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Abstract—Results are presented from measurements of the energy spectra and fluxes of the escaping charged
fusion products and fluxes of fusion neutrons in ohmic regimes of the T-10 tokamak. The central temperature
of the plasmaions is determined from the broadening of the energy spectra of thermonuclear protons and tri-
tons. Theion temperature profile is evaluated from the dependence of the fluxes of charged fusion products on
the radial plasma shift. It is proposed to use a single spectrometric detector with several collimators and slow-
ing-down foils to measure the distribution of charged fusion products over pitch angles, which permits the
determination of the ion temperature profile in a single shot. The feasibility of the method proposed is proved

experimentally. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

M easurements of the ion temperature in a tokamak
plasma are of great importance, because the ion tem-
perature is one of the main parameters determining the
plasma energy balance.

Thereisavariety of methods for measuring the ion
temperature: passive and active neutral-particle diag-
nostics, measurements of the Doppler broadening of
the spectral lines of impurity ions, diagnostics based on
the excitation of the resonant lines of hydrogen ions by
a neutral-particle probing beam, high-resolution X-ray
spectroscopy, and neutron spectrometry.

In the experiments described below, in order to mea-
sure the value and profile of the ion temperature in the
T-10 tokamak, we measured the products of the ther-
monuclear DD reaction: neutrons, protons, and tritons.

The measurements were carried out with the toroi-
dal magnetic field B, = 2.2-3.0 T, plasma current |, =
200-360 kA, and average electron density [ [ =
(2-5.5) x 1013 3.

2. DIAGNOSTICS OF THE PRODUCTS
OF THERMONUCLEAR REACTIONS

2.1. Neutron Diagnostics

Since the intensity of the thermonuclear DD reac-
tionintheT-10 tokamak islessthan 5 x 10° s~!, we used
highly efficient boron and helium SNM-11, SNM-17,
and SNM-18 neutron counters to detect neutron radia-
tion. The total number of neutron detectors was ten;

T Deceased.

eight of them (four SNM-11 detectors and four
SNM-17 detectors) were located symmetrically around
the devicein order to observe the possible anisotropy of
neutron radiation (Fig. 1). The more sensitive ninth
detector (SNM-18) was positioned as close to the
plasma as possible and was used for measurements in
the regimes with a low neutron yield. Measurements
showed the absence of anisotropy; therefore, we carried
out the absolute calibration (using a >2Cf neutron
source) of the tenth detector (SNM-18), which was
placed on top of the device symmetrically about the
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Fig. 1. Arrangement of the neutron detectors in the T-10
tokamak experiments: (/—10) neutron detectors.
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Fig. 2. Schematic of the CFP diagnostics: (/) detector unit,
(2) dectrostatic shielding, (3) vave, (4) Teflon insulator,
and (5) arrangement for moving the detector unit.
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Fig. 3. Detector unit: (/) case of the detector unit, (2) semi-
conductor detector, (3) light-protecting film, (4¢) apha-par-
ticle source, and (5) collimator; (a) side view and (b) top
view.
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plasma column. This allowed us to obtain the neutron
yield with an accuracy of approximately 50%.

The neutron signal was used as anormalizing factor
in the treatment of the measured fluxes of charged
fusion products (CFPs).

2.2. CFP Diagnostics

Basic characteristics of the diagnostic facilities used
in the T-10 tokamak to detect the escaping CFPs are
described in detail in [1]. Here, we only describe the
following main elements of the diagnostics.

The measurement of fluxes and energy spectra of
the thermonuclear 1-MeV tritons and 3-MeV protons
were carried out with an uncooled silicon surface-bar-
rier detector (SBD) located near the lower plasma
boundary (Fig. 2). The case of the detector unit was
made of a WND alloy containing 80% tungsten and
served to protect the detector against hard X-ray plasma
emission. The arrangement of basic elements of the
CFP diagnostics in the detector unit is shown in Fig. 3.
The sensitive surface of the detector (0.5 cm?) was pro-
tected against the optical plasmaradiation by athin alu-
minum foil deposited directly on the detector; the foil
had little or no effect on the energy spectra of tritons
and protons. A collimator consisting of a system of
nickel pipes was located in front of the detector. The
geometrical transparency of the collimator was 75%,
and the collimation angle was 14°. A 23%Pu apha-parti-
cle source was placed between the light-protective film
and the collimator. The source continuoudly irradiated
the detector with an intensity of 6-8 particle/s and was
used to test the efficiency of the detector and provide
the energy calibration of the measuring system between
the tokamak shots.

3. DETERMINATION OF THEABSOLUTE VALUE
OF THE CENTRAL ION TEMPERATURE

For the Maxwellian distribution function of deuter-
ons, the energy spectra of the thermonuclear tritons and
protons must have maximums at 1 and 3 MeV, respec-
tively; the half-width of these peaks depends on the
plasmarion temperature T, as 91.6 x (T, [keV])'2.

Aswas expected, the triton and proton spectra mea-
sured in the T-10 tokamak always had peaks at 1 and
3 MeV. Accurate measuring of the shape of these peaks
requires that the spectrometer energy resolution should
be severa times better than the peak half-width. The
ion temperaturein the central plasmaregion of the T-10
tokamak is in the 0.5-0.8-keV range; therefore, it was
necessary to ensure a spectrometer energy resolution of
20-30 keV. The testing experiments with the use of an
a pha-particle source showed that, in the absence of the
plasma, the energy resolution of the spectrometer was
~30 keV. Under the experimental conditions (i.e., inthe
presence of the plasma), the resolution was lower
because of the presence of both the electromagnetic
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EVALUATION OF THE ION TEMPERATURE PROFILE FROM MEASUREMENTS

fields and the plasma radiation incompl etely eliminated
by shielding. This resolution was measured to be
50-60 keV from the broadening of the line of a gener-
ator with a stable amplitude and frequency, whose sig-
nal was added to the spectrometric signal.

The energy spectra were measured over time inter-
vals of 100 ms. The time evolution of the plasma cur-
rent, electron density, neutron emission, and the CFP
energy spectrain one of the shotsis shown in Fig. 4.

The energy spectra of protons and tritons that were
measured in the steady stage of another regime of toka-
mak operation is presented in more detail in Fig. 5. The
ion temperature evaluated from the half-width of the
proton peak was 810 £ 70 €V.

The accuracy of determining the ion temperature
from the CFP energy spectrawas evaluated with the use
of the expression obtained in [2] for the accuracy of
determining T; from the spectral measurements of neu-
trons:

AT
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where N is the total number of countsin the individual
measured CFP peaK, 0y, is the broadening of the gen-
erator line, and gy, is the Doppler broadening of the
CFPline.

Note that the measured ion temperature is the tem-
perature of ionsin the plasma core. Taking into account
the measurement accuracy of CFP spectraand the accu-
racy of the absolute calibration of neutron detectors, we
can assume that the measured ion temperature does not
contradict the observed neutron emission.

4. EVALUATION OF THE ION TEMPERATURE
PROFILE FROM THE ANGULAR DISTRIBUTION
OF CFP FLUXES

The pitch-angle distribution of CFP fluxes on the
wall depends on the radial profiles of both the fusion
source and the density of the plasma current [3]. How-
ever, calculations show that, in the given measurement
geometry (the detector islocated near the lower plasma
boundary), the current profile has a small effect on the
angular distribution of CFPs; this distribution is mainly
determined by the radial distribution of the ion temper-
ature in the central region of the plasma.

In order to measure the angular CFP distribution by
asingle collimated detector, we have to turn the detec-
tor around its axis. In the spectrometer in use, this pro-
cedure requires air let into the diagnostic system.
Therefore, the detector can be readjusted only in inter-
vals between the series of measurements. Evidently, the
ion temperature distribution can be determined only if
the plasma parametersin different shots are identical.

Nevertheless, there is the possibility of measuring
the angular CFP distribution in a single shot with the
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 4. (@) Time evolution of the plasma parameters and
(b) CFP energy spectra. The measurementswere carried out
in shot no. 63872 (B, = 2.65 T): (/) tritons, (2) protons, and
(3) generator pulse.

use of asingle detector. For this purpose, it is necessary
to convert the angular distribution into the energy dis-
tribution. From a technological standpoint, this can be
achieved by placing several foils of different thick-
nesses with individual collimatorsin front of the detec-
tor. The CFPs passing through the foil will decelerate,
and their spectrum will insignificantly broaden as a
result of straggling. Additional CFP pesks shifted
toward lower energies with respect to the initial CFP
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Fig. 5. CFP energy spectrum measured in 0.1-stime intervals in the steady stage of shot no. 64317 (B, = 2.6 T, I, = 250 kA, and
M= 5.4 x 1013 cm™): (1) tritons, (2) protons, and (3) generator pulse.
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Fig. 6. (a) Single detector with decelerating foils: (1) colli-
mator, (2) decelerating foils, and (3) SBD. (b) CFP energy
spectrum: (1) tritons; (2a) 1.65, (2b) 2.2, (2c) 2.6, and
(2d) 3.0 MeV protons; and (3) generator pulse.

energy should emerge in the energy spectrum. The
value of the shift depends on the thickness of the fail;
i.e, it is determined by the collimator specifying the
pitch angle.

The feasibility of this idea was proved in the T-10
tokamak experimentally. The detector surface was par-
tially covered with three foils so that the total thickness
of the foilsin different regions was 20, 40, and 60 um
(see Fig. 6a). A common collimator was installed in
front of the detector; i.e., the measurement signal was
unresolved in the pitch angle. The CFP energy spectra
measured in the T-10 tokamak with the use of this sys-
tem are presented in Fig. 6.

Passing through the foils of different thicknesses,
protons lost an energy of 390, 810, or 1350 keV and
reached the detector surface with an energy of 2610,
2190, or 1650 keV, respectively, which agreed with the
calculated values. Tritons with an energy of 1 MeV
were completely absorbed by even the thinnest foil. A
fraction of the surface was uncovered and received the
protons and tritons that did not undergo deceleration.
Thus, the possibility still exists of measuring the ion
temperature from the energy spectra of 1-MeV tritons
and 3-MeV protons, although the number of counts
faling within these peaks is lower because of a
decrease in the uncovered detector surface.

These test experiments in the T-10 tokamak showed
that it is possible to place at |east three foils on the sur-
face of asingle detector. Consequently, it is possible to
measure the CFP fluxes for no less than four values of
the pitch angle in asingle shot. This method has an evi-
dent advantage over that using four independent detec-
tors and four spectrometric channels.

At present, we are producing a detector unit with
three spectrometric silicon semiconductor detectors

PLASMA PHYSICS REPORTS Vol. 26 No. 2 2000
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Fig. 7. Detector unit (top view): (1) case of the detector unit,
(2) SBD, (3) collimators, and (4) decelerating filters.

(SBDs) (Fig. 7). In order to resolve CFP particles by the
pitch angle, three collimators consisting of sets of thin
nickel pipeswere placed in front of the central detector
and two collimators were placed in front of each of the
other detectors. For the unambiguous identification of
protons passing through each collimator, we use decel -
erating foils: two foils of different thicknesses in front
of the central detector and one in front of each of the
other (second and third) SBDs.

Thus, the new diagnostic system allows direct mea-
surements of the pitch-angle distribution of fluxes of
the escaping CFPs in each shot. The measured pitch
angles range from 50° to 130°.

5. EVALUATION OF THE ION TEMPERATURE
PROFILE FROM THE DEPENDENCE OF THE CFP
FLUX ON THE RADIAL SHIFT OF THE PLASMA

The measured CFP flux is formed along a certain
helical tragjectory determining the detector line of sight.
When the plasma column shifts inward or outward
along the major radius, the line of sight passes through
the different plasma regions; consequently, the mea
sured CFP flux changes.

In our experiment, the orbits of particles falling on
the detector oriented at the angle a,., = 90° are close to
the central, hottest plasma region because of the large
Larmor radius (~10 cm). When the plasma column
shifts inward or outward, the detector sees the plasma
regions at a greater or lesser distance from the center,
respectively. Inthefirst case, the value of the measured
CFP fluxes decreases, and, in the second case, it
increases. The sharper the fusion source profile, the
larger arelative changein the fluxes. Thisideawasfirst
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realized in experiments in the PLT device [4] in order
to measure the ion temperature gradient.

In our experiments, the plasma position was varied
from shot to shot from —3 cm (inward shift) to +4 cm
(outward shift). Figure 8 presents both the experimental
data (for o, = 90°) and the calculated dependences
obtained for different shapes of the T;(r) profile. Each
experimental point correspondsto anindividual shot, in
which the proton fluxes were averaged over a period of
0.2 sin the steady-state stage of the discharge. Expe-
rimental and calculated values are normalized to the
-1-cm position, which is standard for the T-10 toka-
mak.

From the data presented, it follows that the ion tem-
perature profile in the T-10 tokamak is fairly flat, at
least in the central region of the plasma, which is the
main source of the measured CFP flux.

Plasma-shift experiments were also carried out for
the detector oriented at the angle o, = 65°. Inthis case,
the measured dependence of CFP fluxes on the plasma
shift behaves even more smoothly, which is also in
agreement with calculations.

6. CONCLUSION

The ion temperature in the T-10 tokamak plasmais
measured in different operating modes of the device
from the broadening of the energy spectra of thermonu-
clear protons and tritons. Within the measurement
accuracy (10-15%), the obtained values of theion tem-
perature agree with the measured neutron yield.

The ion temperature profile is evaluated from the
dependence of CFP fluxes on theradia plasma shift. It
is found that, in the T-10 ohmic regimes, the ion tem-
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perature profileisrelatively flat and is shaped as T;(r) ~
(1= (r/ay*)?.

It is proposed to use a single spectrometric detector
with severa collimators and slowing-down foils to
measure the CFP distribution over pitch angles, which
allows the determination of the ion temperature profile
in asingle shot. The feasibility of the method proposed
is proved experimentally.
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Abstract—A hot target plasmais obtained in the end cell of the AMBAL-M device with the use of an end gas-
discharge plasma source. A fairly high longitudinal electron current flowing from the plasma source to the
plasma receiver is detected experimentally. The electron current is studied in the region in front of the input
magnetic mirror, where the longitudinal electric field is directed outward from the mirror. Different models
for plasma description are considered, and possible plasma instabilities are discussed. It is shown that afairly
high longitudinal electron current in the region where the electric field accel erates electrons results in the gen-
eration of the flow of fast electrons responsible for the current in the mirror system. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

A hot target plasmaisobtained [2], and afairly high
longitudinal electric current [3] flowing through the
plasma from the plasma source to the plasma receiver
is detected in the end cell of the AMBAL-M device
with the use of an end gas-discharge plasma source[1].
It is shown that the longitudinal current owes it exist-
ence to the method for the plasma production and is a
fraction of the discharge current of the plasma source
[4]. It is found that, as the distance from the magnetic
mirror (on the plasma-source side) decreases, the
plasma potential increases along the magnetic field
lines (along which the current flows) [2, 5] but does not
decrease, as in the case of a thermal barrier. In this
paper, we study the electron current in this particular
region of the electric field in front of the input magnetic
mirror.

After a brief description of the experimental setup
and formulation of the problem, numerical models are
considered and the conclusion isdrawn that afast- elec-
tron flow is produced in the system, which is confirmed
by direct measurements of the electron distribution
function. In the Conclusion, we give a summary of the
results obtained.

2. BRIEF DESCRIPTION
OF THE EXPERIMENTAL SETUP

The schematic of the experiment is shownin Fig. 1.
An annular gas-discharge plasma source! [1] generates
a cold dense plasma flow and specifies a nonequilib-
rium profile of the radial electric field. The Kelvin—
Helmholtz instability [6] and the longitudinal current

1 The gas-discharge plasma source is shaped as aring 11 cm in the
inner diameter and 13 cm in the outer diameter.

[7] lead to an increase in the transverse ion tempera-
ture; asaresult, theion mean free path increases, a sub-
stantia fraction of the plasma flow is reflected by the
magnetic field of the mirror, the plasma density
decreases, and a thermal barrier is produced in the
region of the input magnetic mirror. In the magnetic
mirror system, the ions (whose temperature continues
to grow) are confined by the magnetic field, whereas
the electrons are confined by the ambipolar potential
and are heated by the current and collisions with ions.
The basic plasma parameters in the center of the mag-
netic mirror system arethe following: the plasmadiam-

10

0 \ L i
ol 300 200 100

Fig. 1. Schematic of the end cell of the AMBAL-M device
and the magnetic field line emerging from the plasma
source: (1) coils of the mirror system, (2) plasma-source
solenoid, (3) gas-discharge plasma source, (4) plasma
receiver, and (5) semicusp coils. Arrows mark the cross sec-
tions in which the Langmuir probe measurements were car-
ried out. At the bottom, the profile of the magnetic field on
the axisis shown.

1063-780X/00/2602-0115$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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Fig. 2. Longitudinal profile of the floating potential of the
Langmuir probe (solid line) and space potential (dashed
line) along the magnetic field (at a3.4-cm radiusin the cen-
tral plane of the mirror system) at the instant 1.4 ms.
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Fig. 3. Electron distribution functions over longitudinal
velocitiesat z= (1) —243, (2) 168, (3) =115 cm, and (4) in
the magnetic mirror region. The potential difference
between the input magnetic mirror and the z = —243-cm
Cross section is 100 V.

eter is 20 cm, the plasma density is 6 x 10'2 cm, the
electron temperature is 50 eV, and the ion temperature
is 200 eV. A detailed description of the device and the
experimental results are presented in [2-5].

3. FORMULATION OF THE PROBLEM

One of the most important and interesting results
obtained inthe AMBAL-M experimentsisthe presence
of the longitudinal electric field accelerating the elec-

TASKAEV

tronstoward the mirror system. Thisfield was observed
in the transport region in front of the input magnetic
mirror a a radius approximately equal to the half-
radius of the plasma stream flowing from the gas-dis-
charge plasma source. The electric field at other radii
decelerates electrons, which is typical of the formation
of the thermal barrier [2, 5]. The measured longitudinal
profiles of the floating potential of the Langmuir probe
and the space potential are presented in Fig. 2. The
space potential is determined by the point of inflection
of the electron part of thel-V characteristic of an asym-
metric double probe [8]. The value of the excess of
the space potential above the floating potential of the
probe for the Maxwellian particle distribution is well
known. In the case in question, the excess is approxi-
mately (2-3)T, because of a higher ion temperature.
Such an excess potential is observed near the plasma
source (z < —240 cm), where the plasma is dense and
cold (T, = 8 €V). The difference between the space
potential and floating potential increases with distance
from the plasma source (see[5], Figs. 9, 11) because of
theincreasein the el ectron temperature (see[2], Fig. 6).
The presence of the éectric field (up to 0.7 V/icm)
accelerating the electrons and extending over two
meters in front of the input magnetic mirror is seen in
Fig. 2. In[5], it was assumed that afairly high electron
current flows just in this region rather than along the
magnetic lines coming out of the gas-discharge plasma
source. Later, this assumption was confirmed experi-
mentally in [3].

The problem of the electron current flowing in the
region of the accelerating electric field is of great inter-
est. Let us consider severa models for this pheno-
menon.

4. SSIMULATION
4.1. Two-Fluid Magnetohydrodynamics

Because of the small plasma density in the mag-
netic-mirror region, the electron mean free path deter-
mined by the Coulomb collisons reaches severa
meters and is 3—10 times the magnetic-field-variation
scale length L = B/(0B/0z). Therefore, the hydrody-
namic approximation is invalid. However, if the elec-
trons are scattered on the turbulent oscillations arising
due to instabilities, the hydrodynamic approach is
applicable. The electron distribution function can be
represented as the Maxwellian distribution shifted by
the flow velocity. However, the existence of such acol-
lisional flow generates the problems of how to fit the
calculated potential distribution to the measured one
and how to explain the high electron temperature [5].
To achieve an agreement with the measured electron
temperature, a very high heating power is required,
because the energy carried away due to convection and
heat conduction increases substantially. With such high
energy losses, it ishardly possibleto heat this turbulent
plasma flow by injecting available neutral beams.
No. 2
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Although it seems that scattering by waves does not
lead to the turbulent collisiona flow of the plasma jet,
only experiments can confirm this assumption—
whether it will be the injection of neutral beams or the
measurements of the electron distribution function in
the mirror system.

4.2. Kinetic Model

Another method for studying the current flowing in
the plasma is the kinetic approach [9]. Let us consider
acollisionless plasmadescribed by theVlasov equation
[10]. We assume that the el ectrons move from theinitial
point denoted by theindex 0, wheretheir distribution is
Maxwellian, toward the higher magnetic field. In addi-
tion, the electrons are in the accelerating electric field.
The electron distribution function f is found from the
laws of conservation of energy and the magnetic
moment. In the absence of collisions, the total time
derivative is df/dt = 0. In phase space, the particles
move along thelinesat which fisconstant. The electron
distribution function is Maxwellian but has a sharp
boundary, beyond which the distribution function van-
ishes. Inthe plane (v, v), the contours of the distribu-
tion function are circles and the boundary beyond
which the distribution function vanishesis an ellipse

2 2
Mvory _Bog, MVy _
2 B 0 + 2 - @ - e¢0

for v, > 0 and a hyperbola

2
mv,

= = ep - ep,

mvig Bug,

2 BU
for v, <0. Here, the index mrefersto the quantity in the
magnetic mirror region. In order for these boundariesto
be joined at the point v = 0, the dependence of the
potential on the magnetic field must be linear.

L et the electron acceleration by the electric field start
near the point where the probe is located (z = —243 cm)
and terminate in the mirror system, the potential differ-
ence being 100 V. The corresponding evolution of the
electron distribution function f(v)) over longitudinal
velocities with decreasing distance from the magnetic
mirror isshown in Fig. 3.

4.3. Runaway Electrons

It is difficult to model the real experimenta situa-
tion, because the plasma flow is collisional near the
plasma source and collisionless in the mirror region. It
is well known that, in the presence of an accelerating
electricfield, runaway electrons can be generated in the
collisional plasma. Runaway electrons are fast elec-
trons that on average accelerate rather than decelerate,
because the friction force (~1/v) decreases with
increasing the electron velocity. In the electric field E,
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the electrons with velocity v, become runaways if

v,> 4me’\n/mE [11]. As the distance from the
magnetic mirror decreases, the plasma density
decreases and the boundary of the runaway region
shifts to lower velocities; as a result, more and more
€l ectrons become runaways. Near the mirror region, the
runaway boundary corresponds to the velocity v, =2 x

108 cm/s, which is close to the thermal electron veloc-
ity; therefore, a substantial fraction of electrons
become runaways.

4.4, Summary

When the accelerating potential is much greater
than the initial temperature (as in our case), the colli-
sionless acceleration in the constant magnetic field
leads to the formation of abeam of electronswith close
longitudinal velocities. In the increasing magnetic
field, there is energy transfer between the degrees of
freedom because of the conservation of the adiabatic
invariant. As a result, for a given potential difference,
electrons with different transverse momentums gain
different longitudinal velocities, asisseenin Fig. 3. An
even greater dispersion of the fast-electron beaminlon-
gitudinal velocities results from the absence of a sharp
acceleration boundary in velocity space because of a
smooth decrease in the plasma density with decreasing
distance from the magnetic mirror.

The onset of the Buneman instability [12] and the
build-up of Langmuir oscillations can also contribute to
the broadening of the electron beam in energy space.
According to the estimate from [13], the formation of a
plateau in the electron distribution function due to
Langmuir turbulence must proceed rather rapidly (on a
space scale of ~1 cm). Therefore, there can exist asitu-
ation similar to the propagation of a monoenergetic
electron beam in a plasma, which was considered in
[14]. Inthat paper, it was shown that an electron distri-
bution with a plateau is established at each point, the
maximum velocity in the plateau being constant.

5. EXPERIMENTAL RESULTS

The presence of the fast-electron flow in the mirror
system is seen from the I-V characteristic of the Lang-
muir probe placed in the region where the current
flows. The |-V characteristic shows the presence of
both regions with the positive derivative 0f(€)/0€ and
the plateau (linear dependence of the current on the
voltage) in the electron energy distribution function.
However, an accurate interpretation of these results
leaves unclear the problems associated with the sec-
ondary electron emission, a possible change in the
potential jump near the surface [15], and the possible
existence of the linear transient region in the I-V char-
acteristic [16]. Therefore, we designed a special small-
size movable electron-energy analyzer and used it to
measure the el ectron distribution function over longitu-
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dinal energiesin the mirror system. A detailed descrip-
tion of the analyzer and obtained experimental results
arepresented in[17]. The analyzer measurements show
that, in the current channel, the eectron distribution
function of the arriving electrons over longitudinal
velocities differs from the Maxwellian distribution
function and, in the energy range from 150 to 350 eV,
is shaped like a plateau. Fast €l ectrons with the density
~10'"' cm™ are responsible for the transport of the main
part of the detected longitudinal current [3]. Thus, the
experimental results show that the longitudinal electron
current in the mirror systemis carried by fast electrons
that are produced in the region of the accelerating elec-
tric field, in front of the magnetic mirror.

6. CONCLUSION

In the previous experiments with a target plasmain
theAMBAL-M device, it wasfound that, in front of the
input magnetic mirror, there is a longitudinal electric
field directed outward from the magnetic mirror. It was
shown that a high electron current flowing into the mir-
ror system existsin this region.

In this paper, we have considered various modelsfor
a plasma description and have shown that the presence
of an electron current in the region of the accelerating
electric field leads to the generation of a flow of fast
electrons that carry the current in the mirror system.
The fast-electron flow is recorded experimentally.

The production of afast-electron flow is not charac-
teristic of open magnetic confinement systems. Further
investigations of the processes related to this phenome-
non (in particular, the formation of an accelerating el ec-
tric field and the influence of the fast-electron flow on
the confinement and heating of the plasmain the mirror
system) are of considerable interest.
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Abstract—Resonance phenomena arising when the Larmor drift velocity islocally equal to the phase velocity
of plasmaoscillations are analyzed. It is shown that, in a plasmawith anonuniform temperature, the wavelength
of the oscillations sharply reduces at the resonant point, so that the oscillations convert into small-scale waves.
In a plasma with a uniform temperature, Coulomb collisions cause the oscillations to dissipate at the resonant
point. It is noted that a resonance with the Larmor drift can be used to heat the plasma. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The stability of the plasma that executes a nonuni-
form motion is in large measure governed by the phe-
nomenon of hydrodynamic resonant interaction [1]. In
an inhomogeneous plasma in a magnetic field, the so-
called Larmor drift (or aflowing-around stream), which
is a hydrodynamic motion unrelated to the displace-
ment of Larmor circles, occurs. This phenomenon is
also known as a diamagnetic current or gradient cur-

c [(BVp]. In

rent. The Larmor drift velocity isV| = -
eB'n
earlier papers|[2, 3], | noted that, at aresonancewith the
Larmor drift, the wave phase along particle trajectories
changes in time, thereby preventing direct energy and
momentum exchange between waves and particles (itis
well known that such an exchange is peculiar to reso-
nant interaction). It sill remains unclear how the energy
and momentum exchange between particles and waves
can occur at resonances with the Larmor drift and
whether this happensin reality. In order to answer this
guestion, we must take into account local physical pro-
cesses occurring in the vicinity of the resonant point,
which are unimportant far away from this point, where
they are usually neglected. However, this approach to
describing various plasma waves yields singular wave
equations having a singularity at the point of the Lar-
mor resonance.

It was found that, in a plasma in which the density
and temperature gradients are both nonzero, the higher
order (fourth-order) effects in the ion Larmor radius
become important near the resonant point. Taking into
account these effects rai ses the order of the wave equa-
tion. The refined wave equation describes how compar-
atively large-scale (e.g., flute or drift) oscillations con-
vert into smaller scale waves propagating away from
the Larmor resonance point. However, this phenome-
non can be correctly described using a s mplified wave
equation supplemented with the Landau rule for cir-
cumventing the resonant point. Small-scale waves

travel toward the point at which the resonance condition
issatisfied for the Larmor drift velocity calculated solely
T Bvn).
eB'n
In the vicinity of this point, the wavelength of the
small-scal e waves approaches zero; i.e., the waves stop
propagating. Then, the waveswill evolve depending on
the sign of the temperature gradient. If the temperature
and density gradients are equidirectional, then the
oscillations will be damped by ion—-on (i—) collisions.
If the gradients are oppositely directed, then i— colli-
sions can cause small-scale waves to grow.

In aplasmawith auniform temperature and nonzero
density gradient, the energy of large-scale waves
increases in the vicinity of the point of Larmor reso-
nance until the effects of ion—electron (i—€) friction,
which are responsible for wave absorption, come into
play. Along with the wave conversion in a plasmawith
VT # 0, this phenomenon can aso be correctly
described using a simplified singular wave equation
supplemented with the Landau circumvention rule.

Our analysis shows that the energy of the plasma
waves decreases due to resonant interaction with the
Larmor drift. Since the energy lost by the waves is
finally converted into thermal energy, the Larmor reso-
nance phenomenon can be used to heat the plasma.

in terms of the density gradient, V| =

2. PLASMA WITH NONUNIFORM
TEMPERATURE AND DENSITY

2.1. Basic Equations

The Larmor resonance phenomenon, which has a
substantial impact on various kinds of plasma oscilla-
tions, may, in particular, enlarge the domain in which
flute perturbations are unstable because of the diamag-
netic nature of the plasma[4]. We will study the prob-
lem at hand using as an example flute oscillations,
which are a simple and convenient object for demon-
strating the general features of the Larmor resonance

1063-780X/00/2602-0119$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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phenomenon. In the simplest formulation (which
impliesaplane symmetry, auniform magnetic field, the
use of the potential approximation, and modeling of the
nonuniform part of the magnetic field by the effective
gravity acceleration g), flute oscillations are described
by the equation (see, e.g., [5, 6])

do, gd No

_no((*) Q)—— ax —k; yNo(w—Q))d, + ¢1 0, (1)
_kcadp, Ty .
where Q; = eBon. dx ° g= mR’ R is the scale on

which the magnetic field varies, and the perturbed el ec-
tric potential is chosento be ¢,(r, t) = ¢,(X)exp(—iwt +
ikyy). Equation (1) is written in Cartesian coordinates
with the x-axis directed along the unperturbed density
and temperature gradients and the z-axis directed along
the magnetic field.

The point of the Larmor resonance is a singular
point of equation (1), which was derived under the
assumption that the ion Larmor radius p; is small. This

equation is correct up to terms on the order of pi2 .In

order to regularize the wave equation, we must incorpo-
rate the finite-L armor-radius effects more completely.

In the potential approximation, the wave equation
can be derived from the condition that the plasma is
guasineutral. The perturbed ion density into which the
finite-Larmor-radius effects are completely incorpo-
rated is found by solving the kinetic equation by the
standard method of integration along the trajectories:

ny = e_[dkxexp(ikxx)d)l(kx)

oty (9fo, K, 0f o
xJ’dv[g Ooe miooi(oo+kyg/ooi)aZD (2)

xJo(z)exp(izsn(e—x))},

- oM Dy2

initial ion distribution function, { = x + vy/(q, w isthe
ion cyclotron frequency, 6 isthe phase of theion cyclo-
tron gyration, x = arctan(k,/K,), & = kv;/wy, and J, isthe
zero-order Bessel function.

Uisthe

Because of a reduction in the characteristic spatial
scale of the flute perturbationsin the vicinity of the res-
onant point, the dominant terms in the expansion in p,
in the expression for n,; are the terms containing the
fourth-order derivative of ¢, (k, — —id/dx). Incorpo-

TIMOFEEV

rating these terms into the quasineutrality condition
makes it possible to generalize equation (1):

3 2d4¢1 d do,
_4nOQTi i dX4 + anO(w Q ) dX
(3)
K gdn
—K; yNo(W—Q;)d, + 0 dX0¢1 =0,

where

_kedTo 2 To
T eBax’ P mw,”

We set the origin for the coordinates at the resonant
point, change the variables w — Q;(x) = -Q; , x, and
omit the small term proportional to Ux¢, in the fourth-
order equation (3) in order to reduce thisequation to the
standard form with a small coefficient in front of the
highest derivative (see, e.g., [7]):

1d9,, d d9y
A gy’ taxax TP =0 @
where A = g . The quantity P, which is equal to
pl QT|
k’g 1d
P= ———L(‘,J—i—r]—o, is assumed to be positive, which
wQ; ,No dx

corresponds to a plasma that is unstable against flute
perturbations. For definiteness, we also set Q; , > 0.

2.2. Wave Conversion and Landau Circumvention Rule

The theory for solving equations of the form of (4)
iswell developed: they are usually solved by taking the
Fourier transformation at complex values of k,,

¢.(x) = J'dkxexp(i KX) 9 1(Ky). ®)

The integration contours for this expression can be
divided into two groups: closed contours and contours
on which ¢,(k,) T 0.

For the Fourier transform ¢,(k,), we obtain from (4)

_1 plL! ik +iPO
da(k) = Copf3r+ g ©

Although equation (4) has only four linearly inde-
pendent solutions, it is convenient to introduce seven
functions. The relevant contours of integration over k,
are shown in Fig. 1, in which the “forbidden” regions

where |¢, (k) o oo are hatched. From Fig. 1, one
PLASMA PHYSICS REPORTS Vol. 26 No.2 2000
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can see that the seven functions we have just introduced
arerelated by

Us—U, = A,
U,-U; = A, (7
U,-U,+V = A,
Taking the sum of these expressions yields
V=A+A+A;. (8)

The functions V and U; can be regarded as long-
wavelength, because, in the limit A — oo, they pass
over to the solution to the reduced eguation (4) without
the term containing the fourth-order derivative. In the
same limit, the short-wavelength functions A; can be
obtained from (4) in which the last term on the left-
hand side is omitted.

To obtain the function V, we consider the range
P~!'> x| > A~/ and choose the integration contour in
theregion A'3 > k| > P, inwhichwehave ¢,(k,) = 1/k,
and, accordingly, V = 21i. Consequently, in this range
of [x| values, the desired solution to equation (4) in
which we omit the term containing the fourth-order
derivative is a solution that is regular at the resonant
point and has the form

V = 271 Jo(2./PX).

As a second linearly independent solution to the
reduced eguation, we can choosg, e.g., the function U,.
If 0> argXx > —4173, then the sector in which contour U,
approachesinfinity in the plane of the complex variable
k, (i< argk, < 5173) intersectsthe half-planeIm(kx) > O.
For such values of argx, the integral in (5) converges,
because it contains the factor exp(ikx). If [x| > A7,
then the first term in the exponential index in (6) is
unimportant, in which case the function U, passes over
to the solution to the reduced equation (4). Setting [x| >
P!, A3 and evaluating (5) by the saddle point method
yields

1/2
U,= Mexp( 2i/Px—iT/4). ©)
(Px)
This asymptotic behavior is characteristic of the fol-
lowing solution to the reduced equation:

= -miH? (2./Px).

If argx =0, then the half-plane Im(k,x) > 0 on the
plane of the complex variable k, only borders the sector
Ti< argk, < 513, without intersecting it. Consequently,
for argx = 0, the main contribution to the integral in (5)
comesfrom theregion where |k, | valuesarelargeandin
which the first term in the exponentia index in (6)
should be taken into account. In this case, the function
U, can be found from the third expression in (7), in
which the function A, is evaluated by the saddle point
method. For argX # 2173, contour A, intersectsonly one
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Re k,

U, Us

Ay

Fig. 1. Integration contours in (5) corresponding to solu-
tions to equation (3). The sectors in which the integrand
increases without bound as |k, | — o are hatched.

saddle point k, s=—(x\)!"2. The corresponding calcula-
tions give

=-miH? (2./Px)
+ ﬂllz expD 2i C2AY2 4 i1 (10)
a0 3 40

The existence of the asymptotic solution (10), whichis
valid along the positive real semiaxis and contains an
exponential function whose index varies on a short
scale, indicatesthe conversion of large-scale wavesinto
small-scale waves at a Larmor resonance.

