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Abstract—The possibility of recovering the Gell-Mann–Low function in the asymptotic strong-coupling

regime by known first-order perturbation-theory (PT) terms βn and their asymptotics  as n  ∞ is inves-
tigated. Conditions are formulated that are necessary for recovering the required function at the physical level
of rigor: (1) a large number of PT coefficients are known whose asymptotics has already been established, and
(2) there is no intermediate asymptotics. Higher orders of PT, their asymptotic behavior, and power corrections
are calculated in quantum mechanical problems that involve divergent PT series (including series for a funnel

potential, the  model, and the Stark effect in a strong field). The scalar field theory  is considered in

the  and MOM regularization schemes. It is shown that one cannot make any definite conclusion about the
asymptotics of the Gell-Mann–Low function as g  ∞ on the basis of information available for the above
theory. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION AND STATEMENT
OF THE PROBLEM

It is well known that perturbation-theory (PT) series
in quantum theory are, as a rule, divergent, i.e., are
asymptotic series in the Poincaré sense [1, 2] and have
zero radius of convergence. Nevertheless, for small val-
ues of the coupling constant g, PT gives valuable and
quite reliable results whose accuracy in the case of
asymptotic series is determined by the last term
retained in a series expansion. The divergence of PT
series is attributed to the factorial growth of higher
orders of PT and is directly associated with the essential
singularity of the required function at zero (with respect
to the coupling constant g) and its discontinuity across
a cut when the sign of the coupling constant is changed,
g  –0 (the Dyson phenomenon [3]).

To proceed into the domain g * 1, one has to apply
summation methods for divergent series.1 Here, in
addition to information from PT, one also uses informa-
tion (or assumptions) on the analyticity of the required
function. The Lipatov method [5] allowed one to calcu-
late the asymptotics of higher orders of PT in a number
of problems in quantum field theory (see also [4, 6, 7]).
At first sight, one could expect that matching the Lipa-
tov asymptotics to the first few PT series terms calcu-

1 Monograph [1] provides a detailed account of various summation
methods from a mathematical point of view. A survey of certain
methods that have been successfully used in theoretical physics
can be found in [4]. The summation methods used for calculating
the Gell-Mann–Low function are discussed below in Section 4.
1063-7761/02/9504- $22.00 © 20581
lated from the Feynman diagrams allows one to find
important quantities of the theory (such as the Gell-
Mann–Low function β(g), which determines the behav-
ior of invariant charge at small distances) for any g.
However, even the first attempts in this direction have
shown that such a program can only be realized in a cer-
tain finite interval2 of g but not in the limit of strong
coupling g  ∞. In particular, such a conclusion was
made in [4, 8–12].

Recently, Suslov [13, 14] has tried to revise these
results. In [14], he states that he “developed a summa-
tion procedure for divergent perturbation-theory series
for arbitrary values of the coupling constant, where
information on all the terms of a series is obtained by
interpolating the known first terms by the Lipatov
asymptotics.” In [15] (see also [16]), he developed a
method for calculating power corrections to the leading
term of the Lipatov asymptotics. Applying these proce-
dures, Suslov concluded [13, 14] that the asymptotics

of the Gell-Mann–Low function in the scalar  the-
ory with the Euclidean action

2 Naturally, this interval may increase either when one adds higher
orders of PT or corrections to the Lipatov asymptotics or when
one applies more efficient methods for summing divergent series.
Here, it is useful to compare the results obtained for the Gell-

Mann–Low function in the case of the  theory in [8, 9] and in

the subsequent studies [10, 11].
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(1)

and in quantum electrodynamics (QED) are repre-
sented as β(g) ∝  gα with the exponent α < 1, which
implies the absence of zero charge behavior [17, 18]
and that these theories are internally consistent at arbi-
trarily small distances [19]. This conclusion differs sig-
nificantly from the results of all earlier authors; there-
fore, it needs to be carefully analyzed.

Below in this paper, we discuss the following ques-
tion. Is it possible (and, if yes, under what conditions)
to recover sufficiently reliably the function β(g) in the
strong-coupling regime, provided that the first several

orders of PT βn and their asymptotics  as n  ∞,
including a finite number of power corrections to it, are
known. Let us introduce the following definitions,
which will be needed below:

(2)

(3)

(4)

where n is the order of PT; a, b, and c0 are parameters
of the asymptotics; and the relation between the coeffi-
cients of the power corrections cj and  is given by

(5)

etc.3 Asymptotic series of type (2) arise not only for the
Gell-Mann–Low functions but also in many other phys-
ics problems,4 including quantum mechanics (see Sec-
tion 3 below). Of course, our analysis also applies to
these cases.

Let us briefly outline the contents of this paper. In
Section 2 (see also Appendix A), we show that, in the
general case, the answer to the question posed is nega-
tive; i.e., basically, the behavior of the function β(g) as

3 Note that  =  if b = 0 or –1. In particular, examples (20),
(24), and (35) considered below refer to this case.

4 Sometimes, this asymptotics has the form  ∝  (nν)! with ν ≠ 1.
For example, for a quantum oscillator with anharmonicity of the
type gr2N, ν = N – 1; for QED, ν = 1/2; etc. A generalization of
the formulas for this case is straightforward.
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g  ∞ is not determined by the first PT coefficients

βn and their asymptotics . In this section, we also
introduce and illustrate the concept of intermediate
asymptotics, which is important for further analysis.
Next (in Section 3), we consider certain quantum
mechanical problems that involve divergent PT series.
We show that, in many simple problems, the asymptot-
ics of the ground-state energy E(0)(g) can be recovered
to a sufficient degree of accuracy by the above-listed
data. However, this requires that the following addi-
tional conditions should be satisfied:

(1) It is necessary (but not sufficient!) that a large
number (n0 @ 1) of PT coefficients should be known
that reach their own asymptotics for n ~ n0.

(2) The problem considered should not have an
intermediate asymptotics.

The study of the scalar field theory (1) shows (Sec-
tion 4) that the above conditions are not satisfied in this
case; therefore, it is impossible to uniquely recover the
asymptotics of the Gell-Mann–Low function by the
data available to date. In the Section 5, we formulate the
main conclusions of the present paper and criticize the
assertions made in [13, 14]. In the appendices, we
present certain details of calculations, additional exam-
ples, the proof of the divergence of expansions (3) for

the  model, as well as the discussion of the calcula-
tion methods for the Stark effect in a very strong elec-
tric field for a short-range potential and for a hydrogen
atom.

2. ANALYTIC EXAMPLES

First, let us consider several model examples. For
the function

, (6)

the first N coefficients of the Taylor series expansion
vanish, while the others can easily be made arbitrarily
small by an appropriate choice of the constants c and µ.
Therefore, the first N PT terms of the function β1(g) =
β(g) + ϕ1(g), as well as the Lipatov asymptotics (4), are
the same as those of the original Gell-Mann–Low func-
tion β(g). However, ϕ1(g) ∝  gN as g  ∞, which
“beats” any power asymptotics of β(g) for sufficiently
large N.

The only singularity of ϕ1(g) is a simple pole at the
point g = –1/µ < 0. This fact does not contradict the ana-
lytic properties of the Gell-Mann–Low function
because there does not exist any field theory with action
(1) for g < 0.5

5 The potential U(ϕ) ∝  gϕ4  −∞ for ϕ  ∞ and g < 0; there-
fore, such a theory is unstable: it lacks the ground (vacuum) state.
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The simple generalization

(7)

shows that,6 as g increases, this function can succes-
sively pass through several intermediate asymptotics
(in the sense of [20]) before its final asymptotics as
g  ∞ is established. For instance, setting λj ≡ 0 and
1 @ µ1 @ µ2 @ … @ µn > 0, we have

(8)

where c1 = c/µ1, c2 = c/µ1µ2, etc. Here, only the last line
in (8) gives a true asymptotics of ϕ2(g) at infinity.

Note that the powers of intermediate asymptotics by
no means should successively decrease. By an appro-
priate choice of the constants λj and µi, the order of
variation of these powers can be specified at will; if
some of the λj are negative, then an intermediate
asymptotics changes its sign.

Next, let

(9)

where an is an analytic function of number n. For exam-
ple, if an = (–µ)n, then

(10)

exponentially grows as g  ∞, while the PT coeffi-
cients decrease as nN + 1/n! and cannot change the Lipa-

tov asymptotics .
One can readily construct other examples of this

kind. For instance, for

(11)

with g  ∞, we have

(12)

therefore, the asymptotics of the function β(g) + cϕ4(g)
at infinity can be determined by the second term, which
makes a negligible contribution to the PT coefficients
for small c. Other examples will be discussed in Appen-
dix A.

6 Here, µi and λj are constants; all µi > 0, while λj may be of either
sign.
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We conclude with an example that relates directly to

the  theory. Let us modify this theory by adding the
term µg2N + 1ϕ4 with integer N ≥ 1 and arbitrarily small
µ > 0 to action (1); this is equivalent to the following
renormalization of the coupling constant: g   = g(1 +
µg2N). In this case, we will construct a PT series in pow-
ers of g, considering µg2N + 1ϕ4 as a perturbation. A dif-

ference between the PT coefficients βn and  mani-
fests itself only starting from the terms of order g2N + 2.
On the other hand, suppose that a discontinuity of the
Gell-Mann–Low function across the cut for g < 0,
which determines the Lipatov asymptotics (4), is
given by

(13)

(specifically for (1), we have [5] a = 1 and α = 7/2). The

discontinuity of the action  in the variable  has
the same form as (13); hence,

(14)

The difference between (13) and (14) for small g
only manifests itself in the terms of order g2N – 1 and

higher, while, for the coefficients βn and , it mani-
fests itself in power corrections of order n–(2N – 1). Thus,
the two theories with the action functions S[ϕ] and

 have 2N + 1 identical PT coefficients and the

same asymptotics , including 2N – 2 identical power
corrections. However, while, for (1), the Gell-Mann–
Low function is

in the second case we have

(15)

where g0 = µ–1/2N. Therefore, if the parameter µ is suffi-

ciently small, then the Gell-Mann–Low function 

for the theory with the action  first passes through
an intermediate asymptotics of β(g), and its final
asymptotics at infinity, which is substantially different
from β(g), is established only for g @ g0 @ 1.
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ĝ

β̂n

discβ g( )
1
2i
----- β g i0+( ) β g i0–( )–[ ]≡

=  constea/g g–( ) α 1+( )–
1 b1g b2g2 …+ + +( ),

g 0–
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Table 1.  Higher orders of PT for the ground-state energy in a funnel potential

n –En /En n –En /En

1 3/2 0.285 10 3.281(8) 1.819
2 3/2 1.71 20 3.578(22) 1.290
3 27/8 5.13 30 3.708(38) 1.174
4 795/16 2.79 40 9.152(55) 1.124
5 3843/8 2.71 50 2.521(74) 1.101
6 11166/2 2.52 60 4.849(93) 1.080

7 2.31 80 1.886(134) 1.059

Note: The coefficients of the PT series (21) are given with opposite sign (here, we take the opportunity to correct a misprint made in [28]
concerning E5). Henceforth, we use the following notation: n is the PT order, and a(b) ≡ a × 10b.

Ẽn Ẽn

9 543339
128

----------------------
In quantum mechanics, the last example is analo-
gous to the harmonic oscillator

(16)

where V0(x) = gx2/2 and the remainder is interpreted as
a perturbation δV. In this case, the energy spectrum pos-
sesses the same properties as (15); however, the PT
series here is not divergent but has a finite radius of con-
vergence: |g | < g0 = µ–1/2N.

3. ON THE SUMMATION 
OF PT SERIES IN QUANTUM MECHANICS

Now, we pass from mathematical examples to the
discussion of specific problems of nonrelativistic quan-
tum mechanics that involve divergent PT series. The
analysis of these problems, which is of interest in itself,
is also useful because the character of the divergence of
PT series in these problems is the same as in quantum
field theory, while the calculation of higher orders of
PT is much simpler.

(a) We begin with the anharmonic oscillator

(17)

for which 75 orders of PT for the ground-state energy

(see Table 1 in [21]), as well as their asymptotics ,
were calculated with high accuracy in the pioneer work
of Bender and Wu [21]:

(18)

V x( ) V0 δV+
1
2
---g 1 µg2N+( )x2,= =
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4
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Ẽn
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72n
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Later on [22], using 150 orders of PT, Bender and Wu
determined ten power corrections cj in (18) by numeri-
cal fitting (for n @ 1). The asymptotics of energy as
g  ∞ has the form [23, 24]

(19)

where c∞ is a constant whose numerical value is given
in [23] (in a different normalization of the Hamiltonian;
however, it can easily be recalculated for (17)).

In [25], the following value was obtained for the
asymptotic coefficient:7 c∞ = 1.048 (the exact value
[23] is equal to 1.060362…); but the method of [13]
yields the value of α = 0.317 ± 0.032 for the exponent
of power asymptotics (19) and the coefficient c∞ with
an error of 10%. Thus, in this case, the asymptotics of
E(0)(g) is recovered by the coefficients of PT series with
a satisfactory accuracy.

Sometimes, this problem is considered as a test
example for testing the summation methods for diverg-
ing series. Without denying such a possibility, we
would like to stress that, in this case, the calculation
involves up to 75 orders of PT, which already “catch”

the asymptotics: for example, the ratio8 δn = /En – 1 =
20, 2.8, and 1.8% for n = 10, 50, and 75, respectively.
For n & 10, the exact coefficients En are still rather far

from  (especially if we consider the Hamiltonian
(17) in a D-dimensional space with the dimension
D ≥ 3). Here, the coefficient c1 of the first power correc-
tion rapidly increases with D (see Fig. 2 in [26]) and
also increases while passing from the ground to excited
levels [22]. The calculations performed do not show the
presence of an intermediate asymptotics in this prob-
lem. Moreover, it was rigorously proved in [23] that, in
the case of (17), the PT series is summed to give the

7 In this case, a modified PT was used in which the exponent α =
1/3 was chosen in the original approximation.

8 We everywhere use the definition of asymptotic coefficients given
in (4) for the function β.

E 0( ) g( ) c∞gα 1 O g–2α( )+[ ] , α 1/3,= =

Ẽn

Ẽn
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exact energy E(0)(g) everywhere in the complex plane
with a cut –∞ < g < 0.

(b) The anharmonic oscillator represents a one-

dimensional model  of the scalar field theory ,
and the ordinary integral

(20)

can be considered as a zero-dimensional analogue

( ) of a functional integral in the  theory. For the
PT coefficients, we have [4, 8]

(21)

(22)

here, even the first orders of PT are rather close to the

asymptotics:  = 0.833, 0.911, 0.940, and 0.963 for
n = 1, 2, 3, and 5, respectively. Hence, one can conclude
that the power corrections here are numerically small.
Moreover, there is no intermediate asymptotics for J(g).

Example (20) makes clear that the function J(g) and

the Borel sum  may have different asymptotics as
g  ∞ and may even differ in sign:

(23)

where c∞ = 1.600714… and k = 0.827901…; see also
formula (B.10) in Appendix B.

Integral (20) was considered for testing a summa-
tion procedure for divergent series. In [9], the function
J(g) was recovered in the interval 0 < g < 100 by the
Padé–Borel technique (see (28) and (29) below) with
the use of 20 orders of PT. Introducing up to 50 PT coef-
ficients, Suslov [13] obtained a value of α = –0.235 ±
0.025, which is close to the exact value α = −1/4, for the
exponent of the asymptotics at infinity J(g) ∝  gα. In
light of the aforesaid, this fact does not seem surprising.

The function
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is a generalization of (20) (the model , K = 2, 3, …).
Here, the PT coefficients Jn are calculated analytically
(see Appendix B).

Let us show that series (3) in powers of 1/n is diver-
gent for any K. Setting

(25)

we can see from (B.3) that the function η(z) has poles
at the points z = zs that condense to zero:

. (26)

Therefore, z = 0 is an essential singularity for η(z), and
the power series (25) diverges for any z ≠ 0. The same

ϕ 0( )
2K

Jn

J̃n

----- η z( )≡ c jz
j, z

j 0=

∞

∑ 1
n
--- 0,= =

zs 2K / 2s 1+( ), s– 0 1 2 …, , ,= =

0.9

0.8

0.7

0.6

0.5
5 10 15 L

αL

Fig. 1. Determination of the exponent α of the power-law
asymptotics (32) for the ground-state energy in a funnel
potential. The values of αL are calculated by formula (31)
for x = 100 (dots).

j = 0

j = 6

j = 1

j = 2

j = 0

j = 4

2

1

0

–1

2 60402010864
n

pj

Fig. 2. The ratios ρj(n) = αn/  (see (35)) versus PT order

n for the Stark effect in a hydrogen atom (ground state). The
value of parameter j at the curves indicates the number of
terms retained in expansion (35).

α̃n
j( )

2/3
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result should be expected in the case of more realistic

theories, including  and QED (see also [16]). One
can also determine the growth rate of the coefficients cj

as j  ∞ (see Appendix B).
Integral (24) can be considered as a zero-dimen-

sional analogue of a functional integral in the field the-

ory with self-interaction , which can be renormal-
ized [27] in the dimension D = 2K/(K – 1). The asymp-
totics of J(g, K) as g  ∞ exhibits power-law
behavior (B.10), and is the slower, the greater the non-
linearity exponent 2K in (24).

(c) The funnel potential

(27)

was used in quantum chromodynamics for describing
the states of heavy quarkonia (the so-called Cornell
potential; see, for example, [28–30]). In this case, about
90 PT coefficients Ek were calculated for the ground
state [31]; the parameters of the asymptotics (4) were
c0 = –18/πe3 = –0.2852…, β = 1, and α = 3/2. Part of
the calculated coefficients En are presented in Table 1,

which shows that the difference between  and En is
less than 10% only when n > 50, whereas, for n ≤ 10,
these coefficients differ severalfold.

The PT series was summed by the Padé–Borel tech-
nique:

(28)

(a generalization is given below in (49)); here, the Borel
transformant B(x) was replaced by the diagonal Padé
approximant [L/L]:

(29)

It follows from (28) that the asymptotics E(g) ≈ c∞gα as
g  ∞ corresponds to the behavior of B(x) ≈
c∞xα/Γ(α + 1) as x  ∞ when α > –1. Therefore, the
exponent α of the asymptotics can be found from the
equation α = , where

(30)

or

(31)
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after which one also determines the asymptotic coeffi-
cient c∞.

Note that, in this case, the exact asymptotics of the
energy levels Enl(g) is obtained by the scaling transfor-
mation r  g–1/3r in the Schrödinger equation:

(32)

(a procedure suggested by Symanzik; see the remark on
p. 85 in [23]). For the ns level (l = 0), the radial
Schrödinger equation in the limit as g  ∞ is reduced

after scaling to the Airy equation; therefore,  =

, where ξn stands for the nth zero of the Airy

function Ai(ξ). For example, ξ1 = –2.3381… and  =
1.855756… for the ground state, n = 1.

The results of numerical calculations are illustrated
in Fig. 1.9 The application of the Padé–Borel approxi-
mants with L ≤ 15 guarantees an accuracy of 1% in the
calculation of energy E1s(g) up to g = 500; for g ~ 1, the
error does not exceed 0.01%. Naturally, the worst accu-
racy is achieved in the determination of the parameters
of asymptotics (32). If we average αL over the interval
11 ≤ L ≤ 17, we obtain 〈α〉  = 0.667 ± 0.003, which dif-
fers from (32) by 0.5%. Accordingly, for the asymptotic
coefficient for L = 17, we obtain c∞ ≈ 1.78 (with an error
of about 4%). On the other hand, the values of αL for
L < 10 are still far from the exact value α = 2/3; this is

natural since the coefficients  for small orders of PT
are several times greater than En (see Table 1). In the
case of the potential V(r) = –r–1 + gr2, the convergence
of αL is somewhat worse: the use of 30 orders of PT
yielded 〈α〉  = 0.47 ± 0.08 (the exact value is α = 1/2).

Thus, the summation of a divergent PT series for the
funnel potential yields quite satisfactory results, includ-
ing the results for the strong-coupling region. However,
the remarks made in the case of an anharmonic oscilla-
tor still remain in force: the calculation involves many
coefficients En that have already reached the asymptot-

ics ; in addition, the comparison with the numerical
calculation shows that there is no region of intermediate
asymptotics for E(g) in this problem.

(d) The problem of the Stark effect in a strong field
represents an instructive example from atomic physics.

In an electric field F (which is assumed to be con-
stant and homogeneous), atomic energy levels are
transformed into quasistationary states with complex
energy E(F) = Er – iΓ/2. We will restrict ourselves to

9 In [32], diagonal Padé approximants were used up to L = 17, i.e.,
up to 2L + 1 = 35 PT terms. The dots in Fig. 1 represent the
results of calculation by formula (31) for x = 100 (formula (30)
yields analogous results; however, the dispersion of αL is some-
what greater).

Enl g( ) c∞
nl( )g2/3 1 O g 1/3–( )+[ ] , g ∞=

c∞
ns( )

2 1/3– ξn–

c∞
1s( )

Ẽn

Ẽn
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Table 2.  Higher orders of PT for the Stark effect

n 2 4 6 8

D = 1 5/4 55/4 10 625/16 1078125/16

D = 3 1/4 3/2 735/16 13265/4

H atom 21/8 22947/29 48653931/214 3.81903(5)

9/2 3555/32 2512779/256 13012777803/213

n 10 20 50 100

D = 1 1.1467(7) 2.4187(20) 2.4126(71) 2.3883(173)

D = 3 4.3437(5) 4.2599(18) 1.6420(69) 8.0422(170)

H atom 7.7836(7) 2.6720(21) 4.5180(72) 6.4634(174)

3.8906(8) 2.2421(22) 6.5583(73) 1.3647(176)

n 150 180 190 200

D = 1 6.2389(286) 3.5099(358) 9.2425(382) 4.1262(407)

D = 3 1.3958(284) 6.5364(355) 1.6301(380) 6.9118(404)

H atom 2.0826(288) 1.2865(360) 3.4826(384) –

5.4360(289) 3.6898(361) 1.0271(386) 4.8327(410)

Note: The table presents the hyperpolarizabilities αn in the interval n = 2–200 for a δ potential in dimensions D = 1 and 3 and for the
ground state of a hydrogen atom for D = 2 and 3 (the first and second rows for H, respectively).
one-dimensional and three-dimensional δ potentials10

and the ground state of a hydrogen atom, where the PT
series is given by

(33)

where F is the expansion parameter; α0 = 1; α2 is the
polarizability; and α4, α6, … are the hyperpolarizabili-
ties of atomic energy levels.11

The results of calculation of higher orders of PT (the
details of these calculations are given in Appendix C)
are presented in Table 2. This table displays an
extremely rapid growth of the coefficients αn, which is
consistent with the asymptotics

(34)

10 Each such potential has one discrete level with energy E0 =

/2 in the absence of a field (κ0 is a constant entering the

boundary condition at zero; see, for example, [33]). Below, with-
out loss of generality, we set κ0 = 1 and use atomic units " = m =
e = 1 in this section.

11 In contrast to the previous examples and the  theory, all the

coefficients αn are of the same sign; therefore, the Borel transfor-
mant (29) has a pole on the integration path. This fact presents
certain difficulties for numerical calculation, which can be over-
come by different methods (see, for example, [34–36]).

–κ0
2

ε F( )
Er F( )

E0
------------- α2kF2k,

k 0=

∞

∑= =

ϕ 4( )
4

αn
1 1–( )n+

2
----------------------Γ n b 1+ +( )

3
2
--- 

 
n

c0 1
c1

n
----

c2

n2
----- …+ + + 

  ,≈

n ∞,
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and shows that the PT series diverges for any F ≠ 0 (for
excited states, as well as in the case of a PT expansion
for the wave function, odd orders of PT are also differ-
ent from zero). This formula follows from the disper-
sion relation (see Appendix C). The parameters b and cj

are given in Table 3.

Consider the asymptotic behavior of the PT coeffi-

cients with regard to power corrections. Denote by 
a partial sum of series (34):

(35)

Figure 2 represents the ratios αn/ , which character-
ize the accuracy of the jth approximation. One can see
that the asymptotics  appreciably differs from the
exact PT coefficients even for n ~ 100; however, the
introduction of power corrections improves the situa-
tion. In particular, the inclusion of two power correc-

tions (i.e., ) yields a good accuracy even starting
from n = 4 (however, a further increase in the number
of terms retained in series (35) sharply degrades the
accuracy for n & 10). It would seem that this situation
is favorable for recovering the energy asymptotics E(F)
as F  ∞. However, this is not the case. The summa-
tion of PT series for various states of a hydrogen atom
[35, 36], including the ground state, has shown that the

α̃n
j( )

α̃n
j( ) α̃n 1

c1

n
---- …

c j

n j
----+ + + 

  ,=

α̃n
0( ) α̃n≡ 12

π
------n!

3
2
--- 

 
n

.=

α̃n
j( )

α̃n

α̃n
2( )
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Fig. 3. The energy-level width Γ(F) in the case of the Stark effect (a) above the barrier and (b) for 0 < F < 100. Curves 1 and 3
correspond to one- and three-dimensional δ potentials, respectively, and curve 2 corresponds to the Rydberg states of a hydrogen
atom [36, 37]. Quantities Γ and F are measured in atomic units.
dependence of the width Γ on the field strength above
the barrier is very close to a linear function:

(36)

(parameters k and F0 are determined by numerical fit-
ting; for example, k = 1.47 and F0 = 0.122 for the
ground state, and k = 0.81 and F0 = 0.260 for the Ryd-
berg states of a hydrogen atom [37]). The linear depen-
dence (36) takes place neither in the region of a weak
field, where the width Γ(F) is exponentially small [38],
nor in the limit of very strong fields, when [39]

where

(37)

Γ F( ) k F F0–( ), F0 F & 1.5–2.0<≈

Γ F( ) Γ̃ F( ) 1 q
Flnln

Fln
-------------- O

1
Fln

--------- 
 + +

 
 
 

, F ∞,=

Γ̃ F( ) γ∞ F Fln( )2/3,=

γ∞ 2–5/2 31/2, q× 8/3.= =
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The asymptotics of Γ(F) for a δ potential with D = 1 has
the same form [37], only differing in the values of the
coefficients γ∞ = 2–5/3 × 31/2 and q = 2/3; when D = 3, the
form of this asymptotics is slightly changed (see (C.5)).

Note that the linear regime (36) also holds for the
ground state of a helium atom [40] and for a δ potential
(Fig. 3a). This is an intermediate asymptotics in the
problem of the Stark effect in a strong field, which was
qualitatively explained in [37] within the 1/n expan-
sion. A deviation from (36) in the case of a δ potential
manifests itself only for F * 10 (cf. Figs. 3a and 3b). In
this case, the function Γ(F) reaches the asymptote as
F  ∞ extremely slowly (Fig. 4): the relative devia-

tion (Γ – )/Γ becomes less than 10% only for F > 5 ×
107 in the case of the one-dimensional δ potential and
for F * 1026 in the case of a hydrogen atom (!). There-
fore, the final asymptotics for the function Γ(F) at infin-
ity cannot be obtained by summing any (within reason-
able limits) finite number of PT terms; it can only be

Γ̃

Table 3

Parameter D = 1 D = 2 D = 3 H j hj cj

a 3/2 3/2 3/2 3/2 1 107/12 –5.944

b –1 –3/2 –2 0 2 7363/288 11.363

A 1 /2 1/2 4 3 158.7 –35.66

c0 2/π 2/3π 12/π 4 469.0 –37.1

γ∞ 0.5456 – 0.6067 0.3062 5 1.025(4) –1.12(3)

k 2/3 – 1.343 8.3 6 – –1.0(4)

Note: The table presents the parameters entering formulas (26), (C6), and (C8) for a δ potential in a D-dimensional space, as well as (column H)
for the ground state of a hydrogen atom for D = 3; the coefficients hj and cj refer to the latter case.

π

2/3π
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ON THE SUMMATION OF DIVERGENT PERTURBATION SERIES 589
obtained from the analysis of exact solutions. This also
applies to the real part of energy, i.e., to the Stark shift
of energy levels. In the case of short-range potentials,
the hyperpolarizabilities reach their asymptotes some-
what faster as compared with the hydrogen atom; how-
ever, for n & 10, the difference between αn and  is
still rather large (Fig. 5).

(e) Just as in the case of the anharmonic oscillator,
the dependence of the structure of a PT series on the
dimension of a space is also of interest. For the ground
state of a D-dimensional “hydrogen atom,” in (33) 

we have

(38)

It is more convenient to apply the recurrence relations
presented in Appendix C to the calculation of higher
orders of PT. The asymptotics of the PT coefficients is
determined by the discontinuity discE(F) ≡ Γ(F) in the
neighborhood of the singular point F = 0, which is cal-
culated by the WKB method. Taking into consideration
(C.5) and (C.10), we arrive at formulas (4) and (34)
with

α̃n

E0 2/ D 1–( )2, D 1,>–=

α0 1, α2
1
8
--- D 1+( ) 2D 3+( ),= =

α4 =
1

512
--------- D 1+( ) 96D3 645D2 1522D 1257+ + +( ), ….

1

2

3

0

1.0

1.4

1.8

20 40 60 80 100
F

Γ/Γ~

0.6

Fig. 4. Asymptotic behavior as F  ∞: the ratio Γ/
versus field F. The numbering of curves is the same as in

Fig. 3. The asymptotics (F) is defined in (37) and (C5).

Γ̃

Γ̃
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(39)

(the subsequent power corrections for D ≠ 3 are
unknown). These power corrections are not small: |c1| >
3.2 for D ≥ 2. The rapid growth of the coefficient cj in
absolute value (see Table 3 for the case D = 3) provides
evidence for the fact that the series of power corrections
(3) is divergent.

As the dimension D increases, the PT coefficients
reach their asymptotics more slowly, at greater n; tak-
ing into account the first correction c1/n improves the
accuracy of approximation as n  ∞; however, it
sharply degrades the situation for small n (Fig. 6). It is
interesting to note that, for D = 10, the asymptotic

parameter b = 7/2, just as in the case of the  theory.
One could give more similar examples. The general

conclusion is that the asymptotics of the PT coefficients
in quantum theory is established, as a rule, only for n @
1, and lower orders of PT are not matched to it (except
for extremely rare cases, such as the Heisenberg–Euler
Lagrangian in QED, when there are no power correc-
tions at all [8]:

a
3
2
---, b

D 3–
2

-------------,= =

c0 2 D 1+( )/2 3 D 1–( )/2/πΓ D 1+
2

------------- 
  ,×=

c1
1
36
------ 12D2 39D 11–+( ),–=

c1'
1
72
------ 33D2 42D 5+ +( )–=

ϕ 4( )
4

ãn/an 1 1–( )2s 2 2n–× …,+ +=

0

1.5

2.0

10
1.0

D = 3

D = 1

D = 3

ç

αn/αn
~

20 30
n

Fig. 5. The ratios  in the case of a δ potential (of

dimensions D = 1 and 3). Curve (H) corresponding to the
ground state of a hydrogen atom is given for comparison.

α̃n/αn
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where s = 0 or 1/2 is the spin of a particle). The example
with the Stark effect (where the field F plays the same
role as the coupling constant g in (1)) shows how
slowly the final asymptotics can be established in the

10

1

10–1

10–2

10–3

10–4

1 2 5 10 20 50 100

2
3
4
5

8

12
8

12

2 3 4 8 12

D = 12

n

Fig. 6. The asymptotic behavior of PT coefficients for a D-
dimensional hydrogen atom. Solid curves correspond to

, dashed curves correspond, to , and dotted

curves are obtained with regard to the first power correction
to . The numbers at the curves indicate the dimension D

of the space.

αn/αn αn/α̃n
˜

αn
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strong-coupling regime when there is a region of inter-
mediate asymptotics in the problem and the asymptot-
ics itself contains lnF.

4. ON THE GELL-MANN–LOW FUNCTION

IN THE  THEORY

Finally, let us consider the problem of recovering

the Gell-Mann–Low function in the  scalar field
theory. The asymptotic series for the Gell-Mann–Low
function is given by (2)–(4) with the parameters

(40)

obtained by calculating the functional integral by the
saddle-point method [5, 11].

Here, the situation is complicated due to the fact
that, starting from the third order of PT, the coefficients
of the Gell-Mann–Low function in quantum field the-
ory depend on the subtraction scheme. The examples
given above refer to the so-called symmetric MOM
scheme, i.e., to the renormalization scheme with sub-
traction at a symmetric point (s = t = u = –4µ2/3). The
original calculations in lower orders of perturbation
theory were carried out precisely in this scheme (see
Table 4, which also presents the number of Feynman
diagrams that should be calculated in the nth order of
PT). Further calculations were carried out in a modified

scheme of minimal subtractions (the  scheme). In
this case, the asymptotic parameters a and b remain

ϕ 4( )
4

ϕ 4( )
4

a 1, b
7
2
---, c0

1.096

16π2
-------------, c1 4.7,–= = = =

MS
Table 4.  Lower orders of PT for the Gell-Mann–Low function in the  theory

n 2 3 4 5 6

Number
of diagrams 1 2 7 23 135

3/2 17/6 19.27 146.1 –

/βn 0.104 0.687 1.106 1.593 –

/βn 0.0978 0.659 1.072 1.554 –

/βn
1.323 4.582 5.053 5.666 –

3/2 17/6 16.27 135.8 1424.3

/βn 0.0080 0.0526 0.100 0.131 0.142

/βn 0.0075 0.0505 0.097 0.128 0.139

/βn
0.101 0.351 0.459 0.467 0.423

Note: The table presents PT coefficients βn in the renormalization schemes MOM and , as well as the ratios of asymptotic coefficients
to the exact ones.

ϕ 4( )
4

βn
MOM

β̃n

βn

β̃n
˜

βn
MS

β̃n

βn

β̃n
˜

MS
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ON THE SUMMATION OF DIVERGENT PERTURBATION SERIES 591
unchanged, while the coefficients ci are varied. Below,

we calculate the constant c0 in the  scheme.

The constant c0 in asymptotic formula (4) is calcu-
lated in the quasiclassical approximation and is deter-
mined from the classical action S, which appears in the
argument of the exponential function, and the coeffi-
cient multiplying the exponential function. A transition
from one scheme of subtractions to another in the lead-
ing order is associated with the variation of the classical
action

(41)

therefore, to determine c0, one should know the relation
between the charges g in these two subtraction
schemes.

To this end, we consider a four-point vertex in the
one-loop approximation (Fig. 7)

where s, t, and u are the Mandelstam variables and the
function f(s) is given by

where s = p2 and ε  0. Thus, in a dimensional regu-
larization, we have

Let us renormalize the coupling constants and set the

“bare” charge gB in the  and MOM schemes equal
to

(42)

respectively. Then, we obtain

MS
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and

By definition,

in the MOM scheme; hence, ∆MOM = 2 + ln(3/4). Then,
from (42), we have

(43)

Substituting this expression into (41), we obtain

finally, we have

(44)

It would be interesting to compare the asymptotic
estimates obtained with the results of calculations in
lower orders of PT. Four terms of the PT series were

calculated in the MOM scheme [41] and five in the 
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Fig. 7. Vertex function in the  theory in a one-loop

approximation.
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scheme [42, 43]. The results of calculations, as well as
a comparison with the Lipatov asymptotics, are pre-
sented in Table 4, which shows that the exact values of
βn are still far from the asymptotic ones; taking into
consideration the first power correction, which is
known in the MOM scheme [11], only degrades the sit-
uation in lower orders of PT. Indeed, for n = 2, 3, and 4,

the coefficients  = (1 – 4.7/n) < 0, while, for n = 5,

we have /βn = 0.096 ! 1. It is clear that βn and 
strongly depend on the subtraction scheme. Moreover,
the very expression of the asymptotics allows for cer-
tain freedom: one can rewrite (3) as

(45)

with an arbitrary parameter d, which is equivalent to (3)
for n  ∞ but leads to the substantial dependence on

d in lower orders of PT (cf. the values of /βn and

/βn in Table 4). For example,

(46)

which accounts for the difference (by an order of mag-

nitude!) between the values of /βn and /βn in Table 4
and shows that a concrete expression for the asymptot-
ics of the Gell-Mann–Low function becomes insignifi-
cant only for higher orders of PT.

Note that k1 = c1 – d(d + 1)/2 in (45); therefore, one
can reduce the first power correction to zero by an
appropriate choice of the parameter d. Such a choice is
likely to be optimal. If, as in the present case, c1 < –1/8,
then always k1 < 0, and the minimal value of |k1| is
attained for d = – 1/2:

(47)

Table 4 shows that the coefficients  are close to 

for the  theory, and the power corrections are not
numerically small: k1 = –4.6, –4.7, and –12.6 for the
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parametrizations , , and , respectively. Hence,
the asymptotics is reached at greater n, which, as we
have noticed, is also characteristic of many quantum
mechanical problems. The calculation of further orders
of PT in quantum field theory presents a very difficult
problem: the number of diagrams increases factorially
(see, for example, Table 4), and there is no efficient
method for their calculation in higher orders. There-
fore, one can hardly expect any appreciable progress in
this direction.

Thus, the situation in the  theory cannot be
regarded as favorable. Here, none of the conditions nec-
essary for determining the Gell-Mann–Low function as
g  ∞ are satisfied: the calculated coefficients βn are
far from asymptotic ones, there is no information on the
presence or absence of an intermediate asymptotics,
and, in general, the analytic properties of the required
function β(g) are unknown.

In such a situation, it is appropriate to speak of the
recovery of a function to a given accuracy in a certain
finite interval of the expansion parameters, although the
accuracy estimate depends on the summation method.
It is this statement in which the problem in question
was considered in [8–11].

In [8], the authors used the so-called improved per-
turbation theory, in which the sum of the divergent

series F(g) =  is approximated by the func-

tions

(48)

where  =  with asymptotic coefficients

of the type (4) is calculated exactly, using the Borel
transformation (see (A.6)). This simple and, so to
speak, naive summation method enables one to approx-
imate the exact solution in a larger interval of g as com-
pared with the polynomials of the ordinary PT. The
summation of the remainder RN(z) by the Padé–Borel
technique extends the recovery domain of the Gell-
Mann–Low function to the values of g ~ 1 [8]. In this
way, it was demonstrated that the Gell-Mann–Low

function in the  theory cannot have a nontrivial zero
for g = g0 ≈ 0.63 (as was pointed out in [5]); later on,
this result was confirmed. However, we cannot speak of
real progress toward the domain g @ 1.

In [10], a conform Borel method was applied to
summing series (2). The main difficulty associated with
the factorial growth of the coefficients is overcome in

βn β̃n β̃n
˜

ϕ 4( )
4

an g–( )n

n∑

F z( ) N( ) F̃ z( ) RN z( ),+=

RN z( ) an ãn–( ) z–( )n,
n N≤
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˜

˜
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˜ ãn z–( )n
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4
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this case by using the Laplace integral transform. Then,
the required function is represented as

(49)

where the Borel transform B(µ, ν)(x) is defined by a con-
vergent power series, while the parameters µ and ν are
chosen to guarantee the fastest decay of the coefficients
of this series. To analytically continue the sum of the
series to the whole infinite integration interval in (49),
one applies a conformal mapping technique. Usually,
this conformal mapping is chosen in the form

which maps the complex plane with a cut (–∞, –1/a) to
a unit disc |w| < 1 and takes into account the rooted
branching of the function B(x) at the point x = 1/a. This
conformal mapping is applied to the function

which contains an additional parameter λ. The intro-
duction of this parameter allows one to take into
account the asymptotics of the function B(x) as x 
∞ or of the function f(g) as g  ∞. Although the exact
answer does not depend on λ, there is certain arbitrari-
ness in the approximate expression that takes into
account only a finite number of series terms; this arbi-
trariness can be canceled, for example, by minimizing
the relative error [10].

In [11], a PT series was summed by using the Som-
merfeld–Watson integral transformation (under the
assumption that the coefficients βn are analytic in n)

(50)

the integrand β(z) was replaced by the Padé approxi-
mants [L/M](z) constructed by the first terms of the PT
series. The values of β(g) thus calculated are in agree-
ment with the results of [10] within the calculation
accuracy (about 10% for g = 40): in the interval 0 < g &
50, the Gell-Mann–Low function monotonically
increases and behaves as gα with the exponent α =
1.95 ± 0.2. The extrapolation of this function to the case

of g  ∞ would imply that the  theory is self-con-
tradictory. Naturally, in light of the aforesaid, one can-
not definitely insist on this fact.

In [44], the authors proposed a method for con-
structing convergent PT series in quantum mechanics
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σ i∞+
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and field theory. The application of this method to the

 theory has shown [12] that, for small values of g,
the function β is recovered with a good accuracy and
coincides with the results of earlier calculations; how-
ever, the effect of rejected terms of the PT series is large
for large values of g, which prevents the application of
this method to the case of strong coupling.

5. CONCLUSIONS

Let us formulate the main results of our work.

1. Strictly speaking, the asymptotics of the function
β in the strong-coupling regime cannot be recovered by
its first PT coefficients βn and their asymptotic values

 without invoking additional information.

2. Nevertheless, sometimes, this problem can be
solved at a physical level of rigor. The necessary
(although not sufficient) conditions are the presence of
a large number of calculated PT series terms that have
already reached their asymptotics and the absence of an
intermediate asymptotics of the required function.

3. In quantum field theory, the calculation of PT
series coefficients is complicated due to the factorial
growth of the number of Feynman diagrams, the ultra-
violet divergences, and a lack of efficient methods for
calculating higher order diagrams. The progress made
over more than 50 years after the calculation of the
Schwinger correction α/2π to the anomalous magnetic
moment of electron in QED has only allowed one to
reach the terms of order (α/π)4, and one can hardly
expect significant changes in this field [45]. Similarly,
the calculation of each subsequent term of a PT series
for the function β in quantum field theory has taken ten
years on the average.

4. Taking into consideration power corrections to 
improves the accuracy of approximating the coeffi-
cients of the Gell-Mann–Low function for n @ 1; how-
ever, this sharply degrades the accuracy in lower orders
of PT (see Figs. 2 and 6). In this case, the problem of

matching the first coefficients βn to the asymptotics 
is by no means facilitated. The situation is aggravated
by the fact that series (3) in powers of 1/n are divergent
(see, for example, [15] and Appendix B). Moreover, the
determination of higher order power corrections in
quantum field theory is associated with the calculation
of higher order corrections to the quasiclassical approx-
imation for a functional integral and is extremely labo-
rious.

5. Currently available methods for summing asymp-
totic series (see, for example, [4, 9–12]) allow one to
significantly extend the applicability of PT and to
recover the required function to a given accuracy in a
finite interval of its argument but do not allow one to
determine its asymptotics at infinity.

ϕ 4( )
4

β̃n

β̃n

β̃n
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Table 5.  Determination of coefficients cj by (51)

c1 c2 c3 c4 c5 c6

k Anharmonic oscillator ( )

1 –0.359 – – – – –

3 –2.551 4.00 –1.81 – – –

5 –1.626 –5.58 32.5 –49.8 24.1 –

6 –0.206 –26.9 1.53(2) –3.69(2) 4.13(2) –1.70(2)

7 0.334 –38.2 2.48(2) –7.66(2) 1.29(3) –1.12(3)

Exact [22] –1.319 –1.939 –7.014 –40.12 –3.055(2) –2.808(3)

k Stark effect (ground state)

1 –1.476 – – – – –

3 –7.108 21.3 –20.0 – – –

5 –5.067 –21.1 2.84(2) –8.83(2) 8.56(2) –

6 –3.763 –60.2 7.27(2) –3.23(3) 6.57(3) –5.01(3)

Exact [46, 57] –5.944 11.36 –35.7 –37.1 –1.12(3) –1.0(4)

Note: The table presents the coefficients of power corrections calculated by the procedure indicated in (51) with regard to k lower orders
of PT; the exact values of these coefficients are presented for comparison.

ϕ 1( )
4

6. Finally, we make several remarks concerning the
studies [13, 14]. In these works, Suslov used the same
information on the PT series coefficients for the Gell-
Mann–Low function as those used in [10], and the sum-
mation method represented a certain modification of
the conform Borel method. The fitting procedure used
by Suslov is based on the statistical processing of the
PT series coefficients βn in the interval 20 ≤ n ≤ 40,
where the corresponding exact values are unknown;
therefore, there are no grounds to assume that these
coefficients have already reached the Lipatov asymp-
totics. As we have seen above, the first terms of the
series are still far enough from the asymptotic terms,
while the correction of order 1/n only degrades the sit-
uation for small n.

The requirement set forth in [13] that the interpolat-
ing function between the first calculated terms of the PT
series and their asymptotic values should be smooth,12

although it looks natural, is far from being sufficient for
the unique determination of the coefficients βn in the
interval 10 & n & 50, which is essential for calculating
the asymptotics of the Gell-Mann–Low function. The
test examples considered in [13] (a zero-dimensional

analogue  and a one-dimensional anharmonic

12To put it more precisely, it is assumed that there exists an analytic
function such that β(n) = βn. Note that the analyticity in n of the
coefficients of the Gell-Mann–Low function has not been rigor-
ously proved. Moreover, these coefficients are defined at integer
points n = 2, 3, …, analytic continuation from which is ambigu-
ous.

ϕ 0( )
4
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oscillator) are too simplified; moreover, the author
introduces tens of exactly known terms of the PT series
for which the Lipatov asymptotics has already been
established to an accuracy of 1%.

The method adopted in [13] of using lower orders
of PT that are known from diagrammatic calculations
seems doubtful: the author used these terms to deter-
mine the coefficients cj of power corrections from equa-
tions of the type

(51)

which contain the first l PT terms. Obviously, such fit-
ting makes sense in the region n ≥ n0 @ 1 (and was ear-
lier used in [22, 46]); however, it is not justified for n ~
1 and leads to incorrect results. To illustrate this fact,
using (51), we calculated the coefficients cj for two
examples for which the exact values of these coeffi-
cients are known: a one-dimensional anharmonic oscil-
lator and the Stark effect. One can see from Table 5 that
the convergence, as l increases, of the power correc-
tions thus calculated is out of the question. As a matter
of fact, this is clear enough without calculations: series
(3) in powers of 1/n diverges, and its truncation at the
lth term can only be justified if 1/n ! 1.

It should also be pointed out that, for the scalar 
theory, the results of [13] for the Gell-Mann–Low func-
tion in the interval 5 & g < 20 differ significantly from
similar results of other authors that were obtained by
independent methods [10, 11]. It would be interesting

c1

n
----

c2

n2
----- …

cl

nl
----+ + +

βn

β̃n

----- 1, 2 n l 1,+≤ ≤–=

ϕ 4( )
4
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to find out the reasons for the discrepancy between
these results.

The same remarks, even to a greater extent, apply to
the study [14], which is devoted to the asymptotics of
the Gell-Mann–Low function in QED. In this case, only
the first four terms of the PT series in the MOM scheme
are known [47], and the form of the asymptotic coeffi-

cients  obtained within the framework of a certain
ansatz [48] is not yet completely determined. Under
these conditions, it seems untimely to speak of the pos-
sibility of recovering the Gell-Mann–Low function in
the strong-coupling regime.

Thus, in our opinion, the statement set forth in [13,
14] about the absence of zero charge behavior in the

 theory and in QED can by no means be considered
justified. The results available on the summation of
asymptotic PT series rather suggest that these theories
are internally contradictory. A meaningful assertion
concerning the asymptotics of the function β(g) as
g  ∞ can only be made after calculating a much
greater number of PT series terms or by going beyond
the weak-coupling approximation and applying meth-
ods that are not based on perturbation theory. 
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APPENDICES

APPENDIX A

Let us continue the discussion of the examples from
Section 2. Functions (7) and (8) have poles on the neg-
ative half-axis g < 0. A singular point can be placed at
zero; for example, for the function

(A.1)

the branching point g = 0 is the only singularity in the
finite part of the g plane; a discontinuity across the cut
(see (13)) is given by

(A.2)

β̃n

ϕ 4( )
4

f N g( ) 1–( )N 1+ n N– 1–( )! g–( )n

n N 1+=
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=  gN x/g–( )exp
1 x+

------------------------- xd

0
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∫ gN g 1–( )Ei g 1––( ),exp–=

disc f N g( ) πgN 1+ g 1–( ), ∞ g 0.< <–exp=
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Since

(A.3)

as g  ∞, the first N PT coefficients of the functions

 = β(g) + cfN(g) and N power corrections are the
same as those of β(g), whereas the asymptotics as
g  ∞ may be substantially different.

The PT coefficients in (A.1) vanish for n ≤ N.
Although the analyticity of the coefficients of the Gell-
Mann–Low function with respect to n has not been
proved in quantum field theory and is actually an
assumption, this condition can easily be satisfied, as is
shown by examples (9)–(11). A generalization of these
examples is given by the function

(A.4)

which, for large g, is reduced to the Mittag–Leffler
function

(A.5)

(for |argz | < sπ/2; [1, Ch. VIII]); here, z1/s ≈ sg1/s. For
s = 1 and 2, this formula corresponds to (10) and (11).

The coefficients in (A.4) can be replaced by any
integer function of n that has zeros of arbitrary multi-
plicity (possibly, depending on n) at the points n = N,
N – 1, N – 2, …. Such functions are defined explicitly
with the use of the Weierstrass representation known
from the theory of analytic functions.

A generalization of formula (A.1) has the form

(A.6)

where Γ(–b, x) is the incomplete gamma function; for
integer b = 0, 1, 2, …, it is expressed in terms of an inte-
gral exponent:
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(for b = 0, the sum over k should be dropped). Consider
the asymptotics

(A.7)

where g  ∞, δ = [b/(b – 1)]g–1 for b > 1, δ = lng/g
for b = 1, and δ = Γ(1 – b)g–b for 0 < b < 1. Finally, if
b = –b' < 0, then

(A.8)

For b = –1, –2, …, the first few terms of series (A.6)
become infinite; therefore, one should start the summa-
tion from n = –b. In this case, we return to (A.1), and
the asymptotics Sb(g) contains lng as in (A.3). Relation
(A.6) can easily be proved using the Borel transforma-
tion.

APPENDIX B

Here, we discuss the divergence of the series of
power corrections (3) by an example of the zero-dimen-

sional model .

For the nth order of PT, from (24) we have

(B.1)

where

(B.2)

hence, we obtain

(B.3)

Taking into account the Barnes formula (see 1.18.12 in
the reference book [49]), we obtain

(B.4)

where Bk + 1(x) and Bk + 1 are the Bernoulli polynomials
and the Bernoulli numbers, respectively. Hence, we
obtain
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(B.5)

Since [49]

(B.6)

the series in the exponent of (B.5) is alternating, and

(B.7)

as n  ∞, where s = 2 for K = 2 and s = 1 for K ≥ 3.
Thus, the asymptotics of the coefficients cj is virtually
independent of the nonlinearity exponent of the field

 in (24).

It remains to expand the exponential function in
(B.7) in a power series. To this end, we apply the for-
mula [50] relating the coefficients cj of the power series
to the coefficients am in (B.5):

(B.8)

where bi = a(i + 1)/2 for i = 2m – 1 and bj = 0 for i = 2m.
Equation (B.8) allows one to determine the asymptotics
of the coefficients cj as j  ∞ from the asymptotics of
bk. Indeed, if the coefficients bk grow factorially, bk ~
[1 + (–1)k](k – 1)!(2π)–k as k  ∞, then the leading
contribution to sum (B.8) is made by bj. Other contribu-
tions of the type bj – 1b1, bj – 2b2, etc., are power sup-
pressed, while contributions of the form bj/2bj/2 are sup-

pressed exponentially ( /bj ~ 2–j). When the coeffi-
cients bj are missing, as in the present case for even j,
the leading contribution is determined by the next term,
bj – 1b1. Therefore, the coefficients cj behave as

(B.9)

for odd j and are relatively suppressed as 1/j as com-
pared with (B.9) for even j, which is also confirmed by
numerical calculations.
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Finally, note that, for integral (24) as g  ∞, we
have

(B.10)

(B.11)

For K = 2, i.e., for the  model, these formulas coin-
cide with (23).

It is clear from (B.10) that the asymptotics  =
c∞g–1/2K is established only for g @ g0 = KK ~
(K!)2(2/3)K, where g0 @ 1 if K ≥ 3.

APPENDIX C

Here, we will discuss the calculation of higher
orders of PT and asymptotics for the problem of the
Stark effect.

In the model of a three-dimensional δ potential, the
complex energy E(F) of a level can be determined by
solving the equation [51, 52]

(C.1)

where ε = E/E0 = –2Er + iΓ is the reduced energy and

F = %/ ; henceforth, we assume that κ0 = 1 and E0 =
–1/2. Since Imε = Γ > 0, this integral is divergent in the
upper limit (this divergence is by no means accidental;
it is associated with the exponential growth of the
Gamov wave function of a quasistationary state as
r  ∞ [33]). Therefore, Eq. (C.1) must be regular-
ized; to this end, it suffices to shift the integration con-
tour with the real axis τ to the lower half-plane within
the angle −π/3 < argτ < 0.13 It is natural to choose the
fastest descent line by setting τ = texp(–iπ/6), 0 < t < ∞,
which yields

(C.2)

13We are grateful to V.D. Mur for discussing this question. One
could also apply a more universal regularization method of
Zel’dovich [33, 53]; however, this method requires much larger
computing time as compared with formula (C.2).
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Now, the integral converges for any complex ε, and
Eq. (C.2) can easily be solved by a computer (see curve 3
in Fig. 3).

Expanding exp(–F2t3/3) in a series and integrating
term by term, we arrive at the equation

(C.3)

from which one can successively determine the higher
orders of PT αn. For n ≤ 14, the hyperpolarizabilities αn

were calculated exactly (in the form of rational frac-
tions), and, up to n = 200, they were calculated numer-
ically (see Table 2).

It follows from (C.2) that

as F  ∞, where ξ0 = 3–1/3ξ and ξ is a root of the equa-
tion

(C.4)

hence, we finally obtain

(C.5)

where γ∞ = 2–1 × 31/6ξ = 0.606711… and q =
1.342964…. This asymptotics does not contain lnF,
which distinguishes a three-dimensional δ potential
from the one-dimensional one (cf. (37)). In the case of
dimension D = 1, the equation for E(F) is expressed in
terms of the Airy functions (see (A.3) and (A.4) in
[37]). Using asymptotic expansions for these functions,
we obtain

(C.6)

where

Hence, one can easily determine the hyperpolarizabili-
ties αn for a one-dimensional δ potential.
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Finally, the coefficients αn for a hydrogen atom have
been calculated by the recurrence relations presented
below (for n ≤ 160, our results agree with those of [46,
54], whereas, for n ≤ 30, they agree with the results of
[55]). Part of the results obtained are presented in
Table 2, which clearly demonstrates a factorial growth
of higher orders of PT. Of the three systems considered
above, the hydrogen atom is the “loosest” one: its polar-
izability α2 is 18 times greater than that of an energy
level bound by zero-radius forces [51]. This tendency is
preserved as the PT order n increases; for n ~ 200, the
difference between appropriate numerical values of αn

reaches six orders of magnitude. Note that all the coef-
ficients αn are real. The imaginary part of the energy,
Γ(F), is different from zero and only appears in the
summation of PT series due to the divergence of these
series for any F ≠ 0.

The asymptotics of αn follows from the dispersion
relation [56, 57]

(C.7)

with regard to the fact that, in weak fields, where a tun-
neling ionization occurs, the energy-level width is
equal to

(C.8)

(the parameters A, a, etc., depend on a specific atomic
energy level; see Table 3). Substituting this expansion
into (C.7), we obtain

and, reexpanding it in powers of 1/n, arrive at the stan-
dard form (3). Here, n is even (for the ground state), and

(C.9)

while the coefficients cj and hj are connected by linear
relations. For instance, for a hydrogen atom (the ground

state), we have a = 3/2, b = 0,  ≡ , and

αn 1 1–( )n+[ ] 1
π
--- Γ F( )F n 1+( )– Fd

∞

∫=

Γ F( ) A 1/aF–( )F b 1+( )– 1 h1F– h2F2 …–+( ),exp=

F 0

αn
2A
π

-------an b 1+ + 1–( ) jΓ n b 1 j–+ +( )a j– h j

j 0=

∞

∑=

=  α̃n 1
h1

a n b+( )
--------------------–

h2

a2 n b+( ) n b 1–+( )
-------------------------------------------------+





–
h3

a3 n b+( ) n b 1–+( ) n b 2–+( )
--------------------------------------------------------------------------- …+





˜

α̃n
2A
π

-------ab 1+ Γ n b 1+ +( )an n b+( )!anc0,≡=˜

α̃n α̃n
˜
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where uj = hj(–2/3)j, while , n ≥ m, are the Stirling
numbers of the second kind known from the combinat-

orics (in particular,  =  = 1). The coefficients hj

are borrowed from [46, 57], and cj are calculated by the
above formulas. Note that the leading term in (C.8) is
determined by the quasiclassical barrier factor and the
calculation of hj involves the determination of higher
order corrections in the quasiclassical parameter.

A hydrogen atom in D dimensions was considered
by many authors (see, for example, [58–60]). In the
case of the ground state, E0 = –2/(D – 1)2, while the PT
series for the Stark effect is given by (25), where

is the reduced electric field. The ionization probability
of this level in a weak field is determined by the WKB
method:

(C.11)

which, with regard to (C.7), yields asymptotics (31) for
the hyperpolarizabilities αn.

The exact calculation of αn can be reduced to the
recurrence relations that define the descent procedure
with respect to index j:

(C.12)

starting from j = n (  = 1, 1, 2, 5, 14, … for n = 1, 2,
3, 4, 5, …). Here, p, q ≥ 0, and the nth PT order is given
by14

14Here, we corrected the misprints made in [60]. If D = 3, then F ≡
%, and (C.12) and (C.13) are reduced, after certain transforma-
tions, to equations from [46, 54] for nodeless states with para-
bolic quantum numbers n1 = n2 = 0 and m = (D – 3)/2.

c1 u1, c2 u2, c3 u3 u2,+= = =

c4 u4 3u3 u2,+ +=

c5 u5 6u4 7u3 u2,+ + +=

ck σk 1–
j 1–( )u j

j 2=

k

∑ uk
1
2
--- k 1–( ) k 2–( )+= =

× uk 1– … 2k 2– 1–( )u3 u2,+ + +

σn
m( )

σn
1( ) σn

n( )

F 2E0–( ) 3/2– %
1
8
--- D 1–( )3%= =

Γ D F( )
2D 1+

D 1–( )2Γ D 1+( )/2( )
-----------------------------------------------------F D 1–( )/2–=

× 2
3F
-------– 

  1
1
48
------ 33D2 42D 5+ +( )F– O F2( )+ ,exp

An
n( ) 2n 2–( )!/n! n 1–( )!,=

A j 1–
n( ) j

D 1–
2

-------------+ 
  A j

n( ) Ap
m( )Aq

n m–( ),
p q+ j 1–=

∑
m 1=

n 1–

∑+=

1 j n,≤ ≤

An
n( )
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(C.13)
αn

21 2n– D 1+( )A1
n( ) 2 A0

m( )A0
n m–( )

m 1=

n 1–

∑+ , n 2 4 6 …,, , ,=

0, n is odd.





=

Here, for odd n, we have  = (D + 1) /2, whereas,

for even n, one should set  ; 0 in Eqs. (C.12) and
(C.13).

Thus, we have a purely algebraic calculation
scheme, which is very convenient for computer calcu-

lations (all  are positive rational fractions; there-
fore, the calculation by recurrence relations does not
involve cancellations and does not lead to a loss of
accuracy). This scheme yielded record-breaking values
of n ~ 200 (see Table 2), which is hardly possible in
quantum field theory in the foreseeable future (in fact,
in quantum mechanics, such a simplification in the cal-
culation of higher orders of PT is only possible for sim-
ple systems with a polynomial or Coulomb potential).
In the case of an excited state, the equations become, as
a rule, more complicated, and the odd orders of PT αn

become different from zero.
Note in addition that, for the three parametrizations

(C.14)

for n  ∞, we have

(C.15)

up to the terms of order 1/n2. Thus, it is clear why all the
parametrizations for the dimensions D = 2 and 3 are
close to each other, as one can see from Fig. 6.
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Abstract—The article by D.I. Kazakov and V.S. Popov [1] is devoted almost entirely to a criticism of my works
[2–4]. Some of the questions raised by them are not without interest, but they have virtually all been discussed
in detail in my publications. © 2002 MAIK “Nauka/Interperiodica”.
1. Numerous examples given in [1] essentially boil
down to the following. If we know the first few terms of
the diverging series

(1)

and the asymptotic form of WN for N  ∞, the asymp-
totics of the sum W(g) in the strong coupling limit can
be changed drastically by varying the values of the
unknown intermediate coefficients. It was concluded
that it is not possible in principle to reconstruct the
asymptotic form of W(g) on the basis of this informa-
tion.

In fact, there is no need to consider so many exam-
ples since a more stringent statement is made in [3]: “a
function with a predetermined behavior at infinity can
be constructed on the basis of a finite number of coeffi-
cients and their asymptotic form.” The algorithm for
solving this problem is also given: “A comprehensive
formulation of the problem is possible when all values
of WN are defined approximately; in this case, the sum
W(g) can be reconstructed to a certain degree of accu-
racy. For this reason, a necessary stage in the solution
of the problem is the interpolation of the coefficient
function; naturally, this is possible only under the
assumption of its analyticity.”

These citations reveal the conceptual difference
between the approach used in [2–4] and the position of
the authors of [1]. If the information on the intermedi-
ate expansion coefficients is absent indeed, it is impos-
sible to reconstruct the asymptotic form of W(g). How-
ever, the smoothness of the coefficient function makes
it possible to predict (using interpolation) the unknown
WN to a certain degree of accuracy and to present them

in the form  + δWN, where  are exact coeffi-

W g( ) WN g–( )N

N N0=

∞

∑=

WN
0 WN

0

1063-7761/02/9504- $22.00 © 20601
cients and δWN is a small perturbation. By hypothesis,

coefficients  give a power behavior for large values
of g (W(g) = W∞gα with W∞ ~ 1), while δWN generate a
generally more rapidly increasing function of g con-
taining a small parameter as a coefficient. Conse-
quently, there exists an interval of g in which the true
asymptotic form W∞gα can be reconstructed (naturally,
with a certain error in W∞ and α); as the information on
coefficients WN becomes more extensive, their uncer-
tainty δWN decreases, and the above-indicated interval
of g increases indefinitely. Consequently, there are no
basic limitations for determining the asymptotic behav-
ior of W(g): the unattainability of the asymptotics has
the same sense as unattainability of infinity. The strat-
egy of choosing the appropriate interval for processing
was discussed in detail in [3], but in a somewhat differ-
ent terminology (see below).

2. The analyticity of the coefficient function has
not been proved rigorously, but serious arguments
exist in favor of this property. According to Lipatov
[5], the coefficients of expansion of the functional
integral

(2)

in g can be written in the form

(3)

(C is a contour in the complex plane enclosing the point
g = 0), and analyticity in N takes place under the condi-
tion of convergence of integrals. The integrals converge
at least in the steepest descent approximation, which is

WN
0

W g( ) Dϕ S0 ϕ{ }– gSint ϕ{ }–( )exp∫=

WN
gd

2πig
------------ Dϕ∫

C

∫=

× –S0 ϕ{ } gSint ϕ{ } N gln––( )exp
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valid for large values of N. Unfortunately, the analytic-
ity region cannot be determined in this way.

It follows from the representation of series (1) in the
form of a Sommerfeld–Watson integral that, in the case
of a power asymptotic form W(g) ∝  gα, the point N = α
is the extreme right singularity of the coefficient func-
tion in the complex plane of N [3, 5, 6]. Consequently,
the analyticity region can be controlled by the final
result: if α turns out to be smaller than N0, the coeffi-
cient function is analytic in the domain ReN > α, and
the assumption concerning its smoothness on the real
axis for N ≥ N0, which is required for interpolation, is
self-consistent.

The analyticity of the coefficient function is explic-
itly violated in a number of examples presented in [1]
(see formulas (6) and (7)). Such perturbations cannot
appear as a result of a smooth interpolation, and, hence,
their discussion has no sense.

Examples of type (9), in which the correction δWN

to the coefficients is an integral function and the corre-
sponding dependence on g is exponential (the impossi-
bility of power dependence is proved by contradiction),
are more interesting. Such perturbations actually
appear as interpolation errors and are manifested in the
form of an exponential component in the coefficients
UN (see Fig. 10 in [3]; the definition of UN will be given
below). For large values of such errors, the results can-
not be interpreted at all in terms of a power law. This
forms the basis of “filtration” of such errors, which is
proposed in [3]: the interpolation method is chosen in
such a way as to ensure the minimum values of χ2 in the
course of fitting by the power law. As a result, these
errors can be reduced to such an extent that they hardly
affect the accuracy of the results.1

Footnote 12 in [1] contains a reference to the prob-
lem of ambiguity of the analytic continuation from inte-
gral points to the complex plane, which emerges due to
the fact that, generally speaking, the point N = ∞ is a
singular point.2 However, there are theorems guaran-
teeing the uniqueness of the analytic continuation
under the condition that the singularity at N = ∞ is quite
weak (the rate of increase for |N |  ∞ is limited by a
certain exponential function); the standard interpola-
tion schemes automatically converge to this unique
function [7]. The singularity of the above coefficient

1  If the coefficient function varies slowly on a scale of the order of
unity and the interpolation curve possesses the same property, the
amplitude of such errors is found to be exponentially small.
Indeed, an exponential increase in g occurs only if the correction
to the coefficient function contains an oscillatory factor (–1)N =
eiπN (see Eqs. (9) and (10) in [1]), which is a “high-frequency”
factor in this case; it is well known, however, higher-order Fou-
rier harmonics are contained in a smooth function with an expo-
nentially small weight.

2 The conventional uniqueness theorem refers to the analytic con-
tinuation from a set of points containing a limiting point in the
regularity region.
JOURNAL OF EXPERIMENTAL A
function in actual field problems is very weak: a regular
expansion in 1/N is valid, but has zero convergence
radius [8]; this is apparently sufficient for proving the
uniqueness.

3. I agree with the authors of [1] that, in the case of
insufficient information, any method gives incorrect
results for the asymptotic form if the transition to it is
strongly delayed. Processing is always carried out on a
finite interval of g, although it is not always evident.

The algorithm used in [2–4] is based on the fact that,
in the case of a power asymptotic form (W(g) ∝  gα), the
coefficients UN of the converging series obtained as a
result of a certain resummation of series (1) behave as
Nα – 1 in the region of large N. It can be proved that the
knowledge of expansion coefficients with N ≤ Nmax

determines the sum of the series for g & Nmax. The typ-
ical working interval 20 ≤ N ≤ 40 used in [3] effectively
corresponds to the region 20 & g & 40. However, I did
not suggest that the asymptotic form had already
attained in this region since the processing was carried
out not according to the purely power law Agα, but tak-
ing into account the first correction of the form A'gα' to
this law. This correction was poorly reproduced and
depended strongly on the specific procedure, but the
main asymptotic form turned out to be very stable.
Consequently, the results obtained in [3] effectively
correspond to the range of rather high values of g. The
normalization of charge used in [3] was chosen from
the condition that the nearest singularity in a Borel
plane lies at a unit distance from the origin. In this case,
the characteristic scale over which the variation of the
β function occurs is found to be of the order of unity,
and there are all grounds to state that the working inter-
val lies in the asymptotic region.

In [9], the expansion coefficients with N ≤ 5 were
used, and interpolation of the coefficient function was
not carried out. The information on the intermediate
expansion coefficients was not used, and the arguments
given in [1] are applicable to [9] in full extent. The bun-
dle of curves presented in Fig. 9 [9] and demonstrating
a 10% accuracy for g < 50 should not be taken seri-
ously; these curves were obtained for a certain fixed
summation procedure chosen in the course of “guess-
ing” the asymptotic form. If another asymptotic form is
used, the summation procedure will change, leading to
considerable changes in the results in the range of large
values of g. In my method, coefficients UN display a
clearly manifested intermediate asymptotics UN ~ N
(see Subsection 8.3 in [3]), which corresponds exactly
to the result obtained in [9]. If the values of WN with
N ≤ 10 are used for reconstructing the asymptotic form,
my method leads to results completely identical to
those in [9].
ND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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In [6], the interpolation of the coefficient function
was carried out formally, but index α was determined
from the position of the extreme right singularity
obtained as a result of construction of Padé approxi-
mants. If only the known expansion coefficients are
used for constructing such approximants, the order of
approximation turns out to be quite low and corre-
sponds effectively to an analysis in the range of com-
paratively small values of g. In my opinion, it is more
reasonable to choose first a certain bundle of interpola-
tion curves and construct high-order approximants for
each curve, using the spread in the results for different
curves as a measure of their uncertainty. Such an
approach makes it possible to reproduce the results
obtained in [3], although with a considerably larger
error.

In my opinion, the above arguments clearly explain
the discrepancy between the results obtained in [3] and
[6, 9]; additional discussion can be found in [3], where
the special Subsection 8.3 is devoted to this question. It
should be noted that the methods of reconstructing the
asymptotic form proposed by Kazakov [9, 10] and
Kubyshin [6] are of certain interest and deserve more
attention: the discrepancy in the results is not due to
drawbacks of these methods, but is associated precisely
with the above-mentioned conceptual difference in the
approaches.

4. The authors of [1] question the validity of my
method of interpolation, which was carried out on the
basis of the formula

(4)

by truncating the series and by choosing parameters AK

from a correspondence with the first L coefficients WN;
the value of A1 and the parameters of the asymptotic

form  were assumed to be known. For small L, this
method is quite effective: in zero dimension, the inter-
polation error is of the order of 10–4 for L = 1 and of the
order of 10–9 for L = 5. For an anharmonic oscillator, the
error is of the order of 10–2 for L = 5 and of the order of
10–3 for L = 9. The interpolation error for the ϕ4 theory
is estimated at a few percent; this can be done by vary-
ing the interpolation scheme or on the basis of formula
(14) from [2].

I have never stated that the values of coefficients AK

obtained in the course of such a procedure are close to
actual values.3 I also admit that this algorithm may
become unsatisfactory upon an increase in L. Ideally,
the method of interpolation must be based on analytic
properties of the coefficient function (see Section 6 in
[8]) and possess a guaranteed convergence rate for
L  ∞.

3 This is true only under certain constraints.

WN WN
as 1
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N
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N2
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 
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 

=
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5. Some remarks made by the authors of [1] lead to
confusion. For example, it is said in Section 3 that,
“introducing up to 50 PT coefficients in calculations,”
it was obtained in [3] for the zero-dimensional case “the
value of α = –0.235 ± 0.025, which is close to the exact
value of α = –1/4, “which is not surprising” in view of
the large number of coefficients used. This result was
indeed obtained in [3] at the first stage of testing
(Section 4); however, in Section 5, the use of only
one (!) coefficient gives approximately the same result
α = –(0.218–0.271). This result refutes the main state-
ment made in [1] and stipulating a large number of
expansion coefficients. The amount of information
required for reconstructing the asymptotic form can be
determined only empirically, but not on the basis of
general principles.

It is stated in Section 3 that the value c∞ = 1.048 was
obtained in [11] instead of 1.0603… for an anharmonic
oscillator, while in [3] this value was obtained with a
10% error. However, index α in [11] was assumed to be
equal to the exact value 1/3, while in [3] it was deter-
mined in the course of data processing. When the exact
value of α is used, the method developed in [3] gives
the value of c∞ with a relative error of 6 × 10–3. Such
details create an impression that the method developed
in [3] is not superior to many other methods and does
not lead to any progress. It should be emphasized in this
connection that this method was claimed from the very
outset not to be record exact, but to be a robust method;
i.e., this method possesses an elevated stability under
unfavorable conditions (see Subsection 2.3 in [3]).4

It should be noted in conclusion that the results
obtained in [2–4] are quite natural: incomplete infor-
mation on the asymptotic form W(g) is extracted from
incomplete information on coefficients WN. My aim
was to reflect adequately the uncertainty of the initial
information in the uncertainty of the results. There are
all grounds to believe that this aim was reached: within
their uncertainty, the results are independent of the
interpolation method. Index α in the ϕ4 theory changes
slightly even after a significant decrease in the amount
of information [4]; this is an indication that the infor-
mation is sufficient. In addition, the results match the
available analytic estimates to form a coherent picture
(see Subsection 8.2 in [32] and [4]).
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Abstract—A model proposed for describing the scattering of low-energy electrons (whose energy ranges
between thermal energy and several electronvolts) from polyatomic molecules makes it possible to estimate the
lifetime of shape resonances. The parameters of the model are determined by specific structural and experimen-
tal characteristics of molecules. The results of approximate computations of the lifetimes for negative ions of
molecules with different symmetries (diatomic halogens, parabenzoquinone, fullerene C60, benzothiadiazoles,
anthraquinone derivatives, and substituted benzene forms) are presented. The obtained data show that the life-
times are sufficient for the formation of fragment ions observed in the mass spectra of negative ions. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Resonant electron capture negative ion mass spec-
trometry [1] developed about forty years ago under the
guidance of Khvostenko is a powerful tool for investi-
gating processes of interaction between electrons and
molecules. Obviously, the advances in application of
any physical method are determined by the level of
knowledge of the processes occurring in a given exper-
iment. The variety of mechanisms of interaction of low-
energy (up to 15 eV) electrons with polyatomic mole-
cules renders the mass spectroscopy of negative ions
formed as a result of resonant capture of electrons very
informative. The interpretation of the spectra, which
are three-dimensional by nature (mass number of an
ion–energy of projectile electrons–intensity), is a non-
trivial problem. The dissociative capture cross section
σD(E) can be presented as the product of the capture
cross section σC(E) and the ion survival probability
ρ(E) [1]:

The first cofactor is studied in the theory of scattering,
which made considerable advances in describing inter-
actions between electrons and molecules [2–5, 13].
However, small molecules remain typical objects of
theoretical investigations (except the recent publication
by Fabrikant and Hotop [7]). This is not surprising, but
does not help the experimenters dealing with complex
polyatomic objects. In the interpretation of mass spec-
tra, the resonant states formed as a result of scattering
of slow electrons from molecules are of special interest.
The most probable are resonant states emerging during

σD σC E( )ρ E( ).=
1063-7761/02/9504- $22.00 © 20605
the motion of an incoming electron in the field of cen-
tral forces; these states were called shape resonances
[8]. In the literature on scattering theory, the term reso-
nance at a quasi-discrete level is often used. It is very
important to obtain at least a very rough quantitative
estimate of the lifetime τ of shape resonances. This is
so important since the electron-excited states of nega-
tive molecular ions are quite stable to the emission of an
extra electron as a rule [1]. It is essential to estimate the
lifetime of a shape resonance to obtain a correct inter-
pretation in the case when this lifetime directly deter-
mines the possibility of its dissociation into fragments.
The dissociation is possible if the lifetime exceeds the
characteristic period of nuclear vibrations in the ion.
Otherwise, dissociation is suppressed by autodetach-
ment, and the survival factor ρ(E) for the ion is too
small. It is not completely clear whether a negative
molecular ion, which is formed in the electron state sta-
ble to dissociation, can be transformed, as a result of a
nonradiative transition, into a decay term having a dif-
ferent symmetry during the lifetime of the shape reso-
nance [9]. Theoretical estimates of the probability of
nonradiative transitions are difficult to obtain and
scarce. The only thing known about its value is that it
ranges from 10–1–10–2 for a CO2 molecule to 10–6 for
complex aromatic systems [10]. Only indirect experi-
mental evidence exists for the nonradiative transition,
i.e., observation of the vibrational structure in the
threshold excitation spectrum of a negative molecular
ion of chlorobenzene [11]. The existence of a vibra-
tional structure only indicates that the lifetime of the
ion is longer than several vibrational periods. The exist-
ence of a nonradiative transition is of fundamental
002 MAIK “Nauka/Interperiodica”
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importance since it determines the processes of forma-
tion and decomposition of negative ions.

The main difficulty encountered in the theoretical
description of collisions between slow electrons and
polyatomic molecules is that, in the scattering problem,
these molecules as targets do not possess spherical
symmetry. Tossati and Manini [12] developed an
approach to simulation of electron scattering by a C60
molecule possessing a nearly spherical symmetry.
However, their results were criticized sharply because
they disregarded the polarizability of the target mole-
cule [13]. In addition, it should be noted that Tossati
and Manini [12] analyzed elastic scattering, while long-
lived (τ > 10–4 s [13]) negative molecular ions are
observed in experiments; obviously, an electron trans-
fers its energy to the nuclear subsystem during such a
long time interval. It will be shown that the above
approach deserves attention and leads to the results
matching the experimental data if the model parameters
typical of scattering process are taken into account cor-
rectly.

2. FORMULATION 
OF THE PROBLEM AND MODEL

A model is simple and universal if it contains a min-
imal number of measurable physical parameters typical
of a scattering process. Insignificant details can be dis-
regarded. Let us formulate the basic concepts of the
proposed model.

1. The classical turning point for low-energy elec-
trons is at a considerable distance at which the nonsphe-
ricity of the potential is unnoticeable.

2. The electron affinity determines the position of
the energy level at which the electron is captured.

3. Boundary orbitals play a decisive role in the pro-
cess of formation of negative ions.

4. In the process of formation of negative ions, the
nodal properties of the molecular orbital to which the
capture occurs (i.e., the behavior of the wave function
at large distances) play a significant role.

As a basis, we take the model of a spherical potential
well [12], which roughly approximates the potential of
electron attraction to a molecule. This approach basi-
cally differs from that used earlier in that the spherical
potential well is not treated as a formal mathematical
model, but is interpreted in the united atom approxima-
tion [14] introduced by Herzberg in the 1930s. The
energy levels appearing in a well of depth U and radius
r are compared in this case with the molecular orbitals
of the molecule being simulated. This molecule is pre-
sented in the form of a united atom, viz., pseudoatom
with the nucleus containing a number of protons equal
to the sum of the charges of the nuclei of the atoms con-
stituting the molecule.

The first parameter to be determined is the radius of
the potential well simulating the target molecule. Obvi-
ously, a captured electron occupies one of the vacant
JOURNAL OF EXPERIMENTAL 
molecular orbitals and, hence, is spatially localized in a
volume comparable with the volume of the molecule
itself. Consequently, it is expedient to choose the radius
of the well so that its volume is equal to the volume of
the molecule being simulated.

There exist a large number of approaches for deter-
mining the intrinsic volume of a molecule. Most of
them involve model computation [15]. One of possible
approaches, which was described by us in [16, 17],
makes use of available structural data. The volume of a
molecule can be estimated proceeding from empirical
data such as the molecular weight µ and density ρ0 of a
substance: V = µ/NAρ0, where NA is Avogadro’s number.
Subsequent calculations of the lifetime proved that the
latter method of determining volume is preferable.

The spatial size of a negative ion are obviously
slightly larger than the size of a target molecule. In
order to take into account the change in the volume in
the framework of the model used, we introduced earlier
[16] the concept of a united anion, which can be
described as follows. The molecule being modeled is
treated as a united atom whose volume is equal to the
volume of the molecule. For estimating the volume of
an ion, we introduce the empirical scale factor k =
k0exp(A0/A) determined from the correlation depen-
dence for the ratio of the ionic and atomic radii of halo-
gen atoms, where k0 = 1.478, A0 = 3.481, and A is the
atomic number of the united atom. The scale correction
in the case of a C60 molecule is k = 1.49. It should be
noted that this value is close to the corrections intro-
duced empirically in [12, 13] to take into account the
increase in the size of negative ions as compared to the
corresponding molecule. For example, k = 1.4343 in
[13].

The depth of the potential well is chosen using the
following criterion. One of the fundamental parameters
of a molecule is its electron affinity (EA), which is
equal, by definition, to the difference in the total ener-
gies of the molecule and the anion. If EA > 0, the mol-
ecule is capable of forming a long-lived negative
molecular ion. This quantity is undoubtedly one of the
most important characteristics determining the electron
scattering by the molecule [1] and, hence, must form
the basis of our calculations.

The simplest way to take into account the value of
EA of the target molecule is to consider a shallow
potential well with only one energy level whose energy
is equal in magnitude to the energy of electron affinity
of the molecule being modeled (the symmetry of the
wave function for this energy level is 1s).

We can also choose a potential well of such a depth
that it contains N + 1 levels, the energy of the (N + 1)th
level being equal to EA. Here, N is the number of occu-
pied molecular orbitals of the molecule. However, such
a choice does not guarantee the proper symmetry of the
wave function of the (N + 1)th level corresponding to
the lower vacant molecular orbital. In this case, propo-
sitions 3 and 4 forming the basis of the model are
AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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ignored. The version corresponding to the proposed
model can be described as follows.

The orbitals of a united atom correlate with the
molecular orbitals of the molecule being simulated
[14]. Each molecular orbital is put in one-to-one corre-
spondence with one of atomic orbitals of the united
atom or (in our case) with the energy levels in a spher-
ical potential well; the orbital angular momentum of
these levels is denoted by L. The order in which the lev-
els appear in the potential well upon an increase in its
depth is known from the course of quantum mechanics
[18]: 1s, 1p, 1d, 2s, 1f, 2p, 1g, …. For example, the level
with L = 5 corresponding to the lowest unoccupied
orbital T1u of the C60 molecule is the ninth level with an
energy equal to the reciprocal value of EA for C60: ε =
−2.666 eV [19]. Eight deeper lying levels with various
degeneracies correspond to occupied molecular orbit-
als of the fullerene molecule, while the next two levels
correspond to vacant molecular orbitals of C60 lying in
the discrete spectrum (the so-called second and third
electron affinity) (Fig. 1). Similar correlations can be
found for any molecule if we know the symmetry of its
lowest unoccupied molecular orbital. The model takes
into account only a part of the occupied and vacant
molecular orbitals of the target molecule, but reflects
correctly the symmetry of the lowest unoccupied
molecular orbital (to be more precise, the nodal proper-
ties of the wave function of a given energy level in the
united atom approximation).

Thus, we have a simple and unambiguous criterion
for choosing the potential well depth, which takes into
account the electron affinity energy of the molecule and
the symmetry of the lowest unoccupied molecular
orbital. It is clear intuitively that this approach is quite
justified since the interaction of slow electrons with
molecules, in analogy with chemical reactions, is
mainly controlled by the boundary orbitals. In this case,
there is no need to take into account all electrons in the
molecular system. The most illustrative example in this
respect is the Hückel method.

The method of expansion of the wave function of a
projectile electron in spherical harmonics (partial
waves) in the low-energy region makes it possible to
estimate the lifetime of a shape resonance. The delay
time τ of a scattered electron is determined by the phase
shift (1), i.e., the phase difference δl between the
asymptotic solution to Eq. (2) and the asymptotic solu-
tion (3) to the same equation in zero field; ultimately,
the value of τ is determined by the potential V(r) [20]:

(1)

(2)

τ 2"
dδl

dE
-------,=

d2ul

dr2
--------- k2 U r( ) l l 1+( )

r2
-----------------–– ul+ 0,=

U r( ) 2m

"
2

-------V r( ),=
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(3)

As a result of summation of repulsive and attractive
forces, an electron finds itself in a potential well sepa-
rated from the continuum by a finite-width barrier
(Fig. 2). The barrier configuration and the electron
energy E determine the lifetime of the negative ion.
Figure 2 shows the profiles of the electron capture cross
sections according to the shape resonance mechanism
for a molecule of fullerene C60. It can be seen from the
table that matching with the experiment is quite satis-
factory. It should be noted that the calculation of cross
sections is required for obtaining a quantitative esti-
mate of the lifetime of the shape resonance. It is imma-
terial that we formally deal with the calculation of the
cross section of the electron elastic scattering at a
model potential, while in experiment we register nega-
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Fig. 1. Models of a spherical rectangular potential well for
two shape resonances SR1 and SR2 for scattering of slow
electrons by a C60 molecule; l is the orbital quantum num-
ber for an electron.
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tive fragments of negative ions or long-lived molecular
ions, i.e., the result of inelastic scattering. Indeed,
Compton [9, 13] demonstrated that, if the lifetime of a
shape resonance is longer than the period of vibrations
of nuclei in an ion, changes in the geometry of the ion,
which render it stable to electron autodetachment,
become possible, and the term of the ion lies lower than
the term of the molecule (Fig. 3). The ion is formed at
point A according to the mechanism of a shape reso-
nance. For τ > 10–14 s, the ion starts moving in the term
VSR towards the crossing point B with the term VM of the
molecule. Having passed point B, the ion becomes sta-
ble with respect to autodetachment of an electron and
can relax, through a nonradiative transition in the vicin-
ity of point C, to the ground electron state (term VVEFR

of vibration-excited Feshbach resonance). Thus, long-
lived negative molecular ions can be observed experi-
mentally as, for example, in the case of anthraquinone
derivatives [17, 22]. The estimation of the lifetime of a
shape resonance carried out formally for elastic scatter-
ing is quite correct.

