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Abstract—Results from T-10 experiments in regimes with nonmonotonic plasma current profiles are pre-
sented. The possibility of controlling the current profile j(r) by electron-cyclotron current drive is demonstrated
experimentally. Nonmonotonic q profiles with the reversed shear are obtained in which the qmin value varies in
a wide range, qmin = 1–2.3. It is shown that the current profiles with qmin ~ 2 (in this case, there are two resonant
magnetic surfaces q = 2 in the plasma) can cause the onset of MHD instabilities. The possibility of the formation
of an internal transport barrier in reversed-shear discharges in the T-10 tokamak is analyzed. In T-10, electron
transport is governed by short-wavelength electron turbulence. As a result, there is no clear evidence of the for-
mation of an inner transport barrier in these experiments. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The possibility of the formation of an internal trans-
port barrier (ITB) was studied in the T-10 tokamak in
regimes with nonmonotonic q(r) profiles. In this case,
the reversed-shear region r/q(dq/dr) < 0 occurs in the
plasma core (r/a < 0.35) (Fig. 1). Such a q profile was
produced by on-axis electron-cyclotron current drive
(ECCD) in the direction opposite to the ohmic current
(counter-CD).

An extraordinary polarized microwave beam was
launched into the tokamak at an angle of ϕ = 21° with
respect to the major radius R. The microwave power
absorbed in the plasma attained Pab = 1 MW. The
microwave frequency corresponded to the second har-
monic of the electron cyclotron resonance (ECR). The
duration of the microwave pulse ∆tHF = 0.4 s exceeded
the skin time needed for the profile of the total current
j(r) to rearrange; this allowed us to obtain a steady-state
q profile by the end of the microwave pulse.

The ITB formation in reversed-shear discharges was
observed experimentally in different tokamaks, e.g., in
TFTR [1], DIII-D [2], and JT-60 [3]. Inside the ITB, the
ion heat conductivity decreased to the neoclassical
level. The electron transport also decreased, but
remained anomalous. In the above tokamaks, the ITB
formation was observed in hot-ion discharges, when
the power of auxiliary heating was mainly absorbed by
the ion component. At high ion temperatures, the trans-
port was apparently determined by the ion-gradient-
mode (ITG) turbulence.

The feature of the T-10 experiments was that the
microwave power was absorbed by the electrons (Te @ Ti),
which allowed us to assume that the plasma behavior
was governed by the electron turbulence.
1063-780X/00/2603- $20.00 © 20177
2. PRELIMINARY CALCULATIONS

In order to choose the appropriate experimental con-
ditions, we carried out preliminary calculations of the
q(r) profiles with the use of the ASTRA transport code
[4] and the canonical profile model [5], which ade-
quately describes the profiles of the plasma temperature
and density from the T-10 database. The ECCD current
jCD(r) was calculated with the TORAY code [6].

The results of calculations (see Fig. 1) showed that 

(i) for the available microwave power (up to 1 MW
in the plasma) it is possible to produce nonmonotonic q
profiles with the reversed shear in the plasma core (r ≤
0.35aL, where aL = 0.3 m is the limiter radius) and
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Fig. 1. The q profiles calculated with allowance for the EC
current jCD. The curve shows the possibility of obtaining the
reversed-shear profiles. The microwave power absorbed in
the plasma is Pab = 0.75 MW, Ip = 150 kA, BT = 2.4 T, and

 = 1019 m–3.ne
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(ii) the value of qmin can be varied over a wide range
(qmin = 1–3) by varying the plasma current Ip from 75 to
150 kA.

3. EXPERIMENTAL CONDITIONS

According to the results of calculations, we carried
out the experiments with plasma currents of Ip = 75,
100, and 150 kA. The line-averaged plasma density
was varied over the range  = (1–1.5) × 1019 m–3. The
toroidal magnetic field BT = 2.4–2.46 T corresponded to
the on-axis ECCD.

In all cases, the experiments were carried out for
both the co- and counter-CD in order to compare the
energy confinement and transport for monotonic q pro-
files (co-CD) and q profiles with reversed shear
(counter-CD).
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Fig. 2. (a) Time behavior of the central temperature Te(0) for
Ip = 150 kA (qmin = 1.2–1.3), BT = 2.4 T, and Pab =
0.75 MW. For comparison, the Te(0) trace in the co-CD
mode is shown (as in Figs. 3 and 5). (b) A comparison of the
ISXR profiles in the co- and counter-CD modes.
The data presented below were obtained with the
use of the following diagnostics:

(i) The electron temperature Te(r, t) was measured
by the emission at the second EC harmonic (eight diag-
nostic channels were equally spaced over r from 0 to aL,
the time resolution being ~0.1 ms).

(ii) Fast MHD processes were studied with the use
of a pinhole camera recording soft X radiation (SXR)
in the photon energy range E = 1–6 keV with a spatial
resolution of ~1 cm and time resolution of 16–100 µs.

These methods were supplemented by other stan-
dard diagnostics.

4. EXPERIMENTAL RESULTS

4.1. According to calculations, for Ip = 150 kA
(Fig. 2a), the minimum value of the safety factor is
qmin = 1.2–1.3, which is substantially less than the res-
onant value q = 2. As is seen in Fig. 2a, the central tem-
perature was the same for both the counter- and co-CD
regimes, Te(0)counter . Te(0)co; i.e., there was no clear
evidence of ITB formation, although the reversed-shear
region was formed in the counter-CD regime. This is
also seen from comparing the profiles of the SXR inten-
sity ISXR (Fig. 2b).

4.2. The calculations show that, as Ip decreases to
100 kA, qmin approaches the resonant value q = 2 and
the distance between two resonant magnetic surfaces
with q = 2 decreases substantially (Fig. 1). It is seen in
Fig. 3 that, in the reversed-shear mode (in contrast to
the co-CD mode), about 100 ms after the microwave
pulse is switched on, the central temperature drops
abruptly (Te(0) decreases by ~30%), which indicates a
substantial deterioration of the core energy confine-
ment.

Figure 3 shows the time behavior of the SXR inten-
sity ISXR(0) along the central chord. It is seen that the
observed decrease in Te(0) occurs as a sequence of
internal disruptions similar to internal disruptions that
take place in case of sawtooth oscillations. The profiles
of ISXR in Fig. 4a show that the radius at which these dis-
ruptions occur (rd = 9–10 cm) is close to the outer of
two resonant surfaces q = 2 (not 1).

The observed internal disruptions are accompanied
by the onset of the m = 2 MHD activity. This is seen
from Figs. 4b and 4c. Figure 4b presents the traces of
the SXR intensity for the central chord and two chords
shifted symmetrically with respect to the axis (the per-
turbation amplitude along these chords is close to the
maximum amplitude). The phase diagram for these per-
turbations is presented in Fig. 4c. This diagram differs
from the diagram that could be expected in the presence
of an m = 2 island and only one q = 2 resonant surface,
because, in that case, there would be only two points of
the phase reversal rather than four (as in Fig. 4c).
It seems that, here, we can refer to the presence of two
q = 2 resonant surfaces in the plasma. The ISXR signals
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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Fig. 3. (a) The trace of the central temperature Te(0) in the counter-CD mode with Ip = 100 kA (qmin approaches 2) for  = 1019 m–3,

Pab = 0.85 MW, and BT = 2.46 T. (b) ISXR(0) trace.

ne
from the chords lying at h = –(13–19) cm and h = 17–
21 cm do not show the phase reversal. However, the ISXR

signals from these chords are already strongly sup-
pressed and distorted due to noise. For this reason, the
phases on these chords in Fig. 4c are marked by a dif-
ferent symbol (vertical bar).

Thus, as qmin increases and, consequently, the tear-
ing modes occurring in the vicinity of the two resonant
surfaces approach each other, these modes begin to
interact and form a single magnetic structure (double-
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
tearing mode) that rotates at the very low frequency of
f = 300–500 Hz (Fig. 4b).

4.3. Calculations show that, for the plasma current
Ip = 75 kA, the value of qmin at the end of the microwave
pulse substantially exceeds the resonant value q = 2. In
this regime, a new phenomenon was observed after the
same MHD phase as in the previous case (Ip = 100 kA).
There is a sharp increase in the central temperature
Te(0) (Fig. 5a), which is evidence of the decrease in the
additional electron transport in the plasma core caused
by the onset of the MHD activity. As a result, the central
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Fig. 4. (a) ISXR profiles before and after an internal disruption at the instants shown in Fig. 3b: (1) t1 = 663.04 ms and (2) t2 = 664.09 ms.
(b) ISXR traces for different chords, demonstrating the structure of the m = 2 MHD mode. (c) Phase diagram of the m = 2 oscillations,
showing the presence of two q = 2 resonant surfaces.
temperature is restored completely (i.e., it reaches the
level it had been at before the onset of the MHD activ-
ity) but is about 10% lower than the temperature in the
identical co-CD mode with a monotonic q profile.

Thus, in the regime in question, qmin reaches the res-
onant value q = 2 at the instant the temperature starts to
be restored. Thereafter, qmin exceeds this value in spite
of a decrease the central temperature during the MHD
phase. After the temperature is restored, the SXR sig-
nals do not show the m = 2 MHD activity (Figs. 5b, 5c),
which seems to disappear as the temperature is
restored.
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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4.4. The question remains open of whether a sharp
increase in the central temperature is evidence of ITB
formation? There are three arguments against such a
conclusion:

(i) In all cases, a sharp increase in temperature was
observed only after the onset of the MHD activity.

(ii) Even when the central temperature is completely
restored, it always remains lower than in the identical
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Fig. 5. (a) Te(0) trace in the counter-CD mode with Ip = 75 kA
(the calculated value of qmin exceeds 2) for BT = 2.46 T,

Pab = 0.85 MW, and  = 1019 m–3. (b, c) ISXR(0) traces,

demonstrating the vanishing of the m = 2 oscillations after
the temperature is restored. Figure 5b also presents the Te(0)
trace.
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co-CD mode with a monotonic q profile, which is a typ-
ical L-mode.

(iii) Figure 6 presents the ISXR profiles at the end of
the temperature restoration phase in the reversed-shear
mode and in the steady-state stage of the co-CD mode
(instants tCounter and tCo in Fig. 5a). A comparison of
these profiles shows the absence of an appreciable
increase in the temperature gradient in the vicinity of
qmin in the reversed-shear discharge.

Thus, the experimental results allow us to draw the
following conclusions (see Fig. 7):

When Te(0) reaches the steady-state level after the
microwave pulse is switched on, the electron transport
is close to that typical of L-mode confinement.

The onset of the internal m = 2 MHD mode is
accompanied by an additional electron transport and a
decrease in the temperature in the plasma core.

For a sufficiently intense ECCD, qmin increases and,
at certain instant, becomes higher than the resonant
value q = 2. Thus, the cause of the additional transport
vanishes, the transports returns to the level typical of
the L-mode, and the temperature Te(0) is restored.

5. TEST FOR THE VALIDITY 
OF THE CALCULATED q(r) PROFILES

5.1. A preliminary analysis of the experimental
results was based on the q profiles calculated with
allowance for the EC current jCD. Therefore, in order to
confirm the above conclusions, it was necessary to
check the correctness of the calculated q profiles
(including their temporal behavior). For this purpose,
experiments were carried out in which the microwave
pulse was switched on simultaneously with the begin-
ning of the growth of the plasma current, as is seen in
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Fig. 6. A comparison of the ISXR profiles in the co- and
counter-CD modes at the instants shown in Fig. 5a.
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Fig. 8. The experiments were carried out in the ohmic,
co-CD, and counter-CD modes.

5.2. One of the methods used to check the correct-
ness of the calculated q profiles was a comparison of
the calculated and experimental instants tst of the onset
of sawtooth oscillations, i.e., the instants when the
value q = 1 is reached on the experimentally determined
phase reversal radius rs of sawtooth oscillations is
reversed. Figure 9 presents the traces of the SXR inten-
sity, in which tst is different in all three (ohmic, co-CD,
and counter-CD) modes. We note that the difference in
tst in the co-CD and counter-CD modes is related only
to the ECCD effect. The calculated values of (tst)calc pre-
sented in the same figure are in good agreement with
the experiment.
5.3. The features of the plasma behavior observed in
these experiments (mainly in the counter-CD mode)
allowed us to check the validity of the calculated q pro-
files in more detail.

The traces of the electron temperature Te(0) and
SXR intensity ISXR(0) along the central chord are pre-
sented in Fig. 10. In the counter-CD mode, during the
∆t1 and ∆t2 time intervals (Fig. 10c), the above features
were observed as a sharp decrease and subsequent res-
toration of the central temperature.

In the interval ∆t2 (Fig. 11), the plasma behavior is
similar to that observed in the basic experiments and
described in Section 4.2: the decrease in the tempera-
ture Te(0) is a sequence of internal disruptions related
to the onset of the m = 2 MHD activity. Thus, it can be
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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Fig. 8. Scenario of experiments in which the microwave pulse was switched on in the initial stage of the discharge.
expected that, in the interval ∆t2, the safety factor q in
the plasma core goes through the resonant value q = 2.

It is seen in Fig. 12 that, in the interval ∆t1, the struc-
ture of the MHD activity is different. The phase dia-
gram of perturbations (Fig. 12c) is similar to that
expected in the presence of an m = 3 island (Fig. 12c,
dashed line). Thus, we can expect that, in the interval
∆t1, the value of q in the plasma core passes through the
resonant value q = 3.

5.4. The calculated q(r, tk) profiles for the counter-
CD mode are presented in Fig. 13b for the instants tk

marked on the Te(0) trace in Fig. 13a. A comparison of
the dynamics of the calculated q profiles in the counter-
CD mode showed the following features of the plasma
behavior:

(i) When the m = 3 MHD activity was observed, the
calculated values of q in the time interval ∆t1 (Fig. 10)
were close to the resonant value q = 3 (t1 and t2 instants
in Fig. 13).

(ii) When the m = 2 MHD activity was observed, the
calculated q profile in the time interval ∆t2 (Fig. 10) was
SMA PHYSICS REPORTS      Vol. 26      No. 3      2000
nonmonotonic and qmin was close to the resonant value
q = 2 (t3 and t4 instants in Fig. 13).

Taking into account these facts and the agreement
between the calculated and experimental instants of the
onset of sawtooth oscillations (q = 1 at rs), we can con-
clude that the dynamics of the calculated q profiles does
not contradict the experimentally observed plasma
behavior.

5.5. The above conclusion is also confirmed by the
results of modeling the basic experiments (see Sec-
tion 4.3), which are presented in Fig. 14 for the most
interesting regime with Ip = 75 kA (counter-CD mode).
During the MHD phase, the q profile is nonmonotonic
and has two q = 2 resonant surfaces and the value of
qmin is close to q = 2. In spite of the temperature drop in
the plasma core (which was taken into account in cal-
culations), the value of ICD appears to be sufficient for
qmin to increase. As is seen in Fig. 14, the instant at
which qmin passes through the resonant value q = 2 coin-
cides with the experimentally observed instant at which
the temperature Te(0) starts to be restored.
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6. NONMONOTONIC q PROFILES CAN BE 
DANGEROUS WHEN qmin IS CLOSE TO q = 2

The experimental results presented in Fig. 10 show
that the plasma behavior is very different in the ohmic,
co-CD, and counter-CD modes.

The features of the plasma behavior in the counter-
CD mode that are associated with the onset of the m = 3
and m = 2 MHD activity are also observed in the co-CD
mode (shown by arrows in Fig. 10b); however, these
features are much less pronounced. In the ohmic mode,
the Te(0) traces show no peculiarities until the temper-
ature reaches the steady-state level.

We note that, in all three modes, the safety factor q
in the plasma core decreases from q > 3 to q = 1 (saw-
tooth oscillations were observed in all three modes)
and, consequently, passes through the q = 3 and q = 2
resonant values. Therefore, the question arises of what
is the reason for such different plasma behavior in these
modes?

The results of calculations presented in Figs. 13 and
15 show the difference in the q profile in the three
modes in question. As was noted above, in the counter-
CD mode, when qmin is close to q = 2, the q profile is
nonmonotonic and has two q = 2 surfaces located close
to each other. This leads to the onset of the m = 2 MHD
activity and internal disruptions. As is seen in Fig. 13,
the experimentally found radius rd at which internal
disruptions occur is close to the radius corresponding to
qmin. As a result of the onset of MHD activity, a fraction
of the electron energy (shaded area in Fig. 13) in the
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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plasma core is lost; this leads to the ~30% decrease in
Te(0). In the co-CD mode (Fig. 15a), the q profile is also
nonmonotonic when qmin is close to q = 2. However, the
radius corresponding to qmin appears to be smaller than
in the counter-CD mode (rd ≤ 0.18a compared to rd ~
0.35a in the counter-CD mode). As a result, a smaller
fraction of the electron energy in the plasma core is
lost; consequently, the peculiarity in the Te(0) trace is
less pronounced. In the ohmic mode (Fig. 15b), the q
profile becomes monotonic even in the early stage.
Therefore, there exists only one magnetic surface with
q = 2, and the Te(0) trace has no peculiarities.

From the above said, it follows that the nonmono-
tonic q profile with two q = 2 resonant surfaces
 PHYSICS REPORTS      Vol. 26      No. 3      2000
becomes dangerous when qmin is close to the resonant
value q = 2. In this case, the internal m = 2 MHD mode
develops, which leads to the additional electron trans-
port and the ~30% decrease in the electron energy in
the plasma core (r ≤ r(qmin)).

Similar features of the plasma behavior were also
observed in other tokamaks. In the FTU device [7], for
a hollow current profile and in the presence of two q = 2
(as well as q = 3) resonant surfaces, the onset of the
double-tearing modes was observed. In [8], it was
shown that MHD activity increases as qmin approaches
2, which can even lead to the destruction of the
reversed-shear region.
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7. DISCUSSION OF THE RESULTS. 
THE POSSIBLE REASON FOR THE ABSENCE 

OF CLEAR EVIDENCE OF THE ITB FORMATION 
IN THE T-10 EXPERIMENTS

7.1. According to the present notions, the condition
for the ITB formation is
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internal disruption with q = 2 is observed in the experiment).

(c)
The common feature of the most successful experi-
ments with the ITB formation in the TFTR, DIII-D, and
JT-60U devices is a high ion temperature. Under these
conditions, the ion transport is assumed to be governed
by the long-wavelength (small k) ITG mode. The
growth rate for this mode [9] is

where ρs = cs/ωBi, cs = , Ln = (dlnn/dr)–1,
LT = (dlnT/dr)–1, kθ is the poloidal component of the

γITG f skθρs

cs

a
---- a

R
--- a

Ln

----- a
LT

------+ 
  Ti

Te

-----,=

Te mi⁄
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wave vector of the ITG mode, and f(s) is the form factor
dependent on the magnetic shear s. An example of such
an analysis based on the results of DIII-D experiments
is presented in [10].

7.2. A similar analysis based on the results of the
T-10 experiments showed that, under the conditions in
question in the region where the safety factor is close to
qmin (r/a ≤ 0.3), we have

ωE B× 0.2 10
5
 s

1–
,×=

γITG 0.6–0.8( ) 10
5
 s

1–
;×=
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Fig. 14. Simulation of the counter-CD mode with Ip = 75 kA.

(a)

(b)
i.e., the value of the shear of the E × B flux is about
three times less than the growth rate of the ITG mode.
However, under the ECR heating conditions in T-10,
the inequality ωE × B < γ may be even stronger because
the ion transport is close to neoclassical; consequently,
the ion ITG mode does not substantially affect the ion
and, moreover, electron transport. This seems natural
because it is hard to assume that, at Ti(0) = 0.3–0.4 keV,
the ITG mode can ensure the transport of the 1-MW
microwave power through the electron component.
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Thus, the electron transport in the T-10 tokamak during
ECR heating is governed by short-wavelength electron
turbulence, which evidently have a higher growth rate γ
[11].

Thus, the possible reason for the absence of clear
evidence of the ITB formation in the T-10 experiments
is that the growth rate of the electron drift mode sub-
stantially exceeds the shear of the E × B flow.

7.3. We note that, in the TFTR, DIII-D, and JT-60U
tokamaks [12], after the ITB was formed, the electron
transport decreased but still remained anomalous.

As was noted above, in the hot-ion discharges, the
ion transport was governed by the long-wavelength
ITG mode, which also contributes to the electron trans-
port. Presumably, the electron transport in these dis-
charges is also affected by the short-wavelength elec-
tron turbulence. After the ITB formation, the low-k tur-
bulence is suppressed and the ion transport becomes
neoclassical. The electron transport due to long-wave-
length turbulence also decreases. However, it seems
that short-wavelength (electron) turbulence is not sup-
pressed and, therefore, the electron transport remains
anomalous.

Under the conditions of ECR heating in the T-10
tokamak, long-wavelength turbulence does not contrib-
ute to the electron transport; therefore, there is no clear
evidence of the ITB formation.
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8. CONCLUSIONS

The results of this study can be summarized as fol-
lows:

(i) The possibility of controlling the current profile
j(r) by ECCD is demonstrated experimentally. Non-
monotonic q profiles with a reversed shear are obtained.
The value of qmin could be varied over a wide range,
q = 1–2.3.

(ii) The calculated q(r) profiles agree with the pecu-
liarities of the plasma behavior observed in different
(ohmic, co-CD, and counter-CD) modes (the instants of
the startup of sawtooth oscillations and the appearance
of MHD activity with m = 2 and 3).

(iii) T-10 experiments provided no clear evidence of
ITB formation. A specific feature of the T-10 conditions
is that, for Te @ Ti, the electron transport is governed by
the electron turbulence.

(iv) A nonmonotonic q profile with two q = 2 reso-
nant surfaces becomes dangerous when qmin is close to
the q = 2 resonant value. In this case, the internal m = 2
MHD mode develops, which leads to the loss of about
30% of the electron energy contained in the plasma
core.
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Abstract—In experiments on studying the ohmic H-mode in the TUMAN-3M tokamak, it is found that, in
high-current (Ip ~ 120–170 kA) discharges, a region with high electron-temperature and density gradients is
formed in the plasma core. In this case, the energy confinement time τE attains 9–18 ms, which is nearly twice
as large as that predicted by the ELM-free ITER-93H scaling. This is evidence that the internal transport barrier
in a plasma can exist without auxiliary heating. Calculations of the effective thermal diffusivity by the ASTRA
transport code demonstrate a strong suppression of heat transport in the region where the temperature and den-
sity gradients are high. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation of an internal transport barrier (ITB)
in tokamaks was observed for the first time in experi-
ments with auxiliary plasma heating and a specially
shaped nonmonotonic profile of the safety factor q(r)
[1, 2]. According to the current concepts, several effects
can be responsible for the suppression of turbulence
and, thus, transport processes in the plasma core. One
effect may be attributed to the high rotation-velocity
shear, which causes the suppression of fluctuations
through the decorrelation mechanism [3]. Another
effect may be the suppression of η i and ηe modes gen-
erated by the ion and electron temperature gradients in
the presence of a high density gradient. Finally, ITB
formation can be caused by the generation of a negative
magnetic shear suppressing resistive MHD perturba-
tions and the TE mode [4]. As a rule, the ITB formation
is bifurcational in character and starts in the region with
a negative magnetic shear. To obtain nonmonotonic
profiles q(r), rather complicated discharge scenarios
are used in order to provide a hollow current profile,
e.g., heating during the current-rise phase [negative
central shear (NCS) and enhanced reversed shear
(ERS) modes].

The experiments on studying the ohmic H-mode in
the TUMAN-3M tokamak demonstrated that, in high-
current (Ip ~ 120–170 kA) discharges, a region with
high electron-temperature and density gradients can
form in the plasma core. In this paper, we present the
experimental data and the results of calculations of the
evolution of the electron thermal diffusivity by the
ASTRA transport code [5], which provide evidence of
the generation of an ITB in the discharges under study.
Numerical calculations were also used to analyze the
1063-780X/00/2603- $20.00 © 20191
influence of the evolution of the radial current-density
profile on ITB formation. The important result is that an
ITB was observed in the ohmic mode and the ITB
began to form when the safety-factor profile was mono-
tonic.

2. DESCRIPTION OF THE EXPERIMENT

The experiments were conducted in a boronized
vessel for the following plasma parameters: R0 = 0.53 m,
a1 = 0.22 m, Bt ~ 0.8 T, Ip ~ 150–170 kA,  ≤ 6.2 ×
1019 m–3, and qcyl(a) ~ 2.8–2.9. The working gas was
deuterium. The TUMAN-3M tokamak was equipped
with a data-acquisition system operating at a sampling
frequency of 50 kHz and recording information about
the basic plasma parameters, such as the loop voltage,
plasma current, intensities of the Dα line emission and
soft X radiation, and signals from magnetic probes. The
density profile was reconstructed using the Abel inver-
sion of the data from chord measurements of the phase
shifts by a ten-channel microwave interferometer (λ =
2.2 mm). The electron temperature was measured by
Thomson scattering. This diagnostics provides infor-
mation about the electron temperature in four 5-cm-
spaced points along the minor radius in one shot. The
line of sight of the spectrometer could be displaced
between the tokamak shots by 8 cm, which provided
shot-to-shot measurements of Te both in the plasma
core and at the edge (up to a minor radius of 21 cm).
A feedback system for maintaining the density in the
TUMAN-3M tokamak was not used.

