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Abstract—Results are presented from measurements of the energy spectra and fluxes of the escaping charged
fusion products and fluxes of fusion neutrons in ohmic regimes of the T-10 tokamak. The central temperature
of the plasma ions is determined from the broadening of the energy spectra of thermonuclear protons and tri-
tons. The ion temperature profile is evaluated from the dependence of the fluxes of charged fusion products on
the radial plasma shift. It is proposed to use a single spectrometric detector with several collimators and slow-
ing-down foils to measure the distribution of charged fusion products over pitch angles, which permits the
determination of the ion temperature profile in a single shot. The feasibility of the method proposed is proved
experimentally. © 2000 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

Measurements of the ion temperature in a tokamak
plasma are of great importance, because the ion tem-
perature is one of the main parameters determining the
plasma energy balance.

There is a variety of methods for measuring the ion
temperature: passive and active neutral-particle diag-
nostics, measurements of the Doppler broadening of
the spectral lines of impurity ions, diagnostics based on
the excitation of the resonant lines of hydrogen ions by
a neutral-particle probing beam, high-resolution X-ray
spectroscopy, and neutron spectrometry.

In the experiments described below, in order to mea-
sure the value and profile of the ion temperature in the
T-10 tokamak, we measured the products of the ther-
monuclear DD reaction: neutrons, protons, and tritons.

The measurements were carried out with the toroi-
dal magnetic field Bt = 2.2–3.0 T, plasma current Ip =
200–360 kA, and average electron density 〈ne〉  =
(2−5.5) × 1013 cm–3.

2. DIAGNOSTICS OF THE PRODUCTS 
OF THERMONUCLEAR REACTIONS

2.1. Neutron Diagnostics

Since the intensity of the thermonuclear DD reac-
tion in the T-10 tokamak is less than 5 × 109 s–1, we used
highly efficient boron and helium SNM-11, SNM-17,
and SNM-18 neutron counters to detect neutron radia-
tion. The total number of neutron detectors was ten;

† Deceased.
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eight of them (four SNM-11 detectors and four
SNM-17 detectors) were located symmetrically around
the device in order to observe the possible anisotropy of
neutron radiation (Fig. 1). The more sensitive ninth
detector (SNM-18) was positioned as close to the
plasma as possible and was used for measurements in
the regimes with a low neutron yield. Measurements
showed the absence of anisotropy; therefore, we carried
out the absolute calibration (using a 252Cf neutron
source) of the tenth detector (SNM-18), which was
placed on top of the device symmetrically about the

10
8

7 4

3

6 5

21

9

Fig. 1. Arrangement of the neutron detectors in the T-10
tokamak experiments: (1–10) neutron detectors.
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Fig. 2. Schematic of the CFP diagnostics: (1) detector unit,
(2) electrostatic shielding, (3) valve, (4) Teflon insulator,
and (5) arrangement for moving the detector unit.

Fig. 3. Detector unit: (1) case of the detector unit, (2) semi-
conductor detector, (3) light-protecting film, (4) alpha-par-
ticle source, and (5) collimator; (a) side view and (b) top
view.
plasma column. This allowed us to obtain the neutron
yield with an accuracy of approximately 50%.

The neutron signal was used as a normalizing factor
in the treatment of the measured fluxes of charged
fusion products (CFPs).

2.2. CFP Diagnostics

Basic characteristics of the diagnostic facilities used
in the T-10 tokamak to detect the escaping CFPs are
described in detail in [1]. Here, we only describe the
following main elements of the diagnostics.

The measurement of fluxes and energy spectra of
the thermonuclear 1-MeV tritons and 3-MeV protons
were carried out with an uncooled silicon surface-bar-
rier detector (SBD) located near the lower plasma
boundary (Fig. 2). The case of the detector unit was
made of a WND alloy containing 80% tungsten and
served to protect the detector against hard X-ray plasma
emission. The arrangement of basic elements of the
CFP diagnostics in the detector unit is shown in Fig. 3.
The sensitive surface of the detector (0.5 cm2) was pro-
tected against the optical plasma radiation by a thin alu-
minum foil deposited directly on the detector; the foil
had little or no effect on the energy spectra of tritons
and protons. A collimator consisting of a system of
nickel pipes was located in front of the detector. The
geometrical transparency of the collimator was 75%,
and the collimation angle was 14°. A 238Pu alpha-parti-
cle source was placed between the light-protective film
and the collimator. The source continuously irradiated
the detector with an intensity of 6–8 particle/s and was
used to test the efficiency of the detector and provide
the energy calibration of the measuring system between
the tokamak shots.

3. DETERMINATION OF THE ABSOLUTE VALUE 
OF THE CENTRAL ION TEMPERATURE

For the Maxwellian distribution function of deuter-
ons, the energy spectra of the thermonuclear tritons and
protons must have maximums at 1 and 3 MeV, respec-
tively; the half-width of these peaks depends on the
plasma-ion temperature Ti as 91.6 × (Ti [keV])1/2.

As was expected, the triton and proton spectra mea-
sured in the T-10 tokamak always had peaks at 1 and
3 MeV. Accurate measuring of the shape of these peaks
requires that the spectrometer energy resolution should
be several times better than the peak half-width. The
ion temperature in the central plasma region of the T-10
tokamak is in the 0.5–0.8-keV range; therefore, it was
necessary to ensure a spectrometer energy resolution of
20–30 keV. The testing experiments with the use of an
alpha-particle source showed that, in the absence of the
plasma, the energy resolution of the spectrometer was
~30 keV. Under the experimental conditions (i.e., in the
presence of the plasma), the resolution was lower
because of the presence of both the electromagnetic
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
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fields and the plasma radiation incompletely eliminated
by shielding. This resolution was measured to be
50−60 keV from the broadening of the line of a gener-
ator with a stable amplitude and frequency, whose sig-
nal was added to the spectrometric signal.

The energy spectra were measured over time inter-
vals of 100 ms. The time evolution of the plasma cur-
rent, electron density, neutron emission, and the CFP
energy spectra in one of the shots is shown in Fig. 4.

The energy spectra of protons and tritons that were
measured in the steady stage of another regime of toka-
mak operation is presented in more detail in Fig. 5. The
ion temperature evaluated from the half-width of the
proton peak was 810 ± 70 eV.

The accuracy of determining the ion temperature
from the CFP energy spectra was evaluated with the use
of the expression obtained in [2] for the accuracy of
determining Ti from the spectral measurements of neu-
trons:

where N is the total number of counts in the individual
measured CFP peak, σgen is the broadening of the gen-
erator line, and σdop is the Doppler broadening of the
CFP line.

Note that the measured ion temperature is the tem-
perature of ions in the plasma core. Taking into account
the measurement accuracy of CFP spectra and the accu-
racy of the absolute calibration of neutron detectors, we
can assume that the measured ion temperature does not
contradict the observed neutron emission.

4. EVALUATION OF THE ION TEMPERATURE 
PROFILE FROM THE ANGULAR DISTRIBUTION 

OF CFP FLUXES

The pitch-angle distribution of CFP fluxes on the
wall depends on the radial profiles of both the fusion
source and the density of the plasma current [3]. How-
ever, calculations show that, in the given measurement
geometry (the detector is located near the lower plasma
boundary), the current profile has a small effect on the
angular distribution of CFPs; this distribution is mainly
determined by the radial distribution of the ion temper-
ature in the central region of the plasma.

In order to measure the angular CFP distribution by
a single collimated detector, we have to turn the detec-
tor around its axis. In the spectrometer in use, this pro-
cedure requires air let into the diagnostic system.
Therefore, the detector can be readjusted only in inter-
vals between the series of measurements. Evidently, the
ion temperature distribution can be determined only if
the plasma parameters in different shots are identical.

Nevertheless, there is the possibility of measuring
the angular CFP distribution in a single shot with the
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use of a single detector. For this purpose, it is necessary
to convert the angular distribution into the energy dis-
tribution. From a technological standpoint, this can be
achieved by placing several foils of different thick-
nesses with individual collimators in front of the detec-
tor. The CFPs passing through the foil will decelerate,
and their spectrum will insignificantly broaden as a
result of straggling. Additional CFP peaks shifted
toward lower energies with respect to the initial CFP
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Fig. 4. (a) Time evolution of the plasma parameters and
(b) CFP energy spectra. The measurements were carried out
in shot no. 63872 (Bt = 2.65 T): (1) tritons, (2) protons, and
(3) generator pulse.
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Fig. 5. CFP energy spectrum measured in 0.1-s time intervals in the steady stage of shot no. 64317 (Bt = 2.6 T, Ip = 250 kA, and

〈ne〉  = 5.4 × 1013 cm–3): (1) tritons, (2) protons, and (3) generator pulse.
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Fig. 6. (a) Single detector with decelerating foils: (1) colli-
mator, (2) decelerating foils, and (3) SBD. (b) CFP energy
spectrum: (1) tritons; (2‡) 1.65, (2b) 2.2, (2c) 2.6, and
(2d) 3.0 MeV protons; and (3) generator pulse.
energy should emerge in the energy spectrum. The
value of the shift depends on the thickness of the foil;
i.e., it is determined by the collimator specifying the
pitch angle.

The feasibility of this idea was proved in the T-10
tokamak experimentally. The detector surface was par-
tially covered with three foils so that the total thickness
of the foils in different regions was 20, 40, and 60 µm
(see Fig. 6a). A common collimator was installed in
front of the detector; i.e., the measurement signal was
unresolved in the pitch angle. The CFP energy spectra
measured in the T-10 tokamak with the use of this sys-
tem are presented in Fig. 6b.

Passing through the foils of different thicknesses,
protons lost an energy of 390, 810, or 1350 keV and
reached the detector surface with an energy of 2610,
2190, or 1650 keV, respectively, which agreed with the
calculated values. Tritons with an energy of 1 MeV
were completely absorbed by even the thinnest foil. A
fraction of the surface was uncovered and received the
protons and tritons that did not undergo deceleration.
Thus, the possibility still exists of measuring the ion
temperature from the energy spectra of 1-MeV tritons
and 3-MeV protons, although the number of counts
falling within these peaks is lower because of a
decrease in the uncovered detector surface.

These test experiments in the T-10 tokamak showed
that it is possible to place at least three foils on the sur-
face of a single detector. Consequently, it is possible to
measure the CFP fluxes for no less than four values of
the pitch angle in a single shot. This method has an evi-
dent advantage over that using four independent detec-
tors and four spectrometric channels.

At present, we are producing a detector unit with
three spectrometric silicon semiconductor detectors
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
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(SBDs) (Fig. 7). In order to resolve CFP particles by the
pitch angle, three collimators consisting of sets of thin
nickel pipes were placed in front of the central detector
and two collimators were placed in front of each of the
other detectors. For the unambiguous identification of
protons passing through each collimator, we use decel-
erating foils: two foils of different thicknesses in front
of the central detector and one in front of each of the
other (second and third) SBDs.

Thus, the new diagnostic system allows direct mea-
surements of the pitch-angle distribution of fluxes of
the escaping CFPs in each shot. The measured pitch
angles range from 50° to 130°.

5. EVALUATION OF THE ION TEMPERATURE 
PROFILE FROM THE DEPENDENCE OF THE CFP 
FLUX ON THE RADIAL SHIFT OF THE PLASMA

The measured CFP flux is formed along a certain
helical trajectory determining the detector line of sight.
When the plasma column shifts inward or outward
along the major radius, the line of sight passes through
the different plasma regions; consequently, the mea-
sured CFP flux changes.

In our experiment, the orbits of particles falling on
the detector oriented at the angle αdet = 90° are close to
the central, hottest plasma region because of the large
Larmor radius (~10 cm). When the plasma column
shifts inward or outward, the detector sees the plasma
regions at a greater or lesser distance from the center,
respectively. In the first case, the value of the measured
CFP fluxes decreases, and, in the second case, it
increases. The sharper the fusion source profile, the
larger a relative change in the fluxes. This idea was first
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Fig. 7. Detector unit (top view): (1) case of the detector unit,
(2) SBD, (3) collimators, and (4) decelerating filters.
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realized in experiments in the PLT device [4] in order
to measure the ion temperature gradient.

In our experiments, the plasma position was varied
from shot to shot from –3 cm (inward shift) to +4 cm
(outward shift). Figure 8 presents both the experimental
data (for αdet = 90°) and the calculated dependences
obtained for different shapes of the Ti(r) profile. Each
experimental point corresponds to an individual shot, in
which the proton fluxes were averaged over a period of
0.2 s in the steady-state stage of the discharge. Expe-
rimental and calculated values are normalized to the
−1-cm position, which is standard for the T-10 toka-
mak.

From the data presented, it follows that the ion tem-
perature profile in the T-10 tokamak is fairly flat, at
least in the central region of the plasma, which is the
main source of the measured CFP flux.

Plasma-shift experiments were also carried out for
the detector oriented at the angle αdet = 65°. In this case,
the measured dependence of CFP fluxes on the plasma
shift behaves even more smoothly, which is also in
agreement with calculations.

6. CONCLUSION

The ion temperature in the T-10 tokamak plasma is
measured in different operating modes of the device
from the broadening of the energy spectra of thermonu-
clear protons and tritons. Within the measurement
accuracy (10–15%), the obtained values of the ion tem-
perature agree with the measured neutron yield.

The ion temperature profile is evaluated from the
dependence of CFP fluxes on the radial plasma shift. It
is found that, in the T-10 ohmic regimes, the ion tem-
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Fig. 8. The ratio of the proton flux (p) to the neutron flux (n)
as a function of the radial plasma shift; experimental results
(points) and calculated curves for different Ti(r) profiles:

(1) Ti(r) ~ (1 – (r/a)2)2, (2) Ti(r) ~ (1 – (r/a)2), (3) Ti(r) ~

(1 – (r/a)4), (4) Ti(r) ~ (1 – (r/a)4)2, and (5) Ti(r) ~ (1 –

(r/a)4)1/2.
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perature profile is relatively flat and is shaped as Ti(r) ~
(1 – (r/a)4)2 .

It is proposed to use a single spectrometric detector
with several collimators and slowing-down foils to
measure the CFP distribution over pitch angles, which
allows the determination of the ion temperature profile
in a single shot. The feasibility of the method proposed
is proved experimentally.
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Abstract—A hot target plasma is obtained in the end cell of the AMBAL-M device with the use of an end gas-
discharge plasma source. A fairly high longitudinal electron current flowing from the plasma source to the
plasma receiver is detected experimentally. The electron current is studied in the region in front of the input
magnetic mirror, where the longitudinal electric field is directed outward from the mirror. Different models
for plasma description are considered, and possible plasma instabilities are discussed. It is shown that a fairly
high longitudinal electron current in the region where the electric field accelerates electrons results in the gen-
eration of the flow of fast electrons responsible for the current in the mirror system. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A hot target plasma is obtained [2], and a fairly high
longitudinal electric current [3] flowing through the
plasma from the plasma source to the plasma receiver
is detected in the end cell of the AMBAL-M device
with the use of an end gas-discharge plasma source [1].
It is shown that the longitudinal current owes it exist-
ence to the method for the plasma production and is a
fraction of the discharge current of the plasma source
[4]. It is found that, as the distance from the magnetic
mirror (on the plasma-source side) decreases, the
plasma potential increases along the magnetic field
lines (along which the current flows) [2, 5] but does not
decrease, as in the case of a thermal barrier. In this
paper, we study the electron current in this particular
region of the electric field in front of the input magnetic
mirror.

After a brief description of the experimental setup
and formulation of the problem, numerical models are
considered and the conclusion is drawn that a fast- elec-
tron flow is produced in the system, which is confirmed
by direct measurements of the electron distribution
function. In the Conclusion, we give a summary of the
results obtained.

2. BRIEF DESCRIPTION 
OF THE EXPERIMENTAL SETUP

The schematic of the experiment is shown in Fig. 1.
An annular gas-discharge plasma source1 [1] generates
a cold dense plasma flow and specifies a nonequilib-
rium profile of the radial electric field. The Kelvin–
Helmholtz instability [6] and the longitudinal current

1 The gas-discharge plasma source is shaped as a ring 11 cm in the
inner diameter and 13 cm in the outer diameter.
1063-780X/00/2602- $20.00 © 20115
[7] lead to an increase in the transverse ion tempera-
ture; as a result, the ion mean free path increases, a sub-
stantial fraction of the plasma flow is reflected by the
magnetic field of the mirror, the plasma density
decreases, and a thermal barrier is produced in the
region of the input magnetic mirror. In the magnetic
mirror system, the ions (whose temperature continues
to grow) are confined by the magnetic field, whereas
the electrons are confined by the ambipolar potential
and are heated by the current and collisions with ions.
The basic plasma parameters in the center of the mag-
netic mirror system are the following: the plasma diam-

–300 z, Òm1000–200 –100
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12 3 45

Transport region Mirror system
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B, kG
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Fig. 1. Schematic of the end cell of the AMBAL-M device
and the magnetic field line emerging from the plasma
source: (1) coils of the mirror system, (2) plasma-source
solenoid, (3) gas-discharge plasma source, (4) plasma
receiver, and (5) semicusp coils. Arrows mark the cross sec-
tions in which the Langmuir probe measurements were car-
ried out. At the bottom, the profile of the magnetic field on
the axis is shown.
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eter is 20 cm, the plasma density is 6 × 1012 cm–3, the
electron temperature is 50 eV, and the ion temperature
is 200 eV. A detailed description of the device and the
experimental results are presented in [2–5].

3. FORMULATION OF THE PROBLEM

One of the most important and interesting results
obtained in the AMBAL-M experiments is the presence
of the longitudinal electric field accelerating the elec-

–300
z, Òm

–200 –100 0

–200

–150

–100

–50

0

ϕ, V

Fig. 2. Longitudinal profile of the floating potential of the
Langmuir probe (solid line) and space potential (dashed
line) along the magnetic field (at a 3.4-cm radius in the cen-
tral plane of the mirror system) at the instant 1.4 ms.

–6
v, 108 cm/s

–4 –2 2

1
f(v||)

40 6

21 3 4

0

Fig. 3. Electron distribution functions over longitudinal
velocities at z = (1) –243, (2) –168, (3) –115 cm, and (4) in
the magnetic mirror region. The potential difference
between the input magnetic mirror and the z = –243-cm
cross section is 100 V.
trons toward the mirror system. This field was observed
in the transport region in front of the input magnetic
mirror at a radius approximately equal to the half-
radius of the plasma stream flowing from the gas-dis-
charge plasma source. The electric field at other radii
decelerates electrons, which is typical of the formation
of the thermal barrier [2, 5]. The measured longitudinal
profiles of the floating potential of the Langmuir probe
and the space potential are presented in Fig. 2. The
space potential is determined by the point of inflection
of the electron part of the I–V characteristic of an asym-
metric double probe [8]. The value of the excess of
the space potential above the floating potential of the
probe for the Maxwellian particle distribution is well
known. In the case in question, the excess is approxi-
mately (2–3)Te because of a higher ion temperature.
Such an excess potential is observed near the plasma
source (z < –240 cm), where the plasma is dense and
cold (Te ≈ 8 eV). The difference between the space
potential and floating potential increases with distance
from the plasma source (see [5], Figs. 9, 11) because of
the increase in the electron temperature (see [2], Fig. 6).
The presence of the electric field (up to 0.7 V/cm)
accelerating the electrons and extending over two
meters in front of the input magnetic mirror is seen in
Fig. 2. In [5], it was assumed that a fairly high electron
current flows just in this region rather than along the
magnetic lines coming out of the gas-discharge plasma
source. Later, this assumption was confirmed experi-
mentally in [3].

The problem of the electron current flowing in the
region of the accelerating electric field is of great inter-
est. Let us consider several models for this pheno-
menon.

4. SIMULATION

4.1. Two-Fluid Magnetohydrodynamics

Because of the small plasma density in the mag-
netic-mirror region, the electron mean free path deter-
mined by the Coulomb collisions reaches several
meters and is 3–10 times the magnetic-field-variation
scale length L = B/(∂B/∂z). Therefore, the hydrody-
namic approximation is invalid. However, if the elec-
trons are scattered on the turbulent oscillations arising
due to instabilities, the hydrodynamic approach is
applicable. The electron distribution function can be
represented as the Maxwellian distribution shifted by
the flow velocity. However, the existence of such a col-
lisional flow generates the problems of how to fit the
calculated potential distribution to the measured one
and how to explain the high electron temperature [5].
To achieve an agreement with the measured electron
temperature, a very high heating power is required,
because the energy carried away due to convection and
heat conduction increases substantially. With such high
energy losses, it is hardly possible to heat this turbulent
plasma flow by injecting available neutral beams.
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
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Although it seems that scattering by waves does not
lead to the turbulent collisional flow of the plasma jet,
only experiments can confirm this assumption—
whether it will be the injection of neutral beams or the
measurements of the electron distribution function in
the mirror system.

4.2. Kinetic Model

Another method for studying the current flowing in
the plasma is the kinetic approach [9]. Let us consider
a collisionless plasma described by the Vlasov equation
[10]. We assume that the electrons move from the initial
point denoted by the index 0, where their distribution is
Maxwellian, toward the higher magnetic field. In addi-
tion, the electrons are in the accelerating electric field.
The electron distribution function f is found from the
laws of conservation of energy and the magnetic
moment. In the absence of collisions, the total time
derivative is df/dt = 0. In phase space, the particles
move along the lines at which f is constant. The electron
distribution function is Maxwellian but has a sharp
boundary, beyond which the distribution function van-
ishes. In the plane (v||, v⊥ ), the contours of the distribu-
tion function are circles and the boundary beyond
which the distribution function vanishes is an ellipse

 +  = eϕ – eϕ0

for v|| > 0 and a hyperbola

 +  = eϕ – eϕm

for v|| < 0. Here, the index m refers to the quantity in the
magnetic mirror region. In order for these boundaries to
be joined at the point v|| = 0, the dependence of the
potential on the magnetic field must be linear.

Let the electron acceleration by the electric field start
near the point where the probe is located (z = –243 cm)
and terminate in the mirror system, the potential differ-
ence being 100 V. The corresponding evolution of the
electron distribution function f(v||) over longitudinal
velocities with decreasing distance from the magnetic
mirror is shown in Fig. 3.

4.3. Runaway Electrons

It is difficult to model the real experimental situa-
tion, because the plasma flow is collisional near the
plasma source and collisionless in the mirror region. It
is well known that, in the presence of an accelerating
electric field, runaway electrons can be generated in the
collisional plasma. Runaway electrons are fast elec-
trons that on average accelerate rather than decelerate,
because the friction force (~1/v) decreases with
increasing the electron velocity. In the electric field E,
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the electrons with velocity vz become runaways if

vz >  [11]. As the distance from the
magnetic mirror decreases, the plasma density
decreases and the boundary of the runaway region
shifts to lower velocities; as a result, more and more
electrons become runaways. Near the mirror region, the
runaway boundary corresponds to the velocity vz ≈ 2 ×
108 cm/s, which is close to the thermal electron veloc-
ity; therefore, a substantial fraction of electrons
become runaways.

4.4. Summary

When the accelerating potential is much greater
than the initial temperature (as in our case), the colli-
sionless acceleration in the constant magnetic field
leads to the formation of a beam of electrons with close
longitudinal velocities. In the increasing magnetic
field, there is energy transfer between the degrees of
freedom because of the conservation of the adiabatic
invariant. As a result, for a given potential difference,
electrons with different transverse momentums gain
different longitudinal velocities, as is seen in Fig. 3. An
even greater dispersion of the fast-electron beam in lon-
gitudinal velocities results from the absence of a sharp
acceleration boundary in velocity space because of a
smooth decrease in the plasma density with decreasing
distance from the magnetic mirror.

The onset of the Buneman instability [12] and the
build-up of Langmuir oscillations can also contribute to
the broadening of the electron beam in energy space.
According to the estimate from [13], the formation of a
plateau in the electron distribution function due to
Langmuir turbulence must proceed rather rapidly (on a
space scale of ~1 cm). Therefore, there can exist a situ-
ation similar to the propagation of a monoenergetic
electron beam in a plasma, which was considered in
[14]. In that paper, it was shown that an electron distri-
bution with a plateau is established at each point, the
maximum velocity in the plateau being constant.

5. EXPERIMENTAL RESULTS

The presence of the fast-electron flow in the mirror
system is seen from the I–V characteristic of the Lang-
muir probe placed in the region where the current
flows. The I–V characteristic shows the presence of
both regions with the positive derivative ∂f(%)/∂% and
the plateau (linear dependence of the current on the
voltage) in the electron energy distribution function.
However, an accurate interpretation of these results
leaves unclear the problems associated with the sec-
ondary electron emission, a possible change in the
potential jump near the surface [15], and the possible
existence of the linear transient region in the I–V char-
acteristic [16]. Therefore, we designed a special small-
size movable electron-energy analyzer and used it to
measure the electron distribution function over longitu-

4πe
3λn mE⁄
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dinal energies in the mirror system. A detailed descrip-
tion of the analyzer and obtained experimental results
are presented in [17]. The analyzer measurements show
that, in the current channel, the electron distribution
function of the arriving electrons over longitudinal
velocities differs from the Maxwellian distribution
function and, in the energy range from 150 to 350 eV,
is shaped like a plateau. Fast electrons with the density
~1011 cm–3 are responsible for the transport of the main
part of the detected longitudinal current [3]. Thus, the
experimental results show that the longitudinal electron
current in the mirror system is carried by fast electrons
that are produced in the region of the accelerating elec-
tric field, in front of the magnetic mirror.

6. CONCLUSION

In the previous experiments with a target plasma in
the AMBAL-M device, it was found that, in front of the
input magnetic mirror, there is a longitudinal electric
field directed outward from the magnetic mirror. It was
shown that a high electron current flowing into the mir-
ror system exists in this region.

In this paper, we have considered various models for
a plasma description and have shown that the presence
of an electron current in the region of the accelerating
electric field leads to the generation of a flow of fast
electrons that carry the current in the mirror system.
The fast-electron flow is recorded experimentally.

The production of a fast-electron flow is not charac-
teristic of open magnetic confinement systems. Further
investigations of the processes related to this phenome-
non (in particular, the formation of an accelerating elec-
tric field and the influence of the fast-electron flow on
the confinement and heating of the plasma in the mirror
system) are of considerable interest.
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Abstract—Resonance phenomena arising when the Larmor drift velocity is locally equal to the phase velocity
of plasma oscillations are analyzed. It is shown that, in a plasma with a nonuniform temperature, the wavelength
of the oscillations sharply reduces at the resonant point, so that the oscillations convert into small-scale waves.
In a plasma with a uniform temperature, Coulomb collisions cause the oscillations to dissipate at the resonant
point. It is noted that a resonance with the Larmor drift can be used to heat the plasma. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The stability of the plasma that executes a nonuni-
form motion is in large measure governed by the phe-
nomenon of hydrodynamic resonant interaction [1]. In
an inhomogeneous plasma in a magnetic field, the so-
called Larmor drift (or a flowing-around stream), which
is a hydrodynamic motion unrelated to the displace-
ment of Larmor circles, occurs. This phenomenon is
also known as a diamagnetic current or gradient cur-

rent. The Larmor drift velocity is VL = [B—p]. In

earlier papers [2, 3], I noted that, at a resonance with the
Larmor drift, the wave phase along particle trajectories
changes in time, thereby preventing direct energy and
momentum exchange between waves and particles (it is
well known that such an exchange is peculiar to reso-
nant interaction). It sill remains unclear how the energy
and momentum exchange between particles and waves
can occur at resonances with the Larmor drift and
whether this happens in reality. In order to answer this
question, we must take into account local physical pro-
cesses occurring in the vicinity of the resonant point,
which are unimportant far away from this point, where
they are usually neglected. However, this approach to
describing various plasma waves yields singular wave
equations having a singularity at the point of the Lar-
mor resonance.

It was found that, in a plasma in which the density
and temperature gradients are both nonzero, the higher
order (fourth-order) effects in the ion Larmor radius
become important near the resonant point. Taking into
account these effects raises the order of the wave equa-
tion. The refined wave equation describes how compar-
atively large-scale (e.g., flute or drift) oscillations con-
vert into smaller scale waves propagating away from
the Larmor resonance point. However, this phenome-
non can be correctly described using a simplified wave
equation supplemented with the Landau rule for cir-
cumventing the resonant point. Small-scale waves

c
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travel toward the point at which the resonance condition
is satisfied for the Larmor drift velocity calculated solely

in terms of the density gradient,  = [B—n].

In  the vicinity of this point, the wavelength of the
small-scale waves approaches zero; i.e., the waves stop
propagating. Then, the waves will evolve depending on
the sign of the temperature gradient. If the temperature
and density gradients are equidirectional, then the
oscillations will be damped by ion–ion (i–i) collisions.
If the gradients are oppositely directed, then i–i colli-
sions can cause small-scale waves to grow.

In a plasma with a uniform temperature and nonzero
density gradient, the energy of large-scale waves
increases in the vicinity of the point of Larmor reso-
nance until the effects of ion–electron (i–e) friction,
which are responsible for wave absorption, come into
play. Along with the wave conversion in a plasma with
—T ≠ 0, this phenomenon can also be correctly
described using a simplified singular wave equation
supplemented with the Landau circumvention rule.

Our analysis shows that the energy of the plasma
waves decreases due to resonant interaction with the
Larmor drift. Since the energy lost by the waves is
finally converted into thermal energy, the Larmor reso-
nance phenomenon can be used to heat the plasma.

2. PLASMA WITH NONUNIFORM 
TEMPERATURE AND DENSITY

2.1. Basic Equations

The Larmor resonance phenomenon, which has a
substantial impact on various kinds of plasma oscilla-
tions, may, in particular, enlarge the domain in which
flute perturbations are unstable because of the diamag-
netic nature of the plasma [4]. We will study the prob-
lem at hand using as an example flute oscillations,
which are a simple and convenient object for demon-
strating the general features of the Larmor resonance

VL'
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2
n
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phenomenon. In the simplest formulation (which
implies a plane symmetry, a uniform magnetic field, the
use of the potential approximation, and modeling of the
nonuniform part of the magnetic field by the effective
gravity acceleration g), flute oscillations are described
by the equation (see, e.g., [5, 6])

, (1)

where Ωi = , g = , R is the scale on

which the magnetic field varies, and the perturbed elec-
tric potential is chosen to be ϕ1(r, t) = ϕ1(x)exp(–iωt +
ikyy). Equation (1) is written in Cartesian coordinates
with the x-axis directed along the unperturbed density
and temperature gradients and the z-axis directed along
the magnetic field.

The point of the Larmor resonance is a singular
point of equation (1), which was derived under the
assumption that the ion Larmor radius ρi is small. This

equation is correct up to terms on the order of . In
order to regularize the wave equation, we must incorpo-
rate the finite-Larmor-radius effects more completely.

In the potential approximation, the wave equation
can be derived from the condition that the plasma is
quasineutral. The perturbed ion density into which the
finite-Larmor-radius effects are completely incorpo-
rated is found by solving the kinetic equation by the
standard method of integration along the trajectories:

(2)

where f0(v) = n0(ζ) exp  is the

initial ion distribution function, ζ = x + vy/ωi, ωi is the
ion cyclotron frequency, θ is the phase of the ion cyclo-
tron gyration, χ = arctan(ky/kx), ξ = kv⊥ /ωi , and J0 is the
zero-order Bessel function.

Because of a reduction in the characteristic spatial
scale of the flute perturbations in the vicinity of the res-
onant point, the dominant terms in the expansion in ρi

in the expression for n1i are the terms containing the
fourth-order derivative of ϕ1 (kx  –id/dx). Incorpo-
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rating these terms into the quasineutrality condition
makes it possible to generalize equation (1):

(3)

where 

We set the origin for the coordinates at the resonant
point, change the variables ω – Ωi(x) ≈ – x, and
omit the small term proportional to ∝ xϕ1 in the fourth-
order equation (3) in order to reduce this equation to the
standard form with a small coefficient in front of the
highest derivative (see, e.g., [7]):

(4)

where Λ = . The quantity P, which is equal to

P = – , is assumed to be positive, which

corresponds to a plasma that is unstable against flute
perturbations. For definiteness, we also set  > 0.