Thus, the given model has only three parameters:
(i) the potential well width, (ii) the potential well depth
describing the attraction of an electron to the molecule,
and (iii) the symmetry of the wave function of an extra
electron in a temporary negative ion. The first two
parameters are determined by the volume of the mole-
cule and the electron affinity energy. It should be noted
that neither of these parameters is fitting and taken from
some spectral data associated with the measurement of
the cross section of electron capture by the molecule.
Consequently, fitting is ruled out. Nevertheless, the
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Fig. 2. Total and partial electron capture cross sections
according to the shape resonance mechanism for a C60 mol-
ecule. The orbital quantum number for an electron l = 0 (1),
1 (2), 2 (3), 3 (4), and 6 (5); curve 6 describes the total cap-
ture cross section.
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results of estimation of the lifetime of a shape reso-
nance appear to be quite reasonable (see table).

3. RESULTS OF CALCULATION

The developed technique was used for interpreting
the mass spectra of negative ions resulting from reso-
nant capture of electrons by the following molecules:
diatomic halogen molecules [1–3], parabenzoquinone
[4], anthraquinone derivatives [5–11], substituted ben-
zene forms [12–14], fullerene C60 [15], and benzothia-
diazoles [16, 17]. The results are compiled in the table.
In all the above cases, the theoretical values of the res-
onance energies are in reasonable agreement with
experimental data, and the calculated lifetimes of the
shape resonance are sufficient for the formation frag-
ment ions observed in the mass spectra of negative ions.

Figure 1 clearly shows that the partial wave with
l = 6 encounters a barrier at a distance of approximately
12 Å (classical turning point rtp), where the nonspheric-
ity of the scattering potential is not very noticeable.
Obviously, the lower the shape resonance energy, the
longer the distance at which the interaction between an
electron and the molecule begins, and the more reliable
the result of calculation. Naturally, we do not claim an
exact calculation of the electron capture cross section
since the main task is to estimate the lifetime of the
shape resonance. The above examples confirm that the
model of a united anion provides quite adequate results
for large molecules, which can hardly be investigated
by exact methods, as in the R-matrix-theory.
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Fig. 3. Schematic representation of the potential energy
curves for a molecule and the negative ion for the first two
resonances in the case of dissociative capture of an electron
as a function of the length of the C–Cl bond of a molecule
1Cl–C14O2H8.
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radius r– for a fixed depth U = 7.9 eV and (b) as a function of the electron energy and the well depth for a fixed radius r– = 3.78 Å.
It should be emphasized that the methods of calcu-
lation of lifetimes of shape resonance are critical to the
choice of model parameters. Figure 4 shows the depen-
dences of the electron capture cross section on the
radius of the spherical potential well (a) and its depth (b).
It can easily be seen that resonance peaks appear only
in a very narrow range of radii and only for quite defi-
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nite depths of the well. This means that these parame-
ters must be chosen with great care. Our experience shows
that the best agreement with experiments is attained when
the radius of the well is calculated from the data on the
density of the substance and using the value the electron
affinity measured experimentally by the method of pho-
toelectron spectroscopy of negative ions.
Parameters of model potentials and results of calculation of scattering of slow electrons from polyatomic molecules according
to the shape resonance mechanism

No. Molecule EA (eV) U (eV) r– (Å) rtp (Å) l Eexp (eV) Ecalc (eV)
τcalc

(s × 10–15) (s × 10–15)

1 Cl2 2.40 10.12 2.38 3.5 2 2.50 1.93 3 1.2

2 Br2 2.42 8.93 2.60 4.2 2 1.40 1.31 5 1.6

3 I2 2.33 7.52 2.93 5.5 2 0.90 0.75 12 2.2

4 p-C6H4O2 1.99 14.02 2.75 5.2 3 1.35 1.69 14 1.4

5 AQ 1.59 8.27 3.72 9.2 3 0.44 0.54 110 3.4

6 2OH–AQ 1.64 8.07 3.79 10.0 3 0.34 0.46 170 3.8

7 2NH2–AQ 1.49 7.80 3.82 9.1 3 0.40 0.54 100 3.6

8 1NH2–AQ 1.46 7.90 3.78 8.7 3 0.56 0.60 80 3.2

9 1Cl–AQ 1.71 8.22 3.77 10.4 3 0.27 0.43 200 3.8

10 2Br–AQ 1.81* 8.04 3.86 13.0 3 0.20 0.27 600 4.6

11 1I–AQ 1.55* 6.82 4.2 14.5 3 0.25 0.21 1200 3.4

12 ClC6H5 –0.55* 3.23 2.94 9.5 3 0.74 0.5 6 2.8

13 p-ClC6H4NO2 1.26 9.69 3.28 5.9 3 0.90 1.29 15 2.0

14 p-IC6H4NO2 2.05* 11.15 3.18 7.4 3 0.7 0.85 60 2.4

15 C60 2.66 6.79 6.32 8.0 3 0.70 0.70 12 5.2

11.6 6 1.50 1.20 140 4.0

16 4NH2, 5NH2–C6H2N2S 2.06* 5.67 5.15 9.0 4 1.0 0.93 40 3.6

17 5NH2–C6H3N2S 3.22* 7.87 4.55 9.8 4 1.1 0.78 140 3.4

Note: EA is the electron affinity energy of a molecule, U is the potential well depth, r– is the well radius, rtp is the classical turning point,
l is the electron orbital angular momentum, Eexp and Ecalc are the experimental and calculated electron energies corresponding to

the resonance state, τcalc is the electron delay time due to resonance in the region of a molecule,  is the doubled mean free time

for the region in the potential barrier, and AQ = C14O2H8. Experimental data were obtained in our laboratory (Institute of Molecular
and Crystal Physics, Ufa Scientific Center, Russian Academy of Sciences) except for compounds 1–3 [21], 4 [9], and 15 [13].

τcalc
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4. CONCLUSIONS
The model of a spherical potential well is applied

for obtaining quantitative estimates of the shape reso-
nance lifetime. The analysis is carried out in the united
atom approximation, which makes it possible to single
out three parameters determining the electron scatter-
ing by molecules: the electron affinity energy, the
radius of the well, and the symmetry of the lowest
unoccupied molecular orbital. These quantities are
“observable” in contrast to the existing approaches
using formal model parameters.

For all molecules except diatomic halogen mole-
cules, shape resonances with lifetimes sufficient for the
formation of long-lived negative ions are observed in
the superthermal energy range. This indicates that the
model of a united anion operates the better, the larger
the size of the target molecule.

The estimates of the lifetime show that the shape
resonance can survive without the emission of an elec-
tron untill the beginning of nuclear movements. In
accordance with the Compton model [9], a negative
molecular ion is transformed, after relaxation to the
ground electron state, into a vibrationally excited nega-
tive molecular ion with a store of vibrational energy
consisting of the electron affinity energy, the thermal
energy of the target molecule, and the kinetic energy of
a captured electron.
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Abstract—Stimulated emission of two-level atoms in a high-Q cavity is considered under conditions when
pumping produces correlated many-atomic states. Based on the many-body problem, a kinetic equation is
obtained for the Glauber–Sudarshan probability, which describes the field in the Fokker–Planck approximation.
The statistics of light in this approximation are determined by the atomic correlation functions of the order of
no higher than the second. The noise of light is found in the regime of micromaser operation for two types of
pumping producing the initial separable states with a classical correlation and entangled states. It is shown that
the presence of the initial diatomic correlation enhances the intensity noise. The entangled state of atoms is
found from which nonclassical light is generated with a steady-state phase and noise, which can be almost com-
pletely suppressed in the low-frequency spectral region. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Micromaser operation of light [1, 2] has recently
attracted a lot of attention. On the one hand, this is
explained by the extensive study of the properties of
micromasers and, on the other, by the possibility of the
experimental verification of models in which the quan-
tum description of the interaction of atoms with a field
is required. The special feature of micromaser sources
is the experimental realization of the conditions when
the atomic relaxation is hardly manifested for the time
of interaction of atoms with the field, so that the contri-
bution from spontaneous processes is small, while
stimulated emission dominates. The statistical proper-
ties of stimulated emission are determined by atomic
correlations or atomic noise, for which an important
role belongs to the pump mechanism. Upon regular
pumping, a laser or a micromaser can generate light,
which is characterized by a strict regularity of a photon
flux in time or by sub-Poisson statistics of photons [3].
Such properties of light are of direct practical interest
because in this case the noise is virtually absent.

However, the pump can produce correlated atoms.
The theory of micromaser operation based on the stan-
dard Lamb–Scully approach [4] proves to be invalid for
the description of a radiation source pumped in this
way. This is explained by the fact that the Lamb–Scully
method is based on a one-particle model, where the
atoms are assumed to be independent, and their corre-
lation, for example, of the “regular pump” type is intro-
duced phenomenologically [3]. Our approach is based
on the initial many-body problem describing the inter-
action of N two-level atoms with one mode of a high-Q
cavity. In paper [5], where the many-body approach
was also used, the nontrivial dynamics of operation of
1063-7761/02/9504- $22.00 © 20611
a micromaser field was found at the initial (but at the
same time quasi-stationary) stage of the evolution for
the Poisson statistics of injection of clusters consisting
of excited independent atoms. Therefore, the question
of how the initial state of atoms affects the properties of
radiation is, in our opinion, of independent interest.

The process of obtaining the states with a multipar-
ticle correlation is a separate problem, which we will
not consider here. We restrict ourselves only to some
types of the states that can be produced, for example,
using protocols of the quantum theory of information.
In this case, all N atoms are at once transferred to a cor-
related state, and therefore there is no need to discuss
separately the question about the regularization inside
such a cluster. Based on the many-body approach, we
derive the kinetic Fokker–Planck equation for the field
by using the formalism developed in paper [6]. How-
ever, because we assume that atoms do not interact with
each other, although they are in the correlated state, no
additional complications appear in Bardeen–Bogo-
liubov–Green–Kirkwood–Ivone chains. A special fea-
ture of the description of the field in the Fokker–Planck
approximation is that the statistics of radiation are
determined by atomic correlation functions of the order
no higher than the second. It follows from this, in par-
ticular, that two different states with the same diatomic
density matrix give the same statistics of radiation.

We consider the example of pumping that produces
two types of initial states. The first type is a separable
state with a classical correlation, which is described by
the N-particle density matrix

(1)f 1…N( ) λ0 0| 〉 0〈 |( ) N⊗ λ1 1| 〉 1〈 |( ) N⊗ ,+=
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where λ1 + λ1 = 1 and A⊗ N is the tensor product A ⊗
A … ⊗  A. In this state, any pair of atoms has a two-par-
ticle density matrix of the form

where λ0, 1 are the level populations. It seems that it is
impossible to prepare the N-particle state (1) within the
framework of a simple pump model, when atoms are
irradiated by a classical monochromatic wave. Indeed,
consider a set of N independent atoms interacting with
a classical wave. The initial entropy in this case is S =
NE1, where E1 is the entropy of an individual atom. Let

The pumping process can be considered as a unitary
evolution retaining entropy, which is S ' = E1 for the
state described by expression (1). Therefore, no corre-
lations will appear between the atoms. In other words,
a classical monochromatic field does not produce cor-
relations.

The states of the second type are inseparable or
entangled, the particles having a special quantum cor-
relation. Such states were obtained experimentally [7].
A nontrivial example of the decay of two atoms inter-
acting with a common thermostat, when entangled
atomic states appear even in the absence of a direct
interatomic interaction, was considered in [8].

One of the states considered by us belongs to the
GHZ (Greenberger–Horne–Zeilinger) class:

(2)

where |α|2 + |β|2 = 1. For α = β = 1/ , the degree of
entanglement is maximum, while, for N = 2, the Ein-
stein–Podolsky–Rosen (EPR) pair appears. The state
(2) is pure, with a two-particle matrix (1). Assuming
α = 0, we obtain the case of N independent atoms, each
of them being in the state |1〉 , which we consider the
upper state for definiteness. If the pump produces such
atoms, then micromaser emission will have the sub-
Poisson photon statistics, as in the case of a model with
regular pumping, the Fokker–Planck equations being
completely coincident in these two cases. This means
that the monoatomic model of a maser with regular
pumping is equivalent to the case considered by us,
when all the independent atoms produced upon pump-
ing occupy the upper level.

The second entangled state, which we consider here,
has the form

(3)

where

f 1 2,( ) λ0 00| 〉 00〈 | λ 1 11| 〉 11〈 | ,+=

E1 λ1 λ1 1 λ1–( ) 1 λ1–( ).log–log–=

GHZN| 〉 α 0| 〉 N⊗ β 1| 〉 N⊗ ,+=

2

ζ| 〉 α bb| 〉 β Ψ+| 〉 ,+=

α 2 β 2+ 1, Ψ+| 〉 01| 〉 10| 〉+

2
------------------------,= =
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b = 0, 1. Each atom in this state has coherence or polar-
ization. Therefore, the phase of light generated in this
case will be constant. We found the conditions under
which the field generated from the cavity had the sub-
Poisson photon statistics.

The main goal of our paper is to derive the kinetic
equation for the operation field when pumping pro-
duces correlated atoms. Based on the equation
obtained, we considered the characteristics of the
steady-state micromaser operation.

The paper is organized as follows. In Section 2, we
derive the kinetic equation in the Fokker–Planck
approximation by the method of adiabatic exclusion of
atomic variables. The behavior of atomic averages,
which determine the field statistics, is considered in
Section 3. In Section 4, we obtain the diffusion coeffi-
cients of the kinetic equation for different initial atomic
states, In Sections 5 and 6, we calculated noise of light
for two types of pumping producing classical and quan-
tum correlation.

2. BASIC EQUATIONS

Consider N identical two-level atoms in a high-Q
cavity, which interact with one cavity mode of the radi-
ation field during the time T. Let the frequency of a
mode of the electromagnetic field be equal to the work-
ing transition frequency. For the micromaser operation,
the approximations 1/T @ γ @ C are typical, where γ is
the decay rate of atomic levels and C is the decay rate
of the field mode. The density matrix F describing
atoms and the field at times shorter than T, when the
atomic relaxation can be neglected, satisfies the equa-
tion

(4)

Here,

d is the transition dipole moment; b† and b are the oper-
ators of photon creation and annihilation, respectively;
and the atomic operators Sxy are defined by the relations

(5)

t∂
∂

F ϑ F,[ ] ,=

ϑ i" 1– V ,–=

V i"g S10b S01b†–( ).–=

g d"
1– "ω

2L3
e0

--------------;=

Sxy sxy a( ),
a 1=

N

∑=

sxy a( ) x| 〉a y〈 | ,=

x y, 0 1,,=
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where |0〉a and |1〉a are the upper and lower states of the
atom a, respectively. Such collective atomic operators
obey the commutation relations

We will obtain the kinetic equation for the electro-
magnetic field by introducing for the density matrix F
the representation over the coherent states of the elec-
tromagnetic field [6]

(6)

The new density matrix Φ is an operator in atomic vari-
ables and a numerical function of the field. Its averag-
ing over atoms leads to the known Glauber–Sudarshan
quasi-probability or the P function. We can obtain the
equation for Φ [4], taking into account that

where the field operators are replaced by the complex
amplitudes α and α* and the derivatives ∂α from them.
The Hamiltonian ϑ0 obtained in this way describes the
interaction of atoms in a “classical” field with the com-
plex amplitude α and has the form ϑ0 = g(S01α* – c.c.).
The term containing the derivatives with respect to
complex amplitudes is defined by the relation

Let us represent Φ in the form

(7)

where f is the atomic density matrix for which SpAf = 1,
Π is the correlation density matrix, SpAΠ = 0, and the
averaging is performed over atomic variables. For the
quasi-probability P = SpAΦ, we can write the equation

(8)

Hereafter, the angle brackets denote the averaging of
atomic operators over the state that is described by the
density matrix f: 〈Sxy〉  = SpA(Sxyf), x, y = 0, 1. The prob-
lem of the interaction of atoms with the field described
by the Hamiltonian ϑ0 in which the field is represented
only by the complex number α has for f the form

(9)

Based on (4) and taking into account (8) and (9), we can
write the exact equation for Π . However, of great inter-
est is an approximate equation, which gives for the cor-
relation function Π a solution containing derivatives
with respect to α of the order no higher than the first.
Then, only second-order derivatives appear in equation
(8) for the field, and therefore P satisfies the Fokker–

Sij Skl,[ ] δ jkSil δilSkj.–=

F α2 Φ α( ) α| 〉 α〈 | .d∫=

ϑ F,[ ] ϑ 0 Φ,[ ] ∂ α DΦ( ),+

∂α DΦ( )
g∂ S01Φ( )

∂α
----------------------- H.c.+–=

Φ P f Π ,+⊗=

t∂
∂

P g
α∂
∂

S01〈 〉 P SpA S01Π( )+( ) H.c.+–=

t∂
∂

f ϑ 0 f,[ ] .=
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Planck equation. This leads to the following problem
for Π:

(10)

Assuming that the characteristic rate of the field
development is smaller than that of atoms (this approx-
imation is valid under conditions of the problem), we
can obtain a closed kinetic equation for P. Because T is
the characteristic time of the interaction of atoms with
the field, it is necessary to integrate the equations for P
in the interval from t to T + t. Let us introduce the large-
scale derivative

Taking into account that, in the time interval T, the field
does not develop, we obtain the kinetic equation

(11)

For simple relaxation models, the decay of a field mode
can be taken into account in this equation with the help
of an additional term, whose contribution will be pre-
sented below. Coefficients in (11) can be determined
from the solution to equations for density matrices f and
Π for the initial values f(0) and Π(0), for example, at
t = 0. Then, we can obtain the states of the field in the
cavity at the next moment T, assuming that T is much
smaller than the characteristic time of the atomic relax-
ation, which is neglected here. We can also specify a
state at the moment t, by introducing in this way the
pumping mechanism. Then, the atoms prepared by the
pump interact with a cavity mode during the time T,
which can be achieved in two ways. In the first case, the
atoms fly through the cavity for the time T by interac-
tion with the mode. The same time of interaction of dif-
ferent clusters with the mode can be achieved in mod-
ern experiments with a high precision. In the second
case, Q-switching is performed. In this case, the atoms
can be located, for example, in traps in the cavity, and
the Q-switching of the cavity is performed at the time
intervals T. In both cases, we can set t = 0 in the integral
in (11), assuming that the atomic state f(0) is specified
and the correlation of atoms and the field is Π(0) = 0.

The methods for producing active atoms play an
important role because they determine to a great extent
the properties of generated light. In the theoretical
description of the pumping mechanism, the method
applied for the solution of the problem proves to be
important. We derived the master equation within the
framework of an a priori many-atomic problem, where
the pump is introduced as the initial condition for the

t∂
∂ Π ϑ 0 Π,[ ] g α∂

∂
S01 S01〈 〉–( ) f H.c.+ P.–=

P T t+( ) P t( )–
T

------------------------------------
∂P
∂t
------.=

t∂
∂

P t( ) g
1
T
--- t'd

t

T t+

∫–=

× α∂
∂

S01 t'( )〈 〉 P t( ) SpA S01Π t'( )( ) H.c.+ +[ ]
 
 
 

.
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atomic density matrix and is explicitly taken into
account with the help of such parameters as the atomic-
level populations and the number N of atoms. To write
the kinetic equation for the field, common approxima-
tions should be used, assuming that the time T of the
interaction of the atoms with the cavity mode is much
shorter than the lifetime of the atoms at working levels
and than the photon lifetime in the cavity. However,
during times of the order of T, the number of atoms as
a parameter specified by the pump can change, for
example, arbitrarily [N = N(t)]. This circumstance was
taken into account, in the case of the pump described by
the Poisson statistics, in [3], however, within the frame-
work of the initial monoatomic approach, in which N =
rT, where r = r(t) is the rate of injection of active atoms
to the cavity. This method was used for the description
of a regular excitation of atoms by modifying in a phe-
nomenological way the procedure of deriving the equa-
tion presented in [3]. Physically, regular pumping
means that each atom flying into the cavity is in the
upper level, so that N = rT of identical atoms are always
found in the cavity after the time T of interaction with
the mode. In the case under study, we assume that the
number N of atoms after pumping does not depend on
time. Physically, this is equivalent to a regular excita-
tion, which produces the sub-Poisson photon statistics.
However, we can consider a different optical scheme in
which N atoms are in the cavity rather than injected to
it. Then, using, for example, Q-switching, we can
switch the interaction with the field during the time
intervals T separated by the time interval, which is far
longer that all other characteristic times, and the initial
state of the atoms can be prepared by cloning. The clon-
ing of telecloning protocols allows one to obtain at once
N copies or transfer all the atoms to the same state. This
property is attractive from the point of view of regular
pumping, which solves the problem of preparing many
atoms in the same state.

3. ATOMIC AVERAGES

According to (8), the behavior of the electromag-
netic field is governed by the atomic averages of two
types, 〈Sp(t)〉  = SpA(Spf(t)) and SpA(SpΠ (t)), where p =
0, 1, 2, 3 or p = 00, 01, 10, 11 in the binary representa-
tion. The atomic averages describe a semiclassical
behavior of light and its noise and are calculated from
one- and two-particle density matrices.

The averages of the type 〈Sp(t)〉  = N〈sp(t; 1)〉  for
identical atoms are expressed in terms of monoatomic
averages 〈sp(t; 1)〉  = Sp(spf(t; 1)), which are calculated
from the one-particle matrix f(t; 1) = Sp2…N f(t; 1…N).
Here, the total density matrix f = f(t; 1…N) describing
N atoms cannot be factorized due to the properties of
pumping, which can produce correlated atomic states.
JOURNAL OF EXPERIMENTAL 
A different situation appears in calculating averages
over the correlation matrix Π . By integrating (10), we
find that they are determined by the variances of many-
atomic operators

(12)

where the two-dimensional correlation functions Dpq(t,
t ') (p, q = 0, 1, 2, 3) have the form

(13)

and the Heisenberg operators Sp(t) are averaged over
the initial state f(t = 0; 1…N) of atoms. It is assumed
that atomic operators in (12) commute with operators
of differentiation with respect to the complex ampli-
tude, which is a typical condition for the Fokker–
Planck approximation [6] used in the derivation of the
kinetic equation. Variances can be expressed in terms of
one- and diatomic correlators

(14)

Here, to calculate averages appearing in the diffusion
coefficients in the kinetic equation, the two-particle
matrix f(t = 0; 12) is required along with the one-parti-
cle matrix. This means that, in the Fokker–Planck
approximation, the noise of light interacting with atoms
is determined only by diatomic correlation functions.

The evolution operator for the problem (9) can be
readily written in the case under study. The Hamilto-
nian ϑ0 is a sum of monoatomic interaction Hamilto-

nians , ϑ0(a) = g(s01(a)α* – H.c.). Therefore,
the evolution operator U(1…N) represents a product of
one-particle operators, for which the closed expres-
sions

(15)

can be written. Here,

By using (15), we can calculate the atomic correla-
tion functions in the Heisenberg representation, in
which the one-particle operator has the form

(16)

SpA SpΠ t( )( ) g t'd

0

t

∫–=

× α∂
∂

Dp01 t t',( )
α∗∂
∂

D10 p t' t,( )+ P t( ),

Dpq t t',( ) Sp t( )Sq t'( )〈 〉 Sp t( )〈 〉 Sq t'( )〈 〉 ,–=

Dpq t t',( )

=  N sp t; 1( )sq t'; 1( )〈 〉 sp t; 1( )〈 〉 sq t'; 1( )〈 〉–[ ]
+ N N 1–( ) sp t; 1( )sq t'; 2( )〈 〉 sp t; 1( )〈 〉 sq t'; 1( )〈 〉–[ ] .

ϑ 0 a( )
a∑

U 1…N( ) U 1( ) N⊗ ,=

U 1( ) U≡ tϑ 0 1( )( )exp µ νs10 1( ) ν∗ s01 1( )–+= =

µ g α t( ), νcos
α
α
------ α t( ).sin–= =

sp t; 1( ) Rpq t( )sq 1( ),
q

∑=
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where p, q = 0, 1, 2, 3 and the unitary matrix Rpq is
defined by the expression

(17)

By using (16), we can find the variances of atomic oper-
ators Dpq(t, t'), which are expressed in terms of the ini-
tial monoatomic averages as

(18)

where p, q, P, Q = 0, 1, 2, 3. The initial correlation func-
tion DPQ(0, 0) is defined by expression (14), where t =
t' = 0. Its form is determined by the mechanism of the
pump producing the initial state f(t = 0; 1…N) of the
atoms.

4. FOKKER–PLANCK EQUATION 
AND DIFFUSION COEFFICIENTS

The kinetic equation for the field in the Fokker–
Planck approximation in polar coordinates I = |α|2, ϕ =

 takes the form

(19)

Here, coefficients at the first derivatives depend only on
one-particle averages

(20)

unlike the diffusion coefficients, which are expressed in
terms of diatomic variance

(21)

where θuv = θvu, θIϕ = 1, θϕϕ = 1/(4I), θII = I, 

(22)

Rpq

µ2 µν– µν∗– ν 2

µν µ2 ν2– µν–

µν∗ ν∗ 2
– µ2 µν∗–

ν 2 µν µν∗ µ2 
 
 
 
 
 
 

.=

Dpq t t',( ) RpP t( )RqQ t'( )DPQ 0 0,( ),
PQ

∑=

αarg

t∂
∂

P
u∂

∂
Au

1
2
--- ∂2

∂u∂v
--------------Quv+

u v, I ϕ,=

∑ 
 
 

P.=

AI
g I

T
--------- t iϕ–( ) s01 t; 1( )〈 〉 H.c.,+expd

0

T

∫–=

Aϕ
g

2 IT
------------- ti iϕ–( ) s01 t; 1( )〈 〉 H.c.,+expd

0

T

∫–=

Quv θuv
g2

T
----- t t'quv t t',( ),d

0

t

∫d

0

T

∫=

qIϕ qϕ I i 2iϕ–( )D11 t t',( ) c.c.,+exp–= =

qϕϕ D21 t t',( ) 2iϕ–( )D11 t t',( ) c.c.,+exp–=

qII D21 t t',( ) 2iϕ–( )exp D11 t t',( ) c.c.+ +=
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To find the coefficients in the Fokker–Planck equa-
tion in the explicit form, it is necessary to specify the
initial state f(t = 0; 1…N) of atoms prepared by the
pump. By using the evolution law (18), we can obtain
general expressions for the diffusion coefficients. Thus,

(23)

The expression for qϕϕ is obtained from qII by replacing
the sign exp(–2iϕ)  –exp(–2iϕ),

(24)

If the emitting atoms are placed in the cavity, we
should include in the Fokker–Planck equation [19] the
relaxation term, which describes the radiation emer-
gence from the cavity. For simple models, the decay of
the electromagnetic field can be taken into account by
adding to (4) the relaxation operator in the Lindblood
form

where the constant C/2 is determined by the transmis-
sion coefficients of cavity mirrors and is equal to the
decay rate of the field amplitude. The consideration of
the field decay leads to the substitution AI  AI + CI.
As a result, steady-state operation regimes can appear,
in which the diffusion coefficients directly determine
the noise of light.

One of the main characteristics of the radiation sta-
tistics is the Mandel parameter ξ, which determines the
deviation of the variance of the number of photons from
the Poisson distribution:

where n = b†b is the operator of the number of photons.
In the representation adopted, ξ = 〈e2〉/〈I〉 , where e = I –
〈I〉  describes the deviation of the intensity from its aver-
age value

If the intensity fluctuations are small and are indepen-
dent of phase fluctuations, then it follows from (19) that
the diffusion coefficient QII determines the Mandel
parameter

(25)

qII 2R20 t( )R1Q t'( ) D0Q D3Q–( ){
Q 0, …, 3=

∑=

+ 2R11 t( ) 1–[ ] R1Q t'( ) D2Q 2iϕ–( )exp D1Q+[ ] c.c.+

qIϕ i 2R11 t( ) 1–( )R1Q t'( )
Q 0, …, 3=

∑–=

× 2iϕ–( )D1Qexp c.c.+

+ F( ) C
b†bF bFb†– H.c.+

2
-----------------------------------------------,–=

n2〈 〉 n〈 〉 2– n〈 〉 1 ξ+( ),=

I〈 〉 α2 P α( ) α 2.d∫=

ξ QII I〈 〉Γ( ) 1– ,=
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where

is the rate of decay of intensity fluctuations. If a field
state is classical, then its Mandel parameter is nonneg-
ative. For nonclassical states, ξ < 0, and therefore the
main criterion for the presence of the sub-Poisson sta-
tistics is the inequality QII < 0.

5. OPERATION IN ATOMS
WITH A CLASSICAL CORRELATION

Let us assume that the pump produces correlated
atoms in the states of type (1) or (2) for N ≥ 3. Then,

(26)

(27)

where λ0 = |α|2 and λ1 = |β|2 are the populations of the
lower and upper levels, respectively. In this case, the
diffusion coefficients in [19] take the form

(28)

where b = g T and the contribution from the diatomic
correlation, which is produced by pumping, for both
states is represented by the term

If all the atoms are independent or only one atom is
present, then 0 = 0. Note that the atomic correlation in
the example under study, which is produced by pump-
ing, affects only the intensity noise, while the phase
undergoes a usual diffusion and proves to be insensitive
to these properties of the initial state of the atoms.

Consider the question about the appearance of non-
classical states of the operation field. The master equa-
tion (19), in which diffusion coefficients are defined
according to (28), describes the steady-state regime of
maser operation, which can be analyzed in the approx-
imation of small fluctuations. Then, assuming that e =
I – 〈I〉  ! 〈I〉 , where the average intensity can be deter-
mined from the semiclassical operation equation

(29)

Γ C
∂Ai

∂I
-------- 

 
I I〈 〉=

+=

f t 0 1,=( ) λ0 0| 〉 0〈 | λ 1 1| 〉 1〈 | ,+=

f t 0 12,=( ) λ0 00| 〉 00〈 | λ 1 11| 〉 11〈 | ,+=

QII
N
T
---- 1

2
--- b 2λ1 1–( )b b bcossin+sin

4
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---+ 1 λ1–( ) bsin
2

2λ1 1 λ1–( ) bsin
4

+ 0,+

Qϕϕ
N

8I2T
----------- b2 2λ1 bsin

2
bsin

2
–+[ ] ,=

QIϕ 0,=

I

0
N
T
----2 N 1–( )λ1 1 λ1–( ) bsin

4
.=

t∂
∂

I〈 〉 C I〈 〉 N
T
---- λ1 λ0–( ) Bsin

2
,+–=
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we obtain for the Mandel parameter the expression

(30)

where B = g T. By using (30), we find the photo-
current spectrum or the noise of light, which is detected
with a photodetector in the usual scheme of homodyne
detection

(31)

Here, the shot noise level is assumed equal to unity, and
a low-frequency part of the spectrum near the zero fre-
quency is chosen. For the operation regime to be stable,
the conditions λ1 > λ0 and 1 – B  > 0 should be sat-
isfied.

Due to the positive contribution 0 of diatomic cor-
relations produced by pumping, the Mandel parameter
is always nonnegative, so that no nonclassical states
appear.

Let 0 = 0. This means, for example, that the pump
produces N independent atoms in a pure state, which
occupy the upper level f(t = 0, 1…N) = (|1〉〈 1|)⊗ N. Then,
due to the negative term –sin4b/2 in the expression for
the diffusion coefficient QII, ξ  –1/2, and the shot
noise can be almost completely suppressed. For the
maser operation regime, this result was obtained
assuming regular pumping, which was introduced phe-
nomenologically [3]. It follows from the above discus-
sion that nonclassical states of the field with suppressed
noises appear when the pump produces independent
atoms in a pure state at the upper level, i.e., when λ1 =
1, or there is only one excited atom (N = 1, λ1 = 1) in
the interaction region. If the initial state of atoms has a
classical correlation of the type (27), then this correla-
tion enhances the operation-field noise by destroying a
nonclassical state of light.

6. OPERATION IN ENTANGLED ATOMS

Recall that micromaser operation can occur even
when the number of atoms in the active region is small
[2]. It would be interesting, in our opinion, to study the
characteristics of emission of two entangled atoms with
a quantum correlation of the type of the EPR pair,
whose state is described by the function |ENT〉  =
α|00〉  + β|11〉 , which is obtained from (2) for N = 2. The
nonclassical nature of the pair will be manifested the
most completely when the particles are entangled to the

greatest extent (|α| = |β| = 1/ ). The latter equality
means equal populations of the upper and lower levels
of an atom in a entangled state with the density matrix
of type (26), where λ0 = λ1 = 1/2. Such an atom has no
polarization or coherence, so that no steady-state oper-

ξ
QII

2λ1 1–( ) Bsin
2

1 B Bcot–( )
------------------------------------------------------------------ T

N
----,=

I〈 〉

i 2( ) 1 2ξ 1
1 B Bcot–
-------------------------.+=

Bcot

2
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ation appears in most strongly entangled EPR atoms in
the above approximations.

Consider now the entangled atomic state ζ defined
by expression (3), for which

(32)

where b = 0, 1. In this state, in an atom, along with the
coherence

where 8 = |αβ|, there exists the population inversion at
the working transition:

For b = 1, the working transition will be amplifying.
The specific feature of the atomic states under study is
manifested already in calculation of monoatomic aver-
ages. The values of populations and polarization for a
two-level atom cannot be arbitrary. Thus, the maximum
value of coherence, which appears upon irradiation of
the atom by a classical monochromatic wave, is
|〈s10(1)〉| ≤ 1/2. In the case under study, the value of

polarization is lower by a factor of , which is typical
for a entangled state.

The presence of an atomic coherence leads to two
specific features. First, a steady-state operation can
appear if the population of the upper level is smaller
than that of the lower level. Second, because of the
phase locking, instead of diffusion the distribution of
the phase ϕ of the generated field becomes steady-state.
The phase distribution yields the equation

(33)

which has a steady-state solution leading to a certain
phase in the steady-state operation regime:

(34)

This equality follows from the condition of the steady-
state-phase stability. In the approximation of small
phase fluctuations, µ = ϕ – ϕ0, µ ! 1, we have

(35)

f t 0; 1=( ) α 2 b| 〉 b〈 | β 2
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s01 0( )〈 〉 1

2
------- 1 b–( )α∗ b bαβ∗+[ ]=

=  
8

2
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∂ µ Γµµ,–=
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where the coefficient

determines the decay rate of phase fluctuations and
should always be positive, Γµ > 0.

The initial atomic coherence results in the appear-
ance of the additional term in the equation for the aver-
age intensity of radiation [cf. (29)]:

(36)

Here, the first term corresponds to the mode decay
caused by emission from the cavity. The second term
describes emission or absorption of a photon due to
inversion at the working transition, while the influence
of the atomic coherence is represented by the last term.
Note that, in (36), we have already used the steady-state
condition (34) for the phase. The gain, which is deter-
mined by the sum of the last two terms in (36), differs
from that calculated for the monoatomic model [9].
First, in the case under study, the parameter α cannot be
zero, and therefore operation of light based directly on
the atomic coherence is impossible. Second, the term
describing the influence of coherence differs by a factor

of  from the value obtained in other known cases,
which is caused by the specific properties of the state
(3). For b = 0, the second term in (36) becomes nega-
tive, which does not mean, however, that the operation
is impossible. As in a usual situation for a micromaser,
a series of almost periodic steady-state states appear
during the operation at any of the transitions under
study. The stability of these states can be analyzed
based on the equation for the intensity fluctuations

(37)

where, taking into account the steady-state condition
∂〈I〉/∂t = 0, the decay rate of the intensity fluctuations

(38)

obeys the condition Γe > 0.

The diffusion coefficients of the Fokker–Planck
equation (19), which determine the statistical charac-
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teristics of the generated radiation, taking into account
the steady-state solutions, have the form

(39)

where

The independence of the intensity and phase fluctua-
tions follows from the steady-state condition (34). Our
calculations showed that, for both initial states of the
atoms considered here and for all allowed steady-state
states of the light field, the diffusion coefficient Qϕϕ is
always positive. This means that no operation of phase-
squeezed light occurs, which is caused by a linear phase
locking of the atomic coherence and the field.

By using (25), where Γ  Γe, we will analyze the
radiation statistics. Of direct interest for observation is
not the Mandel parameter ξ but the value of the photo-
current from the emission detected at the cavity output
in the low-frequency region of the noise spectrum

(40)

Here, unity still corresponds to the detected shot noise,
and the quantum efficiency of a photodetector is
assumed equal to unity. The negative Mandel parameter
causes the suppression of the shot noise, which implies
the appearance of a nonclassical state of light with the
sub-Poisson photon statistics. The numerical analysis
of the expressions obtained suggests the following. In
the case of the initial state of atoms with the negative
inversion at the transition, b = 0, of the most interest are
the steady-state conditions with the maximum value of
the gain profile, which are observed for the atomic
coherence 8 ≈ 0.49. In this case, a series of almost
periodic operation regimes are realized, for which i (2) =
0.27, corresponding to the sub-Poisson light with a
noise suppression of 63%. This value is optimal for
such an initial atomic state. Recall that, in the mono-
atomic model [9], the optimum ultimate value of the
noise suppression is i (2) = 0.5. This improvement is
associated namely with the state under study and the
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manifestation of its characteristics both in steady-state
semiclassical equations (33), (36) and in the diffusion
coefficients. For an amplifying transition, b = 1, and
expression (39) for β = 0 transforms to (28) for N = 2
independent atoms. Recall that for independent atoms,
the conditions can be created under which the noise is
almost completely suppressed. In the case under study,
the noise is also almost completely suppressed in dif-
ferent almost periodic steady-state regimes. The noise
suppression is achieved by preparing the initial state in
such a way that only the upper level is predominantly
populated for both atoms (|α|2 @ |β|2). The presence of
even weak coherence at the transition results in a
strictly definite phase of the operation field, while the
negative diatomic contribution produces the sub-Pois-
son photon statistics and almost complete suppression
of the shot noise (i (2)  0).

7. CONCLUSIONS

We have obtained the kinetic equation for a single-
mode electromagnetic field interacting with N two-
level atoms in a high-Q cavity. Although it is assumed
that the atoms do not interact with each other, their ini-
tial state prepared by pumping can be uncorrelated in
the general case. This requires the consideration of a
many-atomic problem. The kinetic equation was writ-
ten for the Glauber P function in the Fokker–Planck
approximation, where coefficients are determined only
by one- and diatomic correlation functions. This means
that, in this approximation, all the many-atomic states
with identical one- and two-particle density matrices
give the same radiation statistics. We considered the
micromaser operation when the relaxation from the
working levels can be neglected. The presence of a clas-
sical diatomic correlation enhances the noise of the
generated light compared to the case of independent
atoms whose emission has the sub-Poisson photon sta-
tistics. In a special case of a entangled state of type (3),
a field can be generated with a certain steady-state
phase and ultimately suppressed noise of the homodyne
detection.
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Abstract—A hypothesis is considered that the reactions p + He  H + He+ and p + He  H + He++ + e
at very small scattering angles of hydrogen can be used for the angular spectroscopy of electron correlations in
a target. It is shown that this hypothesis is inconsistent. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A number of sufficiently fine experiments have been
carried out over the last several years on the capture of
an electron by a fast proton from a helium target,
including those with a simultaneous transfer ionization
process. With the use of a unique cold target recoil ion
momentum spectroscopy (COLTRIMS), all indepen-
dent kinematic characteristics of the final products of
reactions were measured: the polar and azimuthal
angles of hydrogen, as well as the momentum and
energy of a He++ ion [1–3]. The azimuthal scattering
angle θp of hydrogen was as small as 0.1–0.5 mrad,
which is about 100 times less than that obtained in ear-
lier experiments of this type. The proton energy Ep

ranged from 0.15 to 1.4 MeV.

The singly differential cross section dσ/dθp of these
reactions in the range of θp from 10 to 1000 mrad rep-
resents a sufficiently smoothly and rapidly decreasing
function, which is satisfactorily described within the
continuum distorted wave formalism [4, 5]. At angles
of θp = 0.1–0.3 mrad, this curve attains its principal
maximum (not counting relatively small Thomas peaks
at appropriate scattering angles [6, 7] greater than
0.5 mrad).

The authors of the experimental works [1–3] sug-
gested that the reaction p + He  H + He++ + e in this
range of extremely small scattering angles θp can be
used for obtaining new and extraordinary information
on the structure of the wave function of the target in the
momentum representation. The present paper is
devoted to the theoretical analysis of this concept.
Throughout this paper, we use atomic units.
1063-7761/02/9504- $22.00 © 20620
2. THEORY

For brevity, we will call the reaction

(1)

a simple capture (SC) reaction and

(2)

a transfer ionization (TI) reaction. We will also use the
following notation: vp (pp) is the proton velocity
(momentum), vH (pH) is the hydrogen velocity (momen-
tum), k is the momentum of the escaped electron, K is
the momentum of the residual ion, and E is the total
energy of the system. In atomic units, the proton mass
is m = 1836.15 and the ion mass is M ≈ 4m. In addition,
we introduce the transferred momentum

First, consider the TI reaction. In the notation intro-
duced, the energy and momentum conservation laws in
the laboratory system of coordinates are expressed as

(3)

and

(4)

respectively. Here,  = –2.903 and  = –0.5. For

convenience, we introduce the quantity Q =  –  =
–2.403.

The proton energy Ep ranges from 0.15 to 1.4 MeV,
which corresponds to v p = 2.45–7.49. At the same time,

p He H He+++

p He H He++ e+ ++

q pH pp– m 1+( )vH mvp.–= =

K k q+ + 0=

E
pp

2

2m
------- E0

He+
pH

2

2 m 1+( )
--------------------- k2

2
---- K2

2M
-------- E0

H,+ + += =

E0
He E0

H

E0
He E0

H
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it follows from the experiments that the measured val-
ues of the ion momentum and the transferred momen-
tum at very small angles θp only amount to a few atomic
units; this fact allows one to neglect the energies K2/2M
and q2/2m as compared with other terms in Eq. (4). We
stress that this can only be done at very small angles
θp = 0.1–0.5 mrad, when the helium ion remains at rest.
At larger scattering angles, the proton–nucleon (pN)
Coulomb interaction begins to play an increasing role,
which significantly increases the transferred momen-
tum and the momentum of the residual ion, which starts
to move. Under the approximations made, it follows
from (4) that

(5)

If we choose the proton velocity vector as the z axis, we
have q = (q⊥ , qz), where

(6)

and q⊥  = mv psinθp ≈ mv pθp. Note in passing that
Eqs. (3)–(5) allow one to determine the total momen-
tum of the electron provided that the momentum of the
ion has been measured, to obtain appropriate con-
straints, etc.

For the SC reaction, Eqs. (3) and (4) are rewritten as

(7)

and

(8)

where  = –2. Here, it is convenient to introduce a

quantity Q' =  –  –  = –0.403. Equation (6)
is modified as follows:

(9)

Now, we pass on to the dynamics of the processes.
Let us write the Hamiltonian of the system p + He as

(10)

where

(11)

Next, we use the following notation: |Φ0〉  is the wave
function of the helium atom at rest in the ground state;

vpq
1
2
---v p

2 1
2
---k2– Q.+=
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2
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2v p

------------------–=

K q+ 0=

pp
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H E0
He+
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He+
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2
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v p

------.+=

* *p *He V pHe,+ +=

*p pp
2 /2m,=

*He k1
2/2 k2

2/2 V Ne1
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Vee,+ + + +=

V pHe V pe1
V pe2

V Np,+ +=

V V pHe V Ne1
V Ne2

Vee.+ + +=
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|pH, ϕH〉  is the wave function of the hydrogen atom in
the ground state that moves at velocity vN; and |K, ϕ–(k)〉
is the wave function of the electron in the field of the
ion He++ with momentum K (in the case of the SC reac-
tion, one should take the function |ϕ0〉  of the bound
electron instead of |ϕ–(k)〉).

We consider a helium atom in a singlet state; there-
fore, it is convenient to represent the amplitude of the
TI reaction with regard to all the necessary symmetries
as follows:

(12)

where

is the full Green’s function of the problem and |Ψout〉  is
determined from the equation

where Vout = Vee + VpN.

The amplitude (12) is exact, and the final state rep-
resents the wave function of two noninteracting elec-
trons in the field of two centers that move relative to
each other. Here, we consider the approximation of this
complicated function by its asymptotic value, i.e., by
the normalized combination of functions

which is symmetric with respect to the electron coordi-
nates. Even this simplification leaves open the problem
of correct normalization, which requires the orthogo-
nalization of all components. However, considering the
velocity v p as a large parameter in the problem, one can
neglect the cross-terms in the normalization integral
and obtain an approximate normalization factor of N =

1/ .

Formula (12) clearly shows that the term in the first
Born approximation in VpHe in problems with rear-
rangement is largely determined by the choice of the
output potential Vout, i.e., by the interaction in the final
state; therefore, this term does not provide a suitable
approximation for the amplitude 7 even for a large
energy E. However, we will consider this term because
it is this term that includes the simplest mechanism
when one electron is captured immediately by a proton
from an atom, while the other is emitted by the He+ ion
due to the shake-off process of the internal electric field
in the atom. Indeed, leaving only VpHe in (12) and cal-
culating the matrix element, we obtain

(13)

7 ppΦ0〈 |V pHe 1 G E( )Vout+[ ] Ψ out| 〉 ,=

G E( ) E *p– *He– V– iε+( ) 1–
=

E H0– V Vout)–(–[ ] Ψ out| 〉 0,=

rp r1 r2 rN, , , pH ϕH; K ϕ– k( ),,〈 〉 ,

2

70 4π 2
xd

2π( )2
-------------

ϕ̃H x( )
vp q x–– 2
---------------------------- F q; 0; k( )[∫–=

+ F vp x; vp– q x; k+ +–( ) 2F vp x; 0; k–( )– ] ,
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Fig. 1. Singly differential cross section dσ/dθp for the reaction p + He  H + He+ calculated with the use of the following func-
tions: (solid curve) CVP, (squares) BK, and (triangles) Hy for four different values of the collision energy Ep: (a) 1.4, (b) 0.8, (c) 0.4,
and (d) 0.15 MeV. Relative error of the experiment (circles) in case (a) is no greater than 10% in the range of angles considered.
where

(14)

(the tilde over the functions denotes the momentum
representation of these functions). Invoking the equa-
tion for the hydrogen wave function in the momentum
representation,

(15)

whose normalized solution

(16)

F y; h; k( ) iy– r1 ih r2⋅–⋅( )exp∫=

× ϕ–* k r2,( )Φ0 r1 r2,( )dr1dr2

=  
xd

2π( )3
-------------ϕ̃–* k x,( )Φ̃0 y h, x+( )∫

E0
H x2

2
-----– 

  ϕ̃H x( ) x'd

2π( )3
------------- 4π–

x x'– 2
------------------ϕ̃H x'( ),∫=

ϕ̃H x( ) 8 π
1 x2+( )2

---------------------=
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is well known, we obtain

(17)

This is nothing but the first term in the sum (13), which
corresponds to the shake-off process described above.
Note that the electron captured by a proton has momen-
tum q, and the process described by formula (17) is a
purely quantum one, which has nothing to do with the
classical resonant capture. The second term in (13) rep-
resents the exchange term, and the third term corre-
sponds to the Coulomb interaction of a proton with the
nucleus in the first Born approximation.

Here, we restrict our attention to the amplitude (17)
since the quantity

(18)

represents the Fourier transform of the coordinate wave
function of the helium atom; according to the hypothe-
sis of the authors of the experiments, it is this term that
should dominate in the general amplitude (12) and pro-

70
1( ) 4 2π

1 vp q– 2+
-----------------------------F q; 0; k( ).–=

F q; 0; k( ) iq– r1⋅( )exp∫=

× ϕ–* k r2,( )Φ0 r1 r2,( )dr1dr2
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Fig. 2. Same as in Fig. 1 for the reaction p + He  H + e + He++. Relative error of the experiment (circles) in case (a) is no greater
than 20% in the range of angles considered.
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vide information on the correlation structure of the
wave function Φ0(r1, r2) in the range of very small
angles θp. Note that a function of type (18) appears in
the amplitude of the process (e, 3e) [8, 9]; it was dem-
onstrated that this process provides a powerful tool for
the angular spectroscopy of e–e correlations in the tar-
get under investigation.

In the case of the SC reaction, the amplitude is given
by (17); however, one should replace the amplitude

ϕ−*(k, r) in integral (18) by ϕ0(r) = exp(–2r).

The differential cross section of the TI process is
represented as

(19)

The singly differential cross section, which we calcu-
lated, follows from (19):

(20)

8/π( )

d5σ 7 2

v p
2

----------
dq⊥

2π( )2
------------- dk

2π( )3
------------- m2

2π( )5
------------- 7 2

dΩHdk.= =

dσ
dθp

---------
m2θp

2π( )4
------------- 7 2 k.d∫=
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For the SC reaction, formula (20) reduces to

. (21)

3. RESULTS OF CALCULATIONS 
AND DISCUSSION

Figures 1 and 2 represent the calculated cross sec-

tions (20) and (21) with the amplitude . In these
calculations, we used the following three functions
Φ0(r1, r2):

(1) the simplest of the Hylleraas functions [10]

(indicated by the symbol Hy);
(2) one of the best functions of Bonham and Kohl

[11] (number 17, denoted by BK);
(3) yhe factorized 12-component correlated varia-

tional function [12], denoted by CVP, which was
designed by the authors specially for the present study.
The experimental results are borrowed from [1].

dσ
dθp

---------
m2θp

2π
------------ 7 2

=

70
1( )

Φ0 r1 r2,( ) Z3

π
----- Z r1 r2+( )–[ ] , Zexp 27

16
------= =
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We should immediately point out several features of
the processes considered. First, the value v p ≈ 7 in the
upper limit of the range of proton energies allows us to
treat the proton velocity as a large parameter in the
problem. The transferred momentum q ≥ v p/2 also is a
large parameter; this fact distinguishes the capture reac-
tion from the reactions (e, 2e) and (e, 3e), where this
parameter is small (q ~ 0–2). On the other hand, if, by
analogy with the processes (e, 2e) and (e, 3e), we cal-
culate the velocity v p for the energy of the initial elec-
tron, then this energy will correspond to 700 eV in the
upper limit, which is obviously insufficient for the
impulse approximation.

Second, one can easily show that  ∝   in the
case of a simple separable function Hy. Other, more
correlated, functions also have the same order of small-
ness. However, if we analyze (at least qualitatively) the
second Born approximation [13], or more accurately
calculate the two-center function Ψout in (12), then
we can see more terms of the same order. Thus, one

should not expect that  is a suitable approximation
even for asymptotically large v p.

These features are manifested in the figures. In the
case of the SC reactions, all the calculated results virtu-
ally coincide but appreciably differ from the experi-
mental results: (1) the absolute values in the maximum
for Ep = 1.4 MeV differ approximately by a factor of
six; (2) the maximum itself is shifted toward smaller
scattering angles; and (3) the shapes of the curves do
not coincide (the experimental curve decays much
more slowly after the maximum).

The same applies to the TI reactions, although the
results of calculations for correlated and uncorrelated
functions are different, as was to be expected.

The comparison of the theoretical and experimental
results shows that, even for very small angles when the

amplitude  seems to dominate and carry certain
exclusive information on electron–electron correlations
in the target, corrections due to other mechanisms in the
first and second Born approximations are sufficiently
large so that the reaction p + A  H + e + A++ cannot
be considered useful for the method of angular spec-
troscopy of correlations.

70
1( )

v p
6–

70
1( )

70
1( )
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Abstract—Short laser pulses can be significantly amplified in the process of Raman backscattering in plasma
inside an oversized dielectric capillary. A dielectric capillary allows obtaining high intensities of the output radi-
ation by sustaining efficient amplification at large distances compared to the diffraction length. The efficiency
of the interaction between the pump wave and the amplified pulse is shown not to be critically sensitive to the
transverse structure of the wave fields. For a quasi-single-mode initial seed pulse and a low pump intensity, the
amplified pulse tends to preserve its transverse structure due to nonlinear competition of the capillary eigen-
modes. At a high power of the pump wave, multimode amplification always takes place but the growth of the
front peak of the pulse still follows the one-dimensional model. The Raman backscattering instability of the
pump wave resulting in the noise amplification can be suppressed in detuned interaction by chirping the pump
wave or arranging an inhomogeneous plasma density profile along the trace of amplification. The efficiency of
the desired pulse amplification does not significantly depend on detuning in the case of a smooth detuning pro-
file. Density inhomogeneities are shown to exert less influence on the amplification within a capillary than in
the one-dimensional problem. Parameters of a future experiment on the Raman amplification of a short laser
pulse inside a capillary are proposed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Laser intensities inside conventional amplifiers are
limited to gigawatts (GW = 109 W) per cm2, above
which a nonlinear modification of the material refrac-
tion index causes unacceptable distortions of the laser
pulses [1]. The chirp pulse amplification technique
allows increasing the output intensities by means of the
longitudinal compression of laser pulses after their ampli-
fication [2]. The compression is usually performed by
means of metallic diffraction gratings, which can survive
intensities not larger than tens of TW/cm2 (TW = 1012 W)
[1]. One of the most promising ways for further increas-
ing the output intensities consists in using the advan-
tages of plasma technology [3]. Replacing all the major
elements of the amplification–compression scheme by
one element containing fully ionized plasma capable of
acting as the stretcher, the nonlinear amplification
medium, and the compressor simultaneously is cheaper
and more adequate compared to the extensive develop-
ment of traditional solid-state devices.

Currently, significant attention is attracted to the
problem of generating ultraintense laser pulses in plas-
mas by means of the Raman backscattering process [3].
In this process, the seed pulse amplification follows the
resonant excitation of a plasma wave provided by the
beating of the seed pulse and the counterpropagating

¶This article was submitted by the authors in English.
1063-7761/02/9504- $22.00 © 0625
pump wave. The pump wave energy is primarily
absorbed by the front part of the amplified pulse, which
results in compression of the latter. By means of the res-
onant mechanism discussed in this paper, the amplified
pulse duration can be decreased to the period of Lang-
muir oscillations. In what follows, we term such pulses
as short, which corresponds to a femtosecond laser
pulse duration for realistic experimental conditions.
(As shown in [4], amplification of even shorter pulses
is possible via Compton backscattering, which remains
out of the scope of our study, although it represents a
process complementary to the Raman interaction of
laser waves.)

Compared to its solid-state analogues or plasma
amplifiers utilizing the interaction of copropagating
pulses, the scheme allows faster amplification, higher
maximum output wave intensities, higher thresholds
for developing plasma instabilities, and better limits for
the nonlinear pulse compression. Because of a relative
simplicity of the experimental implementation, the
Raman backscattering pulse amplification in plasmas
can successfully compete with more complicated tech-
niques of generating femtosecond laser pulses [2].

Conventionally, the problem of short laser pulse
amplification in the Raman backscattering process in
plasmas is considered within the framework of a one-
dimensional (1D) model, and the transverse structure of
the pulse is neglected [1, 3, 5]. But the transverse effects
2002 MAIK “Nauka/Interperiodica”
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can become important in the experimental implementa-
tion of the amplification scheme and further practical
applications. The study of the transverse effects was
recently started for the pulse interaction in vacuum [6],
where the amplification efficiency is significantly lim-
ited by the transverse diffraction of the amplified pulse.
An efficient interaction in a boundless medium is only
possible at distances small compared to the diffraction
(Rayleigh) length zR ~ kR2, where k = 2π/λ is a charac-
teristic wave number of the seed pulse and R is its char-
acteristic transverse scale. After the amplified pulse
passes the distance z @ zR, diffraction increases the
transverse scale of the pulse and, therefore, lowers its
intensity, which results in a decrease in the interaction
efficiency.

In order to maintain high interaction efficiency at
large spatial scales compared to zR, additional laser
pulse focusing must be applied. Because of the high
intensities of the amplified radiation, conventional
dielectric lenses cannot adequately focus the amplified
pulse. The problems of the refraction index distortion
or even the dielectric medium breakdown, which might
occur, can be eliminated using the channeling proper-
ties of a dielectric capillary that plays the role of an
optical waveguide for both the pump wave and the
amplified pulse. (A similar technique is often used in
other Raman media for pulse amplification with signif-
icantly lower wave intensities [7, 8].) In oversized
(R @ λ) dielectric capillaries, the field amplitude
decreases to the edges of the transverse waveguide
cross section and almost equals zero on the inner wall
of the tube [9]. Therefore, it is possible to have a field
amplitude higher than critical (with respect to the
breakdown of the dielectric material of the waveguide
walls) in the center of the capillary without damaging
its walls. These and other properties of channeling laser
pulses in the process of the Raman backscattering
amplification within a dielectric capillary are the main
subject of this paper.

The paper is organized as follows. In Section 2, we
give the basic equations describing Raman backscatter-
ing in plasmas. In Section 3, we revise some aspects of
the 1D Raman amplification problem. We consider the
capillary problem in Section 4, where we develop a
mode approach allowing quantitative and simple quali-
tative understanding of some phenomena occuring dur-
ing the laser pulse interaction inside a capillary. We also
generalize the conventional 1D linear theory of pulse
amplification by considering the interaction between
the capillary modes of the amplified pulse and discuss
some aspects of selective mode discrimination in capil-
laries. Single- and multimode amplification regimes are
discussed in Section 5 in detail. In Section 6, we discuss
the problem of detuned amplification. Some numerical
estimates and the summary of the main ideas are given
in Section 7. Specific features of the cylindric dielectric
capillary are discussed in the Appendix.
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2. BASIC EQUATIONS

Equations for vector electric fields describing parax-
ial propagation of laser pulses along the z axis can be
written as (see, e.g., [10, 11])

(1)

(2)

(3)

where the vectors a and b represent the slowly chang-
ing amplitudes of the respective electric fields

(4)

of the pump and the seed pulse, and f is the normalized
potential of the plasma wave electric field

(5)

where

Here,

is the plasma frequency, ne is the electron density, and e
and me are the electron charge and mass respectively.
We assume the rare plasma conditions ωp ! ωa ≈ ωb ≡
ω and kfλD ! 1, and therefore, ka, b ≈ ωa, b/c and the dis-
persion of plasma waves can be neglected (∂kωf ≈ 0). In
terms of the dimensionless amplitude a, the pump
intensity is

see [6].
It is useful to introduce the dimensionless equations

(6)

(7)

(8)

where

∂ta c∂za
ic2

2ωa

---------∇ ⊥
2 a–+ ωpbf ,=

∂tb c∂zb
ic2

2ωb

---------∇ ⊥
2 b–– ωpa f ∗ ,–=

∂t f iδωf+
ω
2
----b† a,⋅–=

Ea

mecωa

e
--------------- ia ikaz iωat–( ) c.c.+exp{ } ,=

Eb

mecωb

e
--------------- ib ikbz iωbt–( ) c.c.+exp{ }=

E f k f
0( )mecωp

e
---------------- f ik f z iωf t–( )exp c.c.+{ } ,=

k f
0( ) k f /k f , k f z 0( ) ka kb–( ),= =

ωf ωa ωb– ωp δω.–= =

ωp

4πnee
2

me

-----------------=

Ia πc mec
2/e( )2

a 2/λ2=

=  2.736 1018 a 2/λ2 µm[ ]  W/cm2,×

∂τa ∂za i 1 σ+( )∇ ⊥
2 a–+ bf ,=

∂τb ∂zb i∇ ⊥
2 b–– a f ∗ ,–=

∂τ f iδωf+ b† a,⋅–=

σ
ωa ωb–

ωb

------------------
ωp

ω
------  ! 1,∼=
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the time τ is measured in the units t0 = , the
longitudinal coordinate z is measured in the units ct0, f

is measured in , the transverse coordinate ρ is
measured in the units c(2ωpω3)–1/4, and the detuning δω
is measured in the units .

For further analysis, it is convenient to introduce the
coordinate ζ = τ + z (in what follows, this change of
variables is called the shift to the reference frame mov-
ing together with the amplified pulse at the speed of
light). To describe the strongly nonlinear regime of the
amplification of a compressed pulse, it suffices to keep
only the ζ derivatives of a and f (the so-called quasis-
tatic approximation [1, 3]); the basic equations then
become

(9)

(10)

(11)

In the case of zero detuning, the basic equations are
invariant under the transformation

a  Ca, b  Cb,

f  Cf, τ  τ/C, ζ  ζ/C, ρ  ρ/

Therefore, the specific value of the pump amplitude
a0 = a(z  –∞) is in fact not important in the sense
that the field dynamics for another value of a0 can be
obtained by a simple rescaling.

3. THE ONE-DIMENSIONAL PROBLEM
For better understanding of the qualitative phenom-

ena to be discussed in relation to the Raman backscat-
tering inside a capillary, it is useful to revise the basic
aspects of the conventional 1D problem first (see [1, 3]
for a detailed discussion). During the linear stage of
amplification, when the pump depletion is negligible,
a ≈ a0 = const, the solution to Eqs. (6)–(8) can be
obtained by the Laplace transformation and is given by
[1]

(12)

where we assume zero detuning (a constant detuning
can be removed from the evolution equations; the case
of the linear detuning ∂zδω = const is considered in
detail in [1, 5]). We note that the spatial coordinate –z
plays the role of time in Eqs. (12), measuring the inter-
val between the initial and the current positions of the
amplified pulse propagating along the z axis with a
fixed velocity equal to the speed of light.

2/ωωp

ω/2ωp

t0
1–

2∂ζa i 1 σ+( )∇ ⊥
2 a– bf ,=

∂τb i∇ ⊥
2 b– a f ∗ ,–=

∂ζ f iδωf+ b† a.⋅–=

C.

b ζ z,( ) ζ∂
∂

G ζ ζ '– z,( )b ζ' 0,( ) ζ',d∫=

G ζ z,( ) I0 2 η( ),=

η a0
2ζz,–=
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For η @ 1, we have

In the original variables,

and the maximum of G is therefore reached at z = –ct/2;

it increases with the peak growth rate γ = a0  as
exp(γt).

The linear approximation Eqs. (12) is valid until

remains small compared to unity; for larger e, a nonlin-
ear solution is formed. Because of the pump depletion,
only the front part of the seed pulse is then amplified,
which leads to the effective compression of the pulse.
Eventually, as the pulse becomes sufficiently short, the
quasistatic approximation (Eqs. (9)–(11)) becomes
valid, and for the real constant pump, the solution is
therefore given by

(13)

where U satisfies the sine-Gordon equation

(14)

Equation (14) has a family of self-similar solutions
(Fig. 1) U(τ, ζ) = U(η) that satisfy the equations

(15)

or

(16)

where we equate η with  because of the quasistatic
approximation. It is convenient to consider the solution
to Eq. (16) in the plane (U, Uξ), which can approxi-
mately be treated as the phase plane of a nonlinear
oscillator with the effective dissipation determined by
the term Uξ/ξ (Fig. 1). The absolute maximum of the
self-similar solution grows in time as

and the locations of the pulse maxima change as

The self-similar solution U(η) in Eqs. (15), (16) cor-
responds to the initial conditions

(17)

G 2 η( )/2 π η.exp≈

η a0
2ωωp t z/c+( ) z–( )/2c,=

ωωp/2

e τ( ) b z τ,( ) zd∫=

a a0 U/2( ),cos=

f 2a0 U/2( ),sin–=

b ∂ζU/ 2,=

∂τζ
2 U a0

2 U .sin=

ηUηη Uη+ Usin=

Uξξ Uξ /ξ+ U , ξsin 2 η ,= =

a0
2τζ

bmax a0
2τ 1 4 2π/e0( )ln+( ) 1–

, e0 e 0( ) ! 1,≡≈

ζmax ~ 1/bmax.

b z τ 0=,( ) b0 z( )≡ e0δ z( ),=
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Fig. 1. Self-similar profiles of |a(ξ)|/a0 (dotted decay), |f(ξ)|/a0 (dotted growth), |b(ξ)|/τ  (solid line) for e0 = 0.01 and the behavior

of the self-similar solution on the (U, Uξ) plane (dashed line represents the solution without the “friction” term Uξ/ξ; ξ =

2( (t + z/c)(–z)/2c)1/2).

a0
2
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2ωωp
which imply that

and which are therefore applicable for all ζ to the left of
the initial location of the seed pulse in the frame mov-
ing together with the amplified pulse. Consider now
what happens when the spatial scale of the amplified
pulse ∆(τ) becomes comparable to its initial spatial
scale ∆0 ≡ ∆(0), so that the delta approximation for ini-
tial conditions (17) therefore becomes invalid. In this
case,

does not determine the solution, and new initial condi-
tions for a self-similar profile must then be applied. The

U ξ 0+=( ) e0, U' ξ 0+=( ) 0,= =

e0 b0 z'( ) z'd

∞–

+∞

∫=

bmax/a0

12

10

8

6

4

2

0 20 40 60 80 γt

Fig. 2. The amplitude of the amplified 1D pulse maximum
normalized to the amplitude of the pump wave (bmax/|a0|) as

a function of γt ≡ |a0|τ for b0(z) = e0exp(–z2/ )/ : a

delta-shaped initial pulse (z0  0, self-similar profile

with fixed e0 = 1.3 × 10–2, dashed line) and a finite-width

initial pulse (z0 = , quasi-self-similar profile with eeff(τ),
solid line).

z0
2 πz0

5
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front pulse faces the unperturbed profile of the pump
wave. Qualitatively, pump depletion becomes signifi-
cant (δa/a0 ~ 1) starting only with ζ = ζ*, where ζ* is
determined by the condition e(ζ*(τ) ~ 1, with

(18)

(To make a rough estimate, one can equate ζ* to the
location of the first maximum of b(ζ, τ) at a current
instant τ.) Therefore, linear solution (12) remains valid
for ζ < ζ*. In the case where the spatial scale of the
Green’s function G is large compared to the spatial
scale of the initial pulse, Eq. (12) can be written as

(19)

On the other hand, because the self-similar solution
represents an attractor, its formation still occurs starting
from the end of the linear stage, where its profile can be
obtained from linearized Eq. (15) and is given by

(20)

where eeff is some constant. At the location where the
linear stage ends and the self-similar solution starts,
i.e., at ζ = ζ*(τ), the two solutions in Eqs. (19) and (20)

must match, which defines eeff(τ),

(21)

As long as ∆(τ) @ ∆0, we have

eeff ≈ e0 = const.

But when the nonlinear compression makes ∆(τ) com-
parable to or less than ∆0, eeff can become significantly
smaller than e0. If eeff(τ) is changing sufficiently slowly,
so that the self-similar profile has enough time to set up
on the entire length of the pulse, the entire solution
remains close to the self-similar one with the only
change that it is now parameterized by time-dependent

e ζ( ) b ζ' τ,( ) ζ'.d

∞–

ζ

∫=

U e ζ( )G η( ).=

U eeffG η( ),=

eeff τ( ) e ζ* τ( )( ).=
AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002



AMPLIFICATION OF SHORT LASER PULSES BY RAMAN BACKSCATTERING 629
quantity (21) (Fig. 2). But if eeff(τ) changes fast, the
self-similar solution may not be able to form and, there-
fore, does not represent an attractor. Stochastic behav-
ior of the amplified pulse structure is observed in this
case.

In the approximation of geometric optics, when the
pulse propagation is considered at small distances com-
pared to the Rayleigh length zR ~ kR2, the diffraction-
caused distortion of the transverse structure of laser
pulses can be neglected. In this case, 1D quasi-self-sim-
ilar solutions are formed on geometric rays constituting
the field of the amplified pulse. The spatial profiles of
the amplified pulse that are then formed have a shape
similar to nested horseshoes. But for pulse traces z > zR,
the diffraction terms in Eqs. (6)–(11) become signifi-
cant and must therefore be taken into account (see Sec-
tion 5).

4. THE MODE APPROACH 
TO THE NON-ONE-DIMENSIONAL PROBLEM

We consider the pump wave a and the amplified
pulse b given by a series in the normalized eigenmodes
ys, 〈ym|yn〉  = δmn

(22)

where R is the radius of the capillary, which we include
as a normalization factor to make the amplitudes an and
bm dimensionless (see the Appendix for the explicit
form of yn for a dielectric capillary). By definition, the
eigenfunctions ys satisfy the equation

(23)

where χs is the transverse wavenumber of the sth eigen-
mode. From Eqs. (6)–(8), we obtain the equations for
the amplitudes an and bm,

(24)

(25)

where 

(or  = (cχn)2/2ωa, b in dimensional variables)
and

a R an z τ,( )yn r⊥( ),
n

∑=

b R bm z τ,( )yn r⊥( ),
m

∑=

∇ ⊥
2 ys χs

2yn+ 0,=

∂τ ∂z iδΩn
a( )+ +( )an f nmbm,

m

∑=

∂τ ∂z– iδΩn
b( )+( )bm an f nm* ,

n

∑–=

δΩn
a( ) χn

2 1 σ+( ), δΩm
b( ) χm

2= =

δΩn
a b,( )

f nm yn f ym〈 〉=
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are dimensionless transverse moments of the plasma
wave profile satisfying

(26)

with constant dimensionless coefficients given by

(27)

The eigenmode approach can be useful only in the
case where the modes are coupled weakly, which corre-
sponds to the case of a strong waveguide dispersion.
Otherwise, the number of modes to be taken into con-
sideration becomes infinite. If the characteristic trace z0
of the pulse evolution is large compared to the Rayleigh
length zR, Eq. (26) can be reduced to

(28)

where we assume the eigenfunctions to contain com-
plexity in polarization factors at most, but not in the
functional dependence of the transverse coordinates
(for simplicity, below we ignore the fact that Cnm can be
equal to zero for modes of the opposite polarization).
Equations (24), (25), and (28) represent a completely
defined Lagrangian set of equations that can be used for
obtaining the amplitudes of resonantly interacting
modes of the three waves a, b, and f in the case of weak
coupling (see below).

The important conclusion following from Eqs. (24),
(25), and (28) is that for every pair of modes of the
pump and the seed, an and bm, the resonant plasma wave
harmonic fnm can be generated to provide coupling of
the two electromagnetic waves. This is a specific fea-
ture of light scattering on a cold plasma wave for which
the spatial resonance condition

is satisfied automatically because the wave vector kf

remains arbitrary for the given frequency ωf ≈ ωp. For
scattering on any other low-frequency wave f for which
the wavevector depends on its frequency ωf, the multi-
ple-mode interaction on the quadratic nonlinearity is
impossible.

The presence of the  term in Eq. (28) is
responsible for a possible parasitic resonance, which
can be explained as follows. We consider the interac-
tion between the nth mode of the pump an and the mth
mode of the seed pulse bm generating the resonant
plasma wave fnm with the longitudinal wave number

∂τ iδω+( ) f nm Cnklmalbk*,
k l,
∑–=

Cnklm R2 yn yk
† yl⋅ ym=

=  R2 r2
⊥ yn

† ym⋅( ) yk
† yl⋅( ).d∫

∂τ i∂ω+( ) f nm

Cnm

1 δnm+
----------------- anbm* ambn*+( ),–=

Cnm Cnmnm 0,≥≡

ka kb k f+=

ambn*

hnm ka kb– δΩn
a( )– δΩm

b( ).–=
SICS      Vol. 95      No. 4      2002



630 DODIN et al.
For very small σ ~ ωp/ωb (namely, for σ & zR/z0, where
z0 is the characteristic spatial scale of the pulse evolu-
tion), we have hnm ≈ hmn, where hmn is the wave number
of the plasma wave fmn resonant to the beating wave of
the modes am and bn, which provides an additional cou-
pling of these two pairs of electromagnetic waves. For
example, in the case where the pump contains the
modes a1 and a2 and the seed pulse contains only b1, the

second seed harmonic b2 = O( a1b1) is generated.
This effect can already become important at the linear
stage of the interaction in a multimode pump, because
it alters the increments of the linear Raman amplifica-
tion.

We now use the developed mode approach to con-
sider the linear stage of the pulse amplification inside a
capillary in terms of the equation

, (29)

which directly follows from Eqs. (7) and (8) with zero
detuning δω and with a constant pump a. The right-
hand side of Eq. (29) can be considered as the result of

applying the linear operator  = aa† to the vector b,
and therefore, Eq. (29) can be rewritten as

(30)

where γm =  represents the increment of the linear
amplification of the mth partial waveguide mode. In an
arbitrary waveguide, for a single-mode pump, an = δnsa,
the matrix elements Amn are of the order of a2 for n, m ~
1 and Amn = A(|m – n|) for n, m @ 1, where the function
A(k) ~ a2 for k ~ 1 and decays as its argument grows.

The eigenmodes of the empty waveguide are cou-
pled via the pump inhomogeneity. Only for the uniform
pump is the matrix Amn diagonal, and the right-hand
side of Eq. (30) is therefore zero. For a nonuniform
pump, which is only possible inside a capillary, the
effect of mode coupling always occurs. In the case of a

weak interaction (γm ! δ ), the eigenwaves of sys-
tem (30) are close to its partial waves, and the incre-
ments of the eigenwaves are approximately given by γm,
m = 1, 2, …, ∞ (here, we neglect the effect of the para-
sitic resonance discussed above). For the single-mode
pump, an = δnsa, all the increments are of the order of a
and are independent of m for m @ s. Specifically, for
pulse amplification on the lowest mode of the pump in a
dielectric capillary, s = 1, we have 
Hence, the increments of amplication of all the
waveguide modes are close to each other at the linear
stage of interaction.

a2
*

∂τ ∂τ ∂z– i∇ ⊥
2–( )b a a† b⋅( )=

Â

∂τ ∂τ ∂z– iδΩm
b( )+( ) γm

2–[ ] bm Amnbn,
n m≠
∑=

Amn ym Â yn ,=

Amm

Ωm
b( )

γm( γ1 ) / γ1– 0.16.<
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Variations of the pump transverse structure do not
change the interaction efficiency significantly. For
example, without the possible parasitic resonance taken
into account, the amplification increment of the mth
partial mode (equal to the increment of the mth eigen-
mode in the case of weak interaction) is given by

(31)

which implies that each mode of the pump amplifies
each mode of the seed, because Cnm > 0 for all n and m.
The higher modes of the pump amplify the seed with
approximately the same efficiency as the lower ones,
because

This effect originates in the fact that the wave interac-
tion inside a capillary is not a three-wave but a multi-
wave process, where the effective energy exchange
between every pair of the pump and the seed modes is
possible.

Because the increments of the linear amplification
are approximately the same for all waveguide modes,
the linear stage of pulse amplification cannot provide
significant enhancement of the signal-to-noise ratio.
This is true, however, only if the energy losses (which
have not been taken into account yet) are negligible at
the distance of pulse propagation, which might not be
the case in real experiments. In an oversized cylindrical
dielectric capillary, the energy losses are mostly radia-
tive and can be incorporated into the model by intro-
ducing the spatial decrements of individual modes [9],

(32)

(see Appendix for the notation). The spatial scale of the

exponential decay  decreases with the mode num-

ber s roughly as s–2, and for γ1  α1, only the lowest
mode can be amplified and the amplification of the
higher modes is suppressed. This implies that the radi-
ative energy losses essentially result in a selective mode
discrimination, which can provide the single-mode
operation regime.

Additional mode discrimination can occur in rela-
tively narrow waveguides, where the group velocity
substantially differs from mode to mode. After the
amplified pulse passes the distance z * Lpulse(kR)2,
where Lpulse is the length of the pulse, the wave envelope
corresponding to the lowest mode leaves the envelopes
of the higher modes behind. The front envelope then
has a preferential opportunity of absorbing the energy
from the pump wave. Because the pump is significantly

γm Cnm an
2

n
∑ ,=

Cnm/Cmm const 1 for n @ m.∼≈

αnm

µm n,

2π
---------- 

 
2 λ2

R3
-----∼

α s
1–

≈>
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Fig. 3. Evolution of |b1(ζ)|/|a0| (solid lines) and |b3(ζ)|/|a0| (dashed lines); the planar-waveguide scalar problem;  =

0.1a0δm1,  = a0δn1, R = π/ , b2 ≡ 0 because of symmetry; the shots correspond to γt ≡ |a0|τ = 0, 5, 15, 50. Strong waveguide

dispersion provides nonlinear competition of the modes in the nonlinear regime of amplification. Although the small amplitude b3
appears at the linear stage, it is left behind the wave envelope b1 later. Amplification of b3 is then slowed down by the pump depletion
provided by b1.

bm
0( )

an
0( )

a0
depleted by the lowest mode, the higher ones are left
with less energy to absorb, which also maintains the
single-mode amplification regime.

5. SINGLE- AND MULTIMODE AMPLIFICATION
The condition of a weak interaction (or the condi-

tion of a strong waveguide dispersion)

can be treated as follows. The increment of the pulse

amplification γ ~ a  determines the spread of the
amplified pulse spectrum δh ~ γ/c. As long as δh
remains small compared to the spectral gap between the
individual modes,

the waveguide eigenmodes do not overlap, and hence,
they represent a good basis for developing the mode
approach in the linear theory. In this case, the eigen-
modes of coupled system (30) remain close to the par-
tial waves of the empty waveguide. This implies that an
initially single-mode seed pulse remains single-mode
over the entire duration of the linear stage.

The next question is what happens after the linear
stage, when nonlinear compression comes into play,
providing its own spectrum broadening. We consider
the single-mode initial conditions for the seed pulse,

γ ! δΩ b( ),

a ! acrit, acrit 2/ωωp cχ( )2/2ω, χ π/R,= =

ωωp

∆h δΩb/c 1/kR2,∼∼
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
e.g.,  = δm1. Until the end of the linear stage, the
higher mode amplitudes remain small compared to b1.
Then, it is the mode b1 that passes from the linear to the
nonlinear regime first, because its amplitude is the larg-
est. (Here, by the nonlinear regime of an individual
mode, we mean the ability of this particular mode to
deplete the pump, which might have already been dis-
torted by other modes at the moment.) In the laboratory
frame, the maximum of the wave envelope moves
approximately with the speed of light in the nonlinear
regime, but in the linear one, the effective pulse velocity
is substantially lower. For example, as follows from the
linear theory of pulse propagation in a constant pump
(Section 3), the maximum travels with the speed equal
to half the speed of light. The higher mode envelopes
(remaining in the linear regime) are therefore left
behind the envelope of the first mode. The effective
amplitude of the pump aeff < a0 determining the incre-
ments of the higher modes is decreased by the first
mode. Because the first mode suppresses the growth of
the higher modes, the waveguide dispersion effectively
results in a nonlinear competition of the modes tending
to sustain the single-mode operation. We call this effect
the mode elasticity, because the strongest mode tends to
dominate in the nonlinear stage of amplification,
thereby preserving the transverse structure of the pulse.

The evolution of the two lowest modes having the
highest amplitudes is shown in Fig. 3. (To show the
robustness of the mode competition mechanism,
numerical calculations demonstrating the single-mode

bm
0( ) b1

0( )
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Fig. 4. The normalized energy integral distribution within a
quasi-single-mode amplified pulse (averaged over the cap-
illary cross section): up to 50% of the pulse total energy is
contained within the first peak; the parameters are the same
as in Fig. 3, γt = 40.
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Fig. 5. Characteristic spatial profiles of the amplified pulse
|b(ζ, ρ)| in the case of a strong waveguide dispersion (planar
waveguide). At the first stage of the nonlinear amplification,
the waveguide dispersion leads to the competition of
modes, which supports the single-mode amplification.
Later, the higher modes also enter the nonlinear regime,
catch up with the wave envelope of the first mode, and ruin
the structure of its tail. The front of the pulse always
remains single-mode, however, because it always stays in
the linear regime, where the growth of the higher modes is
suppressed by a strong waveguide dispersion.
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amplification were performed for a ~ acrit.) In this case,
the single-mode amplification also continues in the
nonlinear regime, ensuring that the problem remains
essentially one-dimensional. We can see the formation
of the self-similar profile, which represents the attractor
of the single-mode operation, similarly to the 1D prob-
lem. The energy distribution inside the amplified pulse
(which determines the effective pulse length) averaged
over the capillary cross section is given in Fig. 4.

The qualitative arguments given above lead to the
conclusion that the formation of the single-mode oper-
ation regime in the case of a strong waveguide disper-
sion is stable with respect to fluctuations of the seed
pulse. Neither can the fluctuations of the pump trans-
verse structure influence the single-mode operation
because all the modes of the pump wave provide
approximately equal efficiencies of the energy transfer
into the amplified pulse, as discussed in Section 4.

The nonlinear competition of the modes constitut-
ing the amplified pulse remains efficient only until the
higher modes enter the nonlinear stage of amplification.
After that, their envelopes catch up with the wave enve-
lope of the first mode and ruin the tail of the single-
mode structure (Fig. 5). But the front of the amplified
pulse always remains in the linear regime (see also Sec-
tion 3), which provides its single-mode structure.

In the other limiting case, where the interaction
between the pump and the amplified pulse is strong
(γ @ δΩ(b), or a @ acrit), the pulse is significantly ampli-
fied on a small distance compared to zR, i.e., before the
diffraction effects come into play. The waveguide walls
cannot then influence the formation of the pulse struc-
ture at the first stage of amplification, and a solution
close to those formed in a boundless vacuum is pro-
duced. Vacuum solutions [6] are shaped as nested
horseshoe structures resulting from the transverse inho-
mogeneity of the pulse and the pump (Fig. 6). On every
geometric ray, a self-similar profile is formed with its
own e0(ρ) (or eeff(ρ)), which determines the longitudi-
nal spatial structure of the pulse at given p. At the edges
of the amplified pulse, the amplitudes of both a and b
are smaller than in the center of the system, and the lon-
gitudinal spatial scales are correspondingly larger.

In the frame moving together with the front of the
amplified pulse (at the speed of light), the longitudinal
locations of the pulse maxima ζmax(ρ) are bounded by
the position of the front of the seed pulse ζ0. On the
other hand, the nonlinear compression provided by the
preferential amplification of the front of the pulse
“pushes” the tail of the pulse from behind to ζ = ζ0,
which implies that ζ0 represents the limit of ζmax(ρ) for
all ρ. The front of the horseshoe structure therefore
tends to flatten as τ  ∞.

Although stable on small distances compared to zR
and robust with respect to the structure of the seed (see
also [6]), the horseshoe solution deteriorates inside the
waveguide at z * zR, where the diffraction becomes sig-
 AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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nificant (Fig. 7). The very front of the horseshoe, how-
ever, always remains in the linear regime and therefore
maintains its regular shape. In the center of the
waveguide, the front peak of the amplified pulse grows
similarly to the self-similar solution of 1D problem (16)
(Fig. 8), which allows using the 1D model for estimat-
ing the maximum amplitude of the amplified pulse. The
energy distribution inside the amplified pulse (which
determines the effective pulse length) averaged over the
capillary cross section is given in Fig. 9. At large t, the
averaged energy longitudinal distribution becomes a
smooth function (cf. Fig. 4), and it is therefore difficult
to distinguish the individual peaks of the amplified
pulse. On average, the energy becomes distributed over
a length that is significantly larger than the length of the
first peak.

