surface is
limited by the angle ϕ0. In the spherical coordinate sys-
tem (v, θ, ϕ), where the azimuthal angle ϕ is reckoned
from the y-axis, this distribution function can be repre-
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Sketch of a 3D ion distribution function with a hole in velocity space in the Sun–Earth magnetic coordinate system. Near
the current sheet, the magnetic field is assumed to be directed from the South to the North (i.e., B ≈ Bz). (b) Ion distribution function
integrated with respect to vx and vy for waves propagating along the magnetic field: θ0 = 80°, ϕ0 = 270°, and v0/vTi = 0.1.
sented as

(1)

Here, α = 1 – cosθ0  is the normalization

coefficient and ni and vTi are the density and thermal
velocity of ions. In the model in question, the electrons
are assumed to be Maxwellian with temperature Te and
density ne. From the quasineutrality condition, it fol-
lows that ne = ni = n0.

We assume that the plasma is uniform along all of
the spatial coordinates. As follows from the results of
the linear theory presented below, the characteristic
wavelength of electrostatic oscillations excited due to
the presence of ion holes in velocity space is on the
order of several ion Debye lengths. Thus, the results
obtained are applicable when the neutral-sheet thick-
ness and the characteristic spatial scale of nonuniformi-
ties are substantially larger than the above value.

The ions and electrons can be considered unmagne-
tized, because, in the vicinity of the magnetic field
reversal region, the ion gyrofrequency Ωi is well below
the ion plasma frequency ωpi and kzvz > Ωe (here, k is
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the characteristic wave vector of the excited oscilla-
tions and Ωe is the electron gyrofrequency). Therefore,
we can neglect the contribution from the electron rota-
tion in the magnetic field to the plasma permittivity as
compared to the contribution from the electron thermal
motion.

3. LINEAR THEORY

3.1. Excitation of Waves Propagating 
along the Magnetic Field

From the numerical solution of the general disper-
sion relation (see Section 3.2), it follows that, when the
ion hole in velocity space is sufficiently narrow in the
polar direction, the waves with the wave vector directed
along the z-axis have the largest growth rate. It is well
known that a decisive role in the dynamics of electro-
static oscillations is played by the reduced (one-dimen-
sional) distribution function obtained from the three-
dimensional function by integrating with respect to the
velocities perpendicular to the wave vector. In our case,
for the reduced ion distribution function, we obtain

(2)

where vTi =  is the ion thermal velocity,
vTir = vTicosθ0, and nir is given by the relation
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Fig. 2. Instability growth rate γ/ωpi as a function of the wavenumber kλi for waves propagating along the magnetic field for Ti/Te = 4,
θ0 = 86°, and different values of ϕ0 at v0/vTi = (a) 0 and (b) 0.5.
A typical reduced ion function fi(vz) is shown in
Fig. 1b.

By substituting the ion and electron distribution
functions into the Penrose criterion [9], we obtain the
criterion for the excitation of electrostatic waves in the
z direction

(3)

where λi is the ion Debye length. From this criterion, it
follows that, for Ti > Te, the electrostatic oscillations are
unstable at sufficiently small values of cosθ0. Thus, we
can assume that ω ! kvTe and kvTi cosθ0 ! ω ! kvTi .
In this limit, the dispersion relation for electrostatic
oscillations has the form

(4)

The last term in this relation, which describes the
contribution from the ion hole in velocity space, is anal-
ogous to the ion contribution in the limit of cold ions
but has the opposite sign. It follows from here that there
exists a solution with a zero real part of the frequency
and the growth rate

(5)

In order to study the growth rate as a function of the
parameters of the ion distribution (θ0, ϕ0, and v0), we
numerically solved the general dispersion equation.
Figure 2 shows the growth rate normalized to the ion
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plasma frequency as a function of the wavenumber nor-
malized to the reciprocal of the ion Debye length. The
curves show the numerically calculated growth rate for
different values of ϕ0 at a fixed value of θ0. The ratio
between the ion and electron temperatures is taken to
be four, which is typical of the Earth’s magnetotail.
From these figures, it is clearly seen that the growth rate
decreases monotonically with both increasing v0/vTi

and decreasing ϕ0; in both cases, the region of the
wavenumbers corresponding to the instability
decreases.

The greatest growth rate is attained for the angular
parameter θ0 of the ion hole in velocity space close to
90°. Figure 3 shows the values of the growth rate calcu-
lated numerically for different θ0. The narrower the ion
hole, the shorter the wavelength of excited oscillations.
This is in agreement with estimate (3) for the maximum
wavenumber of unstable oscillations obtained from the
Penrose criterion.

3.2. Excitation of Waves Propagating Obliquely
to the Magnetic Field

In order to study the stability of waves propagating
obliquely to the magnetic field, it is necessary to calcu-
late the corresponding reduced distribution function
fi(vk) for each wave vector. This function is equal to the
integral of the 3D distribution function in velocity
space over the plane perpendicular to the wave vector
and passing through the point vkk/ |k |. In this case, the
complete dispersion relation in the electrostatic limit is
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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Fig. 3. Instability growth rate γ/ωpi as a function of the wavenumber kλi for waves propagating along the magnetic field for Ti/Te = 4,
v0/vTi = 0.1, ϕk = 0°, and different values of θ0 at ϕ0 = (a) 270° and (b) 210°.
reduced to

(6)

In order to find the range of the wave-vector angles
θk at which electrostatic oscillations are unstable and
determine how the parameters governing the shape of
the ion velocity distribution affect the stability, disper-
sion relation (6) was solved under the assumption that
the first term in this relation was small compared to the
other terms. This means that we consider oscillations
with wavelengths larger than the electron Debye length
but much smaller than the electron gyroradius. In this
case, the growth rate is proportional to k. Figure 4
shows the contours of the growth rate γ normalized to
kvTi in the (θ0, θk) plane (the ion-hole angular parame-
ter versus the wave-vector polar angle). It is seen that,
if the ion hole is sufficiently narrow in the polar direc-
tion and criterion (3) is satisfied, the maximum growth
rate corresponds to oscillations with the wave vector
parallel to the z-axis (θk = 0°). If criterion (3) does not
hold, but the angle θ0 is still close to π/2, only the waves
propagating obliquely to the magnetic field are unsta-
ble. A comparison of Figs. 4a and 4b plotted for the
same plasma parameters (except for the ratio between
the ion and electron temperatures) shows that the ratio
Ti/Te plays a decisive role in the onset of the instability.
A double increase in this ratio leads to a drastic
decrease in the size of the instability region. For the
waves propagating along the magnetic field, this fol-
lows directly from criterion (3). The change of the
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parameters ϕ0 and v0/vTi of the ion distribution also
leads to an appreciable change in the size of the insta-
bility region. Nevertheless, if the hole is axially sym-
metric (i.e., ϕ0 = 360°), the effect of the temperature
ratio is not very strong. With the same change in the
temperature ratio as in the case of an asymmetric hole,
the size of the instability region with respect to θk for an
axially symmetric hole changes only slightly, although
the magnitude of the growth rate appreciably decreases,
as was shown in [10], in which the case of an axially
symmetric hole was studied. When the symmetry
around the magnetic field is disturbed (ϕ0 < 360°), the
size of the instability region decreases rapidly with
decreasing ϕ0. This dependence is seen from a compar-
ison of Figs. 4b and 5a, which are plotted for the same
plasma parameters, except for ϕ0; the parameter ϕ0
changes from 270° in Fig. 4b to 230° in Fig. 5a. The
contours of γ/ωpi in Fig. 5b were obtained by solving
the general dispersion relation (6), including its first
term, which was omitted in the other calculations. The
curves are plotted in the (ky, kz) plane for θ0 = 88°. As
follows from Fig. 5a, this value of θ0 corresponds to the
maximum value of the growth rate. The results pre-
sented in Fig. 5b show that the characteristic wave-
length along the magnetic field is one order of magni-
tude less than the characteristic wavelength in the trans-
verse direction.

Studies of the influence of the axial wave-vector
angle ϕk on the excitation of electrostatic oscillations
show that, if the ion hole is sufficiently narrow in the
polar direction, the value of the growth rate changes
slightly over the entire interval of angles ϕk. The corre-
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Fig. 4. Contours of the growth rate γ/kvTi in the (θk, θ0) plane (the polar wave-vector angle vs. the ion-hole angular parameter) for
v0/vTi = 0.1, ϕ0 = 270°, ϕk = 0° at Ti/Te = (a) 2 and (b) 4.

Fig. 5. Contours of the growth rate γ for Ti/Te = 4, v0/vTi = 0.1, ϕ0 = 230°, ϕk = 0° obtained from the solution of the general disper-
sion relation (6): (a) contours of γ/kvTi in the (θk, θ0) plane and (b) contours of γ/ωpi in the (ky, kz) plane for θ0 = 88°.
sponding numerical results are presented in Fig. 6a. For
a sufficiently large width of the ion hole in the polar
direction, when the waves propagating obliquely to the
magnetic field are excited, the maximum growth rate
increases with the axial angle ϕk, approaching 90°. In
this case, the polar wave-vector angle θk corresponding
to the maximum growth rate decreases. This depen-
dence is clearly seen in Fig. 6b plotted for the same
plasma parameters as in Fig. 6a, except for θ0 = 70°.
It should be noted that the dependence of the growth
rate on the axial angle ϕk is symmetric with respect to
ϕk = 90° because of the symmetry of the distribution
function with respect to the (vyvz) and (vxvy) planes.

4. QUASILINEAR THEORY

The above results, obtained in the linear theory,
show that the ion distribution functions (of the type
shown in Fig. 1) with unoccupied regions in velocity
space are unstable with respect to the excitation of elec-
trostatic oscillations. Obviously, the influence of non-
linear effects on the wave dynamics increases with
increasing the oscillation amplitude. The most impor-
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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tant nonlinear interaction in the system is the wave–
particle interaction leading to a change in the ion distri-
bution function. Since, in the case of the ion-hole insta-
bility, the excitation of oscillations is not related to the
resonant wave–particle interaction and γ(k) ! kvTi , we
can use the quasilinear theory in the limit of nonreso-
nant diffusion in velocity space. In this paper, we
present the results of a quasilinear analysis only for
waves propagating along the magnetic field, i.e., for the
case when the ion hole in velocity space is located near
θ close to 90°. In this case, the waves are excited in the
direction almost parallel to the magnetic field; conse-
quently, it is sufficient to study the relaxation of the
reduced ion distribution function (2). According to
[11], the ion diffusion in the velocity component vz is
described by the equation

(7)

This equation describes the interaction of all of the
ions with a wave, but the efficiency of interaction is dif-
ferent for ions with different vz. From equation (7), it
follows in particular that the coefficient of quasilinear
diffusion is substantially higher for ions with vz  0.

By introducing dimensionless variables
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we can solve equation (7) in terms of the initial reduced
ion distribution function (2) to obtain

(9)

where

and J(x) is the Bessel function of the first kind.

From equation (9), it follows that, as the wave
energy increases, a plateau is formed in the ion distri-
bution function near vz = 0. The wave energy increases
as long as the ion distribution remains unstable with
respect to the excitation of electrostatic oscillations. In
order to estimate the saturation oscillation energy, we
make use of the Penrose criterion [9], according to
which a plasma with ion distribution (9) and Max-
wellian electrons is unstable with respect to the excita-
tion of electrostatic oscillations if and only if the fol-
lowing condition is satisfied:
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where

From equations (9) and (10), we obtain that the satu-
ration level leading to the formation of a plateau in the
reduced ion distribution function in the region 0 ≤ vz ≤ vTi

is about ε ≈ cos4θ0. Figure 7a shows ε in the state of a
saturated instability as a function of the angular param-
eter θ0 of the initial ion distribution for different values
of v0 /vTi = 0, 0.2, 0.4, 0.6, and 0.8. Figure 7b shows the
level of the saturation energy ε in the (ϕ0, θ0) plane. As
was expected, the saturation oscillation energy strongly
depends on the parameters of the ion hole in velocity
space. Estimates show that, for plasma parameters typ-
ical of the neutral sheet of the Earth’s magnetotail, the
amplitude of the wave electric field can attain the value
of the dawn–dusk electric field observed in this spatial
region.