The last term in (10) should be taken into account
not only at argx = 0 but also in the sector 0 < argx <
2173, where it grows exponentialy and plays the dom-
inant role. Hence, we arrive at the conclusion that the
nonanalytic solution to the reduced equation (1) coin-
cides approximately with the solution to equation (3)
only in the sector 0 > argx > —41Y3, which contains the
lower half-plane. Therefore, if we wish to operate with
the simplified equation (1), then we must choose the
integration contour that lies below the resonant point
(Fig. 2). Since we are working under the assumption

Q; , > 0, the integration contour is chosen in accor-
dance with the Landau rule. Consequently, the Landau
circumvention rule appears to be a consequence of the
Stokes phenomenon, which implies that the asymptot-
ics of an analytic function are different in different
regions on the plane of a complex variable [cf. (9),

(10)].

A similar analysis shows that the functions

U, 5= TiH{Y(2./Px)
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C] Re x
Zs

G,

Fig. 2. Plane of the complex variable x for the function U,.
The sector in which this function transforms into a short-
wavelength function is hatched. The contour for circum-
venting the Larmor resonance point according to the Landau
ruleis marked by an arrow.

C; Im x

G

Fig. 3. The same asin Fig. 2, but for the function U3. The
arrow indicates the contour for circumventing the resonant
point in the sense of the “anti-Landau” rule.

differ from U, only with regard to the positions of the
sectors of the complex variable x in which they trans-
form into the corresponding short-wavelength exponen-
tially growing solutions to the complete equation (4).
In Figs. 2 and 3, these sectors are denoted by S with the
same subscripts as in U;. Figure 3 implies that, if we
choose the function U as a second linearly indepen-
dent long-wavelength solution, then the integration
contour should lie above the singular point in the com-
plex plane, which correspondsto the “ anti-Landau” cir-
cumvention rule. In fact, the positive real semiaxis
coincides with the upper boundary of sector S, in
which, in accordance with the second relationship in
(7), the function U, transforms into the short-wave-
length solution A,:

=miH"(2./Px)
12 [2i BI2A2 _ i) (11
FAmPEX N

TIMOFEEV

As for the solution U, the last two relationshipsin
(7) imply that it is rapidly growing in sector S;, which
contains a negative real semiaxis. It is hardly conceiv-
able that this solution reflects areal physical situation.

The answer to the question of which solution (U, or
U,) should be used (and, accordingly, the question of
whether the Landau circumvention rule is valid)
depends on the particular problem that is to be solved.
To clarify this point, we turn to the dispersion relation
for small-scale waves, which can be obtained from
equation (3) without the last two terms:

3 2, 2
Z_QTipi K-

Thisreation impliesthat the group and phase vel oc-
ities of the small-scale waves have different signs. Con-
sequently, the phase of the second term in (10)
decreases as x increases, so that this term describes the
wave that carries the energy away from the resonant
point. On the other hand, the second term in (11)
describes small-scale waves that propagate toward the
point of Larmor resonance.

Large-scale waves are characterized by a normal
dispersion: in the vicinity of the resonant point, the
approximate dispersion relation has the form

k
kQ

Consequently, the first termsin (10) and (11) describe
large-scale waves propagating oppositely to small-
scale waves, which corresponds to the complete con-
version of large-scale waves into small-scale waves and
back at the point of the Larmor resonance.

Below, we will show that, during the flute instabil-
ity, large-scale waves are generated on the outside of
the vicinity of the resonant point. Large-scale waves
propagating toward the point of Larmor resonance
should be described by the solution U,, which corre-
sponds to the Landau circumvention rule.

On the other hand, we can imagine situations in
which small-scale waves a so propagate toward the res-
onant point. Below, we will show that the energy of the
small-scale waves into which large-scale waves are
converted increases in the vicinity of the point at which
the resonance condition is satisfied for the Larmor drift
velocity calculated solely in terms of the density gradi-
ent. However, for some density profiles, no such point
exists, in which case small-scale waves should return to
the point of Larmor resonance after they have been
reflected from the boundary. The solution describing
small-scale waves that approach the resonant point is
determined by the function U; with the “anti-Landau”
rule for circumventing the singular point (see above).
Note that both of the long-wavelength solutions
decrease exponentially behind the point of Larmor res-
onance, i.e., in the region x < 0, in which U, ; [

exp(=2J/P|X|).

PLASMA PHYSICS REPORTS  Vol. 26
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If the Larmor drift velocity isanonmonotonic func-
tion of the coordinate, then there can exist eigenmodes
between two points of the Larmor resonance in a
plasma. The eigenmodes are a superposition of the
oppositely propagating large-scale and small-scale
waves. At the points of Larmor resonance, the reflec-
tion of these wavesis accompanied by their conversion:
large-scale waves are converted into small-scale waves
and back. The spatial structure of these wavesisillus-
trated in Fig. 4. Presumably, these are the waves that
were found to be unstable in the problems treated in
[8,9].

Along with the solutions that we have already dis-
cussed, it is of interest to consider the solution A,,
which decreases sharply behind the resonant point:

' 0 2| |3/2A1/2

ITl'D
A= ————eXpe3
1 |X|3/4/\1/4 03

o0

It is convenient to find the solution at the positive
real semiaxis (line C,) from relationship (8). This is
related, in particular, to the following circumstance: if
x lieson lines C;, then contours A; pass through both of
the saddle points k, s = =(x\)"”? of the integral in (5).
Relationship (8) shows that, in the region ahead of the
resonant point (x > 0), the solution A, describes the
standing large-scale and small-scale waves that are
somehow coupled to each other.

2.3. Wave Energy Flux and Flute Instability

The reduced equation (1) enables us to consider the
flute instability that may occur in a gravitational field

directed outward from the plasma, g%—o < 0. Rosen-
bluth et al. [5] showed that the flute instability is sup-

pressed if the Larmor drift velocity is sufficiently high,

2 1dn0

Q= ‘g————— . However, in [4], it was shown that,

ng dx
even in the regime in which the flute instability is sup-
pressed, flute oscillations may nevertheless grow as a
result of resonant interaction with the Larmor drift.

If the growth rate of such aresonant flute instability
isnot high, it can be estimated from the quadratic form
obtained by multiplying (1) by ¢7 and by integrating
the resulting equation over the interval (x,, X,), which
we are considering here. With allowance for the bound-
ary condition ¢,(x; ,) = 0, the imaginary part of the
guadratic formis

X2

0
Q=Idemwno|V¢l|2+l kygdny
O

w——|¢1| D 0. (13)

The main contribution to the integral of the first
term (which will be denoted by Q,) comes from the
vicinity of the resonant point at which the solution has
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Q;(x)

Xg.1 /’/\/‘\/\XS’2 *

Fig. 4. Spatial structure of the eigenmodes excited between
the points of Larmor resonance: the Larmor drift velocity
versus the coordinate (x;. |, are the resonant points). The
wavy arrows show the wave propagation directionsthat |ead
to the establishment of eigenmodes (the propagation direc-
tions of the long- and short-wavelength oscillations can be
reversed simultaneously).

alogarithmic singularity ¢, = In(X—Xs— iv/Qi ) in

the limit y = Imw — 0. Using the familiar equality

J‘” dx 25 5 =TT, we obtain
X+

Ql |Q| xlx Xs nO(Xs)

Imm

With alowance for this relationship, expression

(13) impliesthat, if g%— <0, then theflute oscillations

are unstable,
2.2 R ' 2
=—W (kygljno,xD nO(XS)|Qi,x|x=stX/Qi ’

where [, , s a certain mean value of n, , and Ax is
the plasma dimension.

Let us analyze the energy balance in unstable oscil-
lations. It is convenient to evaluate the energy density
of the potential waves,

097109,
8ndoo Kax. 0%,
from the wave equation
09, _
a—XiSika—Xk =0, (14)

whichisvalid for any potential oscillations.

Weintegrate (14) multiplied by ¢ by parts assum-
ing that, at the boundary, the potential is unperturbed.
Asaresult, we obtain

097 09,
Idrs"‘ X, 0%,
We a so assume that the tensor g, is Hermitian and

that the waves grow at alow rate (w > y). Both of these
assumptions are valid for the unstable waves we are

= 0. (15)
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going to analyze. In (15), we single out the imaginary
part by expanding €;, in powers of the small ratio iy/w
and add the resulting expression to the real part multi-
plied by iy/w. Thisyields the following equality, which
describes the time evolution of the wave energy:

J’er = Const x Q.

The constant can be found by comparing equations (1)
and (14) inthe simplest case of ahomogeneous plasma:

1 Pt
41inyUw, U”

Thus, we have found that the net wave energy is
equal to zero. This result is quite natural, because we
are considering a closed conservative system. In the
course of instability, the net wave energy does not
change: it is only redistributed between different
regions. In the case of waves with low frequencies
g dno 1/2
0 d
(13) dominates everywhere except for a small vicinity
of the resonant point. For radially decreasing density
profiles, thisterm is negative. Thisindicatesthat, asthe
wave amplitude grows, the plasma loses thermal
energy, which is accumulated in the resonance region,
where it is converted into oscillatory ion energy. In the
resonance region, the first term in the integrand in (13)
increases sharply (see the discussion above).

Let us show that the waves |ose the same energy as
a Imw=0, inwhich caseit is converted into the energy
of small-scale waves running away from the resonant
point. To take into account small-scale waves, we turn
to equation (3). Multiplying this equation by ¢3 and
integrating by parts gives theimaginary part of the qua-
dratic form at Imw = 0:

Q - _§nOQT|p| (q)l sw¢llusw ¢l sw¢'1',sw)xz

Congt =

w<< , the second term in the integrand in

(16)

_no((-’o_Qi)(l)fsw‘:l)'l,swl)(:oo

Here, ¢, 4, is the short-wavelength part of the solution
U, and account is taken of the fact that small-scale
waves run toward the region x > x,. Since, in adissipa-
tionless plasma, the energy flux is independent of dis-
tance, it can be found by solving equation (4), whichis
valid at short distances from the resonant point. Using
the relationship ¢, ¢, = ik, o With k. = (X\)'72,
which isvalid for the short-wavel ength part of solution
(10), we can seethat (16) is exactly equal to Q.

2.4. Effect of lon—lon Collisions on Small-Scale Waves

Now, we consider the time evolution of the small-
scale waves into which large-scale waves are converted
at the point of Larmor resonance. The spatia structure
of the small-scale waves can be described in a quasi-
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classical fashion, ¢,(X) O exp(if dxk(x, w)). The

small-scale waves can be analyzed from relationship
(2) by setting ¢, (k) 0 &(k,— kX, w)), in which case we
obtain

N Qi Qpi, .1 €b;
Ny = [— 1+ %-_To—%:i - ‘(;)‘biFi}noTr‘o‘,
where F; = exp(—byl(by), b = (kep;)*.
The perturbed electron density can be found in the
hydrodynamic approximation:

e¢ €P,
T
The condition that the pI asmabe quasineutral yields

thefollowing local dispersion relation, which describes
small-scale waves and is a generalization of (12):

Ne=

©= 200 + 201 ().

(17)

Above, we have shown that the wavenumber of the
waves increases as they propagate away from the point
of Larmor resonance at which w = Q; = Q; +Qy.
According to (17), the wavenumber tends to infinity as
the waves approach the point at which w =

1 g . L
Q. F — ———r. Intheregion near this point, the
ni B: b - /_2T[biD eg p
wave energy grows.

In this region, i— collisions may have a strong
impact on the small-scale waves. The i—i collisions can
be taken into account by introducing the Bhatnagar—
Gross—Krook (BGK) collision term (which conserves
the number of particles and their momentum and
energy) into the kinetic equation:

St(f) = —viify
. LW mi(vV,) L OV 2_§DT_1Df
ihy " T T, 021, 20r,0'

where V, is the perturbed velocity and T, is the per-
turbed temperature.

Integrating the kinetic equation along the trajecto-
ries, we obtain

AL AT K 0for
oe  Uoe miooi(w+iv“+kyg/wi)azm

fi =

* Jo(&) exp(iEsin(8-X)) * 2 HJo(E)

sinX —V1,00sX)J:(&)

E‘Q'TO 302 3,0 Jexp iEsin(8-)) o,
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We will find the corrections related to collisions,
assuming that the collision frequency is sufficiently
low. For small-scale waves in the collisionless approx-
imation, we obtain

m%:

ViSinx —Vy,cosx

~I—% m%)F Qle(b F'+F )[P¢1

T, =51, -l

Qi " TeP:
ga F'+2bF +2 F'D]TO'

Q'nb F%ﬁ_ﬂ’l

The collisional correction to the perturbed ion density
has the form

+ %bil:i'%l_ZFi - %l + gbi%:i‘ —bi%l + gbiH:i"E}

xno_l_
0

Incorporating this correction into the quasineutral-
ity condition and using the “collisionless’ dispersion
relation (17), we obtain the correction to the frequency
of the small-scale natural waves introduced by i—i col-
lisions:

OW=—iv;;

H-1+F)

bF+ b(l+b)F H+bH+2 b%k'zﬂ

This expression shows that small-scale waves are
dn, dT,
& and Q-ﬁ O a
have the same signs. Otherwise, small-scale waves may
be unstable.

In the limits of small and large values of b, the cor-
rection dw becomes

stable when the quantities Q,; U

. Q11
6(.0 = —IVii-—E—-bi,
bi <1 Qi 12
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>1 ”QniZJZT[bi

If the small-scale waves are excited by an external
source, then i—i collisions cause the wave amplitude to

changein space according to Imk, = E-?I? E 0w Small-

scale waves are difficult to excite externaly. It is more
convenient to initiate them via the conversion of large-
scale waves at the Larmor resonance point. Since the
energy of small-scale waves is converted into the ther-
mal energy, we can imagine a scheme of “Larmor”
plasma heating similar to the scheme of Alfvén heating
of aweakly collisional plasma, which is also based on
the conversion of large-scale waves into small-scale
waves. Note that the equations for large-scale flute
oscillations are similar to those for Alfvén waves (see,
e.g., [10]): the point of the Alfvén resonance, at which
large-scale waves are also converted into small-scale
waves, isasingular point for the latter equations.

3. PLASMA WITH A NONUNIFORM DENSITY
AND A UNIFORM TEMPERATURE

3.1. “ Sability” of the Larmor Resonance against
Certain Factors

Inthe simpler case of auniform temperature, we can
use relationship (2) to obtain n; in a fairly compact
form with allowance for the effects of all orders in kp;
and the first order in theratio p;/L, where L isthe scale
on which the plasma density varies. The effects of the
first order in this ratio should be taken into account,
because, inthelimit p; << 1, we must correctly pass over
to equation (1), which contains the term proportional to

1d¢,
DLd

can be written as

. The corresponding quasineutrality condition

0=n;-

= £ [okexp(ik0d:(k)
(18)
N
xB&(x)(Fi—lwlzGi(x)d—EE,

where G;(X) = ny(X) %l - 2 (X)%
To derive adifferential wave equation for ¢,(x), we
must replace k, in (18) by the operator id/dx and apply

this operator to ¢,(x) = [dk,d,(k,) e 1f we expand

the function F; from (18) in powers of k,p;, retaining
terms up to a certain finite order, then the order of the
desired differential equation will coincide with the
order of the expansion. Moreover, regardiess of
the order of the expansion, the coefficient in front of the
highest derivative in the wave egquation will vanish at
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the point of the Larmor resonance. Relationship (2)
implies that, at this point, the ions obey a Boltzmann
distribution, which is obviously unaffected by i—i colli-
sions. This assertion is supported by the analysis of the
preceding section. Hence, we can conclude that, in a
plasma with a uniform temperature, the wave equation
cannot be regularized by taking into account the effects
of thefiniteion Larmor radius and i—i collisions.

Above, we assumed that the plasma is quasineutral
and the plasmawaves are potential. If the wave electric
field contains a nonpotential component, E, = -V¢, +

%*)Al, then we can readily show that, at the point of
Larmor resonance, the perturbed ion distribution func-

tion hastheformf;, = %_ E,: fo, which isa generaliza-
tion of the distribution function in aBoltzmann equilib-
rium state. The terms proportional to the derivatives
d"¢,/dx" of the electric field vanish at the resonant
point, asis the case with the potential waves.

The effects of plasma nonquasineutrality can be

incorporated into (18) through the change G; —
2

0 w QU . . .
Nl +———0,in which case the terms containing

0 w,; ®O
the derivatives beyond the second order remain
unchanged. Consequently, alowing for the non-
guasineutrality and nonpotentiality effects also fails to
regularize the problem.

Since the spatial scale of perturbations becomes
shorter as the resonant point is approached, the wave
electric field grows. Consequently, we cannot exclude
that, in the vicinity of the resonant point, nonlinear
effects may be important. Let us derive a nonlinear
equation for the case of neutrd oscillationswithImw=0.
To dothis, it is convenient to pass over to aframe mov-
ing with thewave. In thisframe, an additional inductive

electric field do -_Yp appears and the plasma

dx k,C

moves as a steady stream. Moreover, at the point of
Larmor resonance, the unperturbed hydrodynamic
crfido, To 1 dnyy
BUdx en,dxU
ions obey aloca Boltzmann distribution.

In analyzing the electron motion, we can assume
that the electric field causes the electrons to drift with

the velocity V = % [BV®]. From the continuity equa-
B

velocity V,, = vanishes, so that the

tion, we find n(r) = n(¢(r)), where n(¢p) is an arbitrary
function.

For the desired nonlinear wave equation to be infor-
mative, we must retain the inertial force in the equation
of ion motion and supplement it with the force associ-
ated with collisionless viscosity. It is well known (see,
e.g., [6]) that the viscous force makes it possible to
incorporate the effects of the finiteion Larmor radiusto
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the lowest order in the small parameter p,d/dx. Omit-
ting the intermediate manipulations, we write out the
nonlinear wave equation, which follows from the
quasineutrality condition:

d d
e e

_cT (89T
where ® = oB In %‘Iexp O O

In a linear approximation such that the condition
[dg/dy| < |db/dx| holds, equation (19) coincides with
the equation derived by Rosenbluth and Simon [11] for
plasmas with arbitrary steady electric fields if we set
w=0init. On the other hand, a T = 0, equation (19)
passes over to the nonlinear equation presented in [12].

Recadll that, in the linear approximation, the station-
ary point in the comoving frame (aline on the xy plane)
corresponds to the point of Larmor resonance in the
laboratory frame. In the nonlinear approximation, this
line transforms into a “Boltzmann™ current line along

whichwe haven(d) = Cexp ¢D . Itiseasy to seethat

the coefficient in front of the hlghest derivative in (19)
vanishes on this line. Hence, along with the linear
equations we have analyzed above, the point of Larmor
resonance is also a singularity of the nonlinear equa-
tion (19).

3.2. Effect of lon—Electron Friction

Since the effects that appear, at first glance, to be
most important do not play a role at a Larmor reso-
nance, we must focus our attention on the effects that
are usually ignored. Let us provide insight into the
consequences of i—e friction. In the kinetic equation,
i—e collisions can be described by the BGK collision
term in a form that conserves the number of particles
and allows for the momentum exchange between elec-
trons and ions:

m; (VV 1e)|:|

BLI Jto, (20)

St(f) - |e|j1 T

=V +V;

where v, istherate with which theions are scattered by

_c Toy 07

the electrons and V, = EZ[B EV(]) —a]VnDl] is the
hydrodynamic electron velocity. In (20), the tempera-
ture remains unperturbed, because the perturbed elec-
tron temperature is proportiona to the small parameter
(kpo)? and, for VT =0, wehave T;; —= 0 as X — X
(see the discussion of the preceding section).
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As in the preceding section, the collisional correc-
tion to n,; can be obtained by the method of integration
along the trajectories:

iv.. e )
3y, = 57 [Akeexp(ikX) 0 (k) o

X (Gi(x)Fi(F;—1) = G«(x)bF}),

e(x)[l
L

In order for the analyss of the effects associated
with the i—e friction to be consistent, it is necessary to
incorporate the electron scattering by the ions into the
equation of electron motion. The collisional correction
to the perturbed electron density can be represented in
an integral form (as was done for on;;):

where G(X) = Ny(X) %L +

Be = [k, eXP(iK )01k )(GR) - G )b (22)

From (18), (21), and (22), we find the complete
guasineutrality condition alowing for the effects of
i—efriction:

. i . dF,

Jak ik 8:(k) T ((F - 1) + 5GI0
(23)

—SF, +—'e(G(x)F(F —1) - Gu(x)bi(F{ + 1) =0,

where S=P pi2 .
We redtrict ourselvesto considering the vicinity of the

Qi' X
(X%
and Q(X) = const. We apply the operation of trandation
X — X — X to (23) and switch to a new variable
X — id/0K,. Then, from the condition for the inte-

grand to vanish, we obtain the following equation for
¢1(kx):

Larmor resonance point. We set Gi(X) = —y(Xo)

JI-F S (/T-Fb)

(24)
+(—iSF;—ob,(F{ +1))¢, = 0,
Q+Q,
whereo = Vieldi T 2% )
QIX
The solution to (24) is
1
k) =
hik) = =
K, K, (25)
S(dk,—— dk, bi(1+F)D
X _
eXpr X1 F rofdo——¢ 5
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Im k

X

Re k,

Fig. 5. Integration contour in (5) that corresponds to one of
the solutionsto equation (23). The sectorsin which theinte-
grand increases without bound as |k, | — oo are hatched.

Im x

Re x

7

Fig. 6. Plane of the complex variable x for a long-wave-
length solution to equation (23) that grows asymptotically
without bound. The sector in which thisfunction transforms
into a short-wavelength function is hatched. The contour for
circumventing the Larmor resonance point according to the
Landau ruleis marked by an arrow.

We restrict ourselves to analyzing such solutions to
the wave eguation that pass over to the solutions to the
reduced equation (1) far away from the resonant point.
In the collisionless limit (o = 0), expression (24) coin-
cides with (6) at k, — 0. We take the integral over k,
in (5) using the same integration contours as in Sec-
tion 2.2. Effects that occur on short scales and come
into play in the vicinity of the resonant point have an
insignificant impact on the solution V, which is regular
at this point. We consider the function U, which has a
logarithmic singularity at the resonant point, over the
range of distances [x| > p;. Inthis case, the main contri-
bution to the integral in (5) comes from the k, region
where ¢,(k,) can be described by expression (6), in
which the first term in the exponential index is unim-
portant. In the region |K,| —= oo, the behavior of ¢,(k,)
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is determined by the second term in the exponential
functionin (25); it isthisterm that accountsfor i—efric-

tion: ¢,(ky) O exp %opf kfg The contribution of this
region to the integral in (5) isinsignificant if the inte-
gration contour on the plane of the complex variable k,
approaches infinity in the unhatched sectors in Fig. 5.
We emphasizethat, in Fig. 5, the forbidden sectors are
rotated through the angle —1y6 with respect to those in
Fig. 1. An analysis similar to that carried out in Sec-
tion 2.2 shows that, on the plane of the complex vari-
ablex, the sector in which the long-wavel ength solution
to the wave equation transforms into the short-wave-
length solution is rotated precisely through the same
angle. InFig. 6, this sector liesentirely within the upper
half-plane. Consequently, the Landau circumvention
rule is valid for the solutions to the reduced equation
(2); moreover, for rea values of the argument, the solu-
tion to the complete wave equation remains long-wave-
length.

Our analysis shows that, for VT = 0, the energy of
thelarge-scaleflute oscill ationsincreases near the point
of Larmor resonance until the effects of i—e friction
cause them to damp. The characteristic spatial scale on
which these effects come into play can be estimated by
comparing the terms in the exponential index in (25):

Rp. V3
< = DieRe
X| = |k o, kyD .

4. CONCLUSION

We have analyzed the physical processes that are
important near the point of Larmor resonance. We have
established rulesfor continuing solutionsthrough asin-
gular point corresponding to the resonant point in the
simplified wave equation. We have shown that the phe-
nomenon of Larmor resonance can be used to heat the
plasma.
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Abstract—A study is made of the effect of the initial magnetic field magnitude on the energy of deuteriumions
accelerated in the collision of two magnetosoni c shock waves propagating in a deuterium plasma quasi-perpen-
dicularly to the magnetic field. Experiments were carried out at a constant plasma density of =2.5 x 103 cm=.
Itisfound that, as the external magnetic field decreases from 1.4to0 0.7 T and, accordingly, the magnetic Mach
number increases from 1.02 to 2.3, the energy of accelerated ionsincreasesfrom 3.2to 7.5 MeV. The maximum

number of accelerated ions attains 10°—10° particles per shot. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Acceleration of charged particles by magnetosonic
shock waves (MSWs) has been widely studied experi-
mentally and theoretically, becauseit is one of themain
mechanismsfor the generation of high-energy particles
and plasma heating in both laboratory and space plas-
mas.

Theoretical studies [1-4] have shown that the elec-
tric field at the MSW front is sufficient to accelerate
ions to high energies at a high rate.

In laboratory experiments [5, 6], mechanisms were
revealed and investigated for accelerating ions by
MSWs both perpendicularly to the front (the reflection
of ionsfrom a potential jump) and along the front (res-
onant acceleration). In both cases, the accelerated par-
ticles move across the magnetic field, which is one of
the factors limiting the energy of accelerated particles
in laboratory facilities, because, e.g., even for a deu-
teron energy of 1 MeV, the Larmor radiusislarger than
the cross size of typical plasmadevices.

In experiments [7—9], the possibility of accelerating
plasmaions along an external magnetic field during the
interaction of two M SW's propagating quasi-perpendic-
ularly to the magnetic field toward each other was dem-
onstrated for the first time. In those experiments, the
maximum energy of accelerated deuterons was €., =
10 MeV and the maximum number of accelerated par-
ticles per shot was 10°-10°. A quantitative explanation
of this result encounters serious difficulties. Qualita-
tively, this result was explained based on the numerical
calculations of the collision of two MSWsin a plasma
whose density varied along the magnetic field [10]. It
was assumed that the accelerating electric field E,,
directed along the magnetic field, was a superposition
of the electric fields existing at the MSW fronts. The
energy of accelerated deuterons in this model was esti-
mated as € ~ E,. For a soliton MSW model [1], the

accelerating electric field isE, ~ Bg (M, — 1)32 (where
B, is the initial magnetic field and M, is the magnetic
Mach number). Here, we experimentally study the
influence of the magnitude of the initial magnetic field
on the maximum energy of accelerated deuterons.

In order to formulate the problem, we will clarify
some points. In [11], it was shown that, when the
plasma flow is decelerated by the magnetic barrier, the
liberated energy efficiently converts into magnetic
energy. When the plasma produced in the discharge
drifts at a velocity V, = cE/B, (where c is the speed of
light and E is the electric field in the discharge) into a
region with a lower electric field, the plasma flow is
slowed down and the liberated energy partially converts
into magnetic energy. The magnitude of the induced
magnetic field is determined by the density j = Nef3V,
of the polarization current flowing while adrift channel
is being formed (see [12] for details). Here, B = w4
determinesthe extent to which the el ectrons are magne-
tized, w, is the eectron cyclotron frequency, Ty is
the electron—ion collision time, and N is the plasma
density.

The induced magnetic field penetrates into the
plasmato the depth L, determined by the duration of the
polarization current T = 1/Bwy < L/V,, where wy isthe
ion cyclotron frequency and V, is the Alfvén velocity.
As the magnetic perturbation propagates, it converts to
an MSW with the Mach number

M, < 0.5(BLwy/V, + 1).

For L = R (where R is the ion Larmor radius over
which the plasma parameters reman amost
unchanged), the condition for the excitation of an
MSW (Mp > 1) isBVy/Va> 1.

1063-780X/00/2602-0129$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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Fig. 1. (a) Experimental device and (a, b) arrangement of diagnostics in the working chamber: (1) electrodes, (2) wave front,
(3) fibers, (4) collimators, (5) ceramic chamber, (6) ion-transport line, (7) Nal spectrometer detectors, (8) scintillator, and (9) pho-

tomultiplier with afiber; P is the plasma flow.

We express the Mach number through parameters
that can be controlled in the experiment:

22
:nNmicEB+

M
A Bg

1,

where m isthe ion mass.

It can be shown that B ~ WT4 ~ Bovj ~ E3/B§ and,

consequently, My — 1 ~ B/ Bg . From the dependence
obtained and the above expression for E, it follows
that, by varying the magnetic or electric field within rel-
atively small intervals, it is possible to experimentally
obtain the dependence of the energy of accelerated ions
on the above controlled parameters, providing that the
other parameters vary dightly.

Investigations showed that, when the magnetic field
was varied, the energy density and plasma density dis-
tributions along the magnetic field in the plasma flow-
ing out of the discharge remained almost unchanged. In
contrast, when the discharge electric field was varied,
these distributions changed significantly. For this rea-
son, the studies were carried out at a constant value
of E.

2. EXPERIMENT

Experiments were carried out in a TEMP plasma
device, described in [7, 9]. In a ceramic chamber with
an inner diameter of 18 cm and length | = 150 cm, two
pairs of electrodeswereinstalled (with alength of 30 cm,
width of 4 cm, and an interelectrode gap of about 2 cm)
at an angle of 6° to the symmetry axis of a magnetic
mirror system, the mirror ratio being ~1.4 (Fig. 1). The
PLASMA PHYSICS REPORTS  Vol. 26
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process of the formation of two counterpropagating
MSWs can be divided into two steps.

2.1. Background Plasma Production

On filling the pre-evacuated chamber with agas and
applying the magnetic field, a discharge with 1, =
5 kA and aduration of =3 mswasinitiated between two
electrodes.

The working volume was filled with two plasma
flows drifting toward each other from two discharge
gaps. The plasmain the discharge gapswas produced in
“dow” discharges in crossed E and B fields. In our
case, the time needed to fill the working volume with a
plasmawas <50 us. The recorded plasma-density pro-
file dong the magnetic field can be approximated by
the expression N(2) = Ny(0.74 + 0.26cos(012)), where

a = 0.255 cm™ and N, is the plasma density at z= 0
[12].

2.2. Generation of Counter propagating MSWs

At acertain instant, a high-power current pulse with
| > 10 kA and aduration of 1.5 pswas generated in the
discharge gaps.

Two plasma flows that were formed in the course of
“fast” (when both the electric field E and the power
deposition increased rapidly) discharges in crossed E
and B fields propagated toward each other across the
magnetic field with a drift velocity V,. Slowing-down
of these plasma flows by the background plasmaled to
the generation of MSWs. When investigating the mech-
anism for MSW generation, we measured the propaga-
tion velocity of one MSW with the help of probes and
loops and obtained a qualitative agreement with depen-
dence (1) [7]. In the case of two interacting MSWs, the
probe measurements were not carried out, because, in
this case, the gauges prevented ion accel eration.

A beam of accelerated ions was formed in an ion-
transport line (32 mm in diameter and 100 cm in
length), which was connected coaxially to the dis-
charge chamber. The guiding magnetic field in the line
was 0.3 T. At theend of theion-transport line, adetector
based on a standard polystyrene scintillator with a
15-mm diameter and 1.5-mm thickness was positioned.
Thelight from the scintillator wasfed to an FEU-115M
photomultiplier through afiber. To protect the scintilla
tor from external light and from slow ions, it was cov-
ered with an auminum foil with a thickness of 7 pm
(whichisequal to the mean free path of deuteronswith
an energy of ~0.7 MeV). The energy of accelerated ions
was measured by the time-of-flight technique. The stop
signal for the time-of-flight system was generated by
the scintillator detector positioned at the end of theion-
trangport line. The start signal was generated by one of
two optical detectors viewing the region where two
MSWs collide, the spatial resolution being 0.8 mm.
Each optical detector consisted of a fiber (0.5 mm in
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Fig. 2. Maximum energy of accelerated deuteronsasafunc-
tion of the initial magnitude of the magnetic field. The
numerals near the points show the values of the MSW Mach
number.

diameter and 6 min length), an optical collimator at the
fiber entry, and an FEU-85 photomultiplier at the fiber
output. Signals from photomultipliers were fed to an
S8-14 high-speed storage oscillograph. Since the base
distance between the light and scintillator detectorswas
known (175 cm), we could reconstruct the maximum
energy of the bunch of accelerated ions by processing
the oscillograms. The number of accelerated ions was
determined from the area under the signal trace as fol-
lows. With a radioactive 2**Pu source, we determined
the proportionality coefficient between the energy lost
by one a-particlein the scintillator and the amplitude of
the multiplier signal (the coefficient was expressed in
units of photoelectron/MeV). Then, a correction was
made for the different light outputs of the scintillator
for a-particles and deuterons and also for the light
attenuation in the fibers. Finally, with the use of alight
diode, pulse generator, and pulse analyzer, the oscillo-
graph scale was calibrated in photoelectrons. In the
experiment, the maximum number of ions per pulse
varied from 103 to 106.

Since the time-of -flight system does not identify the
species of accelerated ions, it was supplemented with a
system of radioactivation analysis. For both systems to
operate simultaneously, we employed the '2C(d, n)"’N
(BN — B*, T,, = 9.9 min) nuclear reaction, using 1>C
nuclei that were contained in the material of the poly-
styrene scintillator. A y-y-coincidence spectrometer
(based on two Nal (T1) scintillator crystals) recorded the
events corresponding to the annihilation of the
positrons arising from the decay of '>N. The reaction
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was identified by anayzing the behavior of the mea-
sured decay curve.

The experiments were carried out at a constant elec-
tric field (E = 9 kV/cm), N, = 2.5 x 10" cmr3, and at
different magnitudes of the magnetic field, which pro-
vided different MSW Mach numbers. The measure-
ment procedure was as follows. A series of shots was
produced at the same initial parameters of the device.
By analyzing the delay time for the detector signalsin
this series, we selected the event corresponding to the
maximum energy and intensity of the flux of acceler-
ated ions. Simultaneoudly, the system of radioactiva-
tion analysis recorded the events corresponding to the
annihilation of the positrons arising from the >N decay.
This procedure was repeated for each new value of the
magnetic field.

It should be noted that, for the magnetic field B, <
0.7 T, the accel eration process is unstable.

The experimental results are shown in Fig. 2. The
error bars reflect only the error of determining the ion
energy by the delay of the storage-oscillograph signal.
The estimated value of the Mach number M, = 1.02 is
presented only to demonstrate that M, = 1 for the given
E and B, values.

3. CONCLUSION

A comparison of the experimentally obtained
dependence of the energy of accelerated ions on the
magnitude of the magnetic field with the dependence

prescribed by the magnetic-soliton model (¢ ~ 1/ Bg)
shows that it is necessary to consider an aternative
model of the formation of an accelerating structure and
the associated accelerating field. For example, if we
assume the ion-acoustic wave to be an accelerating
structure that is formed in the region where two MSWs
collide, then we obtain the estimate € ~ 1/B;. In the
future, we plan to perform numerical calculations using

DUDKIN et al.

a model alowing for the generation of ion-acoustic
waves in the region where two MSWs collide.
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Abstract—The problem of self-consistent motion of charged particles in a high-current plasma channel is
solved using the kinetic model of aplasmawith electron and ion beamswhose motion is governed by the result-
ing electromagnetic field. It is shown that, in a high-density plasma, the ion motion makes the contribution of
electrons to the current in the channel negative, in which case the ion current is higher than the net current and
the plasma moves at a high speed as an electrically neutral axial stream whose direction coincides with the
direction of the current in the channel. © 2000 MAIK “ Nauka/l nterperiodica” .