2.2. Wave Conversion and Landau Circumvention Rule

The theory for solving equations of the form of (4)
is well developed: they are usually solved by taking the
Fourier transformation at complex values of kx,

(5)

The integration contours for this expression can be
divided into two groups: closed contours and contours
on which ϕ1(kx)  0.

For the Fourier transform ϕ1(kx), we obtain from (4)

(6)

Although equation (4) has only four linearly inde-
pendent solutions, it is convenient to introduce seven
functions. The relevant contours of integration over kx

are shown in Fig. 1, in which the “forbidden” regions
where |ϕ1(kx)  ∞ are hatched. From Fig. 1, one
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can see that the seven functions we have just introduced
are related by

(7)

Taking the sum of these expressions yields

(8)

The functions V and Ui can be regarded as long-
wavelength, because, in the limit Λ  ∞, they pass
over to the solution to the reduced equation (4) without
the term containing the fourth-order derivative. In the
same limit, the short-wavelength functions Ai can be
obtained from (4) in which the last term on the left-
hand side is omitted.

To obtain the function V, we consider the range
P−1 @ |x| @ Λ–1/3 and choose the integration contour in
the region Λ1/3 @ |kx| @ P, in which we have ϕ1(kx) ≈ 1/kx

and, accordingly, V ≈ 2πi. Consequently, in this range
of |x| values, the desired solution to equation (4) in
which we omit the term containing the fourth-order
derivative is a solution that is regular at the resonant
point and has the form

As a second linearly independent solution to the
reduced equation, we can choose, e.g., the function U2.
If 0 > argx > –4π/3, then the sector in which contour U2
approaches infinity in the plane of the complex variable
kx (π < argkx < 5π/3) intersects the half-plane Im(kxx) > 0.
For such values of argx, the integral in (5) converges,
because it contains the factor exp(ikxx). If |x| @ Λ–1/3,
then the first term in the exponential index in (6) is
unimportant, in which case the function U2 passes over
to the solution to the reduced equation (4). Setting |x | @
P–1, Λ–1/3 and evaluating (5) by the saddle point method
yields

(9)

This asymptotic behavior is characteristic of the fol-
lowing solution to the reduced equation:

If argx = 0, then the half-plane Im(kx x) > 0 on the
plane of the complex variable kx only borders the sector
π < argkx < 5π/3, without intersecting it. Consequently,
for argx = 0, the main contribution to the integral in (5)
comes from the region where |kx | values are large and in
which the first term in the exponential index in (6)
should be taken into account. In this case, the function
U2 can be found from the third expression in (7), in
which the function A3 is evaluated by the saddle point
method. For argx ≠ 2π/3, contour A3 intersects only one
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saddle point kx, s = –(xΛ)1/2. The corresponding calcula-
tions give

(10)

The existence of the asymptotic solution (10), which is
valid along the positive real semiaxis and contains an
exponential function whose index varies on a short
scale, indicates the conversion of large-scale waves into
small-scale waves at a Larmor resonance.

The last term in (10) should be taken into account
not only at argx = 0 but also in the sector 0 < argx <
2π/3, where it grows exponentially and plays the dom-
inant role. Hence, we arrive at the conclusion that the
nonanalytic solution to the reduced equation (1) coin-
cides approximately with the solution to equation (3)
only in the sector 0 > argx > –4π/3, which contains the
lower half-plane. Therefore, if we wish to operate with
the simplified equation (1), then we must choose the
integration contour that lies below the resonant point
(Fig. 2). Since we are working under the assumption

 > 0, the integration contour is chosen in accor-
dance with the Landau rule. Consequently, the Landau
circumvention rule appears to be a consequence of the
Stokes phenomenon, which implies that the asymptot-
ics of an analytic function are different in different
regions on the plane of a complex variable [cf. (9),
(10)].

A similar analysis shows that the functions
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Fig. 1. Integration contours in (5) corresponding to solu-
tions to equation (3). The sectors in which the integrand
increases without bound as |kx |  ∞ are hatched.
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differ from U2 only with regard to the positions of the
sectors of the complex variable x in which they trans-
form into the corresponding short-wavelength exponen-
tially growing solutions to the complete equation (4).
In Figs. 2 and 3, these sectors are denoted by Si with the
same subscripts as in Ui . Figure 3 implies that, if we
choose the function U3 as a second linearly indepen-
dent long-wavelength solution, then the integration
contour should lie above the singular point in the com-
plex plane, which corresponds to the “anti-Landau” cir-
cumvention rule. In fact, the positive real semiaxis
coincides with the upper boundary of sector S3, in
which, in accordance with the second relationship in
(7), the function U3 transforms into the short-wave-
length solution A2:

(11)
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Im x

S3

S2

S1
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Fig. 2. Plane of the complex variable x for the function U2.
The sector in which this function transforms into a short-
wavelength function is hatched. The contour for circum-
venting the Larmor resonance point according to the Landau
rule is marked by an arrow.

Fig. 3. The same as in Fig. 2, but for the function U3. The
arrow indicates the contour for circumventing the resonant
point in the sense of the “anti-Landau” rule.
As for the solution U1, the last two relationships in
(7) imply that it is rapidly growing in sector S1, which
contains a negative real semiaxis. It is hardly conceiv-
able that this solution reflects a real physical situation.

The answer to the question of which solution (U2 or
U3) should be used (and, accordingly, the question of
whether the Landau circumvention rule is valid)
depends on the particular problem that is to be solved.
To clarify this point, we turn to the dispersion relation
for small-scale waves, which can be obtained from
equation (3) without the last two terms:

(12)

This relation implies that the group and phase veloc-
ities of the small-scale waves have different signs. Con-
sequently, the phase of the second term in (10)
decreases as x increases, so that this term describes the
wave that carries the energy away from the resonant
point. On the other hand, the second term in (11)
describes small-scale waves that propagate toward the
point of Larmor resonance.

Large-scale waves are characterized by a normal
dispersion: in the vicinity of the resonant point, the
approximate dispersion relation has the form

Consequently, the first terms in (10) and (11) describe
large-scale waves propagating oppositely to small-
scale waves, which corresponds to the complete con-
version of large-scale waves into small-scale waves and
back at the point of the Larmor resonance.

Below, we will show that, during the flute instabil-
ity, large-scale waves are generated on the outside of
the vicinity of the resonant point. Large-scale waves
propagating toward the point of Larmor resonance
should be described by the solution U2, which corre-
sponds to the Landau circumvention rule.

On the other hand, we can imagine situations in
which small-scale waves also propagate toward the res-
onant point. Below, we will show that the energy of the
small-scale waves into which large-scale waves are
converted increases in the vicinity of the point at which
the resonance condition is satisfied for the Larmor drift
velocity calculated solely in terms of the density gradi-
ent. However, for some density profiles, no such point
exists, in which case small-scale waves should return to
the point of Larmor resonance after they have been
reflected from the boundary. The solution describing
small-scale waves that approach the resonant point is
determined by the function U3 with the “anti-Landau”
rule for circumventing the singular point (see above).
Note that both of the long-wavelength solutions
decrease exponentially behind the point of Larmor res-
onance, i.e., in the region x < 0, in which U2, 3 ∝
exp(−2 ).
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If the Larmor drift velocity is a nonmonotonic func-
tion of the coordinate, then there can exist eigenmodes
between two points of the Larmor resonance in a
plasma. The eigenmodes are a superposition of the
oppositely propagating large-scale and small-scale
waves. At the points of Larmor resonance, the reflec-
tion of these waves is accompanied by their conversion:
large-scale waves are converted into small-scale waves
and back. The spatial structure of these waves is illus-
trated in Fig. 4. Presumably, these are the waves that
were found to be unstable in the problems treated in
[8, 9].

Along with the solutions that we have already dis-
cussed, it is of interest to consider the solution A1,
which decreases sharply behind the resonant point:

It is convenient to find the solution at the positive
real semiaxis (line C1) from relationship (8). This is
related, in particular, to the following circumstance: if
x lies on lines Ci , then contours Ai pass through both of
the saddle points kx, s = ±(xΛ)1/2 of the integral in (5).
Relationship (8) shows that, in the region ahead of the
resonant point (x > 0), the solution A1 describes the
standing large-scale and small-scale waves that are
somehow coupled to each other.

2.3. Wave Energy Flux and Flute Instability

The reduced equation (1) enables us to consider the
flute instability that may occur in a gravitational field

directed outward from the plasma, g  < 0. Rosen-

bluth et al. [5] showed that the flute instability is sup-
pressed if the Larmor drift velocity is sufficiently high,

 ≥ . However, in [4], it was shown that,

even in the regime in which the flute instability is sup-
pressed, flute oscillations may nevertheless grow as a
result of resonant interaction with the Larmor drift.

If the growth rate of such a resonant flute instability
is not high, it can be estimated from the quadratic form
obtained by multiplying (1) by  and by integrating
the resulting equation over the interval (x1, x2), which
we are considering here. With allowance for the bound-
ary condition ϕ1(x1, 2) = 0, the imaginary part of the
quadratic form is

(13)

The main contribution to the integral of the first
term (which will be denoted by Q1) comes from the
vicinity of the resonant point at which the solution has
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a logarithmic singularity ϕ1  ln(x – xs – iγ/ ) in

the limit γ = Imω  0. Using the familiar equality

 = π, we obtain

With allowance for this relationship, expression

(13) implies that, if g  < 0, then the flute oscillations

are unstable,

where 〈 〉  is a certain mean value of  and ∆x is
the plasma dimension.

Let us analyze the energy balance in unstable oscil-
lations. It is convenient to evaluate the energy density
of the potential waves,

,

from the wave equation

(14)

which is valid for any potential oscillations.

We integrate (14) multiplied by  by parts assum-
ing that, at the boundary, the potential is unperturbed.
As a result, we obtain

(15)

We also assume that the tensor εik is Hermitian and
that the waves grow at a low rate (ω @ γ). Both of these
assumptions are valid for the unstable waves we are
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Fig. 4. Spatial structure of the eigenmodes excited between
the points of Larmor resonance: the Larmor drift velocity
versus the coordinate (xs; 1, 2 are the resonant points). The
wavy arrows show the wave propagation directions that lead
to the establishment of eigenmodes (the propagation direc-
tions of the long- and short-wavelength oscillations can be
reversed simultaneously).
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going to analyze. In (15), we single out the imaginary
part by expanding εik in powers of the small ratio iγ/ω
and add the resulting expression to the real part multi-
plied by iγ/ω. This yields the following equality, which
describes the time evolution of the wave energy:

The constant can be found by comparing equations (1)
and (14) in the simplest case of a homogeneous plasma:

Thus, we have found that the net wave energy is
equal to zero. This result is quite natural, because we
are considering a closed conservative system. In the
course of instability, the net wave energy does not
change: it is only redistributed between different
regions. In the case of waves with low frequencies

ω ! , the second term in the integrand in

(13) dominates everywhere except for a small vicinity
of the resonant point. For radially decreasing density
profiles, this term is negative. This indicates that, as the
wave amplitude grows, the plasma loses thermal
energy, which is accumulated in the resonance region,
where it is converted into oscillatory ion energy. In the
resonance region, the first term in the integrand in (13)
increases sharply (see the discussion above).

Let us show that the waves lose the same energy as
at Imω = 0, in which case it is converted into the energy
of small-scale waves running away from the resonant
point. To take into account small-scale waves, we turn
to equation (3). Multiplying this equation by  and
integrating by parts gives the imaginary part of the qua-
dratic form at Imω = 0:

(16)

Here, ϕ1, sw is the short-wavelength part of the solution
U2 and account is taken of the fact that small-scale
waves run toward the region x > xs . Since, in a dissipa-
tionless plasma, the energy flux is independent of dis-
tance, it can be found by solving equation (4), which is
valid at short distances from the resonant point. Using
the relationship  ≈ – ikxϕ1, sw with kx ≈ (xΛ)1/2,
which is valid for the short-wavelength part of solution
(10), we can see that (16) is exactly equal to Q1.

2.4. Effect of Ion–Ion Collisions on Small-Scale Waves

Now, we consider the time evolution of the small-
scale waves into which large-scale waves are converted
at the point of Larmor resonance. The spatial structure
of the small-scale waves can be described in a quasi-
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classical fashion, ϕ1(x) ∝  exp(i kx(x, ω)). The
small-scale waves can be analyzed from relationship
(2) by setting ϕ1(kx) ∝  δ(kx – kx(x, ω)), in which case we
obtain

where Fi = exp(–bi)I0(bi), b = (kxρi)2.

The perturbed electron density can be found in the
hydrodynamic approximation:

The condition that the plasma be quasineutral yields
the following local dispersion relation, which describes
small-scale waves and is a generalization of (12):

(17)

Above, we have shown that the wavenumber of the
waves increases as they propagate away from the point
of Larmor resonance at which ω = Ωi = Ωni + ΩTi.
According to (17), the wavenumber tends to infinity as
the waves approach the point at which ω =

Ωni . In the region near this point, the

wave energy grows.
In this region, i–i collisions may have a strong

impact on the small-scale waves. The i–i collisions can
be taken into account by introducing the Bhatnagar–
Gross–Krook (BGK) collision term (which conserves
the number of particles and their momentum and
energy) into the kinetic equation:

where V1 is the perturbed velocity and T1 is the per-
turbed temperature.

Integrating the kinetic equation along the trajecto-
ries, we obtain
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We will find the corrections related to collisions,
assuming that the collision frequency is sufficiently
low. For small-scale waves in the collisionless approx-
imation, we obtain

The collisional correction to the perturbed ion density
has the form

Incorporating this correction into the quasineutral-
ity condition and using the “collisionless” dispersion
relation (17), we obtain the correction to the frequency
of the small-scale natural waves introduced by i–i col-
lisions:

This expression shows that small-scale waves are

stable when the quantities Ωni ∝  and ΩTi ∝  

have the same signs. Otherwise, small-scale waves may
be unstable.

In the limits of small and large values of bi, the cor-
rection δω becomes

n1 n0 1– 1
Ωni

ω
--------– 

  Fi

ΩTi

ω
--------biFi'–+ 

  eϕ1

T0
--------,≈

V1x χsin V1y χcos–

≈ i
ω
k
---- 1

Ωni

ω
--------– 

  biFi'
ΩTi

ω
--------bi biFi'' Fi'+( )– 

  eϕ1

T0
--------,

T1
2
3
---T0 1

Ωni

ω
--------– 

  biFi'
≈

–
ΩTi

ω
-------- bi

2
Fi'' 2biFi'

3
2
---Fi+ + 

 

 eϕ1

T0
--------.

δn1i

iν ii

ω
------- 1

Ωni

ω
--------– 

  Fi Fi 1–( ) bi 1
2
3
---bi+ 

  Fi'
2

+ 
 ≈

+
ΩTi

ω
--------biFi' 1 2Fi– 1

4
3
---bi+ 

  Fi'– bi 1
2
3
---bi+ 

  Fi''– 
 

× n0

eϕ1

T0
--------.

δω iν ii

ΩTi

Ωni

biFi'

Fi 1–
-------------ΩTi+

------------------------------------- 1– Fi+( )
–≈

× 1
2
3
---biFi

4
3
---bi 1 bi+( )Fi'+ + 

  bi 1
2
3
---bi+ 

  Fi'
2

+ 
 .

dn0

dx
--------

dT0

dx
---------

δω  ≈  iν ii

ΩTi

Ωi

--------11
12
------bi,

bi ! 1
–

PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
If the small-scale waves are excited by an external
source, then i–i collisions cause the wave amplitude to

change in space according to Imkx = δω. Small-

scale waves are difficult to excite externally. It is more
convenient to initiate them via the conversion of large-
scale waves at the Larmor resonance point. Since the
energy of small-scale waves is converted into the ther-
mal energy, we can imagine a scheme of “Larmor”
plasma heating similar to the scheme of Alfvén heating
of a weakly collisional plasma, which is also based on
the conversion of large-scale waves into small-scale
waves. Note that the equations for large-scale flute
oscillations are similar to those for Alfvén waves (see,
e.g., [10]): the point of the Alfvén resonance, at which
large-scale waves are also converted into small-scale
waves, is a singular point for the latter equations.

3. PLASMA WITH A NONUNIFORM DENSITY 
AND A UNIFORM TEMPERATURE

3.1. “Stability” of the Larmor Resonance against 
Certain Factors

In the simpler case of a uniform temperature, we can
use relationship (2) to obtain n1i in a fairly compact
form with allowance for the effects of all orders in kρi

and the first order in the ratio ρi/L, where L is the scale
on which the plasma density varies. The effects of the
first order in this ratio should be taken into account,
because, in the limit ρi ! 1, we must correctly pass over
to equation (1), which contains the term proportional to

∝ . The corresponding quasineutrality condition

can be written as

(18)

where Gi(x) = n0(x) .

To derive a differential wave equation for ϕ1(x), we
must replace kx in (18) by the operator id/dx and apply

this operator to ϕ1(x) = ϕ1(kx) . If we expand

the function Fi from (18) in powers of kxρi, retaining
terms up to a certain finite order, then the order of the
desired differential equation will coincide with the
order of the expansion. Moreover, regardless of
the order of the expansion, the coefficient in front of the
highest derivative in the wave equation will vanish at
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the point of the Larmor resonance. Relationship (2)
implies that, at this point, the ions obey a Boltzmann
distribution, which is obviously unaffected by i–i colli-
sions. This assertion is supported by the analysis of the
preceding section. Hence, we can conclude that, in a
plasma with a uniform temperature, the wave equation
cannot be regularized by taking into account the effects
of the finite ion Larmor radius and i–i collisions.

Above, we assumed that the plasma is quasineutral
and the plasma waves are potential. If the wave electric
field contains a nonpotential component, E1 = –—ϕ1 +

A1, then we can readily show that, at the point of

Larmor resonance, the perturbed ion distribution func-

tion has the form fi1 = Ey1 f0, which is a generaliza-

tion of the distribution function in a Boltzmann equilib-
rium state. The terms proportional to the derivatives
dnϕ1/dxn of the electric field vanish at the resonant
point, as is the case with the potential waves.

The effects of plasma nonquasineutrality can be
incorporated into (18) through the change Gi 

n0 , in which case the terms containing

the derivatives beyond the second order remain
unchanged. Consequently, allowing for the non-
quasineutrality and nonpotentiality effects also fails to
regularize the problem.

Since the spatial scale of perturbations becomes
shorter as the resonant point is approached, the wave
electric field grows. Consequently, we cannot exclude
that, in the vicinity of the resonant point, nonlinear
effects may be important. Let us derive a nonlinear
equation for the case of neutral oscillations with Imω = 0.
To do this, it is convenient to pass over to a frame mov-
ing with the wave. In this frame, an additional inductive

electric field  = – B appears and the plasma

moves as a steady stream. Moreover, at the point of
Larmor resonance, the unperturbed hydrodynamic

velocity V0y =  vanishes, so that the

ions obey a local Boltzmann distribution.
In analyzing the electron motion, we can assume

that the electric field causes the electrons to drift with

the velocity V = [B—ϕ]. From the continuity equa-

tion, we find n(r) = n(ϕ(r)), where n(ϕ) is an arbitrary
function.

For the desired nonlinear wave equation to be infor-
mative, we must retain the inertial force in the equation
of ion motion and supplement it with the force associ-
ated with collisionless viscosity. It is well known (see,
e.g., [6]) that the viscous force makes it possible to
incorporate the effects of the finite ion Larmor radius to
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the lowest order in the small parameter ρi d/dx. Omit-
ting the intermediate manipulations, we write out the
nonlinear wave equation, which follows from the
quasineutrality condition:

(19)

where Φ = ln nexp .

In a linear approximation such that the condition
|dϕ/dy | ! |dϕ/dx | holds, equation (19) coincides with
the equation derived by Rosenbluth and Simon [11] for
plasmas with arbitrary steady electric fields if we set
ω = 0 in it. On the other hand, at T = 0, equation (19)
passes over to the nonlinear equation presented in [12].

Recall that, in the linear approximation, the station-
ary point in the comoving frame (a line on the xy plane)
corresponds to the point of Larmor resonance in the
laboratory frame. In the nonlinear approximation, this
line transforms into a “Boltzmann” current line along

which we have n(ϕ) = Cexp . It is easy to see that

the coefficient in front of the highest derivative in (19)
vanishes on this line. Hence, along with the linear
equations we have analyzed above, the point of Larmor
resonance is also a singularity of the nonlinear equa-
tion (19).

3.2. Effect of Ion–Electron Friction

Since the effects that appear, at first glance, to be
most important do not play a role at a Larmor reso-
nance, we must focus our attention on the effects that
are usually ignored. Let us provide insight into the
consequences of i–e friction. In the kinetic equation,
i−e collisions can be described by the BGK collision
term in a form that conserves the number of particles
and allows for the momentum exchange between elec-
trons and ions:

(20)

where νie is the rate with which the ions are scattered by

the electrons and V1e =  is the

hydrodynamic electron velocity. In (20), the tempera-
ture remains unperturbed, because the perturbed elec-
tron temperature is proportional to the small parameter
(kρe)2 and, for —T = 0, we have T1i  0 as x  xs

(see the discussion of the preceding section).
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As in the preceding section, the collisional correc-
tion to n1i can be obtained by the method of integration
along the trajectories:

(21)

where Ge(x) = n0(x) .

In order for the analysis of the effects associated
with the i–e friction to be consistent, it is necessary to
incorporate the electron scattering by the ions into the
equation of electron motion. The collisional correction
to the perturbed electron density can be represented in
an integral form (as was done for δn1i):

(22)

From (18), (21), and (22), we find the complete
quasineutrality condition allowing for the effects of
i−e friction:

(23)

where S = P .

We restrict ourselves to considering the vicinity of the

Larmor resonance point. We set Gi(x) ≈ –n0(xs) (x – xs)

and Ωe(x) = const. We apply the operation of translation
x – xs  x to (23) and switch to a new variable
x  i∂/∂kx . Then, from the condition for the inte-
grand to vanish, we obtain the following equation for
ϕ1(kx):
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We restrict ourselves to analyzing such solutions to
the wave equation that pass over to the solutions to the
reduced equation (1) far away from the resonant point.
In the collisionless limit (σ = 0), expression (24) coin-
cides with (6) at kx  0. We take the integral over kx

in (5) using the same integration contours as in Sec-
tion 2.2. Effects that occur on short scales and come
into play in the vicinity of the resonant point have an
insignificant impact on the solution V, which is regular
at this point. We consider the function U3, which has a
logarithmic singularity at the resonant point, over the
range of distances |x| @ ρi. In this case, the main contri-
bution to the integral in (5) comes from the kx region
where ϕ1(kx) can be described by expression (6), in
which the first term in the exponential index is unim-
portant. In the region |kx |  ∞, the behavior of ϕ1(kx)

Re kx

Im kx

U2

Re x

Im x

Fig. 5. Integration contour in (5) that corresponds to one of
the solutions to equation (23). The sectors in which the inte-
grand increases without bound as |kx |  ∞ are hatched.

Fig. 6. Plane of the complex variable x for a long-wave-
length solution to equation (23) that grows asymptotically
without bound. The sector in which this function transforms
into a short-wavelength function is hatched. The contour for
circumventing the Larmor resonance point according to the
Landau rule is marked by an arrow.
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is determined by the second term in the exponential
function in (25); it is this term that accounts for i–e fric-

tion: ϕ1(kx) ∝  exp . The contribution of this

region to the integral in (5) is insignificant if the inte-
gration contour on the plane of the complex variable kx

approaches infinity in the unhatched sectors in Fig. 5.
We emphasize that, in Fig. 5, the forbidden sectors are
rotated through the angle –π/6 with respect to those in
Fig. 1. An analysis similar to that carried out in Sec-
tion 2.2 shows that, on the plane of the complex vari-
able x, the sector in which the long-wavelength solution
to the wave equation transforms into the short-wave-
length solution is rotated precisely through the same
angle. In Fig. 6, this sector lies entirely within the upper
half-plane. Consequently, the Landau circumvention
rule is valid for the solutions to the reduced equation
(1); moreover, for real values of the argument, the solu-
tion to the complete wave equation remains long-wave-
length.

Our analysis shows that, for —T = 0, the energy of
the large-scale flute oscillations increases near the point
of Larmor resonance until the effects of i–e friction
cause them to damp. The characteristic spatial scale on
which these effects come into play can be estimated by
comparing the terms in the exponential index in (25):

|x | ≈ |kx |–1 ≈ .

4. CONCLUSION

We have analyzed the physical processes that are
important near the point of Larmor resonance. We have
established rules for continuing solutions through a sin-
gular point corresponding to the resonant point in the
simplified wave equation. We have shown that the phe-
nomenon of Larmor resonance can be used to heat the
plasma.
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Abstract—A study is made of the effect of the initial magnetic field magnitude on the energy of deuterium ions
accelerated in the collision of two magnetosonic shock waves propagating in a deuterium plasma quasi-perpen-
dicularly to the magnetic field. Experiments were carried out at a constant plasma density of .2.5 × 1013 cm–3.
It is found that, as the external magnetic field decreases from 1.4 to 0.7 T and, accordingly, the magnetic Mach
number increases from 1.02 to 2.3, the energy of accelerated ions increases from 3.2 to 7.5 MeV. The maximum
number of accelerated ions attains 105–106 particles per shot. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Acceleration of charged particles by magnetosonic
shock waves (MSWs) has been widely studied experi-
mentally and theoretically, because it is one of the main
mechanisms for the generation of high-energy particles
and plasma heating in both laboratory and space plas-
mas.

Theoretical studies [1–4] have shown that the elec-
tric field at the MSW front is sufficient to accelerate
ions to high energies at a high rate.

In laboratory experiments [5, 6], mechanisms were
revealed and investigated for accelerating ions by
MSWs both perpendicularly to the front (the reflection
of ions from a potential jump) and along the front (res-
onant acceleration). In both cases, the accelerated par-
ticles move across the magnetic field, which is one of
the factors limiting the energy of accelerated particles
in laboratory facilities, because, e.g., even for a deu-
teron energy of 1 MeV, the Larmor radius is larger than
the cross size of typical plasma devices.

In experiments [7–9], the possibility of accelerating
plasma ions along an external magnetic field during the
interaction of two MSWs propagating quasi-perpendic-
ularly to the magnetic field toward each other was dem-
onstrated for the first time. In those experiments, the
maximum energy of accelerated deuterons was εmax ≈
10 MeV and the maximum number of accelerated par-
ticles per shot was 105–106. A quantitative explanation
of this result encounters serious difficulties. Qualita-
tively, this result was explained based on the numerical
calculations of the collision of two MSWs in a plasma
whose density varied along the magnetic field [10]. It
was assumed that the accelerating electric field Ez,
directed along the magnetic field, was a superposition
of the electric fields existing at the MSW fronts. The
energy of accelerated deuterons in this model was esti-
mated as ε ~ Ez. For a soliton MSW model [1], the
1063-780X/00/2602- $20.00 © 0129
accelerating electric field is Ez ~ (MA – 1)3/2 (where
B0 is the initial magnetic field and MA is the magnetic
Mach number). Here, we experimentally study the
influence of the magnitude of the initial magnetic field
on the maximum energy of accelerated deuterons.

In order to formulate the problem, we will clarify
some points. In [11], it was shown that, when the
plasma flow is decelerated by the magnetic barrier, the
liberated energy efficiently converts into magnetic
energy. When the plasma produced in the discharge
drifts at a velocity Vd = cE/B0 (where c is the speed of
light and E is the electric field in the discharge) into a
region with a lower electric field, the plasma flow is
slowed down and the liberated energy partially converts
into magnetic energy. The magnitude of the induced
magnetic field is determined by the density j . NeβVd

of the polarization current flowing while a drift channel
is being formed (see [12] for details). Here, β = ωceτei

determines the extent to which the electrons are magne-
tized, ωce is the electron cyclotron frequency, τei is
the electron–ion collision time, and N is the plasma
density.

The induced magnetic field penetrates into the
plasma to the depth L, determined by the duration of the
polarization current τ ≈ 1/βωci ≤ L/VA, where ωci is the
ion cyclotron frequency and VA is the Alfvén velocity.
As the magnetic perturbation propagates, it converts to
an MSW with the Mach number

For L . Ri (where Ri is the ion Larmor radius over
which the plasma parameters remain almost
unchanged), the condition for the excitation of an
MSW (MA > 1) is βVd/VA > 1.

B0
2

MA 0.5 βLωci V A⁄ 1+( ).≤
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We express the Mach number through parameters
that can be controlled in the experiment:

where mi is the ion mass.

It can be shown that β ~ ωceτei ~ B0  ~ E3/  and,

consequently, MA – 1 ~ E5/ . From the dependence
obtained and the above expression for Ez, it follows
that, by varying the magnetic or electric field within rel-
atively small intervals, it is possible to experimentally
obtain the dependence of the energy of accelerated ions
on the above controlled parameters, providing that the
other parameters vary slightly.

MA . 
πNmic

2
E

2β

B0
4

---------------------------- 1,+

Vd
3

B0
2

B0
6

Investigations showed that, when the magnetic field
was varied, the energy density and plasma density dis-
tributions along the magnetic field in the plasma flow-
ing out of the discharge remained almost unchanged. In
contrast, when the discharge electric field was varied,
these distributions changed significantly. For this rea-
son, the studies were carried out at a constant value
of E.

2. EXPERIMENT

Experiments were carried out in a TEMP plasma
device, described in [7, 9]. In a ceramic chamber with
an inner diameter of 18 cm and length l = 150 cm, two
pairs of electrodes were installed (with a length of 30 cm,
width of 4 cm, and an interelectrode gap of about 2 cm)
at an angle of 6° to the symmetry axis of a magnetic
mirror system, the mirror ratio being ~1.4 (Fig. 1). The
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
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process of the formation of two counterpropagating
MSWs can be divided into two steps.

2.1. Background Plasma Production

On filling the pre-evacuated chamber with a gas and
applying the magnetic field, a discharge with Imax ≈
5 kA and a duration of ≈3 ms was initiated between two
electrodes.

The working volume was filled with two plasma
flows drifting toward each other from two discharge
gaps. The plasma in the discharge gaps was produced in
“slow” discharges in crossed E and B fields. In our
case, the time needed to fill the working volume with a
plasma was ≤50 µs. The recorded plasma-density pro-
file along the magnetic field can be approximated by
the expression N(z) = N0(0.74 + 0.26cos(αz)), where
α = 0.255 cm–1 and N0 is the plasma density at z = 0
[12].

2.2. Generation of Counterpropagating MSWs

At a certain instant, a high-power current pulse with
I > 10 kA and a duration of 1.5 µs was generated in the
discharge gaps.

Two plasma flows that were formed in the course of
“fast” (when both the electric field E and the power
deposition increased rapidly) discharges in crossed E
and B fields propagated toward each other across the
magnetic field with a drift velocity Vd. Slowing-down
of these plasma flows by the background plasma led to
the generation of MSWs. When investigating the mech-
anism for MSW generation, we measured the propaga-
tion velocity of one MSW with the help of probes and
loops and obtained a qualitative agreement with depen-
dence (1) [7]. In the case of two interacting MSWs, the
probe measurements were not carried out, because, in
this case, the gauges prevented ion acceleration.