5. CONCLUSION

We have studied the stability of nongyrotropic ion
distribution functions that can be formed in the neutral
sheet of the Earth’s magnetosphere against the excita-
tion of electrostatic oscillations. The results obtained
show that a plasma consisting of Maxwellian electrons
and ions with the distribution function of the type
shown in Fig. 1 is unstable against the excitation of
electrostatic oscillations in a wide range of parameters
of the ion hole in velocity space. When the ion hole is
sufficiently narrow in the polar angle θ, electrostatic
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waves propagating along the magnetic field have the
largest growth rate. The real part of the frequency of
these waves is vanishingly small. As the angular param-
eter θ0 of the hole decreases, the angle between the
wave vector and the magnetic field at which the growth
rate is maximum increases. The increase in the width of
the ion hole in the polar direction also leads to an
increase in the real part of the frequency. The typical
wave frequency for the parameters of Fig. 5a is on the
order of 0.1ωpi for waves with polar angle θk larger than
10°. The maximum growth rate for obliquely propagat-
ing oscillations is expected for waves propagating at the
azimuthal angle ϕk = 90°. Our investigation showed
that the excitation of waves propagating obliquely to
the magnetic field is very sensitive to the plasma
parameters. In particular, the plasma stability strongly
depends on the ratio between the electron and ion tem-
peratures. This effect is most pronounced in plasmas
with a distorted symmetry of the ion distribution with
respect to the magnetic field. The parameter ϕ0 also
strongly affects the size of the instability region for
oscillations propagating obliquely to the magnetic
field. Thus, we can conclude that the ion distribution
with a hole in velocity space that is sufficiently wide in
the polar angle can be stable against the excitation of
electrostatic oscillations; however, the question of the
stability of such distributions against the excitation of
electromagnetic waves remains open.

The results obtained show that, when waves propa-
gating along the magnetic field are excited (in other
words, for a sufficiently narrow ion hole in velocity
space), variations in the plasma parameters do not have
such a strong effect on the system stability as in the case
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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of waves propagating obliquely to the magnetic field.
Thus, the ion distribution functions under study can be
an efficient source of electrostatic activity in the current
sheet of the Earth’s magnetotail. Apparently, as the
oscillation amplitude grows, the role of nonlinear
effects increases. In our case, the main nonlinear effect
is the wave–particle interaction, which alters the initial
ion distribution. The obtained solution to the equation
for the quasilinear diffusion shows that the system is
stabilized due to the trapping of low-energy ions and
the formation of a plateau in the hole region of the ini-
tial reduced ion distribution. The saturation level of the
excited oscillations is determined by the plasma param-
eters. For parameters typical of the neutral sheet of the
Earth’s magnetospheric tail, the amplitude of the satu-
rated oscillations can attain the value of the dawn–dusk
electric field. Obviously, in the quasisteady state, a bal-
ance must occur between the quasilinear ion diffusion
in velocity space and the ion loss due to escape along
the open trajectories. This loss was not taken into
account in this study. Thus, we can expect that, in actual
systems, the saturation level of electrostatic oscillations
may be higher than that estimated by quasilinear the-
ory.
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Abstract—The equations of vortex electron anisotropic hydrodynamics are used to show that, in a plasma with
anisotropic pressure, the Weibel instability of short-wavelength perturbations gives rise to a large-amplitude
quasi-harmonic magnetic field varying periodically as a function of time. The computed field parameters agree
well with the proposed analytic estimates. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

The study of nonlinear relaxation processes in sys-
tems that are far from equilibrium is an important
problem in the physics of a rarefied nonequilibrium
plasma. Since the collision frequency in such a plasma
is low, the relaxation of plasma particles to an equilib-
rium distribution may be accompanied by the onset of
various instabilities, during which the collective non-
linear properties of the plasma are especially pro-
nounced. 

Nonequilibrium plasma systems in which relaxation
processes are governed by the excitation of intense lon-
gitudinal fields and their nonlinear interaction have
been investigated very thoroughly. The literature on the
systems that are unstable against transverse electro-
magnetic fields is much less extensive. Among such
systems, we can mention, e.g., a plasma with an aniso-
tropic electron energy distribution (an anisotropic
plasma) [1]. 

So far, anisotropic plasmas have been studied using
either a kinetic approach [2– 5] or approximate hydro-
dynamic models [6–10]. Bychenkov et al. [6] devel-
oped a quasi-hydrodynamic model based on the equa-
tions of vortex electron anisotropic hydrodynamics
(VEAH). The choice of such a simplified approach,
which was called the VEAH model, was motivated by
the complexity of the kinetic plasma description. In
order to make the proposed model adequate for the
kinetic approach, it was constructed with allowance for
the rich store of data acquired in modeling plasma pro-
cesses in the context of collisionless hydrodynamics.
The VEAH model for a collisionless plasma [6] makes
it possible to analyze the dynamic properties of the
electron plasma component with an anisotropic energy
distribution (anisotropic pressure) using the set of
1063-780X/00/2601- $20.00 © 20054
equations for the magnetic field induction Bi and the
electron pressure tensor Pij . 

Solutions to the VEAH equations (especially in the
long-wavelength approximation, in which they take on
a simpler form) were studied both analytically and
numerically [6–10]. Bychenkov et al. [7] found that the
results obtained by numerically solving the problem of
the onset of long-wavelength (kc/ωp ! 1, where k is the
wavenumber, c is the speed of light, and ωp is the
plasma frequency) magnetic perturbations in a non-
equilibrium unstable plasma with the help of the VEAH
equations agree qualitatively with the results obtained
from the kinetic modeling carried out with a bi-Max-
wellian electron distribution [5]. We should, however,
emphasize that both the applicability range of the
VEAH equations and the class of problems to which
they are applicable should be studied in more detail.
This, primarily, refers to regimes in which the short-
wavelength (kc/ωp ~ 1) Weibel instability forces pertur-
bations to grow at the highest rates and which have not
yet been studied in detail. 

Our aim here is to further develop the theory of the
nonlinear dynamics of the Weibel instability. We will
investigate a short-wavelength regime by applying a
relatively simple analytical model and by solving the
VEAH equations numerically. 

2. RESULTS OF NUMERICAL MODELING 

In the one-dimensional approximation in which all
of the quantities depend solely on x and only the y-com-
ponent of the magnetic field and the xx-, xz-, and
zz-elements of the pressure tensor are nonzero, the
000 MAIK “Nauka/Interperiodica”
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VEAH equations have the form 

(1)

Here, the dimensionless magnetic field Ω is expressed

in units of , and the stress tensor elements, the

coordinate, and the time are normalized, respectively,

to P∗ , c/ωp, and c/ωp , where me is the elec-

tron mass, ne is the electron density, and P∗  is an arbi-
trary normalizing pressure. 

The VEAH equations (1) have the integral of motion

detPij = PxxPzz –  = C(x) and the energy integral 

We solved equations (1) with the VEAH code (see
Appendix). We imposed periodic boundary conditions
at the boundaries of a region with the dimension L = 4π.
At the initial instant, we set Pzz = P⊥  = 1, Pxx = P|| = 0.25,
and Pxz = 0. The magnetic field was chosen in the form
of a spatially periodic perturbation Ω = εcoskx with the
amplitude ε = 10–2. In simulations, we varied the pertur-
bation wavenumber k. 

According to the linear theory of Weibel instability,
a small initial perturbation of the magnetic field grows
exponentially with time, 

, (2)

at the rate 

(3)

Relationship (3) implies that the instability domain in
wavenumber space is limited by the condition k < kM

(where kM =  = 1.73) and the growth rate is
maximum, γm = 0.5, at k = km = 1. In the region k > kM,
in which the growth rate γ(k) is purely imaginary, the
solutions for the magnetic-field perturbation Ω with a
small initial amplitude are finite and can be obtained
from linear theory. 

In calculations, we varied k in the range 0 < k < kM,
in which the solutions are unstable. Our simulations
were aimed at revealing the characteristic features of
unstable solutions in the nonlinear stage (for the mag-
netic field amplitudes Ω ~ 1). An analysis of the numer-
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ical results allows us to draw the following two conclu-
sions. 

(i) In the range kM/3 < k < kM, the solution depends
on the spatial coordinate in a quasi-harmonic fashion
over a fairly long time interval; the regimes in which
the solutions behave in such a manner will be referred
to as single-mode regimes. 

(ii) In the range 0 < k < kM/3, the magnetic field,
which is initially harmonic in character, is rapidly dis-
torted because of the onset of higher harmonics, whose
amplitudes grow to a level comparable with the ampli-
tude of the initial mode. 

Figure 1 illustrates spatial profiles of Ω(x) for two
qualitatively different cases k = 1 and k = 0.5 at t = 50,
which corresponds to sufficiently long time scales
(t ≥ 20γ–1). In the long-wavelength case k = 0.5, the ini-
tial harmonic profile Ω(x) is seen to be distorted,
whereas, in the short-wavelength case k = 1, it remains
essentially unchanged. 

The structure of the VEAH equations implies that,
in the nonlinear stage, the instability causes the gener-
ation of odd spatial harmonics of the magnetic field
with the wavenumbers kd = (2n + 1)k (n = 1, 2, …). From
the necessary condition for stability of an arbitrary har-
monic with wavenumber k∗  (k∗  > kM), we obtain that all
of the higher harmonics are stable if min{kd} > kM.
Consequently, the conditions under which the single-
mode regime exists are k < kM and min{kd} > kM, which
can be rewritten as kM/3 < k < kM by virtue of
min{kd} = 3k. This conclusion was confirmed by our
numerical simulations. 

Figure 2 shows the time evolution of several Fourier
harmonics of the magnetic field. In the short-wave-

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

Ω

0 4 8 12
x

Fig. 1. Spatial profiles of the magnetic field at t = 50 for
k = 0.5 (solid curve) and k = 1 (dashed curve). 
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length case k = 1 (Fig. 2a), the amplitudes of the Fourier
harmonics are seen to be small in comparison with the
amplitude of the seed perturbation, whereas the third-
harmonic amplitude in the long-wavelength case k =
0.5 (Fig. 2b) grows rapidly and becomes comparable
with the initial mode amplitude. Our simulations
revealed a distinct boundary (at approximately kM/3)
between the long-wavelength and short-wavelength
regimes in the space of wavenumbers k. 

We consider the problem of the stability of a mag-
netic structure against small perturbations in the form
of small-amplitude (noisy) harmonics in the single-
mode regime. At first glance, it seems that the develop-
ment of noisy harmonics should be described in terms
of the linear theory of Weibel instability. In particular,
if their wavenumbers are in the range 0 < k < kM, then
they seem to grow at the rate (3). However, we will
show below that, although the amplitudes of the noisy
harmonics are small, linear theory fails to predict their
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Fig. 2. Time evolution of the amplitudes of the spatial Fou-
rier harmonics of the magnetic field in (a) the short-wave-
length case, k = 1, and (b) the long-wavelength case, k = 0.5.
The solid curve corresponds to the fundamental harmonic
and the dashed and dotted curves, to the third and fifth har-
monics, respectively. 
time evolution because of the rapid growth of the fun-
damental mode amplitude. Let the initial magnetic per-
turbation be specified as Ω = ε1 cos(kx) + ε2 cos(2kx) +
ε3 cos(3kx), where the quantities ε1, ε2, and ε3 differ in
order of magnitude and the wavenumbers k are adjusted
to lie within the instability domain k < kM/3. A series of
numerical simulations was carried out for ε1 = ε2 = 10–8,
ε3 = 10–2, and k = 1/3. As before, the initial pressure
components were set to be P⊥  = 1 and P|| = 0.25. Con-
sequently, the third harmonic, which grows at the high-
est rate γm = 0.5, can be regarded as being fundamental,
whereas the first and second harmonics, which are also
within the instability domain, play the role of noisy har-
monics. Figure 3 shows the time evolution of the ampli-
tudes Ω1, 2, 3(t) of the first three Fourier harmonics of
the magnetic perturbation. We can see that, although
the amplitudes of the noisy harmonics are small, they
can be described in the linear approximation only when
the fundamental mode is far from being saturated. That
is why the time scales on which the single-mode regime
breaks down turn out to be somewhat longer than those
obtained from the prediction of the linear theory for the
rate with which the noisy harmonics grow. 