1. INTRODUCTION

In high-temperature pinchlike plasma formations
[1], which have the form of plasmachannelsin electric
dischargeswith acurrent from 10° to 10° A, the electron
energy is high enough for the plasmato be magnetized.
For a characteristic electron temperature of 10 keV and
an electron density of 10" cm3, the electron mean free
pathinafully ionized hydrogen plasmais40 cm, which
exceeds the channel diameter by more than two orders
of magnitude. In a collisionless current-carrying
plasma, the electrons and ions can be regarded as
charged-particle beams, which were investigated in
detail by, e.g., Benford and Book [2]. From the stand-
point of the physics of electron beams, the essential fea-
ture of electrons in a high-current plasma channel is
that the current carried by them is much higher than the
Alfvén current. Benford and Book [2] noted that, in
such beams, the electrons move predominantly in the
transverse direction (the mean axial velocity of the
electrons is low in comparison with their radial veloc-
ity). Qualitatively, the electron current can be described
using the model of an electron beam [3, 4], inwhich the
electron distribution function is represented as a super-
position of two d-functions; i.e., al of the electrons are
assumed to have the same energy and the same axia
canonical momentum. The calculations based on this
model [4] show that, for high electron densities, the
radial profile of the current over the entire beam cross
section is extremely nonuniform: the current flows pre-
dominantly in athin surface layer of thickness A, which
is equal to the collisionless skin depth and exceeds the
Alfvén current by afactor of R/2A, where Risthe beam
radius. The electrons move predominantly in the trans-
verse direction with respect to the beam axis, and they
are displaced in the axia direction under the action of
the magnetic field only over short time intervals during
which they occur in the surface current layer. The mean

axia velocity V, = 2AR'V, of the electrons is low in
comparison with their total velocity V.. Consequently,
in high-current channels filled with a high-density
plasma, the ion current may be important, because the
axial velacity of the ions can become comparable with
V, even when the ion energy islow. Our objective here
isto analyze self-consistent motion of both the electron
and ion plasma components in a high-current plasma
channel.

2. SOLUTION OF THE PROBLEM OF ELECTRON
AND ION MOTION

In the absence of binary collisions, the self-consis-
tent motion of charged particles in a current-carrying
two-species plasma is described in terms of the distri-
bution functions f, and f; satisfying the kinetic equa-
tions

af, . af, 1, 00fe _
TaTJ’Vea_x_e%Jrc[VeH]Dape =0, (1)
af,  of, 1 mofi _
Vg taE VR =0 @

We restrict ourselvesto considering asteady cylindrical
channel in which the current and field distributions
depend only on theradial coordinate, in which case the
Maxwell eguations for the self-consistent fields E and
H can be written as

OLE = -0°® = 4m(—en, +qny), 3)

[0 xH]

Oxp <Al = Py, @
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where the particle and current densities have the form

ne = Ife(rv Pe)dpe, N = Ifi(r1 pi)dp;, (5)

e = _eJ.Vefe(r- P)dPe, i = quVifi(rv pi)dp;. (6)
The integrals of motion are the net energies,
He = c./pe +mec’ —ed,
H, = cm+qi¢,

and the axial components of the canonical particle
momenta,

(7

IDez = Pez— EAZl = Pi; += 4 A (8)

The distribution functions, which depend explicitly
only on the constants of motion, automatically satisfy
equations (1) and (2), which significantly simplifiesthe
problem of constructing self-consistent kinetic models.
We use a plasma model in which al of the particles
with the same charge have the same energy and the
same axial canonical momentum, so that both the el ec-
tron and ion distribution functions are a superposition
of two &-functions,

2
NeoC
fe(rvpe) = 'Z—T%N—é(He_We)é(Pez_PeO)v (9)

2

N;o,C

fi(r,p) = 2|Tc;vv, iz— Pio)- (10)

Hammer and Rostoker [4] analyzed the steady state of

a high-current electron beam using a similar approach

to solving the Vlasov equation, but they assumed that

the ions were immobile. Substituting the distribution

functions (9) and (10) into (5) and (6), we can readily

find the particle densities in terms of the scalar poten-
tial,

ed q®
ne = Mo+ TF M= mod- e (D)
and the current densities in terms of the vector poten-
tial,
eny,C’ 0
- e0
Je = — W, ED AD

(12)

2
. _ ginieC 9,0
Ji = —Wi Baio AZD
Choosing ®(0) = A,0) = 0, we can see that the coeffi-
cients ny, and n,, and the constants P, and P,, are,
respectively, equal to the particle densities and the axial
components of the particle momenta at the center of the
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channel. The solutions to equations (3) and (4) whose
right-hand sides are written in terms of @ and A, can be
expressed through a zero-order modified Bessel func-
tion:

(1) = 4mA*(ano—ene) 1-lofzH . (13)

Pio engP
A(r) = 4TrcA2m' 0710 _ HMeo eoal 1oL ](14)

The scale on which the potentials vary in the radia
direction is equal to the collisionless skin depth,

2 2 -1/2
A= ATE Ny N 411, Nig[

-l g™
O w, w, U

DAz 2D

Knowing @(r) and A(r), we can readily find radial pro-
files of the densities, fields, and currents. However, the
results obtained are difficult to interpret unambigu-
ously, because there are a large number of unknown
guantities. The main task hereisto minimizethisambi-
guity using such illustrative parameters as the channel
radius, electric current, and mean particle density. For
this purpose, we consider acylindrical region of radius
Rinside the channel. Let us denote the current flowing
inthisregion by | and the magnetic field at its boundary
by H, (H,=2I(Rc)™"). We a so introduce the dimension-
less parameter

F = A ﬂ)ez pIZCD
AeAiDEHO quO

With this notation, the radial profile of the magnetic
field can be described in terms of the first-order modi-
fied Bessel function,

. (15)

(16)

1,0

1m|]

H(r) = Hg )

AN

1m|]

and the electron and ion components of the resulting
current | =1+ |; can be written as

(17)

R

_ _ AZ R AeD
_J'JEZT[rdI’ = IAZ _ZAFAD
e
(18)
_ R-AQ
IjZT[rdr I_%HZAAD

Interestingly, at high particle densities such that
R(2A)™! > 1, the current components depend strongly
on the parameter F; moreover, one of the current com-
ponents and the resulting current may have opposite
signs. Let us estimate the range of possible F values
based on the fact that, in the region close to the channel
boundary, the radial component of the magnetic
PLASMA PHYSICS REPORTS  Vol. 26
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Lorentz force is directed toward the axis. However,
before proceeding further, note that the potentia pro-
files (13) and (14) are valid only in the region occupied
by the electrons and ions that pass through the channel
axis, rather than over the entire cross section of the
channel. The radius R of this region can be generally
smaller than the channdl radius, R < R,,, because the
amplitude of electron oscillationsin the radial direction
can differ from the amplitude of ion oscillations. In a
ring layer of thicknesse = R, — R, the potential profiles
differ from (13) and (14); moreover, the ring layer can
be occupied by either particles with the same charge or
both electrons and ions. In the latter case, the particles
of one species do not leave the ring layer, asisthe case
with the drift in crossed fields or with the gradient drift
in anonuniform magnetic field. If the surfacering layer
is occupied by particles with the same charge, then the
layer thickness € can be estimated from the condition
that the electric field is continuous. When A is small in
comparison with R and the particle motion in a high-
density plasmais nonrelativistic, we find

€ __ed(r) :e¢(r)<1

2 2 2
A A’me’n, mec

(19)

In this case, we can assume that the radial components
of the electron and ion momenta become zero at the
same distance from the axis. To obtain the boundary
values of the axial momentum components

o LH
_eHA| °LAD =4

Pe; = - N
C | EBI:I Ai
1|1|:|
(20)
loRF
piZ = qi|_clo — F% ’
RO Se
1m|j

which follow from (8) and (14), we can set r = R for
both electrons and ions. In the absence of a surface
layer with an unneutralized charge (€ = 0), the magnetic
components of the Lorentz force, F, and F;, at the chan-
nel boundary are equal in magnitude (but opposite in
direction) to theinertial forces of the electronsandions,
respectively. Since the inertial forces are positive at the
boundary, we have F,< 0 and F; < 0. In the presence of
a surface ring layer (¢ # 0), the sign of the magnetic
components of the Lorentz force remains the same. At
the outer boundary of thering layer, theinertial force of
one plasma species is equal in magnitude to the mag-
netic force, whereas, at the inner boundary, apositively
directed electric force is added to the inertial force
associated with another plasma species. If a plasma
species is trapped only by a transverse electric field,
then the magnetic component of the Lorentz force act-
ing upon this species vanishes. As aresult, we arrive at
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the conclusion that, in any case, F, and F; cannot be
positive; in other words, at r = R, each of the expres-
sions in square brackets in (20) is larger than or equal
to zero, which allows us to determine the range of pos-
sible F values. Setting r = Rand taking into account the
fact that at large arguments the ratio of the modified
Bessel functionsin (20) is close to unity, we obtain

AN TSF<AAT 1)

Assuming that eny, = g;n,, and introducing the notation

w, = mc? and w; = mc?, we can represent the bound-
) 2

aries of the interval in (21) as —gmﬂu < F<
em U

rem; 2

|]:1imeD

equality A = A, enable us to rewrite (16) as F = (r;. —

rec)Ai_l, where r;. and r are gyroradii of the particles
at the channel boundary. In the nonrelativistic case
(when the particle densities near the channel boundary
differ from those on the axis only dlightly), expressions
(20) make it possible to express the kinetic energy den-
sity of each particle species and the net kinetic energy
density of the particles at the channel boundary through

the magnetic energy density Hé /8TC

. Expressions (20) and the approximate

2

pe — HOA A EF
Teom, ~ Bmp? SiFRD
., 22)
P _ Hoa %L éDZ
2 2
Pe p| _ Ho 2
pree + Mgy = g1+ ). (23)

For F lying within the interval in (21), the electron
energy density decreases monotonically from its maxi-

mum (which isslightly above H{ /8m) at the left bound-

ary to zero at the right boundary. On the other hand, the
ion energy density increases monotonically from zero
at the left boundary to a very high value (much higher
than the magnetic energy density) because, at the right
boundary, we have F2? > 1.

3. DISCUSSION OF THE RESULTS

A characteristic feature of a two-species current
flow is that it implies the existence of such current
regimes in which the electron and ion current compo-
nents, I, and |;, have opposite signs but each of them
can be much higher than the resulting current in achan-
nel. The current components depend on the parameter
F; the range of its possible values can be estimated
using asteady plasmamode. IntherangeF <0, theion
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contribution to the net current may be large and nega-
tive; however, the conditions under which such regimes
can occur require that the plasma density be extremely
high, R2A)" > mm;". Possible regimes with a large
negative contribution of the electron species are more
realistic: they can occur in the range F > 0 at moder-
ately high plasma densities. The effect of a negative
contribution of one plasma species to the net current is
not associated with the radial electric field in acurrent-
carrying plasma but stems from the fact that the influ-
ence of the magnetic field on the electrons differs from
that on the ions when the electron and ion gyroradii are
different. The formation of athin current skin layerina
plasma channel makes this effect more pronounced.

For F =0, theion current component is independent

of RA™! and is as low as m,m; *. The net current in the
channel is governed by the electron species. according

3
bution 1 1, R Ve
to (20), the electron contribution | = 1,= A 6 © y=
%IA substantially exceeds the Alfvén current 1, if

2A < R. At the channel boundary, the electron and ion
gyroradii are equal to the collisionless skin depth,
pc(eHy)™ = pic(gH,y) ™" = A. In the nonrelativistic case,
the magnetic energy density at the channel boundary is
equal to the net density of the particle kinetic energies,
which is governed mainly by the electron energy. In a
channel with athin skin layer, the electrons move pre-
dominantly across the channel axisand are dlightly dis-
placedintheaxial direction every timethey occur inthe
layer. The mean axial electron velocity V,, which gov-
erns the electron current (I, = —en,IR?V,), is low in
comparison with the instantaneous velocity V., V, =
2AR 'V, < V,. We illustrate these results quantitatively
using as an exampleachanne filled with afully ionized
hydrogen (e = g;) plasma with the current | = 10° A =
3 x 10" esuls, radius R = 0.1 cm, and density n, =
10" cm3. In such a channel, we have H, = 2 x 10° Oe
and R(2A)™! = 300. The energy of the electronsis 1.6 x
10® erg = 10 keV and their instantaneous velocity is
V.= 6 x 10° cm/s. The Alfvén current is I, = 3.4 x
10°® A = 10" esu/s and the mean axial electron velocity
isV,=2x 10" cm/s.

For F =0, the picture of currentsis completely con-
sistent with the results obtained by Hammer and Ros-
toker [4] and provides an understanding of how elec-
trons with comparatively low energies can carry essen-
tially unlimited currents in a plasma with no binary
collisions. A similar picture can be observed, e.g., when
the current risesrapidly in anarrow gas channel in vac-
uum?. In plasma channels with sufficiently small diam-

1 The method for creati ng dense gas channels several mmin diame-
ter and plasma experiments with them will be described in a sepa-
rate paper.
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eters, theforce balance may be achieved almost without
ions, because the electrons are rapidly heated over the
entire cross section of the channel via high electron
heat conduction, in which case the magnetic pressure of
the current flowing in the channel is neutralized by the
gas-kinetic electron pressure. If the plasma particles do
not movein theradial direction, the ions remain immo-
bile and cold until they are heated by ion—electron
binary collisions or are involved in the current flows
under the action of thefields. Let us consider asituation
in which binary collisions are unimportant and the
accelerating electric field in a plasma is driven by the
current growing in the channel. The way in which the
overall picture of currents changes depends on the rates
at which the electric field accelerates electrons and
ions. When the electrons are accelerated at a suffi-
ciently high rate, the picture of currents remains essen-
tially unchanged if the electron energy density
increases synchronously with the magnetic energy den-
sity and the ion energy changes insignificantly, in
which case, according to (22), the parameter F should
be close to zero. In the opposite case, when the rate at
which the electron energy density risesislow in com-

parison with 9/0t( Hf) /811), the ion energy content inev-
itably increases, because the current in the channel can
grow only at the expense of theions. The rate at which
the electrons are accelerated can be estimated from the
one-dimensional energy balance equation, which
implies that

2

P ¢ aEHZD
e 0
s2TtR4 EH, 2”RAatE8 o

2 0
TR Nest . (24)

wherethe electric field isgoverned by the changein the
. . : AOH,
magnetic flux in acurrent-carrying layer, E = Tt In
this case, the accelerating field typical of high-temper-
ature pinchlike plasmaformations [1], which isusualy
generated in plasma constrictions and amounts to

approximately RH,/c, is absent, because the channel
boundary in theinitial stateisimmobile. Equation (24)
can now be recast into the form

9 Pe 2810 Hop

ot2m,” R n.0tL8mY

(25)

which implies that, for 2A < R, the electron energy in
a channel with a growing current increases only very
dlightly. This is valid for a weak polarization charge
separation such that the kinetic energy density of the
electrons can be assumed to be uniform over the entire
cross section of the channel. In the opposite case, when
the polarization charge separation is strong, the kinetic
energy density of the electrons is extremely nonuni-
form over the cross section of the channel, reaching a
maximum at its boundary. Such a nonuniform energy
distribution is attributed to ajump in the potential in the
PLASMA PHYSICS REPORTS  Vol. 26
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polarization layer: the electronsthat crossthislayer and
move toward the channel boundary acquire additional
energy. The potentia of the polarization layer depends

on Hg /81, thereby ensuring that the kinetic energy
density of the electrons increases synchronoudly with

H (2) /8Tt asthey approach the channel boundary. Thissit-

uation is typical of plasma channels in which the ion
pressure counterbalances a significant fraction of the
magnetic pressure. Such a balance is possible either
when theion energy density is sufficiently high or when
the ions are so massive that their inertia becomes
important. In the cited experiments with narrow gas
channels, the self-compression of a current-carrying
plasma was achieved without the stage of plasma
expansion in the radial direction, during which theions
might acquire significant energy. That is why, in those
experiments, the ion energy in a self-compressed cur-
rent-carrying plasmaremained low in comparison with
the electron energy over a certain time interval. More-
over, theion energy content may, in principle, be made
aslow as possible by setting the diameter of the initial
plasma channel almost to zero. These considerations
are amed at justifying the use of a zero ion energy
approximation, under which formulas (24) and (25)
were derived. Equation (25) implies that, for 2A < R,
the kinetic energy density of the electrons cannot

increase synchronously with H 3 /8Tt Consequently, the

electron species alone clearly cannot ensure the rate at
which the current should grow. This indicates that the
ion contribution to the resulting current should also be
taken into account; moreover, if the energy content in a
circuit with a plasma channel is sufficiently high, the
transition to anew current regime will have an insignif-
icant impact on therate at which the current grows. The
ions can be accelerated near the anode by the electric
field of the space charge in the form of athin layer in
which the electron density is reduced and which arises
from insufficient electron mobility. Since the electrons
move predominantly in the radial direction, the radial
profile of the space charge across the layer is compara-
tively uniform: the radia scale characteristic of the
space charge profile coincides with that of the radial
current profile. The latter scale, in turn, can be on the
order of the channel radius if the electron density n,
near the anode is sufficiently low. In order for the net
current to be carried by the ions, the energy they
acquire can be very low. Under the assumption that,

e.g., the magnetic pressure H§/8Tr in a channel filled

with a hydrogen plasma becomes higher than the
kinetic energy density of the electrons by 1%, relation-
ships (22) yield F = 0.2, in which case theion energy is
lower than the el ectron energy by afactor of 20. For the
above parameters of the channel, for which we have
R(2A)!' = 300, theion current component, according to
(18), exceeds the resulting current by a factor of 1.4
(I; = 1.41), and the electron contribution to the current is
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Electron and ion trgjectories corresponding to a negative
contribution of the electrons to the resulting current in the
channel.

negative (I,=-0.4l). Notethat thisisvalid for ion ener-
gies as low as 500 eV. The figure shows electron and
ion trajectories corresponding to a negative electron
contribution to the resulting current in the channel. For
small F, the change in the electron current component
is attributed primarily to an increase in the angle a at
which the electron trajectories cross the channel axis. If
a=12aF=0,then, aF>0 wehavea > 12.Ina
channel filled with a high-density plasma, even adight
increasein a from 1y2 to a, > (12 + 2A/R) is sufficient
to cause the mean axial electron velocity to fall below
zero and change sign. A negative contribution to the
current comes from the electrons that are, on average,
displaced along the channel in the direction opposite to
that in the case F = O (see figure). In the intermediate
case of closed electron trgjectories, we have I, = 0,

which is achieved at F = 2AR(m m;l )2, The larger
the difference between the magnetic energy density and
the electron kinetic energy density, the more significant
the increase in the absolute values of the electron and

ion contributions |, and I;. For example, if Hé /8T1

becomes higher than the electron energy density by
5%, weobtain F = 1, which correspondsto | .= -6l and
I, = 7I. In this case, the ion kinetic energy density is
approximately equal to the magnetic energy density.

Hence, taking into account the self-consistent
motion of charged particles, the existence of collision-
less plasma channels with overcritical currents can be
attributed to the formation of thin current skin layers at
their surfaces. In such channels, the electron species
can easily change the direction of the mean axial veloc-
ity, making a negative contribution to the resulting cur-
rent. This is clearly illustrated with the example of a
growing current in a channel created without radia
plasmaimplosion. The ion species ensures that the cur-
rent grows, thereby neutralizing the negative contribu-
tion of the electrons. The resulting current flows in a
thin surface layer; in the central region with zero cur-
rent, the electrons and ions have the same axial vel ocity
and form an electrically neutral axial stream whose
direction coincides with the direction of the current in



138

the channel. This picture agrees with the known exper-
imental data. The first experiments with a cylindrical
Z-pinch [5] have already demonstrated the effect of the
generation of accelerated deuterons, which was
inferred from the anisotropy of neutron emission. In
cylindrically asymmetric Z-pinches [1], a similar fea-
ture of high-current channels manifests itself in the
axial motion of aplasmaneutron source from the anode
at aspeed of 10® cm/s. The only disagreement between
the results of magnetohydrodynamic calculations [6]
and the experimental datais associated with this effect.
It is natural to suppose that the current processes will
possess the property under discussion regardless of the
way in which the channels are created; however, under
conditions typical of an imploding plasma, the dynam-
icsof atransition to the regime in which the net current
beginsto be carried by the ions can have distinguishing
features. Since the mechanism for the excitation of an
axial plasmastream iskinetic in nature, the energy den-
sity of the directed plasma motion can be much higher
than the magnetic field energy density in ahigh-current
channel. A high-speed plasma stream can be generated
without forming a structure typical of a plasma con-
striction.

4. CONCLUSION

We have studied self-consistent electron and ion
motions in a high-current plasma channel using a
steady-state kinetic plasma model in which the elec-
trons and ions are regarded as particle beams moving in
crossed fields, specifically, in an azimuthal magnetic
field of the resulting current and aradial charge-separa-
tion electric field. We have shown that, in a channel
filled with a high-density plasma, the electron and ion
current components may have opposite signs and each
of them may substantially exceed the resulting current.

KARPOV

Theion species neutralizes the negative el ectron contri-
bution to the current and, thus, carriesthe net currentin
the channel. The resulting current flows predominantly
in a thin surface layer. In the central region, the elec-
trons and ions move with the same axia velocities,
forming an electrically neutral intense axial plasma
stream, whose direction coincides with the direction of
the resulting current in the channel. This pictureis con-
sistent with the high-speed axia plasma motion, which
is observed in experiments with high-current plasmas
and cannot be explained in the context of magnetohy-
drodynamics.
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Abstract—A study is made of the decay instability of alower hybrid wave with afinite wave vector (k, # 0)
and a large amplitude such that the oscillatory velocity of the electrons with respect to the ions cannot be
neglected. It is shown that, depending on the angle between the propagation direction of the lower hybrid wave
and the external magnetic field and the angle through which the wave is scattered, the decay instability is pri-
marily governed either by the oscillatory el ectron motion with respect to the ions or by the nonlinear response
of the plasmato the lower hybrid wave propagating in it. The role of the nonlinear frequency shift in the satu-
ration of the lower hybrid decay instability is clarified. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Parametric instabilities of plasmain the presence of
lower hybrid waves have been studied for many years
both experimentally and theoretically (see, e.g., [1-6]).
Such processes as anomalous absorption of a lower
hybrid pump wave in a plasma and anomal ous plasma
heating are attributed to the onset of parametric insta-
bilities [7-9].

Lower hybrid parametric instabilities are studied
theoretically by the following two approaches. The
first approach (see, e.g., [10]), in which the nonlinear
interaction of wavesis assumed to be weak, appliesto
pump fields weak enough so that the velocity of the
relative oscillations of the plasma componentsis neg-
ligible in comparison with their thermal velocities. In
this case, the nonlinear response of the plasmato the
lower hybrid wave propagating in it serves as a mech-
anism for the excitation of parametric instabilities.
This approach was used to investigate the decay of a
lower hybrid wave into two lower hybrid waves
[11, 12], a lower hybrid wave and a quasi-mode
[13, 14], etc.

In strong pump fields, there is an additional source
of parametric instabilities—the relative oscillatory
motion of the plasma components. In the case of weak
pump fields, this source is neglected. Parametric insta-
bilities that occur as a result of the relative oscillatory
motion of the plasmacomponentsin strong pump fields
are usually studied in the uniform pump field approxi-
mation (k, = 0, wherek, isthe wave vector of the pump
wave). This approximation applies to kinetic paramet-
ricinstabilities[15], decay instabilitiesinvolving quasi-
modes [14], and the decay of along-wavelength pump
wave into two short-wavelength waves (k; + k, =
k, = 0) [16]. However, this approach cannot be used to

study the decay of pump waves such that [k; |~ [k, | ~ [K|-
The finite wavelength of a pump wave should be taken
into account in investigating the decay processes that
involve waves bel onging to the same oscillation branch
(e.g., the decay of alower hybrid wave into two lower
hybrid waves, the decay of an ion-ion hybrid waveinto
two ion—ion hybrid waves, etc.), because, in this case,
the decay rate is proportiona to k, and equals zero at

k, = 0.

Here, the approach developed in our previous
papers [17, 18], which generalizes the uniform pump
wave approximation to the case of weakly nonuniform
strong pump fields of finite wavelength (k, # 0, but
k. < 1, where € is the displacement of particlesin the
pump field), is used to investigate the decay of alower
hybrid wave into two lower hybrid waves. Section 2 is
devoted to a comparative analysis of the following two
mechanisms for the onset of instability: the oscillatory
electron motion against the ion background and the
nonlinear plasma response to the lower hybrid pump
wave. In Section 3, the nonlinear frequency shift is
investigated as a possible mechanism for the saturation
of this decay instability.

2. BASIC EQUATIONS

Previously, we have shown [17] that, in the limit
kR, < 1 of small displacementsR,, of particles of spe-
ciesa inapump field E(r, t) = Egsin(wyt — kyr) and a
constant magnetic field B,,, the amplitudes ¢, (k, t) and
¢,(k ) of the potential of the waves with frequencies

w, (k) and wy(k; ) (k; =k F k) into which the pump

1063-780X/00/2602-0139$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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wave decays satisfy the set of equations

90k O [@E(k wl(k))m
= (V1+Vz)¢ (k, 1), n
00a(k 1) @S(k_, w,(K_ ))D

= (Vg + V4)¢2(k_, t).

The frequencies w, (k) and w,(k_) of the waves into
which the pump wave with w,(k,) decays obey the
equation e(k, w) = 1 + dg(k, w) + dek, w) =0, where
o¢; and o€, are theion and €lectron contributions to the
plasma permittivity €k, w). For long-wavelength
(Kope ~ Koope <€ 1, where p, is the electron Larmor
radius) oscillations with a phase velocity above the
electron and ion thermal speeds, d¢ and d¢, have the
form

kD ﬁw

2 2
K™ 0ge

O0ge(k, w) = 2 wpe,
@)

2

3¢, (K, ) = —2
W

where Wy, isthe ion (electron) plasma frequency, G
isthe electron cyclotron frequency, and k and k; arethe
components of the wave vector k along and across the

magnetic field B,. For kﬁ < k%, the equation g(k, w) = 0
yields

() = o1+ D) ®
where cofh = w,z)i /(1 + wf)e/wce).

In order for thelower hybrid pump wave with wy(k)
to decay into two lower hybrid waves, it is necessary
that the condition w, (k) = wy(k,) + w,(k_) be satisfied.
With allowance for (3), this condition becomes

[“ﬂdﬁfﬁ} -t[“g%%g}” )
[HHE%LETZ

In order to satisfy (4), it is necessary that
(ky/K*(m/mg) > 3[11]. We can see that, in the uniform
pump field approximation (k, = 0), the decay condition
(4) does not hold.

In (1), the parametric coupling coefficients 3, and 3,
are expressed as
—i5(K)

B. = %aie(k)e (Gei(k_, wy(k.)) —0gi(k, w,(k)))

MASLENNIKOV et al.

- Z Ay (k_, Wy (k) —wy(Ko)),
asT )

B, = .e(k> e (3, (k_, wy(kL))

= 8ei(k, ,(K))) = S Aalk, 0,(K)),

a=ie

where the quantities ;. and a;, ~ kR, (with R, the dis-
placement of the electrons with respect to the ions in
the pump field) are described by the familiar expres-
sions (see, e.g., [17, 18]). For a lower hybrid pump
wave with afrequency wy, < Wy, they have the form
kou Wy
a0 ™~ 6,eche< 1, (6)
where u ~ cE,;/B,. The terms that are proportional to
the difference &g describe the onset of a decay instabil-
ity due to the oscillatory motion of the electrons with
respect to the ions in the pump-wave field. The lengthy
expressions for the quantities A,, which describe the
excitation of a decay instability as aresult of the non-
linear response of the plasmato the lower hybrid wave
propagating in it, are presented in Appendix 1.

The nonlinear shifts of the oscillation frequencies
dueto weakly nonlinear interactions between the waves
(k, wy(k)) and (k_, w,(k))) and the other lower hybrid
waves (k;, w(k;)) and (k,_, u,(k,)) into which the
pump wave decays and due to the self-action of the
waves are described by the coefficientsv,, v,, v;, and v,
(see, eg., [18)):

v, = ek (k)
toU oy (k) O

X3 Ug(k, wi(k) k —ky, 0y(K) — i (ko)

—ky, —wy(kq))|91(ky)|%,

v, = ek (k)
27 0 dwy (k) O

x Y Ug(k, @y(k)[k =Ky, wy(k) = wp(ky )|
—Ky, —005(K1))[0(Ks — ko),

ek, (k) ™
V3 = 0 gayk) O

x 3 Ua(ke, wp(k) k- —ky, wp(k_) =y (ky))

a=ie
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—kg, —wy(kq))|91(ky)|%,

v = ek, ay(k )
PTU dwy(k) O

XY Ualks, wp(k [k ko (k) — 0ok )

a=ie

—Ky, —0(K1))|02(K; — ko).

Thelengthy expressionsfor the matrix elementsU,, and
their long-wavelength (k-p, << 1) asymptatics are pre-
sented in Appendix 2.

Inthe nonlinear stage, wecansetv;=0(i =1, 2, 3,4),
in which case equations (1) yield the growth rate of the
decay instability (seealso [17, 18]):

=yo= rPe(k, wy(k)) (k. wy(k)7™*2
~y0_|:_BlB2|:| a&)l(k) a(.Oz(kz_) 0 i| . (8)

The nonlinear frequency shift can be regarded as a
possible mechanism for the saturation of the decay
instability. The relevant saturation level is[17, 18]

[Vi+V=V3—vy = 2y, 9)

3. LINEAR THEORY OF THE DECAY
OF A LOWER HYBRID PUMP WAVE
OF FINITE WAVELENGTH INTO TWO LOWER
HYBRID WAVES

Since the entire analysis of the problem is rather
involved, we restrict ourselvesto investigating the mech-
anism underlying the resonant decay of a lower hybrid
wave into two lower hybrid waves with k ~ k;, ~ k_only
in the important case of a dense plasma (Wye > W)
Since the case of ararefied plasma (w,. < W) can be
examined in a similar manner, we will not anayze it
here. Let us estimate the terms in the parametric cou-
pling coefficients 3, and B, using the asymptotic
expressions (A1.7)—(A1.9). The relationship

e[ Oie(k_, wy(k.)) —dig(k, wy(k))]

..ekDEOD(*)OwZ' 2 K0

Wee(oge Ek|2| kﬁ_D

(10)

and formulas (10) and (A1.9) give

aleés k
O=>1,
i.e., theion contribution A to 3, and 3, is negligibly
small.
Now, we estimate the relative contributions of A,
and g,.0¢; to 3, and 3,. For the wave vectorsk, k,, and
PLASMA PHYSICS REPORTS  Vol. 26
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k_ satisfying the condition

k, _k
|Sin(8-8,)| Dlsin(8-6.)] > ~= Dk”Dk”O,
0

we obtain from (10), (A1.5), and (A1.6)

A omkg

3, .0€; mek n°(8-8y).

(12)

Thisexpression impliesthat, intherange of angles6 -6,
and 6 — 6_ such that

2

lower hybrid waves are excited mainly due to the oscil-
latory electron motion against the background of essen-
tially immobileions. In this case, we have

B, OB, Daje[ Oei(k_, wy(k.)) —8gi(k, wi(k))],

so that, according to (8), the decay instability can occur
only for waves that propagate in opposite directions.
Theinstability growth rate y(k) isequal in order of mag-
nitude to

Kk
2 0l<|sin(6—6.) O|sin(8—8y)| <
ce k

(14)

me k Mek(f

Y Da'em, k”ooce Dkum Ek”D

(15)

Note that the condition wy; <y < w, ~ w, holds when

Ky m; o f
< &< _DkD (16)

Intherange of angles (06— 8,) satisfying (11) and the
inequality

o ek
Chnk,O

the primary mechanism for the onset of the decay insta-
bility is the nonlinear response of the plasma to the
lower hybrid pump wave propagating init. In this case,
we have

Bi OA(k_, wy(k) — ),

|sin(0—8,)| O|sin(6—6.)| > 17)

B2 DAk, wy(k)), (18)

and the instability growth rateis equal in order of mag-
nitude to

Y Da;,Wesin’ (8 —6y). (19)

According to estimates (A1.5) and (A1.6), lower hybrid
waves with w,(k) and w,(k_) propagating in opposite
directionsare unstable, so that we havek; k< 0. Inthis
case, the condition wy; < y <<€ w, ~ wy, issatisfied when

m . k
H < a,.sn’(0-6.) < F”' (20)
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In the range of scattering angles for alower hybrid
pump wave such that

|sin(8—6_)| O|sin(8 —8,)| <—Dl|(<” 21)

relationships (10), (A1.7), and (A 1.8) yield the estimate
m g7

a,0€; DmeDkD ' 22)

which implies that, for (k/k) > (m,/m)'?, the primary
mechanism for the onset of a decay instability is the
nonlinear electron response to the lower hybrid wave
propagating in the plasma. In this case, we have

By UA(k_, wi(k) —wy), B UALk, wy(k)), (23)
and the instability growth rate is estimated as
v 02, 28 ) (k) < 00y (K). (24)

ce

For (ky/k) < (m/m)'7, the main mechanism for the
decay instability is the oscillatory electron motion
againgt the ion background in the field of the lower
hybrid pump wave, in which case the coefficients 3,
and [3, are described by (14) and the growth rate y(k) is
described by (15).

4. EFFECT OF THE NONLINEAR FREQUENCY
SHIFT ON THE NONLINEAR EVOLUTION
OF THE DECAY INSTABILITY OF A LOWER
HYBRID WAVE

Now, we analyze whether the nonlinear frequency
shift of the waves involved in the decay process can
serve as a mechanisms for saturating the decay of a
lower hybrid pump wave into two lower hybrid waves.
From (9), we obtain the following condition, which
should be valid in the saturation stage of the decay
instability:

k w
( P .3)‘3“*"26D |¢2|
k)\De . k”

(25)

where ¢ isthe larger of the amplitudes <|)1 and ¢, of the
lower hybrid decay waves. This allows us to obtain the
wave energy density W = (1/41)k?|¢ Pox(0€/0w) at the
saturation stage:

woY d<||D
Wtk (1 p,)?

Let us consider relationship (26) for the decay
mechanisms examined in Section 2. When the decay
instability is driven by the oscillatory motion of the
electrons with respect to theions, the instability growth
rate is estimated as (15) and the instability due to the

nOeTe' (26)
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nonlinear frequency shift is likely to be saturated at a
level closeto

mk u 1
50— —
NoeTe  Mi(k.p,)

mi E|| VTekDpe,

(27)

where v+, isthe electron thermal velocity.