A beam of accelerated ions was formed in an ion-
transport line (32 mm in diameter and 100 cm in
length), which was connected coaxially to the dis-
charge chamber. The guiding magnetic field in the line
was 0.3 T. At the end of the ion-transport line, a detector
based on a standard polystyrene scintillator with a
15-mm diameter and 1.5-mm thickness was positioned.
The light from the scintillator was fed to an FEU-115M
photomultiplier through a fiber. To protect the scintilla-
tor from external light and from slow ions, it was cov-
ered with an aluminum foil with a thickness of 7 µm
(which is equal to the mean free path of deuterons with
an energy of ~0.7 MeV). The energy of accelerated ions
was measured by the time-of-flight technique. The stop
signal for the time-of-flight system was generated by
the scintillator detector positioned at the end of the ion-
transport line. The start signal was generated by one of
two optical detectors viewing the region where two
MSWs collide, the spatial resolution being 0.8 mm.
Each optical detector consisted of a fiber (0.5 mm in
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
diameter and 6 m in length), an optical collimator at the
fiber entry, and an FEU-85 photomultiplier at the fiber
output. Signals from photomultipliers were fed to an
S8-14 high-speed storage oscillograph. Since the base
distance between the light and scintillator detectors was
known (175 cm), we could reconstruct the maximum
energy of the bunch of accelerated ions by processing
the oscillograms. The number of accelerated ions was
determined from the area under the signal trace as fol-
lows. With a radioactive 239Pu source, we determined
the proportionality coefficient between the energy lost
by one α-particle in the scintillator and the amplitude of
the multiplier signal (the coefficient was expressed in
units of photoelectron/MeV). Then, a correction was
made for the different light outputs of the scintillator
for α-particles and deuterons and also for the light
attenuation in the fibers. Finally, with the use of a light
diode, pulse generator, and pulse analyzer, the oscillo-
graph scale was calibrated in photoelectrons. In the
experiment, the maximum number of ions per pulse
varied from 105 to 106.

Since the time-of-flight system does not identify the
species of accelerated ions, it was supplemented with a
system of radioactivation analysis. For both systems to
operate simultaneously, we employed the 12C(d, n)13N
(13N  β+, τ1/2 = 9.9 min) nuclear reaction, using 12C
nuclei that were contained in the material of the poly-
styrene scintillator. A γ–γ-coincidence spectrometer
(based on two NaI(Tl) scintillator crystals) recorded the
events corresponding to the annihilation of the
positrons arising from the decay of 13N. The reaction

2
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Fig. 2. Maximum energy of accelerated deuterons as a func-
tion of the initial magnitude of the magnetic field. The
numerals near the points show the values of the MSW Mach
number.
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was identified by analyzing the behavior of the mea-
sured decay curve.

The experiments were carried out at a constant elec-
tric field (E . 9 kV/cm), N0 . 2.5 × 1013 cm–3, and at
different magnitudes of the magnetic field, which pro-
vided different MSW Mach numbers. The measure-
ment procedure was as follows. A series of shots was
produced at the same initial parameters of the device.
By analyzing the delay time for the detector signals in
this series, we selected the event corresponding to the
maximum energy and intensity of the flux of acceler-
ated ions. Simultaneously, the system of radioactiva-
tion analysis recorded the events corresponding to the
annihilation of the positrons arising from the 13N decay.
This procedure was repeated for each new value of the
magnetic field.

It should be noted that, for the magnetic field B0 <
0.7 T, the acceleration process is unstable.

The experimental results are shown in Fig. 2. The
error bars reflect only the error of determining the ion
energy by the delay of the storage-oscillograph signal.
The estimated value of the Mach number MA = 1.02 is
presented only to demonstrate that MA ≥ 1 for the given
E and B0 values.

3. CONCLUSION

A comparison of the experimentally obtained
dependence of the energy of accelerated ions on the
magnitude of the magnetic field with the dependence

prescribed by the magnetic-soliton model (ε ~ 1/ )
shows that it is necessary to consider an alternative
model of the formation of an accelerating structure and
the associated accelerating field. For example, if we
assume the ion-acoustic wave to be an accelerating
structure that is formed in the region where two MSWs

collide, then we obtain the estimate ε ~ 1/ . In the
future, we plan to perform numerical calculations using

B0
7

B0
2

a model allowing for the generation of ion-acoustic
waves in the region where two MSWs collide.
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Abstract—The problem of self-consistent motion of charged particles in a high-current plasma channel is
solved using the kinetic model of a plasma with electron and ion beams whose motion is governed by the result-
ing electromagnetic field. It is shown that, in a high-density plasma, the ion motion makes the contribution of
electrons to the current in the channel negative, in which case the ion current is higher than the net current and
the plasma moves at a high speed as an electrically neutral axial stream whose direction coincides with the
direction of the current in the channel. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In high-temperature pinchlike plasma formations
[1], which have the form of plasma channels in electric
discharges with a current from 105 to 106 A, the electron
energy is high enough for the plasma to be magnetized.
For a characteristic electron temperature of 10 keV and
an electron density of 1019 cm–3, the electron mean free
path in a fully ionized hydrogen plasma is 40 cm, which
exceeds the channel diameter by more than two orders
of magnitude. In a collisionless current-carrying
plasma, the electrons and ions can be regarded as
charged-particle beams, which were investigated in
detail by, e.g., Benford and Book [2]. From the stand-
point of the physics of electron beams, the essential fea-
ture of electrons in a high-current plasma channel is
that the current carried by them is much higher than the
Alfvén current. Benford and Book [2] noted that, in
such beams, the electrons move predominantly in the
transverse direction (the mean axial velocity of the
electrons is low in comparison with their radial veloc-
ity). Qualitatively, the electron current can be described
using the model of an electron beam [3, 4], in which the
electron distribution function is represented as a super-
position of two δ-functions; i.e., all of the electrons are
assumed to have the same energy and the same axial
canonical momentum. The calculations based on this
model [4] show that, for high electron densities, the
radial profile of the current over the entire beam cross
section is extremely nonuniform: the current flows pre-
dominantly in a thin surface layer of thickness ∆, which
is equal to the collisionless skin depth and exceeds the
Alfvén current by a factor of R/2∆, where R is the beam
radius. The electrons move predominantly in the trans-
verse direction with respect to the beam axis, and they
are displaced in the axial direction under the action of
the magnetic field only over short time intervals during
which they occur in the surface current layer. The mean
1063-780X/00/2602- $20.00 © 0133
axial velocity Vz = 2∆R–1Ve of the electrons is low in
comparison with their total velocity Ve. Consequently,
in high-current channels filled with a high-density
plasma, the ion current may be important, because the
axial velocity of the ions can become comparable with
Vz even when the ion energy is low. Our objective here
is to analyze self-consistent motion of both the electron
and ion plasma components in a high-current plasma
channel.

2. SOLUTION OF THE PROBLEM OF ELECTRON 
AND ION MOTION

In the absence of binary collisions, the self-consis-
tent motion of charged particles in a current-carrying
two-species plasma is described in terms of the distri-
bution functions fe and fi satisfying the kinetic equa-
tions

(1)

(2)

We restrict ourselves to considering a steady cylindrical
channel in which the current and field distributions
depend only on the radial coordinate, in which case the
Maxwell equations for the self-consistent fields E and
H can be written as

(3)

(4)

∂ f e

∂t
-------- Ve

∂ f e

∂x
-------- e E

1
c
--- VeH[ ]+ 

  ∂ f e

∂pe

--------–+ 0,=

∂ f i

∂t
------- Vi

∂ f i

∂x
------- qi E

1
c
--- ViH[ ]+ 

  ∂ f i

∂pi

-------+ + 0.=

∇ E⋅ ∇ 2Φ– 4π ene– qini+( ),= =

∇ H×[ ] ∇ ∇ A×[ ]×[ ] 4π
c

------ je ji+( ),= =
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where the particle and current densities have the form

(5)

(6)

The integrals of motion are the net energies,

(7)

and the axial components of the canonical particle
momenta,

(8)

The distribution functions, which depend explicitly
only on the constants of motion, automatically satisfy
equations (1) and (2), which significantly simplifies the
problem of constructing self-consistent kinetic models.
We use a plasma model in which all of the particles
with the same charge have the same energy and the
same axial canonical momentum, so that both the elec-
tron and ion distribution functions are a superposition
of two δ-functions,

(9)

(10)

Hammer and Rostoker [4] analyzed the steady state of
a high-current electron beam using a similar approach
to solving the Vlasov equation, but they assumed that
the ions were immobile. Substituting the distribution
functions (9) and (10) into (5) and (6), we can readily
find the particle densities in terms of the scalar poten-
tial,

(11)

and the current densities in terms of the vector poten-
tial,

(12)

Choosing Φ(0) = Az(0) = 0, we can see that the coeffi-
cients ne0 and ni0 and the constants Pe0 and Pi0 are,
respectively, equal to the particle densities and the axial
components of the particle momenta at the center of the
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ji
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2

wi
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qi

c
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  .=
channel. The solutions to equations (3) and (4) whose
right-hand sides are written in terms of Φ and Az can be
expressed through a zero-order modified Bessel func-
tion:

(13)

(14)

The scale on which the potentials vary in the radial
direction is equal to the collisionless skin depth,

(15)

Knowing Φ(r) and Az(r), we can readily find radial pro-
files of the densities, fields, and currents. However, the
results obtained are difficult to interpret unambigu-
ously, because there are a large number of unknown
quantities. The main task here is to minimize this ambi-
guity using such illustrative parameters as the channel
radius, electric current, and mean particle density. For
this purpose, we consider a cylindrical region of radius
R inside the channel. Let us denote the current flowing
in this region by I and the magnetic field at its boundary
by H0 (H0 = 2I(Rc)–1). We also introduce the dimension-
less parameter

(16)

With this notation, the radial profile of the magnetic
field can be described in terms of the first-order modi-
fied Bessel function,

(17)

and the electron and ion components of the resulting
current I = Ie + Ii can be written as

(18)

Interestingly, at high particle densities such that
R(2∆)−1 @ 1, the current components depend strongly
on the parameter F; moreover, one of the current com-
ponents and the resulting current may have opposite
signs. Let us estimate the range of possible F values
based on the fact that, in the region close to the channel
boundary, the radial component of the magnetic
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Lorentz force is directed toward the axis. However,
before proceeding further, note that the potential pro-
files (13) and (14) are valid only in the region occupied
by the electrons and ions that pass through the channel
axis, rather than over the entire cross section of the
channel. The radius R of this region can be generally
smaller than the channel radius, R ≤ Rch, because the
amplitude of electron oscillations in the radial direction
can differ from the amplitude of ion oscillations. In a
ring layer of thickness ε = Rch – R, the potential profiles
differ from (13) and (14); moreover, the ring layer can
be occupied by either particles with the same charge or
both electrons and ions. In the latter case, the particles
of one species do not leave the ring layer, as is the case
with the drift in crossed fields or with the gradient drift
in a nonuniform magnetic field. If the surface ring layer
is occupied by particles with the same charge, then the
layer thickness ε can be estimated from the condition
that the electric field is continuous. When ∆ is small in
comparison with R and the particle motion in a high-
density plasma is nonrelativistic, we find

(19)

In this case, we can assume that the radial components
of the electron and ion momenta become zero at the
same distance from the axis. To obtain the boundary
values of the axial momentum components

(20)

which follow from (8) and (14), we can set r = R for
both electrons and ions. In the absence of a surface
layer with an unneutralized charge (ε = 0), the magnetic
components of the Lorentz force, Fe and Fi, at the chan-
nel boundary are equal in magnitude (but opposite in
direction) to the inertial forces of the electrons and ions,
respectively. Since the inertial forces are positive at the
boundary, we have Fe ≤ 0 and Fi ≤ 0. In the presence of
a surface ring layer (ε ≠ 0), the sign of the magnetic
components of the Lorentz force remains the same. At
the outer boundary of the ring layer, the inertial force of
one plasma species is equal in magnitude to the mag-
netic force, whereas, at the inner boundary, a positively
directed electric force is added to the inertial force
associated with another plasma species. If a plasma
species is trapped only by a transverse electric field,
then the magnetic component of the Lorentz force act-
ing upon this species vanishes. As a result, we arrive at
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the conclusion that, in any case, Fe and Fi cannot be
positive; in other words, at r = R, each of the expres-
sions in square brackets in (20) is larger than or equal
to zero, which allows us to determine the range of pos-
sible F values. Setting r = R and taking into account the
fact that at large arguments the ratio of the modified
Bessel functions in (20) is close to unity, we obtain

(21)

Assuming that ene0 = qini0  and introducing the notation
we = mec2 and wi = mic2, we can represent the bound-

aries of the interval in (21) as −  ≤ F ≤

. Expressions (20) and the approximate

equality ∆ ≈ ∆e enable us to rewrite (16) as F = (ric –

rec) , where ric and rec are gyroradii of the particles
at the channel boundary. In the nonrelativistic case
(when the particle densities near the channel boundary
differ from those on the axis only slightly), expressions
(20) make it possible to express the kinetic energy den-
sity of each particle species and the net kinetic energy
density of the particles at the channel boundary through

the magnetic energy density /8π:

(22)

(23)

For F lying within the interval in (21), the electron
energy density decreases monotonically from its maxi-

mum (which is slightly above /8π) at the left bound-
ary to zero at the right boundary. On the other hand, the
ion energy density increases monotonically from zero
at the left boundary to a very high value (much higher
than the magnetic energy density) because, at the right
boundary, we have F2 @ 1.

3. DISCUSSION OF THE RESULTS

A characteristic feature of a two-species current
flow is that it implies the existence of such current
regimes in which the electron and ion current compo-
nents, Ie and Ii , have opposite signs but each of them
can be much higher than the resulting current in a chan-
nel. The current components depend on the parameter
F; the range of its possible values can be estimated
using a steady plasma model. In the range F < 0, the ion
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contribution to the net current may be large and nega-
tive; however, the conditions under which such regimes
can occur require that the plasma density be extremely

high, R(2∆)–1 @ mi . Possible regimes with a large
negative contribution of the electron species are more
realistic: they can occur in the range F > 0 at moder-
ately high plasma densities. The effect of a negative
contribution of one plasma species to the net current is
not associated with the radial electric field in a current-
carrying plasma but stems from the fact that the influ-
ence of the magnetic field on the electrons differs from
that on the ions when the electron and ion gyroradii are
different. The formation of a thin current skin layer in a
plasma channel makes this effect more pronounced.

For F = 0, the ion current component is independent

of R∆–1 and is as low as me . The net current in the
channel is governed by the electron species: according

to (20), the electron contribution I = Ie = γ =

IA substantially exceeds the Alfvén current IA if

2∆ ! R. At the channel boundary, the electron and ion
gyroradii are equal to the collisionless skin depth,
pec(eH0)–1 = pic(qiH0)–1 = ∆. In the nonrelativistic case,
the magnetic energy density at the channel boundary is
equal to the net density of the particle kinetic energies,
which is governed mainly by the electron energy. In a
channel with a thin skin layer, the electrons move pre-
dominantly across the channel axis and are slightly dis-
placed in the axial direction every time they occur in the
layer. The mean axial electron velocity Vz, which gov-
erns the electron current (Ie = –eneπR2Vz), is low in
comparison with the instantaneous velocity Ve, Vz =
2∆R–1Ve ! Ve. We illustrate these results quantitatively
using as an example a channel filled with a fully ionized
hydrogen (e = qi) plasma with the current I = 106 Ä =
3 × 1015 esu/s, radius R = 0.1 cm, and density ne =
1019 cm–3. In such a channel, we have H0 = 2 × 106 Oe
and R(2∆)–1 = 300. The energy of the electrons is 1.6 ×
10–8 erg = 10 keV and their instantaneous velocity is
Ve = 6 × 109 cm/s. The Alfvén current is IA = 3.4 ×
103 Ä = 1013 esu/s and the mean axial electron velocity
is Vz = 2 × 107 cm/s.

For F = 0, the picture of currents is completely con-
sistent with the results obtained by Hammer and Ros-
toker [4] and provides an understanding of how elec-
trons with comparatively low energies can carry essen-
tially unlimited currents in a plasma with no binary
collisions. A similar picture can be observed, e.g., when
the current rises rapidly in a narrow gas channel in vac-
uum1. In plasma channels with sufficiently small diam-

1 The method for creating dense gas channels several mm in diame-
ter and plasma experiments with them will be described in a sepa-
rate paper.
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eters, the force balance may be achieved almost without
ions, because the electrons are rapidly heated over the
entire cross section of the channel via high electron
heat conduction, in which case the magnetic pressure of
the current flowing in the channel is neutralized by the
gas-kinetic electron pressure. If the plasma particles do
not move in the radial direction, the ions remain immo-
bile and cold until they are heated by ion–electron
binary collisions or are involved in the current flows
under the action of the fields. Let us consider a situation
in which binary collisions are unimportant and the
accelerating electric field in a plasma is driven by the
current growing in the channel. The way in which the
overall picture of currents changes depends on the rates
at which the electric field accelerates electrons and
ions. When the electrons are accelerated at a suffi-
ciently high rate, the picture of currents remains essen-
tially unchanged if the electron energy density
increases synchronously with the magnetic energy den-
sity and the ion energy changes insignificantly, in
which case, according to (22), the parameter F should
be close to zero. In the opposite case, when the rate at
which the electron energy density rises is low in com-

parison with ∂/∂t( /8π), the ion energy content inev-
itably increases, because the current in the channel can
grow only at the expense of the ions. The rate at which
the electrons are accelerated can be estimated from the
one-dimensional energy balance equation, which
implies that

(24)

where the electric field is governed by the change in the

magnetic flux in a current-carrying layer, E . . In

this case, the accelerating field typical of high-temper-
ature pinchlike plasma formations [1], which is usually
generated in plasma constrictions and amounts to

approximately H0/c, is absent, because the channel
boundary in the initial state is immobile. Equation (24)
can now be recast into the form

(25)

which implies that, for 2∆ ! R, the electron energy in
a channel with a growing current increases only very
slightly. This is valid for a weak polarization charge
separation such that the kinetic energy density of the
electrons can be assumed to be uniform over the entire
cross section of the channel. In the opposite case, when
the polarization charge separation is strong, the kinetic
energy density of the electrons is extremely nonuni-
form over the cross section of the channel, reaching a
maximum at its boundary. Such a nonuniform energy
distribution is attributed to a jump in the potential in the
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polarization layer: the electrons that cross this layer and
move toward the channel boundary acquire additional
energy. The potential of the polarization layer depends

on /8π, thereby ensuring that the kinetic energy
density of the electrons increases synchronously with

/8π as they approach the channel boundary. This sit-
uation is typical of plasma channels in which the ion
pressure counterbalances a significant fraction of the
magnetic pressure. Such a balance is possible either
when the ion energy density is sufficiently high or when
the ions are so massive that their inertia becomes
important. In the cited experiments with narrow gas
channels, the self-compression of a current-carrying
plasma was achieved without the stage of plasma
expansion in the radial direction, during which the ions
might acquire significant energy. That is why, in those
experiments, the ion energy in a self-compressed cur-
rent-carrying plasma remained low in comparison with
the electron energy over a certain time interval. More-
over, the ion energy content may, in principle, be made
as low as possible by setting the diameter of the initial
plasma channel almost to zero. These considerations
are aimed at justifying the use of a zero ion energy
approximation, under which formulas (24) and (25)
were derived. Equation (25) implies that, for 2∆ ! R,
the kinetic energy density of the electrons cannot

increase synchronously with /8π. Consequently, the
electron species alone clearly cannot ensure the rate at
which the current should grow. This indicates that the
ion contribution to the resulting current should also be
taken into account; moreover, if the energy content in a
circuit with a plasma channel is sufficiently high, the
transition to a new current regime will have an insignif-
icant impact on the rate at which the current grows. The
ions can be accelerated near the anode by the electric
field of the space charge in the form of a thin layer in
which the electron density is reduced and which arises
from insufficient electron mobility. Since the electrons
move predominantly in the radial direction, the radial
profile of the space charge across the layer is compara-
tively uniform: the radial scale characteristic of the
space charge profile coincides with that of the radial
current profile. The latter scale, in turn, can be on the
order of the channel radius if the electron density ne

near the anode is sufficiently low. In order for the net
current to be carried by the ions, the energy they
acquire can be very low. Under the assumption that,

e.g., the magnetic pressure /8π in a channel filled
with a hydrogen plasma becomes higher than the
kinetic energy density of the electrons by 1%, relation-
ships (22) yield F = 0.2, in which case the ion energy is
lower than the electron energy by a factor of 20. For the
above parameters of the channel, for which we have
R(2∆)–1 = 300, the ion current component, according to
(18), exceeds the resulting current by a factor of 1.4
(Ii = 1.4I), and the electron contribution to the current is
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negative (Ie = –0.4I). Note that this is valid for ion ener-
gies as low as 500 eV. The figure shows electron and
ion trajectories corresponding to a negative electron
contribution to the resulting current in the channel. For
small F, the change in the electron current component
is attributed primarily to an increase in the angle α at
which the electron trajectories cross the channel axis. If
α = π/2 at F = 0, then, at F > 0, we have α > π/2. In a
channel filled with a high-density plasma, even a slight
increase in α from π/2 to α1 > (π/2 + 2∆/R) is sufficient
to cause the mean axial electron velocity to fall below
zero and change sign. A negative contribution to the
current comes from the electrons that are, on average,
displaced along the channel in the direction opposite to
that in the case F = 0 (see figure). In the intermediate
case of closed electron trajectories, we have Ie = 0,

which is achieved at F = 2∆R–1(mi )1/2. The larger
the difference between the magnetic energy density and
the electron kinetic energy density, the more significant
the increase in the absolute values of the electron and

ion contributions Ie and Ii. For example, if /8π
becomes higher than the electron energy density by
5%, we obtain F ≈ 1, which corresponds to Ie = –6I and
Ii = 7I. In this case, the ion kinetic energy density is
approximately equal to the magnetic energy density.

Hence, taking into account the self-consistent
motion of charged particles, the existence of collision-
less plasma channels with overcritical currents can be
attributed to the formation of thin current skin layers at
their surfaces. In such channels, the electron species
can easily change the direction of the mean axial veloc-
ity, making a negative contribution to the resulting cur-
rent. This is clearly illustrated with the example of a
growing current in a channel created without radial
plasma implosion. The ion species ensures that the cur-
rent grows, thereby neutralizing the negative contribu-
tion of the electrons. The resulting current flows in a
thin surface layer; in the central region with zero cur-
rent, the electrons and ions have the same axial velocity
and form an electrically neutral axial stream whose
direction coincides with the direction of the current in
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Electron and ion trajectories corresponding to a negative
contribution of the electrons to the resulting current in the
channel.
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the channel. This picture agrees with the known exper-
imental data. The first experiments with a cylindrical
Z-pinch [5] have already demonstrated the effect of the
generation of accelerated deuterons, which was
inferred from the anisotropy of neutron emission. In
cylindrically asymmetric Z-pinches [1], a similar fea-
ture of high-current channels manifests itself in the
axial motion of a plasma neutron source from the anode
at a speed of 108 cm/s. The only disagreement between
the results of magnetohydrodynamic calculations [6]
and the experimental data is associated with this effect.
It is natural to suppose that the current processes will
possess the property under discussion regardless of the
way in which the channels are created; however, under
conditions typical of an imploding plasma, the dynam-
ics of a transition to the regime in which the net current
begins to be carried by the ions can have distinguishing
features. Since the mechanism for the excitation of an
axial plasma stream is kinetic in nature, the energy den-
sity of the directed plasma motion can be much higher
than the magnetic field energy density in a high-current
channel. A high-speed plasma stream can be generated
without forming a structure typical of a plasma con-
striction.

4. CONCLUSION
We have studied self-consistent electron and ion

motions in a high-current plasma channel using a
steady-state kinetic plasma model in which the elec-
trons and ions are regarded as particle beams moving in
crossed fields, specifically, in an azimuthal magnetic
field of the resulting current and a radial charge-separa-
tion electric field. We have shown that, in a channel
filled with a high-density plasma, the electron and ion
current components may have opposite signs and each
of them may substantially exceed the resulting current.
The ion species neutralizes the negative electron contri-
bution to the current and, thus, carries the net current in
the channel. The resulting current flows predominantly
in a thin surface layer. In the central region, the elec-
trons and ions move with the same axial velocities,
forming an electrically neutral intense axial plasma
stream, whose direction coincides with the direction of
the resulting current in the channel. This picture is con-
sistent with the high-speed axial plasma motion, which
is observed in experiments with high-current plasmas
and cannot be explained in the context of magnetohy-
drodynamics.
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Abstract—A study is made of the decay instability of a lower hybrid wave with a finite wave vector (k0 ≠ 0)
and a large amplitude such that the oscillatory velocity of the electrons with respect to the ions cannot be
neglected. It is shown that, depending on the angle between the propagation direction of the lower hybrid wave
and the external magnetic field and the angle through which the wave is scattered, the decay instability is pri-
marily governed either by the oscillatory electron motion with respect to the ions or by the nonlinear response
of the plasma to the lower hybrid wave propagating in it. The role of the nonlinear frequency shift in the satu-
ration of the lower hybrid decay instability is clarified. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Parametric instabilities of plasma in the presence of
lower hybrid waves have been studied for many years
both experimentally and theoretically (see, e.g., [1–6]).
Such processes as anomalous absorption of a lower
hybrid pump wave in a plasma and anomalous plasma
heating are attributed to the onset of parametric insta-
bilities [7–9].

Lower hybrid parametric instabilities are studied
theoretically by the following two approaches. The
first approach (see, e.g., [10]), in which the nonlinear
interaction of waves is assumed to be weak, applies to
pump fields weak enough so that the velocity of the
relative oscillations of the plasma components is neg-
ligible in comparison with their thermal velocities. In
this case, the nonlinear response of the plasma to the
lower hybrid wave propagating in it serves as a mech-
anism for the excitation of parametric instabilities.
This approach was used to investigate the decay of a
lower hybrid wave into two lower hybrid waves
[11, 12], a lower hybrid wave and a quasi-mode
[13, 14], etc.

In strong pump fields, there is an additional source
of parametric instabilities—the relative oscillatory
motion of the plasma components. In the case of weak
pump fields, this source is neglected. Parametric insta-
bilities that occur as a result of the relative oscillatory
motion of the plasma components in strong pump fields
are usually studied in the uniform pump field approxi-
mation (k0 = 0, where k0 is the wave vector of the pump
wave). This approximation applies to kinetic paramet-
ric instabilities [15], decay instabilities involving quasi-
modes [14], and the decay of a long-wavelength pump
wave into two short-wavelength waves (k1 + k2 =
k0 ≈ 0) [16]. However, this approach cannot be used to
1063-780X/00/2602- $20.00 © 20139
study the decay of pump waves such that |k1| ~ |k2| ~ |k0|.
The finite wavelength of a pump wave should be taken
into account in investigating the decay processes that
involve waves belonging to the same oscillation branch
(e.g., the decay of a lower hybrid wave into two lower
hybrid waves, the decay of an ion–ion hybrid wave into
two ion–ion hybrid waves, etc.), because, in this case,
the decay rate is proportional to k0 and equals zero at
k0 = 0.

Here, the approach developed in our previous
papers [17, 18], which generalizes the uniform pump
wave approximation to the case of weakly nonuniform
strong pump fields of finite wavelength (k0 ≠ 0, but
k0ξ ! 1, where ξ is the displacement of particles in the
pump field), is used to investigate the decay of a lower
hybrid wave into two lower hybrid waves. Section 2 is
devoted to a comparative analysis of the following two
mechanisms for the onset of instability: the oscillatory
electron motion against the ion background and the
nonlinear plasma response to the lower hybrid pump
wave. In Section 3, the nonlinear frequency shift is
investigated as a possible mechanism for the saturation
of this decay instability.

2. BASIC EQUATIONS

Previously, we have shown [17] that, in the limit
k0Rα ! 1 of small displacements Rα of particles of spe-
cies α in a pump field E0(r, t) = E0sin(ω0t – k0r) and a
constant magnetic field B0, the amplitudes ϕ1(k, t) and
ϕ2(k–) of the potential of the waves with frequencies
ω1(k) and ω2( ) (  = k  k0) into which the pumpk+− k+− +−
000 MAIK “Nauka/Interperiodica”
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wave decays satisfy the set of equations

(1)

The frequencies ω1(k) and ω2(k–) of the waves into
which the pump wave with ω0(k0) decays obey the
equation ε(k, ω) = 1 + δεi(k, ω) + δεe(k, ω) = 0, where
δεi and δεe are the ion and electron contributions to the
plasma permittivity ε(k, ω). For long-wavelength
(k⊥ ρe ~ k0⊥ ρe ! 1, where ρe is the electron Larmor
radius) oscillations with a phase velocity above the
electron and ion thermal speeds, δεi and δεe have the
form

(2)

where ωpi(e) is the ion (electron) plasma frequency, ωce

is the electron cyclotron frequency, and k|| and k⊥  are the
components of the wave vector k along and across the

magnetic field B0. For  ! k2, the equation ε(k, ω) = 0
yields

(3)

where  = /(1 + / ).

In order for the lower hybrid pump wave with ω0(k0)
to decay into two lower hybrid waves, it is necessary
that the condition ω1(k) = ω0(k0) + ω2(k–) be satisfied.
With allowance for (3), this condition becomes

(4)

In order to satisfy (4), it is necessary that
(k||/k)2(mi/me) > 3 [11]. We can see that, in the uniform
pump field approximation (k0 = 0), the decay condition
(4) does not hold.

In (1), the parametric coupling coefficients β1 and β2
are expressed as
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where the quantities δie and aie ~ kRie (with Rie the dis-
placement of the electrons with respect to the ions in
the pump field) are described by the familiar expres-
sions (see, e.g., [17, 18]). For a lower hybrid pump
wave with a frequency ω0 ! ωce, they have the form

(6)

where u ~ cE0⊥ /B0. The terms that are proportional to
the difference δεi describe the onset of a decay instabil-
ity due to the oscillatory motion of the electrons with
respect to the ions in the pump-wave field. The lengthy
expressions for the quantities Aα, which describe the
excitation of a decay instability as a result of the non-
linear response of the plasma to the lower hybrid wave
propagating in it, are presented in Appendix 1.

The nonlinear shifts of the oscillation frequencies
due to weakly nonlinear interactions between the waves
(k, ω1(k)) and (k–, ω2(k–)) and the other lower hybrid
waves (k1, ω1(k1)) and (k1–, ω2(k1–)) into which the
pump wave decays and due to the self-action of the
waves are described by the coefficients ν1, ν2, ν3, and ν4
(see, e.g., [18]):

(7)
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The lengthy expressions for the matrix elements Uα and
their long-wavelength (k⊥ ρα ! 1) asymptotics are pre-
sented in Appendix 2.

In the nonlinear stage, we can set νi = 0 (i = 1, 2, 3, 4),
in which case equations (1) yield the growth rate of the
decay instability (see also [17, 18]):

(8)

The nonlinear frequency shift can be regarded as a
possible mechanism for the saturation of the decay
instability. The relevant saturation level is [17, 18]

(9)

3. LINEAR THEORY OF THE DECAY
OF A LOWER HYBRID PUMP WAVE 

OF FINITE WAVELENGTH INTO TWO LOWER 
HYBRID WAVES

Since the entire analysis of the problem is rather
involved, we restrict ourselves to investigating the mech-
anism underlying the resonant decay of a lower hybrid
wave into two lower hybrid waves with k ~ k0 ~ k– only
in the important case of a dense plasma (ωpe @ ωce).
Since the case of a rarefied plasma (ωpe ! ωce) can be
examined in a similar manner, we will not analyze it
here. Let us estimate the terms in the parametric cou-
pling coefficients β1 and β2 using the asymptotic
expressions (A1.7)–(A1.9). The relationship

(10)

and formulas (10) and (A1.9) give

i.e., the ion contribution Ai to β1 and β2 is negligibly
small.