Our simulations revealed an interesting regime in
which the time behavior of the fundamental mode with
a wavenumber k lying in the range kM/3 < k < kM

depends on the initial amplitude of the stable noisy har-
monic with kf = 3k (kf > kM). This regime is illustrated
in Fig. 4, which shows the time evolution of Ω1, 3(t) for
k = 1, ε1 = 10–3, and ε3 = 10–3, 5 × 10–3, and 10–2. At
ε3 = 10–3, the amplitude Ω1(t) varies periodically but
does not change sign throughout the entire computation
time. However, even at ε3 = 5 × 10–3, the evolution of the
first magnetic-field harmonic becomes more compli-
cated. Consequently, varying the initial amplitude of
the stable short-wavelength noisy harmonic makes it
possible, in principle, to control the time evolution of
the magnetic structure in the single-mode regime. 

Hence, our simulations based on the VEAH model
in which the initial magnetic perturbation is assumed to
be harmonic revealed two essentially different regimes
of Weibel instability. In the first regime, which refers to
a short-wavelength (kM/3 < k < kM) initial perturbation,
the spatial profile of the magnetic field is quasi-har-
monic and the magnetic-field amplitude evolves in a
strictly periodic fashion. In the presence of small-
amplitude seed noisy harmonics with wavenumbers
lying inside the instability domain, the harmonic struc-
ture of the magnetic field breaks down as time elapses.
However, we have shown that linear theory gives incor-
rect estimates for the time during which the regular
magnetic structure in this regime is disrupted: the mag-
netic field has been found to remain quasi-harmonic
over time scales significantly longer than the character-
istic time scale of the Weibel instability. 

The time evolution of a long-wavelength (0 < k <
kM/3) initial perturbation in the course of Weibel insta-
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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bility is radically different. Higher harmonics that are
generated in the nonlinear stage (the wavenumber 3k of
the lowest of these harmonics turns out to lie within the
instability domain) rapidly destroy the initial harmonic
structure of the magnetic field. As a result, the picture
of the process eventually becomes fairly complicated
and stochastic. 

3. ANALYTICAL MODEL 

Now, we present a simple analytical model capable
of describing the features of the plasma dynamics that
were revealed with the help of the VEAH equations. It
is natural to search for a spatially periodic solution to
equations (1) in the form of a Fourier expansion in the
x-coordinate, keeping a finite number of harmonics.
We set 

where the functions Ωi , Ri , Ai , and Bi depend only on
the time t. 

Substituting these expressions into the basic equa-
tions (1) and neglecting the highest harmonics yields
the following set of ordinary differential equations for
Ωi , Ri , Ai , and Bi: 

,

(4)
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Ṙ0 1 2⁄( ) A1Ω1 1 k
2

+( ) A2Ω2 1 4k
2

+( )+[=
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
.

We supplement these equations with the initial condi-
tions 

, 

In the linear approximation, equations (4) yield the
condition b0 > a0(1 + (nk)2) for the nth harmonic to be
unstable with the growth rate 
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Fig. 3. Time evolution of the amplitudes of the first three
harmonics of the magnetic field at k = 1/3, ε1 = ε2 = 10–8,
and ε3 = 0.01. The solid curve corresponds to Ω1 and the
dashed and dotted curves, to Ω2 and Ω3, respectively. 
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We consider a solution to equations (4) with the initial
conditions 

We can show that, under these conditions, the second
harmonic is not generated and the amplitudes of the
first and third harmonics satisfy the equations 

(5)
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Fig. 4. Time evolution of the amplitudes Ω1, 3 of the Fourier
harmonics of the magnetic field at k = 1, ε1 = 0.001, and
ε2 = 0 for different values of ε3 = (a) 0.001, (b) 0.005, and
(c) 0.01. The solid and dashed curves correspond to the first
and third harmonics, respectively. 
which will be solved iteratively. Setting Ω3 = 0 and
turning to the relationships 

which follow from the equations for A0, 2 and B0, 2, we
obtain the equation for Ω1, 

, (6)

and, in the first approximation, the equation for Ω3, 

(7)

The first integral of equation (6) is 

Integrating this expression again, we obtain the solu-
tion for the first harmonic of the magnetic field in terms
of an elliptic integral: 

(8)

Consequently, the first-harmonic amplitude, which is
found to be a bounded periodic function of time, varies
in the range 

with the period 

For the parameter values a0 = 0.25, b0 = 1, ε0 = 10–2, and
k = 1, which correspond to the initial parameter values
presented in the previous section, we obtain Ω1 max =
0.41 and T = 20.4. This agrees well with the results of
solving equations (1) numerically. Figure 5 shows the
time evolution of Ω1, 3(t) traced by solving equations (5)
with the initial conditions k = 1, ε1 = 10–2, and ε3 = 0.
A qualitative agreement with the numerical results

A0 a0 1 2⁄( ) 1 k
2–

+( ) Ω1
2 ε2

–( ),+=

A2 1 2⁄( ) 1 k
2–

+( ) Ω1
2 ε2

–( ),=

B0 b0 1 2⁄( ) 2 k
2

k
2–

+ +( ) Ω1
2 ε2

–( ),–=

B2 1 2⁄( ) 1 k
2

k
2–

+ +( ) Ω1
2 ε2

–( ),–=

Ω̇̇1 γ1
2

3 2⁄( ) 1 k
2

+( ) Ω1
2 ε2

–( )–[ ]Ω1– 0=

Ω̇̇3 γ3
2 9 1 k

2
+( ) 1 5k

2
+( )

1 9k
2

+
--------------------------------------------- Ω1

2 ε2
–( )– Ω3–

=  
9 1 k

2
+( )

2 1 9k
2

+( )
------------------------- Ω1

2 ε2
–( )Ω1.–

Ω̇1( )2 3 1 k
2

+( )
4

---------------------- Ω1
2 ε2

–( ) ε2 4γ1
2

3 1 k
2

+( )
---------------------- Ω1

2
–+

 
 
 

.=

3 1 k
2

+( )
2

--------------------------t
yd

y
2 ε2

–( ) Ω1 max
2

y
2

–( )
-------------------------------------------------------.

ε

Ω1

∫=

ε2 Ω1
2 Ω1 max

2< < ε2 4γ1
2

3 1 k
2

+( )
----------------------+=

T
4

3 1 k
2

+( )
-------------------------- yd

y
2 ε2

–( ) Ω1 max
2

y
2

–( )
-------------------------------------------------------.

ε

Ω1 max

∫=
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000



SINGLE-MODE MAGNETIC STRUCTURES IN A PLASMA WITH ANISOTROPIC PRESSURE 59
illustrated in Fig. 2a justifies the use of the single-mode
approximation. 

For ε ! 1, the approximate solution (6) can be writ-
ten in explicit form: 

where tn = (n + 1/2)T. As ε decreases, the distance
between the maxima increases according to the law
T ~ ln(Ω1 max/ε), and the soliton-like character of the
solution becomes more and more pronounced. For
small ε, the function Ω1 is very different from zero in
narrow intervals around tn . Equation (7) implies that,
outside these intervals, the evolution of Ω1, 3 can be
described by linear theory, whereas, inside them, Ω1

and Ω3 are closely coupled. 

Now, we consider the evolution of the magnetic
structure in a single-mode regime in which the initial
magnetic perturbation is represented by two noisy har-
monics whose amplitudes are of the same order of mag-
nitude and by the fundamental harmonic. Assuming,
for definiteness, that the third harmonic plays the role
of the fundamental one, we set 
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with the initial conditions Ω1 = Ω2 = ε,  =  = 0,
and B1 = B2 = 0. Here, A0 and B0 are known functions
of Ω3, 

When the fundamental harmonic amplitude is far from
being maximum, the equation set we have obtained
splits into independent equations corresponding to the
linear approximation. However, for Ω3 ~ Ω3 max, the
equations derived are coupled through the Ω3-depen-
dent functions A0, B0, B1, and B2, in which case the time
evolution of the noisy harmonics differs from that pre-
dicted by linear theory, even though their amplitudes
are relatively small. 
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Fig. 5. Time evolution of the amplitudes Ω1, 3 of the Fourier
harmonics of the magnetic field in accordance with the solu-
tions to equations (5) at k = 1, ε1 = 0.01, and ε3 = 0. The solid
and dashed curves correspond to Ω1 and Ω3, respectively. 
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4. CONCLUSION 

In studying the dynamics of a Weibel plasma, we
have revealed a single-mode regime of the generation
of an intense magnetic field whose amplitude changes
periodically as a function of time. This regime refers to
a short-wavelength periodic initial perturbation, in
which case the excited higher spatial harmonics are sta-
ble in the linear approximation. 

In practice, the phenomenon we have investigated is
of interest from the standpoint of the possibility of
amplifying weak periodic magnetic fields, without dis-
turbing their harmonic spatial structure. 

Strictly speaking, such an amplified magnetic signal
can exist only for a finite time, because it is unstable
against long-wavelength modes. However, the charac-
teristic “lifetime” of the amplified signal is significantly
longer than the time scale on which its amplitude varies
and even more so the time scale on which the Weibel
instability develops. This circumstance allows us to
speak of the existence of single-mode magnetic struc-
tures in plasmas with anisotropic electron pressure. 
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APPENDIX

Numerical Scheme 

In order to minimize the number of indices, we
introduce the new notation Pxx = u, Pzz = v, Pxz = W, and

ϕ = Ω – , in which the VEAH difference equations

have the form 

(A.1)

Bychenkov et al. [7] solved the VEAH equations
numerically using an explicit three-layer scheme of
second-order accuracy in time and space. However, our
test simulations have shown that the condition for the
scheme to be stable puts rather stringent restrictions on
the time step. We solved equations (A.1) numerically
with the following fairly reliable and quite effective
algorithm. 

Let the mesh ω = {xi , i = 1, 2, …, N, x1 = 0, xN = L}
be specified on the closed interval [0, L] and let all of
the quantities in (A.1) be assigned to the mesh points.

∂2Ω
∂x

2
----------

∂ϕ
∂t
------

∂2
W

∂x
2

----------,
∂W
∂t

-------- uϕ vΩ,–= =

∂u
∂t
------ 2WΩ,

∂v
∂t
-------– 2Wϕ .= =
Equations (A.1) are approximated by the difference
scheme 

(A.2)

Here, δWi and δΩi denote the difference analogues of
the second derivative, e.g., 

and α and β are certain given parameters lying in the
interval 0 ≤ (α, β)≤ 1. In order to be closed, equa-
tions (A.2) should be supplemented with the boundary
conditions for i = 1 and N. For a uniform mesh with a
spatial step h, the scheme is accurate to the second
order in h. For α = β = 0.5, the scheme is also accurate
to the second order in ∆t. For other α and β values, it is
accurate to O(∆t + h2). 