The energy density W, of the electron oscillationsin
the pump-wave field is equal in order of magnitude to

2
rlOemeu DnOe e(CEOD) (28)

2 Bo

W, O

If the energy density (26) of the unstable waves is
low in comparison with W, then the pump wave ampli-
tude can be assumed to be constant throughout the non-
linear stage and the inverse action of unstable oscilla-
tions on the pump field may be neglected. For the satu-
ration level (27), this condition is satisfied when

u m.k 1
> —
m; k”kDpe

— 29
Ve 9

Under conditions (11) and (17), the decay instability
with the growth rate (19) isdriven primarily by the non-
linear response of the electron component to the lower
hybrid pump wave propagating in the plasma. In this
case, the nonlinear frequency shift causes the decay
instability to saturate at the level

- Dﬁl Do in’(6-8) > Tx—¢
(kop e) M (kppe)

For the saturation level (30), the condition W < W, is
satisfied when

o . (30)

mk 1 1
<
m; k”kDpe

sin (6 0y) < v_ (31)

kDpe Te

Under the conditions (k,/k) > (m,/m)'”* and (21), the
nonlinear electron response to the pump wave serves as
the main mechanism for the onset of the decay instabil-
ity with the growth rate (24). Theinstability is saturated
at the level

W EknD Bie
(32)
oo kO (cp
For thislevel, the condition W < W, is satisfied when
Mek 1 d‘nD 1 _u
—= <—, (33)
mik||kDpe DkaDpe Ve
i.e., when
m. 1
us> 3VTeH Koo (34)
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5. CONCLUSION

We have constructed alinear theory of the decay of
alower hybrid pump waveinto two lower hybrid waves
with comparable wavelengths [k, | ~ k| ~ [k — k,|. We
have shown that, in addition to the nonlinear collective
plasma response to the lower hybrid pump wave, there
is another important mechanism for the onset of a
decay instability—the oscillatory electron motion
against theion background in thefield of alower hybrid
pump wave with finite wavelength (k, # 0). We have
obtained the parametric coupling coefficients and the
instability growth rates for |k,| ~ |k| and have deter-
mined the parameter rangesin which aparticular mech-
anism for the onset of a decay instability dominates.

We have clarified therole of the nonlinear frequency
shift in the saturation of the lower hybrid decay insta-
bility. We have shown that the decay instability can be
saturated by the nonlinear frequency shift if the oscilla-
tory electron velocity satisfies condition (34).

In addition to the lower hybrid decay instability,
another instability may arise in the plasma—the decay
of alower hybrid wave into alower hybrid wave and a
kinetic electron quasi-mode [14]. The growth rate of
thisinstability is[14]

u’ M, K
Vam D 500 a”g, (35)
where v, is the speed of sound.
From (15) and (35), we obtain
ydecay ku |j/ _ DLSDZ
Ve Dgesoliu . Da.eDu il (36)

i.e,, which of the instabilities (the decay of the pump
wave into two lower hybrid waves or its decay into a
lower hybrid wave and an electron quasi-mode) devel-
ops more rapidly depends on the particular experimen-
tal conditions. However, the effect of these decay insta-
bilities on one another is insignificant, because they
develop in different ranges of wave vectors of unstable
oscillations: |axk) — 6| > kv correspondsto the res-
onant decay under discussion, and |a(k) — wy| ~ KVre
corresponds to the decay involving a quasi-mode. In
particular, the growth rate and the saturation level (26)
of the decay instability involving two lower hybrid
decay waves are insensitive to electron heating. Hence,
in real experiments, these two decay instabilities may
occur simultaneously.
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APPENDIX 1

PARAMETRIC COUPLING COEFFICIENTS A,
The coefficients A, are defined as

4ATte,
— [d Va0 (K, @, V)

= Ag(k., 0—03)dq(k_, w—wy)
+ Ag(Ky, 0+ ) (Key 00+ @),

(A1.1)

where gf,l) isthe particle velocity in the frame of refer-

ence associated with the particles of species a. The
guantity v,, which is proportional to the small parame-
ter k,R, << 1, represents the correction to the Fourier

transform of the perturbation géo) (k, w, v, of the
velocity distribution function F, caused by natural
plasmawaves (the Fourier transformation is carried out
in the accompanying frame).

In the case of aMaxwellian electron velocity distri-
bution, the coefficient Ak_, w — wy,) for waves with

frequencies w(k) ~ w, > KV is
4T[e

e(k—1(*) (1)0) = = z Z IdveDIdVez

ep- ~08 =0

ip(6_—0)+is(6,—0)
x FOe(VeD! Vez)e ° |:|k||—Vez+ POe

V-|2:e (*)_(p+s)(*)ce [F*)_(*)O_p(*)ce

] d‘—DVeDE{_l CKuoEio

P[] 20 2 2
w Wo (*)0 - (*)ce

d(DVeD[l

WoKop Eory
P+ g, O

v 1
x JSQOD EDD (k||0Ve|| + che)

« Ki-Eoj KiEoy  KonEop
U (A)g COO(CO—(p‘l'S)(.Oce) wcz)_(k)ge

KoEog 0 KaVen, KooVenn
Fi—=sin(8-080) . 7

0“Yce u (*)ce st (*)ce O

1(KyoV e+ (5+ 1)) KEop KooV e
+- s+1

4 U)ce((*)o + (*)ce) O (*)ce O

kv ed[]_ 1(k||oVe||"'(S 1) wee)KpEqy

xJ
p+s+1|:| (*) D 4 ce(wo ce) (A1.2)
] d(ODVeD%] d(DVeEIDi| 1 1
S0 Wee Prs-if] Wee O 2(")O_Sooce
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+ l.k0||Ve|| +(s—1)wg
2 (“)O_wce

+ 1KVt (s+ 1),
2 W T Wee s+l Wee O

x[ KKy d(DveDEI] KoVen
(*)_(p+s)(*)ce prel] Wee PO Wee O
d(DVeD%] K_gVer
P+l Wee PO Wee O
e, KoV DD
p+s+1 D]p+l|:| OO -
KaVeon K.oVeo O
+ Dy
Jp+s_1D o D]p—lD o D]}E

For the decay of lower hybrid waves under consider-
ation, the frequencies wy,, w,(k), and w,(k ) and the
growth rate y(k) (8) of the decay instability are all
higher than the ion cyclotron frequency. Consequently,
the ions are unmagnetized and, in the case of a Max-
wellian ion velocity distribution function F;, the coef-
ficient A(k_, w — wy) for waves with frequencies wy, ~
w > kvy is

omne’ Y Fo.(V)(koEV)

Ak, w— w0)~—————fd

: WwW,
T' (A1.3)

(k—D/i) (k_LEo) , (k [Eo)1O
oo—ooo[ oo00+ wo}%

D(EOD/)(kEk)
D 20, w

The coefficients A, (K, , W+ &) can be obtained from
(A1l.2) and (A1.3) through the changes k ; — K.,
K“ — k+“, 0. — 6,, w— Wy — W+ w,. The coeffi-
cients A,(k, w) can be found from A,(k,, w + W)
through the changesk, — Kk, k — Kk, W+ wyy —= W,
and W — W— Wy,

We consider the limiting case of long-wavelength
(Kpe < 1, kyppe << 1) low-frequency lower hybrid
waves with

Ko
wcek 1

(k) = e

ce k”’ wO(kO)

. (Al.4)
(k) = ez,

in a dense plasma (w, > W) In this case, under con-
ditions 1 > k/k > (my/m)"? and (11), relationship
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(Al.2) yields the asymptotics
Ae(K_, w— )

e uh KB oo g M9

2Me o2 k2w, (k) 0d(Ko)
A.(k, w)
e W, kékoquu

~_— pe sin’(8,—9).
2Me 2 K (w— ) (ko)

(A1.6)

If the propagation angles of the waves with w,(k)
and w,(k ) satisfy the condition |sin(B — 6_)| ~ [sin(6 —
8,)| < WwW, then we have

KioEoy
W0,

2
e w_pe[kODk—D[_
2me k2 D wfe

ku— knEom

D (JJ

L@k E K E
OEM(D o 4 X O“Ecos(e 90)}

x cos(0_—6,) —

kODk

w

0 wce

X EOD B(OD COS(e_— eo) - %kD(COS(e + 9_ (A17)

Kok,
-20,) + cos(e—e_))g—w((l';’—_”%)

« %kn—Eou . KiEoy

ko ] Eo o]
2 + 0
g W

2
wce
+ KioEoyckyky | Kok

—D
cos(0 — 6) [1
we He? ol Ug

e 02 (K Ko E
R ko c0s(8, - 6)

ce

Ae(k, w) =

—% _(cos(8-8.) + cos(8 + 8_—26))

_Kookory KjoEoy kB KEg_® 0
Wee [M06( 00— co) Wo(0 — Gyp)° W W= !
k, k_E (A1.8)
x cos(B8y— 6)+k!_(wll— (SD) }
0
__kuoky e Eon + KiBoy , KooBonD
w(w-wy)d WWy 2 U
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N kHOEOHd(”kZ”_ N k']kz‘Dcos(e _ &)EE W3 + 0y 1S 4
Go T e . e
For (ky/k)> ~ (W/we)?, al termsin (A1.7) and (A1.8) are T
of the same order. From (A1.3), we abtain the estimate © ©° e @ °
Ak, ©) DA (K . o— o) mz p:z% lz I dvenj dvesVen
- _eik—DEom (’oéi komk—m' (AL.9) Foe(Ver V)

Mm@y W(w—0up) K Wy —KpV e — (M+ p)wy,

v d( v
k k J d(lD eDD Coa 0 EDD
K 5= Pm+p To, D+ KKy

(W=KkVg—(m+p+ Nwee)”  2%e

APPENDIX 2

MATRIX ELEMENTS U,
AND THEIR LONG-WAVELENGTH
ASYMPTOTICS

, ' 1 KaVeon
The matrix elements U, are defined as X @Ko —(m+p+ I)wce[Jm+p+l+lD_wce 0

Ua(k, 0Ks + Ky, 003 + 4yl Ky, 00)

xJ d(lmveDD J KaoVen,  KioVeo
+17] |:|JI 1

- %wa(k,oo|k3+k4, 05+ 0] Ky 0) mep -1 g 10 g, O
1 (A21) . d(lDV DD d(DV Dl:l |:|
(. 0k, o, @+ ok ) +2isin(8,-0) L 5B o ] D
(A2.2)
+ 2w (K, 6k, + K @0+ 0K, 03),
v v
O K Kiad,J d(am ed[] d(m ed[]
where the terms w,, have the form 5 Er 1K1 Im e == W U
2
We (K, w|ks + Ky, 003+ 00 Ky, 00) E (4 =KyjaV o — PUe)
= %Wa(k, wlks + Ky, W3+ wylky, ) + KjaV e + PWee |:k||3ve||+ mwceJmlj(3DVeD|:|
Wy — KV g — PWee vZ, U U
1
+ EWa(kv W[k + Ky, w3+ g K3, 03), xJ, Kao VeDD ksukm@ Kso VeDD rKaoV e
0 m-1[] (oo p+1|:| o 0
W (K, wlks + Ky, 03+ wy|Ky, w;)
% v .
1 —Jm+lg<_3D emglp_lg(—m eDE—lem(eg—eA)
= WK, ks + Ky, 05+ 0Ky, ) Woe Wee
KoV e, KaoVenrpy imee;-0) P(@:-0) 10,-0)
¥ %Wa(k, wlkg + Ky, 005+ K3, w3), *Jn] Wee al Wee DD}%E
For low-frequency (w < w,) long-wavelength (kop. << 1)
Wa(K, @k ks, 0+ 00 ks, 03) waves, relationship (A2.2) yields the asymptotic
= %Wa(k, |k + kg, 00 + 0y Ky, ) We(K, WKy, Wy Ky, 00y)
2
1 € W
S 5KoPekyPeKarPeK oo
# SW(K, @k + Ky, @1+ @Ky, @), TN T2 PP PP, (a23)

For a Maxwellian electron distribution, the matrix ele-  x sin(8—8,)sin(6;—0 )k”“VTed(ll2 Ky + Kpe
ment Wik, 0Ky, w, [k, w,) With k, = ks + k, and w, = o, " w w0
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Notethat, for the decay under consideration, the contri-

buti

on of theions,
1 & vri(kKy)

Wi(k, WKy, oKy, 00g) = 55— >
K'Aoim  w,w,w

« EQk“(k [ks) | kﬁ(kz [K3) | gk Ks)(k K4

2

W), 0

W,0,

+ otk EKa)(Ka BKa) (K Ka) (K, CKs) %
(A)(})Z (&)(&)2 D

W, m
turnsout to besmall, — ~ — < 1.

N

s

W, m,
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Polarization of Electromagnetic Radiation at the Second
Har monic of the Electron Gyrofrequency
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Abstract—A study is made of the polarization of electromagnetic radiation at the second harmonic of the elec-
tron gyrofrequency. The radiation is emitted by a highly ionized collisionless plasmain which the turbulenceis
excited at electron gyrofrequenciesin astrong magnetic field. The mechanism for the generation of electromag-
netic waves during mergings of the gyrofrequency plasmonsisanalyzed. It is shown that, even in astrong mag-
netic field, the degree of circular polarization of electromagnetic radiation at the second harmonic of the elec-
tron gyrofrequency may be moderate or weak. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A highly ionized collisionless plasma in a strong
magnetic field (e > W, Where wy is the electron
gyrofrequency and is the electron Langmuir fre-
guency) is encountered in laboratory experiments (in
beam—plasma devices, magnetic confinement systems,
etc. [1]) and in space (e.g., inthe solar corona[2]). Itis
well known that an electron beam propagating in such
aplasmagenerates el ectromagnetic radiation at the har-
monics of the electron gyrofrequency wye [3].

The data from measurements of the intensity and
polarization of electromagnetic radiation at the second
harmonic of the electron gyrofrequency are often used
to determine the plasma parameters and the magnitude
of the magnetic field. Tsytovich and Kaplan [4] showed
that electromagnetic radiation at the second harmonic
of the gyrofrequency can also be driven by the mecha-
nisms associated exclusively with plasma processes.

For example, an electron beam propagating in a
highly ionized collisionless plasma in a strong mag-
netic field (along the magnetic field lines) can effi-
ciently excite gyrofrequency plasmons (h). Two plas-
mons can merge into one (h + h —= t), thereby gener-
ating electromagnetic radiation at the second harmonic

of e [9].

This merging process can compete with the genera-
tion of electromagnetic radiation at the second har-
monic of w directly by an electron beam [3]. Itisaso
well known that the degree of circular polarization of
electromagnetic radiation generated directly by an
electron beam at the second harmonic of w.iscloseto
100% [6]. In this connection, it is of interest to investi-
gate the polarization of electromagnetic radiation gen-

erated viathe merging process h + h — t. This ques-
tion isthe subject of our paper.

2. GENERATION OF POLARIZED
ELECTROMAGNETIC RADIATION VIA
THE MERGING OF GY ROFREQUENCY

PLASMONS

The method for deriving equations that describe the
merging of plasmons, h + h — t, was presented by
Tsytovich [5]. However, he did not obtain equations for
the polarization characteristics (the Stokes parameters)
of electromagnetic radiation generated during the
merging process. Below, we will derive these equa-
tions.

We will investigate the problem using the following
assumptions: the plasma ions are unmagnetized,
(Wpe/e)* < 1, the spectral function W, of the gyrof-
requency turbulence is isotropic (this assumption was
judtified in [9]), and the phase velocities v, of the
gyrofrequency plasmons are much lower than the speed
of light cinvacuum (i.e., (vpn/0)* < 1).

The assumption (wy/wye)* < 1 alows us to
describe the process h + h —= t by the equation [5]

d _ 0 o, _ 4(27T)3(02Rk,ij
o= gt B = 25| 0
(g,
Ldw

W= 0)

where vy is the group velocity of electromagnetic radi-
ation at the frequency 2wy, W, = Kc, k is the wave-
number, wistheangular frequency of theradiation, and
K = {k, w}. In equation (1), the vector and tensor com-
ponents are written in the laboratory frame X", Y", and
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Fig. 1. Working coordinate system.

Z" (Fig. 1). To simplify the analysis of the matrices I,
describing electromagnetic radiation, it is convenient to
pass over to the so-called intrinsic frame of reference
[7] with the help of the transition matrix M;;{h, n},
whereh and n are unit vectors (Fig. 1). Taking the prod-
uct of the left- and right-hand sides of (1) with M, and
Mg, we obtain the equation

d 4(211) w M,O(RK iiMig

dtlk ap = 3 2 ()
H= (0’
Lw O 0=

Now, we switch from the matrices Iy .5 to the Stokes
parameters using the standard relationships

Qk = Ik,xx_

Uk = Ik,xy"'lk,yx’ Vk =

Ik = Ik,xx+|k,yy1 |k|yy’
(3)

_i(lk,xy_ Ik,yx)i

where |, istheradiation intensity in units of Jm? sand
Qw, Uy, and V, are the Stokes parameters expressed in
the corresponding units. From here, we obtain

g
dt
3 2
4
= %[M.XRK M+ MR M [oes
o @ &l
d
d_tQk
3 2
5
= AW iy R MM R M) |w:wk,()
(e
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d
at U
421)°w’ ©
= ___(___)___E[MIXRK |JM +M RK IJMJX]|Q) ('Ok,
(co EK)

d

at Vx
e @)
) m[MiyRk,ijMiX_MiXRK’iijy]lw:wk.

%(00 8K)|:|

To evaluate the right-hand sides of (4)—7), we need to
know explicit expressions for both the matrices R, j;
and the dielectric function €, for electromagnetic
waves. For radiation emitted at the frequency w= 2wy,

we have si = | — (Wye/w)?. According to [5], the matrix
R..;; for the process h + h — t has the form

Reij = IdKldKzé(K—Kl—Kz))\i(K,Kl, K,)
| ®)

XX (K, Ky, KLl

Here, k{k, w}, K, {k;, 0}, and K,{k,, w, } are the four-
dimensional wave vectors characterizing electromag-
netic radiation and the first and second gyrofrequency
plasmons, respectively; k, and k, are the wave vectors
of the gyrofrequency plasmons; and w, and w, aretheir

angular frequencies. The function Ifl1 which charac-
terizes gyrofrequency plasmons, can be written as

o 016 W, — g
o o (al\k). o
2 a—(wfeRéK)

= |2
Ky

Here, the spectra function of the gyrofrequency plas-
mons, Wfll , isrelated to their energy density WP by
o, dk o

Iwkl(ZH)3 - W

and 52; «, Isthereal part of the dielectric function for
the gyrofrequency plasmons [5],

(10)

an

2
o _ Cc o Ox
€rek, — Eij, Klek |ek11 = (ki ) (ki€ ),

W,

where g;; , isthe plasmadielectric tensor and efl,i are

the components of the unit polarization vector of the
electric field of a gyrofrequency plasmon. For
PLASMA PHYSICS REPORTS  Vol. 26
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(Wpe/Wye)* < 1, the real part of the dielectric function
for agyrofrequency plasmon has the form [5]

2 2
kic

2 2 2
W —Whe g

2 .2
o _. W5SNO;
sRe,Kl“’l_

(12)

where 0, is the angle between the magnetic induction
vector and the unit polarization vector of the electric
field of a gyrofrequency plasmon. An expression for

oo,fl1 can be obtained from the equation [5]
o, kf C2

eRe,K:l - 2
1

=0. (13)

Substituting a;;Kl from (12) into (13) yields the fol-

2
. . o
lowing expression for ‘wkj ;

= oof.e+oo,§esin261. (14)
The quantities A(K, K, K,) have the form [5]

A(K, Kq, Ko)

_kike
K H

) o (15)
= 2Smi(K, K1, K2)€c. | €ct Bim

where

S, K5, K2) = (S (K, K K2+ S, Koy K} (16)

The components of the nonlinear conductivity tensor
Sy of aplasmain amagnetic field are [5]

e [an + I((")He/(’o)éyn]
4TIM,0 1 (wHe/w)Z
*{ Kas[ €an(K 2 0) — Bl
[Oyn — i(Whe/ W)y

1— (Wye/ @)°
X { kZS[ESm(kZ’ 0‘)2) - 6sm]} ’

Sknm(Kv Kl’ K2) =
(17)

S/nm(K Klf K2) - 4nm(o (18)

Sn(K, K1, K2) =

4T[m W

X 6zn{ kZS[Ssom(kZ! 002) - 6sm]} ’

where m, is the mass of an electron. The integrand in
expression (8) for R, j; is acomplicated function of the
wave vectors k, k;, and k, and the frequencies w, w,,
and w, (theindices s, n, and m run through the coordi-
nates x, y, and 2).

(19)
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The momentum and energy conservation laws for
the wavesin the merging processh + h — t give

k—kn—2 n—k1+k2
© © (20)
= kyny +kpn, = =280, + —12n,,
phl Vph2

where v, and v, are the phase velocities of gyrofre-
guency plasmons. Assuming that k< k; and k< k, yields
Vpnt < C and vy < C in accordance with (20). We
expand the integrand in expression (8) for the matrix
R ij in powers of the small parameters k/k; and k/k,,
neglect terms proportional to (k/k,)* and (k/k,)?, and
integrate the resulting expression over dk,, dk,, dw,
and dw, to arrive at a simpler representation for the
matrix R ;;. We assume that the spectral function W,

is isotropic and substitute this representation for R j;,
the explicit expression for the matrix M;; taken from [7],

and expression (12) for the function stRe,K into equa-

tions (4)—(7). Asaresult, we obtain the following equa-
tions for the Stokes parameters:

6
Ay = — e 6gtg
dt 18m0or,m.c-n, [P3
(21)
+—3—8—snecose+— W2 K2ak, 3(0, — 26040).
105 g k 1 1 k — He
2
d w LI256 .
d_tQk ) 18wy, . c’n 153”%6
HeMeC Ne 22)
38 . 0
~70550 9cos’ 0 a’wﬁl kZdk,8(0, — 2o,
d w; (56
=V, = —————;PE——E——D——cosesinze
dt 18mwp,m.c-n, 105
(23)
256
315cose g Wk kZdk,8( W, — 20e),
d
GUx = 0. (24)

Here, dl, /dt is the power of the emitted electromag-
netic radiation; I, Q,, and V, are expressed in J; and n,
isthe electron plasmadensity. Multiplying the left- and
right-hand sides of (21)—(24) by 4mu¥/c? and integrat-
ing the resulting equations over dw from 0 to o« yields
the following equations for the radiation intensity | (in
units of Jm? s) and for the Stokes parameters Q, U, and
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Fig. 2. Dependence of the degree of linear polarization on
the angle between the direction of the electromagnetic wave
propagation and the magnetic induction vector.

V (in corresponding units):

6
d) o S0 HI6g 2
dt' 92 mc'n, 3
(25)
+§sm Gcose+— W K2dk
105 5 K MERL
d SwSe (256
— sin’e
dt QooHem c'n %
(26)
38 =2 9n’0cos’ 0 W, k dk
105 g KT
8wy, 56
—V = —— [ cosfsin’0
dt ngemeC neljlo5
(27)
256
31 —cos0 g Wk kldkl,
d ., _
GU =0 (28)

Now, we divide the left- and right-hand sides of
(25)—(28) by the width Aw of the electromagnetic radi-
ation spectrum to arrive at the expressions for the radi-
ation power J,,, = (1/Aw)dl/dt) emitted from a unit vol-
ume of the turbulent plasmainto a unit solid angle per
unit frequency interval and for the Stokes parameters
Jow Jve» @nd Jy,, (expressed in corresponding units):

J.w(e)=2@ﬁﬂ”pemzwpe L L

(B0 LeoyH me ¢*n A(o105 (29)

x (160 + 40Sin’0 + 579 cos 0 )JWflkfdkl,
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Fig. 3. Thesame asin Fig. 2, but for circular polarization.

Jou(®) _ 128—57cos’0
.2 . 2 2~ (30)
J1,,(0) 160 + 40sin°0 + 57sin“0cos 0
Jva(0) _ 128 + 84sin°0
—= = — — >—, (31)
J1,(0) 160 + 40sin°0 + 57sin°0cos 0
Juu(®) = 0. (32)

Here, 8 is the angle between the direction in which
electromagnetic radiation is emitted and the magnetic
field vector B, k; are the wavenumbers of gyrofre-
guency turbulence, and Aw is the radiation spectrum
width.

From expressions (29)—32), we can readily see that
electromagnetic radiation generated during the merg-
ing process h + h — tiséellipticaly polarized. In the
angular range 0 < 6 < 172, the degree of circular polar-
ization, p = Jy/J;, changes from about 80% to O, in
which case extraordinary waves dominate in the radia-
tion spectrum. The polarization of the waves emitted in
the direction nearly orthogonal relative to the vector B
is to some extent linear (Jo/J, ~ 60-65%).

Hence, in contrast to the mechanism for generating
electromagnetic radiation directly by an electron beam
(when the degree of circular polarization of the emitted
radiation is close to 100%), the polarization of electro-
magnetic waves generated during the processh+ h —» t
can be moderately or weakly circular. Figures 2 and 3
show how the linear and circular polarization p of the
emitted radiation varies with the angle 6.

3. CONCLUSION

We have investigated the polarization of electro-
magnetic radiation generated during the merging of
gyrofrequency plasmons, h + h — t, in the limit
Whe > Wy, USiNG the assumptions that the spectrum of
PLASMA PHYSICS REPORTS  Vol. 26
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gyrofrequency turbulence is isotropic and the plasma
ions are unmagnetized.

We have shown that, under the conditions adopted
here, the merging processh + h — tresultsin the gen-
eration of elliptically polarized radiation. In the angular
range 0 < 0 < 172, the degree of circular polarization of
the excited radiation J,,/J, changes from about 80% to
about 0 and the spectrum of the emitted waves is dom-
inated by extraordinary waves. The polarization of
electromagnetic waves emitted in the direction nearly
orthogonal relative to the magnetic induction vector is
to some extent linear (Jo/J; ~ 60-65%). Hence, we can
conclude that the polarization of electromagnetic radi-
ation emitted during the merging processh + h —» t
may be moderately or weakly circular even when

Whe > Wpe-

The results obtained can be used to process data
from beam—plasma experiments and to interpret obser-
vations of radio emission from the Sun and other
objects in the universe. The effects we have investi-
gated can be observed in beam-plasma experimentsin
which the beam electron density is 103-10* of the
background plasma density and the plasma ions are
unmagneti zed.
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Abstract—The electron distribution function over longitudinal energiesin the startup plasma of the end cell of
the AMBAL-M device is measured with a small-size movable electrostatic analyzer. It is found that, in the
region where a substantial longitudinal current flows, the electron distribution function over longitudinal ener-
gies has a plateau in the 150-350-eV energy range. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A hot startup plasma with a diameter of 20 cm, a
density of ~10'3 cm3, an electron temperature of 50 eV,
and anion temperature of 200 eV isabtained in the end
cell of the AMBAL-M device [1]. The plasmais pro-
duced by a gas-discharge plasma source located
beyond the magnetic mirror. The specific feature of the
obtained plasma is a ~1-kA longitudinal electric cur-
rent flowing in the axia region [2]. To determine the
heating and current-drive mechanisms, it is necessary
to carry out direct measurements of the electron distri-
bution function in the mirror system. The results of
reconstructing the electron distribution function from
the current—voltage characteristics of aLangmuir probe
[3] located in a hot plasma lead to ambiguous interpre-
tation.

The goal of thiswork isto measure the electron dis-
tribution function in the end cell of the AMBAL-M
device by a small-size electrostatic energy analyzer
specialy designed for this purpose.

Similar energy analyzers have already been used for
local measurements of the longitudinal €l ectron current
in reversed-field pinches [4-6]. These measurements
demonstrated the possibility of using such energy ana-
lyzers to determine the electron distribution function
over longitudinal energies.

2. DESCRIPTION OF THE ANALYZER

The schematic of the end cell of the AMBAL-M
device and the position of the analyzer in the mirror
system are presented in Fig. 1. The analyzer is attached
to a ceramic tube and is inserted into the plasma with
the use of apositioner. The analyzer (Fig. 2) consists of
two symmetric sections placed inside an insulating case
made of boron nitride. Each of the analyzer sections
consists of aninput diaphragm with asmall aperture, an

analyzing diaphragm, and a collector. The thickness of
the input diaphragm made of niobiumis 1 mm, and the
diameter of theinput apertureis 0.3 mm. The analyzing
diaphragm has a thickness of 2 mm and an aperture
diameter of 1 mm. The centers of the apertures of both
diaphragms lie on the axis directed along the magnetic
field. The diameters of the electrode apertures were
chosen taking into account the energy of ions and elec-
trons in the measurement region.

The measurement method is based on the violation
of quasineutrality in the small input aperture, whose
diameter is comparable with the Debye length. Theion
flux into the analyzer is attenuated due to the relatively

Transport region

Mirror system Plasma receiver
B. kG Semicusp
30 '
20 |
10 |
0 \ L 1 | 1
_joL 300 —200 -100 0 100 \\/
Z cm

Fig. 1. Schematic of the end cell of the AMBAL-M device:
(2) coils of the mirror system, (2) plasma-source solenoid,
(3) plasma source, (4) plasma receiver, and (5) semicusp
coils. The position of the analyzer is marked with an arrow.
At the bottom, the profile of the magnetic field onthe axisis
shown.
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large thickness of the input diaphragm. Since the ion
Larmor radius (p; = 2.5 mm) in the region where the
analyzer islocated is substantially larger than the diam-
eter of the input aperture, for the chosen diaphragm
thickness, most of the ions fall on the wall of the aper-
ture and do not enter the analyzer. On the other hand,
the characteristic electron Larmor radius (p. =
0.025 mm) is less than the aperture size, so that the
electrons pass freely into the analyzer aong the mag-
netic field lines. When the analyzer is inserted into the
plasma, the insulated input diaphragm acquires a
~2.5-3T,/e negative potential with respect to the space
potential, so that the current to the input diaphragm is
equal to zero. This potential substantially reduces the
plasma electron flux through the input aperture. There-
fore, the analyzer in fact measures the distribution
function of superthermal electrons with energies
exceeding 2.5-3T,. The energy analysis of the electrons
entering the analyzer is carried out by applying a nega-
tive potential to the analyzing diaphragm with respect
to the input diaphragm. In order to suppress secondary
electron emission from the collector and reject a small
portion of ions entering the analyzer because of their
small transverse energy, a positive (with respect to the
input diaphragm) potential is applied to the collector.
The numerical solution of the Laplace equation shows
that, for the —100-V potential of the analyzing dia-
phragm and +90-V potential of the collector, theretard-
ing potential on the axis is —-99.6 V. Therefore, in the
absence of the electron space charge in the aperture, the
retarding potentia is approximately equal to the poten-
tial of the analyzing diaphragm. The current to the col-
lector is measured with the use of a resistor placed
between the input diaphragm and the collector. The
electron distribution function f(U) O —0j(U)/0U over
longitudinal energies can be obtained by differentiating
the measured dependence j(U) of the collector current
on the retarding voltage.

3. RESULTS OF MEASUREMENTS

The measurements were carried out in the axial
plasma region in the single-shot regime. The shot-to-
shot reproducibility of the plasma parameters was
5-10%. In Fig. 3, the oscillograms of the collector cur-
rent of the analyzer section that faces the plasma source
are shown at different values of the retarding potential.
It is seen that an increase in the retarding potential
resultsin amonotonic decrease in the collector current.
To find the current as afunction of the retarding poten-
tial, we averaged the current over three 160-us time
intervals, which are marked by the Roman numeralsin
Fig. 3. In the dependences obtained (see Fig. 4), most
of the parts of the curves are well approximated by
straight lines; thisis evidence that there is a plateau in
the el ectron distribution function up to energies of 180,
160, and 60 eV, respectively, with afurther drop as the
energy increases by 50 V.
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Fig. 2. Schematic of the energy analyzer: (1) input dia-
phragm, (2) analyzing diaphragm, (3) collector, and
(4) insulating case.

0 1000

Fig. 3. Oscillograms of the collector current at different
retarding potentials. The analyzer islocated on the axis and
faces the plasma source.

Aswas noted above, the distribution function can be
found by differentiating the experimental dependence
Jexp(U). However, in this case, the measurement errors
lead to undesirable distortion of the sought-for func-
tions. In order to eliminate these errors, the experimen-
tal curves should be carefully smoothed beforehand.
Therefore, we chose another procedure that also alows
evaluation of the distribution function by the measured
current provided that the distribution function permits
an analytical approximation with several free parame-
ters. For simplicity, we assume that the measured cur-
rent can be represented as a sum of contributions from
the electronswith the Maxwellian distribution over lon-
gitudinal energies and an electron beam with a finite
temperature. Thethermal electronsin the mirror system
are described by the Maxwellian distribution function
Jmaxw = CmeXxp(—=&/T ), and the beam is given by the Max-
wellian distribution shifted by the longitudinal velocity,
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Fig. 4. The current as a function of the retarding potential
for threetimeintervals (I, 11, and I11) shownin Fig. 3.

f)

Fig. 5. Model electron distribution function: (1) Maxwellian
distribution functionf,,,,(U), (2) fast-electron distribution
function fr,,(U), and (3) total distribution function f(U) =

fnaxw(U) + frage(U).

frase = Crexp(—(/E — f£0)/Ty). Here, ¢, and ¢; are con-
stants determining the densities of Maxwellian and fast
electrons; T,, and T; are the temperatures of these two
electron species, respectively; € is the longitudinal
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energy (€= mv|2| /2); and g, is the average longitudinal
energy of the beam electrons. These functions and their
sum are presented in Fig. 5. The sought-for parameters
Cm» Ci» T Tty @nd g, are found by minimizing the sums
of squared deviations of the calculated current from the
measured current with respect to the free parameters at
different voltages. This procedure resulted in the fol-
lowing estimates for the electron energy characteris-
tics: the temperature of the Maxwellian electrons is
100, 80, and 30 eV for the I, I, and Il intervals in
Fig. 3, respectively; the beam-electron energy is 150,
135, and 60 eV, respectively; the beam-electron tem-
peratureis~3 eV in al cases; and the fast-electron den-
sity is at least one order lower than the density of the
warm Maxwellian plasma. Note that these solutions
give somewhat overestimated current values at retard-
ing potentials below 50 eV. Presumably, the low tem-
perature of the beam electronsis explained by the cool-
ing effect (the decrease in the mean-square deviation of
the particle velocity from the averaged directiona
velocity) during the particle acceleration. This effect
shows up when the electrons move in the accelerating
ambipolar electric field from the input magnetic mirror
to the center of the device.

The retarding curve for the analyzer section facing
the plasma receiver is shown in Fig. 6. In this case, at
the zero retarding potentia, the collector current is
approximately three-and-a-half times bel ow the current
in the case considered above. As before, the electron
current flowing into the analyzer is suppressed at
retarding potentials up to 200 V. In this case, the elec-
tron flux into the analyzer can berelated to both the par-
tial reflection of fast electrons by the output magnetic
mirror and the superthermal Maxwellian electrons.

Although the measurements show the presence of a
plateau in the electron distribution function over longi-
tudinal energies, there are two factors that affect the
measurement accuracy. First, the retarding potential
applied to the analyzing diaphragm leads to a propor-
tional increase in the potential of the input diaphragm.
Thus, when the retarding potential was —200 V, the
potential of the input diaphragm increased by 80 V.
This effect is similar to the behavior of a double probe
in aplasmawhen the voltageis applied acrosstheinter-
electrode gap. However, it is difficult to explain the
increase in the potential of the input diaphragm quanti-
tatively. Actually, the value of the retarding potentia is
less than the voltage between the input and analyzing
diaphragms. It is found that the dependence of the
retarding potential U,,,; on the potential of the analyz-
ing diaphragm Uy is close to linear: U, = 0.6Uy.
Therefore, the retarding curve can be corrected so that
its shape remains aimost unchanged.

Another factor affecting the accuracy is the electron
space charge. The decrease in the potential on the axis
in the input aperture is associated with this space
charge and is estimated as 0¢ = 1r’ne. Assuming the
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 6. Retarding curve for the analyzer section facing the
plasmareceiver.

average electron energy to be 60 eV, we obtain that, for
the current density j = 15 A/cm?, the density of the elec-
tron flow isn=2 x 10!' cm~ and the decrease in the
potential on the axisis &8¢ =20 V. A certain measure-
ment error can also be introduced by the radial nonuni-
formity of the potential.