Figure 1 shows the evolution of the basic plasma
parameters in the experiment described. The plasma
current rise ends at nearly 40 ms. Then, the plasma cur-
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rent remains almost constant for 35 ms, while the loop
voltage Up continues to drop until nearly 57–59 ms,
evidence that the rearrangement of the current profile
continues. A transition to the ohmic H-mode occurs at
51.5 ms. This is evidenced by the fact that, at this
instant, the line-averaged density  begins to grow,
which is accompanied by a decrease in the intensity of
Dα radiation. At the same time, the stored plasma
energy measured by a diamagnetic loop starts to grow.
During the subsequent ~5–6 ms, the voltage continues
to fall, while the plasma current remains constant,
which means that the energy input decreases. The
above-mentioned facts allow us to draw the conclusion
that the particle and energy confinement in the plasma
is improved and can be interpreted as a transition to the
ohmic H-mode [6].

The formation of an external transport barrier was
confirmed by probe measurements, reflectometry, and
high-resolution interferometry in the previous experi-
ments carried out with lower (below ~120 kA) plasma
currents [7]. Note that, in experiments with Ip ≤ 120 kA,
the transition to the H-mode occurs rapidly, in a time of

ne

1
0

2

3

4

0.02

0.04

0.06

2

4

6

8

0.04

0.08

0.12

0.16

0

0

0

0.030.02 0.050.04 0.06 0.07 0.08
t, s

– n e
, 1

019
 m

–
3

D
α,

 a
rb

. u
ni

ts
I p

, M
A

U
p,

 V

Fig. 1. Time behavior of the plasma current, loop voltage,
Dα emission intensity, and average density in the ohmic
H-mode with an ITB.
about 100 µs [6]. At high plasma currents, the intensity
of Dα radiation begins to fall 4–5 ms before the density
growth and occurs more slowly (in a time of 5–7 ms).
These results allow us to suggest that, at high currents,
the transport suppression also occurs in deeper plasma
regions, so that the change in the particle fluxes at the
plasma edge are delayed in this case.

Figure 2a shows the evolution of the electron-tem-
perature profiles Te(r) measured by Thomson scattering
in the regime described above. Here, the Te(r) profiles
for 47.5, 68, and 77 ms were obtained experimentally,
whereas the profile for 56 ms was chosen using numer-
ical simulations described in the next section. The Te(r)
profile measured in the steady-state phase of the dis-
charge before the transition to the H-mode (47.5 ms)
has no distinguishing features as compared to the pro-
files usually observed in the ohmic regime in the
TUMAN-3M tokamak. A characteristic feature of the
electron temperature profiles measured in the last stage
(68 and 77 ms) of the H-mode is the presence of two
regions with high temperature gradients. These regions
are located between 10 cm (0.5a) and 16 cm (0.75a)
and between 21 cm (0.95a) and the limiter and are sep-
arated by a plateau (Te ~ 120 eV), which spans from 16
to 21 cm. The flattening of the Te(r) profiles at 68 and
77 ms can be caused by sawtooth oscillations with a
period of about one millisecond that are usually
observed after the transition to the H-mode. The forma-
tion of a plateau between 16 and 21 cm and the high
temperature gradient at the edge are the consequence of
the transition to the H-mode. The presence of high tem-
perature gradients indicates the suppression of local
heat transport, whereas the plateau at the edge of the
Te(r) profile may indicate the local enhancement of heat
transport. We note that the described features of the
Te(r) profiles are observed in discharges without pro-
nounced MHD activity (discharges with intense MHD
oscillations observed at the same plasma parameters
were excluded from consideration). Hence, the flatten-
ing of the Te(r) profile cannot be attributed to the exist-
ence of a magnetic island with a low m/n ratio.

In contrast to the Te(r) profiles, there are no strong
variations in the shape of the density profiles shown in
Fig. 2b. However, we can see a certain increase in the
ne gradient between 10 and 16 cm (0.5a–0.75a).

Figure 3 presents a comparison between the energy
confinement time τE obtained from diamagnetic mea-
surements of the plasma energy Wdia and that predicted
by the ELM-free ITER-93H scaling. The confinement
time τE was calculated by the formula

The maximum values of the energy confinement time
in the ohmic H-mode are plotted. It is seen in the figure
that most of the experimental points lie above the scal-

τE

Wdia

U pI p dWdia dt⁄–
----------------------------------------.=
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ing prediction and the excess factor HH attains 2. The
excess factor increases as the current increases. This
indicates an additional improvement of confinement in
comparison with the H-mode confinement with the
transport barrier at the edge. The confinement time τE

estimated by the ITER89-P scaling for the L-mode with
account of the derivative of the plasma energy is about
10–12 ms. Hence, the value of the H-factor in the
experiment described is significantly lower than the
HH-factor. This is explained by the relatively small (ε =
2.3) aspect ratio of the TUMAN-3M tokamak.

Thus, an analysis of the evolution of the basic
plasma parameters in high-current discharges allows us
to draw a preliminary conclusion that, in the ohmic
H-mode in the TUMAN-3M tokamak, two regions with
very different transport features are formed inside the
plasma column. The region with a high electron-tem-
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Fig. 2. (a) The electron temperature profiles and (b) density
profiles at (1) 47.5 ms (before the transition to the H-mode),
(2) 56 ms (simulation), (3) 68 ms, and (4) 77 ms (after the
transition to the H-mode with an ITB).
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perature gradient between 10 and 16 cm can be inter-
preted as an ITB.

3. NUMERICAL MODELING 
OF THE DISCHARGES WITH AN ITB

The evolution of the radial profile of the electron
thermal conductivity was studied numerically using the
ASTRA transport code. Simultaneously, the influence
of transient processes occurring in a plasma of the
TUMAN-3M tokamak on ITB formation was analyzed.
We can assume that the rapid (with a characteristic time
of about 10 µs) rise of the current in the initial phase of
the discharge results in the formation of a hollow j(r)
profile and a region with a negative magnetic shear
favorable for the formation of an ITB. Another reason
for the ITB formation in our case may be the generation
of the radial current jr and, consequently, the radial field
Er due to the presence of a nonsteady or an inhomoge-
neous longitudinal electric field Eφ. The mechanism for
the jr generation was suggested in [8] and consists in
that the radial-drift velocities of trapped electrons and
ions differ from each other because Eφ is different at the
outer and inner segments of the banana orbits. The
resulting radial electric field causes a nonuniform
plasma rotation that can suppress turbulent transport
through the decorrelation mechanism [3]. For example,
in the initial stage of the discharge, the longitudinal
electric field Eφ in a tokamak is strongly inhomoge-
neous. If the current diffusion is sufficiently slow, then
such an inhomogeneity can exist for a relatively long
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Fig. 3. Energy confinement time in the H-mode as a func-
tion of the ELM-free ITER93-H scaling.
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period. As shown in [9], this leads to the generation of
a radial electric field, which, in turn, can give rise to an
ITB.

The problem was divided into three steps:
(i) simulation of the initial phase of the discharge

and studying the possibility of the formation of regions
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Fig. 5. Radial profile of the safety factor q(r) in the ITB dis-
charge calculated with allowance for the evolution of the
plasma current at (1) 47.5 and (2) 77 ms and (3) in the steady
state.
with a negative magnetic shear or with a strongly non-
uniform Eφ(r) profile,

(ii) reconstruction of the evolution of the electron-
temperature profile during the transition to the
improved confinement phase, and

(iii) calculation of the electron thermal diffusivity
and the estimation of the suppression of transport in the
region with high gradients of Te(r).

To find the current-density profile j(r), which deter-
mines the heating source in the electron heat transport
equation, the model incorporates the current diffusion
equation, which was solved assuming that the Hinton–
Hazeltine formula for neoclassical conductivity [10] is
valid in our case. In calculations, we used the experi-
mentally measured profiles of the electron temperature
Te(r) and density ne(r). For the instants at which the
laser measurements of the electron temperature were
not performed, the Te(r) profile was chosen such that
the calculated loop voltage best fitted the experimental
value. The effective charge was assumed to be uni-
formly distributed over the minor radius and equal to
unity. When solving the current diffusion equation, the
experimentally measured total plasma current was
employed as a boundary condition and the shape of the
initial j(r) profile coincided with the profile of neoclas-
sical conductivity.

In the current-rise phase, the evolution of the elec-
tron-temperature profile was described as a linear rise
to the values measured at 47.5 ms; i.e., for t < 47.5 ms,
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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the profiles in the calculations were defined by the fol-
lowing formulas:

Te(r, t) = Te(r, 47.5)(0.1 + 0.9at) for t < 1/a,

Te(r, t) = Te(r, 47.5) for t ≥ 1/a,

where the factor a was chosen such that the calculated
loop voltage coincided best with the experimental
value. The evolution of the electron density profile in
the initial phase of the discharge was modeled in a sim-
ilar way, but its growth rate was chosen such that the
calculated value of the line-averaged density coincided
with the experiment.

Figure 4 shows the calculated and experimental
behavior of the loop voltage in the current-rise phase
for the optimum rate of the formation of the Te(r) pro-
file. Satisfactory agreement with the experiment allows
us to conclude that the profiles of the current and the
toroidal electric field are adequately described by our
model.

Figure 5 shows the results of calculations of the
radial profile of the safety factor q(r) for certain charac-
teristic instants. It is seen that, throughout the dis-
charge, the q(r) profiles are monotonic and close to the
steady-state profile. Hence, there is no reason to sug-
gest that, in the plasma of the TUMAN-3M tokamak,
there are regions with a reversed magnetic shear whose
appearance might explain the ITB formation.

As was noted above, one cause of ITB generation
can be the presence of a radially nonuniform or non-
steady longitudinal electric field Eφ. Figure 6 shows the
evolution of the radial profile of the longitudinal elec-
tric field Eφ(r) obtained by modeling the current-rise
phase as described above. It is seen from the figure that,
as early as 56 ms, the Eφ(r) profile is almost uniform
and close to the steady-state profile. Moreover, the cal-
culations show that, even at 47.5 ms, the nonuniformity
of the Eφ(r) profile is insufficient to generate a high
electric field that might give rise to an ITB.

We note that the high values of ∂Eφ/∂r and, corre-
spondingly, high gradients of the electric field Er can be
caused by strong perturbations of the current density
jφ(r). Such perturbations can arise during internal dis-
ruptions according to the Kadomtsev model [11] for
sawtooth oscillations. According to this model, internal
disruptions give rise to strong perturbations of the Eφ(r)
profile that are sufficient for the formation of high
∂Er/∂r gradients. Figure 6 shows the longitudinal elec-
tric field ~100 µs after an internal disruption calculated
by the model [11]. A significant longitudinal-electric-
field inhomogeneity arising after the internal disruption
decays with a characteristic time of about 500–700 µs,
which is comparable with the period of the observed
sawtooth oscillations (~1 ms). As is shown below, the
position of the region with high ∂Eφ/∂r gradients coin-
cides with the region in which heat transport is sup-
pressed (0.5a–0.75a). This fact suggests that sawtooth
oscillations can play a decisive role in ITB formation.
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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When reconstructing the evolution of the electron-
temperature profile during the transition to the H-mode
(51–60 ms), we tested several possible scenarios. We
failed to reconstruct Te in each spatial point by linear
extrapolation between the instants of laser measure-
ments, because the calculated voltage Up significantly
exceeded the experimental values. Since Zeff used in the
calculations was assumed to be equal to unity, it was
impossible to further decrease this quantity. Hence, the
experimental evolution of the loop voltage could be
described adequately only under the assumption that
the Te(r) profile rearranges rapidly during the transition
to the H-mode plasma confinement or, possibly, several
milliseconds before the transition.

The cause of the reduction of Up can be intense heat-
ing of the plasma edge during the transition to the
H-mode. Indeed, under certain assumptions about the
evolution of the electron temperature, it is possible to
attain a satisfactory agreement between the calculated
and experimental values of the loop voltage. However,
in this case, we must assume that the plasma edge is
heated to nearly 300 eV, which is hardly possible under
the conditions of operating the TUMAN-3M tokamak.

In our opinion, the processes occurring in the
plasma during the formation of an ITB are reflected in
the scenario of Te(r) evolution illustrated in Fig. 2a.
This scenario suggests that a high temperature gradient
rapidly forms in the region 10–16 cm (0.5a–0.75a),
while the temperature profile in the plasma core flattens
significantly. The electron temperature profile begins to
change before the transition to the H-mode plasma con-
finement, just at the instant the Dα line radiation drops.
The rearrangement of the Te(r) profile continues for
~10 ms and ends by 56 ms. Then, the temperature pro-
file varies slightly, gradually transforming to the profile
measured at 68 ms by Thomson scattering. The corre-
sponding evolution of the calculated values of the loop
voltage Up, stored plasma energy Wtot, and energy con-
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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finement time τE is illustrated in Fig. 7. For comparison,
the corresponding experimental curves are also shown.
It is seen that this scenario provides good agreement
between the calculated and experimental behavior of
Up and satisfactory agreement between Wtot and Wdia

and between the calculated and experimental values
of τE.

The Te(r) profiles shown in Fig. 2 were used to
determine the radial profiles of the effective electron

thermal diffusivity . When calculating the local
thermal diffusivity, the electron heating power density
was defined as Pe = POH – Pei – Prad, where POH =
E(r)j(r) is the ohmic heating power, Pei describes the
heat exchange between electrons and ions, and Prad is
the radiative loss power. The radiative loss power in the
boronized chamber was assumed to be ~5% of the total
ohmic heating power, and its radial profile was
assumed to be uniform. The ion temperature at each
point was defined as Ti = 0.3Te.

Figure 8 shows the calculated evolution of the effec-

tive electron thermal diffusivity  at several charac-
teristic points of the plasma column: in the central
region (0.2a), in the region of the ITB formation
(0.65a), and at the plasma edge (0.95a). It is seen that,
several milliseconds before the transition to the
H-mode (~51 ms), an ITB begins to form, which is
accompanied by an increase in heat transport in the
central part of the plasma core. The transition to the
H-mode is accompanied by a decrease in the thermal
diffusivity at the edge.
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Fig. 9. The (r) profiles (1) before and (2–4) after the

ITB formation: t = (1) 47.5, (2) 56, (3) 68, and (4) 77 ms.
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The corresponding (r) profiles at different char-
acteristic instants are shown in Fig. 9. In the later,
experimentally studied phase of the discharge, we dis-
tinguish two regions with enhanced transport which are
separated by the region of suppressed transport—an
ITB located between 10 and 16 cm (0.4–0.7a). After
the ITB is formed, the thermal diffusivity in this region
falls by almost one order of magnitude. The formed
ITB exists almost to the end of the discharge. Unfortu-
nately, because of the lack of information about the pro-
file of the neutral density, we cannot separate the con-
vective and diffusive heat fluxes. Nevertheless, the pre-
vious estimates [12] allow us to suggest that
suppression of the convective flux can play a decisive
role in suppression of heat transport in the region where
an ITB is formed.

4. CONCLUSION

We have shown that, in the TUMAN-3M tokamak,
an electron-component ITB can be formed in the ohmic
regime at high discharge currents (Ip > 120 kA). The
formation of an ITB is evidenced by the following cir-
cumstances: a substantial (approximately double)
improvement of plasma confinement in comparison
with the ELM-free ITER-93H scaling, a slow reduction
of the particle flux from a plasma, and the formation of
a region with high electron-temperature and density
gradients in the plasma column.

Numerical simulations confirm the presence of two
regions with suppressed heat transport in the plasma,
which can be interpreted as internal and peripheral
transport barriers.

Presumably, the ITB formation can be explained by
the suppression of plasma turbulence due to the shear
of the Er × B rotation velocity. A strongly nonuniform
radial electric field can arise in an ohmically heated
plasma because of the different radial drift velocities of
the trapped electrons and ions in a strongly inhomoge-
neous and nonsteady field Eφ caused by internal saw-
tooth oscillations.
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Abstract—Such parameters of a tokamak reactor as the major radius, plasma current, reactor volume, neutron
load to the first wall, heat load to the divertor plates, and bootstrap current are studied as functions of the aspect
ratio, assuming that the reactor operates at a fixed power. The conclusion is drawn that a demonstrative proto-
type reactor should be based on a large aspect ratio tokamak. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The programmatic goal of present-day tokamak
studies is to gain information required for creating a
tokamak reactor. Further efforts directed at designing a
fusion reactor involve the following three steps:

1. Creating an experimental fusion reactor—ITER.
The ITER device is aimed at demonstrating the feasi-
bility of controlled fusion for achieving practical fusion
power from both scientific and technological stand-
points.

2. Creating a demonstrative prototype reactor—
DEMO. The DEMO device should demonstrate the
possibility of achieving steady-state self-sustaining
fusion reactions.

3. Creating a commercial fusion reactor.

The ITER device, even with optimized geometrical
dimensions and plasma parameters, appears to be fairly
expensive to construct. The next step, the design of
DEMO, involves solving a number of problems associ-
ated with its cost, convenience, and reliability. Conse-
quently, it is necessary to further optimize the parame-
ters that govern the cost of building DEMO, i.e., the
geometrical dimensions, plasma current, and so on.

Here, the method that we developed in [1] is applied
to study the main DEMO parameters, i.e., the geomet-
rical dimensions, plasma current, heat load to the diver-
tor plates, bootstrap current, etc. (which, in our opinion,
mainly govern the cost of the device), as functions of
the aspect ratio and the vertical elongation of the
plasma column. We will consider a reactor operating at
a fixed fusion power.
1063-780X/00/2603- $20.00 © 20199
2. CALCULATION TECHNIQUE 
AND THE RESULTS OBTAINED

The status of the device (a device with plasma igni-
tion, plasma burn, etc.) is governed by the so-called
fusion parameter Fp:

(1)

where n is the plasma density, T is the plasma tempera-
ture, and τ is the energy lifetime.

The ratio β of the thermal energy stored in the
plasma to the magnetic-field energy is limited by the
possible onset of ballooning instabilities:

(2)

where I is the plasma current, a is the tokamak minor
radius, and B is the toroidal magnetic field.

At present, opinion is divided regarding the depen-
dence of βN on the aspect ratio. For example, Stam-
baugh et al. [2] suggested that βN = 12/A. In paper [3],
published in the same year, Miller et al. asserted that
the dependence of βN on the aspect ratio is weaker than
1/A. Interestingly, some researchers participated in
writing both of these papers. In optimizing ITER, the
quantity βN was taken to be independent of the aspect
ratio [4].

We describe the energy lifetime using the ITER
scaling [5] for the H-mode:

(3)

where M is the mass number of the plasma ions, Pα is
the heating power fed to the plasma (for self-sustaining
fusion reactions, this is the power carried by α-parti-
cles), ε = A–1 = a/R is the inverse aspect ratio A, R is the
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major radius of the plasma column, and k is the elliptic-
ity of its cross section. For further analysis, we set τ =
0.5τITER.

We use Greenwald’s formula for the maximum
plasma density [6],

, (4)

and specify the plasma current as

(5)

where q = qψ(A – 1)/A [7] with qψ the safety factor at
the magnetic surface ψ near the plasma boundary.

The magnetic field at the center of the chamber is

(6)

where Bc is the maximum permissible magnetic field
and a∆ is the distance between the inner circumference
of the plasma column and the point at which the mag-
netic field is maximum.

From (1)–(6), we can find the main plasma parame-
ters as functions of the aspect ratio and the vertical
elongation of the plasma column for a reactor operating
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Fig. 1. Functions fγ vs. the aspect ratio A: (1) tokamak minor
radius, (2) plasma current, (3) plasma volume, (4) neutron
load to the first wall, and (5) heat load to the divertor plates.
at a fixed fusion power. For example, we obtain the fol-
lowing formulas:

(a) the major radius (expressed in m) of the torus is

(7)

(b) the plasma current (in MA) is

(8)

(c) the plasma volume (in m3) is

(9)
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Fig. 2. (1) Total plasma current and (2) bootstrap current vs.
the aspect ratio A.
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(d) the neutron load (in MW/m2) to the first wall is

(10)

(e) the heat load to the divertor plates can be estimated
under the assumption that the width of the divertor
layer is proportional to the tokamak minor radius,

(11)

Relationships (7)–(10) imply that each plasma
parameter can be represented as a product of a constant
coefficient, which depends on the magnitudes of the
physical quantities chosen for the analysis, with a func-
tion of the vertical elongation of the plasma column and
a function of the aspect ratio fγ(A), where γ = R, I, etc.

Figure 1 shows A-profiles of the functions fγ for R
(profile 1), I (profile 2), V (profile 3), PN (profile 4), and
Pdiv (profile 5) calculated at ∆ = 0.1. We can see that,
near a certain optimum value Aopt, the functions fR and
fV have a minimum and the functions  and 
have a maximum. In [1], we showed that Aopt ~ 1 + ∆.
As can be seen in Fig. 1, the tokamak major radius and
plasma volume are both minimum at an aspect ratio
approximately equal to A ~ 2.5–3.5. This circumstance
indicates in particular that it is impossible to construct
a compact reactor on the basis of a low aspect ratio
tokamak. According to Fig. 1, the loads to the first wall
and divertor plates fall off at both large and small aspect
ratios, while the plasma current monotonically
decreases as the aspect ratio grows. Formulas (7) and
(9) imply that the geometrical dimensions of the reactor
can be reduced exclusively by increasing the vertical
elongation of the plasma column and/or the critical
magnetic field.

For a tokamak with a circular cross section of mag-
netic surfaces, the ratio of the bootstrap current to the
total plasma current can be found from the relation-
ship [8]

(12)

where  is the ratio of the thermal energy to the
energy of the poloidal magnetic field, q0 is the central
safety factor, and qa is the edge safety factor. Note that,
strictly speaking, formula (12) cannot be used to
describe small aspect ratio reactors, because it was
derived under the assumption that the tokamak mag-
netic field has a single toroidal component. However, in
low aspect ratio tokamaks, the poloidal magnetic field
is comparable with or even stronger than the toroidal
field. Hence, the formulas describing the bootstrap cur-
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rent in small aspect ratio toroidal devices can only be
used for rough estimates.

Figure 2 shows A-profiles of the total plasma current
(profile 1) and bootstrap current (profile 2) computed
for βN = 4, q = 3, P = 1500 MW, Fp = 26, M = 2.5, Bc =
10.5 T, and k = 1. One can see that, as the aspect ratio
increases, the plasma current falls off and the fraction
of the bootstrap current grows. This indicates that non-
inductive current drive schemes for a large aspect ratio
reactor are much simpler than those for a low aspect
ratio device.

The estimates obtained in [4, 9] lead to the conclu-
sion that reactors with an aspect ratio of A ~ 4.5 will be
the least expensive. In devices with smaller aspect
ratios, the systems for maintaining the plasma current
appear to be more costly. Note that the estimates of
[4, 9] were obtained without allowance for the fact that
the plasma volume increases as the aspect ratio
decreases (Fig. 1). Consequently, another factor that
raises the cost of reactors with smaller aspect ratios is
that their geometrical dimensions will be larger.

For the same reason, the magnetic systems used in
larger aspect ratio reactors will be more expensive.

The cost of the remaining equipment used in the
reactor is essentially independent of the aspect ratio.

Note also that fusion energy production in reactors
with stronger critical magnetic fields is less expensive.

Hence, further analysis is needed to find an aspect
ratio at which the cost of constructing a tokamak reac-
tor and producing fusion energy would be the lowest.

3. CONCLUSION

Our analysis leads to the conclusion that DEMO
should be constructed based on a large aspect ratio
tokamak. The arguments in favor of this decision are as
follows. The plasma current required for reactor opera-
tion falls off as the aspect ratio increases, thereby sim-
plifying the scheme for maintaining a steady current.
The fraction of the bootstrap current in the total plasma
current increases with the aspect ratio, thereby facilitat-
ing the fabrication of a steady-state reactor. The larger
the aspect ratio of the reactor, the lower the neutron
load to the first wall and the heat load to the divertor
plates (for A > 3.5–4). In reactors with larger aspect
ratios, the central magnetic fields are stronger than in
low aspect ratio devices with the same critical magnetic
field on the inner surface of the solenoidal coils; conse-
quently, significant plasma parameters are easier to
attain in reactors with stronger toroidal magnetic fields.
And finally, larger aspect ratios lead to better perfor-
mance of the reactor.
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Abstract—A micro-Z-pinch has been recognized as a possible spark for the ignition of a dense D–T plasma
[1–3]. The use of such a spark to ignite advanced fuels has been explored only superficially [4, 5]. In this paper,
we address the problem of the transition between an ignited D–T plasma and a section of an advanced fuel such
as D or D + He3. Some general rules are derived for the parameters of a conical channel of D–T that amplifies
the spark energy to a level suitable for the ignition of a detonation wave in an inertially confined cylinder of
highly compressed advanced fuel plasma. © 2000 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

The technological and economic problems associ-
ated with burning an equimolar D–T fuel are of such
magnitude that the use of advanced fuels (AF) in fusion
reactors should be seriously reconsidered. However,
considering the high value of nTτ necessary for the
ignition of an AF, it seems that the use of D or even of
D + He3 in magnetic confinement systems should be
excluded. ICF may be a more suitable candidate, but
not the spherical pellet version, in which spark ignition
of AFs will not work [6]. An attempt to consider a
spherical pellet with a D–T core and a D or D + He3

mantel was made in the AFLINT concept [7, 8].
The driver energies in such a case appear realistic2

only if compression ratios higher than 104 are consid-
ered, which brings one into the region of spherical sym-
metry requirements near the limits of practical feasi-
bility.