We can readily see that, for any β value, the integral
of motion (see Section 2) for the difference equations is
exactly conserved, as is the case with the VEAH equa-
tions. At α = β = 0.5, the energy conservation law is
also satisfied for the difference scheme on a spatially
uniform mesh ω. An analysis of the stability of the dif-
ference scheme shows that, if the step h of the mesh ω
is chosen to satisfy the condition sin2(kh/2)/(kh/2)2 . 1
for the k values of interest to us, then the stability and
instability domains for the difference scheme in wave-
number space will essentially coincide with those for
the differential equations in the VEAH model. 
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Abstract—Dissipation-free jumps are studied in a hydrodynamic model of a cold plasma moving at about mag-
netosonic speed. The jumps described by the generalized Korteweg–de Vries equation, which possesses similar
nonlinear and dispersion properties, are considered. In particular, jumps with emission and solitonlike jumps
are considered. The assumption that our model possesses jumps of the same type as those for the generalized
Korteweg–de Vries equation is justified by numerically investigating the problem of the decay of an initial dis-
continuity in a cold plasma. An analytic method is described that makes it possible to predict the structure of
such jumps in the general case. © 2000 MAIK “Nauka/Interperiodica”.
1. BASIC MODEL 
One-dimensional motion of a cold quasineutral

plasma is described by the set of equations [1]

(1)

where  =  + u , x is an independent variable, n is

the ion density, B = (Bx, By, Bz) is the magnetic induc-
tion, and v = (u, v, w) is the ion velocity. These quanti-
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ties are normalized, respectively, to the characteristic
length l, the unperturbed plasma density n0, the unper-
turbed magnetic field B0, and the Alfvén speed VA =

|B0|/  (where mi and me are the ion and
electron masses). The dispersion parameters Ri and Re

are defined as Ri = ωic/ω0 and Re = ωec/ω0, where ωic

and ωec are the ion and electron cyclotron frequencies
and ω0 = VA/l is the frequency characteristic of the phe-
nomenon under discussion. For convenience, we can

set l such that ω0 = ; consequently, we have

Ri  =  and Re =  =  @ 1.
The magnetic field component Bx is constant (indepen-
dent of x). In an unperturbed state, the unknown quan-
tities n, u, v, w, Bx , By , and Bz are equal, respectively, to
1, 0, 0, 0, cosθ, sinθ, and 0. The wave is assumed to
propagate along the x-axis at an angle θ to the magnetic
induction vector. 

The dispersion curve ω = ω(k) for the linearized ver-
sion of these equations consists of magnetosonic and
Alfvén branches; in the case of waves propagating
from left to right, the phase velocities for these
branches are [1]

4πn0 mi me+( )

ωicωec

ωic ωec⁄ ωec ωic⁄ mi me⁄
(2)
V 1 θcos+( )2

ReRi
1–

RiRe
1–

+( ) θcos
2 θsin

2
2 θcos+ +{ } Ri

1–
Re

1–
k

2
+[=

± 1 θcos–( )2
ReRi

1–
RiRe

1–
+( ) θcos

2 θsin
2

2 θcos+ +{ } Ri
1–
Re

1–
k

2 ] 2 1 Ri
1–
Re

1–
k

2
+( )[ ]⁄+ .
A linearized version of the basic equations also
describes degenerate slow magnetosonic (SMS)
branches (corresponding to the double root ω = 0).
Here, we are interested in wave phenomena associated
2

with the fast magnetosonic (FMS) branch. Figure 1
shows the dispersion curves of magnetosonic waves
propagating from left to right in a hydrogen plasma.
The curves are plotted in the frame running from left to
000 MAIK “Nauka/Interperiodica”
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right at a speed equal to unity (i.e., at the speed of long-
wavelength magnetosonic waves) for θ = 1.555 and
1.535, for which the computations described in Section 4
were carried out. The dashed curve represents the
Alfvén branch, which essentially coincides with the
straight line ω/k = –1 in the interval of k values in

Fig. 1. For θ > θc =  – ), the mag-
netosonic branch (curve 1 in Fig. 1) has no inflection
points at k > 0; this corresponds to solitary waves [2].
For θ < θc, the magnetosonic branch (curve 2 in Fig. 1)
has an inflection point at k > 0, so that solitary waves
are absent (they can exist only in the asymptotic
approximation [3]). The initial profiles of the shape of
a solitary wave are smeared as time elapses due to the
appearance of short-wavelength emission [4] at the
wavelength that, in the first approximation, is deter-
mined by the value k∗  at the point where the dispersion

curve intersects the straight line U = ω/k, where U is the
speed of a solitary wave. 

2. DISSIPATION-FREE JUMPS 

Let us illustrate the dissipation-free jump using as
an example the following two numerical self-similar
solutions [5] to a simple equation similar to the gener-
alized Korteweg–de Vries (KdV) equation: 

. (3)

2.1. Solution with a Solitonlike Jump 

In the region between two states a1 and a2 (in the
wave zone), the solution is oscillatory in nature. At one
of the boundaries of the wave zone, a sequence of the
wave maxima passes over to a sequence of solitary
waves as t  +∞. At the other boundary, the ampli-
tude with which the solution oscillates gradually
approaches zero. As time elapses, the solution for the
wave zone acquires the nature of a self-similar solution:
the wave envelope depends on x/t. The jump in question
has no structure in the common sense; however, a soli-
tary wave at the boundary can be formally regarded as
the jump structure. The state on one side of the jump is
described by the set of averaged equations for the wave
zone, and the state on the other side, by the conven-
tional simplified equation at + aax = 0. Note that the
related solution to the conventional KdV equation was
called the nonsteady structure of a collisionless shock
wave and was studied by Gurevich and Pitaevskiœ [6].
Here, we will say a few words about the terminology:
although such a solution is, as a whole, nonlocal and
depends on time, it is time-independent at the boundary
of the wave zone. In our study, any localized transitions
between homogeneous, periodic, quasiperiodic, and
stochastic states are regarded as jumps. 

( Re Ri⁄tan
1–

Ri Re⁄

at aax b3axxx b5axxxxx+ + + 0=
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2.2. Solution with a Jump with Emission 

In this case, the wavelength at the corresponding
boundary of the wave zone is finite. The solution has a
local jump: on one side of the jump, the state is homo-
geneous, and the state on the other side corresponds to
a homogeneous periodic wave. The wave zone includes
a homogeneous wave subzone whose length increases
with time and a subzone of the centered simple wave
envelope (where the wave amplitude falls off to zero). 

Solitonlike jumps can be captured by numerically
solving the problem of the decay of an initial disconti-
nuity only when b2b3 < 0 (if the amplitude of the initial
discontinuity is sufficiently small), and jumps with
emission appear only when b5 ≠ 0, regardless of the
signs of the coefficients (if the amplitude of the initial
discontinuity is sufficiently large). For b3 = 0 and b5 ≠ 0,
only solutions describing jumps with emission can be
obtained. For b2b3 > 0 and for a small amplitude of the
initial discontinuity, the solutions describe jumps with
an unsteady structure. 

With the cold-plasma model adopted here, we can
employ asymptotic methods to derive the conventional
KdV equation for the entire parameter range under con-
sideration and the generalized KdV equation with b3 = 0
at θ = θc [1]. Qualitatively, the shape of the dispersion
curve of the magnetosonic branch for θ < θc coincides
with that obtained from equation (3) at b1b2 > 0 (in the
region k > 0, the dispersion curve has an inflection
point) and, for θ > θc, it coincides with that obtained at
b1b2 < 0 (the dispersion curve has no inflection point).
As will be shown in Section 5, the type of jump struc-
ture is governed by the shape of the dispersion curve;
consequently, we can expect that the full model can
also yield solitonlike jumps and jumps with emission.
In Section 5, we describe the method used to predict
whether the solutions with these jumps might exist in
the general case. A factor such as the presence of an

k1

0.5

–1

–0.5

–2

1

2

ω

Fig. 1. Dispersion curves for a cold plasma. 
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inflection point on the dispersion curve in the region
k > 0 plays an important role in this method, which was
originally tested with jumps in the case of waves whose
envelope is described by the nonlinear third-order
Schrödinger equation [7]:

(4)

The dispersion curve for the hydrodynamic version of
this equation [8] consists of two branches, one of which
has an inflection point and the other has no inflection
point. 

Plasma-related computation results can be analyzed
based on the results obtained from equations (3) and
(4), because they allow for a much faster numerical
solution of the problem, thereby making it possible to
carry out simulations over longer time intervals. Quali-
tatively, the solutions obtained from all three of the
models are similar in shape. 

3. NUMERICAL METHOD 

In order for the desired numerical solutions to pos-
sess conservative properties used to examine the time-
independent solutions (see Section 5), it is necessary to
use conservative numerical schemes. The previous
analysis [4, 9], which was carried out on the basis of
nonconservative schemes, yielded conventional jumps
without emission instead of solitary waves, which con-
tradicts the theory. We convert the basic equations into
the form 

(5)
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Equations (5) were solved numerically with the help
of a three-layer staggered scheme with second-order
accuracy in time. We denote the numbers of the time
layers by the superscripts and the numbers of the mesh
points in space by subscripts. Equations (5) are regular-
ized: each of them contains the time derivative of only
one quantity, except for the quantity n, which is found
explicitly. The regularization allows us to solve four
implicit difference equations for nv, nw, By, and Bz

independently. 
The results obtained were tested against the results

of computations based on a two-layer scheme with
first-order accuracy in time. The results from two- and
three-layer schemes were found to differ insignificantly
because of a short time step. Unlike the three-layer
scheme, the two-layer scheme is applicable to the basic
equations with dissipative terms. 

The first-order derivatives can obviously be approx-
imated by 

In order for the desired numerical solutions to possess
symmetry properties used in the theory presented in
Section 5, the derivatives with respect to x should be
approximated using centered difference schemes. We
present the prescriptions for approximating even and
odd higher order conservative derivatives: 
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where f, g, and h are arbitrary unknowns. These compli-
cated prescriptions are aimed at reducing the error vari-
ance in using the calculation scheme and at ensuring
stability. The time step ∆t was chosen to be on the order
of ~∆x3, because four of the total six equations for the
system modeled here are similar to the KdV equations. 

The implicit discrete equations were solved itera-
tively: 

where Ff is the finite-difference approximation of the
corresponding equation and j is the number of the iter-
ation step. We stopped the iteration procedure when
|f m + 1, j + 1 – f m + 1, j | ≤ e, where e is the desired accuracy
of the calculations. The appropriate values of cf were
chosen based on the results of numerical calculations:
large values of this quantity cause the iteration proce-
dure to diverge; for small cf values, the iteration proce-
dure is slowly converging. 

The problems of the formation of a solitary wave at
θ > θc and the decay of a solitary wave at θ < θc [4, 9]
were used as test problems. Test simulations revealed
that our calculation scheme is very effective. Since the
scheme conserves the symmetry and conservative prop-
erties of the basic model, a constant-amplitude solitary
wave forms on the mesh in the course of calculations
(clearly, when the model admits solutions of the soli-
tary wave type). A similar approach was successfully
applied to waves described by a third-order
Schrödinger equation [5, 8] and by a fifth-order KdV
equation [10]. 

The physical constants used in our study correspond

to a hydrogen plasma,  = 0.023. 

4. NUMERICAL RESULTS 
The input parameters were chosen to be similar to

the parameters of solitary waves [9]; the only difference
was that cosh–2 was replaced by tanh and the antisym-
metric unknowns w and Bz (see Section 5) were set to
zero: 

(6)

In the examples presented below, the small parameter µ
is equal to µ = –0.05. The value of L is unimportant,
because we are interested in a self-similar solution for
long times. The frame of reference in which the calcu-
lations were carried out moved at a relative speed equal
to unity (i.e., at the speed of long-wavelength magneto-
sonic waves in an unperturbed state). 
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Our simulations showed that, after a certain time,
the initial discontinuity decays into two FMS waves,
two Alfvén waves, and an SMS wave (see Fig. 2, t = 40,
x0 = 75). In the rest frame, in the unperturbed state, the
Alfvén velocities of long-wavelength waves are equal
to ±cosθ and the velocity of SMS waves equals zero.
Since θ = 1.555 ≈ π/2 in the example in Fig. 2, all these
velocities either vanish or are close to zero, thereby
making it impossible to single out the Alfvén wave. 