In order to carry out more accurate measurements,
the aperture diameter of the input diaphragm was
reduced to 0.05 mm. In this case, a —200-V retarding
potential leads to only a 10-V increase in the potential
of the input diaphragm. Hence, we can say that the
potential of the analyzing diaphragm has no effect on
the potential of the input diaphragm and that it is actu-
ally the retarding potential. At the zero potentia of the
analyzing diaphragm, a decrease in the input aperture
area by afactor of 36 resulted in a decrease in the col-
lector current by afactor of 100. This extradecreasein
the current is associated with the fact that the radius of
the input aperture in this case is equal to the Larmor
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radius of electrons with a 50-€V transverse energy, so
that not all of the electrons enter the analyzer. Such a
small input aperture of the analyzer cuts off not only the
ions but a so the electrons with high transverse veloci-
ties. This selection emphasizes the contribution from
beam electrons with a small transverse temperature.
Since the recorded current decreases 100-fold, the
space-charge potential also decreases 100-fold, and its
influence on the measurement accuracy becomes negli-
gible.

Figure 7a shows the dependence of the collector
current on the retarding potential, which was measured
by the analyzer with the reduced input aperture.
Although the dispersion of the experimental points
increased because of the decrease in the collector cur-
rent, it is seen that the electron distribution function is
fairly broad and non-Maxwellian. The dispersion of the
experimental points introduces some uncertainty in
drawing the smooth curve through these points (this
curve should be differentiated with respect to the
retarding potential in order to obtain the distribution
function). As an example, we drew two curves through
the experimental points. Figure 7b shows two electron
distribution functions over longitudina energies for
two curves drawn through the experimental points. Itis
seen that, in both cases, the electron distribution func-
tion has a plateau in the energy range from ed;, to
ed;, + 200 eV. Assuming that ed;; = 3T, = 150 eV, we
can state that the plateau is located in the 150-350-eV
range of the electron longitudinal energy.

To understand the influence of superthermal plasma
electrons, we carried out measurements at a radius of
6 cm (outside the region ~4 cm, where the longitudinal
current flows) using the analyzer with the reduced aper-
ture. The results are presented in Fig. 8. At thisradius,
the bulk-plasma parameters are almost the same as on
the axis, but the longitudinal current is absent. The data
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Fig. 7. (8) Theretarding curve for the analyzer with areduced input aperture and (b) the electron distribution functions over longi-
tudinal energies obtained from dashed and dotted curvesin plot (a). Averaging is performed over the 1-1.5-mstime interval. The
results of different series of measurements are shown by different symbols.
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Fig. 8. The retarding curve for the analyzer positioned at a
6-cm radius. The solid line showsthe retarding curvefor the
Maxwellian electron distribution with a60-eV temperature.
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Fig. 9. (a) Radial profiles of thefloating potential of the ana-
lyzer input diaphragmsfacing (<) the plasmasource and (@)
plasmareceiver and (b) their difference.

presented in Fig. 8 are well approximated by the Max-
wellian distribution with a 60-eV temperature. For the
zero retarding potential, the collector current dropped
2.5 times compared to that measured on the axis, which
is explained by the absence of fast electrons. Thus, we
can conclude that the previous measurements showed

AKHMETOV et al.

approximately the same contribution to the current
from the Maxwellian and beam el ectrons.

In addition, we measured the radial profiles of the
floating potentials of both input diaphragms, one of
which faced the plasma source and the other one faced
the plasmareceiver. Theresults are presented in Fig. 9.
The profile of the potentia difference between the dia-
phragms shows that the electron distribution function
in the axial region is anisotropic. As would be
expected, this region coincides with the region where
the current flows that was previously detected by a
magnetic probe [2].

4. CONCLUSION

A small-size electrostatic electron-energy analyzer
is designed and used to measure the electron distribu-
tion function over longitudinal energiesin the end cell
of the AMBAL-M device. It isfound that the distribu-
tion function has a plateau in the 150-350-€V range in
the current-carrying channel of themirror systemandis
Maxwellian (with atemperature of 60 €V) outside this
channel. The data obtained can be used to carry out
numerical simulations of the generation of eectrons
carrying the current in the transport region between the
plasma source and the mirror system.
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Abstract—It is commonly accepted that, as the current increases, a diffuse negative corona inevitably goes
over to a strongly nonuniform and nonsteady spark discharge. In this paper, a new effect—the transition of a
negative coronato a diffuse glow discharge at atmospheric pressure—is studied experimentally and numeri-
cally. The evolution of the corona parameters during the transition to the regime of aglow discharge istraced.

© 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

According to the classification of gas discharges
proposed in [1], anegative coronaand aglow discharge
refer to the same type of discharge, because, in both of
them, the current in the cathode sheath is maintained by
the same processes, specifically, photoemission and
avalanche multiplication of the electrons emitted from
the cathode due to electrostatic extraction by metasta-
bles and positiveions.

Historically, these two kinds of the same discharge
were studied separately: classical glow dischargeswere
observed in low-pressure gases in sealed glass tubes,
whereas corona discharges were observed in high-pres-
sure gases (in particular, at atmospheric pressure).

The glow discharge is characterized by a high value
of the reduced electric field E/N (where E isthe electric
field and N is the gas number density) in the interelec-
trode gap. Thisfield is sufficiently high for producing
intenseionization of agas; aresult, thegapisfilled with
aplasma. In the case of a negative corona, the reduced
field in the gap is much less and there is an uncompen-
sated negative space charge in the gap.

As the corona current increases, the density of the
negative space charge and the electric field in the gap
both increase. Hence, when the electric field becomes
sufficiently high to produce intense gas ionization, a
plasmawill arise between the electrodes of the corona
discharge; i.e., the negative corona will go over to the
regime of a glow discharge.

A pin—plane electrode configuration is the most typ-
ical for producing acoronadischarge. Note that such an
electrode system is not convenient for realizing atran-
sition from a negative coronato a glow discharge. The
reason isthat, in this configuration, the current-carrying
channel significantly broadens with distance from the
pin; thus, the space-charge density between the elec-
trodesislow. Rather high currents are needed to obtain

a sufficient space-charge density and, accordingly, a
strong electric field in the discharge gap. However,
under normal conditions (at atmospheric air), it is diffi-
cult to produce high currents with this geometry of the
corona, because, even at relatively low currents, a sin-
gle-pin corona goes over to the spark discharge.

2. DESCRIPTION OF THE EXPERIMENT

To investigate the transition from a negative corona
to a glow discharge in air at atmospheric pressure, we
used aspecia electrode system with amultipin cathode
and aflat metal anode (Fig. 1). The pins were stainless-
steel needles 0.5 mm in diameter tapered to aconewith
a vertex curvature radius of R. = 0.06 mm. Fifty-two
needles were uniformly distributed over an area of 10 x
40 mm? in four rows of 13 needles each.

The distance d between needles (i.e., the spatial
period of the cathode structure) was equal to 3.5 mm
and was small compared to the distance between their
vertexes and the anode, h = 5-20 mm. In this case, the
current density in the negative-corona gap increases
substantially (by nearly afactor of 3(h/d)?) in compari-
son with the pin—plane configuration and the transition

+
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<=

Air flow

I

Camera

Fig. 1. Experimental setup.
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Fig. 2. Photograph (negative) of the discharge in room air; the discharge current per pinis 39 pA.

from the corona to a glow discharge occurs at arela-
tively low current through each pin.

In order to ensure astable diffuse regime of the neg-
ative corona, each needle was supplied through a high-
resistance load: R = 2 MQ. In addition, the anode plate
was connected to a high-voltage supply through a
0.2 MQ resistor. The stability of the corona against its
transition to a spark was also ensured by air flowing
through the discharge; the cathode unit was oriented so
that itslongest side was perpendicular to the air flow. A
typical flow velocity was on the order of severa tens of
meters per second.

Along with the recording of 1-V characteristics, we
photographed the discharge in the direction opposite to
the air-flow velocity.

3. EXPERIMENTAL RESULTS

If the discharge is in the corona regime, only the
needle ends are luminous, whereas the interelectrode

/U, pAIKV
6 —

| |
8§ 10 12 14 16

18 20 22 2
U, kv

0 1
4 6

Fig. 3. Reduced |-V characteristic of the discharge in room
air (I is the current per pin). The points correspond to the
experiment; the solid and dashed-and-dotted lines corre-
spond to the calculation for relative humidity of 30 and
65%, respectively. The needle point radiusis Rc = 0.06 mm;
h=10.5mm.

gap is hardly visible and the anode is dark. The photo-
graph (negative) of the discharge in the steady-state
glow regimeis shown in Fig. 2. It is seen that the glow
discharge is diffuse and rather uniform, although the
discrete structure of the plasma column caused by the
discrete structure of the multipin cathode isalso clearly
Seen.

Figure 3 shows atypical reduced |-V characteristic
of the discharge under study. Here, the ratio /U
(instead of the total discharge current) is plotted versus
the discharge voltage U, | being the discharge current
per pin.

In the reduced 1-V characteristic, we can distin-
guish two segments (the first in the range of initial
coronacurrents and the second in the range of high cur-
rents corresponding to the regime of a developed glow
discharge) in which the reduced current is a nearly lin-
ear function of the voltage. It is seen that, in the glow
discharge, the current increases with voltage more
sharply in comparison with the coronaregime. Thisis
explained by the increasing role of ionization (which
depends strongly on thefield) in creating the conductiv-
ity in the interelectrode gap of the glow discharge.

The kink point of the reduced 1-V characteristic
(i.e,, the point of intersection of two extrapolated
straight lines corresponding to the linear dependences)
can be considered a critical voltage corresponding to
the transition of the coronato a glow discharge. Near
this point of the |-V characteristic, a luminous thin
sheath appears on the anode. This is evidence that the
anode sheath is formed, which is characteristic of a
glow discharge. At voltages higher than the critical one,
the gap luminosity increases sharply with the current
and the discharge exhibits more and more features typ-
ical of glow discharges.

It was noted above that the luminous anode sheath
becomes visible when the current reaches the threshold
I, corresponding to the beginning of the transition from
the corona to a glow discharge. Figure 4 shows the
dependence of the threshold current on the interelec-
trode distance h. A similar dependence of the threshold
current |, corresponding to the transition from the glow
discharge to a spark is also shown. Hence, the current
range in which a uniform glow discharge at atmo-
PLASMA PHYSICS REPORTS  Vol. 26
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spheric pressure can exist is bounded by two curves
I,(h) and I,(h). Note that this range may be extended
substantially by using gasdynamic effects and anodes
of aspecial design.

4. DESCRIPTION OF THE NUMERICAL MODEL
OF THE DISCHARGE

The numerical model of a corona in humid air is
based on the well-known continuity equations for elec-
trons and positive and negative ions, Poisson’s equa-
tion, and an equation for the simplest electric circuit
with parameters corresponding to the experiment. The
dischargekineticsin air plasmaisvery involved. For its
complete description, it is necessary to consider the
evolution of a great number of components. However,
in our previous paper, we aready formulated a simpli-
fied model based on the full kinetic model. This model
was used to predict average characteristics of a corona
on athinwirein air at atmospheric pressure [2].

Here, we use the same model with one species of
positive ions and one species of negative ions. The
model includes the ionization, three-body attachment
of electrons to an oxygen molecule, detachment, and
ion—on recombination. The presence of water vapor in
air was taken into account by introducing an additional
attachment rate caused by three-body attachment to
oxygen with the participation of water moleculesacting
as a third body. The frequencies of relevant processes
for P=740torr, T = 294 K, and arelative air humidity
of 30% are shown in Fig. 5.

The key point of our approach to the problem that
previously allowed us to describe the periodical gener-
ation of Trichel pulses [3-5] is the use of a one-and-a
half-dimensional approximation in solving all of the
equations in order to describe a strong broadening of
the current channel between the cathode and the anode.

In these calculations, the equivalent radius of the
discharge at the anode was determined from the dis-
charge areaper pin. Thetotal areawas calculated by the
formula S= S, + a2h(a+ b), where S, is the area envel-
oped by the contour drawn through the edge pins, 2(a +
b) isthe circumference of this contour, h isthe distance
between the electrodes, and a is the phenomenological
parameter (a = 0.5). The shape of the current channel
was chosen according to visual observations. at a dis-
tance of one-third of the full distance between the elec-
trodes, the channel rapidly broadens until its radius
becomes equal to the anode radius; further, the cross-
section arearemains constant. Possible variationsin the
shape of the current channel due to variations in the
current value were neglected in calculations.

In calculations, all of the parameters were reduced
to the conditions referred to one pin. The equivalent
resistance of the ballast resistor in the discharge circuit
for each pin was R = 12.2 MQ (the resistance of the
anode circuit was taken into account). Note that a series
of calculations of 1-V characteristics was performed
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Fig. 4. Threshold currents I (curve /) and |, (curve 2) per
pin for the transition from the corona to a glow discharge
and from the glow discharge to a spark, respectively, as
functions of the interelectrode distance h.
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Fig. 5. Dependencesof (1) theionization, (2) electron detach-
ment, and (3) three-body attachment rates on the reduced
eectric field for room air at relative humidity of 30%.

with various values of the ballast resistance (from
100 kQ to 18 MQ); these calculations showed that the
value of the ballast resistor haslittle effect on the shape
of the I-V characteristics (in appearance, these charac-
teristics remain aimost the same).

The set of equations describing the discharge
parameters averaged over the current-channel cross
section has the form [4]

on, 10 _
S5+ G(S1W) = (Vi—vanevan,, (1)
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Fig. 6. Reduced -V characteristic of thedischargeindry air
(I'isthe current per pin) for Rc = 0.06 mmand h= (1) 5, (2)
10, (3) 15, and (4) 20 mm. The points correspond to the
experiment; the solid lines correspond to the calculation.
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Fig. 7. Comparison of the calculated and experimental dis-
charge radiation intensity for room air at relative humidity
of 30% and a current per pin of 39 pA. The calculation is
performed for different values of the contrast coefficient 6:
the solid, dashed, and dashed-and-dotted lines correspond to
0 = 0.5, 0.67, and 0.4, respectively. The fluctuating lines
show the experimental results.
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where the subscripts e, p, and n refer to electrons and
positive and negative ions, respectively; ne, n,, and n,
are the densities of electrons and positive and negative
ions; W, W, and w,, aretheir drift velocities; v;, v,, and
v4 aretheionization, attachment, and detachment rates;
e is the electron charge; €, is the permittivity of vac-
uum; and S(x) isthe running area of the discharge cross
section, which is agiven function of the coordinate x.

Thecurrent | inthe external circuit isfound from the
equation

U = Uy,—RI, (5)

where U and U, are the voltage at the discharge gap and
the supply voltage, respectively, and R is the ballast
resistance.

The boundary conditions for positive and negative
ions are evident: their densities vanish at the anode and
cathode surfaces, respectively.

The boundary conditions for eectrons at the cath-
ode (x = 0) are formulated through the secondary emis-
sion coefficient y:

J1e(0, 1) = yjy(0, 1), (6)

Where j = NW, j, = Nyw,,, and y = 0.01.
Equations (1)—(4) were solved by an implicit differ-
ence scheme with anonuniform spatial mesh (the mesh

Size decreased near the cathode). A detailed description
of the numerical schemeis presented in [6].

Upon calculating the distribution of the reduced
electric field across the discharge gap, we calculated
the distribution of radiation intensity in the discharge.
It was assumed that the first and second positive sys-
tems of nitrogen (B*M, and C°I1,, levels) make the main
contribution to the radiation and that the total radiation
intensity is proportional to the total excitation rate for
these levels. The excitation rate constants for these lev-
els were determined by numerically solving the Boltz-
mann equation for the electron energy distribution
function with the cross sections for these levels taken
from [7].

5. COMPARISON OF THE CALCULATION
WITH THE EXPERIMENT

Based on the numerical model described above, we
computed the |-V characteristic of the discharge under
study, the distribution of the intensity of the radiation
along the current channel of an individua pin, and the
change of the longitudinal structures of the electric
field, the components of the total current, and the
charged-particle (electron, ion, and negativeion) densi-
ties in the interelectrode gap with increasing the dis-
charge current.

A comparison of the computed reduced |-V charac-
teristics with the experiment is shown in Figs. 3 and 6.
It is seen that, for the parameters chosen, the calcula-
tion is in good qualitative and quantitative agreement
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 8. Longitudina profile of the reduced electric field
acrossthedischarge gap for different values of the discharge
current. The numerals correspond to the current values as
givenin thetable.

with the experimentally observed dependence of the
current on the discharge voltage.

The calculated distribution of the radiation intensity
acrossthe gap isalso in good agreement with the exper-
iment. In the experiment, we measured the normalized
distribution of the blackening of the film on which the
negative image of the discharge was produced (see,
e.g., Fig. 2). The degree of blackening D is related to
the radiation intensity K by the relationship (see [8])

D = 2008(logK —logK},- 105+ 1/0), (7)

where 8 isthefilm contrast factor and K, _ , o5 isthenor-
malizing intensity.

A comparison of the calculated radiation intensity
with the experiment is shown in Fig. 7. We recall that it
was assumed in calculations that the intensity of visible
radiation of the glow discharge is determined by the
total radiation intensity from the first and second posi-
tive nitrogen systems. A narrow peak near the coordi-
nate origin corresponds to the radiation from the cath-
ode sheath located near the vertex of the needle.

161
n,, cm™3
E
E
10° é 11
E
107k
105E !
0 1 1 1 1 1 1
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Fig. 9. Longitudina profile of the electron density across
the discharge gap for different values of the discharge cur-
rent. The numerals correspond to the current values as given
in the table.

6. CALCULATED LONGITUDINAL DISCHARGE
STRUCTURE

Poisson’s equation, together with the charge and
transport processes, determines the longitudinal pro-
files of the electric field and charged-particle density
across the gap. Comparing Figs. 8-12 to each other, we
can trace self-consistent variations in the electric field
and charge density in the interelectrode gap as the dis-
charge current varies. The computation was performed
for room air (the relative humidity was 30%) and an
interelectrode distance of 10.5 mm. The calculated val-
ues of the discharge current | and voltage U are pre-
sented in the table for different values of the supply
voltage (U,).

It is seen in Fig. 8 that the electric field within the
gap (outside of the cathode sheath) is maximum near
the anode. Theionization rateisal so maximum near the
anode. Note that the kink in the electric-field profile at
x = 0.35 cm, which is seen in the figure, is not physical
in nature but is dueto the particular shape of the current
channel used in the model.

The minimum of the electric field near the boundary
of the positively charged cathode sheath is caused by

Calculated values of the discharge current | and discharge voltage U for different values of the supply voltage Ug in room at

relative humidity of 30%
no. 1 2 3 4 5 6 7 8 9 10 11
Ug, kV 6 8 10 12 14 16 18 20 22 24 26
U, kv 5.93 7.90 9.86 | 11.81 1375 | 1566 | 1743 | 18.92 1997 | 2062 | 21.08
[, A 14 2.79 4.76 7.34 10.8 175 34.3 75.2 152 261 386
PLASMA PHYSICS REPORTS Vol. 26 No. 2 2000
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Fig. 10. Longitudinal profile of the contribution from the
electron current to thetotal current for different valuesof the
discharge current. The numerals correspond to the current
values asgivenin the table.

the high density of the electrons leaving the cathode
sheath (Fig. 9). The discharge current in this region is
carried predominantly by the electrons (Fig. 10). The
increase in the field with distance from the cathode is
explained by the attachment of electrons and the
decrease in their contribution to the total current
(Figs. 8-11).

Asthe discharge voltage increases, the profile of the
electron component of the current along the discharge
gap becomes nonmonotonic: after a decrease in the
region of low fields near the cathode, the electron flow
increases again in the region of high fields far from the
cathode. As the voltage increases, the electric-current
minimum shifts outward from the anode and the contri-
bution of the electron current to the total current
increases.

We note that the electron flow in the gap starts to
increase a field values at which the ionization rate is
still low compared to the attachment rate. This fact
indicates that the processes of destruction of negative
ionsplay an important rolein the growth of the electron
flow and the formation of the anode sheath.

Itisclearly seeninFig. 11 that the negative-ion den-
sity near the anode sharply decreases as the electric
field approaches the critical value corresponding to the
kink point of the I-V characteristics. Since the nega
tive-ion density near the anode well exceeds the elec-
tron density (n,/n.> 1), even aweak detachment (v <
Vv, V) significantly contributes to the electron-current
growth in this region and thus reduces the electric field
(and, correspondingly, the corona current) at which the
anode sheath arises.

Let us consider in more detail the conditions under
which the anode sheath isformed. Two processes occur

AKISHEYV et al.
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Fig. 11. Longitudina profile of the negative-ion density
acrossthedischarge gap for different val ues of the discharge
current. The numerals correspond to the current values as
giveninthetable.

in the anode sheath: the generation of the positive-ion
current j, via gas ionization and the almost complete
disappearance of the current j,, of negative ions entering
the sheath from the anode region (i.e., from a~1-mm-
wide region near the anode). Under conditions close to
the establishment of the anode sheath, the j, and j,, cur-
rents near the anode become comparable. In this case,
the divergences of these flows in the anode sheath also
become comparable. In other words, near the threshold

(np -n,— nn)/np
2 —
1 -

0

—1F

Fig. 12. Longitudinal profile of the space charge across the
discharge gap for different values of the discharge current.
The numerals correspond to the current values as given in
thetable.
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current |, the following equality must hold (see equa-
tions (2) and (3))

Vi = Vd(nn/ne) —Va. (8)

The numerical calculations show that equality (8)
holds near the kink point of inclination of the 1-V char-
acteristics, i.e., intheinitial stage of the transition from
the coronato aglow discharge. This fact also indicates
that the collisional detachment plays an important role
in the transition from the coronato a glow discharge.

Thus, the calculations show that, in amultipin elec-
trode system (i.e., under the conditions when the dis-
charge has a fixed cross section at the anode), the
plasma column in the glow discharge does not form
simultaneously along the entire interelectrode gap.
After the anode sheath has formed, the quasineutrality
conditions are first created near the anode. As the dis-
charge current increases, the region of quasineutra
plasma extends toward the cathode progressively cov-
ering the interelectrode gap (Fig. 12).

The parameters of the plasma column produced in
the gap are close to the parameters of a glow discharge
that we computed previously with the zero-dimensional
model [9].

7. CONCLUSION

Based on the results of experimental studies and
numerica calculations, we have traced the evol ution of
the parameters of a multipin negative coronaduring the
transition to the regime of a glow discharge at atmo-
spheric pressure.

The current range in which the glow discharge can
exist is experimentally determined.
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Abstract—The positive column and wall sheath in a gas discharge are studied with allowance for ion col-
lisionsin aplasmaand ion reflection from a solid surface under conditions of incompleteion neutralization.
The kinetic equation for ions in a positive column is reduced to a Fredholm equation of the second kind.
This makes it possible to solve the kinetic equation using a resolvent and thereby derive a single integrod-
ifferential equation for the potential, which isreferred to as a generalized plasma—sheath equation. Specific
versions of the plasma—sheath equation are obtained that take into account charge exchange of theionsin
aplasmaand the thermal spread in velocities of the ionization-produced ions. © 2000 MAIK “ Nauka/Inter-

periodica” .

INTRODUCTION

Oneof the problemsin classical physicsof agasdis-
charge that has remained unresolved is the problem of
calculating the parameters of the positive plasma col-
umn in therange of intermediate pressures at which the
ion motion toward the plasma boundary ceases to be
collisionless and classical ambipolar diffusion has not
yet come into play. The Langmuir—Tonks theory [1],
which implies that the ion mean free path A; is much
longer than the characteristic dimension R of the dis-
charge, yields correct results only for A; > 10R. The
Schottky theory [2] applies to the range A; < 0.03R.
Taking into account the so-called “anomal ous drift” of
the ions and assuming that the ion mean free path is
constant makes it possible to construct an analogue of
the Schottky theory but for A; < 0.3R. Further refine-
ments aimed at incorporating ion inertiainto the hydro-
dynamic approximation did not substantially extend
the theory to the range of lower pressures, nor did they
make it possible to pass over to the limit A; — o cor-
rectly. In [3], we derived a callisionless plasma—sheath
equation appropriate for describing the range of inter-
mediate pressures under the assumptions that the only
collisional mechanism for the ions is charge exchange
and theinitial energy of both charge-exchange and ion-
ization-produced ions is zero. Although we succeeded
in filling the gap in the range 0.03R < A; < 10R, some
guestions remain unresolved. First, using the method
proposed in [3], we can in principle generalize the col-
lisona plasma-sheath equation to the case in which
the ion mean free path depends on energy, but doing so
is complex and laborious. Also, it becomes more diffi-
cult to pass over to the classical Schottky theory, which
assumes that the ion drift proceeds in the normal
regime, i.e., the ion—atom collision frequency (rather

than the ion mean free path) is constant.! Second, we
are justified in exclusively taking into account charge
exchange processes (neglecting ion—ion elastic colli-
sions) only in the case of monatomic gases, while, in
gas mixtures, elastic collision cross sections are usually
larger than the charge-exchange cross sections, because
the electron structures of the colliding particles are dif-
ferent. Third, since this method fails to construct per-
turbation theory for the collisional plasma—sheath
equation, it isinappropriate for studying unsteady pro-
cesses and incorporating ion—neutral and ion—on elas-
tic collisions. The coallisional plasma—sheath eguation
cannot be used to allow for incompl ete ion recombina-
tion on the walls and its influence on the properties of a
positive column (PC). An alternative to the approach
proposed in [3] is the method for simulating particle
dynamics in a discharge plasma by modeling chemical
transformations with Monte Carlo calculations [4].
However, this method also fails to construct perturba
tion theory (e.g., to study the waves propagating in a
discharge plasma); moreover, it involves aconsiderable
expenditure of computational effort (in comparison
with the plasma-sheath equation).

Incorporating the above-mentioned processes will
require further refinement of the theory by way of solv-
ing the ion kinetic equation. This makesit possible not
only to determine the spatial distributions of the poten-

1 Theion mobilitiesin normal and anomalous regimes are different
because, in the first case, the stochastic velocity Vy; of the ionsis
higher than their directed velocity V. Consequently, it is stochastic
velocity that governsthe collision frequency v and ion mobility p,
which are both independent of the ambipolar electric field E; ina
plasma. In the case of anomalous drift, the ion stochastic vel ocity
is on the order of the ion directed velocity, so that we have v =

Ai/Vand P~ «/Ea'
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tial and particles but also to evaluate the ion velocity
distribution function (IVDF) at an arbitrary point in
space (in particular, at the wall, which is especialy
important from the standpoint of applications). In this
paper, we will show that solving the time-independent
kinetic equation systematically together with Poisson’s
equation and the equilibrium equation for the electrons
results in a hierarchy of integrodifferential equations,
which are similar in structure to the plasma—sheath
equation (they even go over to thisequation in acertain
limit) and can be used to examine the above processes.
Time-dependent equations of the perturbation theory
for this hierarchy are also integrodifferential equations.
The problem in question is of interest not only from a
methodological standpoint but also from the standpoint
of practical applications, because the parameter values
under consideration here are characteristic of plasmo-
chemical devices used in microelectronics[5].

1. MAIN MODEL ASSUMPTIONS AND BASIC
EQUATIONS

The main assumptions underlying our model are as
follows.

(i) The plasma column is nonuniform in one direc-
tion and occupiestheregion—L < x < L.

(i) The plasmain the PC consists of electrons, neu-
trals, and singly charged ions of one species.

(iii) The discharge has no impact on the spatial dis-
tribution of neutrals or on their temperature T,.

(iv) The electron velocity distribution over the PCis
Maxwellian with a coordinate-independent tempera
ture Te.

(V) The main ionization mechanism is direct ioniza-
tion by electron impact from the ground state, and the
main recombination mechanism is recombination on
the walls. Theionization-produced ions obey the veloc-

ity distribution function fi0 (V). For the plasma-—sheath

equation from [1], we have fiO (V) = &(V), where d(V)
is the Dirac delta function. Along with &(x), we will
also use the Heaviside step function 8(x) defined by
B(x)=1forx=0and B(x) =0 for x<O0.

(vi) Theions moving in a PC collide with neutrals;
each collision event can be regarded as either an elastic
collision or charge exchange between an ion and a neu-
tral.

(vii) lon=on collisions are neglected; otherwise, the
collision integral would be nonlinear in the IVDF and
the problem becomes far more difficult to solvein gen-
eral form. This assumption is not very strict, because,
in most regimes of the PC in agas discharge, the degree
of ionization is not too high and can be taken into
account using perturbation theory.

(viii) The electric field potentia in a PC is mono-
tonic.
PLASMA PHYSICS REPORTS  Vol. 26
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(ix) Correlations between the ions that are reflected
from the wall and neighboring ions are neglected.

Note that these assumptions, except for (vi) and (ix),
coincide with those made in [1, 2]. Which discharge
regime occurs depends on the details of condition (vi).
Condition (ix) differs from an analogous condition that
wasused in[1, 2] and implies 100% ion recombination
on the wall. Also, condition (ix) makes it possible to
take into account ion emission, i.e., suchion reflections
from the wall as a result of which not al of the ions
recombine into neutrals.

We describe the ions using the kinetic equation

ofn_

vo~ [ (1.1)

of e
aJr(VV)f—Mgv(p

where M isthe mass of anion, f(V, X) isthe IVDF, | is
the ion—ion collision integral, ¢ is the electric field
potential, and e > 0 is an elementary electric charge.

Under the above assumptions, the collision integral
in (1.1) can be written as

| = e+ 1y, 1o = nevi(T) V),

(<)

(1.2)
Iy = = [ (K, V) FV) =KV, V) (V) dv-

The first term in (1.2) describes the ionization-pro-
duced ions and the second term describes the loss of
fast ions dueto charge exchange, the appearance of new
ions viathe same process, and elastic scattering of ions
by neutrals.? The number of ion—ion collision eventsis
proportional to the squared distribution function, and
ion—-ion collisions cannot be described by formula
(1.2). Assumption (ix) allows us to write the boundary

2Expron (1.2) is a reduced Boltzmann collision integral
describing collisions between ions and particles of species j,
which are either electrons or neutral particles (see, e.g., [6]):

1V, V)

= —[dQdV (Vv -V )a(V -V, O (V) (V) (1.28)
+[dQdV(V =V DoV -V, 0) F(V) (V)

where f; is the distribution function of the particles of speciesj, )
is the scattering angle, and dQ = sinédédq) isasolid angle in
velocity space. The velocities V' and V} of the particles after
they have experienced a collision are governed by their velocities
V and V; before the collision event and by the angle 9 between
thevectors V- V;and V' — V]f . Thefirst term in (1.2) describes

the loss of ionswith velocity V due to their scattering by neutrals,
and the second term describes the appearance of new ions with
the same velocity due to the reverse process.
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condition for theions at thewall as
f(_an Vyv Vz’ L) |Vx>0

= Idv'x J'o|v'y Idv;r(vx, Vy Vo Vi Vi VI (13

X (V30 Vi Vi D)1 g+ Qi Vi V).

The function I is governed by the physical processes
on thewall. In the simplest case of 100% ion recombi-
nation (which was treated in the classical models of the
PC of a gas discharge, in particular, in the Schottky
model and the plasma—sheath equation), we have
I = 0.2 The last term Q(Vy V,, V,) describes ion emis-
sion from the electrode surface as aresult of, eg., the
ionization of neutral atoms hitting an electrode. This
emission, which is unimportant under conditions typi-
cal of the PC in a conventional gas discharge, can play
adecisiverolein the processes near the cathodein ther-
mal-emissive converters, in which the discharges are
ignited in alkali-metal vapors [7]. For convenience of
further analysis, we do not specify here the function I".

We describe the electron behavior using the foll ow-
ing equilibrium equation, which isaconsequence of the
relevant dynamic eguation without allowance for elec-
tron inertia

N = ngexp(edp/kT,), (1.4)

where Kk is the Boltzmann constant, n, is the electron
density, T, isthe electron temperature, mis the mass of
an electron, and n, isthe electron density at zero poten-
tial. The conditions under which formula (1.4) is vaid
were discussed in our earlier paper [8]. The ambipolar
electric field in a plasma satisfies Poisson’s equation:

d¢_ ed O
o 4T[e5n0 exp D(TeD

(1.5)

00 00 00 D
—[dv, [dVv, [adV,f(V,,V,, V)T
[ ] :
Equations (1.2)—(1.5) should be supplemented with
the boundary conditions for Poisson’'s equation,

d do _ 1

5 = 410, -n.eV:+ne(gV), (1.6)
X

xX=1L

dat ~ 4

where V; = ,/8KT,/1im is the most probable electron
velocity, o isthe surface charge density, and § is a vec-
tor normal to the boundary. Since the potential is spec-
ified to within an arbitrary constant, we can assume that

3 Note that F(V, V') in (1.3) is related to the probability y(V, V')
that the reflection of an ion from the wall is not accompanied by
its recombination into a neutral atom through the relationship

F(V. V) =YV, VOV, V..

DVININ et al.

itisequal to zero (¢|,-, = 0) at the plasma center. The
effect of a deviation of the electron energy distribution
function (EEDF) from a Maxwellian in the range of
high energies was studied by Baksht et al. [9]. This
deviation, which may substantially affect the magni-
tude of the electron current, can be incorporated into
our model by introducing the kinetic reflection coeffi-
cient y such that j, = j, x y. We aso assume that the
charged-particle density distribution in a plasmais sym-
metric and switch from the boundary conditions at the
wall x = —L to the conditions at the coordinate origin,

do| -, (1.6a)
dX x=0
gf_(_\_/_) =0 or
dx |x=o (1.3a)

f(Vo Vy, V) = F(=V,, Vy, V) -0

We denote the potential at the wall (which should be
determined from solving the basic equations) with
respect to the potential at the plasma center by ¢,,.

2. SOLUTION TO THE ION KINETIC EQUATION
AND DERIVATION OF ANALOGUES
OF THE PLASMA-SHEATH EQUATION

The time-independent ion kinetic equation (1.1)
with the collision integral (1.2) can be solved by the
method of characteristics. Since the ions are acceler-
ated when they movetoward thewall, we assigntherel-
evant ion velocity at the wall to each of the characteris-
tics. It is convenient to solve the kinetic equation by
dividing the IVDF into two parts describing the ions
with oppositely directed velocities,

. of(x,V,,V,,V,), V.20
(%, Vi Vyy V) = (Vi Vo Vi) Vo

, V, <0
@.1)
[p V, 20
Vo Vy Vo) = O
OF (% Vi Vi Vo), V<O

Since wedo not need f+intheregion V, <0 or f~inthe
region V, > 0, we set these functions to zero in (2.1);
however, they can al so be predefined in adifferent man-
ner. The function f* describes the particles that move
toward the wall, and the function f- refers to the parti-
cles moving away from the wall. Under the assump-
tions made, the kinetic equation (1.1) is equivaent to a
set of ordinary differential equations. In terms of the
functionsf*and f~just introduced, theion kinetic equa-
tion takes the form

af' e[vq)afg_

—_— *
(VV)f" = v (2.2)
"= 10+, 18 = nvi(T 7 (V),
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Iy = — dv;J'(K*(v,V')f*(V)

: (2.3a)

—K'(v, V)£ (V))dV,dV,

= [V [ (KV, V) (V) =KV V) 1 (vy)dv,av,,
0 —oo

1" = 10+15, 12 = nv (T 7 (V),
Iy = — dv'XJ'(K*(v,V')f‘(V)

! (2.3b)

—K(V', V) f(V))dV,dV,

~ [V [ (K, V) £(V) =KV, V) (V) dv,ave.
0 —o0

Thefirst integral term in (2.3a) [or in (2.3b)] describes
the scattering (or charge-exchange) events during
which the projection of the velocity of theions moving
either toward the wall or away from it onto the x-axis
does not reverse direction. The first part of this term
describes losses of the ions that have experienced a
scattering event, and the second part describes the
appearance of ions with new velocities as a result of
scattering. The second integral term describes ion
losses resulting from the scattering events during which
the projection of the ion velocity onto the x-axis
reverses direction. Conseguently, the first integral term
in (2.3a), which describes the losses of ions with a
given velocity due to scattering, correspondsto the sec-
ond integral termin (2.3b) and vice versa.