It was suggested many years ago to consider only a
conical slice of a spherical target [9], offering the
advantages of (a) the ability to energize the spark
region by means other than hydrodynamic processes
and (b) the total compressional and spark energy to be
much smaller than that required for a spherical pellet.

Two different realizations of such a mechanism
have been proposed so far: one using a micro-Z-pinch
igniting a cylindrical or conical D–T channel and
finally a D or D + He3 plasma [1–3], and the other in
which a spark is created by a mechanism different from
the one used for the precompression of the D–T target
(fast ignitor [10, 11]).

Both of these concepts present a series of problems.
The concept of the fast ignitor, when considered as part

1 This article was submitted by the authors in English.
2 By realistic we mean that an A-bomb primer is not considered

here as a driver in the category of “controlled” ICF.
1063-780X/00/2603- $20.00 © 20203
of a fusion reactor, is associated with severe problems
of ballistics and timing (one proposes to focus a pulsed
laser or particle beam on a compressed target whose
diameter is of the order of 100 µm from a distance of
typically 10 meters at the moment of maximum com-
pression, requiring a precise timing within an interval
of 1 ns). Numerical simulations [12] suggest that a
nuclear burn can propagate into a tritium poor fuel from
a spark initiated on the surface of the precompressed
fuel; however, it is unlikely that the fast ignitor will
work as a fusion reactor.

The micro-Z-pinch is a mechanism that is self-
focusing and can be programmed (by initial conditions)
to produce a spark at the moment of maximum axial
current (Iz), i.e., at the maximum compression of the
target, which is a great advantage over the fast ignitor;
however, it requires a transport of Iz to the target, which,
apart from technical difficulties, will almost certainly
require a sort of umbilical cord between the device to
be exploded and the outside of the explosion cavity.
This, in turn, will be reflected in the higher cost of the
target and will tend to shift the energy yield per shot
into the range of more than 1 ton TNT (compare with
ion beam guides and HYF mentioned in [13]).

The spread of the fusion detonation from a D–T
plasma into an AF is possible only if the energy and the
temperature in the D–T detonation is high enough. That
this is possible in principle can be demonstrated by the
example of a plane detonation in D–T striking a D
plasma. It can be shown that the minimum energy capa-
ble of sustaining a detonation in D is

UD > 5.7αφ'b GJ/cm2, (1)

where b = 2 if neutrons are not contributing to the det-

onation wave, α = 10–8T, and φ' =  (see

Appendix 1). The effective depth of the wave is

α 3 2/

10
18 σv〈 〉 DD
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lD > 21 φ'b, (ns = 0.5 × 1023), and the optimum tem-

perature is approximately 4 × 108 K. This must be pro-
vided by the impact of the D–T detonation. A fully
developed D–T detonation with no neutron absorption
and a local α-deposition [14] has a mean temperature

〈T〉  = (Ti + Te) ~ 2 × 109 K and an effective depth

lDT > 20 . The UDT is, therefore, approximately

160 GJ/cm2 and consequently high enough to provide
the UD required for the D ignition.

A similar argument can be made for a D–T detona-
tion in a cylindrical or conical channel intended as a
trigger for the detonation in D in an adjacent cylindrical
channel (Fig. 1). It is clear that the energy provided by
the D–T spark is insufficient to ignite the D-plasma; it
must be multiplied in the D–T transition.

This has been recognized in the AFLINT design. In
a conical version of AFLINT, we cannot adopt the
parameters of the spherical pellet, because the bound-
aries of the conical channel are not rigid; at most, they
are inertially confined.

In this paper, we shall limit ourselves to estimating
if and how the UDT generated by a spark can be ampli-
fied to a level of the required UD. We shall present first
an approximate analytical description of the energy
amplification along the lines presented in a previous
publication [15]. This will be followed by numerical
simulation of the propagation of the detonation wave in
cylindrical and conical channels. The results provide
the criteria for the value of ignition energy, the correct
radius, the conical divergence, and the length of the
channel resulting in final UDT > UD. We shall assume
the spark energy Ws and Ts are given (a separate paper
on spark generation by a micro-Z-pinch will be pub-
lished shortly, [16]) and will show that below a certain
Ws and Ts the ignition of a detonation wave is not pos-
sible.

ns

n
----

1
2
---

ns

n
----

z

CH

S
UDT

DT spark

D + He3

a

DT transition

Fig. 1. Concept of axial detonation.
2. D–T DETONATION IN A CYLINDRICAL 
CHANNEL

Simple two-dimensional simulations of a D–T
nuclear detonation inside a cylindrical liner (radius R)
were performed by Avrorin et al. [17]. When a steady
propagation is encountered, it appears that the detona-
tion zone can be represented by a slug having a certain
effective length l and radius a, within which the plasma
has a mean temperature T and density n. Of course, the
slug does not continue to be composed of the same par-
ticles; it is the high T and n zone that propagates in the

axial direction with a speed vs = βvt, where vt = 

and M = 4.18 × 10–24 g (Fig. 2).
In our case, we shall assume that the heat conductiv-

ity in the radial direction is substantially reduced by an
imbedded magnetic field (e.g., Bφ of a Z-pinch; see [2]).
The length l of the slug will be given by inertial con-

finement only; we shall put l = 0.41 κa, where κ is the

coefficient of inertial confinement. When the radius of
the liner R @ a and the burn-up in the slug is high, the
only inertia comes from the material of the slug itself
and κ . 1. Neglecting heat conduction and radiation
losses and assuming local α-deposition, we can write
the energy equation for the propagation of the slug [4]:

(2)

where Ω0 = lπa2; τ = ; Ω is the expanded

volume (which is approximately equal to Ω0); and
n'' and T '' are the mean density and temperature of the
rarefacted zone, respectively. We shall assume that
n''T '' ! Tn and the initial temperature T ' of the plasma
is much smaller than T. The coefficient q expresses the
contribution of the kinetic energy to the total energy of
the slug. The factor s < 1 models the decrease in reac-
tivity due to the expansion of Ω0.

We obtain

(2a)

In many cases, we can approximate q = 1.3 and s = 3/4
(although they are all functions of T) and get [4]

(3)

where φ = 10–28  and φ ~ 1 for T = 108 K.

kT
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v s
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s
4
---n

2 σv〈 〉 QαΩ0τ q 3nkTΩ0×≥

+ 3nkTΩ0 1
Ω0

Ω
------ 

 
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– 3n''kT''Ω,+

aκ 2 1–( )
v t

---------------------------

2

s σv〈 〉 n
Qα

12
------ 2.4

kT( )3/2

M
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n
----φ,≥

T
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-------------
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This expresses the limit of the possible propagation
of a detonation wave in D–T in a cylindrical channel. If
a > amin, the fusion output is able to raise the tempera-
ture T and (2) must contain a term representing this
heating, i.e., 3nk∆TΩ0q.

The modified (2) then gives

(4)

or

(4a)

The temperature will rise until

(4b)

where 〈σv〉0 is the initial 〈σv〉 . For example, if φ0 = 1
and a = 2amin, then Teq = 6.7 × 108 K.

The maximum useful a follows from taking into
account the depletion of D–T due to a large burn-up.

At temperatures T > 20 keV, the axial heat conduc-
tivity χ generates a heat precursor whose skin depth δ
[9] is

(5)

The quantity δ may be comparable with l = 0.41 κa

and must, therefore, be included in the energy equation
(4a).

We get

(6)

where W = δq'3kT and q' < 1 is taking into account that
the mean T within δ is smaller than that of the slug. The
final temperature will be the same as from (4b), but it
will be attained later than if χ = 0.3 

Our analysis ceases to be valid when δ ≥ l and the
detonation propagates as a heat wave, the detonation
speed is supersonic, and the α-energy deposition is
nonlocal (see Appendix 2).

3. D–T DETONATION IN A CONICAL CHANNEL

In the preceding section, we saw that the energy in a
detonation wave can be amplified in a cylindrical chan-
nel provided the radius a > amin. In this case, we shall

3 At T > 5 × 108, one should use a two fluid model, since Te < Ti. It

should be understood that, in our case, T = (Ti + Te).

qṪ
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Ṫ 0.33 10
10

n σv〈 〉 s
q
--- 1

amin

a
--------- φ

φ0
-----– 

  .×=

φ φ0
a

amin
---------,=

δ > 

2
3
---χ

γn T
------------- M

k
3

-----.

v s

v t

-----
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require a  times larger spark energy than the

minimum one. It would be more convenient to start
with a = amin, requiring the minimum ignition energy
and providing the energy multiplication by having a
diverging conical channel. However, in this case, the
energy equation for the slug (4) must contain a term
representing the heat expenditure on the extra material
to be energized. The new extra mass incorporated into

the slug after a time τ =  is

∆m = nM∆Ω,

where ∆Ω > 2πκa2 × 2∆a + πa2∆l. Taking ∆l = (l/a)∆a

and l = 0.41κaβ, where β = , we get (Fig. 3, valid for

small α)

∆m > 6nMκΩ0 , where Ω0 = 2πκa3,

and

(7)

a
amin
--------- 

  3

l
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Fig. 2. Sketch of the slug model.

Fig. 3. Geometry of a conical channel.
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We must also take into account that, in transiting
from Ω0 to Ω0 + ∆Ω , the α-output is increased by

(8)

The energy equation can now be written as

(9)

F 1 c1
∆Ω
Ω0
--------+ 

  1 c2
∆τ
τ

------+ 
   > 1 cκ α .tan+=

1 c0.2βκ αtan+( ) s
4
---n σv〈 〉 Qα

=  3
2.4
κa
-------kT q 0.2 1.23βκq αtan+ +( ) 3kṪq.+
Again putting q = 1.3, s = 3/4, and c . 4, we have ini-
tially

(10)

where f(α) =  and x = a/amin.

Thus, provided  < 1/f, the T will grow until

the length l of the slug is equal to lb, where lb corre-
sponds to a 50% burn. As φ = φ0 initially, we get a rela-

Ṫ  > 1.9 10
9
n σv〈 〉 1 f

amin

a
--------- φ

φ0
-----– 1 0.8βx+( ),×

1 1.07x αtan+
1 0.82x αtan+
-----------------------------------

amin
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Fig. 5. The ρ(r, z) and Ti(r, z) contours at t = 33 ps for the case of Fig. 4.
tionship for α insuring the initial growth of T:

x > f. (11)

Because amin/a will decrease with z, one may anticipate
that α can increase as z increases and, therefore, the ini-
tial α is the minimum α along the conical channel. It is
clear that a detonation can always be obtained, even for
α = π/2, provided that the trigger energy is high
enough.4

In this simple analysis, we have assumed that the
conical plasma has a constant density n and that it is,
before the transition of the detonation front, confined

by a Bϕ field of a current Iz and, therefore,  =
400N'kT '. Since N = πa2n, we have T ' ∝  1/a2. As we

4 From (11), we get for  > 1 and κ = 1 that x > 1.4, giving for the

initial trigger energy W [J] ≥ 6πa3knT = 6 × 108φ3(ns/n)2T [keV].

αtan

Iz
2
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have assumed that T ' ! T, equations (10) and (11) are
not affected by the T '(z) dependence. Our assumption
will, however, provide the experimenter with practical
problems.

4. NUMERICAL RESULTS

In our numerical simulation, we used a Lagrangian
code with free mesh points. The system of equations is
based on a two-fluid model of a D–T plasma with trans-
port and viscosity coefficients used in [3]. The most
important feature of this model is the nonlocal deposi-
tion of α-particles simulated by means of an α heat
conductivity χα (see Appendix 3). The plasma is
assumed to be transparent to the neutron flux; the
depletion of D and T due to the D–T fusion is taken into
account. The role of D–D and T–T reactions is
neglected.
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We have assumed that initially there is a hot cylin-
drical section (S) in which T @ T ', T ' being the temper-
ature of the (as yet unaffected) cylindrical or conical
channel (CH). This hot section is created by a certain,
here unspecified, spark ignition process (see [16]), and
we shall assume that T > Tignition; we shall use in all our
computations T = 2 × 108 K. The plasma density n in CH
is uniform (except in the current skin), and the axial
current I is initially confined to a skin whose thickness
δ ! a. The plasma in the cylindrical CH is in Bennett
equilibrium. In a conical CH, this equilibrium exists
initially only in the section adjacent to S; however, con-
sidering the short time required for the propagation of
the detonation along CH, this lack of equilibrium does
not result in an appreciable expansion of CH.5 

5 We can also assume T ∝  1/a2 (see Conclusion).

400

300

200

100

0

5

10

15α = 0

M
id

pl
an

e

1

2

3

4

1

2

3
4

500 600 700 z, µm

ρ, g/Òm3

Ti, keV

Fig. 6. Detonation fizzle in a cylindrical plasma for N =
1.76 × 1020 ion/cm (all else as in Fig. 4) at times (1) 7,
(2) 15.75, (3) 30.17, and (4) 79.13 ps.
In Fig. 4a, we show a case of detonation propagation
in a cylindrical channel. The development of ρ(z) and
T(z) on the axis is shown in Fig. 4b. The radius a =
20 µm, the length of S is 60 µm, and the length of CH
is 440 µm. The line density N = 8.8 × 1020 (ion/cm), and
T ' = 2 × 106 K. The corresponding axial current is
Iz . 10 MA. The structure (ρ, Ti) of the established det-
onation wave is depicted in Fig. 5. When the N becomes
less than 3 × 1020 for the same geometry, the detonation
fizzles out (Fig. 6). In Fig. 7a, we have a sequence of
snapshots of the detonation propagating in a conical
channel with α = 10°. Figure 7b shows the T and ρ on
the axis as a function of z and t. The contours of ρ and
T at t = 33.7 ps are found in Fig. 8. The same parameters
are used for α = 20°; the time sequence is shown in
Figs. 9a, 9b, and 10. In all of these cases, we have used
the α-heat conductivity χα = 1015αy + 2 – 3u (see Appen-
dix 3). The form of the ρ and T distribution is quite dif-
ferent for local α energy deposition. The case with the
parameters of Fig. 4, where χα = 0, is shown in
Figs. 11a, 11b, and 12.

The degree of burn b on the axis as a function of z at
the time detonation reaches the extremity of CH is
depicted in Fig. 13 (which corresponds to curves e in
Figs. 4b, 7b, and 9b). We have also integrated the ther-
mal energy density in the cases of Figs. 5, 8, and 10 to
obtain the total thermal energy W of the detonation as a

function of time as well as  = UDT. This is shown in

Fig. 15, showing the amplification of UDT in the three
channels (with divergences 0, 10°, and 20°).

5. DISCUSSION OF THE SIMULATION RESULTS

Let us first examine the case of the detonation in
which we have assumed a local α-deposition

(Figs. 11a, 11b). The plasma density is n =  = 7 ×

1025, and the compression factor is n/ns = 1400. From
(3), we get amin > 12 µm (for α = 2, we have φ/κ ~ 0.8).
As in our case a = 20 µm, the detonation should propa-
gate well and, according to (4a), the temperature should
reach Tmax ~ 70 (keV) in a time teq ≈ 30 ps [see (4)].

Although Fig. 11b shows a maximum temperature
of approximately 100 keV on the axis, we must refer to
Fig. 12, where it is seen that the temperature drops off
away from the axis and, therefore, the mean tempera-
ture within r = a beyond the shock front does not
exceed 70 keV. This temperature is reached before
t = 20 ps. The ρ(z) distribution shows clearly a shock
structure: ∆ρ/ρ ~ 0.5. In a strong shock, this ratio
should be much higher, showing that the various diffu-
sion processes, particularly the electron heat conductiv-
ity, are smoothing the shock front. The shock speed vs

is (see Fig. 11b) almost constant and is approximately

W

πa
2

--------

N

πa
2

--------
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a
---- 

  2
3.8 × 108 cm/s, which corresponds well to a weak shock
at a mean temperature of 70 keV.

Let us now compare this with the case in which the
nonlocal α-deposition is taken into account through an
α-heat conductivity χα (see Appendix 3). From Figs. 4b
and 5, we see immediately that the character of the det-
onation is quite different as compared with the case in
which χα = 0. We are dealing with a heat wave; the ∆ρ/ρ
is negligible; and the speed vh of the wave (see Fig. 4b)
grows from 109 to 1.3 × 109 cm/s, which agrees well
with equation (A2.6a) and is much higher than the
shock-speed vs in the previous case. The thickness of
the heat front is of the order of 100 µm (Fig. 5) instead
of 50 µm (Fig. 12) and the radial distribution of temper-
ature is relatively uniform. The time to reach the equi-
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
librium temperature Tmax is more than 33 ps; in fact, the
last T-curve in Fig. 4b (curve 5) is still somewhat below
the maximum. This is in agreement with (6), although,
as already mentioned, it also implies that our slug-
model is not too well adapted to the regime of a heat
wave.

Figure 6 represents a situation in which the initial
trigger energy WDT is only one-fifth of Fig. 4. It is clear
that, in this case, the trigger is not strong enough to
ignite a detonation in n' = 5n. Only a weak shock ini-
tially propagates axially with vs ~ 2.5 × 108 cm/s,
diminishing to vs ~ 0.5 × 108 cm/s at t > 70 ps. The heat
conductivities are able to thicken the shock front, but
there is not enough energy to launch a detonation wave.
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We have performed two-dimensional simulations
considering conical CH with α = 10° and 20° for both
χα = 0 and χα given by (A2.4) (see Appendix 2). The
results for the cases with local α-deposition do not give
the impression of a physically realistic event; we shall,
therefore, analyze only the results of nonlocal α-depo-
sition (Figs. 7a, 7b, 8, 9a, 9b, 10). Comparing the T
growth in Figs. 7b and 9b with that of Fig. 4b, we see
that, in conical channels, the Tmax on the axis does not
show any sign of saturation over a distance of 500 µm,
whereas the Tmax in the cylindrical channel shows a
convergence towards a value indicated by (4b)
(Fig. 14). Of course, given time, the Tmax must, even for
α = 90°, converge to a Tmax of a plane detonation wave
in DT. This Tmax follows from (2), setting for t the char-
acteristic time tb . 4 × 10–7 α–s necessary to achieve a

burn of b = 50% and assuming that Ω = Ω0 (as in
Appendix 1). It also follows approximately from

vh tb ~ lDT = 20 ;

both methods giving [see (A2.6a)] α . 22, which cor-
responds to Tmax ≈ 191 keV, indicated in Fig. 14 as an
upper limit.6 In order to find out how the T in conical

6 Another limit on Tmax is given by burn-up b. It can be written as

Tmax = 590  keV, having assumed a local α-deposition

and no energy loss. For b = 0.25, we get Tmax = 155 keV.

ns

n
----

ns

n
----

b
1 0.2b–
-------------------
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Fig. 9. (a) Detonation propagation in a cone α = 20° (all else as in Fig. 7); (b) ρ(z) and Ti(z) profiles at r = 0 and times (1) 0, (2) 3.2,
(3) 9.8, (4) 21.3, and (5) 34.6 ps.
channels approaches this limit, we would have to fol-
low the detonation for at least 50 ps.

Using the T(z) and ρ(z) values corresponding to
curves 5 in Figs. 4b, 7b, and 9b, it is possible to work
out the UDT [GJ/cm2] on the axis for the cases of α = 0°,
10°, and 20°. We have approximated the UDT by

(12)

where ρ is in g/cm3; T is in keV; and L = 〈Lα〉 .

10  is the mean range of α-particles, Λ being the

Coulomb logarithm. The results are plotted in Fig. 15.
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Of course, this is the UDT on the axis; it is clear from
Figs. 5, 8, and 10 that off the axis both the ρ and Ti drop
below the axial values. Taking the ρ and Ti at the initial
boundary of the cylinder or the cones, we get UDT val-
ues between 40 and 50% of the axial ones. The ampli-

fication factor γ = , where (UDT)0 refers to the

real energy density at t = 0, is clearly very high even off
the axis. It should not be confused with the concept of
gain, since the original (UDT)0 is already energy ampli-
fied by a previous spread of the detonation from the
spark [16].

The development of the detonation is somewhat
asymmetric with respect to the initial situation. This is
due to those terms in our equations that contain ∇ T × B

UDT

UDT( )0

-----------------
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Fig. 10. ρ and Ti contours at t = 34.6 ps for the case of Fig. 9. The initial shape of CH is hatched.

100
(e.g., the Thomson effect, Hall effect, and Nernst
effect). However, the fluid dynamics and nuclear phe-
nomena predominate and the asymmetries amount to
only a few percent.

6. CONCLUSION

The difference in detonation propagation between
χα = 0 cases and those of χα > χe is considerable. In
cases where the pinch current Iz is flowing mainly in a
skin δ ! a, we would argue that the detonation is better
represented by Figs. 4a, 4b, and 5 than by Figs. 11a,
11b, and 12. However, when the current Iz is almost
uniformly distributed over the section of the pinch and,
therefore, χα is diminished [see (A3.3)], the character
of the detonation will be somewhere between these two
extremes.

When the nonlocal α-deposition prevails, our sim-
ple analysis based on the slug model is inadequate;
nonetheless, some results such as equations (3), (4a),
and (6) are still approximately applicable. Also, as seen
from Fig. 16, the concept of a slug still applies even in
the case of a heat wave, only the length of the slug is
l ~ 3.2a instead of l . a (for κ = 1), which is a conse-
quence of vh > vs (in this case, vh . 11 × 108 cm/s and
vs . vt = 3 × 108 cm/s). The shape and dimensions of
the slug remain almost constant between 10 and 33 ps
in spite of the mean temperature rise from 40 to about
60 keV.
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000



DETONATION ENERGY AMPLIFICATION IN CONICAL CHANNELS 213
500 600 700 800 900
z, µm

r, µm
22.80 ps

45.05 ps

68.10 ps

ρ

ρ

ρ

Ti

Ti

Ti

(‡)

1 2 3 4 5

2 3 4 5

M
id

pl
an

e

900500

400

300

200

100

0

20

40

60

80

z, µm

ρ, g/Òm3

Ti, keV(b)

0

20

40

100

120
M

id
pl

an
e

600 700 800

1

Fig. 11. (a) Detonation propagation for χα = 0 (all else as in Fig. 4); (b) ρ(z) and Ti(z) at r = 0 and times (1) 0, (2) 22.8, (3) 45, (4) 68,
and (5) 92.5 ps.
A further confirmation that our (10) and (11) are
significant comes from Fig. 14. One sees that, for the
α = 0 case, the temperature on the axis increases
steadily; it stagnates initially for the α = 10° case; and
it shows even a temporary decrease in the α = 20° case.
This is in agreement with the prediction (11) that an
excessive conical divergence may cause the spark to
fizzle out.

From Fig. 15, it follows that UDT is amplified to lev-
els compatible with (1) and, therefore, the ignition of
even pure D-plasma is possible. Of course, the D chan-
nel must correspond to a sufficiently large ρa in order
for the detonation to propagate in it. From [4], we have
for the minimum ρa in D

(ρa)min = 2.72 × 10–18  = 2.72φ' [g/cm2].
α 3/2

σv〈 〉 DD

-------------------
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For α = 9, we get (ρa)min > 2 g/cm2. For ρ corres-
ponding to a typical compression of 103, we obtain that
amin > 120 µm. The a of our CH conical transition
(α = 20°) at z = 500 µm is a = 175 µm. We conclude
that the detonation in D–T depicted in Figs. 9a, 9b, and
10 has the strength (UDT) and dimensions correspond-
ing to the ignition of a detonation in a deuterium plasma
compressed by a factor of 1000.

Of course, the transition from D–T to pure D and the
propagation of a detonation in a D-channel would have
to be studied by two-dimensional simulation—a task
we hope to solve in the near future.

The practical realization of the conical pinch dis-
cussed here will be based, most probably, on the con-
cept of a cylindrical or conical liner imploding on a
Z-pinch in which the line density N(z) is shaped in a
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correct manner. The discussion of this task is beyond
the scope of this theoretical paper.
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APPENDIX 1

A Plane Detonation in Deuterium

An approximate estimate of minimum UD [see (1)]
can be made using (2). In this case, the second term on
the r.h.s. is absent because in plane geometry there is no
radial loss (Ω = Ω0). We obtain for the D–D reaction

(A1.1)

where QDD = 9.2 MeV. If neutrons contribute to the
detonation propagation, then b = 1. If only charged
particles power the detonation, then b = 2 [18]. We get
for lmin

(A1.2)

where φ' = 10–18  and α = T/108 (φ' . 1.1 for

α = 1). In plane geometry, the Ω of our slug remains
constant and s = 1 (local fusion energy deposition).

s
6
---n σv〈 〉 DD

QDD

b
---------- qβ kT( )3/2

Mdlmin

-------------------,=

lmin 7
βqb

s
---------φ'

ns

n
----,≡

α 3/2

σv〈 〉 DD

-------------------
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Taking q = 1.3 and β = 2 as before, we get

(A1.2‡)

The function φ'(T) has a minimum of 0.6 at α . 4;
at α = 10, we have φ' . 0.83. The energy of the plane

lmin 21
ns

n
----φ'b.=

slug (per cm2) is

UD = 3nkTlminq.

Using (A1.2a), we obtain 

UD = 5.7αφ'b [GJ/Òm2] (A1.3)

independent of the density n. At α = 10 and b = 1.5, we
get UD ~ 64.7 GJ/cm2.

The effect of nonlocal deposition of the fusion
energy and heat and radiation losses will increase the
value of UD; a more precise estimate of UD requires a
reliable numerical simulation.