From this point on, we can regard the parameters of
a decaying FMS wave in the corresponding part of the
calculation region as the initial parameters for the new
problem of the decay of an initial magnetosonic discon-
tinuity. In Fig. 2, the vertical dashed line denotes the x
value at which the calculation region is cut in order to
single out the magnetosonic discontinuity. We supple-
mented our numerical code with subprograms that pro-
vide the possibility for arbitrarily enlarging or reducing
(if necessary) the calculation region. For a reduced cal-
culation region, the input parameter values required to
specify the boundary conditions were replaced by the
instantaneous parameter values at the cut. In the new
part of the enlarged calculation region, the values of all
of the parameters were set equal to their values at the
corresponding boundary. 

Note that, in the model described above, an SMS
wave is degenerate and experiences no dispersion.
Unlike the scheme used in [4], our scheme simulates a
fictitious phenomenon—the onset and growth of short-
wavelength waves—because of the numerical errors in
the course of calculations, even if the computations are
carried out for an artificially singled out FMS wave.
However, our scheme is free of this drawback when
applied to the set of equations for a plasma with hot
electrons, in which case we also examined magneto-
sonic jumps. Introducing the term b2nx (where b is the
speed of an SMS wave for θ = 0) into the second equa-
tion in (1) allows us to eliminate this drawback even for
low b values, thereby correcting for the scheme on the
basis of physical considerations. An effective mathe-
matical way of correcting our model is to supplement
the first equation in (1) with the coefficient d in front of
the term (un)x such that d  1 as ∆x  0. Since our

n

1.1

1.0

0.9
0 40 80 x

Fig. 2. Illustration of the method for singling out a magne-
tosonic jump. 
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Fig. 3. Representative plots of symmetric quantities (e.g., u) for different values of θ at different times. 
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computations are quasisteady in character, such a cor-
rection has essentially no impact on the jumps in simu-
lating magnetosonic waves. 

Our numerical analysis is aimed at clarifying how
the parameter θ affects the type of jump. Figures 3 and
4 show representative plots of u and Bz for the same
amplitude of the initial discontinuity and for the follow-
ing values of θ close to θc (from top to bottom): θ =
1.555 > θc, θ = 1.547 ≈ θc, θ = 1.535 < θc, θ = 1.530 < θc,
and θ = 1.500 (which is significantly smaller than θc).
The curves marked by odd numbers are plotted at the
time t = 150, and the curves marked by even numbers
are plotted at t = 300. The plots were obtained for x0 = 0
in the rest frame. The plots for the remaining symmetric
and antisymmetric unknowns (see Section 5) are simi-
lar in shape to those in Figs. 3 and 4. 
Based on the theory presented in Section 5, we can
expect that, for θ = 1.555 (curves 1 and 2), a solitonlike
jump will arise in the course of simulation. For θ =
1.547 (curves 3 and 4) and θ = 1.535 (curves 5 and 6),
a jump with emission forms. In the first case, the ampli-
tude of the emitted wave is large enough for the solu-
tion to differ insignificantly from that describing a soli-
tonlike jump. A spatially damped oscillation marked by
an arrow to the right of the jump in Figs. 3 and 4 pro-
vides evidence that the k values for the related homoge-
neous state behind the jump are complex (see Section 5).
In the second case, the amplitude of the emitted wave is
smaller: a sequence of several spatially damped oscilla-
tions is seen to the right of the jump. Since the solution
describing these damped oscillations with a sufficiently
large amplitude exists for θ values near the point of
transition to jumps with an unsteady structure, the sim-
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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Fig. 4. Representative plots of antisymmetric quantities (e.g., Bz) for different values of θ at different times. 
ulation of the process of establishing a steady regime
takes a long time. For θ = 1.530 (curves 7 and 8), the
solution is seen to describe a jump with an unsteady
structure and two waves in the expanding wave zone to
the right of the jump. Note that, for θ = 1.5, which is
sufficiently smaller than θc (curves 9 and 10), soliton-
like jumps are theoretically impossible, in which case,
however, the effect of high-order dispersion is insignif-
icant, so that we can actually regard the jump illustrated
by curves 9 and 10 as a solitonlike jump, because the
amplitude of short-wavelength waves emitted to the left
is negligibly small. For even smaller values of θ in
comparison with the critical value θc, the amplitude of
the waves emitted in the case of small-amplitude jumps
should presumably decrease according to an exponen-
tial law, as in the problem of emission of a small-ampli-
tude solitary wave [9, 10]. 
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5. PREDICTION OF THE POSSIBLE TYPES 
OF JUMPS 

Now, we describe how to predict the possible types
of time-independent solutions characterizing the struc-
ture of jumps [5, 7]. We will consider only those types
of solutions that are related to the model under study.
We are especially interested in the problem of the jump
structure. My paper [5] was, in particular, aimed at jus-
tifying the evolutional character of the jumps; i.e., I
proved that all of the desired boundary conditions at the
jumps can be obtained by solving the problem of the
jump structure. The evolutional character of the jumps
implies that they are stable; consequently, they may be
observed in numerical and physical experiments. 

Let the model be based on a conservative set of sym-
metric equations that are reversible in time. Integrating
these equations once yields the set of time-dependent
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equations whose solutions describe steady jumps.
Introducing additional unknowns, we can represent this
set of time-dependent ordinary differential equations as
a set of equations uqx = Fq(u), which are invariant under
the transformation (x  –x, uq  uq) for q = 1, …,
2n – 1 (symmetric unknowns) and under the transfor-
mation uq  –uq for q = 2, …, 2n (antisymmetric
unknowns). This procedure (which can be applied to
any physically meaningful set of equations that are
reversible in time) is used to prove the existence of sol-
itary and generalized solitary waves with the help of the
central manifold method [2–4, 10]. Here, we are deal-
ing with a set of unknowns (v, w, By, Bz); the unknowns
n and u are eliminated, because the first two equations
contain only first-order derivatives. The set of
unknowns for equation (3) is {qi} = a, ax, axx, axxx. 

The existence assertions, which will be given below,
are all valid for sets of equations of arbitrary order. The
numerical errors introduced by the calculation scheme
are equivalent to incorporating higher order derivatives
with respect to x into the basic equations. Conse-
quently, these assertions also justify the fact that our
numerical and analytic method for revealing different
types of jump structures is insensitive to the approxi-
mation errors. 

The geometric approach presented here is based on
the fact that, if the summarized dimensionality of two
subspaces of a space coincides with the dimensionality
of the space itself, then, in the standard case, the sub-
spaces can have either one point of intersection, a finite
number of these points, or a denumerable set of them.
Additionally, if the vector tangent to both of the sub-
spaces exists at the point of their intersection and if
their summarized dimensionality exceeds the dimen-
sionality of the space by unity, then, in the standard
case, the subspaces may have a line of intersection.
This situation takes place if both subspaces are com-
posed of certain sets of the phase trajectories of a
dynamic system. We will call such subspaces the phase
subspaces. We consider two subspaces composed of the
phase trajectories {u(x), –∞ < x < +∞} that pass through
the e-vicinity of the point C at x = x0 and are either
bounded or periodic at +∞. We denote these subspaces
by S(C, e; |u | < M, x  +∞) and S(C, e; u(x + T) 
u(x), x  +∞), respectively. The value of x0 is unim-
portant here, because the solution is defined to within
the phase shift. 

We linearize the basic equations about the homoge-
neous states on both sides of the jump. We consider the
related dispersion curves ω = ω(k) (the dispersion rela-
tion is obtained through the substitution ~exp[i(kx –
ωt)]) and the equations for the wavelengths of the time-
independent solutions, R(U, k) = 0, where U is the jump
speed. The equation R(U, k) = 0 has 2n roots; moreover,
we have k2r = –k2r – 1 (r = 1, …, n). The solution to
the  set of time-dependent linearized equations depends
on 2n parameters cj and is represented as
Re( expikj x). The waves growing as x  +∞
refer to Im(kj) < 0, the waves growing as x  –∞ are
related to Im(kj) > 0, and purely periodic waves corre-
spond to real values of kj. Below, we will assume that
nonlinear versions of the sets of equations under dis-
cussion possess the same qualitative features; the only
difference is that the waves may be growing only in the
vicinity of the equilibrium point, whereas, far from the
equilibrium point, their amplitudes may remain finite. 

Let a jump propagate at a speed U, which corre-
sponds to the straight line U = ω/k on the (ω, k) plane.
In analyzing the possible types of jumps, it is important
to know the number of its intersections with the disper-
sion curve. Below, in counting the number of intersec-
tions, we will neglect the intersection at the origin of
the coordinates, corresponding to k = 0, which is
already accounted for as a constant of integration of the
basic equations. Also, the symmetry of the dispersion
curve allows us to count only the intersections for k > 0.
At each intersection, the equation R(U, k) = 0 has two
real roots with opposite signs. Since the parts of the dis-
persion curve are different on both sides of the jump,
the number of intersections to the left of the jump can
differ from that to the right of the jump. 

Let the straight line not intersect the dispersion
curve, in which case no real roots correspond to the
equilibrium point C1 under consideration: there are only
n roots with Im(k) < 0 (the waves that are growing as x
increases) and n roots with Im(k) > 0 (damped waves).
We consider the subspaces S1 = S(C1, e; u  C1,
x  –∞) and S2 = {u, u2i = 0}, each having dimen-
sionality n. Since the summarized dimensionality of
these subspace is equal to 2n, they generally have either
one point of intersection, a finite number of these
points, or a denumerable set of them. By virtue of the
symmetry of the basic equations, each intersection cor-
responds to a solitary wave, and the point of intersec-
tion corresponds to the hump of a solitary wave. In our
model, a solitary wave can be used to characterize the
jump structure only for θ > θc. In this case, the disper-
sion branch has no inflection points at k > 0, and, when
the jump speed is slightly above the magnetosonic
speed, there is no intersection and the roots are purely
imaginary. If the straight line does not intersect the dis-
persion branch for θ < θc, then the roots are complex
and a so-called 1 : 1 soliton is possible [10]. However,
since the related solution has many humps, it cannot be
used to characterize the structure of the jump at hand. 

Let us consider two equilibrium points such that the
straight line ω = kU does not intersect the dispersion
curve for one of them (C1) and intersects the curve only
once for the other (C2). The number of growing waves
at the equilibrium point C1 is n, and their number at the
point C2 is n – 1. The subspaces S1 = S(C1, e1; u  C1,
x  –∞) and S2 = S(C2, e2; u(x + T)  u(x), x 
+∞) are phase subspaces of dimensionalities n and
n + 1, respectively; their summarized dimensionality is

c jj 1=
2n∑
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2n + 1. In this case, they generally have either one line
of intersection, a finite number of these lines, or a denu-
merable set of them. A jump with emission corresponds
to a line of intersection. In our model, such a jump is
possible for both ranges θ < θc and θ > θc. 

Numerical solutions to the problem of the decay of
the initial discontinuity described by the generalized
KdV equation and the Schrödinger equation show that,
in fourth-order dynamic systems, a jump with emission
can occur only when all of the k values are complex at
the point C1. This can, in principle, be explained by
looking at the phase diagrams of a fifth-order KdV
equation in the cross section (a, ax) of phase space such
that axx = 0 and axxx = 0 at x = 0. In the case of complex
k values, the phase trajectories that originate from the
point C1 are spiral in character and loop a region
around this point. In the case of imaginary k values,
generalized separatrices appear on the phase diagram
and the point C2 is seen as if it occurs in isolation. Since
phase trajectories cannot cover this isolated region, no
solution describing a jump with emission can exist.
Our numerical experiments showed that, in the case of
a jump accompanied by the emission of a wave, the
roots are also complex for a plasma (the presence of
damped oscillations on one of the sides of the jump; see
curves 3–6 in Figs. 3, 4). 

We can similarly show that, in the general case,
there are no solitary waves in the presence of a point of
intersection, in which case, however, a solitary wave
with a superimposed periodic wave can exist. In gen-
eral dissipation-free models, a jump without wave
zones (an analog of a shock wave in gas dynamics) is
also absent. However, models with a more pronounced
nonlinearity show that, in the absence of intersections,
a discontinuity (at which it is necessary to specify an
additional boundary condition) may also occur
between homogeneous states on each side of the jump;
this discontinuity (kink) is an analog of a combustion
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
shock [7, 9], which goes beyond the scope of our
model. 