The functions f* should also satisfy the boundary
condition

(L, ViV, V)

[ 00 [

= J'dV'xJ' dV'yJ' dV;r (Ve Vy, Va Vi V3, V) (2.4)
0 —00 —o0

x £7(L, Vi, Vi, V) + Q(V,, V,, V).

The partial differential equation is equivalent to the
following set of ordinary differential equations (see,

eg., [10]):*

(2.5)

4 Although equations (2.5) are equivalent to a time-dependent
kinetic equation (ds is the time differential), below, we will be
interested only in steady-state processes.
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Characteristics of the kinetic equation on the plane of the
independent variables x and V.

The characteristics of equation (2.2) satisfy the equa-
tion

_edp, e
1V, dv, = v dxdx = qu), (2.6)
and the distribution function obeys the equation
£ |idX
df =+ v, (2.7)

Relationship (2.6) reflects energy conservation
aong the characteristics. According to assumption
(vii), the PC contains no trapped particles (i.e., particles
that do not collide with the wall) and the characteristics
on the plane of the independent variables V, and x are
as shown in the figure. Characteristics / and 2, which
pass through the origin of the coordinates (x =0, V, = 0),
are separatrices. We outline some features of formula
(2.5) that are important for practical applications. For-
mula (2.5) implies that, in the absence of sources, the
IVDF is constant along the characteristics. Collisions
between the particles cause the ions to pass over from
one characteristic to another (asaresult of scattering or
charge exchange) and lead to the appearance of ioniza-
tion-produced ions on the characteristics. On the other
hand, it iswell known that, during the acceleration of a
charged-particle beam in the absence of particle
sources, the beam density in space decreases. Thisillu-
sory contradiction stems from the fact that the distribu-
tion functionsare normalized in adifferent manner. The
constancy of the IVDF along the characteristics indi-
cates that the phase volume is conserved: the particle
acceleration is accompanied by stretching the elemen-
tary volume in phase space along the coordinate axes
(so that the density decreases) and squeezing this vol-
ume along the velocity axes.

Sinceall of the characteristics originate or terminate

at the wall, we will describe them by the relevant ion
velocities V,, on the wall.
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Now, we are going to derive an integral equation
that is equivalent to equations (2.5) and refers to an
arbitrary monotonic potential distribution, which is
assumed to be known. We integrate the equation for -
from the point x to the point a which the ions are
reflected (and their velocities vanish). Since the condi-
tion f=(x, 0) = f*(x, 0) holds at the reflection point, we
integrate f+ from this point to the point X. As a result,
we obtain the desired integral relationship. Note that,
for ions with energies high enough to overcome the
potential barrier, thefunctionsf+ and f - are equal to one
another at the center x = 0 of aPC by virtue of the sym-

metry relation =0, —|V,|) =f+(0, |V4]). The IVDFs in
both energy ranges can be related through asingleinte-

gra in terms of the Heaviside step function B(Vf ):
F (% Vil [Viol)s Vys V)

= (X VX, Vi), Vy, V)
(2.8)

+ E]’dx'e('\/l Vio—26(00) — o) I (X, Vy 1)

X

+J'dX'9(MV§o —2e(0(X) = o)1 "(X, Vy, ) E/Ionl :
0

Analogously, integrating equation (2.7) for f* from x to
L and then integrating the equation for f- from L to x
with allowance for the boundary condition (1.3) yields
the following relationship:®

F7(% Vyk Vo), Vi V)

00 00 00

= Idv; J’ dv, f dV,I (Vyo Vs, Vy Vi, Vs, V)
D e e

2.9)
x [17(x, Vy(% Vi), Vs, V)

L

+ [ dxB(MVZ — 26(0(x) — o))

X

X 17(%, VA%, Vo), F5(% Vo)) Eﬂvxon
+ E[dxe(MVS—Ze(cb(x) o))

- + D
x| (X, Vx(X! Vx0)1 f_(X, VxO)) %HVXO"

S Without loss of generality, ion emission from the wall, described
by the term with Q(Vy, Vy, V), can be regarded as an additional
internal source that producesions with velocitiesV, <O at X = L:

| add+(x' V) e

dd—
P70, Vi Vi V) = 8(x=L)V,Q(V,, V,, V).
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Equations (2.8) and (2.9) can be reduced to the follow-
ing equation for the IVDF:

f(X, V(X Vi), Vy, V)

00 [ [

= [dvifavy [ AV} Z(Vy, Vy, Vi, Vi Vs, Vi, X, X)

x £(x, Vi, Vi, Vi) (2.10)

© e w L
+ I dV'XJ'dV;,J'dV;J'dXZ(f(, X Vi Vy, Vy, Vs, Vi, V)
o 0

—0o

x [8(M Vg —26(0(X) — 0)) 1 ()]/ [V, -
SincethefunctionsZ(X, X, V,, V,, V,, V,, V,, V) and

Z(Vy V,, V,, V., Vy, V,, X X) are very cumbersome,
we will omit them to save space. Assumptions (ii)—(vii)
enable usto simplify (2.10) by dividing theion sources
into two groups: the sources associated with ionization,
which are independent of the IVDF, and the sources
associated with elastic collisions and charge exchange,
which produce ions at arate linearly dependent on the
IVDF. Simple but fairly involved transformations show
that equation (2.10) is equivaent to a Fredholm equa-
tion of the second kind for the IVDF:

F(%, V(% Vi), Vi V)

0 00 00 L

= Idvx' Idv'yfdv;J'deE(i, X Vo V,, V,, Vi, V5, V)
0 —0  —o0 0

x V(T FOV) + A[dVL [dV., [V,
[

—00

@.11)

L

x Ide'(i, X, Vi, Vi, Vi, Vi, V;, V)
0

x F(X, Vi(X Vo), Vy, V3)

where the factor A is equal to unity.® Thisindicates that
the solution to equation (2.11) necessarily exists and
can be expressed in terms of a Fredholm resolvent:

f(x, V)

L 0 0 00

= J’dx‘J'J'J'd?’V‘IEzA(x, X, V, V', ) (X, V')|A:1(.2'12)
0

—00 —00 —00

The tilde indicates that the resolvent is generally an
operator with respect to the potential; i.e., the resolvent

6 wWe will not write out explicit expressions for the functions GE
and G, because they are very cumbersome.
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depends not only on ¢(x) but also on all the derivatives
of the potential with respect to the coordinate. The
resolvent can be most easily evaluated iteratively, in
which case we arrive at the Neumann series

Ry(X, X, V, V") = ZG,IHl(X, X, V,VOA",  (2.13)

n=0

where
Gy(x, X, V, V") = G'(x, X, V, V),
Gh, (X X, V, V)= Ida’vldleL(x, x, V, V) (2.14)

x Gy (Xy, X, Vyq, V).

The construction of the operator G' implies that it
transforms the 1VDF to a distribution function that is
established after the i |ons have completed their motion
along the characteristics. 7 Since some of the ions mov-
ing along the characteristics recombine on the wall, the
seriesin (2.13) appearsto be an expansion in powers of
a small parameter equal to the probability (or, more
precisely, to the sguare root of the probability) for an
ionto returnto its starting point (possibly, with adiffer-
ent velocity). When both elastic scattering in the
plasmaand ion reflection from thewall are absent, only
thefirst termin the seriesin (2.13) is nonzero (see Sec-
tion 3.1). Generadly, at A = 1, the series may converge
fairly slowly. However, for most of the physically inter-
esting cases we will analyze below (e.g., for the
plasma—sheath equation [1, 12] or for the collisional
plasma—sheath equatlon [3, 8]), we can evauate
the resolvent exactly.2 The plasma states described by
the corresponding solutionsto theintegral equation can
be regarded as the initial states to which perturbation
theory has to be applied (possibly, with another small
parameter, e.g., the ion-to-electron temperature ratio).
For further analysis, convergence of the seriesin (2.13)
IS an important issue, because it ensures the desired
analytic properties of the resolvent and provides the
possibility of representing the IVDF through the source
terms for a prescrl bed potential with the help of rela-
tionship (2.12).° Representation (2.13) illustrates how
the resolvent depends on the potential,

R(9)
o (2.13a)
= Y [t A1 F(@09, 904, .., (x0).
n=1

7Strictly speaking, the operator should be applied to the IVDF
twice.

8 In the absence of ion collisions in a plasma, integration over the
coordinate is independent of integration over velocities, so that
equation (2.11) can be treated in velocity space V rather than in
phase space (X, V) (see Section 3.1 for details). In other words,
the order of equation (2.11) can be lowered by unity.
°To save space, we will omit a rigorous mathematical proof that
the seriesin (2.13) converges.
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Knowing solutions to equation (2.11), we can use the
relationships discussed above to calculate the IVDF
(2.12) at an arbitrary point in space and then reduce the
basic eguations to the following integrodifferential
equation for the potential:

E13¢(X)D

a9 .
4nenODexpD KT,

dx

[*] 00 00 L o0
—IdV J'dV J’dVJ'de'dV R(x, X, V, V', §) (2.15)

—00

x 12w, exp BRI
UkT, DD

which will be referred to as a generalized plasma—
sheath equation.

We supplement equation (2.15) with the boundary
conditions

_o, o
0@=0. G|

1
ZeVTnoexp%eﬁ_f_ ) neV,|,-,. = 0.

= 0'
(2.16)

The first condition reflects the fact that the potential is
specified to within an arbitrary constant, the second
condition implies the symmetry of the plasma column,
and the third condition indicates charge conversion at
thewall. It is convenient to obtain an expression for the
hydrodynamic ion velocity from the ion continuity
equation. As a result, the last boundary condition in
(2.16) becomes

X

E]’vi(x') exp g)z;(_l_):)%jx

0 (2.162)
De¢(x)m§ .
x=L

1
—2VTPET O

Hence, we have formulated the eigenvalue problem for
determining the potential distribution in the PC of agas
discharge. The problem appears to be nonlinear and
nonlocal with respect to the potential. The eigenvalue
of the problem is the ionization rate in a plasma.

Equation (2.15) is a version of the complete
plasma—sheath equation, which was derived by Lang-
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muir and Tonks [1] in the form

(; (I) = 4T[e%noexpgel?_l(_x)g
X
2.17)
o e (X)L
Jv.ga" oo, 0]
0

Expression V(x, X) = /(2e/M)(d(X) —d(X)) con-
verts equation (2.17) to the familiar plasma-sheath
equation. Langmuir and Tonks[1] showed that neglect-
ing the second-order derivative of the potential and
using the expression V,(x) = W,E(X) transforms equation
(2.17) into the ambipolar diffusion equation. Below, we
will analyze some models that make it possible to con-
sider the intermediate range A; ~ 1. Note that Langmuir
and Tonks excluded ion emission and incomplete ion
recombination on the wall from the anaysis. We
emphasize that, in many cases of practical importance,
the kernel of equation (2.15) is degenerate, so that this
equationiseasier to solve (its solutions can also be used
as initial states in implementing the agorithms based
on perturbation theory).

The above analysis may be generalized to the case
of discharges maintained externally by anionizer or by
ion emission from the wall [12]. Let the density of the
ionsthat have velocity V and are produced by an exter-
nal ionizer at the point x be N(x, V) and let the distribu-
tion function of theions emitted from thewall be Q(V).
Then, by virtue of charge conservation, the density of
the electrons that originate at the same point is equal to
the integral of N over velocities. In this case, equation
(2.15) hasthe form

do _
& 4Tte[noexpDkT

J’dV IdV IdV
J'dV DR x V, V', 0)Q(V) +J'de(x X, V, V', b)
(2.18)

e (x)0

. 000
Ok, 0F NOGVIOOD

udd

x%».nof (V) exp
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and the boundary condition (2.16a) becomes

De¢ )0

0
J'dV

1, B
- J’d3VVXQ(V)—ZrVTe : a = 0.
Xx=L

0.0 N(x V)D
O EM(X)e
e

(2.19)

In accordance with the footnote to formula (2.9), R?
can be expressed in terms of R as

R0V, V', 6) = RO LV, V', )8(=V)V,. (2.20)

Below, we will consider specific versions of the bound-
ary-value problem (2.14)—(2.19) for a PC with 100%
ion recombination on the wall. The equations that refer
to various models of ion emission and incomplete ion
recombination on the wall and describe the influence of
these processes on the properties of a PC will be con-
sidered in subsequent papers.

3. PLASMA-SHEATH EQUATION
FOR A PC WITH 100% ION RECOMBINATION
ON THE WALL

A version of the boundary-value problem (2.2)—
(2.4) that assumes 100% ion recombination on the wall
and in which the Fredholm resolvent can be obtained in
an explicit form is the most important and was studied
first. The ssimplest version of the model problem is the
one described by the plasma—sheath equation derived
by Langmuir and Tonks as early as 1929 [1].

3.1. Plasma—Sheath Equation

We work from assumptions (i)—(v) and (viii) and,
following Langmuir and Tonks, assume that, first, the
neutral pressure is low enough (the mean free path is
shorter than the transverse dimensions of the plasma
column) to ignore ion—on collisions (mathematicaly,
this indicates that I, = 0) and, second, the ions do not
recombine into neutrals as they are reflected from the
wall (I = 0). In this case, the resolvent for the kinetic
equation has the form

ROG X, Vi Vi) = B(X =X)B(MV; —2e($(X) — $(x)))/ «/V'xz—(Ze/ M)(@(X) — $(x))B(=V,)

x @6%&— IV 26/ MYO() — 90N+ BV, + V. - (2¢/ M)(O( —¢(x'))5§

+ 8(x=X)B(V)B, — V2~ (26 MY(O() B0 AV, — (26IM)(B() (X)),
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and

R, V., V2) = B(X —x)8(MV.

—2e(6() - (L)) )VX/JV'XZ —(2e/M)(6(x) - (L))

x @6%&— V2 - 26/ Y909 - (L)L

#5014 V2 - 26/ M)B(9 —¢(L>>E§

Langmuir and Tonks also assumed that the ions origi-
nate with azeroinitial velocity, |.=nV;(To)d(V), so that
we have

f (% Vi(X, Vx), Vy, V) =0, 3.1
F1(% Vi Vi V) = [an()v,(T
3.2)
2
x 85, — EB5(0(0) - ¢(x))5” EB(V,)3(V,)/ V.
Theion density is calculated from the formula
n(x) = J’ J’ dv,av,dVv,((f (x, Vy, V,, V)
000
+ 1%V, V,, V) (3.3)

= JLaxn)viTe/ ((9(x) —0(x)(2e/M))"}.
0
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As is expected, the plasma—sheath equation with the
potential-dependent electron density (1.4) coincides
exactly with the equation derived by Langmuir and
Tonks:

d2¢ [13¢(X)D
o 4nenODexp OrT KT,

(3.4)
¢(X) ¢(X))D D%l

3.2. Plasma—Sheath Equation with Allowance
for the Finite Energy of the Produced lons

A first attempt at incorporating the finite velocity
with which the ions are produced was made by Lang-
muir and Tonks [1]. They showed that the relevant cor-
rection is maximum at the center of the plasma column,
whereitisonthe order of T;/T,. In the case at hand, we
begin with reducing equations (2.8) and (2.9) to

(X, VX, [Vid): Vy, V)

X

= (% V%, [Vid)ls Vi V) + Ie(lvlvé —2e(0(X)
0 (3.5)
—do))NVi(F7(X, V) + £77(X, V,0)dX/ [V, (%, Vi)

L

F7(% V% Vi), Vi, V) = je<Mv§— 2e(6(X) s

—0(X)))NeV;i F (X, VIAX/ [V, (X, [Vyo])] -
Consequently, we have

(0 V) + 177X, V) BMV - 2e(9(X) — (X))

n(x) = %’x N(X)V; dedV

! WV =263 — d(x))/ M

3.7)

2177(¢, V)B(MV* — 2e((x) ¢(X)))D

L
+ [n(X)v;dx [dV'
J I =
so that the plasma—sheath equation becomes
S 0 ()
&’ () )D g DT
= 41en ex 0 Vi dx'[dv'e

LT V) + ff*(x', V)BMV* — 2e(d(x) — 9(x)))
V2 - 260000 -4/ M

w 20091 (3-8)
OkT, O
J’ dx’ J’ dVv'e
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—2€6(0(x) =0 (x))/M D

210 V)MV — 2e(6(x) - LC))]eE
JVZ = 26(0(x) - 0(x))/ M o

Usudly, thereis no reason to assume that in aweak eec-
tricfield in aplasmathe distribution function of theioniza-
tion-produced ions is anisotropic and coordinate-depen-

dent. Therefore, we can set 2 (X, V) = (X, V) =
fio(\/): fio(—\/) in order to simplify equation (3.8) to
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d? 0 B s
d—)j; = 4neno[p ‘ —vIdedV' ‘
3.9

21 (V)BMV — 2e(0(x) - E))E
V2= 26(0(x) — $(x))/ M i

An analytic analysis of the solutions to equation
(3.9) is nontrivial, because the ion-density decrease
associated with the fact that theions originate with non-
zero velocitiesis partially balanced by theinflux of ions
having negative velocities and moving away from the
wall. Conseguently, we restricted ourselves to obtain-
ing numerical estimates with the help of perturbation
theory. Our estimates showed that the thermal spread in
velocities of the ionization-produced ions raises the
ionization rate required to maintain the discharge;
moreover, in order of magnitude, we obtained dvi/v;, ~
T,/T.. In gas discharges, the T./T; ratio usualy lies
between 100 and 1000, so that, for dischargesin planar
geometry, the correction introduced by the ion thermal
motion isless than 2%.

3.3. Collisional Plasma—Sheath Equation

A collisional plasma—sheath equation was derived in
our earlier paper [3]. In addition to assumptions (i)—(ix),
we assume that the initial energy of the charge-
exchange and ionization-produced ions is zero and all
of the ions hitting the wall recombine on it. If the
charge exchange rate depends on ion velocity, then we
have

Ie = nevi(Te)é(V)’

00

(3.10)
N T I (ve(V) F(V)A(V) —vi(V) F(V)S(V))dV",

where v;(T,) is the ionization rate and v,.(V) is the
charge exchangerate, in which case equations (2.8) and
(2.9) with zero velocity components V, and V, become

f7(x, V,) =0,
F(x, V) = —[dxv (V) f(X, V,)/|Vy
0

X 00

+IdX'J'dVLVr(V;) F(X, VOV, — (2e(d(x)
(3.11)

—0(x))/ M)y v + [axndx)vi(T)
0

x 8(V,— (26(0 () 0 (9)/ M) )/ |V{.
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Equation (3.11) can be solved either numerically or by
iteration,

X

R CAVARE foxndx)vi(To
0

Vr((26(0(X) —¢(X ))/M) )EL

X exp
DI (2e(d(x) - (x"))/ M)

D% V) = 19 V)
+ Idx‘ Idvxvr(vx) O, v
(3.12)
V((26(0(X) =9 (X’ ))/M) )EL
(2e(d(x) — (x"))/ M) "2

X exp EI—I

"%, V) = £ V)

+ Idx‘ J’dVer(Vx)[ FOx, V) = 1O (x, VI

Vi((2e(0(X) = §(x")/ M> )D... .
(2e(d(x) —d(x"))/ M) "2

If the ion collision frequency is energy-independent,
then we can substitutethe seriesin (3.12) into Poisson’s
equation in order to obtain an equation that formally
describes the normal regime of ion drift motion. How-
ever, since we neglected the thermal spread in veloci-
ties of the ionization-produced and charge-exchange
ions, this equation does not reflect the physical essence
of the normal drift regime. If the ion—neutral charge-
exchange cross section is energy-independent, then we
can sum up the above series to obtain an explicit
expression for the resolvent,

X exp [-)—J'

EB(V — J(2e/M)((X) —$(¥))

(%, V dx
Vo = f J(2e/M)($(X) - (x))
W X )
X e‘(X_XI)MEVi(Xl %J‘dx vi(x")e o DD

In [3], this expression was obtained in a different way:
instead of the kinetic equation, we used Newton's equa-
tion and the continuity equation and exploited the

methods of probability theory.
2000
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Inthis case, theion density is

—(X=X)I\;
") _f DJ(ze/M)(cb(x) )
0 ed(x) X ed(x) DD (3.14)
x E\;i(x')ek ) )%J'dx"v (x"e e

Substituting the expressions for electron and ion densi-
ties into Poisson’s equation, we arrive at the desired
integral equation for the potential:

d2¢ _ red( )m
o 4Tren0 DexpD KT,

e BP(X=X)/A)
I Taemiae -om)
e (<)o X ¢(X)D

O OkT, O III|:||:|
xDue "+ Lfaxviee o
0 i 0d

(3.15)

In [3], this equation was referred to as a collisional
plasma—sheath equation. Since the ion thermal veloci-
ties are zero, this equation applies to the anomalous
regime of ion drift and fails to describe the normal drift
regime. The method for solving the collisional plasma—
sheath equation wasdescribed in detail in [8], wherewe
also discussed the range of PC parametersto which this
equation is applicable.

CONCLUSION

We have proposed a method for solving the problem
of maintaining the PC of a gas discharge. The method
consists of the following. The ion motion is described
by the kinetic equation, which is solved by the method
of characteristics. This allows us to arrive at an inte-
grodifferential equation for the potential, which is
referred to as a generalized plasma—sheath equation,
because the familiar plasma—sheath equation, which
describes collisionless PCs, appears to be its specific
version. With this approach, it is possible to take into
account incomplete ion recombination on a solid sur-
face, elastic ion scattering, and charge exchange and
also evaluate the IVDF at an arbitrary point of the dis-
charge (in particular, at the wall, which is especialy
important from the standpoint of practical applications
in the area of low-temperature plasma physics). We
have obtained some particular versions of the plasma—
sheath equation that generalize the Langmuir—Tonks
equation and take into account charge-exchange
recombination between ions and neutrals in a plasma
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and the thermal spread in the initial velocities of the
ioni zation-produced ions.

The integrodifferential equation derived makes it
possibleto calculate the spatial parameters of agasdis-
charge plasma over a wide range of pressures—from
the regime of collisionless ion motion (the Langmuir—
Tonks regime) to the regime of ambipolar diffusionina
strong electric field of the space charge—and take into
account both ion emission and incompl ete ion recombi-
nation on the wall.

The rigorous mathematical approach taken in deriv-
ing the plasma—sheath equation allowed usto construct
a systematic perturbation theory for this eguation,
which had not been done before.

Since the mechanisms for conversion of the electric
field energy into electron energy were discarded, the
above analysisis also valid for RF and microwave dis-
chargesin the regimesin which the nonlinear processes
in the sheath are unimportant.

The results obtained can be used, in particular, to
analyze the processes in low-pressure plasmochemical
reactors.
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Abstract—Results are presented from studies of the characteristics of a transverse volume discharge in a
Ne/Ar/SiH, mixture at pressures of 5-35 kPa. It is shown that Sil 288.2-nm, Hy 486.1-nm, and Nel 585.3-nm
lines and H, Lyman bands can be used to monitor the process of destruction of silane molecules. The obtained
porous film, consisting of the products of SiH, destruction, is of interest for yielding siliceous fullerenes and
for application in optoel ectronics. © 2000 MAIK “ Nauka/Interperiodica” .

Thin silicon films are produced by depositing sili-
con atoms from an Ar/SiH, mixture onto a heated sub-
strate. For this purpose, either high-power excimer
lasers [1] or high-frequency low-pressure (<0.1 kPa)
discharges[2] are usually used. Of particular interest is
the synthesis of nanocrystalline films [2] or porous sil-
icon, whose luminescencein the visible spectral region
[3] can find application in optoel ectronics. The use of a
transverse volume discharge (TVD) makes it possible
to substantially increase the plasma electron density (in
comparison with high-frequency low-pressure dis-
charges), the pressure of the working gas (aswell asthe
content of SiH, moleculesin it), and the volume of the
reaction zone. In TVD plasmas, conditions can be cre-
ated that are favorable for the synthesis of siliceous
fullerene molecules similar to carbonic atomic struc-
tures, such as Cg, and C,,. The most appropriate work-
ing mediafor the synthesis of such molecules are those
based on helium or neon plasmas at pressures of
10-30 kPa[4]. In [5], results are presented on the syn-
thesis of porous silicon compounds in laser sparks in
mixtures of inert gases with silane molecules at high
pressures (P = 100 kPa). In [6], we studied the optical
characteristics of aTVD in an Ar/SiH, mixture in the
200-600-nm spectral region at pressures of P < 10 kPa.

In this paper, we present the results of studying the
optical characteristics of a plasma produced in aTVD
in a Ne/Ar/SiH, mixture. The emission spectra in the
130-600-nm spectral range and the resource character-
istics and dynamics of the emission from excited neon
atoms and the products of destruction of SiH, mole-
cules are studied. SiH, molecules are electronegative
[7]; this property isimportant for both obtaining TVDs
in the regime of prebreakdown multiplication of elec-
trons [8] and using these molecules as a Penning addi-
tion in emitters based on Ne(3s-3p) transitions.

A transverse discharge with spark UV preionization
was ignited in a polyethylene pipe with an inner diam-
eter of 14 cm; the plasma volume was 54 x 2.0 x

0.7 cm?. An LC generator initiating the TVD triggered
a 40-nF storage capacitor and a 34-nF sharpening
capacitor. A TGIl 1000/25 thyratron was used as a
switch. The TVD characteristics in the 220-600-nm
spectral region were measured with a diagnostic com-
plex described in [6, 8]. VUV radiation was studied
with the help of avacuum monochromator based on the
Seia-Namioki scheme. The plasma radiation was out-
put through a CaF, window, which allowed measure-
ments in the spectral region AA = 130-350 nm, and was
recorded by an FEU-142 photomultiplier with a LiF
window.

In the emission spectra of the TVD plasma, we
observed a broadband emission in the 170-400-nm

range, which can be attributed to H> and ArH* mole-

cules. The most intense lines were Sil (3 p21D2—4sle )
288.2-nm and Hg 486.1-nm lines. In the VUV spectral

region, the most intense lines were H> Lyman bands

(AN = 140-160 nm). Weak bands of Si3 molecules
were detected at A < 200 nm. In TVDs ignited in a
freshly prepared mixture, the radiation from silicon
atomswas dominant in theinitial stage of discharge. As
silane was decomposed, H; and Hg line radiation
became dominant.

The regime with prebreakdown multiplication of
electrons, which was observed in TV Dsin Ne/SF mix-
tures [6], was not obtained in silane-containing mix-
tures. Thisisexplained by both the small effective cross
section of dissociative attachment (o <2 x 10718 cm?)
and the specific character of the energy dependence of
the cross section (a narrow maximum at an electron
energy of 89 eV) [7].

Figure 1 shows the intensity of Nel 585.3-nm line
radiation and emission from the products of SiH,
destruction asfunctions of the number of TV D pulses (n)
in Ne/Ar/SiH, mixtures with different contents of Ar
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and SiH,. The behavior of the brightness of Lyman
bands and continuum of hydrogen moleculesis similar
to the dependence of the intensity of the Hg line on the
number of TVD pulses. As n increases to =2(0.5-1.0) x
103, the intensity of the Sil 288.2-nm line falls off
sharply, indicating that silicon precipitates almost
completely. At the same time, the intensity of the
Nel 585.3-nm line increases substantially. This is evi-
dence of the efficient quenching of Ne(3p) atoms by
silane molecules and the main gas-phase products of
silane conversion in a plasma, which proceeds until the
complete destruction of these products. Hence, this
neon line can be used for monitoring the destruction of
SiH, in the plasma under study. As the silane content
increases, the intensity of emission from Si and Ne
atoms decreases.

Figure 2 shows the waveforms of the voltage, the
TVD current, and the intensity of emission from
plasma componentsin different stages of destruction of
a silane-containing plasma. The TVD current oscil-
lates, and its maximum amplitude (for adischarge volt-
age of 5-20 kV) is in the 5-15-kA range. The initia
part (h) of the current time profile is associated with the
charge of the sharpening capacitor, as in TVDs in
He(Ne)/NF; mixtures [9]. The amplitude and duration
of the pulses of Sil 288.2-nm line radiation are maxi-
mum at n = 1-10, which corresponds to the shape of the
resource characteristic of the emission from Si* atoms
(Fig. 1). The maximum of Si* emission was observed
after thefirst half-wave of the discharge current, which
can be related to the dissociative excitation of SiH, and
the main products of its conversion in aplasma, such as
Si,Hg and Si,H, [7]. The duration of Hg and Ne* line
radiation attained 300-320 ns. The maximum intensity
of Ne* radiation was observed at the front of the dis-
charge current, whereas the maximum of Hg radiation
was observed in the afterglow. Such behavior of neon
radiation is associated with the electronic mechanism
of the excitation of Nel atoms in the initial stage of a
TVD, whereas the dissociative-excitation and recombi-
nation reactions most probably are responsible for the
Hg line radiation.

After 10° TVD pulses (10* pulses for each freshly
prepared mixture), the inner surface of the discharge
chamber was covered by athick (d = 0.5 mm) brown
porous film similar to that synthesized in laser-spark
experiments. An analysis of this film [5] showed that it
has a characteristic structure constant of 50-100 nm.
An X-ray structural analysis of the porous silicon com-
pounds synthesized in a TVD showed that they have a
complicated structure with a structure constant of d =
100 nm. As compared to alaser spark, aTVD makes it
possible to lower the cost of the synthesis and increase
the yield of porous siliceous products (presumably,
compounds of the Si/SiO, or Si/SiH, type, where
m, n= 1-60), among which there can be Siq, and
SigHg fullerenes.
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Hence, we have shown that the Sil 288.2-nm, Nel
585.3-nm, and Hy 486.1-nm line radiation and the H,
Lyman band can be used to monitor the process of
destruction of silane moleculesin aTVD plasma. Also
demonstrated is the possibility of creating a plasmo-
chemical reactor based on arepetitive TVD for the syn-
thesis of porous siliceous-containing compounds that
can find application in optoelectronics.
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Abstract—Numerical aspects of the method for diagnosing a tokamak plasma with the help of the discrete
Alfvén wave spectrum are considered. It is shown that this diagnostics should be supported with highly accurate
computational tools. A code suitable for implementing the relevant calculation scheme is developed, which
makes it possible to identify the eigenmodes numerically with the desired accuracy. The code can also provide
recommendations for performing tokamak experiments and can be used to study the possibility of auxiliary
plasma heating by Alfvén waves. The discrete Alfvén wave spectrum, radial profiles of the energy deposited in
the plasma, and the dependence of the Alfvén mode frequencies on the damping rate and on the class of the
current-density profiles chosen are calculated for the first time for the T-10 tokamak. It is also shown that
the diagnostic method proposed makes it possible to obtain reliable information about the plasma parameters.

© 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

It iswell known that such tokamak plasma parame-
ters as the current density profile and the central safety
factor q are very difficult to measure. The diagnostic
methods developed so far for determining the safety
factor are based on measuring the poloidal magnetic
field, which governsthe central g value. Inrecent years,
the poloidal field in some tokamaks has been measured
by using the Zeeman [1] and Stark [2, 3] effects in
emissions of hydrogen, lithium, and helium neutral
diagnostic beams specialy injected into the plasmaand
also by monitoring the Faraday rotation of the plane of
polarization of the probing laser beam [4].

The above active particle diagnostics, being the
most fundamental and universal methods, provide
information not only about the safety factor but also
about some other important parameters. On the other
hand, in view of the universality of particle diagnostics,
they provide measurements of the q profile with an
insufficiently high temporal and spatial resolution and
require fairly complex and expensive equipment.

The diagnostic technique for measuring the central
g value with the help of the discrete Alfvén wave
(DAW) spectrum was implemented for the first timein
the TEXTOR tokamak in 1990. In the TEXTOR
plasma, the Alfvén eigenmodes were excited by a
poloidal antenna[5].

An important feature of this diagnostics is that it
combines experimental methods with numerical analy-
Sis.

We have devel oped a simulation code aimed at iden-
tifying the eigenmodes of the DAW spectrum (mea-

sured experimentally in tokamak plasmas in order to
determine the radial profiles of the current density and
effective ion mass).

An important advantage of the diagnostic method
proposed here is that it requires simple experimental
equipment. The experimental scheme proposed for
implementing this diagnostics in T-10 is shown in
Fig. 1 and includes the following units.

(@ A loop antenna for exciting the Alfvén eigen-
modes in a plasma. The antenna is oriented poloidaly;
the poloidal angle span of the antenna is 90° (which
corresponds to an antenna length of 58 cm in the pol oi-
dal direction) and itstoroidal angle spanis 1.9° (which
corresponds to an antennawidth of 5 cm in the toroidal
direction).

(b) Two magnetic probesinstalled in the same poloi-
dal cross section at diametrically opposite positions in
order to record eigenmodes with even and odd poloidal
numbers m. To distinguish between eigenmodes with
even and odd toroidal numbersn, it isrequired that this
cross section be opposite to the cross section where the
antennais arranged.

(c) A generator unit capable of sweeping the fre-
guency from the minimum value 0.8 MHz to the maxi-
mum value 8 MHz over atime interval of 20 ms. The
generator is equipped with a broadband amplifier that
ensuresthe desired level of radiation power fed into the
plasma (100 W, the antenna current being 14.4 A).

(d) Two synchronized detectors.

(e) A recording and storing system based on pro-
grammable CAMAC interfaces and a persona com-
puter.
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Antenna Probe 1
Probe 2
GEN SD1 SD2

Eme—

Fig. 1. Schematic of the experiment for the T-10 tokamak:
GEN is a broadband amplification unit with frequency
sweeping, SD1 and SD2 are synchronized detectors, and PC
isarecording and storing system.

In the course of discharge, the diagnostics proposed
can provide several consecutive sweeps, thereby mak-
ing it possible to trace the time evolution of the radial

profiles q(r) and A.q(r).

In Section 2, we briefly review previous theoretical
and experimental results. We also present the disper-
sion relation for the continuous part of the Alfvén wave
(AW) spectrum in order to obtain a rough estimate of
the eigenfrequencies of the DAW spectrum. In Section 3,
we justify the technical details of the experimental
diagnostic scheme proposed for use in the T-10 toka-
mak. We aso list important new results that were
obtained with our code and differ from those found pre-
viously. In Section 4, we analyze what might be the
classes of current profilesfor which the g profile can be
reconstructed. In Section 5, we present the methods for
finding the central value q(0) of the safety factor and
determining the radial profiles of q(r) and effective ion
mass A.(r). In Section 6, we describe the stepstakenin
improving the numerical model. We control the reli-
ability of our calculation scheme by comparing the test
simulation results with experimental data from the
TEXTOR tokamak. We systematically examine the
cases of cold (T; . = 0) and real plasmas. We present
numerical results obtained for the T-10 tokamak with
the relevant boundary conditions. We focus on the
accuracy of determining the g(0) value, the AW eigen-
frequencies as functions of the damping rate, and the
stability of the plasma—antenna system against varia-
tions of the external parameters. An overall summary is
givenin Section 7. In Appendix 1, we justify the choice
of the main parameters for the diagnostic method pro-
posed and estimate their values using T-10 as an exam-
ple. In Appendices 2-5, we present the details of the
mathematical apparatus underlying our numerical
model.