APPENDIX 2

Fusion Heat-Wave Propagation

Let us assume that a cylindrical plasma is heated by
a hot plate (temperature T1). The heat conduction will
propagate a heat wave in the z direction. Let us assume
first that during this heat diffusion the plasma remains
stationary. The heat skin depth δ after a time t will be

(A2.1)

where 〈χ〉  is the mean heat conductivity and n is the
plasma density. Let us assume that T ≥ 108 K; then, the
α-heat conductivity χα > χe and we have (see defini-
tions of y and u in Appendix 3)

(A2.2)

δ χ〈 〉 t
3 2⁄( )kn

---------------------,=

χα c10
16α i
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=
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Fig. 14. Tmax(t) for α = 0, 10°, and 20°. Fig. 15. The UDT multiplication as a function of α.
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Fig. 16. The Lagrangian grid corresponding to Fig. 4. The slug with T > 20 keV remains almost invariant in form and volume.
and

(A2.3)

from which follows (put c = 0.1) that χα > χe in the
interval from 8 keV to about 148 keV. The ηmax . 3.6 at

η
χα

χe

----- 10cα i
y 0.5– 0.5u–

,= =
T = 30 keV. The total χ is

. (A2.4)

Given the form of χα, which is a steep function of T,
we shall divide the region of T(z) into two portions: the

χ χα χe+ χα 1 η–1+( )= =
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000



DETONATION ENERGY AMPLIFICATION IN CONICAL CHANNELS 217
first between T1 and Tδ = T1/e with a relatively flat T(z)
distribution and the second between Tδ and T ' with a
rapid fall of T(z). In order to get a detonation wave, we
will require that the first portion gets enough energy
during a time t to raise the temperature from Tδ to T1
(the hot plate propagates from z = 0 to z = δ).

The time t then follows from

which for T1 @ Tδ gives

(A2.5)

During this time, the T(z) distribution in the second
portion creates a new δ. Substituting (A2.5) into
(A2.1), we obtain for the speed of the detonation heat
wave vh 

(A2.6)

where ε < 1 is a coefficient that compounds the uncer-
tainties concerning the correct value of 〈x〉 . We have for
c = 0.1

(A2.6‡)

For example, if α1 = 9 and ε = 0.8, then vh = 10.5 ×
108 cm/s.

APPENDIX 3

α-Heat Conductivity

The use of an α heat conductivity χα instead of a
more accurate α diffusion method is justified by

(a) the relative simplicity in its use in numerical sim-
ulations where nonlocal fusion energy deposition dom-
inates and

(b) the many factors that invalidate the use of the α-
diffusion calculation, such as the presence of magnetic
fields and the electric α-boundary layer due to sharp
density gradients.

The derivation of χα can be based on the energy
transport by the forward (in the sense of –dT/dx) and
backward α-stream, which in simple form is written as

(A3.1)

where (for n = const)

3nk T1 Tδ–( ) 1
4
---n

2 σv〈 〉 Qα t,<

t 6 10
9– ns

n
----α1

1 y–
.×≥

v h
εδ
t

----- ε
2χα 1 η 1–

+( )

1.8k 10
8–
nsα i

1 y–×
--------------------------------------------,= =

v h 1.26 10
8εα1

y 0.5 1.5u–+
1 η 1–

+×=

χα
dTi

dx
--------– q̇α q̇α' ,–=

q̇α gλα
1
4
---n

2 σv〈 〉 Qα ,=

q̇α' gλα'
1
4
---n

2 σv〈 〉 'Qα .=
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
Let us approximate dTi/dx ~  and 〈λ〉 α = ε' .

Using the approximation 〈σv〉  = 10–16 , y =

3/ , and λα . 1012 , we obtain

We shall approximate Ti/Te = , u = 0.2 , and

 ~ 0.2. Consequently,

(A3.2)

This is a very rough approximation and breaks down

when dTi/dx @  and also when vh > (vα)max

in (A2.6).
The expression (A3.2), used in Appendix 2 in the

form of χα = 1015 , is very nearly the same as
that of Sokolov [19], whose article on fusion heat
waves in D–T describes them as “weak detonation
waves,” clearly seen in our numerical simulations.

In a uniform magnetic field B in which the α-parti-
cle Larmor radius is small, ρα ! λα, the heat conductiv-

ity  will be cut down by . However, in a non-

uniform B, the α-ion will drift with a drift velocity uα
and, therefore, the mean ion displacement between its

birth and thermalization will be λα , where 〈vα〉  ≈

109 cm/s. It follows that

(A3.3)
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Abstract—A one-dimensional hydrodynamic model of the atom, ion, and electron dynamics in the channel of
a stationary plasma thruster is developed. The relevant set of integrodifferential equations is derived and inves-
tigated both analytically (steady-state solutions) and numerically (dynamic regimes). It is shown that adjusting
only one parameter (the channel resistivity) makes it possible to achieve a good agreement between the calcu-
lated global parameters and experimental data. The general features of oscillations revealed with the help of the
model are also found to agree fairly well with the experiment. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The rather specific features of the processes occur-
ring in a stationary plasma thruster (SPT)1 stem from
the strong interaction between the plasma electrons and
the dielectric walls of the channel. This interaction gov-
erns, to a large extent, the electron distribution function
(EDF) as well as electron transport along the channel
(the conductivity of the wall plasma), and thereby the
electric field distribution, and influences the ionization
rate and the rate at which the atoms and ions are
excited. The electron kinetics, in turn, is governed by
the rate coefficients for the secondary electron emission
from the walls, the evolution of Debye sheaths and their
parameters, and the characteristic features of the main
conductivity mechanism—the conductivity of the wall
plasma.

The processes in the SPT channel can be described
systematically only by using kinetic models for atoms,
ions, and electrons. However, such a self-consistent
description seems to be too sophisticated at present.
That is why, in some papers [4, 5], the ion kinetics was
investigated against the prescribed electron background
and, in other papers [6, 7], the electron kinetics was
treated against the ion background. However, attempts
were also made to study the ion and electron dynamics
self-consistently, but in the hydrodynamic (or, at most,
hybrid) approximation under the assumption that the
processes are steady and, in some cases, with allowance
for linear waves [1, 8]. To the best of our knowledge,
we were the first to formulate a one-dimensional set of
hydrodynamic equations aimed at describing the atom
and ion dynamics self-consistently and including an
integral equation for the discharge circuit [9].

1 In early papers, such a system was referred to as a closed electron
drift accelerator.
1063-780X/00/2603- $20.00 © 20219
Here, the results of a thorough analysis of the model
are presented and are compared with the experimental
data in the range of working parameters of an SPT. We
show, in particular, that the global parameters of the
model are weakly sensitive to the presence (or absence)
of oscillations. Surprisingly, a number of characteris-
tics derived with our model turned out to agree with the
relevant experimental data not only qualitatively but
also quantitatively.

2. FORMULATION OF THE PROBLEM
IN A ONE-DIMENSIONAL HYDRODYNAMIC 

APPROXIMATION

2.1. Basic Equations

It is clear that a complete self-consistent model of
the processes in an SPT will be extremely involved and
complicated. Consequently, it seems expedient to
develop a series of comparatively simple models that
describe different features of the processes, thereby
reconstructing a true overall picture. Since no azimuth-
ally asymmetric oscillations are excited in the course of
SPT operation, models for the processes occurring on
the characteristic time scales τ ≥ τ0 (where τ0 is the ion
transit time) are simpler to derive. Hence, we begin
with a one-dimensional hydrodynamic model of the
dynamics of electrons, atoms, and ions [9]. We restrict
ourselves to considering only singly charged ions.
However, even in this model, the processes in an SPT
exhibit fairly complicated and nontrivial behavior.

We direct the x-axis along the channel so that x = 0
is the anode surface and the channel end x = L is the
cathode surface. The main parameters in our model are
the ion density n(x, t) (the electron density being the
same by virtue of plasma quasineutrality), the ion
000 MAIK “Nauka/Interperiodica”
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velocity V(x, t), the neutral density na(x, t), and the elec-
tric current J(t) in the system. The model set of equa-
tions consists of the ion continuity equation,

(1)

the equation of ion motion,

(2)

Ohm’s law (with allowance for the fact that the model
is one-dimensional and the discharge current is inde-
pendent of x),

(3)

the continuity equation for atoms,

; (4)

and the equation for the electric circuit,

(5)

In (5), U0 is the emf of the power supply; in (4), Va =
const > 0 is the atom velocity; and, in (5), Lc is the
inductance of a circuit and R is its resistance.

The right-hand side of (1) describes electron impact
ionization with the ionization rate β (we assume that
β ≡ const). In (3), the model plasma conductivity σ(x)
depends only on the transverse magnetic field, which is
considered a prescribed parameter:2

(6)

where H0 is the magnetic field at the anode surface and
H(x) is the profile of the transverse magnetic field.

Equations (1)–(5) are investigated under fairly arbi-
trary initial conditions and are supplemented with the
following time-independent boundary conditions at the
anode surface x = 0:

(7)

For convenience of further analysis, we switch to new
units of measurement. We introduce the length unit L
(the channel length); the density unit na0; the unit of the
electric field E0 = U0/L; the velocity unit V0; the time
unit t0 = L/V0; and the unit of the electric current I0 =
U0/Rch, where Rch = L/σ0 is the resistance of a channel
with a unit cross-sectional area S = 1 cm2. In these

2 Here, we use the condition ωeτe @ 1, which definitely holds in a
real situation.

∂n
∂t
------ ∂nV

∂x
----------+ βnna;=

∂nV
∂t

---------- ∂nV
2

∂x
------------+

en
M
------E βnnaVa;+=

E
J enV–

σ x( )
-------------------;=

∂na

∂t
-------- Va

∂na

∂x
--------+ βnna–=

Lc
dJ
dt
------ RJ E xd

0

L

∫+ + U0.=

σ x( ) σ0

H0

H x( )
----------- 

 
2

, σ0 const, H0 const,= = =

n 0 t,( ) n0, na 0 t,( ) na0, V 0 t,( ) V0 0.>= = =
units, equations (1)–(5) with the same notation for the
main parameters reduce to

(8)

and the boundary conditions (7) become

(9)

The main dimensionless parameters are

(10)

and the magnetic field is taken to be

(11)

The boundary-value problem for equations (8),
which contain a nonlocal term, is highly nonlinear and
involves a number of parameters. Presumably, the
problem can be investigated more or less completely
only by solving equations (8) numerically using com-
puter codes.

2.2. Specifying the Model Parameters

We consider a practically important range of the
SPT parameters, such that the mass flow rate is  = 2–
4 mg/s and the discharge voltage is U0 = 200–400 V, the
working gas being Xe.

Let us estimate the main dimensionless parameters
in (10) assuming that  = 3 mg/s. For a channel with a
cross-sectional area of about 25 cm2, the atom density
at the anode is na0 . 3 × 1013 cm–3 and the atom velocity
near the anode is Va . 2 × 104 cm/s. We set the ion
velocity near the anode V0 . 2 × 105 cm/s, in which case
the ion energy is about 3 eV. For a channel as long as
L . 3 cm, we obtain t0 . 15 µs. For β, we adopt the
value β . 5 × 10–8 cm3/s, which is characteristic of Xe
at Te = 15 eV. As a result, we arrive at the following esti-
mates:

(12)

∂n
∂t
------ ∂nV

∂x
----------+ νnna,=

∂nV
∂t

---------- ∂nV
2

∂x
------------+ µnE νnnaVa,+=

E h
2

x( ) J χnV–( ),=

∂na

∂t
-------- Va

∂na

∂x
--------+ νnna,–=

l
dJ
dt
------ rJ E xd

0

1

∫+ + 1=

n 0 t,( ) n0, na 0 t,( ) 1, V 0 t,( ) 1.= = =

µ
eU0

MV0
2

-----------, ν
βna0L

V0
--------------, χ

ena0V0Rch

U0
-------------------------,= = =

l
LcV0

LRch

-----------, r
R

Rch

-------= =

h x( ) h0 1 h0–( )x
2
, h0+ H 0( ) H0⁄ .= =

ṁ

ṁ

µ 1
6
---U0, ν 20, Va 0.1.= = =
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Fig. 1. (a) Spatial profiles of the ion density, ion velocity, and atom density in the steady-state regime and (b) I–V characteristic J(Up)
and efficiency η(U) for the time-independent (squares) and time-dependent (circles) models.
The channel resistivity Rch and, accordingly, the
parameter χ,

(13)

(here, Rch is in Ω cm2), are the most difficult to estimate.
The resistivity Rch can be evaluated as follows. We find
such a value of Rch for which the time-independent model
(see below) gives the net discharge current J = 3 A,
the discharge voltage being Up = 300 V. Our calcula-
tions showed that this requirement is satisfied by Rch .
8 × 104 Ω cm2, so that we have

(14)

The parameters l, r, and h0 can be chosen from the
experiment,

(15)

3. RESULTS OF SIMULATIONS 
WITH A HYDRODYNAMIC MODEL

3.1. Time-Independent Model

First, we set ∂/∂t = 0 in order to analyze solutions to
the time-independent equations (8), which now become

(16‡)

(16b)

χ 0.9
Rch

U0
-------, Rch[ ] Ω Òm

2
= =

χ 7 10
4

U0⁄ .×=

l . 10
2–
, r . 10
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, h0 0.1.=

dnV
dx

---------- νnna,
dnaVa

dx
--------------- νnna,–= =

dnV
2

dx
------------ µnh

2
x( ) J χnV–( ) νnnaVa,+=
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(16c)

and adopt the boundary conditions (7). We solve the
problem over the interval 0 ≤ x ≤ 1. Equations (16)
obviously have the first integral nV + naVa = n0V0 + Va ,
which allows us to eliminate na . Since equation (16c)
contains a nonlocal term, equations (16) can be treated
as an eigenvalue problem. Without going into mathe-
matical detail, we only note that, in the parameter range
under consideration, the problem possesses a unique
solution.

Simulations carried out in the range 200–400 V gave
the following results. The atoms are ionized with the
highest rate at U0 = 200 V. The ion velocity at the exit
from the channel increases with U0, and, at U0 = 400 V,
it becomes as high as 10V0 (2 × 106 cm/s). Figure 1a
illustrates representative profiles of n, V, and na com-
puted for U0 = 400 V and  = 3 mg/s.

The efficiency η of the system can be introduced as

(17)

where the angular brackets stand for the time-averaged
quantities (obviously, such averaging is not required in
solving the time-independent problem). Note that the
efficiency η is often evaluated using the voltage Up =

dx across the channel instead of U0; this approach

r r0+( )J χ h
2

x( )nV xd

0

1

∫– 1, r0 h
2

x( ) xd

0

1
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ṁ

η nV
2〈 〉 X L=

2

2na0VaU0 J〈 〉
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2
--- χ

µVa
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Fig. 2. Time evolutions J(t), Up(t), and nV(t, x = 1) in (a) the periodic regime and (b) the aperiodic (stochastic) regime for  = 3 mg/s
and U0 = 400 V.

ṁ

yields a somewhat overestimated efficiency because
Up ≤ U0.

Figure 1b shows the current–voltage (I–V) charac-
teristic J(U0) and the efficiency η(U0) calculated from
equations (16) in the range 100 < U0 < 800 V. The I–V
characteristic is seen to be nearly straight. The effi-
ciency reaches its maximum ηmax = 0.72 at U0 = 350 V,
gradually decreases as U0 grows, and falls off sharply
as the voltage decreases. Such behavior of η(U0) is con-
firmed by experiments. The maximum efficiency com-
puted with the SPT-ATON model [3] was as high as
ηmax ≈ 67%.

As an example, we present the simplest analytic
solutions to equations (16). For a fully ionized plasma,
ν = 0, and a uniform magnetic field, h(x) ≡ 1, we have
nV ≡ 1, in which case it is easy to obtain

(18)

We can see that the solutions can be divided into
three different groups: (i) for rχ < 1, the velocity is
monotonically decreasing and the density is decreas-
ing; (ii) for rχ = 1, they are both constant, V ≡ n ≡ 1; and
(iii) for rχ > 1, the velocity is monotonically decreas-
ing, while the density is increasing. At the point x* =
(1 + r)/2(rχ – 1)µ, we have V = 0 and n = ∞. In the range

J
1 χ+
1 r+
------------, E

1 rχ–
1 r+

--------------, V 1 2µ1 rχ–
1 r+

--------------x+ .= = =
x* < 1, the boundary-value problem has no solutions. In
the general case, the situation is qualitatively the same.

3.2. Unsteady Regimes

In order to analyze the stability of the steady solu-
tions derived above, we can regard them as initial con-
ditions for the time-dependent equations (8). Our sim-
ulations performed in a fairly broad parameter range
revealed the following picture. Varying the channel
resistivity and fixing the remaining parameters, we
inferred the existence of a steady stable solution in the
range of sufficiently low χ values. Increasing the chan-
nel resistivity, we found that, at a certain value of χ, this
solution became unstable and a periodic solution
appeared (Fig. 2a). A further increase in χ resulted in
the appearance of solutions describing unsteady aperi-
odic (“stochastic”) regimes (Fig. 2b). Also, our simula-
tions showed that the time evolutions of the plasma
parameters are strongly sensitive to small variations of
the input parameters. This feature agrees well with the
experimentally established fact that even a slight varia-
tion of the experimental parameters makes it impossi-
ble to reproduce oscillations. We found that, in the
parameter range under consideration, which is of much
practical interest, all of the steady solutions derived
above are unstable. However, this does not mean that
the steady solutions are physically meaningless,
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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ṁ

because they may be stable in other parameter ranges.
Moreover, our simulations of unsteady regimes showed
that the evolution of a number of time-averaged quanti-
ties is qualitatively the same as their behavior in steady-
state regimes.

Of considerable practical interest is also the case
with fixed parameters, except for µ and χ, which only
satisfy the requirement µχ = const. Treating this case,
we analyze how the discharge voltage U0 affects the
properties of the model solutions. The relevant series of
simulations was conducted with equations (8) in the
range 200 < U0 < 600 V.

Figure 2b shows time evolutions of the discharge
current J(t), the voltage Up(t) across the channel, and
the ion density at the exit from the channel (x = 1) for
U0 = 400 V, the unit time interval being t0 = 15 µs. Sim-
ulations carried out for other voltages showed that the
main (low-frequency) oscillation period τ0 increases
with U0: for U0 = 200 V, we have τ0 . 170 µs and, for
U0 = 600 V, we have τ0 . 45 µs. Time evolutions of the
voltage across the channel also provide evidence that
there are high-frequency oscillations occurring on a
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
characteristic time scale τh of about several microsec-
onds (i.e., about the ion transit time). Low-frequency
oscillations are presumably associated with ionization
oscillations, in which case the modulation depth of the
plasma flow parameters amounts to 100%.

It is of interest to compare the I–V characteristic and
the efficiency calculated with a time-independent
model with those evaluated in solving the time-depen-
dent problem. Figure 1b illustrates the time-averaged
discharge current 〈J〉  and efficiency η as functions of
U0. As can be seen, the discharge currents in the
dynamics regimes are somewhat higher. The effi-
ciency in the unsteady regime is lower than that in the
steady-state regime and exhibits qualitatively the same
behavior.

3.3. Oscillation Dynamics

Let us consider in more detail the results of calculat-
ing the transit waves (see below) by using a one-dimen-
sional hydrodynamic model. Since the nature of these
oscillations remains qualitatively the same in the pres-
ence and absence of ionization, we restrict ourselves to
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examining the case with realistic parameters and with
allowance for ionization (  = 3 mg/s, U0 = 400 V).

Figure 3 shows profiles of the quantities n, V, and E
along the channel axis at different times. We can see
higher density bunches, the related dips in the velocity,
and the related sites where the electric field decelerates
the ions. We can see that the high-density bunches
propagate along the channel; initially, their shapes are
essentially unchanged, but then the maximum bunch
density is seen to decrease. The bunches originate
mainly near the outer edge of the ionization front (on
the side facing the channel end) and grow to their max-
imum density on a time scale too short for them to
propagate over a significant distance. Three bunches
are usually observed to propagate in the channel, but
situations with one or two bunches are also possible (a
solitary bunch may also originate in the middle of the
channel).

Using the above parameter values, we can estimate
the dimensionless propagation velocity Vb of the
bunches: Vb ~ 0.2–0.4. On the other hand, the time-
averaged velocity (starting from the ionization front) is
〈Vi〉  ~ 2, so that the ion transit time equals τ0 ~ 0.5. From
Fig. 3, we can estimate the distance between the
bunches as lb ~ 0.2; consequently, the interval τb

between the times at which two successive bunches
reach the channel end is τb ~ τ0. This indicates that the
term “transit wave” reflects the repetition rate of the
bunches rather than the time required for them to
traverse the channel. The bunches behave as if they
were impenetrable. The velocity of the ions that have
just entered the bunches falls off, while the velocity of
the ions that have just escaped from the bunches
increases. The propagation velocity of the bunches is
close to that of the ions forming the bunches.

4. CONCLUSION
In the Introduction, we pointed out the strong

impact of the processes occurring near the channel
walls on the SPT operation. The results obtained with

ṁ

our simple one-dimensional model, which is phenome-
nological in essence, show that numerous complicated
processes in an SPT can be described in a unified fash-
ion by adjusting only one parameter and that it is pos-
sible to achieve not only qualitative but also fairly good
quantitative agreement with the experimental data. This
result appears to be somewhat surprising, thereby
necessitating a detailed theoretical analysis aimed at
understanding the reasons for such a good agreement
between theory and experiment.
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Abstract—The structure of a shock wave in an isotropic plasma is studied with allowance for charge separation
and a self-consistent electric field. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, a theory of the structure of a shock wave
(SW) in a plasma has been developed that is based on
the hyperbolic equations describing systems with dissi-
pation. The equations of one-dimensional unsteady
motion have the form [1]

(1)

where u is a set of K independent gas-dynamic vari-
ables and the matrices A, B, C, and D have the dimen-
sionality K × K and satisfy the familiar restrictions [2].
In particular, in a homogeneous plasma for which
u = const, we have C(u) = 0. The set of hyperbolic
equations for the k (k < K) parameters of a dissipation-
less flow can be derived from (1) by neglecting terms
with second-order derivatives and expressing some of
the components of the vector u in terms of the remain-
ing components assuming that C(u) ≡ 0 over the entire
flow. The parameter k is the number of hyperbolic
undamped waves governing the formation of a discon-
tinuity and its evolution. The front structure of an SW
is formed by some dissipative, strongly damped waves.

In a two-temperature plasma, dissipative mecha-
nisms can exist that are purely kinetic in nature. The
formation of an SW can also be affected by wave dis-
persion. These effects cannot be taken into account in a
model based on equations (1). However, according to
[1, 3, 4], an SW in a plasma is similar to a conventional
gas-dynamic SW in a gas.

Papers [5–7] provide a radically different under-
standing of the role played by kinetic effects in the for-
mation of the structure of a strong SW in an isotropic
plasma. Ledenev [5, 6] showed that the energy level
characteristic of dissipation of the flow of ions reflected
from the shock front may be high enough to satisfy the
Hugoniot relations. In my recent paper [8], shock-front
structures consistent with the analysis of [5, 6] were
found for initially equilibrium, highly and weakly ion-
ized collisional plasmas and a nonisothermal collision-

A u( )∂u
∂t
------ B u( )∂u

∂x
------ C u( ) D u( )∂

2u

∂x2
--------+ + + 0,=
1063-780X/00/2603- $20.00 © 20225
less plasma. The results of the calculations carried out
for a collisionless plasma [8] agree with the results
obtained earlier by Bardakov et al. [9].

It is well known that the SW structure in a plasma is
described by a larger number of independent variables
in comparison with dissipationless flows on both sides
of the front [1]. The electric field potential behind the
shock front is governed by the front structure and can-
not be expressed merely in terms of the SW velocity
and the parameters characterizing the initial and final
plasma states. According to the numerical estimate of
Jaffrin and Probstein [3], the total amount by which the
potential increases in a strong SW is ∆Φ . 2, where
Φ = eϕ/Te, ϕ is the electric field potential; e is the elec-
tron charge; T is the temperature; and the subscripts e
and i refer to electrons and ions, respectively. The poten-
tial grows preferentially in the “ion shock wave” on a
spatial scale on the order of the ion mean free path li.

The ion SW results from the excitation of ion acous-
tic waves and, in the long-wavelength approximation,
is described by the hyperbolic equations of isothermal
hydrodynamics [10]. The hyperbolic equations are
derived from kinetic equations by neglecting collision
integrals and can be used to approximately describe the
ion SW structure, because the shock front thickness is
on the order of ~li. The evolution of such ion acoustic
waves is well studied. In the compression regions, the
wave front becomes progressively steeper until the
front thickness equals the Debye radius rD. The disper-
sion associated with charge separation in the plasma
prevents further steepening of the wave front and, con-
sequently, wavebreaking; this process can be accompa-
nied by the excitation of multistream flows [10].

Greywall [11] studied the influence of kinetic
effects using the Mott–Smith method and neglecting
charge separation. Here, we investigate the structure of
an ion SW using the particle distribution functions that
satisfy collisionless kinetic equations with a self-con-
sistent electric field. As a result of dissipation, the
kinetic energy of supersonic ions reflected from the
potential barrier is transformed into the internal and
000 MAIK “Nauka/Interperiodica”
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kinetic energies of the plasma and also into the energy
of ion acoustic fluctuations.