Our approach is also inapplicable to jumps with a
steady structure accompanied by the emission of two or
more waves. Such jumps should be analyzed with the
help of sixth-order (and higher) dynamic models. That
is why the jump structure obtained from our model for
θ = 1.530 is unsteady. 
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Abstract—The possibility of converting the energy of a low-density relativistic electron beam into the energy
of a narrow Langmuir wave packet is demonstrated by numerical integration of the Vlasov and Poisson equa-
tions. It is shown that a small perturbation stops growing exponentially because the beam electrons are trapped
by the wave, so that the wave-field energy is partially converted back into beam energy. Then, the beam slips
out of resonance with the wave, and the energy exchange with the wave terminates almost completely.
A detailed comparison is made between the results obtained in a one-dimensional (hydrodynamic) model of
the beam instability with allowance for the plasma nonlinearity and the results of numerical simulations. The
computed time evolution of the field energy is found to deviate substantially from the theoretical evolution,
which is attributed to the decay of the primary oscillation spectrum in the numerical model. However, even
with allowance for the internal kinetic processes in the plasma, the single-mode and numerical models give

nearly the same energy losses of the beam in the asymptotic limit t > 103  (where ωp is the plasma fre-
quency). © 2000 MAIK “Nauka/Interperiodica”.

ωp
1–
1. INTRODUCTION

It is well known [1, 2] that, as the mass of the elec-
trons in a low-density (ν = nb/np ! 1) beam increases
due to relativistic effects, the growth rate of the Lang-
muir oscillations decreases, δ . ν1/3ωp/γ0, and their

energy grows, 〈E2〉/4π . αnbm γ0, in the narrow
range ∆k/k0 . ν1/3/γ0 of the wavenumber spectrum
(where k0 = ωp/v0, nb and v0 are the density and veloc-
ity of the beam, γ0 is the relativistic factor, np is the
plasma density, ωp is the plasma frequency, and α =
γ0ν1/3).

In the range of high energies (α . 1), the electrons
are observed to accumulate in the accelerating phases
of the wave. Although the effective mass of these elec-
trons increases, their velocity remains close to the
speed of light, and their positions inside the wave
change only slightly. Consequently, a fraction of the
energy of decelerated electrons is converted into the
energy of accelerated electrons through the wave field,
thereby reducing the efficiency for conversion of the
beam energy into the energy of Langmuir waves [3–9].

In the range α > 1, it is necessary to take into
account not only the trapping of beam electrons by the
wave but also a nonlinear decrease in the wave phase
velocity, because strong electric fields change the
waveguide properties of the plasma during the instabil-
ity [11–17]. In the hydrodynamic approach, the depen-
dence of the dielectric function on the field amplitude
is governed either by the high-frequency pressure gra-

v 0
2

1063-780X/00/2601- $20.00 © 0070
dient during the steady injection of a beam into a
plasma [11, 12] or by the change in the electron veloc-
ity in the wave field in the case of a homogeneous
plasma [13–17].

The plasma heating that cannot be described in the
hydrodynamic approach because of the asynchronous
nature of electron oscillations was taken into account in
numerical experiments [4, 5]. Particle-in-cell simula-
tions of the plasma and beam showed that the nonlinear
relaxation of a monoenergetic relativistic electron
beam (REB) in a dense plasma occurs in three stages.
In the first stage, the exponential growth of a small per-
turbation with the highest hydrodynamic rate results in
the trapping of resonant electrons by the wave and in
the saturation of an unstable mode at the first maximum
of the field amplitude. The nonlinear phase oscillations
of the trapped-electron bunches that arise in the second
stage are accompanied by oscillations of the field
amplitude and the onset of an oscillatory (modula-
tional) instability, during which the short-wavelength
perturbations (kλd ≤ 1, where λd is the Debye length)
are damped via Landau damping and the wave field
energy is converted into the energy of plasma electrons
(ions). In the final stage of the instability, energy
exchange between the beam and the plasma is almost
completely absent.

We solve the Vlasov–Poisson set of equations in
order to reproduce the results of numerical experiments
[4, 5] and to compare them with the results obtained in
the single-mode model [16], which takes into account
the plasma nonlinearity in the hydrodynamic approach.
2000 MAIK “Nauka/Interperiodica”
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Our calculations show that the numerical and theoreti-
cal time evolutions of the field energy coincide in the
initial stage (when the field energy is growing exponen-
tially) but differ substantially in the stage in which the
primary spectrum decays. However, in the asymptotic

limit t > 103 , the energy losses of the beam in the
kinetic and hydrodynamic models are found to be
nearly the same.

2. SINGLE-MODE MODEL
In the single-mode model of the instability of a

plasma with a low-density electron beam, all of the
beam and plasma electrons interact with a narrow
Langmuir wave packet:

(1)

The interaction of an REB with a plasma is described
by a nonlinear parabolic equation for the field ampli-
tude E(t, x), and the set of equations for the motion of
the beam electrons [16]

(2)

where ψs = k0xs(t) – ω0t, xs(t) is the coordinate of the sth
beam electron, S is the number of beam electrons per

wavelength λ = 2π/k0, γs = (1 – /c2)–1/2,

and T is the plasma electron temperature.
In a homogeneous cold plasma, the nonlinear cor-

rection to the plasma frequency arises due to the change
in the electron velocity in the wave electric field ENL =

Ep (where  = (32π/3)npmc2) [16, 19], whereas, in an
inhomogeneous heated plasma, the high-frequency
pressure gradient is balanced by the kinetic pressure
gradient and the static electric field when ENL = ET

(where  = 32πnpT) [18].

For a cold plasma (T = 0), equations (2) are ordinary
differential equations with respect to time. In order to
pass over to the limiting case of a linear beam dynam-

ωp
1–

E Re E t x,( ) ik0x ω0t–( )exp[ ] .=

v g'

2
------∂2

E

∂x
2

--------- i
∂
∂t
----- v g

∂
∂x
------+ 

  E
ωp

2
------ ε E

2

ENL
2

---------+
 
 
 

E+ +

=  i
4πenbv 0

S
--------------------- iψs–( ),exp

s 1=

S

∑–

d
2ψs

dt
2

-----------
ek0

mγs
3

----------Re E t xs,( ) iψs( )exp[ ] ,=

ẋs
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ics, we expand the argument of the exponential func-
tion in small perturbations of the electron trajectories:
ψs = ψs0 + , where | | ! ψs0. If S @ 1 and the elec-
trons are distributed uniformly over the spatial period
of the wave (ψs0 = 2πs/S), then equations (2) reduce to
the hydrodynamic equations [16]

(3)

where ρ is the depth of modulation of the beam density

and γ0 = (1 – )–1/2.

According to (3), the growth rate of the small pertur-
bations is

(4)

In the nonlinear stage, the trapping of the beam elec-
trons by the wave causes the perturbation amplitude to
saturate when

(5)

where α = γ0ν1/3 ! 1 [1, 2]. In the high-energy range,

the first formula in (5) gives ρ/nb = /δ2 . α–1/2 when
the field amplitude reaches its maximum value Em .

(8πnbm γ0)1/2. Consequently, for α1/2 @ 1, the beam
motion satisfies linearized equations and the instability
is suppressed by the plasma nonlinearity. In this energy
range, passing over to dimensionless variables in the
nonlinear equations (3) yields Em ~ α–1.

The dotted curves in Figs. 1 and 2 illustrate numer-
ical solutions to equations (2) obtained with 50 parti-
cles per wavelength for a cold plasma and a monoener-
getic beam.

3. NUMERICAL EXPERIMENT

The set of equations for a plasma with an REB in a
self-consistent field includes Poisson’s equation and
the Vlasov equations for the distribution functions fα of
the plasma and beam electrons

(6)
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with summation over the electron species. Under the
periodic boundary conditions, the energy integral is

(7)E
2

8π
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2γ f α f α
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–( ) pd∫
α
∑+ 0,=
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Fig. 1. Comparison between the results obtained in the
kinetic (solid curves) and hydrodynamic (dashed curves)
plasma models for a beam with the energy γ0 = (a) 1.005 and
(b) 3.
where the angular brackets denote averaging over the
perturbation wavelength λ = 2π/k0, fα0 is the initial dis-
tribution function of electrons of species α, and γ = (1 +
p2/m2c2)1/2.

At the initial time t = 0, the electrons of a monoen-
ergetic beam and the plasma electrons and ions are
assumed to be distributed uniformly in space:

(8)

where xαs = 2πs/Nαk0, Nα is the number of particles of
species α (the number of charged planes) per wave-
length, σe is the surface electron density, and p0 is the
initial momentum of the beam electrons. The number
of plasma ions, which are assumed to be immobile, is
determined by the charge neutrality condition for the
beam–plasma system, Ni = Ne + Nb .

The distribution functions

(9)
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Fig. 2. Transition of the beam–plasma system to a quasisteady regime for γ0 = 3: (a) the time evolutions of (1) the plasma energy

Wp, (2) the field energy Wf, and (3) the power  and (b) the time evolutions of the energy –δWb lost by the beam. The solid curves
are obtained in the kinetic model, and the dashed curves, in the hydrodynamic model.
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(where xαs and pαs are the coordinate and momentum of
the sth particle of species α) satisfy the initial condi-
tions (8) and allow us to represent the energy integral
(7) as

(10)

where nb = σNb/l is the beam density, mc2γ0 is the initial
beam energy, and l is the length of the space interval.

Below, we will present the results of numerical inte-
gration of the set of equations with a self-consistent
field for a plasma with Np = 64512 electrons and a
monoenergetic beam consisting of Nb = Np/64 relativis-
tic electrons. Our computations were carried out with
the dimensionless parameters

The length l of the space interval was chosen to be
equal to the wavelength λ. We found that small pertur-
bations (Wf (0) ~ 10–6) with a wavelength above the
threshold value were unstable and grew exponentially
with time at the growth rate (4).

The computation results shown in Fig. 3a enable us
to analyze the time evolution of the energy density
−δWb = Wf + Wp of Langmuir oscillations for different
beam energies. As γ0 increases, the energy lost by the
beam grows and becomes maximum at α . 1. In the
energy range α > 1, the fraction of the energy that is
transferred from the beam to the plasma is reduced and
the oscillation energy in the plasma increases slower
because of a relativistic decrease in the growth rate
δ ~ 1/γ0.

Figure 3b shows extremes of the function –δWbm

that correspond to the first peak in the function –δWb(t).
A comparison with the time-dependent solution to
equations (2) shows that the oscillation energy obtained
from the kinetic model of a plasma is lower than that
evaluated from the hydrodynamic model.

An exponentially growing solution to equations (6)
can be obtained under the conditions of the plasma and
phase resonances, ω = ωp = (2σke2Np/m)1/2 and ω = kv0.
These conditions imply that the plasma frequency and
the perturbation wavelength both depend on the beam
velocity v0 = β0c,

(11)

Unlike the hydrodynamic model (2), in which the den-
sity is constant and λ ~ β0, in the kinetic model, the
number of particles Np is fixed and the wavelength is

proportional to the squared beam velocity, λ ~ . The

W f W p δWb+ + 0, W f
E

2〈 〉
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1

Nbγ0
----------- γps, δWb

s 1=
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computed profiles L(β0) and L(γ0) shown in Fig. 4 agree
fairly well with formula (11).

For a nonrelativistic beam (β0 = 0.1), the plasma
heating during the instability is insignificant and the
time evolutions of –δWb(t) in Fig. 1a obtained from the
kinetic and hydrodynamic models are fairly close to
each other. For an REB with γ0 = 3, the amplitude of the
nonlinear phase oscillations of the field is markedly
lower (Fig. 1b).
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Fig. 3. (a) Energy density of Langmuir oscillations for a
beam with the energy γ0 = (1) 1.005, (2) 1.02, (3) 1.15,
(4) 1.4, (5) 1.75, (6) 3, (7) 4, (8) 5, (9) 6, and (10) 7.
(b) Maximum oscillation amplitude versus the beam energy
in the kinetic (asterisks) and hydrodynamic (circles) plasma
models.