Now, we estimate the relative contributions of Ae
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k– satisfying the condition

(11)

we obtain from (10), (A1.5), and (A1.6)

(12)

This expression implies that, in the range of angles θ – θ0
and θ – θ– such that

(13)

lower hybrid waves are excited mainly due to the oscil-
latory electron motion against the background of essen-
tially immobile ions. In this case, we have

(14)

so that, according to (8), the decay instability can occur
only for waves that propagate in opposite directions.
The instability growth rate γ(k) is equal in order of mag-
nitude to

(15)

Note that the condition ωci ! γ ! ω1 ~ ω0 holds when

(16)

In the range of angles (θ – θ0) satisfying (11) and the
inequality

(17)

the primary mechanism for the onset of the decay insta-
bility is the nonlinear response of the plasma to the
lower hybrid pump wave propagating in it. In this case,
we have
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and the instability growth rate is equal in order of mag-
nitude to

(19)

According to estimates (A1.5) and (A1.6), lower hybrid
waves with ω1(k) and ω2(k–) propagating in opposite
directions are unstable, so that we have k|| k||– < 0. In this
case, the condition ωci ! γ ! ω1 ~ ω0 is satisfied when
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In the range of scattering angles for a lower hybrid
pump wave such that

(21)

relationships (10), (A1.7), and (A1.8) yield the estimate

(22)

which implies that, for (k||/k) > (me/mi)1/3, the primary
mechanism for the onset of a decay instability is the
nonlinear electron response to the lower hybrid wave
propagating in the plasma. In this case, we have

(23)

and the instability growth rate is estimated as

(24)

For (k||/k) < (me/mi)1/3, the main mechanism for the
decay instability is the oscillatory electron motion
against the ion background in the field of the lower
hybrid pump wave, in which case the coefficients β1
and β2 are described by (14) and the growth rate γ(k) is
described by (15).

4. EFFECT OF THE NONLINEAR FREQUENCY 
SHIFT ON THE NONLINEAR EVOLUTION 

OF THE DECAY INSTABILITY OF A LOWER 
HYBRID WAVE

Now, we analyze whether the nonlinear frequency
shift of the waves involved in the decay process can
serve as a mechanisms for saturating the decay of a
lower hybrid pump wave into two lower hybrid waves.
From (9), we obtain the following condition, which
should be valid in the saturation stage of the decay
instability:

(25)

where ϕ is the larger of the amplitudes ϕ1 and ϕ2 of the
lower hybrid decay waves. This allows us to obtain the
wave energy density W = (1/4π)k2|ϕ|2ω(∂ε/∂ω) at the
saturation stage:

(26)

Let us consider relationship (26) for the decay
mechanisms examined in Section 2. When the decay
instability is driven by the oscillatory motion of the
electrons with respect to the ions, the instability growth
rate is estimated as (15) and the instability due to the
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nonlinear frequency shift is likely to be saturated at a
level close to

(27)

where vTe is the electron thermal velocity.

The energy density W0 of the electron oscillations in
the pump-wave field is equal in order of magnitude to

(28)

If the energy density (26) of the unstable waves is
low in comparison with W0, then the pump wave ampli-
tude can be assumed to be constant throughout the non-
linear stage and the inverse action of unstable oscilla-
tions on the pump field may be neglected. For the satu-
ration level (27), this condition is satisfied when
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Under conditions (11) and (17), the decay instability
with the growth rate (19) is driven primarily by the non-
linear response of the electron component to the lower
hybrid pump wave propagating in the plasma. In this
case, the nonlinear frequency shift causes the decay
instability to saturate at the level
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For the saturation level (30), the condition W ! W0 is
satisfied when
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Under the conditions (k||/k) > (me/mi)1/3 and (21), the
nonlinear electron response to the pump wave serves as
the main mechanism for the onset of the decay instabil-
ity with the growth rate (24). The instability is saturated
at the level
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5. CONCLUSION

We have constructed a linear theory of the decay of
a lower hybrid pump wave into two lower hybrid waves
with comparable wavelengths |k0 | ~ |k | ~ |k – k0 |. We
have shown that, in addition to the nonlinear collective
plasma response to the lower hybrid pump wave, there
is another important mechanism for the onset of a
decay instability—the oscillatory electron motion
against the ion background in the field of a lower hybrid
pump wave with finite wavelength (k0 ≠ 0). We have
obtained the parametric coupling coefficients and the
instability growth rates for |k0 | ~ |k | and have deter-
mined the parameter ranges in which a particular mech-
anism for the onset of a decay instability dominates.

We have clarified the role of the nonlinear frequency
shift in the saturation of the lower hybrid decay insta-
bility. We have shown that the decay instability can be
saturated by the nonlinear frequency shift if the oscilla-
tory electron velocity satisfies condition (34).

In addition to the lower hybrid decay instability,
another instability may arise in the plasma—the decay
of a lower hybrid wave into a lower hybrid wave and a
kinetic electron quasi-mode [14]. The growth rate of
this instability is [14]

(35)

where vs is the speed of sound.

From (15) and (35), we obtain

(36)

i.e., which of the instabilities (the decay of the pump
wave into two lower hybrid waves or its decay into a
lower hybrid wave and an electron quasi-mode) devel-
ops more rapidly depends on the particular experimen-
tal conditions. However, the effect of these decay insta-
bilities on one another is insignificant, because they
develop in different ranges of wave vectors of unstable
oscillations: |ω(k) – ω0 | @ k||vTe corresponds to the res-
onant decay under discussion, and |ω(k) – ω0 | ~ k||vTe

corresponds to the decay involving a quasi-mode. In
particular, the growth rate and the saturation level (26)
of the decay instability involving two lower hybrid
decay waves are insensitive to electron heating. Hence,
in real experiments, these two decay instabilities may
occur simultaneously.
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APPENDIX 1

PARAMETRIC COUPLING COEFFICIENTS Aα

The coefficients Aα are defined as

(A1.1)

where  is the particle velocity in the frame of refer-
ence associated with the particles of species α. The
quantity vα, which is proportional to the small parame-
ter k0Rα ! 1, represents the correction to the Fourier

transform of the perturbation (k, ω, vα) of the
velocity distribution function F0α caused by natural
plasma waves (the Fourier transformation is carried out
in the accompanying frame).

In the case of a Maxwellian electron velocity distri-
bution, the coefficient Ae(k–, ω – ω0) for waves with
frequencies ω(k) ~ ω0 @ k||vTe is

(A1.2)
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For the decay of lower hybrid waves under consider-
ation, the frequencies ω0, ω1(k), and ω2(k–) and the
growth rate γ(k) (8) of the decay instability are all
higher than the ion cyclotron frequency. Consequently,
the ions are unmagnetized and, in the case of a Max-
wellian ion velocity distribution function F0i, the coef-
ficient Ai(k–, ω – ω0) for waves with frequencies ω0 ~
ω @ kvTi is

(A1.3)

The coefficients Aα(k+, ω + ω0) can be obtained from
(A1.2) and (A1.3) through the changes k–⊥   k+⊥ ,
k−||  k+||, θ−  θ+, ω – ω0  ω + ω0. The coeffi-
cients Aα(k, ω) can be found from Aα(k+, ω + ω0)
through the changes k+  k, k  k–, ω + ω0  ω,
and ω  ω – ω0.

We consider the limiting case of long-wavelength
(k⊥ ρe ! 1, k0⊥ ρe ! 1) low-frequency lower hybrid
waves with
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in a dense plasma (ωpe @ ωce). In this case, under con-
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(A1.2) yields the asymptotics
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If the propagation angles of the waves with ω1(k)
and ω2(k–) satisfy the condition |sin(θ – θ–)| ~ |sin(θ –
θ0)| ! ω/ωce , then we have

(A1.7)
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For (k||/k)2 ~ (ω/ωce)2, all terms in (A1.7) and (A1.8) are
of the same order. From (A1.3), we obtain the estimate

(A1.9)

APPENDIX 2

MATRIX ELEMENTS Uα 
AND THEIR LONG-WAVELENGTH 

ASYMPTOTICS

The matrix elements Uα are defined as

(A2.1)
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ω3 + ω4 is

(A2.2)

For low-frequency (ω ! ωce) long-wavelength (k⊥ ρe ! 1)
waves, relationship (A2.2) yields the asymptotic

(A2.3)
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Note that, for the decay under consideration, the contri-
bution of the ions,

turns out to be small,  ~  ! 1.
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Abstract—A study is made of the polarization of electromagnetic radiation at the second harmonic of the elec-
tron gyrofrequency. The radiation is emitted by a highly ionized collisionless plasma in which the turbulence is
excited at electron gyrofrequencies in a strong magnetic field. The mechanism for the generation of electromag-
netic waves during mergings of the gyrofrequency plasmons is analyzed. It is shown that, even in a strong mag-
netic field, the degree of circular polarization of electromagnetic radiation at the second harmonic of the elec-
tron gyrofrequency may be moderate or weak. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A highly ionized collisionless plasma in a strong
magnetic field (ωHe @ ωpe, where ωHe is the electron
gyrofrequency and ωpe is the electron Langmuir fre-
quency) is encountered in laboratory experiments (in
beam–plasma devices, magnetic confinement systems,
etc. [1]) and in space (e.g., in the solar corona [2]). It is
well known that an electron beam propagating in such
a plasma generates electromagnetic radiation at the har-
monics of the electron gyrofrequency ωHe [3].

The data from measurements of the intensity and
polarization of electromagnetic radiation at the second
harmonic of the electron gyrofrequency are often used
to determine the plasma parameters and the magnitude
of the magnetic field. Tsytovich and Kaplan [4] showed
that electromagnetic radiation at the second harmonic
of the gyrofrequency can also be driven by the mecha-
nisms associated exclusively with plasma processes.

For example, an electron beam propagating in a
highly ionized collisionless plasma in a strong mag-
netic field (along the magnetic field lines) can effi-
ciently excite gyrofrequency plasmons (h). Two plas-
mons can merge into one (h + h  t), thereby gener-
ating electromagnetic radiation at the second harmonic
of ωHe [5].

This merging process can compete with the genera-
tion of electromagnetic radiation at the second har-
monic of ωHe directly by an electron beam [3]. It is also
well known that the degree of circular polarization of
electromagnetic radiation generated directly by an
electron beam at the second harmonic of ωHe is close to
100% [6]. In this connection, it is of interest to investi-
gate the polarization of electromagnetic radiation gen-
1063-780X/00/2602- $20.00 © 0147
erated via the merging process h + h  t. This ques-
tion is the subject of our paper.

2. GENERATION OF POLARIZED 
ELECTROMAGNETIC RADIATION VIA 
THE MERGING OF GYROFREQUENCY 

PLASMONS

The method for deriving equations that describe the
merging of plasmons, h + h  t, was presented by
Tsytovich [5]. However, he did not obtain equations for
the polarization characteristics (the Stokes parameters)
of electromagnetic radiation generated during the
merging process. Below, we will derive these equa-
tions.

We will investigate the problem using the following
assumptions: the plasma ions are unmagnetized,
(ωpe/ωHe)2 ! 1, the spectral function  of the gyrof-
requency turbulence is isotropic (this assumption was
justified in [5]), and the phase velocities vph of the
gyrofrequency plasmons are much lower than the speed
of light c in vacuum (i.e., (vph/c)3 ! 1).

The assumption (ωpe/ωHe)2 ! 1 allows us to
describe the process h + h  t by the equation [5]

(1)

where vg is the group velocity of electromagnetic radi-
ation at the frequency 2ωHe, ωk = kc, k is the wave-
number, ω is the angular frequency of the radiation, and
κ = {k, ω}. In equation (1), the vector and tensor com-
ponents are written in the laboratory frame Xh, Yh, and

Wk1

d
dt
-----Ik ij,

∂
∂t
----- Ik ij, vg

∂
∂r
----- 

  Ik ij,+
4 2π( )

3ω2
Rκ ij,

∂
∂ω
------- ω2εκ

t
( ) 

  2
---------------------------------= =

ω ωk=

,
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Zh (Fig. 1). To simplify the analysis of the matrices Ik, ij
describing electromagnetic radiation, it is convenient to
pass over to the so-called intrinsic frame of reference
[7] with the help of the transition matrix Mij{h, n},
where h and n are unit vectors (Fig. 1). Taking the prod-
uct of the left- and right-hand sides of (1) with Miα and
Mjβ, we obtain the equation

(2)

Now, we switch from the matrices Ik, αβ to the Stokes
parameters using the standard relationships

(3)

where Ik is the radiation intensity in units of J/m2 s and
Qk, Uk, and Vk are the Stokes parameters expressed in
the corresponding units. From here, we obtain

(4)

(5)

d
dt
----- Ik αβ,

4 2π( )
3ω2

Miα Rκ ij, M jβ

∂
∂ω
------- ω2εκ

t
( ) 

  2
----------------------------------------------------=

ω ωk=

.

Ik Ik xx, Ik yy, , Qk+ Ik xx, Ik yy, ,–= =

Uk Ik xy, Ik yx, , Vk+ i Ik xy, Ik yx,–( ),–= =

d
dt
----- Ik

=  
4 2π( )

3ω2

∂
∂ω
------- ω2εκ

t
( ) 

  2
------------------------------- MixRκ ij, M jx MiyRκ ij, M jy+[ ] ω ωk= ,

d
dt
-----Qk

=  
4 2π( )

3ω2

∂
∂ω
------- ω2εκ

t
( ) 

  2
------------------------------- MixRκ ij, M jx MiyRκ ij, M jy–[ ] ω ωk= ,

θ

Yh

θ2θ1

ϕ1

ϕ2 ϕ

Xh

k

Zh

B

k1

k2

Fig. 1. Working coordinate system.
(6)

(7)

To evaluate the right-hand sides of (4)–(7), we need to
know explicit expressions for both the matrices Rκ, ij

and the dielectric function  for electromagnetic
waves. For radiation emitted at the frequency ω = 2ωHe,

we have  ≈ 1 – (ωHe/ω)2. According to [5], the matrix
Rκ, ij for the process h + h  t has the form

(8)

Here, κ{k, ω}, κ1{k1, ω1}, and κ2{k2, ω2} are the four-
dimensional wave vectors characterizing electromag-
netic radiation and the first and second gyrofrequency
plasmons, respectively; k1 and k2 are the wave vectors
of the gyrofrequency plasmons; and ω1 and ω2 are their

angular frequencies. The function , which charac-
terizes gyrofrequency plasmons, can be written as

(9)

Here, the spectral function of the gyrofrequency plas-

mons, , is related to their energy density Wσ by

(10)

and  is the real part of the dielectric function for
the gyrofrequency plasmons [5],

(11)

where  is the plasma dielectric tensor and  are
the components of the unit polarization vector of the
electric field of a gyrofrequency plasmon. For

d
dt
-----Uk

=  
4 2π( )

3ω2

∂
∂ω
------- ω2εκ

t
( ) 

  2
------------------------------- MixRκ ij, M jy MiyRκ ij, M jx+[ ] ω ωk= ,

d
dt
-----Vk

=  
4 2π( )

3ω2
i

∂
∂ω
------- ω2εκ

t
( ) 

  2
------------------------------- MiyRκ ij, M jx MixRκ ij, M jy–[ ] ω ωk= .

εκ
t

εκ
t

Rκ ij, κ1 κ2δ κ κ1– κ2–( )λ i κ κ1 κ2, ,( )dd∫=

× λ j* κ κ1 κ2, ,( )Iκ1

σ1Iκ2

σ2.

Iκ1

σ1

Iκ1

σ1
ωk1

σ1 Wk1

σ1δ ω1 ωk1

σ1–( )

2π2 ∂
∂ω1
--------- ω1

2εRe κ1,
σ1( )

ω1 ωk1

σ2
=

--------------------------------------------------------------.=

Wk1

σ1

Wk1

σ1 k1d

2π( )3
-------------∫ W

σ
,=

εRe κ1,
σ1

εRe κ1,
σ εij κ1, ek1 i,

σ
ek1 j,
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(ωpe/ωHe)2 ! 1, the real part of the dielectric function
for a gyrofrequency plasmon has the form [5]

(12)

where θ1 is the angle between the magnetic induction
vector and the unit polarization vector of the electric
field of a gyrofrequency plasmon. An expression for

 can be obtained from the equation [5]

(13)

Substituting  from (12) into (13) yields the fol-

lowing expression for :

(14)

The quantities λi(κ, κ1, κ2) have the form [5]

(15)

where

(16)

The components of the nonlinear conductivity tensor
Smjl of a plasma in a magnetic field are [5]

(17)

(18)

(19)

where me is the mass of an electron. The integrand in
expression (8) for Rκ, ij is a complicated function of the
wave vectors k, k1, and k2 and the frequencies ω, ω1,
and ω2 (the indices s, n, and m run through the coordi-
nates x, y, and z).

εRe κ1,
σ

1
ωpe

2
sin2θ1

ω1
2 ωHe

2
–

-----------------------–
k1

2
c

2

ω1
2

----------,+≈

ωk1

σ1

εRe κ1,
σ1 k1

2
c

2

ω1
2

----------– 0.=

εRe κ1,
σ1

ωk1

σ1
2

ω1
2 ωk1

σ1
2

ωHe
2 ωpe

2 θ1.sin
2

+= =

λ κ κ1 κ2, ,( )

=  2S̃mjl κ κ1 κ2, ,( )ek1 j,
σ1 ek2 l,

σ2 δim

kikm

k
2

----------– 
  ,

S̃mjl κ κ1 κ2, ,( )
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4πmeω
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The momentum and energy conservation laws for
the waves in the merging process h + h  t give

(20)

where vph1 and vph2 are the phase velocities of gyrofre-
quency plasmons. Assuming that k < k1 and k < k2 yields
vph1 < c and vph2 < c in accordance with (20). We
expand the integrand in expression (8) for the matrix
Rκ, ij in powers of the small parameters k/k1 and k/k2,
neglect terms proportional to (k/k1)3 and (k/k2)3, and
integrate the resulting expression over dk1, dk2, dω1
and dω2 to arrive at a simpler representation for the
matrix Rκ, ij . We assume that the spectral function 
is isotropic and substitute this representation for Rκ, ij,
the explicit expression for the matrix Mij taken from [7],

and expression (12) for the function  into equa-
tions (4)–(7). As a result, we obtain the following equa-
tions for the Stokes parameters:

(21)

(22)

(23)

(24)

Here, dIk/dt is the power of the emitted electromag-
netic radiation; Ik, Qk, and Vk are expressed in J; and ne

is the electron plasma density. Multiplying the left- and
right-hand sides of (21)–(24) by 4πω2/c2 and integrat-
ing the resulting equations over dω from 0 to ∞ yields
the following equations for the radiation intensity I (in
units of J/m2 s) and for the Stokes parameters Q, U, and
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V (in corresponding units):

(25)

(26)

(27)

(28)

Now, we divide the left- and right-hand sides of
(25)–(28) by the width ∆ω of the electromagnetic radi-
ation spectrum to arrive at the expressions for the radi-
ation power JIω = (1/∆ω)dI/dt) emitted from a unit vol-
ume of the turbulent plasma into a unit solid angle per
unit frequency interval and for the Stokes parameters
JQω, JVω, and JUω (expressed in corresponding units):

(29)
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Fig. 2. Dependence of the degree of linear polarization on
the angle between the direction of the electromagnetic wave
propagation and the magnetic induction vector.
(30)

(31)

(32)

Here, θ is the angle between the direction in which
electromagnetic radiation is emitted and the magnetic
field vector B, k1 are the wavenumbers of gyrofre-
quency turbulence, and ∆ω is the radiation spectrum
width.

From expressions (29)–(32), we can readily see that
electromagnetic radiation generated during the merg-
ing process h + h  t is elliptically polarized. In the
angular range 0 < θ < π/2, the degree of circular polar-
ization, ρ = JV/JI, changes from about 80% to 0, in
which case extraordinary waves dominate in the radia-
tion spectrum. The polarization of the waves emitted in
the direction nearly orthogonal relative to the vector B
is to some extent linear (JQ/JI ~ 60–65%).

Hence, in contrast to the mechanism for generating
electromagnetic radiation directly by an electron beam
(when the degree of circular polarization of the emitted
radiation is close to 100%), the polarization of electro-
magnetic waves generated during the process h + h  t
can be moderately or weakly circular. Figures 2 and 3
show how the linear and circular polarization ρ of the
emitted radiation varies with the angle θ.

3. CONCLUSION

We have investigated the polarization of electro-
magnetic radiation generated during the merging of
gyrofrequency plasmons, h + h  t, in the limit
ωHe @ ωpe using the assumptions that the spectrum of
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Fig. 3. The same as in Fig. 2, but for circular polarization.
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gyrofrequency turbulence is isotropic and the plasma
ions are unmagnetized.

We have shown that, under the conditions adopted
here, the merging process h + h  t results in the gen-
eration of elliptically polarized radiation. In the angular
range 0 ≤ θ ≤ π/2, the degree of circular polarization of
the excited radiation JV/JI changes from about 80% to
about 0 and the spectrum of the emitted waves is dom-
inated by extraordinary waves. The polarization of
electromagnetic waves emitted in the direction nearly
orthogonal relative to the magnetic induction vector is
to some extent linear (JQ/JI ~ 60–65%). Hence, we can
conclude that the polarization of electromagnetic radi-
ation emitted during the merging process h + h  t
may be moderately or weakly circular even when
ωHe @ ωpe .

The results obtained can be used to process data
from beam–plasma experiments and to interpret obser-
vations of radio emission from the Sun and other
objects in the universe. The effects we have investi-
gated can be observed in beam–plasma experiments in
which the beam electron density is 10–3–10–4 of the
background plasma density and the plasma ions are
unmagnetized.
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
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Abstract—The electron distribution function over longitudinal energies in the startup plasma of the end cell of
the AMBAL-M device is measured with a small-size movable electrostatic analyzer. It is found that, in the
region where a substantial longitudinal current flows, the electron distribution function over longitudinal ener-
gies has a plateau in the 150–350-eV energy range. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A hot startup plasma with a diameter of 20 cm, a
density of ~1013 cm–3, an electron temperature of 50 eV,
and an ion temperature of 200 eV is obtained in the end
cell of the AMBAL-M device [1]. The plasma is pro-
duced by a gas-discharge plasma source located
beyond the magnetic mirror. The specific feature of the
obtained plasma is a ~1-kA longitudinal electric cur-
rent flowing in the axial region [2]. To determine the
heating and current-drive mechanisms, it is necessary
to carry out direct measurements of the electron distri-
bution function in the mirror system. The results of
reconstructing the electron distribution function from
the current–voltage characteristics of a Langmuir probe
[3] located in a hot plasma lead to ambiguous interpre-
tation.

The goal of this work is to measure the electron dis-
tribution function in the end cell of the AMBAL-M
device by a small-size electrostatic energy analyzer
specially designed for this purpose.

Similar energy analyzers have already been used for
local measurements of the longitudinal electron current
in reversed-field pinches [4–6]. These measurements
demonstrated the possibility of using such energy ana-
lyzers to determine the electron distribution function
over longitudinal energies.

2. DESCRIPTION OF THE ANALYZER

The schematic of the end cell of the AMBAL-M
device and the position of the analyzer in the mirror
system are presented in Fig. 1. The analyzer is attached
to a ceramic tube and is inserted into the plasma with
the use of a positioner. The analyzer (Fig. 2) consists of
two symmetric sections placed inside an insulating case
made of boron nitride. Each of the analyzer sections
consists of an input diaphragm with a small aperture, an
1063-780X/00/2602- $20.00 © 20152
analyzing diaphragm, and a collector. The thickness of
the input diaphragm made of niobium is 1 mm, and the
diameter of the input aperture is 0.3 mm. The analyzing
diaphragm has a thickness of 2 mm and an aperture
diameter of 1 mm. The centers of the apertures of both
diaphragms lie on the axis directed along the magnetic
field. The diameters of the electrode apertures were
chosen taking into account the energy of ions and elec-
trons in the measurement region.

The measurement method is based on the violation
of quasineutrality in the small input aperture, whose
diameter is comparable with the Debye length. The ion
flux into the analyzer is attenuated due to the relatively
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Fig. 1. Schematic of the end cell of the AMBAL-M device:
(1) coils of the mirror system, (2) plasma-source solenoid,
(3) plasma source, (4) plasma receiver, and (5) semicusp
coils. The position of the analyzer is marked with an arrow.
At the bottom, the profile of the magnetic field on the axis is
shown.
000 MAIK “Nauka/Interperiodica”



        

MEASUREMENTS OF THE ELECTRON DISTRIBUTION FUNCTION 153

                                                                                                   
large thickness of the input diaphragm. Since the ion
Larmor radius (ρi ≈ 2.5 mm) in the region where the
analyzer is located is substantially larger than the diam-
eter of the input aperture, for the chosen diaphragm
thickness, most of the ions fall on the wall of the aper-
ture and do not enter the analyzer. On the other hand,
the characteristic electron Larmor radius (ρe ≈
0.025 mm) is less than the aperture size, so that the
electrons pass freely into the analyzer along the mag-
netic field lines. When the analyzer is inserted into the
plasma, the insulated input diaphragm acquires a
~2.5−3Te/e negative potential with respect to the space
potential, so that the current to the input diaphragm is
equal to zero. This potential substantially reduces the
plasma electron flux through the input aperture. There-
fore, the analyzer in fact measures the distribution
function of superthermal electrons with energies
exceeding 2.5–3Te. The energy analysis of the electrons
entering the analyzer is carried out by applying a nega-
tive potential to the analyzing diaphragm with respect
to the input diaphragm. In order to suppress secondary
electron emission from the collector and reject a small
portion of ions entering the analyzer because of their
small transverse energy, a positive (with respect to the
input diaphragm) potential is applied to the collector.
The numerical solution of the Laplace equation shows
that, for the –100-V potential of the analyzing dia-
phragm and +90-V potential of the collector, the retard-
ing potential on the axis is –99.6 V. Therefore, in the
absence of the electron space charge in the aperture, the
retarding potential is approximately equal to the poten-
tial of the analyzing diaphragm. The current to the col-
lector is measured with the use of a resistor placed
between the input diaphragm and the collector. The
electron distribution function f(U) ∝  –∂j(U)/∂U over
longitudinal energies can be obtained by differentiating
the measured dependence j(U) of the collector current
on the retarding voltage.

3. RESULTS OF MEASUREMENTS

The measurements were carried out in the axial
plasma region in the single-shot regime. The shot-to-
shot reproducibility of the plasma parameters was
5−10%. In Fig. 3, the oscillograms of the collector cur-
rent of the analyzer section that faces the plasma source
are shown at different values of the retarding potential.
It is seen that an increase in the retarding potential
results in a monotonic decrease in the collector current.
To find the current as a function of the retarding poten-
tial, we averaged the current over three 160-µs time
intervals, which are marked by the Roman numerals in
Fig. 3. In the dependences obtained (see Fig. 4), most
of the parts of the curves are well approximated by
straight lines; this is evidence that there is a plateau in
the electron distribution function up to energies of 180,
160, and 60 eV, respectively, with a further drop as the
energy increases by 50 eV.
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
As was noted above, the distribution function can be
found by differentiating the experimental dependence
jexp(U). However, in this case, the measurement errors
lead to undesirable distortion of the sought-for func-
tions. In order to eliminate these errors, the experimen-
tal curves should be carefully smoothed beforehand.
Therefore, we chose another procedure that also allows
evaluation of the distribution function by the measured
current provided that the distribution function permits
an analytical approximation with several free parame-
ters. For simplicity, we assume that the measured cur-
rent can be represented as a sum of contributions from
the electrons with the Maxwellian distribution over lon-
gitudinal energies and an electron beam with a finite
temperature. The thermal electrons in the mirror system
are described by the Maxwellian distribution function
jmaxw = cmexp(–ε/Tm), and the beam is given by the Max-
wellian distribution shifted by the longitudinal velocity,
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Fig. 2. Schematic of the energy analyzer: (1) input dia-
phragm, (2) analyzing diaphragm, (3) collector, and
(4) insulating case.

Fig. 3. Oscillograms of the collector current at different
retarding potentials. The analyzer is located on the axis and
faces the plasma source.
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ffast = cf exp(–(  – )2/Tf). Here, cm and cf are con-
stants determining the densities of Maxwellian and fast
electrons; Tm and Tf are the temperatures of these two
electron species, respectively; ε is the longitudinal
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Fig. 4. The current as a function of the retarding potential
for three time intervals (I, II, and III) shown in Fig. 3.

Fig. 5. Model electron distribution function: (1) Maxwellian
distribution function fmaxw(U), (2) fast-electron distribution
function ffast(U), and (3) total distribution function f(U) =
 fmaxw(U) + ffast(U).
energy (ε = m /2); and ε0 is the average longitudinal
energy of the beam electrons. These functions and their
sum are presented in Fig. 5. The sought-for parameters
cm , cf , Tm , Tf, and ε0 are found by minimizing the sums
of squared deviations of the calculated current from the
measured current with respect to the free parameters at
different voltages. This procedure resulted in the fol-
lowing estimates for the electron energy characteris-
tics: the temperature of the Maxwellian electrons is
100, 80, and 30 eV for the I, II, and III intervals in
Fig. 3, respectively; the beam-electron energy is 150,
135, and 60 eV, respectively; the beam-electron tem-
perature is ~3 eV in all cases; and the fast-electron den-
sity is at least one order lower than the density of the
warm Maxwellian plasma. Note that these solutions
give somewhat overestimated current values at retard-
ing potentials below 50 eV. Presumably, the low tem-
perature of the beam electrons is explained by the cool-
ing effect (the decrease in the mean-square deviation of
the particle velocity from the averaged directional
velocity) during the particle acceleration. This effect
shows up when the electrons move in the accelerating
ambipolar electric field from the input magnetic mirror
to the center of the device.

The retarding curve for the analyzer section facing
the plasma receiver is shown in Fig. 6. In this case, at
the zero retarding potential, the collector current is
approximately three-and-a-half times below the current
in the case considered above. As before, the electron
current flowing into the analyzer is suppressed at
retarding potentials up to 200 V. In this case, the elec-
tron flux into the analyzer can be related to both the par-
tial reflection of fast electrons by the output magnetic
mirror and the superthermal Maxwellian electrons.

Although the measurements show the presence of a
plateau in the electron distribution function over longi-
tudinal energies, there are two factors that affect the
measurement accuracy. First, the retarding potential
applied to the analyzing diaphragm leads to a propor-
tional increase in the potential of the input diaphragm.
Thus, when the retarding potential was –200 V, the
potential of the input diaphragm increased by 80 V.
This effect is similar to the behavior of a double probe
in a plasma when the voltage is applied across the inter-
electrode gap. However, it is difficult to explain the
increase in the potential of the input diaphragm quanti-
tatively. Actually, the value of the retarding potential is
less than the voltage between the input and analyzing
diaphragms. It is found that the dependence of the
retarding potential Urepel on the potential of the analyz-
ing diaphragm Ud is close to linear: Urepel ≈ 0.6Ud.
Therefore, the retarding curve can be corrected so that
its shape remains almost unchanged.

Another factor affecting the accuracy is the electron
space charge. The decrease in the potential on the axis
in the input aperture is associated with this space
charge and is estimated as δϕ ≈ πr2ne. Assuming the

v ||
2
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average electron energy to be 60 eV, we obtain that, for
the current density j ≈ 15 A/cm2, the density of the elec-
tron flow is n ≈ 2 × 1011 cm–3 and the decrease in the
potential on the axis is δϕ ≈ 20 V. A certain measure-
ment error can also be introduced by the radial nonuni-
formity of the potential.