2. FORMULATION OF THE KINETIC PROBLEM 
OF THE SW STRUCTURE

The boundary conditions for gas-dynamic variables
at +∞ and –∞ reflect the fundamental conservation
laws, which are independent of the character of dissipa-
tion. For a fully ionized isotropic plasma, we write
these conditions (the Hugoniot relations) as [1]

(2)

where M0, 2 = v0, 2/Vs2 is the Mach number, v is the
plasma flow velocity in the wave frame, Ms0 = c/Vs0 is
the Mach number of an SW, c is the SW speed,

Ms = c/Vs2, Vs =  is the ion acoustic
speed, m is the mass, N is the density normalized to the
background density n0, and ∆ = (vTe/c)le, γ = γe = γi is
the adiabatic power-law index. Here and below, the
subscripts 0 and 2 refer, respectively, to the unperturbed
quantities and the parameters characterizing the plasma
state far behind the shock front, at distances much
longer than the scale on which the electron thermal
conductivity varies, ∆ = (vTe/c)le.

Let us formulate the problem of the structure of a
jump in the potential with allowance for the effective
dissipation of the energy of the flow of reflected ions
[see formulas (3)–(7) below].

From the particle and momentum flux conservation
laws, we obtain the following relationships between the
unperturbed fields and the first moments of the distribu-
tion functions of the incident and reflected ions in the
so-called foot of the shock wave:

(3)

where Mf = vf/ , vf is the velocity of the incident ions

in the wave frame;  ≡ c/ ,  = ; the sub-
scripts f and r stand for the fields of the flows of the inci-
dent ions and ions reflected from the potential barrier,
respectively; and β ≡ 2Ti1/Te1 is the parameter character-
izing the degree to which the plasma in the vicinity of
a potential jump is nonisothermal (here and below, Ti1
and Te1 are the ion and electron temperatures in the
vicinity of the jump).

We assume that, first, the dissipation of the energy
of the flow of reflected ions acts exclusively to raise the
particle temperatures (mainly, the electron tempera-
ture) and the electric field energy can be neglected and,

N2M2 Ms,=

N2 M2
2 1+( ) Ms

2 1 Ms0
2–+( ),=

Ms
2 γ 1+( )2Ms0

4 2Ms0
2 γ 1–+[ ] 1–

Ms0
2 γ 1–( ) 2γ+[ ] 1–

,=

Te Ti+( ) mi⁄

N f Nr–( )M f Ms' ,=

N f Nr+( ) M f
2 1 β 2⁄+ +( ) Ms'

2
1 Ms0

2–+( ),=

Vs'

Ms' Vs' Vs' Te1 mi⁄
second, the flow of reflected ions is decelerated on a
sufficiently short time scale τp, much shorter than the
time τei over which the electron and ion temperatures
are equalized (the time τp will be estimated below).
Under these assumptions, the internal plasma energy in
the vicinity of a potential jump can be described by the
relationship

(4)

On the other hand, the ions in the foot remain suffi-
ciently cold to satisfy the conditions vTe @ c @ vTi

(where vT is the thermal velocity).
Poisson’s equation for the potential Φ of a self-con-

sistent electric field can be written as [9]

(5)

where ξ = –(r – ct)/rD and v is the particle velocity. The
wave frame is oriented so that ξ < 0 ahead of the SW
front. The peak value of the potential at ξ = 0 is denoted
by ΦA.

The functional Nr of the particle distribution func-
tions is defined by [9]

(6)

Te1 Ti1+ Te2 Ti2.+=

dΦ dξ⁄( )2 2U Φ( ),–=

U Φ( )– Φ( )exp=

+ N f F W( )Q W Φ Φ f, ,( )
2 Φ Φ f–( )

2 ΦA Φ f–( )

∫





dW

+ F W( )Q W Φ Φ f, ,( ) Wd

2 Φ Φ f–( )

∞

∫





C, ξ 0,<+

U Φ( )– Φ( )exp=

+ N f F W( )Q W Φ Φ f, ,( ) W C, ξ 0,≥+d

2 ΦA Φ f–( )

∞

∫

F W( ) W M f–( )2 β⁄–[ ] πβ,⁄exp=

W v Vs'⁄( )
2

2 Φ Φ f–( )+ ,=

Q W Φ Φ f, ,( ) W W2 2 Φ Φ f–( )– ,=

C N f M f
2 β 2⁄+( )– Φ f( )exp–=

– N f F W( )W2 W ,d

0

2 ΦA Φ f–( )

∫

Nr N f F W( ) W .d

0

2 ΦA Φ f–( )

∫=
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Since the spatial scale on which the fields in the foot
vary is much longer than rD, the quasineutrality condi-
tion

(7)

is satisfied. Let us show that jumps in the gas-dynamic
variables can be explained in terms of the Hugoniot
relations (2) with allowance for an SW formed as a
result of dissipation of the energy of reflected ions.

3. APPROXIMATE EXPRESSIONS 
FOR THE PARAMETERS OF A SUPERSONIC

ION SW

The definition of  and relationship (4) yield the
following expression for Ms:

in which case β can be represented as

Consequently, if an SW is sufficiently strong (Ms0 @ Ms)
and/or the initial ion-to-electron temperature ratio is
small (β0 ! 1), then we can neglect the term with β in
(3).

Behind the potential barrier, the fields experience
regular oscillations caused by charge separation. We
write out the relationships between the flow parameters
N1, M1, and Φ1 averaged over the regular oscillations
and those characterizing the state in the foot:

(8)

where N1 = exp(Φ1) by virtue of the quasineutrality
condition. Thus, in the context of seeking only discon-
tinuous solutions, we have reduced the exact problem
of the front structure, (5) and (6), to approximate rela-
tionships (8).

At β = 0, we find from (3), (7), and (8)

(9)

Using (9) and (2), we obtain the following set of equa-
tions for N1 and M1:

(10)

Nr N f+ Φ f( )exp=

Ms'

Ms' Ms 1 β 2⁄+ ,=

β Ms' Ms0⁄( )2β0 Ti1 Ti0⁄( ) 1 β0 2⁄+( ).⁄=

N1M1 N f Nr–( )M f ,=

N1 1 M1
2+( ) N f Nr+( ) M f

2 1+( ),=

M1
2 2 Φ1+⁄ M f

2 2 Φ f ,+⁄=

N1M1 Ms,=

N1 1 M1
2+( ) Ms

2 1 Ms0
2–+( ),=

M1
2 2Φ1+ Ms

2 1 Ms0
2–+( ) Φ f–( ) 2Φ f 1.–+exp=

N1M1 N2M2,=

N1 1 M1
2+( ) N2 1 M2

2+( ).=
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Generally, equations (10) have two solutions. The
functions Φf (Ms0) and Nr(Ms0) can be evaluated from
(10), (2), and the last relationship in (9). Figure 1 shows
both branches of Φf (Ms0) and Mr(Ms0) for low values
of Ms0.

The SW parameters are uniquely determined by the
Mach number Ms0 and are independent of the initial
ion-to-electron temperature ratio. The latter feature is a
consequence of neglecting the terms with β ! 1.

From (2) and (10), we find the point of intersection

of the curves, Ms0 = MT ≡ . Accord-
ing to (3), at the intersection point, we have Nr = 0,
Mf = 1, and N2 = Nf, so that ΦA = Φf. Consequently, at
Ms0  MT, equations (8) are identically satisfied and
the internal discontinuity disappears.

For Ms0 > MT, we have N1 = N2, M1 = M2, and Nr > 0
along one branch and Nr = 0 along the other, and the
boundary conditions (2) fail to hold. This case is very
reminiscent of the jumps in the parameters of a weak
viscous ion SW that is isothermal for electrons. Indeed,
for Te1 = Te2, equation (4) is approximately satisfied if
the jump in the ion temperature is sufficiently small,
i.e., if Ms0 . MT or if Te2 @ Ti2 and Te1 @ Ti1, which
refers to the case of an initially nonisothermal plasma
and a sufficiently weak SW (in the Appendix, we will
show that the plasma behind the shock front remains
nonisothermal). We do not consider here the exact
boundary conditions for a gas-dynamic ion SW (see
p. 75 in [1]).

In the range  < Ms0 < MT, the branch along which
Nr = 0, N1 = N2, and M1 = M2 corresponds to a conven-
tional gas-dynamic compression SW, whose front

3γ 1–( ) 3 γ–( )⁄

γ

1 MT
2 3 4 50
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Fig. 1. (1) Electric field potential Φf and (2) density Nr of the
reflected ions as functions of the Mach number Ms0 for two
types of ion SWs: (i) Nr = 0 (the computed points are
marked by squares for Ms0 > MT and by crosses for Ms0 <
MT) and (ii) Nr > 0 (the computed points are marked by
crosses for Ms0 > MT and by squares for Ms0 < MT). The ini-
tial ion-to-electron temperature ratio is small (β0 ! 1), the
adiabatic power-law index being γ = 5/3.
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structure is governed exclusively by electron heat con-
duction.

In the range  < Ms0 < MT, the inequali-
ties N1 > N2, M1 < M2, and Nr > 0 hold along the other
branch, in which case, according to the Hugoniot rela-
tions (2), a rarefaction SW forms. Such an SW can exist
because the conditions of the Zemplen theorem are not
satisfied in the plasma (see below). A rarefaction wave
is excited on a spatial scale of about ∆, on which, how-
ever, the plasma density is nonmonotonic: in the lead-
ing part of the wave (on a scale much shorter than ∆),
the plasma is compressed to a density N1 > 1 > N2 and,
in the remaining part, the density decreases gradually
to N2.

A two-temperature plasma is not a conventional gas
[2], because each thermodynamic variable depends not
only on the remaining two variables but also on the spa-
tial scale on which the process occurs. In fact, the equa-
tion of state p ~ pγ (where p = pe + pi is the pressure and
ρ = ρe + ρi is the density) is valid only for waves with
wavelengths longer than ∆. On spatial scales shorter
than ∆, it is necessary to take into account two-fluid
effects. For Te @ Ti, the equation of state is p ~ ρ [10].

Ledenev [5, 6] was the first to suggest that an SW in
an equilibrium plasma can form via dissipation of the
energy of reflected ions, but instead of relationship (4),
he used an approximate expression for the energy flux
in the foot (the same approach was applied in my earlier
paper [8]). Also, he did not justify the applicability of
relationships (8) to a collisional plasma [6]. However,
equations (8) were derived for a collisionless SW
[9, 12] in the absence of regular oscillations behind a
“collisionless shock” (an SW with the critical Mach
number).

Since, for Ms0 > MT, the general relationships (2) in
the discontinuity fail to hold along the branch where
Nr = 0, Ledenev [5] concluded that, under conditions
corresponding to high electron heat conductivity, there
is no viscous jump in the density; i.e., the only possible
solution is  N1 ≡ N2, M1 ≡ M2, and Nr > 0. Velikovich and
Liberman [1] rigorously analyzed equation (1) with
allowance for adiabatic plasma compression in the
heated region. They showed that the jumps in the gas-
dynamic variables within the internal discontinuity are
related by formulas other than (2). In this case, the
structure of the internal discontinuity is governed by
ion viscosity.

In reality, two types of ion SWs can exist whose
fronts are significantly different in structure.

Below, we determine the SW structure that satisfies
the boundary conditions corresponding to a branch
along which Nr > 0 holds (see Fig. 1). Such an SW can
form on a short time scale τp ! τei.

γ 1–( ) 2⁄
4. CONDITION FOR THE FORMATION 
OF AN SW AND ELECTRON HEATING

IN THE FOOT

We estimate the characteristic time τp during which
the kinetic energy of a reflected ion decreases by a fac-
tor of e as a result of its interaction with neighboring
particles. We consider a rarefied collisional plasma in
which only the long-range Coulomb collisions are
important. In this situation, the plasma parameter g ≡
(n )–1 satisfies the inequality

(11)

Allowing for short-range Coulomb collisions between
neighboring particles can only decrease the estimated
time scale τp.

A particle loses its energy because of the spontane-
ous emission of longitudinal and transverse electro-
magnetic waves [10]. A long-range Coulomb collision
event can be regarded as the emission of a plasmon by
a plasma particle followed by the absorption of this
plasmon by another particle. The change in the energy
of a test particle due to such collisions is estimated as
[10]

(12)

where Λ is the Coulomb logarithm, ωi is the ion plasma
frequency, Z is the ion charge number, and the speed of
the reflected ion in the rest frame is approximately
equal to 2c. The first term on the right-hand side of (12)
describes collisions with plasma electrons and the sec-
ond term accounts for collisions with plasma ions.

Using (12) and the formula for τei in [10],

(13)

we arrive at the desired estimate:

(14)

Hence, the temperature distribution required for an
SW to form has enough time to be established before
the temperature relaxation process (which prevents the
excitation of the SW) comes into play.

Formula (12) implies that, because of the scattering
of reflected ions, the plasma electrons and ions are
heated almost equally. On the other hand, it is well
known that SWs preferentially heat the plasma elec-
trons [13, 14].

Moses et al. [13] explained an increase in Te in the
foot of an SW near Jupiter as being due to weak elec-
trostatic turbulence. However, as a practical matter,
such an instability is a rare event.
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The polarization mechanism for energy losses can
significantly increase Te via the interaction of electrons
with superthermal electric field fluctuations. In fact, a
test particle moving at a speed above the ion acoustic
speed causes efficient excitation of ion acoustic waves,
in which case the integrand in the initial expression for
energy losses should formally contain one more pole. If
the ion-to-electron temperature ratio is sufficiently

small, (Te/Ti)3/2exp(–Te/2Ti) < , the contri-
bution of this pole to energy losses is approximately
equal to

(15)

where v is the velocity of a reflected ion. As v
approaches Vs, the energy losses increase resonantly.

That stochastic longitudinal electric fields may be
intense in the foot is justified experimentally [13, 14].
The effective temperature Ts of coherent ion acoustic
fluctuations is governed by the flow parameters and can
be fairly high, Ts @ Te. It is easy to see that the electron-
heating time τs, which satisfies the equation dTe/dt =
(Ts – Te)/τs, is about equal to the electron–electron col-
lision time.

In a dense plasma such that the inequality opposite
to (11) holds, short-range Coulomb collisions between
reflected ions and electrons are responsible for the pref-
erential increase in Te. Short-range collisions with ions
become important in an even denser plasma.

5. SW STRUCTURE FORMED VIA 
THE DISSIPATION OF THE ENERGY 

OF REFLECTED IONS

Equations (2)–(7) constitute a closed set, in which
equations (2)–(4), (6), and (7) implicitly define the fol-
lowing boundary condition for the first-order ordinary
differential equation (5): Φ  Φf as ξ  –∞. With
a prescribed Φf, equation (5) behind the SW front (ξ > 0)
has a single periodic solution satisfying the matching
condition at ξ = 0.

A similar problem for an initially equilibrium
plasma was solved in [8] under the condition Ti1 . Ti0.
Here, we are investigating Nr and Φf as functions of Ms0
for different values of the parameter β0 under the con-
dition Te1 @ Ti1, without assuming that the change in Ti

is small.
From (5), we can derive the following transcenden-

tal equation for ΦA:

(16)

The results of solving equations (3), (4), (6), and (16)
numerically are illustrated in Fig. 2.

The plots of Φf (Ms0) and Nr(Ms0) in Fig. 2 are close
to the relevant branches in Fig. 1. The higher the param-
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dE
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2
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eter β0, the worse the correlation is between the curves.
For β0 > 10–2, the branch along which Φf < 0 is absent
in Fig. 2.

6. CONCLUSION

A qualitative agreement between the solutions to the
conservation equations for hydrodynamic flows (Fig. 1)
and the solutions to the problem of the front structure
(Fig. 2) shows that the approach developed in Section 3
is justified. In other words, some of the SW parameters
can be estimated neglecting the influence of the ion dis-
tribution function and the fine structure of the shock
front.

In the limit Ms0  1, an SW that forms via the dis-
sipation of the energy of reflected ions cannot convert
into a quasi-shock wave [10], which was studied in [9].
The reason is that these waves are different in nature. A
collisionless SW is highly nonsteady, since its structure
is characterized by a foot that is formed by the reflected
ions and moves away from the shock front. This colli-
sionless SW is also a dissipation-free wave, because the
energy of reflected ions is not converted back into
plasma energy. Consequently, the boundary conditions
(2) cannot be satisfied, in particular, by virtue of the fact
that the plasma velocity at infinity is nonzero.

In an initially nonisothermal plasma, an SW can
form that has a continuous structure and whose energy
is dissipated (due to the scattering of the flow of
reflected ions) in such a manner that the boundary con-

ditions (2) are satisfied in the range Ms0 > .

If the initial ion-to-electron temperature ratio is not
too small, β0 > 10–1, then an SW that forms in such a
plasma should be sufficiently intense, which agrees
with the conclusions of [5, 6, 8]. A low-intensity SW
can only be a gas-dynamic wave, which forms due to
viscosity and heat conduction.

γ 1–( ) 2⁄
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Fig. 2. Functions (1) Φf (Ms0) and (2) Nr(Ms0) at β0 = 10–4

obtained by numerically solving the problem of the SW
structure with a self-consistent electric field.
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APPENDIX

It is clear that the state behind the front of an SW
that forms in an initially equilibrium plasma is also
equilibrium, although conditions (2) are formally satis-
fied for any β2 and β0. Greywall [4] asserted that, in an
initially nonisothermal plasma (Te0 ≠ Ti0), the plasma
behind the shock front approaches an equilibrium state,
Te  Ti.

We will show that this assertion is wrong. In the heat
balance equations, we must take into account the terms
describing the nonisothermal nature of the plasma.
From the electron heat balance equation [15], we obtain

(17)

where q is a source of particle heating. This boundary
condition determines how the ion-to-electron tempera-
ture ratio changes across the shock front. Hence, the
plasma behind the front should remain nonisothermal,
Te2 ≠ Ti2. Relations (2) should be supplemented with a
condition similar to (17), which describes the change in
the parameter β.

Ne

Te2 Ti2–( )
τei2

------------------------- qe2,=

Te0 Ti0–( )
τei0

------------------------- qe0,=
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Abstract—Theoretical research on high-power microwave sources based on stimulated emission from relativ-
istic election beams in plasma waveguides and resonators is reviewed. Both microwave amplifiers and oscilla-
tors are investigated. Two mechanisms for stimulated emission—resonant Cherenkov emission from a relativ-
istic electron beam in a plasma and nonresonant Pierce emission arising from the onset of a high-frequency
Pierce instability—are studied theoretically. The theory developed here is motivated by recent experiments car-
ried out at the Institute of General Physics of the Russian Academy of Sciences and is aimed at creating high-
power pulsed plasma microwave sources [both narrowband (∆ω/ω < 0.1) and broadband (or noisy, ∆ω/ω ≈ 1)]
based on high-current relativistic electron beams. Although the paper is devoted to theoretical problems, all ana-
lytic estimates and numerical calculations are made with real experiments in mind and theoretical results are
compared with reliable experimental data. Special attention is paid to the opportunity to progress to short (mil-
limeter) and long (decimeter) wavelength ranges. Some factors that influence the formation of the wave spectra
excited by relativistic electron beams in plasma sources are discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Research on relativistic plasma microwave electron-
ics began nearly thirty years ago. This research line
originates from nonrelativistic plasma microwave elec-
tronics, which dates back to 1949, when A.I. Akhiezer
and Ya.B. Fainberg [1] and D. Bohm and E. Gross [2]
discovered a beam instability in a plasma. In every
review of the advances achieved in research on relativ-
istic plasma electronics that we have published so far in
collaboration with other authors in journals, collections
of papers, and proceedings of conferences [3–14],1 we
pointed out the important contribution of these pioneer-
ing works. Note that, just before the birth of relativistic
microwave electronics, Fainberg published review
papers [21, 22], where he summarized the successes
that have been achieved in research on nonrelativistic
plasma electronics and laid the theoretical foundations
of plasma microwave electronics.2 As soon as physi-
cists succeeded in producing relativistic electron beams
(REBs) in the early 1970s, the authors of [4, 27, 28],
inspired by Fainberg’s reviews, suggested that REBs
may be used to generate microwaves and formulated
the basic principles of relativistic plasma microwave
electronics.

The phenomenon of beam instability in a plasma,
which was discovered in [1, 2], can be interpreted as
stimulated Cherenkov emission of own electromag-
netic plasma waves from a straight electron beam.

1 See also monographs [15–20].
2 See also monographs [23, 24] and reviews [25, 26].
1063-780X/00/2603- $20.00 © 20231
Depending on the beam density, stimulated Cherenkov
emission can manifest itself as either a wave–particle
effect (single-particle Cherenkov effect or Thomson
emission mechanism) or as a wave–wave effect (collec-
tive Cherenkov effect or Raman emission mechanism)
[9, 11, 25]. In the 1970s and early 1980s, a linear theory
of stimulated Cherenkov emission for specific electro-
dynamic plasma systems was actively developed. The
progress achieved in this field by the mid-1980s moti-
vated the construction of a systematic nonlinear theory
and the development of analytical and numerical meth-
ods that would not only be able to describe the results
of current experiments but also suggest promising areas
for future research. Among the groundbreaking works
on the nonlinear theory of beam–plasma interaction,
we should mention papers [29–32], which were pub-
lished much earlier and were devoted primarily to the
interaction of weakly relativistic electron beams with
plasma potential oscillations, i.e., to a case that is not of
much interest for high-current relativistic plasma
microwave electronics. Note, however, that they laid
the foundations of a nonlinear theory of the interaction
between REBs and plasmas.

The excitation of electromagnetic waves by an elec-
tron beam in a plasma and their emission from the
plasma were studied not only theoretically but also
experimentally. The first experiments conducted with
nonrelativistic beams in the 1950s and 1960s showed
that the efficiency with which electromagnetic waves
were emitted during the beam–plasma interaction was
low. This result was attributed to the low phase veloci-
000 MAIK “Nauka/Interperiodica”
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ties of the excited plasma waves (Vph ≈ u ! c) and,
accordingly, to their highly electrostatic nature. In other
words, fairly intense oscillations excited in the plasma
were strongly trapped inside the plasma waveguide,
so that the extraction of electromagnetic radiation
from the waveguide was accompanied by significant
losses [26].

The development and fabrication of pulsed sources
of high-power REBs in the early 1970s marked a new
era of plasma microwave electronics. The very first
experiments that were performed jointly by the Lebe-
dev Institute of Physics (Moscow) and the Scientific
Research Institute of Radiophysics (Gorki) in 1972
with REBs and a vacuum resonator with a slowing-
down structure (a rippled metal waveguide—carcino-
tron) showed that the emission efficiency was high (a
radiation power of 300 MW was achieved at a wave-
length of about 3 cm, the efficiency being 13%) [33].
Shortly after that experimental study, similar experi-
ments [34] were carried out in the United States and
confirmed the results of [33].

Thus, the true birth of relativistic microwave elec-
tronics occurred in 1972, although, at that time, it was
purely vacuum electronics. The advances achieved in
relativistic vacuum microwave electronics were
reviewed in paper [35] and in collection of papers [36].

The first plasma microwave oscillator based on
stimulated Cherenkov emission from an REB in a
plasma waveguide was created more recently (in 1982)
and was actively studied both experimentally and theo-
retically. In addition to the cited reviews [3–14] and
monographs [15–20] (in which one can also find a
detailed bibliography), we should mention a number of
original papers [37–61], which made important contri-
butions to the development of plasma microwave elec-
tronics and demonstrated its advantages over vacuum
electronics (the possibility of operating with high-cur-
rent REBs and the ease of frequency tuning over a
range broader than is possible in vacuum devices). The
most important advantage of plasma microwave
sources over vacuum sources is the possibility of oper-
ating with long microwave pulses at high power levels
[62] (the possible reasons for the limitation of the pulse
duration in vacuum devices are discussed in [36]).

A new direction that has recently appeared in
plasma microwave electronics is associated with the
phenomenon of nonresonant stimulated emission from
an REB (or, in other words, with the radiative Pierce
instability of an REB) in a plasma waveguide [63–65].
In contrast to plasma microwave sources based on stim-
ulated Cherenkov emission, the devices based on the
radiative Pierce instability are able merely to generate
microwaves, without amplifying them.3 

3 A vacuum oscillator based on the radiative Pierce instability of a
nonrelativistic beam has come to be known as a monotron [66].
Attempts to develop a relativistic theory of monotrons were made
in [67, 68], but turned out to be unsuccessful.
Here, we will present a history of and an outlook for
relativistic plasma microwave electronics in order to
demonstrate the progress achieved in this area of
research, beginning with the pioneering papers [1, 2].

2. INITIAL ASSUMPTIONS 
AND BASIC EQUATIONS

We consider a straight REB propagating along the
axis of a cylindrical plasma-filled metal waveguide in a
strong longitudinal magnetic field. An REB enters the
waveguide along the z-axis by crossing the plane z = 0.
A collector is placed in the plane z = L and is coupled
to the emitter (the outlet horn). In an unperturbed state,
the beam and plasma in the waveguide are both
assumed to be homogeneous along the z-axis and inho-
mogeneous in transverse directions. They are also
assumed to be cold and completely charge- and current-
neutralized. We neglect slow ion motion and consider
only pulsed systems operating on short time scales. We
assume that the beam density is much lower than the
plasma density in order to describe the plasma to the
first order in the perturbations. We also assume that the
external longitudinal magnetic field is strong enough so
that the beam and plasma electrons do not drift radially
across the field and their motion can be described in a
one-dimensional approximation. The question of the
validity of this model was examined in detail in [11, 31,
32, 53, 69] (see also the literature cited therein).