Fig. 4. The wavelength of the unstable mode as a function
of (a) the beam velocity and (b) the beam energy. The

dashed curve corresponds to the function .β0
2
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At τ ≤ 300, the functions Wf (τ) and Wp(τ) are essen-
tially the same and agree fairly well with the following
formula in terms of macroscopic electrodynamics [19]:

(12)

According to (12), under the resonance condition ε = 0,
the energy lost by the beam is shared equally between
the field and the plasma electrons. In a later stage, when
the field energy Wf is converted into the energy Wp of
the plasma electrons (Fig. 2a), the evolutions of these
functions differ greatly from one another. In this stage
of instability, the energy exchange between the beam

Wf W p+
d

dω
------- ωε( )W f  . 2W f , ε 1 ωp

2 ω2⁄ .–= =

βb
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τ
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× 10–3, Tp/mc2

τ
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0 100 200 300 400

1.0

0.5

Fig. 5. Average beam velocity βb and beam temperature Tb

(in units of mc2) for γ0 = 3 as a function of time. The dashed
curve corresponds to the phase velocity of a nonlinear wave.

Fig. 6. Average plasma velocity βp and plasma temperature

Tp (in units of mc2) for γ0 = 3 as a function of time.
and the wave is almost completely absent. In the final
stage (τ > 1000), the function –δWb = Wf + Wp

approaches an asymptotic about which an analogous
hydrodynamic solution to equations (2) oscillates non-
linearly (Fig. 2b). Note that the sum of the functions Wf

and Wp shown in Fig. 2b experiences no small-scale
oscillations, which means that they are periodic func-
tions in τ.

The average velocity of the particles of species α is
defined as

(13)

and their temperature coincides with the mean kinetic
energy of a plasma flow moving with the velocity βα,

(14)

For a nonrelativistic plasma such that βps ! 1 and βp ! 1,

formula (14) can be simplified to Tp = mc2(  – )/2,

where  is the mean squared particle velocity.

In Figs. 5 and 6, plots are given of the functions
βb, p(t) and Tb, p(t), which describe the time relaxation of
the directed velocity and temperature of the beam and
plasma. In Fig. 5, the dotted curve shows the nonlinear
wave phase velocity calculated from the empirical for-
mula [12]

(15)

The plots shown in Fig. 7 illustrate the time evolution
of the beam and plasma electron distribution functions,
fb(β) and fp(β), in velocity space β for a beam with the
initial energy γ0 = 3. The electrons of each species α are
divided into 50 groups with nearly equal electron
velocities βαj . If the number of electrons of species αj
is nαj , then, by definition, we have

(16)

where Nα is the number of particles of species α.

Before the time τ ≈ 120, at which the oscillation
amplitude saturates, a tail of decelerated electrons
forms on the beam distribution function. Thereafter, the
oscillation energy is partially converted back into beam
energy and the beam distribution function subsequently
does not undergo any qualitative change (Fig. 7). The
expansion of the plasma electron distribution function
in velocity space illustrates electron heating by the field
of the unstable mode.
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Fig. 7. Distribution functions of the (1) beam and (2) plasma electrons for γ0 = 3 at different times τ = (a) 120, (b) 180, (c) 300, and
(d) 360.
4. MODULATIONAL INSTABILITY

Numerical simulations show that, during the oscilla-
tory instability of the primary spectrum, the energy of
the plasma ions grows [4, 5] due to both the onset of a
parametric instability and the decay of a pump wave
into Langmuir and ion acoustic modes [8]. In the
immobile-ion approximation, the field energy is con-
verted into the energy of the plasma electrons because
of the onset of the modulational instability of the wave
(the self-compression of Langmuir wave packets in a
heated plasma) [18].

Numerical integration shows that, in the stage of the
high-frequency modulation of the wave amplitude, the
energy exchange between the beam and the wave field
is almost completely absent (Fig. 2). Consequently, fol-
lowing [18], we can find the growth rate of the modula-
tional instability from the nonlinear parabolic equation
without allowance for the trapped particles.

Setting the right-hand side of the first of equations
(2) to zero, we represent the solution as

(17)

E E0 E1 iE2+ +( ) iΩ0t–( ),exp=

Ω0 ωp 2⁄( ) ε E0
2

ET
2⁄+( ),–=

E1 ! E0, E2 ! E0, E1 E2, iΩt– ikx+( ),exp∼

ET
2

32πnpT .=
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Substituting (17) into (2) yields the dispersion rela-
tion [18]

(18)

where W = /16π is the wave energy density,  =

ωp , λd is the Debye length, and vg . /v0. The dis-
persion relation (18) implies that the modes with wave-

numbers k2  < Q0 are unstable. The maximum growth
rate δmod = ImΩ of the modulational instability is

(19)

Numerical experiments in which the condition Q0 .
Wf/Wp . 1 holds over a sufficiently long time interval
T ≤ 1000 showed that the functions Wf (T) and Wp(T)
become modulated at a high frequency, the modulation

period being about  = 4  (Fig. 8). An increase
in the amplitude of electron oscillations with kλd > 0.1
results in the energy transfer from the wave with k0 =
ωp/v0 to short-wavelength oscillations. The secondary
waves are damped via Landau damping, and their
energy is converted into the energy of the plasma elec-
trons [8].
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5. THE MAIN RESULTS

Numerical integration of the Vlasov set of equations
with a self-consistent field demonstrates the possibility
of converting the energy of an REB into the energy of a
regular Langmuir wave in a plasma. For a beam with
nb/np = 1/64 and γ0 = 3 (α ≈ 3/4 and δ/ωp ≈ 0.06), the
energy density of Langmuir oscillations amounts to
approximately 12% of the beam energy density
(Fig. 1b).

An analysis of the functions Wp(τ), Wf (τ), and
−δWb(τ) shows that the instability occurs in three
stages (Fig. 2).

A small perturbation that increases exponentially
with the hydrodynamic growth rate δ stops growing at
the time τ ≈ 120, when the instability is suppressed by
the trapping of beam electrons by the wave. By this
time, the beam energy becomes minimum and a tail of
decelerated electrons forms on the distribution function
of the initially monoenergetic beam (Fig. 7). As the
field passes through a maximum, the mean beam veloc-
ity and beam temperature undergo jumps, which corre-
spond to the conversion of a fraction of the energy of
directed electron motion into thermal plasma energy
(Fig. 5).

In the second stage of the nonlinear relaxation of a
beam in a plasma, the beam electrons are accelerated by
the wave field and the field energy is partially converted
back into beam energy. As a result, at τ > 120, the mean
beam velocity, first, increases and, then, experiences
weakly damped oscillations. The oscillations of the
beam and plasma temperatures are in antiphase with the
oscillations of the directed beam velocity (Figs. 5, 6).
Analyzing the shape of the beam distribution function
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Fig. 8. Functions (1) Wp(τ) and (2) Wf (τ) over different time
intervals (fragments of Fig. 2a).
shown in Fig. 7 at different times, we can conclude that
only a small fraction of decelerated electrons in the tail
of the distribution function interact with the wave.

In the final stage of evolution of the beam–plasma
system (τ > 1000), the energy exchange between the
beam and the wave is almost completely absent. The
field energy is converted into the energy of plasma
electrons and the functions Wf (τ) and Wp(τ) differ
greatly from each other. However, their sum –δWb(τ) =
Wf (τ) + Wp(τ), describing the energy lost by the beam,
approaches an asymptotic about which the analogous
nonlinear solution found in [16] oscillates (Fig. 2b).

The fact that the sum of the functions Wf (τ) and
Wp(τ) experiences no high-frequency oscillations indi-
cates that the modulation of the primary wave ampli-
tude is regular. Figure 8 shows the fragments of Fig. 2a
at different times. The modulation period is on the
order of the inverse growth rate of the modulational
instability.

The density and energy of REBs used in our simu-
lations correspond to the parameters of the HDZP-II
experimental device (University of Nevada, Reno,
USA).
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Abstract—Experimental data are obtained on the conditions for the stratification of spherical direct-current
discharges and on the properties of the strata. The experiments were aimed at studying discharges in both
molecular and inert gases at low pressures and were carried out with a steel chamber whose wall served as a
cathode. An anode was placed at the center of the chamber. The discharge stratification was observed to be espe-
cially pronounced in media containing a small admixture of the vapor of a high-molecular substance (e.g., ace-
tone). In discharges in pure inert gases, no strata were observed. The current–voltage characteristics of dis-
charges at different pressures were obtained. The discharges were found to be unsteady: current pulses with a
duration of about 1 microsecond and a characteristic repetition rate of about 1 kHz were detected against a
steady current background and were found to correlate with the pulses of the integral emission from the dis-
charge. The radius of each of the strata was determined as a function of its number and of the gas pressure and
discharge current. The radial profiles of the time-averaged floating potential were measured in experiments with
stratified discharges and with uniform discharges in argon. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation of alternating dark and bright regions
(strata) in the positive column of a glow discharge is a
universal property of discharges in tubes. This phenom-
enon is observed in discharges in atomic and molecular
gases at pressures from 1 to 104 Pa. The strata can be
either stationary regions or can move with a velocity up
to 105 cm/s. At present, discharge stratification in gas-
discharge tubes is attributed to the ionization instability
and the strata themselves are referred to as ionization
waves [1–4]. The stratification phenomena in dis-
charges are now described by two theoretical
approaches, which complement one another. The main
advantage of the first approach, which is based on the
kinetic equation [5, 6], is that it takes into account the
nonlocal character of the electron distribution function.
A drawback of this approach is that the problems are
resolved in a non-self-consistent fashion: the electric
field either should be taken from the probe measure-
ments or should be specified on the basis of model con-
siderations. The second approach, which is based on
Poisson’s equation in the hydrodynamic approximation
[3, 7], does not take into account the nonlocal nature of
electron kinetics but makes it possible to solve the
problems self-consistently. For these reasons, an ade-
quate theoretical description of the stratification is still
lacking even for discharges in tubes. Note also that the
detailed theory of stratification in discharge tubes is
essentially two-dimensional, so that the particle distri-
butions along and across the tube axis should be
described with allowance for the radial field profiles
and particle diffusion toward the tube walls.
1063-780X/00/2601- $20.00 © 0078
Nerushev et al. [8] were the first to record strata in
experiments with spherically symmetric gas dis-
charges. Mathematically, the spherical strata (unlike
the strata in discharge tubes) are essentially one-dimen-
sional; consequently, they are much simpler to
describe. The construction of a self-consistent theory of
the spherical strata is the subject of further theoretical
investigations. Here, we present experimental data on
the conditions for stratification of spherical direct-cur-
rent discharges and on some of the properties of the
strata.

2. EXPERIMENTAL SETUP

Figure 1 shows a schematic of the experimental
device. The experiments were carried out with a cylin-
drical steel chamber, 60 cm in height and 50 cm in
diameter. A steel ball of radius 0.6 cm, which was posi-
tioned at the geometric center of the chamber, served as
the central electrode. The grounded steel wall of the
vacuum chamber served as another electrode. The
chamber was equipped with optical windows at the
half-height of the cylindrical wall. The windows pro-
vided visual observations and were used to photograph
discharges, to record the spatial modulation of the dis-
charge luminosity by a high-speed multichannel optical
analyzer with a spatial resolution of 0.1 mm, and to
measure the integral emission from the discharge by a
photomultiplier. The voltage and current of the dis-
charge were recorded in the course of experiments. The
discharge current was recorded with the help of one of
the channels of a two-channel oscilloscope. The current
from a photomultiplier, which was used to detect opti-
cal signals from the discharge region, was fed to
2000 MAIK “Nauka/Interperiodica”
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another channel of the oscillograph. The chamber was
pumped down to a pressure of 10–1 Pa and, then, was
filled with the gas mixture under study to a certain pres-
sure. In our experiments, which were aimed at studying
discharges in the pressure range from 5 to 500 Pa, the
gas pressure was recorded by a deformation manometer
and a thermocouple pressure gauge. The measurements
were performed in the steady regime (when the vacuum
pump was shut off and the chamber was filled with a
working gas mixture) and in the dynamic regime (when
the vacuum pump with a pumping rate of 5 l/s was
operating continuously and both air and the vapors of
high-molecular admixtures were puffed into the cham-
ber through controlled leaks). In the experiments, we
varied the relative content of the vapors and air. The
radial profile of the time-averaged floating potential of
the discharge plasma was measured by a 3-mm-long
movable tungsten probe 0.26 mm in diameter, which
could be moved with a step of 1 mm in the radial direc-
tion at the half-height of the chamber. The probe poten-
tial was recorded by a C-95 high-resistance electro-
static voltmeter.