6. SUPPRESSING NOISE AMPLIFICATION
IN DETUNED INTERACTION

Because of the extreme efficiency of the Raman
backscattering, which makes fast compression possi-
ble, delivering the pump wave energy to the seed pulse
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Fig. 6. Quasi-vacuum (horseshoe) nonlinear solutions for
|b(ζ, ρ)| in the case of the strong pump (a @ acrit); the pla-
nar-waveguide scalar problem: (upper) R = 10π, a0(ρ) =

sin(πρ/R), b0(ζ, ρ) = 0.1sin(πρ/R)exp(–(ζ – 4)2/0.5), τ = 20;
(lower) R = 100π, a0(ρ) = 2sin(πρ/R), b0(ζ, ρ) =

0.1sin(2πρ/R)exp(–(ζ – 4)2/0.5), τ = 10.
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through the amplifying plasma layer represents a sig-
nificant challenge. As the pump traverses the plasma
layer towards the seed pulse, the fast Raman backscat-
tering of the pump by thermal Langmuir waves or elec-
tromagnetic fluctuations existing inside the plasma
layer or coming from outside can lead to a premature
pump depletion. The problem is aggravated by the fact
that the linear Raman backscattering instability of the
pump (responsible for the unwanted noise amplifica-
tion) has a larger growth rate than its nonlinear counter-
part (responsible for the useful amplification of the seed
laser pulse).

To see how significantly the thermal fluctuations can
limit the maximum amplification gain of the seed pulse,
consider the amplification at the identically zero detun-
ing of the three-wave interaction. After a certain period
of time tm, the amplification gain

becomes sufficient for thermal fluctuations to deplete
the pump wave substantially, and further amplification
of the seed pulse is then suppressed. The dimensionless

Dm e
Gm, Gm∼ γ tm,=
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Fig. 7. Deterioration of the horseshoe solution |b(ζ, ρ)| as
τ  ∞ and flattening of the front of the amplified pulse

(the planar-waveguide scalar problem, R = 10π/ ,

a0(ρ) = a0sin(πρ/R), b0(ζ, ρ) = 0.1a0sin(2πρ/R)exp(–(ζ –

4)2/0.5): γt ≡ a0τ = 20, 90, respectively; dark regions corre-
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quantity Gm depends on the plasma temperature and
does not depend on the amplitude of the pump wave.
The maximum amplification of the desired signal with
respect to a0 is then given by

(33)

and is independent of the amplitude of the pump. For
Gm ≈ 20, the electromagnetic wavelength λ = 1 µm, the
initial pulse duration of 50 fs, and the initial pulse
power density P = 1013 W/cm3, we find that the maxi-
mum amplification that can be achieved in a pump of an
arbitrary intensity before the noise is amplified to the
level of suppressing the pump is bmax/a0 ≈ 6.

Nevertheless, through a nonlinear filtering mecha-
nism identified in [5], it is possible to suppress the
unwanted instability of the pump wave without sup-
pressing the desirable seed pulse amplification. The fil-
tering effect occurs because the pumped pulse duration
decreases inversely proportional to the pulse amplitude
in the nonlinear regime. The pulse frequency band-
width increases with the pulse amplitude, and the grow-
ing nonlinear instability can therefore tolerate larger
and larger external detuning from the backscattering
resonance. Because the linear instability, i.e., the expo-
nential growth of thermal fluctuations, has a narrower
bandwidth, filtering the desired signal can be achieved
by arranging for an appropriate combination of the
detuning and nonlinear effects. A slight frequency
detuning can be equivalently provided either by pump
chirping or by inhomogeneity of the plasma density
along the trace of the pulse amplification resulting in

bmax

a0
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2Gm 2
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4
e0
---- 2π 

 ln+
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|b(ζ, p)|max/|a0|
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Fig. 8. The maximum amplitude of a horseshoe-type pulse
normalized to the amplitude of the pump wave (|b(ζ,
ρ)|max/|a0|) as a function of time γt ≡ |a0|τ (solid line). The
dotted line represents a 1D solution with eeff(τ) for b0(ζ,
R/2) (the same initial conditions as in Fig. 7). The front peak
of the amplified pulse grows similarly to the one of the 1D
self-similar profile with decreasing eeff.
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variations of the plasma frequency involved in the
three-wave resonance condition.

While the exact solution for a delta-pulse amplifica-
tion problem obtained in [5] precisely deals with the
linear profile of frequency detuning, we use an approx-
imate analysis in this section to describe how the pulse
amplification develops in the case of an arbitrary detun-
ing profile. To do this, first consider the linear stage of
amplification of a weak pulse b governed by the equa-
tion

(34)

(without the loss of generality, we temporarily neglect
the transverse structure and the polarization of the
amplified pulse for qualitative conclusions). Using the
quasistatic approximation and assuming the detuning to
change slowly along the trace of the pulse propagation,
we can treat δω as a slow function of time τ [5]. Per-
form the Fourier transformation of Eq. (34),

and take

(35)

to transform the equation for the amplitude of the pulse
spatial harmonic ψ to the form

(36)

∂τ iδω–( ) ∂τ ∂z–( )b a0
2b=

b b∆k i∆kz( )exp ∆k,d∫=

b∆k τ( ) ψ τ( ) i
δω τ'( ) ∆k+

2
----------------------------- τ'd

0

τ

∫ 
 
 

exp=

d2

dτ2
-------- w2 τ( )+ ψ 0,=

w2 iΩτ Ω2 a0
2, Ω–+ + δω ∆k–( )/2.=
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Fig. 9. The normalized energy integral distribution within a
horseshoe-type amplified pulse (averaged over the capillary
cross section): γt ≡ a0τ = 20 (solid line) and γt = 90 (dashed
line); the same parameters as in Fig. 7. For larger γt, the
averaged energy distribution becomes a smooth function
(cf. Fig. 4), and it is therefore difficult to distinguish the
individual peaks of the amplified pulse. On average, the
energy is distributed over a length that is significantly larger
than the length of the first peak.
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In accordance with the assumption of a smooth
detuning profile, take

Outside the regions where Ω2 is close to |a0|2, the effec-
tive frequency w can be estimated as

(37)

and the amplification gain is given by

in the WKB approximation. At Ω2 > |a0|2, G depends on
the length of the trace of the pulse propagation logarith-
mically, and the amplification gain is therefore negligi-
ble in the adopted approximation. Thus, the total ampli-
fication gain is given by

(38)

For the detuning monotonically changing along the
trace of the pulse propagation, Eq. (38) can be written
as

(39)

where |qmin| stands for the minimum rate of the detuning
evolution on the trace of amplification. As can be seen
from Eq. (39), the upper limit of the total amplification
gain on the entire trace of the pulse propagation is inde-
pendent of ∆k (included in the definition of Ω over
which the integration is performed). For q = const, we
have

as obtained in [5], and therefore D itself is independent
of ∆k.

We can also generalize Eqs. (38), (39) to the case of
oblique propagation of the pulses, describing the ampli-
fication of the electromagnetic noise coming from out-
side the system. The only difference is then that the
group velocity of the amplified harmonic differs from
the speed of light, which results only in a redefinition of
∆k and does not affect the form of the final result in
Eqs. (38) and (39) if q(τ) is calculated relative to the
actual trajectory of the amplified pulse.

Equations (38) and (39) predict that each harmonic
of a given frequency and a wave number is amplified
only inside the region where the three-wave resonance
conditions are satisfied in the sense that Ω2 < |a0|2 (or,
in dimensional variables, (δω – c∆k)2/4 < γ2). The idea

q τ( )
δωτ

a0
2

---------- ! 1.=

w Ω2 a0
2–

iΩτ

2 Ω2 a0
2–

------------------------------,+=

D ~ eG, G Imwdτ∫≈

G a0
2 Ω2 τ( )– τ .d

Ω2
a0

2<

∫≈

G
2
a0
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a0
2

----------–
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q Ω( )
--------------

Ω2
a0

2<

∫ π
qmin
------------,≤≈

D ~ π/ q( ),exp
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of the approach given here is similar to the one pro-
posed by Rosenbluth and Pilia (see, e.g., [12]), who
estimated the total linear amplification gain for station-
ary waves in an inhomogeneous medium with the
wave-number detuning but with the temporal resonance
condition satisfied exactly. The difference between the
two cases is that instead of the wave-number detuning,
the frequency detuning is important for the Raman
pulse amplification in inhomogeneous plasmas. For the
Raman backscattering in a cold plasma, the wave-num-
ber resonance condition is satisfied automatically,
because a plasma wave is allowed to have an arbitrary
wave number, although it oscillates at a certain fre-
quency ωp.

The conclusion that follows from the obtained result
is that the detuning profile along the pulse amplification
trace can be chosen such that the noise amplification is
suppressed above a certain level determined by Eq. (38).
Monotonically changing the detuning allows a stronger
suppression, because there exists only one region for a
given harmonic where the amplification occurs. In this
case, the requirement for the characteristic |q| to ensure
that the noise is not amplified up to the transition to the
nonlinear stage but the desired signal is (  * 1,

see [1, 3]) can be formulated as

(40)

(41)

where the characteristic spatial scale Lδ of the detuning
evolution due to the plasma inhomogeneity (the first
term in Eq. (41)) and the pump chirping (the second term)
is measured in centimeters, the wavelength λ is measured
in microns, and the pump power is measured in W/cm2. 

The next problem is how the frequency detuning
influences the desired signal amplification in the non-
linear regime. We now show that it does not as long as
these variations remain sufficiently smooth. To prove
this, we consider the change of variables

(42)

leading to the following 1D form of Eqs. (6)–(8):

(43)

b z( ) zd∫
π

Gm

-------  ! q  ! 
π
1
e0
----ln

----------,

q
c

γ2
-----∂δω

∂z
---------- 1014

LδλP
-------------,≈=

1
Lδ
-----

1
ωp

------
∂ωp

∂z
--------- 1

2ωpc
------------

∂ωa

∂t
---------,+=

a ã,=

b b̃ iδω τ z+( )( ),exp=

f f̃ iδω τ z+( )–( ),exp=

∂τ ã ∂zã+ b̃ f̃ ,=

∂τ b̃ ∂zb̃– i τ z+( )qa0
2b̃– ã f̃ ∗ ,–=

∂τ f̃ ãb̃∗ .–=
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These equations are equivalent to Eqs. (6)–(8) with
zero detuning if q = 0. The physical meaning of the for-
mal change of variables (42) is as follows. The carrier
frequencies of the seed pulse and the plasma wave are
chosen such that the three-wave resonance condition is
satisfied locally,

(44)

where

are functions of space, and the carrier frequency of the
pump wave  = ωa is left unchanged. It is only the
gradient of the detuning that enters Eqs. (43), and the
constant part of δω enters the initial conditions for the
seed pulse only.

In the frame moving together with the seed pulse
(ζ = z + τ), in the quasistatic approximation [3], the
basic equations can be written as

(45)

which implies that the term corresponding to the detun-
ing is negligible compared to the nonlinear drive when
the overfall of the detuning ∆(δω) on the length of the
pulse is small compared to 1/τ. Because

where the characteristic length of the pulse is ζpulse ~

1/ at the nonlinear stage of interaction [3], the con-

ω̃a ω̃b z( )– ω̃f z( ),=

ω̃b z( ) ωb δω z( ), ω̃f z( ) ωp z( )≡+=

ω̃a

2∂ζ ã b̃ f̃ ,=

∂τ b̃ iζqa0
2b̃– ã f̃ ∗ ,–=

∂ζ f̃ ãb̃∗ ,–=

∆ δω( ) qa0
2ζpulse,∼

a0
2τ

4

3

2

1

0

q = 0.22

q = 1.1

0 50 100 150 200
τ

bmax

Fig. 10. Pulse-detuned nonlinear amplification bmax(τ) at
different frequency detuning profiles δω(τ) = 2(1 +

/τ0)): q = 2/( ) = 0.22, 0.44, 0.74, 1.1;

a0 = 0.3. (The larger q is, the lower the graph goes at τ >
100.) For q ~ 1, the amplification efficiency decreases in the
region where the detuning evolves relatively fast (100 < τ <
150), while, at small q (e.g., for q = 0.22), the amplification
proceeds exactly as in the case of zero detuning for all τ.

( τ 100–( )tanh a0
2τ0
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dition of negligible detuning becomes

(46)

The obtained condition for efficient amplification of
short pulses was tested numerically. It can be seen from
Fig. 10 that, for q ~ 1, the amplification efficiency
decreases in the region where the detuning evolves rel-
atively fast, while, at small q (e.g., for q = 0.22), the
amplification proceeds exactly as in the case of zero
detuning for all τ, exactly as predicted by the qualitative
arguments given above.

The obtained results imply that, for short pulses,
amplification can be efficient on the entire trace of the
interaction with the pump wave. The integral variation
of δω (or the maximum frequency detuning amplitude
experienced by the pulse on its trace of amplification)
does not significantly influence the amplification effi-
ciency if the detuning evolves smoothly along the trace
of amplification. Condition (46) only requires the band-
width of the wave envelope ∆ωb to grow due to the non-
linear compression sufficiently fast for the local-reso-
nance frequency ωa – ωp(z) to lie within the amplifica-
tion line. For growing |q| that approaches unity, the
interaction becomes nonresonant, and the pulse ampli-
fication ceases. If q decreases, the pulse amplification
develops similarly to the solution with a constant detun-
ing. The degenerate case where q = const and the ampli-
fication efficiency depends on the amplitude of the ini-
tial pulse logarithmically is discussed in detail in [1, 5].

In a real experiment, transverse plasma inhomoge-
neities must be taken into account in addition to the
detuning provided by pump chirping and longitudinal
variations of the plasma density. It is important that the
dependence of δω on the transverse location lowers the
sensitivity of the interaction efficiency to the average
detuning (over the cross section). In the 1D problem, as
shown above, the pulse amplification can be entirely
suppressed by large gradients of the plasma density.
But in the case where the plasma density also changes
in the transverse direction, a radial position ρ* such that

δω(ρ*) = 0 exists at every cross section of the pulse tra-

jectory. The pulse can extract energy from the pump
wave in the vicinity of ρ = ρ*, although the interaction

remains inefficient far from this point. This local pulse
amplification cannot be entirely suppressed by large
detuning that might exist at other radial positions. This
fact determines a higher robustness of the pulse ampli-
fication in inhomogeneous plasmas in 2D or 3D sys-
tems than in the 1D case. In the case where the amplifi-
cation occurs inside a capillary, the pulse energy is
mixed in the transverse direction because of the reflec-
tion of electromagnetic waves from the walls of the
waveguide, which eventually results in a nonlocal
amplification of the waveguide eigenmodes, i.e., in the
amplification of the entire pulse.

q  ! 1.
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7. DISCUSSION

Characteristic parameters of the proposed Raman-
backscattering pulse amplification experiment are
given in table. For the wavelength λ ≈ 1 µm and the
radius of the capillary sufficiently large for the radiation
energy losses to be negligible, the single-mode opera-
tion can only be provided by low pump intensities,
which do not allow significant amplification on a rea-
sonable (centimeter size) interaction length. At pump
intensities higher than the critical one, multimode solu-
tions are formed.

The parameters given in table correspond to the
maximum possible amplification gain at the given
wavelength and the electron density limited by such
effect as the Langmuir wave breaking and the forward
Raman scattering instability [1, 3], which remained out
of the scope of our study and represent a field of further
research in the context of the 3D Raman scattering
problem. As regards the modulation instability, it is
expected to be suppressed for the proposed parameters
because the critical power of the amplified pulse self-
focusing Pcrit = 17(ω/ωp)2 GW [3] is equal to 1.7 ×
1012 W, which is less than the power of the amplified
pulse.

In summary, using a dielectric capillary for channel-
ing laser radiation in a Raman amplifier provides a sig-
nificant advantage as regards maintaining high interac-
tion efficiency at distances larger than the diffraction
length, which allows obtaining higher intensities of the
output radiation. In addition, various mechanisms of
selective mode discrimination and nonlinear competi-
tion of capillary modes are provided by the transverse
waveguide dispersion, but cannot be achieved in a
boundless vacuum. Although the presence of the capil-
lary walls can influence the structure of the pulse, it
does not alter the amplification of the front peak of the
pulse, which carries a significant amount of the total
energy of the pulse.

We find that, depending on the intensity of the
pump, two possible regimes of operation can be real-
ized within a capillary, namely, the single-mode and the
multimode pulse amplification. For a low pump wave
intensity, when the single-mode operation is possible,
the problem admits the resonant mode approach that we
develop in this paper. We also develop the linear theory
of pulse amplification inside a capillary by generalizing
the 1D linear problem. Contrary to the intuitive expec-
tations, we show that the pulse amplification efficiency
is not critically sensitive to the transverse structure of
the pump wave, and therefore, both lower and higher
modes of the pump provide approximately the same
amplification rates of the seed pulse.

We generalize the mechanism of avoiding the pump
wave instability (resulting in noise amplification) by
chirping the pump wave or inhomogeneous plasma pro-
file along the trace of the pulse propagation [5] in the
case of an arbitrary smooth detuning profile. We show
that, as the noise amplification can be suppressed by
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
detuning, the latter does not alter the amplification of
the desired pulse as long as the detuning profile remains
sufficiently smooth. We conclude that guiding laser
pulses through the capillary provides an additional
robustness of the interaction efficiency with respect to
transverse inhomogeneities of the plasma density.
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APPENDIX

Waveguide Modes of a Dielectric Capillary

The waves channeled by a dielectric capillary can be
separated into surface and waveguide-type waves [13].
A slow surface wave propagates without dissipation
inside the dielectric walls of the tube with the wave
number

,h ek2 κ e
2+=

Sample parameters for the Raman amplification inside an
oversize dielectric capillary

Wavelength λ 1 µm

Electron density ne 1019 cm–3

ω/ωp 10

Radius of capillary R 50λ
Diffraction length zR 0.16 cm

Inverse decay rates 60/40 cm

Trace of amplification 1.2 cm

Pulse duration 40 ps

a0 0.006

Pump intensity 1014 W/cm2

Pump power 4 × 109 W

Amplification length c/γ 0.12 mm

Seed pulse duration 100 fs

Seed pulse intensity 1014 W/cm2

∈ 0 0.25

 Amplification factor bmax/a0 20

Amplified pulse intensity 3.5 × 1016 W/cm2

Amplified pulse power 1.4 × 1012 W

The refraction index of capillary walls is taken to be n = 1.5; the
pump wave intensity corresponding to a = acrit is 1.4 × 1011 W/cm2,
and the amplified pulse is therefore of the horseshoe type; the

inverse spatial decay rates  are calculated for the two most

slowly decaying modes.

αnm
–1

αnm
–1
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where e is the dielectric permittivity, κe ~ 1/d is the
wave transverse wave number, and d is the width of the
capillary wall. Outside the dielectric, the field of the
surface wave decays exponentially with the spatial dec-
rement

for kd @ 1. Therefore, at the distance of several wave-
lengths from the wall, the surface wave field essentially
equals zero, and as regards the interaction of pulses
inside the capillary, the impact of the surface wave field
can be neglected.

Waveguide-type waves propagate inside the capil-
lary, with the channeling provided by reflection of
waves from the inner surface of the capillary dielectric
wall. For paraxial propagation (k @ 1/R), the reflection
coefficients of most of the waveguide-type waves are
close to unity. The only exception is given by several
waves with transverse wave numbers close to the reso-
nant ones, for which the dielectric walls of the given
width are transparent. Unless the capillary transverse
sizes are maintained with high precision, which is not
usually the case for the applications similar to the
Raman amplifier, these resonances disappear because
of the random corrugation of the wall surface. In this
case, one can therefore treat all the waveguide-type
waves as decaying slowly.

In the first-order approximation, the boundary con-
ditions for the electric and magnetic fields on the inner
wall of the dielectric capillary (under the assumption of
a negligible decay rate) are given by

(see [13]). The transverse structure of the electric field
is then given by

(47)

where

κ0 h2 k2– e 1–( )k2 κ e
2

– k∼= =

Er R( ) Hr R( ) 0= =

ym n 1±, ,
p 1±

π
-------

Jm 1± µm 1± n, r/R( )
RJm µm 1± n,( )

------------------------------------------ imθ( ),exp=

p 1±
q 0( ) ir 0( )±

2
------------------------ y 0( )( ix 0( ) ) iθ±( )exp±

2
-----------------------------------------------------= =
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are unit polarization vectors and µm ± 1, n are the roots of
the Bessel functions (Jm ± 1(µm ± 1, n) = 0). Eigenmodes
(47) are normalized such that

(48)

where m1, 2 stand for the azimuthal indices, n1, 2 stand
for the radial indices, and j1, 2 determine the polariza-
tion of the modes. The decay rate αn for the nth mode
can be obtained in the second order of perturbation the-
ory under the assumption of the known transverse
structure of the mode. Explicit expressions for αn are
given in [9] (see also Section 4).
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Abstract—Four polarization-frequency Bell states are obtained experimentally for photon pairs (biphotons)
emitted during spontaneous parametric scattering from continuous pumping in the collinear frequency-nonde-
generate regime. The polarization properties of such states are investigated. It is shown that biphoton light in
the singlet Bell state is not polarized in the second or fourth order in the field. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. BELL STATES

Entangled states of quantum systems occupy a sig-
nificant place in quantum optics and especially in quan-
tum informatics. The concept of entanglement of a
quantum system was proposed for the first time by
Schrödinger (in connection with the well-known Ein-
stein–Podolsky–Rosen paradox) in [1]; however, this
property was not defined exactly in that publication.
After some time, entangled states ceased to be the
object of just philosophical discussions and gedanken
experiments since various methods of their experimen-
tal preparation had been developed. Accordingly, more
rigorous definitions of such states were proposed. If we
confine ourselves to the case of a pure state of a com-
plete quantum-mechanical system consisting of several
parts, the property of entanglement is defined as non-
factorizability of the overall wave function and can be
reduced to the existence of quantum correlations
between the parts of the system [2]. Among pure entan-
gled states of two-quantum systems, the so-called Bell
states [3],

(1)

play a special role. Here, we assume that each quantum
system has two eigenstates |↑〉  and |↓〉  (this may be a
particle with a spin of 1/2, an atom in a resonant field,
a polarized photon, etc.) It is these states that are used
for verifying Bell inequalities, in experiments on quan-
tum teleportation, in a number of protocols of quantum
cryptography, and other trends in quantum optics. In
particular, such states form a convenient basis for
describing an arbitrary quantum state of two two-level
systems. The state Ψ– is often referred to as a singlet

Φ± 1

2
------- ↑↑| 〉 ↓↓| 〉+( ),≡

ψ± 1

2
------- ↑↓| 〉 ↑↓| 〉+( ),≡
1063-7761/02/9504- $22.00 © 20639
state since it is similar to the antisymmetric state of two
particles with a spin of 1/2.

2. GENERATION OF BELL STATES OF PHOTONS 
DURING SPONTANEOUS PARAMETRIC 

SCATTERING OF LIGHT

Entangled states have been realized experimentally
for various quantum systems such as two atoms, an
atom and a photon, and two ions. The experiments with
entangled (correlated) states of photons have become
the most popular. The most effective method for gener-
ating correlated photon pairs is that involving spontane-
ous parametric scattering (SPS) [4].

In the case of spontaneous parametric scattering, the
pumping radiation with frequency ωp and wave vector
kp incident on a crystal with a quadratic nonlinearity of
χ leads to the emergence of scattered radiation at the
crystal exit; the state of the latter radiation can be pre-
sented in the form [5]

(2)

where |vac〉  stands for the vacuum state and |1k, 1k'〉  is
the state with one photon in mode k (signal photon) and
one photon in mode k' (idler photon), which is often
referred to as a biphoton. Indices k and k' label the fre-
quency, spatial, and polarization modes. The quantity
Fkk' is often called the biphoton amplitude. In the sta-
tionary case, when radiation emitted by a CW single-
mode laser is used for pumping and the medium param-
eters do not depend on time, the biphoton amplitude is
proportional to δ(ω + ω' – ωp), where ω and ω' are the
frequencies of the signal and idler photons. If, in addi-
tion, the scattering occurs in a plane layer unbounded in
the directions transverse to the wave vector of pumping,
Fkk' is also proportional to δ(k⊥  + ), where k⊥  and

Ψ| 〉 vac| 〉 1
2
--- Fkk' 1k 1k',| 〉 ,

k k',
∑+=

k⊥'
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 are the transverse components of the wave vectors.
In this case, the summation over k' in Eq. (2) disap-
pears, and the second term describes an entangled state
of the two photons. This state becomes a Bell state if the
sum over k contains only two terms.

Depending on the parameters in which “entangle-
ment” occurs (frequency, direction of the wave vector
(scattering angle), polarization), we can single out the
following three classes of Bell states generated during
spontaneous parametric scattering.

1. Polarization-angle Bell states. The signal and
idler photons are emitted at different angles θ and θ' to
the pumping wave vector; polarization for each photon
is not specified, but there exists a correlation (entangle-
ment) between the two polarizations. The two-photon
part of the vector of state in this case has the form

where symbols H and V denote the horizontal and ver-
tical polarizations. Such states were realized for the
first time by using type II synchronism1 [6]. Subse-
quently, a more convenient scheme [7] was proposed,
in which analogous states were obtained as a result of
interference of biphotons generated in two successively
arranged crystals with type I synchronism.

2. Frequency-angle Bell states. In the case of non-
collinear nondegenerate spontaneous parametric scat-
tering with type I synchronism for small frequency
detuning of the signal and idler photons from the pump-
ing frequency, we can single out such directions of scat-
tering θ and θ' in which a signal photon of frequency ω
and an idler photon of frequency ω' are emitted. In this

1 In the case of type I synchronism, the signal and idler photons are
polarized identically; in the case of type II synchronism, their
polarizations are orthogonal.

k⊥'

HθVθ'| 〉 VθHθ'| 〉  or  HθHθ'| 〉 VθVθ'| 〉 ,±±

P

PBS
D1

Rc

D2

Fig. 1. Schematic diagram for observation of “latent polar-
ization” [15]. After the polarization transformer P, the beam
splits by the polarization beam splitter PBS and is directed
to photodetectors D1 and D2. The coincidence count rate Rc
may depend on the polarization transformation even if the
intensities registered by the detectors are independent of it.
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case, the two-photon part of the vector of state has the
form

i.e., Bell states Ψ± are generated. The experimental
realizations of such states are described in [8].

3. Finally, it is possible to prepare polarization-fre-
quency Bell states of the form

(3)

An experiment in which such states were obtained is
described in [9], where the interferometric method of
preparing Bell states was used. The modes ω and ω' dif-
fered not only in frequency, but also in the direction of
propagation (two-beam regime). However, the prepara-
tion of states (3) in the one-beam regime realized in a
collinear spontaneous parametric scattering is of spe-
cial interest. The one-beam regime of two-photon light
generation is used comparatively rarely in quantum
optics, although it is this regime which is of interest for
data transmission. In addition, it will be shown below
that such Bell states may possess interesting features as
regards their polarization properties. Namely, light in
one of the states (3) turns out to be nonpolarized in all
orders in the field.

3. LATENT POLARIZATION OF LIGHT
Many authors (see, for example, [10–12]) consid-

ered the polarization of light in higher (than second)
orders in the field. It was shown in [11] that a situation
is possible when light is not polarized in the second
order in the field, but exhibits polarization dependences
in the fourth-order (in field) correlation functions. Such
a property (latent polarization) is observed, for exam-
ple, in parametric scattering radiation with a collinear
frequency-degenerate type II synchronism, which was
demonstrated experimentally in [13]. A classical ana-
logue of this effect was also proposed in [11], and its
experimental realization is described in [14].

The schematic diagram of experimental observation
of latent polarization is shown in Fig. 1 [15]. The radi-
ation under investigation is directed to the polarization
beam splitter PBS with a pair of photodetectors D1 and
D2 mounted at the exits. In front of the beam splitter, a
system of phase plates (two such plates are sufficient) P
is mounted, which makes it possible to carry out any
polarization transformation. If light is not polarized in
the second order in the field, the intensity registered by
each of the detectors remains unchanged under any
polarization transformation.

Let us suppose that a correlation function of the
form

(4)

is measured in an experiment, where E(–) and E(+) are,
respectively, the negative-frequency and positive-fre-
quency fields, the subscripts H and V denoting the lin-

ωθωθ''| 〉 ωθ' ωθ'| 〉± ;

HωVω'| 〉 VωHω'| 〉±  or  HωHω'| 〉 VωVω'| 〉 .±

GHV
2( ) τ( ) EH

–( ) t( )EV
–( ) t τ+( )EH

+( ) t( )EV
+( ) t τ+( )〈 〉=
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ear horizontal and vertical polarization modes. This
quantity, which characterizes intensity correlation in
the polarization modes, may depend on polarization
transformation in front of the beam splitter even for
light nonpolarized in the second order. In order to mea-
sure the correlation function (4), signals from detectors
are directed to the input of the photocounting coinci-
dence circuit; the coincidence count rate Rc is deter-

mined by the value of . For example, the correla-
tion function (4) in [13] was measured for polarization
transformations carried out by rotating the half-wave
plate. If two-photon light was present at the input, mod-
ulation of the coincidence count rate was observed with
a high visibility.2 In the presence of a classical source
(e.g., radiation from two orthogonally polarized lasers
with independent phase fluctuations [14]) at the input,

a modulation of  with a 50% visibility is observed
in the experiment.

Let us now consider four polarization-frequency
Bell states (3). It is well known that the singlet state Ψ–

is invariant to any polarization transformations [16]. It
should not display any polarization dependence during
measurements of moments of any order in the field,
including the correlation function (4). It can also be
noted that the state Φ+ is invariant to rotations of the
polarization plane. Consequently, no modulation in the
number of coincidences must be observed for such a
state (or for the Ψ– state) in the experiment described in
[13].

Thus, light in the singlet Bell state Ψ– is nonpolar-
ized in the second as well as fourth order in the field.
Since all moments for two-photon light can be
expressed in terms of second- and fourth-order
moments, light in state Ψ– is nonloparized in all orders
in the field. Such light can be referred to as completely
nonpolarized.

4. “SCALAR LIGHT”

The state of light Ψ– is close to the state of polariza-
tion-scalar light proposed in [10] (see also [17]). A tran-
sition from the state of polarization-scalar light to state
Ψ– occurs in the limit of a low pumping power or a
small parametric transformation coefficient. For polar-
ization-scalar light, fluctuations of all Stokes parame-
ters must be suppressed.

The fluctuations of Stokes parameters can be easily
calculated for all four polarization-frequency Bell
states. It turns out as a result that fluctuations of the

third Stokes parameter are suppressed in state Φ+ (∆  =

0); ∆  = 0 in state Φ–; ∆  = 0 in state Ψ+; and in the
singlet state Ψ–, the fluctuations of all three Stokes

2 In such an experiment, the visibility must be 100% according to
the theory.

GHV
2( )

GHV
2( )

S3
2

S2
2 S1

2
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parameters are suppressed: ∆  = ∆  = ∆  = 0.
However, the measurements of fluctuations of Stokes
parameters for biphoton light would require very rapid
detectors (with a time resolution of the order of recip-
rocal width of the parametric scattering spectrum, i.e.,
of the order of hundreds of femtoseconds). Such detec-
tors are not available at present. The suppression of
fluctuations of the Stokes parameters can be obtained
with the help of detectors with a nanosecond time reso-
lution, but only in the case of parametric oscillation of
light, when the emission spectrum is considerably nar-
rower than for spontaneous parametric scattering. In
this study, we used the spontaneous scattering regime;
accordingly, we measured not the fluctuations of the
Stokes parameters, but correlation functions of inten-
sity.

5. PREPARATION AND ANALYSIS 
OF POLARIZATION-FREQUENCY BELL STATES

The schematic diagram of the experiment on obtain-
ing four polarization-frequency Bell states is presented
in Fig. 2. Continuous pumping (radiation of helium–
cadmium laser at a wavelength of 325 nm) through a
nonpolarization beam splitter is directed to the interfer-
ometer whose both arms contain a lithium iodate crys-
tal. In the crystal, lights experiences spontaneous para-
metric scattering with a nondegenerate collinear type I
synchronism; as a result, biphoton radiation in state
|HωHω'〉  is present in both arms behind the crystal. The
wavelength of the signal and idler photons are 635 and
665 nm, respectively. Pumping radiation behind the
crystal is cut off by filter F. A half-wave plate in one of
the arms rotates polarization through π/2, transforming

S1
2 S2

2 S3
2

He–Cd 

LiIO3 

PBS1 QP 

F 

M 

λ/2

|V, V 〉 |H, H 〉

ε

Fig. 2. Schematic diagram of experiment. Parametric scat-
tering in the collinear frequency-nondegenerate regime
with type I synchronism occurs in two spatially separated
regions in a lithium iodate crystal. Biphoton radiation at the
crystal exit is in the state |HωHω'〉  in both beams. In the right
beam, polarization is rotated with the help of a λ/2 plate.
The phase ε between the beams is controlled by mirror M.
The phase incursion between the extraordinarily polarized
wave and the ordinarily polarized wave at frequency ω in
the quartz plate QP exceeds the corresponding phase incur-
sion at frequency ω' by π.
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the beam state into |VωVω'〉 , and both beams meet with-
out loss in the polarization beam splitter PBS1. Mirror
M in the interferometer can be displaced with the help
of a piezoelectric feed. The state of the biphoton field at
the exit of the interferometer has the form

(5)Ψ| 〉 1

2
------- HωHω'| 〉 e iε– Vω Vω',| 〉+( ),=

(a)

Rc

600

400

200

0o 45o 90o 135o 180o
0

0o 45o 90o 135o 180o 225o
0

200

400

600 (b)

0o 45o 90o 135o 180o
0

200

400

600

(c)

Rc

Rc

Fig. 3. Dependence of the coincidence count rate (number
of coincidences in 200 s) on the angle of rotation χ of the
λ/2 plate for (a) Φ–, (b) Φ+, and (c) Ψ–. The solid curve
in (a) corresponds to relation (10) with an added constant
background, which corresponds to a visibility of 94%. The
solid curve in (b) is plotted under the assumption that the
intensities of biphoton beams differ by 20%; in this case,
calculations give the same dependence as in (a), but with an
amplitude smaller by a factor of 20. The theoretical depen-
dence in (c) is depicted by the straight line.

χ

χ

χ
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where phase ε can be varied by displacing mirror M.
For ε = 0, Bell state Φ+ is formed, while, for ε = π, we
have Bell state Φ–. State Ψ+ can be obtained from Φ–

with the help of a half-wave plate oriented at an angle
of π/8.

Bell states Φ+, Φ–, and Ψ+ are analogues of states
obtained in [18] by using the same experimental setup,
but for the degenerate regime of parametric scattering.
As we pass to the degenerate scattering regime, state Φ+

is transformed into a pair of correlated photons with
right-circular and left-circular polarizations, state Φ– is
converted into a pair of linearly polarized photons at
angles ±π/4, and state Ψ+ is transformed into a pair of
photons polarized along the vertical and the horizontal.

The singlet state Ψ– has no analogue in the degener-
ate regime since it is antisymmetric relative to the trans-
position of photons in a pair. In order to prepare this
state, a special phase plate made of a quartz crystal
(QP) was used in experiments. The thickness of this
plate satisfied the following condition: the phase incur-
sion between the ordinary and extraordinary waves at
frequency ω differs from the corresponding phase
incursion at frequency ω' by π. If the state Ψ+ = |HωVω'〉 +
|VωHω'〉  exists at the entrance of such a plate and its opti-
cal axis is oriented along the vertical or horizontal, the
state behind the plate has the form Φ– = |HωVω'〉  –
|VωHω'〉  to within an insignificant common phase. In
order to obtain state Ψ–, phase ε in the interferometer
was set equal to π so that the state Φ– = |HωHω'〉  –
|VωVω'〉  was formed at the exit of the interferometer. In
the basis XY turned through π/4 relative to the basis HV,
state Φ– is transformed into Ψ+:

Plate QP is mounted at the exit of the interferometer
so that its optical axis is oriented along direction X.
Behind the plate, the state in the basis XY was trans-
formed into Ψ–; consequently, in view of its invariance
to polarization transformations, this state remained
unchanged in any polarization basis.

For the four polarization-frequency Bell states
obtained by us, measurements were made according to

the scheme proposed in [15]: the value of  was
measured depending on the polarization transformation
in front of the beam splitter (see Fig. 1). In order to sin-
gle out small scattering angles, an aperture was used.
Since noise radiation was also present at the entrance of
the detecting elements of the setup in addition to radia-
tion from spontaneous parametric scattering, an inter-
ference filter of width 40 nm with transmittance peak at a
wavelength of 650 nm was used. The filter transmitted both
signal and idler radiation. Avalanche photodiodes operating
in the photon count mode were used as detectors, and the
resolution of the coincidence scheme was 1.5 ns.

The role of polarization transformers was played by
λ/2 and λ/4 plates. Figure 3 shows the dependences

HωHω'| 〉 VωVω'| 〉– XωYω'| 〉 YωXω'| 〉 .+=

GHV
2( )
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obtained for  during the rotation of the λ/2 plate for
Bell states Φ–, Φ+, and Ψ–. The dependence for the Ψ+

state is not shown since this state is transformed to Φ–

by rotating the basis through π/4; consequently, the
angular dependence for this state is the same as for Φ–

to within a shift by π/8 along the abscissa axis.
It should be noted at the very outset that all the

experimentally obtained entangled states were nonpo-
larized in the second order in the field: under polariza-
tion transformations by the λ/4 and λ/2 plates, the
intensity of the beam detected by each detector (see
Fig. 1) remained practically unchanged.3

It can be seen that the state Φ– possesses “latent
polarization” (Fig. 3a): upon the rotation of the λ/2
plate, the number of coincidences Rc oscillates with a
high visibility (94%). The dependence of Rc on the
angle of rotation χ of the plate can be easily derived
using expression (4) for the correlation function and
writing state Φ– in the form

(6)

where (ω, ω') are the photon creation operators in
the polarization modes H and V and in frequency modes
ω and ω'. Now, we express the fields in relation (4) in
terms of the creation operator and consider that the left-
hand side of Eq. (4) is Hermitian conjugate to the right-
hand side. Averaging in Eq. (4) should be carried out
over the state Φ(χ) obtained from Φ– as a result of
action of the plate. This gives

(7)

Using the Jones matrix for the λ/2 plate oriented at
angle χ [15],

and expressing the creation operators in front of the
plate in terms of the creation operators behind the plate,
we obtain the following expression for state Φ(χ) accu-
rate to an insignificant phase factor:

(8)

After integration, this equation will contain only the
terms corresponding to frequencies ω and ω'. Substitut-
ing Eq. (8) into relation (7), we obtain

(9)

3 Intensity modulation did not exceed 15%.
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(the contribution resulting from averaging gives only
the second term in Eq. (8)).

The rate of coincidence count in the scheme pre-

sented in Fig. 1 is determined by the integral of (

 

τ

 

)
with respect to 

 

τ

 

 in the limits determined by the time
resolution 

 

T 

 

of the coincidence circuit, which is consid-
erably longer than the period of oscillations of the first
factor in Eq. (9). This gives

(10)

GHV
2( )

Rc Φ– λ
2
---, 

  4χ( ),sin
2∝
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Fig. 4. Dependence of the number of coincidences on the
angle of rotation χ of a λ/4 plate for (a) Φ–, (b) Φ+, and (c) Ψ–.
Theoretical curves are plotted from relations (11) (a) and (12)
(b) with an added background, taking into account the depar-
ture of visibility from 100%. The visibility is 93%. The theo-
retical dependence in (c) is depicted by the straight line.

χ

χ

χ
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which is in good agreement with the experimental
results (Fig. 3a).

If state Φ+ is formed at the entrance of the polariza-
tion transformer, the coincidence count rate is indepen-
dent of the angle of rotation of the half-wave plate; it
can easily be verified that state Φ+ does not change in
this case. The coincidence count rate remains close to
zero since the polarization anticorrelation effect takes
place [19]. Accordingly, the coincidence count rate in
Fig. 3b is smaller than the count rate for state Φ– by
more than an order of magnitude (Fig. 3a). The
observed modulation is apparently due to the fact that
biphoton beams in different arms of the interferometer
had slightly different intensities. For example, if the
contributions to the coincidence count rate from the
two arms differ by 20%, we can obtain for Rc a depen-
dence analogous to (10), but with an amplitude smaller
by a factor of 20.

For the case when state Ψ– was formed in front of
the plate, a high coincidence count rate independent of
χ was observed (Fig. 3c). Calculations similar to those
described above give in this case a constant value for
Rc, equal to the maximum of function (10).

The results presented in Fig. 4 were obtained by
using a λ/4 plate as a polarization transformer. In this
case, calculations give the following dependence of
state Φ– at the entrance to the plate:

(11)

This dependence is in good agreement with the experi-
mental dependence (Fig. 4a).

The change in the value of χ for state Φ+ at the plate
entrance leads to complete modulation of the coinci-
dence count rate (Fig. 4b). Calculations for this case
give the following dependence:

(12)

Finally, for state Ψ– at the entrance of the λ/4 plate, the
coincidence count rate modulation during the rotation
of the plate is virtually absent (Fig. 4c).

Our measurements revealed that biphoton light in
state Ψ– does not possess “latent polarization”; i.e., it is
nonpolarized in the second as well as fourth order in the
field. All the remaining Bell states exhibit latent polar-
ization.

6. CONCLUSIONS

Thus, biphoton light in a singlet polarization-fre-
quency Bell state turns out to be completely nonpolar-
ized and is polarization-scalar light. Such a state of
light was obtained experimentally, as well as the

Rc Φ– λ
4
---, 

  2χ( ).sin
4∝

Rc Φ+ λ
4
---, 

  2χ( ).sin
2∝
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remaining three polarization-frequency Bell states. It is
convenient to use “one-beam” geometry in this case
since it makes it possible to use biphoton light for data
transmission by sending the signal and idler photons
through the same optical fiber. It can be expected that
such states will be applied for coding and transmission
of quantum information.
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Abstract—Within the framework of the instanton approach, we present analytical results for the following
model problems: (i) particle penetration through a parabolic potential barrier, where the instanton solution prac-
tically coincides with the exact (quantum) one; (ii) descriptions of highly excited states in anharmonic poten-
tials of two types: double-well X4 and decay X3. For the former potential, the instanton method accurately repro-
duces not only single-well and double-well quantization, but also a crossover region (in contrast to the standard
WKB approach that fails to describe the crossover behavior); for the latter potential, the instanton method
allows studying the resonance broadening and collapse phenomena. We also investigate resonance tunneling
that plays a relevant role in many semiconducting devices. We show that the instanton approach gives exact
(quantum) results in a broad range of energies. Applications of the method and of the results are applicable to
various systems in physics, chemistry, and biology exhibiting double-level behavior and resonance tunneling.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Semiclassical mechanics has a long history. Surpris-

ingly, however, some long-standing problems still exist
in the theory. One of them—the description of states
near a potential barrier top with a sufficient accuracy—
is the subject of this paper. It is known that the com-
monly used WKB method (phase integral approach) [1,
2] amounts to matching the wave functions for the clas-
sically allowed and forbidden regions. Technically, the
procedure works for linear (or first-order) turning
points and can be relatively simply performed only in
one-dimensional problems. But one-dimensional prob-
lems are not of great physical importance, not only
because the reduced dimensionality does not allow
modelling many relevant experimental situations, but
also (at least partially) because one-dimensional quan-
tum mechanical problems can be rather easily solved
numerically. Unfortunately, efficiency and accuracy of
direct numerical methods in quantum mechanics rap-
idly degrade for multidimensional systems possessing
many degrees of freedom because of an extraordinary
amount of computational work required for calcula-
tions. Furthermore, an extension of the WKB procedure
to multidimensional systems encounters fundamental
difficulties because of the still unsolved matching prob-
lem for multidimensional WKB solutions, which
become singular on caustic lines separating manifolds
in phase space with real and imaginary momenta for

¶This article was submitted by the authors in English.
1063-7761/02/9504- $22.00 © 200645
each among N coordinates. Because the number of
these domains increases as N!, it is a tremendous task
for N > 2. After several decades of efforts, a complete
and unifying description of multidimensional WKB
solutions is still unavailable.

The problem was first addressed long ago, and some
attempts to overcome the difficulties of the WKB
approach and to improve the accuracy of the method
have been performed quite successfully. We note, e.g.,
[3], where the authors additionally included trajectories
of a special type on the complex phase plane in the stan-
dard WKB method; the semiclassical motion along
these trajectories is described by Weber functions (also
see [4]). But the choice of these additional special tra-
jectories (which must be included in order to improve
the accuracy of the WKB method near the barrier top)
depends on the detailed form of the potential far from
the top, and in each particular case, a nonuniversal pro-
cedure must therefore be performed from the very
beginning (also see more recent publications [5], where
the authors use some distortion of Stokes diagrams, or
[6], where time-dependent quantum mechanical calcu-
lations for anharmonic and double-well oscillators have
been performed).

Evidently, therefore, there is some need for a semi-
classical approach different from the WKB method.
One of the alternatives to the WKB semiclassical for-
malism, the so-called extreme tunneling trajectory, or
instanton [7–9], could be very effective in calculating a
02 MAIK “Nauka/Interperiodica”
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globally uniform wave function of the ground state
(i.e., a wave function without singularities). It allows
finding semiclassical wave functions for a very broad
class of potentials with arbitrary combinations of the
first- and the second-order turning points. The method
was recently adapted for the description of low-energy
excited states [10, 11]. One of the main advantages of
the instanton approach is that it can be readily extended
to multidimensional systems using perturbative tech-
niques (see [12] and references therein).

But before investigating multidimensional prob-
lems, we must study one-dimensional potentials and
one-dimensional problems that cannot be accurately
solved by the standard WKB method. These problems
are the subject of this paper. The generalization of the
instanton procedure to highly excited states is not
straightforward at all and requires additional analysis.
We consider only few relatively simple examples, but
this analysis is useful for gaining insight into more
complex systems for which even approximate theoreti-
cal results are not available.

In many interesting physical problems, high-accu-
racy calculations are out of reach of the standard WKB
method, but as we see in what follows, the instanton
approach offers a solution to the difficulties inherent to
the WKB procedure. Since this fact was largely unno-
ticed in the previous studies, we found it worthwhile to
present the investigation of several simple examples in
a short and explicit form and to point out practical
usability of the instanton approach. Apart from the aim
to illustrate the efficiency of the instanton approach, our
study is a prerequisite for an explanation and successful
description of many relevant physical phenomena (for
example, low-temperature quantum kinetics of phase
transitions—see, e.g., [13]) where an active (reaction)
path is effectively confined to one dimension.

All examples considered in this paper are related to
the fundamental problems of chemical dynamics and
molecular spectroscopy (see, e.g., [9] and references
therein). Symmetric or slightly asymmetric double-
well potentials are characteristic of molecules and van
der Waals complexes with more than one stable config-
uration [14–17]. The states of such systems close to the
barrier top (theoretically described by the instanton
approach in this paper) are most relevant for radiation-
less evolution of highly excited states. These states
have a double (localized–delocalized) nature, which
manifests itself in the wave functions that simulta-
neously contain both components, the localized com-
ponent in one of the wells and the delocalized compo-
nent between the two wells. The states close to the bar-
rier top of decay potentials govern thermally activated
overbarrier transition amplitudes. For low-energy
states, the main reduction factor is the tunneling expo-
nent, while the contribution of highly excited states is
limited by the Boltzmann factor. Our instanton calcula-
tions demonstrate that there is no sharp boundary
between quasistationary and delocalized states. Two of
JOURNAL OF EXPERIMENTAL
us (V. B. and E. K.) recently investigated [18] the eigen-
states of a highly asymmetric double-well potential. We
have shown that quantum irreversibility phenomena
occur when the spacing between neighboring levels of
the deeper well becomes smaller than the typical tran-
sition matrix element. Obviously, this criterion can also
be applied to the states near the barrier top. We note
that, for low-energy states, the asymmetry leading to
irreversible behavior must be very large, whereas, for
states near the barrier top, the condition of the ergodic
behavior is not very severe, and it is sufficient for the
asymmetry of the potential to be comparable to the bar-
rier height.

This paper is organized as follows. Section 2 con-
tains the basic equations of the instanton method that
are necessary for our investigation. As an illustration of
the method, we consider a touchstone quantum
mechanical problem—penetration of a particle through
a parabolic potential barrier. The instanton solutions
that are the asymptotic forms of the Weber equation are
then exact. Section 3 is devoted to the investigation of
highly excited states in a double-well potential. For
concreteness and simplicity, we study the quartic
anharmonic potential X4. The instanton approach
allows us to accurately reproduce not only the asymp-
totic behavior but also the crossover region from the
single-well to the double-well quantization. In Section 4,
a similar problem for the X3 anharmonic potential is
studied. Section 5 is devoted to the so-called resonance
tunneling phenomena, which are not only interesting in
their own right but also play a relevant role in many
semiconducting double-barrier structures. In Section 6,
we discuss the results. In the Appendix, we compute the
so-called connection matrices that provide a very effi-
cient method of finding semiclassical solutions to the
Schrödinger equation in potentials having several turn-
ing points. Knowing the connection matrices is also
important and significant for developing a good analyt-
ical approximation. The readers not interested in the
mathematical derivation can skip the Appendix and find
all the results in the main body of the paper.

2. PENETRATION THROUGH THE PARABOLIC 
POTENTIAL BARRIER

2.1. Instanton Approach

For convenience, we recall the main ideas of the
instanton approach. The first step of the approach in [7,
8] is the so-called Wick rotation of phase space corre-
sponding to the transformation to imaginary time t 
−it. The potential and the kinetic energy change their
signs after the transformation, and the Lagrangian is
replaced by the Hamiltonian in the classical equation of
motion. By this Wick rotation, the standard oscillating
WKB wave functions are transformed into exponen-
tially decaying functions that vanish as X  ±∞. Fol-
lowing [10, 11], we use a slightly different formulation
of the instanton method, assuming exponentially
 AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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decaying real-valued wave functions from the very
beginning. Taking into account that the wave functions
of bound states can be chosen as real quantities, we can
therefore seek a solution to the Schrödinger equation in
the form

(2.1)

where γ is the semiclassical parameter that is assumed

to be sufficiently large (γ ≡ mΩ0 /", where m is the
mass of a particle; a0 is a characteristic length in the
problem, e.g., the tunneling distance; and Ω0 is a char-
acteristic frequency, e.g., the oscillation frequency
around the potential minimum; in what follows, we set
" = 1, measuring energies in the units of frequency) and
σ can be called the action; this function must satisfy the
first-order differential equation of the Ricatti type,

(2.2)

where V(X) is the potential and e gives particle eigen-
states (energies). Here and in what follows, we use
dimensionless variables (e = E/Ω0 for the energy, V =
U/γΩ0 for the potential, and X = x/a0 for the coordinate,
where E and U are the corresponding dimensional val-
ues of the energy and potential). We believe that γ @ 1,
and σ(X) can therefore be expanded in the asymptotic
series

(2.3)

The first- and the second-order terms in γ–1 become
identically zero if the time-independent Hamilton–
Jacobi equation (HJE) and the so-called transport equa-
tion (TE) are satisfied,

(2.4)

and

(2.5)

where

(2.6)

An essential advantage of the instanton method in com-
parison to the standard WKB is that, in the former
approach, the HJE is solved at E = 0, and the classically
allowed regions therefore disappear. The price to be
paid for this is the appearance of second-order turning
points (in contrast to the WKB method, where all turn-
ing points are linear).

It is well known that the WKB wave functions are
singular at the turning points, and therefore, different
approximations represent the same wave function in
different domains. The famous Stokes phenomenon [2]
is related to the distribution of the turning points;
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γ2 1
2
--- dσ

dX
------- 

 
2

– V X( )+ γ 1
2
--- d2σ

dX2
--------- e–+ 0,=

σ X( ) W X( ) γ 1– W1 X( ) γ 2– W2 X( ) …+ + +=

1
2
--- dW

dX
-------- 

 
2

V X( )=

dW
dX
--------dA

dX
------- 1

2
---d2W

dX2
----------A+ eA,=

A X( ) W1 X( )–( ).exp≡
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Stokes and anti-Stokes lines emanate from each turning
point. By definition, Stokes lines are the lines where the
dominance of the dominant exponential semiclassical
solution to the Schrödinger equation becomes stron-
gest, and anti-Stokes lines are the lines on which the
dominance and subdominance of the solutions inter-
change. Evidently, the WKB approximation does not
work and must be refined near Stokes and anti-Stokes
lines [2]. On the contrary, because classically accessi-
ble regions do not exist in the instanton formalism, the
Stokes lines continuously pass through second-order turn-
ing points, and globally uniform real solutions to the
Schrödinger equation can be constructed using the asymp-
totically smooth transformation of the instanton wave
functions into the Weber functions. This global uniformity
is the principal advantage of the instanton method.

A clearer idea of the instanton approach is obtained
by the derivation of the well-known [1] quantization
rules for the harmonic oscillator (V(X) = X2/2). For a
given energy e, any solution to the Schrödinger equa-
tion can be represented as a linear combination of the
solutions to the Weber equation [19]

(2.7)

where z ≡ X  and ν = e – 1/2. The basic solutions of
(2.7) are the parabolic cylinder functions [19], and only
the function Dν(–z) vanishes as z  ∞ for arg z = 0.
For argz = π, the asymptotic behavior of this function
as z = ∞ is given by [19]

(2.8)

It can vanish as z  ∞ only at the poles of Γ(–ν), and
this vanishing condition gives the exact eigenvalues of
the harmonic oscillator

Moreover, because Dν(–z) coincide with the known
harmonic oscillator eigenfunctions for positive integer
ν [1], the instanton approach to the harmonic oscillator
is exact.

2.2. Tunneling Through the Harmonic Barrier

As a less trivial illustration of the instanton
approach efficiency, we apply the method to the prob-
lem of quantum mechanical tunneling through the par-
abolic potential

(2.9)

d2Ψ
dz2
---------- ν 1

2
--- z2

4
----–+ 

  Ψ z( )+ 0,=

γ

Dν z–( ) exp iπν( )zν z2

4
----– 

 exp=

–
2π

Γ ν–( )
--------------z–ν 1– z2

4
---- 

  .exp

e n
1
2
---.+=

U x( ) U0

mΩ0
2

2
-----------x2,–=
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where m is the mass of the tunneling particle and Ω0 is
a characteristic frequency (the curvature of the poten-
tial). The potential involves an additional characteristic
space scale a0. Using Ω0 and a0 to set the corresponding
scales, we can rewrite parabolic potential (2.9) in the
dimensionless form

(2.10)

In these variables, the Schrödinger equation is given by

(2.11)

where

(2.12)

and γ @ 1 semiclassical parameter introduced above.
Schrödinger equation (2.11) can be transformed into

the Weber equation [19] by a π/4 rotation in the com-
plex plane,

and the solution to (2.11) can therefore be represented
as a linear combination of the parabolic cylinder func-
tions Dν [19],

(2.13)

where ν = –1/2 – iα/2.

V X( ) V0
1
2
---X2.–=

d2Ψ
dX2
---------- γ2X2 αγ–( )Ψ X( )+ 0,=

α 2
U0 E–

Ω0
----------------,=

X
1

2γ
----------z

iπ
4
----- 

  ,exp=

Ψν z( ) c1Dν z( ) c2Dν z–( ),+=
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Fig. 1. The phase of the wave reflected from the parabolic
barrier: (1) the exact quantum and instanton solutions φ0;

(2) the WKB solution ; the dashed line is the differ-

ence φ0 – .

φ0
WKB

φ0
WKB
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As X  ∞, only the transmitted wave exists with
the amplitude (the transmission coefficient) T,

(2.14)

As X  –∞, both the incident wave (∝ exp(–iγX2/2))
and the reflected wave proportional to Rexp(iγX2/2)
exist. By a standard quantum mechanical procedure [1],
the transmission coefficient T and the reflection coeffi-
cient R can be found using the known asymptotic form
of the parabolic cylinder functions [19] at fixed energy
(i.e., at fixed α). This leads to the well known expres-
sion [1]

(2.15)

We note that solutions (2.13) are the exact solutions to
the Schrödinger equation in parabolic potential (2.10).
We now apply the instanton approach described above
to the same problem. The solutions to HJE (2.4) and TE
(2.5), which are milestones of the method, can easily be
found as

(2.16)

where the integration constant A0 determines energy-
dependent phases of the wave functions. Comparing
(2.16) and (2.13), we can see that the instanton wave
functions are the asymptotic forms of the parabolic cyl-
inder functions, and therefore, because the transmission
(T) and reflection (R) coefficients are determined only
by the asymptotic behavior, the values of T and R found
in the framework of the instanton approach coincide
with the exact quantum mechanical ones at any value of
the energy (of the parameter α). We recall that the
instanton and the exact quantum mechanical solutions
for the harmonic oscillator also coincide for any energy.

To finish this subsection, we mention for the skepti-
cal reader that the WKB wave functions coincide with
the exact solutions only at α ! –1. In the region where
|α| ≤ 1, i.e., where the characteristic size of the forbid-
den region becomes comparable to the particle wave-
length, specific interference phenomena between the
transmitted and reflected waves occur, and phenomena
of this kind cannot be reproduced in the standard WKB
approach assuming that all turning points are indepen-
dent.

As an illustration, in Fig. 1, we show the energy (α)
dependence of the phase for the wave function reflected
by the parabolic potential. The exact quantum mechan-
ical and the instanton solutions (φ0 in Fig. 1) are indis-
tinguishable over a broad region of energies, while the

Ψ T
iγX2

2
-----------.exp≈

T 2 1
1 πα( )exp+
-------------------------------.=

W i
X2

2
------,±=

A A0X 1/2– iα X
2
----ln± 

  ,exp=
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WKB solution (  in Fig. 1) deviates from both of
them.

2.3. Connection Matrices

Our analysis can be recast into a more elegant form
by introducing the so-called connection matrices. In the
instanton approach (as in any semiclassical treatment of
the scattering or transition processes), we deal with
only the asymptotic solutions and their connections on
the complex coordinate plane. It is therefore important
to know the connection matrices. These connection
matrices provide a very efficient method of finding
semiclassical solutions to the Schrödinger equation in
potentials with several turning points. This is also a rel-
evant starting point for developing a good analytical
approximation.

It is convenient to formulate the general procedure
for calculating the connection matrices for an arbitrary
combination of the first- and second-order turning
points. The procedure can then be applied to any partic-
ular problem under investigation. Technically, this
requires extending the procedure known for linear turn-
ing points [2]. All the necessary details of the generali-
zation are given in the Appendix, and we present here
only the main definitions and results. In the semiclassi-
cal limit γ @ 1, the Stokes and anti-Stokes lines for the
equation

(2.17)

are determined by the respective conditions

(2.18)

and

(2.19)

where

(2.20)

and z0 is the turning point under consideration.
For the harmonic potential, there are only linear

turning points for real (α > 0) and imaginary (α < 0)
energies. In the Appendix, we calculate all the connec-
tion matrices that we need. To fully analyze the prob-
lem for the entire range of parameters, we must there-
fore know only the distributions of turning points and
the Stokes and anti-Stokes lines on the complex plane.
At real turning points (α > 0) where X1, 2 = ±(α/γ)1/2,
there are four Stokes and four anti-Stokes lines and two
cuts in the complex plane (see Fig. 2).

For α @ 1, the connection matrix can be easily cal-
culated as the direct product of the connection matrices

φ0
WKB

d2Ψ
dz2
---------- γ2q z( )Ψ z( )+ 0=

ReW z( ) 0=

ImW z( ) 0,=

W z( ) q z( ) zd

z0

z

∫=
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found in the Appendix (  in Eq. (A.4) and the Hermi-

tian conjugate matrix ) and the diagonal shift matrix

(2.21)

This leads to the transmission coefficient T ≈ exp(–πα/2),
which coincides with (2.15) with exponential accuracy
in the limit α @ 1. To improve the accuracy at smaller
values of α, we must calculate the connection matrices
taking into account not only the contributions of the
contours encompassing the turning points, but also the
additional contribution to the action of the closed path
(with a radius @|X1, 2 |) encompassing both points X1
and X2 (see Fig. 2). The procedure changes the Stokes
constant T3 (on the dashed line separating regions 3 and
4 in Fig. 2), which becomes

This finally leads to the correct transmission coefficient

which is identical to (2.15).
In the case where α < 0, the entire picture (see

Fig. 3) of the Stokes and of the anti-Stokes lines and
turning points is rotated by the angle π/2 with respect to
the picture in Fig. 2. If we bluntly take the point X = 0
as the low integration limit for the action W* in
Eq. (A.11), we obtain the transmission coefficient

M̂
–

M̂
+

πα/2( )exp 0

0 –πα/2( )exp 
 
 

.

T3 1 πα–( )exp+[ ] 1/2.=

T iT3
1– πα

2
-------– 

  ,exp=

T 1
1
2
--- π α–( ),exp–=

5

4

3 2

1

X2

I I'

X1

II

Fig. 2. The Stokes (solid) and anti-Stokes (dashed) lines for
the two real-valued turning points X1, 2with the surrounding
contours I and I'. On contour II, the Stokes lines for the Airy
equation asymptotically matches the lines for the Weber
equation. The cut is depicted by the wavy line.
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which can be reliable (with the accuracy exp(–2π|α|))
only for |α| @ 1. As in the case where α > 0, the accu-
racy can be improved by taking into account the contri-
bution of the path surrounding both imaginary turning
points (this fact was noticed by Pokrovskii and Khalat-
nikov long ago [3]).

At the isolated linear imaginary turning point iX1,
the connection matrix is found from (A.4),

(2.22)

Similarly, the Hermitian conjugate matrix  comes
from the contribution of the closed path surrounding
−iX1. These contours provide only the amplitude of the
dominant (exponentially increasing) wave. But the
accuracy is insufficient for finding the amplitude of the
corresponding subdominant solution (the exponentially
decaying wave function), and we obtain the incorrect
transmission coefficient T = 1. To improve the accuracy
and to find T correctly, we must include the connection
matrix for the isolated second-order turning point in the
procedure (in this particular example, this turning point
is the maximum of the potential). Using (A.9), we can
explicitly find this matrix as

(2.23)

M̃1
+ 1 i π α /2–( )exp

0 1 
 
 

.=

M̃1
–

M̃2

=  1 π α–( )exp+[ ] 1/2 i π α /2–( )exp

i π α /2–( )exp– 1 π α–( )exp+[ ] 1/2
 
 
 
 

.

II

8
I iX1

iX2I'

7
3 2

6
4 1

5

Fig. 3. The same as Fig. 2 for the case of two purely imagi-
nary turning points iX1, 2.
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In principle, similar calculations can be performed
in the adiabatic perturbation theory (which in fact
employs the Planck constant smallness equivalent to
γ @ 1). We note that, in [20], the contributions of the
contours surrounding turning points (analogous to
those presented above) were taken into account. It
seems very plausible that, following this way, it will be
possible to combine the instanton approach and the adi-
abatic perturbation theory, but this issue is beyond the
scope of this paper and will be discussed elsewhere.

3. HIGHLY EXCITED STATES
IN THE DOUBLE-WELL POTENTIAL

Literally, the instanton approach described in the
previous section is valid for states with characteristic
energies that are small compared to the barrier height.
But as we show in this section, the instanton method
works sufficiently well for the energy states near the
barrier top V0. As an illustration, we consider the sym-
metric double-well potential (quartic anharmonic X4

potential)

(3.1)

The Schrödinger equation with potential (3.1) can be
rewritten in dimensionless variables in the form

(3.2)

which is most convenient in applications of the instan-
ton approach. The HJE and TE then become

(3.3)

and

(3.4)

Formal solutions to the set of equations (3.3), (3.4) are
the even and odd instanton wave functions

(3.5)

where the action W± (a solution of the HJE) is to be
determined from

(3.6)

and the amplitude (prefactor) is given by

(3.7)

The quantization rules [1] are related to continuous
matching of the solutions at the turning points (the sec-
ond-order turning point X = 0 and the linear turning

V0 V X( )–
1
2
---X2 1 X2–( ).=

d2Ψ
dX2
---------- 2γ2 V0 V X( )–( ) αγ–[ ]Ψ X( )+ 0,=

1
2
--- dW

dX
-------- 

 
2

V0 V X( ),–=

dW
dX
--------dA

dX
------- 1

2
--- d2W

dX2
---------- iα+ 

  A+ 0.=

ΨI
± A± X( ) iγW± X( )( ),exp=

dW±

dX
----------- 2 V0 V X( )–( ),±=

A±
dW±

dX
-----------
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iα

dW±

dX
----------- 

 
1–
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points X = ±1 for α > 0 and X = ±i for α < 0). A crucial
advantage of instanton solutions (3.5) is that these func-
tions have no singularities inside the barrier, because
the corresponding exponents are pure imaginary in the
classically accessible regions (unlike the WKB solu-
tions). In addition, the general form of the instanton
wave functions does not noticeably depend on whether
E < V0 or E > V0. This advantage allows us to include
the instanton wave functions in the basis of globally
uniform functions diagonalizing the Hamiltonian even
for highly excited states.

The above general procedure for searching instan-
ton solutions to the Schrödinger equation with model
potential (3.1) has a subtle point, which motivates giv-
ing the explicit searching procedure in some detail; new
results follow from our investigation. The procedure
includes several steps.

1. Near the second order turning point, exact solu-
tion (2.14) to the Schrödinger equation can be used
with c1 = ±c2 for the even and odd solutions respec-
tively. For |X| @ 1, it follows from (2.14) and from the
known asymptotic forms of the parabolic cylinder func-
tions [19] that

(3.8)

where

(3.9)

and

(3.10)

To obtain the correct even and odd linear combinations
conforming to (3.5), we set

(3.11)

where

2. Near the linear turning point X = ±1, the
Schrödinger equation reduces to the Airy equation [19]

(3.12)

where

(3.13)

Ψ X( )
c1

X
-------- i f X( )( )exp

Γ 1 iα–( )/4( )
--------------------------------- i f X( )–( )exp

Γ 1 iα+( )/4( )
---------------------------------+ ,=

c1
2π

Γ 3 iα+( )/4( )
--------------------------------- πα

8
-------– 

  2 iα /4– 2γ( ) 1/4–exp–=

f X( )
γ
2
---X2 α

2
--- X

α
4
--- γ π

8
---.–ln–ln–=

c± c1

i f 1±( )exp

Γ 1 iα / 2±( )/4( )
-------------------------------------------,=

f 1
α γln

4
------------

π
8
---.+=

d2Ψ
dy2
---------- yΨ y( )– 0,=

y γ2/3 X 1 α
γ
---+ +=
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for X < 0. The solution that vanishes as y  ∞ is given
by [19]

(3.14)

Continuing this solution to the regions (X ± 1)  @ 1
and sewing there with (3.8), we obtain

(3.15)

where W* is the energy-dependent action on the inter-
val [X = 0, X = 1].

3. Comparing (3.15) and (3.11), we find the quanti-
zation rules

(3.16)

for the even states and

(3.17)

for the odd states.
4. From (3.16) and (3.17), we finally obtain the

quantization rule that can be written in the single form
for both the even and the odd states as

(3.18)

Relation (3.18) is the sought quantization rule that
now allows us to use the advantages of the instanton
method. For highly excited states (i.e., for α ! –1), it
follows from (3.18) that

where n is an integer. For low-energy states (α @ 1),
Eq. (3.18) reproduces the known quantization rule

where  is the action in the classically admissible
region between the linear turning point in the left well,

(3.19)

We note an essential advantage of instanton quantiza-
tion rule (3.18) compared to the traditional WKB for-
malism, where the quantization rules are totally differ-
ent [1] in the tunneling and overbarrier regions. The
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instanton approach gives a single quantization rule,
Eq. (3.18), which is valid in both regions and, in addi-
tion, quite accurately describes the crossover behavior
near the barrier top, where periodic orbits localized at
separate wells transform into a common figure-eight
orbit enclosing both wells.

We illustrate the results of this section in Fig. 4,
where we plot the universal dependence of the eigen-
values in symmetric double-well potential (3.1) on α.
For comparison, we show in the same figure the eigen-
values found by the conventional WKB procedure and
by the exact quantum mechanical computation. It is
clear from the figure that the WKB method errors are
maximal in the region of small |α|, because the oscilla-
tion period logarithmically diverges in this region (the
particle spends infinitely long time near the second-
order turning point). On the contrary, the errors of the
instanton approach are minimal near the barrier top
(small |α|).

2

1

2

0.5

0.4

0.3

0.2

0.1

0
–3 –2 –1 0 1 2 3

α

∆ 
/ Ω

0

Fig. 4. The dimensionless tunneling splitting ∆/Ω0 for the

anharmonic X4 potential near the barrier top: (1) exact quan-
tum and instanton calculations; (2) the WKB result.
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As mentioned at the beginning of this section, the
instanton approach is also very accurate near the poten-
tial minimum. Generally speaking, the instanton solu-
tions are always correct when the deviation from the
corresponding extremum is of the order of characteris-
tic zero-point amplitudes. Mathematically, the accuracy
of the instanton approach is based on the transforma-
tion of the semiclassical solutions into the harmonic
oscillator eigenfunctions (which also ensures the cor-
rect normalization of the instanton wave functions). It
is therefore natural to expect that the instanton method
is very accurate near the barrier top and near the poten-
tial minimum. On the contrary, in the intermediate
region, where the anharmonic shape of the potential is
relevant, we should expect poor accuracy of the instan-
ton method. Fortunately, it turns out that the mathemat-
ical nature of the problem is on our side, and the instan-
ton approach has a reasonable accuracy (of the order of
the accuracy of the WKB method) even in this region.
The fact is that the instanton wave functions are exact
not only in zero but also in the first order with respect
to anharmonic corrections to the potential approxima-
tion. This can be shown using the anharmonic perturba-
tive procedure that was proposed by Avilov and Iordan-
skii for the WKB functions [21] and was generalized
for the instanton wave functions in [22].

For practical computations, it is also relevant that
the instanton wave functions (unlike the WKB ones)
are continuous near their “own” minimum. Numerical
estimate shows that, in the intermediate energy region,
the instanton wave functions reproduce exact quantum
results with the accuracy about 5–10%.

To finish the section, we present the connection
matrices needed to find semiclassical solutions to the
Schrödinger equation in the double-well potential.
Similarly to the results in Section 2, the connection
matrix for the instanton solutions is the product of con-
nection matrices (A.4) for the linear turning points and
the connection matrix for the second-order turning
point, which is the maximum of the double-well poten-
tial in the case under consideration. Using (A.9), we
can find this latter connection matrix as
(3.20)
2

πα
2

------- 
 exp 1 πα( )exp+( )1/2 2γW∗( )cos+ 1 πα( )exp+( )1/2 2γW∗( )sin–

1 πα( )exp+( )1/2 2γW∗( )sin
1
2
--- πα

2
------- 

  1 πα( )exp+( )1/2 2γW∗( )cos+exp–
 
 
 
 
 
 
 

.

It is worth noting that the reflected wave acquires a
nontrivial phase factor near the barrier top. This phe-
nomenon is related to the interference of the incident,
reflected, and transmitted waves, and the phase there-
fore has some geometrical meaning, similarly to the
famous Berry phase [23]. The geometrical origin of the
phase manifests itself more clearly if we recall that the
semiclassical phase factor is determined by the proba-
bility density flow through the barrier,

J iΨ∗ dΨ
dX
--------.=
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We can consider this phase factor from a slightly differ-
ent standpoint, because tunneling results in a phase
shift related to the change of the eigenvalues. Quantiza-
tion rules (3.18) and (3.19) can be rewritten as

which is the definition of the eigenvalues en and where
n is an integer labeling the eigenvalues and χn is deter-
mined by the exponentially small phase shift due to the
existence of the barrier between the two wells. The
phase shift χn has the same functional form (and phys-
ical meaning) as the geometrical phase factor (appear-
ing because of the interference phenomena) acquired
by a quantum mechanical wave function upon a cyclic
evolution [23–25].

4. THE DECAY POTENTIAL

In this section, we study highly excited states in a
decay potential, which we choose as the anharmonic X3

potential for definiteness,

(4.1)

As a first (but compulsory) step, we investigate the low-
lying tunneling states.

4.1. Tunneling Decay of Metastable States

We start from this simple case to pick low-hanging
fruit first, i.e., to describe the states under the conditions

(4.2)

which imply that a local minimum is separated from the
continuum spectrum by a high energetical barrier, and
the quasistationary states en are therefore characterized
by good quantum numbers n. We note that a generic
decay potential shown in Fig. 5 is determined by the
positions of the barrier top X0 and the three turning
points –X1, X = 0, and +X2; near these points, we have

(4.3)

Potential (4.1) is a particular example of the generic
decay potential in Eq. (4.3) (with X1 = 1/3, X0 = 2/3,
X2 = 1, and V0 = 2/27); we use it only as an explicit
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



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

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

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illustration, and, in order to be specific, while all the
results given below are equally valid for the generic
potential. As a note of caution, we also remark that, in
the instanton approach to this problem, we must always
deal with only two turning points. For low-energy
states, the points are X2 and the potential minimum X =
0, and for high-energy states, the points are –X1 and the
potential maximum X0.

In accordance with (4.1), there are no turning points
at X > X2; at X @ X2, the potential can be considered as
a constant, and therefore the wave functions must
asymptotically coincide with plane waves for X @ X2.
Furthermore, near the linear turning point X = 1, the
Schrödinger equation with the X3 anharmonic potential
(4.1) is reduced to Airy equation (3.12), whose solu-
tions are linear combinations of the Bessel functions
with the indices ±1/3 at real (for X < 1) and imaginary
(for X > 1) values of the arguments,

(4.4)

and

(4.5)

where

(4.6)

for X < 1 and

(4.7)

for X > 1 (we recall that ν = en – 1/2 here).

The coefficients B± must be chosen such that
Eq. (4.5) gives plane waves for ζ @ 1; using the known

Ψ u( ) u B+I1/3
2u3/2

3
----------- 

  B–I 1/3–
2u3/2

3
----------- 

 +=

Ψ ζ( ) ζ B+J1/3
2ζ3/2

3
----------- 

 – B–J–1/3
2ζ3/2

3
----------- 

 + ,=

u 2γ( )2/3 1 X– ν 1/2+
γ

-----------------–=

ζ 2γ( )2/3 X 1– ν 1/2+
γ

-----------------+=

V

V0

0 X0–X1 X2 X

Fig. 5. The X3 anharmonic decay potential.
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asymptotic forms of the Bessel functions [19], we thus
obtain

In the classically forbidden region u @ 1, the instanton
solutions to HJE (2.4) and TE (2.5) that continuously
match the quantum mechanical solutions of the
Schrödinger equation near the turning points are given
by

(4.8)

where

(4.9)

and

(4.10)

The sought wave functions of the quasistationary states
are linear combinations of instanton solutions (4.8),
with the coefficients in the linear combinations deter-
mined from the condition of asymptotically matching
the parabolic cylinder functions in Eq. (2.13) and the
Airy functions. This leads to the following equation for
complex eigenvalues ν:

(4.11)

Because the function Γ(z) has a simple pole at z = –n,
we can easily find the leading contribution to the decay
rate Γn of the quasistationary state en,

(4.12)

We note that, for the ground state, with n = 0, Eq. (4.12)
coincides with the result found by Caldeira and Legget
[26]. On the other hand, the decay rate is related to the
current flow [1] as X  +∞, providing the constant
amplitude of the outgoing wave,

(4.13)

Inserting the explicit forms of the wave functions in
Eqs. (4.5)–(4.7) in (4.13), we obtain

(4.14)

In accordance with (4.14), the decay rate depends
only on the normalization of the instanton wave func-
tion and on the amplitude of the outgoing wave. Both
characteristics are determined essentially by the behav-
ior of the instanton wave function in the vicinity of the
turning points only. We note, however, that, in this

B+ B– i
π
3
---– 
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approximation, the instanton computation of decay rate
(4.13) or (4.14) is satisfactory only for the ground state,
because corrections of the order γ–1 rapidly increase
with the quantum number n. The method can be
improved by taking the X3 anharmonic contribution to
the potential into account as a perturbation,

(4.15)

The decay rate calculated in accordance with (4.15) is
of the same accuracy level as the WKB and the exact
quantum mechanical computations for γ ≥ 5. Outside
the regime of interest, the instanton theory loses all pre-
tense of predictability.

4.2. Highly Excited States 
for the Anharmonic X3 Potential

In Subsection 4.1, we calculated the decay rate of
low-energy metastable states. In this case (where the
states en can be characterized by the good quantum
number n), the period of oscillations in the well is
smaller than the inverse decay rate (en @ Γn/Ω0) and Γn

is determined by the probability current density flowing
from the well into the classically admissible region
(X > X0 for a given energy n—see Fig. 5) under the con-
dition of the vanishing backflow from this region to the
barrier. Evidently, the method does not work for highly
excited states with Γn ≥ enΩ0. In this section, we go one
step further with respect to Section 4.1 in extending the
instanton approach to the decay of highly excited states.

First, it is worth noting that the wave functions must
vanish as X  –∞ and, moreover, can always be cho-
sen as real-valued quantities as X  +∞. From these
two conditions, we can find the relations between the
instanton wave functions in the regions X < −X1 and
X > X0 (see the notation in Fig. 5) and, consequently,
calculate the phase δ(α) (counted from the barrier top)
of the standing wave in the region X > X0. It is given by

(4.16)

According to the standard quantum mechanics [1],
phase (4.16) determines the scattering amplitude. We
can therefore find the scattering amplitude deep in the
classically forbidden region from (4.16) and, hence,
compute the eigenvalues in this region. For the calcula-
tion, we must know the terms of the order exp(–π|α|) in

Γn

Ω0
------ 2

π
---

γν 1/2+ 26ν 3+

n!
--------------------------- –

16
15
------γ 

 exp=

× 1
1

576γ
------------ 164n3 246n2 1216n 567+ + +( )– .
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Γ 1 iα /2–( )

------------------------------------------------------------------------+
 
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Γ 1 iα /2+( )
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1–

.
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the expansion of the Γ functions (these terms are
beyond the standard Stirling formula) [19],

(4.17)

where

(4.18)

Finally, taking Eqs. (4.17) and (4.18) into account, we
find the poles of the scattering amplitude from (4.16)
(with the required exponential accuracy) as

(4.19)

Explicitly solving (4.19), we find the complex eigenval-
ues and, in particular, the decay rate for highly excited
states in the anharmonic decay potential.

In the same way as for low-energy tunneling states,
the real part of the eigenvalues en for highly excited
states (i.e., for |α| @ 1) is determined by the action
along closed trajectories in the well, whereas the imag-
inary part (i.e., the decay rate Γn) is related to the prob-
ability current density flow from the well to the barrier.

Using the instanton approach procedure described
in Sections 2 and 3 (see [10, 11] for the details), we can
find not only the eigenvalues but also the eigenstates.
The real-valued instanton wave functions are deter-
mined by the action W(X1, X), which is counted from
the linear turning point X1,

(4.20)

where the amplitude A(α) of the wave function acquires
maximum values at the poles of (4.16) with the widths
proportional to Γn. We plot the functions |A(α)|2 in
Fig. 6.

5. RESONANCE TUNNELING

The phenomenon of the electron resonance tunnel-
ing is familiar [27] and was observed (see, e.g., [28] and
also [29] for more recent references) in semiconducting
heterostructures possessing the so-called double-bar-
rier potentials (see Fig. 7). This phenomenon manifests
itself as peaks in the tunneling current at voltages near
the quasistationary states of the potential well. The
physical mechanism of the resonance tunneling can be
understood as a constructive interference between the
wave reflected from the left barrier and the wave outgo-
ing to the left of the well.

Γ 1 iα±
2

--------------- 
  2π πα

4
-------– iφ± 

 exp≈

× 1
1
2
--- π α–( )exp– ,

φ α( )
α
2
--- α

2
------ 1–ln≡ .

2γWL* 2γW∗ φ α( )+=

=  π 2n 1+( ) i
π
4
--- α α–( ) 1

2
--- π α–( )exp+ .–

Ψ X( ) A α( ) X X1– 1/4– γW X1 X,( ) π
4
---+ 

  ,sin=
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In the instanton method, the total transmission coef-
ficient T is determined by the second-order turning
points of the double-barrier potential (i.e., the maxima
of the potential); in accordance with the procedure
described in the Section 2, T is given by

(5.1)

where we use the notation

(5.2)

and, similarly to (2.12),

(5.3)

T 2 π2Γ LΓ R 1 1 πΓL+( ) 1 πΓR+( )–[ ] 2{=

+ 4 1 πΓL+( ) 1 πΓR+( ) γWR*( )cos
2 }

1–
,

Γ L R,
1
π
--- παL R,–( )exp=

α L R, 2
U0 L R,( ) E–

Ω0 L R,( )
--------------------------.=

8

6

4

2

0
1–1 0

(E – U0)/Ω0

|A
|2

Fig. 6. The amplitude of the wave function localized in the
potential shown in Fig. 5 (the dashed line is a nonresonant
part of the amplitude and γ = 101).
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Fig. 7. The model two-barrier potential structure for the res-
onance tunneling.
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Similarly to (3.19), the action in the classically admis-
sible region is given by

(5.4)

In the resonance region, where

γWR* γW∗ φ αL( )– φ αR( ).–=

γWR* π n
1
2
---+ 

 =
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Fig. 8. The transmission coefficient for the potential shown
in Fig. 7 (γ = 54).
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in accordance with the stationary quantization rule, the
transmission coefficient in (5.1) is given by

(5.5)

Far from the resonance, it is given by

(5.6)

We thus found the resonance amplification of the trans-
mission. For the symmetric case at the resonance, T =
1, and the interference completely suppresses the
reflection. In the opposite case of strongly asymmetric
barriers, T in (5.1) is almost coincident with the trans-
mission coefficient for the highest barrier, and the influ-
ence of the lower barrier is suppressed by the interfer-
ence. In Fig. 8, we show the energy dependence of T for
the symmetric structure of the barriers. The resonances
become broader as the energy approaches the top of the
potential barriers and disappear at higher energies
(above the top). It is worthwhile to stress that the
instanton solution of the resonance tunneling problem
allows us to study the phenomenon in a very broad
energy region, including the states near the tops of bar-
riers.

We finally present the connection matrices for the
instanton solutions found above. The corresponding
matrix can be found as the product of two connection
matrices connecting instanton solutions near the second-
order turning points (see (A.9) and (3.20)) and diagonal
shift matrix (A.6),
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Here, W* denotes the action between the turning
points (in this case, between the second-order turn-
ing points).

6. CONCLUSIONS

This paper could be considered as a formal one, in
the sense that we asked theoretical questions that most
solid-state or chemical physics experimentalists would
not think to ask. But answering these very basic ques-
tions can be illuminating.

We first summarize the results of the paper. Within
the framework of the instanton approach, we derived
accurate analytical solutions for a number of one-
dimensional semiclassical problems and checked the
results numerically. As an illustration of the method, we
considered a simple quantum mechanical problem,
penetration of a particle through the parabolic potential
 AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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barrier. In this case, the instanton solutions (which are
asymptotic solutions of the Weber equation) are exact.
We also considered the description of highly excited
states in a double-well potential. For definiteness and
simplicity, we studied the quartic anharmonic X4 poten-
tial. The instanton approach enables us to accurately
reproduce not only the asymptotic behavior but also the
crossover region from the single-well to the double-
well quantization (in contrast to the standard WKB
approach, which fails to describe the crossover behav-
ior). A similar problem for the X3 anharmonic potential
was also studied, and the instanton method allowed us
to study the resonance broadening and collapse phe-
nomena. In addition, we investigated the so-called res-
onance tunneling phenomena, not only interesting in
their own right but also playing a relevant role in many
semiconducting double-barrier structures. We also
computed the connection matrices that provide a very
efficient method of finding semiclassical solutions to
the Schrödinger equation in potentials with several
turning points (they are also useful in developing a
good analytical approximation).