2. THEORETICAL AND EXPERIMENTAL BASIS
OF THE CODE

2.1. Numerical Results Obtained in Earlier Sudies

Appert and Vaclavik [5] derived the basic set of
equations for radial profiles of the AW field compo-
nents E and B, for the case of a cold, ideally conduct-
ing plasma. All of these equations were treated in local
cylindrical coordinates with triply orthogonal unit vec-
torse,, e; = [ee,], and e = B,/B,, where B, isthe equi-
librium magnetic field. The basic equations were inte-
grated numerically using the Runge-Kutta method.
Appert and Vaclavik [5] obtained

(i) the absorbed AW power and the position of the
resonant layer asfunctions of the axial wavenumber for
m = 1 and for different values of the ratio w/w,; of the
generator frequency to the ion cyclotron frequency,

(ii) the absorbed AW power as afunction of the posi-
tion of the resonant layer, and

(iii) the absorbed power as a function of the ratio
w/w, of the generator frequency to the ion cyclotron

frequency.

They also showed that the radia profile of the
absorbed power is peaked at the radius 0.15a (where a
isthe plasmaradius) for w/w, = 0.075.

Ross et al. [6] humerically integrated the set of dif-
ferential equations for the AW field components E, and
E; in the same cylindrical coordinates as in [5]. They
obtained the radial profiles of E, and E; and the AW
power deposited in a plasma for the (-2, —1) eigen-
mode.

In the basic paper [ 7], Descamps et al. described the
methods for determining the q and A profiles in the
TEXTOR tokamak and presented the final results of
numerically solving the problem of identifying the
eigenmodes and determining g(0).

The results obtained in most of the cited papers are
difficult to reconstruct and unsuitable for comparison
because of the lack of intermediate manipulations.
Those papers presented only afew preliminary experi-
mental results, which are, nonetheless, very important
for checking the reliability of the numerical method
developed here. For example, we will compare the
eigenfrequencies of the DAW spectrum that were com-
puted using our code for the TEXTOR parameters with
those measured experimentally in the TEXTOR toka-
mak. Note that the initial conditions were described
incompletely in the cited papers.

Unlike the previous investigations, we will present
here the intermediate manipulations and the results
obtained in more detail for the benefit of readers who
may thus check whether the problem under discussion
isformulated and solved correctly.
PLASMA PHYSICS REPORTS  Vol. 26
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2.2. Wentzel-Kramers-Brillouin Method

Mahajan et al. [8] derived the dispersion relation for
the DAW spectrum in the MHD approximation and
applied the Wentzel-Kramers—Brillouin (WKB)
method to solve an eigenvalue problem for the case of
an inhomogeneous cylindrical plasma with the bound-
ary conditions stated at infinity: E(r = o) = 0. They con-
sidered exclusively radially localized modes, i.e., those
for which the solution outside the localization region is
exponentially small. However, when applied to the
modes excited near the plasma boundary, this disper-
sion relation yields incorrect results. To improve the
accuracy to acceptable levels, the boundary conditions
should be substantially modified. The dispersion rela-
tion from [8] is obvioudly inapplicable to the modes
localized at the central plasma region.

2.3. Experiments Aimed at Choosing Antennas
for the Excitation of Alfvén Eigenmodes

Appert et al. [9] studied toroidal coupling between
purely cylindrical modes and modes with the highest
poloidal numbers min the TCA device.

Collins et al. [10] showed experimentally that the
antenna structure consisting of two antenna arrays (one
array above the discharge chamber, the other below)
excites modes with all toroidal numbers n and either
odd or even poloidal numbers m.

In the TCA experiments, the eigenmodes of the
DAW spectrum were recorded from the resonance
peaksin the antennaload resistance as the plasma den-
sity changed with time, in the course of RF pulses at a
fixed frequency. The profiles obtained are illustrated
schematically in Fig. 2. Profile a was obtained for
antennaarrays operating in opposite phases, and profile
b was obtained for the same phases of the currents flow-
ing in the antenna arrays. In other words, antenna
arrays were turned on in opposite phases in order to
excite modes exclusively with odd poloidal numbers,
while switching on the arrays in the same phase was
aimed at exciting modes exclusively with even num-
bers m.

The experimental results show that the tendency to
excite purely poloidal modes with either even or odd
numbers m by two antenna arrays offers no advantages:
because of the toroidal feedback coupling between two
different, purely cylindrical modes, toroidally coupled
modes (1, 2) and (3, 0) that were excited indirectly in
case a turned out to be even somewhat more intense
than those excited directly by the antenna arrays in
caseb.

The TEXTOR experiments on the DAW spectrum
were carried out with an antennain the form of a poloi-
dally oriented semi-ring placed in the limiter shadow.
Earlier, this antenna was used in the TEXTOR experi-
ments on auxiliary plasma heating by magnetosonic
waves.
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Fig. 2. Experimental profiles of the antennaimpedance ver-
sus the plasma density for the TCA device: the antenna cur-
rents are a—in opposite phases and b—in the same phases

(N, isthe electron plasma density per cm™ averaged over
the plasma-column axis and R,y is the antenna resistance).

Hence, in real experiments carried out in some toka-
maks with diagnostic purposes, the eigenmodes of the
DAW spectrum were excited by antennas with signifi-
cantly different geometries [7—10]. The antenna geom-
etries were chosen so as to minimize technological dif-
ficulties and to make the assembly of antenna arrays
adequate for experiments. Although, in each case, the
antenna arrays excited only some of the Alfvén eigen-
modes, the qualitative and quantitative features of the
DAW spectrain real experiments with low input pow-
ersdiffered only slightly. Thiscircumstance impliesthe
possibility of energy exchange between the eigen-
modes via such mechanisms as toroidal feedback mode
coupling and collisions between particles. It is these
mechanisms that result in the excitation of essentially
all eigenmodes of the DAW spectrum.

Based on what was said above, we can conclude that
the antenna geometries for practical or theoretical pur-
poses should be properly chosen so as to minimize
technologica or computational difficulties, respec-
tively. Also, the characteristic sweeping time for the
frequency of the antenna current should be much longer
than the characteristic collisional time of the plasma
particles in order for the energy redistribution among
the Alfvén eigenmodes to be “ quasi-steady.”

The choice of the specific antenna parameters (in
particular, for the T-10 tokamak) is justified in Appen-
dix 1, which also presents estimates of the relevant
parameter values.

2.4. Some Features of the Discrete and Continuous
Soectra of Alfvén Waves

In the case of a large-aspect-ratio tokamak, we can
use the cylindrical approximation, in which the disper-
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Fig. 3. Experimental DAW spectrum measured in the
TEXTOR tokamak. The heights of the peaks reflect the
eigenmode intensities.

sionrelation for AWsis[4]
wa(r) = {[n+m/q(n]1°B¢/ [1ep(r) R’}
x [1—(0/ wg)7],

where q(r) is the local safety factor, p(r) is the local
plasma density, and R is the mgjor radius of the torus.
Dispersion relation (1) implies that the function wa(r)
increases continuously from the minimum central value
to the maximum value at the plasma boundary, where
the density p(r) is lowest. Consequently, dispersion
relation (1) describes the AW continuum.

The wave vector component k;in (1) isafunction of
radius, k= (n+ myq(r)/R, so that the function wx(r) can
be either monotonic or nonmonotonic. In the latter
case, the frequency of the continuum is minimum (W,
= a(Imin), @ acertainradiusr,;,, > 0, which depends on
the specific profiles of the current and mass densities,
j(r) and p(r). In most of the papersin which AWs were
regarded as a diagnostic tool, the profilej(r) was chosen
to be j(r) = j(0O)[1 — (r/a)*]®> with the parameter &
=q(@/q(0) — 1. Inthis case, the larger o, the larger r ;i
[11].

According to[8, 10, 11], the eigenmodes of the dis-
crete spectrum (with the same mode numbers) occur to
the left of the minimum frequency w,(r,,;,) of the con-
tinuum. Each eigenmodeis characterized by the integer
[, which isthe radial mode number and takes on all val-
uesfrom zero to infinity. The eigenmode with the radial
number | = 0 isthe most intense and occurs closer to the
minimum freguency of the continuum than the remain-
ing eigenmodes, whose intensities decrease exponen-
tiadly as | approaches infinity. Consequently, there
exists a numbered (by 1) infinite set of eigenmodes that

ey

“group” near the minimum frequency of the contin-
uum. As an example, Fig. 3 illustrates the DAW spec-
trum obtained experimentally in TEXTOR.

Theoretical information about the structure and
characteristic features of the AW spectrum served as
the basis for the code.

3. PRINCIPLES OF EXPERIMENTAL DETECTION
AND NUMERICAL IDENTIFICATION
OF THE EIGENMODES

3.1. Three Factors Underlying the Diagnostic

The diagnostic proposed is based on (a) experimen-
tal measurements of the resonant frequencies of the
DAW spectrum by two magnetic probes, (b) a compar-
ison of experimental data with the theoretical DAW
spectrum calculated with the specially developed
numerical code, and (c) experimental data on the
plasma density obtained by the interferometry tech-
nique.

Expanding the antenna currents in a Fourier series
yields the following formula for the intensities of the
eigenmodes excited in a plasma via the conversion of
the antenna electromagnetic energy into the energy of
plasma particles:

sin(mB,)sin(n®,)

lom = 1 —— — 2

where | is the antenna current amplitude, 26, is the
poloidal angle span of the antenna, and 2P, isitstoroi-
dal angle span [10]. In thisway, only some of the eigen-
modes of the DAW spectrum can be excited; the
remaining eigenmodes are generated via such mecha-
nisms for energy redistribution between the eigen-
modes as toroidal feedback coupling and energy dissi-
pation (these mechanisms are incorporated into the
numerical model). The latter mechanism is implicitly
taken into account through the imaginary correction iv
to the frequency.

Formula (2) yields the following two conclusions.

(i) Since the antenna width in the toroidal direction
is much less than the toroidal circumference of the
torus, the intensities of the eigenmodes with moderate
n are essentially the same. The differencein intensities
becomes more or less pronounced for eigenmodes
whose toroidal numbers are sufficiently large.

(i) Since the poloidal angle span of the antennais
sufficiently large (26, = 90°), the intensities of the
eigenmodes with the largest poloidal numbers m
decrease in proportion to sin(mB,)/m. Consequently,
the intensities of the neighboring odd eigenmodes
(with, e.g., m= 3 and 5) differ insignificantly (by afac-
tor of only 1.6); for eigenmodes with larger poloidal
numbers m, this difference is even smaller.

These considerations suggest that the use of poloi-
dal and toroidal arrays of numerous probes to identify
the eigenmodes experimentally does not appreciably
PLASMA PHYSICS REPORTS  Vol. 26
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facilitate the diagnostics proposed. Moreover, these
arrays are to be combined with the other diagnostic
equipment, thereby substantially complicating the
assembly of the diagnostic system.

In summary, we propose to detect the eigenmodes
using only two probes installed in the same poloidal
cross section of a tokamak and to identify them by
means of numerical analysis.

AsshowninFig. 1, the probes should beinstalled in
the poloidal cross section opposite to the antenna.
Knowing the mode intensities measured experimen-
tally at the antenna and measuring them by the probes
in the cross section opposite to the antenna makes it
possible to determine the even and odd toroidal num-
bers of the eigenmodes. To distinguish between the
eigenmodes with even and odd pol oidal numbersm, the
two magnetic probes should be placed at diametrically
opposite points of the same poloidal cross section.

3.2. The Way the Mode Numbers nand m
Are Incorporated into the Code

In our numerical code, the mode numbers n and m
were chosen from the following considerations:

(a) experiments and theory show that, for w/w, < 0.5,
the only eigenmodes that can be excited in the plasma
are those with myn > 0;

(b) Collins et al. [10] showed that the intensities of
the modes with the poloidal humber m = -1 and toroi-
dal numbers n < 0 are higher than the intensities of the
remaining modes; and

(c) for tokamak plasmaswith w/w, < 1 (e.g., for the
T-10 plasma), the dispersion relation for the DAW
spectrum can be written approximately as[5]

(Wpaw)n, m= NI Flghl]ail—m_zeE%E] 3)

which implies that the (n, m) and (-n, —m) modes have
the same resonant frequencies.

3.3. Estimate of the Resonant Frequency
of the Eigenmode

Analyzing experimental results raises the question
of how the radial deviation of an eigenmode fromr ;.
and the frequency shift between this mode and Wy,
depend on the ratio ww,. In the estimatesfor T-10 in the
case w/w,; < 1,wecanset wy; =2 x 108 stand w=3 x
107 s~! to obtain that the eigenfrequency w, , o Of the
DAW spectrum differs from the minimum frequency
Wa(ri) Of the continuum by about 1% and that the
radial deviation of the eigenmode with the frequency
Wy, m, o from the mode with the minimum frequency of
the continuum is about 2 cm (or 3%). Consequently, to
obtain rough estimates of the resonant frequency of the
eigenmade of the DAW spectrum, we can use the min-
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imum frequency of the continuum, which isfound from
dispersion relation (1) for the continuum.

In the limit w/wy < 1, the dispersion relation for the
DAW spectrum was derived by Appert and Vaclavik [5]:

(wDAW)n,m,O = wA(rmin)n,m[I _An,m,l]a (4)

where w,(r,,;,) iIsthe minimumin the Alfvén continuum
and | istheradial mode number. Dispersion relation (4)
contains asmall correction,

An, m, | = f{ Lz(rmin)’ Ln(rmin)a Lq(rmin)v q(rmin)} s
which was found by Mahgjan et al. [8] for L? =
2mf\ /(wi ), Ln=ne/n, and L, = g/q’, where the prime
denotes the radial derivative.

3.4. Potentialities of the Numerical Code

Aswill be shown below, our numerical code can be
applied

(i) to formul ate the requirementsfor the antenna that
excites the eigenmodes of the DAW spectrum in a
plasma,

(i) to investigate the possibility for auxiliary plasma
heating by AWS, and

(iii) to provide recommendations for performing
experiments in tokamaks (e.g., in T-10, TEXTOR, and
ITER).

In comparison with the previous results reported
elsewhere, the new results obtained with our code are
as follows.

(&) Using theoretical formulas, we calculated the
DAW spectrum for a deuterium plasma with the modes
whose numbers take on all values from (-1, —1) to
(-6,-2), i.e, the modes that contain information
required to determine the radial profiles of g and A

(b) We computed radia profiles of the AW power
deposited in the plasma for various eigenmodes with
different mode numbers.

(c) A comparison between our numerical resultsand
the relevant experimental data from TEXTOR showed
that they are in good agreement.

(d) We compared numerical results obtained for
cold and real plasmas.

(e) We formulated the requirements imposed on the
antenna aimed at exciting the eigenmodes of the DAW
spectrum in atokamak plasma. From a practical stand-
point, thisisthe main result of our work.

4. CLASSES OF CURRENT DENSITY PROFILES
FOR WHICH THE Q PROFILE CAN BE
RECONSTRUCTED

The radial profile of the safety factor g(r) is gov-
erned by the current density profilej(r). We applied our
code to reconstruct the g profile from the following
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class of monotonically decreasing current density pro-
files:

i) = i1~ ®)

Our code is capable of covering wide ranges of values
of the parameters g(a) and o, which govern this class of
profiles.

The g profile can also be reconstructed from other
classes of current density profiles, specifically, those
that may be approximated with good accuracy by ana-
lytic functions, for example, from the class of double-
humped profiles

2 2

i = Cl[l - g ‘aA%T + Cz[l - g_TAZ%T + C3,(6>

wherethe parametersa, o, A, C,, C,, and C; can be var-
ied over broad ranges. The a and & define how steep the
slopes of the humps are; the A defines how much the
humps are displaced from the plasma center; and C,,
C,, and C; describe the relative heights of the humps.

The code determinesthe parameter values g(0), j(0),
0, and g(a) that correspond to the real experiment,
because the central value q(0) of the safety factor and
the parameter o are related in a certain manner, depend-
ing on the current density profile. For example, for pro-
files (5), they arerelated by

- 9(a)
q(0) = g2 (7
This relationship follows from (5) after integrating
the current density over the entire cross section of the
plasma. A similar relationship for double-humped pro-
files (6) should obviously contain both a and d.

The code also determines the resonant frequencies
Wy, m Of the eigenmodes and their resonant radial posi-
tionsr, , (a which the intensities of AWs are observed
to be maximum).

In simulations, the plasma density profiles were
approximated by the experimental profiles obtained
with the help of an interferometer.

For the T-10 tokamak, the electron density was
approximated by a parabolic profile typical of most
tokamaks,

n(r) = ne(O)[l—O.95%%2] @®)

5. DETERMINATION OF q(0)
AND RECONSTRUCTION OF THE PROFILES
OF THE SAFETY FACTOR q(r) AND EFFECTIVE
ION MASS A(r)

Recall that, in order to reconstruct the radial profiles
of q(r) and A(r), it is necessary

(a) to experimentally measure the eigenfrequencies
Wy, m Of the DAW spectrum,

(b) to identify the eigenmodes with the numerical
code and to determine the mode numbers n and m, and

(c) to determine the plasma density profile p(r)
using the interferometry technique.

For fixed n and m, we can find q(r,;,), wherer,,, is
the radius at which function (1) is minimum. The value
g(r.i) is determined graphically as follows. From for-
mula (1), we can find q(r) as afunction of n, m, w, .,
and p(r). Then, we plot the experimental radia profile
of the function q using the measured data on the plasma
density p(r) at fixed values of n, m, and w, ,,. Specify-
ing the current density profilein the form of (5), we can
expressq(r) as

a3

I = ©
o of
1—[1— D}D}

Differentiating (1) with respect to radius, we can relate
g(r.i,) to the ratio of the mode numbers nyn and the
derivativesp' and q":

Qo) = - 22341

Substituting the experimental radial profile of the
plasmadensity and the derivative ' found from (9) into
(10), we can obtain the analytical profile of q(r,;,, 0),
where the form-factor & serves as a parameter. The
point at which the theoretical profile intersects the
experimental one allows usto find r_;,, q(r,,,), and .
Repesating this procedure for eigenmodes with other
mode numbers, we can determine the g values at differ-
ent radial positions.

The central value q(0) is found using a somewhat
different procedure. The q(0) value is determined from
the theoretical profiles of the resonant frequencies of
the neighboring eigenmodes as functions of the form-
factor &. The eigenmodes are regarded as being neigh-
boring if the absolute values of the sum of their mode
numbers, |n + m|, are equa to each other. From the
experimentally measured DAW spectrum, we find the
frequency difference for the same neighboring eigen-
modes and compare this difference with the theoretical
one, thereby determining the quantity &, which is
uniquely related to q(0) through (7).

Theradial profile A.(r) iscalculated with allowance
for thefact that, by virtue of the relationship Wpaw(r min) ~

1/.JAg(rmin) » the eigenmode frequencies are sensitive

to the effective ion mass. The effective mass can be
changed by injecting asmall amount of impurity atoms.
From the difference in the frequencies of the eigen-
mode that are measured before and after the injection,
we can find the local value of A «(r) [5].

(10)
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Repeating this procedure for eigenmodes with other
mode numbers, we can obtain the local values of A(r)
at different radial positions.

6. NUMERICAL METHOD AND THE RESULTS
OBTAINED

The numerical method was developed in several
steps. First, we considered the simplified model of a
cold plasma (T; = 0). Then, we incorporated the tem-
perature. Since the final version of the code is a modi-
fication of the simplified version (with T; . = 0), the
simulation algorithm we will describe for the case
Ti.e= O serves as the basis for the general computa-
tional scheme. The calculation accuracy was checked
by comparing our test numerical results with the data
from TEXTOR experiments.

In simulations, we modeled the antenna by a hollow
circular cylinder of radius r,, which was coaxia with
both an idealy conducting wall of radius r,, and a
plasma column of radius a. The geometry of this
model, which is valid for large-aspect-ratio tokamaks,
is shown in Fig. 4. In formula (11) and in subsequent
simulations, the antenna was assumed to be infinitely
long, since the antenna length-to-radius ratio is large.

Antennas similar to that shown in Fig. 4 were
treated in theoretical papers[6, 7], because the cylindri-
cal axisymmetric geometry of the antennais exception-
aly convenient for calculations.

Thewaves are excited by an alternating antennacur-
rent J,, which hasthefollowing formin the cylindrical
coordinates (r, 9, 2) associated with the antenna axis:

Jot = Jo[kes—?ez}

X O(r —r4,) cOS(wt) cos(kz + mI),

where &(r —r ) isthe Dirac deltafunction, k and mare
the axia and poloidal wavenumbers, and the vector
Jolkeg — (Myr,)e,] describes the surface density of the
antenna current [6]. In all simulations, the current con-
stant J, was set to be 0.1 A/cm.

All equilibrium quantities were assumed to be func-
tions of r only. The quantities describing the wave were
assumed to depend on time and the z-coordinate as

exp{i[kz+ m3 —(w+iv)]}. (12)

The plasma motion was described assuming that the
oscillation amplitude was small.

(11)

6.1. The Case of a Cold Plasma

With the purpose of describing the DAW spectrum
theoretically, we begin with the approximation of a
cold, ideally conducting plasmain cylindrical geome-
try (which is valid for large-aspect-ratio tokamaks).
Landau damping by electrons wastaken into account as
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| . .
Plasma column Current-carrying coil

Fig. 4. Geometry of thetheoretical model for calculating the
DAW spectrum.

animaginary correction to the frequency, w — w+iv,
where (asin [6]) v was set to be equal to 0.003w.

The motion of acold plasma can be described by the
linearized equation

p%¥ = 11}, Bal + i BT}

and by Ohm’s law with allowance for the Hall effect,

(13)

1 _om .
B+ 21V, Bo] = ooo{1.Bol + [i0 BI}.
Here, B, and j, are the equilibrium magnetic field and
equilibrium current density, B and j are the perturbed
magnetic field and perturbed current density, p is the
equilibrium plasma density, c is the speed of light, and
m, isthe mass of anion.

The equilibrium tokamak magnetic field was assumed
to be such that By, = B, = const and |By/By,| < 1. The
problem was treated in a local orthogonal coordinate
system with triply orthogona unit vectors e,, ey =
[e;. ], and e, = B,/B,. From equations (13) and (14)
and Faraday’s law, we can obtain the following set of
basic differential equations for theradia profiles of the
guantities of interest to us:

(14)

1d 0 2

dB
A = %(GZ—AZ)ED—GkDan (16)
where
2
A= (W—CA)Z_kﬁ, (17)
[1-(w/ wg)]

G- WO Wwi KBy (18)

fea1—(w/wy)] " Bo

Here, we assumed that B,s = B,ar with a a small
parameter. The derivation of these equations, which
were integrated numerically in our code, was given
in[12].
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Since the denominator in the coefficient A is equal
to 1 — (wwy)? the singularity A = 0 occurs at the
frequency w = kca(l + k|2| Ca/w3 )2 rather than at
W= KCa.

The coefficient G describes the rate with which the
AW energy is absorbed by the plasma and the spatial
position of the resonant layer where the AW energy is
deposited. Incorporating absorption into numerical
analysis results in the appearance of peaks in the fre-
quency spectra of the AW field components that corre-
spond to the Alfvén eigenmodes.

Generally, egquations (15) and (16) describe both
magnetosonic waves and the DAW spectrum.

In vacuum, the wave field components E, and B, sat-
isfy the modified Bessel equations

d°E, 1dE, T, . - _
?J’F'd—r'_[k +DFD}EZ_ 0, (19)
dzB 1dB D’nDz _
e [k i D}B = 0. (20)

The remaining field components were expressed in
terms of E, and B, through Maxwell’s equations.

Equations (19) and (20) have the solutions

Ez = Cllm(lkrl) + CZKm(lkrl) r (21)
B, = Dyl (Ikr|) + D,K(lkrl)
E, = Csln(lkr]) + C,K n(IKr]) )

I <ranis
B, = Dl y(Ikr|) + DKy (lkrl)

where |, and K, are the modified Bessel functions.

The constants C, , and D, , in (21) and (22) were
found from the boundary conditions at thewall and at the
antenna[7] and were expressed in terms of C, and D,.

Integrating the differential equations just derived,
we determined the eigenmodes that correspond to
peaks in the frequency spectra of the AW field compo-
nents.

We devel oped two subroutines, one of which calcu-
latestheradial profiles of the AW field components and
the AW power deposited in the plasmafor a given gen-
erator frequency w, and the other determines the reso-
nant frequencies for the prescribed eigenmodes by
changing the frequency w step by step in agiven range.
Also, for each frequency value in this range, the latter
subroutine plots the aforementioned radial profiles,
selects the peaks in them, and then repeats this proce-
dure for the next frequency value.

6.1.1. Boundary conditions. The differential equa-
tions (15) and (16) for the field components E, and B,
were integrated numerically from the plasma center
under the boundary conditions E(0) = B(0) = 0 and

E; (0) = By (0) = O (the latter is a consequence of the

cylindrical symmetry of the problem). Such an
approach resulted in the appearance of singularities of
the 0/0 type at the plasma center. We overcame themin
a standard way by approximating the functions at the
center by

+1

8 ovOFEH. E0vFER 1o = 1em23)

That these approximate expressions are of different
orders in r stems from the fact that the orders of the
functions E;; and B, in equations (15) and (16) differ by
unity.

Passing over to the new functions

Eo(r) = % By(r) = %&, (24)
o v oY)

and substituting them into the basic equations (15) and
(16), we obtain

dED_ |js‘k[| )\+2|j iwl kD
o - EEA Ty %L %B”

(25)
dB” ICG A ad [A)\ Il
W o A EDr — B|| T + GkDD
with the new boundary conditionsat r = 0,
Ex(0) =1, ByO) =vs Vs = z (26)

Equations (25) with the boundary conditions (26) were
integrated numerically by the Runge—-Kutta method.

The expressions for the complex power index A and
for theratio of the functionsy, and y,, which vary grad-
ually with the radius, are presented in Appendix 2.

By virtue of (24), the components Ej(r) and B(r) in
the plasma are

~ r +1 ~ r
e = EOFD V2 80 = BOEHY. @)
The complex quantity y, and the independent coef-
ficientsC, and D, in solutions (21) and (22) for the vac-
uum region were found by matching the solutions at the

plasma—vacuum boundary r = a (where a isthe plasma
radius) with the help of the four boundary conditions:

(a) the continuity of Ejatr = a,
(b) the continuity of B at r = a,

(©) (@ =0, (28)
(d) the continuity of B, at r = a.
PLASMA PHYSICS REPORTS Vol. 26 No.2 2000
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The continuity of B, at r = a follows from Faraday’s
law curlE = —c'0B/ot and the boundary condition

[e,, E@] =

Asaresult, theimaginary and real parts of the func-
tion y, become

Imy, = |ImE-(a — -,
y2 D( )rljgque)\c Déd?e)\ CS
T T (29)
_ ImEg(a) C
Rey, = DEEA |myz(‘:‘jy
G0 &
where
c, = Iméu(a)cos(arg) + ReED(a)sin(arg),
C, = Reég(a)cos(arg)—Imég(a)gn(arg),

C3 = Reé”(a)cos(arg)—Imé”(a)sin(arg), (30)

c, = Imé”(a)cos(arg) + Reé”(a)sin(arg),
_ CCs _ n[B
Cs = c_1+c4’ arg = InG—OHm)\.

The method for calculating the independent coeffi-
cients C, and D, in the solutions for the vacuum region
and the boundary values of the field components E(a)
and B|(a) is presented in Appendix 3.

6.1.2. Absorbed power. The energy deposited in
unit plasma volume per unit time was expressed as the
averaged (over the oscillation period) scalar product of
thereal parts of the complex vectorsof the electric field
and current density:

de _ 1 A -
_t - 42(JaEa + Eaja)a (31)
where e isthe energy density.

I'n our code, the absorbed energy was found from the
dielectric tensor,

de _ 1w
dt ~ 24m

ab

€a Ex Ep, (32)

(an)

where €, = %(sab — &p,) isthe anti-Hermitian part

of the dielectric tensor, composed of the imaginary
parts of the diagonal elements and the real parts of the
off-diagonal elements.

In calculating the absorbed energy, L andau damping
by electrons was taken into account as an imaginary
correction iv to the frequency.
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Transforming the imaginary parts of the diagonal
elements of the tensor € in the proper manner yields

c2(lm Aw’ — 2Re Awv)

Imeg,, =
W'+ 402’ (33)
Imegy = Img,,,
where
2 2 2 2 2
(oogi - (;)2)2 +4wV°
) o (34)

2

2
(g — wz) +40°V°

are the real and imaginary parts of the coefficient A in
the basic differential equations (15) and (16).

The real parts of the off-diagonal elements of the
tensor € are

c2(l mGw’ — 2ReGwv)

Reg,; =
. W' + 4ev? (35)
Ree, = —Reg,,
where
2 2 2 2 2 2 2
Re = (@0 CA[W(wg @' ~4v) ~2w0Vv] |
((A)(fi - ooz)2 + 4wV’
(36)

(0/ Ca) W, V(3w — 0’ —4v?)

ImG =

(ooczi - wz) +4w°V°

are the real and imaginary parts of the coefficient G in
equations (15) and (16).

Theterm G, inthereal part of the coefficient G con-
tains information on the equilibrium current density
profile j,(r). In local orthogona coordinates, the
expressions for the equilibrium current density compo-
nents, jos = 0 and j,, = (¢/(411))d(rByg)/dr, can be con-
verted to the form

io = Joz = J(O)[1—(r/2)7",
wherej(0) =j(r = 0).

Integrating (36) over the radius, we find the field
component By, and the coefficient G;:

(37)

2% e M
G, = —4kj(0)[1=(r/a)*]’ T/ (cBy). (39)
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Fig. 5. Theoretical DAW spectrum cal culated for the case of
a cold deuterium plasma in T-10 (f is the generator fre-

quency).

Consequently, the AW power deposited in unit
plasma volume can be written as

dd—‘f = 82n[lmsr(ReEr2+ ImE?)

+Ime, (ReE. + ImE?)
+ 2Reg, (IME; x ReE, —ReE x ImE,)].

(40)

6.1.3. Numerical results for the case of a cold
plasma. The eigenmodes manifest themselves as peaks
in the frequency profiles of the AW field components,
Ex(f) and By(f), and the deposited power, P(f).

Figure 5 shows the theoretical DAW spectrum cal-
culated numericaly for the case of a cold deuterium
plasma.

Recall that the cal culation accuracy was checked by
comparing the preliminary numerical results with the
relevant experimental datafrom TEXTOR[5], inwhich
case the input to the code included the parameter values
characteristic of the TEXTOR plasma in those experi-
ments (of course, except for the temperature, which
was assumed to be zero). The results of the comparison

Table 1. Comparison between the theoretical and experi-
mental resultsfor the parameter values|,=350kA, ngy=2.8 x

108 em3, B,=2T,and 5=35

Resonant frequency, MHz
(n, m) mode y _
numerical code, theory experiment
(-5,-2) 3.04 2.75
(-4,-2) 2.45 2.45
(-3,-2) 1.86 2.00

are summarized in Table 1, which showsthat our theory
agrees fairly well with the experiment.

This agreement, first, confirms the previously
known conclusion that, in the geometry adopted here,
the eigenfrequencies of the DAW spectrum depend
weakly on the temperature and are mainly governed by
the plasma density and current density profiles and,
second, makesit possibleto justify the reliability of the
model underlying the code by performing test simula-
tions.

Under the above assumptions, we also obtained
some important results for the T-10 tokamak.

The relative frequency width of the (-6, —1) eigen-
mode is about 7% and that of the (-5, —2) eigenmaodeis
about 3%.

Theintensity of AWSsishighest in the resonant layer,
in which the AW energy is deposited. The spatial posi-
tion of the resonant layer depends on the ratio n/m of
the mode numbers. The larger this ratio, the closer the
resonant layer to the plasma center.

The radial profiles of the absorbed AW energy for
four eigenmodes are shown in Figs. 6-9.

According to the theory, the resonant layer for the
(-6, —1) mode (J[n/m| = 6 > 1) should lie near the
plasma center; thisis confirmed by our test simulations.
Theresonant layer for the (-1, —1) mode, for which this
ratioisequal to unity, occursamost in the middle of the
plasma column. For the (-2, —3) and (-1, —2) modes,
the ratio n/mis smaller than unity, so that the energy of
these eigenmodes is deposited at the plasma periphery.

The width of the resonant layers for al of these
eigenmodes is about 1-2 cm.

Further modifications of the cal culation scheme and
numerical code made it possible to refine the previous
results and obtain the new ones. In particular, we were
able to determine the accuracy with which the central
value q(0) of the safety factor was computed.

6.2. The Case of a Real Plasma

Now, we consider a plasma with electron and ion
temperatures typical for tokamaks (e.g., for T-10).

The effect of the therma motion of electrons and
ionswas taken into account by supplementing the equa-
tions of plasmamotion (13) and (14) with thetermsthat
account for the pressure gradient:

ov _ 1,... .
P5; = StloBI+[IBol} VP VP, (41)

1 _m . m
E+ E[V! BO] - eCp{ [Jv BO] + [JO’ B]} epVPe- 42)

To describe how the plasma pressure affects the
waves, we must relate the pressure gradient to the
PLASMA PHYSICS REPORTS  Vol. 26
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de/dt, arb. units
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Fig. 6. Radia profile of the absorbed AW power for the
(-6, —1) mode (de/dt is the AW power deposited in unit
plasmavolume).

de/dt, arb. units
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Fig. 8. Radia profile of the absorbed AW power for the
(-2, -3) mode.

velocity of plasma motion. We assume that the plasma
state changes adiabatically,

P On',

whereyisthe adiabatic power-law index. The evolution
of the density n and the change in the velocity v are
related by the continuity equation

on

— = —div(nv). 43
5t (nv) (43)
In the linear approximation, equation (43) reducesto
on' _ ,
T ndivv, (44)
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Fig. 7. Radia profile of the absorbed AW power for the
(-1, -1) mode.
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Fig. 9. Radia profile of the absorbed AW power for the
(-1, —2) mode.

where n' and n are the perturbed and unperturbed den-
sities, respectively. In the case of aplane wave, the per-
turbed density gradient is

e.an(kv)

_[1
VP = [wk(kv) 25

ol ad (45)

where
VP=VP, + VP, P=y(T, + Ty,

4mics JocK
chO%L Boww% I

l+|——2—k
w’p

kv =
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The electron density in (45) was calculated from the
parabolic profile (8). The electron and ion temperatures
were approximated by the following profiles typical of
most present-day tokamaks:

T = T 1- 4]

Inserting (45) into (41), we obtain the velocity of
plasma motion in local coordinates:

(46)

Amici] . ' o . yP
v= e + 2[e8] 5-i Y k(kv)
0 0 wp

OJCBO D

(47)
yP 10n

e (kv).
anar
We substitute (45) and (47) into the equations of
plasma motion (41) and (42) and solve them together
with Faraday’s law in order to obtain a new set of
differential equations for the AW field components E

and By,
dE
= Bk e B”, (48)
dB
d—r“ = AEy+G,Bky, (49)
where
2
€W
A, = 0 . G, SC*EZ £, —ko, (50)
ic EE)Dz.s K
o &=
_ W €ar€ip EFDZ
A, =1 € k” y
2 oo Err_EEDzklzl O
Ho 1)
G, = i for
£ —DEEFk2
rr %D Il

Expressionsfor the elements of the dielectric tensor for
areal plasmaare given in Appendix 4.