In order to carry out more accurate measurements,
the aperture diameter of the input diaphragm was
reduced to 0.05 mm. In this case, a –200-V retarding
potential leads to only a 10-V increase in the potential
of the input diaphragm. Hence, we can say that the
potential of the analyzing diaphragm has no effect on
the potential of the input diaphragm and that it is actu-
ally the retarding potential. At the zero potential of the
analyzing diaphragm, a decrease in the input aperture
area by a factor of 36 resulted in a decrease in the col-
lector current by a factor of 100. This extra decrease in
the current is associated with the fact that the radius of
the input aperture in this case is equal to the Larmor

j, A/Òm2
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Fig. 6. Retarding curve for the analyzer section facing the
plasma receiver.
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radius of electrons with a 50-eV transverse energy, so
that not all of the electrons enter the analyzer. Such a
small input aperture of the analyzer cuts off not only the
ions but also the electrons with high transverse veloci-
ties. This selection emphasizes the contribution from
beam electrons with a small transverse temperature.
Since the recorded current decreases 100-fold, the
space-charge potential also decreases 100-fold, and its
influence on the measurement accuracy becomes negli-
gible.

Figure 7a shows the dependence of the collector
current on the retarding potential, which was measured
by the analyzer with the reduced input aperture.
Although the dispersion of the experimental points
increased because of the decrease in the collector cur-
rent, it is seen that the electron distribution function is
fairly broad and non-Maxwellian. The dispersion of the
experimental points introduces some uncertainty in
drawing the smooth curve through these points (this
curve should be differentiated with respect to the
retarding potential in order to obtain the distribution
function). As an example, we drew two curves through
the experimental points. Figure 7b shows two electron
distribution functions over longitudinal energies for
two curves drawn through the experimental points. It is
seen that, in both cases, the electron distribution func-
tion has a plateau in the energy range from eϕf l to
eϕf l + 200 eV. Assuming that eϕf l ≈ 3Te ≈ 150 eV, we
can state that the plateau is located in the 150–350-eV
range of the electron longitudinal energy.

To understand the influence of superthermal plasma
electrons, we carried out measurements at a radius of
6 cm (outside the region ~4 cm, where the longitudinal
current flows) using the analyzer with the reduced aper-
ture. The results are presented in Fig. 8. At this radius,
the bulk-plasma parameters are almost the same as on
the axis, but the longitudinal current is absent. The data
j, A/Òm2
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Fig. 7. (a) The retarding curve for the analyzer with a reduced input aperture and (b) the electron distribution functions over longi-
tudinal energies obtained from dashed and dotted curves in plot (a). Averaging is performed over the 1–1.5-ms time interval. The
results of different series of measurements are shown by different symbols.
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presented in Fig. 8 are well approximated by the Max-
wellian distribution with a 60-eV temperature. For the
zero retarding potential, the collector current dropped
2.5 times compared to that measured on the axis, which
is explained by the absence of fast electrons. Thus, we
can conclude that the previous measurements showed

j, A/Òm2

0.5

0 50 100 150 200 250
U, V
300

0

1.0

1.5

2.0

–20

0

20 40 60 80
r, mm

100

ϕ fl , V

(‡)

–150

–100

–50

50

–20 20 40 60 80
r, mm

100

∆ϕ fl , V

(b)

0

50

100

0

0

Fig. 8. The retarding curve for the analyzer positioned at a
6-cm radius. The solid line shows the retarding curve for the
Maxwellian electron distribution with a 60-eV temperature.

Fig. 9. (a) Radial profiles of the floating potential of the ana-
lyzer input diaphragms facing (e) the plasma source and (d)
plasma receiver and (b) their difference.
approximately the same contribution to the current
from the Maxwellian and beam electrons.

In addition, we measured the radial profiles of the
floating potentials of both input diaphragms, one of
which faced the plasma source and the other one faced
the plasma receiver. The results are presented in Fig. 9.
The profile of the potential difference between the dia-
phragms shows that the electron distribution function
in the axial region is anisotropic. As would be
expected, this region coincides with the region where
the current flows that was previously detected by a
magnetic probe [2].

4. CONCLUSION

A small-size electrostatic electron-energy analyzer
is designed and used to measure the electron distribu-
tion function over longitudinal energies in the end cell
of the AMBAL-M device. It is found that the distribu-
tion function has a plateau in the 150–350-eV range in
the current-carrying channel of the mirror system and is
Maxwellian (with a temperature of 60 eV) outside this
channel. The data obtained can be used to carry out
numerical simulations of the generation of electrons
carrying the current in the transport region between the
plasma source and the mirror system.
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Abstract—It is commonly accepted that, as the current increases, a diffuse negative corona inevitably goes
over to a strongly nonuniform and nonsteady spark discharge. In this paper, a new effect—the transition of a
negative corona to a diffuse glow discharge at atmospheric pressure—is studied experimentally and numeri-
cally. The evolution of the corona parameters during the transition to the regime of a glow discharge is traced.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to the classification of gas discharges
proposed in [1], a negative corona and a glow discharge
refer to the same type of discharge, because, in both of
them, the current in the cathode sheath is maintained by
the same processes, specifically, photoemission and
avalanche multiplication of the electrons emitted from
the cathode due to electrostatic extraction by metasta-
bles and positive ions.

Historically, these two kinds of the same discharge
were studied separately: classical glow discharges were
observed in low-pressure gases in sealed glass tubes,
whereas corona discharges were observed in high-pres-
sure gases (in particular, at atmospheric pressure).

The glow discharge is characterized by a high value
of the reduced electric field E/N (where E is the electric
field and N is the gas number density) in the interelec-
trode gap. This field is sufficiently high for producing
intense ionization of a gas; a result, the gap is filled with
a plasma. In the case of a negative corona, the reduced
field in the gap is much less and there is an uncompen-
sated negative space charge in the gap.

As the corona current increases, the density of the
negative space charge and the electric field in the gap
both increase. Hence, when the electric field becomes
sufficiently high to produce intense gas ionization, a
plasma will arise between the electrodes of the corona
discharge; i.e., the negative corona will go over to the
regime of a glow discharge.

A pin–plane electrode configuration is the most typ-
ical for producing a corona discharge. Note that such an
electrode system is not convenient for realizing a tran-
sition from a negative corona to a glow discharge. The
reason is that, in this configuration, the current-carrying
channel significantly broadens with distance from the
pin; thus, the space-charge density between the elec-
trodes is low. Rather high currents are needed to obtain
1063-780X/00/2602- $20.00 © 20157
a sufficient space-charge density and, accordingly, a
strong electric field in the discharge gap. However,
under normal conditions (at atmospheric air), it is diffi-
cult to produce high currents with this geometry of the
corona, because, even at relatively low currents, a sin-
gle-pin corona goes over to the spark discharge.

2. DESCRIPTION OF THE EXPERIMENT

To investigate the transition from a negative corona
to a glow discharge in air at atmospheric pressure, we
used a special electrode system with a multipin cathode
and a flat metal anode (Fig. 1). The pins were stainless-
steel needles 0.5 mm in diameter tapered to a cone with
a vertex curvature radius of RC = 0.06 mm. Fifty-two
needles were uniformly distributed over an area of 10 ×
40 mm2 in four rows of 13 needles each.

The distance d between needles (i.e., the spatial
period of the cathode structure) was equal to 3.5 mm
and was small compared to the distance between their
vertexes and the anode, h = 5–20 mm. In this case, the
current density in the negative-corona gap increases
substantially (by nearly a factor of 3(h/d)2) in compari-
son with the pin–plane configuration and the transition
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Fig. 1. Experimental setup.
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Cathodes

Anode

Fig. 2. Photograph (negative) of the discharge in room air; the discharge current per pin is 39 µA.
from the corona to a glow discharge occurs at a rela-
tively low current through each pin.

In order to ensure a stable diffuse regime of the neg-
ative corona, each needle was supplied through a high-
resistance load: R . 2 MΩ. In addition, the anode plate
was connected to a high-voltage supply through a
0.2 MΩ resistor. The stability of the corona against its
transition to a spark was also ensured by air flowing
through the discharge; the cathode unit was oriented so
that its longest side was perpendicular to the air flow. A
typical flow velocity was on the order of several tens of
meters per second.

Along with the recording of I–V characteristics, we
photographed the discharge in the direction opposite to
the air-flow velocity.

3. EXPERIMENTAL RESULTS

If the discharge is in the corona regime, only the
needle ends are luminous, whereas the interelectrode

6

4

2

0
2422201816141210864

I/U, µA/kV

U, kV

Fig. 3. Reduced I–V characteristic of the discharge in room
air (I is the current per pin). The points correspond to the
experiment; the solid and dashed-and-dotted lines corre-
spond to the calculation for relative humidity of 30 and
65%, respectively. The needle point radius is RC = 0.06 mm;
h = 10.5 mm.
gap is hardly visible and the anode is dark. The photo-
graph (negative) of the discharge in the steady-state
glow regime is shown in Fig. 2. It is seen that the glow
discharge is diffuse and rather uniform, although the
discrete structure of the plasma column caused by the
discrete structure of the multipin cathode is also clearly
seen.

Figure 3 shows a typical reduced I–V characteristic
of the discharge under study. Here, the ratio I/U
(instead of the total discharge current) is plotted versus
the discharge voltage U, I being the discharge current
per pin.

In the reduced I–V characteristic, we can distin-
guish two segments (the first in the range of initial
corona currents and the second in the range of high cur-
rents corresponding to the regime of a developed glow
discharge) in which the reduced current is a nearly lin-
ear function of the voltage. It is seen that, in the glow
discharge, the current increases with voltage more
sharply in comparison with the corona regime. This is
explained by the increasing role of ionization (which
depends strongly on the field) in creating the conductiv-
ity in the interelectrode gap of the glow discharge.

The kink point of the reduced I–V characteristic
(i.e., the point of intersection of two extrapolated
straight lines corresponding to the linear dependences)
can be considered a critical voltage corresponding to
the transition of the corona to a glow discharge. Near
this point of the I–V characteristic, a luminous thin
sheath appears on the anode. This is evidence that the
anode sheath is formed, which is characteristic of a
glow discharge. At voltages higher than the critical one,
the gap luminosity increases sharply with the current
and the discharge exhibits more and more features typ-
ical of glow discharges.

It was noted above that the luminous anode sheath
becomes visible when the current reaches the threshold
I1 corresponding to the beginning of the transition from
the corona to a glow discharge. Figure 4 shows the
dependence of the threshold current on the interelec-
trode distance h. A similar dependence of the threshold
current I2 corresponding to the transition from the glow
discharge to a spark is also shown. Hence, the current
range in which a uniform glow discharge at atmo-
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spheric pressure can exist is bounded by two curves
I1(h) and I2(h). Note that this range may be extended
substantially by using gasdynamic effects and anodes
of a special design.

4. DESCRIPTION OF THE NUMERICAL MODEL 
OF THE DISCHARGE

The numerical model of a corona in humid air is
based on the well-known continuity equations for elec-
trons and positive and negative ions, Poisson’s equa-
tion, and an equation for the simplest electric circuit
with parameters corresponding to the experiment. The
discharge kinetics in air plasma is very involved. For its
complete description, it is necessary to consider the
evolution of a great number of components. However,
in our previous paper, we already formulated a simpli-
fied model based on the full kinetic model. This model
was used to predict average characteristics of a corona
on a thin wire in air at atmospheric pressure [2].

Here, we use the same model with one species of
positive ions and one species of negative ions. The
model includes the ionization, three-body attachment
of electrons to an oxygen molecule, detachment, and
ion–ion recombination. The presence of water vapor in
air was taken into account by introducing an additional
attachment rate caused by three-body attachment to
oxygen with the participation of water molecules acting
as a third body. The frequencies of relevant processes
for P = 740 torr, T = 294 K, and a relative air humidity
of 30% are shown in Fig. 5.

The key point of our approach to the problem that
previously allowed us to describe the periodical gener-
ation of Trichel pulses [3–5] is the use of a one-and-a-
half-dimensional approximation in solving all of the
equations in order to describe a strong broadening of
the current channel between the cathode and the anode.

In these calculations, the equivalent radius of the
discharge at the anode was determined from the dis-
charge area per pin. The total area was calculated by the
formula S = S0 + α2h(a + b), where S0 is the area envel-
oped by the contour drawn through the edge pins, 2(a +
b) is the circumference of this contour, h is the distance
between the electrodes, and α is the phenomenological
parameter (α = 0.5). The shape of the current channel
was chosen according to visual observations: at a dis-
tance of one-third of the full distance between the elec-
trodes, the channel rapidly broadens until its radius
becomes equal to the anode radius; further, the cross-
section area remains constant. Possible variations in the
shape of the current channel due to variations in the
current value were neglected in calculations.

In calculations, all of the parameters were reduced
to the conditions referred to one pin. The equivalent
resistance of the ballast resistor in the discharge circuit
for each pin was R = 12.2 MΩ (the resistance of the
anode circuit was taken into account). Note that a series
of calculations of I–V characteristics was performed
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
with various values of the ballast resistance (from
100 kΩ to 18 MΩ); these calculations showed that the
value of the ballast resistor has little effect on the shape
of the I–V characteristics (in appearance, these charac-
teristics remain almost the same).

The set of equations describing the discharge
parameters averaged over the current-channel cross
section has the form [4]

(1)
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Fig. 4. Threshold currents I1 (curve 1) and I2 (curve 2) per
pin for the transition from the corona to a glow discharge
and from the glow discharge to a spark, respectively, as
functions of the interelectrode distance h.

Fig. 5. Dependences of (1) the ionization, (2) electron detach-
ment, and (3) three-body attachment rates on the reduced
electric field for room air at relative humidity of 30%.
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Fig. 6. Reduced I–V characteristic of the discharge in dry air
(I is the current per pin) for RC = 0.06 mm and h = (1) 5, (2)
10, (3) 15, and (4) 20 mm. The points correspond to the
experiment; the solid lines correspond to the calculation.
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Fig. 7. Comparison of the calculated and experimental dis-
charge radiation intensity for room air at relative humidity
of 30% and a current per pin of 39 µA. The calculation is
performed for different values of the contrast coefficient θ:
the solid, dashed, and dashed-and-dotted lines correspond to
θ = 0.5, 0.67, and 0.4, respectively. The fluctuating lines
show the experimental results.
where the subscripts e, p, and n refer to electrons and
positive and negative ions, respectively; ne, np, and nn

are the densities of electrons and positive and negative
ions; we , wp, and wn are their drift velocities; νi , νa, and
νd are the ionization, attachment, and detachment rates;
e is the electron charge; ε0 is the permittivity of vac-
uum; and S(x) is the running area of the discharge cross
section, which is a given function of the coordinate x.

The current I in the external circuit is found from the
equation

(5)

where U and U0 are the voltage at the discharge gap and
the supply voltage, respectively, and R is the ballast
resistance.

The boundary conditions for positive and negative
ions are evident: their densities vanish at the anode and
cathode surfaces, respectively.

The boundary conditions for electrons at the cath-
ode (x = 0) are formulated through the secondary emis-
sion coefficient γ:

(6)

where je = newe, jp = npwp , and γ = 0.01.
Equations (1)–(4) were solved by an implicit differ-

ence scheme with a nonuniform spatial mesh (the mesh
size decreased near the cathode). A detailed description
of the numerical scheme is presented in [6].

Upon calculating the distribution of the reduced
electric field across the discharge gap, we calculated
the distribution of radiation intensity in the discharge.
It was assumed that the first and second positive sys-
tems of nitrogen (B3Πg and C3Πu levels) make the main
contribution to the radiation and that the total radiation
intensity is proportional to the total excitation rate for
these levels. The excitation rate constants for these lev-
els were determined by numerically solving the Boltz-
mann equation for the electron energy distribution
function with the cross sections for these levels taken
from [7].

5. COMPARISON OF THE CALCULATION 
WITH THE EXPERIMENT

Based on the numerical model described above, we
computed the I–V characteristic of the discharge under
study, the distribution of the intensity of the radiation
along the current channel of an individual pin, and the
change of the longitudinal structures of the electric
field, the components of the total current, and the
charged-particle (electron, ion, and negative ion) densi-
ties in the interelectrode gap with increasing the dis-
charge current.

A comparison of the computed reduced I–V charac-
teristics with the experiment is shown in Figs. 3 and 6.
It is seen that, for the parameters chosen, the calcula-
tion is in good qualitative and quantitative agreement

U U0 RI ,–=

je 0 t,( ) γ j p 0 t,( ),=
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with the experimentally observed dependence of the
current on the discharge voltage.

The calculated distribution of the radiation intensity
across the gap is also in good agreement with the exper-
iment. In the experiment, we measured the normalized
distribution of the blackening of the film on which the
negative image of the discharge was produced (see,
e.g., Fig. 2). The degree of blackening D is related to
the radiation intensity K by the relationship (see [8])

(7)

where θ is the film contrast factor and Kh = 1.05 is the nor-
malizing intensity.

A comparison of the calculated radiation intensity
with the experiment is shown in Fig. 7. We recall that it
was assumed in calculations that the intensity of visible
radiation of the glow discharge is determined by the
total radiation intensity from the first and second posi-
tive nitrogen systems. A narrow peak near the coordi-
nate origin corresponds to the radiation from the cath-
ode sheath located near the vertex of the needle.

D 200θ Klog Kh 1.05=log– 1 θ⁄+( ),=
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Fig. 8. Longitudinal profile of the reduced electric field
across the discharge gap for different values of the discharge
current. The numerals correspond to the current values as
given in the table.
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6. CALCULATED LONGITUDINAL DISCHARGE 
STRUCTURE

Poisson’s equation, together with the charge and
transport processes, determines the longitudinal pro-
files of the electric field and charged-particle density
across the gap. Comparing Figs. 8–12 to each other, we
can trace self-consistent variations in the electric field
and charge density in the interelectrode gap as the dis-
charge current varies. The computation was performed
for room air (the relative humidity was 30%) and an
interelectrode distance of 10.5 mm. The calculated val-
ues of the discharge current I and voltage U are pre-
sented in the table for different values of the supply
voltage (U0).

It is seen in Fig. 8 that the electric field within the
gap (outside of the cathode sheath) is maximum near
the anode. The ionization rate is also maximum near the
anode. Note that the kink in the electric-field profile at
x = 0.35 cm, which is seen in the figure, is not physical
in nature but is due to the particular shape of the current
channel used in the model.

The minimum of the electric field near the boundary
of the positively charged cathode sheath is caused by
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11
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105

Fig. 9. Longitudinal profile of the electron density across
the discharge gap for different values of the discharge cur-
rent. The numerals correspond to the current values as given
in the table.
Calculated values of the discharge current I and discharge voltage U for different values of the supply voltage U0 in room at
relative humidity of 30%

no. 1 2 3 4 5 6 7 8 9 10 11

U0, kV 6 8 10 12 14 16 18 20 22 24 26

U, kV 5.93 7.90 9.86 11.81 13.75 15.66 17.43 18.92 19.97 20.62 21.08

I, µA 1.4 2.79 4.76 7.34 10.8 17.5 34.3 75.2 152 261 386
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the high density of the electrons leaving the cathode
sheath (Fig. 9). The discharge current in this region is
carried predominantly by the electrons (Fig. 10). The
increase in the field with distance from the cathode is
explained by the attachment of electrons and the
decrease in their contribution to the total current
(Figs. 8–11).

As the discharge voltage increases, the profile of the
electron component of the current along the discharge
gap becomes nonmonotonic: after a decrease in the
region of low fields near the cathode, the electron flow
increases again in the region of high fields far from the
cathode. As the voltage increases, the electric-current
minimum shifts outward from the anode and the contri-
bution of the electron current to the total current
increases.

We note that the electron flow in the gap starts to
increase at field values at which the ionization rate is
still low compared to the attachment rate. This fact
indicates that the processes of destruction of negative
ions play an important role in the growth of the electron
flow and the formation of the anode sheath.

It is clearly seen in Fig. 11 that the negative-ion den-
sity near the anode sharply decreases as the electric
field approaches the critical value corresponding to the
kink point of the I–V characteristics. Since the nega-
tive-ion density near the anode well exceeds the elec-
tron density (nn/ne @ 1), even a weak detachment (νd !
νi , νa) significantly contributes to the electron-current
growth in this region and thus reduces the electric field
(and, correspondingly, the corona current) at which the
anode sheath arises.

Let us consider in more detail the conditions under
which the anode sheath is formed. Two processes occur
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10840
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Fig. 10. Longitudinal profile of the contribution from the
electron current to the total current for different values of the
discharge current. The numerals correspond to the current
values as given in the table.
in the anode sheath: the generation of the positive-ion
current jp via gas ionization and the almost complete
disappearance of the current jn of negative ions entering
the sheath from the anode region (i.e., from a ~1-mm-
wide region near the anode). Under conditions close to
the establishment of the anode sheath, the jp and jn cur-
rents near the anode become comparable. In this case,
the divergences of these flows in the anode sheath also
become comparable. In other words, near the threshold
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Fig. 11. Longitudinal profile of the negative-ion density
across the discharge gap for different values of the discharge
current. The numerals correspond to the current values as
given in the table.
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Fig. 12. Longitudinal profile of the space charge across the
discharge gap for different values of the discharge current.
The numerals correspond to the current values as given in
the table.
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current I1, the following equality must hold (see equa-
tions (2) and (3))

(8)

The numerical calculations show that equality (8)
holds near the kink point of inclination of the I–V char-
acteristics, i.e., in the initial stage of the transition from
the corona to a glow discharge. This fact also indicates
that the collisional detachment plays an important role
in the transition from the corona to a glow discharge.

Thus, the calculations show that, in a multipin elec-
trode system (i.e., under the conditions when the dis-
charge has a fixed cross section at the anode), the
plasma column in the glow discharge does not form
simultaneously along the entire interelectrode gap.
After the anode sheath has formed, the quasineutrality
conditions are first created near the anode. As the dis-
charge current increases, the region of quasineutral
plasma extends toward the cathode progressively cov-
ering the interelectrode gap (Fig. 12).

The parameters of the plasma column produced in
the gap are close to the parameters of a glow discharge
that we computed previously with the zero-dimensional
model [9].

7. CONCLUSION

Based on the results of experimental studies and
numerical calculations, we have traced the evolution of
the parameters of a multipin negative corona during the
transition to the regime of a glow discharge at atmo-
spheric pressure.

The current range in which the glow discharge can
exist is experimentally determined.

ν i . νd nn ne⁄( ) νa.–
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Abstract—The positive column and wall sheath in a gas discharge are studied with allowance for ion col-
lisions in a plasma and ion reflection from a solid surface under conditions of incomplete ion neutralization.
The kinetic equation for ions in a positive column is reduced to a Fredholm equation of the second kind.
This makes it possible to solve the kinetic equation using a resolvent and thereby derive a single integrod-
ifferential equation for the potential, which is referred to as a generalized plasma–sheath equation. Specific
versions of the plasma–sheath equation are obtained that take into account charge exchange of the ions in
a plasma and the thermal spread in velocities of the ionization-produced ions. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

One of the problems in classical physics of a gas dis-
charge that has remained unresolved is the problem of
calculating the parameters of the positive plasma col-
umn in the range of intermediate pressures at which the
ion motion toward the plasma boundary ceases to be
collisionless and classical ambipolar diffusion has not
yet come into play. The Langmuir–Tonks theory [1],
which implies that the ion mean free path λi is much
longer than the characteristic dimension R of the dis-
charge, yields correct results only for λi > 10R. The
Schottky theory [2] applies to the range λi < 0.03R.
Taking into account the so-called “anomalous drift” of
the ions and assuming that the ion mean free path is
constant makes it possible to construct an analogue of
the Schottky theory but for λi < 0.3R. Further refine-
ments aimed at incorporating ion inertia into the hydro-
dynamic approximation did not substantially extend
the theory to the range of lower pressures, nor did they
make it possible to pass over to the limit λi  ∞ cor-
rectly. In [3], we derived a collisionless plasma–sheath
equation appropriate for describing the range of inter-
mediate pressures under the assumptions that the only
collisional mechanism for the ions is charge exchange
and the initial energy of both charge-exchange and ion-
ization-produced ions is zero. Although we succeeded
in filling the gap in the range 0.03R < λi < 10R, some
questions remain unresolved. First, using the method
proposed in [3], we can in principle generalize the col-
lisional plasma–sheath equation to the case in which
the ion mean free path depends on energy, but doing so
is complex and laborious. Also, it becomes more diffi-
cult to pass over to the classical Schottky theory, which
assumes that the ion drift proceeds in the normal
regime, i.e., the ion–atom collision frequency (rather
1063-780X/00/2602- $20.00 © 0164
than the ion mean free path) is constant.1 Second, we
are justified in exclusively taking into account charge
exchange processes (neglecting ion–ion elastic colli-
sions) only in the case of monatomic gases, while, in
gas mixtures, elastic collision cross sections are usually
larger than the charge-exchange cross sections, because
the electron structures of the colliding particles are dif-
ferent. Third, since this method fails to construct per-
turbation theory for the collisional plasma–sheath
equation, it is inappropriate for studying unsteady pro-
cesses and incorporating ion–neutral and ion–ion elas-
tic collisions. The collisional plasma–sheath equation
cannot be used to allow for incomplete ion recombina-
tion on the walls and its influence on the properties of a
positive column (PC). An alternative to the approach
proposed in [3] is the method for simulating particle
dynamics in a discharge plasma by modeling chemical
transformations with Monte Carlo calculations [4].
However, this method also fails to construct perturba-
tion theory (e.g., to study the waves propagating in a
discharge plasma); moreover, it involves a considerable
expenditure of computational effort (in comparison
with the plasma–sheath equation).

Incorporating the above-mentioned processes will
require further refinement of the theory by way of solv-
ing the ion kinetic equation. This makes it possible not
only to determine the spatial distributions of the poten-

1 The ion mobilities in normal and anomalous regimes are different
because, in the first case, the stochastic velocity VTi of the ions is
higher than their directed velocity V. Consequently, it is stochastic
velocity that governs the collision frequency ν and ion mobility µ,
which are both independent of the ambipolar electric field Ea in a
plasma. In the case of anomalous drift, the ion stochastic velocity
is on the order of the ion directed velocity, so that we have ν ≈
λi/V and µ ~ .Ea
2000 MAIK “Nauka/Interperiodica”
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tial and particles but also to evaluate the ion velocity
distribution function (IVDF) at an arbitrary point in
space (in particular, at the wall, which is especially
important from the standpoint of applications). In this
paper, we will show that solving the time-independent
kinetic equation systematically together with Poisson’s
equation and the equilibrium equation for the electrons
results in a hierarchy of integrodifferential equations,
which are similar in structure to the plasma–sheath
equation (they even go over to this equation in a certain
limit) and can be used to examine the above processes.
Time-dependent equations of the perturbation theory
for this hierarchy are also integrodifferential equations.
The problem in question is of interest not only from a
methodological standpoint but also from the standpoint
of practical applications, because the parameter values
under consideration here are characteristic of plasmo-
chemical devices used in microelectronics [5].

1. MAIN MODEL ASSUMPTIONS AND BASIC 
EQUATIONS

The main assumptions underlying our model are as
follows.

(i) The plasma column is nonuniform in one direc-
tion and occupies the region –L < x < L.

(ii) The plasma in the PC consists of electrons, neu-
trals, and singly charged ions of one species.

(iii) The discharge has no impact on the spatial dis-
tribution of neutrals or on their temperature Tg.

(iv) The electron velocity distribution over the PC is
Maxwellian with a coordinate-independent tempera-
ture Te.

(v) The main ionization mechanism is direct ioniza-
tion by electron impact from the ground state, and the
main recombination mechanism is recombination on
the walls. The ionization-produced ions obey the veloc-

ity distribution function (V). For the plasma–sheath

equation from [1], we have (V) = δ(V), where δ(V)
is the Dirac delta function. Along with δ(x), we will
also use the Heaviside step function θ(x) defined by
θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0.

(vi) The ions moving in a PC collide with neutrals;
each collision event can be regarded as either an elastic
collision or charge exchange between an ion and a neu-
tral.

(vii) Ion–ion collisions are neglected; otherwise, the
collision integral would be nonlinear in the IVDF and
the problem becomes far more difficult to solve in gen-
eral form. This assumption is not very strict, because,
in most regimes of the PC in a gas discharge, the degree
of ionization is not too high and can be taken into
account using perturbation theory.

(viii) The electric field potential in a PC is mono-
tonic.

f i
0

f i
0
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(ix) Correlations between the ions that are reflected
from the wall and neighboring ions are neglected.

Note that these assumptions, except for (vi) and (ix),
coincide with those made in [1, 2]. Which discharge
regime occurs depends on the details of condition (vi).
Condition (ix) differs from an analogous condition that
was used in [1, 2] and implies 100% ion recombination
on the wall. Also, condition (ix) makes it possible to
take into account ion emission, i.e., such ion reflections
from the wall as a result of which not all of the ions
recombine into neutrals.

We describe the ions using the kinetic equation

(1.1)

where M is the mass of an ion, f(V, x) is the IVDF, I is
the ion–ion collision integral, ϕ is the electric field
potential, and e > 0 is an elementary electric charge.

Under the above assumptions, the collision integral
in (1.1) can be written as

(1.2)

The first term in (1.2) describes the ionization-pro-
duced ions and the second term describes the loss of
fast ions due to charge exchange, the appearance of new
ions via the same process, and elastic scattering of ions
by neutrals.2 The number of ion–ion collision events is
proportional to the squared distribution function, and
ion–ion collisions cannot be described by formula
(1.2). Assumption (ix) allows us to write the boundary

2 Expression (1.2) is a reduced Boltzmann collision integral
describing collisions between ions and particles of species j,
which are either electrons or neutral particles (see, e.g., [6]):

(1.2a)

where fj is the distribution function of the particles of species j, 

is the scattering angle, and dΩ = sin d dϕ is a solid angle in

velocity space. The velocities V' and  of the particles after

they have experienced a collision are governed by their velocities

V and Vj before the collision event and by the angle  between

the vectors V – Vj and V' – . The first term in (1.2) describes

the loss of ions with velocity V due to their scattering by neutrals,
and the second term describes the appearance of new ions with
the same velocity due to the reverse process.
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condition for the ions at the wall as

(1.3)

The function Γ is governed by the physical processes
on the wall. In the simplest case of 100% ion recombi-
nation (which was treated in the classical models of the
PC of a gas discharge, in particular, in the Schottky
model and the plasma–sheath equation), we have
Γ = 0.3 The last term Q(Vx, Vy, Vz) describes ion emis-
sion from the electrode surface as a result of, e.g., the
ionization of neutral atoms hitting an electrode. This
emission, which is unimportant under conditions typi-
cal of the PC in a conventional gas discharge, can play
a decisive role in the processes near the cathode in ther-
mal-emissive converters, in which the discharges are
ignited in alkali-metal vapors [7]. For convenience of
further analysis, we do not specify here the function Γ.

We describe the electron behavior using the follow-
ing equilibrium equation, which is a consequence of the
relevant dynamic equation without allowance for elec-
tron inertia:

(1.4)

where k is the Boltzmann constant, ne is the electron
density, Te is the electron temperature, m is the mass of
an electron, and n0 is the electron density at zero poten-
tial. The conditions under which formula (1.4) is valid
were discussed in our earlier paper [8]. The ambipolar
electric field in a plasma satisfies Poisson’s equation:

(1.5)

Equations (1.2)–(1.5) should be supplemented with
the boundary conditions for Poisson’s equation,

(1.6)

where VT =  is the most probable electron
velocity, σ is the surface charge density, and x is a vec-
tor normal to the boundary. Since the potential is spec-
ified to within an arbitrary constant, we can assume that

3 Note that Γ(V, V') in (1.3) is related to the probability γ(V, V')
that the reflection of an ion from the wall is not accompanied by
its recombination into a neutral atom through the relationship
Γ(V, V') = γ(V, V')[ /Vx].
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it is equal to zero (ϕ|x = 0 = 0) at the plasma center. The
effect of a deviation of the electron energy distribution
function (EEDF) from a Maxwellian in the range of
high energies was studied by Baksht et al. [9]. This
deviation, which may substantially affect the magni-
tude of the electron current, can be incorporated into
our model by introducing the kinetic reflection coeffi-
cient γ such that je = j0 × γ. We also assume that the
charged-particle density distribution in a plasma is sym-
metric and switch from the boundary conditions at the
wall x = –L to the conditions at the coordinate origin,

(1.6‡)

(1.3‡)

We denote the potential at the wall (which should be
determined from solving the basic equations) with
respect to the potential at the plasma center by ϕ0.