All the examples selected to illustrate the efficiency
of the instanton approach belong to the fundamental
problems in chemical dynamics and molecular spec-
troscopy (see, e.g., [9] and references therein). Sym-
metric or slightly asymmetric double-well potentials
are characteristic of molecules and van der Waals com-
plexes with more than one stable configurations [14–
17]. The states of such systems that are close to the bar-
rier top (theoretically described by the instanton
approach in our paper) are not easy to investigate exper-
imentally, because optical transitions between these
states and the localized ones are typically inactive. But
precisely these states are most relevant for radiationless
evolution of highly excited states. In a certain sense,
these states have a double (localized–delocalized)
nature that manifests itself in the form of wave func-
tions that simultaneously contain both components, the
one localized in one of the wells and the other delocal-
ized between the two wells. Consequently, any initially
prepared localized state evolves via formation and
decay of these states. Our calculations are intended to
pave the way to the investigation of this class of prob-
lems using the wave functions computed within the
instanton approach.

The states that are close to the barrier top of decay
potentials govern thermally activated overbarrier tran-
sition amplitudes. For low-energy states, the main
reduction factor is the tunneling exponent, while the
contribution of highly excited states is limited by the
Boltzmann factor. The energy width of the region dom-
inating in the total transition rate is traditionally postu-
lated in the transition rate theory [30] to be of the order
of the temperature T. But our results in Section 3 predict
another estimate. Instanton calculations demonstrate
that the intermediate region between the quasistation-
ary (Γ ! Ω) and the delocalized states could be much
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
larger than T, namely, of the order Ω . This implies that
no sharp boundary exists between the quasistationary
and the delocalized states and that all of the states
within the interval V* – Ω, V* + T equally contribute to
the total rate constant for the penetration through the
barrier.

One more point should be emphasized. It was
recently shown in [18] that quantum irreversibility phe-
nomena occur when the spacing between neighboring
levels of the deeper well becomes smaller than the typ-
ical transition matrix element. Obviously, this criterion
can also be applied to the states near the barrier top. We
note that, for low-energy states, the asymmetry provid-
ing the irreversible behavior must be very large,
whereas, for states near the barrier top, the condition of
the ergodic behavior is not very severe; it suffices that
the asymmetry of the potential is comparable to the bar-
rier height.

The method and the results can also be applied to
various systems in physics, chemistry, and biology
exhibiting double-level behavior and resonance tunnel-
ing. Literally speaking, we dealt with the microscopic
Hamiltonians in this paper. But because of rapid devel-
opment of electronics and cryogenic technologies, it
has become possible to apply the same Hamiltonians to
study cases where the corresponding variables are mac-
roscopic (e.g., the magnetic flux through a SQUID ring,
or charge or spin density wave phase in certain one-
dimensional solids). In this paper, we studied the exam-
ple of a tunneling processes in which the system pene-
trates into a classically forbidden region (a potential
barrier). It is an intrinsically quantum effect with no
classical counterpart, but it can nevertheless occur for
macroscopic systems, and the tunneling of a macro-
scopic variable of the macroscopic system (e.g., spin or
charge tunneling in atomic condensates trapped in a
double-well potential [31]) can also be investigated by
our method.

With this background in mind, our results are also
intended to clarify different subtle aspects of tunneling
phenomena. An example was given at the end of Sec-
tion 3, where we found the geometrical phase acquired
by a particle tunneling through a potential barrier. This
phase can be tuned by the particle energy and by the
barrier shape, and specific interference phenomena
might occur. The observation of oscillations related to
this geometrical phase in real systems has proved chal-
lenging. Evidently, because the forms of the model
potentials that we used are rather special (and, in addi-
tion, only one-dimensional), we cannot discuss the
behavior for general cases with full confidence. Never-
theless, we believe that the instanton approach
employed in this work should also be useful in deriving
valuable results for the general and multidimensional
potentials.

It is essential that, in the instanton method discussed
in this paper, a mere observation of several classical tra-
jectories suffices to develop a qualitative insight for the
SICS      Vol. 95      No. 4      2002
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quantum behavior. Although the semiclassical instan-
ton approach is reliable in this context (as we illustrated
in a number of particular examples), it is much more
than a qualitative picture. As an approximation, the
instanton method can be surprisingly precise. We also
note that the results presented here are not only interest-
ing in their own right (at least in our opinion) but may
also be directly tested experimentally, because there are
many systems where the model investigated in the
paper is a reasonable model of reality.

The theory presented in our paper could be extended
in several directions. One very interesting question is
how our quantum mechanical instanton formulas (e.g.,
Eqs. (4.12)–(4.14) for the tunneling rate in the anhar-
monic X3 decay potential) are modified by interactions
with the surrounding media (see, e.g., [32], where the
WKB approach was used to study the time evolution of
quantum tunneling in a thermally fluctuating medium).
Theoretical modelling of this case is hampered by the
absence of detailed knowledge of the medium and of
the interaction with it. A more specific study might
become appropriate once suitable experimental results
become available. A simple criterion for the strength of
the interaction with the environment (in other words,
for the effective temperature) for the crossover from the
thermally activated classical to quantum mechanical
decay can easily be found by equating the correspond-
ing Arrhenius factor and the characteristic frequency
oscillations inside the barrier Ω∗  (see (A.10)).

All of the potentials investigated in this paper can be
considered in a number of realistic cases as effectively
resulting from avoiding the adiabatic level crossing in
the situation where the adiabatic splitting is so large

T2

T1

T3

3

2

1

7

65

4

Fig. 9. The Stokes (solid) and anti-Stokes (dashed) lines in
the vicinity of the linear turning point V(X) = –X. The cut is
depicted by the wavy line, and the Stokes constant are T1,
T2, and T3.
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that any influence of the upper adiabatic states on the
lower states can be neglected. Certainly, in the general
case of an arbitrary coupling strength, this interaction
of higher and lower adiabatic states must be taken into
account, and the tunneling matrix elements must be
accompanied by the corresponding Franck–Condon
factors arising because of the violation of the Born–
Oppenheimer approximation. We defer these problems
to the future, although there is no doubt that the instan-
ton approach is also useful in problems of this kind.
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APPENDIX

Following [2], we introduce short notation for the
standard basic WKB solutions,

(A.1)

and

(A.2)

The position of the turning point is denoted by ° and is
inessential if we seek solutions in the region |z | @ 1. In
accordance with definitions (2.18) and (2.19), we must
add the dominant solution times a certain constant (the
Stokes constant) to the subdominant (decaying) solu-
tion on the Stokes lines; the dominant and the subdom-
inant solutions are exchanged on the anti-Stokes lines.
To find the Stokes constant, we must match both solu-
tions by encompassing the turning point and taking the
cut on the complex z plane into account (see Fig. 9).

We first consider the linear turning point

(A.3)

with the classically admissible region corresponding to
X > 0. In this case, we have three Stokes lines, three
anti-Stokes lines, one cut, and therefore seven different
regions on the complex z plane where functions (A.1)
and (A.2) must be matched; as a result, three Stokes
constants must be determined. After not very sophisti-
cated but rather tedious algebraic calculations, we find
all the three Stokes constants

and the connection matrix

(A.4)

° z,( ) q z( )( ) 1/4– iγW z( )( )exp≡

z °,( ) q z( )( ) 1/4– iγW z( )–( ).exp≡

q z( ) z,–=

T1 T2 T3 i= = =

M̂
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i
π
4
---– 

 exp=

× iπ/4( )exp 1/2( ) iπ/4–( )exp

iπ/4–( )exp 1/2( ) iπ/4( )exp 
 
 
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relating the coefficients of the linear combinations of
basic solutions (A.1) and (A.2) in the classically forbid-
den region (A1, A2) and in the classically admissible
region (A2, B2) as

(A.5)

For the other linear turning point q(z) = +z, the connec-

tion matrix  is Hermitian conjugate to . The
variation of the coefficients in the region between the
two independent linear turning points z1 and z2 is deter-
mined by the diagonal matrix

(A.6)

where

Finally, for the solutions in the classically forbidden
regions X < X1 and X > X2, the connection matrix is the
direct matrix product of the above matrices,

To generalize the procedure to second-order turning
points, we must find the connection matrices relating
the basic solutions to the Weber equation, namely,

(A.7)

and

(A.8)

In this case, we have four Stokes lines, four anti-Stokes
lines, and one cut, and therefore nine different regions
where the solutions must be matched (see Fig. 10a as an
illustration). Four Stokes constants are given by

From the known asymptotic form of the parabolic cyl-
inder functions, we can obtain the remaining Stokes
constant

A2
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 
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4
---- 

  .exp≡
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The connection matrix for an isolated second-order
turning point can therefore be represented as

(A.9)

This matrix depending on the energy e determines, e.g.,
the instanton semiclassical solutions for the harmonic
oscillator, e = ν + 1/2. It can be verified by explicit cal-
culations that, for the harmonic oscillator, the connec-
tion matrix also has the same form (A.9) in the WKB
approach. The difference could appear only from
anharmonic terms in the potential. But for low-energy
states with e/γ ! 1, the anharmonic corrections are
small and the instanton and WKB connection matrices
coincide up to the second order in these correction
terms.

T̃2– πν( )cos

πν( )cos πν( )sin
2

T̃2

---------------------–
 
 
 
 
 
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Fig. 10. The Stokes and anti-Stokes lines in the vicinity of
the second-order turning points (with the same notation as
in Fig. 9); (a) V(X) = (1/2)X2; (b) V(X) = –(1/2)X2.
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For the symmetric double-well potential, the connection matrix describing the variation of the coefficients at the

basic solutions in Eqs. (A.7) and (A.8) between the two second-order turning points  and  is given by

(A.10)

X2
0 X3

0

n!

2π
----------

Ω0γ
Ω*
---------- 

 
ν– 1/2+

γWE*( )exp 0

0            
2 π

 
n
 
!

---------- 
Ω

 
0 
γ

Ω 
*

----------  
  

ν

 

1/2+

 γ W E *– ( ) exp 
 
 
 
 
 
 
 

 

,

where the instanton action is

(A.11)WE* 2 V X( ) e
γ
--– 

  Xd

X2
0

X3
0

∫=
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and Ω∗  is the characteristic oscillation frequency in the
barrier (i.e., in the classically forbidden region). The
connection matrix in Eq. (A.10) must be compared with
a similar matrix in Eq. (A.6) for two linear turning
points. For the asymmetric double-well potential in the
region between the second-order and the linear turning
points, the matrix analogous to (A.10) is
(A.12)

n!

2π
---------- 

  1/2 Ω0γ
Ω*
---------- 

 
1/2( ) ν 1/2+( )–

γWE*( )exp 0

0         
2 π

 
n

 
!

----------  
 

 

1/2

 
Ω

 
0 
γ

Ω 
*

----------  
 

 

1/2

 

( ) ν

 

1/2+

 

( )

 γ W E *– ( ) exp 
 
 
 
 
 
 
 

 

.

All the above matrices allow us to find any other con-
nection matrix that we need in the particular examples
considered in the main text of the paper. Any of them
can be constructed as a corresponding product of the
matrices in (A.4)–(A.6), (A.9), (A.10), and (A.12). It is
worth noting a general property of the connection
matrices that the connection matrix is real-valued for
all bound states, and off-diagonal elements of the con-
nection matrix are complex for continuum spectrum
states.

Similarly to the problem of tunneling through the
potential barrier V(X) = –(1/2)X2, all the Stokes and anti-
Stokes lines are rotated by the angle π/4 (see Fig. 10b)
with respect to the corresponding lines for the parabolic
well (V(X) = (1/2)X2 considered above—see Fig. 10a).
The connection matrix for the tunneling through the
barrier is given by

(A.13)

where α = i(2ν + 1) and S1 is the Stokes constant on the
first quadrant bisectrix (see Fig. 10b). To find the
Stokes constant S1, we must match the sum of the inci-
dent and reflected waves to the solutions of the Weber

S1 i
πα
2

------- 
 exp–

i
πα
2

------- 
 exp     S 1

1– πα( ) exp 1+ ( )
 
 
 
 
 
 
 

 

,

 

equation at X  –∞ and to the transmitted wave as
X  ∞. This gives
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Abstract—Based on the quasi-classical approach, we solve the problem of a radiative cascade between Ryd-
berg states in the space of parabolic quantum numbers that correspond to atom (or ion) quantization in a plasma
microfield. We consider the level population source associated with the dielectronic recombination of electrons
on ions with the cores in an external electric field. We determine the populations of states and the intensities of
transitions between levels with a small change in principal quantum number. These “dynamic” intensities are
compared with the “statistical” intensities that correspond to an equidistribution in Stark sublevels. An appre-
ciable discrepancy was found between the two types of intensities in plasma of low density that corresponds to
the dominance of radiative transitions over collisional transitions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the statistical and dynamic intensi-
ties of atomic spectral lines in an electric field observed
in a dense or rarefied medium arose at the first stages of
Stark effect measurements. It was discussed in detail by
Bethe and Salpeter [1] in their well-known monograph.
The essence of this problem is that statistical intensities
emerge in a dense medium where each excitation is
either proportional to the statistical weight of the states
or (if this is not the case) is accompanied by collisional
“mixing” in statistical weights after excitation in a time
shorter than the time of radiative decay from these
states. In this case, the observed line intensities can
generally be obtained by summing the intensities of the
transitions from individual sublevels proportionally to
their statistical weights. In contrast, dynamic intensities
emerge at a low density when, after the population of a
particular sublevel, the radiative transition occurs
directly from this sublevel in a fairly short time when
collisions have no time to establish a statistical equilib-
rium between the sublevels. Under these conditions, the
intensity of radiation from the entire line is the sum of
the products of the intensities of individual components
by the component distribution function determined by
the radiative cascade. The explicit form of this distribu-
tion function and, hence, the difference between the
statistical and dynamic intensities can be calculated for
hydrogen-like states in plasma. This is the subject of
our study.

Note that most calculations of spectral line profiles
were performed for a statistical distribution of atomic
populations (see [2]). A few calculations of the profiles
for low-excitation lines of multiply charged ions, where
the populations and line profiles were calculated simul-
1063-7761/02/9504- $22.00 © 20662
taneously based on the density-matrix formalism, con-
stitute an exception. However, these calculations are
cumbersome even for these low-excitation lines, and it
is unlikely that they can be applied to highly excited
atomic states.

It is pertinent to point out that the population of
atomic states in the space of quantum numbers is mul-
tidimensional in nature. For a statistically equilibrium
population, it will suffice to restrict our analysis to a
one-dimensional cascade that includes transitions only
between various principal quantum numbers n (the n
cascade), which is widely used in atomic kinetics [3].
At a low plasma density and in the absence of an elec-
tric field, a two-dimensional spherically symmetric
radiative cascade in the space of principal (n) and
orbital (l) quantum numbers is a natural approximation
[4]. An important factor in plasma is the electric field
produced by the surrounding electric charges. In this
field, spherical symmetry is lost, so the radiative cas-
cade in the space of principal (n), electric (k), and mag-
netic (m) quantum numbers is three-dimensional.

Note that the direct quantum calculation of a radia-
tive cascade in an electric field is cumbersome when
transitions between highly excited (Rydberg) states are
included, because it necessitates taking into account an
extremely large number of matrix elements for which
there are no strict selection rules in the parabolic basis
that diagonalizes the interaction with the field. Indeed,
for the principal quantum number n = 102, the number
of matrix elements between adjacent levels is of the
order of 104 × 104 = 108. Since the number of such sub-
levels is of the order of 102 and since of the order of 103

matrix elements must also be known for their popula-
tion to be taken into account, we conclude that the total
002 MAIK “Nauka/Interperiodica”
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number of such matrix elements is of the order of 1013.
This value is unrealistic for its direct allowance in the
chain of cascades. Therefore, below, we use the classi-
cal approximation, which is valid for large quantum
numbers, to calculate the cascade.

The plasma electric microfield produced by plasma
ions is assumed to be constant (static), while the elec-
trons are responsible for the collisional mixing of sub-
levels. The static nature of the field implies that the
Stark splitting of atomic sublevels in it is large com-
pared to the characteristic frequency of its variation;
i.e., the atom adiabatically “follows” the field while
conserving its parabolic quantum numbers k and m. The
following standard condition serves as the criterion for
the field being static:

(1)

where

whence we obtain

Here, Z is the ion charge, F = Z  is the plasma ion
microfield strength, τF is the characteristic time of the
ion field variation (Ni is the ion density, and v i is their
thermal velocity), and me is the electron mass. Clearly,
this condition corresponds to a fairly high plasma elec-
tron density Ne.

The second condition is the population “nonmix-
ing” of atomic states in the time of their radiative decay.
This implies that we consider ions with a sufficiently
large charge Z, for which the radiative width A propor-
tional to Z4 is large enough compared to the frequency
of the electron collisions Γ responsible for the mixing,

In contrast, this condition corresponds to a low density
and it is given, for example, in the monograph [3]. The
set of these conditions limits the electron density both
from above (collisions are disregarded) and from below
(the field is static). Substituting an electron temperature
of the order of the ionization potential, Te = Z2Ry, into
these conditions yields the following inequalities for
the electron density:

(2)
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For example, for ions with a charge of the order of
30 and for principal quantum numbers of the order of
102, the density range is

(3)

Comparing the left- and right-hand sides of inequalities
(2), we find the ranges of atomic parameters in our
approximation

(4)

Clearly, these ranges of plasma and atomic-ion
parameters refer to thermally equilibrium plasma.
However, there is a considerable number of objects in
which multiply charged ions and excited atoms exist at
low plasma temperatures and densities, at which the
radiative cascade plays a dominant role. Here, we pri-
marily note the plasma of storage rings and the rarefied
plasma of gaseous nebulae.

Thus, we consider below the population of highly
excited states for multiply charged ions via the radiative
cascade produced by a population source. We consider
the dielectronic recombination of electrons on ions
with complex cores having transitions without any
change in principal quantum number nc (the ∆nc = 0
transitions) as this source. Dielectronic recombination
on such transitions populates the highly excited ion
states with the principal quantum number n = 102. The
hydrogen-like nature of such Rydberg states allows us
to determine universal distributions for the intensities
of the cascade-populated lines and to derive an explicit
relation between the statistical and dynamic intensities
of these lines.

2. THE KRAMERS FORMULAS 
IN PARABOLIC COORDINATES:

THE INTENSITIES OF RADIATIVE 
TRANSITIONS

The presence of an external electric field acting on
an atom in plasma or produced by external sources
necessitates considering radiative transitions in para-
bolic quantum numbers, in contrast to the spherical
basis for a free atom. The passage from the spherical
basis to the parabolic one is known [5] to be determined
by the transformation of the wave functions with the
Clebsch–Gordan coefficients:

(5)

where n1 and n2 are the parabolic quantum numbers; m
is the magnetic quantum number; and C(n, n1, n2, l, m)
are the Clebsch–Gordan coefficients.

Below, we use the “electric” quantum number k that
defines the level energy shift in an electric field:

(6)

1012 cm 3–
 ! Ne ! 1015 cm 3– .

Z4
 @ 10n.

Ψ n n1 n2 m, , ,( ) C n n1 n2 l m, , , ,( )Ψ n l,( ),
l

∑=

k n1 n2.–=
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The passage to relations (5) and (6), which are sim-
ilar to the relations for a hydrogen-like atom, occurs for
a sufficiently strong electric field, when the level quan-
tum defects may be ignored and the states may be
assumed to be completely mixed by this field. In prac-
tice, complete mixing occurs for the Rydberg states
under consideration at low field strengths (of the order
of 10 V cm–1; see [6]), whereas the plasma microfield
strengths are several orders of magnitude higher. In
addition, the quantum defect rapidly decreases with
increasing orbital angular momentum, and the statisti-
cal weights of states with low angular momenta are also
low. Therefore, we use below the approximation of
mixed hydrogen-like atomic states.

As was noted above, the direct calculations with the
wave functions (5) are cumbersome. Therefore, we use
the quasi-classical and purely classical approximations.
In these approximations, the transition probabilities in
the spherical and parabolic bases are related by the
squares of the Clebsch–Gordan coefficients. The latter
are [5]

(7)C n k l m,,( )[ ] 2 2l

π l2 lmin
2–( ) lmax

2 l2–( )[ ] 1/2
-----------------------------------------------------------,=

l
α

k

ε

Fig. 1. The trajectory of an atomic electron in a Coulomb
field and the angles defining the relationship between the
spherical and parabolic variables that describe the motion.

Table 1.  Comparison of the Kramers probabilities for the
radiative transition from the n = 10 level described by the
quantum numbers n, k, and m = 0 to all the low-lying levels
with numerical results [7]

k B(k, m = 0) Exact

1 0.73 0.48

3 0.77 0.57

5 0.88 0.77

7 1.15 1.17

9 2.63 2.15
JOURNAL OF EXPERIMENTAL 
where

and we use the electric quantum numbers. The quanti-
ties lmax and lmin define the relationship between the par-
abolic and spherical variables. The geometric meaning
of this relationship directly follows from an examina-
tion of the trajectory of an atomic electron in a Cou-
lomb field shown in Fig. 1.

The relationship between the spherical (orbital
angular momentum) and parabolic (the projection of
orbital eccentricity ε) variables directly follows from
Fig. 1:

(8)

It is of interest to establish the explicit form of the
classical radiative transition probabilities in parabolic
coordinates. To this end, we transform the standard
Kramers formulas for the radiative decay probability in
the spherical basis by using the quasi-classical repre-
sentation of the Clebsch–Gordan coefficients (7)
according to the relation

(9)

Directly calculating the integrals in (9) yields

(10)

(11)

(c is the speed of light). Formulas (10) and (11) are the
“parabolic analogs” of the Kramers formulas in the
spherical basis. Note that, for m ≠ 1, these probabilities
do not depend on the electric quantum number k.

It is of interest to compare the calculations in the
Kramers approximation with accurate numerical calcu-
lations of the transition probabilities in the parabolic
basis [7]. The results of this comparison are presented
in Table 1 for m = 0 and Table 2 for m ≠ 0. As follows
from the tables, the Kramers probabilities have a high
accuracy, particularly for m ≠ 0. Note that these data
refer to moderate principal quantum numbers, n = 10.
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Next, let us consider the probabilities of radiative
transitions in parabolic coordinates between two levels
with high n and various parabolic quantum numbers.
These probabilities are defined by the matrix elements
of the radius-vector components for an atomic electron
between states with certain parabolic quantum num-
bers. The corresponding results are known to be
described by the Gordon formulas, which are expressed
in terms of cumbersome hypergeometric functions.
However, these formulas can be significantly simplified
in the quasi-classical range or, to be more precise, in the
range of large quantum numbers with their small
change [8]:

(12)

In this range, the array of the matrix elements that cor-
respond to the upper parabolic quantum numbers n1, n2,
m and the lower parabolic quantum numbers , , m'
can be broken down into large-scale and small-scale
blocks. The large scale corresponds to the combination
of quantum numbers

(13)

At the same time, the intensities of the Stark compo-
nents within each block in K are described by the small-
scale variable

(14)

which is assumed below to change continuously
between –n and n.

The intensity of the large-scale blocks decreases
sharply as their number increases, so only the first two
or three blocks must be taken into account. The small-
scale dependence admits a simple analytic representa-
tion in the form of power functions. Thus, for the ∆n =
1 (∆n = n – n') transitions, which will be widely used
below for illustration, this dependence is [9]

(15)

(16)

(17)

It should be noted that the above results can also be
obtained from a purely classical analysis of the electron
trajectory in a Coulomb field in parabolic coordinates
(see [10]). Indeed, the relative radiation amplitudes cal-
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culated by Born [10] are the double Fourier expansion
in parabolic variables and are given in the Appendix.

Integrating these formulas over the magnetic quan-
tum number m yields the total relative intensities of the
Stark π and σ components for ∆n = 1:

These expressions are used below to calculate the inten-
sities of spectral lines.

3. THE KINETIC EQUATION

The kinetic equation for the populations of atomic
states that describes the radiative cascade in the space
of quantum numbers is the relation for balance between
the probabilities of arrival in a given quantum state and
departure from this state through photon emission. As
was noted above, the quantum kinetic equation is cum-
bersome because of the large number of transitions that
must be taken into account in solving it. For highly
excited states, the quantum equation can be trans-
formed into the classical continuity equation, which
expresses the flow of an electron fluid in the space of
the corresponding quantum numbers. The passage to
this equation was closely followed in spherical coordi-
nates (see [4]). The corresponding results match the
classical kinetic equation for a radiative cascade that
was first derived by Belyaev and Budker [11]:

(18)

Here, f is the distribution function in energy (principal
quantum number) and angular-momentum (orbital
quantum number) space that determines the atomic
level populations. The quantity q(n, l) is the population

Ik
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ṅ
∂

∂n
------ f l̇

∂
∂l
---- f+ q n l,( ).=

Table 2.  Same as Table 1 for n, k, and m > 0

m (m) (m)

1 1.129 1.045 1.0871

2 0.556 0.518 0.552

3 0.363 0.341 0.366

4 0.265 0.254 0.272

Note: (m) is the quasi-classical formula from [8],  is the

quantum calculation, and (m) was calculated using for-
mula (10) with averaging over k.

B
Kr

B
0 B

B
0

B

B
Kr
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source that depends on the specific population mecha-
nism for excited atomic states during collisions with
plasma particles. The changes in quantum numbers [the
derivatives in Eq. (18)] are defined by purely classical
relations for the loss of energy and angular momentum
through radiation in a Coulomb field [12]:

(19)

(20)

The classical kinetic equation describes the popula-
tion of atomic states with a high accuracy even for
small principal quantum numbers, as was shown in [4]
by a detailed comparison with the results of quantum
calculations (see also [8]).

The plasma microfield is taken into account by pass-
ing from the spherically symmetric system “atom in the
absence of field” to the system “atom in field,” which is
quantized in parabolic coordinates. The classical pic-
ture of the motion of an atomic electron in an electric
field consists in the orbital precession around the field
direction with the frequency determined by the angular
momentum component along the field direction (i.e.,
Stark splitting) and a slow (compared to this frequency)
decrease in the parameter of a Keplerian ellipse due to
the radiative friction force. The structure of this force
(and, hence, the intensities of the corresponding radia-
tive transitions) is determined by the electron motion in
a Keplerian ellipse unperturbed by the electric field,
whose strength is assumed to be small compared to the
Coulomb field strength. For a quantum treatment, this
is expressed in that, to a first approximation, the inten-
sities of the split Stark components do not depend on
the electric-field strength and are defined by the stan-
dard Gordon formulas. The field dependence of the
radiation intensity arises in a higher order of the pertur-
bation theory and leads to small corrections to the
intensities of the Stark components calculated in [13].
Thus, in our approximation, the classical orbital preces-
sion results in Stark state splitting, while the intensities
of radiative transitions are determined by unperturbed
Keplerian motion as before. Nevertheless, for the inten-
sities of radiative transitions to be related to certain
Stark splitting, this motion must be considered in the
parabolic variables that correspond to a certain compo-
nent of the dipole moment along the field direction.

Let us transform the kinetic equation (18) to the par-
abolic variables. Clearly, this requires knowing the
Jacobian of the corresponding transformation. It can be
easily found from the above relations (8) between the
spherical and parabolic variables. The relation between
these variables is (see also Fig. 1)

(21)

ṅ
Z4
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-------- 3 l2
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2Z4
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--------------.=

k2 n2 l2–( ) 1 m2

l2
------– 

  .=
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Given this relation, the classical equation for a radiative
cascade in parabolic variables takes the form

(22)

Here, all the derivatives (19) and (20) are expressed in
terms of the parabolic variables by substituting in the
dependence l = l(n, k, m) that follows from (21):

(23)

Equation (22) is three-dimensional, in contrast to the
two-dimensional spherical case, because the spherical
symmetry of atomic states breaks down in an external
electric field.

The right-hand side of Eq. (22) is the population
source in parabolic variables. This source cannot
always be obtained from the corresponding spherical
source by its transformation with the Clebsch–Gordan
coefficients. As we show below, its calculation is a
problem of its own. The characteristics are introduced
by reducing the left-hand side of the equation to the
total derivative:

(24)

The equation is integrable if the variables k and m sat-
isfy the characteristic equations

(25)

Their solutions are the functions

(26)

(27)

where the constants C1 and C2 are the characteristics of
the equations. Given (24)–(27), the distribution func-
tion takes the form

(28)

where ϕ(n, k, m) is the boundary conditions.
In solving Eq. (22), we chose the boundary condi-

tions in such a way that, when letting n tend to infinity,
the solution matched the direct population determined
by the ratio of the source to the total radiative decay
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∂
∂m
------- f+ + q n k m, ,( ).=

k̇ ṅ
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ṅ
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probability of a given state. Clearly, the latter is defined
by the Kramers formulas in parabolic variables.

Thus, the problem of calculating the populations of
highly excited states in the presence of a known popu-
lation source is solved.

4. THE POPULATION SOURCES

The main population sources for highly excited
states are associated with the recombination to highly
excited levels. As for the radiative recombination, it can
be obtained from the corresponding results for the
spherical basis by their transformation with the
Clebsch–Gordan coefficients, much as we did in Sec-
tion 2 when deriving the Kramers formulas. In this
case, since the Clebsch–Gordan coefficients are nor-
malized, the total recombination flux into the atom, i.e.,
the total rate of radiative recombination, is conserved.
The rate of recombination to a given level summed over
all the spherical (or parabolic) quantum numbers that
belong to this level is also conserved. Differences are
possible for the populations of separate Stark compo-
nents, because the radiative transitions even from a statis-
tically equilibrium continuum do not result in the statisti-
cal-weight population of individual sublevels (see [4, 8]).

As we pointed out above, the main population
source considered here is dielectronic recombination.
Dielectronic recombination for transitions in the ion
core without any change in principal quantum number
nc populates the highly excited (Rydberg) states of the
ion up to principal quantum numbers of the order of 102

(see [3]).

Dielectronic recombination is peculiar in that the
corresponding results for the population source in the
parabolic basis cannot be obtained from the results in
the spherical basis by the direct transformation with the
Clebsch–Gordan coefficients. Indeed, the rate of
dielectronic recombination is the probability of an
impinging electron being captured on a doubly excited
level multiplied by the probability of radiative stabiliza-
tion of the ion core excited during the capture. The lat-
ter is determined by the so-called branching factor,
which depends on the ratio of the radiative stabilization
rate for the core to the autoionization rate (inverse
decay) of the captured electron [3]. Of these two quan-
tities, only the autoionization rate can be transformed to
the parabolic basis with the Clebsch–Gordan coeffi-
cients. At the same time, the ion core is not affected
noticeably by the electric field, and its radiative stabili-
zation probability is constant in both bases. In fact, the
ion is the part associated with the highly excited elec-
tron that is strongly affected by the electric field and
associated with the core that is virtually unaffected by
the field.

Thus, the dielectronic recombination rate for an ion
with charge Z at temperature T in the parabolic basis
can be written as
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(29)

where WR = 2ω2fij /c3 is the radiative stabilization rate of
the core; fij is the transition oscillator strength in the
core; ωc is the transition frequency in the core; a0 is the
Bohr radius; gi and gf are the statistical weights of the
initial and final states, respectively; T is the electron
temperature; and WA is the autoionization rate in the
parabolic basis, which is related by the Clebsch–Gor-
dan coefficients to the autoionization rate in the spheri-
cal basis:

(30)

The autoionization width in the spherical basis can
be calculated exactly with the Coulomb wave functions
[14]. Passing to large quantum numbers, we can obtain
simple analytic results for the autoionization widths.
The same results can be obtained in a purely classical
way if it is considered that the matrix elements in the
quasi-classical case must transform into the Fourier
coefficients for the electron trajectory in a Coulomb
field. The latter are known to be expressed in terms of
Bessel functions [12]. We are concerned with the limit-
ing forms of these functions that correspond to highly
curved trajectories of the electron, where it undergoes
the highest acceleration and, thus, the most intense
radiative transitions. In this region, the transition prob-
ability is determined by the orbital angular momentum
of the electron alone and does not depend on its initial
energy. This region serves as the basis for the so-called
Kramers electrodynamics, which allows even highly
inelastic transitions to be described classically [15].
Formally, the following simple considerations form the
basis for using classical methods to calculate the rates
of dielectronic recombination. Indeed, the recombina-
tion of an electron requires that its initial energy E be
lower than the core excitation energy, which is equal to
Z Ry in order of magnitude. In that case, the following
conditions are clearly satisfied:

(31)

i.e., exactly the conditions for the electron motion in a
Coulomb field being quasi-classical.

Note that the autoionization width is uniquely
related to the threshold inelastic excitation cross section
[3]. For the ∆nc = 0 transitions, these cross sections are
also well described in the quasi-classical approxima-
tion (see [16]).
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Using any of the above methods of calculation, we
derive the following expression for the autoionization
width in spherical coordinates [8]:

(32)

where

We see that the effective values of the orbital angular
momentum that contribute to the autoionization width
are of the order of

(33)

Note that expression (32) is valid if the orbital angular
momentum is not too large; otherwise, the pattern of
decrease in autoionization width will be different (see
[8]), but this region does not contribute appreciably to
the cascade.

For the transformation to the parabolic basis, let us
integrate (32) with the square of the Clebsch–Gordan
coefficients similar to (9). The result can be expressed
in terms of the universal function

(34)

where
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Fig. 2. Autoionization widths of the level with the principal
quantum number n = 50 versus orbital quantum number l
(dashed line) and versus electric quantum number k (solid
line) for a lithium-like ZnXXVIII ion (in arb. units). The
lower straight line represents the radiative width.
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Formula (34) is a universal representation of the
autoionization width in parabolic variables for all the
ions that have transitions without any change in princi-
pal quantum number within the core. Its dependence on
the electric quantum number is much less sharp than the
dependence on the orbital quantum number in the
spherical basis. In Fig. 2, the autoionization widths are
plotted against the corresponding quantum numbers for
an ion with Z = 30 and for the n = 100 level. It is seen
that the region of phase space occupied by the electric
quantum numbers is much wider than the region occu-
pied by the orbital quantum numbers. This circum-
stance underlies the fact that the dielectronic recombi-
nation in an electric field significantly exceeds this
recombination in the absence of an electric field.

The result (34) should be substituted into the general
formula (29) for the dielectronic recombination rate. It
is convenient to write the rate of recombination to a
specified parabolic state by introducing the effective
principal quantum number of the sublevel being popu-
lated given by the relation

(35)

(36)

The result (35) defines the population source of a spec-
ified parabolic state. It should be substituted into the
general solution to the kinetic equation to obtain the
level populations (the distribution functions in para-
bolic quantum numbers).

5. LEVEL POPULATIONS

For the level populations to be calculated, we must
perform the integration in Eq. (28). The characteristic
that corresponds to the correct initial conditions is iden-
tical to the function leff. It is easy to derive the limiting
expressions for the populations in the range of quantum
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numbers that are small and large compared to the effec-
tive quantum number (36):

(37)

(38)

The calculations in the entire range of parabolic quan-
tum numbers are performed numerically using formu-
las (37) and (38).

Let us consider the population structure of the para-
bolic states for a lithium-like zinc ion with the nuclear
charge Z = 30 populated by dielectronic recombination
followed by a radiative cascade in high-temperature
plasma. Figures 3–5 show the level population distribu-
tions in the space of electric (k) and magnetic (m) quan-
tum numbers for various principal quantum numbers.
For comparison, Fig. 6 shows a plot of the population
distribution in the spherical basis against orbital angu-
lar momentum. We see from comparison of these data

f n k m Z, , ,( ) B Z T,( )
Z4

-------------------= π 3n4 m
4

-----------------------
2

4
-------π

lmin
5

3
-------+





×
c3lmin

3

ω2πm
-------------- t2e

2 lmin/leff( )3
t
3–

t2 1–
------------------------------ td

1

∞

∫ 
 
 

1/4





, n ! n*,

f n k m Z, , ,( ) B Z T,( )
Z4

-------------------=
c3

πω2
---------

× π 3 m 3

4
--------------------

1
9
--- m 7

n 1+( )3
-------------------+ 

 

× t2e
2 lmin/leff( )3

t
3–

t2 1–
------------------------------ td

1

∞

∫ , n @ n*.

70
f

60

50

40

30

20

10

0
1 3 5 7 9 111315 17 19 21 23 2025

40
60

m
k

Fig. 3. The population distribution function for the n = 100
level versus quantum numbers k and m (in arb. units).
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that the distribution in magnetic quantum number in the
parabolic basis is similar in pattern to the distribution in
orbital angular momentum in the spherical basis. At the
same time, the distribution in electric quantum number
is much wider, of the order of the principal quantum
number n. Therefore, it is clear that the total (integrated
over all quantum numbers) population in the parabolic
basis is considerably larger than that in the spherical
basis. This increase is determined by the factor n/leff @ 1,
which is several tens. However, this increase is virtually
unobservable, because no highly excited states take place
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Fig. 4. Same as Fig. 3 for n = 30. The left and right parts on
the m scale correspond to the direct and cascade popula-
tions, respectively.
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under actual plasma conditions because of their ionization
both in the electric field and by secondary collisions
with electrons. Nevertheless, the increase in recombi-
nation in the field can be significant (see 6, 17]).

The relationship between the direct and cascade
populations in the parabolic basis also changes com-
pared to the spherical basis. Thus, the cascade term is
of the order of the direct population term even for n =
30 in the spherical basis and only for n = 20 in the par-
abolic basis.

Interestingly, the parabolic distribution cannot be
obtained from the spherical distribution by directly sub-
stituting the characteristic lmin(n, k, m) for the orbital
angular momentum. This is because it is nontrivial to
introduce the population source in parabolic coordi-
nates (as we noted above).

6. THE STATISTICAL AND DYNAMIC 
INTENSITIES OF SPECTRAL LINES

Let us determine the statistical and dynamic inten-
sity distributions in parabolic quantum numbers by
using the results obtained above. As was pointed out in
Section 1, the statistical intensities I stat can be calcu-
lated by assuming a statistical population distribution in
all parabolic variables. Consider the transitions with a
small change in principal quantum number by using the
transition intensity distributions in large-scale and
small-scale blocks from Section 2. The total line inten-
sity can then be calculated by summing the individual
intensities over the large-scale blocks (denoted by the
quantum number K), over the small-scale blocks
(denoted by the electric quantum number k) with allow-
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Fig. 6. Direct (1) and cascade (2) terms of the population
distribution function for the n = 30 level in the spherical
basis versus orbital quantum number l for a lithium-like
ZnXXVIII ion (in arb. units).
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ance made for their shift in an electric field, and over all
magnetic quantum numbers:

(39)

Here, the dimensionless frequency shift ∆ω/ωF in an
electric field F is expressed in units of the typical split-
ting in the field,

The summation in (39) is performed over all quantum
numbers with the same weight, which reflects the equi-
distribution between the Stark sublevels.

The dynamic intensities Idyn can be calculated by the
summation of the intensities of individual transitions
multiplied by the normalized distribution function (or
population) f(n, k, m) of the initial state, which reflects
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Fig. 7. The intensity distribution I(ω) (in arb. units) in an
electric field F as a function of the frequency shift ∆ω [in
(3ea0/2")F] for Hnα lines with n @ 1: (a) the separate dis-
tributions for the Stark components (1, the statistical σ com-
ponent; 2, the dynamic σ component; 3, the statistical π
component; 4, the dynamic π component); (b) the total dis-
tribution (1, the statistical total intensity; 2, the dynamic
total intensity).
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the pattern of Stark sublevel population by the radiative
cascade:

(40)

The results of our calculations of the statistical and
dynamic intensities for the ∆n = 1 transitions performed
with formulas (39) and (40) by taking into account the
results (37) and (38) for the distribution function are
shown in Fig. 7a separately for the σ and π line compo-
nents and in Fig. 7b for the total intensity distribution.
We see an appreciable difference between the two types
of intensities.

Note that the observed intensities can be obtained by
the summation over all magnetic quantum numbers.
Clearly, this corresponds to a spherically symmetric
distribution of the electric field in equilibrium plasma.
At the same time, the intensity of the radiation from an
individual atom, as well as its distribution function
(sublevel population), significantly depends on the
magnetic quantum number, which reflects the conser-
vation of its component along the field direction when
the field varies slowly (adiabatically).

The statistical intensities have been commonly used
to calculate the line profiles in plasma. As is clear from
our analysis, this is by no means always proper.

7. DISCUSSION

We have determined the distribution function (level
populations) in parabolic quantum numbers in an elec-
tric microfield that corresponds to the population by
dielectronic recombination and by a radiative cascade.
We also calculated the dynamic intensities of the spec-
tral lines that emerge during radiative transitions from
these levels.

One of our main conclusions is that the populations
of excited states in an electric field increase compared
to the calculations without any field. This may affect
the interpretation of the spectroscopic data on abso-
lute spectral line intensity measurements for multi-
ply charged ions in rarefied plasma. Indeed, an increase
in state populations, together with line intensities,
implies that the ion abundance in the interpretation of
observational data in the spherical basis may prove to
be significantly overestimated. Actually, the observed
increase in intensities is attributable to the plasma
microfield.

The difference between the statistical and dynamic
intensity distributions is also of great importance in cal-
culating the spectral line shape for which this distribu-
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tion serves as the starting point (see [2]). As follows
from our analysis, the differences between the line pro-
files can change in moderately dense plasma, where
radiative transitions dominate over collisional transi-
tions. However, the calculation of the profiles for spe-
cific lines is beyond the scope of this study. Note only
that, in our case of highly excited (Rydberg) states, for
which the condition (2) is satisfied, the Stark splitting
significantly exceeds the Doppler splitting.

The difference between the statistical and dynamic
intensities also implies that the population kinetics of
atomic states is essentially multidimensional when
radiative transitions dominate over collisional transi-
tions in low-density plasma.
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APPENDIX

Below, we give an expression for the relative ampli-
tudes:

(A.1)

Z∆n1∆n2

∆m = 0 1
∆n
------- σ2J∆n1

∆nσ1( )J∆n2
' ∆nσ2( ){≈

– σ1J∆n1
' ∆nσ1( )J∆n2

∆nσ2( ) }

=  
1

∆n
------- K

∆n
-------J∆n1

∆nσ1( )J∆n2
∆nσ2( )–





– σ2J∆n1
∆nσ1( )∆J∆n2 1+ ∆nσ2( )

--+ σ1J∆n1 1+ ∆nσ1( )J∆n2
∆nσ2( )





,

X∆n1∆n2

∆m = 1± 1
∆n
-------≈

×
nσ1σ2

n1n2

---------------J∆n1
∆nσ1( )J∆n2

∆nσ2( )




–
n1n2

n
--------------J∆n1 1± ∆nσ1( )J∆n2 1± ∆nσ2( )





,

ICS      Vol. 95      No. 4      2002



672 BUREYEVA et al.
where Jp(g) is the Bessel function with integer indi-
ces p,

(A.2)

It is easy to notice that the π and σ components corre-
spond to even and odd ∆n + K, respectively. It is also
easy to show that the terms with small K mainly con-
tribute to the intensities. 7

Expanding the Bessel functions in the expression
for the squares of the relative amplitudes (A.1) in the
small parameter ∆n2/4nn', we can easily obtain simple
universal expressions for the relative intensities of the π
and σ components for transitions with any ∆n ! n:
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Abstract—The dynamics of large-sized (70–180 µm) spherical bronze particles in a direct current glow dis-
charge plasma was studied experimentally under microgravitation conditions. The temperatures, velocities, pair
correlation functions, and self-diffusion coefficients of macroparticles were measured at various discharge cur-
rents. The charges of dust particles (on the order of 106 e) corresponded to high surface potentials of about 30–
40 V. The experimental data were in close agreement with the simulation data on Yukawa systems with weak
screening of dust charges. The influence of macroparticles on equilibrium ionization in a dense dust cloud was
considered. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A dust plasma is a partially ionized gas containing
charged particles of matter (dust) of micron dimen-
sions. The size of dust particles allows them to be
recorded on a videotape, which significantly simplifies
the use of direct contactless methods for their diagnos-
tics. A dust plasma is therefore a convenient experimen-
tal model for studying various transport phenomena in
systems of interacting particles, such as charging and
mass transfer and the formation of dust structures and
complex oscillatory modes [1–10]. In recent years, con-
siderable attention has been given to experimental stud-
ies of dust plasmas under microgravitation conditions
[6–10]. Such experiments allow a wide range of phe-
nomena that cannot be observed in laboratories on the
Earth to be studied [6–8]. These are photoemission
charging of aerosols in the upper layers of the atmo-
sphere, ambipolar diffusion, the dynamics of large-
sized (larger than 100 µm) dust particles in a plasma,
etc. Recent experiments performed by the Russian–
German team on the International Space Station
revealed the occurrence of several new phenomena in
an RF discharge plasma, such as dust beats, the forma-
tion of complex crystalline lattices and opposite charg-
ing of macroparticles. No analogues of such processes
are observed under usual laboratory conditions [10].

In this work, we describe some of the earliest exper-
iments on the dynamics of macroparticles under micro-
gravitation conditions performed aboard the Mir space
station during the 28th orbital expedition. The experi-
ments were performed for large-sized (hundred
1063-7761/02/9504- $22.00 © 20673
micron) bronze particles in a direct current glow dis-
charge plasma.

2. EXPERIMENTAL

The experimental unit is schematically shown in
Fig. 1. The main element of the working chamber was
a gas discharge tube of radius Rt ≈ 1.6 cm filled with
neon (Ne) to a pressure of P = 1 Torr. The distance
between a plane anode and a cathode was 28 cm. An
insulated electrode was mounted at a distance of 4.5 cm
from the anode. The electrode was made as two steel
grids (wire 60 µm in diameter) with 150 × 150 µm
meshes, and the distance between the grids was 1 cm.
During experiments, the electrode was under a floating
potential and prevented negatively charged macroparti-
cles from escaping to the anode. Bronze spherical par-
ticles (fraction of particles 70–180 µm in diameter,
mean radius 〈ap〉  = 62.5 µm, density of the material ρ ≈
8.2 g/cm3) were placed between the grid electrode and
the cathode.

The diagnostics of macroparticles was performed
with the use of a plane laser beam (“laser knife” about
300 µm wide, wavelength 0.67 µm) and additional illu-
mination of the dust cloud by an incandescent lamp. In
the latter case, the number of detected particles was
determined by the depth of field of the video system,
which allowed us to keep track of particle positions for
a long time sufficient for analyzing their transport char-
acteristics. The image was recorded on a videotape at a
50-s–1 frame frequency. The video data were processed
using a special program for identifying the displace-
002 MAIK “Nauka/Interperiodica”
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ments of separate particles in the visual field of video
recording.

Experiments were performed at discharge currents
(I = 0.1–0.8 mA) varied by the current source. Bronze
particles were initially situated on tube walls. For this
reason, the system was subjected to a dynamic action

Cathode

Grid

Anode

Cylindrical 
lenses

Laser

CCD chamber

particles
Structure of 

Fig. 1. Schematic drawing of the experimental unit.
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(pushed) after switching on a discharge with a given
current I to shake off particles from tube walls. After the
dynamic action, bronze particles moved toward insu-
lated grid electrodes, in the vicinity of which ordered
structures were formed (Figs. 2a, 2b). The discharge
was then “quenched,” the particles relaxed to the initial
state (went away to tube walls), and the experiment was
repeated at a new gas discharge current value.

Plasma concentration n0 ≈  ≈  [here,  is the
concentration of electrons (ions) in the absence of dust
particles] in the region of the positive discharge column
can be estimated from discharge current density mea-

surements, j = I/π  ≈ 12–96 µA/cm2; this value
should remain constant over the whole tube length:

(1)

where µe is the mobility of electrons [for neon, µeP ≈
1.5 × 106 Torr cm2/(V s)]. In tubes with radii of 1–2 cm
and P ≈ 1 Torr, field, of the positive column in a normal
glow discharge in neon is E ≈ 1 V/cm, the normal cur-
rent density is jn ≈ 5–6 µA/cm2, and the mean electron
energy characterizing electron temperature Te is about
3–5 eV [11]. Under our experimental conditions, dis-
charges occurred in an anomalous mode (which fol-
lowed from both the recorded current densities and the
current–voltage characteristics), and the electric field
strength obeyed the equation E ∝  j1/2 [11]. At E =
1.5 V/cm and j = 12 µA/cm2, the mean plasma concen-
tration calculated by (1) was n0 ≈ (5–14) × 107 cm–3 (j ≈
12–96 µA/cm2). Taking into account the Bessel radial
profile, the plasma density along the tube axis, where

ne
0 ni

0 ne i( )
0

Rt
2

j eµeEne
0,=
(a) (b)

A

B

Fig. 2. Video images of (a) gas-discharge tube and (b) particle trajectories from the discharge positive column toward insulated grid
electrodes.
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the parameters of dust particles were measured,
reached values on the order of 2.4n0 [11]. The further
estimates will therefore be based on the assumption

that, in the absence of particles, the  concentration
of electrons (ions) varied in the range from 108 to
3 × 108 cm–3 under current density variations from 12 to
96 µA/cm2.

3. MEASUREMENT RESULTS 
AND THEIR ANALYSIS

3.1. The Determination of Dust Charges
from the Drift Velocity of Macroparticles

The mean drift velocity Vp of particles from the pos-
itive column (Fig. 2b, field A) to the grid electrode is
shown in Fig. 3 as a function of discharge current I. As
the velocity of particle motions in the measurement vol-
ume remained virtually constant, their charges eZp

could be found from the equation of motion [8]

(2)

where mp is the mass of the particle and νfr is the fric-
tion coefficient of dust particles, which determines the
frequency of their collisions with surrounding gas neu-
trals [12, 13],

(3)

Here, lg [µm/Torr] ≈ 125/P is the free path of neon neu-
trals, and η ≈ 3.17 × 10–4 g/(cm s) is the viscosity of
neon at lg ! ap. Setting E [V/cm] =

1.5  and 〈ap〉  = 62.5 µm in (2) and (3),
we find that particle charge Zp ≈ 106 is virtually inde-
pendent of discharge current (Fig. 4, curve 1) and cor-

ne i( )
0

mpdV p/dt ν frmpV p– EeZ p 0,≡+=

mpν fr 6πapη 1 lg 1 2ap/lg–( )exp–( )/2ap–( ).=

j µA/cm2[ ] /12

0.3
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Vp
T, cm/s
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Fig. 3. Mean thermal  and drift Vp velocities of particles

from the positive column region (Fig. 2b, field A) to grid
electrodes at various discharge currents I.
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T
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responds to fairly high surface potentials ϕs = eZp/ap ≈
35–37 V. The errors in the ϕs values obtained by this
method are determined by the availability of a priori
information on the field and friction coefficient values
in (2).

3.2. The Formation of Liquid Dust Structures

The characteristic dimensions of dust clouds formed
in the vicinity of the grid electrode (Fig. 2b, field B)
were about 2 cm in the radial direction and 0.7–1.3 cm
from the grid edge along the tube axis. Pair correlation
functions g(r) for various discharge currents I are
shown in Fig. 5. It is easy to see that, at low I values, the
degree of ordering of particles in the dust cloud

0.8

0.20
0.3

1.3

1.8

2.3

0.4 0.6 0.8

1
2

3

Zp × 10–6

I, mA

Fig. 4. Particle charge Zp as a function of discharge current
I obtained from (1) equation of motion (2) for 〈ap〉  =
62.5 µm, (2) diffusion measurements by (5) and (6) for ap =
62.5 µm, and (3) diffusion measurements for ap = 35 µm.
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1.0
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g

Fig. 5. Pair correlation functions g versus l/lp for dust struc-
tures formed close to grid electrodes (Fig. 2b, field B) at dis-
charge currents I of (1) 0.1, (2) 0.4, and (3) 0.8 mA.
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increases as their concentration np grows. An increase
in np is accompanied by a decrease in lmax,

where lmax is the position of the main g(r) maximum
and lp is the mean interparticle distance. Because of a
fairly small number of particles in the laser knife plane,
a quantitative analysis of the experimental g(r) func-
tions is virtually impossible. Nevertheless, the presence
of fairly well-defined secondary g(r) maxima is evi-
dence of strong interparticle interactions and weak
screening of particles (screening parameter κ = lp/λ < 1,
where λ is the screening length).

According to the Lindemann criterion, a solid phase
melts if the ratio between the root of the mean-square

lmax lp≈ np
1/3– ,=

0.2

10

1

28001800

2 3 4

0.4

0.6

t, s

∆/lp

3800

2
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0

∆N/lp

vfr t

Γ* = 77

Γ* = 92

Γ* = 102

Γ* = 106

∆ t
N/lp

1

23

(a)

(b)

Fig. 6. (a) Measurement time dependences of Lindemann
parameter δc = ∆(t)/lp (I = 0.4 mA) obtained using various
averaging techniques: (1) ∆(t) ≡ ∆N(t), Np = 16; (2) ∆(t) ≡

, Np = 16; and (3) ∆(t) ≡ , Np = 96 and

(b) “jumps” in simulated Yukawa systems (thick line corre-

sponds to  for Γ* = 92).

∆N
t

t( ) ∆N
t

t( )

∆N
t

t( )
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displacement ∆0 of particles from their equilibrium
positions and the mean interparticle distance lp reaches
about 0.15 [14]. In experiments, particle displacements
are usually measured from the center of mass of the

system, that is, ∆ = , and the Lindemann parame-
ter at the melting curve is therefore δc = ∆/lp ≈ 0.21. The
δc(t) = ∆N(t)/lp time dependence [here, ∆N(t) =

, l(t) is the displacement of a separate
particle, and 〈 〉 N denotes averaging over the ensemble
of N particles] for 16 particles (Np = 16), which remain
in the visual field of the video system for about 4.5 s, is
shown in Fig. 6a. Note that, during some time intervals,
the ∆N(t)/lp ratio remains constant and corresponds to
the Lindemann criterion. When the observation time
was decreased to about 1 s, the number of identified tra-
jectories increased to Np = 70–120 at the expense of
particles that experienced transitions between “settled”
states from one cloud region to another. Averaging of
particle displacements ∆N(t) over the ensemble was
then close to time averaging,

(Fig. 6a). Here, 〈 〉 N, t denotes averaging over the ensem-
ble and time, respectively. A similar picture was
observed in numerical simulations of the dynamics of
macroparticles with the Yukawa interaction potential
ϕ = eZpexp(–l/λ)/l in a strongly nonideal dust liquid
[15]. “Jumps” observed in simulated systems are illus-
trated by Fig. 6b, where the difference between the

ensemble (t)/lp and time /lp averages close to the
crystallization curve of the system, where the Γ* nor-
malized nonideality parameter tends to 102, is shown.
This difference vanishes as Γ* decreases, and the sys-
tem under study becomes ergodic.

The Γ* normalized parameter value determines the
degree of ordering and the dynamics of particles in non-
ideal Yukawa systems [15, 16],

(4)

where

Here, Tp is the temperature of macroparticles in energy
units.

3.3. Diffusion of Macroparticles

The self-diffusion coefficient of macroparticles Dp

can be found from measured mean-square displace-

ments  as

(5)

2∆0

l t( ) l 0( )–〈 〉 N
2

∆N
t l t( ) l 0( )–〈 〉 N〈 〉 t

2=

∆N ∆N
t

Γ∗ 1 κ κ 2/2+ +( ) κ–( )Γ ,exp=

Γ
eZ( )2np

1/3

T p

---------------------.=

∆N
t

Dp D t( )
t ∞→
lim l t( ) l 0( )–〈 〉 N

2〈 〉 t/6t.= =
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The Dp(t) values measured in an I = 0.4 mA discharge
are shown in Fig. 7 for various numbers of particles
Np = 70–120 in the visual field of the video system dur-
ing the first, second, and third seconds of observations.
The same figure contains the Dp(t) dependence for
16 macroparticles in the visual field during 4.5 s of
observations. It is easy to see that the Dp = 

coefficient is virtually independent of the size of the
sample of particles (Np) in spite of different behaviors
of the systems at initial time moments.

The relation between the Dp self-diffusion coeffi-
cient given by (5) and the Γ* value (4) in strongly
correlated (Γ* > 30) liquid Yukawa systems can be
written as

(6)

where Γ* ≈ 102 is the Γ* parameter value at the crys-
tallization point [16] and

is the normalized dust frequency. The error involved in
approximation (6) sharply decreases as Γ* increases; it
amounts to about 30% for Γ* ≈ 30 and less than 3% at
Γ* > 50 [15]. Equation (6) allows Γ* to be determined
fairly easily from the results obtained in measurements
of the mean interparticle distance lp, temperature Tp,
and the Dp diffusion coefficient of macroparticles. The
discharge current dependences of these parameters (lp,
Tp, and Dp) and of the ratio between Dp and the diffu-
sion coefficient of noninteracting particles D0 =

D t( )
t ∞→
lim

Dp

T pΓ∗
12π ωl ν fr+( )mp

--------------------------------------- 3
Γ∗
Γ c

------– 
  ,exp≈

ωl eZ
np

πmp

---------- 1 κ κ 2/2+ + κ
2
---– 

  Γ∗ T p

πlp
2 mp

--------------≡exp=
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Fig. 7. Dependences Dp(t) in a discharge with I = 0.4 mA
for particles in the visual field of the video system during
the (1) first, (2) second, and (3) third seconds of observation
and (4) for 16 particles in the visual field for 4.5 s.
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Tp/mpνfr are shown in Fig. 8; the D0 value was found to
be more than an order of magnitude larger than the Dp

value calculated by (5). The temperature of macroparti-
cles was established by finding the Maxwell distribu-
tion that best described the recorded spectrum of
instantaneous velocities of particles obtained by ana-
lyzing video records. A similar procedure for determin-
ing temperature was described in [2, 7]. The mean
velocities of chaotic movement of particles were about
1 mm/s (see Fig. 3). Note that this procedure could
underestimate the mean chaotic energy of particles
(kinetic temperature) if the frame frequency w (50 s–1 in
our experiments) did not satisfy the condition w @ νfr [2].

3.4. The Nonideality Parameter 
and Macroparticle Charges

The Γ* normalized parameter values reproduced by
(6) from diffusion coefficient measurements are shown
in Fig. 9 for the mean (〈ap〉  = 62.5 µm) and minimal
[(ap)min = 35 µm] particle sizes. Note that Γ* determi-
nations are only based on measurement results. The νfr

friction coefficient value depends on the radius of par-
ticles, but it does not significantly influence the Γ*
value because νfr < ωl under the experimental condi-
tions.

If the effects of screening macroparticles in a
plasma–dust system are significant, an analysis of dif-
fusion of macroparticles on the assumption of negligi-
bly weak screening (Γ* = Γ, κ < 1) gives a minimal esti-
mate of the charge Zp of dust macroparticles irrespec-
tive of the form of the interparticle interaction potential.
Parameter Γ* ≈ Γ measurements for κ = 0 allow surface
potentials at I ≤ 0.5 mA to be determined. This gives
ϕs ≈ 42 V for medium-sized particles 〈ap〉  = 62.5 µm

0.4

0.2
0.2

0.4 0.6 0.8

0.6

0.8

1.0

1.2

0
I, mA

Tp × 10–5, eV

lp, mm

10Dp, mm2/s

10Dp /D0

Fig. 8. Mean interparticle distance lp, temperature Tp, and
diffusion coefficients Dp of macroparticles and the ratio
between the Dp coefficient and the D0 diffusion coeffi-
cient of noninteracting particles as functions of discharge
current I.
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and ϕs ≈ 30 V for particles of radius (ap)min = 35 µm (see
Fig. 4). For I = 0.8 mA, the recorded surface potential
value is lower by approximately 30%. The error in
determining the charge of macroparticles is then sub-
stantially larger, because, at low Γ* < 35 values, (6) is
fairly inaccurate (see Fig. 9). The obtained macroparti-
cle charge estimates are in agreement with the results of
determining Zp from equation of motion (2). We can
therefore hope that the surface potentials ϕs ≈ 30–42 V
(I ≤ 0.5 mA) and ϕs ≈ 22–30 V (I = 0.8 mA) correctly
reproduce real Zp charge values, and, accordingly, the
assumption of weak screening (κ < 1) of macroparticles
corresponds well with the conditions existing in the
dust system under study.

3.5. Screening of Macroparticles

The suggestion of weak screening (κ < 1) of dust
charges in our experiments is indirectly substantiated
by the behavior of correlation functions (Fig. 5) and is
in agreement with numerical simulation results. For
instance, it was shown in [17] that screening of isolated
particles of size ap ≈ 2λi – λe, where λi(e) was the Debye
ionic (electronic) radius, was determined by the λe

value at the distances

from the surface of the particle. As the size of particles
increases to ap > λe, the effective screening length λ
becomes substantially larger than the λe value.

According to the condition of electroneutrality of
the plasma–dust system,

(7)

where ne(i) is the concentration of electrons (ions) in the
dust cloud. Note that condition (7) is necessary for the

l lD 5–7( )≈ λ i<

Z pnp ne+ ni,=

25

0.20
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Fig. 9. Normalized nonideality parameters Γ* reproduced
from diffusion coefficient measurements for particles of dif-
ferent sizes: (1) 〈ap〉  = 62.5 µm and (2) (ap)min = 35 µm;
error intervals for reproducing Γ* by (4) are shown.
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confinement of negatively charged particles in the
absence of other nonelectrostatic forces that can com-
pensate mutual repulsion of dust particles. The ne(i) con-
centration of electrons (ions) in a dust cloud under the
conditions of our experiments can therefore be esti-
mated as

This gives λi < 20–30 µm and λe > 200–300 µm for ions
with temperature Ti ≈ 0.03 eV and electrons with Te >
3 eV. The obtained λe value may be strongly underesti-
mated because of a possible increase in the temperature
of electrons in the dust cloud and because of the law of
current density conservation in a gas-discharge tube,
j = const [see (1)]. It follows that, if electric field varia-
tions are ignored, the ne mean concentration of elec-
trons in the dust cloud should be comparable in order of
magnitude with the n0 concentration of plasma in the
absence of particles, that is, ne ≈ 108 cm–3. The screen-
ing parameter is then κ = lp/λ & 1, because lp ≈ 7200–
1000 µm. Note also that the surface potential ceases to
obey the exponential law as the distance from a macro-
particle increases to l > lD ≈ (5–7)λi ≈ 100–200 µm
because of effective electron–ion recombination on the
surface of the macroparticle. At such distances, the
potential exhibits a power dependence on l [17, 18].
This effect weakens screening of large-sized particles
in the dust cloud when the lp mean interparticle distance
exceeds lD [19].

3.6. The Kinetics of Charging Dust Particles

Equilibrium charge Zp of dust particles in a plasma
is determined by the equation

(8)

where the summation is over all flows Ij of charged par-
ticles absorbed or emitted by the dust particle. Most of
the theoretical models of charging particles of size a <
le(i) [le(i) is the free path of electrons (ions)] are based on
the restricted orbit approximation (OML theory). In a
gas-discharge plasma, where emission processes are of
no significance, the charge of a macroparticle is nega-
tive because of a higher mobility of electrons. OML
calculations of flows Ie(i) of electrons (ions) per nega-
tively charged spherical particle yield [20]

(9)

(10)

where Te(i), mie(i), and ne(i) are the temperature, mass, and
concentration of electrons (ions) in the dust cloud,

respectively;  =  is the thermal velocity

ne Z pnp 2–4( ) 109 cm 3–× ni.<≈<

dZ p

dt
--------- I j

j

∑= 0,≡

Ie πap
2
nev Te

eϕ s/Te( ),exp=

Ii πap
2 niv i 1

2eϕ s

miv i
2

------------– 
  ,=

v Te
8Te/πme
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of electrons; and v i is the velocity of ions, which,
depending on the conditions, can be set equal to either

the thermal velocity (v i ≡ ) or the directed
velocity (v i ≡ v s). Simultaneously solving (7)–(10)
yields the equilibrium charge of particles in the form

(11)

where

(12)

and the z parameter is proportional to the ratio between
the surface potential ϕs of the dust particle and the tem-
perature of electrons,

(13)

The z value is determined by buffer gas ions. For rare
gases such as neon and argon, z ≈ 2–4 for most of the
experimental conditions in a direct current glow dis-
charge [21, 22]. Note that, in the presence of large-sized
particles with ap > 10–20 µm, the li free path of ions
(Ar, Ne) becomes comparable with or smaller than ap at
room temperature [11] and typical buffer gas pressures
P ≈ 1 Torr. This decreases flow Ii of ions onto the sur-
face of a dust particle [Eq. (10)] and, therefore,
increases ϕs and z [Eq. (13)]. The corresponding effect
was observed experimentally. For instance, it was
shown in [8] that the surface potential of a particle grew
approximately from 9 to 30 V as the particle radius
increased from 2 to 7 µm in neon at P ≈ 0.5–1.5 Torr.
This corresponded to changes in z approximately from
3 to 10 at Te = 3 eV. In our experiments, the mean size
of particles (〈ap〉  = 62.5 µm) was much larger than in
[8]; we could therefore expect that z should be close to
10. It follows that the obtained ϕs ≈ 30–42 V values are
in close agreement with the results of measurements
performed in [8]. It should, however, be borne in mind
that the z and ϕs values decrease in a dense dust cloud
with χ > 1 [see (12)] [22]. This decrease can in part be
compensated by an increase in electronic temperature
under the conditions of changes in equilibrium ioniza-
tion processes considered below.

Note also that high macroparticle charges Zp ≈ 106 at
their concentrations np ≈ 103 cm–3 do not correspond
with the suggestion of the electroneutrality of the sys-
tem, Eq. (7), if we assume that the presence of dust par-
ticles has no significant influence on discharge condi-
tions and the concentration of ions in the dust cloud is
comparable with their concentration in the absence of

macroparticles, ni ≈  ≈ 108 cm–3. Such a discrepancy
has already been observed in laboratory conditions on
the Earth. For instance, heavy glass particles hovered in

8Ti/πmi

z–( )exp
v i

v Te

------- 1 z
2Te

v i
2mi

------------+ 
  1 zχ+( ),=

χ
Z pnp

zne

-----------=

z
eϕ s

Te

--------
Z p e2

apTe

--------------.≡=

ni
0
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weak fields (about 1–12 V/cm) of glow discharge strata
and positive columns in neon [19], which led the
authors of [19] to suggest either the existence of higher
charges Zp or a sharp increase in electric field E caused
by a change in the discharge conditions in the dust
cloud.

3.7. The Influence of Macroparticles 
on Equilibrium Ionization

The influence of macroparticles on kinetic processes
in a glow discharge can be substantial, because a con-
siderable decrease in the concentration ne of electrons
as a consequence of their effective loss on dust cloud
particles results in an increase in electric field strength
(j = const  Ene = const). The mean electron energy
then increases, which causes an increase in ionization
frequency νi, which in turn increases the concentration
of electrons to its equilibrium value.

As glow discharges in rare gases are usually con-
trolled by ambipolar diffusion (plasma recombination
on gas-discharge tube walls), this sequence is only
observed if the electron loss frequency νep on dust cloud
particles is comparable with or much larger than the νab

frequency of diffusion electron loss [11],

(14)

where Da ≈ µiTe/e is the ambipolar diffusion coefficient
at Te @ Ti and µi ≈ 3200 cm2/(V s) is the mobility of sin-
gly charged ions in neon at P = 1 Torr.

The νep electron loss frequency on dust cloud parti-
cles can be estimated as

(15)

Substituting the conditions of our experiments [ap ≡
〈ap〉  = 62.5 µm and np ≈ (1–3) × 103 cm–3] into (15), we
find that, at z = 3–4, the νep electron loss frequency on
dust cloud particles far exceeds the νab diffusion loss
frequency (νep/νab > 10 at Te < 15 eV). We can therefore
assume that discharge conditions in our experiments
are determined by plasma recombination on the surface
of particles.

Under steady state conditions, the rate of electron
loss should be compensated by the rate of particle cre-
ation, and, accordingly, the ionization frequency νi

should coincide with the electron loss frequency. If the
shape of the spectrum of electron velocities is close to
a Maxwell distribution, the temperature of electrons is
related to the ionization frequency as [11]

(16)

where W ≈ 21.6 eV is the ionization potential of neon,
Ci ≈ 1.6 × 10–18 cm2/eV is the experimental ionization
constant of neon, and γ is the coefficient that takes into
account the depletion of the spectrum of fast electrons
with energies ε > I in the Maxwell distribution tail

νab 2.4( )2Da/Rtr
2 ,≈

νep 8πTe/menpap
2 z–( ).exp≈

ν i γCing 8Te/πme W 2Te+( ) W /Te–( ),exp≈
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caused by their loss in excitation of atoms (for neon,
γ < 0.1). The assumption of a Maxwell spectrum of
electron velocities is valid when the νu ≈ δ /le fre-

quency of electron energy loss in collisions with neu-
trals is lower than the frequency of their collisions with
each other (νu < νee). Here, δ is the coefficient of the
effectiveness of collisions (for neon, δ ≈ 10–4) [11].
Equation (16) is also used to estimate the Te tempera-
ture of electrons in a weakly ionized glow discharge
plasma when the positive column length L is larger than
the characteristic energy relaxation length Λ = 0.8leδ1/2.
For neon at P = 1 Torr, Λ ≈ 9.7 cm [11], which is smaller
than the length L ≈ 20 cm observed experimentally. The
temperature of electrons in the absence of dust particles
can therefore be obtained from the equation νi = νep,
which gives Te ≈ 3.1 eV. This value is in close agree-
ment with the results of Te measurements for tubes with
1–2 cm radii [11].

The determination of the spectrum of electron
velocities in a dense dust cloud in the presence of addi-
tional ionization sources is a complex independent
problem. For this reason, the mean electron energies in
a dust cloud will also be qualitatively estimated by (16)
taking into account that the νu electron energy loss fre-
quency in collisions with neutrals is much lower than

the ned ≈ π  frequency of casual collisions

between electrons and dust cloud macroparticles under
our experimental conditions (νu ! νed). The electron
velocity spectrum in the electric field of macroparticles
whose surface potentials are comparable with electron
energy εe can then be fairly close to the Gaussian spec-
trum with the variance proportional to εe ≈ Te [23]. The
temperature of electrons can therefore be estimated
from the equality νi = νep by simultaneously solving
(15) and (16). For γ = 0.1 and z = 3–4, this yields Te ≈
8–10 eV and ϕs ≈ 30–32 V if np ≈ (2–3) × 103 cm–3. A
decrease in the concentration to np ≈ 1.2 × 103 cm–3 (I =
0.8 mA) results in Te ≈ 6–8 eV and ϕs ≈ 24 V. Lowering
γ increases the Te and ϕs values.

Electric field E necessary for electrons to acquire
mean energy Te can be estimated on the assumption that
Te ∝ τ 1/2E, where τ is the characteristic time required for
the electron to acquire its mean energy [11]. In diffu-
sion-controlled discharges, the νab diffusion escape fre-
quency given by (14) is much smaller than the νu ≈
105 s–1 electron energy loss frequency in collisions with

neutrals (P = 1 Torr), and we have τ ≈ . The charac-
teristic τ value in a dense dust cloud is determined by
the νep electron loss frequency on macroparticles

[Eq. (15)], τ ≈  (νep > νu). The change in field Ep in

νTe

ap
2
v Te

np

νu
1–

νep
1–
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a dust cloud with respect to positive column field E0 is
then, to within an order of magnitude, given by

where  and  are the temperatures of electrons in the
dust cloud and positive column, respectively. According
to this equation, the field increases 15–20 times in the
dust cloud if ap = 62.5 µm, np ≈ (1–2) × 103 cm–3,

z = 3, and /  = 3. That is, at E 0 = 1.5 V/cm, E p ≈

22–30 V/cm, which is comparable with the eZp  ≈
14–45 V/cm value for two-particle interactions in the
system under consideration (Zp ≈ (1–2) × 106).

Note that, in a positive column free of particles, ion-
ization equilibrium is attained by equalizing the rates of

plasma ionization ( ) and recombination on tube

walls ( ),

and the condition of ionization equilibrium in a dust
cloud is

where βab and βep are the corresponding recombination
coefficients. Suppose that the plasma recombination
coefficients on tube walls and on the surface of dust
particles are approximately equal, βab ≈ βep. The ratio

between the  concentration of ions in a dust cloud

and the  concentration of ions in a plasma without
macroparticles is then given by

(17)

where the  ≈ (1–3) × 108 cm–3 value corresponds to
the experimental current density. Using (17) and taking
into account (14) and (15), we find that

at various discharge currents at z = 4. At z = 3, ni is
approximately three times smaller. The condition
Zpnp < ni [see (7)] necessary for the confinement of neg-
atively charged particles is therefore quite attainable in
the plasma–dust system under consideration. Note in
conclusion that plasma parameter estimates considered
in this section are used to analyze a qualitative picture
of the influence of particles on ionization processes
under the conditions of a dense dust cloud.
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νep
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p

Te
0
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2
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4. CONCLUSION

This work describes the results of experimental
studies of the dynamics of bronze macroparticles in a
direct current glow discharge plasma under micrograv-
itation conditions. The temperatures, concentrations,
pair correlation functions, self-diffusion coefficients,
and charges of macroparticles were measured in vari-
ous discharge currents. An analysis of the measurement
results showed that the observed structures of macro-
particles corresponded to a strongly nonideal dust liq-
uid (Γ* ≈ 60–75), and their dynamics was in close
agreement with the results of simulating Yukawa sys-
tems characterized by weak screening (κ < 1). The
recorded time dependence of mean-square displace-
ments of separate macroparticles (Fig. 6) was charac-
teristic of the behavior of the system close to the liquid–
crystal phase transition line. The normalized nonideal-
ity parameter was noticeably smaller than its Γc ≈ 102
value on the system crystallization line. This circum-
stance could be explained by either polydispersity of
macroparticles or a possible decrease in Γc caused by
finite dust cloud dimensions.

Experimental estimates of macroparticle charges
corresponded to surface potentials of the order of 30–
40 V, which far exceeded values predicted by the OML
theory. This discrepancy could be related to both a
decrease in the effective flow of ions onto particles
whose radii were larger than the free path of ions and an
increase in the temperature of electrons in the dust
cloud. It was shown that changes in equilibrium ioniza-
tion processes in dense dust clouds could cause a sub-
stantial increase in the mean energy of electrons and in
the concentration of the plasma component.

Note once more in conclusion that experiments on
studying interaction potentials and charging processes
for large-sized hundred-micron particles in a dust
plasma cannot be performed under Earth gravitation
conditions.
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Abstract—The problem of the kinetic justification of the generalized thermodynamics of nonequilibrium pro-
cesses using the method of moments for solving the kinetic equation for a multicomponent gas mixture is exam-
ined. Generalized expressions are obtained for the entropy density, entropy flux density, and entropy production
as functions of an arbitrary number of state variables (moments of the distribution function). Different variants
of writing the relations between fluxes and thermodynamic forces are considered, which correspond to the
Onsager version for spatially homogeneous systems and, in a more general case, lead to the generalized ther-
modynamic forces of a complicated form, including derivatives of the fluxes with respect to time and spatial
coordinates. Some consequences and new physical effects, following from the obtained equations, are ana-
lyzed. It is shown that a transition from results of the method of moments to expressions for the entropy pro-
duction and the corresponding phenomenological relations of the generalized nonequilibrium thermodynamics
is possible on the level of a linearized Barnett approximation of the Chapman–Enskog method. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, there were successful attempts at
going beyond the conventional limits of applicability of
the classical linear nonequilibrium thermodynamics
(LNT) [1–10]. The main idea underlying generalization
of the classical approach consists in increasing the
number of variables describing nonequilibrium states
of the system: the set of usual classical variables
employed in the LNT is supplemented with new inde-
pendent variables representing dissipative fluxes (e.g.,
heat flux q, tensor of viscous stresses πik, or diffusion
flux Jα). In this formulation, a local entropy of the sys-
tem also becomes a function of the new variables;
expressions for the entropy flux density and entropy
production (entering into the general entropy balance
equation) acquire a different (generalized) form.

Another important circumstance is that, in contrast
to the classical variables obeying the laws of conserva-
tion and varying relatively slowly, the fluxes are “fast”
variables satisfying equations of the evolution type.
Note that the relaxation character of these equations
eliminates the paradox of infinite velocity of the propa-
gation of thermal and shear perturbations, which fol-
lows from the usual linear Fourier and Newton laws for
the heat flux and the viscous stress tensor. Realization
of the above concepts led to the construction of the so-
called extended irreversible thermodynamics [1, 2].

It should be noted that the idea of generalizing the
LNT was already present in the early works of Grad
[11] devoted to development of the method of moments
1063-7761/02/9504- $22.00 © 20682
in the kinetic theory of gases. Grad pointed out the pos-
sibility of applying nonequilibrium thermodynamics to
more general cases, when a nonequilibrium state of a
homogeneous gas (and the nonequilibrium entropy of
the system) depends not only on the local density and
internal energy (temperature), but on an arbitrary num-
ber of additional state variables (moments of the distri-
bution function) as well. The latter variables satisfy
quasi-linear differential equations of the relaxation type
obtained on the basis of the Boltzmann equation using
expansion of the distribution function of the gas mole-
cules into series in Hermite polynomials [11].

The kinetic aspect of the problem still plays an
important role in development of generalized nonequi-
librium thermodynamics (GNT). Previously [5–8], it
was demonstrated that the GNT principles are compat-
ible with the highest order approximations of the Chap-
man–Enskog method on a level of the linearized Bar-
nett approximation. Upon this transition, additional
terms enter into the expression for the entropy produc-
tion, which contain higher (second-order and above)
derivatives of the principal macroscopic variables with
respect to coordinates. Accordingly, the system of phe-
nomenological equations for the fluxes and thermody-
namic forces is expanded.

An important role of the spatial derivatives of fluxes
(high-order moments) in the linearized equations of
moments was demonstrated within the framework of
the method of moments [9, 10, 12]. It should be noted
that the idea of including new quantities proportional to
the derivatives of fluxes and possessing the correspond-
002 MAIK “Nauka/Interperiodica”
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ing tensor dimension into the number of independent
thermodynamic forces involved in the transfer equa-
tions was put forward in 1962 by Kagan in the course
of the study [12] and then elaborated in [5, 6, 8–10].
The introduction of such terms brings the GNT rela-
tions outside the framework of the usual linear equa-
tions of the classical LNT, but, despite certain compli-
cation of the generalized thermodynamic forces, an
expression for the entropy production still appears as a
bilinear combination of thermodynamic forces and
fluxes.

Until now, the GNT relations were formulated and
analyzed mostly in application to the case of a simple
(single-component) gas. Only Heckl and Muller [13]
considered the corresponding equations on the
kinetic level for a gas mixture, in a particular case of
so-called Maxwellian molecules with the interaction
potential inversely proportional to the fourth power
of the interparticle distance. Moreover, the investiga-
tion was restricted for the most part to an approxima-
tion of 13 moments with the additional variables rep-
resenting the vector of the heat flux and the viscous
stress tensor. However, an allowance for the high-
order moments becomes important in a number of
cases. For example, realistic transfer coefficients as
functions of the frequency and wavenumber for the so-
called generalized hydrodynamics can be obtained
within the framework of an approximation using at
least 26 moments [14, 15].

This paper considers problems pertaining to the
kinetic justification of the GNT in the most general
form based on a linearized variant of the method of
moments applied to a multicomponent gas mixture
with an arbitrary potential of the intermolecular inter-
action. A linearized Boltzmann equation is used to
obtain an infinite chain of linked equations for the coef-
ficients of expansion of the distribution function in a
system of tensor polynomials (equations of moments).
Using these equations, we obtain generalized expres-
sions for the entropy density, entropy flux density, and
entropy production, which allow different variants of
the relations between fluxes and thermodynamic forces
to be considered. For spatially homogeneous systems,
these relations correspond to the Onsager version of the
LNT. In a more general case, thermodynamic forces
involved in the transfer equations are significantly rede-
fined to include, besides the usual gradients of the ini-
tial macroscopic parameters, derivatives of the dissipa-
tive fluxes with respect to time and coordinates. Some
consequences and new physical effects, following from
the obtained equations, are analyzed. It is shown that a
transition from results of the generalized method of
moments to the well-known results obtained by the
Chapman–Enskog method [8, 15, 16] is possible on the
level of both the first and the next (Barnett) approxima-
tion.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
It should be noted that the possibility of using the
methods of nonequilibrium thermodynamics on the
level of transfer equations in the Barnett approximation
was repeatedly discussed [17, 18]. Below, we reveal the
source of such misunderstanding, obtain a generalized
expression for the entropy production, and construct a
system of phenomenological equations of the linear-
ized Barnett approximation completely conforming to
the principles of nonequilibrium thermodynamics. A
series of “nonphysical” fluxes involved, together with
the usual ones, in this scheme provides for complete-
ness of the system and ensures validity of the necessary
Onsager relations between the cross coefficients. The
proposed system of equations admits obvious generali-
zation to the cases of super-Barnett and higher approx-
imations.

2. LINEARIZED KINETIC EQUATION 
FOR A GAS MIXTURE

Consider an N-component gas mixture consisting of
monoatomic molecules of various types. Let the state of
the mixture deviate slightly from equilibrium, in which
case the velocity distribution function for particles of
the α type can be represented as

(1)

where  is the local Maxwell distribution, φα is a
small correction (|φα| ! 1), βα = mα/2kT, nα is the num-
ber density of particles of the α type, k is the Boltzmann
constant, T is the absolute temperature, mα is the mass
of particles of the α type, cα = vα – u is the relative
velocity of a particle, and u is the mass-average veloc-
ity of the mixture. The values of nα, u, and T are deter-
mined by the following relations:

(2)

Here, ρ = , where ρα = mαnα is the density of

molecules of the α type, and n =  is the number
density of particles in the mixture.

Introducing the internal scalar product of functions
in the Hilbert space,

(3)

f α f α
0( ) 1 φα+( ),=

f α
0( ) nα

βα

π
----- 

 
3/2

βαcα
2–( ),exp=

f α
0( )

nα f α cα , ud∫ ρ 1– mαvα f α cα ,d∫
α
∑= =

3
2
---nkT

mα

2
------cα

2 f α cα .d∫
α
∑=

ραα∑
nαα∑

nα gα hα⋅( ) f α
0( )gαhα cα ,d∫=
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we can determine the values of nα, u, and T in a similar

form for both fα and , by virtue of which

(4)

Let us define nonequilibrium macroscopic parame-
ters of the mixture components, including the diffusion

flux Jα, the partial viscous stress tensor , and the par-
tial heat flux qα as

(5)

where wα = uα – u is the diffusion velocity of particles
of the α type, παik = Pαik – pαδik, Pαik is the partial stress
tensor, and pα is the scalar pressure of particles of the α
type. Here and below, expression  refers to irre-
ducible symmetric tensors, for example,

The quantities ρα, Jα, Pαik, and 2qα represent the first
several moments of the distribution function. Note also
that pα can be represented in the form of the product

where Tα is the temperature of the α component of the
mixture defined as

(6)

The correction φα(cα, r, t) in expression (1) satisfies
the linearized kinetic Boltzmann equation [19, 20]

(7)

where the operators are defined as

(8)

Here, Fα is the external force acting upon a particle of the
α type, ∇ v is the gradient operator in the space of veloci-
ties, and Lαβ is the linearized operator of collisions [19]:

(9)

f α
0( )

1 φα,( ) 0, nα mαcα φα,( )
α
∑ 0,= =

nα mαcα
2 φα,( )

α
∑ 0.=

p̂α

Jα ραwα nαmα cα φα,( ),= =

p̂α nαmα cαcα φα,( ),=

qα
1
2
---nαmα cα

2 cα φα,( ),=

aa…

cαcα( )ik cα icαk
1
3
---δikcα

2 .–=

pα nαkTα ,=

kTα kT
1
3
---mα cα

2 φα,( ).+=

Dα f α
0( ) Dαφα+ln Lαβφβ,

β
∑=

Dα td
d cα ∇⋅( )

Fα

mα
------ ∇ v⋅ 

  ,+ +=

td
d

t∂
∂ u ∇⋅( ).+=

Lαβφβ f β
0( ) φα' φ1β' φα– φ1β–+( )gσαβ Wd v1β,d∫=
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where g is the relative velocity of colliding particles,
σαβ(g, W) is the differential scattering cross section, and
W is the solid angle (primes indicate the values upon
collision and subscript 1 is introduced to distinguish the
colliding particles when α = β).