Under the assumptions adopted, it is convenient to
represent the electromagnetic field in a plasma
waveguide in terms of the polarization potential ψ sat-
isfying the equation [19]

(2.1)

where ∆⊥  is the transverse Laplace operator. The per-
turbed nonzero components of the beam and plasma
current densities, jbz and jpz, can be written as

(2.2)

where Pp(r⊥ ) and Pb(r⊥ ) are the radial profiles of the
plasma electron density and beam density, r⊥  is the
transverse coordinate in the waveguide cross section,
and jp satisfies the equation

(2.3)

In deriving this equation, we described the plasma elec-
tron motion using the model of independent particles
(the cold hydrodynamic model [18]). Here,

(2.4)
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is the longitudinal electric-field component and ωp is
the Langmuir frequency of the plasma electrons, which
is independent of the transverse coordinate because this
dependence is already taken into account in the first
relationship in (2.2). The remaining electromagnetic-
field components are expressed in terms of ψ as follows
(for definiteness, we are working in cylindrical coordi-
nates {r, ϕ, z}):

(2.5)

Now, we find the perturbed beam current density jb .
Since it cannot be evaluated in the linear approxima-
tion, we will trace the behavior of each beam electron.
Let the next beam electron be injected into the
waveguide through the cross section z = 0 at the time t0
(the electrons are assumed to be injected at the same
velocity u). Applying the Liouville theorem of conser-
vation of the phase volume and using a formal solution
to the Vlasov equation [19, 51, 70], we can write the
beam electron current density in an arbitrary cross sec-
tion z > 0 as [19, 51] (see also [30, 32])

(2.6)

where nb is the unperturbed beam electron density,
which is also independent of the transverse coordinate
by virtue of the second relationship in (2.2), and v(z, t0)
and t(z, t0) are solutions to the characteristic set of equa-
tions for the Vlasov equation,

(2.7)

The set of equations (2.7) is solved with the initial con-
ditions t(z = 0) = t0 and v(z = 0) = u.

Equations (2.1)–(2.7) are the basic equations in the
theory of relativistic microwave electronics. The
boundary and initial conditions for the field equation
(2.1) will be discussed below in solving particular
problems of generating and amplifying electromag-
netic radiation. Here, we present only the boundary
condition that is imposed on the side metal wall and is
physically obvious, because we are interested in a
metal waveguide in which the beam interacts with the
plasma:

(2.8)

3. PLASMA WAVES IN A MAGNETIZED 
WAVEGUIDE

Before proceeding to the problem of REB–plasma
interaction in a waveguide, we need to investigate the
frequency spectra and phase velocities of the waves
with which the beam can interact. We start by consider-
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ing the simplest waves, which can be excited in a
strongly magnetized plasma waveguide in the absence
of an REB. In other words, we solve equations (2.1)–
(2.3) with the boundary condition (2.8), neglecting the
beam current. Since these equations are linear, we can
seek the solution in the form

(3.1)

where ω is the frequency, kz is the longitudinal wave-

number, and the functions  and  depend only on
the transverse coordinate r⊥ . In cylindrical geometry,
we have r⊥  = {r, ϕ}.

We denote the transverse eigenfunctions of the

waveguide by ϕn(r⊥ ), where n = 1, 2, … and  are the
related eigenvalues,

(3.2)

For a circular waveguide, we have ϕn = Jl(k⊥ nr), where
Jl is an lth order Bessel function, k⊥ n = µl, n /R, µl, n are
the roots of the Bessel function, l is the azimuthal wave-
number, and R is the waveguide radius.

We expand  in a series of eigenfunctions, find the
expansion coefficients from equation (2.1), and substi-
tute them into (2.3). As a result, we obtain the following

integral equation for :

(3.3)

where χ2 =  – ω2/c2, Sw is the cross-sectional area of
a waveguide, and ||ϕn || is the norm of an eigenfunction.
The most general but implicit dispersion relation for
determining the frequency spectra of the plasma waves
in a fully magnetized plasma waveguide is simply the
solvability condition for equation (3.3).

Adopting the experimental conditions of [7, 12, 37,
38, 55, 58], we consider a particular geometric config-
uration—a circular waveguide of radius R filled with a
thin-walled annular plasma of thickness ∆p and mean
radius rp < R such that ∆p ! rp. It is convenient to repre-
sent the radial plasma profile in the form Pp = ∆pδ(r – rp),
which corresponds to an infinitely thin annular plasma
column. The applicability conditions for the validity of
the model of such a plasma will be specified below. In
this case, the solvability condition for equation (3.3)
reduces to the dispersion relation [71]
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where

(3.5)

and Il and Kl are modified Bessel functions.4 For ω < kzc,
formulas (3.4) and (3.5) describe the frequency spectra
of the surface plasma waves, whose squared transverse
wavenumber is described by (3.5).

Let us consider the frequency spectra of the surface
plasma waves in different wavelength ranges. In the
long wavelength limit kz  0, we have from (3.4)

(3.6)

where, according to (3.5), the transverse wavenumber
has the form

(3.7)

For shorter wavelengths (about radius rp of the annular
plasma column), the frequency spectrum is similar to
that for waves on the surface of deep water:

(3.8)

In this wavelength range, the longitudinal electric-field
component of the surface wave decreases very sharply

4 Formulas (3.4) and (3.5) for an infinitely thin annular plasma col-
umn were derived with allowance for the fact that the integrals
over radius in (3.3) contain delta functions and, therefore, can be
taken exactly.
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Fig. 1. Wave spectra for a waveguide with a magnetized
thin-walled annular plasma and beam with no regard to the
beam–plasma interaction: (1) plasma wave, (2) slow beam
wave, (3) fast beam wave, (I) point of the single-particle
Cherenkov resonance, and (II) point of the collective Cher-
enkov resonance.
(exponentially) outward from the surface of the plasma
column to vacuum.

Finally, for wavelengths shorter than ∆p(kz∆p ≥ 1),
the model of an infinitely thin plasma fails, because it
does not take into account the effect of trapping of the
fields inside the plasma column. Allowing for the finite
thickness of an annular plasma naturally leads to the
limiting transition ω  ωp as kz  ∞, in which case,
however, the plasma wave is highly electrostatic, so
that its excitation by an electron beam due to the Cher-
enkov effect is uninteresting for relativistic plasma
microwave electronics.

In Fig. 1, the dispersion curve ω(kz) for the oscilla-
tion spectrum of a symmetric (l = 0) surface wave in an
infinitely thin annular plasma is illustrated by curve 1,
which is plotted for the specific parameter values R =
1.8 cm, rp = 1 cm, ∆p = 0.1 cm, and ωp = 35 × 1010 rad/s.
The initial, nearly straight portion of the dispersion
curve is described by formula (3.6) and refers to the so-
called cable plasma wave [10, 19, 40]. The next portion
of the dispersion curve is described by the dispersion
law (3.8). Closer to the plasma frequency, the disper-
sion curve ceases to reflect a real situation; in this case,
it is necessary to take into account the finite thickness
of an annular plasma column.

In Fig. 1, we also plotted the straight line ω = kzu,
which corresponds to the Cherenkov resonance condi-
tion (for the beam velocity u = 2.6 × 1010 cm/s), and
marked the point of single-particle Cherenkov (wave–
particle) resonance—point I, at which the straight line
ω = kzu intersects the curve ω(kz). We can see that, as ωp

decreases, the Cherenkov resonance frequency falls off
and eventually vanishes at the frequency

(3.9)

where γ = (1 – u2/c2)–1/2. The threshold plasma fre-
quency (3.9) depends on the azimuthal wavenumber l.
According to (3.7), the threshold plasma frequency for
the excitation of the mode with l = 0 is the lowest.

For the plasma frequencies below the threshold fre-
quency, single-particle Cherenkov resonance is impos-
sible, which, however, does not imply that there is no
stimulated Cherenkov emission and that the beam in
the plasma is stable. Below, we will show that, for high-
density REBs, the threshold plasma frequency is signif-
icantly below (3.9). We will also show that, even in the
absence of Cherenkov resonance, microwaves can be
emitted nonresonantly via the so-called radiative Pierce
instability.

4. STIMULATED CHERENKOV EMISSION 
FROM AN REB IN A PLASMA WAVEGUIDE: 

LINEAR THEORY OF A PLASMA MICROWAVE 
AMPLIFIER

In the linear approximation, it is more convenient to
describe an REB using, instead of equations (2.6) and
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(2.7), the equations of cold magnetohydrodynamics
[18], which give, together with (2.2), the following
equation for the function jb , similar to equation (2.3):

(4.1)

where ωb = (4πe2nbm–1)1/2 is the Langmuir frequency of
the beam electrons. Setting, as in (3.1),

from the coupled equations (2.1)–(2.4) and (4.1), we
obtain the following set of homogeneous integral equa-

tions for the functions  and  [71]:

(4.2)

The dispersion relation for determining the complex
spectra of a linear beam–plasma system is simply the
solvability condition for equations (4.2). The quantity
Kp in (4.2) is defined by the second expression in (3.3),
and the quantity Kb is defined by the same expression

but with Pp( ) in place of Pb( ).

Before proceeding to an analysis of the general
equation, we examine the spectra of beam waves in the
absence of a plasma. We set ωp = 0 in the second equa-
tion in (4.2) and consider a thin-walled annular electron
beam (like the plasma) with the density profile Pb =
∆bδ(r – rb), where ∆b is the beam thickness and rb is the
mean beam radius. Applying the procedure that was
used to derive (3.4), we obtain the following dispersion
relation for the oscillation spectra in a waveguide with
a beam:

(4.3)

where k⊥ b has the same form as k⊥ p; i.e., it is described
by expression (3.5) in which the subscript p should be
replaced with b.

Along with the dispersion curves for plasma waves,
Fig. 1 shows the dispersion curves for symmetric (l = 0)
waves of an infinitely thin annular beam at rb = 0.65 cm,
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∆b = 0.1 cm, Ib = 2 kA, and γ = 2, the waveguide radius
being, as before, R = 1.8 cm (for γ = 2, the beam veloc-
ity is u = 2.6 × 1010 cm/s). A wave with a phase velocity
above the injection velocity is called a fast beam wave
(curve 3) and a wave with a phase velocity below u is
referred to as a slow beam wave (curve 2). A slow beam
wave has negative energy, thereby giving rise to the
instability of a beam in a plasma [25, 72]. Point II, at
which dispersion curve 1 of a cable plasma wave inter-
sects dispersion curve 2 of a slow beam wave, is the
point of collective Cherenkov (wave–wave) resonance.

If the finite thickness ∆b of a beam were taken into
account, then Fig. 1 would display numerous disper-
sion curves describing higher radial modes of the inter-
nal beam waves and lying closer to the straight line ω =
kzu than curves 2 and 3. Although the higher modes are
trapped inside the beam, they influence the interaction
between a high-density beam and a plasma (see below).
Similar internal waves, but that are trapped inside the
plasma, appear in an annular plasma column of finite
thickness. However, if the plasma column is suffi-
ciently thin, then internal plasma waves do not influ-
ence the beam–plasma interaction, because their phase
velocities are low. Important effects characteristic of a
thick-walled plasma column will be analyzed below.

Now, we turn to the general equations (4.2) and
write out the dispersion relation for a beam–plasma
system in a waveguide, assuming, as before, that the
beam and plasma are infinitely thin:

(4.4)

Here, the coefficient θ characterizes the coupling
between the beam and plasma waves and is rather
lengthy in its general form [71], so we present only
asymptotic expressions. For a circular waveguide with
an annular beam and annular plasma column such that
rb ≤ rp and for symmetric (l = 0) waves in the range of
low frequencies (ω ! ωp), we have

(4.5)

In the range of higher frequencies, instead of (4.5), we
obtain

(4.6)

With the problem of wave amplification in mind, we
look for a solution to dispersion relation (4.4) in the
form

(4.7)

where δ has the meaning of a dimensionless complex
amplification coefficient. Since, in reality, the beam
density is always lower than the plasma density, we
have |δ| ! 1. Substituting (4.7) into (4.4) and perform-
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ing elementary manipulations, we arrive at the follow-
ing cubic equation, which incorporates the effects asso-
ciated with both the high beam current and the nonpo-
tential nature of the beam and plasma waves:

(4.8)

where the parameters

(4.9)

characterize the plasma and beam densities. Equation
(4.8) was derived for the frequency range ω ! ωp , in
which the dispersion of a surface plasma wave is almost
linear. However, this equation can be generalized qual-
itatively to a higher frequency range through the substi-
tution

.

With this substitution, which is exact for a waveguide
entirely filled with a plasma, equation (4.8) can be suc-
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Fig. 2. Dispersion curves for the Thomson amplifier, in
which the beam–plasma interaction is strong (θ = 1).

Fig. 3. Dispersion curves for the Raman amplifier, in which
the beam–plasma interaction is weak (θ = 0.6).
cessfully applied not only to the range of low frequen-
cies but also to frequencies close to the plasma fre-
quency.

In terms of the new variable introduced in (4.7), the
zeros of the functions in square brackets on the left-
hand side of (4.8) determine the longitudinal wavenum-
bers of the plasma wave accompanying the beam and
fast and slow beam waves. The fast beam wave is unin-
teresting for further analysis. For a plasma wave, we
have

(4.10)

and, for a slow beam wave, we obtain

(4.11)

According to (4.7), the relationship δp = 0 is the condi-
tion for exact single-particle Cherenkov (wave–parti-
cle) resonance. In other words, this is the equation for
determining the frequency at which the beam velocity
is exactly equal to the phase velocity of the plasma
wave. In Fig. 1, this frequency corresponds to point I on
the dispersion curve for a plasma wave.

The relationship δp =  is the condition for collec-
tive Cherenkov (wave–wave) resonance and serves to
determine the frequency at which the phase velocities
of a plasma wave and a slow beam wave are exactly
equal to one another. In Fig. 1, this frequency corre-
sponds to point II on the relevant dispersion curves. The
frequency of the collective resonance is somewhat
higher than that of single-particle resonance.

Depending on the parameters of the system, a cable
plasma wave may be amplified in different frequency
ranges. If the coefficient θ is large, then the waves are
amplified in a broad frequency range (from nearly zero
to a frequency above the resonant frequency at point II).
In the literature, such broadband plasma microwave
sources are referred to as Thomson amplifiers. Figure 2
shows the dispersion curves for a Thomson plasma
microwave amplifier calculated for rb = rp = 0.65 cm,
∆b = ∆p = 0.1 cm, γ = 2, R = 1.8 cm, and ωp = 35 ×
1010 rad/s, the beam current being Ib = 2 kA. One can
see that microwaves can be amplified in the frequency
range from 0 to about ~21 × 1010 rad/s. Roughly speak-
ing, taking into account strong coupling (θ = 1)
between the beam and the plasma transforms Fig. 1 into
Fig. 2.

The situation with a small coupling coefficient θ ! 1
is radically different. According to Fig. 3, microwaves
are amplified in a narrow frequency band. Such narrow-
band plasma microwave sources are referred to as
Raman amplifiers. The dispersion curves in Fig. 3 were
calculated for the same parameters as in Fig. 2 but with
a mean plasma radius increased to rp = 1.1 cm. As a
result, the coefficient θ falls off to 0.6, thereby radically
changing the amplification regime: the amplification

δp
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band becomes as narrow as (10–17) × 1010 rad/s and
now contains the wave–wave resonance frequency.
Again, we can say that Fig. 1 transforms into Fig. 3
when a weak coupling between the beam and the
plasma is taken into account.

For low-current beams, we can readily find simple
analytic expressions for the amplification coefficient in
the two limiting cases under analysis. For a strong cou-
pling θ ≈ 1, we obtain from (4.8)

(4.12)

The dimensionless amplification coefficient is |Imδ|,
and the dimensional coefficient can be found from
(4.7). The amplification described by coefficient (4.12)
is governed by the resonant wave–particle interaction
or, in other words, by the stimulated single-particle
Cherenkov effect (Thomson amplification regime [9])
and occurs at the frequencies of single-particle and col-
lective Cherenkov resonances. However, these resonant
frequencies do not differ from one another, because the
resonances overlap when the coupling is strong (θ ≈ 1)
and the beam current is low.

For a weak coupling (θ ! 1), we find from (4.8)

, (4.13)

in which case the amplification is governed by the res-
onant wave–wave interaction or, in other words, by the
stimulated collective Cherenkov effect (Raman ampli-
fication regime [9]) and occurs only at frequencies
close to the frequency of the collective resonance.
Below, we will show that, for θ ! 1, microwaves can-
not, in principle, be amplified at the single-particle res-
onance frequency.

Note that formulas (4.12) and (4.13) apply exclu-
sively to low-current beams such that

(4.14)

For high-current REBs, analytic solutions to equa-
tion (4.8) are very lengthy. However, since the experi-
ments under discussion were carried out with high-cur-
rent REBs, we consider the results of analyzing equa-
tion (4.8) numerically.

Figure 4 shows the most important frequencies
characteristic of the beam–plasma interaction versus
the plasma frequency ωp . The region where micro-
waves can be amplified (the amplification band) is
bounded from above by curve 1 and from below, by
curve 2. Curve 3 corresponds to the frequencies at
which the dimensional amplification coefficient is max-
imum. Curves 4 and 5 reflect the collective and single-
particle resonance frequencies, respectively. All of the
curves were computed for a waveguide with the param-
eters R = 1.8 cm, rb = 0.65 cm, ∆b = ∆p = 0.1 cm, Ib =
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2 kA, and γ = 2 and for two plasma radii rp = 0.8 cm
(Fig. 4a) and rp = 1.1 cm (Fig. 4b).

As can be seen in Fig. 4, microwaves can be ampli-
fied only when the plasma frequency ωp is above a cer-
tain threshold, which is significantly (by a factor of
approximately two) lower than that in (3.9). This can be
explained by high beam currents: formula (3.9) shows
that, for rp = 0.8 cm, the threshold plasma frequency is
about 20 × 1010 rad/s and, for rp = 1.1 cm, it is about
22 × 1010 rad/s. For higher plasma frequencies, there is
a range in which the lower boundary frequency of the
amplification band is zero. In the range of even higher
plasma frequencies, the lower boundary frequency of
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Fig. 4. (a) The most important frequencies for (a) rp =
0.8 cm and (b) rp = 1.1 cm: (1) and (2) upper and lower
bounds on the amplification band, (3) frequency at which
the amplification is maximum, (4) frequency of the collec-
tive resonance, and (5) frequency of the single-particle res-
onance.
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the amplification band becomes nonzero and the ampli-
fication band itself narrows as ωp grows. A comparison
between Figs. 4a and 4b shows that the larger the dif-
ference between rp and rb , the smaller the coupling
coefficient θ and, accordingly, the narrower the ampli-
fication band. Clearly, in the range of ωp under consid-
eration, Fig. 4a generally refers to a broadband Thom-
son amplifier and Fig. 4b refers to a narrowband Raman
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Fig. 5. Maximum amplification coefficient vs. the plasma
frequency for rp = (1) 0.8 and (2) 1.1 cm.
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Fig. 6. Frequency profiles of the amplification coefficient
for rp = 0.8 cm and plasma frequencies of (1) 13, (2) 20, (3)

30, and (4) 50 × 1010 rad/s.
amplifier. Figures 4a and 4b also show that, as ωp

increases, the frequency at which the amplification is
most efficient (curve 3) rises and eventually becomes
equal to the collective resonance frequency (curve 4).
Consequently, the higher the plasma frequency and the
beam current, the clearer the collective nature of the
beam–plasma interaction, because the coefficient θ
decreases as ω increases. In contrast, as the plasma fre-
quency grows, the single-particle resonance frequency
(curve 5) progressively deviates from the amplification
region. Moreover, Fig. 4b demonstrates that amplifica-
tion at the single-particle resonance frequency ceases
above a certain plasma frequency.

The maximum amplification coefficients for micro-
wave sources with the same parameters as in Fig. 4 are
shown in Fig. 5 versus ωp. Note that the maximum
amplification coefficients are treated as the quantities
Im((ω/u)δ) calculated along curves 3 in Fig. 4. We
again see that the amplification has a threshold in terms
of ωp. Above the threshold, the maximum amplification
coefficient is seen to fall off as the difference between
rp and rb grows; this may be attributed to the decrease
in the coupling coefficient θ. As can be seen in Fig. 5,
the amplification coefficient has an absolute maximum,
which is especially pronounced on curve 2, obtained
for rp = 1.1 cm.

Figures 6 and 7 again illustrate the dimensional
amplification coefficients for systems with the same
parameters as in the previous three figures, but as func-
tions of the frequency at different ωp . In Fig. 6, which
corresponds to rp = 0.8 cm, curves 2 and 3 are very sim-
ilar to the ω-profiles of the amplification coefficients
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Fig. 7. Frequency profiles of the amplification coefficient
for rp = 1.1 cm and plasma frequencies of (1) 13, (2) 20, (3)

30, (4) 40, and (5) 50 × 1010 rad/s.
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for broadband Thomson amplifiers, whereas curve 4
represents a regime that is intermediate between the
Thomson and Raman regimes. In Fig. 7, which corre-
sponds to rp = 1.1 cm, curve 2 is characteristic of a
Thomson amplifier and curve 3 applies to an intermedi-
ate regime, while curves 4 and 5 are strongly character-
istic of the Raman amplification regime.

In Figs. 6 and 7, special attention should be paid to
curve 1, illustrating the amplification coefficients in a
near-threshold (at low ωp) nonresonant regime [39], in
which the conditions of both single-particle and collec-
tive resonances (Fig. 4) fail to hold. The near-threshold
regime may be of considerable interest because of the
low working frequencies and fairly high amplification
efficiencies (see below and review [14]).

To conclude this section, note that, for systems for
which the results illustrated in Figs. 4 and 5 were
obtained, the parameter in (4.14) is of order unity. This
situation is typical of many recent experiments [12, 14,
55]. For REBs with very high currents (|2γ2δ| @ 1),
equation (4.8) is also easy to solve analytically [73–76]
(see also [14, 19]). However, since experiments with
such beams have not yet been carried out, we do not
examine here the range of very high REB currents.

5. ESTIMATES OF THE EFFICIENCY 
OF A PLASMA MICROWAVE AMPLIFIER

In constructing the nonlinear theory of a Cherenkov
plasma microwave amplifier, we start by estimating the
amplification efficiency, which may be defined as

(5.1)

where ∆γ and ∆u are the changes in the relativistic fac-
tor and velocity of an individual beam electron and the
angle brackets denote averaging over all beam elec-
trons.

The maximum amplification efficiency can be esti-
mated by taking ∆u to be the amount by which the
beam velocity should exceed the wave phase velocity in
order for amplification to occur, in which case, accord-
ing to (4.7), we obtain

(5.2)

where δ is determined from equation (4.8). For low-
current REBs, the quantity δ is defined by (4.12) or
(4.13). Note that low-current REBs are the ones that
satisfy inequality (4.14), which implies that the ampli-
fication efficiency (5.2) is low. The specific value of δ
that should be inserted into condition (4.14) is gov-
erned by the operating mode of the amplifier. We begin
by considering a Thomson amplifier, in which θ is close
to unity.

Assuming that θ = 1, we substitute the amplification
coefficient (4.12) into 2γ2|δ| to obtain the following

E ∆γ γ 1–( )⁄〈 〉 γ γ 1+( ) ∆u u⁄〈 〉 ,≈=

E 2γ2
Re δ( ) 2γ2 δ ,≈ ≈
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parameter, which is very important in the theory of
plasma microwave amplifiers [7, 9, 19, 73–76]:

(5.3)

where I0 is the limiting vacuum current of a strongly
relativistic electron beam in a waveguide. For a thin-
walled annular beam, the limiting current is

(5.4)

As a result, from (5.2), we find that, in the range µ1 !
1, the efficiency of the Thomson amplifier is E ≈ µ1.
The amplification efficiency can also be estimated ana-
lytically in the opposite limiting case of high-current
REBs [7, 9, 19]:

(5.5)

Numerical calculations showed that the amplification
efficiency is maximum at µ1 ≈ 1 and may be as high as
30% [19].

Now, we estimate the efficiency of the Raman
plasma microwave amplifier, which is based on the col-
lective Cherenkov effect and operates in the regime of
weak coupling (θ ! 1). In this case, according to
(4.13), it is convenient to introduce the parameter

(5.6)

However, we must keep in mind that formula (4.13) is
valid only when µ2 ! 1. The estimate of the amplifica-
tion efficiency of a Raman microwave amplifier is sim-
ilar to (5.5) [9, 19],

(5.7)

The amplification efficiency is also maximum at µ2 ≈ 1,
for which it is somewhat lower than that of the Thom-
son amplifier. In the Raman regime, the maximum effi-
ciency is lower than that in the Thomson regime. Also,
the smaller the coupling coefficient θ, the lower the
maximum efficiency. Below, the amplification efficien-
cies will be calculated in more detail.