2. SOLUTION TO THE ION KINETIC EQUATION 
AND DERIVATION OF ANALOGUES 

OF THE PLASMA–SHEATH EQUATION

The time-independent ion kinetic equation (1.1)
with the collision integral (1.2) can be solved by the
method of characteristics. Since the ions are acceler-
ated when they move toward the wall, we assign the rel-
evant ion velocity at the wall to each of the characteris-
tics. It is convenient to solve the kinetic equation by
dividing the IVDF into two parts describing the ions
with oppositely directed velocities,

(2.1)

Since we do not need f + in the region Vx < 0 or f – in the
region Vx > 0, we set these functions to zero in (2.1);
however, they can also be predefined in a different man-
ner. The function f + describes the particles that move
toward the wall, and the function f – refers to the parti-
cles moving away from the wall. Under the assump-
tions made, the kinetic equation (1.1) is equivalent to a
set of ordinary differential equations. In terms of the
functions f + and f – just introduced, the ion kinetic equa-
tion takes the form

(2.2)
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(2.3‡)

(2.3b)

The first integral term in (2.3a) [or in (2.3b)] describes
the scattering (or charge-exchange) events during
which the projection of the velocity of the ions moving
either toward the wall or away from it onto the x-axis
does not reverse direction. The first part of this term
describes losses of the ions that have experienced a
scattering event, and the second part describes the
appearance of ions with new velocities as a result of
scattering. The second integral term describes ion
losses resulting from the scattering events during which
the projection of the ion velocity onto the x-axis
reverses direction. Consequently, the first integral term
in (2.3a), which describes the losses of ions with a
given velocity due to scattering, corresponds to the sec-
ond integral term in (2.3b) and vice versa.

The functions f ± should also satisfy the boundary
condition

(2.4)

The partial differential equation is equivalent to the
following set of ordinary differential equations (see,
e.g., [10]):4 

(2.5)

4 Although equations (2.5) are equivalent to a time-dependent
kinetic equation (ds is the time differential), below, we will be
interested only in steady-state processes.
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The characteristics of equation (2.2) satisfy the equa-
tion

(2.6)

and the distribution function obeys the equation

(2.7)

Relationship (2.6) reflects energy conservation
along the characteristics. According to assumption
(vii), the PC contains no trapped particles (i.e., particles
that do not collide with the wall) and the characteristics
on the plane of the independent variables Vx and x are
as shown in the figure. Characteristics 1 and 2, which
pass through the origin of the coordinates (x = 0, Vx = 0),
are separatrices. We outline some features of formula
(2.5) that are important for practical applications. For-
mula (2.5) implies that, in the absence of sources, the
IVDF is constant along the characteristics. Collisions
between the particles cause the ions to pass over from
one characteristic to another (as a result of scattering or
charge exchange) and lead to the appearance of ioniza-
tion-produced ions on the characteristics. On the other
hand, it is well known that, during the acceleration of a
charged-particle beam in the absence of particle
sources, the beam density in space decreases. This illu-
sory contradiction stems from the fact that the distribu-
tion functions are normalized in a different manner. The
constancy of the IVDF along the characteristics indi-
cates that the phase volume is conserved: the particle
acceleration is accompanied by stretching the elemen-
tary volume in phase space along the coordinate axes
(so that the density decreases) and squeezing this vol-
ume along the velocity axes.

Since all of the characteristics originate or terminate
at the wall, we will describe them by the relevant ion
velocities Vx0 on the wall.

V xdV x± e
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dx
------dx

e
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-----dϕ ,= =

d f
± I

±
dx

V x

-----------.±=

1

x

2

Vx

Characteristics of the kinetic equation on the plane of the
independent variables x and Vx.
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Now, we are going to derive an integral equation
that is equivalent to equations (2.5) and refers to an
arbitrary monotonic potential distribution, which is
assumed to be known. We integrate the equation for f –

from the point x to the point at which the ions are
reflected (and their velocities vanish). Since the condi-
tion f –(x, 0) = f +(x, 0) holds at the reflection point, we
integrate f + from this point to the point . As a result,
we obtain the desired integral relationship. Note that,
for ions with energies high enough to overcome the
potential barrier, the functions f + and f – are equal to one
another at the center x = 0 of a PC by virtue of the sym-
metry relation f –(0, –|Vx|) = f +(0, |Vx |). The IVDFs in
both energy ranges can be related through a single inte-

gral in terms of the Heaviside step function θ( ):

(2.8)

Analogously, integrating equation (2.7) for f + from x to
L and then integrating the equation for f – from L to x
with allowance for the boundary condition (1.3) yields
the following relationship:5 

(2.9)

5 Without loss of generality, ion emission from the wall, described
by the term with Q(Vx , Vy , Vz), can be regarded as an additional
internal source that produces ions with velocities Vx < 0 at x = L:
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Equations (2.8) and (2.9) can be reduced to the follow-
ing equation for the IVDF:

(2.10)

Since the functions Z( , x, Vx, Vy, Vz, , , ) and

(Vx, Vy, Vz , , , ) are very cumbersome,
we will omit them to save space. Assumptions (ii)–(vii)
enable us to simplify (2.10) by dividing the ion sources
into two groups: the sources associated with ionization,
which are independent of the IVDF, and the sources
associated with elastic collisions and charge exchange,
which produce ions at a rate linearly dependent on the
IVDF. Simple but fairly involved transformations show
that equation (2.10) is equivalent to a Fredholm equa-
tion of the second kind for the IVDF:

(2.11)

,

where the factor λ is equal to unity.6 This indicates that
the solution to equation (2.11) necessarily exists and
can be expressed in terms of a Fredholm resolvent:

(2.12)

The tilde indicates that the resolvent is generally an
operator with respect to the potential; i.e., the resolvent

6 We will not write out explicit expressions for the functions GE

and GI, because they are very cumbersome.
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depends not only on ϕ(x) but also on all the derivatives
of the potential with respect to the coordinate. The
resolvent can be most easily evaluated iteratively, in
which case we arrive at the Neumann series

(2.13)

where

(2.14)

The construction of the operator GI implies that it
transforms the IVDF to a distribution function that is
established after the ions have completed their motion
along the characteristics.7 Since some of the ions mov-
ing along the characteristics recombine on the wall, the
series in (2.13) appears to be an expansion in powers of
a small parameter equal to the probability (or, more
precisely, to the square root of the probability) for an
ion to return to its starting point (possibly, with a differ-
ent velocity). When both elastic scattering in the
plasma and ion reflection from the wall are absent, only
the first term in the series in (2.13) is nonzero (see Sec-
tion 3.1). Generally, at λ = 1, the series may converge
fairly slowly. However, for most of the physically inter-
esting cases we will analyze below (e.g., for the
plasma–sheath equation [1, 12] or for the collisional
plasma–sheath equation [3, 8]), we can evaluate
the resolvent exactly.8 The plasma states described by
the corresponding solutions to the integral equation can
be regarded as the initial states to which perturbation
theory has to be applied (possibly, with another small
parameter, e.g., the ion-to-electron temperature ratio).
For further analysis, convergence of the series in (2.13)
is an important issue, because it ensures the desired
analytic properties of the resolvent and provides the
possibility of representing the IVDF through the source
terms for a prescribed potential with the help of rela-
tionship (2.12).9 Representation (2.13) illustrates how
the resolvent depends on the potential,

(2.13‡)

7 Strictly speaking, the operator should be applied to the IVDF
twice.

8 In the absence of ion collisions in a plasma, integration over the
coordinate is independent of integration over velocities, so that
equation (2.11) can be treated in velocity space V rather than in
phase space (x, V) (see Section 3.1 for details). In other words,
the order of equation (2.11) can be lowered by unity.

9 To save space, we will omit a rigorous mathematical proof that
the series in (2.13) converges.
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Knowing solutions to equation (2.11), we can use the
relationships discussed above to calculate the IVDF
(2.12) at an arbitrary point in space and then reduce the
basic equations to the following integrodifferential
equation for the potential:

(2.15)

which will be referred to as a generalized plasma–
sheath equation.

We supplement equation (2.15) with the boundary
conditions

(2.16)

The first condition reflects the fact that the potential is
specified to within an arbitrary constant, the second
condition implies the symmetry of the plasma column,
and the third condition indicates charge conversion at
the wall. It is convenient to obtain an expression for the
hydrodynamic ion velocity from the ion continuity
equation. As a result, the last boundary condition in
(2.16) becomes

(2.16‡)

Hence, we have formulated the eigenvalue problem for
determining the potential distribution in the PC of a gas
discharge. The problem appears to be nonlinear and
nonlocal with respect to the potential. The eigenvalue
of the problem is the ionization rate in a plasma.

Equation (2.15) is a version of the complete
plasma–sheath equation, which was derived by Lang-
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muir and Tonks [1] in the form

(2.17)

Expression Vx(x, x') =  con-
verts equation (2.17) to the familiar plasma–sheath
equation. Langmuir and Tonks [1] showed that neglect-
ing the second-order derivative of the potential and
using the expression Vx(x) = µiE(x) transforms equation
(2.17) into the ambipolar diffusion equation. Below, we
will analyze some models that make it possible to con-
sider the intermediate range λi ~ 1. Note that Langmuir
and Tonks excluded ion emission and incomplete ion
recombination on the wall from the analysis. We
emphasize that, in many cases of practical importance,
the kernel of equation (2.15) is degenerate, so that this
equation is easier to solve (its solutions can also be used
as initial states in implementing the algorithms based
on perturbation theory).

The above analysis may be generalized to the case
of discharges maintained externally by an ionizer or by
ion emission from the wall [12]. Let the density of the
ions that have velocity V and are produced by an exter-
nal ionizer at the point x be N(x, V) and let the distribu-
tion function of the ions emitted from the wall be Q(V).
Then, by virtue of charge conservation, the density of
the electrons that originate at the same point is equal to
the integral of N over velocities. In this case, equation
(2.15) has the form

(2.18)
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and the boundary condition (2.16a) becomes

(2.19)

In accordance with the footnote to formula (2.9), RQ

can be expressed in terms of R as

(2.20)

Below, we will consider specific versions of the bound-
ary-value problem (2.14)–(2.19) for a PC with 100%
ion recombination on the wall. The equations that refer
to various models of ion emission and incomplete ion
recombination on the wall and describe the influence of
these processes on the properties of a PC will be con-
sidered in subsequent papers.

3. PLASMA–SHEATH EQUATION 
FOR A PC WITH 100% ION RECOMBINATION 

ON THE WALL

A version of the boundary-value problem (2.2)–
(2.4) that assumes 100% ion recombination on the wall
and in which the Fredholm resolvent can be obtained in
an explicit form is the most important and was studied
first. The simplest version of the model problem is the
one described by the plasma–sheath equation derived
by Langmuir and Tonks as early as 1929 [1].

3.1. Plasma–Sheath Equation

We work from assumptions (i)–(v) and (viii) and,
following Langmuir and Tonks, assume that, first, the
neutral pressure is low enough (the mean free path is
shorter than the transverse dimensions of the plasma
column) to ignore ion–ion collisions (mathematically,
this indicates that IN ≡ 0) and, second, the ions do not
recombine into neutrals as they are reflected from the
wall (Γ ≡ 0). In this case, the resolvent for the kinetic
equation has the form
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and

Langmuir and Tonks also assumed that the ions origi-
nate with a zero initial velocity, Ie = neνi(Te)δ(V), so that
we have

(3.1)

(3.2)

The ion density is calculated from the formula

(3.3)
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As is expected, the plasma–sheath equation with the
potential-dependent electron density (1.4) coincides
exactly with the equation derived by Langmuir and
Tonks:

(3.4)

3.2. Plasma–Sheath Equation with Allowance
for the Finite Energy of the Produced Ions

A first attempt at incorporating the finite velocity
with which the ions are produced was made by Lang-
muir and Tonks [1]. They showed that the relevant cor-
rection is maximum at the center of the plasma column,
where it is on the order of Ti/Te . In the case at hand, we
begin with reducing equations (2.8) and (2.9) to

(3.5)

(3.6)

Consequently, we have
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so that the plasma–sheath equation becomes

(3.8)
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Usually, there is no reason to assume that in a weak elec-
tric field in a plasma the distribution function of the ioniza-
tion-produced ions is anisotropic and coordinate-depen-

dent. Therefore, we can set (x', V) = (x', V) =

(V) = (–V) in order to simplify equation (3.8) to

×
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(3.9)

An analytic analysis of the solutions to equation
(3.9) is nontrivial, because the ion-density decrease
associated with the fact that the ions originate with non-
zero velocities is partially balanced by the influx of ions
having negative velocities and moving away from the
wall. Consequently, we restricted ourselves to obtain-
ing numerical estimates with the help of perturbation
theory. Our estimates showed that the thermal spread in
velocities of the ionization-produced ions raises the
ionization rate required to maintain the discharge;
moreover, in order of magnitude, we obtained δνi/νi0 ~
Ti/Te. In gas discharges, the Te/Ti ratio usually lies
between 100 and 1000, so that, for discharges in planar
geometry, the correction introduced by the ion thermal
motion is less than 2%.

3.3. Collisional Plasma–Sheath Equation

A collisional plasma–sheath equation was derived in
our earlier paper [3]. In addition to assumptions (i)–(ix),
we assume that the initial energy of the charge-
exchange and ionization-produced ions is zero and all
of the ions hitting the wall recombine on it. If the
charge exchange rate depends on ion velocity, then we
have

(3.10)

where νi(Te) is the ionization rate and νr(V) is the
charge exchange rate, in which case equations (2.8) and
(2.9) with zero velocity components Vy and Vz become

(3.11)
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Equation (3.11) can be solved either numerically or by
iteration,

(3.12)

If the ion collision frequency is energy-independent,
then we can substitute the series in (3.12) into Poisson’s
equation in order to obtain an equation that formally
describes the normal regime of ion drift motion. How-
ever, since we neglected the thermal spread in veloci-
ties of the ionization-produced and charge-exchange
ions, this equation does not reflect the physical essence
of the normal drift regime. If the ion–neutral charge-
exchange cross section is energy-independent, then we
can sum up the above series to obtain an explicit
expression for the resolvent,

(3.13)

In [3], this expression was obtained in a different way:
instead of the kinetic equation, we used Newton’s equa-
tion and the continuity equation and exploited the
methods of probability theory.
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In this case, the ion density is

(3.14)

Substituting the expressions for electron and ion densi-
ties into Poisson’s equation, we arrive at the desired
integral equation for the potential:

(3.15)

In [3], this equation was referred to as a collisional
plasma–sheath equation. Since the ion thermal veloci-
ties are zero, this equation applies to the anomalous
regime of ion drift and fails to describe the normal drift
regime. The method for solving the collisional plasma–
sheath equation was described in detail in [8], where we
also discussed the range of PC parameters to which this
equation is applicable.

CONCLUSION

We have proposed a method for solving the problem
of maintaining the PC of a gas discharge. The method
consists of the following. The ion motion is described
by the kinetic equation, which is solved by the method
of characteristics. This allows us to arrive at an inte-
grodifferential equation for the potential, which is
referred to as a generalized plasma–sheath equation,
because the familiar plasma–sheath equation, which
describes collisionless PCs, appears to be its specific
version. With this approach, it is possible to take into
account incomplete ion recombination on a solid sur-
face, elastic ion scattering, and charge exchange and
also evaluate the IVDF at an arbitrary point of the dis-
charge (in particular, at the wall, which is especially
important from the standpoint of practical applications
in the area of low-temperature plasma physics). We
have obtained some particular versions of the plasma–
sheath equation that generalize the Langmuir–Tonks
equation and take into account charge-exchange
recombination between ions and neutrals in a plasma
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and the thermal spread in the initial velocities of the
ionization-produced ions.

The integrodifferential equation derived makes it
possible to calculate the spatial parameters of a gas dis-
charge plasma over a wide range of pressures—from
the regime of collisionless ion motion (the Langmuir–
Tonks regime) to the regime of ambipolar diffusion in a
strong electric field of the space charge—and take into
account both ion emission and incomplete ion recombi-
nation on the wall.

The rigorous mathematical approach taken in deriv-
ing the plasma–sheath equation allowed us to construct
a systematic perturbation theory for this equation,
which had not been done before.

Since the mechanisms for conversion of the electric
field energy into electron energy were discarded, the
above analysis is also valid for RF and microwave dis-
charges in the regimes in which the nonlinear processes
in the sheath are unimportant.

The results obtained can be used, in particular, to
analyze the processes in low-pressure plasmochemical
reactors.
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Abstract—Results are presented from studies of the characteristics of a transverse volume discharge in a
Ne/Ar/SiH4 mixture at pressures of 5–35 kPa. It is shown that SiI 288.2-nm, Hβ 486.1-nm, and NeI 585.3-nm
lines and H2 Lyman bands can be used to monitor the process of destruction of silane molecules. The obtained
porous film, consisting of the products of SiH4 destruction, is of interest for yielding siliceous fullerenes and
for application in optoelectronics. © 2000 MAIK “Nauka/Interperiodica”.
Thin silicon films are produced by depositing sili-
con atoms from an Ar/SiH4 mixture onto a heated sub-
strate. For this purpose, either high-power excimer
lasers [1] or high-frequency low-pressure (≤0.1 kPa)
discharges [2] are usually used. Of particular interest is
the synthesis of nanocrystalline films [2] or porous sil-
icon, whose luminescence in the visible spectral region
[3] can find application in optoelectronics. The use of a
transverse volume discharge (TVD) makes it possible
to substantially increase the plasma electron density (in
comparison with high-frequency low-pressure dis-
charges), the pressure of the working gas (as well as the
content of SiH4 molecules in it), and the volume of the
reaction zone. In TVD plasmas, conditions can be cre-
ated that are favorable for the synthesis of siliceous
fullerene molecules similar to carbonic atomic struc-
tures, such as C60 and C70. The most appropriate work-
ing media for the synthesis of such molecules are those
based on helium or neon plasmas at pressures of
10−30 kPa [4]. In [5], results are presented on the syn-
thesis of porous silicon compounds in laser sparks in
mixtures of inert gases with silane molecules at high
pressures (P ≥ 100 kPa). In [6], we studied the optical
characteristics of a TVD in an Ar/SiH4 mixture in the
200–600-nm spectral region at pressures of P ≤ 10 kPa.

In this paper, we present the results of studying the
optical characteristics of a plasma produced in a TVD
in a Ne/Ar/SiH4 mixture. The emission spectra in the
130–600-nm spectral range and the resource character-
istics and dynamics of the emission from excited neon
atoms and the products of destruction of SiH4 mole-
cules are studied. SiH4 molecules are electronegative
[7]; this property is important for both obtaining TVDs
in the regime of prebreakdown multiplication of elec-
trons [8] and using these molecules as a Penning addi-
tion in emitters based on Ne(3s–3p) transitions.

A transverse discharge with spark UV preionization
was ignited in a polyethylene pipe with an inner diam-
eter of 14 cm; the plasma volume was 54 × 2.0 ×
1063-780X/00/2602- $20.00 © 20174
0.7 cm3. An LC generator initiating the TVD triggered
a 40-nF storage capacitor and a 34-nF sharpening
capacitor. A TGII 1000/25 thyratron was used as a
switch. The TVD characteristics in the 220–600-nm
spectral region were measured with a diagnostic com-
plex described in [6, 8]. VUV radiation was studied
with the help of a vacuum monochromator based on the
Seia–Namioki scheme. The plasma radiation was out-
put through a CaF2 window, which allowed measure-
ments in the spectral region ∆λ = 130–350 nm, and was
recorded by an FEU-142 photomultiplier with a LiF
window.

In the emission spectra of the TVD plasma, we
observed a broadband emission in the 170–400-nm
range, which can be attributed to  and ArH* mole-

cules. The most intense lines were SiI (3p2 1D2–4s )
288.2-nm and Hβ 486.1-nm lines. In the VUV spectral

region, the most intense lines were  Lyman bands

(∆λ = 140–160 nm). Weak bands of  molecules
were detected at λ ≤ 200 nm. In TVDs ignited in a
freshly prepared mixture, the radiation from silicon
atoms was dominant in the initial stage of discharge. As
silane was decomposed,  and Hβ line radiation
became dominant.

The regime with prebreakdown multiplication of
electrons, which was observed in TVDs in Ne/SF6 mix-
tures [6], was not obtained in silane-containing mix-
tures. This is explained by both the small effective cross
section of dissociative attachment (σ ≤ 2 × 10–18 cm2)
and the specific character of the energy dependence of
the cross section (a narrow maximum at an electron
energy of 8–9 eV) [7].

Figure 1 shows the intensity of NeI 585.3-nm line
radiation and emission from the products of SiH4
destruction as functions of the number of TVD pulses (n)
in Ne/Ar/SiH4 mixtures with different contents of Ar
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H2*
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and SiH4. The behavior of the brightness of Lyman
bands and continuum of hydrogen molecules is similar
to the dependence of the intensity of the Hβ line on the
number of TVD pulses. As n increases to ≥(0.5–1.0) ×
103, the intensity of the SiI 288.2-nm line falls off
sharply, indicating that silicon precipitates almost
completely. At the same time, the intensity of the
NeI 585.3-nm line increases substantially. This is evi-
dence of the efficient quenching of Ne(3p) atoms by
silane molecules and the main gas-phase products of
silane conversion in a plasma, which proceeds until the
complete destruction of these products. Hence, this
neon line can be used for monitoring the destruction of
SiH4 in the plasma under study. As the silane content
increases, the intensity of emission from Si and Ne
atoms decreases.

Figure 2 shows the waveforms of the voltage, the
TVD current, and the intensity of emission from
plasma components in different stages of destruction of
a silane-containing plasma. The TVD current oscil-
lates, and its maximum amplitude (for a discharge volt-
age of 5–20 kV) is in the 5–15-kA range. The initial
part (h) of the current time profile is associated with the
charge of the sharpening capacitor, as in TVDs in
He(Ne)/NF3 mixtures [9]. The amplitude and duration
of the pulses of SiI 288.2-nm line radiation are maxi-
mum at n = 1–10, which corresponds to the shape of the
resource characteristic of the emission from Si* atoms
(Fig. 1). The maximum of Si* emission was observed
after the first half-wave of the discharge current, which
can be related to the dissociative excitation of SiH4 and
the main products of its conversion in a plasma, such as
Si2H6 and Si2H4 [7]. The duration of Hβ and Ne* line
radiation attained 300–320 ns. The maximum intensity
of Ne* radiation was observed at the front of the dis-
charge current, whereas the maximum of Hβ radiation
was observed in the afterglow. Such behavior of neon
radiation is associated with the electronic mechanism
of the excitation of NeI atoms in the initial stage of a
TVD, whereas the dissociative-excitation and recombi-
nation reactions most probably are responsible for the
Hβ line radiation.

After 105 TVD pulses (104 pulses for each freshly
prepared mixture), the inner surface of the discharge
chamber was covered by a thick (d = 0.5 mm) brown
porous film similar to that synthesized in laser-spark
experiments. An analysis of this film [5] showed that it
has a characteristic structure constant of 50–100 nm.
An X-ray structural analysis of the porous silicon com-
pounds synthesized in a TVD showed that they have a
complicated structure with a structure constant of d =
100 nm. As compared to a laser spark, a TVD makes it
possible to lower the cost of the synthesis and increase
the yield of porous siliceous products (presumably,
compounds of the Si/SiO2 or Si/SimHn type, where
m, n = 1–60), among which there can be Si60 and
Si60H60 fullerenes.
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Fig. 1. Intensity of NeI 585.3-nm line radiation and emis-
sion from the products of destruction of silane molecules as
functions of the number of TVD pulses in Ne : Ar : SiH4 =
(1–3) 32 : 1.5 : 0.06 and (1'–3') 32 : 7.7 : 0.32 kPa mixtures:
(1, 1') SiI 288.2-nm, (2, 2') NeI 585.3-nm, and (3, 3') Hβ
486.1-nm lines. The discharge voltage is U = 15 kV.

Fig. 2. Waveforms of the (1) discharge voltage, (2) dis-
charge current, and the intensity of emission from neon
atoms and the products of SiH4 destruction in a TVD plasma
in Ne : Ar : SiH4 = (1–5) 32 : 1.5 : 0.06 and (3') 32 : 7.7 :
0.32 kPa mixtures: (3, 3') SiI 288.2-nm (n ≤ 10 pulses), (4)
NeI 585.3-nm (n ≥ 6 × 102 pulses), and (5) Hβ 486.1-nm

(n ≥ 2 × 103 pulses) lines.
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Hence, we have shown that the SiI 288.2-nm, NeI
585.3-nm, and Hβ 486.1-nm line radiation and the H2
Lyman band can be used to monitor the process of
destruction of silane molecules in a TVD plasma. Also
demonstrated is the possibility of creating a plasmo-
chemical reactor based on a repetitive TVD for the syn-
thesis of porous siliceous-containing compounds that
can find application in optoelectronics.
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Abstract—Numerical aspects of the method for diagnosing a tokamak plasma with the help of the discrete
Alfvén wave spectrum are considered. It is shown that this diagnostics should be supported with highly accurate
computational tools. A code suitable for implementing the relevant calculation scheme is developed, which
makes it possible to identify the eigenmodes numerically with the desired accuracy. The code can also provide
recommendations for performing tokamak experiments and can be used to study the possibility of auxiliary
plasma heating by Alfvén waves. The discrete Alfvén wave spectrum, radial profiles of the energy deposited in
the plasma, and the dependence of the Alfvén mode frequencies on the damping rate and on the class of the
current-density profiles chosen are calculated for the first time for the T-10 tokamak. It is also shown that
the diagnostic method proposed makes it possible to obtain reliable information about the plasma parameters.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that such tokamak plasma parame-
ters as the current density profile and the central safety
factor q are very difficult to measure. The diagnostic
methods developed so far for determining the safety
factor are based on measuring the poloidal magnetic
field, which governs the central q value. In recent years,
the poloidal field in some tokamaks has been measured
by using the Zeeman [1] and Stark [2, 3] effects in
emissions of hydrogen, lithium, and helium neutral
diagnostic beams specially injected into the plasma and
also by monitoring the Faraday rotation of the plane of
polarization of the probing laser beam [4].

The above active particle diagnostics, being the
most fundamental and universal methods, provide
information not only about the safety factor but also
about some other important parameters. On the other
hand, in view of the universality of particle diagnostics,
they provide measurements of the q profile with an
insufficiently high temporal and spatial resolution and
require fairly complex and expensive equipment.

The diagnostic technique for measuring the central
q value with the help of the discrete Alfvén wave
(DAW) spectrum was implemented for the first time in
the TEXTOR tokamak in 1990. In the TEXTOR
plasma, the Alfvén eigenmodes were excited by a
poloidal antenna [5].

An important feature of this diagnostics is that it
combines experimental methods with numerical analy-
sis.

We have developed a simulation code aimed at iden-
tifying the eigenmodes of the DAW spectrum (mea-
1063-780X/00/2602- $20.00 © 0087
sured experimentally in tokamak plasmas in order to
determine the radial profiles of the current density and
effective ion mass).

An important advantage of the diagnostic method
proposed here is that it requires simple experimental
equipment. The experimental scheme proposed for
implementing this diagnostics in T-10 is shown in
Fig. 1 and includes the following units.

(a) A loop antenna for exciting the Alfvén eigen-
modes in a plasma. The antenna is oriented poloidally;
the poloidal angle span of the antenna is 90° (which
corresponds to an antenna length of 58 cm in the poloi-
dal direction) and its toroidal angle span is 1.9° (which
corresponds to an antenna width of 5 cm in the toroidal
direction).

(b) Two magnetic probes installed in the same poloi-
dal cross section at diametrically opposite positions in
order to record eigenmodes with even and odd poloidal
numbers m. To distinguish between eigenmodes with
even and odd toroidal numbers n, it is required that this
cross section be opposite to the cross section where the
antenna is arranged.

(c) A generator unit capable of sweeping the fre-
quency from the minimum value 0.8 MHz to the maxi-
mum value 8 MHz over a time interval of 20 ms. The
generator is equipped with a broadband amplifier that
ensures the desired level of radiation power fed into the
plasma (100 W, the antenna current being 14.4 A).

(d) Two synchronized detectors.
(e) A recording and storing system based on pro-

grammable CAMAC interfaces and a personal com-
puter.
2000 MAIK “Nauka/Interperiodica”
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In the course of discharge, the diagnostics proposed
can provide several consecutive sweeps, thereby mak-
ing it possible to trace the time evolution of the radial
profiles q(r) and Aeff(r).

In Section 2, we briefly review previous theoretical
and experimental results. We also present the disper-
sion relation for the continuous part of the Alfvén wave
(AW) spectrum in order to obtain a rough estimate of
the eigenfrequencies of the DAW spectrum. In Section 3,
we justify the technical details of the experimental
diagnostic scheme proposed for use in the T-10 toka-
mak. We also list important new results that were
obtained with our code and differ from those found pre-
viously. In Section 4, we analyze what might be the
classes of current profiles for which the q profile can be
reconstructed. In Section 5, we present the methods for
finding the central value q(0) of the safety factor and
determining the radial profiles of q(r) and effective ion
mass Aeff(r). In Section 6, we describe the steps taken in
improving the numerical model. We control the reli-
ability of our calculation scheme by comparing the test
simulation results with experimental data from the
TEXTOR tokamak. We systematically examine the
cases of cold (Ti, e = 0) and real plasmas. We present
numerical results obtained for the T-10 tokamak with
the relevant boundary conditions. We focus on the
accuracy of determining the q(0) value, the AW eigen-
frequencies as functions of the damping rate, and the
stability of the plasma–antenna system against varia-
tions of the external parameters. An overall summary is
given in Section 7. In Appendix 1, we justify the choice
of the main parameters for the diagnostic method pro-
posed and estimate their values using T-10 as an exam-
ple. In Appendices 2–5, we present the details of the
mathematical apparatus underlying our numerical
model.

Antenna Probe 1

SD1GEN

PC

Probe 2

SD2

Fig. 1. Schematic of the experiment for the T-10 tokamak:
GEN is a broadband amplification unit with frequency
sweeping, SD1 and SD2 are synchronized detectors, and PC
is a recording and storing system.
2. THEORETICAL AND EXPERIMENTAL BASIS 
OF THE CODE

2.1. Numerical Results Obtained in Earlier Studies

Appert and Vaclavik [5] derived the basic set of
equations for radial profiles of the AW field compo-
nents E⊥  and B|| for the case of a cold, ideally conduct-
ing plasma. All of these equations were treated in local
cylindrical coordinates with triply orthogonal unit vec-
tors er , e⊥  = [e||er], and e|| = B0/B0, where B0 is the equi-
librium magnetic field. The basic equations were inte-
grated numerically using the Runge–Kutta method.
Appert and Vaclavik [5] obtained

(i) the absorbed AW power and the position of the
resonant layer as functions of the axial wavenumber for
m = 1 and for different values of the ratio ω/ωci of the
generator frequency to the ion cyclotron frequency,

(ii) the absorbed AW power as a function of the posi-
tion of the resonant layer, and

(iii) the absorbed power as a function of the ratio
ω/ωci of the generator frequency to the ion cyclotron
frequency.

They also showed that the radial profile of the
absorbed power is peaked at the radius 0.15a (where a
is the plasma radius) for ω/ωci = 0.075.