The mass, momentum, and kinetic energy of the
particles are the invariants of collisions, which can be
expressed as

(10)

where we introduce the notation

Below, we will use two well-known properties of
the linearized operator of collisions [19], including the
symmetry relation

(11)

and the condition

(12)

(where equality corresponds to the case of satisfied
conditions (10)).

Using the expression for , the first term in the
left-hand part of the kinetic equation (7) can be repre-
sented as

(13)

where

(14)
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α
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nα mαcα
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α
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1
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3
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3. EXPANSION OF THE DISTRIBUTION 
FUNCTION: LINEARIZED EQUATIONS 

OF MOMENTS

Let us expand the small nonequilibrium correction
φα in a series with respect to an orthonormalized system

of irreducible tensor polynomials :

(15)

where Wα =  is the dimensionless velocity of par-
ticles of the α type. To within the normalization, the

 polynomials represent the products of the

Sonin polynomials  by the tensor spherical
harmonics R(m)(Wα) [20, 21],

(16)

where γmn are the normalization factors:

The first several Pmn(W) polynomials are as follows:

(17)

A normalization condition for the  poly-
nomials is

(18)

where ∆(m) is the unit projection tensor [20].

According to the condition of orthogonality of the
polynomials, the coefficients of expansion (15) are
given by the relations

(19)

Using these formulas, the expansion coefficients can be
expressed through the corresponding moments of the

Pα
mn Wα( )

φα aα
mn r t,( )Pα
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m! 2m 2n 1+ +( )!!
---------------------------------------------.=

P00 1, P01 2
3
--- W2 3
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distribution function. The first five coefficients are as
follows:

(20)

where

(21)

is the reduced partial heat flux.

The system of equations for the coefficients nα
(the system of equations of moments) is constructed by
multiplying the linearized kinetic equation (7) by

, followed by integrating with respect to veloc-
ities, which yields

(22)

where

(23)

is the moment relative to the collision integral.
Note that each term in the expression (13) for

 contains some  polynomial (17) as a fac-
tor. Then, integrating the first term in (7) and using the
orthogonality condition (18), we obtain

(24)

In the expression obtained upon integration of the
second term in (7), we omit all nonlinear terms includ-

ing the products of moments (or the nα  coefficients)
by small gradients of the corresponding thermody-
namic variables, as well as the small potential gradients
(weak external fields). As a result, this yields

(25)
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By substituting the expansion (15) for φα, the second
term (flux term) in the right-hand part of Eq. (25) can
be represented as a linear combination of derivatives
with respect to coordinates of the coefficients at the
(m + 1)th and (m – 1)th tensor dimensions [20, 21]:

(26)

where Aα and Bα are operators expressed as

(27)

and the notation  corresponds to a symmet-

ric irreducible tensor. For example, if  is a vector

(for m = 2),  is an irreducible second-order
tensor with the components

(28)

Now, let us transform the quantity  by substitut-
ing the corrections φα and φβ, expanded according to
(15), into the linearized collision integral. This yields

(29)

where we have introduced the so-called integral brack-

ets of the  polynomials. A general definition of the
integral brackets is as follows [16, 19]:

(30)

Using definition (16) of the  polynomials
and the relation valid for the integral brackets of the
R(m)(W) polynomials,
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(31)

the final expression for  can be written as

(32)

where

(33)

(34)

(35)

The integral quantities  and  corre-
spond to the well-known integral brackets of the Sonin
polynomials introduced in the Chapman–Enskog the-
ory [16, 19].

Taking into account the above expressions, the sys-
tem of linearized equations of moments can be written
in the following final form:
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These equations should be supplemented with the rela-
tions following from definitions (4) and (6):
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Equations (36) form an infinite system of linked
equations for scalar (m = 0), vector (m = 1), and tensor
(m = 2, 3, …) quantities. The search for particular solu-
tions is possible upon restricting expansion (15) to a
finite number of terms. Depending on the m and n val-
ues adopted, the general system (36) splits into inde-
pendent sets of equations for the scalar, vector, and ten-

sor coefficients . For example, the case of m = 0
and n = 0 corresponds to the continuity equation. Sum-
ming the expressions for m = 1, n = 0 or m = 0, n = 1
with respect to α leads to an equation of motion and a
linearized equation of energy of the gas mixture. With
an allowance for conditions (10) and (37), the corre-
sponding conservation equations take the form

(38)

(39)

(40)

where p = nkT is the total pressure,  =  is the

viscous stress tensor, and q =  is the heat flux.
Note that, using Eqs. (39) and (40), it is possible to
exclude the time derivatives du/dt and dT/dt from the
left-hand part of Eq. (36), while the continuity equa-
tion (38) entering into Eqs. (36) is identically valid.

4. ENTROPY BALANCE EQUATION

Multiplying the linearized kinetic equation (7) by

(lnfα – 1), integrating with respect to energies, and
summing over α, we obtain the entropy balance equa-
tion [22]

(41)

where

(42)

is the local entropy density, (ρs)0 representing the den-
sity of entropy in the state of local equilibrium:

(43)
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
For the ideal gas of monoatomic molecules [23], the
quantity

(44)

represents the chemical potential (per unit mass) of par-
ticles of the α type and U = 3kT/2m is the internal
energy density.

The entropy flux Js and the local entropy production
σ are given by the expressions

(45)

(46)

Using expansion (15), expressions (42), (45), and (46)
can be written as
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In the last expression,  can be replaced by the left-
hand part of Eq. (22). Then, using formulas (25) and
(26), we arrive at
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5. GENERALIZED NONEQUILIBRIUM 
THERMODYNAMICS

The entropy balance equation (41), together with the
relations (42), (45), (46) or (47)–(49) constitute the
basis of the generalized nonequilibrium thermodynam-
ics of multicomponent systems, in which the state of a
mixture is determined not only by local values of the
density, mass-average velocity, and temperature, but
also by an arbitrary number of additional state vari-
ables. The latter variables represent the coefficients of
expansion of the nonequilibrium corrections to the dis-

tribution function ( ) or the corresponding moments
of the distribution function. For a simple single-compo-
nent gas (N = 1), the above derived expressions corre-
spond to our results obtained previously [9, 10]. Anal-
ogous equations for a single-component gas were ear-
lier considered in [1, 2] and, for the particular case of a
gas mixture of Maxwellian molecules [13], within the
framework of the extended irreversible thermodynam-
ics developed in recent years.

Let us turn to relations (50)–(52) for the entropy
production. In order to calculate σ(1), we can use an

expression for Dα ln . This yields

(53)

where

(54)

(55)

The quantity

(56)

represents the reduced total heat flux in the mixture,
and dα is called the diffusive thermodynamic force [19,
22] and is defined as

(57)

where yα = nα/n is the relative number density of com-
ponent α.
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The expression for [σ(1)]0 exactly coincides with the
well-known representation of the local entropy produc-
tion in the classical LNT [22] in the form of a bilinear

combination of the fluxes , h, and wα = Jα/ρα) and the

conjugated thermodynamic forces , (1/T)∇ T, and
pdα. This expression essentially follows from (51),

where Dα ln  is replaced by expression (13) with
du/dt and dT/dt taken from the equations of conserva-
tion (39) and (40) in the Euler form, whereby all dissi-
pative terms proportional to the spatial derivatives of
the fluxes are omitted. As can be readily seen, this is
equivalent to using the linearized kinetic equation (7)

with only the Dα ln  term retained in the left-hand
part, which corresponds to the well-known first approx-
imation of the Chapman–Enskog method [16, 19]. This
approximation is known to yield results coinciding with
conclusions of the classical LNT [22]. Taking into
account the condition

the expression for [σ(1)]0 can be represented in an alter-
native form

(58)

The linear phenomenological relations corresponding
to this representation appear as

(59)

where Lαβ obey the Onsager relations [22]

(60)

In the entropy production part [σ(1)]1, the thermody-
namic forces are represented by spatial derivatives of
the fluxes, appearing upon substitution of the equations
of conservation (38)–(40) into expression (13). Analo-
gous terms, proportional to the spatial derivatives of
partial fluxes, enter into the expression for σ(2). Com-
bining the corresponding terms from all such expres-
sions leads to overdetermination and a certain compli-
cation of the thermodynamic forces. Nevertheless, an
expression for the entropy production still retains the

p̂

∇ u

f α
0( )

f α
0( )

Jα

α 1=

N

∑ 0,=

σ 1( )[ ] 0
1

T2
----- h ∇ T,( )–=

–
1
T
---

Jα

ρα
-----

JN

ρN

------– 
  pdα, 

  1
T
---p̂ : ∇ u.–

α 1=

N 1–

∑

h –L00
∇ T
T

-------- L0β pdβ,
β 1=

N 1–

∑–=

Jα

ρα
-----

JN

ρN

------– Lα0
∇ T
T

--------– Lαβ pdβ,
β 1=

N 1–

∑–=

p̂ 2K00∇ u,–=

Lαβ Lβα, Lα0 L0α .= =
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form of a bilinear combination of the generalized ther-
modynamic forces and fluxes.

Another important feature of the total expression
(50) for the entropy production is the presence of time

derivatives dnα /dt. Note that, in the case of a spa-
tially homogeneous gas mixture, the expression for σ
takes the form

(61)

This form corresponds quite well to the LNT version as
formulated by Onsager [22]. In this case, the entropy
production is described by an expression bilinear in
fluxes and conjugated thermodynamic forces, whereby

the fluxes are represented by the derivatives dnα /dt,

and the forces, by the coefficients –knα . In the
Onsager theory, the thermodynamic forces are defined
as the partial derivatives of the entropy with respect to

the corresponding state variables . The quadratic
form of expression (47) for the nonequilibrium entropy
with respect to the state variables is just what leads to
such a definition. According to the Onsager theory gen-
eralized to the case of multicomponent systems, the
expression for the entropy production (61) must corre-
spond to linear phenomenological relations of the type

(62)

As can be readily seen, relations (62) in the case of a
spatially homogeneous system are in perfect agreement

with the equations of moments (36), provided that  =

. Validity of the Onsager relations for the kinetic
cross coefficients can be shown to follow from the sym-
metry relations (11) for the linearized operator of colli-
sions. Thus, the method of moments provides for an
independent corroboration of the Onsager theory in the
case of spatially homogeneous states of the gas mix-
tures. In application to simple gases, this problem was
previously discussed in [5, 6, 24].

More complicated is the situation with analysis of
the GNT for spatially inhomogeneous systems. In this
case, according to a conventionally accepted scheme,

the fluxes are represented by the variables nα , and
the thermodynamic forces, by gradients of the initial
macroscopic parameters of the mixture (see the expres-
sion for [σ(1)]0). Here, according to relations (20), the

first several coefficients nα  correspond to the fluxes
possessing a clear physical sense (e.g., to the diffusion
flux Jα, the reduced heat flux hα, and the partial viscous

stress tensor , as well as the relative temperature dif-
ference (Tα – T)/T. Within the framework of the GNT,
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thermodynamic forces conjugated with these fluxes are
complicated by an additional contribution related to
derivatives of the fluxes with respect to time and spatial
coordinates. In addition, there is an increase in number
of the state variables for which their own phenomeno-
logical transfer equations can be written. Note that
bilinearity of the expression for the entropy production
implies the possibility of various definitions of the
fluxes and conjugated thermodynamic forces, whereby
these quantities are mutually interchanged. Below, we
will analyze this situation in more detail for the well-
known approximation of 13N moments.

6. THE APPROXIMATION OF 13N MOMENTS

In this approximation, expansion of the distribution

function (15) retains the terms with the coefficients ,

, , and . The equations of moments are writ-
ten for the variables nα (or ρα), u, and T, entering into
the weighting function (local Maxwell distribution)
corresponding to the equations of conservation (38)–
(40), and for the expansion coefficients expressed
through moments of the distribution function by formu-
las (20). Here, or we will digress from the case of scalar
quantities, which will be specially considered below.

This implies that  = 0 and Tα = T for all components
of the gas mixture.

Turning to expressions for the local density of
entropy and entropy flux and the entropy production in
the approximation adopted, we obtain from (47) and
(48)
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According to (50)–(52), the entropy production is
expressed as
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where

(66)

and

(repeated italic subscripts imply summation).

Bilinearity of the expression for the entropy produc-
tion indicates that the fluxes and conjugated thermody-
namic forces can be selected in two alternative ways.
The first possibility is to identify generalized thermo-
dynamic forces with the expressions in parentheses in
each term of the general expression for σ (65). In this
case, the corresponding phenomenological relations
acquire the following form:

(67)

(68)

(69)

Note that the quantities Lαβ coincide with the corre-
sponding coefficients in Eqs. (59) and

The alternative form of writing equations employs
the possibility of interchanging the fluxes and forces in
expression (65) for σ. In this case, expressions in the
parentheses in each term of the general expression for
the entropy production correspond to fluxes, rather than
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2
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 
β 1=

N
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– Lαβ
dρβwβ

dt
---------------- pdβ

*+ 
  ,
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1
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dπβik
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4
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to the thermodynamic forces. The corresponding linear
phenomenological relations are as follows:

(70)

(71)

(72)

It should be noted that equations of an analogous
structure follow directly from the system of equations
of moments (36), whereby coefficients in the right-
hand parts of equations no longer represent phenome-
nological quantities and are expressed in terms of the
integral brackets of the Sonin polynomials (34). The
corresponding explicit expressions for the right-hand
parts of Eqs. (70)–(72) in the approximation of 13N
moments were obtained in [12, 25].

There is one important circumstance that is worth
mentioning: the method of moments encounters a prob-
lem of selecting polynomials to be used for construct-
ing a system of the equations of moments for a given
approximation of the distribution function. As can be
seen from the above considerations, nonequilibrium
thermodynamics allows a unique system of equations
of moments to be constructed using only the form of the
approximating function: it follows from relations (70)–
(72) that the required system should be constructed
using the moments in which the distribution function is
expanded.

This approach offers two advantages. First, the
entropy balance equation is exactly satisfied when the
entropy, entropy flux, and entropy production are calcu-
lated using the approximate distribution function (the
condition of strict validity of the entropy balance equa-
tion is analogous to the requirement of observation of
the laws of mass, momentum, and energy conservation
usually posed on approximate equations). Second, for
this construction of a system of equations of moments,
the Onsager symmetry relations are strictly obeyed
both for the local kinetic coefficients of the equations of
type (70)–(72) and for the integral kinetic coefficients
in the macroscopic phenomenological equations, irre-
spective of the accuracy of calculations [26].

Let us consider a simple gas. In this case, Eqs. (67)
and (69) can be reduced to the following form:

(73)
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4
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∂qα i
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πβik
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(74)

where L00 = λT and K00 = η. The quantities η and λ rep-
resent the coefficients of viscosity and thermal conduc-
tivity, respectively, related to the corresponding relax-
ation times by the formulas

(75)

Note that equations analogous to (73) and (74) also
follow from relations (71) and (72), where the case of a

simple gas corresponds to Ω11 = η–1 and  = (λT)–1.

Equation (73) with ∇  = 0 is known as the Max-
well–Cattaneo equation [27]. Relations analogous to
(73) and (74) were also considered within the frame-
work of the extended irreversible thermodynamics [1,
2]. The presence of relaxation terms in these equations
allows the propagation of thermal and shear perturba-
tions in the gas to be analyzed in a more justified man-
ner. The corresponding equations for the temperature
and velocity acquire the form of hyperbolic differential
equations. This eliminates the paradox of infinite veloc-
ity of the propagation of thermal and shear perturba-
tions, which is inherent in the usual linear relations of
classical nonequilibrium thermodynamics (the Fourier
and Newton laws). Indeed, using Eq. (73) (with neglect

of ∇ ) together with the energy conservation equation
(40) leads to an equation of the type

(76)

This telegraph equation predicts a temperature wave
propagating at a velocity

An analogous equation for the pressure p, which fol-
lows from (39) and (74), describes a transverse shear
wave propagating at a velocity

An allowance for ∇ p and ∇ q in Eqs. (73) and (74)
yields finite corrections to these velocities and their dis-
persions. In particular, the velocity of propagation of
the transverse shear wave in a gas with a homogeneous
temperature field in a high-frequency approximation is
[1]

In the case when τη ! τL (τL is a characteristic time of
the problem), the terms containing derivatives of the
fluxes with respect to time can be omitted and we arrive

at the well-known linear relations for q and  [9, 11].

τη
dp̂
dt
------ p̂+ 2η ∇ u

2
5
--- 1

p
--- ∇ q+ 

  ,–=

η pτη , λ 5k
2m
------- pτλ , τλ

15
4
------τη .= = =

Λ̃11

p̂

p̂

τλ
∂2T

∂t2
--------- ∂T

∂t
------+

λ
ρcv

---------∆T .=

VT
0 λ /ρcv τλ( )1/2 5 p/3ρ( )1/2.= =

V p
0 η /ρτη( )1/2 p/ρ( )1/2.= =

V p
1 7 p/5ρ( )1/2.=

p̂
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In the case of established viscous flows, the general

equation of motion (39) yields ∇  = –∇ p and the
expression for q acquires the following form [9]:

Thus, an allowance for the spatial derivatives of
fluxes in the transfer equations may lead to the appear-
ance of additional terms linear in gradients of the ther-
modynamic parameters.

In the case of a multicomponent mixture, an allow-
ance for the corresponding terms leads to the general-
ized linear relations for πik and παik, which can be pre-
sented in the following form (for simplicity, the nonsta-
tionary terms are omitted):

(77)

where Kα0 = K0α. Analogous expressions can be written

for h =  and hα, in which case the Onsager sym-

metry relations are valid for the coefficients Lαβ (  =

).

Let us consider an equation following from relation
(70) for the diffusion velocities of components. In the
simplest case, when it is possible to ignore a contribu-
tion of the partial thermal fluxes in the right-hand part
of (70) (this assumption is strictly valid for a mixture of
Maxwellian molecules), the diffusion equation is as
follows:

(78)

The right-hand part of this equation is conveniently pre-
sented in the form whereby relations for determining
the diffusion rates take the form known as the Stefan–
Maxwell equation. From the conditions

it follows that

p̂

q λ ∇ T
2
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---T
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dραwα

dt
---------------- pdα*+ Λαβ wα wN–( ).
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∑ 0, dα*
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∑
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∑ 0.=
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This is possible only provided that

or

As a result, Eq. (78) acquires the following form:

(79)

A comparison to the results of the kinetic theory [12,
25] yields

(80)

where  is the effective frequency of collisions,

is the reduced mass of particles of the α and β types,
and [Dαβ]1 is the coefficient of binary diffusion (the first
Chapman–Cowling approximation) [16].

With neglect of the derivative dραwα/dt, that is,

when ταβ ! τL, and for  = dα, Eq. (79) corresponds
to a usual equation for the diffusion rates written in the
Stefan–Maxwell form. Taking into account the time
derivative of ραwα in Eq. (79) and considering this
equation together with the continuity equation (38), we
arrive at a hyperbolic equation for the particle concen-
tration and obtain the following rate of propagation of
the concentration perturbation:

An interesting effect is observed with an allowance
for the spatial derivatives of the viscous stress tensors in
expression (66) for . In this case, a solution to
Eqs. (72) with neglect of the contribution due to derivatives
of the heat flux yields for the established viscous flows

(81)

where ηα and η are the partial and total viscosity coeffi-
cients of the mixture [12]. Then, using relation 2η∇ 2u = ∇ p
and omitting the time derivative of ραwα, Eq. (79) can
be reduced to

(82)

Λαβ
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β α≠

N

∑–=
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dt
---------------- pdα*+ Λαβ wα wβ–( ).

β α≠

N

∑–=

Λαβ nαµαβταβ
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 
1/2 ρkT
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.= =
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η
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nαnβkT
n Dαβ[ ] 1
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∑=
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Thus, an allowance for the spatial derivatives of  and

 in Eq. (79) leads to redefining the pressure diffusion
constant, which becomes essentially a kinetic quantity
[12].

In a more general case, the equations of transfer for
a multicomponent gas mixture can be written using an
iterative procedure with respect to a small parameter—
the Knudsen number Kn = l/L, where l is the effective
mean free path length of gas molecules and L is a char-
acteristic linear parameter of the problem. In this pro-
cedure, the first approximation employs relations (59)
based on the concept of entropy production (58). In the
next approximation, the stationary transfer relations in
the absence of external forces take the following form:

(83)

(84)

(85)

Here, λα is the partial coefficient of thermal conductiv-
ity [12, 25], [Dαβ]2 is the binary diffusion coefficient
(the second Chapman–Cowling approximation) [16,
19], and

where the parameter  is determined by the charac-
ter of interparticle interaction [19]; in particular, for
Maxwellian molecules,

which implies vanishing of the terms related to thermal
diffusion in the gas mixture.

Note the following circumstance: considering
relations (83)–(85) as the phenomenological equa-
tions of nonequilibrium thermodynamics, generalizing
Eqs. (59) to the case of thermodynamic forces of higher
approximation and corresponding to Eqs. (67)–(69),
we encounter the violation of the Onsager symme-
try relations for the terms with second-order deriv-
atives. Breakage of the Onsager symmetry inspired
some researchers [17, 18] to suggest that nonequi-
librium thermodynamics becomes inapplicable on

p̂α

p̂
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the passage to the Barnett approximation of the kinetic
theory of gases. Misconception of this conclusion was
demonstrated [5–9] by calculation of the entropy pro-
duction based on the distribution function of the Bar-
nett approximation and by construction of the corre-
sponding phenomenological equations, which exhibit
no discrepancies with nonequilibrium thermodynam-
ics, provided that some nonphysical fluxes (see below)
are naturally introduced into consideration.

In concluding this section, let us discuss the prob-
lem of a difference between the component tempera-
tures Tα and the overall mixture temperature T. Accord-
ing to (61), the relative temperature difference can be
expressed by a phenomenological relation of the type

(86)

According to this, deviations of Tα from T are deter-
mined by the divergences of vector fluxes or by the sec-
ond derivatives of the temperature and concentration,
which usually corresponds to values of the second
order of smallness with respect to the parameter Kn =
l/L. However, this situation takes place only for a gas
mixture of monoatomic molecules. In a mixture of
diatomic and polyatomic gases, the molecules of which
possess internal degrees of freedom, the quantity Tα in

the transfer equations is replaced by , the tempera-
ture of the translational degrees of freedom. The latter
value exhibits relaxation to the overall translational
temperature of the mixture, T tr, during a time period on
the order of the effective elastic collision time ταβ of
molecules. The value of T tr differs from the tempera-

tures of the internal degrees of freedom, , which
leads to the appearance of an additional scalar term in
the diagonal part of the pressure tensor, this term being
proportional to the divergence of the mass-average
velocity (volume viscosity) (see [28]).

7. EQUATIONS OF GENERALIZED 
NONEQUILIBRIUM THERMODYNAMICS

IN THE BARNETT APPROXIMATION 
OF THE CHAPMAN–ENSKOG METHOD

Previously [9], we demonstrated the possibility of
reducing the GNT equations, obtained by the method of
moments for a simple gas, to the corresponding equa-
tions of the linearized Barnett approximation of the
Chapman–Enskog method. This procedure employed
perturbation theory with respect to a small parameter
(the Knudsen number) of the system of equations of
moments (applied in the Chapman–Enskog method to
the distribution function). Below, we show how to pass
from equations of the method of moments directly to
the Chapman–Enskog equations for a multicomponent
gas mixture and how to derive an expression for the
entropy production corresponding to a generalized sys-

Tα T–
T

--------------- Hα0

nα

n
----- ∇ qα

3
2
---kT ∇

Jα

ρα
-----

α 1=

N

∑–
 
 
 

.=

Tα
tr

Tα
in
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tem of phenomenological equations in the Barnett
approximation. The approach employed here is some-
what different from that used in [9].

We proceed from the system of equations of
moments (36) and the equations of conservation (38)–

(40). Let us represent the coefficients  in the form
of a series

. (87)

Since the right-hand parts of the equations of moments
are linear combinations of terms on the order of

nα , where ταβ is the effective mean time
between the collisions of molecules, expansion (87) is
conveniently considered as a formal expansion with
respect to a small parameter εαβ = 〈vαβ〉τ αβL–1, where
〈vαβ〉  is the average relative velocity of particles of the
types α and β (for a simple gas, a small parameter in
this case is the Knudsen number Kn = l/L, where l =
〈v 〉τ ). Let us assume that the order of each succeeding
term in expansion (87) with respect to ε decreases by
unity. In addition, we assume (as in the Chapman–
Enskog method) that the equations of conservation
(38)–(40) are valid in each step with an accuracy corre-
sponding to the approximation order number minus
unity.

Let us consider first the equations of moments (36)
for vector quantities (m = 1). To the first approximation,
replacing du/dt by expressions according to the equa-
tions of motion (39) in the Euler form, we obtain

(88)

where dα is given by expression (57). Multiplying both

sides of Eq. (88) by , summing the prod-
ucts over n, and taking into account the property of
orthogonal polynomials forming a complete system,

(89)

we arrive at the equation

(90)

As expected, this equation corresponds to the first
approximation for vector quantities in the Chapman–
Enskog method [19, 20]. Naturally, this equation can
also be obtained directly, proceeding from the initial
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linearized kinetic equation (7) and using the standard
procedure of the Chapman–Enskog method. The above
approach is more convenient, since it will be also
employed for obtaining the following approximations.
Applying this procedure to the equations of moments
for the tensor component (m = 2), we arrive at

(91)

A solution to Eqs. (90) and (91) can be represented in
the standard form [20]

(92)

, Φpβ, and  are the known solutions obtained
within the Chapman–Enskog theory [19]. Thus, the dis-
tribution function in the first approximation takes the
form

(93)

Now we pass to the second approximation and

retain the spatial derivatives of  (1) in the left-hand
part. Putting aside equations for the scalar quantities,
we write down a system for the vector and tensor
moments:

(94)

For a correct transition to the linearized Barnett
approximation of the Chapman–Enskog method, we
added an equation for moments of the third-order ten-
sor to the system of equations for the vector and sec-
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ond-order tensor moments. In writing the first of these
equations, we took into account that the equation of
conservation should be taken in the first approxima-
tion (in order to exclude du/dt), which accounts for
the appearance of ∇ p(1). Equations of the Barnett
approximation are obtained upon multiplying Eqs. (92)

by , summing over n, and using the property of
orthogonal polynomials (89):

(95)

In writing this, we used solutions (92), the relation p =

–2η∇ u, and the notation  for corrections in the Bar-
nett approximation of the ith-order tensor:

The equations analogous to (95) obtained by direct
application of the Chapman–Enskog method were con-
sidered in [8]. Thus, we have demonstrated that, pro-
ceeding from a system of equations of the method of
moments, it is possible to obtain equations of the Chap-
man–Enskog theory accurate to within the Barnett
approximation.

Now, let us determine the entropy production in the
Barnett approximation. Using the general expression
(46) for σ and replacing the collision integral by the
left-hand parts of equations taken from the correspond-
ing approximation, we obtain

(96)

where σ(1) = σ (1) 0 corresponds to the classical
entropy production (54) (the first Chapman–Enskog
approximation) and σ(2) corresponds to the Barnett
entropy production [8]

(97)

Additional thermodynamic fluxes appearing in this
approximation are determined by the following expres-
sions:
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(98)

where

The forms of the corresponding thermodynamic forces
are clear from the structure of expression (97) for σ(2).

Representation of the entropy production in the
form of Eqs. (96) and (97) corresponds to a system of
linear phenomenological equations. This system sepa-
rates into three subsystems related to the vector fluxes

(wα – wN, h, and Jv), second-order tensor fluxes ( , ,

and  – ), and the third-order tensor flux . Here
are expressions for the vectors,

(99)

for the second-order tensors,

(100)

and for the third-order tensors,

(101)

As can be seen, the equations of thermal conductiv-
ity and diffusion contain additional terms related (with
an allowance for the condition η∆u = ∇ p) to the pres-
sure-gradient-induced heat flux and diffusion (these

Jv kT Φpα

cα
2

5
----- 1

pα
------

ρα

ρ
-----η+ 

  cα Φα, 
  ,

α
∑=

Ju kT Φpαcαcαcα Φα,( ),
α
∑=

JT kT Φtαcαcα Φα,( ),
α
∑=

Jβ
D kT Φd

βcαcβ Φβ,( ),=

Φα Φα
1( ) Φα

2( ).+=

p̂ Ĵ
T

Ĵα
D

ĴN
D

Ĵ
u

q
5
2
--- pαwα

α
∑– λ00∇ T λ0β pdβ λ0N 1+ ∆u,+

β
∑+ln=

wα wN– λα0∇ T λαβ pdβ λαN 1+ ∆u,+
β
∑+ln=

Jv λN 1+ 0, ∇ T λαβ pdβ λN 1+ N 1+, ∆u;+
β
∑+ln=

p̂ = Λ00∇ u Λ0β∇ dβ Λ0N 1+ ∇∇ T ,ln+
β
∑+

Jα
D JN

D–  = Λα0∇ u Λαβ∇ dβ ΛαN 1+ ∇∇ T,ln+
β
∑+

JT  = ΛN 1+ 0, ∇ u

+ Λαβ∇ dβ ΛN 1+ N 1+, ∇∇ T ;ln+
β
∑

Ju l00∇∇ u.=
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additional terms were considered above). In order to
provide for the Onsager symmetry, the system of phe-
nomenological equations has to be supplemented with
a new equation for the “nonphysical” flux Jv. Direct
calculation shows that the kinetic coefficients in system
(99) obey the symmetry relations.

The system of phenomenological equations (100)
for the tensor quantities contains two nonphysical
fluxes corresponding to the appearance of two contribu-
tions to the stress tensor, related to the temperature and
concentration stresses. In this system of equations, the
kinetic coefficients can also be readily shown to obey
the symmetry relations.

Finally, note that the nonequilibrium thermodynam-
ics predicts the appearance of phenomenological equa-
tions for the third-order tensors in the Barnett approxi-
mation. However, presently it is difficult to reveal the
physical sense of these quantities.

Evidently, increasing the order of approximation in
the Chapman–Enskog theory is accompanied both by
expansion of the systems of phenomenological equa-
tions (99)–(101) due to the appearance of new terms
and by an increase in the number of systems due to
growing dimension of the tensor corrections entering
into the Chapman–Enskog distribution function. The
appearance of additional (nonphysical) fluxes signifi-
cantly expands the system of phenomenological equa-
tions and establishes the necessary relations between
the cross coefficients, thus ensuring validity of the
Onsager relations. By directly using the equations of
moments, the analogous relations can be obtained only
upon going outside the approximation of 13N
moments. Equations of the linearized Barnett approxi-
mation obtained above formally correspond to an
allowance for the infinite number of moments of the
corresponding tensor dimension in the expansion of the
distribution function.

8. CONCLUSION

Nonequilibrium thermodynamics and kinetic theory
are two closely related approaches to description of
nonequilibrium processes in various physical media.
The well-developed methods available for an approxi-
mate solution to the Boltzmann kinetic equation for
simple gases and gas mixtures (the Chapman–Enskog
method, the Grad method of moments) provide a reli-
able basis for generalization of nonequilibrium thermo-
dynamics and determination of the limits of applicabil-
ity of the generalized theory. One of such generaliza-
tions is the extended irreversible thermodynamics
developed in recent years [1, 2], which is now rather
widely applied to the description of nonequilibrium
phenomena in various media. However, in constructing
this theory, many important problems encountered in
the description of multicomponent systems were
ignored, the consequences following from using an
infinite system of equations of moments were not prop-
SICS      Vol. 95      No. 4      2002
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erly analyzed, and the possibilities of passing to
description on the level of the canonical Chapman–
Enskog method were underestimated.

An important, still unresolved question of the clas-
sical LNT is the problem of a relation between nonequi-
librium thermodynamics in the Onsager formulation
(whereby the fluxes are determined as derivatives of
state variables with respect to time and the generalized
thermodynamic forces, as partial derivatives of the
entropy density with respect to these variables) and the
variant in which the fluxes are real physical (vector and
tensor) fluxes and the thermodynamic forces are repre-
sented by gradients of the initial macroscopic parame-
ters. Application of the method of moments in the
kinetic theory provides for progress in understanding
this relation, since use of a system of equations of the
relaxation type for the state variables allows the two
variants of nonequilibrium thermodynamics to be con-
sidered as partial cases realized in spatially homoge-
neous and inhomogeneous systems. We hope that
approaches proposed in this paper to the construction of
GNT of multicomponent systems will additionally
stimulate application of the GNT methods to investiga-
tion of a wide class of nonequilibrium phenomena.
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Abstract—We investigate a classical analog of electromagnetically induced transparency (EIT) currently pop-
ular in quantum electronics. We consider EIT for electron cyclotron waves in finite-temperature plasma. We
derive an expression for the effective refractive index of an electromagnetic wave and study the dispersion and
absorption of this wave under EIT conditions. Allowance for thermal motion is shown to radically change
the behavior of the dispersion curves for the signal wave in the EIT region compared to the case of cold plasma.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A popular parametric effect in modern physics of
nonlinear waves is the electromagnetically induced
transparency1 in ensembles of three-level atoms attrib-
utable to the interference of quantum electron states.
This effect manifests itself as the formation of a trans-
parency window within a resonance absorption line of
a three-level system in the presence of a pump wave,
which is accompanied by a record high deceleration of
the signal light wave (see, e.g., [1] for a review). At
present, using EIT in problems of spectroscopy and the
formation and correction of the spatiotemporal struc-
ture of laser radiation is generally recognized to hold
considerable promise [1]; in the EIT regime, the power
thresholds of most known nonlinear optical effects
were significantly lowered [1, 2]. In particular, EIT
underlies the recent widely known “light stopping”
experiments [3, 4].

From the viewpoint of the general theory for nonlin-
ear wave processes, investigating classical analogs of
EIT is obviously of interest. This interest also stems
from the hopes to extend new ideas of quantum elec-
tronics to classical microwave electronics and plasma
physics. Thus, for example, the authors of [5–7] ana-
lyzed the formation of a transparency region for a wave
with a frequency lower than the plasma frequency in
isotropic cold plasma through its parametric interaction
with an intense pump wave. However, they considered
a completely conservative system in which the pro-
cesses significantly differ from the formation of a trans-
parency window within a resonance absorption line
typical of EIT [1]. Litvak and Tokman [8] investigated
a closer (direct) classical analog of this effect in a wave

1 Bearing in mind the formation of a transparency window pre-
cisely in the regime of a parametric wave interaction, we use the
universally accepted abbreviation EIT (electromagnetically
induced transparency) for this effect.
1063-7761/02/9504- $22.00 © 20697
system: EIT for an electromagnetic wave at the electron
cyclotron resonance frequency in cold collisional
plasma. They considered a situation where the beats
between the signal and pump waves effectively excite a
plasma electrostatic mode.

In addition, Litvak and Tokman [8] pointed out a
classical analog of EIT for a lumped-parameter system:
dynamic damping (see, e.g., [9]). Two coupled oscilla-
tors with a harmonically varying coupling coefficient
form such a system. As was shown, an external action
(an analog of the signal wave) on one of the oscillators
for such a system produces no resonant excitation of its
oscillations due to the resonant excitation of oscilla-
tions in the second oscillator (because of parametric
coupling), i.e., through dynamic damping of this reso-
nant excitation. In its standard case [9], this effect is
produced by ordinary linear coupling between the two
oscillators, which causes the damping system to be
excited at the frequency of the driving generalized
force. In the case under consideration, however, the
parametric coupling between the oscillators leads to the
excitation of the damping system at the combination
frequency; this is the principal feature of wave interac-
tions in the EIT regime.

Here, we investigate the effect of thermal plasma
particle motion on EIT for electron cyclotron waves.
The spatial dispersion attributable to thermal motion
turns out to radically change the pattern of EIT, giving
rise to a number of important features that are absent
both in the original quantum case and in cold plasma.

The paper is structured as follows. The hydrody-
namic theory of EIT is outlined in Section 2. In Sec-
tions 3 and 4, this effect is studied in terms of the
kinetic theory: an expression for the effective refractive
index of the signal wave is derived in Section 3, and
properties of the dispersion and absorption of the signal
wave for warm plasma are discussed in Section 4.
002 MAIK “Nauka/Interperiodica”
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2. THE HYDRODYNAMIC THEORY

Although the hydrodynamic model disregards one
of the most important plasma effects, collisionless
damping, the qualitative behavior of the dispersion
curves for the signal wave in warm plasma can be
understood in terms of this model. Our statement of the
problem is the same as that in [8]. Let two circularly
polarized waves with the electric field rotating in the
sense of the electron cyclotron rotation (extraordinary
waves) propagate in magnetoactive plasma along a con-
stant external magnetic field H = Hz0:

(1)

where e+ = 2–1/2(x0 + iy0) is the wave polarization vector
and x0, y0, z0 are the unit vectors of the Cartesian axes.

The oscillations of the transverse and longitudinal
(relative to the constant magnetic field) electron veloc-
ities are described by the Euler equations including the
Lorentz force from the wave fields:

(2)

Here, ωH = eH/mc is the electron gyrofrequency, e and
m are the electron charge and mass (e > 0), γ is the
effective collision frequency, Ep is the plasma-wave
electric field, p is the gas-kinetic pressure, and Ne is the
electron density. System (2) must be supplemented
with the continuity equation

(3)

and with the equation that describes the excitation of an
electric field in the plasma wave:

(4)

Here, jz is the longitudinal electron current component.
Assuming the constancy of the ion density Ni and
quasi-neutrality,

(5)

E⊥ z t,( ) Re e+ E1 –iω1t ik1z+( )exp[{=

+ E2 –iω2t ik2z+( ) ] } ,exp
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we can derive a system of equations that describes the
excitation of longitudinal collective oscillations by the
ponderomotive force from the high-frequency fields
(for definiteness, consider an adiabatic process) from
Eqs. (2)–(4):

(6)

Here, ωp = (4πeN0/m)1/2 is the electron plasma fre-
quency, and VT = (T/m)1/2 and T are the thermal electron
velocity and temperature, respectively.

We assume that the following synchronism condi-
tions are satisfied:

(7a)

(7b)

(7c)

Here, ωL = ω1 – ω2 and kL = k1 – k2 are the frequency
and wavenumber of the beats between the signal and
pump waves, respectively. Inequality (7a) implies the
satisfaction of the electron cyclotron resonance condi-
tions for the signal wave and, hence, the cyclotron
absorption of this wave in the absence of a pump wave.
Inequality (7b) is the condition for the excitation of
plasma waves at the combination frequency ωL. Ine-
quality (7c) is the condition for weak spatial dispersion.

Given the synchronism conditions (7a) and (7b),
only the terms with the “resonance” frequencies can be
retained in Eqs. (2)–(4); i.e., the method of “shortened”
equations [9, 10] can be used. As a result, we have the
system of equations

(8)
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Here, 

Z1, 2 = ω1, 2 – ωH + iγ, ZN = ω1 – 2ω2 + ωH + iγ, 

and Zp =  –  – 3  + iγωL,

Zp = 0 being the standard “hydrodynamic” dispersion
relation for plasma waves. In (8), we introduced the
complex amplitudes of the corresponding quantities:

(9)

where e– = 2–1/2(x0 – iy0) is the polarization vector for
the circularly polarized wave with the electric field
rotating oppositely to the sense of the electron cyclo-
tron rotation (ordinary wave).

We can derive an expression for the complex oscil-

lation amplitudes of the velocity  and density 
from system (8) and an expression for the effective
refractive index of the signal wave from the latter (see,
e.g., [11]):

(10)

Here,  is the complex amplitude of the electric cur-
rent j1 at frequency ω1:

(11)

The final expression for  is

(12)

Here

is a dimensionless nonlinearity parameter representing
the ratio of the squares of the oscillatory and phase
velocities for the pump field E2exp(–iω2t + ik2z).
Expression (12) differs from that derived in [8] by the
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corrections 3 , because we took into account ther-
mal motion.

Let us now discuss the dispersion law of the signal
wave under EIT conditions for warm plasma. To this
end, we represent Eq. (12) as

(13)

Here,

is the “linear” refractive index of the signal wave in
cold magnetoactive plasma (see, e.g., [11]). The quan-
tity ξEC is a small parameter of the problem: for reason-
able pump intensities (of the order of 100 kW cm–2),
ξEC is 10–4–10–6. Therefore, the signal-wave dispersion
curves defined by Eq. (13) pass either near the linear
signal-wave dispersion curve defined by the relation

 =  or near the plasma-wave dispersion
curve Zp = 0 (shifted by the pump frequency ω2 and
wavenumber k2). This behavior of the dispersion curves
is violated only near the points of intersection of the

 =  and Zp = 0 curves, where the signal-wave
dispersion curves pass from one curve to the other. All
of these results are confirmed by numerical calculations
for relation (13) (see Fig. 1). Figure 2 shows the behav-
ior of the signal-wave absorption line in the EIT fre-
quency range. On the one hand, it follows from these
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Re(ck1/ωH)

Fig. 1. The dispersion law for an electron cyclotron wave
under EIT conditions, the hydrodynamic theory. ξEC = 1 ×
10–3 (solid line) and 0 (dashed line); Zp = 0(∆); ωp/ωH =

0.75, ω2/ωH = 0.2, γ/ωH = 2.5 × 10–3, VT/c = 7.5 × 10–3.
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figures that EIT also exists in warm plasma (there is a
high group deceleration of the signal wave and the
appearance of a transparency region within the cyclo-
tron absorption line). On the other hand, since the
plasma wave frequency depends on wave number, the
behavior of the dispersion curves in the EIT window
significantly differs from that for cold plasma (see [8]).
The signal-wave propagation is discussed in detail in
Section 4 in terms of the kinetic theory.

3. THE KINETIC THEORY

As was noted above, collisionless wave damping is
disregarded in the hydrodynamic theory. Therefore,
EIT in high-temperature plasma can be properly stud-
ied only in terms of the kinetic theory. We consider the
propagation of a bichromatic field (1) in plasma. Let us
write the kinetic equation for the electron distribution
function f ,

(14)

(f0 is the equilibrium distribution function), and the
equation that describes the excitation of plasma waves,

(15)

As above, we assume that inequalities (7a)–(7c) hold.
Let us consider the simplified collision integral in
Eq. (14). This form of the collision integral allows us to
properly pass to the Landau formula with a determining
contribution of collisionless damping. In this case, in
view of (7a), the collisionless damping decrement for
the signal wave is large, while, in view of (7c), the col-
lisionless damping decrement for the pump and plasma

∂f
∂t
----- V
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-------–+
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e
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1
c
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6

5

4

3

2

1

0
0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Im
(c

k 1
/ω

H
)

ω1/ωH

Fig. 2. The formation of a transparency window within the
cyclotron absorption line [Re(k1) > 0], the hydrodynamic

theory. ξEC = 1 × 10–3 (solid line) and 0 (dashed line). For
ξEC ≠ 0, only the segment of the curve that corresponds to
low absorption is shown. All parameters are the same as
those in Fig. 1.
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waves is exponentially small; for the parameters of
interest, it is much lower than the transport frequency
for Coulomb collisions of thermal particles. Thus, it
would be reasonable to take γ in (14) to be equal to the
transport frequency of Coulomb collisions at a given
temperature (see, e.g., [12]):

(16)

Here, Le is the Coulomb logarithm. Let us introduce the
complex amplitudes of the harmonics of the distribu-
tion function f and electric field Ep:

(17)

Here, V|| and V⊥  are the longitudinal and transverse
electron velocity components relative to the external
magnetic field, and ϕ is the azimuthal angle in the xy
plane. Below, we give the ϕ dependence of the f1, 2, ||, N
components; since these components are periodic in ϕ,
they can be represented as the Fourier series

(18)

Clearly, only the harmonic  =  for f1 gives a non-
zero contribution to the nonlinear current at frequency
ω1. Next, it follows from the specific form of the short-
ened equations following from (14) that only the har-

monics  = ,  = , and  =  give a

nonzero contribution to . Thus, the expression for f
in (17) can be represented as

(19)

γ
4πe4N0Le

m2VT
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j 1 2,=
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
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+ f || V ⊥ V || ϕ, ,( ) –iωLt ikLz+( )exp

+ f N V ⊥ V || ϕ, ,( )

×∑ i ω1 2ω2–( )t– i k1 2k2–( )z+[ ]exp




,

Ep Re E|| –iωLt ikLz+( )exp{ } .=

f 1 2 || N, , , f 1 2 || N, , ,
n( ) inϕ( ).exp
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∑=

f 1
1( ) f̂ 1

f 2
1( ) f̂ 2 f ||

0( ) f̂ || f N
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f 1
1( )
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
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
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The system of shortened equations follows from (14)–
(19). To write it in a more compact form, let us intro-
duce new variables:

(20)

Our system then takes the form

(21)

Here, we denoted

(22)

To solve system (21), we use the following consider-
ations. The amplitude of the electric field E|| in a plasma
wave is proportional to F||/D(ωL, kL), where F|| is the
Lorentz force from the wave fields and D(ωL, kL) is such
that D(ωL, kL) = 0 is the dispersion relation for plasma
waves [e.g., D(ωL, kL) corresponds to the previously
introduced quantity Zp in the hydrodynamic theory].
Since we assume the plasma waves to be effectively
excited, D(ωL, kL) in our case is a small parameter.
Therefore, apart from the linear terms, it would be
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appropriate to retain only the terms proportional to E|| in
the equation for  in (21). This assumption allows us
to find a solution to system (21) and to derive an expres-
sion for the effective refractive index of the signal wave
from it in terms of the kinetic theory [cf. (10) and (11)]:

(23)

The final expression for  is

(24)

Here,  is the expression for the “linear” refractive
index of the extraordinary wave that follows from the
kinetic theory (see, e.g., [11]):

(25)

D(ωL, kL) is the “longitudinal” permittivity of magneto-
active plasma [11]:

(26)

The equation D(ωL, kL) = 0 describes the dispersion law
of plasma waves, and A and B are functions that do not
depend on ξEC:

(27)
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is the unperturbed longitudinal velocity distribution
function normalized to unity,

In deriving (24), we disregarded small terms of the
order of kVT/ω and (kVT/ω)2 because of condition (7c).

For ξEC = 0, the linear expression  for the refrac-
tive index clearly follows from (24), while, in the limit-
ing case of cold plasma (F0(V||) = δ(V||)), expression
(24) is identical to that for cold plasma from the hydro-
dynamic theory [expression (12), in which we must set
VT = 0].

4. SIGNAL-WAVE PROPAGATION

As was noted above, ξEC is a small parameter. Con-
sequently, the contribution of the second term on the
right-hand side of Eq. (24), which corresponds to the
manifestation of EIT, is significant only if D(ωL, kL) is
small enough. Therefore, the criterion for EIT to take
place can be written as

(28)

V ⊥
2〈 〉

f 0V ⊥
2 d2V ⊥∫

f 0d2V ⊥∫
----------------------------, Z2

0( ) Z2 VT  = 0( ).= =

N0 kin,
2

ξEC @ max ReD ωL kL,( ) ImD ωL kL,( ),{ } .
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Fig. 3. The dispersion law for an electron cyclotron wave
under EIT conditions, the kinetic theory. I2 = 400 (a) and

300 (b) kW cm–2 (solid line), 200 (a), 100 (b) kW cm–2

(thick dashed line), and 0 (thin dashed line); ReD(ωL, kL) =
0 (∆). Panel (b) shows in more detail a segment of the dis-
persion curve near the point of its intersection with the linear
dispersion curve. T = 30 (a), 610 (b) eV; N0 = 1013 cm–3; H =

35 kG (ωH/2π = 94 GHz); γ/ωH = 4.0 × 10–6 (a), 4.0 × 10–8 (b);
ω2/ωH = 0.7 (a), 0.72 (b).
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This implies that, just as in the hydrodynamic
approach, the behavior of the dispersion curves for the
signal wave in the EIT region is mainly determined by
the dispersion law of plasma waves ReD(ωL, kL) = 0.
This is in contrast to the case of cold plasma [8], where
their behavior is unambiguously specified by the
parameter ξEC. In general, this result could be predicted
based on the theoretical oscillatory treatment of EIT
formulated in [8]. In order for EIT to take place, of fun-
damental importance is the parametric excitation of
“damping” oscillations, which in our case satisfy the
dispersion relation ReD(ωL, kL) = 0.

Below, we present the results of our numerical anal-
ysis of expression (24); the unperturbed distribution
function is assumed to be Maxwellian and isotropic:

(29)

Figure 3 shows the signal-wave dispersion curves2 in
the EIT region for various pump intensities I2. We see
from Fig. 3 that the behavior of the dispersion curves in
the EIT region is actually determined by the dispersion
law of plasma waves. In particular, the dispersion
curves contain segments that correspond to a high
group deceleration of the signal wave down to a zero
group velocity (which is not possible in a three-level
quantum system). In this case, the frequency ω1 and the
wavenumber Rek1 that correspond to a zero group
velocity are roughly determined by their values at the
minimum of the dispersion curves for plasma waves:

(30)

Figure 4 shows the absorption-line profile3 for the sig-
nal wave under EIT conditions. We see that, as in cold
plasma, there is a frequency range where the resonant
wave absorption is suppressed, with the absorption
minimum roughly corresponding to the point on the
dispersion curve with a zero group velocity. Note that
the “linear” curves in Figs. 3 and 4 are defined by
Eq. (25); i.e., their behavior significantly depends on

the electron temperature (for , there is a standard
expression [11, 13] in terms of the Kramp function).

Let us estimate the characteristic width of the sig-
nal-wave transparency band ∆ω under EIT conditions.

2 The regions on the dispersion curves where the group velocity
formally becomes infinite should not cause any misunderstand-
ing, because the signal-wave absorption is large for these regions
(Rek1 ~ Imk1) and there is no proper determination of the group
velocity [13].

3 For the curve in Fig. 4, the term “absorption line” is not com-
pletely correct, because the behavior of this curve depends not
only on ω1 but also on Rek1, which, in turn, depends on fre-
quency. In particular, this is the reason why regions of ambiguity
in ω1 exist for this curve.

f 0 2π( ) 3/2– VT
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2 V ||
2

+

2VT
2

-------------------–
 
 
 

.exp=
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For cold plasma, as follows from (12), the wave absorp-
tion significantly decreases in the frequency band

i.e., ∆ω can be estimated as

(31)

In the hydrodynamic theory for warm plasma, it fol-
lows from (12) that the transparency band width is
given by the relation

which leads to the expression

(32)

Since expressions (24)–(27) for  are complex,
a simple analytic expression for ∆ω cannot be derived
in terms of the kinetic theory. However, numerical cal-
culations indicate that relation (32) is also valid in the
kinetic theory. In particular, it follows from this relation
that the transparency band width in warm plasma can
be significantly larger than that in cold plasma if the
plasma temperature is high enough:

(33)

In this case, the transparency band width ceases to
depend on ξEC altogether (see Fig. 4). Thus, for exam-
ple, for a pump intensity of 100 kW cm–2 and for the
remaining parameters corresponding to Fig. 4, the
plasma temperature must exceed 150 eV.

The table presents the dependence of basic parame-
ters for the dispersion law and the signal-wave absorp-
tion line in the EIT region on pump intensity (the
remaining parameters correspond to Fig. 4): the charac-
teristic group velocity4 Vgr, the transparency band
width ∆ω, and the absorption length L = (2Imk1)–1 at the
minimum of the absorption line. In this case, relations
(28) and (33) are assumed to hold. As we see from the
table, for a sufficiently wide intensity range, only L
changes significantly, while Vgr and ∆ω, which are
determined by the structure of the plasma-wave disper-
sion curve, are constant.

The above estimates of basic parameters for the EIT
window allows us to formulate the most pessimistic
requirements for the conditions for this effect to take
place in plasma. The constraints on the admissible non-

4 Within the EIT window, the group velocity changes from zero to
the value given in the table.
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uniformity of the magnetic field H and density N0 are
given by relation (32):

(34)

Here, δH and δN0 are the relative detunings of H and
N0, respectively. For a pump intensity of the order of
100 kW cm–2 and for temperatures of the order of 1 and
10 keV, δH and δN0 must be no larger than 1 and 5%,
respectively. In this case, the characteristic size of the
working region must be of the order of one meter, as we

δH δN0 max
ωHξEC

ωp
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Fig. 4. The formation of a transparency window within the
cyclotron absorption line [Re(k1) > 0], the kinetic theory.

I2 = 300 kW cm–2 (thick solid line), 100 kW cm–2 (thick

dashed line), 30 kW cm–2 (thin solid line), and 0 (thin
dashed line). Panel (b) shows in more detail a portion of the
absorption line that corresponds to minimum signal-wave
absorption. We see that the wave absorption decreases with
increasing pump intensity. All parameters are the same as
those in Fig. 3b.

Table

I2, kW cm–2 300 100 10 0

L, cm 60 15 2 0.025

∆ω/ω1
(at Im k1/Re k1 = 0.1)

≈1 × 10–3 –

Vgr/c ≈3 × 10–3 –
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see from the table. However, it may well be that a more
detailed EIT theory for an inhomogeneous layer will
yield more relaxed constraints.

CONCLUSION

We have shown that EIT in plasma also exists when
thermal electron motion is taken into account: there is a
high group deceleration and the formation of a trans-
parency band within the cyclotron absorption line of
the signal wave. At the same time, thermal motion was
found to significantly change the behavior of the dis-
persion curves and the signal-wave absorption line.
These relationships are mainly determined by the disper-
sion law of the damping system (plasma waves) and are
virtually independent of the pump wave intensity. EIT
takes place in an invariable range of frequencies and wave-
numbers of the signal wave for arbitrary pump intensities
(in our examples, of the order of 10–100 kW cm–2). At the
same time, the corresponding frequency range in cold
plasma narrows with decreasing pump intensity.

The possible applications of EIT in ensembles of
classical electrons can be associated with its realization
in plasma microwave electronic devices (e.g., to com-
press pulses) or with problems of thermonuclear
plasma spectroscopy. However, a generalization of the
theory developed here to wave propagation at an arbi-
trary angle to the magnetic field in inhomogeneous
plasma sheets is required for more detailed applica-
tions.
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Abstract—The influence of the self-consistent electric field of a surface electron layer on the energy spectrum
of photoelectrons emitted under the action of a picosecond laser pulse on a metallic target was determined.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental studies of the energy spectrum of pho-
toelectrons formed under the action of picosecond
laser pulses on a metallic target revealed the presence
of photoelectrons with unexpectedly high energies, up
to 600 eV [1]. Similar earlier studies performed using
nanosecond laser pulses of the same energy and wave-
length gave no evidence of the existence of photoelec-
trons with energies exceeding 10 eV [2].

The initial theoretical explanations related the
appearance of “fast” photoelectrons to the influence of
a surface electron cloud formed when laser radiation
acted on the surface of a metal [1, 3]. However, the
mechanism of the formation of the surface electron
cloud was not suggested in these works, and its physi-
cal properties were not determined. In particular, the
conditions imposed on laser radiation parameters (laser
pulse intensity and width) under which the produced
electron layer could noticeably influence surface pro-
cesses were not determined. Accordingly, the obtained
theoretical results were purely qualitative in character
and were incapable of providing a convincing explana-
tion of the appearance of fast electrons.

In the more recent theoretical work [4], the forma-
tion of fast electrons was related to surface polarization
of metallic conductor electrons under the action of
glancing laser radiation rather than to electronic cloud
influence. The main claim in [4] was that phase coher-
ence between the laser electric field and surface elec-
tron oscillations inside a metal was established when a
glancing laser beam with the required polarization
properties passed along the surface of the metal. The
necessary condition for the establishment of phase
coherence was the requirement of smallness of electron
temperature under irradiation conditions (the tempera-
ture of electrons had to be of the order of the tempera-
ture of the lattice, that is 300 K).
1063-7761/02/9504- $22.00 © 0705
Note, however, that the phase coherence condition
cannot be satisfied in real experiments with picosecond
laser pulses. Indeed, even for a Nd laser beam glancing
along a metallic surface (at an angle of about 5° in real
experiments [1]), we cannot ignore heating of electrons
inside the metal in a layer of thickness of the order of
laser radiation wavelength (λ = 1.06 × 10–4 cm, that is,
heating depth of about 104 lattice layers). The gap
between the temperature of electrons and the tempera-
ture of the lattice under Nd laser pulses of an I ~
1010 W/cm2 intensity reaches values of about 105 K [5],
which violates the phase coherence condition.

In this work, the appearance of fast photoelectrons
under picosecond laser actions on a metallic target is
related to the influence of the electric field formed
under certain conditions in a surface electron layer on
separate photoelectrons [6].

2. SURFACE ELECTRON LAYER

The main reason for the formation of a surface elec-
tron layer under the action of ultranarrow laser pulses
on a metallic target is a substantial (of the order of 1 eV)
gap between the temperature of the electronic compo-
nent and the temperature of the lattice [5]. This causes
a sharp increase in thermoemission current and the for-
mation of a fairly extended volume negative charge
region near the surface.

The double electric layer is known to exist near the
surface of a metal also under the conditions of thermo-
dynamic equilibrium between the electronic and lattice
subsystems. The electron gas is then degenerate, and
the concentration of electrons decreases at a very high
rate as the distance from the surface increases,

ne ∝  z–2exp(–βz),

where β–1 is a value of the order of the mean interelec-
tronic distance in the metal [7]. The surface layer of
2002 MAIK “Nauka/Interperiodica”
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degenerate electrons can therefore be considered arbi-
trarily thin, and its influence on laser beam penetration
inside the metal can be ignored. The degree of degener-
acy, however, decreases at a high rate as the concentra-
tion of electrons lowers, and electrons experience the
transition to the classical state when the Fermi energy
EF(ne) becomes of the order of kT. A further decrease in
the concentration of electrons follows a much smoother
law [6],

(1)

where

is the Debye screening length and n0 is the concentra-
tion boundary determined from the degeneracy condi-
tion

that is,

It follows that the dimensions of the surface electron
layer region, where the concentration decreases accord-
ing to (1), increase as the temperature of electrons rises.
Simultaneously, concentration boundary n0 also
increases, and, at temperatures of the order of EF, all
electrons in the surface electron layer experience the
transition to the classical state. Their distribution then
obeys (1), and n0 becomes of the order of the concen-
tration of electrons in the metal. It follows that intense
nonequilibrium heating of the electronic component of
a metal can cause the formation of a fairly extended
layer of electrons with a high concentration near the
surface.

The formation of a surface electron layer whose
electrophysical characteristics enable it to substantially
influence near-surface processes under the action of
ultranarrow laser pulses is only possible within limited
laser pulse intensity Iem and width τp intervals,

The  lower intensity boundary is determined from
the condition that a fairly effective gap between the Te

electronic component temperature and the Tl lattice
temperature should be attained during a pulse,

where TF is the temperature of the degenerate electronic
subsystem; that is (see [8]),

ne z( ) n0 1 z

2Ld
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  2–
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Ld ε0kT /e2n0( )1/2
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EF n0( ) kT ,≈

n0 T3/2.∝
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min Iem Iem

max, τ p
min τ p τ p

max.≤ ≤≤ ≤

Iem
min

∆T Te Tl TF 104–105 K,∼≈–=

Iem
min α ll∆T ,≈
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where αl ~ 1010 W/cm3 K) is the energy exchange rate
between the electronic and lattice subsystems and l is
the depth of the metal layer heated during a pulse, l ~

max[δ, ] (δ is the skin depth, and χ is the electron
thermal diffusivity). Picosecond pulses are character-

ized by l ~ 10–5 cm, that is,  ~ 109 W/cm2.

According to [5], when picosecond laser pulses of
intensity Iem ~ 3 × 109 W/cm2 act on the surface of typ-
ical metals, two competing processes of electron escape
from the surface, namely, thermoemission and photoe-
mission, have the same order of magnitude. We can
therefore expect that the collective thermoemission
process should most noticeably influence the one-parti-
cle photoemission process under these conditions.
Thermoemission begins to predominate over photoe-
mission as the intensity of radiation increases; that is,
because of thermoemission, the formation of the sur-
face electron layer at the specified radiation intensities
occurs in time

Here, vT is the thermal velocity of electrons [6]. Note in
addition that the character of thermoemission is then
substantially different from that of thermoemission
from an electrode in a closed circuit, because thermoe-
mission that we are considering occurs from an insu-
lated metallic surface, on which an uncompensated
positive charge remains, and a volume negative charge
is formed near the surface, which in turn influences the
thermoemission current. This considerably complicates
the description of the formation of the surface electron
layer. Nevertheless, the time τs of formation of the spa-
tial distribution is much shorter than the picosecond
laser pulse width τp. The spatial distribution of the sur-
face electron layer can therefore be considered station-
ary with the corresponding layer temperature virtually
over the whole pulse width.

The upper intensity boundary  corresponds to
the prethreshold region of the beginning of melting and
ablation of the target material. Such processes are
observed when the density of the energy accumulated
in the electronic subsystem under the action of an ultra-
narrow laser pulse exceeds a certain threshold,

where the threshold energy density of laser ablation
Fabl ≈ 0.2–0.5 J/cm2 [9, 10]; that is, at a τp ~ 1 ps pulse

width, we have  ~ 1012 W/cm2.

The limitations imposed on the width of laser pulses
τp are determined from the conditions

χτ p

Iem
min

τ s Ld/v T 10 14– –10 13–  s.∼≈

Iem
max

Iem
maxτ p Fabl,≤

Iem
max

τ p
min τ s,≥
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where τs ~ 10–13 s is the time of formation of the surface
electron layer with a nondegenerate electronic compo-
nent, and

where τel is the characteristic time of energy transfer
from electrons to the lattice. The second condition
guarantees that the lattice is not heated during a laser
pulse and the pulse width is insufficient for creating
conditions of developed vaporization of the target
material, when the role played by the surface electron
layer loses significance.

To summarize, it follows from the results described
above that the surface electron layer can exert substan-
tial influence on surface processes within limited laser
pulse intensity and width ranges, which are, however,
fairly important for technical applications, namely,
1010 W/cm2 ≤ Iem ≤ 1012 W/cm2 and 10–13 ≤ τp ≤ 10–11 s,
respectively.

3. THE ENERGY SPECTRUM OF FAST 
PHOTOELECTRONS IN THE ELECTRIC FIELD 

OF THE SURFACE ELECTRON LAYER

As in [11], the self-consistent electric field of the
surface electron layer Ez created by the positive charge
of the conductor and electrons under surface irradiation
by picosecond laser pulses was found by solving the set
of equations that described electronic component tem-
perature variations with time and electron layer forma-
tion. The ionization of the neutral gas taken into
account in [11] could, however, be ignored at pressures
and picosecond laser pulse intensities under consider-
ation (of about 1 atm and ~1010 W/cm2, respectively).

Let us turn to the system of equations that describe
surface electron layer formation near the surface of a
condensed substance. First consider the heat equation.
At z < 0 (a conducting condensed substance), we have

(2)

Here, Cm and χm are the heat capacity and the heat con-
ductivity of the conducting condensed substance,
respectively, and α is the coefficient of heat exchange
between electrons and the lattice, which is virtually
independent of the temperature of electrons [12],

where νeff = νeff(Tl) and cs is the velocity of sound in the
conducting condensed substance. For typical metals
with nm ~ 1022 cm–3, we have α ~ 1010 W/(cm3 K). The
heat capacity and heat conductivity of the condensed

τ p
max τel,≤

Cm

∂Te

∂t
--------

z∂
∂ χm

∂Te

∂z
-------- α Te Tl–( )– q z t,( ).+=

α π2

6
-----

mcs
2νeffnm

Tl

-----------------------,=
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substance were approximated by the asymptotic equa-
tions [12]

where  is the mean thermal velocity of electrons and
χm0 is the equilibrium thermal conductivity coefficient
of the condensed conducting substance at initial tem-
perature T0. The q(z, t) volume energy release function
has the form

where κr and κi are the refractive indexes of the con-
densed conducting substance and E0 is the amplitude of
the wave field at z = 0.

The heat equation for a gas (z > 0) has the form

(3)

where M is the atomic weight of the gas (in m units),
νe = σana  is the frequency of electronic collisions in

the gas, and σa = σa( ) is the transport cross section

of electron scattering by atoms. The σa( ) depen-
dence is well known for rare gases. We used the data
from [13] in our calculations.

The equations describing variations in lattice tem-
perature Tl and in the Ta temperature of the heavy gas
component (atoms) have the form

where Cl is the heat capacity of the lattice:

Problem conditions correspond to very fast processes
(t ! τl ~ 10–10 s), and, according to the equations given

Cm

π2

2
-----nmk
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Table 1

 = 0.3 × 1010 W/cm2  = 1010 W/cm2  = 3 × 1010 W/cm2

T1 = 4.6 × 104 K T1 = 7.5 × 104 K T3 = 11.3 × 104 K

 = 3.8 × 1017 cm–3  = 2.2 × 1019 cm–3  = 6 × 1019 cm–3

E1 = 1.3 × 107 V/cm E2 = 1.6 × 107 V/cm E3 = 1.8 × 107 V/cm

Iem
1( ) Iem

2( ) Iem
3( )

n0
1( ) n0

2( ) n0
3( )
above, the temperatures of the lattice and the heavy gas
component change very insignificantly during such
time intervals. For instance, even at the mean electron
temperature Te ~ 10 eV, the temperature of the lattice
changes by a value of the order of 102 K in time t ~
10−13 s. For this reason, we assumed in our calculations
that Tl = Ta = T0.

The boundary conditions for (2) and (3) have the
form

(4)

where lm and la are the boundaries of the region under
consideration in the condensed conducting substance
and gas, respectively (formally, lm, la  ∞).

Next, consider the equations that describe the kinet-
ics of surface electron layer formation. The continuity
equation for the concentration of electrons should be
solved simultaneously with the Maxwell equations in
the z < 0 and z > 0 regions. It is, however, sufficient to
consider the continuity equation in the z > 0 region
rather than in the whole space. The boundary condition
at z = 0 should then correspond to distributions (1) of
surface electron layer electrons as functions of temper-
ature (see above),

where n0 is the boundary concentration of the surface
electron layer at a given time moment (note that surface
electron layer electrons form an ideal Coulomb system
at T ≥ 4–5 eV). There is sufficient time for the concen-
tration profile of the surface electron layer near the sur-
face to keep track of temperature variations, because
the characteristic time of the formation of this layer is

about .

∂Te

∂z
-------- 0, z lm la,,–= =

χ
∂Te

∂z
-------- 0, z 0,= =

ne z 0= n0,=

ωp
1–

Table 2

 = 2.2 × 10–5 cm  = 10–6 cm  = 8.5 × 10–7 cm

 = 191 eV  = 46 eV  = 98 eV

Ls
1 Ls

2 Ls
3

We
1 We

2 We
3
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Consider the continuity equation for the electronic
component,

(5)

where De and µe are the diffusion and mobility coeffi-
cients defined as

The boundary conditions for (5) have the form

(6)

The initial condition for ne corresponds to the distribu-
tion of surface layer electrons at the initial temperature
T0. The distribution of the longitudinal electric field Ez

is found from the equation

(7)

The boundary condition that corresponds to this equa-
tion at each time step has the form

The results obtained in calculating the electrophysi-
cal parameters of the surface electron layer near the sur-
face of a metallic target are listed in Table 1 as a func-
tion of the intensity of the picosecond laser pulse polar-
ized along the surface of the target (T1, 2, 3 and n0 are the
temperature and the concentration of electrons, respec-
tively, and E1, 2, 3 is the self-consistent electric field in
the surface electron layer directed normally to the sur-
face of the target). Taking into account the Coulomb
character of collisions between surface electron layer
electrons, we can use the data given in Table 1 to deter-
mine the free path of electrons Ls and the energy We

accumulated along the free path. These data are listed
in Table 2.

The energy accumulated by a separate photoelec-
tron in the electric field of the surface electron layer
should be determined taking into account the special

∂ne

∂t
--------

z∂
∂= De

∂ne
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µe
e
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-----------, De

v e
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--------.= =

z 0: ne n0,= =
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Ez z 0=
e
ε0
---- ne z.d
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features of the spatial profile of the surface layer in the
direction normal to the surface of the target (axis z). The
concentration distribution of surface thermal electrons
can conventionally be divided into two main regions.
The first one (region 1) is the near-wall region whose
size is close to the LD Debye length. The major part of
surface layer electrons are concentrated in this region.
Note, however, that our problem has planar symmetry,
and the electric field decreases fairly slowly within this
layer. According to (1) and (7), electric field Ez is
inversely proportional to z with scale LD. It follows that
the electric field of the positively charged surface of a
conductor passes a plane Debye layer, within which it
decreases insignificantly (approximately by a factor of 2),
and passes into a relatively rarefied region outside the
Debye layer, whose characteristic size is of the order of
several times the free path Ls. This is region 2. It follows
that a separate photoelectron can accumulate substan-
tial energy in region 2 over a free path distance along
the line of the electric field. After elastic reflection from
region 1 with a change in the velocity direction, this
electron can escape the near-wall region at a small
angle with respect to the surface of the conductor with
a complete store of accumulated energy. The probabil-
ity of such an elementary event can be estimated at
LD/Ls.
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y,

 e
V
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Iem
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(a) Maximum energy of fast photoelectrons and (b) prob-
ability of the appearance of electrons with a given energy
as functions of the intensity of picosecond laser pulses

(  = 0.3 × 1010 W/cm2,  = 1.1 × 1010 W/cm2,

 = 3 × 1010 W/cm2).

Iem
1( )

Iem
2( )

Iem
3( )
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4. CONCLUSION

The following conclusions can be drawn from a
comparison of the numerical calculation results with
the data of real experiments [1, 2].

(1) Fast photoelectrons were not emitted under the
action of nanosecond (τp = 27 ns) Nd laser pulses of
energy Wp = 0.05 J [2] because the surface electron
layer was not formed under these conditions. Accord-
ingly, there was no electric field capable of “heating”
photoelectrons to substantial energies.

(2) The experimental data on the action of picosec-
ond (τp = 8 ps) Nd laser pulses with intensities of 1.3 ×
1010 to 2.5 × 1010 W/cm2 showed that photoelectrons
formed under these conditions had maximum energies
of 100 to 600 eV [1]. These data were fairly well
explained by numerical calculations of the influence of
the electric field of a surface electron layer on sepa-
rate photoelectrons; such a layer is formed at the
specified laser radiation parameters, as is well seen
from the figure.
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Abstract—A liquid–liquid phase transition is discovered in a system of collapsing hard spheres using the ther-
modynamic perturbation theory. This is the first evidence in favor of the existence of that kind of phase transi-
tion in systems with purely repulsive and isotropic interactions. © 2002 MAIK “Nauka/Interperiodica”.
It has been known for many years that the system of
hard spheres only experiences a phase transition at a
high density, when σ ≈ l, where l is the hard sphere
diameter and l = (V/N)1/3 is the average interparticle dis-
tance (V is the system volume and N is the number of
particles). This transition corresponds to the ordering of
the centers of gravity of the particles and can be called
an order–disorder transition, or crystallization. In case
of hard particles of different shapes such as hard rods,
ellipses, and discs, a number of orientational phase
transitions can occur in accordance with a hierarchy of
characteristic lengths defined by particle shapes. A new
situation arises when an extra interaction of a finite
amplitude ε is added to the system of hard particles. As
known from the van der Waals theory, a negative value
of ε inevitably causes an instability of the system in a
certain range of densities and generally leads to a first-
order phase transition with no symmetry change (the
order parameter characterizing this transition is simply
the density difference of the coexisting phases, ∆ρ = ρ1
– ρ2). This situation is almost universal and indepen-
dent of the interaction length.

Much less is known about the case where the inter-
action parameter ε has a positive value. The simplest
example of an interaction of that kind is the so-called
repulsive step potential (Fig. 1):

(1)

In what follows, the system of particles interacting via
potential (1) is called the system of “collapsing” hard
spheres [1]. Systems of this type are studied in relation
to anomalous melting curves, isostructural phase tran-
sitions, transformations in colloid systems, etc. (see,

Φ r( )

∞, r σ,≤
ε, σ r σ1,≤<
0, r σ1.>






=

¶This article was submitted by the authors in English.
1063-7761/02/9504- $22.00 © 20710
e.g., [2–5]). A general conclusion derived from numer-
ous studies of the system is that the repulsive interac-
tion of finite amplitude and length results in the melting
curve anomaly and the isostructural solid–solid phase
transition. The latter is a first-order phase transition and
can end in a critical point, because there is no symmetry
change across the phase transition line. The existence
of a phase transition of that type is a direct consequence
of the form of the interparticle interaction, and we see
no particular reason why it cannot occur in a fluid
phase.

(a)

Φ

σ

r

(b)

Φ

σ1

r

ε

Fig. 1. (a) The hard-sphere potential with the hard-sphere
diameter σ1. (b) The repulsive step potential; σ is the hard-
core diameter, σ1 is the soft-core diameter, and ε is the
height of the repulsive step.
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Despite the growing interest in the possible poly-
morphic phase transitions in liquids and glasses (see,
e.g., [6] for recent reviews), the nature of different
phases that can be found in dense (and possibly meta-
stable) liquids is still puzzling. In recent years, experi-
mental evidence of such features of the phase diagram
as liquid–liquid transitions and polymorphism
appeared for a wide range of systems including water,
Si, I, Se, S, C, P, etc. [6]. The complexity of the phase
diagrams in these substances may result from complex
interactions depending on the intermolecular orienta-
tions. At the same time, exploring the possibility that
simple fluids interacting through isotropic potentials
may exhibit a similar behavior represents a serious
challenge for theorists.

The possibility of the existence of a liquid–liquid
phase transition drastically depends on the shape of the
interparticle potential. After the pioneering work by
Hemmer and Stell [2], much attention has been paid to
investigating the properties of the systems with the so-
called core-softened potentials—the potentials that
have a negative curvature region in their repulsive core.
It has been shown that, depending on the parameters of
the potentials, waterlike thermodynamic anomalies and
the second critical point can be observed in this system
[6–10]. It is widely believed, however (see, e.g., [7, 8]),
that the existence of a fluid–fluid transition must be
related to the attractive part of the potential. In this
paper, we show that the purely repulsive step potential
in Eq. (1) is sufficient to explain a liquid–liquid phase
transition and the anomalous behavior of the thermal
expansion coefficient.

We apply the second-order thermodynamic pertur-
bation theory for fluids to this problem. The soft core of
potential (1) (Fig. 1b) is treated as a perturbation with
respect to the hard sphere potential (Fig. 1a). In this
case, the free energy of the system can be written as
[11, 12]

(2)

where ρ = V/N is the mean number density, β = 1/kBT,
u1(r) is the perturbation part of the potential u1(r) =
Φ(r) – ΦHS(r), ΦHS(r) is the hard sphere singular poten-
tial, and gHS(r) is the hard sphere radial distribution
function, which is taken in the Percus–Yevick approxi-
mation [13]. In the same approximation, the compress-
ibility can be written as [12]

(3)

We note that the actual small parameter in expan-
sion (2) is the ratio ε/(kBT), and therefore, the perturba-
tion scheme used in this paper works very well at high

F FHS–
NkBT
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2
---ρβ u1 r( )gHS r( ) rd∫=
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4
---ρβ2 kBT
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------ 
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u1 r( )[ ] 2gHS r( ) r,d∫
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temperatures and gives quantitative agreement with com-
puter simulations for intermediate temperatures and suffi-
ciently high densities [11, 12]. We believe that, in the
range of temperatures and densities considered in this
paper, Eq. (2) gives correct results at least qualitatively.

To calculate FHS, we can use, e.g., the approximate
equation [12]

(4)

where λ = h/(2πmkBT)1/2 and η = πρσ3/6. In what fol-

lows, we use the reduced quantities  = Pσ3/ε,  =

V/Nσ3 = 1/ , and  = kBT/ε, omitting the tildas.

The results of the calculations are demonstrated in
Figs. 2 and 3. In Fig. 2, a family of pressure isotherms

FHS

kBTN
------------- 3 λ 1– ρ 4η 3η2–

1 η–( )2
---------------------,+ln+ln=

P̃ Ṽ

ρ̃ T̃
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σ1/σ = 1.5
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T

Fig. 2. Compression isotherms of the collapsing sphere sys-
tem at various temperatures.

Fig. 3. The thermal expansion coefficient αP as a function
of temperature for two values of specific volume V1 = 0.85
and V2 = 1.25, V1 < Vc < V2.
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is shown for the system with σ1/σ = 1.5. The van der
Waals loops in the isotherms are clearly seen at low
temperatures, indicating the existence of a first-order
liquid–liquid phase transition. A critical point is found
at Tc ≈ 0.21 and Vc ≈ 1.015.

An interesting and unusual feature of the isotherms
in Fig. 2 is their intersection in the low-density region.
This behavior implies a negative value of the thermal
expansion coefficient in a certain region of density and
temperature. Most liquids contract upon cooling. But
this is not the case for the most important liquid on
Earth, water. It is well known that the specific volume
of water increases when cooled below T = 4C. The
existence of this anomaly can be related to the hypo-
thetical liquid–liquid phase transition in supercooled
water [14, 15]. This anomaly is not restricted to water
but is also present in other liquids [16].

In Fig. 3, the thermal expansion coefficient αP =
V−1(∂V/∂T)P is shown as a function of the temperature
for two values of specific volume V1 = 0.85 and V2 =
1.25, corresponding to high-density and low-density
liquids, respectively. We can see that for the low-den-
sity liquid, there is a range of negative values of αP

below the critical temperature. The appearance of the
negative thermal expansion coefficient can easily be
understood for repulsive step potential (1). At low tem-
peratures and densities, the particles do not penetrate
the soft core of the potential. As the temperature
increases, the particles can penetrate the soft core, and
the average distance between particles can therefore
decrease, resulting in the anomalous behavior of αP. At
high densities, this process is less pronounced because
most of the particles are inside the soft core due to the
external contraction. It must be noted that Stillinger and
collaborators also found a negative thermal expansion
coefficient αP < 0 for a purely repulsive Gaussian

0.28
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0.20

0.16
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0.08
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T

6 7 8 9 10 11 12
P

σ1/σ = 1.4
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σ1/σ = 1.55

σ1/σ = 1.6

Fig. 4. Phase diagram of the liquid–liquid phase transition
for different values of σ1/σ.
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potential [17, 18], but without a liquid–liquid transi-
tion.

Using the Maxwell construction, we were able to
calculate the equilibrium lines of the liquid–liquid
phase transitions at different values of σ1/σ (Fig. 4). We
cannot extend the transition lines to zero temperature
because of the limitations of the perturbative approach.
We can see from Fig. 4 that the critical temperature
decreases as the ratio σ1/σ increases and the slope of the
transition curves drastically changes with changes in
the ratio σ1/σ and the temperature. The decrease in the
critical temperature may suggest that the transition
ceases to exist at high values of the ratio σ1/σ. This is
not surprising because, for a long-range interaction,
perturbation energy can be treated in the mean-field
approximation. The perturbation energy is then a posi-
tive monotonic function of the volume (δF ∝  1/V) and
cannot provide any grounds for the existence of a phase
transition. In accordance with the Clausius–Clapeyron
equation dT/dP = ∆V/∆S (where ∆V and ∆S are the vari-
ations of volume and entropy at the transition), the
change in the slope of the transition line implies that the
entropy jump at the transition changes its sign for dif-
ferent values of the ratio σ1/σ and the temperature. This
behavior of the entropy change can possibly be under-
stood in terms of the entropy of mixing, implying that
two states of particles in the system can be considered
as two different species.

The liquid–liquid transition line found most proba-
bly lies below the melting curve and can be observed
only in the metastable liquid state, as was discovered in
supercooled water [14, 15]. On the other hand, the liq-
uid–liquid transition can be observed in stable liquids
in some cases [6, 19, 20]. It must be noted that com-
puter simulations also show [8] that, for some choices
of the parameters of the potential (and in the presence
of the attractive part of the potential), a liquid–liquid
phase transition can occur in the stable range of the
phase diagram.

We note that a second phase transition correspond-
ing to the liquid–gas transformation can be expected
when an attractive tail is appended to the repulsive step
potential, as was observed in the molecular dynamic
simulations [9, 10]. We performed the corresponding
calculations using the second-order perturbation
scheme with the parameters of the core-softened poten-
tial proposed by Stanley and coauthors [9, 10] and
found a second phase transition and a second critical
point. That may be viewed as some sort of justification
of our approach to phase transformations in liquids.

Finally, for the first time, we found essential evi-
dence for a first-order phase transition in the liquid state
of the system of collapsing hard spheres.

We thank V.V. Brazhkin, A.G. Lyapin, and E.E. Ta-
reyeva for stimulating discussions. Thise work was sup-
ported by the Russian Foundation for Basic Research
(project no. 02-02-16622).
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Abstract—We theoretically study a single disclination motion in a thin free-standing liquid crystalline film.
Backflow effects and the own dynamics of the orientational degree of freedom (bond or director angle) are taken
into account. We find the orientation field and the hydrodynamic velocity distribution around the moving dis-
clination, which allows us to relate the disclination velocity to the angle gradient far from the disclination. Dif-
ferent cases are examined depending on the ratio of the rotational and shear viscosity coefficients. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The physics of thin liquid-crystalline films has been
a recurrent hot topic during the past decade because of
their intriguing physical properties and a wide range of
applications in display devices, sensors, and for many
other purposes. Hexatic, nematic, and smectic-C liq-
uid-crystalline films belong to two-dimensional sys-
tems with a spontaneously broken continuous rota-
tional symmetry. An essential role in the behavior of the
films is therefore played by vortexlike excitations (dis-
clinations). Defects are almost necessarily present in
liquid crystals, and their dynamics plays a crucial role
in the overall pattern organization. Early studies of
defects focused on classifying the static properties of
the defects and their interactions [1, 2]. More recently,
the focus has shifted to examining the dynamics of
defects (see, e.g., [3] and references therein). We note
that, although defects are undesirable in most practical
applications of liquid crystals, such as traditional dis-
play devices, because they destroy an optical adjust-
ment, there are novel display designs (bistable, multi-
domain liquid-crystalline structures) exploiting defect
properties.

Although experimental dynamic studies are likely to
be more fruitful than static ones, theoretical research of
the film dynamics is in a rather primitive stage. This is
largely accounted for by a complexity of dynamic phe-
nomena in films, and a complete and unifying descrip-
tion of the problem is still unavailable. Moreover, some
papers devoted to this problem (dynamics of defects)
claim contradicting results. These contradictions come
mainly from the fact that different authors take different

¶This article was submitted by the authors in English.
1063-7761/02/9504- $22.00 © 20714
microscopic dissipation mechanisms into account, but
partially the source of controversy is related to seman-
tics, because different definitions of the forces acting on
defects are used (see, e.g., the discussion in [4]). We
believe that such problems are irrelevant if the macro-
scopic (phenomenological) approach to the film
dynamics is used.

In this paper, we theoretically examine the disclina-
tion dynamics in free-standing liquid-crystalline films
at scales that are much larger than the film thickness,
where the films can be treated as 2D objects. Our inves-
tigation is devoted to the first (but compulsory) step of
defect dynamics studies: a single point disclination in a
liquid-crystalline film. A number of theoretical efforts
[5–9] deal with similar problems. Our justification for
adding one more paper to the subject is the fact that, in
the literature, we did not see a full investigation of the
problem with the hydrodynamic backflow effects taken
into account. Evidently, these effects can drastically
modify the dynamics of defects. The goal of this work
is to study the disclination motion in free-standing liq-
uid crystalline films on the basis of hydrodynamic
equations containing some phenomenological parame-
ters (the elasticity modulus and shear and rotational vis-
cosity coefficients).