3. EXPERIMENTAL RESULTS

The discharge was ignited by applying an excessive
voltage (above the breakdown one) at the central elec-
trode. After being initiated, the discharge evolved
(under certain conditions) into a state with closed,
nested bright striations—strata (the number of which
varied from one to more than ten). The stratification
could be achieved only when a positive voltage was
applied to the central electrode. Figure 2 shows a pho-
tograph of a discharge with three spherical strata and
with the central spherical bright core. The number of
strata and their dimensions depend on the magnitudes
of the pressure and discharge current and on the gas
composition. The strata were observed to appear in dis-
charges with a current from 5 to 80 mA in a pressure
range from 5 to 100 Pa.

Figure 3 illustrates the results of measuring the
dependence of the radius Rn of each stratum on its num-
ber n. The radii of the strata are normalized to the radius
R0 of the central bright core. The data presented were
obtained by processing photographs and then applying
a time-averaging technique. An essential feature of the
bright core is that its radius does not enter into the
empirical dependence

(1)

which is valid for all of the remaining strata. The coef-
ficient α, which depends on the current magnitude and
gas composition, varies from 1.4 to 2. Figure 4 shows
that the radii of the strata are almost inversely propor-
tional to the gas pressure. Lower-current discharges
evolve into states with a smaller number of strata of
smaller radii (see Fig. 5, in which the numerals above
the points denote the order numbers of the strata). The

Rn 1+ Rn⁄ α ,=
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outer strata may be nonspherical in shape, in which
case their boundaries are stretched out toward cavities
in the chamber wall (the holes through which detectors
are inserted into the chamber and the pipes for pumping
out and gas supply). Presumably, the current density in
these directions is elevated, so that, according to our
measurements of the dependence of the radii of the
strata on the discharge current, the boundaries of the
outer strata in these directions should lie farther from
the central electrode. A photograph of a nonspherical
discharge is shown in Fig. 6.
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Fig. 1. Schematic of the experimental device: (1) steel vac-
uum chamber, (2) central electrode, (3) optical windows,
(4) high-speed multichannel optical analyzer, (5) FEU- 84
photomultiplier, and (6) electric probe. The parameters of the
power supply are U = 0–2.3 kV, C = 4 µF, and R = 24 kΩ.

Fig. 2. Photograph of a spherically symmetric stratified dis-
charge in air at p = 20 Pa and I = 40 mA.
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Figure 7 shows the current–voltage characteristics
of discharges in air at different pressures when a posi-
tive voltage is applied to the central electrode. As the
discharge current is changed by more than an order of
magnitude, the voltage changes insignificantly, which

410

Rn/R0

3
1

2

10

n
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Fig. 3. Dependence of the radii Rn of the strata on their order
number n (determined from the central sphere, n = 0) for a
discharge in air at p = 20 Pa and I = 40 mA. The radii of the
strata are normalized to the radius R0 of the central bright
core. The dashed line corresponds to the dependence
Rn + 1/Rn = α with α ≈ 1.74.

Fig. 5. Dependence of the radii of the strata on the discharge
current for a discharge in air at p = 20 Pa. The numerals
above the points denote the order numbers n of the strata.
is typical of normal glow discharges in tubes. Note also
that, at a fixed current, the discharge voltage increases
monotonically as the pressure decreases. In the case of
opposite polarity, such that the central electrode serves
as a cathode, in the pressure range under study, the dis-
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Fig. 4. Dependence of the radii of the first two strata (n = 1, 2)
on pressure for a discharge in air at I = 40 mA.

Fig. 6. Photograph of a nonspherical stratified discharge in
air at p = 30 Pa and I = 40 mA.
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charge voltage coincides essentially with the voltage at
the power supply, the discharge current is much lower,
and no strata are observed.

Oscillograms of the anode current and discharge
voltage showed that the discharge is unsteady: aperi-
odic current pulses with a characteristic duration of
about 1 microsecond and a characteristic repetition rate
from 0.1 to 1 kHz were detected against the mean cur-
rent background. At the times when the current is
peaked, the discharge voltage falls off far below its
mean value. The recording of the emission from the
discharge showed that the space-averaged emission
intensity is also unsteady and its peaks are correlated
with the current pulses. Note also that the background
emission intensity between the peaks is lower than the
peak intensities by two orders of magnitude. Figure 8
shows the corresponding oscillograms of the discharge
voltage and the intensity of emission from the strata.

The unsteady character of the discharge current hin-
ders the recording of the current–voltage characteristics
of the Langmuir probe, which provide information on
the distribution function, electron temperature, and
electron density in different zones of the discharge. The
peaks in the perturbed potential measured by the probe
are correlated with the peaks of the discharge current.
In our experiments, we measured only the time-averaged
floating potential, the time constant being about 1 s.
Figure 9 illustrates the radial profiles of the floating
potential Ufl in a stratified discharge and in a discharge
with no strata. We can see that there is a region in which
the cathode potential falls off; the width of this region,
which is situated near the outer electrode, is about 2–3 cm
(see the vertical dashed line with C). For a stratified dis-
charge, the gradient of the floating potential is nonzero
from the central region of the chamber up to the anode
surface (R = 0.6 cm). A discharge in argon (when no
strata are observed) does not have this property. The
radius from which the discharge potential begins to
increase toward the center coincides with the boundary
of the outermost stratum (see the vertical dashed-and-
dotted line S).

One of the problems is to determine the composition
of the gas in which the discharge can evolve into a strat-
ified state. Our experiments were carried out with
purely molecular gases (air, N2, ëé2, é2); inert gases
(Ar, He, Kr); and admixtures of high-molecular gases,
e.g., acetone (ë3ç6é), benzene (ë6ç6), dimethyl-for-
mamide (ë2ç7éN), pentane (ë5ç12), ethyl acetate
(ë2ç8é2), ethanol (ë2ç5éç), and iodine methyl
(ëç3J). In discharges in inert gases, no stratification
was observed. In discharges in low-molecular gases
with no admixtures, the smeared-out boundaries
between strata are pronounced only slightly, in which
case the bright regions of the discharge are observed to
strongly pulsate in space. However, even a small
admixture of a high-molecular gas (except for iodine
methyl) to molecular or inert gases results in a well-
pronounced discharge stratification. In contrast, in
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gases with a small admixture (about several percent) of
iodine methyl, the stratification is completely sup-
pressed and no strata appear. This is likely due to the
fact that the degree to which the iodine methyl mole-
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Fig. 7. Current–voltage characteristics of discharges in air at
pressures p = (1) 10, (2) 15, (3) 20, and (4) 30 Pa. The anode
is placed at the center of the chamber.

Fig. 8. Oscillograms of (a) the discharge voltage and (b) the
intensity of emission from the discharge region for a dis-
charge in air. The anode is placed at the center of the cham-
ber.



82 NERUSHEV et al.
cules are electronegative is high. We failed to experi-
mentally establish the minimum density of high-molec-
ular admixtures required for stratification. Our observa-
tions showed that the discharge stratification is well
pronounced in argon with a small (less than one per-
cent) acetone admixture. In the series of experiments
with no gas circulation, the time during which the dis-
charge stayed in a stratified state was found to depend
on the initial gas composition and to vary from several
seconds to tens of minutes. In the course of the glow,
the number of strata in the discharge progressively
decreased and the discharge evolved into the state with
no strata. After the disappearance of the strata, the strat-
ification could again be observed in a discharge, which
was ignited several minutes after the previous dis-
charge was switched off. During the discharge, the gas
composition was difficult to record. However, we can
now state that the change in the gas composition (due
to dissociation, the appearance of particles in metasta-
ble states and molecular ions, etc.) should be taken into
account in order to understand the nature of the stratifi-
cation of spherical discharges.

4. CONCLUSIONS

We have presented experimental data on some of the
properties of strata and on the conditions for stratifica-
tion of spherical discharges. The most important results
are as follows:

200
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Fig. 9. Floating potential Ufl versus the radius R of the dis-
charge chamber (the anode is placed at the center of the
chamber): (1) a stratified discharge with three strata in air at
p = 20 Pa and I = 40 mA (dashed-and-dotted line S corre-
sponds to the boundary of the outermost striation) and (2) a
discharge with no strata in argon at p = 18 Pa and I = 50 mA
(dashed line C corresponds to the position of the cathode).
(i) The stratification of spherical discharges was
observed only when a positive potential was applied to
the central electrode.

(ii) The current–voltage characteristics of the dis-
charges agree with those of normal glow discharges in
tubes.

(iii) Although our experiments were carried out with
a constant-voltage power supply, the discharges were
unsteady and were accompanied by “breakdowns,”
during which the discharge impedance decreased rap-
idly, thereby causing the discharge current to grow and
the discharge voltage to fall off.

(iv) The current pulses were found to be correlated
with the peaks in the space-averaged intensity of emis-
sion from the discharge region.

(v) In spherical stratified discharges, the time-aver-
aged floating potential increased from the boundary of
the outermost striation toward the central electrode
(anode).

(vi) For a spherical stratified discharge to be steady,
it should be ignited in a gas mixture with a small
admixture of a high-molecular gas. (In connection with
this, we note the paper by Conde and Leon [9], who
observed numerous semispherical double layers in a
discharge in a radially expanding flow of pure argon.
However, the nature of this phenomenon is likely to dif-
fer from that of the phenomenon we are describing
here.)

(vii) During the discharge, the gas composition
changed, thereby causing the strata to disappear.

In conclusion, we estimate some discharge parame-
ters under the assumption that the plasma is quasineu-
tral and the discharge is steady (div j = 0, where j is the
electron current density), in which case the ionization
and recombination processes should be in local equilib-
rium. For discharges in air at the pressure p = 20 Pa, dis-
charge current 50 mA, and voltage U = 500 V across the
discharge gap, we can estimate the electron density
from the known empirical rates of these processes as
functions of pressure and the electric field [4, 10]: near
the central electrode (anode) of radius 0.5 cm, we have
ne = 5 × 109 cm–3, and, at a distance of 20 cm from the
center of the chamber, we have ne = 6 × 106 cm–3.
Accordingly, the reduced electric field E/p varies in the
range from 40 to 20 V/(cm torr). The estimates also
show that the Debye radius increases almost linearly
from 0.02 cm at the anode to 0.5 cm at the cathode.

Note also that the discharges under study possess
properties peculiar to both corona and glow discharges.
For example, in experiments with positive corona dis-
charges at atmospheric pressure (see, e.g., [11]), the
current was observed to be unsteady in character (to
exhibit breakdownlike behavior): the characteristics of
this phenomenon are close to the characteristics
described above. Morrow [12] theoretically analyzed
the results of those experiments with allowance for neg-
ative molecular ions of oxygen and metastable mole-
PLASMA PHYSICS REPORTS      Vol. 26      No. 1      2000
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cules. In our experiments, the electric field near the
anode is above the threshold for breakdown in the pres-
sure range under consideration. This indicates that our
experimental conditions are favorable for the onset of
corona discharges. The question of how the unsteady
character of the process is related to stratification
remains unclear, but the feature we have just pointed
out may be of great importance in describing the mech-
anism for the formation of strata. This feature may give
rise to new phenomena, among which is likely to be the
spherical stratification we have described here.
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