Hence, the systems that are optimum in terms of the
amplification efficiency are those in which µ1 (or µ2) is
close to unity or those in which the REB current is close
to the limiting vacuum current. Now, we will say a few
words about an important aspect of experimental
research. Experiments on plasma microwave electron-
ics are still being carried out with magnetically insu-
lated diodes [8, 10, 13, 37, 38, 55, 58], which are capa-
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ble of generating thin-walled annular beams with the
currents [77, 78]

(5.8)

Since the numerical factor G in (5.8) is smaller than the
factor 8.5 in (5.4), the current in (5.8) is somewhat
lower than the limiting vacuum current. To achieve bet-
ter agreement with recent experiments [55, 58], we
used the value G ≈ 5.5. Substituting (5.8) into (5.3)
yields the dependence µ1(γ), which is displayed in
Fig. 8 [59].

We can see that, when γ increases from 1 to 3, µ1(γ)
grows sharply and approaches µ1max ≈ 1.4 as γ  ∞.
For REBs with γ ≈ 2–3, which are used in experiments,
we have µ1 ≈ 1. This value corresponds to the optimum
amplification efficiency. Consequently, present-day
experiments on plasma microwave electronics are car-
ried out under nearly optimum conditions. It seems
strange that the maximum efficiencies attained in
experiments are at most 8–10% and, accordingly, the
generated microwave powers are lower than those pre-
dicted theoretically.

Since the qualitative considerations and estimates
given in this section are fairly general in character, they
refer to all Cherenkov resonant plasma microwave
sources. The results of specific accurate calculations
will be presented below.
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Fig. 8. Parameter µ1 vs. the relativistic factor γ of a beam.
6. NONLINEAR EQUATIONS 
FOR A PLASMA AMPLIFIER

We convert the general nonlinear equations (2.1)–
(2.7) to a form suitable for solving the problem of
microwave amplification. To do this, we must take into
account the following circumstances: (a) in a beam–
plasma waveguide, the transverse structure of the wave
field is not known a priori and is established self-con-
sistently with increasing distance from the injection
plane along the z-axis; (b) the frequency spectrum of an
amplified signal is not necessarily specified a priori, so
we have to consider the simultaneous amplification of
waves with different frequencies, which interact with
each other in the nonlinear stage; and (c) the longitudi-
nal wavenumbers of the waves that are efficiently
amplified by the beam are close to the wave frequency
divided by the unperturbed beam velocity. These con-
siderations enable us to represent the polarization field
potential ψ in the form

(6.1)

Here, Ω is a certain low frequency, which serves to
“discretize” the amplified signal and is equal in order of
magnitude to Ω = 2π/T, where T is the beam pulse
duration. Representation (6.1) makes it possible to
switch from a Fourier integral over frequencies to a
Fourier series.

The next problem is to derive equations for the
amplitudes Ans(z) or, more precisely, for some quanti-
ties equivalent to them. Note that introducing the
amplitudes is justified only when they vary on scales
longer than the characteristic scale of the function
exp[is(Ω/u)z], i.e., when the amplification over a dis-
tance equal to the wavelength is insignificant, which is
ensured by the inequality |δ| ! 1 in (4.7).

Using (2.2)–(2.4) and (6.1), we represent the func-
tion jp as

(6.2)

We insert (6.1), (6.2), and (2.6) into (2.1), (2.3), and
(2.4) and take into account the orthogonality of the
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functions ϕn(r⊥ ) and exp(is(Ω/u)z) to obtain

(6.3a)

(6.3b)

where jb is the beam current (2.6). The second relation-

ship in (6.3b) contains the functions  taken inside the
plasma, i.e., at only one radial position in the waveguide
cross section. This circumstance, which is characteristic
of a thin-walled annular plasma, substantially simplifies
the derivation of the final equations. We introduce the

following notation: js ≡ (rp) and 〈jb〉s ≡ enbuρs are the
amplitudes of the sth harmonics of the beam and plasma
currents, respectively, and ρs is the dimensionless
amplitude of the Sth harmonic of the perturbed beam
density. It is convenient to rewrite equations (6.3) in
terms of the amplitudes js and ρs, which depend solely
on the coordinate z. We begin by transforming expres-
sions for the amplitudes of the beam current harmonics.
First, with allowance for (2.5), we convert from an inte-
gration over t to an integration over t0 in (6.3b). Second,
we introduce the new variables

(6.4)

where t(z, t0) and v(z, t0) are solutions to the character-
istic equations (2.7). In terms of the first three variables
in (6.4), we obtain

(6.5)

Ez
1
2
--- ϕn r⊥( ) ---





n 1=

∞

∑=
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The approximate equality in (6.5) is a consequence of
the fact that the beam electron velocity changes only
slightly, which agrees with the smallness of |δ| in (4.7).

We extract the amplitudes Ans from the second rela-
tionship in (6.3b) and, with allowance for (6.3a), sub-
stitute them into equations (2.6) and the first expression
in (6.3b). In terms of the dimensionless longitudinal
coordinate ξ introduced in (6.4), we finally arrive at the
set of equations

(6.6)

where

(6.7)

and the coefficients αps , αbs , and θs are defined by for-
mulas (4.5), (4.6), and (4.9) (see [71] for details) with
the replacement

(6.8)

It is convenient to rewrite the third equation in (6.6) as

(6.9)

in order to show that it is this equation that determines
the amplitudes and spectra of plasma waves. Equations
(6.6) were derived in the low-frequency limit. However,
recall that they can be readily generalized to the entire
frequency range by the simple change αps   αps(1 –

s2(Ω2/ )). In the linear approximation, equations
(6.6) give dispersion relation (4.8).

The first integral of equations (6.6) that reflects the
energy flux conservation along a waveguide has the
form

(6.10)
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where 〈P〉  is the mean kinetic energy flux of the beam
electrons in units of the kinetic energy flux of an unper-
turbed beam at the injection plane, the terms propor-
tional to qγ2/4 determine the energy fluxes of the inter-
acting plasma and beam waves, and q = 2γ2(u/c)2. The
asymmetry of (6.10) with respect to js and ρs is ficti-
tious: the first integral can be made symmetric with
respect to ρs and ρps through the replacement js 

ρps.

The amplification efficiency is defined as a relative
fraction of the beam kinetic energy that is converted
into microwave energy:

(6.11)

This is the quantity that enters (5.1) and is used in fur-
ther estimates. Strictly speaking, as can be seen from
(6.10), definition (6.11) refers to the fraction of the
beam kinetic energy that is transferred into both the
beam and plasma waves; however, for real experimen-
tal parameters, the fraction of the beam energy that is
converted into plasma wave energy plays the dominant
role.

Equations (6.6) should be supplemented with the
boundary conditions. In the amplification problem,
they are specified in the injection plane z = 0 and can be
written in a fairly general form as follows [14]:

(6.12)

where js0 are the amplitudes of the current harmonics of
the plasma oscillations at the entrance to an amplifier,
y0 ∈  [0, 2π] refers to an unperturbed beam, and the sec-
ond term on the right-hand side of the second condition
describes the electron density modulation of a beam
(we did not consider the modulation of the beam in
velocity, η). For definiteness, we restrict ourselves to
treating the case in which there are no plasma oscilla-
tions at the entrance to an amplifier; i.e., we assume that
all of the amplitudes of the plasma-current harmonics
js0 are equal to zero. On the other hand, we assume that
the injected beam is weakly modulated: in the simula-
tions, we set |bs | = 0.01–0.05. It is of interest to consider
beams with two types of modulation: monochromati-
cally modulated beams, for which only one of the coef-
ficients bs is nonzero, and noisy beams, for which all of
the coefficients bs are nonzero and the phases φs in
(6.12) are random numbers in the interval [0, 2π] (other
kinds of modulation were studied in [14]).
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7. AMPLIFICATION DYNAMICS IN SPACE 
AND THE FREQUENCY SPECTRA

OF A PLASMA MICROWAVE AMPLIFIER

After formulating the nonlinear problem of a beam–
plasma amplifier, we proceed to a discussion of the
results obtained in solving this problem. Since the
range of plasma frequencies above 35 × 1010 rad/s was
not investigated experimentally, we simulated the oper-
ation of a broadband noisy amplifier in the frequency
range 0–40 × 1010 rad/s with evenly distributed Smax =
50 modes. We solved equations (6.6) numerically for
each sth mode from the set of Smax modes. The beam
was modeled by 10Smax particles. The amplifier of a
monochromatic signal was simulated using only two
modes, with s = 1 and s = 2. Only the first mode with
frequency Ω [see (6.8)], at which the linear amplifica-
tion coefficient is maximum, was assumed to be
applied to the entrance plane into the amplifier. The
s = 2 mode served to take into account the nonlinear
excitation of the second harmonic.

We start by analyzing the Thomson amplifier of
monochromatic signals, which is based on the single-
particle Cherenkov effect. We choose the same beam
parameters and waveguide radius as in Figs. 4–7 and set
rp = 0.8 cm. The relevant amplification coefficients are
shown in Fig. 6, in which curve 3, computed for the
plasma frequency ωp = 30 × 1010 rad/s, is characteristic
of the Thomson amplifier and the amplification is max-
imum at the frequency Ω = 12.1 × 1010 rad/s. Now, we
present the simulation results that were obtained pre-
cisely for these two frequencies.

Figure 9 shows the amplitude of the first harmonic
of a plasma wave, the electromagnetic energy flux of a
plasma wave, and the energy flux of a beam wave (in
arbitrary units). The energy flux of a plasma wave is
seen to be much more intense than that of a beam wave.
The amplitude of the saturated plasma wave varies
strongly in a periodic fashion along the waveguide axis.
Such variations are a consequence of a well-known
effect, namely, beam-electron trapping by the plasma
wave [9, 30–32], but for the case of a high-current
REB. From Fig. 9, one can also see that the distance
over which the amplification saturates is shorter than
15 cm (the saturation length is determined by the
z-coordinate, corresponding to the first maximum in the
amplitude of the first harmonic). Of course, the satura-
tion length depends on the depth b1 of the initial beam
modulation, but this dependence is weak and, for a
beam with a different initial modulation depth , it
can be recalculated from the formula

(7.1)

where, for the case at hand, δk is represented by curve 1
in Fig. 5.

b1'

L' L–
1
δk
------ b1'

b1
----- ,ln=
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Curve 1 in Fig. 10 illustrates the maximum effi-
ciency of the Thomson amplifier of a monochromatic
signal as a function of ωp , and curve 1 in Fig. 11 reflects
the optimum amplifier length L over which the maxi-
mum efficiency is achieved. These curves were
obtained for frequencies Ω corresponding to curve 3 in
Fig. 4a. We can see that the efficiency of the Thomson
oscillator is fairly high over the entire range of plasma
frequencies under consideration and that the oscillator
length is not large and is essentially independent of ωp .

Now, we turn to the Raman amplifier of monochro-
matic signals, which is based on the collective Cheren-
kov effect. We set the plasma radius to be rp = 1.1 cm.
In Fig. 7, curve 4, which is characteristic of the Raman
amplifier, was computed for the plasma frequency ωp =
40 × 1010 rad/s; the relevant amplification coefficient δk
is maximum at Ω = 17.7 × 1010 rad/s. Thus, we present
the numerical results that were obtained precisely for
these two frequencies.

Figure 12 illustrates the same parameters of the
Raman amplifier as those shown in Fig. 9 for the Thom-
son amplifier. We again see that the electromagnetic
energy flux of a beam wave is negligible in comparison
with that of a plasma wave. On the other hand, nonlin-
ear variations of the plasma wave amplitude are much
weaker, because the nonlinear saturation occurs via a
different mechanism: in a Thomson amplifier, the beam
electrons are trapped by the charge density wave of the
beam rather than by the plasma wave; this effect is
known as the self-trapping of the beam electrons
[9, 19]. As a result, the beam wave breaks and the beam
thermalizes.

Curve 2 in Fig. 10 illustrates the maximum effi-
ciency of the Raman amplifier of a monochromatic sig-
nal versus ωp , and curve 2 in Fig. 11 reflects the opti-
mum amplifier length L over which the maximum effi-
ciency is achieved. These curves were obtained for
frequencies Ω corresponding to curve 3 in Fig. 4b. We
can see that, in the range of moderate plasma frequen-
cies, the efficiency of the Raman amplifier is also high,
but, on the whole, it is lower than the efficiency of the
Thomson amplifier. A sharp reduction in the efficiency
of the Raman amplifier in the range of high plasma fre-
quencies is attributed to the increase in Ω and the
related decrease in the coupling coefficient θ. For the
same reason, the higher the plasma frequency ωp, the
longer the optimum length of the Raman amplifier.

Now, we turn to multimode noisy amplifiers. We
begin by considering the Thomson amplification
regime. For several plasma frequencies, Fig. 13 illus-
trates the spectral densities of microwave radiation at
the exit from an amplifier with an optimum length cor-
responding to the maximum output power. The spectral
density of the input signal was assumed to be uniform
over the entire frequency range of Fig. 13. Curves 1–4
were computed for the same parameters for which the
relevant curves δk(ω) in Fig. 6 were obtained from lin-
ear theory. We can see that the emission spectra are
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
somewhat narrower than those predicted by linear the-
ory, while the maximum spectral density corresponds
to the maximum in the linear amplification coefficient
δk(ω). Table 1 shows that the width of the emission
spectra and their central frequencies depend strongly
on the plasma frequency.
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Fig. 9. Spatial profiles of the wave amplitudes in a Thomson
amplifier: (1) amplitude of the plasma wave, (2) energy flux
of the plasma wave, and (3) energy flux of the beam wave.
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Fig. 10. Amplifier efficiency vs. the plasma frequency for
(1, 1s) rp = 0.8 cm and (2, 2s) rp = 1.1 cm for (1, 2) mono-
chromatic and (1s, 2s) noisy signals.

Table 1.  Parameters of the Thomson amplifier

Plasma
frequency ωp , 

rad/s

Central
frequency ω, 

rad/s

Central wave-
length λ, cm

Spectral 
width ∆ω/ω

13 × 1010 4 × 1010 4.7 0.5
20 × 1010 8 × 1010 2.4 0.4
30 × 1010 12.5 × 1010 1.5 0.35
50 × 1010 25 × 1010 0.75 0.25
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The efficiency of the Thomson noisy amplifier is
illustrated by curve 1s in Fig. 10 as a function of ωp and
is seen to be somewhat lower than that of the related
single-mode amplifier. However, the higher the plasma
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Fig. 11. Optimum amplifier length vs. the plasma frequency
for (1, 1s) rp = 0.8 cm and (2, 2s) rp = 1.1 cm for (1, 2)
monochromatic and (1s, 2s) noisy signals.
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Fig. 12. Spatial profiles of the wave amplitudes in a Raman
amplifier: (1) amplitude of the plasma wave, (2) energy flux
of the plasma wave, and (3) energy flux of the beam wave.

Table 2.  Parameters of the Raman amplifier

Plasma
frequency ωp , 

rad/s

Central
frequency ω, 

rad/s

Central wave-
length λ, cm

Spectral 
width ∆ω/ω

13 × 1010 3.5 × 1010 5.4 0.6
20 × 1010 7 × 1010 2.7 0.6
30 × 1010 12 × 1010 1.6 0.3
40 × 1010 17 × 1010 1 0.12
50 × 1010 25 × 1010 0.75 0.08
frequency, the closer the two efficiencies are to one
another. This is illustrated by Table 1, which shows that
the higher the plasma frequency ωp, the narrower the
spectrum, so that the multimode amplifier will resem-
ble more and more the single-mode one.

Now, we consider the results of modeling a Raman
noisy amplifier with the same parameters as in the pre-
vious example, but for the plasma radius rp = 1.1 cm.
Figure 14 displays the emission spectra for the Raman
amplifier, computed for several plasma frequencies.
Comparing Fig. 14 with Fig. 7, we can readily see that,
as in the case of a Thomson amplifier, the spectral den-
sity of emission is peaked at the frequency at which the
linear amplification coefficient is maximum. However,
in the range of high ωp, the spectra of the Raman ampli-
fier are significantly narrower than those of the Thom-
son amplifier. The parameters of the Raman noisy
amplifier are presented in Table 2.

Curves 2s in Figs. 10 and 11 illustrate, respectively,
the efficiency of the Raman noisy amplifier and its
length.

Note that the terms “Raman amplifier” and “Thom-
son amplifier” are rather conditional. Microwaves can
be amplified in a purely Thomson regime only when
rb = rp . In the range of plasma frequencies under con-
sideration, an amplifier with rb = 0.65 cm and rp =
0.8 cm (Figs. 6, 13) operates mainly in the Thomson
regime, whereas an amplifier with rb = 0.65 cm and rp =
1.1 cm operates mainly in the Raman regime. However,
in the range of high plasma frequencies, both of the
amplifiers operate in the Raman regime.

Special attention should be paid to amplification at
low plasma frequencies close to the thresholds for the
onset of a beam–plasma instability (curves 1 in Figs. 6,
7, 13, 14). Figures 4a and 4b show that, in this case, nei-
ther wave–wave resonance nor wave–particle reso-
nance is possible. With this in mind, we can say that, in
the case of amplification at low plasma frequencies, the
terms “Raman regime” and “Thomson regime” have a
purely formal meaning. The amplification occurs at
very low frequencies with a fairly high efficiency and
broad bandwidth. The results presented above show
that, by altering only the plasma density and slightly
changing the plasma radius, we can vary the emission
parameters over a very broad range, keeping the ampli-
fication efficiency high. For example, it is possible to
amplify microwaves with wavelengths from several
centimeters to several millimeters, the relative width of
the emission spectra being from several tens of percent
to several percent. Moreover, these ranges may be even
broader. For example, oscillators with longer
waveguides and lower plasma densities are, in fact,
capable of amplifying microwaves with λ up to one
decimeter or longer, whereas increasing the plasma
density makes it possible to progress into millimeter
and submillimeter wavelength ranges.

Recall that all of the results presented here were
obtained for real systems studied in experiments [55–
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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58]. On the whole, theoretical predictions for the most
important parameters, specifically, the threshold
plasma frequency, the start current of a beam (see
below), the frequency band of the emitted radiation,
and the spectral width of the emission spectrum, are
consistent with the experimental data. However, the
theoretical and experimental data on the total emission
efficiency are contradictory: the efficiency achieved in
experiments is two times lower than the predicted one.
There are also other respects in which theory and
experiments disagree. For example, Kuzelev et al. [55]
presented the experimental data demonstrating that, in
some cases, the emission spectra of plasma microwave
sources are much broader than those evaluated theoret-
ically. On the other hand, some measurement results
obtained in those experiments agree well with theoreti-
cal predictions. For this reason, it is very important to
understand why the measured emission spectra are
broader than the predicted ones. This is the subject of
the next section.

8. FACTORS GOVERNING THE BROADENING 
OF THE EMISSION SPECTRA 

OF ELECTROMAGNETIC WAVES IN PLASMA 
MICROWAVE SOURCES

Up to this point, we applied the term “multimode
signal” to numerous amplified waves with different fre-
quencies and studied the formation of the emission
spectrum just in that case. However, there are a number
of factors (e.g., the presence of numerous modes with
different azimuthal and transverse mode numbers and
possible background plasma in the waveguide and oth-
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Fig. 13. Spectral density of microwave radiation at the exit
from an amplifier for rp = 0.8 cm and plasma frequencies of

(1) 13, (2) 20, (3) 30, and (4) 50 × 1010 rad/s.
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
ers) that can also influence the spectral content of the
amplified signal. Using linear theory, we will consider
the factors that are, in our opinion, most important.

First, we examine the effect of modes with different
azimuthal mode numbers. In the previous sections, we
considered only an azimuthally symmetric mode with
l = 0, so the role played by the other modes needs to be
established. For low-current beams (more precisely, for
beams with negligible currents), we can do that by
using relationships (3.9), (3.5), and (3.7). In the range

, (8.1)

no modes are amplified; in the range

, (8.2)

only an azimuthally symmetric mode is amplified; and
so on [clearly, the transverse wavenumbers (3.7) enter
(8.1) and (8.2)]. The rules formulated in (8.1) and (8.2)
for selective amplification of the modes cannot be
applied to finite-current (and the more so high-current)
beams, because the higher the beam current, the lower
the threshold plasma frequency (see above). In the case
of high-current REBs, several azimuthal modes are
simultaneously amplified under approximately the
same conditions. As an example, Fig. 15 illustrates fre-
quency profiles of the amplification coefficients for the
first four azimuthal modes, beginning with the zeroth,
in a Raman amplifier. The computation parameters are
the same as in Fig. 3. The azimuthal mode numbers are
given above the corresponding curves. The entire fre-
quency band in which the four azimuthal modes are
amplified is seen to be significantly broader than the
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Fig. 14. Spectral density of microwave radiation at the exit
from an amplifier for rp = 1.1 cm and plasma frequencies of

(1) 13, (2) 20, (3) 30, (4) 40, and (5) 50 × 1010 rad/s.
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amplification band obtained for a single azimuthally
symmetric mode.

Another reason for broadening of the frequency
amplification band is the finite thickness of a high-cur-
rent REB. In beams of finite thickness, in addition to
surface waves, there are internal waves, which give rise
to additional resonances and, consequently, lead to a
broadening of the amplification band. In a finite-thick-
ness annular plasma column, internal plasma waves are
also present, but an REB excites no internal plasma
waves, so that no plasma-related resonances appear. In
the regime of the collective Cherenkov effect (θ ! 1),
in which the amplification band is narrow, the influence
of the finite thickness of an REB can be significant. The
impact of the finite beam thickness can be captured
only numerically by solving the relevant dispersion
relation [14, 79]. As an example, we consider a circular
waveguide in which a thin-walled annular beam and
plasma have the density profiles

(8.3)

where α = p and b. For ∆α ! R, the plasma and beam are
thin-walled but they cannot be regarded as being infi-
nitely thin, so that the model profiles Pα = ∆αδ(r – rα)
(see above) fail to describe them. To save space, we
omit a very lengthy dispersion relation [79] for the
beam–plasma system described by profiles (8.3) and
refer the interested reader to, e.g., papers [19, 53],
which contain analogous dispersion relations (with
detailed derivations).
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Fig. 15. Frequency profiles of the amplification coefficient
for modes with azimuthal mode numbers 0, 1, 2, and 3.
Numerical solutions to the relevant dispersion rela-
tion are displayed in Fig. 16, which shows the imagi-
nary parts of the complex amplification coefficient
computed for different plasma frequencies, the remain-
ing parameters being the same as in Fig. 3. An analysis
of curves 1, 2, and 3, corresponding to the plasma fre-
quencies 20, 25, and 30 × 1010 rad/s, shows that, in the
range of low plasma frequencies where the frequencies
at which the emission is amplified are not yet high and
the coupling coefficient is not small, the behavior of the
amplification coefficient does not deviate from that in
the case of the single-particle Cherenkov effect. How-
ever, for a plasma frequency of 35 × 1010 rad/s (heavy
curve 4), for which the behavior of the amplification
coefficient turns out to be the same as in the case of the
collective Cherenkov effect, microwaves are amplified
not only in the main frequency band but also in a lower
frequency range; this range appears because of the
interaction between an internal beam wave and a sur-
face plasma wave, which is weaker than the interaction
between a surface beam wave and a surface plasma
wave. Using (4.13) and the estimates obtained for the
transverse wavenumbers of the internal and surface
waves, we can show that the ratio of the corresponding
amplification coefficients is on the order of (∆b/R)1/4.

One more reason for broadening of the amplifica-
tion band is associated with the fact that real transverse
plasma density profiles may be more complicated than
those in (8.3). There is experimental evidence that the
transverse plasma profiles are fairly complicated func-
tions of radius r. Thus, the main thin-walled annular
plasma is often observed against the background of an
almost homogeneous, lower density plasma, which is
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Fig. 16. Amplification coefficients for azimuthally symmet-
ric modes in the model in which the thickness of the beam
and plasma is finite.
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created due to ionization of the residual gas. Let us ana-
lyze the effects of such a background plasma [60].

We assume that the transverse density profiles of the
plasma and beam are

(8.4)

where npf is the constant background density and np and
nb are the densities in terms of which the Langmuir fre-
quencies ωp and ωb were introduced. We also introduce
the Langmuir frequency of the background plasma,

ωpf = , and the notation

(8.5)

First, we consider a waveguide with a thin-walled
annular plasma against a homogeneous lower density
plasma background, assuming that there is no beam.
The dispersion relation for this waveguide coincides

with equation (3.4) in which  should be replaced by

(8.6)

In the range kzc > ω > ωpf, the quantity in (8.5) is nega-
tive and expression (8.6) reduces to

(8.7)

where the sign of  is opposite to that of (8.5). In the
absence of a background plasma (ωpf = 0), expression
(8.7) passes over to (3.5).

In contrast, in the absence of a thin-walled annular
plasma (ωp = 0), equation (3.4) for a waveguide filled

with a homogeneous background plasma gives  = 0,
which is valid, by virtue of (8.6), only when J0(XR) = 0.
This yields the familiar dispersion relation for the spec-
tra of the internal waves of a homogeneous plasma with
the Langmuir frequency ωpf in a waveguide.

Let us consider the spectra for a waveguide with
both a thin-walled annular plasma and a background
plasma. We again turn to the parameters of a real exper-
imental device [55]: the waveguide radius is R =
1.8 cm, the mean plasma radius is rp = 1.1 cm, the
plasma thickness is ∆p = 0.1 cm, the Langmuir fre-
quency of the annular plasma is ωp = 35 × 1010 rad/s, and
the Langmuir frequency of the background plasma is
ωpf = 8 × 1010 rad/s. The latter frequency is taken tenta-
tively, because it was not measured directly in the
experiments. However, in accordance with the parame-
ter values adopted, we are justified in taking the back-
ground density to be lower than the annular plasma
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density by a factor of 10 to 20. We again describe an
REB by the parameters used throughout the paper.