In our approach, the disclination is assumed to be
driven by a large-scale inhomogeneity in the bond or
director angle, which leads to a motion of the disclina-
tion with a nonzero velocity relative to the film. As a
physical realization of such a nonuniform angle field, a
system of disclinations distributed with a finite density
can be imagined. The inhomogeneity in the vicinity of
a given disclination is then produced by fields of other
disclinations. We can also think about a pair of discli-
002 MAIK “Nauka/Interperiodica”
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nations of the opposite topological charges, in which
case the inhomogeneity is related to the mutual orienta-
tional distortion fields created by each disclination at
the point of its counterpart. In fact, the majority of
experimental and numerical studies of disclination
motions in liquid crystals [10–18] is devoted to the
investigation of the dynamics of two oppositely
charged defects. We solve the hydrodynamic equations
and find the bond (director) angle and the flow velocity
distributions around the moving disclination. The
results enable us to relate the disclination velocity and
the gradient of the angle far from the disclination.

An obvious context where our results can be applied
is the film dynamics near the Berezinskii–Kosterlitz–
Thouless phase transition. The static properties of the
films near the transition have been investigated in a
great number of papers starting from the famous papers
by Berezinskii [19] and Kosterlitz and Thouless [20].
There are several works discussing the theory of
dynamic phenomena associated with vortexlike excita-
tions in condensed matter physics: vortices in type-II
superconductors (see, e.g., [21]), vortices in superfluid
4He and 3He (see, e.g., [22, 23]), dislocations in 2D
crystals, and disclinations (and other topological
defects) in liquid crystals (see [10–14, 24–27]). But
most of the theoretical works on the subject start from
phenomenological equations of motion of the defects,
and our aim is to derive the equations and to verify their
validity.

The structure of our paper is as follows. Section 2
contains basic hydrodynamic equations for liquid-crys-
talline films necessary for our investigation. In Section 3,
we find the bond (director) angle and the flow velocity
around the uniformly moving disclination, which
allows us to relate the disclination velocity to the angle
gradient far from the disclination. Different cases,
depending on the ratio of the rotational and shear vis-
cosity coefficients, are examined in Section 4. Section 5
contains a summary and discussion. The appendices are
devoted to the details of calculations of the velocity and
bond angle fields around the moving disclination.
Those readers who are not very interested in mathemat-
ical derivations can skip these appendices, finding all
the essential physical results in the main text of the
paper.

2. BASIC RELATIONS
FOR LIQUID-CRYSTALLINE FILMS

We formulate the basic relations needed to describe
a disclination motion in thin liquid-crystalline films.
Here, we investigate freely suspended hexatic, nematic,
and smectic-C films that can be pulled from 3D (bulk)
smectics [3]. We examine scales larger than the film
thickness, where the films can be treated as two-dimen-
sional objects and can be described in terms of a mac-
roscopic approach containing some phenomenological
parameters.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Liquid crystalline films with the in-plane orienta-
tional ordering of different types (hexatic, nematic, and
smectic-C) are observed experimentally. In these films,
as in 3D nematic liquid crystals, the rotational symme-
try is spontaneously broken. The general analysis of
their symmetry can be found in [28]. The smectic-C
films are characterized by the director that is tilted with
respect to the normal to the film, which defines a pre-
ferred direction in the plane of the film. The ordering of
this type can be described by a vector Qα (the subscripts
denoted by Greek letters take two values, because we
treat the films as 2D objects). The nematic films have
higher symmetry D2, which corresponds to the 2D nem-
atic phase. The order parameter of the nematic phase is
the irreducible (traceless) symmetric tensor of the sec-
ond rank Qαβ. In the hexatic films (pulled from smec-
tics-B), molecules are locally arranged in a triangular
lattice, but the lattice is not an ideal one. The positional
order does not extend over distances larger than several
molecular sizes. Nevertheless, the bond order extends
over macroscopic distances. The phase is therefore
characterized by the D6h point group symmetry, and
hence, the order parameter for the case is the sixth-rank
symmetric irreducible tensor Qαβγδµν. In liquid crystal-
line films of all the types enumerated above, the order
parameter Q has two independent components (e.g., Qxx

and Qxy for the 2D nematics). We note that the order can
be readily observed in the smectic-C or nematic films
by looking for in-plane anisotropies in quantities such
as the dielectric permeability tensor. Because of its
intrinsic sixfold rotational symmetry, the hexatic orien-
tational order is hardly observable. But it can be
detected, e.g., as a sixfold pattern of spots in the in-
plane monodomain X-ray structure factor, proportional
to Qαβγδµν(see, e.g., [3] and references therein).

In accordance with the Goldstone theorem, in films
of all types with a broken rotational symmetry, the only
degree of freedom of the order parameter that is rele-
vant at large scales is an angle ϕ (like the phase of the
order parameter for the superfluid 4He). In hexatics, it
is the bond angle, whereas, in 2D nematics and in smec-
tic-C films, it is an angle related to the director. It is
convenient to express a variation of the order parameter
in terms of a variation of the angle ϕ. For the smectic-
C films, the relation is

(2.1)

where eαµ is the two-dimensional antisymmetric tensor.
For an orientational order with a higher symmetry, the
relation has a similar form. For example, for hexatic
films,

(2.2)

where the dots represent the sum of all other possible
combinations of the same structure. Therefore, for films
of all types, the order parameter can be characterized by
its absolute value |Q | and the phase ϕ, which are tradi-
tionally represented as a complex quantity Ψ (see, e.g.,

δQα δϕeαµQµ,–=

δQαβγδµν δϕeαρQρβγδµν …,+–=
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[24]). The quantity is written as Ψ = |Q |exp(6iϕ) for
hexatic films, as Ψ = |Q |exp(2iϕ) for 2D nematic films,
and as Ψ = |Q |exp(iϕ) for smectic-C films.

The angle ϕ should be included in the set of macro-
scopic variables of the films. A convenient starting
point of the consideration is the energy density (per unit
area) ρv 2/2 + ε, where ρ is the 2D mass density, v is the
film velocity, and ε is the internal energy density. The
latter is a function of the mass density ρ, the specific
entropy σ, and the angle ϕ. In fact, ε depends on ∇ϕ ,
because any homogeneous shift of the angle ϕ does not
affect the energy. For hexatic films, the leading terms of
the energy expansion over gradients of ϕ are

(2.3)

where K is the only (because of the hexagonal symme-
try) orientational elastic module of the film. For low-
symmetry films (2D nematic or smectic-C films), two
orientational elastic modules are introduced, the longi-
tudinal and transversal ones with respect to the specific
in-plane direction (characterized by the so-called c
director). But fluctuations of the director lead to a
renormalization of the modules, and isotropization of
the smectic-C or 2D nematic films [29] occurs at large
scales. The same isotropic expression (2.3) for the elas-
tic energy can therefore be used at large scales.

The complete dynamic equations for the freely sus-
pended liquid-crystalline films, valid at scales larger
than the film thickness, can be found in [30]. We con-
sider a quasistationary motion of the disclination. Then,
hard degrees of freedom are not excited. In other words,
we can accept incompressibility and neglect bending
deformations (which are suppressed by the presence of
the surface tension in freely suspended films). Simi-
larly, the thermodiffusive mode is not excited for the
quasistationary disclination motion, which implies the
isothermal condition. For freely suspended films, such
effects as the substrate friction (relevant, e.g., for Lang-
muir films) are absent. In describing the disclination
motion, we can therefore consider the system of equa-
tions for only the velocity v and the angle ϕ. The equa-
tions have to be formulated under the conditions ρ = const,
T = const (where T is the temperature), and ∇ v = 0.

The equation for the velocity follows from the
momentum density j = ρv conservation law,

(2.4)

where Tαβ is the reactive (nondissipative) stress tensor
and η is the 2D shear viscosity coefficient of the film.
For two-dimensional hexatics, the reactive stress tensor
is (see [30], Chapter 6)

(2.5)

ε ε0 ρ σ,( )
K
2
---- ∇ϕ( )2,+=

∂t jα ∇ β Tαβ η ∇ αv β ∇ βv α+( )–[ ] ,–=

Tαβ ρv βv α ςδαβ K ∇ αϕ∇ βϕ+–=

–
K
2
----eαγ∇ γ∇ βϕ K

2
----eβγ∇ γ∇ αϕ ,–
JOURNAL OF EXPERIMENTAL 
where ς = ε – ρ∂ε/∂ρ is the surface tension. We note that
the ratio Kρ/η2 is a dimensionless parameter that can be
estimated by substituting 3D quantities instead of 2D
ones (because all the 2D quantities can be estimated as
the corresponding 3D quantities times the film thick-
ness, and the latter drops from the ratio). For all known
liquid crystals, the ratio is 10–3–10–4(see, e.g., [1–3,
31]) and can therefore be treated as a small parameter
of the theory.

The second dynamic equation, the equation for the
bond angle, is

(2.6)

where γ is the so-called 2D rotational viscosity coeffi-
cient. We did not find the values of the coefficient γ for
thin liquid-crystalline films in the literature. For bulk
liquid crystals (see, e.g., [1–3, 31]), the 3D rotational
viscosity coefficient is usually several times larger than
the 3D shear viscosity coefficient. We can therefore
expect that γ > η. But in order to span a wide range of
possibilities, we treat the dimensionless ratio Γ = γ/η as
an arbitrary parameter in what follows.

If disclinations are present in the film, it is no longer
possible to define a single-valued continuous bond-
angle variable ϕ. But the order parameter is a well-
defined function of coordinates that goes to zero at the
disclination position. The gradient of ϕ(t, r) is a single-
valued function of r and is analytic everywhere except
at an isolated point, the position of the disclination. The
phase acquires a certain finite increment at each rota-
tion around the disclination,

(2.7)

where the integration contour is a closed counterclock-
wise loop around the disclination position and s is the
topological charge of the disclination: s = (1/6)n for the
hexatic ordering, s = (1/2)n for the 2D nematic symme-
try, and s = n for the smectic-C films, where n is an inte-
ger. We can restrict ourselves to disclinations with the
unitary charge n = ±1 only, because disclinations with
larger |s| possess a higher energy than the set of unitary
disclinations with the same net topological charge, and
defects with larger charges are therefore unstable with
respect to the dissociation to the unitary ones. There-
fore, disclinations with the charges |n| > 1 do not play
an essential role in the physics of films [1–3, 31]. To
write the expressions given below in a compact form,
we keep the notation s for the topological charge, with
the respective values |s| = 1, 1/2, 1/6 for the smectic-C,
nematic, and hexatic films.

The static bond angle is determined by the station-
ary condition δE/δϕ = 0, where

∂tϕ
1
2
---eαβ∇ αv β v α∇ αϕ–

K
γ
---- ∇ 2ϕ ,+=

rα∇ αϕd∫° 2πs,=

E r2 ρ
2
---v 2 ε+ 

 d∫=
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is the energy of the film. For the energy density in
Eq. (2.3), the condition is reduced to the Laplace equa-
tion ∇ 2ϕ = 0. For an isolated static disclination, there is
a symmetric solution to this equation ϕ0 that satisfies
Eq. (2.7) and whose gradient is given by

(2.8)

where R is the position of the disclination. If the origin
of the reference system is placed at this point, we can
write ϕ0 = s , where x and y are coordinates
of the observation point r. In dynamics, distribution
(2.8) is disturbed as ϕ varies in time. It is also perturbed
because of the presence of an angular distortion related
to boundaries or other disclinations.

In what follows, we have in mind a case where a sys-
tem of a large number of disclinations (with an uncom-
pensated topological charge) is created. For 3D nemat-
ics, this can be done rather easily [1–3], because the
energies of positive and negative defects are different
due to the intrinsic elastic anisotropy. We are unaware
of experimental or theoretical studies of defect nucle-
ation mechanisms in free-standing films. Hopefully, the
situation with a finite 2D density of defects can also be
realized for films (for instance, the defects could even
appear spontaneously as a mechanism to relieve frus-
trations in chiral smectic or hexatic films, similarly to
the formation of the Abrikosov vortex lattice in super-
conductors [32]). Examining the motion of a disclina-
tion in this case, we investigate a vicinity of the discli-
nation of the order of the interdisclination distance. Far
from the disclination, the bond angle ϕ can then be
written as const + ur, where u is much larger than the
inverse interdisclination distance (because the number
of disclinations is large). Near the disclination position,
the bond angle ϕ can be approximated by expression
(2.8). Our main problem is to establish a general coor-
dinate dependence of ϕ and v, which, in particular,
allows relating the bond (director) angle gradient u and
the velocity of the disclination.

3. FLOW AND ANGULAR FIELDS 
AROUND A UNIFORMLY MOVING 

DISCLINATION

Here, we proceed to the main subject of our study, a
single disclination driven by a large-scale inhomogene-
ity in the bond (director) angle ϕ. The disclination
velocity is determined by an interplay of the hydrody-
namic back-flow and the intrinsic dynamics of the
angle ϕ. To find the disclination velocity, one has to
solve the system of equations (2.4), (2.5), and (2.6)
with constraint (2.7) ensuring a suitable asymptotic
behavior. As we explained in the previous section, the
angle ϕ is supposed to behave as const + ur at large dis-
tances from the disclination. We work in the reference

∇ αϕ0 seαβ
rβ Rβ–

r R–( )2
-------------------,–=

y/x( )arctan
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
system where the film as a whole is at rest. This means
that the flow velocity excited by the disclination must
tend to zero far from the disclination.

We consider the situation where the disclination
moves with a constant velocity V. The angle ϕ and the
flow velocity are then functions of r – Vt (where R = Vt
is the disclination position). Equation (2.4) for the
velocity can then be written as

(3.1)

We can omit the first (inertial) term on the left-hand
side of (3.1), which is small because of the smallness of
the parameter Kρ/η2. It then follows from Eqs. (2.4)
and (2.5) that

(3.2)

where ϖ = η–1[ς – (K/2)(∇ϕ )2]. Under the same condi-
tions, the equation for the angle ϕ following from
Eq. (2.6) is

(3.3)

We seek a solution characterized by the asymptotic
behavior that the velocity v vanishes and ∇ϕ  tends to a
constant vector u as r  ∞. It is clear from the sym-
metry of the problem that the gradient u of the bond
angle is directed along the Y axis if the velocity is
directed along the X axis. Therefore, ϕ  uy as r  ∞.
Our problem is to find a relation between V and u, that
is, between the disclination velocity and the bond angle
gradient far from the disclination. There are two differ-
ent regions: the region of large distances r @ u–1 and the
region near the disclination r ! u–1. At large distances,
corrections to the leading behavior ϕ ≈ uy are small and
the problem can be treated in the linear approximation
with respect to these corrections. In the region near the
disclination, ϕ is close to static value (2.8) and the flow
velocity v is close to the disclination velocity V (the
special case where the ratio γ/η is extremely small is
discussed in Subsection 4C). In what follows, these two
regions are examined separately. The relation between
u and V can be found by matching the asymptotics at
r ~ u–1. As a result, we obtain

(3.4)

where C is a dimensionless factor depending on the
dimensionless ratio Γ = γ/η. This factor C is on the
order of unity if Γ ~ 1. We are interested in the asymp-
totic behavior of C at small and large Γ.

ρ Vβ v β–( )∇ βv α η∇ 2v α
K
2
----eαβ∇ β∇ 2ϕ+ +

– K ∇ αϕ∇ 2ϕ ∇ α ς K
2
---- ∇ϕ( )2–+ 0.=

∇ 2v α
K
2η
------eαβ∇ β∇ 2ϕ K

η
---- ∇ αϕ∇ 2ϕ– ∇ αϖ+ + 0,=

∇ 2ϕ γ
K
----Vα∇ αϕ+

γ
K
----v α∇ αϕ γ

2K
-------eαβ∇ αv β.–=

V
K
η
----Cu,=
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A. The region near the disclination

We consider the region r ! u–1. Here, we can write

(3.5)

where R = Vt is the disclination position, ϕ0 is the static
bond (director) angle with gradient (2.8), and ϕ1 is a
small correction to ϕ0. The gradients of ϕ0 are deter-
mined by Eq. (2.8).

Linearizing Eqs. (3.2) and (3.3) with respect to ϕ1,
we obtain

(3.6)

(3.7)

Introducing a new variable χ = (K/η)∇ 2ϕ1, we rewrite
Eqs. (3.6) and (3.7) as

(3.8)

(3.9)

where Γ = γ/η, as above, and ϖ = η–1[ς – K/2(∇ϕ )2]. It fol-
lows from Eq. (3.8) and ∇ αvα = 0 that ∇ 2ϖ = ∇ αϕ0∇ αχ. A
solution of the system in Eqs. (3.8) and (3.9) can be
written as

(3.10)

where Vα is the obvious (because of the Galilean invari-
ance) forced solution and the stream function Ω
describes a zero mode of system (3.8) and (3.9). The
system is homogeneous in r, and Ω is therefore a sum
of contributions that are powerlike functions of r.

Taking the curl of Eq. (3.8), we obtain

(3.11)

Substituting χ expressed in terms of v from Eq. (3.9)
into Eq. (3.11) and using explicit expressions (2.8) for
the derivatives of ϕ0, we obtain

(3.12)

in the polar coordinates (r, φ). Solutions to Eq. (3.12)
are superpositions of the terms ∝ r α + 1exp(imφ). Substi-

ϕ ϕ 0 r R–( ) ϕ1 r R–( ),+=

η∇ 2v α
K
2
----eαβ∇ β∇ 2ϕ1 K ∇ αϕ0∇

2ϕ1–+

+ ∇ α ς K
2
---- ∇ϕ( )2– 0,=

∇ 2ϕ1
γ
K
----v α∇ αϕ0–

γ
2K
-------eαβ∇ αv β+

γ
K
----Vα∇ αϕ0.–=

∇ 2v α
1
2
---eαβ∇ βχ ∇ αϕ0χ– ∇ αϖ+ + 0,=

χ Γ v α∇ αϕ0–
Γ
2
---eαβ∇ αv β+ ΓVα∇ αϕ0,–=

v α Vα eαβ∇ βΩ,+=

∇ 4Ω–
1
2
--- ∇ 2χ– eγα∇ αϕ0∇ γχ– 0.=

1 Γ
4
---+ 

  ∇ 4Ω

+ sΓ 2

r2
----∂r

2Ω 1

r2
---- ∇ 2Ω– s

1

r2
----∂r

2Ω– s
1

r3
----∂rΩ+ 

  0=
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tuting this r, φ dependence into Eq. (3.12), we obtain an
equation for α that has the roots

(3.13)

where  = Γ(1 + Γ/4)–1. Hence, 0 <  < 4 for any γ and
η. Evidently, all the roots in Eq. (3.13) are real. We
emphasize that there is no solution α = 0 (correspond-
ing to a logarithmic behavior of the velocity in r)
among the set (3.13). The first angular harmonic with
|m | = 1 is of particular interest because ϕ1 = ursinφ and
Ω = –Vrsinφ far from the disclination. If Γ is small,
there is a pair of small solutions among (3.13),

(3.14)

for m = ±1. Otherwise, for any other relevant m, solu-
tions (3.13) have no special smallness (terms with m =
0 are forbidden because of the symmetry).

We established that Ω is a superposition of the terms
∝ r α + 1exp(imφ) with the exponents α determined by
Eq. (3.13). The velocity can then be found from
Eq. (3.10). To avoid a singularity in the velocity at
small r, one should keep contributions with positive α
only. In other words, the velocity field contains contri-
butions with all powers α given by (3.13), but the fac-
tors at the terms with negative α are formed at r ~ a
(where a is the disclination core radius), and the corre-
sponding contributions to the velocity are therefore
negligible at r @ a (this statement must be clarified and
refined for small negative exponents –α1 in the limit of
small Γ; see Subsection 4C). We conclude that the cor-
rection to V in the flow velocity v related to Ω in
Eq. (3.10) is negligible at r ~ a. We thus arrive at the
nonslipping condition for the disclination motion: the
disclination velocity V coincides with the flow velocity
v at the disclination position.

Next, to find ϕ, one should solve the equation
(K/η)∇ 2ϕ = χ, where χ is determined from Eq. (3.9). In
addition to the part determined by the velocity, ϕ1 can
then involve zero modes of the Laplacian. The most
dangerous zero mode is Uy, because it produces a non-
zero momentum flux to the disclination core (and the
Magnus force associated to it),

(3.15)

But because of the condition α ≠ 0, all the contributions
to the velocity correspond to zero viscous momentum
flux to the origin. Consequently, it is impossible to
compensate the Magnus force by other terms. The
above reasoning leads us to the conclusion that the fac-
tor U (and therefore, the Magnus force) must be zero.
Thus, ϕ1 contains only terms proportional to rα + 1 with

α 1

2
------- 2 2m2 s 1 s–( )Γ̃–+[±=

± 2 2m2 s 1 s–( )Γ̃–+( )2{

– 4sΓ̃ m2 1– s+( ) 4 m2 1–( )2
– }

1/2
]

1/2
,

Γ̃ Γ̃

α α 1, α1± s Γ /2,= =

rαeαβTβγd∫° KU .∼
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α > 0. This conclusion is related to the fact that, for
free-standing liquid-crystalline films, any distortion of
the bond angle unavoidably produces hydrodynamic
backflow motions (i.e., v ≠ 0). For liquid-crystalline
films on substrates (Langmuir films), in contrast to
free-standing films, hydrodynamic motions (back-
flows) are strongly suppressed by the substrate, and the
situation where the backflow is irrelevant for the discli-
nation motion can be realized.

B. The remote region

Let us consider the region r @ u–1, where we can
write ϕ = uy + and linearize the system of equations
(3.2) and (3.3) with respect to . We then obtain the
system of linear equations for v and ,

(3.16)

where p = Vγ/2K. Taking the curl of the first equation
and eliminating the Laplacian, we obtain

(3.17)

where Φ is a harmonic function. In terms of Φ, system
(3.16) is reduced to

(3.18)

Equation (3.18) can be written as

(3.19)

(3.20)

The quantities k1 and k2 have the meaning of character-
istic wave vectors. We conclude from Eq. (3.19) that
zero modes of the operator on the left-hand side of the
equation are proportional to

that is, they are exponentially small everywhere outside
narrow angular regions near the X axis. The behavior of
the zero modes inside the regions is powerlike in r. In
addition, there is a contribution to  related to the har-
monic function Φ. It contains a part that decays as a
power of r (the leading term is ∝ r–1) at r @ u–1. This
solution is examined in more detail in Appendix A.

ϕ̃
ϕ̃

ϕ̃

∇ 2v α
K
2η
------ eαβ∇ β∇ 2ϕ̃ 2uα∇ 2ϕ̃–( ) ∇ αϖ+ + 0,=

∇ 2 2 p∂x+( )ϕ̃ γ
2K
------- eαβ∇ αv β 2uv y–( )+ 0,=

eβα∇ βv α
K
2η
------ ∇ 2 2u∂x+( )ϕ̃ Φ+[ ] ,=

1 Γ
4
---+ 

  ∇ 4 2 p∇ 2∂x Γu2∂x
2–+ ϕ̃ Γ

2
---u∂xΦ.=

∇ 2 2k1∂x+( ) ∇ 2 2k2∂x–( )ϕ̃ Γ̃
2
---u∂xΦ,=

k1 2,
1

2 1 Γ /4+( )
-------------------------- p2 Γ 1 Γ

4
---+ 

  u2+ p± 
  .=

–k1r k1x–( )exp , –k2r k2x+( ),exp

ϕ̃
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4. DIFFERENT REGIMES GOVERNED BY Γ
The behavior of the velocity and the bond (director)

angle fields around the moving disclination is sensitive
to the ratio of the rotational and the shear viscosity
coefficients Γ = γ/η. In this section, we examine differ-
ent cases depending on the Γ value.

A. The case where Γ * 1
We start analyzing different mobility regimes with

the most probable case where Γ * 1. If Γ ~ 1, then the
factor C in Eq. (3.4) is on the order of 1 and u ~ p. It
then follows from Eqs. (3.20) that k1, k2 ~ u. This is a
manifestation of the fact that there is a unique charac-
teristic scale in this case, given by u–1. We can then esti-
mate  by matching the solutions in the regions near
the disclination and far from it at r ~ u–1. We conclude
that it is a function of the dimensionless parameter ur;
the function is on the order of unity when its argument
ur is on the order of unity.

For large Γ, there remains a unique characteristic
scale u–1, and consequently, C ~ 1 in this case. To prove
this statement, we first treat small distances r ! u–1. As
shown in Section 3A, the respective corrections ϕ1 and
δv to ϕ0 and V are expanded in a series over the zero
modes characterized by exponents (3.13). In particular,
for m = 1, we can write ϕ1 ~ uy(ur)α. In the large-Γ
limit, the exponents α given by (3.13) are regular

because   4. From (3.13), we have α1 ~ 1, and in
this case,

Comparing Eqs. (3.8) and (3.9), we conclude that, for
large Γ, the term involving χ can be omitted in
Eq. (3.9), and the equation therefore becomes a con-
straint imposed on the velocity. Equation (3.8) then
gives

The disclination velocity can now be found from the
relation V ~ |δv | at the scale u–1, that is, p ~ Γu, or C ~ 1.
The complete analysis also covers the remote region.
With the condition p ~ Γu, it follows that k1, 2 ~ u–1.
Using the procedure given in Appendix A, we can then
prove that the solutions in the two regions can be
matched at r ~ u–1, and therefore, there are no new char-
acteristic scales, indeed. We also note that the rotational
viscosity γ drops from the hydrodynamic equations at
large Γ. Although this is not true inside the disclination
core (see Appendix D), the boundary conditions for v
and ϕ on the core boundary reveal no dramatic changes
in behavior. Consequently, it is the shear viscosity
alone that determines the disclination mobility, which
implies that C ~ 1.

ϕ̃

Γ̃

χ K

ηr2
--------uy ur( )

α1.∼

δv
K
ηr
------uy ur( )

α1.∼
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We can therefore say that, in the limit as Γ  ∞,
no additional features appear compared to Γ ~ 1. But
this is not the case for small Γ, because u @ p for Γ ! 1.
We study this case in the next subsection.

B. Small G
Here, we consider the case where Γ ! 1. This limit

is physically attained at anomalously large η, with
Kρ/η2 still treated as the smallest dimensionless param-
eter. This justifies the use of the same equations (3.2)
and (3.3) as in the previous subsections.

For r ! u–1, the analysis in Section A is correct. As
we noted, the contributions to v and ϕ1 related to the
modes with negative α should not be taken into account
there. For Γ ! 1, the leading role is played by the mode

with the smallest exponent (α1 = s /2), because the
presence of modes with positive exponents α ~ 1 would
contradict the condition of smooth matching at r ~ u–1.
Strictly speaking, neglecting a small negative exponent
–α1 is correct under the condition α1|ln(ua) | @ 1, where
a is the core radius of the disclination. This is what is
considered in this subsection. The opposite case, which
we call the extremely small-Γ limit, is analyzed in Sec-
tion 4C. At r ! u–1, we can therefore write

(4.1)

with the coefficient at y  determined from match-
ing at r ~ u–1, where ∇ϕ  ~ 1/r. Similarly, matching V –
v x ~ V at r ~ u–1 gives V ~ α1uK/γ. The relation can be
rewritten as p ~ α1u ! u, and we therefore conclude that

C ~ 1/ .

In accordance with Eq. (3.20), the relation p ~ u
leads to k1, 2 ~ p ! u. In other words, a new scale p–1

(different from u–1) appears in the problem. A detailed
investigation of the remote region r @ u–1 is therefore
needed to establish the r dependences of the both angle
ϕ and the velocity field v there. This investigation can
be based on the equations formulated in Section 3B,
which are correct irrespective of the value of pr.

Explicit expressions describing the velocity and the
angle are presented in Appendix A. They contain three
dimensionless functions ζ1(∇ /u), c1(∇ /u), and c2(∇ /u).
At ur @ 1, only zero terms of the expansions of these
functions in the Taylor series can be kept. Only one of
these three coefficients is independent (see Eq. (A.10)).
The general solution can therefore be expressed in
terms of a single parameter, which we choose as ζ ≡
ζ1(0). The procedure corresponds to the following con-
struction of the solutions to equations of motion (3.16)
in the region ur @ 1. We have to match the solutions in
the outer and the inner regions (far from and close to the
disclination respectively) at ur ~ 1. Technically, the
matching is equivalent to the appropriate boundary

Γ

ϕ1 uy ur( )
α1, V v x α1u

K
γ
---- ur( )

α1,∼–∼

ur( )
α1

Γ

Γ
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conditions for the outer problem at ur ~ 1, and these
boundary conditions can be formally replaced by the
local source terms in the equations, acting at ur ~ 1. We
can expand these sources in the standard multipolar
series. We thus arrive at the expansion with respect to
the gradients of the δ function. The gradients scale as u,
and therefore, ζ, c1, and c2 are dimensionless functions
of the dimensionless ratio ∇ /u.

To find the asymptotic behavior of the angle ϕ and
of the velocity v, we first consider the region u–1 ! r !
p–1. From Eqs. (A.4), (A.5), and (A.10), we then derive

(4.2)

where we keep only the leading logarithmic contribu-
tion of the zero harmonic in v x. Matching the velocity
derivatives determined by Eqs. (4.1) and (4.2) at r ~ u–1,
we find that ζ ~ 1 (we imply that s ~ 1). Using
Exps. (A.2), (A.5), and (A. 10), we obtain

(4.3)

in the region u–1 ! r ! p–1. We see that there is only a
small correction to the simple expression ϕ0 + uy in that
region, because p ! u.

In the region pr @ 1, the expressions for the angle ϕ
and the velocity v are more complicated. Using
Eqs. (A.2)–(A.5), we obtain

(4.4)

(4.5)

(4.6)

(4.7)

where c1 ~ 1 and c2 ~ 1 are determined by Eq. (A.10)
(we omitted the argument 0 to simplify the notation).
Expressions (4.4)–(4.7) contain terms of two types, iso-

v x
K 2s ζ–( )

γu
------------------------k1k2 pr( ),ln=

ϕ ϕ 0 uy spy pr( )ln+ +=

∂xϕ s
π
2
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+ c2 k2 –k2r k2x+( )exp ] y
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π
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tropic and anisotropic ones. The anisotropic contribu-
tions are essential only in the narrow angular regions
near the X axis, where they dominate. It is worth noting
a very nontrivial structure of the flow, in which the iso-
tropic flux to the origin is compensated by the anisotro-
pic terms.

The expressions found in this subsection generalize
the famous Lamb solution for the hydrodynamic flow
around a hard cylinder (see, e.g., [33–35]), where the
velocity field is exponentially small everywhere far
from the cylinder except for the wake of the corps, i.e.,
in a very narrow angular sector (“tail”). Disclination
motion in liquid-crystalline films can be regarded as the
motion of a cylinder framed by a “soft” (i.e., deform-
able) orientational field ϕ. Because of the additional
degree of freedom (compared to the classical Lamb
problem), our solution has two tails around the moving
disclination: a wake beyond the disclination and a pre-
cursor in front of it. In fact, both degrees of freedom
(the flow velocity and the bond angle) are relevant.

C. Extremely small G

In the above analysis, we implied the condition

α1|ln(ua) | @ 1 (we recall that α1 = s /2 at small Γ),
imposing a restriction from below on Γ at a given u. If
α1|ln(ua) | ! 1, the terms with both α = ±α1 determined
by Eq. (3.14) must be taken into account near the dis-
clination, which leads to a logarithmic behavior of the
correction ϕ1 to ϕ0 in that region,

(4.8)

instead of Eq. (4.1). Matching the derivatives of expres-
sions (4.3) and (4.8) at r ~ u–1 gives p ~ u|ln(au) |–1. In
other words, C ~ [Γ ln(au)]–1. This case formally corre-
sponds to the limit η  ∞ in our equations, where we
can drop the backflow hydrodynamic velocity in the
equation for the bond angle. The situation was exam-
ined in [6–9]. We present the simple analysis of the case
in Appendix B. We also note that there is no crossover
at r ~ u–1 in the bond angle behavior in this situation.

We now clarify the question regarding the Magnus
force in this case. In accordance with Eq. (4.8), the
reactive momentum flux to the disclination core is

The flux is therefore r-dependent, tending to zero as
r  a. This reactive momentum flux is compensated
by the viscous momentum flux (related to derivatives of
the flow velocity v), which is nonzero in this case
because of the logarithmic behavior of the flow velocity

Γ

ϕ1 uy
r
a
--- 

  au( )ln 1– ,ln∼

drαeαβTβγ∫° Ku
r
a
--- 

  au( )ln 1– .ln∼
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in r near the disclination. The flow velocity can be
found from Eqs. (3.6) and (4.8) as

which is a generalization of the Stokes–Lamb solution
[33, 34]. But unlike in the Lamb problem (a hard cylin-
der moving in a viscous liquid), |V – v(r = a) | ~ V in our
case; i.e., we have a slipping of the core of the moving
disclination. This slipping seems natural in the limit of
extremely small values of Γ, corresponding to the limit
η  ∞, that is, to a strongly suppressed hydrody-
namic flow. Physically, this property implies that the
disclination cannot be understood as a hard impenetra-
ble object. It is also worth noting that the logarithmic
behavior found above is similar to the general feature of
two-dimensional hydrodynamic motion that comes
from the well-known fact (see, e.g., [33–35]) that non-
linear terms cannot be neglected in a two-dimensional
laminar flow even for a small Reynolds number; these
terms become relevant for sufficiently large distances.
But in our case, these nonlinear terms do not come from
the convective hydrodynamic nonlinearity; they come
from the terms in stress tensor (2.4) that are nonlinear
in ϕ.

An explicit expression for ϕ and its asymptotic
forms corresponding to the considered case are given in
Appendix B. An expression for the flow velocity field
induced by the disclination motion at extremely small
Γ is derived in Appendix C.

5. CONCLUSIONS

We now summarize the results of our paper. To
understand the physics underlying the freely suspended
film dynamics, we studied the ground case—a single
disclination motion in a thin hexatic, smectic-C, or
nematic liquid-crystalline film, driven by an inhomoge-
neity in the bond (or director) angle. We investigated
the uniform motion (the one with a constant velocity).
In this case, we derived and solved the equations of
motion and found the bond angle and hydrodynamic
velocity distributions around the disclination. This
allows us to relate the velocity of the disclination V to
the bond angle gradient u = |∇ϕ|  in the region far from
the disclination. So much effort is needed because the
full set of equations must be solved everywhere, not
only locally. We established the proportionality coeffi-
cient C (see Eq. (3.4)) in this nonlocal relationship; it
has the meaning of an effective mobility coefficient.
The coefficient C depends on the dimensionless ratio Γ
of rotational (γ) and shear viscosity (η) coefficients.

There is little experimental knowledge of the values
of the coefficients γ and η in liquid-crystalline films. It
is generally believed that the corresponding values in a
film (normalized by its thickness) and in a bulk material
are not very different [31, 3], in which case we are in
the regime of Γ ~ 1, where the coefficient C is on the

v α
Ku

η au( )ln
-----------------------eαβ∇ β y

r
a
--- 

 ln
2

,∼
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order of 1. But the case where Γ ! 1 is not excluded
from both theoretical and materials science stand-

points. We found the coefficient C ~ 1/  in the small-
Γ limit. We established a highly nontrivial behavior of
the flow velocity and of the bond angle, which is pow-
erlike in r near the disclination and extremely anisotro-
pic far from it. Only for extremely small Γ, Γ !
1/ln2(ua) (where a is the disclination core radius), did
we find a logarithmic behavior C ~ [Γ ln(ua)]–1. The
main message of our study is that the hydrodynamic
motion (that is, the backflow), unavoidably accompa-
nying any defect motion in liquid crystals, plays a sig-
nificant role in the disclination mobility. Experimental
evidence (see, e.g., the recent publication [36]) shows
that this is indeed the case.

Our analysis can be applied to the motion of a dis-
clination pair with the opposite topological charges. In
this case, the role of the scale u–1 is played by the dis-
tance R between the disclinations. In accordance with
Eq. (3.4), we then find that ∂tR ∝  R–1 without a loga-
rithm (provided the rotational viscosity coefficient γ is
not anomalously small; see Section 4C for the quantita-
tive criterion). This conclusion is confirmed by the
results of numerical simulations for 2D nematics [15–
18]. The authors of [15–18] consider the equations of
motion in terms of the tensor order parameter, consis-
tently taking the coupling between the disclination
motion and the hydrodynamic flow into account. They
simulated dynamics of the disclination pair annihilation
and found that the distance R between the disclinations
scales depends on time t as t1/2, without logarithmic cor-
rections (as follows from our theoretical analysis) for
all values of the parameter Γ except extremely small
ones. Unfortunately, we did not find in [16–18] the
magnitudes of the shear viscosity that were used in the
simulations. Lacking sufficient data on the values of γ
and η, we can presently discuss only the general fea-
tures of the disclination dynamics. For instance, the
authors of [18] numerically found an asymmetry of
the disclination dynamics with respect to the sign of the
topological charge (s = ±1/2) in the one-constant
approximation. In our approach, the asymmetry natu-
rally appears from nonlinear terms in stress tensor (2.5)
and from the first term on the right-hand side of
Eq. (2.6) responsible for the different couplings of ori-
entational and hydrodynamic flow patterns for positive
and negative disclinations. This results in the fact that,
for each m, the smaller positive exponents in Eq. (3.13)
(corresponding to the minus in the brackets) are larger
for s = 1/2 than for s = –1/2. The disclination with s =
1/2 therefore exerts a stronger influence on the flow
velocity; this conclusion was qualitatively obtained in
[18].

Although the theory presented in this paper is valid
for free-standing liquid-crystalline films, the general
scheme can be applied to liquid-crystalline films on
solid or liquid substrates. Because such a film is
arranged on the substrate surface, any of its hydrody-

Γ
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namic motions are accompanied by the substrate
motion. For solid substrates, the situation where the
hydrodynamic backflow is irrelevant for the disclina-
tion dynamics can therefore be realistic. In Section 4C
(also see Appendix B), we examine this limit and repro-
duce the results in [6–9], where the hydrodynamic
backflow was neglected from the very beginning. The
case of the films on a liquid substrate requires a special
investigation, but the approach and the main ideas of
our paper could be useful there as well.

Our results can be directly tested by comparing with
the experimental data for smectic-C or nematic films.
The hexatic order parameter, which has a sixfold local
symmetry, is not coupled to the light in any simple way
(and, therefore, ideal hexatic disclinations are hardly
observed in optics). But it is possible to observe the
core splitting of the disclinations in tilted hexatic smec-
tic films [26]. Indeed, because of discontinuity of the
tilt direction (which is locked to the bond direction), the
hexatic order and hexatic disclinations can be observed
indirectly. The second possibility of detecting the
defects of hexatic ordering and verifying our theoretical
results is classical light scattering (where the wave vec-
tors are q = 102–104 cm–1 and the frequency is ω &

108 s–1 in typical experiments). For a reasonably thick
film, the power spectrum of light scattering can have
some additional structure revealing the disclination
properties (e.g., defects are thought to be relevant to the
very low frequency noise observed in thin films).
Experimental studies of this type are highly desirable.
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APPENDIX A

Distances Far from the Disclination

Here, we derive some results for the region far from
the disclination. These results are used in the case of
small Γ considered in Section 4B.

We examine the harmonic function Φ in Eq. (3.17).
Because the function is analytic in the region r > u–1, it
can be expanded in the derivatives of lnr there. Next,
because of the symmetry of the problem, Φ is an anti-
symmetric function of y. At least one derivative ∂y must
therefore be present in each term of the expansion, that
is,

(A.1)Φ uζ̂1∂y r,ln=
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where  = ζ1(∇ /u) and ζ1(z) is a series in z converging
in a circle with the radius on the order of 1. The expan-
sion coefficients in the series ζ1(∇ /u) are determined by
matching with the inner problem at r ~ u–1.

Because of the symmetry, the angle  can be repre-
sented as

(A.2)

The latter equation is the condition eαβ∇ α∇ β  = 0. We
note that ∇ 2  = –∂yH. In the region far from the discli-
nation, we can use Eqs. (3.16) and (3.17). The incom-
pressibility condition ∇ αvα = 0 must also be taken into
account. We thus obtain expressions for the velocity in
terms of B and H,

(A.3)

(A.4)

Solutions to Eq. (3.18) imply that

(A.5)

Here, the particular representation in Eq. (A.1) is used
and an arbitrary function of y that can contribute to H is
chosen to be zero because ∇   0 (and, hence,
H  0) as r  ∞. In (A.5),  and  are dimen-
sionless differential operators that can be represented as
Taylor series in ∇ /u, i.e., c1(∇ /u) and c2(∇ /u). These
functions must scale with u because the functions must
be found from matching at r ~ u–1.

Additionally, there are two conditions for the vari-
ables in the region ur @ 1. First, the correct circulation
around the origin leads to the effective δ-functional
term in Eq. (A.2),

(A.6)
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Γ
4
--- –H 2uB uζ̂1 pr( )ln+ +[ ]+ +

 
 
 

,

v x
K
γu
-----∂x=

× –H 2 pB
Γ
4
--- –H 2uB uζ̂1 pr( )ln+ +[ ]+ +

 
 
 

–
K
2η
------ –H 2uB uζ̂1 pr( )ln+ +[ ] .

B s ĉ1K0 k1r( )e
k1x–

ĉ2K0 k2r( )e
k2x

+[ ] 1
2
--- ζ̂1 pr( ),ln–=

H 2s k1ĉ1K0 k1r( )e
k1x–

k2ĉ2K0 k2r( )e
k2x

–[ ] .=

ϕ̃
ĉ1 ĉ2

∇ 2B ∂xH+ 2πsδ r( ).–=
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The second condition is the absence of the flux to the
origin,

(A.7)

Relations (A.6) and (A.7) lead to the conditions

(A.8)

(A.9)

At small Γ, the solution to Eqs. (A.8) and (A.9) is

(A.10)

We also assumed that ζ & 1, which is justified in Sub-
section 4B.

APPENDIX B

Suppressed Flow

Here, we demonstrate how the disclination velocity
V can be found if the hydrodynamic velocity v is negli-
gible (e.g., because of substrate friction). We reproduce
the results in [6–9].

In the absence of the hydrodynamic flow, the equa-
tion for the angle ϕ is purely diffusive,

(B.1)

as follows from Eq. (1.6) with v = 0. We assume that
ϕ  uy as r  ∞. The disclination motion is forced
by the “external field” u. We seek a solution ϕ(t, x, y) =
ϕ(x – Vt, y). From Eq. (B.1), we then obtain

(B.2)

In what follows, we consider the solution correspond-
ing to a single disclination with the circulation

(B.3)

where the integral is taken along a contour encompass-
ing the disclination counterclockwise. The quantity s in
Eq. (B.3) is an arbitrary parameter (which is equal to
±1/6 for hexatic, ±1/2 for nematic, and ±1 for smectic-
C ordering). For a suitable solution to Eq. (B.2) corre-
sponding to Eq. (B.3), we have

(B.4)

This derivative tends to zero as r  ∞, as it should be.

φv r r φ,( )d∫ 0.=

c1 0( ) c2 0( )
ζ1 0( )

2s
------------+ + 1,=

1 Γ
4
---+ 

  k1c1 0( ) k2c2 0( )–[ ] p
Γu
4

------+ 
 –

× c1 0( ) c2 0( )
ζ1 0( )

2s
------------+ +

Γu
8s
------ζ1 0( )+ 0.=

ζ1 0( ) ζ , c1 0( )
k1 ζk2/2s–

k1 k2+
---------------------------,= =

c2 0( )
k2 ζk1/2s–

k1 k2+
---------------------------.=

γ∂tϕ K ∇ 2ϕ ,=

2 p∂xϕ ∇ 2ϕ+ 0, where 2 p γV /K .= =

r∇ϕd∫° 2πs,=

∂xϕ s∂y
q2d

2π
------- 1

q2 2ipqx–
------------------------ iq r⋅( )exp∫=

=  s px–( )∂yK0 pr( ).exp
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Expression (B.4) does not determine ϕ unambigu-
ously because ∂x(uy) = 0, and we can therefore obtain a
new solution by adding a term uy to a given solution.
We note that uy is the zero mode of the Eq. (B.2). The
solution can therefore be written as

(B.5)

where  tends to zero as r  ∞. To relate p and u in
Eq. (B.5), we must know the boundary conditions at
r  0, or, in fact, at r ~ a, where a is the core radius.
At small r, the angle ϕ can be written as a series ϕ =
ϕ0 + ϕ1 + …, where ϕ0 corresponds to the static discli-
nation and ϕ1 is the first correction to ϕ0 related to the
motion. Matching with the inner problem gives

(B.6)

because the solution for the order parameter inside the
core is an analytic function of r/a and the expansion in
p is a regular expansion in pa (see [7] and Appendix D).

Expanding Eq. (B.4) in p, we obtain

at pr ! 1. In accordance with Eq. (B.5), we then obtain
with logarithmic accuracy (i.e., in the main approxima-
tion in |ln(pa)| @ 1) that

(B.7)

Using boundary condition (B.6), we now obtain

(B.8)

with the same logarithmic accuracy. This can be rewrit-
ten as

(B.9)

The same answer (B.9) can be found from the
energy dissipation balance. First of all, we can find the
energy E corresponding to solution (B.5),

(B.10)

where the first term is the energy of the external field,
the second term represents the energy of the disclina-
tion itself, and the third term is the coupling energy.
Obviously, only the last cross-term depends on time.
For |x – Vt | @ p–1,

ϕ ϕ̃ L uy,+=

ϕ̃L x' y,( ) s x px–( )∂yK0 pr( ),expd

x'

∞

∫–=

ϕ̃L

∇ϕ 1 a( ) p,∼

1
s
---∂xϕ –

y

r2
---- pxy

r2
---------+≈

ϕ1 spy pr( )ln uy.+=

u sp
1
pa
------ 

 ln=

V
2Ku

sγ 1/ pa( )ln
----------------------------.=

E r2 K
2
---- ∇ϕ( )2d∫=

=  K r2 1
2
---u2 1

2
--- ∇ϕ˜ L( )2 u∂yϕ̃L+ + ,d∫

y∂yϕ̃Ld

∞–

∞

∫
0 if x Vt,>

2πs if x Vt.<–



=
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It then follows from Eq. (B.10) that

(B.11)

On the other hand, we can use Eq. (B.1) to obtain

(B.12)

Replacing ∇ 2ϕ with 2p∂xϕ here in accordance with
Eq. (B.2), we obtain

The main logarithmic contribution to the integral
comes from the region a < r < p–1, where ∂xϕ ≈ –sy/r2.
We thus obtain

(B.13)

Comparing the expression with Eq. (B.11), we find the
same answer (B.9).

APPENDIX C

Extremely Small Γ
Here, we consider the flow velocity induced by the

moving disclination for extremely small Γ. The veloc-
ity is zero in the zero approximation in Γ (this case is
considered in Appendix B), and we therefore examine
the next, first-order, approximation in Γ. We use the same
formalism and the same notation as in Appendix A.

In accordance with Appendix A, solutions to the
complete set of nonlinear stationary equations can be
represented as

(C.1)

(C.2)

(C.3)

(C.4)

where B, H, and Φ' are to be found from the equations

(C.5)

∂tE 2πsKuV .–=

∂tE
K2

γ
------ r2 ∇ 2ϕ( )2

.d∫–=

∂tE γV2 r2 ∂xϕ( )2.d∫–=

∂tE πs2γV2 1
pa
------ 

  .ln–=

∂xϕ̃ ∂yB, ∂yϕ̃ H ∂xB+( ),–= =

curlv
K
2η
------ –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ,=

v x
K
2η
------∂y∇

2––=

× –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ,

v y
K
2η
------∂x∇

2–=

× –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ,

–∂yH 2 p∂yB
Γ
4
--- ∇ 2– ∇ 2 2u∂x–( )+ +

× –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ]

=  
Γ
2
--- ∂y∇

2– –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ]∂ yB(–

+ ∂x∇
2– –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ∂ xB H+( ) ),
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(C.6)

(C.7)

If Γ is extremely small, s2Γ ln2(ua) ! 1, the solution
to Eqs. (C.5)–(C.7) can be continued to the vicinity of
the core. In the leading approximation, the solution for

 coincides with the solution for the angle  in the
absence of the backflow. This case, examined in [6–9],
is described in Appendix B. The functions BL and HL

corresponding to  are given by

(C.8)

This solution gives

(C.9)

Neglecting the nonlinear right-hand side of Eq. (C.5),
we can then find

(C.10)

B(r) can be found similarly. Using B and H in
Eqs. (C.3) and (C.4), we calculate the flow velocity v(r)
that vanishes at infinity.

For r @ p–1, this solution coincides with expressions
(A.5), (A.8), and (A.9) with

For pr ! 1, expression (C.10) is reduced to (C.8) and
this region produces the main contribution to Φ' in (C.9).
The following expressions are obtained in the inner region
(pr ! 1) from the solution in Eqs. (C.1)–(C.10):

(C.11)

(C.12)

A relation between p and u is fixed by condition (B.6),
leading to u = spln[1/(pa)], which is equivalent to
Eq. (B.9). The flow velocity at pr ! 1 and ln(r/a) @ 1 is

(C.13)

which corresponds to the stream function

(C.14)

Φ' 2∇ 2– ∂xB H+( )∂x∂yH ∂yB∂y
2H+[ ] ,=

∇ 2B ∂xH+ 2πsδ r( ).–=

ϕ̃ ϕ̃L

ϕ̃L

2 pBL HL 2spK0 pr( ) px–( ).exp= =

Φ' 2s2 p
y

r2
---- min r p 1–,{ }

a
----------------------------- 

  .ln=

H r( )
4πs

1 Γ /4+
------------------ q2d

2π( )2
------------- iq r⋅( )exp∫=

×
pq2 sΓp/4( ) q2 2iuqx+( ) min qa( ) 1– pa( ) 1–,{ }( )ln–

q2 2ik1qx–( ) q2 2ik2qx+( )
---------------------------------------------------------------------------------------------------------------------------.

ζ1 0( ) 2s
2s2 p

u
----------- 1

pa
------ 

  .ln+=

ϕ1 u sp
1
pa
------ln– 

  y spy
r
a
---,ln+=

curlv
Ks2 p

η
------------ y

r2
---- r

a
---.ln=

v α
s2Γ
8

--------Veαβ∇ β y
r
a
--- 

 ln
2

,–=

Ω –Vy
Ks2 p
4η

------------y
r
a
--- 

 ln
2

.–=
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The expansion with respect to Γ near the disclination is
regular and can be derived from Eqs. (3.8) and (3.9)
with the condition ∇ϕ 1(a) ~ p:  + uy is the zero term
of the series for ϕ, and expression (C.14) represents the
zero and the first terms for Ω .

We note that, in accordance with Eq. (C.13) in the limit
as Γ  0, the flow velocity tends to zero near the discli-
nation core, v(a)/V = O(Γ), despite the fact that the discli-
nation itself moves with the finite velocity V; thus, there is
a slipping on the disclination core in this limit.

APPENDIX D

Solution with the Complete Order Parameter

Here, we consider the dynamic equations for the
coupled velocity field v and the complete order param-
eter Ψ = Qexp(iϕ/|s|) describing the 2D orientational
order in liquid-crystalline films. These equations are
needed to examine the velocity field close to the discli-
nation position. We assume that the core size a is larger
than characteristic molecular scales and work in the
framework of the mean field theory.

Formally, the equations can be derived using the Pois-
son bracket method [30, 37]. In the mean field approxima-
tion, the energy associated with the order parameter is

its density becomes the K contribution in Eq. (2.3) at
large scales r @ a. The only nontrivial Poisson bracket
that must be added to the standard expressions is [28]

To be specific, we use the expressions for the energy
and the Poisson bracket for hexatic films. The dynamic
equations are given by

(D.1)

ϕ̃L

*Ψ
Ks2

2
--------- r2 ∇Ψ 2 1

2a2
-------- 1 Ψ 2–( )2

+ 
  ,d∫=

jα r1( ) Ψ r2( ),{ } ∇ αΨδ r1 r2–( )–=

+
i

2 s
--------Ψ r2( )eαβ∇ βδ r1 r2–( ).

ρ∂tv α ρv β∇ βv α+ η∇ 2v α
s2K

2
---------–=

× ∇ αΨ∗ ∇ 2Ψ 1

a2
-----Ψ 1 Ψ 2–( )+ 

 




+ ∇ αΨ ∇ 2Ψ∗ 1

a2
-----Ψ∗ 1 Ψ 2–( )+ 

 




–
i s K

4
-----------eαβ∇ β Ψ∗ ∇ 2Ψ Ψ∇ 2Ψ∗–{ } ∇ α ς̃,+

∂tΨ v α∇ αΨ+
i

2 s
--------Ψeαβ∇ αv β=

+
Ks2

2γs

--------- ∇ 2Ψ 1

a2
-----Ψ 1 Ψ 2–( )+ 

  ,
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the relation γs = s2γ/2 ensures the reduction to Eq. (2.6)
in the limit |Ψ| = 1, and the kinetic coefficients are
believed to be independent of Q (otherwise, we can
assume, for example, the dependence γs = s2γ|Ψ|2/2).
The slow dynamics of a 2D liquid-crystalline system
with disclinations can be described by Eqs. (D.1) with
the additional incompressibility condition ∇ v = 0 that
allows excluding the passive variable .

If the distance from the disclination to a boundary or
other disclinations is much larger than a (i.e., the per-
turbation of the static solution Ψ0 = Q0exp(iϕ0/ |s|) for a
single defect is small), we can linearize Eqs. (D.1) with
respect to the perturbation expressed in terms of the
respective corrections Q1 and ϕ1 to Q0 and ϕ0,

(D.2)

(D.3)

(D.4)

In terms of the dimensionless quantities L = ηΩ/K,
R = r/a, and Γ = 2γs/(s2η), Eq. (D.2) becomes (as previ-
ously, we consider a disclination with the unitary topo-
logical charge |s | or – |s |)

(D.5)

where  ≡  +  +  and Q0 is found from

ς̃

η∇ 2v α 2γs ∇ αQ0 v β Vβ–( )∇ βQ0




–

+
1

s2
----Q0

2∇ αϕ0 v β Vβ–( )∇ βϕ0
1
2
---eβγ∇ βv γ– 

 




+ 2γs
1

2s2
-------eαβ∇ β Q0

2 v µ Vµ–( )∇ µϕ0
1
2
---eµν∇ µv ν– 

 

+ ∇ α ς̃ 0,=

Ks2

2γs

--------- ∇ 2Q1

∇ϕ 0( )2

s2
-----------------Q1–

2∇ αϕ1∇ αϕ0

s2
-----------------------------Q0–





+
1

as
2

----- 1 3Q0
2–( )Q1





v β Vβ–( )∇ βQ0,=

Ks2

2γs

--------- ∇ 2ϕ1 2Q0
1– ∇ αQ1∇ αϕ0 ∇ αQ0∇ αϕ1+( )+( )

=  
1
2
---eαβ∇ αv β– v β Vβ–( )∇ βϕ0.+

∇ R
4 L

Γ
4
--- 4s2 ∂RQ0( )2

R2
-------------------∂φ

2 L–




+

+ ∇ R
2 2s

R
-----∂R+ 

  Q0
2 ∇ R

2 2s
R
-----∂R– 

  L 
 





0,=

∇ R
2 ∂R

2 1
R
---∂R

1

R2
-----∂φ

2

∂R
2 1

R
---∂R

1

R2
-----–+ 

  Q0 Q0 1 Q0
2–( )+ 0,=
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If Γ @ 1, as follows from Eq. (D.5), a new scale R ~

1/  ! 1 appears inside the core, the first term in
Eq. (D.5) can be neglected at larger scales, and there is
no crossover at R ~ 1.

If Q0 ≡ 1, Eq. (D.5) is reduced to Eq. (3.12). If R !
1, Q0 = AR (A ≈ 0.58) and Eq. (D.5) can be rewritten as

The solution to the equation is a superposition of the
terms λ(R)sin(mφ) with different m. After imposing the
condition λ(R) = 0, two constants remain in the general
solution of the ordinary differential equation for λ(R);
two partial solutions that are regular near R = 0 are
given by

where 2F1 is the hypergeometric function (2F1(a, b, c, z) =
1 + abz/c + …). Two constants (e.g., the derivatives
λ(|m|)(0) and λ(|m| + 2)(0) are chosen to ensure the slowest
possible growth at R @ 1 in order to eliminate the larg-
est exponent among α in Eq. (3.13).

If Γ @ 1, it is possible to derive a better approxima-
tion in the core region. We can expand Q0(R) in a series,
seek a series solution λ(R), and extract the terms of the
highest order in Γ. For example, for m = 1, the series for
λ(R) begins with l1R + l3R3, which fixes two constants
in the partial solution,

The solutions to Eqs. (D.3) and (D.4) are given by

Q0 0( ) 0, Q0 ∞( ) 1.= =

Γ

∇ R
2 ∇ R

2 L
AΓ
4

------- R2∇ R
2 4s2–( )L+

 
 
 

0.=

R m and R m F2 1
m m2 4s2+–

2
-------------------------------------,



m m2 4s2++
2

-------------------------------------- 1 m+ A2Γ R2

4
----------------–, , 

 ,

λ R( ) l1R 1
1

A2Γs 2 s2–( )
------------------------------- –1

s2A2Γ R2

8
---------------------–

+=

+ F2 1
1 1 4s2+–

2
------------------------------ 1 1 4s2++

2
------------------------------ 2 A2Γ R2

4
----------------–, , , 

 



+ l3
8

A2Γs2
--------------R –1 F2 1

1 1 4s2+–
2

------------------------------,
+

1 1 4s2++
2

------------------------------ 2 A2Γ R2

4
----------------–, , 

 .

Q1 ϑ R( )∂φ mφ( ), ϕ1sin σ R( ) mφ( ),sin= =
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where ϑ  and σ must be found from the equations

that generalize the expressions given in [7].
The dynamic equations with the complex order

parameter demonstrate that, for all Γ, the boundary
conditions for Eqs. (2.4)–(2.6) experience no signifi-
cant changes on the core. The peculiarity of extremely
small Γ leading to the nonslipping condition consists in
a slow growth of ∇Ω  far from the disclination.
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Abstract—Thin free-standing films of a compound with the smectic-  and smectic-  phases were inves-
tigated by means of depolarized microscopy and optical reflectivity. In thin films, the smectic phase sequence

– –A is replaced by a series of temperature- and field-induced transitions into states with the coplanar
orientation of molecular tilt planes. Transitions are accompanied by a change in the direction of the electric
polarization with respect to the tilt plane of molecules. The coplanar structure of these states is consistent with
the Ising model. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The synclinic smectic-C phase (SmC) and the anti-
clinic smectic-CA phase (SmCA) are the fundamental
mesophases with fluid layers that are observed in rod-
like molecular systems. When the constituent mole-
cules render the system chiral, the respective phases are

denoted as SmC* and Sm  and become ferroelectric,
with the spontaneous polarization perpendicular to the
tilt plane, and antiferroelectric [1–5]. The locally aver-
aged molecular tilt direction, called the director, is
specified by the polar angle θ and the azimuthal angle
φ in the liquid crystal frame of reference with the z axis
along the smectic layer normal. In the bulk sample, the
tilt angle θ is constant at a given temperature. Chirality
leads to the formation of a helicoidal structure, φ =
2πz/p, where p is the helicoidal pitch. Because p is suf-
ficiently larger than the smectic layer spacing d in gen-
eral, the azimuthal angle difference between adjacent

layers is ∆φ . 0° in SmC* and ∆φ . 180° in Sm ; the
respective phases therefore remain practically synclinic
and anticlinic. In other words, the ordinary chiral inter-
molecular interaction is weak. The molecular origin of
the synclinic and anticlinic ordering in SmC and SmCA

has been studied in detail [6, 7]. It is concluded that the
conventional dispersion and steric interactions stabilize
SmC and SmC*, while the orientational correlations of
transverse dipoles in adjacent layers actually promote

SmCA and Sm . We note that these short-range inter-
actions and correlations are not sensitive to the molec-
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ular chirality and favor the coplanar synclinic or anti-
clinic structure.

The transition between synclinic ferroelectric SmC*

and anticlinic antiferroelectric Sm  is of the first
order. In many materials, a sequence of polar subphases
with periods consisting of more than two layers are

formed between SmC* and Sm . In this narrow tem-
perature interval, the system is frustrated and both
phase structures have nearly the same energy; the sub-
phases must therefore be stabilized by some relatively
weak additional factors [7]. Isozaki et al. [8, 9] system-
atically investigated the electric-field-temperature (E–
T) phase diagram in several compounds and mixtures
[5–8, 10]. They confirmed that at least five subphases

can exist between Sm  and SmC* and an additional

one, denoted as Sm , just below SmA on the high-
temperature side of SmC*, suggesting that the sub-

phases between Sm  and SmC* constitute a part of a
devil’s staircase formed by frustration between ferro-
and antiferroelectricity. Moreover, it was noticed by

Takanishi et al. and Hiraoka et al. [11–15] that Sm
itself is not a simple single phase but can constitute
another devil’s staircase [16] where the ferroelectric

SmC* and/or antiferroelectric Sm  soft mode fluctu-
ations play an important role because of the extremely
small tilt angle. Sophisticated experimental techniques,
such as the polarized resonant X-ray scattering [17–
19], precision ellipsometry and reflectometry [18, 20–
22], and advanced polarizing microscopy [23], have
recently been used to determine the detailed subphase
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structures. It is unambiguously established that the sub-

phases between Sm  and SmC* with three- and four-
layer periodicities are not coplanar and that their azi-
muthal angle difference between adjacent layers con-
siderably deviates from ∆φ . 0° (synclinic) or 180°
(anticlinic) [18, 24]. With respect to Sm , a short
pitch helical structure was recently emphasized in con-
trast with the previous suggestion of its devil’s staircase
character.

Two conflicting approaches have been proposed
with the important factor being either the continuous

short-pitch evolution of the Sm  helical structure
[25–29] or the devil’s staircase character not only of the

subphase emerging between Sm  and SmC but also

of Sm  itself [5, 10, 30]. The first one, called the dis-
crete, clock, or X–Y model, takes competing orienta-
tional interactions between nearest- and next-nearest-
neighbor smectic layers into account. The minimum of
the free energy then corresponds to a uniform rotation
of the tilt plane about the layer normal. The formation
of subphases can be qualitatively explained by intro-
ducing several much more complicated interactions
with three- and four-layer periodicities and the contin-

uous short-pitch evolution of Sm . The second
approach is based on the microscopic Ising model with
competing repulsive and attractive interactions between
nearest and next-nearest neighbors. It is known that a
sequence of subphases resembling the devil’s staircase
is indeed obtained in such a model [31, 32]. But the
Ising-like Hamiltonian can hardly be applied to smectic
liquid crystals [7]. Neither model can therefore appro-
priately explain the facts experimentally observed thus
far.

Prost and Bruinsma [33, 34] proposed a more con-
sistent model by taking long-range polarization fluctu-
ations into account; they tried to explain the formation

of Sm  and its devil’s staircase character. This mech-
anism seems to be very promising, and should be taken
into consideration in a more general theory [7]. In order
to understand the sequence of the subpahses and their
nonplanar structures better, further careful experimen-
tal investigations are necessary in a variety of com-

pounds and mixtures. The structures of the Sm
phase in bulk samples and in thin films were recently
reported to be substantially different [35, 36]. Struc-
tures without a short-pitched helix were found above

the SmC* and Sm  phases. Another question is the
origin and behavior of the electric polarization in thin
films of structures without the net polarization in the

bulk sample, in particular, in the Sm  and Sm
phases. The clock and Ising models predict a different
behavior of spontaneous polarization as the tempera-
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ture changes: a smooth variation of the polarization
value in the clock model and its steplike changes at cer-
tain temperatures in the Ising model. Unusual behavior
of antiferroelectric structures in the electric field was
found in thin films [37, 38]. These structures possess a
ferroelectric polarization: perpendicular (PY) to the
average direction of the tilt planes in odd-N films
(where N is the number of smectic layers) and parallel
(PX) to the average direction of the tilt planes in even-N
films.

Because the free energy difference between sub-
phases is intrinsically small, several interface effects in
both homogeneous and homeotropic cells disturb the
supbphase sequence and structures. Free-standing films
[39, 40] are most suitable for making observations that
are almost free of these effects. Moreover, applying an
electric field can also seriously deform the structure.
Consequently, it is essential to study free-standing films
by applying a sufficiently weak electric field for con-
trolling the director alignment. In this paper, we present
such an example of the direct microscopic observation
and optical reflectivity. We believe that the observed
results may reflect the bulk property to some extent,
although the interface effects must also be considerably
large because the number of smectic layers is somewhat
small.

2. EXPERIMENT

The material studied was 4-(1-trifluoromethyl-hep-
thyloxycarbonyl)phenyl 4'-octyl-biphenyl-4-carboxy-
late (TFMHPBC) [5]. Bulk TFMHPBC exhibits the
following transition temperatures between smectic
phases:

Sm   Sm   SmA.

Two types of cells were used in optical measurements.
For the first type, films were prepared in a rectangular
frame with two mobile metallic blades. For the second
type, free-standing films were drawn over a 4-mm-
diameter circular hole in a glass plate. Electrodes on
four sides of the hole were used to apply an in-plane
electric field. The number N of smectic layers was
determined by optical reflectivity [39, 41].

Two techniques were used for studies of the temper-
ature- and field-induced phase transitions. The first one
was the depolarized reflected light microscopy
(DRLM) [42, 43]. For relatively thin films, the reflec-
tion intensity is proportional to (n2 – 1)2 [44],

,

where n is the refraction index and λ is the light wave-
length. The refraction index along the tilt plane, n||, is
different from the refraction index in the perpendicular
direction, n0. The DRLM allows visualizing domains
with different orientations of the tilt plane with respect
to the direction of the electric polarization P. The tech-
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nique uses a polarizer turned by 45° with respect to the
electric field direction. The difference between the
refraction indices for the two main directions results in
an effective rotation of the polarization plane of the
reflected light in the direction of the tilt plane. In
slightly decrossed polarizers, the domains therefore
look dark or bright depending on the orientation of the

E

!

3

(a)

(b)

(c)

Fig. 1. Temperature-induced transition in even-N films.
(a) The microscope image in reflection of an eight-layer
TFMHPBC film in the antiferroelectric phase at 70.7°C.
The c-director is aligned parallel to the electric field. The
film appears dark with a bright 2π wall. (b) Transition on
heating (T = 75 °C): the region of a high-temperature phase
with different orientations of the c-director emerges. Upon
heating, the front moves from bottom to top of the picture.
(c) The state at higher temperature with polarization per-
pendicular to the tilt plane (T = 75.7°C). The electric field
value is 8.8 V/cm. The orientation of the polarizer (3), the
analyzer (!), and the electric field is shown in Fig. 1c. The
horizontal size of each photograph is 370 µm.
JOURNAL OF EXPERIMENTAL
tilt plane with respect to the direction of the electric
polarization. In this method, the low intensity of the
image is compensated by a highly contrast pattern.

Another technique was used in measurements of the
linearly polarized reflectivity from the films in “back-
ward” geometry. In electrooptical measurements, we
could change the direction of light polarization and the
direction of the electric field in the plane of the film. In
tilted smectic phases, the films are optically anisotropic
in the plane of the layers. The reflection intensities with
the light polarization parallel (I||) and perpendicular (I⊥ )
to the direction of the electric field were measured.
Using this technique, we could determine the orienta-
tion of the tilt plane in the films and their optical aniso-
tropy.

3. RESULTS AND DISCUSSION

In the geometry used for imaging, Sm  films with
an even number of layers look like a dark field with two
bright lines in the regions where 2π walls exist
(Fig. 1a). Films have the polarization PX parallel to the
tilt plane, and the c-director (the projection of n on the
film plane [3]) is parallel to the vertical axis. Across the
2π wall, the c-director rotates by the angle 2π; as a
result, regions with a nearly horizontal orientation of
the c-director in 2π walls look like two bright narrow
lines. In microscopic investigations, we chose regions
of the films with 2π walls. In these regions, it is easiest
to judge the orientation of the c-director with respect to
the electric field direction. Heating to 75 °C leads to the
appearance of a new phase (Fig. 1b). In spite of a small
tilt angle, the phase boundary and the phases them-
selves are easily visualized in films using DRLM above
the bulk transition temperature. A transformation of the
DRLM picture (dark 2π walls in the bright field,
Figs. 1b, 1c) shows that the direction of the polarization
with respect to the c-director is drastically different
from that in the low-temperature state. The transition
may be caused either by a substantial change of the rel-
ative orientation of tilt planes in neighboring layers or
by the temperature variation of relative values of the
polarizations PX and PY and the rotation of the
c-director of the film in the electric field. The existence
of a sharp boundary and the behavior of 2π walls near
it show that the transition is not caused by a smooth
temperature decrease in the PX component of the polar-
ization with respect to the PY one. In that case, the tran-
sition front would be blurred and the regions of 2π
walls with the horizontal orientation of the c-director
could smoothly turn into a new oriented state.

In films with an odd number of layers, we also
observed the transition to a new structure (Fig. 2). A
transformation of the DRLM picture indicates the tran-
sition from the structure with the polarization PY per-
pendicular to the tilt plane to a structure with the dom-
inant polarization PX. Thus, films having polarizations
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of different types in the Sm  phase (PY in odd-N
films and PX in even-N films) after the transition also
possess different polarization directions in the plane of
the layers (PY in even-N films and PX in odd-N films).
We observed such a behavior in all investigated films
with the thickness from three to more than twenty lay-
ers. But the transition temperatures strongly depend on
the film thickness (in a three-layer film, the transition
occurs at about 85°C). Figures 1b and 2b show two
realizing possibilities for the coexistence of 2π walls
and the boundary of two phases. In the antiferroelectric
phase, the 2π walls are either continued into the new
phase (Fig. 1b) or split into walls that are localized near
the boundary as in Fig. 2b.

In films with N > 10, we found an increase in the

number of structures above the Sm  phase. These
structures can be simultaneously observed in a sample
with a temperature gradient. An image of such a film is
shown in Fig. 3. The temperature increases from left to
right. In the left part of the figure, the film is in the

Sm  phase 1. In regions 2–4, the sample is in differ-
ent states with different directions of the polarization.
This is clearly seen from measurements of the optical
reflectivity from a film for two directions of the light
polarization, perpendicular (I⊥ ) and parallel (I||) to the
electric field direction. Figure 4 shows the results of

such measurements for an 18-layer film. In the Sm
phase (Fig. 4a), I⊥  < I||, which implies that the polariza-
tion is parallel to the tilt plane. The same polarization
direction is observed in state 3 (Fig. 4c). In states 2 and
4 (Figs. 4b, 4d), I⊥  > I||, which indicates that the tilt
plane is perpendicular to the electric field direction and
to the film polarization. The sequence of transitions
from state 1 to state 4 therefore occurs with the change
in the polarization direction. These measurements also
provide information about optical anisotropy of the
films. This enables us to answer one of the main ques-
tions: Do short-pitch helical structures emerge above

the Sm  phase? Formation of the short-pitched azi-
muthal helix with the pitch on the order of or less than
the film thickness should lead to a substantial decrease
in the reflection anisotropy |I⊥ /I|| – 1|. In such a nearly
optically uniaxial structure, the anisotropy can occur
because the film thickness is not a multiple of the half-
pitch. But the magnitude of the anisotropy in short-
pitched structures must be several times smaller than

that before the transition from the Sm  phase. A
smooth decrease in |I⊥ /I|| – 1| in Figs. 4b–4d is due to a
well-known decrease in the molecular tilt angle on
heating. We found that I⊥ /I|| – 1 changes its sign as the
result of transitions, but the absolute value changes
only insignificantly. Therefore, even in relatively thick
films (Fig. 4), transitions occur into structures without
a short pitch. At high temperatures, state 4 (Figs. 3 and 4)
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can be switched to the state with the longitudinal polar-
ization by decreasing the electric field value.

Four pictures in Fig. 5 demonstrate the behavior of
an eight-layer film at high temperatures. In the low
field, the film is in the state with the polarization paral-
lel to the tilt plane (the bright 2π wall in a dark field,
Fig. 5a). The increase in the field induces the appear-

E

!

3

Fig. 2. Temperature-induced transition in odd-N films.
(a) The optical microscope picture of a nine-layer TFMHPBC
film in reflection in the low-temperature (antiferroelectric)
phase (T = 70.4°C). In the odd-N film, the c-director is oriented
along the horizontal axis. The film is bright with dark 2π walls.
(b) On heating to 75°C, the film undergoes a transition to the
phase with the polarization parallel to the tilt plane. This phase
appears in the lower part of the photograph. (c) The film after
the transition. The entire film appears dark with a bright 2π
wall. The electric field value is 7.5 V/cm. The horizontal size of
each photograph is 420 µm.

(a)

(b)

(c)
ICS      Vol. 95      No. 4      2002
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E
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3

1 2 3 4

Fig. 3. States with the polarizations parallel and perpendicular to the tilt plane in a 12-layer film are observed as regions with dif-
ferent brightness levels. A sample with a temperature gradient was used for this observation. The left part of the film corresponds
to a temperature of about 74°C and the right part to a temperature of about 76 °C. In region 1, the film is in the Sm  phase. In
regions 2–4, states with different orientations of the tilt plane exist. These states can be aligned by the electric field. The narrow
stripe between regions 2 and 3 is a line defect localized at the boundary of the states. The horizontal size of the image is 610 µm,
E = 10 V/cm.
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27.5

27.0
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(a) (b)

(c) (d)

I⊥ I|| I⊥ I||

Fig. 4. Optical reflectivity from an 18-layer film for two
directions of the light polarization: perpendicular (I⊥ ) and
parallel (I||) to the electric field. A sequence of four states was

observed: the Sm  phase in state 1 (a) and states 2–4 (b–d)

above the Sm  phase. Transitions between these states
occur with the change in the direction of the electric polariza-
tion. The tilt plane of molecules is oriented parallel to the elec-
tric field and polarization (I⊥  < I||) in states 1 and 3 (a, c). In
states 2 and 4 (b, d), the tilt plane is oriented perpendicular to
the electric field and polarization (I⊥  > I||). In the Sm phase,
the measurements were made near the temperature T0 of the
transition to state 2, such that T0 – T = 0.3°C; to states 2–4,
respectively, at T0 + 0.15°C, T0 + 0.2°C, and T0 + 1.1°C. The
data were obtained at the electric field value of 35 V/cm.
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ance of the structure with the polarization perpendicu-
lar to the tilt plane (Figs. 5b, 5c). The switching electric
field Es is more than three orders of magnitude smaller
than the field inducing the anticlinic–synclinic transi-

tion in the Sm  phase at low temperatures. Such a
small value of Es is due to the small tilt angle of the mol-
ecules. Seemingly, the change of interlayer organiza-
tion (anticlinic–synclinic or vice versa) occurs in only
several layers. This field-induced transition is revers-
ible and the decreasing field returns the film to its initial
state (Fig. 5d). It is worth mentioning that such a behav-
ior at high temperatures is observed in films of all thick-
nesses investigated, is independent of the film oddity,
and is similar to the behavior of films without the

Sm  phase with a large value of the layer polariza-
tion [45, 46].

The number of transitions caused by heating
depends on the film thickness, its oddity, and the value
of the electric field. In thin odd-N films, one transition
is observed in the low field and two in the high field.
Thin even-N films undergo two transitions in the low
field and only one in the high field. The crossover from
low to high field is determined by the value of Es,
depends on the film thickness, and typically occurs at
about 10 V/cm. In thicker films (N > 10), the number of
transitions occurring with heating is increased. For
odd-N antiferroelectric films, it is odd (even) in the low
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(d)

Fig. 5. An example of the field-induced transition at a high temperature in an eight-layer TFMHPBC film. (a) At the low electric
field 4 V/cm, the film is in the state with the polarization parallel to the tilt plane. The c-director is aligned in the vertical direction
(dark background with a bright 2π wall). (b) When the field is increased to 19 V/cm, the region of the high-field state with the polar-
ization perpendicular to the tilt plane emerges as a bright one. This region gradually fills the entire film. The front moves from the
left to the right side of the image. (c) The film in the high-field state. (d) When the electric field is decreased to 4 V/cm, the film
returns to the low-field state. T = 78.8°C. The horizontal size of each image is about 300 µm. 
(high) electric field. For even-N films, the number of
transitions is even (odd) in the low (high) electric field.
A simpler situation is expected in films with the low-
temperature ferroelectric phase: an odd (even) number
of transitions in the low (high) electric field in both odd-
N and even-N films. As already mentioned, this is the
case for compounds with a high layer polarization. For
films with a small layer polarization in which the polar-
ization of the high-temperature ground state is perpen-
dicular to the tilt plane [45], the number of transitions
is opposite to that described above.

Film surfaces can influence the structure of the film
and phase transitions in different ways. The presence of
a surface breaks the symmetry existing in bulk samples.
For layers near the surface, the nearest and next-nearest
interlayer interactions are realized only on one side
(only on the side of the film). The missing interlayer
interaction near the surface can influence both the mod-
ulus θ and the phase φ of the order parameter. Symme-
try breaking in antiferroelectric films must lead to a
smaller magnitude of the polar angle θ and to the low-
temperature shift of phase transitions with respect to
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the bulk sample [47]. The second effect is related to the
existence of the surface as a physical boundary between
two media. In liquid crystals, this effect mainly mani-
fests itself through the surface tension and the suppres-
sion of the layer displacement fluctuations at free sur-
faces that increase the modulus of the order parameter
(surface freezing) and the phase transitions tempera-
tures. To the best of our knowledge, the direct influence
of the surface tension on the phase φ of the order param-
eter and suppression of the smectic-layer fluctuations
have not been considered theoretically or observed
experimentally. Presently, it is still debated which of the
above effects prevails for antiferroelectric liquid crys-
tals [47, 48]. The existence of a tilted structure above
the bulk transition temperature to the SmA phase and a
high-temperature shift of the phase transitions in thin
films show that, in antiferroelectric films, as in ferro-
electric ones, the surface freezing effect dominates. In
strong surface-freezing conditions, the most distinctive
feature of the film is that the profile of θ is essentially
inhomogeneous across the film. Above but near the

temperature of the bulk transition to the Sm  phase,Cα*
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the modulus of the order parameter on the surface
exceeds that in the bulk sample. At the same time, the
tilt is smaller in the interior of the film; at some temper-
ature, it corresponds to the value at which transitions
with a change of φ occur in the bulk sample. In thin
films, only a few interior layers can undergo the transi-
tion. In thick films, the conditions for a change of φ
arise in a greater number of layers and the number of
possible structures with the synclinic and anticlinic tilt
is increased. This is related to the observed increase in
the number of transitions in thicker films.

For the Sm  structure, the appearance of the
polarization PY perpendicular to the tilt plane in odd-N
films and the polarization PX parallel to the tilt plane in
even-N films is related to different symmetries with
respect to the center of the film [37]. Similar symmetry
considerations apply to films consisting of synclinic
and anticlinic pairs. The change in the number of pairs
with synclinic and anticlinic tilts by one can lead to the
transition from the PY net polarization to the PX one and
vice versa. In even-N films, this reorientation of the tilt
can occur with the formation of a symmetric or anti-
symmetric structure with respect to the center of the
film and, accordingly, to the PX or PY net polarization.
In odd-N films, formation of a synclinic pair destroys
the symmetry with respect to the center of the film. In
such films, the PX or PY polarization can dominate.
Transition to the PX polarization with the appearance of
a symmetric structure is possible when the molecular
tilt becomes zero in the central layer of the odd-N film.
We mention that, in this case, the decrease in the molec-
ular tilt angle in the center of the film occurs gradually,
because we did not observe a substantial decrease in
anisotropy in thin films at transitions with the change in
the c-director orientation.

Two reasons may be responsible for the formation

of a coplanar structure in films above the Sm  phase.
At low temperatures, the condition for the reorientation
of the tilt planes arises only in the central part of the
film because of surface freezing, which prevents the
formation of a short-pitch structure. The second reason
is related to peculiarities of fluctuations of θ in SmA
films [47]. In the bulk sample, sinusoidal fluctuations in
perpendicular planes can assemble with an arbitrary
phase shift, which leads to coplanar, circular, or ellip-
soidal fluctuations and to possibilities of the formation
of tilted pitch structures at a second-order transition. As
pointed out in [47], unlike in the bulk sample, two fluc-
tuation modes have the same or the opposite phases in
films because of the symmetry with respect to the cen-
ter of the film, which leads to only coplanar fluctuations
and to the transition to coplanar tilted structures. Copla-
nar structures in thin films may also reflect the inter-
layer molecular organization in thick films. In optical

experiments [20–22] in the range of the Sm  phase,
the films possess optical anisotropy and polarization.

CA
*

CA
*

Cα*
JOURNAL OF EXPERIMENTAL 
These may not only be related to surface effects but also
be an indication of a distorted staircase character of the

Sm  phase in thick free-standing films.

In summary, using depolarized light microscopy
and polarized reflectivity, we observed coplanar struc-

tures in free-standing films above the Sm  phase.
The number of transitions depends on the film thick-
ness, its oddity, and the value of the electric field. Tem-
perature- and field-induced transitions occur as the
direction of the electric polarization changes with
respect to the tilt plane.
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Č č Ž š
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Č č Ž š

Č č Ž š
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Abstract—The Raman spectra of the two-dimensional tetragonal (2D(T)) polymeric phase of C60 have been
studied in situ at pressures up to 30 GPa and room temperature. The pressure dependence of the phonon modes
shows an irreversible transformation of the material near 20 GPa into a new phase, most probably associated
with the covalent bonding between the 2D polymeric sheets. The Raman spectrum of the high-pressure phase
is intense and well resolved, and the majority of modes are related to the fullerene molecular cage. The sample
recovered at ambient conditions is in a metastable phase and transforms violently under laser irradiation: the
transformed material contains mainly dimers and monomers of C60 and small inclusions of the diamond-like
carbon phase. The photoluminescence spectra of the 2D(T) polymer of C60 were measured at room temperature
and pressure up to 4 GPa. The intensity distribution and the pressure-induced shift of the photoluminescence
spectrum drastically differ from those of the C60 monomer. The deformation potential and the Grüneisen param-
eters of the 2D(T) polymeric phase of C60 have been determined and compared with those of the pristine mate-
rial. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The polymeric forms of C60 have attracted consider-
able attention because of their interesting structure and
properties [1]. Pristine C60 has a great potential for
polymerization because of the existence of 30 double
C=C bonds in the fullerene molecular cage. C60 has
been found to polymerize under illumination with visi-
ble and ultraviolet light [2] and upon alkali metal dop-
ing [3, 4]. The treatment of C60 under various high-pres-
sure and high-temperature conditions also leads to
polymerization of the material (HPHT polymers) [5].
The covalent polymeric bonds are usually formed by
the so-called [2 + 2] cycloaddition reaction via the for-
mation of four-member rings between adjacent
fullerene molecules, resulting in an appreciable
decrease in the intermolecular distance [2].

The structure and the dimensionality of HPHT poly-
mers strongly depend on the pressure (P) and tempera-
ture (T) treatment conditions. The C60 molecules form
linear polymeric chains (one-dimensional polymer)
having an orthorhombic crystal structure (1D(O))
and/or dimers and higher oligomers at lower P and T,
two-dimensional polymeric layers that have either a
rhombohedral (2D(R)) or a tetragonal (2D(T)) crystal
structure at intermediate P and T, and face-centered

¶This article was submitted by the authors in English.
1063-7761/02/9504- $22.00 © 20736
cubic structures based on three-dimensional (3D)
cross-linked polymerization of the material at higher P
and T [1, 5–7]. In addition, the treatment of the pristine
material under high nonuniform pressure and high tem-
perature leads to the creation of several disordered
polymeric phases, the so-called ultrahard fullerite
phases [8, 9]. The detailed X-ray studies of these phases
have revealed their 3D polymeric character [10, 11].