Ross et al. [6] numerically integrated the set of dif-
ferential equations for the AW field components Er and
E⊥  in the same cylindrical coordinates as in [5]. They
obtained the radial profiles of Er and E⊥  and the AW
power deposited in a plasma for the (–2, –1) eigen-
mode.

In the basic paper [7], Descamps et al. described the
methods for determining the q and Aeff profiles in the
TEXTOR tokamak and presented the final results of
numerically solving the problem of identifying the
eigenmodes and determining q(0).

The results obtained in most of the cited papers are
difficult to reconstruct and unsuitable for comparison
because of the lack of intermediate manipulations.
Those papers presented only a few preliminary experi-
mental results, which are, nonetheless, very important
for checking the reliability of the numerical method
developed here. For example, we will compare the
eigenfrequencies of the DAW spectrum that were com-
puted using our code for the TEXTOR parameters with
those measured experimentally in the TEXTOR toka-
mak. Note that the initial conditions were described
incompletely in the cited papers.

Unlike the previous investigations, we will present
here the intermediate manipulations and the results
obtained in more detail for the benefit of readers who
may thus check whether the problem under discussion
is formulated and solved correctly.
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
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2.2. Wentzel–Kramers–Brillouin Method

Mahajan et al. [8] derived the dispersion relation for
the DAW spectrum in the MHD approximation and
applied the Wentzel–Kramers–Brillouin (WKB)
method to solve an eigenvalue problem for the case of
an inhomogeneous cylindrical plasma with the bound-
ary conditions stated at infinity: E(r = ∞) = 0. They con-
sidered exclusively radially localized modes, i.e., those
for which the solution outside the localization region is
exponentially small. However, when applied to the
modes excited near the plasma boundary, this disper-
sion relation yields incorrect results. To improve the
accuracy to acceptable levels, the boundary conditions
should be substantially modified. The dispersion rela-
tion from [8] is obviously inapplicable to the modes
localized at the central plasma region.

2.3. Experiments Aimed at Choosing Antennas
for the Excitation of Alfvén Eigenmodes

Appert et al. [9] studied toroidal coupling between
purely cylindrical modes and modes with the highest
poloidal numbers m in the TCA device.

Collins et al. [10] showed experimentally that the
antenna structure consisting of two antenna arrays (one
array above the discharge chamber, the other below)
excites modes with all toroidal numbers n and either
odd or even poloidal numbers m.

In the TCA experiments, the eigenmodes of the
DAW spectrum were recorded from the resonance
peaks in the antenna load resistance as the plasma den-
sity changed with time, in the course of RF pulses at a
fixed frequency. The profiles obtained are illustrated
schematically in Fig. 2. Profile a was obtained for
antenna arrays operating in opposite phases, and profile
b was obtained for the same phases of the currents flow-
ing in the antenna arrays. In other words, antenna
arrays were turned on in opposite phases in order to
excite modes exclusively with odd poloidal numbers,
while switching on the arrays in the same phase was
aimed at exciting modes exclusively with even num-
bers m.

The experimental results show that the tendency to
excite purely poloidal modes with either even or odd
numbers m by two antenna arrays offers no advantages:
because of the toroidal feedback coupling between two
different, purely cylindrical modes, toroidally coupled
modes (1, 2) and (3, 0) that were excited indirectly in
case a turned out to be even somewhat more intense
than those excited directly by the antenna arrays in
case b.

The TEXTOR experiments on the DAW spectrum
were carried out with an antenna in the form of a poloi-
dally oriented semi-ring placed in the limiter shadow.
Earlier, this antenna was used in the TEXTOR experi-
ments on auxiliary plasma heating by magnetosonic
waves.
PLASMA PHYSICS REPORTS      Vol. 26      No. 2      2000
Hence, in real experiments carried out in some toka-
maks with diagnostic purposes, the eigenmodes of the
DAW spectrum were excited by antennas with signifi-
cantly different geometries [7–10]. The antenna geom-
etries were chosen so as to minimize technological dif-
ficulties and to make the assembly of antenna arrays
adequate for experiments. Although, in each case, the
antenna arrays excited only some of the Alfvén eigen-
modes, the qualitative and quantitative features of the
DAW spectra in real experiments with low input pow-
ers differed only slightly. This circumstance implies the
possibility of energy exchange between the eigen-
modes via such mechanisms as toroidal feedback mode
coupling and collisions between particles. It is these
mechanisms that result in the excitation of essentially
all eigenmodes of the DAW spectrum.

Based on what was said above, we can conclude that
the antenna geometries for practical or theoretical pur-
poses should be properly chosen so as to minimize
technological or computational difficulties, respec-
tively. Also, the characteristic sweeping time for the
frequency of the antenna current should be much longer
than the characteristic collisional time of the plasma
particles in order for the energy redistribution among
the Alfvén eigenmodes to be “quasi-steady.”

The choice of the specific antenna parameters (in
particular, for the T-10 tokamak) is justified in Appen-
dix 1, which also presents estimates of the relevant
parameter values.

2.4. Some Features of the Discrete and Continuous 
Spectra of Alfvén Waves

In the case of a large-aspect-ratio tokamak, we can
use the cylindrical approximation, in which the disper-
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Fig. 2. Experimental profiles of the antenna impedance ver-
sus the plasma density for the TCA device: the antenna cur-
rents are a—in opposite phases and b—in the same phases
(  is the electron plasma density per cm–3 averaged over

the plasma-column axis and Rant is the antenna resistance).
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sion relation for AWs is [4]

(1)

where q(r) is the local safety factor, ρ(r) is the local
plasma density, and R is the major radius of the torus.
Dispersion relation (1) implies that the function ωA(r)
increases continuously from the minimum central value
to the maximum value at the plasma boundary, where
the density ρ(r) is lowest. Consequently, dispersion
relation (1) describes the AW continuum.

The wave vector component k|| in (1) is a function of
radius, k|| = (n + m/q(r))/R, so that the function ωA(r) can
be either monotonic or nonmonotonic. In the latter
case, the frequency of the continuum is minimum (ωmin
= ωA(rmin), at a certain radius rmin > 0, which depends on
the specific profiles of the current and mass densities,
j(r) and ρ(r). In most of the papers in which AWs were
regarded as a diagnostic tool, the profile j(r) was chosen
to be j(r) = j(0)[1 – (r/a)2]δ with the parameter δ
= q(a)/q(0) – 1. In this case, the larger δ, the larger rmin
[11].

According to [8, 10, 11], the eigenmodes of the dis-
crete spectrum (with the same mode numbers) occur to
the left of the minimum frequency ωA(rmin) of the con-
tinuum. Each eigenmode is characterized by the integer
l, which is the radial mode number and takes on all val-
ues from zero to infinity. The eigenmode with the radial
number l = 0 is the most intense and occurs closer to the
minimum frequency of the continuum than the remain-
ing eigenmodes, whose intensities decrease exponen-
tially as l approaches infinity. Consequently, there
exists a numbered (by l) infinite set of eigenmodes that

ωA
2

r( ) n m q r( )⁄+[ ] 2
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Fig. 3. Experimental DAW spectrum measured in the
TEXTOR tokamak. The heights of the peaks reflect the
eigenmode intensities.
“group” near the minimum frequency of the contin-
uum. As an example, Fig. 3 illustrates the DAW spec-
trum obtained experimentally in TEXTOR.

Theoretical information about the structure and
characteristic features of the AW spectrum served as
the basis for the code.

3. PRINCIPLES OF EXPERIMENTAL DETECTION 
AND NUMERICAL IDENTIFICATION 

OF THE EIGENMODES

3.1. Three Factors Underlying the Diagnostic

The diagnostic proposed is based on (a) experimen-
tal measurements of the resonant frequencies of the
DAW spectrum by two magnetic probes, (b) a compar-
ison of experimental data with the theoretical DAW
spectrum calculated with the specially developed
numerical code, and (c) experimental data on the
plasma density obtained by the interferometry tech-
nique.

Expanding the antenna currents in a Fourier series
yields the following formula for the intensities of the
eigenmodes excited in a plasma via the conversion of
the antenna electromagnetic energy into the energy of
plasma particles:

(2)

where I is the antenna current amplitude, 2θA is the
poloidal angle span of the antenna, and 2ΦA is its toroi-
dal angle span [10]. In this way, only some of the eigen-
modes of the DAW spectrum can be excited; the
remaining eigenmodes are generated via such mecha-
nisms for energy redistribution between the eigen-
modes as toroidal feedback coupling and energy dissi-
pation (these mechanisms are incorporated into the
numerical model). The latter mechanism is implicitly
taken into account through the imaginary correction iν
to the frequency.

Formula (2) yields the following two conclusions.
(i) Since the antenna width in the toroidal direction

is much less than the toroidal circumference of the
torus, the intensities of the eigenmodes with moderate
n are essentially the same. The difference in intensities
becomes more or less pronounced for eigenmodes
whose toroidal numbers are sufficiently large.

(ii) Since the poloidal angle span of the antenna is
sufficiently large (2θA ≥ 90°), the intensities of the
eigenmodes with the largest poloidal numbers m
decrease in proportion to sin(mθA)/m. Consequently,
the intensities of the neighboring odd eigenmodes
(with, e.g., m = 3 and 5) differ insignificantly (by a fac-
tor of only 1.6); for eigenmodes with larger poloidal
numbers m, this difference is even smaller.

These considerations suggest that the use of poloi-
dal and toroidal arrays of numerous probes to identify
the eigenmodes experimentally does not appreciably

In m, I
mθA( )sin
m

-----------------------
nΦA( )sin
n

-----------------------,=
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facilitate the diagnostics proposed. Moreover, these
arrays are to be combined with the other diagnostic
equipment, thereby substantially complicating the
assembly of the diagnostic system.

In summary, we propose to detect the eigenmodes
using only two probes installed in the same poloidal
cross section of a tokamak and to identify them by
means of numerical analysis.

As shown in Fig. 1, the probes should be installed in
the poloidal cross section opposite to the antenna.
Knowing the mode intensities measured experimen-
tally at the antenna and measuring them by the probes
in the cross section opposite to the antenna makes it
possible to determine the even and odd toroidal num-
bers of the eigenmodes. To distinguish between the
eigenmodes with even and odd poloidal numbers m, the
two magnetic probes should be placed at diametrically
opposite points of the same poloidal cross section.

3.2. The Way the Mode Numbers n and m 
Are Incorporated into the Code

In our numerical code, the mode numbers n and m
were chosen from the following considerations:

(a) experiments and theory show that, for ω/ωci < 0.5,
the only eigenmodes that can be excited in the plasma
are those with m/n > 0;

(b) Collins et al. [10] showed that the intensities of
the modes with the poloidal number m = –1 and toroi-
dal numbers n < 0 are higher than the intensities of the
remaining modes; and

(c) for tokamak plasmas with ω/ωci ! 1 (e.g., for the
T-10 plasma), the dispersion relation for the DAW
spectrum can be written approximately as [5]

(3)

which implies that the (n, m) and (–n, –m) modes have
the same resonant frequencies.

3.3. Estimate of the Resonant Frequency 
of the Eigenmode

Analyzing experimental results raises the question
of how the radial deviation of an eigenmode from rmin
and the frequency shift between this mode and ωmin
depend on the ratio ω/ωci. In the estimates for T-10 in the
case ω/ωci ! 1, we can set ωci = 2 × 108 s–1 and ω = 3 ×
107 s–1 to obtain that the eigenfrequency ωn, m, 0 of the
DAW spectrum differs from the minimum frequency
ωA(rmin) of the continuum by about 1% and that the
radial deviation of the eigenmode with the frequency
ωn, m, 0 from the mode with the minimum frequency of
the continuum is about 2 cm (or 3%). Consequently, to
obtain rough estimates of the resonant frequency of the
eigenmode of the DAW spectrum, we can use the min-

ωDAW( )n m, n F1
m
n
---- 

  1 m
–2

F2
m
n
---- 

 – ,≈
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imum frequency of the continuum, which is found from
dispersion relation (1) for the continuum.

In the limit ω/ωci ! 1, the dispersion relation for the
DAW spectrum was derived by Appert and Vaclavik [5]:

(4)

where ωA(rmin) is the minimum in the Alfvén continuum
and l is the radial mode number. Dispersion relation (4)
contains a small correction,

,

which was found by Mahajan et al. [8] for L2 =

2 /( )', Ln = ne/ , and Lq = q/q', where the prime
denotes the radial derivative.

3.4. Potentialities of the Numerical Code

As will be shown below, our numerical code can be
applied

(i) to formulate the requirements for the antenna that
excites the eigenmodes of the DAW spectrum in a
plasma,

(ii) to investigate the possibility for auxiliary plasma
heating by AWs, and

(iii) to provide recommendations for performing
experiments in tokamaks (e.g., in T-10, TEXTOR, and
ITER).

In comparison with the previous results reported
elsewhere, the new results obtained with our code are
as follows.

(a) Using theoretical formulas, we calculated the
DAW spectrum for a deuterium plasma with the modes
whose numbers take on all values from (–1, –1) to
(−6, –2), i.e., the modes that contain information
required to determine the radial profiles of q and Aeff.

(b) We computed radial profiles of the AW power
deposited in the plasma for various eigenmodes with
different mode numbers.

(c) A comparison between our numerical results and
the relevant experimental data from TEXTOR showed
that they are in good agreement.

(d) We compared numerical results obtained for
cold and real plasmas.

(e) We formulated the requirements imposed on the
antenna aimed at exciting the eigenmodes of the DAW
spectrum in a tokamak plasma. From a practical stand-
point, this is the main result of our work.

4. CLASSES OF CURRENT DENSITY PROFILES 
FOR WHICH THE Q PROFILE CAN BE 

RECONSTRUCTED

The radial profile of the safety factor q(r) is gov-
erned by the current density profile j(r). We applied our
code to reconstruct the q profile from the following

ωDAW( )n m 0, , ωA rmin( )n m, l ∆n m l, ,–[ ] ,=

∆n m l, , f L
2

rmin( ) Ln rmin( ) Lq rmin( ) q rmin( ), , ,{ }=

ωA
2 ωA

2
ne'
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class of monotonically decreasing current density pro-
files:

(5)

Our code is capable of covering wide ranges of values
of the parameters q(a) and δ, which govern this class of
profiles.

The q profile can also be reconstructed from other
classes of current density profiles, specifically, those
that may be approximated with good accuracy by ana-
lytic functions, for example, from the class of double-
humped profiles

(6)

where the parameters α, δ, ∆, C1, C2, and C3 can be var-
ied over broad ranges. The α and δ define how steep the
slopes of the humps are; the ∆ defines how much the
humps are displaced from the plasma center; and C1,
C2, and C3 describe the relative heights of the humps.

The code determines the parameter values q(0), j(0),
δ, and q(a) that correspond to the real experiment,
because the central value q(0) of the safety factor and
the parameter δ are related in a certain manner, depend-
ing on the current density profile. For example, for pro-
files (5), they are related by

(7)

This relationship follows from (5) after integrating
the current density over the entire cross section of the
plasma. A similar relationship for double-humped pro-
files (6) should obviously contain both α and δ.

The code also determines the resonant frequencies
ωn, m of the eigenmodes and their resonant radial posi-
tions rn, m (at which the intensities of AWs are observed
to be maximum).

In simulations, the plasma density profiles were
approximated by the experimental profiles obtained
with the help of an interferometer.

For the T-10 tokamak, the electron density was
approximated by a parabolic profile typical of most
tokamaks,

(8)

5. DETERMINATION OF q(0) 
AND RECONSTRUCTION OF THE PROFILES 

OF THE SAFETY FACTOR q(r) AND EFFECTIVE 
ION MASS Aeff(r)

Recall that, in order to reconstruct the radial profiles
of q(r) and Aeff(r), it is necessary
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(a) to experimentally measure the eigenfrequencies
ωn, m of the DAW spectrum,

(b) to identify the eigenmodes with the numerical
code and to determine the mode numbers n and m, and

(c) to determine the plasma density profile ρ(r)
using the interferometry technique.

For fixed n and m, we can find q(rmin), where rmin is
the radius at which function (1) is minimum. The value
q(rmin) is determined graphically as follows. From for-
mula (1), we can find q(r) as a function of n, m, ωn, m,
and ρ(r). Then, we plot the experimental radial profile
of the function q using the measured data on the plasma
density ρ(r) at fixed values of n, m, and ωn, m. Specify-
ing the current density profile in the form of (5), we can
express q(r) as

(9)

Differentiating (1) with respect to radius, we can relate
q(rmin) to the ratio of the mode numbers m/n and the
derivatives ρ' and q':

(10)

Substituting the experimental radial profile of the
plasma density and the derivative q' found from (9) into
(10), we can obtain the analytical profile of q(rmin, δ),
where the form-factor δ serves as a parameter. The
point at which the theoretical profile intersects the
experimental one allows us to find rmin, q(rmin), and δ.
Repeating this procedure for eigenmodes with other
mode numbers, we can determine the q values at differ-
ent radial positions.

The central value q(0) is found using a somewhat
different procedure. The q(0) value is determined from
the theoretical profiles of the resonant frequencies of
the neighboring eigenmodes as functions of the form-
factor δ. The eigenmodes are regarded as being neigh-
boring if the absolute values of the sum of their mode
numbers, |n + m |, are equal to each other. From the
experimentally measured DAW spectrum, we find the
frequency difference for the same neighboring eigen-
modes and compare this difference with the theoretical
one, thereby determining the quantity δ, which is
uniquely related to q(0) through (7).

The radial profile Aeff(r) is calculated with allowance
for the fact that, by virtue of the relationship ωDAW(rmin) ~

1/ , the eigenmode frequencies are sensitive
to the effective ion mass. The effective mass can be
changed by injecting a small amount of impurity atoms.
From the difference in the frequencies of the eigen-
mode that are measured before and after the injection,
we can find the local value of Aeff(r) [5].
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Repeating this procedure for eigenmodes with other
mode numbers, we can obtain the local values of Aeff(r)
at different radial positions.

6. NUMERICAL METHOD AND THE RESULTS 
OBTAINED

The numerical method was developed in several
steps. First, we considered the simplified model of a
cold plasma (Ti, e = 0). Then, we incorporated the tem-
perature. Since the final version of the code is a modi-
fication of the simplified version (with Ti, e = 0), the
simulation algorithm we will describe for the case
Ti, e = 0 serves as the basis for the general computa-
tional scheme. The calculation accuracy was checked
by comparing our test numerical results with the data
from TEXTOR experiments.

In simulations, we modeled the antenna by a hollow
circular cylinder of radius rant, which was coaxial with
both an ideally conducting wall of radius rw and a
plasma column of radius a. The geometry of this
model, which is valid for large-aspect-ratio tokamaks,
is shown in Fig. 4. In formula (11) and in subsequent
simulations, the antenna was assumed to be infinitely
long, since the antenna length-to-radius ratio is large.

Antennas similar to that shown in Fig. 4 were
treated in theoretical papers [6, 7], because the cylindri-
cal axisymmetric geometry of the antenna is exception-
ally convenient for calculations.

The waves are excited by an alternating antenna cur-
rent Jant, which has the following form in the cylindrical
coordinates (r, ϑ, z) associated with the antenna axis:

(11)

where δ(r – rant) is the Dirac delta function, k and m are
the axial and poloidal wavenumbers, and the vector
J0[keϑ – (m/rA)ez] describes the surface density of the
antenna current [6]. In all simulations, the current con-
stant J0 was set to be 0.1 A/cm.

All equilibrium quantities were assumed to be func-
tions of r only. The quantities describing the wave were
assumed to depend on time and the z-coordinate as

(12)

The plasma motion was described assuming that the
oscillation amplitude was small.

6.1. The Case of a Cold Plasma

With the purpose of describing the DAW spectrum
theoretically, we begin with the approximation of a
cold, ideally conducting plasma in cylindrical geome-
try (which is valid for large-aspect-ratio tokamaks).
Landau damping by electrons was taken into account as

Jant J0 keϑ
m
r
----ez–=

× δ r rant–( ) ωt( ) kz mϑ+( ),coscos

i kz mϑ ω iν+( )–+[ ]{ } .exp
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an imaginary correction to the frequency, ω  ω + iν,
where (as in [6]) ν was set to be equal to 0.003ω.

The motion of a cold plasma can be described by the
linearized equation

(13)

and by Ohm’s law with allowance for the Hall effect,

(14)

Here, B0 and j0 are the equilibrium magnetic field and
equilibrium current density, B and j are the perturbed
magnetic field and perturbed current density, ρ is the
equilibrium plasma density, c is the speed of light, and
mi is the mass of an ion.

The equilibrium tokamak magnetic field was assumed
to be such that B0z ≈ B0 = const and |B0ϑ /B0z| ! 1. The
problem was treated in a local orthogonal coordinate
system with triply orthogonal unit vectors er , e⊥  =
[er , e||], and e|| = B0/B0. From equations (13) and (14)
and Faraday’s law, we can obtain the following set of
basic differential equations for the radial profiles of the
quantities of interest to us:

(15)

(16)

where

(17)

(18)

Here, we assumed that B0ϑ . B0αr with α a small
parameter. The derivation of these equations, which
were integrated numerically in our code, was given
in [12].
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DAW spectrum.
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Since the denominator in the coefficient A is equal
to 1 – (ω/ωci)2, the singularity A = 0 occurs at the

frequency ω = k||cA(1 + cA/ )–1/2 rather than at
ω = k||cA.

The coefficient G describes the rate with which the
AW energy is absorbed by the plasma and the spatial
position of the resonant layer where the AW energy is
deposited. Incorporating absorption into numerical
analysis results in the appearance of peaks in the fre-
quency spectra of the AW field components that corre-
spond to the Alfvén eigenmodes.

Generally, equations (15) and (16) describe both
magnetosonic waves and the DAW spectrum.

In vacuum, the wave field components Ez and Bz sat-
isfy the modified Bessel equations

(19)

(20)

The remaining field components were expressed in
terms of Ez and Bz through Maxwell’s equations.

Equations (19) and (20) have the solutions

(21)

(22)

where Im and Km are the modified Bessel functions.
The constants C2–4 and D2–4 in (21) and (22) were

found from the boundary conditions at the wall and at the
antenna [7] and were expressed in terms of C1 and D1.

Integrating the differential equations just derived,
we determined the eigenmodes that correspond to
peaks in the frequency spectra of the AW field compo-
nents.

We developed two subroutines, one of which calcu-
lates the radial profiles of the AW field components and
the AW power deposited in the plasma for a given gen-
erator frequency ω, and the other determines the reso-
nant frequencies for the prescribed eigenmodes by
changing the frequency ω step by step in a given range.
Also, for each frequency value in this range, the latter
subroutine plots the aforementioned radial profiles,
selects the peaks in them, and then repeats this proce-
dure for the next frequency value.

6.1.1. Boundary conditions. The differential equa-
tions (15) and (16) for the field components E⊥  and B||
were integrated numerically from the plasma center
under the boundary conditions E⊥ (0) = B||(0) = 0 and

(0) = (0) = 0 (the latter is a consequence of the

k ||
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cylindrical symmetry of the problem). Such an
approach resulted in the appearance of singularities of
the 0/0 type at the plasma center. We overcame them in
a standard way by approximating the functions at the
center by

(23)

That these approximate expressions are of different
orders in r stems from the fact that the orders of the
functions E⊥  and B|| in equations (15) and (16) differ by
unity.

Passing over to the new functions

(24)

and substituting them into the basic equations (15) and
(16), we obtain

(25)

with the new boundary conditions at r = 0,

(26)

Equations (25) with the boundary conditions (26) were
integrated numerically by the Runge–Kutta method.

The expressions for the complex power index λ and
for the ratio of the functions γ1 and γ2, which vary grad-
ually with the radius, are presented in Appendix 2.

By virtue of (24), the components E⊥ (r) and B||(r) in
the plasma are

(27)

The complex quantity γ2 and the independent coef-
ficients C1 and D1 in solutions (21) and (22) for the vac-
uum region were found by matching the solutions at the
plasma–vacuum boundary r = a (where a is the plasma
radius) with the help of the four boundary conditions:

(a) the continuity of E⊥  at r = a,

(b) the continuity of B|| at r = a,

(c) jr(a) = 0, (28)

(d) the continuity of Br at r = a.
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The continuity of Br at r = a follows from Faraday’s
law curlE = –c–1∂B/∂t and the boundary condition

[er , E(a)  = 0.

As a result, the imaginary and real parts of the func-
tion γ2 become

(29)

where

(30)

The method for calculating the independent coeffi-
cients C1 and D1 in the solutions for the vacuum region
and the boundary values of the field components E⊥ (a)
and B||(a) is presented in Appendix 3.

6.1.2. Absorbed power. The energy deposited in
unit plasma volume per unit time was expressed as the
averaged (over the oscillation period) scalar product of
the real parts of the complex vectors of the electric field
and current density:

(31)

where e is the energy density.
In our code, the absorbed energy was found from the

dielectric tensor,

(32)

where  = (εab – ) is the anti-Hermitian part

of the dielectric tensor, composed of the imaginary
parts of the diagonal elements and the real parts of the
off-diagonal elements.

In calculating the absorbed energy, Landau damping
by electrons was taken into account as an imaginary
correction iν to the frequency.
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Transforming the imaginary parts of the diagonal
elements of the tensor ε in the proper manner yields

(33)

where

(34)

are the real and imaginary parts of the coefficient A in
the basic differential equations (15) and (16).

The real parts of the off-diagonal elements of the
tensor ε are

(35)

where

(36)

are the real and imaginary parts of the coefficient G in
equations (15) and (16).

The term G1 in the real part of the coefficient G con-
tains information on the equilibrium current density
profile j0(r). In local orthogonal coordinates, the
expressions for the equilibrium current density compo-
nents, j0ϑ = 0 and j0z = (c/(4πr))d(rB0ϑ)/dr, can be con-
verted to the form

(37)

where j(0) ≡ j(r = 0).

Integrating (36) over the radius, we find the field
component B0ϑ and the coefficient G1:
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Consequently, the AW power deposited in unit
plasma volume can be written as

(40)

6.1.3. Numerical results for the case of a cold
plasma. The eigenmodes manifest themselves as peaks
in the frequency profiles of the AW field components,
E⊥ (f) and B||(f), and the deposited power, 3(f).

Figure 5 shows the theoretical DAW spectrum cal-
culated numerically for the case of a cold deuterium
plasma.

Recall that the calculation accuracy was checked by
comparing the preliminary numerical results with the
relevant experimental data from TEXTOR [5], in which
case the input to the code included the parameter values
characteristic of the TEXTOR plasma in those experi-
ments (of course, except for the temperature, which
was assumed to be zero). The results of the comparison
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Fig. 5. Theoretical DAW spectrum calculated for the case of
a cold deuterium plasma in T-10 (f is the generator fre-
quency).

Table 1.  Comparison between the theoretical and experi-
mental results for the parameter values Ip = 350 kA, ne0 = 2.8 ×
1013 cm–3, Bt = 2 T, and δ = 3.5

(n, m) mode
Resonant frequency, MHz

numerical code, theory experiment

(–5, –2) 3.04 2.75

(–4, –2) 2.45 2.45

(–3, –2) 1.86 2.00
are summarized in Table 1, which shows that our theory
agrees fairly well with the experiment.

This agreement, first, confirms the previously
known conclusion that, in the geometry adopted here,
the eigenfrequencies of the DAW spectrum depend
weakly on the temperature and are mainly governed by
the plasma density and current density profiles and,
second, makes it possible to justify the reliability of the
model underlying the code by performing test simula-
tions.

Under the above assumptions, we also obtained
some important results for the T-10 tokamak.

The relative frequency width of the (–6, –1) eigen-
mode is about 7% and that of the (–5, –2) eigenmode is
about 3%.

The intensity of AWs is highest in the resonant layer,
in which the AW energy is deposited. The spatial posi-
tion of the resonant layer depends on the ratio n/m of
the mode numbers. The larger this ratio, the closer the
resonant layer to the plasma center.

The radial profiles of the absorbed AW energy for
four eigenmodes are shown in Figs. 6–9.

According to the theory, the resonant layer for the
(−6, –1) mode (|n/m | = 6 @ 1) should lie near the
plasma center; this is confirmed by our test simulations.
The resonant layer for the (–1, –1) mode, for which this
ratio is equal to unity, occurs almost in the middle of the
plasma column. For the (–2, –3) and (–1, –2) modes,
the ratio n/m is smaller than unity, so that the energy of
these eigenmodes is deposited at the plasma periphery.

The width of the resonant layers for all of these
eigenmodes is about 1–2 cm.

Further modifications of the calculation scheme and
numerical code made it possible to refine the previous
results and obtain the new ones. In particular, we were
able to determine the accuracy with which the central
value q(0) of the safety factor was computed.

6.2. The Case of a Real Plasma

Now, we consider a plasma with electron and ion
temperatures typical for tokamaks (e.g., for T-10).

The effect of the thermal motion of electrons and
ions was taken into account by supplementing the equa-
tions of plasma motion (13) and (14) with the terms that
account for the pressure gradient:

(41)

(42)

To describe how the plasma pressure affects the
waves, we must relate the pressure gradient to the
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velocity of plasma motion. We assume that the plasma
state changes adiabatically,

where γ is the adiabatic power-law index. The evolution
of the density n and the change in the velocity v are
related by the continuity equation

(43)

In the linear approximation, equation (43) reduces to

(44)
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Fig. 6. Radial profile of the absorbed AW power for the
(−6, –1) mode (de/dt is the AW power deposited in unit
plasma volume).
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Fig. 8. Radial profile of the absorbed AW power for the
(−2, –3) mode.
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where n' and n are the perturbed and unperturbed den-
sities, respectively. In the case of a plane wave, the per-
turbed density gradient is

(45)

where 
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The electron density in (45) was calculated from the
parabolic profile (8). The electron and ion temperatures
were approximated by the following profiles typical of
most present-day tokamaks:

(46)

Inserting (45) into (41), we obtain the velocity of
plasma motion in local coordinates:

(47)

We substitute (45) and (47) into the equations of
plasma motion (41) and (42) and solve them together
with Faraday’s law in order to obtain a new set of
differential equations for the AW field components E⊥
and B||,

(48)

(49)

where

(50)

(51)

Expressions for the elements of the dielectric tensor for
a real plasma are given in Appendix 4.

As in the case of a cold plasma, solving the problem
for a real plasma in the way just described resulted in
the appearance of singularities of the 0/0 type at the
plasma center. These singularities can be resolved by
the method we have presented. The relevant change of
the functions puts the resulting set of equations (with
the boundary conditions imposed so as to perform
numerical integration from the center) in the form

Te i, Te i, 0( ) 1
r
a
--- 

 
2

–
2

.=

v
4πicA

2

ωcB0
-------------- je||[ ]

j0

B0
----- e||B[ ]+

 
 
 

i
γP

ω2ρ
---------k kv( )–=

–
γP

ω2ρ
---------1

n
---∂n

∂r
------er kv( ).

dE⊥

dr
--------- A1k ⊥

1
r
---– 

  E⊥
iω
c

------ 1
k ⊥

G1
------– 

  2

B||,+=

dB||

dr
--------- A2E⊥ G2B||k ⊥ ,+=

A1

εr⊥ ω2

ic
2 ω

c
---- 

 
2

εrr k ||
2

–

------------------------------------------, G1
ω
c
---- 

 
2

εrr k ||
2
,–= =

A2 i
ω
c
---- ε⊥ ⊥

ε⊥ rεr⊥

εrr
c
ω
---- 

 
2

k ||
2

–

-----------------------------–
c
ω
---- 

 
2

k ||
2

– ,=

G2 i
ε⊥ r

εrr
c
ω
---- 

 
2

k ||
2

–

-----------------------------.–=

dẼ⊥
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The complex power index λ for a real plasma is
evaluated in Appendix 5.