Asinthe case of acold plasma, solving the problem
for areal plasmain the way just described resulted in
the appearance of singularities of the 0/0 type at the
plasma center. These singularities can be resolved by
the method we have presented. The relevant change of
the functions puts the resulting set of equations (with
the boundary conditions imposed so as to perform
numerical integration from the center) in the form

koo

G,H

dd—ErD _ ED[AlkD——()\ ¥ 2)} ¥ 3”1@

dB ~ ~ A
d_l’” = BEarAx+ BIIBEZKD—F% (52)
Ex(0) = 1, ByO) = v40), dd—ErD = %I = 0.
r=0 r=0

The complex power index A for a rea plasma is
evaluated in Appendix 5.

Equations (52) were integrated numerically from
the plasma center to the plasma periphery in order to
obtain the desired values of the functions E; and By, at
the plasma—vacuum boundary. These values were then
used to integrate the basic equations (48) and (49) with
coefficients (50) and (51) from the plasma boundary to
the plasma center. As a result, the code plotted the
radial profiles of the AW field components for each
value of the frequency w, which wasvaried with agiven
step within the prescribed range. The refined version of
the code made it possible to determine the resonant fre-
guencies more exactly for the same eigenmodes that
were treated in the case of acold plasma.

Landau damping by electrons was described by the
following formularelated to the case of an equilibrium
thermal plasma[13]:

ﬁ%u?’hﬂ“‘ﬂwe e e ’2’“%
ZA/Q P DT U 2T, 0

(53)

where u,, = w/k isthe AW phase velocity and w, isthe
electron plasma frequency.

Formula (53) can be applied only under the follow-
ing two conditions. First, the damping time should be
shorter than the period of electron and ion bounces in
the potential wells of the wave eectric field, [Tog/T| > 1,
in order for the waves to damp completely before non-
linear effects come into play [14]. Here, T isthe damp-
ing time and Tg: IS the estimated time interval during
which the linear theory is applicable, Tog ~

~Jm/ (ekE), where misthe mass of aparticleand E is
the wave eectric field. Second, when the time between
collisions, 1, isshorter than the characteristic time inter-
val over which the linear theory is valid ([tog:/T | > 1),
Landau damping should be taken into account along
with the conventional collisional damping.

Formula (53) is obtained in the lowest order in kv/w
and isvalid only for weak damping, which depends on
the wavenumber k.

6.2.1. Numerical results for the case of a real
plasma. Our simulations confirm that the thermal elec-
tron motion affects the AW propagation in the plasma
weaker than, e.g., particleparticle collisions, which
are incorporated into our model through an imaginary
correction to the frequency. However, taking into
account nonzero temperatures T; , corresponding to
real experiments allowed us to achieve (in some cases)
essentially complete agreement between the eigenfre-
PLASMA PHYSICS REPORTS  Vol. 26
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guencies of the Alfvén modes that were computed from
the above theoretical formulas and those measured
experimentally. The numerical results presented bel ow
were obtained for the following parameter values cor-
responding to the T-10 tokamak: | =272.7 kA, B;=3T,

0=3.5,ngy=10"cm>3, T, =1000eV, and T;, =500 eV.

Asinthe case of acold plasma, we checked thereli-
ability of the results by running the code with the input
parameters relevant to the TEXTOR experiments (cf.
Section 6.1.3), in which case the adiabatic power-law
index was set to be equal to that for one-dimensional
motion, y = 3. The numerical results and experimental
data are compared in Table 2, which shows that the best
agreement between them is achieved when the thermal
motion is taken into account.

The specific results presented below were obtained
for the T-10 tokamak (as in the case of a cold plasma).
However, the qualitative conclusions are also valid for
other tokamaks.

Thermal motion manifestsitself, in particular, inthe
fact that the eigenfrequencies of the neighboring modes
(see Section 5) depend on the parameter , which gov-
erns the shape of the current density profile. If the dif-
ference between the eigenfrequencies of agiven pair of
neighboring modes is known from experiments, then
the results obtained above make it possible to readily
determine ¢(0) using formula (7) (see Section 5). Asan
example, Fig. 10 shows the behavior of the frequency
difference between the (-5, —2) and (-6, —1) modes.

Generally, an increase in o leads to a corresponding
increase in the difference between the frequencies of
the neighboring eigenmodes. This circumstance sim-
plifies the experimental detection of eigenmodes and
provides more precise measurements of q(0), which

q(0)
22 1.8 14 1.0 0.6
T O

&

Ny

=
T

=

o0

g
T

0.5 1.5 25 3.5 4.5

Fig. 10. Theoretical difference between the frequencies of
the neighboring (-5, —2) and (— 6, —1) eigenmodes asafunc-
tion of the parameter .
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Table2
Resonant frequency, MHz
(n, m) mode y -
numerical code experiment
(-5,-2) 275 2.75
(-4,-2) 253 2.45
(-3,-2) 2.00 2.00

can be found directly from Fig. 10 in comparing the
theoretical frequency difference with that recorded in
experiments.

Analyzing the accuracy with which g(0) can be
determined, it will be useful to present d-profiles of the
frequency difference for several values of the damping
ratev. Recall that, asin [7], the imaginary correctionv
to the frequency servesto take into account energy dis-
sipation. Figures 11 and 12 show the frequency differ-
ence between the (-5, —2) and (-6, —1) modes asafunc-
tion of & for v = 0.030, 0.003w, and 0.0003w. Compar-
ing the profiles obtained for v values that differ by an
order of magnitude, we can estimate the amount by
which q(0) changes when the difference Af, (Wpaw =
21t IS changed accordingly. For example, an error of
0.01 MHz in calculating Af, leads to an error of about
0.08 in calculating g(0). According to Fig. 11, achange
in Af,o by 1% correspondsto a changein q(0) by 3.6%.
Consequently, the calculation accuracy should be very
high. Our numerical scheme is capable of ensuring
such accuracy. Accordingly, the fairly simple diagnos-
tic equipment proposed here should ensure the required
measurement precision.

AOf,.., MHz

Fig. 11. Difference between the frequencies of the (-5, —2)
and (-6, —1) eigenmodes as afunction of o for two different
values of the damping rate v = 0.03w and 0.003 .
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q(0)
2.2 1.8 1.4 1.0 0.6
T T T
0.86
v =0.0003w

0.5 1.5 2.5 35 4.5

Fig. 12. Difference between the frequencies of the (-5, —2)
and (-6, —1) eigenmodes for the damping rate v = 0.0003 .

Sincev ismainly governed by collisional processes
whose role, even at v = 0.003w, is great enough for
energy exchange between the eigenmodes, the &-pro-
files of the frequency difference are expected to change
qualitatively at much lower damping rates, e.g., at v =
0.0003w (Fig. 12). A comparison between Figs. 12 and
13 confirms this conclusion.

Our simulations revealed that the mode frequencies
depend weakly on the damping rate. Figures 13 and 14
show therelated profiles computed at afixed parameter
value o = 3.5. For the (-5, —2) mode, achangeinv by
four (on average) orders of magnitude, from 3 x 10w
to 10~'wy, causes the resonant frequency to change by
0.13 MHz, i.e., by no more than 2%. For the (-6, —1)
mode, a similar change in the damping rate, from 3 x
10w to 7 x 10~'w, leads to almost the same changein
the resonant frequency, i.e., 0.1 MHz (1.5%). We found
that each of the eigenmode profiles hasits own extreme
point.

Our simulations also showed that the frequency
shift for each mode is much more sensitive to the
parameter & (which governs the shape of the current
density profile) than to the damping rate. For example,
for the eigenfrequency to change by 0.13 MHz, the
parameter o should be changed by only 4, while v
should be changed by afactor of 3330. In other words,
in real experiments, the resonant frequency f of any

eilgenmode will change by no more than 4 x 10 MHz
if the damping rate changes by an order of magnitude.
The estimate just presented impliesthat it is possible to
choose the optimum electron and ion temperatures for
which the eigenmode fregquencies can be assumed to be
independent of the damping rate. This, in turn, ensures
both the stability of the plasma—antenna system to vari-
ations of such a parameter as v and the reliability of
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of,.., MHz

7.05l'

7.00
6.95
6.90
6.85F

(_59 _2)
6.80 L L L
3%x107° 3%x1072 6%x1072 9 x 1072

V/w

Fig. 13. Resonant frequency of the (-5, —2) eigenmode ver-
sus the damping rate for 6 = 3.5.

information obtained about the plasmawith the help of
the DAW spectrum.

Our analysis revealed that the plasmais quite stable
againgt variations of the externa (with respect to the
plasma) antenna parameters. For example, we carried
out additional test simulations for the (-1, —1) modein
order to examine the stability of the plasma—antenna
system against variations of the shape and dimensions
of the antenna (specifically, the antenna radius). The
antenna was assumed to be positioned either at the
plasmaboundary, r,. = a=30cm, or at thewall, r =
r, =39 cm. Thetest computations showed that both the
resonant frequency f,. = 8.454 x 10° Hz and the radial
position of the resonant layer, r = 20.8 cm, do not
change, while the AW power deposited in the plasma

O, MHz
6.181

6.17
6.16

6.15

6.14

(=6,-1)

6.13 L L L
3x10°% 2x10% 4x10* 6x10* v/w

Fig. 14. Resonant frequency of the (-6, —1) eigenmode ver-
sus the damping rate for & = 3.5.
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per unit length changes insignificantly and is equa to
P =8.3 %107 W/cm.

Hence, our simulations confirm that the method pro-
posed makes it possible to obtain information about the
plasma parameters rather than about the external equip-
ment used to excite AWs in the plasma.

It is also of interest to analyze the AW power
absorbed by the plasma as a function of the toroidal
number n at the fixed poloidal number m=-1 (Fig. 15).
The profile in Fig. 15 was obtained by processing the
numerica results for the four modes indicated. The
power of the modes with small numbers n is absorbed
almost completely. As n increases, the absorbed power
falls off sharply by many orders of magnitude. The pro-
file in Fig. 15 agrees qualitatively and quantitatively
with similar profiles computed by Ross et al. [6] for
other values of the plasma parameters.

In summary, we again outline the main steps in
developing the code (recall that the reliability of our
preliminary numerical results was checked by compar-
ing them with the experimental data from TEXTOR).

First, we developed a simplified version of the code
in cylindrical geometry on the basis of the model of a
cold, ideally conducting plasma (T; = 0). This simpli-
fied version was also created in several steps.

At the first step, we took into account only one
mechanism for energy exchange between the eigen-
modes, specifically, toroidal feedback coupling, in
which case, however, we failed to obtain the entire
DAW spectrum, and the AW field components com-
puted with the simplest version of the code were found
to contradict those measured experimentally in TEX-
TOR.

After we supplemented the code with another mech-
anism for energy exchange, namely, Landau damping,
which was taken into account through the imaginary
correction iv to the frequency [6], we succeeded in cal-
culating the entire DAW spectrum. However, at this
step, we again failed to achieve agreement between the
theoretical and experimental eigenfrequencies of the
DAW spectrum.

We significantly raised the calculation accuracy
when we switched from integration of the basic set of
differential equations from the plasma center to the
plasma boundary to integration in the opposite direc-
tion. To do this, we obtained theinitial conditions at the
plasma boundary by integrating the basic equations
from the plasma center. Such an artificial approach
allowed us to apply the geometrical-optics approxima-
tion (which impliesthat the wavelength is much shorter
than the characteristic dimension of the system) over
most of the plasma column (including the plasma
boundary). As a result, our physical model became
even more reliable, which was confirmed by simula-
tions. Using this approach, we achieved not only quali-
tative but also quantitative (to some extent) agreement
between the theoretical and experimental results.
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de/dt, arb. units
1025

1020

1015

1010

10°

Fig. 15. AW power deposited in the plasma versus the toroi-
dal number n for the fixed poloidal number m=—1.

Notethat, in order to resolve singularities at the cen-
ter, the basic set of differentia equations integrated
from the plasma center was transformed by changing
the functionsin the proper manner.

Thefinal step in refining the cal culation scheme was
to take into account the thermal motion of electronsand
ions. The correction v was specified from the explicit
expression for the Landau damping rate [13] rather than
inamodel form. Asaresult, wearrived at an essentially
complete agreement between the computed and exper-
imental DAW spectra.

7. CONCLUSION

We have described a numerical method developed
for use in the diagnostics proposed for determining the
parameter g and effectiveion massfrom the DAW spec-
trum in tokamak plasmas. Estimates of the parameters
of the diagnostic system for most tokamaks (TEXTOR,
T-10, ITER, etc.) show that the desired characteristics
can be obtained with a high accuracy using simpler (in
comparison with other diagnostics) equipment with
fairly moderate technical parameters. We have devel-
oped a computer code appropriate for determining the
parameters of the eigenmodes of the DAW spectrum
such asthe frequency and amplitude of AW fields, their
intensities, and so on.

We have applied our code to investigate the plasma
stability against variations of the antenna parametersin
order to formulate the requirementsfor the antenna: the
shape of the antenna, its position inside the discharge
chamber, the generator frequency, etc.

The code can be used to choose the optimum elec-
tron and ion temperatures (which affect the damping
rate of the eigenmodes of the DAW spectrum) and the
current density profile (which governs the AW eigen-
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frequencies), thereby making it possible to provide rec-
ommendations for experiments in tokamaks (in partic-
ular, in T-10).

Since the mechanisms for energy conversion from
AWsto the plasmaare incorporated into the code, it can
also be used to study the possibility of auxiliary plasma
heating by AWSs.

APPENDIX 1

JUSTIFICATION OF THE CHOICE
OF THE ANTENNA AND ESTIMATION
OF ITS MAIN PARAMETERS APPLIED TO T-10

Al.1. Choice of the Toroidal Mode Numbersn
for Measurements

Experimental measurements of the DAW spectrum
in TEXTOR (Fig. 3) showed that the larger the toroidal
number n, the larger the difference between the fre-
quencies of the neighboring eigenmodes (n;, m,) and
(n,, m,) and the stronger the dependence of the resonant
frequency of each of the modes on the q(0) value [5].
These circumstances make the frequency difference for
the modes with large n easier to record experimentally.

Also, each of the modes with large toroidal numbers
ischaracterized by itsown resonant layer (see Section 2),
which occurs near the plasma center (r, ,, = 0). Such
modes alow the central value q(0) to be determined
more exactly in comparison with that obtained from the
modes whose resonant layerslie far away from the cen-
ter [5].

Consequently, it is expedient to find q(0) using
eigenmodes with large n. The modeswith n~ 1 make it
possible to determine the radial profile q(r) at r > 0,
because their resonant layers, which can occur at radii
I, m far away from the plasma center, characterize the
quantities g(r,, ., at these radial positions.

Hence, it is expedient to work with a sufficiently
broad spectrum of toroidal numbersnsuchasO<n<38.

Al.2. How the Poloidal Length of the Antenna
Influences the Mode I ntensities

From (1), we can seethat, if the antennaisrelatively
long, then the intensity of eigenmodes with the largest
m decreases in proportion to sin(Md )/m.

Our analysis shows that the antenna with the pol oi-
dal angle span 29, = 135° excites the broadest spec-
trum of eigenmodes with the poloidal numbers m.
However, the modes with m > 4 are more difficult to
detect experimentally, because their intensities
decrease as m increases (in the proportion just indi-
cated). Since the method for measuring q(0) in TEX-
TOR from the frequency difference between the neigh-
boring eigenmodes [5] does not involve the modes with
m > 3, the antenna with the poloidal angle span 29, =
90° (which correspondsto 57.7 cm) is quite suitable for
our purposes. Such an antenna does not excite modes

NOVIKOV, DOBRYAKOQOV

whose poloidal numbers are multiples of 4, whereasthe
modes with m= 0 and toroidal numbers 1, 2, and 3 will
dominate in the antenna spectrum, in which case the
eigenmodes are much easier to identify experimentally.
Also, this antenna is simpler from a technological
standpoint.

A1.3. Choice of the Antenna Width in the Toroidal
Direction

Since the antenna width in the toroidal direction is
much less than the toroida circumference of the torus,
then, according to dispersion relation (1), the antenna
width has essentially no effect on theintensity of eigen-
modes with n < 8 or even with larger toroidal numbers.
Consequently, it is more expedient to use antennas with
alarge width in the toroidal direction. In this case, the
antenna inductance becomes lower, because the linear
inductance L, of atwo-strip line is related to the strip
width b by the simple relationship

L, = Hoh/b,

where h is the distance between the strips. For a given
radiation power deposited in the plasma, the wider the
antenna, the lower the high-frequency potential at the
antenna.

The sizes of the diagnostic ports in T-10 are such
that the antenna can be no wider than 5 cm, which cor-
respondsto about 1.9°.

(Al1.1)

Al.4. Necessity to Screen the Antenna

In T-10, the characteristic plasma density near the
antennais n ~ (7-8) x 10> cm3. The capacitance that
isformed by the direct-current and reverse-current con-
ductors of aloop antennacan shunt the loop through the
plasma. The impedance of the plasma-filled gap is cal-
culated from the formula

X, = 1/(0C, | 4€), (A1.2)

where C, isthe linear capacitance of aloop antennain
vacuum, |, is the antenna length, and € is the permit-
tivity of acold plasma.

The permittivity € can be estimated as [13]

£ =c/ci, (A1.3)
where cisthe speed of light and c, isthe Alfvén veloc-
ity. For the toroidal field B, = 2 T and the density n ~
7.5 x 10'2 cm3, the permittivity € is€ =709. The capac-
itance of a loop antenna in vacuum is estimated as
C/lax = 35 pF; consequently, for the maximum fre-
guency of a sweep band (8 MHz), the capacitive reac-
tance of the plasmafilled gap is X, = 1.1 Q. Conse-
guently, the antenna loop should be screened in order
for the plasmanot to flow into the gap between the con-
ductors.
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A1.5. Minimum and Maximum Frequencies
of a Sweep Band

In order to excite the number of eigenmodes that
would be sufficient for diagnostic purposes, it is neces-
sary that the eigenfrequencies of the (n, m) modesto be
detected lie within the sweep band of agenerator whose
frequency increases linearly from a minimum value to
a maximum value during a certain time interval in the
course of discharge.

The maximum and minimum values of the fre-
guency band are determined from dispersion relation
(1) for AWSs. The antenna geometry chosen for T-10
experiments implies that, in the DAW spectrum, the
most complete information will be obtained from
eigenmodes with the toroidal numbers 0 < n < 8 and
poloidal numbers 0 < m < 3. Since the T-10 tokamak
operates with a deuterium plasma, we obtain from dis-
persion relation (1) that, for the density ny, = 4 x
10" cm and the maximum toroidal field B,=2.9T, the
maximum frequency isf = 8 MHz. For the highest den-
Sity Ny = 5 x 103 cm™ recorded in T-10 experiments
and B, = 2 T, we obtain that the minimum frequency is
frin = 0.8 MHz.

Al.6. Radiation Impedance of a Screened Antenna

The radiation impedance of an antenna was calcu-
lated using the method proposed by Weynants et al.
[15] to analyze the coupling between an antenna and a
plasma in experiments on ion cyclotron heating.

Weynants et al. [15] derived the wave field distribu-
tion around an antenna that is not screened in vacuum
and showed that the transverse (with respect to the tor-
oidal direction) electric and magnetic components are
of utmost importance. They also considered the effect
of the screen and showed that it can suppress waves
with different polarizations of the field E in a plasma.

In order to simplify the model, we assume that the
current distribution in the antenna strip is uniform,

J(ky) = 1sin(kw)/ (kw), (A1.4)

wherel isthenet current in the antennaand wisitshalf-
width. The wave vector component k; parallel to the
equilibrium magnetic field was cal culated from the for-
mula

ki = (0/ca)’[1+w/ 0] ™. (A1.5)

In the approximation at hand, the radiation imped-
ance R4 Was defined as

kl(lmax)

R = [1/(2m19)] .[ g(kp|I(ky|*dk;,  (A1.6)
0

where the function g(k,) was specified graphically in
[15]. To estimate the function g(k) from the plot pre-
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sented in [15], we specify the position of the antenna as
follows:

(a) the distance between the antenna and the bellow
(wal)is1.5cm,

(b) the distance between the antenna and the plasma
center is 36.75 cm, and

(c) the distance between the antenna and the plasma
boundary is0.75 cm.

The quantity k;, was determined from formula
(A1.5) with the maximum (central) plasma density. At

a frequency of 6 MHz, we have kﬁmax) =501 m!, so
that formula (A1.6) for the radiation impedance gives
R=4.8x 10 Q.

Al.7. Frequency Prafiles of the Antenna Current
and \oltage

For the output stage of a broadband power amplifier
to be installed in T-10, the length 1, of the cable
between the output stage and a loop antenna should be
no shorter than several meters. For the frequency sweep
band discussed in Section A1.5, the cable should be a
distributed parameter line, which is calculated using the
methods of the theory of long lines.

Under the assumption that losses in the cable are
absent, the basic equations of a uniform line yield the
following expression for the antenna current |

Iant = IOW/[WCOS(klcab) + ZantSin(klcab)]- (A1-7)

where k = 21/A is the wavenumber, W is the wave
impedance, and |, is the current at the input of along
line. The load impedance Z,,; can be divided into resis-
tive and reactive parts,

Zant = Rant + Rrad + i(“-)I—ant' (A1.8)

Below, we will show that the antenna resistance R, is
low in comparison with both R4 and the inductive
reactance wlL,, (where L., is the inductance of the
antenna loop); consequently, in calculating the desired
frequency profiles of the antenna current and voltage,
we can neglect the antenna resi stance.

The main contribution to the antenna impedance
comes from the antenna inductance, which was esti-
mated from formula (A1.1) in which the length of a
two-strip line was taken to be l ,,, = 57.7 cm.

For the antenna current |, to be frequency indepen-
dent, the reactive part iwlL,sin(kl ;) of the impedance
should be small. This can be achieved only under the
conditionkl ., < 1. From these considerations and from
the requirement that the design be as easy as possible,
we choose the cable length to bel ., =5 m.

For this cable length, the ratio of the antennacurrent
to the current at the beginning of the line is maximum
at the maximum frequency of a sweep band:

l/lo=166 at f = 6 MHz. (A1.9)
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Table3
f, MHz 0.8 2 3 4 5 6
Acay M 247.13 98.85 65.9 49.43 39.54 32.95
Ko, rad| 127 x 1072 3.18x 101 477 x 101 6.36 x 101 7.95 x 1071 9.53x 101
lants A 14.53 15.14 16.18 17.81 20.25 239
Uant, V 17.38 42.06 66.89 97.9 139 1975
Zap, Q [48x101+ix11 48x101+ 48 x 1071+ 48 x 1071 + 48 x 1071+ 48 x 1071 +
i x274 i x4.11 i x5.5 i X 6.85 i x8.22
Let us find the current at the input of the long line. dE,
First, we estimate the required power deposited in a EmG 1%'55 'w[l (m/r) }B”,
plasma. In the TEXTOR experiments [5], this power dr A rc A (A2.1)
was equal to 200 W. For T-10, the radiation power can dB mG '
be estimated by comparing the working volumes of the -aFl' (G A% AD B

tokamaks: Vr_o/Viextor = 0.5. Consequently, the radi-
ation power in T-10 can be estimated as P4 = Rl =
100 W, so that the current |, a the beginning of thelong
lineisabout 14.4 A.

For a current of 14.4 A at the input of the long line
and afrequency of 6 MHz, the high-frequency potential
U, at the antennais 197.5V.

The magnitudes of the high-frequency current and
potential at the antenna for some frequencies from the
sweep band and a current of 14.4 A at the input of the
line are summarized in Table 3.

Al.8. Resistance of the Antenna

The resistance of the antenna is estimated from the
following two simple expressions for (&) the electric
conductivity of copper and stainless steel,

Oy = O¢,/40; (A1.10)

and (b) the skin depth of a metal as a function of fre-
quency,

dy 01/ Jfa.

It isalso well known that the skin depth &, for copper
at afrequency of 1 kHz isequal to 2 mm.

Using relationships (A1.10) and (A1.11) and taking
into account the fact that the entire length of the loop
antennais about 117 cm, we can estimate the resistance
of the antenna at afrequency of 6 MHz asR,; = 0.05 Q.

(A1.11)

APPENDIX 2

CALCULATION OF THE COMPLEX POWER
INDEX A AND THE RATIO
OF THE GRADUALLY VARYING FUNCTIONS
vi(r) AND y,(r) FOR A COLD PLASMA

In the limit r — 0, the basic set of equations
reduces to

where A and G are the coefficients in basic equations
(14) and (15). Substituting expressions (22) into equa-
tions (A2.1), we arrive at the following two algebraic
equationsfor A, y;, and y,:

G I m/r)°
A+ 1)y, = v, 2 - 10+ —[1—(———1 :
(A2.2)
ic G
M = ——C;)«sz—Az)yz —m2y,.

We divide both of these equationsby y, to obtain the
following two equations for A and y; = v,/Ys:

A= %-u%’[l (m/r)}

CERCR

. 2
IC, ~2 2 _
+a(G —A)A—O

Y3,

(m/r)®
A

[mG

TA (A2.3)

~1H

We can see that A is a complex quantity. Solving the
quadratic equation for y, gives

2 ,,-
Acr /2(| w) E_EE 3 15
m° O-A

. (=)0
DA g A2 0

Asaresult, we find the power index A:
2 2 2
A= _1+Jgﬂ<5_1az_M_
A 0 A?
Performing the necessary manipulations, we can
reduce A to the form
A=rm—

(A2.4)

1+irm,, (A2.5)
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where

rm, = ,/(rm+Req, —Req,)/ 2,

rm, = ./(rm+ Req,—Req,)/ 2,

rm = J(Req, —Req,)’ + (Img, —Imgy)?,

2

(ReG x ReA+1ImG x ImA)m_l}

Req; = | Tim>x
ReA +ImA
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_(ImG xReA —ImA x ReG)’m’
(ReA? + ImA?)®

2m(ImG x ReA—ImA x ReG)
ReA’ + ImA?

Imqg, =

[m(ReG xReA+ImG xImA) 1}
ReA” +ImA’

zRe(G A) (ReA—ImA)+2ReA><ImA><Re(G A)

Req, =

(ReA —ImA) + 4ReA” x Im A’

zlm(G A) (ReA —ImA) 2ReA><ImA><Re(G A)

Img, =

(ReA —ImA) +4Re A’ x ImA?

APPENDIX 3

INDEPENDENT COEFFICIENTS C, AND D,
IN THE SOLUTIONS FOR THE VACUUM
REGION AND THE AW FIELD COMPONENTS
Eq(@) AND By(a) AT THE PLASMA-VACUUM
BOUNDARY

The condition that the component E be continuous
atr =agives

ReE; = ReC,; xCH,+ImD, x CH,B,,/ Bys(a),
IME; = ImMC, xCHyo+ Jo,CH 4 (A3.1)
—ReD,; x CH,By,/Bys(a).

The condition that the component B, be continuous at
r=ayields

ImD; = ImB/CHg,
ReD, = (ReB+ J,CHy)/CHs.

From the condition that the radial component of the
current density be equal to zero at the plasma—vacuum
boundary, we obtain

ReB; x CHys = ImE; x CHyg,

and, from the condition that the component B, be con-
tinuous, we find

ImEy = CH14><(JOXCH12+ReD1><CH13),(A3 4)
ReED = —CH14XImD1xCH13- .

The coefficients CH,_,, in equations (A3.1) and (A3.4)
can be evaluated as

CHy = I(kry|)/ Ku(kra]),

(A3.2)

(A3.3)

No. 2
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CH, = Iy(kry)/ Ka(kr),

CH3 = Im(|krant|) Krln(|krant|) — | r'n(|krant|) Km(|krant|)!

0) Boe

CH, = [Km(lka-l)CHZ_Im(lkal)]

CH, = E’[lm(lkal)—CHle(lkal)],

4mmw K
CHs = S iy Kn(Kran) )
_Im(lkrantl)Km(lkal)]!
CH, = 1985 1yt (ke ) (I kal)

ckCH;B,

=l m([Kr an) Kin(Ika) ], (A3.5)

CHg = S[K (ka) ~ CH,K(kal)],

ATk ||[|

CHQ_ m(|krant|)Km(|ka|) rln(|krant|)|m(|ka|)]v

kg kg B
CHy = CHSk” CHy = CH6k”+CH7 °;

Bo

41k
CHiz = 2 TKn(Kr )1 e

-1 r'n(lkrantl) Krln(lkal)] ’
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w

CHy; = W(v

Im(kal) —CHyKp(kal), CH,, =

CHys = ky(a)[1-¢.,(a)],

CHy = |ms”(a)[%’—gkﬁ(a)}.

Equations (A3.2)—«(A3.4) vyield the following
expression for the rea part of the component B,

S , S
CHyg 1

We insert (A3.6) into the second equation in (A3.2) to
obtain the real part of the coefficient D;:

CHy CHy,7 1
| S, * crin
CHg CH,3/CHgq
CHys
Solving the first equation in (A3.4) together with the

second equation in (A3.1), we find the imaginary part
of C;:

ReB(a) = (A3.6)

CH
+‘]°CHZ'

ReD, = (A3.7)

ImC, = ReD,CH;+J , (A3.8)
1 1 17 0 CH]_O
where
CHy, = L[CH CHy, + CH E}
17 CH]_O 14 13 4Bo19

Substituting (A3.6) into the first equation in (A3.3)
gives the following expression for ImE;:

CH, CHy,1CHyq

5 & o)
CH, CHy CHyg
CHy '

To determine the remaining coefficients in the
expressions for ImD, and ReC;, we must first find the
complex quantity vy, at the plasma—vacuum boundary.
To do that, we transform expressions (26) for E(r) and
By to

ImEy(a) =

(A3.9)

ReEq(r) = [(Reég Rey, - Iméglmyz)
ar 0 £

x cosHN=—AMA=—(IMERe (A3.10

d E}O% o ( Y2 )

+ ReEDImyz)sinan%L()Hm)\g}rexpan%%%?e)\%

NOVIKOV, DOBRYAKOQOV

ImE(r) = [('mEDRey2+ReI~EDImy2)

X cosan%L%m)\EﬂRefEDReyz (A3.11)
0

—ImEglmy,)sindnEt m)\D}rex nLEReAl
imy,)SngnF-HmA repdni-Re;
ReB(r) = [(ReéHReyz—lmé”Imyz)

X cos%n%iﬁm)\%—(ReEHReyz (A3.12)
0

o ; or D} or O
—ImBjimy,)sndn=—AmA=|expdn5—ReA

imyz)sinen-HmAG expn - ReAs

ImBy(r) = [(Imé”Rey2+ Rel~3||lmy2)

X coan%r—Hm)\E+ (Rel~3||Rey2 (A3.13)
0

—Im IEmeQsin%n%%EmAE} expan%%ﬂ?e)\q

where r, = 1 cm. The expressions for ImE(a) and
ReBy(a) were derived above.

Now, we find the remaining parts of the components
EjandBjatr =a

ReA +1

ReE;(a) = (Rey,c,—Imy,c;)a ,
ReA

(A3.14)
ImBy(a) = (Rey,c, +Imy,c3)a

The partsImD, and Re C, can be represented as
ImBy(a)
CH

The radia profiles of the AW field components were
determined from formulas (26). Finally, these formulas
can be written as

ImD,; =
(A3.15)

ReEq(r) = [(RefEDReyz—lmEDImyz)

X COSH'M InDLDD— ReEqlmy,—ImEsRe
E 2) O, ( oglmy, nRey,)

X sSinm InDLDD}rex [ rm -1 InDLD},

BL NG D p| (rm,—1) [0

ImEq(r) = [(ImEDRey2+ReI~EDImy2)
PLASMA PHYSICS REPORTS  Vol. 26
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X cos%mzln%%%+ (ReEDReyZ— Im I~Emlmy2)

><S|nBLm2InDL DI]}rexp[(rml 1)'”[.L D}’
(A3.16)

ReBy(r) = [(Re[%”Rey2 —Im é” Imy,)

X cos%mzlnaﬁ%— (Reé” Imy,—Im é” Rey,)
0

xsinHm InDLDD}ex [ rm,—1 InDLD},
% NG p| (rm;—1) (0
ImB”(r) = [(Imé||Rey2+Rel§||Imy2)

x cos%mzlngio%+ (Reé” Rey,—Im é”I mys,)

X sin%mzln%%%}exp[(rml 1)InDL D}

with rm, and rm, taken from Appendix 2.

Note that the eigenmodes can be evaluated by a
number of methods. However, only some of them can
be applied to solve the problem under discussion in
arbitrary geometry.

For example, one of these methods involves WKB
analysis [8], which restricts the class of the desired
functions to those describing plane waves, exp(ik.r),
where k. is the radia wavenumber (which, in turn, is
expressed in terms of the radial mode number ). The
plane wave approximation cannot be used to calculate
the resonant frequencies of eigenmodes whose intensi-
ties are maximum at the plasma center. In this case, the
approximate dispersion relation for the DAW spectrum
failsto hold [5]. For eigenmodes whose resonant layers
occur near the plasma periphery, the WKB method
requires that the boundary conditions be modified in
such a manner that this dispersion relation gives more
or less accurate results [8]. The WKB technique also
cannot be used to determine the AW power deposited in
unit plasma volume. Consequently, this approach is
inappropriate for studying auxiliary plasma heating by
Alfvén and magnetosonic waves or for determining the
width of the resonant peaksin the DAW spectrum (i.e.,
for estimating their quality factors) [8].

APPENDIX 4

DIELECTRIC TENSOR ELEMENTS
WITH ALLOWANCE FOR THE ELECTRON
AND ION TEMPERATURES

Substituting (45) into (42), we obtained the vector
equation, which was then solved together with Fara-
PLASMA PHYSICS REPORTS  Vol. 26
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day’s law. As a result, we arrived at the following
expressions for the elements of the dielectric tensor € :

L (A1 W)[A — (0 W) B]

1— (0 wy)?
_ (4 w)[B - (w/ wy)a]
B 1— (0 wg)’
_ 4mChrdonm Bk
&ro = %[ Chor e wc
L orlonBy mky goflonBy mkog
withoroc e ' Lho,Lhorwc e O
- . DZ(A4.1)
_6onmy  Boko[), g, @ _ o05 [ _O®
nore wc D}H%chi BD%/[]' roiﬂ}
4nlr donBo , smkg
®oo = 1+ [Eharwc e

Jo s 2

wLhor e c U We'
2 H .
whee o = 9, L B = Jo %Ky
4nci BOwCi BO w
jo ck
—_— + — k.
0= yn{(Te + T)K® _ YD_ewBo%L |300000ciH<D !
2 wp 2 2 . 2 ’
wp 1+yne(-|;e:T|) k4
wp
and y is the adiabatic power-law index.
APPENDIX 5

CALCULATION OF THE COMPLEX POWER
INDEXAAT T, %20

Inthelimitr — 0, we have E;(0) = B|(0) = 0; and
OP" — 0/0. Consequently, expression (45) contains
singularities of the 0/0 type at the plasma center. We
assume that, at r — 0, the field components have the
form

B, Oyy(r)r", EqOy,(n)r* ™,
wherey,(r) and y,(r) are gradualy varying functions of r.
We insert expressions (A5.1) into (48) and (49) to

(AS.1)
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arrive at the following two algebraic equations for two
unknowns, A and V; = Y, /V,:

A= Am— 2+"*’[1 (m/r)}yg,

G, (A5.2)

YA = A2r2 +G,mys.

Solving (A5.2) gives the complex power index A:

0
A= mA1—2+%[m(Gz—Al)+2
0
(A5.3)
4iw m U
+J[m(A1 Gy)=2"+ = A GFD
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