The polymerization of C60 is characterized by the
destruction of a number of double C=C intramolecular
bonds and the creation of intermolecular covalent
bonds associated with sp3-like fourfold coordinated
carbon atoms in the fullerene molecular cage. Their
number increases from 4 to 8 and to 12 per each cage
for 1D(O), 2D(T), and 2D(R) polymeric phases,
respectively, and is expected to further increase in the
3D polymeric phases. Theoretical studies by Okada et
al. [12] have predicted that the 3D-polymerized C60

might be formed by the application of uniaxial pressure
perpendicular to the polymeric sheets of the 2D(T)
phase of C60. According to their density-functional cal-
culations, polymerization occurs at the lattice constant
c = 10.7 Å, which is attainable at the pressure of
approximately 20.2 GPa. This polymerization results in
the formation of a stable metallic phase having 24 sp3-like
and 36 sp2-like hybridized carbon atoms in each C60 mol-
ecule. Another theoretical study, by Burgos et al. [13],
002 MAIK “Nauka/Interperiodica”
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predicted that uniaxial compression perpendicular to
the chains in the 1D or to the polymeric planes in the
2D polymeric phases of C60 leads to 3D polymerization
with 52, 56, and even 60 sp3-like coordinated carbon
atoms per C60 molecular cage. These transformations
are expected to occur at pressures lower than 14 GPa,
and the new phases are semiconducting with large bulk
and shear moduli.

The Raman scattering and infrared absorption spec-
tra of various polymeric phases prepared under care-
fully controlled conditions of HPHT treatment have a
very rich and prominent structure. Their intensity dis-
tribution and peak positions differ significantly for the
1D(O), 2D(R), and 2D(T) polymeric phases, as has
been shown by the detailed study of their optical spec-
tra combined with their structural analysis [14]. The
phonon spectra of these materials are very sensitive to
any perturbation of the fullerene molecular cage caused
by external disturbances such as pressure or chemical
bond formation [15, 16]. Therefore, the Raman spec-
troscopy can be successfully used for the identification
of various polymeric phases of C60 and for the in situ
high-pressure studies of phase transformations in the
fullerene-related materials. Our experimental Raman
studies of the pressure dependence of the 2D(T) poly-
meric phase of C60 [17, 18] have revealed prominent
irreversible changes in the Raman spectra of this mate-
rial near 20 GPa, most probably related to its further
polymerization in accordance with the theoretical pre-
diction by Okada et al. [12]. The well-structured
phonon spectrum of the new high-pressure phase in the
2D(T) polymer provides strong indications that the
fullerene molecular cage is retained and that the new
phase may be related to a three-dimensional network of
the C60 molecules. The Raman data [17, 18] disagree
with the results of recent high-pressure X-ray studies of
the 2D(T) polymer: this fact shows that the material
undergoes an irreversible amorphization in the pressure
region between 10 and 20 GPa [19]. It is also interest-
ing to note that contrary to the 2D(T) polymer, the
2D(R) polymeric phase of C60 transforms to a new
phase at approximately 15 GPa; this phase is character-
ized by very diffused Raman bands that are most prob-
ably related to the random covalent bonding between
molecules belonging to adjacent 2D polymeric sheets
[20].

In this work, we present a detailed photolumines-
cence and Raman study of the intramolecular phonon
modes and electronic spectrum behavior of the 2D(T)
polymeric phase of C60 at high pressure. Our motivation
was to study, in detail, the properties and stability of the
material in both 2D(T) and high-pressure induced
phases, to obtain quantitative data on the pressure
dependence of the phonon and electron spectra, and to
compare them with those of pristine C60.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. EXPERIMENTAL 

Two-dimensional polymerized C60 was obtained by
subjecting 99.99% pure C60 powder to the pressure
2.2 GPa at the temperature about 820 K [21]. An X-ray
analysis of the samples from the same batch after the
high-pressure and high-temperature treatment con-
firmed that the crystal structure of the polymer is tetrag-
onal (the space group P42mmc), while a Raman analy-
sis showed the typical spectrum of the 2D(T) polymer
of C60 with no detectable inclusions of orthorhombic or
rhombohedral phases [14, 21, 22].

Raman spectra were recorded using a triple mono-
chromator (Dilor XY-500) equipped with a CCD liq-
uid-nitrogen-cooled detector system. The spectra were
taken in the back-scattering geometry using a micro-
Raman system comprising an Olympus microscope
equipped with objectives of 100× and 20× magnifica-
tion and the respective spatial resolutions of approxi-
mately 1.7 µm and 8 µm. The spectral width of the sys-
tem was about 5 cm–1. The 514.5-nm line of an Ar+ laser
was used for excitation. The laser power was kept lower
than 20 mW measured directly before the high-pressure
cell, in order to avoid the destruction of polymeric
bonds caused by laser heating effects and related
changes in the phonon spectrum and the crystal struc-
ture [23–25]. The photoluminescence spectra were
recorded using a single monochromator Jobin Yvon
THR-1000 equipped with a CCD liquid-nitrogen-
cooled detector system. The spectral width of the sys-
tem was approximately 0.5 meV. The 488-nm line of an
Ar+ laser was used for excitation of the luminescence
spectra. The laser power was kept at 2 mW measured
directly in front of the high-pressure cell.

Measurements of the Raman and photolumines-
cence spectra at high pressures were carried out using
the diamond anvil cell of Mao–Bell type [26]. A 4 : 1
methanol–ethanol mixture was used as the pressure
transmitting medium, and the ruby fluorescence tech-
nique was used for pressure calibration [27]. The sam-
ples used in the present study had dimensions of
100 µm and were selected from the batch material for
their intense, clear, and spatially uniform Raman
response, typical of the 2D(T) polymeric phase [14].
The band frequencies in the Raman and photolumines-
cence spectra were obtained by fitting Lorentzian peak
functions to the experimental peaks after the back-
ground subtraction.

3. RESULTS AND DISCUSSION

3.1. Phase Transitions

The Raman spectra of the 2D(T) polymer of C60 at
various pressures up to 27.5 GPa and room tempera-
ture, in the frequency region 200–2050 cm–1, are illus-
trated in Fig. 1a. In this figure, the spectra were
recorded upon pressure increase; the spectral region
around the strong triple-degenerate T2g mode of dia-
SICS      Vol. 95      No. 4      2002
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Fig. 1. Raman spectra of the 2D(T) polymer of C60 at 300 K and various pressures, recorded for (a) increasing and (b) decreasing
pressure runs. The numbers 1/x indicate the relative scale of the spectra.
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mond appearing at 1332 cm–1 at ambient pressure [28]
is omitted. The initial spectrum at 1.1 GPa represents a
typical Raman spectrum of the 2D(T) polymeric phase
and is identical with the spectra reported earlier [14, 17,
18]. Lowering the molecular symmetry from Ih in pris-
tine C60 to D2h in the 2D(T) polymer results in the split-
ting of the degenerate icosahedral intramolecular
modes and in the activation of initially silent modes
[14, 29, 30]. Moreover, although the 2D(T) phase
retains the inversion center of the pristine C60 molecule,
we cannot discard the possibility that imperfections in
the crystal structure of the polymer and/or the natural
13C substitution may facilitate the appearance of some
ungerade modes in its Raman spectrum [30]. For these
reasons, the Raman spectrum of the 2D(T) polymer is
richer in structure than that of pristine C60 [31].

As can be clearly seen from Fig. 1a, the Raman
peaks of the 2D(T) polymer remain narrow and well
resolved for pressures up to 14 GPa, showing the homo-
geneity and stability of the samples used. We note that,
as recently shown [30], the pressure dependence of the
Raman modes of the 2D(T) polymer is fully reversible
up to 12 GPa. For pressures P > 14 GPa, the Raman
peak bandwidths of the polymer increase gradually and
the intensities of peaks decrease considerably. In addi-
tion, the peak broadening is accompanied by a gradual
JOURNAL OF EXPERIMENTAL 
enhancement of the background (not shown in Fig. 1,
because the Raman spectra are presented after the back-
ground subtraction). Because the fluorescence from the
2D(T) polymer of C60 appears in another energy region,
this background is most probably related to the
enhancement of strain and inhomogeneity within the
sample induced at higher pressure.

The drastic changes in the Raman spectrum of the
2D(T) polymer are first observed at P > 20 GPa, where
new distinct peaks appear in the spectrum and their
intensities increase with a further increase in pressure.
On the contrary, some of the initial Raman peaks of the
polymer disappear above this critical pressure. At P ≥
20 GPa, the Raman spectrum of the material is signifi-
cantly different from the initial one at lower pressure;
the observed changes can be attributed to the transition
of the polymer to a new high-pressure phase. From
Fig. 1a, it is clear that, even for an applied pressure as
high as 27.5 GPa, the Raman spectrum of the high-pres-
sure phase is well resolved with relatively narrow
peaks. Moreover, the frequency positions of the major-
ity of the peaks in the new phase can be tracked back to
the peaks observed in the initial 2D(T) polymeric phase
of C60. This is a first experimental indication that the
C60 molecular cages are retained at pressures higher
than 20 GPa, as the Raman peaks in the high-pressure
AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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phase have their origin on intramolecular cage vibra-
tions.

Figure 1b shows the Raman spectra of the material
upon pressure release. The decrease in pressure from
27.5 GPa to ambient conditions results in the gradual
shift of the Raman peaks to lower energies. The release
of pressure does not lead to any observable changes in
the Raman intensity distribution, and the high-pressure
phase remains stable down to the ambient pressure. The
bottom spectrum in Fig. 1b was recorded at 0.6 GPa,
while the sample was recovered in air after disassem-
bling the diamond anvil cell and tested again by means
of micro-Raman probing. In Fig. 2, the Raman spec-
trum of the 2D(T) polymer recorded at ambient condi-
tions (Fig. 2a) is illustrated in comparison with that of
the high-pressure phase of the recovered material
(Fig. 2b). The spectra in Fig. 2 were recorded outside
the diamond anvil cell, and it was therefore attainable
to also measure the spectrum of each material in the fre-
quency region of the T2g mode of diamond. The Raman
spectrum of the high-pressure phase at ambient condi-
tions is quite different from that of the initial 2D(T)
polymeric phase of C60. The peak positions for the
2D(T) polymer and those for the recovered high-pres-
sure phase are shown in table at ambient conditions.

The recovered high-pressure phase of the 2D(T)
polymer exhibits a metastable behavior. More specifi-
cally, after a time period of several days from the
moment of its exposure to air, the recovered sample was
detonated upon laser irradiation using the power 0.4 mW
(objective: 100×) on the laser spot at the surface of the
sample. The detonation is a rapid explosive process that
was probably initiated by the thermal energy deposited
by the probing laser beam; it results in a rapid relax-
ation of the built-in strain in the sample. We note that,
under these conditions, the laser power density on the
sample is higher than the density reaching the sample
inside the high-pressure cell due to the different optical
systems used (different magnification factors and laser
spot diameters). In addition, thermal dissipation condi-
tions are different in the two cases, because the sample
is surrounded by the pressure-transmitting medium in
the cell. After the detonation, two phases were identi-
fied among the pieces of the recovered sample, charac-
terized by their completely different Raman spectra
presented in Figs. 2c and 2d. In Fig. 2c, the spectrum of
the main part of the detonated sample is illustrated.
This Raman spectrum is similar to that expected from a
mixture consisting of dimers and monomers of C60 [1,
2, 14]. The presence of this phase in the detonated sam-
ple definitely proves that the C60 molecular cages are
retained in the high-pressure phase of the 2D(T) poly-
mer. Finally, in Fig. 2d, the Raman spectrum of the
phase that is a minority among the pieces of the deto-
nated sample is given. As can be seen, the Raman spec-
trum of this phase is rather weak, consisting of two rel-
atively broad peaks at 1342 and 1591 cm–1 (see table).
We have recorded the spectrum of this phase after the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sample detonation, but because the spectrum is too
weak, we are not sure whether this phase was also
present in the sample before its detonation, or even in
the initial 2D(T) polymer before the application of
pressure. Fullerite phases having Raman spectra similar
to that in Fig. 2d have been observed in C60 treated at
the pressure 12.5 GPa and temperature higher than
700°C [32], as well as in C60 treated at the pressure
9.5 GPa and temperature higher than 1500°C [33].
These phases were characterized by X-ray and micro-
hardness studies as disordered carbon phases having
high density and hardness [32–34] and were attributed
to the breakdown of C60 molecular cages and the forma-
tion of a cross-linked structure of graphite-like layers
[33]. Indeed, the Raman spectra of these carbon phases,
as well as the spectrum presented in Fig. 2d, are similar
to that of the amorphous carbon containing a significant
amount of sp2 bonded carbon atoms [35] and to those of
the microcrystalline graphite or diamond-like carbon

500

In
te
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ity

Raman shift, cm–1
1000 1500 2000

(a)

(b)

(c)

(d)
D G

1/1

1/20

1/25

1/250

Fig. 2. Raman spectra of the initial 2D(T) polymer and the
recovered high-pressure phase after pressure release, at
ambient conditions. The numbers 1/x indicate the relative
scale of the spectra. (a) The initial 2D(T) polymeric phase.
(b) The high-pressure phase of the polymer. (c) The main
component among the pieces of the detonated sample iden-
tified as a mixture of the C60 monomer and dimer. (d) The
diamond-like carbon phase identified among the pieces of
the detonated sample.
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Phonon frequencies, pressure coefficients, and the Grüneisen parameters for the initial 2D(T) polymeric phase of C60, the
high-pressure phase, and pristine C60. The phonon frequencies for the diamond-like carbon and dimeric C60 phases observed
after the sample detonation are also included

Modea

2D(T) polymeric C60 High-pressure phase Pristine C60
Dimer 

C60

Diamond-
like phase

ωi,
cm–1

∂ωi/∂P,
cm–1 GPab γi

ωi, 
cm–1

∂ωi/∂P,
cm–1 GPab γi

ωi,
cm–1

∂ωi/∂P,
cm–1 GPa

γi ωi,
cm–1 ωi, cm–1

P < 4 GPa P < 
10 GPa

P >
10 GPa 0.4 < P < 2.4 GPa

Hg(1) 259 5.8 0.78 – – – 272 3.2 0.165 266 –
Hg(1) 282 2.3 0.264 297 0.3 0.047 294 2.5 0.119 – –
F2u(1) 363 –0.2 –0.019 391 –0.2 –0.024 345 2.9 0.118 – –
Hg(2) 416 –0.1 –0.009 – – – 389 –0.2 –0.007 – –
Hg(2) 432 0.6 0.049 442 0.6 0.064 435 2.4 0.077 427 –
Hg(2) 456 0.3 0.023 459 0.8 0.079 454 1.4 0.043 – –
Ag(1) 487 4.5 0.322 – – – 495 4.2 0.119 489 –
F1u(1) – – – – – – 522 1.4 0.027 523 –
F2g(1) 536 1.4 0.091 540 0.6 0.052 – – – – –
F1g(1) 563 1.4 0.087 554 1.3 0.8 0.111 563 0.8 0.02 – –
F1g(1) 588 0.8 0.047 571 1.8 0.9 0.148 – – – – –
F1g(1) – – – 634 2.7 0.9 0.201 624 1.5 0.034 – –
Hg(3) 666 0.7 0.036 – – – – – – – –
Hg(3) 683 2.3 0.118 688 1.4 1.0 0.096 – – – – –
Hg(3) – – – – – – 710 –0.8 –0.016 704 –
Hg(4) 748 –0.7 –0.033 738 1.9 1.3 0.121 729 –2.9 –0.056 – –
Hg(4) 751c – – – – – 755 –4.1 –0.078 – –
Hg(4) 772 –1.2 –0.054 769 2.1 1.6 0.128 772 –2.7 –0.049 768 –
Hg(4) 773c – – – – – – – – – –
Hg(4) – – – 826 2.4 0.137 – – – – –
Hu(4) 861 –0.6 –0.024 877 1.6 0.086 – – – 847 841
Hu(4) – – – 902 2.1 0.109 – – – – –
Hu(4) – – – 915 2.2 0.113 – – – – 915
Gg(2) 955 4.5 0.164 961 3.0 0.147 – – – 956 –
Gg(2) – – – 972 3.7 0.179 – – – – –
F2u(4) 1041 4.2 0.141 1029 3.8 0.174 – – – – –
F2u(4) – – – 1064 2.8 0.124 – – – – –
Hg(5) 1107 4.8 0.151 – – – – – – – –
Gg(3) 1178 6.7 0.198 – – – – – – – –
F2g(3) 1206 7.6 0.22 – – – – – – – –
Hg(6) – – – – – – – – – 1239 –
F2u(5) – – – – – – – – – 1328 D1342
Hg(7) 1403 6.6 0.164 – – – 1422 9.8 0.096 1420 –
Ag(2) 1448 6.1 0.147 1430 4.3 0.14 1467 5.5 0.053 1461 –
F1g(3) 1464 7.6 0.181 – – – – – – – –
F2g(4) 1541 5.1 0.115 1509 3.9 0.119 – – – – –
Hg(8) 1572 5.9 0.131 1567 3.7 0.111 1570 4.8 0.043 1566 G1591
Gg(6) 1623 4.7 0.1 1647 4.1 0.117 – – – 1624 –
Gg(6) – – – 1842 3.5 0.089 – – – – –

a The mode assignment refers to the irreducible representations of the icosahedral C60 molecule [40] and follows that in [14]; it is given
here only for the initial phase of the 2D(T) polymer and the “dimeric” C60 phase.

b Data taken from [30].
c Frequency value at P = 6 GPa.
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Fig. 3. The pressure dependence of the Raman modes of the 2D(T) polymeric phase of C60 in the frequency regions of 250–

550 cm−1 (a) and 530–830 cm–1 (b). Squares and circles represent data taken for the 2D(T) polymer in the initial and high-pressure
phases, respectively. The open (solid) symbols denote data taken for increasing (decreasing) pressure runs. The shaded area near
20 GPa denotes the pressure range of the phase transformation. The dotted vertical line near 10.4 GPa in Fig. 3b denotes the pressure
where changes in the slope of the pressure dependence occur during pressure decrease.
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films, mostly consisting of sp3 hybridized carbon atoms
[36, 37]. We therefore characterize the phase that is the
minority among the pieces of the detonated sample as
the diamond-like phase, and we ascribe the respective
Raman peaks of this phase at 1342 cm–1 and 1591 cm–1

(Fig. 2d and table) to the D (diamond) and G (graphite)
peaks of the microcrystalline graphite [38].

The obtained experimental data provide a strong
indication that the 2D(T) polymer of C60 undergoes a
phase transition above 20 GPa. The transformation
occurs via an intermediate state having a rather diffuse
Raman spectrum, which characterizes a highly disor-
dered pretransitional state of the material at a pressure
near 4 GPa. The fact that the prominent Raman peaks
of the high-pressure phase are related to the retention of
the C60 cages in this phase is an indication that the new
phase of the polymer can be related to a three-dimen-
sional (3D) polymerization of C60. The observed pecu-
liarities in the pretransitional pressure range also sup-
port the assumption of a further pressure-induced poly-
merization, which is a solid-state chemical reaction
rather than a structural phase transformation. The
Raman spectrum of the high-pressure phase is domi-
nated by a very strong Raman peak around 1842 cm–1,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
which cannot be related to any internal vibrational
mode of the C60 molecular cage. The strong Raman
peaks ranged near 1600–1900 cm–1 in some chemical
compounds of carbon are related to the stretching
vibrations of isolated double C=C bonds [39]. In anal-
ogy to that, the strong peak at 1842 cm–1 can be attrib-
uted to the destruction of a number of double C=C
bonds during further polymerization of the 2D(T) poly-
mer and to the appearance of some of the remaining
ones as isolated C=C bonds in the 3D network of the
C60 polymeric material. A more detailed analysis of the
phonon modes and their pressure dependence in the ini-
tial 2D(T) polymer and in the high-pressure phase are
discussed in the next subsection.

3.2. Phonon Modes

The pressure dependence of the Raman modes of
the 2D(T) polymer of C60 in the initial phase (squares)
and the high-pressure phase (circles) is shown in
Figs. 3 and 4. The open (solid) symbols denote data
taken for increasing (decreasing) pressure runs. Solid
lines are drawn to guide the eye, and arrows indicate the
pressure increase or decrease. In these figures, the
SICS      Vol. 95      No. 4      2002
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Fig. 4. The same as in Fig. 3, but for C60 in the frequency regions of 800–1300 cm–1 (a) and 1400–1950 cm–1 (b).
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mode assignment refers to the irreducible representa-
tions of the parent C60 molecule (Ih symmetry) [40], fol-
lowing the notation in [14] in general, and is given here
only for the initial 2D(T) phase of the polymer. Table
contains a compilation of the mode assignment (given
for the initial 2D(T) polymeric and the “dimeric” C60
phases), phonon frequencies ωi , pressure coefficients
∂ωi/∂P, and the corresponding Grüneisen parameters γi

that in the present work are defined for the initial 2D(T)
polymeric and high-pressure phases. The Grüneisen
parameters

were calculated using the experimental data of the pres-
sure coefficients ∂ωi/∂P for the phonon modes in both
phases of the 2D(T) polymer. The bulk modulus B0 =
34.8 GPa for the initial 2D(T) polymeric phase was
taken from [19]. Because the experimental data are
absent for this material, we have also used the theoreti-
cal value of the bulk modulus B0 = 47 GPa [12] for the
calculation of the Grüneisen parameters in the high-
pressure phase. We note that the values of γi for the
high-pressure phase are only an estimate because the
real value of B0 can differ from the theoretically pre-
dicted one. The appropriate data of the phonon mode
frequencies of pristine C60 and their pressure coeffi-

γi

∂ωi/ωi

∂V /V
----------------–

B0

ωi
0

------
∂ωi

∂P
--------= =
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cients, and Grüneisen parameters calculated using the
bulk modulus B0 = 14.4 GPa [41] are included in table
for comparison [42]. The last two columns in table con-
tain the phonon mode frequencies for the two phases
(diamond-like and dimeric C60) observed after the sam-
ple detonation at ambient conditions.

As can be seen from Figs. 3 and 4, all the Raman
peaks of the initial 2D(T) phase disappear in the pres-
sure range 16 < P < 20 GPa, while the Raman peaks
related to the high-pressure phase gradually appear and
gain in intensity above 20 GPa (the shaded area in
Figs. 3 and 4 indicates the pressure range of the trans-
formation). It is also clear that the majority of the
Raman modes of the high-pressure phase are related to
those of the 2D(T) polymer, showing that they originate
from the C60 molecular cage vibrations. The nature of
some phonon modes in the initial phase of the 2D(T)
polymer of C60, in particular, the Raman peak near
1040 cm–1, is related to the covalent intermolecular
bonding within the 2D polymeric layers [1, 14, 21].
More specifically, the peak near 1040 cm–1 is associated
with the vibrations of the sp3-like coordinated carbon
atoms; the much lower frequency of this peak com-
pared to that of the T2g mode of diamond [28] can be
attributed to the different lengths of the sp3-like bonds
in the 2D(T) polymer (1.64 Å) and diamond (1.54 Å).
In the recovered high-pressure phase, this mode
AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002



PRESSURE-INDUCED TRANSFORMATIONS AND OPTICAL PROPERTIES 743
appears to have two components with the frequencies
1029 and 1064 cm–1. Assuming that the high-pressure
phase is related to the formation of a 3D polymeric
phase of C60 proposed by Okada et al. [12], we can
associate these two Raman peaks with the existence of
two types of sp3-like coordinated carbon atoms with
slightly different bond lengths.

Another important feature of the phonon spectrum
of the high-pressure phase is the drastic changes in the
region of the Ag(2) pentagonal-pinch (PP) mode with
respect to pristine C60 and its 2D(T) polymeric phase.
The PP mode in pristine C60 is related to the in-phase
stretching vibration of the five double C=C bonds orig-
inating in the vertices of each pentagon in the fullerene
molecular cage. The frequency of the PP mode in the
polymeric fullerenes decreases as the number of the
polymeric covalent bonds per each molecular cage
increases. Thus, the PP mode in the Raman spectrum of
the dimeric fullerene C120 is disposed around 1462 cm–1

(from 1469 cm–1 in pristine C60) and is then softened to
1457 cm–1 in 1D(O), to 1449 cm–1 in 2D(T), and further
down to 1406 cm–1 in the 2D(R) polymer [14]. The
additional increase in the number of sp3-like coordi-
nated carbon atoms in the 3D polymer results in more
drastic changes in the PP-mode region. Namely, five
strong peaks appear in the Raman spectrum of the high-
pressure phase, with the most intense of them located
near 1842 cm–1. The breakdown of a large number of
double C= C bonds in the high-pressure phase therefore
leads to quenching of the PP mode; as a result, a num-
ber of new Raman peaks appear that are possibly
related to the stretching vibrations of the remaining iso-
lated double C=C bonds. It is well known that the
stretching vibrations of the isolated double C=C bonds
are Raman-active and their frequencies range up to
2000 cm–1 [39].

The pressure dependence of the phonon frequencies
of the 2D(T) polymer shows a linear behavior for
almost all modes and is absolutely reversible for pres-
sures up to 12 GPa [30]. Nevertheless, two modes,
Hg(1) and Ag(1), demonstrate a strong sublinear pres-
sure dependence. The Ag(1) mode is a breathing mode
of the fullerene molecular cage and is associated with
radial displacements in the atomic motions. To a large
extent, the Hg(1) mode is also related to the radial dis-
placements of the carbon atoms. These two modes are
therefore characterized by out-of-plane displacements
of carbon atoms, and in our opinion, their sublinear
pressure dependence can be associated with the high
anisotropy related to the van der Waals intermolecular
bonding of adjacent 2D polymeric layers and the cova-
lent intermolecular bonding within the layers. Such a
behavior is typical of the 2D polymeric phases of C60
and was also recently observed in the 2D(R) polymer
[20]. In addition, the Ag(1) mode completely disappears
at P ≥ 20 GPa and is not present in the high-pressure
phase. Such a behavior can be the result of the 3D poly-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
meric bonding in the high-pressure phase, which
quenches the breathing vibration of the fullerene
molecular cage.

In the high-pressure phase, the frequencies of all the
observed modes increase with increasing the pressure,
except for the peak at 391 cm–1, which shows a small
negative pressure slope (see table). The pressure coeffi-
cients ∂ωi/∂P of the Raman modes in the high-pressure
phase range from –0.2 to 4.1 cm–1/GPa, and the pres-
sure slopes in the initial phase of the 2D(T) polymer
range from –1.2 to 7.6 cm–1/GPa. At the same time, the
pressure coefficients of the Raman modes in pristine
C60 range from –4.1 to 9.8 cm–1/GPa. These data agree
with the fact that the polymerized materials become
harder as the degree of polymerization increases [1, 12,
41]. It is interesting to note that the pressure coefficients
of the Raman peaks at 1029 and 1064 cm–1, associated
with the sp3-like coordinated carbon atoms, are compa-
rable to that of the T2g mode of the crystalline diamond
(3.8, 2.8, and approximately 2.7 cm–1/GPa, respec-
tively) [43]. Finally, it is important to note that several
Raman modes of the high-pressure phase, located in the
frequency region of 550–800 cm–1, reveal changes in
their pressure slopes to higher values as the pressure
decreases below 10 GPa (see table and the dotted line
in Fig. 3b). These changes in the pressure slopes can be
related to the theoretically predicted relaxation of the
tetragonal lattice parameters in the high-pressure phase
after the pressure release. As shown in [12], the lattice
parameter a of the high-pressure phase at normal con-
ditions is enlarged with respect to that of the initial
2D(T) polymer from about 0.3 to 9.4 Å. We also think
that the relaxation of the lattice parameter in the recov-
ered high-pressure phase is responsible for the soften-
ing of the 1040 cm–1 mode in the initial 2D(T) polymer
to 1029 cm–1 in the new high-pressure phase (the low-
frequency split component).

In Fig. 5, we show the correlation of the Grüneisen
parameters γi to the phonon mode frequencies ωi. The
respective data for pristine C60, for the initial phase of
the 2D(T) polymer of C60, and for its high-pressure
phase are represented by open triangles, circles, and
squares. The single solid star indicates the Grüneisen
parameter of the T2g mode of diamond, which is as large
as 0.895. The values of γi for the three materials inves-
tigated vary between –0.078 and 0.78; in general, they
behave similarly to frequency, exhibiting two maxima
near 600 and 1300 cm–1 and two minima near 400 and
750 cm–1. Both minima are related to soft intramolecu-
lar modes and are characterized by negative values of γi,
indicating the possible instability of the C60 molecular
cage with respect to the atomic displacements related to
these modes. We note that the polymerization of pris-
tine C60 leads to a deformation of the fullerene molecu-
lar cage, which, in particular, results in the reduction of
the number of modes with negative values of γi. This
SICS      Vol. 95      No. 4      2002
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reduction becomes more significant in the fullerenes
with a higher degree of polymerization. Another inter-
esting observation is that the maximum in the fre-
quency dependence of the Grüneisen parameters

0.8

0.6

0.4

0.2

0

500 1000 1500

γi

ωi, cm–1

Fig. 5. Grüneisen parameters for the various modes of pris-
tine C60 (triangles), the initial 2D(T) polymeric phase (cir-
cles), and its high-pressure phase (squares). The solid star
indicates the Grüneisen parameter of the T2g mode of dia-

mond at 1332 cm–1.
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around the T2g mode of diamond at 1332 cm–1 is more
pronounced for the polymerized fullerenes. This
implies, in particular, that the appropriate phonon
modes of the polymeric fullerenes involve atomic
motions of the sp3-like coordinated carbon atoms as in
the case of the T2g mode of diamond.

We finally consider the very large values of γi for the
Hg(1) and Ag(1) modes in the 2D(T) polymer. These
modes are greatly affected by the van der Waals inter-
action between the 2D polymeric layers due to the out-
of-plane nature of the relevant atomic motions. In addi-
tion, the deformation of the fullerene molecular cage
related to the additional 3D polymeric bonding also
contributes to the large values of γi for these two modes.

3.3. Photoluminescence and Electronic Spectrum

The photoluminescence spectra of the 2D(T) poly-
meric phase of C60, for pressures up to 3 GPa and room
temperature, recorded for various increasing and
decreasing pressure runs, are shown in Figs. 6a and 6b,
respectively. The inset in Fig. 6b shows the photolumi-
nescence spectrum of the 2D(T) polymer in compari-
son with the photoluminescence spectra of pristine C60
at room temperature and at 10 K [44]. The fluorescence
intensity in the 2D(T) polymer is noticeably higher than
in pristine C60. This is related to the fact that the lowest
excited singlet state of the C60 molecule has the 1T1g
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Fig. 6. Photoluminescence spectra of the 2D(T) polymer at 300 K and various pressures for the increasing (a) and decreasing (b)
pressure runs. Inset: photoluminescence spectra of pristine C60 at 10 and 300 K in comparison with that of the 2D(T) polymer at
room temperature.
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symmetry and optical transitions to this state are
dipole-forbidden [45, 46]. In solutions, the fluores-
cence of C60 is related to the vibronically assisted
Herzberg–Teller transitions [47], whereas, in the solid
state, the additional increase in the fluorescence quan-
tum yield is related to the violation of the symmetry
restrictions by the presence of crystal impurities and
defects. The polymerization reduces the molecular
symmetry from Ih in pristine C60 to D2h in the 2D(T)
polymer and eliminates the symmetry restrictions lead-
ing to a substantial increase in the photoluminescence
quantum yield.

As can be seen from the inset in Fig. 6b, the photo-
luminescence spectrum of the 2D(T) polymer differs
from that of pristine C60 in both the intensity distribu-
tion and the onset of luminescence. The well-structured
low-temperature photoluminescence spectrum of the
high-quality single crystals of C60 is mainly related to
excitons localized on defects or impurity levels [44,
48]. On the contrary, the photoluminescence spectrum
of C60 at room temperature consists of two broad bands
and is related to the vibronically assisted transitions
from the lowest singlet 1T1g level (the first band at about
1.665 eV). The most intense bands in the photolumi-
nescence spectrum of the 2D(T) polymer located near
1.533 and 1.435 eV are related to the fluorescence of
the host 2D(T) polymer, while the weak shoulders at
higher energies (near 1.748 and 1.661 eV) originate
from the impurity phase of 2D(R) that is present in the
2D polymeric samples [49]. We note that the very sharp
lines in Figs. 6a and 6b near 1.785 eV are related to the
R1 and R2 luminescence bands of the ruby chips used
for pressure calibration [27].

The increase in pressure results in a gradual shift of
the photoluminescence spectrum to lower energies,
lowering and redistributing the fluorescence intensity.
These changes are absolutely reversible in the pressure
range investigated (P ≤ 4 GPa), as can be seen in Fig. 6.
The integrated intensity of the photoluminescence
spectrum rapidly decreases with the increase in pres-
sure and recovers its strength nearly to its initial value
after the total pressure release.

The pressure dependence of the band positions in
the photoluminescence spectrum of the 2D(T) polymer
is shown in Fig. 7. The open (closed) triangles, squares,
circles, and diamonds are related to the bands near
1.748, 1.661, 1.533, and 1.435 eV for the upstroke
(downstroke) pressure runs, respectively. The open
hexagons show the pressure dependence of the first
peak in the fluorescence spectrum of pristine C60 [44]
and are included in the figure for comparison. The pres-
sure-induced shift ∂E/∂P for the photoluminescence
bands of the 2D(T) polymer varies from –9 to
−17 meV/GPa, whereas the corresponding value for
pristine C60 is equal to –78 meV/GPa. The large differ-
ence in ∂E/∂P leads to the intersection of the pressure
dependences for the 2D(T) polymer (circles) and pris-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tine C60 (hexagons) near 1.9 GPa, which is close to
2.2 GPa used in the HPHT treatment procedure for the
production of the 2D(T) polymer. This implies that the
fluorescence onset in the 2D(T) polymer is shifted to
lower energies mainly because of the decrease in the
intermolecular distances caused by the formation of the
polymer. On the contrary, the deformation of the C60
cage in the polymer, which leads to the lowering of
molecular symmetry, does not significantly affect the
shift of the electronic spectrum.

We can calculate the deformation potential

where Eg is the direct gap and B0 is the bulk modulus of
the material, using the experimental data concerning
the pressure-induced shift of the photoluminescence
bands, ∂E/∂P, obtained for both materials. Taking into
account that the position of the first band in the photo-
luminescence spectrum coincides with the direct gap
(in the case of vibronically assisted transitions, it differs
from the phonon energy), we obtain D = 0.42 eV and
D = 1.09 eV for the 2D(T) polymer and pristine C60,
respectively. It is interesting to note that a noticeable
increase in the bulk modulus in the 2D(T) polymer
compared to pristine C60 does not result in a similar
increase in the deformation potential due to the lower-
ing of the pressure-induced shift of the electronic spec-
trum.
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Fig. 7. Pressure dependence of the fluorescence bands in the
photoluminescence spectra of the 2D(T) polymer and pris-
tine C60. Open (closed) triangles, squares, circles, and dia-
monds show various bands of the 2D(T) polymer for the
increasing (decreasing) pressure runs. Open hexagons show
the first fluorescence band of pristine C60 for an upstroke
pressure run.
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4. CONCLUSIONS

The Raman scattering data under high hydrostatic
pressure show that an irreversible transformation
occurs in the 2D(T) polymeric phase of C60 above
20 GPa. The new phase is preceded by a pretransitional
state characterized by diffuse Raman peaks. The spec-
trum of the high-pressure phase remains intense and
well resolved at pressures as high as 30 GPa. The
phonon modes of the high-pressure phase, especially in
the high-energy region, are noticeably different from
those of the initial 2D(T) polymer; nevertheless, they
can be tracked back to the phonon modes related to the
fullerene molecular cage. The recovered high-pressure
phase is metastable and detonates under laser irradia-
tion. The main part of the detonated sample is a mixture
of monomeric and dimeric C60, showing that the
fullerene molecular cages are retained in the high-pres-
sure phase. The high-pressure phase seems to be related
to further creation of covalent bonds between mole-
cules belonging to the adjacent polymeric layers in
accordance with the theoretically predicted 3D poly-
merization of the 2D(T) C60 polymer at 20.2 GPa [12].
Our Raman experiments reveal that the 3D polymeric
C60 resulting from the application of high pressure on
the 2D(T) polymer is not related to the previously
observed ultrahard fullerite phases [1, 8, 9]. The elec-
tronic spectrum of the 2D(T) polymer is noticeably dif-
ferent from that of pristine C60. This difference is
related both to the deformation of the fullerene molec-
ular cage caused by the polymerization of material and
to the decrease in the in-plane intermolecular distances
in the 2D(T) polymer.
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Abstract—The transport, magnetic, and elastic properties of TbBaCo2 – xFexO5 + γ are investigated. It is shown
that these compounds exhibit first-order metal–insulator and antiferromagnet–weak ferromagnet transitions in
the orthorhombic phase (x < 0.12), while these transitions are not observed in the tetragonal phase (x > 0.12).
In the concentration range corresponding to the orthorhombic phase, doping with iron stabilizes the weakly fer-
romagnetic phase. However, the tetragonal phase is antiferromagnetic. Oxygen vacancies are assumed to be
ordered in the orthorhombic case and disordered in the tetragonal phase. An analysis of Young’s modulus, mag-
netostriction, and effects of pressure and substitution of the O18 oxygen isotopes for O16 indicates a weak cor-
relation between magnetic transformations and the crystal lattice. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest in compounds of the type
LnBaCo2O5 + γ (Ln stands for a lanthanide) is due to a
clearly manifested relation between the magnetic state
and the electrical conductivity as well as the existence
of transitions of the type metal–insulator and charge or
orbital ordering. These compounds were synthesized
recently [1–4] and immediately attracted attention of
many researchers [5–9]. It was found as a result of
X-ray and electron-microscopic studies that Ln and Ba
ions are ordered in such a way that the planes occupied
by Ba and Ln ions alternate in the [100] direction. The
structure is perovskite-like and is a derivative of a struc-
ture of the type YBa(CuFe)O5 [10]. The oxygen content
may vary from 5 to 5.6 depending on the method of
obtainment [11]. The samples of LnBaCo2O5.5 (Ln =
Gd, Tb, Y, or Ho) exhibit the following sequence of
transitions upon heating: spontaneous magnetization
emerges at Ti and vanishes at TN, and a metal–insulator
transition takes place at TMI. At Ti, a jump in the electri-
cal conductivity and a strong magnetoresistive effect
are observed [2]. The nature of the phase transforma-
tions is disputable. It was proposed [6, 7] that, at Ti and
TMI, the spin state of cobalt ions changes. Further inves-
tigations are required to explain the mechanism of these
transformations. It is known that the properties of man-
ganites can be modified considerably by substituting
other ions for the manganese ions [12]. This work is
devoted to investigation of cobaltite samples in which
some of the cobalt ions are replaced by iron ions. The
choice of iron ions was dictated by the fact that the prop-
erties of disordered perovskites La1 – xSrx(Co1 – yFey)O3 – γ
and SrCo1 – xFexO3 – γ are quite sensitive to this type of
substitution [13].
1063-7761/02/9504- $22.00 © 20748
2. EXPERIMENT

The samples were synthesized from a mixture of
high-purity oxides and carbonates Tb6O11, BaCO3,
Co3O4, and Fe2O3 weighed in the required proportion.
After preliminary annealing at 900°C, the pellets were
thoroughly crushed in an agate mortar. The synthesis
was carried out in air at 1150°C. The oxygen concentra-
tion was optimized by cooling at a rate of 100°C/h. The
X-ray diffraction analysis was carried out on a DRON-3
diffractometer with the Kα radiation of Co. The oxygen
concentration was monitored with the help of chemical
and thermogravimeric analyses. Magnetostriction was
measured by strain gauges. The magnetic measure-
ments were made on a commercial Foner-type vibra-
tional magnetometer. The electrical conductivity was
measured by the standard four-probe method. The con-
tacts were formed by ultrasonic deposition of indium.
The elastic properties were measured by the resonance
method in the acoustic frequency range on cylindrical
samples having a length of 40–50 mm and a diameter
of 5 mm. The substitution of O18 for O16 isotopes was
carried out for 48 h at 1100°C with a cooling rate of
100°C/h. A sample subjected to thermal treatment
under the same conditions in an O16 flow was used for
comparison of properties.

3. RESULTS AND DISCUSSION

X-ray phase analysis revealed that the samples of
TbBaCo2 – xFexO5 + γ contain only one phase up to x = 1.
Compounds with x ≤ 0.11 are orthorhombically dis-
torted (space group Pmmm), while the same samples
are tetragonal (space group P4/mmm) for x > 0.12. A
sample with x = 0.12 is a mixture of the tetragonal and
orthorhombic phases. According to the results of chem-
002 MAIK “Nauka/Interperiodica”
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ical and thermogravimetric analyses, the oxygen con-
tent in samples gradually decreases upon a substitution
of iron ions for cobalt ions. The oxygen content in a
sample with x = 1 corresponds to γ = 0. The results of
our recent Mössbauer experiments on this system with
the Fe57 isotope indicate that iron ions are in the triva-
lent state. It was observed in [10] that iron ions in the
YbaCuFeO5 system are also trivalent, while copper
ions are in the bivalent state. For this reason, we
assume that the substitution of Fe3+ ions for Co3+

ions leads to a transition of a part of Co3+ ions to the
bivalent state and to the emergence of oxygen vacan-
cies. Apparently the configuration Fe3+ + Co2+ in the
system TbBaCo2 – xFexO5 + γ is thermodynamically
more stable than Fe3+ + Co3+.

Figure 1 shows the temperature dependence of mag-
netization measured for samples with different iron
contents. The sample with x = 0 exhibits spontaneous
magnetization in the temperature range 250–280 K.
The hysteresis for measurements in the heating and
cooling regimes does not exceed two degrees; the sub-
stitution of iron ions for cobalt ions clearly increases
the temperature range of spontaneous magnetization,
and a considerable temperature hysteresis appears. For
a sample with x = 0.1, it was found that spontaneous
magnetization emerges and vanishes at Ti = 195 K and
TN = 302 K, respectively, upon heating and at Ti = 160 K
and TN = 302 K, respectively, upon cooling. The maxi-
mum value of spontaneous magnetization for samples
with x = 0 and x = 0.1 is approximately the same and
corresponds to (0.15–0.17)µB (per cobalt ion). Com-
pounds with x ≥ 0.15 do not exhibit spontaneous mag-
netization in the temperature range 5–350 K.

In the vicinity of temperatures Ti, TN, and TMI, the
temperature dependence of electrical conductivity
exhibits anomalies (Fig. 2). The electrical conductivity
is doubled jumpwise in the vicinity of Ti, while near TMI

it changes by an order of magnitude. In the region of TN,
the anomalous behavior is manifested weakly. The sub-
stitution of Fe ions for Co ions in the orthorhombic
phase leads to an insignificant variation in the electrical
conductivity anomalies at Ti and TMI.

In the vicinity of the transition Ti, a strong mag-
netoresistive effect is observed for the compound
with x = 0, the magnitude of the effect decreasing
gradually upon the substitution of iron ions for cobalt
ions (Fig. 2). In the vicinity of TN, the magnetoresis-
tance peak is pronounced much more weakly.

Figure 3 shows the results of measurements of mag-
netization in compounds with x = 0 in the heating
regime. It can be seen that an applied pressure shifts the
temperatures Ti and TN by 2–3 degrees. An effect of
approximately the same magnitude was observed for a
sample in which O16 atoms were replaced by the O18

isotope.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
0.05

100

M, µB/ëÓ ion

T, K

0.35

350150 200 250 300

0.10

0.15

0.20

0.25

0.30

x = 0
x = 0.1
x = 0.15

H = 11 kOe

Fig. 1. Temperature dependence of magnetization for
TbBaCo2 – xFexO5 + γ compounds.

ρ, Ω cm
103

102

101

100

10–1

10–2

10–3

1

150 175 200

5

x = 0

0.03

0.1
0.15

x = 0.1

100

MR, %

T, K

0

–24
150 200 250 300 350

x = 0

0.03

0.1

–21

–18

–15

–12

–9

–6

–3

H = 10 kOe

Fig. 2. Temperature dependences of electrical conductivity
and magnetoresistance for TbBaCo2 – xFexO5 + γ com-
pounds.
SICS      Vol. 95      No. 4      2002



750 TROYANCHUK et al.
Figure 4 presents the results of magnetostriction
measurements for a sample with x = 0.1 in the temper-
ature range in which the magnetic ground state depends
on the magnetic past history. At first, the sample was
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Fig. 3. Temperature dependences of magnetization mea-
sured at x = 0 and pressures P = 0 and 8 kbar.
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Fig. 4. Magnetic field dependences of magnetostriction and
electrical conductivity for x = 0.1.
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cooled to 80 K and then heated to 186 K, i.e., below the
temperature corresponding to the beginning of transi-
tion to the spontaneous magnetization state. The exter-
nal magnetic field induces a transition to the state with
spontaneous magnetization, which is accompanied by
an increase in the sample length. However, the change in
the linear size is relatively small (of the order of 10–5). The
transition is irreversible in temperature as expected, since
the measurements were made in the temperature range
of phase bistability. The electrical conductivity was
measured as a function of the magnetic field at T = 180 K
(Fig. 4). The magnetic transition leads to a decrease in
resistance. In the vicinity of the transition, a strong
dependence of the resistance on the delay time was
observed. It should be noted that strong relaxation
effects were also observed in the case of metamag-
netic transitions from the charge-ordered antiferro-
magnetic phase to the ferromagnetic phase in mangan-
ites [14].

It was shown in [2, 3] that the magnetic transition at
Ti is noticeably displaced to the low-temperature region
upon the application of an external field. This effect is
responsible for the large magnetoresistance. However,
the substitution of iron ions for cobalt ions leads to sta-
bilization of the boundaries of different magnetic
phases (Fig. 5). It was found that an external magnetic
field of 5 T shifts the high-temperature phase boundary
only by 6 degrees, which is almost an order of magni-
tude smaller than in the case of compounds that are not
doped with iron. The H–T magnetic phase diagram for
compounds with x = 0.11 in fields up to 5 T is presented
in Fig. 5.

The results of analysis of Young’s modulus are
shown in Fig. 6. The temperature dependence of the
square of resonance frequency for a sample with x = 0
exhibits a clearly manifested anomaly at the tempera-
ture of transition from the insulator state to the metal
state in the vicinity of TMI = 345 K. A temperature hys-
teresis is observed in the vicinity of 4 K, which coin-
cides with the results obtained from electrophysical
measurements. Near Ti, there exists a weak anomaly
incompatible with the crystal-structure phase transfor-
mation. The absence of crystal-structure phase transfor-
mations at Ti was also confirmed by the results of low-
temperature X-ray diffraction studies.

Let us discuss the experimental results obtained
from an analysis of phase transition in the
TbBaCo2 – xFexO5 + γ system.

At Ti, a magnetic moment appears, which is equal to
0.15–0.17µB per Co3+ ion in the high-temperature
phase. This value is an order of magnitude smaller than
expected for ferromagnetic ordering of Co3+ ions in the
intermediate spin state. The magnetic moment for the
intermediate spin state of a Co3+ ion must be equal
approximately to 2µB per Co3+ ion. It is well known that
the superexchange interaction Co3+ (intermediate spin
state)–O–Fe3+ is strong and negative [13, 15]. An
AND THEORETICAL PHYSICS      Vol. 95      No. 4      2002
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increase in TN upon the substitution of iron for cobalt is
in accord with this fact. This means that the magnetic
structure in the phase with spontaneous magnetization
is mainly antiferromagnetic. In our opinion, such a
behavior of magnetic properties can be expected in the
case of a Morin-type transition, i.e., a transition from
the antiferromagnetic to weakly ferromagnetic Dzya-
loshinski–Moriya state A similar transition was
observed in DyFeO3 [16]. It should be noted, however,
that the magnetic moment of classical weak ferromag-
nets of the type of orthoferrites, orthochromites, and
orthomanganites is smaller by a factor of 2–3 as a rule.

In the tetragonal phase, spontaneous magnetization
disappears in spite of the fact that the weakly ferromag-
netic phase is gradually stabilized upon an increase in
the iron concentration in the concentration range corre-
sponding to the orthorhombic phase. In our opinion,
this means that the magnetic structure in the tetragonal
phase changes. It was established earlier with the help
of electron microscopy that oxygen vacancies in orthor-
hombic TbBaCo2O5.5 are ordered and form a super-
structure of the 2 × 1 × 1 type [4]. The tetragonal phase
of TbBaCo2O5.35 is also characterized by vacancy
ordering and a superstructure of the 3 × 3 × 1 type [17].
In the 3 × 3 × 1 phase, the weakly ferromagnetic state
is stable in the entire temperature range of magnetic
ordering. For this reason, we assume that oxygen
vacancies in the tetragonal phase with an iron content
x > 0.12 are disordered, which leads to disappearance
of the weakly ferromagnetic state.

The transition at Ti is associated with electrical con-
ductivity. The magnetoresistance is due to the shift of Ti

under the action of a magnetic field. The absence of
strong anomalies in elastic properties and unit cell
parameters and a weak magnetostriction indicate that
neither the crystal structure nor the orbital state of
cobalt ions changes at Ti. In all probability, a relatively
narrow 3d band in the metal phase above TMI, which is
formed predominantly by t2g orbitals of cobalt, and the
broad 2p band of oxygen overlap. We believe that the
conductivity of this class of compounds below TMI is
due to excitation of charge carriers from the broad 2p
band to the closely spaced 3d band. At Ti, the energy
gap between the bands decreases due to the emergence
of spontaneous magnetization.

The small change in the electrical conductivity and
the small magnetoresistance at TN are unexpected since
clearly manifested anomalies in magnetotransport
properties were observed at Ti. This behavior sharply
contradicts the properties of magnetoresistive mangan-
ites, which exhibit a strong magnetoresistive effect dur-
ing magnetic ordering [14]. For this reason, we assume
that a well-defined short-range magnetic order is pre-
served in the high-temperature phase at temperatures
above TN. The results of our heat capacity measure-
ments support this hypothesis [18]. We observed that
the heat capacity changes insignificantly at TN.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
4. CONCLUSIONS

It has been established that the substitution of iron
ions for cobalt ions is an effective method of controlling
the properties of compounds of the TbBaCo2O5 + γ type,
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which considerably extends the temperature range of
spontaneous magnetization, so that the Néel tempera-
ture becomes higher than room temperature. The tran-
sition at Ti is in all probability a Morin-type (antiferro-
magnet–weak ferromagnet) transition. The electrical
conductivity jump near Ti is due to the emergence of
spontaneous magnetization, reducing the energy gap
between the 3d and 2p bands. In contrast to magnetore-
sistive manganites, the family of cobaltites of the
TbBaCo2O5 + γ type does not exhibit a clearly mani-
fested correlation between the magnetic state and the
crystal lattice.
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Abstract—A simple model of phase separation is used to study the magnetoresistance of manganites in the
nonmetallic state. It is assumed that the phase separation corresponds to the emergence of small ferromagnetic
metallic droplets (ferrons) in a nonconducting antiferromagnetic or paramagnetic medium, with the metallic
phase concentration being far from the percolation threshold. The charge transfer is accomplished by way of
electron jumps between droplets. The magnetoresistance in such a system is defined both by the variation of the
volume of the metal phase and by the dependence of the probabilities of electron transitions on the magnitude
of the magnetic field. It is demonstrated that, in the region of low magnetic fields, the magnetoresistance is qua-
dratic with respect to the field and decreases with temperature by the T–n law, where n takes values from 1 to
5 depending on the correlation between the parameters. In the high-field limit, the magnetoresistance increases
abruptly with the volume of the metal phase. The crossover of the field dependence from quadratic to a stronger
one may be accompanied by the emergence of a platean in the magnetoresistance. The correlation between the
obtained results and the available experimental data is discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The question of the nature of colossal magnetoresis-
tance is one of the key questions in the physics of
strongly correlated electron systems such as mangan-
ites. The investigations performed in recent years have
revealed that manganites are characterized by a ten-
dency for phase separation with the formation of, for
example, conducting ferromagnetic and nonconducting
antiferromagnetic or paramagnetic regions [1–3].
Apparently, the tendency for phase separation is closely
related to the mechanism of colossal magnetoresis-
tance. The phase separation may be due to various rea-
sons and may be characterized by different spatial
scales. One of the most important types of phase sepa-
ration for transport phenomena in manganites is the
electron separation which was first suggested by
Nagaev [4] in application to magnetic semiconductors.
In this case, the current carriers are concentrated in
small (of the order of several lattice constants) ferro-
magnetic metal droplets (ferrons). Regions with a low
carrier concentration turn out to be nonconducting. In
the limit of strong Coulomb interaction, each ferron in
the ground state contains one charge carrier located in
the potential well of ferromagnetically ordered local
spins.

A model which enables one to estimate the ferron
size was treated in [5, 6]. According to this model, the
1063-7761/02/9504- $22.00 © 20753
ferron radius R (the ferron is assumed to be spherical)
is determined by way of minimizing the energy,

where the first term is the energy of the ground state of
an electron in a spherical potential well of radius R, and
the second term corresponds to the Heisenberg energy
of interaction of local spins S. The minimization of the
energy over the ferron radius leads to the estimate of
R ∝  d(πt/JzS2)1/5, where t is the amplitude of electron
jump to the neighboring site, J is the constant of anti-
ferromagnetic exchange interaction between atoms, z is
the number of nearest neighbors, and d is the lattice
spacing.

The number of charge carriers is proportional to the
concentration x of the bivalent doping element. The
critical concentration xc(d/R)3 ~ 0.15, at which ferrons
start to overlap and large metal clusters arise in the sys-
tem, was estimated in [6]. We will treat a situation in
which x is much lower than xc. The charge transfer in
such a system may occur both due to the ferron motion
and as a result of the electron tunneling from one ferron
to another. The efficiency of the former mechanism is
low because of the fairly large effective mass of a fer-
ron. In addition, the ferrons in manganites are often
pinned on impurities [1]. Therefore, it is natural to

E t
πd
R

------ 
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2 4π
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d
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assume that the conductivity is largely defined by elec-
tron jumps between ferrons.

Within the assumptions formulated above, we have
thoroughly analyzed the field and temperature depen-
dences of the magnetoresistance associated with the
tunneling of charge carriers from ferron to ferron. It is
demonstrated that, in low fields, the magnetoresistance
increases as the square of the field; in high fields, it
increases exponentially [3, 7] or even faster as the per-
colation threshold is approached. The temperature
dependence of magnetoresistance is likewise nontriv-
ial. In low fields, this dependence obeys the 1/Tn law,
where n runs from 1 to 5 depending on the parameters
of the problem. The obtained results may be important
from the standpoint of interpreting the results of recent
experiments in studying the magnetoresistance of com-
plex magnetic oxides in the nonmetallic region of tem-
peratures and concentrations [2, 8, 9].

2. DESCRIPTION OF THE MODEL

We will treat a system consisting of N metal droplets
(ferrons) located in an antiferromagnetic matrix in an
external uniform magnetic field H. As was demon-
strated in [7], with not-too-low concentrations of fer-
rons, their number may be assumed to be constant and
equal to the number Ne of current carriers arising during
doping. We will assume that the ferrons are spherical in
shape. We will designate the spin of the magnetic atom
of droplet as S, and the number of magnetic atoms in a
droplet as Np = (4π/3)(R/d)3, where R is the ferron
radius. Then, the magnetic moment of a ferron is M0 =
µBgSNp, where µB is a Bohr magneton and g is the gyro-
magnetic ratio. Because the value of the number SNp is
rather high, we will describe the magnetic moment of a
droplet in the classical manner; i.e., we will assume that
the vector M0 has a certain direction in space, deter-
mined by the angles θ and φ.

At zero temperature, each ferron contains one
charge carrier, and its magnetic moment is directed
along the magnetic field. We will assume that, at non-
zero temperatures, all spins S in a droplet are parallel
with one another; however, their direction may differ
from that of the external field. Let the magnetic field be
directed along the z axis. In the approximation of low
density, we will ignore the interactions of ferrons with
one another. Then, the energy of a droplet containing
one electron may be represented as [6]

(1)

The first term in this expression is the electron energy
in a potential well formed by ferromagnetically ordered
local spins S, which is counted off from the bottom of

E1 σ, θ( ) t
π2d2

R2
----------- 4π

3
------JzS2 R3

d3
-----+=

– µBgS
4π
3

------ R3

d3
-----H θ Uel σ, H( ).+cos
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the conduction band. The second term is the energy of
exchange interaction of the magnetic atoms of the drop-
let. The third term is the variation of the droplet energy
in the magnetic field (Zeeman energy). The last term
Uel, σ(H) is the energy of interaction of a conduction
electron in a ferron with the effective magnetic field.

Note that, in the concentration range of x ~ xopt ~ 0.3
that is optimal for the observation of colossal magne-
toresistance, but at temperatures above the Curie point
TC, the system is again (as in the case of x < xc) a para-
magnetic insulator with suppressed ferromagnetism but
with strong ferromagnetic fluctuations of small radius.
As was demonstrated in [3, 10, 11], these fluctuations
may be treated as ferromagnetic droplets; a special term
of “temperature ferrons” was introduced for these fluc-
tuations. In formula (1), one must change from energy
to free energy; in the second term, the energy of antifer-
romagnetic interaction of local spins (4π/3)JzS2R3/d3

must be replaced by the corresponding entropy contri-
bution (4π/3)Tln(2S + 1)R3/d3 [3]. As a result, the esti-
mation of the optimal radius of a temperature ferron
gives R ~ d(πt/Tln(2S + 1))1/5. Therefore, in view of this
substitution, all of the results obtained below for the
low-temperature region with T < TC and x < xc may be
used in the high-temperature region with T > TC and
x ~ xopt as well.

In expression (1) for energy, one must take into
account the fact that the electron in the droplet interacts
both with the external field H and with a field devel-
oped by magnetic atoms of a ferron. We will designate
the effective number of atoms with which a charge car-
rier interacts as z' (z' ≤ Np). Then, we can introduce the
effective magnetic field in which the electron is located
[12],

(2)

where Hmol = /µB = 2Jferz'S/gµB is the molecular mag-
netic field acting on the electron from the ferromagnet-
ically ordered local spins, Jfer is the respective exchange
integral defining the Curie temperature, and n is a unit
vector directed along the magnetic moment of the fer-
ron. The quantity B(H) in formula (2) is the magnetic
field induction inside the droplet in view of, in particu-
lar, its demagnetization factor.

The steady states of an electron are states with a cer-
tain projection of spin σ/2 onto the direction of the
effective field. We will use the notation of both σ = ±1
and σ = ↑ , ↓ . So, the energy Uel, σ may be represented as

(3)

and, in the ground state, σ = ↑ .
We will assume that the direction of the total mag-

netic moment of the droplet varies with time rather
slowly, and the conventional thermodynamic treatment

Heff θ( ) B H( ) n θ( )Hmol,+=

J

Uel σ, µBσHeff θ( )–=

=  –µBσ J /µB( )2
B2 2J n B⋅( )/µB+ + ,
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of the problem is valid. Then, the ferron radius in the
magnetic field is determined by minimizing expression
(1), which gives

(4)

where R(0) is the ferron radius in the absence of a field.
The estimation of the quantities b and  gives 1/b,

/µB ~ 100 T. In the region of not-too-high fields,
where bH ! 1, we can expand the field dependences of
the droplet radius and energy into a series and restrict
ourselves to linear terms. Then, for the energy given by
Eq. (1), we have

(5)

In this expression,

(6)

is the ferron energy at H = 0 disregarding the splitting
of the electron energy in the effective field. Note that

(2/5) b = M0 = µBgSNp is the magnetic moment of

the ferron. Because SNp @ 1 and /µB ~ 100 T, we will,
in what follows, ignore the term  in for-

mula (5); i.e., we will assume that Uel, σ = –σ , and the
direction of the effective field coincides with the direc-
tion of the magnetic moment of the ferron.

As a result of electron tunneling to the neighboring
droplets, empty ferrons and ferrons with more than one
electron are formed. In addition, part of the electrons in
one-electron channels may be in excited states. As will
be shown below, for the characteristic values of the

parameters, the ground state energy  ~ 1.5 eV @ kT.
One can readily understand that, in zero field, the dis-
tance between the ground and second electron levels in
a ferron is of the same order. On the other hand, the same
estimates indicate that the splitting of the first electron
level in a molecular field µBHmol ~ 0.01–0.03 eV. There-
fore, in what follows, we take into account only the first
excited level, which, in the range of parameters of the
model being treated, corresponds to the ground state of
an electron but with an oppositely directed spin σ = –1.
Because SNp @ 1, one can assume that tunneling tran-
sitions of electrons do not affect the direction of large
magnetic moments of droplets.

Empty droplets and droplets with two electrons
decay during a time of the order of characteristic mag-
non times τ0. Then, they may be treated as stable only
if the time of electron tunneling τ is much shorter than

R H( ) R 0( ) 1 bH θcos–( ) 1/5– ,=

R 0( ) d
πt

2zJS2
-------------- 

  1/5

, b
µBg
zJS
---------,= =

J

J

E1 σ, θ( ) E1
0( ) 1

2
5
---bH θcos– 

  σJ–=

– σµB n B H( )⋅( ) O H2( ).+

E1
0( ) 5π

3
------ πt( )3/5 2zS2J( )2/5

=

E1
0( )

J
σµB n B⋅( )

J

E1
0( )
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τ0. Because the number of particles does not vary, the
times of electron tunneling to a empty droplet and of
electron escape from a two-electron droplet are equal to
one another, and the condition τ ! τ0 is valid if
exp(−V/2kT)/8πl3ne ! 1, where V is the energy of Cou-
lomb repulsion of two electrons on a single droplet, l is
the characteristic tunneling length, and ne is the number
of ferrons per unit volume [7]. In meeting the latter con-
dition, one can assume that the radii of one-electron,
empty, and two-electron droplets are equal to one
another and defined by relation (4).

The energy of an empty droplet, defined by the sec-
ond and third terms in formula (1), is

(7)

In a two-electron droplet, the electrons must have oppo-
site spin projections onto the direction of the magnetic
moment. The energy of such a ferron may be repre-
sented as

(8)

where  =  –  + V(0) and the Coulomb
energy is V(H) = e2/eR(H) ≈ V(0)(1 – (1/5)bHcosθ).
For estimation, we will assume the value of permittivity
e = 10 and R(0) = 2d. From this, we find that V(0) ~
0.2 eV @ µBHmol. We will treat the temperature range
kT ! V(0). It is in this case that one can ignore the prob-
ability of formation of ferrons with three or more elec-
trons.

In principle, our model describes the electron tun-
neling between potential wells with due regard for the
Coulomb repulsion of electrons inside the wells. In this
sense, it is similar to the Hubbard model with a random
arrangement of centers. As was mentioned above, we
treat the case of one electron per center with a strong
Coulomb repulsion. In this case, there are upper and
lower Hubbard subbands separated by a Coulomb gap.
The lower subband is filled, and the upper one is empty.
Then, the conductivity is determined by electron jumps
from the lower to upper subband. Because the value of
temperature is assumed to be much less than that of the
Coulomb gap, the number of electrons involved in the
process of charge transfer is much less than the total
number of electrons which formed ferrons. Therefore,
one can assume that an electron, during jumps, passes
from the upper state of the filled band to the bottom of
the empty band. The activation energy in such a process
is fixed and is of the order of the Coulomb gap; there-
fore, transitions between subbands may be replaced by

E0 θ( ) E0
0( ) 1

2
5
---bH θcos– 

  O H2( ),+=

E0
0( ) 2

5
---E1

0( ).=

E2 θ( ) E2
0( ) 1

2
5
---bH θcos– 
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transitions between levels. Naturally, if the numbers of
electrons and ferrons were significantly different, such
a simplified approach would need to be refined. In par-
ticular, one would have to take into account the finite-
ness of the bandwidth and the Fermi statistics of the
carriers (at least, in the region of fairly low tempera-
tures).

Therefore, the system contains N1, σ droplets with an
electron having the σ/2 spin projection onto the effec-
tive field direction, N0 empty ferrons, and N2 = N0 fer-
rons with two electrons. We will find the average values
of N0, N2, and N1, σ. The number of possible states with
given quantities {Na} (where the subscript a runs
through the values {0, (1, ↑ ), (1, ↓), 2}) is
Ne!/(N0!N1, ↑!N1, ↓!N2!). Then, the partition function of
the system may be represented as

(9)

where the Kronecker symbols take into account the fact
that, in our model, N0 = N2 and N1, ↑ + N1, ↓ + 2N2 = Ne.
The summation with respect to N0, N2 is performed

from 0 to Ne/2, and that with respect to , from 0 to
Ne – 2N2. Because Ne @ 1, the sum with respect to N2
may be replaced by an integral using the Stirling for-
mula for the factorials appearing in Eq. (9). The result-
ant integral is readily calculated by the saddle-point
method. After that, we integrate with respect to solid
angle to derive, for the average numbers  and ,

(10)

(11)

where the following notation is used:

(12)

It follows from Eq. (10) that, in weak fields, the first
correction to (0) increases as the square of the field,

and in fairly strong fields,  ∝  exp(bV(0)H/10kT).
Note that expressions (10) and (11) agree with the
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results obtained in [7] in the absence of a magnetic field
and disregarding the electron spin, that is, for H = 0 and

 = 0.
For a ferron in the state a, the probability density for

the direction of the magnetic moment within the solid
angle dΩ may be written as

(13)

The values of probability for droplets containing differ-
ent numbers of electrons differ, because the magnetic
field dependences of their energies (5), (7), and (8) are
different. Note that the probabilities P1, σ are indepen-
dent of the sign of σ, because we ignored the term B(H)
in formula (2) for the effective field acting on an elec-
tron.

3. MAGNETORESISTANCE

Within our model, the conductivity is defined by the
following tunneling processes.

(i) An electron tunnels from a ferron in the state 1,
σ1 onto a droplet containing an electron with the spin
projection σ2/2. As a result, a empty ferron and a ferron
with two electrons arise. This process may be schemat-
ically represented as (1σ1, 1σ2)  (0, 2).

(ii) A process inverse to the previous one, i.e., (2, 0) 
(1σ1, 1σ2).

(iii) The ferron with two electrons and that contain-
ing an electron with the spin projection σ1/2 exchange
electrons: (2, 1σ1)  (1σ2, 2).

(iv) The one-electron ferron transfers its electron to
the empty ferron: (0, 1σ1)  (1σ2, 0).

Note that, in the last two cases, σ1, generally speak-
ing, is not equal to σ2. The contribution to the current
density by each tunneling process may be represented
as [7, 13]

(14)

where rij and γij denote the distance between the ferrons
and the angle between the vector rij and the direction of
the electric field, respectively. The summation with
respect to i and j is performed over the ferrons from
which and to which an electron may tunnel, and the
symbol 〈…〉  denotes both thermal and volume averag-
ing. The quantity τij(f, i) is the time of tunneling from

J

P0 θ( )
α0H θcos( )exp

Ω' α0H θ'cos( )expd∫
---------------------------------------------------,=

P1 σ, θ( )
α1H θcos( )exp
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Ω' α2H θ'cos( )expd∫
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the initial i = (a, b) to the final f = (a', b') state. It may
be represented as

(15)

where l and  denote the tunneling length and the
period of electron motion in the potential well, respec-
tively. The quantities W f, i by definition are independent
of the distance between ferrons. Because, as a result of
tunneling transitions, the energy of the system, gener-
ally speaking, varies, the probability W depends on the
difference between the energies before and after the
tunneling. In addition, the probability of tunneling must
depend on the relative orientation of the magnetic
moments of ferrons.

In order to find the quantity W(f, i), we will use the
detailed balance relation for each tunneling process in
the absence of an electric field. A ferron is character-
ized by the number and state of electrons it contains, as
well as by the direction of the magnetic moment.
Therefore, its state is defined by the set of quantities
(a, n), where a numbers the electron states and runs
through the values {0, (1, ↑ ), (1, ↓ ), 2}, and n is a unit
vector directed along the magnetic moment of the fer-
ron. The number of ferrons in the state (a, n) per unit
volume is Pa(n), dΩ/V. We assumed that, during tun-
neling transitions, the direction of the magnetic
moments of droplets is retained. Then, the number of
transitions from the state (a1, n1, a2, n2) to the state ( ,

n1, , n2) per unit time in an element of volume dV is

(16)

In equilibrium, this number must be equal to the num-
ber of inverse transitions. We can use equality (15) for
the tunneling time, as well as the expressions for 
and Pa(θ), and write the balance relation in the form

(17)

We will follow the thermodynamics and assume that
the probability W(f, i) exponentially depends on the
energy difference between the initial and final states.
Then,
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where ν is the angle between the directions of the mag-
netic moments of ferrons,

(19)

The functions f f, i define the dependence of the tunnel-
ing probability on the relative orientation of the mag-
netic moments of droplets. These probabilities must
coincide for the direct and inverse processes. We will
treat the process (ii). If an electron with the spin projec-
tion σ/2 onto the direction of the magnetic moment of
a droplet 1 enters a empty ferron 2, its energy in the
effective field varies by the quantity –σ cosν + σ .
Then, for f, we have

(20)

where qσ is the probability that an outgoing electron
will have the spin projection σ/2. In view of normaliza-

tion, it is equal to /2 . So, the final

expression for  has the form

(21)

The function  for the process (i) inverse to
the process treated above must be given by the same
expression. The same method may be used to demon-
strate that formula (21) for the function f f, i is valid for
all of the tunneling processes listed above.

We will now use expressions (15) and (18) to per-
form the volume averaging of the current density given
by Eq. (14). Then, an approximation linear with respect
to the field E gives

where na = Na/V, and the averaging is performed over
the directions of the moments of ferrons, distributed
with the probability density Pa(θ1)Pb(θ2). On summing
up the contributions from all tunneling processes, we
derive for the conductivity σ = i/E the following expres-
sion:

(22)
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where j = /kT, and σ0 is the conductivity in the
absence of a field,

(23)

If we ignore the splitting of the electron energy due to
the interaction of its spin with the molecular field, i.e.,
assume that j = 0, we will arrive at the expression for
conductivity σ0 obtained in [7].

In what follows, we will be interested in the magne-
toresistance MR(H) = σ(H)/σ0 – 1. The integrals in for-
mula (22) cannot be calculated analytically in the gen-
eral case. However, we can obtain asymptotics for the
magnetoresistance at H  0 and α0H @ 1. In the limit
of low fields, the expansion of the conductivity in terms
of H proceeds over even powers of the field. We restrict
ourselves to the quadratic term to derive

(24)

Note that the coefficient of H2 in this expression is inde-
pendent of . Therefore, the dependence of the magne-
toresistance on the relative orientation of the magnetic
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Fig. 1. The magnetoresistance as a function of magnetic

field at j = 2.25, V(0)/  = 0.2 (solid curve) and j = 1.875,

V(0)/  = 0.1 (dashed curve).
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moments of ferrons is observed only in higher orders
with respect to the field.

In rather strong fields, when α0H @ 1 (but still bH !
1), the magnetoresistance exponentially depends on the
field, in accordance with the results of [3, 7],

(25)

Figures 1 and 2 give the field dependences of magne-
toresistance calculated by formula (22) for different
values of the parameters αa and j. In Fig. 1, in particu-
lar, one can see that, in the region of weak fields, the
magnetoresistance is quadratic with respect to the field,
and then the MR(H) dependence becomes linear; in
strong fields, the magnetoresistance starts to increase
exponentially. No exponential increase is observed in
the curves in Fig. 2 since they correspond to the case of
higher temperatures and to a lower value of Coulomb
energy.

4. THE EFFECT OF INCREASE 
IN THE VOLUME OF THE METALLIC PHASE

In the model treated above, the variation of conduc-
tivity in the magnetic field was due to the field depen-
dence of the probabilities of tunneling transitions and
occupation numbers  and . Along with these
mechanisms, the magnetoresistance may be directly
related to the increase in the size of ferrons. Indeed, the
following formula for the conductivity of a insulator-
metal mixture is valid away from the percolation
threshold [14]:

(26)
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Fig. 2. The magnetoresistance as a function of magnetic
field at j = 1.5 (solid curve) and j = 1.0 (dashed curve). In
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where σd is the conductivity of the insulator matrix and
x is the volume fraction of the metal phase. Here, we
have assumed that the conductivity of the insulator is
much lower than that of the metal.

In our case, the quantity x may be represented as

(27)

The symbol 〈…〉a in this expression implies the averag-
ing over the directions of the magnetic moment with the
probability density Pa. Because the numbers  and

 are exponentially small compared with  +

 ≈ Ne, and the values of probability P1, σ do not
depend on the electron spin projection, one can write,
instead of Eq. (27),

(28)

where x0 is the volume fraction of ferrons in the absence
of a field. In the case being treated, this quantity must
be less than the critical value, xc ≈ 0.15, at which a per-
colation transition occurs.

We use equality (4) for the ferron radius to find that
the contribution to magnetoresistance due to the mech-
anism being treated is described by the formula

(29)

In the case of low fields, the magnetoresistance is qua-
dratic with respect to the field,

(30)

Note that, unlike Eq. (24), this expression decreases
with increasing temperature as 1/T.

In the case of fairly high fields, when α1H @ 1 (but
still bH ! 1), the magnetoresistance given by Eq. (29)
depends linearly on the field,
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(31)

5. INCLUSION OF MAGNETIC ANISOTROPY
In the expression for ferron energy in the previous

sections, we ignored the contribution related to the
magnetic anisotropy and the droplet shape effect and
assumed the droplet to be spherical. We will now con-
sider the influence of these effects on the behavior of
magnetoresistance. To simplify calculations, we will
assume that the droplet size does not vary with increas-
ing field. Obviously, this is admissible only in the
region of weak fields. In addition, we will assume that
the magnetic anisotropy is uniaxial and that ferrons
have the shape of an ellipsoid of revolution with the
axis parallel to the anisotropy axis. Note that, appar-
ently, ferrons in layered manganites are ellipsoidal [15,
16]. Then, the additional contribution to the droplet
energy, associated with anisotropy, is [14]

(32)

where ψ is the angle between the easy magnetic axis
(easy axis) and magnetic moment, and Ha is the anisot-
ropy field which is made up of the crystalline anisot-
ropy field proper and of the form anisotropy. The latter
contribution may be estimated as πm(1 – 31), where m
is the magnetic moment of unit volume and 1 is the
corresponding demagnetizing factor. Note that, with
even a slight deviation of the ferron shape from spheri-
cal, this term may reach values which exceed signifi-
cantly the crystalline anisotropy fields typical of ferro-
magnets. For example, with the ellipsoid semiaxis ratio
of two and with the values of parameters typical of
manganites, the shape contribution to the anisotropy
field turns out to be of the order of 0.5–0.7 T.

Let the easy axis direction be determined by the
angles β and φβ; in so doing, one can assume, without
loss of generality, that the azimuthal angle φβ is zero.
Then,

(33)

We perform calculations analogous to those made in
Sections 2 and 3 to derive

MR H( ) x0
3b
5

------H .=

Uα M0Ha ψcos
2

,–=

ψcos θ βcoscos θ β φ.cossinsin+=
(34)σ H( )
Ω1 Ω2 α1 H θ1 Ha ψ1cos

2
+cos( ){ } j νcos( ) α1 H θ2 Ha ψ2cos

2
+cos( ){ }expcoshexpd∫d∫

Ω α1 H θ Ha ψ θ φ,( )cos
2

+cos( ){ }expd∫( )
2

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------∝
for conductivity.
Analytical results in this case can be obtained only

in the region of low fields and fairly high temperatures,
when j and α1Ha < 1. We expand Eq. (34) in terms of j,
Ha, and H accurate within quadratic terms to derive the
following expression for magnetoresistance:
SICS   
(35)

MR H( )
2

225
--------- βcos

2 1
3
---– 

  α1
3 j2H2Ha=

× 1
2α1Ha

7
----------------+ 

  H2/T5.∝
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It follows from this relation that, in the region of low
fields, the magnetoresistance is proportional to T–5. It is
interesting to note that, depending on the orientation of
the magnetic field relative to the easy axis, the magne-
toresistance may change its sign: it is positive at small
angles β and negative at large angles.

It is possible to demonstrate that, if we consistently
take into account the effects associated both with the
increase in the ferron size and with the presence of
anisotropy, the magnetoresistance in weak fields is
given by the sum of expressions (24), (30), and (35).

Figure 3 gives the results of numerical calculation of
the dependence of magnetoresistance on the magnetic
field in the region of weak fields at different angles β
between the easy axis and magnetic field.

6. DISCUSSION

Thus, in all of the cases treated above, the magne-
toresistance is quadratic with respect to the field in the
region of low fields, which agrees with experiment [2,
8, 9]. However, the temperature dependences of the
coefficient of H2 in equalities (24), (30), and (35) vary
and are determined by the relationship between the
parameters of the problem.

For numerical estimation, we will use the values of
the parameters characteristic of manganites, namely, t =
0.3 eV, J ≈ Jfer = 1.5 × 10–3 eV, z = 6, g = 2, S = 2, and
d = 0.4 nm. We have assumed that the constants of fer-
romagnetic and antiferromagnetic interaction are close
to one another in magnitude, because the Neél and
Curie points in manganites are usually of the same
order of magnitude. Note that this assumption agrees
with the results of [17]. Further, let z' = 10 and the per-
mittivity e = 10. Then, we derive from formulas (4) and

(5) that  = 1.5 eV, V(0) = 0.2 eV, 1/b = 100 T, andE1
0( )

5

0 0.8

100(σ(H)/σ(0) – 1), %

α1H

10

15

20

25

1.6 2.4

β = 0
β = π/4
β = π/2

Fig. 3. The magnetoresistance as a function of magnetic
field for different angles β between the easy axis and mag-
netic field. The parameters are j = 1.5, α1Ha = 0.8, and

V(0)/  = 0.1.E1
0( )
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 = 200 K. It follows from the first two estimates that
the Coulomb energy may be ignored in the determina-
tion of α2 compared with other terms. As a result, α2 =
(8/5)α1 and α0 = (2/5)α1, and, because α1kT = M0 is the
magnetic moment of a droplet, formulas (24), (35), and
(30) may be rewritten as

(24')

(35')

(30')

It should be recalled that the magnetic moment of a fer-
ron is defined as M0 = µBgSNp, where Np = (4π/3)(R/d)3 ≈
30 is the number of magnetic atoms in a droplet. We use
the obtained values of b, , M0, and x0 < 0.1 to find that,
at T = 100 K, the coefficient of H2 in formula (30') is
two orders of magnitude less than the respective coeffi-
cients in expressions (24') and (35'), which, in turn, are
of the order of 10–1 T–2. Therefore, the effect associated
with the increase in the volume of the metallic phase
may be ignored.

The magnetoresistance in formula (35') depends on
the angle between the magnetic field and direction of
the easy axis. Therefore, this expression is valid,
strictly speaking, only for single crystals. However, as
was demonstrated, the main contribution to Ha is made
by the form anisotropy. If we assume that the directions
of ellipsoid axes of different ferrons do not coincide
and are distributed by some law Q(β) (which depends,
generally speaking, on the magnetic field), we can
write, instead of Eq. (35'),

(36)

where γ = sinβQ(β)(cos2β – 1/3) and may be both

positive and negative. In the case of Q(β) = 1, we have
γ = 0. However, one can expect that γ > 0, because it is
preferable that the long axes of elliptic magnetic drop-
lets line up along the field. Therefore, in the region of
weak fields, we will finally derive

(37)

where we ignored the second term in parentheses in for-
mula (36).

J

MR1 H( )
3

100
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M0
2H2

kT( )2
--------------,=

MR2 H( ) 2
225
---------=

M0
3J

2
HaH2

kT( )5
---------------------------

× βcos
2 1

3
---– 

  1
2M0Ha

7kT
-----------------+ 

  ,

MR3 H( ) x0
b
5
---

M0H2

kT
--------------.=

J

MR2 H( ) γ 2
225
---------

M0
3J

2
Hα H2

kT( )5
--------------------------- 1

2M0Ha

7kT
-----------------+ 

  ,=

βd∫

MR H( )
3

100
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M0
2H2

kT( )2
-------------- 1 γ 8

27
------

M0J
2
Ha

kT( )3
--------------------+

 
 
 

,=
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Depending on the relationships between the param-
eters in the temperature region being treated, the second
term in parentheses in formula (37) may be both
greater and less than unity. Therefore, the magne-
toresistance may decrease with increasing tempera-
ture both by the 1/T 2 law and by the 1/T 5 law. Note
that the behavior of magnetoresistance, which
obeyed the H2/T 5 law, was observed in a wide temper-
ature range for the (La1 – xPrx)0.7Ca0.3MnO3 system [8].
In order of magnitude, the value of magnetoresistance
agrees with the foregoing estimate.

We will now treat the region of strong fields. The
estimation of the Coulomb energy reveals that the fac-
tor with bH in the exponent in formula (25) is of the
order of unity at T ~ 100 K. Therefore, prior to expo-
nential growth, the magnetoresistance curve has a pla-
teau. In this region, we combine expressions (25) and
(31) to derive

(38)

where we have taken into account the fact that, pro-
ceeding from the estimates of αa and , the preexpo-
nential factor in formula (25) may be approximately
taken to be equal to 1 + j2/3.

The region of fields treated by us is restricted to val-
ues of the order of 10 to 20 T. This is due to the fact that
we ignored the nonlinear dependence of the droplet
radius on the magnetic field. In addition, a percolation
transition of the system into the metallic state is possi-
ble in the region of high fields. Therefore, the exponen-
tial growth of magnetoresistance in the case of high
fields arises at low temperatures and/or at a rather high
value of Coulomb energy, when the exponent in for-
mula (25) becomes of the order of unity. Then, at j > 1,
formula (25) will yield

(39)

Note that the magnetoresistance in the case being
treated may amount to several hundred percent even in
the nonmetallic phase.
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Abstract—The dynamics of a high-spin quantum system with magnetic anisotropy of the easy plane type under
the action of spin-polarized current permeating this system is considered. The spin-polarized current (with elec-
tron spins polarized along the hard magnetic axis of the system) induces the reorientation of the magnetic
moment of the system from the easy plane to the hard magnetic axis. Analytical expressions describing char-
acteristics of the reorientation process in the limiting cases of strong and weak dissipation are obtained. Under
strong dissipation conditions, the reorientation is shown to have a threshold character with “soft” (continuous)
displacement of the magnetic moment from the easy plane. Under weak dissipation, the reorientation occurs as
a discrete process, that is, is accompanied by magnetic moment jumps and hysteresis as the spin current
increases and decreases. At a fairly low temperature and weak damping, quantum effects arise in the system.
The spin current induces excitations quasi-anionic in character, Bloch oscillations of magnetic moment pre-
cession, and tunneling between different precession quantum modes. These quantum effects, in particular,
manifest themselves in the system under consideration by magnetic moment jumps and magnetic susceptibil-
ity peaks. © 2002 MAIK “Nauka/Interperiodica”.
1. Recently, a new mechanism of the remagnetiza-
tion of magnets has been suggested [1, 2] and experi-
mentally substantiated [3]. The essence of the mecha-
nism is as follows. Spin-polarized current passing
through a magnetized sample creates a torque moment,
which acts on the magnetic moment of the sample and
can change its magnitude and direction. Current spin
polarization arises when the current passes through a
ferromagnetic metal; the polarization is retained along
some length when the current goes out of the metal.
This length depends on the properties of the surface and
the material into which the polarized current passes
(this length can be 1 µm or larger for some metals and
semiconductors). The spin-polarized current is propor-
tional to the flux of angular momentum, and a change
in this current (called spin current in the problem under
consideration) in passing through a magnetized sample
determines the torque moment value that acts on sam-
ple spins. This new effect attracts much attention in
nanoelectronics and nanomagnetism, because it opens
up a possibility for creating advanced devices. Various
aspects of the effect under consideration were dis-
cussed in [4–17].