Equations (52) were integrated numerically from
the plasma center to the plasma periphery in order to
obtain the desired values of the functions E⊥  and B|| at
the plasma–vacuum boundary. These values were then
used to integrate the basic equations (48) and (49) with
coefficients (50) and (51) from the plasma boundary to
the plasma center. As a result, the code plotted the
radial profiles of the AW field components for each
value of the frequency ω, which was varied with a given
step within the prescribed range. The refined version of
the code made it possible to determine the resonant fre-
quencies more exactly for the same eigenmodes that
were treated in the case of a cold plasma.

Landau damping by electrons was described by the
following formula related to the case of an equilibrium
thermal plasma [13]:

(53)

where uph = ω/k is the AW phase velocity and ω0 is the
electron plasma frequency.

Formula (53) can be applied only under the follow-
ing two conditions. First, the damping time should be
shorter than the period of electron and ion bounces in
the potential wells of the wave electric field, |τOSC/τ | > 1,
in order for the waves to damp completely before non-
linear effects come into play [14]. Here, τ is the damp-
ing time and τOSC is the estimated time interval during
which the linear theory is applicable, τOSC ~

, where m is the mass of a particle and E is
the wave electric field. Second, when the time between
collisions, τc, is shorter than the characteristic time inter-
val over which the linear theory is valid (|τOSC/τc| > 1),
Landau damping should be taken into account along
with the conventional collisional damping.

Formula (53) is obtained in the lowest order in kv/ω
and is valid only for weak damping, which depends on
the wavenumber k.

6.2.1. Numerical results for the case of a real
plasma. Our simulations confirm that the thermal elec-
tron motion affects the AW propagation in the plasma
weaker than, e.g., particle–particle collisions, which
are incorporated into our model through an imaginary
correction to the frequency. However, taking into
account nonzero temperatures Ti, e corresponding to
real experiments allowed us to achieve (in some cases)
essentially complete agreement between the eigenfre-
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quencies of the Alfvén modes that were computed from
the above theoretical formulas and those measured
experimentally. The numerical results presented below
were obtained for the following parameter values cor-
responding to the T-10 tokamak: I = 272.7 kA, Bt = 3 T,
δ = 3.5, ne0 = 1013 cm–3, Te0 = 1000 eV, and Ti0 = 500 eV.

As in the case of a cold plasma, we checked the reli-
ability of the results by running the code with the input
parameters relevant to the TEXTOR experiments (cf.
Section 6.1.3), in which case the adiabatic power-law
index was set to be equal to that for one-dimensional
motion, γ = 3. The numerical results and experimental
data are compared in Table 2, which shows that the best
agreement between them is achieved when the thermal
motion is taken into account.

The specific results presented below were obtained
for the T-10 tokamak (as in the case of a cold plasma).
However, the qualitative conclusions are also valid for
other tokamaks.

Thermal motion manifests itself, in particular, in the
fact that the eigenfrequencies of the neighboring modes
(see Section 5) depend on the parameter δ, which gov-
erns the shape of the current density profile. If the dif-
ference between the eigenfrequencies of a given pair of
neighboring modes is known from experiments, then
the results obtained above make it possible to readily
determine q(0) using formula (7) (see Section 5). As an
example, Fig. 10 shows the behavior of the frequency
difference between the (–5, –2) and (–6, –1) modes.

Generally, an increase in δ leads to a corresponding
increase in the difference between the frequencies of
the neighboring eigenmodes. This circumstance sim-
plifies the experimental detection of eigenmodes and
provides more precise measurements of q(0), which

1.5
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Fig. 10. Theoretical difference between the frequencies of
the neighboring (–5, –2) and (– 6, –1) eigenmodes as a func-
tion of the parameter δ.
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can be found directly from Fig. 10 in comparing the
theoretical frequency difference with that recorded in
experiments.

Analyzing the accuracy with which q(0) can be
determined, it will be useful to present δ-profiles of the
frequency difference for several values of the damping
rate ν. Recall that, as in [7], the imaginary correction ν
to the frequency serves to take into account energy dis-
sipation. Figures 11 and 12 show the frequency differ-
ence between the (–5, –2) and (–6, –1) modes as a func-
tion of δ for ν = 0.03ω, 0.003ω, and 0.0003ω. Compar-
ing the profiles obtained for ν values that differ by an
order of magnitude, we can estimate the amount by
which q(0) changes when the difference ∆fres (ωDAW =
2πfres) is changed accordingly. For example, an error of
0.01 MHz in calculating ∆fres leads to an error of about
0.08 in calculating q(0). According to Fig. 11, a change
in ∆fres by 1% corresponds to a change in q(0) by 3.6%.
Consequently, the calculation accuracy should be very
high. Our numerical scheme is capable of ensuring
such accuracy. Accordingly, the fairly simple diagnos-
tic equipment proposed here should ensure the required
measurement precision.

Table 2

(n, m) mode
Resonant frequency, MHz

numerical code experiment

(–5, –2) 2.75 2.75

(–4, –2) 2.53 2.45

(–3, –2) 2.00 2.00

1.50.5 2.5 3.5 4.5
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Fig. 11. Difference between the frequencies of the (–5, –2)
and (–6, –1) eigenmodes as a function of δ for two different
values of the damping rate ν = 0.03ω and 0.003ω.
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Since ν is mainly governed by collisional processes
whose role, even at ν = 0.003ω, is great enough for
energy exchange between the eigenmodes, the δ-pro-
files of the frequency difference are expected to change
qualitatively at much lower damping rates, e.g., at ν =
0.0003ω (Fig. 12). A comparison between Figs. 12 and
13 confirms this conclusion.

Our simulations revealed that the mode frequencies
depend weakly on the damping rate. Figures 13 and 14
show the related profiles computed at a fixed parameter
value δ = 3.5. For the (–5, –2) mode, a change in ν by
four (on average) orders of magnitude, from 3 × 10–5ω
to 10–1ω, causes the resonant frequency to change by
0.13 MHz, i.e., by no more than 2%. For the (–6, −1)
mode, a similar change in the damping rate, from 3 ×
10–5ω to 7 × 10–1ω, leads to almost the same change in
the resonant frequency, i.e., 0.1 MHz (1.5%). We found
that each of the eigenmode profiles has its own extreme
point.

Our simulations also showed that the frequency
shift for each mode is much more sensitive to the
parameter δ (which governs the shape of the current
density profile) than to the damping rate. For example,
for the eigenfrequency to change by 0.13 MHz, the
parameter δ should be changed by only 4, while ν
should be changed by a factor of 3330. In other words,
in real experiments, the resonant frequency fres of any
eigenmode will change by no more than 4 × 10–4 MHz
if the damping rate changes by an order of magnitude.
The estimate just presented implies that it is possible to
choose the optimum electron and ion temperatures for
which the eigenmode frequencies can be assumed to be
independent of the damping rate. This, in turn, ensures
both the stability of the plasma–antenna system to vari-
ations of such a parameter as ν and the reliability of

1.50.5 2.5 3.5 4.5
0.62

0.70

0.78

0.86

1.8 1.4 1.0 0.62.2
∆f

re
s, 

M
H

z

(–5, –2)
(–6, –1)

ν = 0.0003ω

δ

q(0)

Fig. 12. Difference between the frequencies of the (–5, –2)
and (–6, –1) eigenmodes for the damping rate ν = 0.0003ω.
information obtained about the plasma with the help of
the DAW spectrum.

Our analysis revealed that the plasma is quite stable
against variations of the external (with respect to the
plasma) antenna parameters. For example, we carried
out additional test simulations for the (–1, –1) mode in
order to examine the stability of the plasma–antenna
system against variations of the shape and dimensions
of the antenna (specifically, the antenna radius). The
antenna was assumed to be positioned either at the
plasma boundary, rant = a = 30 cm, or at the wall, rant =
rw = 39 cm. The test computations showed that both the
resonant frequency fres = 8.454 × 105 Hz and the radial
position of the resonant layer, rres = 20.8 cm, do not
change, while the AW power deposited in the plasma

9 × 10–2
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Fig. 13. Resonant frequency of the (–5, –2) eigenmode ver-
sus the damping rate for δ = 3.5.

Fig. 14. Resonant frequency of the (–6, –1) eigenmode ver-
sus the damping rate for δ = 3.5.
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per unit length changes insignificantly and is equal to
3 ≈ 8.3 × 10–1 W/cm.

Hence, our simulations confirm that the method pro-
posed makes it possible to obtain information about the
plasma parameters rather than about the external equip-
ment used to excite AWs in the plasma.

It is also of interest to analyze the AW power
absorbed by the plasma as a function of the toroidal
number n at the fixed poloidal number m = –1 (Fig. 15).
The profile in Fig. 15 was obtained by processing the
numerical results for the four modes indicated. The
power of the modes with small numbers n is absorbed
almost completely. As n increases, the absorbed power
falls off sharply by many orders of magnitude. The pro-
file in Fig. 15 agrees qualitatively and quantitatively
with similar profiles computed by Ross et al. [6] for
other values of the plasma parameters.

In summary, we again outline the main steps in
developing the code (recall that the reliability of our
preliminary numerical results was checked by compar-
ing them with the experimental data from TEXTOR).

First, we developed a simplified version of the code
in cylindrical geometry on the basis of the model of a
cold, ideally conducting plasma (Ti, e = 0). This simpli-
fied version was also created in several steps.

At the first step, we took into account only one
mechanism for energy exchange between the eigen-
modes, specifically, toroidal feedback coupling, in
which case, however, we failed to obtain the entire
DAW spectrum, and the AW field components com-
puted with the simplest version of the code were found
to contradict those measured experimentally in TEX-
TOR.

After we supplemented the code with another mech-
anism for energy exchange, namely, Landau damping,
which was taken into account through the imaginary
correction iν to the frequency [6], we succeeded in cal-
culating the entire DAW spectrum. However, at this
step, we again failed to achieve agreement between the
theoretical and experimental eigenfrequencies of the
DAW spectrum.

We significantly raised the calculation accuracy
when we switched from integration of the basic set of
differential equations from the plasma center to the
plasma boundary to integration in the opposite direc-
tion. To do this, we obtained the initial conditions at the
plasma boundary by integrating the basic equations
from the plasma center. Such an artificial approach
allowed us to apply the geometrical-optics approxima-
tion (which implies that the wavelength is much shorter
than the characteristic dimension of the system) over
most of the plasma column (including the plasma
boundary). As a result, our physical model became
even more reliable, which was confirmed by simula-
tions. Using this approach, we achieved not only quali-
tative but also quantitative (to some extent) agreement
between the theoretical and experimental results.
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Note that, in order to resolve singularities at the cen-
ter, the basic set of differential equations integrated
from the plasma center was transformed by changing
the functions in the proper manner.

The final step in refining the calculation scheme was
to take into account the thermal motion of electrons and
ions. The correction ν was specified from the explicit
expression for the Landau damping rate [13] rather than
in a model form. As a result, we arrived at an essentially
complete agreement between the computed and exper-
imental DAW spectra.

7. CONCLUSION
We have described a numerical method developed

for use in the diagnostics proposed for determining the
parameter q and effective ion mass from the DAW spec-
trum in tokamak plasmas. Estimates of the parameters
of the diagnostic system for most tokamaks (TEXTOR,
T-10, ITER, etc.) show that the desired characteristics
can be obtained with a high accuracy using simpler (in
comparison with other diagnostics) equipment with
fairly moderate technical parameters. We have devel-
oped a computer code appropriate for determining the
parameters of the eigenmodes of the DAW spectrum
such as the frequency and amplitude of AW fields, their
intensities, and so on.

We have applied our code to investigate the plasma
stability against variations of the antenna parameters in
order to formulate the requirements for the antenna: the
shape of the antenna, its position inside the discharge
chamber, the generator frequency, etc.

The code can be used to choose the optimum elec-
tron and ion temperatures (which affect the damping
rate of the eigenmodes of the DAW spectrum) and the
current density profile (which governs the AW eigen-
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Fig. 15. AW power deposited in the plasma versus the toroi-
dal number n for the fixed poloidal number m = –1.
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frequencies), thereby making it possible to provide rec-
ommendations for experiments in tokamaks (in partic-
ular, in T-10).

Since the mechanisms for energy conversion from
AWs to the plasma are incorporated into the code, it can
also be used to study the possibility of auxiliary plasma
heating by AWs.

APPENDIX 1

JUSTIFICATION OF THE CHOICE 
OF THE ANTENNA AND ESTIMATION 

OF ITS MAIN PARAMETERS APPLIED TO T-10

A1.1. Choice of the Toroidal Mode Numbers n 
for Measurements

Experimental measurements of the DAW spectrum
in TEXTOR (Fig. 3) showed that the larger the toroidal
number n, the larger the difference between the fre-
quencies of the neighboring eigenmodes (n1, m1) and
(n2, m2) and the stronger the dependence of the resonant
frequency of each of the modes on the q(0) value [5].
These circumstances make the frequency difference for
the modes with large n easier to record experimentally.

Also, each of the modes with large toroidal numbers
is characterized by its own resonant layer (see Section 2),
which occurs near the plasma center (rn, m ≈ 0). Such
modes allow the central value q(0) to be determined
more exactly in comparison with that obtained from the
modes whose resonant layers lie far away from the cen-
ter [5].

Consequently, it is expedient to find q(0) using
eigenmodes with large n. The modes with n ~ 1 make it
possible to determine the radial profile q(r) at r > 0,
because their resonant layers, which can occur at radii
rn, m far away from the plasma center, characterize the
quantities q(rn, m) at these radial positions.

Hence, it is expedient to work with a sufficiently
broad spectrum of toroidal numbers n such as 0 ≤ n ≤ 8.

A1.2. How the Poloidal Length of the Antenna 
Influences the Mode Intensities

From (1), we can see that, if the antenna is relatively
long, then the intensity of eigenmodes with the largest
m decreases in proportion to sin(mϑA)/m.

Our analysis shows that the antenna with the poloi-
dal angle span 2ϑant = 135° excites the broadest spec-
trum of eigenmodes with the poloidal numbers m.
However, the modes with m > 4 are more difficult to
detect experimentally, because their intensities
decrease as m increases (in the proportion just indi-
cated). Since the method for measuring q(0) in TEX-
TOR from the frequency difference between the neigh-
boring eigenmodes [5] does not involve the modes with
m > 3, the antenna with the poloidal angle span 2ϑ ant =
90° (which corresponds to 57.7 cm) is quite suitable for
our purposes. Such an antenna does not excite modes
whose poloidal numbers are multiples of 4, whereas the
modes with m = 0 and toroidal numbers 1, 2, and 3 will
dominate in the antenna spectrum, in which case the
eigenmodes are much easier to identify experimentally.
Also, this antenna is simpler from a technological
standpoint.

A1.3. Choice of the Antenna Width in the Toroidal 
Direction

Since the antenna width in the toroidal direction is
much less than the toroidal circumference of the torus,
then, according to dispersion relation (1), the antenna
width has essentially no effect on the intensity of eigen-
modes with n ≤ 8 or even with larger toroidal numbers.
Consequently, it is more expedient to use antennas with
a large width in the toroidal direction. In this case, the
antenna inductance becomes lower, because the linear
inductance Lp of a two-strip line is related to the strip
width b by the simple relationship

(A1.1)

where h is the distance between the strips. For a given
radiation power deposited in the plasma, the wider the
antenna, the lower the high-frequency potential at the
antenna.

The sizes of the diagnostic ports in T-10 are such
that the antenna can be no wider than 5 cm, which cor-
responds to about 1.9°.

A1.4. Necessity to Screen the Antenna

In T-10, the characteristic plasma density near the
antenna is n ~ (7–8) × 1012 cm–3. The capacitance that
is formed by the direct-current and reverse-current con-
ductors of a loop antenna can shunt the loop through the
plasma. The impedance of the plasma-filled gap is cal-
culated from the formula

(A1.2)

where Cv is the linear capacitance of a loop antenna in
vacuum, lant is the antenna length, and ε is the permit-
tivity of a cold plasma.

The permittivity ε can be estimated as [13]

(A1.3)

where c is the speed of light and cA is the Alfvén veloc-
ity. For the toroidal field Bt = 2 T and the density n ~
7.5 × 1012 cm–3, the permittivity ε is ε ≈ 709. The capac-
itance of a loop antenna in vacuum is estimated as
Cvlant ≈ 35 pF; consequently, for the maximum fre-
quency of a sweep band (8 MHz), the capacitive reac-
tance of the plasma-filled gap is Xc ≈ 1.1 Ω. Conse-
quently, the antenna loop should be screened in order
for the plasma not to flow into the gap between the con-
ductors.

Lp µ0h b⁄ ,=

Xc 1 ωCv lantε( )⁄ ,=

ε c
2

cA
2⁄ ,=
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A1.5. Minimum and Maximum Frequencies
of a Sweep Band

In order to excite the number of eigenmodes that
would be sufficient for diagnostic purposes, it is neces-
sary that the eigenfrequencies of the (n, m) modes to be
detected lie within the sweep band of a generator whose
frequency increases linearly from a minimum value to
a maximum value during a certain time interval in the
course of discharge.

The maximum and minimum values of the fre-
quency band are determined from dispersion relation
(1) for AWs. The antenna geometry chosen for T-10
experiments implies that, in the DAW spectrum, the
most complete information will be obtained from
eigenmodes with the toroidal numbers 0 ≤ n ≤ 8 and
poloidal numbers 0 ≤ m ≤ 3. Since the T-10 tokamak
operates with a deuterium plasma, we obtain from dis-
persion relation (1) that, for the density ne0 = 4 ×
1013 cm–3 and the maximum toroidal field Bt = 2.9 T, the
maximum frequency is f ≈ 8 MHz. For the highest den-
sity ne0 = 5 × 1013 cm–3 recorded in T-10 experiments
and Bt = 2 T, we obtain that the minimum frequency is
fmin ≈ 0.8 MHz.

A1.6. Radiation Impedance of a Screened Antenna

The radiation impedance of an antenna was calcu-
lated using the method proposed by Weynants et al.
[15] to analyze the coupling between an antenna and a
plasma in experiments on ion cyclotron heating.

Weynants et al. [15] derived the wave field distribu-
tion around an antenna that is not screened in vacuum
and showed that the transverse (with respect to the tor-
oidal direction) electric and magnetic components are
of utmost importance. They also considered the effect
of the screen and showed that it can suppress waves
with different polarizations of the field E in a plasma.

In order to simplify the model, we assume that the
current distribution in the antenna strip is uniform,

(A1.4)

where I is the net current in the antenna and w is its half-
width. The wave vector component k|| parallel to the
equilibrium magnetic field was calculated from the for-
mula

(A1.5)

In the approximation at hand, the radiation imped-
ance Rrad was defined as

(A1.6)

where the function g(k||) was specified graphically in
[15]. To estimate the function g(k||) from the plot pre-

J k ||( ) I k ||w( ) k ||w( )⁄ ,sin=

k ||
2 ω cA⁄( )2

1 ω ωci⁄+[ ] 1–
.=

Rrad 1 2π I
2( )⁄[ ] g k ||( ) J k ||( )

2
k ||,d

0

k||
max( )

∫=
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sented in [15], we specify the position of the antenna as
follows:

(a) the distance between the antenna and the bellow
(wall) is 1.5 cm,

(b) the distance between the antenna and the plasma
center is 36.75 cm, and

(c) the distance between the antenna and the plasma
boundary is 0.75 cm.

The quantity k|| was determined from formula
(A1.5) with the maximum (central) plasma density. At

a frequency of 6 MHz, we have  ≈ 5.01 m–1, so
that formula (A1.6) for the radiation impedance gives
Rrad ≈ 4.8 × 10–1 Ω.

A1.7. Frequency Profiles of the Antenna Current 
and Voltage

For the output stage of a broadband power amplifier
to be installed in T-10, the length lcab of the cable
between the output stage and a loop antenna should be
no shorter than several meters. For the frequency sweep
band discussed in Section A1.5, the cable should be a
distributed parameter line, which is calculated using the
methods of the theory of long lines.

Under the assumption that losses in the cable are
absent, the basic equations of a uniform line yield the
following expression for the antenna current Iant:

(A1.7)

where k = 2π/λ is the wavenumber, W is the wave
impedance, and I0 is the current at the input of a long
line. The load impedance Zant can be divided into resis-
tive and reactive parts,

(A1.8)

Below, we will show that the antenna resistance Rant is
low in comparison with both Rrad and the inductive
reactance ωLant (where Lant is the inductance of the
antenna loop); consequently, in calculating the desired
frequency profiles of the antenna current and voltage,
we can neglect the antenna resistance.

The main contribution to the antenna impedance
comes from the antenna inductance, which was esti-
mated from formula (A1.1) in which the length of a
two-strip line was taken to be lant ≈ 57.7 cm.

For the antenna current Iant to be frequency indepen-
dent, the reactive part iωLantsin(klcab) of the impedance
should be small. This can be achieved only under the
condition klcab ! 1. From these considerations and from
the requirement that the design be as easy as possible,
we choose the cable length to be lcab = 5 m.

For this cable length, the ratio of the antenna current
to the current at the beginning of the line is maximum
at the maximum frequency of a sweep band:

(A1.9)

k ||
max( )

Iant I0W W klcab( )cos Zant klcab( )sin+[ ]⁄ ,=

Zant Rant Rrad iωLant.+ +=

Iant I0⁄ 1.66 at f≈ 6 åHz.=
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Table 3

f, MHz 0.8 2 3 4 5 6

λcab, m 247.13 98.85 65.9 49.43 39.54 32.95

klcab, rad 1.27 × 10–1 3.18 × 10–1 4.77 × 10–1 6.36 × 10–1 7.95 × 10–1 9.53 × 10–1

Iant , A 14.53 15.14 16.18 17.81 20.25 23.9

Uant , V 17.38 42.06 66.89 97.9 139 197.5

Zant , Ω 4.8 × 10–1 + i × 1.1 4.8 × 10–1 +
i × 2.74

4.8 × 10–1 +
i × 4.11

4.8 × 10–1 +
i × 5.5

4.8 × 10–1 +
i × 6.85

4.8 × 10–1 +
i × 8.22
Let us find the current at the input of the long line.
First, we estimate the required power deposited in a
plasma. In the TEXTOR experiments [5], this power
was equal to 200 W. For T-10, the radiation power can
be estimated by comparing the working volumes of the
tokamaks: VT-10/VTEXTOR ≈ 0.5. Consequently, the radi-
ation power in T-10 can be estimated as 3rad = RradI ≈
100 W, so that the current I0 at the beginning of the long
line is about 14.4 A.

For a current of 14.4 A at the input of the long line
and a frequency of 6 MHz, the high-frequency potential
Ul at the antenna is 197.5 V.

The magnitudes of the high-frequency current and
potential at the antenna for some frequencies from the
sweep band and a current of 14.4 A at the input of the
line are summarized in Table 3.

A1.8. Resistance of the Antenna

The resistance of the antenna is estimated from the
following two simple expressions for (a) the electric
conductivity of copper and stainless steel,

(A1.10)

and (b) the skin depth of a metal as a function of fre-
quency,

(A1.11)

It is also well known that the skin depth δCu for copper
at a frequency of 1 kHz is equal to 2 mm.

Using relationships (A1.10) and (A1.11) and taking
into account the fact that the entire length of the loop
antenna is about 117 cm, we can estimate the resistance
of the antenna at a frequency of 6 MHz as Rant ≈ 0.05 Ω.

APPENDIX 2

CALCULATION OF THE COMPLEX POWER 
INDEX λ AND THE RATIO 

OF THE GRADUALLY VARYING FUNCTIONS 
γ1(r) AND γ2(r) FOR A COLD PLASMA

In the limit r  0, the basic set of equations
reduces to

σst σCu 40;⁄=

δsk 1 fσ⁄ .∼
(A2.1)

where A and G are the coefficients in basic equations
(14) and (15). Substituting expressions (22) into equa-
tions (A2.1), we arrive at the following two algebraic
equations for λ, γ1, and γ2:

(A2.2)

We divide both of these equations by γ2 to obtain the
following two equations for λ and γ3 = γ1/γ2:

(A2.3)

We can see that λ is a complex quantity. Solving the
quadratic equation for γ3 gives

As a result, we find the power index λ:

(A2.4)

Performing the necessary manipulations, we can
reduce λ to the form

(A2.5)

dE⊥
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--------- mG

A
--------- 1– 
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2
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2
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λγ1
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2
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m
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where

rm1 rm Re q1 Re q2–+( ) 2⁄ ,=

rm2 rm Re q2 Re q1–+( ) 2⁄ ,=

rm Re q1 Re q2–( )2
Im q1 Im q2–( )2

+ ,=

Re q1
Re G Re A Im G Im A×+×( )m

Re A
2

Im A
2

+
-------------------------------------------------------------------------- 1–

2

=
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–
Im G Re A – Im A Re G××( )2

m
2

Re A
2

Im A
2

+( )
2

-------------------------------------------------------------------------------,
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2m Im G Re A Im A Re G×–×( )

Re A
2

Im A
2

+
-----------------------------------------------------------------------------=
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2
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Re q2 m
2Re G
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–( ) 2Re A Im A Re G

2
A

2
–( )××+×

Re A
2

Im A
2

–( )
2
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Im q2 m
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2
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APPENDIX 3

INDEPENDENT COEFFICIENTS C1 AND D1
IN THE SOLUTIONS FOR THE VACUUM 

REGION AND THE AW FIELD COMPONENTS 
E⊥ (a) AND B||(a) AT THE PLASMA–VACUUM 

BOUNDARY
The condition that the component E⊥  be continuous

at r = a gives

(A3.1)

The condition that the component B|| be continuous at
r = a yields

(A3.2)

From the condition that the radial component of the
current density be equal to zero at the plasma–vacuum
boundary, we obtain

(A3.3)

and, from the condition that the component Br be con-
tinuous, we find

(A3.4)

The coefficients CH1–16 in equations (A3.1) and (A3.4)
can be evaluated as

Re E⊥ Re C1 CH10 Im D1 CH4B0z B0ϑ⁄ a( ),×+×=

Im E⊥ Im C1 CH10 J0CH11+×=

– Re D1 CH4B0z B0ϑ⁄ a( ).×

Im D1 Im B|| C⁄ H8,=

Re D1 Re B|| J0CH9+( ) CH8.⁄=

Re B|| CH15× Im E1 CH16,×=

Im B|| CH15× Re E1 CH16,×–=

Im E⊥ CH14 J0 CH12 Re D1 CH13×+×( ),×=

Re E⊥ CH14 Im D1 CH13.××–=

CH1 Im krw( ) Km krw( )⁄ ,=
(A3.5)

CH2 Im' krw( ) Km' krw( )⁄ ,=

CH3 Im krant( )Km' krant( ) Im' krant( )Km krant( ),–=

CH4
ω

ck
2

-------
B0ϑ

B0
-------- Km ka( )CH2 Im' ka( )–[ ] ,=

CH5

k ||

k
---- Im ka( ) CH1Km ka( )–[ ] ,=

CH6
4πmω
ckrant
---------------

k||
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----------- Km krant( )Im ka( )[=
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CH7

4πωBϑ

ckCH3B0
----------------------- Km' krant( )Im' ka( )[=

– Im' krant( )Km' ka( ) ] ,
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k ||

k
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CH9

4πk ||
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k ||
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Equations (A3.2)–(A3.4) yield the following
expression for the real part of the component B||:

(A3.6)

We insert (A3.6) into the second equation in (A3.2) to
obtain the real part of the coefficient D1:

(A3.7)

Solving the first equation in (A3.4) together with the
second equation in (A3.1), we find the imaginary part
of C1:

(A3.8)

where

Substituting (A3.6) into the first equation in (A3.3)
gives the following expression for ImE⊥ :

(A3.9)

To determine the remaining coefficients in the
expressions for ImD1 and ReC1, we must first find the
complex quantity γ2 at the plasma–vacuum boundary.
To do that, we transform expressions (26) for E⊥ (r) and
B||(r) to

(A3.10)

CH13 Im' ka( ) CH2Km' ka( ), CH14–
ω

ck ||k
----------,= =
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CH16CH14CH13
--------------------------------------- 1

CH8
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---------------------------------------------------------.=

Re D1
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CH13
-------------+

1
CH8
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--------------------------------------- 1
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-----------–

--------------------------------------------------------- J0
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CH8
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Im C1 Re D1CH17 J0
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---------------------------------------------,+=

CH17
1
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------------- CH14CH13 CH4

B0z

B0ϑ
--------+ .=

Im E⊥ a( )
J0

CH9

CH8
-----------

CH12

CH13
-------------+

CH15

CH16
-------------

CH15

CH16CH14CH13
--------------------------------------- 1

CH8
-----------–

---------------------------------------------------------.=

Re E⊥ r( ) Re Ẽ⊥ Re γ2 Im Ẽ⊥ Im γ2–( ) -=

× r
r0
---- 

  Im λln 
  Im Ẽ Re γ2(–cos

+ Re Ẽ⊥ Im γ2 ) r
r0
---- 

  Im λln 
 sin r

r
r0
---- 

  Re λln 
  ,exp
(A3.11)

(A3.12)

(A3.13)

,

where r0 = 1 cm. The expressions for ImE⊥ (a) and
ReB||(a) were derived above.

Now, we find the remaining parts of the components
E⊥  and B|| at r = a:

(A3.14)

The parts ImD1 and ReC1 can be represented as

(A3.15)

The radial profiles of the AW field components were
determined from formulas (26). Finally, these formulas
can be written as

Im E⊥ r( ) Im Ẽ⊥ Re γ2 Re Ẽ⊥ Im γ2+( ) -=

× r
r0
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  Re Ẽ⊥ Re γ2(+cos
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× rm2
r
r0
---- 

 ln 
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(A3.16)

with rm1 and rm2 taken from Appendix 2.
Note that the eigenmodes can be evaluated by a

number of methods. However, only some of them can
be applied to solve the problem under discussion in
arbitrary geometry.

For example, one of these methods involves WKB
analysis [8], which restricts the class of the desired
functions to those describing plane waves, exp(ikrr),
where kr is the radial wavenumber (which, in turn, is
expressed in terms of the radial mode number l). The
plane wave approximation cannot be used to calculate
the resonant frequencies of eigenmodes whose intensi-
ties are maximum at the plasma center. In this case, the
approximate dispersion relation for the DAW spectrum
fails to hold [5]. For eigenmodes whose resonant layers
occur near the plasma periphery, the WKB method
requires that the boundary conditions be modified in
such a manner that this dispersion relation gives more
or less accurate results [8]. The WKB technique also
cannot be used to determine the AW power deposited in
unit plasma volume. Consequently, this approach is
inappropriate for studying auxiliary plasma heating by
Alfvén and magnetosonic waves or for determining the
width of the resonant peaks in the DAW spectrum (i.e.,
for estimating their quality factors) [8].

APPENDIX 4

DIELECTRIC TENSOR ELEMENTS 
WITH ALLOWANCE FOR THE ELECTRON 

AND ION TEMPERATURES

Substituting (45) into (42), we obtained the vector
equation, which was then solved together with Fara-

× rm2
r
r0
---- 
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r
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---- 
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day’s law. As a result, we arrived at the following
expressions for the elements of the dielectric tensor :

(A4.1)

where α =  + , β = ,

θ = , ξ = ,

and γ is the adiabatic power-law index.

APPENDIX 5

CALCULATION OF THE COMPLEX POWER 
INDEX λ AT Ti, e ≠ 0

In the limit r  0, we have E⊥ (0) = B||(0) = 0; and
∇ P'  0/0. Consequently, expression (45) contains
singularities of the 0/0 type at the plasma center. We
assume that, at r  0, the field components have the
form

(A5.1)

where γ1(r) and γ2(r) are gradually varying functions of r.
We insert expressions (A5.1) into (48) and (49) to
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arrive at the following two algebraic equations for two
unknowns, λ and γ3 = γ1/γ2:

(A5.2)

Solving (A5.2) gives the complex power index λ:

(A5.3)
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