In this work, we study the dynamics of the remagne-
tization of a mesoscopic magnetic sample with rhombic
anisotropy under the spin current action. Attention is
focused on new spin-polarized-current-induced quan-
tum effects, namely, Bloch oscillations and Zener mac-
roscopic tunneling.

2. Consider the dynamics of the magnetic moment
of a magnetic molecule (nanocluster) or nanoparticle
1063-7761/02/9504- $22.00 © 20762
with easy plane-type magnetic anisotropy1 situated
between two planar contacts, at least one of which is
ferromagnetic. It is assumed that the gap between con-
tacts F1 and F2 is sufficiently narrow for tunnel current
to pass between them. The tunnel current from a ferro-
magnet is known to be spin-polarized. Let the degree of
polarization of electrons be p. For the Fe, Co, Ni, and
Cd ferromagnets, p equals 0.40, 0.35, 0.23, and 0.14,
respectively [18]. Of special interest are so-called fer-
romagnetic halfmetals with p ≈ 1. These are LaMnO3,
CrO2, Fe3O4, and Heisler alloys. Instead of a dielectric,
a metallic nonmagnetic interlayer with embedded
nanoparticles or rare-earth metal ions (such as Ho, Tb,
etc.)2 can be used. As far as nanoparticles (magnetic
molecules or rare-earth metal ions) are concerned, it is
assumed that, in the ground state, they possess a mag-
netic moment and magnetic anisotropy of the easy
plane type but with some fairly small azimuthal anisot-
ropy in the easy plane.

Another topology of experiments can be based on
the use of conducting organic molecules, which are
grown by self-assembly methods and are in contact
with a nonmagnetic or ferromagnetic metal (for
instance, Au or Ni).3 Such a contact is formed as a
result of chemisorption of so-called thiol groups at the

1 More exactly, we consider rhombic anisotropy; namely, it is
assumed that weak uniaxial anisotropy exists in the easy plane.

2 See [31], where the quantum dynamics of Ho3+ ions in
Li(Y,Ho)F4 crystals was studied.

3 See [32] on this matter.
002 MAIK “Nauka/Interperiodica”
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organic molecule end that is in contact with a metallic
electrode. Examples of such organic molecules with
thiol terminal groups are benzene-thiol molecules. A
magnetic element (a magnetic nanocluster or an ion
with easy-plane-type anisotropy4) is attached to the
other organic molecule end chemically or by van der
Waals forces. Used as the second contact can be a mag-
netic metallic (for instance, nickel) needle of an atomic-
force microscope. Such a configuration of experiments
is currently typical of nanophysics and nanoelectronics.

For definiteness, let the hard magnetic axis of the
molecule coincide with the z axis.

In the pioneering work by Slonczewski [1], the fol-
lowing generalization of the Landau–Lifshits equation
to the situation when a magnetic particle is under the
action of spin-polarized current was suggested:

(1)

where n is the unit vector directed along the total mag-
netic moment of the particle; ne is the unit vector
directed along the mean spin of the electronic current;
γ is the gyrom agnetic ratio; α is the dimensionless
damping constant; Ie is the total current permeating the
particle;

(2)

S is the total spin of the magnetic particle; p is the spin
polarization of the current defined as

(3)

where ρ↑(ρ↓) is the density of electrons with spins
directed along the z axis (in the opposite direction); and
Heff = H + HA, where H is the external field and HA is
the anisotropy field.

3. Equation (1) in spherical coordinates θ, ϕ, where
polar angle θ is counted from the z axis and the azi-
muthal angle ϕ, from the x axis, which coincides with
the easy axis, has the form

(4)

(5)

where

(6)

0 < K2 ! K1.

4 Currently, a substantial number of nanoclusters with such anisot-
ropy have been synthesized and studied [33]; also see [34], where
Langmuir–Blodgett films with Mn12 magnetic molecules were
prepared.

dn
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------ n γHeff×[ ] α ṅ

Ieg
eS
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g
1

–4 1 p+( )3 3 ne n⋅+( )/4 p3/2+
------------------------------------------------------------------------- 0;>=

p
ρ↑ ρ↓–
ρ↑ ρ↓+
-----------------,=

θ̇ θ αϕ̇ θsin
2

+sin
γ
M
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∂ϕ
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Se
------ θsin

2
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
Substituting (6) into (4) and (5) yields

(7)

(8)

where

(9)

The ground state of the system (at H = 0) corre-
sponds to θ = π/2 and π = 0, π. It is easy to see that the
resonance frequency (the ferromagnetic resonance fre-

quency) at α = 0 is ωp = . Damping in the sys-

tem is characterized by the frequency ωd = . It is
natural to consider two limiting cases, those of strong
(ωd @ ωp) and weak (ωd ! ωp) damping.

4. The case of strong damping. If ωd @ ωp, (7) and
(8) take the form

(10)

(11)

Here, the condition ω2 ! ω1 is also used. Equation (10)
with the initial condition ϕ(0)= 0 has the solution

(12)

θ̇ αϕ̇ θsin+
ω2

2
------ θ 2ϕ j θ,sin+sinsin–=

αθ̇ ϕ̇ θsin– ω1 ω2 ϕsin
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ω1 γ
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ωH γH , j
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Se
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ω1ω2

αω1
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2
------ 2ϕsin+ j,=

θcos
ωH

ω1
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1
ω1
------ϕ̇ .–=

ϕ
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4 j2 ω2
2–

4 j2
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 
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1 wwc2

Fig. 1. Reduced magnetic moment Mz/M0 as a function of
w = j/jc1, where jc1 = ω2/2, for the strong damping case with
αω1 @ ωp.
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Here, T is the period of spin-current-induced preces-
sion,

(13)

Magnetization Mz = M0cosθ is determined by (11).
Clearly, magnetization oscillates if j ≥ ω2/α. At H = 0,
its period T average value is

(14)

Equation (14) describes the curve of spin-current-
induced particle magnetization (Fig. 1). The critical

spin currents are jc1 = ω2/2 and jc2 = ( /4 + α2 )1/2

(at H = 0). Obviously, the first spin current value can be
obtained from formulas (12) and (13), and the second,
from the condition Mz/M0 = cosθ ≤ 1.

The phase diagram of the system under consider-
ation is shown in Fig. 2. External field H shifts the

T
4πα

4 j2 ω2
2–

------------------------.=

Mz〈 〉

0, j jc1,≤
M0

2αω1
------------- 4 j2 ω2

2–( )1/2
, jc1 j jc2,≤ ≤

M0, j jc2.≥







=

ω2
2 ω1

2

θ = π/2

θ = 0

j

ω2

jc2

jc1

Fig. 2. Phase j–ω2 diagram for the strong damping case.
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Fig. 3. Dependence ϕ(τ) at j = 0.15ω1, that is, in the region
of the existence of forbidden regions for angle ϕ.
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upper boundary of the phase diagram in an obvious
way.

5. The case of weak damping (αω1 ! ωp). Equa-
tions (7) and (8) then take the form

(15)

(16)

Equations (15) and (16) have the first integral

(17)

where

At H = 0, (17) gives

(18)

Substituting (18) into (16) yields

(19)

Here, the initial condition is ϕ(t = 0) = 0. The integra-
tion of (19) results in

(20)

where τ = –ω1t.
Equations (16) and (18–20) determine the time τ

dependence of magnetization Mz = M0cosθ in the para-
metric form

(21)

(22)

This parametric form makes it possible to compara-
tively easily numerically construct the dependences
cosθ(τ) and ϕ(τ). The characteristic curves are shown
in Figs. 3–5. Their analysis leads us to the following
conclusions about the dynamics of the spin-current-
induced reorientation of the magnetic moment of a
nanoparticle from the easy plane to the z axis.

(1) There exists a critical spin current value j1 =
0.3623ω1 below which the ϕ(τ) dependence has several
branches. Between these branches, there is a region
(“gap”) of angle ϕ values that are forbidden for mag-
netic moment orientations. Figure 3 illustrates this sit-
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uation. In this figure, the lower branch corresponds to
the localized state (finite motion) of the magnetic
moment, and the upper branch, to precession with a
gradual approach to axis z. The figure also shows that
precession is not continuous and is accompanied by
jumps and hystereses. This means that the forward and
backward ϕ(τ) trends do not coincide, which also
directly follows from the observation that ϕ(τ) is an
ambiguous dependence.

(2) At j1 < j < j2 ≈ 0.65ω1, there are no forbidden ϕ
angle regions, but the ϕ(τ) dependence remains ambig-
uous. The ϕ(τ) and θ(τ) angles therefore experience
jump changes, and the magnetic moment dynamics
exhibits hystereses (Figs. 4a, 4b).

(3) At j > j2, the dynamics of spin-current-induced
magnetic moment reorientation from the easy plane to
axis z is smooth (Figs. 5a and 5b).

6. Quantum effects should be taken into account in
the dynamics of the system at fairly low temperatures
for small-sized nanoparticles. Consider this problem
under the condition that the angle of departure of the
magnetic moment out of the easy plane, that is, ψ =
π/2 – θ, is a small parameter. It is then natural to con-
sider the case of weak dissipation, when quantum

0.2

0 5

co
sθ

τ

0.4

0.6

0.8

1.0

10 15 20

(b)

0

ϕ,
 r

ad
20

(a)

15

10

5

Fig. 4. Dependences ϕ(τ) and cosθ(τ) at j = 0.45ω1, that is,
in the j1 < j < j2 ~ 0.65ω1 region, when there are no forbid-
den regions for angle ϕ, but the ϕ(τ) and θ(τ) dependences
remain ambiguous.
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effects are most noticeable. At ψ ! 1, (16) gives

(23)

Substituting (23) into (15) yields

(24)

The Lagrange and Hamilton functions of (24) have
the form

(25)

(26)

where J = M/2γω1, and generalized momentum Pϕ and
potential energy U(ϕ) are given by

(27)

and

(28)

ψ
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----------------.=
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---ωp

2 2ϕsin+ jω1 ω̇H.+=
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2
--------- U ϕ( ),–=
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Fig. 5. Dependences ϕ(τ) and cosθ(τ) at j = 0.75ω1, that is,
in the j > j2 region, where the dynamics of spin-current-
induced m reorientations from the easy plane to the hard
magnetic axis is smooth, although nonmonotonic.
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respectively. Note that magnetization Mz = M0cosθ can
be expressed via Pϕ as follows:

(29)

Equations (24)–(28) are isomorphic to the corre-
sponding equations describing the dynamics of the
Josephson transition in the classical approximation.

In 1963, Anderson [19] suggested that macroscopic
quantum effects can be described as the dynamics of
the Josephson transition if the charge and the phase,
which are the generalized momentum and coordinate of
the system, respectively, are treated as operators. Simi-
lar quantities in our problem are magnetization Mz =
M0cosθ and angular variable ϕ or, according to (29), Pϕ
and ϕ. The commutation relation for Pϕ and ϕ has the
form

(30)

Taking (26)–(30) into account, we can write the
Schrödinger equation

(31)

where Ψ(ϕ, t) is the wave function describing preces-
sion of the total spin of the nanoparticle,

(32)

Equation (31) was thoroughly studied in [23] (also
see [24, 25]) for the problem of the dynamics of the
quasi-classical spin under the action of a magnetic field
with a linear time dependence. In this problem, the F
quantity [Eq. (32)] plays the role of the rate of field
variations with time.

The Schrödinger equation with “washboard”-type
potential energy as in (31) has been studied earlier, for
example, in the problem of motion of the electron in a
crystal under the action of a uniform constant electric
field [20, 21] and in the problem of weak superconduc-
tivity [22].

Equation (31) is similar to the Schrödinger equation
for a particle moving in a periodic potential under the
action of “force” F. We refer the reader to [23–25] for
details and only give the results of the analysis per-
formed there. The system has a band spectrum charac-
teristic of electrons in crystals, and the wave functions
are Bloch functions determined by continuous parame-
ter m (quasi-spin). The corresponding excitations are
quasi-particles with a fractional (or continuous) spin
number and are very close to anions in their properties
[26–28].

The widths of the lower zeroth and first allowed
bands are 2"2/J and 6"2/J, respectively. The lower for-
bidden band equals K2, and the higher forbidden bands
rapidly decrease in magnitude.

Mz
M2

2K1
--------- 2γPϕ .–=

Pϕ ϕ,[ ] i".=

i"Ψ̇
Pϕ

2

2J
------

1
2
---K2 1 2ϕcos–( ) Fϕ–+ 

  Ψ,=

F
M
γ
----- j

ω̇H

ω1
-------+ 

  .=
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Spin current (and field ) excite coherent quantum
oscillations of the precession motion of the magnetic
moment. For instance, the magnetic moment with a
zero mean quasi-spin value at the initial time shifts to
the Brillouin zone boundary, is reflected from it, then
propagates to the left Brillouin zone boundary, is again
reflected, and so on. This process is called Bloch oscil-
lations. Their frequency in this case is

(33)

Each reflection from the Brillouin zone boundary
manifests itself by a jump of angle θ, that is, of Mz.

If spin current (or external magnetic field) has a har-
monic component of frequency f, resonances at fre-
quencies fr = rfBloch are possible, where r is a rational
number. Such resonances are called Stark resonances.

When spin current increases to

(34)

the Zener tunnel effect between neighboring allowed
bands arises [29, 30]. In particular, the probability of
the tunnel transition per unit time between two lower
bands is given by

(35)

where β = π /2"2(  + jω1).

The |ψ〉 wave function of the process should then be
treated as the superposition of two amplitudes, that is,
|ψ〉 = c1|0〉  + c2|1〉 , where |0〉  and |1〉  are the wave func-
tions that describe Bloch oscillations in the zeroth and
first allowed zones.

7. Consider several numerical estimates. Suppose
that nanoparticles are a thin-layer element of thickness
d ~ 1 nm. Set K1 ~ 106 erg/cm3 and Ms = 0.8 × 103 Gs cm3.
We then have ω1 = 2γK1/Ms ~ 1011 s–1 and ω2 ≈ 0.01ω1 =
109 s–1; this is the case of weak damping with the criti-
cal values jc1 = 3.5 × 1010 s–1 and jc2 = 6.5 × 1010 s–1,
which correspond to the current densities through the
structure I1 = 3.5 × 108 A/cm2 and I2 = 6.5 × 108 A/cm2,
respectively.

The Bloch oscillation frequency estimated by (33) is
108 Hz (fBloch ~ gI/e) at an about 104-A/cm2 current den-
sity and a 1-nm nanoparticle diameter. For such nano-
particles, the Zener breakdown begins at current densi-
ties of the order of 107–108 A/cm2.

8. To summarize, we obtained analytic expressions
that characterized the reorientation of the magnetic
moment of nanoparticles with rhombic anisotropy from
the easy plane to the hard magnetic axis under the
action of spin current. At low temperature and weak
damping, spin current was shown to induce coherent
quantum effects in nanoparticles, namely, Bloch oscil-

Ḣ

f Bloch j
ω̇H

ω1
-------+ 

  S.=

M
γ
----- j

ω̇H

ω1
-------+ 

  K2,>

g01 f Bloch β–( ),exp=

K2
2 ω̇H
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lations of precession magnetization motion and tunnel
transitions between different precession quantum
modes.
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Abstract—The mechanism of instability of the front of magnetization reversal, i.e., of the boundary separating
the regions of existence of vortices with mutually opposite orientations of the magnetic flux (vortex and anti-
vortex regions) in type II superconductors, is suggested. The instability is associated with the anisotropy of flow
of a vortex fluid, caused by planar defects in the ab plane of high-temperature superconducting single crystals
of the 1–2–3 system. The anisotropy of the dynamic properties of vortex matter brings about a jump of the tan-
gential component of the vortex velocity at the front of magnetization reversal; as is known from the classical
hydrodynamics of viscous fluids, this leads to the turbulization of flow. It is demonstrated that the hydrody-
namic approach to the description of vortex flow helps explain the emergence of a positive increment of the rise
of vortex density fluctuations under conditions of a fairly strong anisotropy. The results of magnetooptical
investigations of macroturbulence in the vortex system of Y-123 single crystal with a high density of the twin-
ning boundaries lend qualitative support to the theoretical inferences. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The dynamics of vortex matter in type II supercon-
ductors have been subjected to intensive studies since
the late 1950s, starting with the pioneering work by
A.A. Abrikosov. More recently, primary attention was
given to hard superconductors, whose magnetic charac-
teristics are defined by the presence of Abrikosov vor-
tex pinning centers. The main features characterizing
the nonuniform penetration of magnetic flux into such
systems were revealed and studied; various theoretical
models of electrodynamic processes in superconduc-
tors were suggested. The new outburst of activities in
this field was initiated by the discovery of high-temper-
ature superconductors. An important characteristic fea-
ture of newly discovered superconductors is their lay-
ered structure leading to a strong anisotropy of the cur-
rent-carrying capacity. In addition, the existence of a
superconducting state at relatively high temperatures
made necessary a more consistent inclusion of thermal
fluctuations and the study of diverse phase transitions in
a vortex system. Many of the newly obtained results are
described in large review papers [1, 2].

The use of high-resolution magnetooptical equip-
ment made possible a detailed study of the dynamics of
magnetic flux in superconductors. One of the most
important characteristics revealed using this method is
the fractal or turbulent structure of thermally activated
flow of magnetic flux [3–6]. One of the most dramatic
1063-7761/02/9504- $22.00 © 20768
phenomena of this type is the macroturbulent instability
of the magnetic flux on the boundary of the front of
magnetization reversal that separates regions in which
vortices are oppositely directed (vortices and antivorti-
ces) [3–5]. Note that the macroturbulence was revealed
only in single-crystal samples of the 1–2–3 system.

The effect of macroturbulence essentially consists
in the following. If an external magnetic field of oppo-
site sign is applied to a superconductor with a trapped
magnetic flux, a boundary arises in the sample separat-
ing the regions occupied by vortices and antivortices.
Here and in what follows, for definiteness, we apply the
term “antivortices” to the vortices whose direction
coincides with that of the external magnetic field and
the term “vortices” to the vortices which were present
in the sample originally, prior to switching on a mag-
netic field of negative sign. In some range of magnetic
fields and temperatures, the stationary plane interface
between vortices and antivortices becomes unstable. A
disordered magnetic flux flow arises at the front of
magnetization reversal, which resembles a turbulent
fluid flow. This process rapidly develops in time and is
accompanied by the emergence of channels via which
the antivortices penetrate into the region taken by the
vortices. In other words, the front of magnetization
reversal assumes a “fingerlike” shape. The annihilation
of vortices and antivortices occurs at the front, and the
process of macroturbulence soon ends in the complete
disappearance of vortices. This pattern of penetration of
002 MAIK “Nauka/Interperiodica”
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magnetic flux differs qualitatively from the steady-state
slow motion of the front of magnetization reversal upon
initial switching on of the magnetic field, when vortices
of only one direction are present in the sample. Note
that the characteristic times of instability development
amount to seconds and more, and the arising spatial
structures are macroscopic, i.e., contain a large number
of single vortices.

Experiments performed to study macroturbulence
usually involve the use of platelike single crystals
placed in a transverse magnetic field; the magnetoopti-
cal image provides information about the distribution
of the normal component of magnetic induction. The
penetration of an electromagnetic field into a supercon-
ductor in such a geometry is of interest per se and was
studied by numerous researchers (see, for example, [7,
8]). However, the turbulent behavior of magnetic flux is
not a geometric effect. It was observed both in thin
plates in a transverse field and in single crystals with a
low demagnetizing factor. Frello et al. [5] reported the
magnetooptical visualization of developed macroturbu-
lence of vortex matter in an Nd-123 crystal 3.1 × 2.5 ×
1.3 mm3 in size. In the magnetic field, this sample was
divided into three magnetically unbound regions (each
having smaller transverse dimensions) in which the tur-
bulence developed independently. One must further
take into account the fact that the instability is often
observed under conditions of complete penetration of
magnetic flux into the sample, when, as was demon-
strated by Brandt [8], the difference in the distribution
of induction in the cases of longitudinal and transverse
geometry turns out to be not too significant.

Evidently, the macroturbulence cannot be under-
stood either within the universally accepted model of
critical state [9] or in the existing models of relaxation
of magnetic flux in hard superconductors [10]. At the
same time, this phenomenon is obviously similar to that
of turbulence in hydrodynamics; therefore, its interpre-
tation is of general physical interest.

In the helium temperature region, where the heat
capacity of superconductors is low and the critical cur-
rent density is high, the formation of macroscopic
unsteady-state and inhomogeneous structures may be
caused by instabilities in which thermal effects play an
important part (see, for example, [11]). Therefore, Bass
et al. [12] made an attempt at relating the nature of
macroturbulence to the heat wave generated at the front
of magnetization reversal due to the release of energy in
the process of annihilation of vortices and antivortices.
Unfortunately, it is unlikely that this mechanism may
be responsible for macroturbulence. Indeed, the energy
released during annihilation of a pair of vortices is of

the order of ξ2, where Hc is the thermodynamic crit-
ical field and ξ is the coherence length. If it is consid-
ered that the heat capacity of a superconductor at a tem-
perature of 40 to 70 K is of the order of 106–107 erg/cm3 K,
Hc ~ 103 Oe, and ξ ~ 10–7 cm, then, with the average

Hc
2
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magnetic induction in the sample of several hundred
gauss, the sample will not be heated by more than 10–4 K
if all vortices in it annihilate under adiabatic conditions.
The heating will amount to only hundredths of a
degree, even if we assume that all of the magnetic
energy stored in the sample will be adiabatically
released in this case. If we now recall that the macrotur-
bulence develops slowly and covers a macroscopic
fraction of the single crystal volume and that the sample
is intensively cooled in the course of experiment, the
assumption of the thermal nature of instability appears
to be improbable.

Another possible reason for the emergence of mac-
roturbulence was suggested by Vlasko-Vlasov et al.
[13]. Their attention was drawn to the fact that the pro-
cess of annihilation of a vortex–antivortex pair may be
accompanied by the formation of spatial domains free
of vortices (the so-called Meissner holes), and they
assumed that the presence of such domains may cause
instability. However, they did not treat the physical pat-
tern of instability.

In this study, we gave our attention to the fact that
the macroturbulence is observed only in single crystals
of the 1–2–3 family. These samples, in contrast to other
superconductors, are characterized by the clearly
defined anisotropy of conduction in the ab plane. The
anisotropy in these materials is associated with the
presence of two systems of mutually orthogonal twin-
ning boundaries which are usually oriented at an angle
of 45° to the single crystal boundaries (see, for exam-
ple, [14]). In our opinion, this is where we can find a
clue to understanding the nature of macroturbulence.
Because of the presence of the twinning boundaries, the
vortices and antivortices move under the effect of the
Lorentz force in opposition to each other mainly along
these “guiding” boundaries (the so-called guiding
effect [15, 16]). As a result, the tangential component of
vortex velocity suffers a discontinuity on the boundary
separating the vortex and antivortex domains. It is
known from the classical hydrodynamics [17] that the
presence of tangential discontinuities of velocity brings
about an instability of fluid flow.

Note that the electromagnetic instability of motion
of a vortex system in the critical and resistive states in
anisotropic hard superconductors was studied by
Gurevich [18, 19]. However, his results cannot be
directly used to explain the emergence of macroturbu-
lence.

In this paper, we demonstrate that a purely hydrody-
namic approach describing the motion of a system of
vortices and antivortices with anisotropic viscosity
makes it possible to understand the nature of the emer-
gence of instability of the front of magnetization rever-
sal, whose development leads to macroturbulence. In
particular, the mechanism of macroturbulence caused
by anisotropy enables one to interpret the special man-
ifestations of instability in superconductors with differ-
ent densities of twinning boundaries. A brief communi-
SICS      Vol. 95      No. 4      2002
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cation reporting the results of our study was published
previously [20].

2. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

We will treat an infinitely large superconducting
plate of thickness 2d, placed in an external magnetic
field H oriented along the z axis in parallel with the
sample surface. The x axis is directed normally to the
plate, with the origin of coordinates x = 0 located at the
plate center. We will assume that the magnetic field H
first increased so that the magnetic flux in the form of
vortices filled the sample and then decreased, passed
zero, and assumed some negative value. In this case, the
surface region of the plate on both sides is penetrated by
vortices with the opposite direction of magnetic flux
(antivortices), and three spatial domains arise in the
superconductor. In the central part, vortices which orig-
inally entered the sample are located. In two peripheral
regions arranged symmetrically relative to the median
plane of the plate, antivortices are located. It is clear
from the symmetry of the problem that it is sufficient to
treat only one (for example, the right-hand, 0 < x < d)
half of the sample. The geometry of the problem is
shown schematically in Fig. 1.

In hard superconductors, Abrikosov vortices are
pinned on various lattice defects so as to result in a non-
uniform distribution of magnetic induction. At zero
temperature, this pattern turns out to be static, in spite
of the Lorentz force exerted on the vortices by the
neighboring vortices. At finite temperatures, owing to
thermal activation, a slow flow of magnetic flux occurs
because of the vortex depinning from the pinning cen-
ters. The vortex system flow may be treated within the
macroscopic approach in terms of viscous flow of vor-
tex fluid. Such a description was employed, for exam-

B

N1(x)

0

y

z

d xx0 (t, y)

B H

N2(x)

V1 V2

U

Fig. 1. The density distribution for vortices, N1(x), and anti-
vortices, N2(x), in the right-hand half (0 < x ≤ d) of the plate.
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ple, by Bass et al. [12]. In the situation being investi-
gated, the magnetic flux flow is further promoted by the
process of annihilation of vortices and antivortices,
which occurs on the boundary x = x0 separating the
domains of their existence (see Fig. 1). This phenome-
non leads to an additional entry of antivortices from the
plate surface in an invariable external magnetic field H
and reduction of the total number of vortices in the cen-
tral part of the sample. As a result, the interface x = x0
moves slowly at a velocity U into the bulk of the sample
(Fig. 1).

We will designate the density of vortices and anti-
vortices as N1(x) and N2(x), respectively. The relation
between the vortex density Nα(x, y) (α = 1, 2) and the
magnetic induction B(x, y) in the respective domain of
superconductor is obvious: 

(1)

where Φ0 is a magnetic flux quantum, s1 = 1, and s2 = –1.
The density of vortices and antivortices must satisfy the
continuity equation,

(2)

where Vα denotes the hydrodynamic velocity of vorti-
ces and antivortices.

The second equation for the functions Nα and Vα is
the dynamic equation for vortex fluid. Because we
associate the instability of the front of magnetization
reversal with the anisotropy of magnetic flux flow, we
will assume the coefficient of viscosity to be the sym-
metric tensor of the second order ηik. We will write the
relation between the vortex velocity Vαk and the vortex-
moving Lorentz force FLi as

(3)

where the current density J is related to magnetic
induction by the Maxwell equation

(4)

The phenomenological description of the dynamics
of vortex matter using the set of hydrodynamic equa-
tions (2) and (3) is valid if the characteristic intervortex
distance a is much less than all spatial scales of the
problem, in particular, less than the characteristic scale
of macroturbulence.

Equation (3) may be rewritten as follows:

(5)

where γik is the dimensionless tensor of reciprocal vis-

cosity (  = Γγik), and the coefficient Γ is selected so

Nα x y,( )
sα B x y,( )

Φ0
-----------------------,=

∂Nα

∂t
---------- div NαVα( )+ 0,=

η ik NαVαk FLi, FL
1
c
---B J,×= =

J
c

4π
------curlB.=

Vα i

ΓΦ0
2

4π
----------γik

∂Nα

∂xk

----------,–=

η ik
1–
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that the principal values of the tensor γik were equal to
unity and ε, 0 < ε < 1. The case of maximally strong
anisotropy corresponds to ε  0. Note that Γ is the
reciprocal of viscosity and increases rapidly with tem-
perature because of thermally activated depinning. In
Eqs. (3) and (5), the inertial terms are omitted, because
they are unimportant in the case of low velocities of
interest to us [21].

For solving the problem, we must formulate the
boundary conditions on the sample surface, as well as
on the interface between the domains taken by vortices
and antivortices. We will first discuss the conditions on
the sample boundaries. We ignore the induction jump
on the surface (which may be done in the case of fairly
high values of H exceeding those of the lower critical
field Hc1) and derive

(6)

Because we treat only the right-hand part of the sample,
we will replace the condition N2(–d) = H/Φ0 by the
requirement

(7)

which immediately follows from the symmetry of the
problem and condition (6).

We will now turn to the conditions on the interface
between the domains of existence of vortices and anti-
vortices, which moves at some velocity toward the mid-
dle of the sample because of annihilation. The position
of this interface, generally speaking, depends both on
the time t and on the coordinate y. Indeed, it will be
clear from our paper that, as the instability develops,
the plane interface between vortices and antivortices
starts winding and assumes the shape of a “washboard.”
Therefore, the interface is defined by the equation x =
x0(y, t). Accordingly, the rate of its motion is defined by
the formula

(8)

Generally speaking, the velocity U, as well as x0(y, t),
depends both on time and on coordinate y, U = U(y, t).

The first one of the conditions on the interface con-
sists in that the normal components of the vortex and
antivortex flows in the frame of reference which moves
along with the interface are equal in magnitude and
opposite in sign,

(9)

Here, the subscript n indicates the normal vector com-
ponent. The unit vector n of the normal to the interface

N2 d( ) N2 d–( ) H/Φ0.= =

Vα 0( ) 0,=

Ux

∂x0

∂t
-------- 1

1 ∂x0 ∂y⁄( )2+
--------------------------------------,=

Uy
∂
∂t
-----

∂x0 ∂y⁄

1 ∂x0 ∂y⁄( )2+
--------------------------------------.–=

N1 V1 U–( )n N2 V2 U–( )n+ 0.=
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is given by the obvious formulas

(10)

The second boundary condition is defined by the
rate of annihilation of vortices and antivortices. It is
obvious that this rate goes to zero if the density of vor-
tices or antivortices on the interface between them is
zero. Then, we can follow the conventional approach to
describing such kinetic processes and conveniently rep-
resent the rate of annihilation to be proportional to the
product of vortices and antivortices,

(11)

A similar model of annihilation process was used by
Bass et al. [12]. However, they assumed the annihila-
tion parameter R to be proportional to the velocity dif-
ference |V1 – V2|. In this case, a macroscopic domain of
coexistence of vortices and antivortices may arise in the
sample; i.e., the vortex and antivortex domains may
penetrate into each other. Unlike Bass et al. [12], we
take into account the fact that the force of mutual attrac-
tion of vortices and antivortices in the vicinity of the
interface is very strong. This force is determined by the
current of individual vortices, which significantly
exceeds the averaged macroscopic current J. Therefore,
the relative velocity of vortices and antivortices in the
region of their annihilation is many times higher than
the hydrodynamic velocity Vα. As a result, the domain
of coexistence of vortices and antivortices turns out to
be of the same order of magnitude as the vortex lattice
parameter a. In the hydrodynamic approximation, this
scale is to be ignored. Therefore, we believe that the
annihilation proceeds on the plane x = x0(y, t) rather
than in a finite-size domain.

In principle, the annihilation parameter R may
depend on the vortex velocity and density. However, the
vortex densities on the interface must be treated as rel-
atively low, and we can assume the right-hand part of
equality (11) to be the first nonvanishing term of an
expansion of a more general expression for the rate of
annihilation in terms of vortex densities. The assump-
tion of the smallness of the vortex velocity Vα com-
pared with the “microscopic” velocity of annihilating
vortices and antivortices enables one to ignore the
dependence of R on the velocity Vα as well.

Finally, we assume that the average magnetic induc-
tion in the neighborhood of the interface is zero; i.e.,

(12)

at the point x = x0(y, t). One can readily demonstrate that
this condition directly follows from Eq. (2) and relation
(9) if it was valid at the moment of emergence of anti-
vortices in the sample. In our case, N1 = N2 = 0 at the

νx
1

1 ∂x0/∂y( )2+
-------------------------------------,=

νy

∂x0/∂y

1 ∂x0/∂y( )2+
-------------------------------------.=

N1 V1 U–( )n RN1N2.=

N1 N2=
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moment when the decreasing external magnetic field
assumed the value of H = 0.

The thus formulated equations and boundary condi-
tions make possible, in principle, complete analysis of
the behavior of a vortex system in time. The solution of
the problem treated by us involves finding the undis-
turbed base distribution of vortex density Nα(x, t) and
the velocity field Vα(x, t) and then testing for stability
the linearized set of equations for the δ(Nα(x, y, t)) and
δ(Vα(x, y, t)) fluctuations. The next section of the paper
deals with analysis of the base profile.

3. BASE PROFILE OF VORTEX
DENSITY DISTRIBUTION

At first glance, it would seem that the problem of
finding the base profile is rather simple, because the
position of the interface, its velocity, and the densities
of vortices and antivortices, as well as their velocities,
are independent of the coordinate y. In this case, how-
ever, one has to solve the nonlinear set of partial differ-
ential equations (2), (4), and (5). Especially compli-
cated is the use of boundary conditions (9)–(12) on a
moving interface whose position must be found self-
consistently. One must further bear in mind that the
problem set has no self-similar solutions with U =
const ≠ 0.

The first step will be the calculation of the base pro-
file of another system in which the interface velocity is
zero. The steady-state profile is realized, for example,
in a superconducting plate through which a direct trans-
port current passes which fills the entire cross section of
the superconductor. In this case, vortices with opposite
directions of magnetic flux penetrate on both sides of
the plate. These vortices meet and annihilate on a sta-
tionary boundary in the middle of the plate. The prob-
lem is readily solved in this formulation. Indeed, we
assume in formula (2) that ∂N1/∂t = ∂N2/∂t = 0 and find
from relations (2)–(6) and (9)–(12) the profiles of the
distributions N1(x) and N2(x) arranged symmetrically
relative to the point x0,

(13)

We will further assume for simplicity that the dimen-
sionless parameter r is much greater than unity; i.e., we
assume that the annihilation rate R and the coefficient
of viscosity Γ–1 are fairly high. Then, the distributions

N1 x( ) N2 d( )
x0 d/2r x–+
d d/2r x0–+
------------------------------- 

 
1/2

,=

N2 d( ) H
Φ0
------,=

N2 x( ) N2 d( )
x d/2r x0–+
d d/2r x0–+
------------------------------- 

 
1/2

,=

r
4πRd

ΓΦ0
2γxx

------------------.=
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given by Eqs. (13) demonstrate that the vortex density
on the interface is relatively low, N1 = N2 ~ N2(d)r–1/2.
At the same time, the spatial derivatives in the vicinity
of the interface increase,

(14)

One can readily demonstrate that the velocities
Vαx, y(x = x0) are relatively high, because they are pro-
portional to r1/2,

(15)

It can easily be shown that relations (14) on the base
profile are valid in all cases when the interface between
the regions taken by vortices with opposite directions of
magnetic flux remains stationary. In the case of interest
to us, the number of vortices decreases in time, and the
interface moves toward the middle of the sample. The
inclusion of this motion in accordance with Eq. (2) and
boundary condition (11) leads to changes in the expres-
sions for vortex density derivatives,

(16)

(17)

The velocity U of the front of magnetization reversal
is lower than the hydrodynamic vortex velocity Vα.
Therefore, in what follows, we will assume for simplic-
ity that the condition U ! Vα ~ N1R holds. This leads
one to assume that the base profile differs little from
steady-state.

4. STABILITY TEST FOR THE MAGNETIZATION 
REVERSAL FRONT

It is convenient to test the stability of the magnetiza-
tion reversal front in the following dimensionless coor-
dinates:

(18)
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The normalization to the time-dependent vortex density
Nα(x0(t)) is permissible, because we assume that the
instability develops over relatively short periods of
time, and there is not enough time for marked variations
of the base profiles to occur. We will represent the
expression for the vortex density nα(ξ, τ) in the form of
the sum of the unpurturbed term n(0)α and the fluctua-
tion term

(19)

The linearized boundary conditions must be written
on the purturbed boundary,

(20)

with the unit normal vector n = (1, –ikδξ(ζ, τ)). From
boundary condition (12), it directly follows that

(21)

We substitute Eq. (19) into expression (2) to derive
the following ordinary differential equation with vari-
able coefficients for the function fα(ξ – ξ0(τ)):

(22)

where u = Ut0/L, α = γxy/γxx, and β = γyy/γxx. We will
assume that the perturbation of vortex density decays at
a distance away from the front ξ = ξ0(τ) that is much
less than the sample thickness d. This makes possible
the replacement of the variable coefficients (ξ)

and (ξ) by their values  and  on the front of
magnetization reversal. In dimensionless variables, one
can readily derive

(23)

and

(24)

from expressions (16) and (17). The solution of
Eqs. (22) defines the exponential behavior of the per-
turbations f1 and f2,

(25)

The parameters p1 and p2, which are solutions to the
respective quadratic characteristic equation, are

(26)

(27)

Here, the upper signs indicate coefficient p1, and the
lower signs, p2. The substitution of expressions (19)–
(27) into the boundary conditions given by Eqs. (9) and

nα n 0( )α f α ξ ξ 0 τ( )–( ) λτ ikζ+( ).exp+=
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(11) produces the following set of two linear homoge-
neous algebraic equations for the f1 and f2 amplitudes:

(28)

We equate the determinant of the set to zero and ignore
small terms of the order of u2 to derive the dispersion
equation defining the dependence of the increment of
the rise of fluctuations λ on the wave number k,

(29)

where 

and Ω is a root with a positive real part, of the equation

(30)

Figure 2 gives the increment Reλ as a function of
dimensionless wave number κ for different values of
the anisotropy parameter e. One can see in the figure
that, for fairly low values of e < ec ≈ 0.019, a region of
wave numbers exists in which the increment is positive.
This means that the plane front of magnetization rever-
sal becomes unstable and the arising perturbation
increases with time. The time scale of increase is

f 1 2Ω1 2λ 2α iku u+ + +[ ]
+ f 2 2Ω2– 2λ– 2α iku– u+[ ] 0,=

f 1 2Ω1 λ α ik 1 u+( ) 2 2u–+ + +[ ]
+ f 2 λ– α ik 1 u+( )– 2 3u+ +[ ] 0.=

λ Ω2
eκ2– 2iσκ– 2,–=

κ k αu
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-------------, e
4ε
αu( )2

--------------, σ αu( ),sgn= = =

Ω4 3Ω3 Ω2
eκ2–( )+ +

– Ω 2eκ2 iσκ 4+ +( ) 3σiκ– 0.=

Reλ

κ

10

5

0

–5
0 20 40 60 80 100

Fig. 2. The Reλ(κ) dependence for different values of the
parameter ε: ε = 0 (solid line), ε = 0.0015 (circles), ε = 0.005
(triangles), ε = εc = 0.019 (dashed line), and ε = 0.05
(squares).
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defined by the maximal value of Reλ equal to λm which
corresponds to the finite value of κ = κm. Accordingly,
the spatial scale of instability is defined by the quantity
1/κm. In the case of small values of ε, the value of κm

significantly exceeds unity. One can readily see in
Eq. (30) that

(31)

Therefore, the instability arises if the anisotropy is
high enough, i.e., e < ec. This inequality may be rewrit-
ten in dimensionless variables as

(32)

Here, θ is the angle between the interface and the prin-
cipal direction of the anisotropic viscosity tensor (the
direction of the twinning boundaries). Now, one can
understand why the macroturbulence is observed only
in superconductors of the 1–2–3 system, which are

λm 1/ 4 e( ) 2, κm– 1/ 2e
3/4.= =

ε ec
U θtan

2RN1 x0( )
------------------------

2

.<

Fig. 3. The image of a surface region of a single crystal sam-
ple in polarized light. One can clearly see domains with
mutually orthogonal directions of the twinning boundaries.
The scale corresponds to 50 µm.
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characterized by a strong anisotropy in the ab plane due
to the presence of the twinning boundaries.

The foregoing analysis is valid in the case of anisot-
ropy with the first-order axis of symmetry. Such a sym-
metry corresponds to the twinning structure with a sin-
gle preferred direction. In real crystals of the 1–2–3
system, domains usually exist with the characteristic
dimension ∆ of the order of 100 µm with the mutually
orthogonal direction of the twinning boundaries, i.e.,
“tweed” structure (see Fig. 3). Our calculation results
are valid if the characteristic value of the wave number
k is fairly high, i.e., 1/k ! ∆.

5. MAGNETOOPTICAL OBSERVATIONS 
AND DISCUSSION

The magnetooptical observations of macroturbu-
lence were performed with an optimally doped YBCO
single crystal containing a large number of twinning
boundaries (see Fig. 3). The crystal was rectangular in
the ab plane, and its maximal dimension was approxi-
mately 1 mm.

The magnetooptical pattern of distribution of the
normal component of magnetic flux H = 1 kOe is given
in Fig. 4. The single crystal was precooled in zero mag-
netic field to a temperature T = 45 K. The lighter col-
ored areas correspond to higher values of magnetic
induction. One can see in the figure that the magnetic

Fig. 4. The magnetooptical image of distribution of the nor-
mal component of magnetic induction Bn on the surface of a
single crystal. The lighter colored areas correspond to the
higher value of Bn. The external magnetic field H = 1000 Oe,
T = 45 K.
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Fig. 5. The same as in Fig. 4 after the temperature rise to 67 K and subsequent switching off of the external magnetic field. Shown
on the right is an enlarged area of the fragment outlined by the light colored rectangular contour.
flux penetration is anisotropic in the ab plane. The
anisotropy axis mainly coincides with the direction of
the twinning boundaries, which form an angle of
approximately 45° relative to the sample boundaries.
The dark areas in the middle part of the image are
regions which the field does not penetrate because of
the screening by superconducting currents. Note that
this pattern of distribution of magnetic induction is
quasi-equilibrium and well reproducible.

In the course of experiment, the sample temperature
increased to 67 K. The temperature variation brought
about a deeper penetration of the magnetic flux up to
the middle of the sample. Then, the external magnetic
field was switched off. As a result, a frozen magnetic
flux remained in the sample. The pattern of its distribu-
tion is given in Fig. 5. The lines of the frozen magnetic
flux must be closed. Therefore, in the neighborhood of
the sample boundary, a domain arises in which the nor-
mal component of magnetic induction has a direction
opposite to that of the trapped flux. Corresponding to
this flux is the light “aura” around the sample in Fig. 5.
One can see in the figure that a domain with a negative
direction of the magnetic flux (antivortices) also exists
in the sample in the vicinity of its edges. Therefore, in
this geometry, no presence of an external magnetic field
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of opposite sign is required for the front of magnetiza-
tion reversal to arise.

Clearly seen in Fig. 5 is a dark line passing along the
sample boundary. This line, which separates two oppo-
sitely oriented magnetic domains (with vortices and
antivortices), represents the zone of annihilation. The
beginning of the development of macroturbulence
shows up as the emergence of a meander on the front of
magnetization reversal. The emergence of a meander is
accompanied by the appearance of regions with a
higher density of magnetic flux in the vicinity of the
front of magnetization reversal. Such regions are
clearly defined in the right-hand part of the figure,
which shows an enlarged image of the region marked
by a rectangular contour. Measurements with time res-
olution reveal that the shape of the front of magnetiza-
tion reversal changes rapidly, which is accompanied by
a marked redistribution of the magnetic flux. The
switching on of an external magnetic field which has
the direction opposite to that of the frozen magnetic
flux brings about the advance of the front of magnetiza-
tion reversal deep into the sample. In this case, the
dynamic pattern of macroturbulence becomes even
more impressive.
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The macroturbulent behavior of magnetic flux in the
investigated crystal is observed in a wide temperature
range from 25 to 75 K. An increase in temperature
makes for a more rapid development of turbulence.
However, above 75 K, the macroturbulence disappears.

Consider the agreement between the results of theo-
retical treatment and the experimental data. Unfortu-
nately, quantitative comparison of theory with experi-
ment is difficult because of the several phenomenolog-
ical parameters involved in theoretical treatment, for
which no adequate information is available. The most
important of such parameters is the annihilation parameter
R. The estimation of this parameter is of interest per se.
Nevertheless, we will discuss some features of the phe-
nomenon of turbulence which find a natural qualitative
explanation within the model developed by us.

One can readily explain, for example, the fact that
the instability is observed only in some temperature
range [5, 22]. As the temperature decreases, the viscos-
ity of the vortex motion exponentially increases.
Accordingly, the spatial scale of fluctuation L in for-
mula (18) decreases and becomes equal to or less than
the characteristic distance between the twinning bound-
aries. In this case, large regions of the front of magneti-
zation reversal, which “accommodate” a large number
of wavelengths, turn out to be located away from the
twinning boundaries and cease to be affected by them.
As a result, the anisotropy effectively weakens, and the
instability disappears. On the other hand, when the tem-
perature increases, the anisotropy weakens because of
the thermal-activation motion of vortices. The instabil-
ity disappears for the same reason. Note that, in the
crystal with a high density of twinning boundaries
investigated by us, the temperature window of exist-
ence of macroturbulence is significantly widened
towards lower temperatures compared with other sam-
ples with weak twinning [5, 22]. This fact agrees with
the suggested model as well.

The objective of this study is to reveal the main rea-
son for the instability of the front of magnetization
reversal, which we associate with the anisotropy of the
dynamic properties of vortex matter. Note, however,
that the selected model of anisotropic viscous flow of
magnetic flux is simplified. It corresponds to the linear
current–voltage characteristic observed in real super-
conductors only in the case of a very high current den-
sity. There is no doubt that such densities are not real-
ized in experiments involving the investigation of mac-
roturbulence. The crudeness of the model is reflected
by the fact that the condition of emergence of instability
given by Eq. (32) calls for an unrealistically strong
anisotropy of viscosity. It is clear that a more consistent
approach to studying the macroturbulence must be
based on the use of an anisotropic nonlinear current–
voltage characteristic. Preliminary analysis reveals
that, in the case of theoretical treatment involving a
power current–voltage characteristic with the exponent
m, the part of the parameter ε is played by εm. In the case
JOURNAL OF EXPERIMENTAL 
of high values of m of the order of 10, the condition of
emergence of instability becomes much less rigid.
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Abstract—A model of a dielectric or an elastic superlattice is proposed which describes quite simply the fre-
quency spectrum of electromagnetic or acoustic waves. The frequency band spectrum of a one-dimensional lat-
tice consists of minibands, which narrow down with increasing frequency (so that the forbidden bands in the
spectrum broaden with increasing frequency). An elementary analysis of the spectrum of a one-dimensional lat-
tice reveals the presence of many forbidden frequency bands in this case as well. It is shown that dynamic equa-
tions for superlattices can be generalized to the nonlinear case, leading to equations of the type of the nonlinear
Schrödinger equation for the lattice. Soliton excitations are described and the particle-like dynamics of solitons
is demonstrated. Local vibrations near point defects of different complexity in superlattices are studied and
graphically illustrated. The existence of Bloch oscillations of a wave packet in a superlattice in a homogeneous
external field is discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The concept of photonic crystals was introduced to
the scientific lexicon owing to book [1], in which the
theory of dielectric superlattices was presented quite
simply and in great detail. It is known that a homoge-
neous dielectric has a continuous spectrum of electro-
magnetic waves and vibrations: ω = ck, where ω and k
are the frequency and magnitude of the wave vector,
respectively, and c is the velocity of light in a dielectric,
which depends on the refractive index of the medium.
A periodic structure composed of macroscopic layers
(or blocks) of different dielectrics acquires new proper-
ties, which are manifested first of all in the properties of
the spectrum of electromagnetic vibrations in the struc-
ture. It is well known from the study of the dynamics of
a crystal lattice, which is a natural structure with a
microscopic period, that the spectrum of any intrinsic
vibrations of the crystal (mechanical, magnetic, and
electromagnetic) always consists of bands due to a spa-
tial periodicity of the crystal lattice. The widths of
allowed frequency bands and forbidden bands (gaps)
are determined by the reciprocal period of the lattice. In
a crystal where the sound speed is s, these bandwidths
in the spectrum of intrinsic mechanical vibrations
(phonons) can be approximately estimated as δω ~ s/a,
where a is the period of a crystal lattice (interatomic
distance). Note that the width of the transparency
region of a dielectric for electromagnetic waves can be
estimated similarly as δω ~ c/a.

These estimates are related only to the lattice peri-
odicity rather than to the period value. Therefore, they
1063-7761/02/9504- $22.00 © 20777
remain valid for a periodic structure with the macro-
scopic period d, which, by definition, greatly exceeds
the interatomic distance (d @ a). The latter means, in
particular, that, in the transparency region of homoge-
neous dielectrics comprising a superlattice, a band
spectrum of intrinsic electromagnetic oscillations (pho-
tons) appears, which resembles the spectrum of a crys-
tal lattice, but with the bandwidths estimated as δω ~
c/d ! δω ~ c/a. For this reason, the term “photonic
crystals” was coined.

Similarly, a macroscopic periodic structure consist-
ing of alternating elastic materials that differ in their
elastic moduli and sound speeds is called a phonon
crystal or an acoustic superlattice. The general theory
of acoustics of layered media is presented in book [2],
and useful references in this field can be found in one
of the recent papers [3] devoted to the study of acoustic
superlattices. The frequency spectrum of superlattices
was studied in many papers. It is obvious that this spec-
trum is very complicated in the general case and
includes a system of many eigenfrequency bands and
gaps corresponding to forbidden frequencies. To
describe these spectra qualitatively and to illustrate
their main properties, it is useful to employ simple
models that take into account these properties. In this
paper, we propose a model of a superlattice that pro-
vides the analytic description of the high-frequency
part of the superlattice spectrum and suggests a possi-
ble realization of an interesting acoustic superlattice.
This model and its simplest possible applications were
considered in paper [4].
002 MAIK “Nauka/Interperiodica”
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We used the results of papers [5, 6], where the dis-
persion equations for one-dimensional dielectric and
elastic superlattices were presented, which coincide
with an accuracy of notation with the dispersion law for
a quantum particle in the one-dimensional Kronig–
Penni model [7]. We considered a limiting case of the
dispersion equation, which was usually of no interest in
the case of a quantum particle in a periodic field but
proved to be a convenient and instructive model of the
elastic superlattice. The frequency spectrum that we
obtained is of interest because its high-frequency part
has a system of narrowing allowed frequency bands in
which the dispersion law can be calculated analytically
with good accuracy. This is the dispersion law for size-
quantized sound vibrations in individual layers
(blocks), with discrete frequencies that are periodically
blurred due to a weak interaction between adjacent
blocks. The dispersion equations for the high-fre-
quency spectrum can be readily generalized to two-
dimensional and three-dimensional superlattices with a
one-component wave field.

We describe a simplified dispersion law for each
miniband by an effective equation of the envelope type,
which coincides in its form with the one-dimensional
Schrödinger equation in the lattice-point representation
for the strong coupling model. We performed a trivial
linear generalization leading to a discrete variant of the
nonlinear Schrödinger equation (NSE) admitting soli-
ton solutions. In one of the cases of nonlinear generali-
zation, we obtained a completely integrable NSE for
the lattice, whose solitons obey the Hamiltonian
dynamics.

We studied vibrations localized in the vicinity of
simplest defects in a one-dimensional superlattice,
when the coupling parameter at one boundary (or at two
to three boundaries) of adjacent blocks differs from that
at all other boundaries (joints) of the blocks. In the pres-
ence of a local defect, both symmetric and antisymmet-
ric independent vibrations relative to the defect center
can occur because of the linearity of vibrational equa-
tions. In addition, an inphase or antiphase vibration of
adjacent blocks can correspond to each type of the
vibrations. Therefore, a great variety of local vibrations
exist to which different equations for local frequencies
correspond.

In the final section of the paper, we describe Bloch
oscillations of a wave packet in a superlattice whose
parameters weakly depend on the coordinate along the
one-dimensional lattice (superlattice in homogeneous
external field). It is noted that such oscillations can be
observed experimentally.

2. DISPERSION EQUATION FOR A SIMPLEST 
SUPPERLATICE MODEL

Consider a one-dimensional lattice consisting of
periodically arranged (along the x axis) layers of isotro-
pic materials of two types [dα are the thickness of layers
JOURNAL OF EXPERIMENTAL 
(α = 1, 2), cα is the velocity of wave in the α layer, and
the lattice period is d = d1 + d2]. The field of the elastic
(electromagnetic) wave u(r, t) propagating perpendicu-
lar to the layer plane is determined by a standard wave
equation. In a system of isotropic blocks, the waves of
two possible polarizations are independent, and we can
restrict ourselves to analysis of dynamic equations for
the scalar field u(α)

(1)

The velocity of light in a dielectric is cα = c/  (c is
velocity of light in vacuum, εα are dielectric constants
of superlattice layers).1 The velocity of a wave in an

elastic medium is cα =  (µα and ρα are the elas-
tic moduli and mass densities, respectively.

Let us focus our attention on an elastic lattice. In this
case, Eqs. (1) should be solved using the boundary con-
ditions according to which the displacements u(α) and
stresses σα = µα∂u(α)/∂x should be continuous at all
boundaries of the blocks.

Each of the vibrational eigenmodes appearing in a
periodic structure with a period d is characterized by
the quasi-wave number k, and natural oscillations of the
field in an elementary cell with the number n can be
written in the form

(2)

Dispersion relations for the structure under study
were obtained by Rytov for both optical [5] and elastic
[6] superlattices. They have the form

(3)

where q1 = ω/c1, q2 = ω/c2 (ω is frequency). As
expected, these relations coincide with an accuracy to
notation with those obtained by Kronig and Penni [7]
for a quantum particle in a periodic potential.

Expression (3) gives the implicit dependence of the
frequency on the quasi-wave number and allows us to
describe readily the spectrum of long-wavelength
vibrations (kd ! 1), for which the sound spectrum is
naturally obtained with averaged elastic moduli 〈µ〉  and
the density 〈ρ〉 . It was shown in paper [6] that 〈ρ〉 d =
ρ1d1 + ρ2d2 and d/〈µ〉  = d1/µ1 + d2/µ2. Based on such a
representation of µ, which contains only ratios dα/µα, it
is interesting to consider a limiting case, which is of no
interest from the physical point of view in the case of

1 As shown in [4], the spectrum of this system consists of narrow
bands, and the frequency dependence of εα can be neglected
within each of these bands. Therefore, the dielectric constant cor-
responding to the relevant frequency can be assigned to each of
the allowed bands.

∂2uα

∂t2
----------- cα

2 ∂2uα

∂x2
-----------– 0, α 1 2.,= =

εα

µα /ρα

un x( ) u0 x nd–( )eiknd.=

kdcos q1d1 q2d2coscos=

–
1
2
---

q1

q2
-----

q2

q1
-----+ 

  q1d1 q2d2,sinsin
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the dynamics of a quantum particle in a periodic poten-
tial, but can demonstrate the most characteristic proper-
ties of the superlattice spectrum, when d2  0 and
µ2  0 for d2/µ2 = M = const. In this case, d1  d,

k2d2 = ωd2/c2 = ω   0. The, the disper-
sion law for the system is described by the equation

(4)

where z = q1d = ωd/c1 and Q = ρ2µ1M/2ρ1d. Note that
Eq. (4) gives the dispersion law for an elastic superlat-
tice consisting of periodic elastic blocks of length d
with the parameters µ1 and c1. The normal stress at the

boundaries of these blocks are continuous (  = 0,

i.e.,  = 0), while elastic displacements exhibit
a jump proportional to the value of stresses at the block
boundaries:

(5)

A set of such boundary conditions for Q being fixed
is used for the description of capillary effects in solids
[8] or plane defects in crystals [9]. If the parameter Q is
small, then the system under study represents a periodic
sequence of elastic regions that are weakly connected
with each other. A chain of piezoelectric layers con-
nected by thin vacuum spaces can form such a superlat-
tice. In this case, electromagnetic oscillations in vac-
uum spaces would provide the coupling between elastic
vibrations in adjacent regions. A piezoelectric with a
structure admitting both the construction of such a peri-
odic system of layers and the independent propagation
of one elastic electromagnetic wave of a certain polar-
ization along the superlattice can be easily found.

Let us return to relation (4). The allowed vibrational
frequencies of a continuous spectrum of the system
under study can be qualitatively found by analyzing
graphically Eq. (4), as shown in Fig. 1: if the expression
cosz – Qzsinz runs the values between ±1, the roots of
the equation run the values in the intervals shown on the
abscissa.

Note that, as z increases, the allowed frequencies are
localized within the narrowing intervals near the values
k1d = ±mπ, where m is a large integer.2 For the condi-
tion m2Q @ 1, the dispersion law for the mth band can
be readily found.

2 The narrowing of bands with increasing frequency was men-
tioned earlier, in particular, in [3]. However, the statement [10]
that the bandwidths do not change on average with increasing fre-
quency contradicts the above affirmation.

ρ2d2 d2/µ2

kdcos z Qz z,sin–cos=

σ[ ] –
+

∂u/∂x[ ] –
+

u[ ] –
+ Q

ρ1

ρ2
----- 

  ∂u
∂x
------ 

  .=
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Indeed, near odd m = 2p + 1 (see the vicinity of
z = 3π in Fig. 1), we can write with sufficient accu-
racy (c = c1)

which yields

(6)

where ω0 = πc/d and Ω = c/(πQd). Similarly, even near
m = 2p (see the vicinity of z = 4π in Fig. 1), we can write

which gives

(7)

By combining (6) and (7), we obtain the dispersion
laws for the mth band:

(8)

One can easily see that expressions (8) represent the
size-quantization spectrum of phonons in a layer of
thickness d, whose levels split into minibands due to a
low “transparency” of the interface between layers. In
paper [10], where the dispersion relation (3) was
derived once more, an attempt was made to analyze the
band spectrum of the superlattice. However, in the lim-

kdcos –1 Qmπ z mπ–( )+=

=  –1
mπd

c
-----------Q ω mπc

d
----------– 

  ,+

ω mω0
Ω
m
---- 1 kdcos+( ),+=

kdcos 1 Qmπ z mπ–( )–=

=  1
mπd

c
-----------Q ω mπc

d
----------– 

  ,–

ω mω0
Ω
m
---- 1 kdcos–( ).+=

ω mω0
2Ω
m

-------
kd/2( )sin

2
, m 2 p,=

kd/2( )cos
2

, m 2 p 1.+=



+=

4

3

2
coshkd

1
coskd

0

–1
–coshkd

–2

–3
4π3π2ππ0

z

Fig. 1. Graphical solution of Eq. (4). If cosz – Qzsinz runs
the values between ±1, the roots of equation determining
bands of a continuous spectrum of superlattices run the val-
ues in the intervals indicated on the abscissa.
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iting case, which is close to that considered in our
paper, the analysis [10] is not satisfactory because it
predicts that the widths of minibands do not change
with increasing frequency.

Let us make some comments on the proposed real-
ization of an elastic superlattice in the form of a peri-
odic stack of piezoelectric layers separated by thin vac-
uum spaces. Upon normal incidence of a transverse
electromagnetic wave from vacuum on a piezoelectric
layer, the static piezoelectric effect does not “operate,”
and it is necessary to consider the relativistic electro-
mechanical effect, which is proportional to a small
parameter (s/c)2. The point is that a vibrational mode of
the piezoelectric of interest to us consists mainly of the
elastic component with a small contribution [deter-
mined by the parameter(s/c)2] of the electromagnetic
component, while the interaction between the adjacent
layers occurs through electromagnetic oscillations. For
this reason, the coupling between elastic vibrations in
adjacent piezoelectric layers is extremely weak. As a
result, the widths of minibands, for which dispersion
laws of the type (8) can be obtained, prove to be negli-
gibly small. Therefore, such a superlattice should have
a virtually discrete frequency spectrum of elastic
waves, which is caused by the resonance propagation of
electromagnetic waves through the piezoelectric and
corresponds to the spectrum of size-quantized station-
ary elastic vibrations in an individual layer.

A real spread of discrete frequencies in such a
superlattice will be caused not by the appearance of
regular minibands but by processes of a different phys-
ical nature, namely, the uncertainty of the wave number
in a superlattice of a finite length, the accuracy of its
strict periodicity, and dissipative processes resulting in
the attenuation of sound in a piezoelectric.

The model of a one-dimensional superlattice pro-
posed above and the derivation the dispersion law (8)
can be readily generalized to the two-dimensional and
three-dimensional cases if the wave field under study
has one component. The latter condition is simply sat-
isfied for a two-dimensional superlattice consisting of
blocks with a square cross section separated by two
mutually perpendicular systems of boundary planes.
The cross section of such a lattice represents a parquet
of square regions of elastic media separated by planes
(or by straight lines in the plane z = 0) x = n1d, y = n2d,
where n1, n2 = 0, ±1, ±2, …. If the elastic wave is polar-
ized along the z axis, then the boundary conditions at
two systems of boundary planes are formulated inde-
pendently in the form of relations of the type (5), where
the left-hand sides are ω = q1c or ω = q2c. For example,

(9)q1c m1ω0
2Ω
m1
-------

kxd
2

--------sin
2

, m1+ 2 p1,= =
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or

(10)

The dispersion law for the elastic wave in each block is
obvious:

(11)

Therefore, in the limiting case m1Q, m2Q @ 1, the dis-
persion laws for highly lying allowed bands have the
form

(1) m1 = 2p1, m2 = 2p2,

(12)

(2) m1 = 2p1 + 1, m2 = 2p2 + 1,

(13)

(3) m1 = 2p1, m2 = 2p2 + 1,

(14)

(4) m1 = 2p1 + 1, m2 = 2p2, similar to expression (14)
in which the replacement m1  m2 and kx  ky is
made.

The frequency spectrum described by expressions
(12)–(14) is equivalent to the spectrum of a quantum
particle in a periodic two-dimensional structure in the
strong coupling model. The generalization of this result
to a rectangular two-dimensional superlattice is obvi-
ous, namely, two periods dx and dy and two parameters
Qx and Qy (or Ωx and Ωy) will appear.

The generalization of the above result to the case of
a three-dimensional scalar wave field is also obvious (it
coincides with the three-dimensional strong coupling
model).

The main feature of the frequency spectrum of the
one-dimensional superlattice is the presence of broad
intervals of forbidden vibrational frequencies (gaps in a
continuous spectrum). The existence of forbidden-fre-
quency intervals ω in two-dimensional and three-
dimensional superlattices is proved not so readily. Nev-
ertheless, one can prove that such intervals are present
at least in the two-dimensional lattice.

By choosing a two-dimensional rectangular coordi-
nate net, we plot the quantity q1d = (ω/c)d along one of

q2c m2ω0
2Ω
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2
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the axes, by indicating the boundaries of the frequency
intervals allowed by expressions (12)–(14). Let us per-
form a similar procedure with q2d = (ω/c)d for the sec-
ond axis and then draw a system of straight lines paral-
lel to the coordinate axes (see schematic Fig. 2). These
straight lines separate rectangular or square regions in
the plane in which points (q1, q2) corresponding to the
allowed frequencies, according to (11), can be located.
The broad arcs in Fig. 2 show the forbidden-frequency
bands corresponding to gaps in a continuous spectrum.

3. SOLITARY WAVES IN A SUPERLATTICE
Let us return to Eq. (8) and note once more that this

dispersion equation coincides with the dispersion law
for a Bloch quasi-particle ((ψm(z + d) = ψm(z)eikd),
which corresponds, in the strong coupling model, to the
Schrödinger equation

(15)

where the choice of the sign depends on the band num-
ber: the upper sign corresponds to m = 2p, while the
lower sign corresponds to m = 2p + 1. From the point of
view of studying the superlattice spectrum, Eq. (15)
represents the equation for the envelope of the superlat-
tice vibrations taken at discrete points. This equation
describes the dynamics of a packet of waves corre-
sponding to the allowed high frequencies. As usual, the
order of the time derivative is lowered in equations for
the envelope.

The discrete Schrödinger equation (15) can be
treated as a dynamic equation for vibrations of a super-
lattice in the lattice-point representation. This allows us
to generalize easily our studies to nonlinear excitations
in the superlattice. By following the scheme of taking
into account basic nonlinear effects in optics, we
assume that the wave velocity c depends on the inten-
sity of vibrations:

(16)

The dependence of c on |ψ|2 should be taken into
account only in the first term on the right-hand side of
Eq. (8). Then, vibrations in the mth frequency band (for
certainty, m = 2p) will obey the equation

(17)

where g = πγ/d is a new parameter.
An equation analogous to Eq. (17) is used in the

nonlinear optics of the waveguide system [11]. Among
the effects that are studied in nonlinear optics and are
described by Eq. (17), the most interesting is the exist-
ence and dynamics of optical solitons. Therefore,
Eq. (17) can be used for the description of soliton exci-

i
∂ψn

∂t
--------- mω0ψn

Ω
2m
------- 2ψn ψn 1+± ψn 1–±( ),±=

c c0 γ ψ 2, γ+ const.= =

i
∂ψn

∂t
--------- mω0ψn=

–
Ω

2m
------- 2ψn ψn 1+ ψn 1–––( ) mg ψn

2ψn,+
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tations in a superlattice. Unfortunately, Eq. (17) does
not belong to the class of completely integrable equa-
tions and does not have exact soliton solutions. And
only passage to the continuous limit, when Eq. (17) in
finite differences is reduced to an ordinary NSE in par-
tial derivatives, permits the construction of exact soli-
ton solutions. It is an equation of this type that was used
in paper [12] for studying nonlinear localized waves in
periodic media. However, the approximation of narrow
bands with the dispersion laws (8) used here does not
allow the passage to such a limit.

Note, however, that other manifestations of nonlin-
earity can be observed in the superlattice under study.
An important factor in the construction of the superlat-
tice model proposed above is relation (5), containing
the phenomenological parameter Q, which determines
in turn the parameter Ω in (15). This parameter can
depend on the intensity of vibrations. Let us assume
that the dependence of the type (16) is valid for the
parameter Q. We will use this assumption by prelimi-
narily simplifying Eq. (15). Consider the case m2Q @ 1
by retaining on the right-hand side of this equation only
the first terms of each type nonvanishing over the
parameter 1/(m2Q):

(18)

Then, we return to the assumption of the type (16):

(19)

i
∂ψn

∂t
--------- mω0ψn

Ω
2m
------- ψn 1+ ψn 1–+( ).+=

Ω Ω0 1 g0 ψn
2+( ), g0 0.>=

4π

3π

2π

π

0 4π3π2ππ

Fig. 2. Schematic view of the mutual arrangement of forbid-
den and allowed bands in a two-dimensional superlattice in
the case of equal periods in two mutually perpendicular
directions (on both axes the values q1d = q2d = (ω/c)d are
plotted). The dashed rectangular and square regions, in
which points (q1, q2) can be located, correspond to the
allowed frequencies [see expression (11)]. The dashed arcs
correspond to forbidden bands of the spectrum of a two-
dimensional square superlattice.
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As a result, not imposing any strict normalization
requirements on the function ψn, we rewrite (18) in the
form

(20)

It is known that Eq. (20) for Ω0 < 0 is an exactly inte-
grable version of the NSE for the lattice [13, 14].

Let us assume that Q < 0 and introduce a new
dimensionless time τ = |Ω0|t/(2m). Then, Eq. (20) can
be written in the standard form

(21)

where ω* = 2m2ω0/Ω0 = 2π2m2|Q|.
Consider the stationary solution of Eq. (21) of the

type

(22)

where  is a real function and Θ is a constant arbi-
trary phase. The function φn vanishing at infinity (φn =
0 for n  ±∞) corresponds to soliton solutions.

If Eq. (21) has a stationary localized solution prop-
agating along the chain at the velocity V, one can expect
that, as in the case of the continuous NSE, its real
amplitude will have the form

(23)

Taking this into account, the authors of paper [15] sug-
gested the solution in the form

(24)

where A = const and cn(z, κ) is the elliptic Jacobi
cosine, whose parameter κ obeys the inequalities 0 <
κ < 1. For κ ! 1, the elliptic cosine transforms to the
trigonometric cosine, and Eq. (24) transforms to a solu-
tion of a linear equation. In the opposite limiting case
κ  1, the transformation cn(z, κ)  1/  =

 takes place, and we obtain the solution

(25)

where x0 and θ are constants and the parameters β, V, ω,
and k are related by two expressions

(26)

(27)

Thus, for a certain sign of the parameter Q (Q < 0), soli-
tons may propagate at a constant velocity in the super-
lattice. It was shown in paper [16] that the movement of

i
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V
2
β
--- β k.sinsinh=
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a soliton described by solution (25) obeys the Hamilto-
nian dynamics. In particular, its movement is controlled
by three integrals of motion: its mass (playing the role
of the norm of the wave function)

(28)

its energy * = E + ΩN, where

(29)

and the total momentum of the soliton (which differs
from the total quasi-momentum, which is not con-
served3)

(30)

If the soliton solution has the form (25), then the inte-
grals of motions are invariant with respect to continu-
ous translations and, therefore, can be calculated by
integration, by replacing sums in (28)–(30) by integrals

(  = ). Then, we obtain

(31)

Therefore, three of the four parameters β, V, ω, and k are
determined by fixed integrals of motion, while the
fourth parameter (the quasi-wave number k) remains
free. We see that the width of a soliton λ = 1/β is deter-
mined only by the value of N, while its energy and
velocity are periodic functions of k (as should be in a
homogeneous periodic structure).

Of course, one should bear in mind that we dis-
cussed the properties of the exact soliton solution of the
approximate equation obtained by simplifying the ini-
tial NSE (16) for the lattice, which is valid itself if the
inequality m2|Q| @ 1 is satisfied. The perturbations
caused by this approximation will distort and possibly
destroy the soliton solution with time. However, the
presence of a large parameter m2|Q| @ 1 for high-fre-
quency bands ensures the smallness of these perturba-

3 The operator of quasi-momentum is expressed in terms of the

operator of translation by one period  of a one-dimensional

chain as  = –iln ; therefore, the total quasi-momentum Q can
be represented as the sum

This quantity is not an integral of motion in the anharmonic chain
described by Eq. (21).
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tions, and such solitons can exist, at least, as long-lived
localized excitations of the superlattice.

4. LOCAL DEFECTS IN SUPERLATTICES

We studied the spectrum of natural vibrations of
superlattices, which is characterized by a series of nar-
rowing allowed frequency bands and has (in the general
case) forbidden bands (gaps in a continuum spectrum).
Consider now the possibility of the appearance of
vibrational states in forbidden bands. Such vibrations
correspond to solutions of the type un ∝  exp( )
(k = iκ) or un ∝  (–1)nexp( ) (k = iκ + π) exponen-
tially decreasing (increasing) with the number n. It is
obvious that such states can have a physical meaning
only on the coordinate semiaxis under the condition
that a solution that vanishes at infinity is chosen, which
reflects some boundary conditions at the coordinate ori-
gin.

For the solution of the first type (k = iκ), the fre-
quency dependence of the parameter κ can be found
from the relation

(32)

while, for the solution of second type (k = iκ + π), it can
be found from the relation

(32a)

The solutions of the first type correspond to frequencies
in the intervals (2p – 1)π < z < 2pπ, and those of the sec-
ond type, in the intervals 2pπ < z < (2p + 1)π (see
Fig. 3).

It is obvious that such situations appear on the semi-
axis due to a local distortion of a strict periodicity in the
system, i.e., due to the presence of defects in the peri-
odic ordering. The simplest defect is the difference of
physical conditions at one of the boundaries of elastic
blocks from those at other boundaries.

Let us assume that the boundary condition (5) at one
of the joints is characterized by the parameter Q*,
which differs from Q: Q* = Q + ξQ. We assume also
that, at the boundary of joints with the number n = 0,
condition (5) has the form

(33)

We are interested in the solution that is antisymmetric
with respect to the choice of the sign of n and will rep-
resent the displacements un for positive n in the form

(34)

Then, the elastic stresses are

κnd+−
κnd+−

κdcosh z Qz z 1,>sin–cos=
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un x t,( ) w x nd–( ) –κnd iωt–{ } , n 0,≥exp=
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The function w(x) can be conveniently written in the
form

(35)

where q = ω/c and θ = const is a constant phase.

The boundary conditions at n = 0 yield the relation

(36)

By combining (36) with (32) and (32a), we obtain the
equation

(37)

Equation (37), together with (32) and (32a), determines
the frequencies of vibrations localized at such a defect.
The local frequencies are determined by points of inter-
section of the plots of the right-hand sides of (32) and

(32a) with the plot of the function f(z) =  =
[1 + (ξQz)2sin2z]1/2 determined by condition (37).
Because κ > 0, the solutions are the frequencies (the
values of z) determined from the equation4

(38)

Figure 3 presents the method of graphical solution
of Eq. (38). The curves corresponding to the left-hand
and right-hand sides of formula (38) are shown, and

4 Equation (37) for local frequencies is a limiting case of a more
general relation obtained in [10].

w x( ) a0 qx θ–( ),cos=

e κd– z Q∗ z z, zsin–cos qd .= =

κdsinh ξQz z, ξsin
Q∗ Q–

Q
-----------------.= =

1 zsinh
2

+

z Qz zsin–cos

=  ξQz zsin{ } 1 ξQz( )2 zsin
2

+ .sgn

4

3

2

1

0

–1

–2

–3
0 2π 3π 4ππ

z

coshkd

–coshkd

f(z)

–f(z)

z0
z1

z2
z3

Fig. 3. Graphical determination of the roots of Eq. (38):
roots z0, z2, … and z1, z3, … correspond to two types of

vibrations (solution of the type un ∝  exp( ) (k = iκ)

and un ∝  (–1)nexp( ) (k = iκ + π), respectively). The
frequencies of local vibrations corresponding to different
signs of ξ are located in the alternating intervals between z
= 2pπ and z = (2p + 1)π (p = 0, 1, 2, …).

κnd+−

κnd+−
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their points of intersection, which give the required fre-
quencies, are indicated.

Note that the points of intersection exist for any sign
of the parameter ξ. The frequencies of local vibrations
corresponding to the opposite signs of ξ are located
within the alternating intervals between z = 2pπ and z =
(2p + 1)π (p = 0, 1, 2, …). The local vibrations for
which (2p – 1)π < z < 2pπ (points z1 and z3 in Fig. 3) are
described by the function that monotonically decreases
with increasing number of the elementary cell, whereas
the vibrations with frequencies 2pπ < z < (2p + 1)π
(points z0 and z2 in Fig. 3) are described by the function
that is proportional to (–1)nexp(–κnd).

The displacement plots in both cases are presented
in paper [4]. Figure 4 shows the calculated distributions
of the corresponding stresses near a defect.

Thus, we studied a local vibration near a defect in
the form of an antisymmetric solution to the main equa-
tion. A local vibration with an even eigenfunction for
any sign of ξ cannot appear at a defect localized at one

4

2

0

–2

–5 5–2 20–4 –3 –1 31

4

nd

σn(x)

2

0

–2

–2 20–3 –1 31
nd

σn(x)

(a)

(b)

Fig. 4. Distribution of stresses near a superlattice defect
localized at one joint (n = 0). Figures 4a and 4b show two
types of localized states corresponding to the roots z0, z2, …
and z1, z3, … in Fig. 3.
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boundary. Let us assume that this is a joint with n = 0;
in this case, σ0 = 0 in the joint when the solution of

 = 0 is even with respect to the choice of the sign.
Therefore, excitation in the form of a standing wave
with an even dependence on the coordinate x is insensi-
tive to the value of the parameter Q at the joint n = 0 and
does not differ from the vibration of a free boundary of
the superlattice passing through this joint. The free
boundary of the superlattice corresponds to the cut over
the joint n = 0, which is equivalent to the condition σ0 =
0, which is obtained in our model for ξ = ∞ (Q* = ∞).
In this case, only uniform vibrations (k = 0) are possible
with frequencies ω = (c/d)πm, m = 0, 1, 2, …. There-
fore, a localized wave cannot exist near a free end of the
superlattice. This means that even vibrations cannot
occur if a defect is localized at one joint. Such localized
excitations appear when the parameter Q is changed
(perturbed) at least at two adjacent joints.

Consider now just this situation. Let us assume that
the same conditions (33) take place at both boundaries
of a cell between n = 0 and n = 1. Then, bearing in mind
the solution that is symmetric with respect to a “defect”
cell, we write the displacements u(x, t) for positive n in
the form

(39)

It is reasonable to write the function w0(x) in the form

(40)

while the function w(x) can be written in the form (35).
Then, the boundary conditions for n = 1 and the condi-
tion of the continuity of stresses at joints for n > 1 give
the relation

(41)

By combining again (41) with (32) and (32a), we obtain
the expression

(42)

For solutions corresponding to k = π + iκ, when the
signs of displacements in adjacent cells are opposite,
relation (42) is replaced by

(43)

By using expression (42) or (43), we can readily obtain
the expression for , which allows us to write

u[ ] –
+

u x t,( ) w0 x( )eiωt,=

0 x d ,< <

u x t,( ) w x nd–( )e iωt– eκnd,=

nd x n 1+( )d .< <

w0 x( ) a q x
d
2
---– 

  ,cos=

1
2
--- e κd– 1–[ ] z Q∗ z z, zsin–cos qd .= =

eκd 2ξQz z 1.–sin=

eκd 2ξQz z 1.+sin=

κdcosh
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transcendental equations for determining local frequen-
cies in these cases:

(44)

where the minus sign corresponds to in-phase vibra-
tions of the boundary points and the plus sign corre-
sponds to antiphase vibrations of the boundary points.
In the case of two adjacent defect boundaries, the local-
ization of vibrations in the forbidden band can occur at
any sign of the perturbation ξ.

The conditions for the appearance of local frequen-
cies in the case of antisymmetric displacement func-
tions can be analyzed in a similar way. Figure 5 shows
the plots of displacements localized near a defect cell.

Finally, let us discuss briefly the possibility of the
appearance of local frequencies near a more compli-
cated distortion of the superlattice regularity, when
three joints form a defect (for example, n = 0 and n =
±1). We assume that the previous boundary conditions
are valid for each of the defect joints.

Consider a symmetric vibration near such a defect.
It is obvious that, in the case of a symmetric solution,
the displacements are described by a function that is
continuous at the joint n = 0, which automatically
means that stresses at this joint are zero. Therefore, the
defect joint with n = 0 does not affect the properties of
the vibration under study. The frequencies of local
vibrations are determined by the equation

(45)

One can see that equations for the frequencies of local
vibrations near such a defect have a simpler form than
in the case of two defect joints. It is important to note
that, in the case of such a defect, not only the value but
also the sign of perturbation is substantial: for ξQ > 0,
no local vibrations can appear. The latter is evident
from the graphical solution of Eq. (45).

Note that, in all cases considered when a local vibra-
tion appeared and a defect was localized at more than
one joint in the superlattice, two discrete levels
appeared simultaneously in the gap, which, however,
depended differently on the defect parameter ξ.

5. BLOCH OSCILLATIONS OF A WAVE PACKET 
IN A HOMOGENEOUS EXTERNAL FIELD
We mentioned above that the propagation of optical

light pulses in a system of parallel waveguides can be
described by a discrete Schrödinger equation of type
(14) in the case of linear packets or of type (16) in the
case of solitons. Based on these equations, the theory of
motion of wave packets in one-dimensional systems
with weakly varying parameters is developed. In partic-

z Qz zsin–cos

= 
1
2
--- 2ξQz z 1+−sin( ) 1

2ξQz z 1+−sin( )
--------------------------------------+

 
 
 

,

z Qz zsin–cos
1
2
--- 2ξQz zsin 1

2ξQz zsin
------------------------+

 
 
 

.=
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ular, one can study Bloch oscillations of a wave packet
as a quantum particle in a homogeneous external field.
Bloch oscillations of an optical pulse were described
and observed experimentally in papers [17, 18]. There-
fore, it is worthwhile to discuss Bloch oscillations of a
wave packet in superlattices.

Let us assume that the physical characteristics of the
elements of a superlattice weakly depend on the num-
ber n. For example, the velocity of a wave changes as
c = c0 + ∆c = c0{1 + δc/c0}, where ∆c is a small change
in the wave velocity upon passing from one lattice ele-
ment to another. In experiments [17, 18], such an inho-
mogeneity was produced by the temperature gradient
determining the refractive index of a dielectric. Then,
the parameter mω0 in expression (8) and Eq. (15)
should be replaced by mω0 + ηnd, where η is a small
frequency gradient. As a result, in the case of m = 2p
(the case of m = 2p + 1 is analyzed similarly), we obtain
the Schrödinger equation in a homogeneous field

(46)
i
∂ψn

∂t
--------- mω0ψn ηndψn+=

+
Ω

2m
------- 2ψn ψn 1+ ψn 1–––( ),

1

0

–1

un(x)

1

0

–1

–3 –2 –1 0 1 2 3

(b)

nd

(a)

Fig. 5. Plots of solutions for the function un(x) describing
the coordinate dependence of displacements localized near
a defect cell under the following conditions: (a) u0(0) =
u1(d) and (b) u0(0) = –u1(d).
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Fig. 6. Evolution of the wave packet undergoing Bloch oscillations in the case of a very initial (t = 0) packet in the x space.
and expression (8) transforms to the Hamiltonian of a
particle under study, which depends on n and k.

Let us introduce the operator of the lattice-point
number, which has the form n = (i/d)∂/∂k in the one-
band model.5 Then, Eq. (46) in the k representation will
take the following form, which is consistent with the
above-mentioned Hamiltonian:

(47)

where q = kd. A particle obeying Eqs. (46) or (47) expe-
riences the so-called dynamic localization [19], which
is manifested in peculiar oscillations with frequency
that can be found as follows. The time and wave num-
ber in Eq. (47) for stationary states appear in a combi-
nation q + ηt. Because the stationary eigenfunction in
our case is a periodic function of q with the period 2π,
it has an equidistant frequency spectrum with the char-
acteristic frequency

(48)

This is the frequency of Bloch oscillations of a wave
packet in superlattices.

The evolution of a wave packet undergoing Bloch
oscillations is analyzed, for example, in reviews [21,
22]. The character of Bloch oscillations depends sub-
stantially on the wave packet width. A packet with a

5 The question about the role of interband transitions in the theory
of Bloch oscillations was discussed in the literature [20]. In our
“strong coupling” model, only one particle is considered. The
appearance of interband interactions in a similar model of a non-
linear optical superlattice is considered in the analysis of the sta-
bility of gap self-localized vibrations (solitons) [12].

i
∂ψ q( )

∂t
-------------- mω0ψ q( ) iη∂ψ q( )

∂q
-------------- 2Ω

m
-------ψ q( ) q

2
---sin

2
,+ +=

ωB η m∆ω0 mω0
∆c
c

------ m
πc
d

------∆c
c

------.= = = =
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very narrow Fourier k spectrum (with well defined k)
behaves as a particle with the Hamiltonian coinciding
with (8). An external homogeneous field acting on the
particle causes the dependence of the wave vector
(quasi-momentum) of the particle on time

(49)

According to formula (49), the motion of the packet
center of gravity in a constant field is described by the
expression

(50)

By substituting (50) into the expression for the particle
velocity, which follows from the dispersion law (8), we
obtain the periodic time dependence of the particle
velocity

(51)

Expression (51) determines Bloch oscillations: the
packet center of gravity oscillates with the frequency
ωB and the amplitude A = Ωd/(mη).

If the initial packet (t = 0) is very narrow in the x
space (for example, it is localized at one lattice point
with n = 0), its dynamics will be different. First, the
excitation propagates to both sides of the packet center
n = 0; however, after removal by a distance A, the exci-
tation stops and then returns back, forming the initial
pulse at the moment t = 2π/ωB, i.e., after the period of
Bloch oscillations (see Fig. 6).

dk
dt
------ η .=

k k0 η t.+=

v
∂ω
∂k
------- kdsin k0 η t+( )d .sin= = =
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It seems that the estimate of the Bloch frequency
ωB ~ m(c/d)(∆c/c) and the amplitude A ~ d(m2Q∆c/c)–1

allows their observation in acoustic superlattices.
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