Figure 17 shows dispersion curves obtained by

numerically solving dispersion relation (3.4) with 
defined in (8.6) or (8.7) for the above parameters of the
annular and background plasmas in a waveguide with
no beam. Curve 1 reflects the dispersion of the wave
that arises in the waveguide because of the presence of
a thin-walled annular plasma. In the frequency range
kzc > ω > ωpf, this is a conventional surface (cable) plasma
wave. However, in the low-frequency range ω < ωpf ,
this wave is an internal wave. Curves 2 and 3 in Fig. 17
correspond to conventional internal waves (the funda-
mental and first radial modes) in a homogeneous back-
ground plasma. Of course, the waves of the annular and
background plasmas interact with each other (e.g.,
curve 1 “forces” curve 2 to displace downward). How-
ever, we can readily show that this interaction is too
weak to play a decisive role. To do this, it is sufficient
to solve dispersion relation (3.4) for ωp = 0 and ωpf = 0,
plot the corresponding dispersion curves, and compare
them with those shown in Fig. 17. Hence, the major
conclusion is that the surface wave of a thin-walled
annular plasma and the internal waves in the back-
ground plasma have essentially no impact on each
other, so that the beam can interact with both of them
simultaneously.

To elucidate the relative positions of the dispersion
curves in Fig. 17, we plotted the line ω = kzc (marked
by c). Clearly, all of the dispersion curves of interest to
us lie below this line. In Fig. 17, we also plotted the res-
onance line ω – kzu = 0 corresponding to the single-par-
ticle Cherenkov resonance (marked by u). We can see
that the resonance line intersects dispersion curve 1 of
the surface wave in the range of fairly high frequencies
and is unlikely to intersect dispersion curve 2 (and the
more so curve 3) of the internal wave. Consequently,
the single-particle Cherenkov resonance condition is

k ⊥ p
2

kz, Òm–1
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ë

Fig. 17. Dispersion curves for an annular plasma in the pres-
ence of the low-density homogeneous plasma background:
(1) surface wave of the annular plasma, (2, 3) internal waves
of the background plasma, (C) ω = kzc line, and (U) ω = kzu
line.
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definitely satisfied for the surface wave and may be vio-
lated for the internal wave. However, in the presence of
a dense beam, both of these waves may be amplified
simultaneously.

Now, we examine an intermediate case in which a
thin-walled annular electron beam propagates through
a waveguide filled with a background plasma in the
absence of an annular plasma. The relevant dispersion
relation obviously coincides with equation (4.3) in

which  is defined by (8.6) or (8.7) and the subscript
p (referring to the plasma) should be replaced by the
subscript b (referring to the beam).

Figure 18 illustrates the results of solving the above
version of dispersion relation (4.3) numerically. Along
with curves 2 and 3 (which are plotted in Fig. 17),
Fig. 18 displays two new dispersion curves, which are
marked by plus and minus signs and correspond to slow
and fast waves of the space charge of an electron beam.
One can see that the slow wave of the space charge
interacts with the internal wave 2. As a result, the inter-
nal plasma wave begins to be amplified over a fre-
quency band lying between zero and the frequency cor-
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–

Fig. 18. Interaction of an annular beam with a low-density
homogeneous background plasma: (2) and (3) refer to the
internal plasma waves and the plus and minus signs mark
the fast and slow waves, respectively.
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Fig. 19. Interaction of an annular beam with a thin-walled
annular plasma and low-density homogeneous background
plasma.
responding to the point α on dispersion curve 2 in
Fig. 18.

Hence, we have shown that the internal wave in the
background plasma is amplified over a wide low-fre-
quency band. Let us estimate the corresponding ampli-
fication coefficient δk = |Im(kz)|. Since equation (4.3) is
difficult to solve, we assume that the beam acts only to
perturb the plasma waveguide. This assumption
enables us to transform (4.3) into the following disper-
sion relation, which is well known in the theory of
beam–plasma amplifiers and oscillators [15, 19]:

(8.8)

where G = (2∆brb/R2)[ (k⊥ rb)/ (k⊥ R)] is the geo-
metric factor of a thin-walled annular beam, k⊥  = µ01/R
is the transverse wavenumber of the fundamental mode
of the internal plasma wave, and µ01 ≈ 2.4 is the first
root of the zero-order Bessel function. Of course, the
assumption that the dense beam acts only to perturb the
plasma is not quite correct; however, a more thorough
analysis shows that it may be used for estimates.

Since we are content merely with estimates, we turn
to equation (8.8) and the familiar solution to this equa-
tion [15, 19]:

(8.9)

Assuming that ω in (8.9) is some mean frequency in
the amplification band for the internal wave, we obtain
δk ≈ 0.1 cm–1. Below, we will compare this value with
the amplification coefficient for the surface wave.

Now, we consider the most general case of a
waveguide with a beam and with both annular and
background plasmas. The general dispersion relation
coincides with equation (4.4), but with appropriately

corrected quantities  and  and with the coupling
coefficient

(8.10)

This formula is written for the case rb < rp , which was
realized in the experiments under discussion.

Figure 19 illustrates the results of solving dispersion
relation (4.4) numerically. Along with the curves plot-
ted in Fig. 18, we can see the dispersion curve of the
surface wave of an annular plasma. As a result of the
interaction between this wave and the slow wave of the
space charge of the beam, a new amplification band
appears, which lies between the frequencies corre-
sponding to the points β and γ on the dispersion curves.
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Additionally, the amplification band between the zero
frequency and the frequency corresponding to the point
α becomes somewhat narrower in comparison with that
in Fig. 18.

Hence, the background plasma causes the entire
amplification band to broaden: the amplification occurs
in both high- and low-frequency bands. In order to
understand to what extent this circumstance is impor-
tant in a real situation, we must compare the amplifica-
tion coefficients in different frequency ranges. In the
low-frequency band, the amplification coefficient has
already been estimated by means of (8.9). To obtain the
desired estimate in the high-frequency band, we may
assume that the background plasma has only a minor
effect on the amplification coefficient. Under this
assumption, Fig. 15 immediately gives the numerical
estimate δk = 0.14 cm–1, which is of the same order of
magnitude as the amplification coefficient in the low-
frequency range. We can therefore conclude that, in the
presence of a low-density plasma background in the
waveguide, the amplification band extends well into the
low-frequency range. A similar effect was observed in
some of the experiments described in [55].

Above, we have considered the amplification in the
collective Cherenkov regime, in which case the ideal-
ized spectrum is narrow and the factors that lead to a
broadening of the spectrum should be investigated in
detail. The question arises of how the background
plasma affects the amplification in the single-particle
Cherenkov regime. As rp  rb, the coefficient θ
approaches unity and the collective Cherenkov regime
goes over to the single-particle regime. Accordingly,
the points β and α in Fig. 19 approach the origin of the
coordinates. As a result, the two amplification bands
merge into one broad band, which extends between the
zero frequency and the frequency corresponding to the
point γ, and the internal wave 2 is no longer amplified.
Consequently, in the single-particle Cherenkov regime,
the role of the low-density background plasma is insig-
nificant.

To conclude the discussion of the impact on ampli-
fication of a homogeneous background plasma in a
waveguide, we consider the features of an amplifier
operating with a thin-walled annular beam against the
plasma background in the absence of an annular
plasma. The dispersion relation for determining the
complex spectra in this system is similar in structure to
(4.3), but we rewrite it in a form that is convenient for
our purposes [19]:

(8.11)

where Sb = 2πrb∆b is the cross-sectional area of the

beam and εp = (1 – /ω2). The poles of the right-hand
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side of (8.11), i.e., the zeros of the functions

, (8.12)

determine the spectra (3.3) of internal plasma waves.
Since, in equation (8.11), these waves are coupled to
each other through the beam even in the linear approx-
imation, the problem of the competition between the
modes and the problem of the width of the amplifica-
tion band are more difficult to solve. We can assume
that, if the beam is dense and the inequalities

(8.13)

hold for several modes with the mode numbers n, then
the amplification band will be broad (it will extend
from zero to nearly the plasma frequency) and a large
number of modes with different azimuthal and radial
mode numbers will be amplified regardless of the spec-
tral content of the input signal.

9. MICROWAVE GENERATION IN THE REGIME 
OF THE STIMULATED CHERENKOV EFFECT

We first considered a Cherenkov plasma microwave
amplifier in order not to begin with a complicated prob-
lem of the extraction of microwaves from the plasma.
Now, we examine the exit boundary z = L of the system,
thereby switching from the amplification problem to
the problem of microwave generation in a beam–
plasma waveguide. We analyze the generation problem
qualitatively (more rigorous relationships can be found,
e.g., in our book [19]).

A plasma wave amplified by a beam is partially
reflected from the exit boundary z = L and returns to the
entrance plane z = 0. This effect may result in the self-
excitation of the amplifier (i.e., in the start-up of micro-
wave generation). Let us determine the conditions
under which this happens.

We consider a wave with amplitude A0 that enters
the waveguide through the entrance plane z = 0 from the
outside. Let the plasma wave amplified by the beam
have the amplitude A+ at the exit plane and let the
plasma wave that propagates in the direction opposite
to the propagation direction of the beam and provides
feedback have the amplitude A–. We denote the reflec-
tion coefficient of the boundary z = L for the amplified
wave by κ and the amplification coefficient for the
plasma wave, i.e., the absolute value of the imaginary
part of (4.7), by δ+.

At the boundary z = L, the amplitude of the ampli-
fied wave is equal to A+exp(δ+L) and the amplitude of
the backward plasma wave is

(9.1)

Since an oppositely propagating plasma wave does not
interact with the beam, its amplitude at the entrance
plane z = 0 is also determined by (9.1). Additionally, at
z = 0, the amplitudes of the injected wave, amplified
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plasma wave, and backward plasma wave satisfy the
balance relation

(9.2)

Formulas (9.1) and (9.2) give the amplitude of the
amplified plasma wave:

(9.3)

The self-excitation of the Cherenkov plasma micro-
wave amplifier occurs when the amplitude of the ampli-
fied plasma wave in (9.3) becomes infinitely large. This
allows us to determine the condition for the self-excita-
tion of the amplifier (i.e., for the start-up of microwave
generation) [6, 19, 40]:

(9.4)

In deriving this condition, we used the estimate [40, 55]
(see also the refined estimate presented in [57])

(9.5)

Of course, the derivation of both the self-excitation
condition and estimate (9.5) is not rigorous. The most
difficult task here is to determine the reflection coeffi-
cient κ. The experiments carried out in [8, 12, 37, 38,
55] provide evidence that, for a low-frequency cable
plasma wave emitted through the coaxial horn, the
results obtained are likely to be qualitatively correct.
We can readily verify that by comparing them with the
relevant experimental data. Setting γ = 2 and varying
the system length L from 10 to 30 cm, we obtain from
(9.4) that the start amplification coefficient δ+ changes
from 0.1 to 0.3 cm–1, which is equal in order of magni-
tude to the coefficients computed from dispersion rela-
tion (4.8) and shown in Fig. 5. In our opinion, the
experimental conditions in [12] most likely correspond
to a plasma microwave amplifier, whereas the condi-
tions in [55] correspond to an oscillator.

In this paper, we intentionally restricted ourselves to
the linear theory of a plasma microwave oscillator. The
construction of a systematic quantitative nonlinear the-
ory of an oscillator requires a deeper understanding of
the processes occurring in the emitter. Unfortunately,
we still lack such an understanding (although some
progress in constructing the nonlinear theory of a
plasma microwave oscillator and in modeling the emit-
ter has been achieved in papers [45, 54, 56–58], in
which it was shown that certain parameters of a length-
optimized microwave oscillator, namely, the oscillator
efficiency, the spectral content of the emitted micro-
waves, and the maximum output power, are almost the
same as those of a plasma microwave amplifier). For
this reason, we do not discuss in detail the current status
of the nonlinear theory of plasma microwave oscilla-
tors. In experiments, the optimum length of the oscilla-
tor is chosen individually for each specific unit for
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extracting microwave radiation. In our opinion, the fact
that the efficiency of the oscillators used in the experi-
ments under discussion is lower than that predicted the-
oretically may be explained by the inappropriate choice
of the oscillator length.

10. NONRESONANT PLASMA MICROWAVE 
OSCILLATOR—PLASMA MONOTRON

Thus, we can conclude that significant progress has
been achieved in developing high-power Cherenkov
resonant plasma sources of coherent, nearly monochro-
matic microwave radiation and broadband noisy micro-
wave radiation: the sources operate in the millimeter
wavelength range and their efficiency is fairly high.
Hopefully, sources capable of operating in a broader
wavelength range—from ≈10 cm to fractions of a mil-
limeter—will also be developed in the near future. But
it is more difficult to move into the longer-wavelength
range, essentially because the sources under consider-
ation are capable of emitting microwaves only when the
plasma density is above a certain threshold. Clearly, in
order to work with lower frequencies, it is necessary to
reduce the threshold plasma density. This, in turn, can
be done mainly by increasing the waveguide radius R,
in which case, however, the length L of the entire sys-
tem must be increased accordingly. The calculations
show that, in order to achieve microwave generation at
the wavelength λ = 30 cm (for the same beam parame-
ters as those treated above), the radius and length of
the waveguide should be enlarged to R ≥ 10 cm and
L ≥ 100 cm. However, creating a strong magnetic field
in such a large source would be too expensive.

Hence, in this section, we consider the possibility of
exciting microwave radiation with a relatively long
wavelength during the radiative Pierce instability in a
plasma waveguide with an annular plasma.5 Unlike the
aperiodic Pierce instability, which occurs at beam cur-
rents above the Pierce limiting current [15, 19, 80]

(10.1)

where I0 is the vacuum limiting current (5.4), and leads
to beam destruction, the radiative Pierce instability can
occur at arbitrarily low beam currents. Moreover, the
radiative Pierce instability may develop in waveguides
with no plasma, i.e., in purely vacuum devices [63].
However, since we are primarily interested here in the

5 To the best of our knowledge, Bignard et al. [66] were the first to
observe the radiative Pierce instability of a nonrelativistic beam
and to introduce the term “monotron.” Since the generation mech-
anism underlying their operation lacked a theoretical explanation,
the efficiency of monotrons was generally considered to be low
[67]. Klochkov et al. [63–65] established that this mechanism is
the radiative Pierce instability. They developed a systematic linear
theory of the relativistic radiative Pierce instability and demon-
strated the promising outlook for using relativistic monotrons,
including those filled with a plasma. Here, we restrict ourselves to
considering a plasma monotron capable of exciting a low-fre-
quency (plasma) oscillation branch with the frequency spectrum
(3.6).

IP γ2
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PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000



PRESENT STATUS OF THE THEORY OF RELATIVISTIC PLASMA 251
excitation of a low-frequency cable plasma wave in the
course of the radiative Pierce instability, we consider a
plasma-filled waveguide. In order to avoid the onset of
the resonant Cherenkov instability, we assume that the
plasma density is below the threshold.

We emphasize that the radiative Pierce instability
can occur only in the presence of positive feedback, as
is the case with aperiodic Pierce instability. This cir-
cumstance makes it impossible to create amplifiers
based on the radiative Pierce instability. Therefore, we
will consider only the type of microwave oscillators
that are referred to as plasma monotrons based on a
cable wave and restrict ourselves to linear theory and
the simplest nonlinear estimates.

Let the oscillator length be L @ R. In the region 0 <
z < L, the field is composed of the fields of four waves:
two beam waves with amplitudes A3 and A4 and two
plasma waves with amplitudes A1 and A2 . The beam
waves propagate in the positive direction along the
z-axis. One of the plasma waves (e.g., the wave with A1)
propagates in the same direction, while the other wave
(with A2) moves in the opposite direction and provides
feedback. At the boundary z = L, the waves with A1, A3,
and A4 are partially converted into an oppositely prop-
agating wave with A2 and partially converted into the
wave of the emitting horn. Generally, this process can
be described by the following boundary condition at
z = L [19]:

(10.2)

where κv = κ1, 3, 4 are the complex coefficients for wave
conversion. The wavenumbers kzv in (10.2) are deter-
mined from dispersion relation (4.4). Under the condi-
tion

(10.3)

which implies that the electron beam current is lower
than the Pierce current, we can assume that the conver-
sion (reflection) coefficient κ1 for a cable wave is equal
to that calculated in the absence of a beam (the same
approach was taken in the previous section). The coef-
ficients κ3, 4 are approximately equal to κ2 = κ4 ≡ κb .
Below, we will assume that inequality (10.3) is satisfied
and we will refine the coefficients κ1 ≡ κ and κb.

At the boundary z = 0, the injected beam remains
unperturbed and the wave with A2 is reflected as if it
were reflected from a metal mirror (see [19, 63–65] for
details). This allows us to write the boundary condi-
tions at z = 0 as

(10.4)

The most general expressions for the transformation
coefficients αv are derived in [19].
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The requirement that the solutions to the linearized
equations (2.1)–(2.7) with the boundary conditions
(2.8), (10.2), and (10.4) be nontrivial yields the equa-
tion for determining the complex frequencies at which
microwaves are generated. The approach described in
this section is the most general and could also be
applied in the previous section to study a conventional
plasma microwave oscillator (as was done in [19]).
However, a conventional oscillator based on the reso-
nant beam–plasma interaction can be analyzed in a
simple qualitative way (just as we did above). However,
qualitative considerations are insufficient to study
plasma monotrons, in which the interaction of the beam
with the electrodynamic system is nonresonant and
which therefore require a rigorous analysis. We skip
over the details of the mathematical procedure (which
are given in [63–65]) and present the final equation for
determining the complex frequencies for a plasma
monotron based on a cable wave:

(10.5)

where up is the phase velocity of a cable wave [see

(3.6)],  = /εp , and εp is the longitudinal plasma
permittivity. Equation (10.5) was derived for a particu-
lar case in which the mean radius and thickness of an
annular plasma coincide with those of an annular beam.

In the absence of a beam (ωb = 0), equation (10.5)
describes how the microwave field escapes from the
plasma resonator, in which case the solution is

(10.6)

where n = 1, 2, …. In the low-frequency range of inter-
est to us, |ω| ! ωp , in which the phase velocity up is
essentially independent of ω, we obtain from (10.6) the
damping rate associated with the escape of the micro-
wave field from the resonator:

(10.7)

An instability that can arise in a resonator in the
presence of a beam introduces the following correction

κ i
ω
up

-----L 
 exp i

ω
up

-----L– 
 exp–

=  2iκ b

ω̃bL
u

----------u
2

c
2

-----γ 1 2/– 1 c
2

up
2⁄–( )

1 u
2

up
2⁄–( )

----------------------------

×
ω̃bL

u
----------γ 5 2/–

1 u
2

up
2

-----–
 
 
 

1 2/–

e
i
ω
u
----L

,sin

ω̃b
2 ωb

2

ω
up

----- πn
L

------
i

2L
------ κ ,ln+=

δ Imω≡
up

2L
------ 1

κ
------.ln–=



252 KUZELEV, RUKHADZE
to the frequency ω:

(10.8)

Here, the quantity q = γ–2(ω2 + u2γ2 – ) > 0 is
positive, because the plasma frequency is below the
threshold. Clearly, for the radiative Pierce instability to
occur, the growth rate (10.8) should exceed the damp-
ing rate (10.7) in absolute value; i.e., the following con-
dition should hold:

(10.9)

where the start Langmuir frequency of the beam, ωb, st,
is related to the start current for exciting a plasma
monotron based on a cable wave by

(10.10)

Now, we refine the coefficients κ and κb . The minimum
absolute value of κ is described by formula (9.5) in the
previous section. In the case of an ideal resonator, in
which the boundary z = L is a metal surface, we have
|κ| = 1. The actual value of the reflection coefficient κ
is between these two limiting values. The conversion
coefficient κb for beam waves can be evaluated as |κb | =
up/u, which is smaller than unity if the plasma density
is below the threshold.

To complete the picture, note that the condition for
the beam electrons to slip out of resonance due to decel-
eration [mathematically, this means that the argument
of the sine in (10.8) changes sign],

(10.11)

yields the following estimate for the generation effi-
ciency in a plasma resonator:

(10.12)

To estimate the efficiency with which microwaves are
emitted from the resonator, expression (10.12) should
be multiplied by (1 – |κ|2). At κ ~ 1, the emission effi-
ciency is much lower than (10.12); nevertheless, for
ω . 6 × 109 rad/s, |κ| . 0.9, γ . 2, ∆ . 1, and L .
30−50 cm, it may be as high as 10–15%.
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11. CONCLUSIONS

Finally, we briefly summarize the most important
results.

(i) At present, we have a fairly complete theory of
plasma amplifiers based on the stimulated Cherenkov
effect, which is adequate for explaining many experi-
mental results. The main shortcoming of this theory is
that the methods for calculating the outlet horns for
extracting microwave radiation have not been worked
out in detail.

(ii) The problem of calculating the outlet horns is
especially important in the theory of both resonant
(based on stimulated Cherenkov emission) and nonres-
onant (based on the radiative Pierce instability) plasma
microwave oscillators. It is for this reason that a sys-
tematic nonlinear theory of plasma microwave oscilla-
tors is still not fully developed.

(iii) Resonant plasma microwave oscillators and
amplifiers successfully operate in the centimeter wave-
length range, in which narrowband (∆ω/ω < 0.1) and
broadband (∆ω/ω ≈ 1) microwave radiation can be pro-
duced by the highly efficient sources that have already
been designed.

(iv) In the long-wavelength range (at frequencies
ω ≤ 109 rad/s), nonresonant plasma microwave sources
(plasma monotrons based on a cable wave) seem to be
more promising. However, the theory of monotrons is
still far from being fully developed, and they have not
been implemented in experiments.
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Abstract—Results are presented from a theoretical investigation and quantitative analysis of the physical pro-
cesses that govern the efficiency of a coaxial device aimed at converting the energy of a relativistic electron
beam into the energy of a TEM wave (a wave in a circular cylindrical coaxial waveguide). The key diffractional
problem is solved exactly using a simplified theoretical model, which makes it possible to understand the mech-
anisms for the formation of a TEM wave and determine how the beam parameters and the design parameters of
the converter affect the relative fractions of the kinetic energy of a relativistic electron beam and the energy of
its own magnetic and electric fields that are transferred into the energy of the TEM wave field. The results
obtained are analyzed quantitatively, and prospects for further theoretical and experimental research in this area
are outlined. © 2000 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION
It is well known that a primary goal of relativistic

(high-current) microwave electronics is to develop
techniques and devices capable of ensuring the most
efficient conversion of the energy of relativistic elec-
tron beams (REBs) into electromagnetic field energy. A
distinctive feature of the sources of intense REBs is that
the energy stored in the source (energy storage) is
partly converted into the kinetic energy of an REB and
partly expended on the excitation of natural charge-
density waves of the beam. In particular, for a cylindri-
cal beam of radius a propagating in a waveguide with
conducting walls of radius b, the ratio of the energy flux
PF of the beam field to the kinetic energy flux PK of an
REB is a linearly increasing function of the beam cur-
rent IB,

(1)

where γ is the relativistic factor of the beam and IA =
mc3/ |e | is the Alfvén current.

We can readily see that, for beam currents compara-
ble with the limiting current IL in a given waveguide
(see [1]),

, (2)

and for realistic beam energies (2 ≤ γ ≤ 4), the right-
hand side of (1) is generally not small in comparison
with unity. Physically, this indicates that, under the

† Deceased.
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condition b – a ~ a, a significant fraction of the energy
of the source of an REB is expended on the excitation
of its own fields.

This naturally brings up the following questions.
What is the role of the self-fields of high-current REBs
in the excitation of TEM waves in a circular cylindrical
coaxial waveguide? How is the kinetic energy of an
REB converted into the energy of TEM waves? What is
the conversion efficiency?

The first question was answered theoretically by
Kalmykova and Kurilko [2]. They considered the ideal-
ized model of a device in the form of a magnetized
plasma waveguide in which a slow space charge wave
(SCW) is amplified by a monoenergetic REB and,
thereby, is converted into a TEM mode of a semi-infi-
nite circular cylindrical waveguide. They showed that,
under the conditions adopted in their studies, the frac-
tion of the energy flux of a slow SCW that is concen-
trated between the conducting shell and the plasma
waveguide serves as the main source of the energy flux
of a TEM mode. For convenience of further analysis,
we will call this fraction of the energy of the REB
source the “beam potential energy.” According to [2],
the efficiency of this conversion is

(3)

where Np ≡ a2/c2 is the plasma linear density.

Formula (3) implies that, for the model device
treated in [2], the contribution of the kinetic energy flux
of an REB to the energy flux of a TEM wave is insig-
nificant. In this case, the main mechanism for forming
the TEM wave is transient emission at the open edge of

PTEM PPOT 1 O
1

NP

----------- 
 – , PPOT PF,= =

ωp
2
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a semi-infinite coaxial waveguide from the bunches of
an REB formed by the field of the amplified SCW: it is
this emission that ensures the conversion of the poten-
tial energy of an REB into the energy of a TEM wave.

At first glance, it may appear that these results and
the conclusions of the theory developed in [2] contra-
dict the data from recent experiments at the Naval
Research Laboratory (NRL, Washington DC, USA)
[3−5], in which the kinetic energy of an REB was con-
verted into the energy of TEM waves in both cases with
harmonically modulated REBs (at frequencies of
280 MHz and 1.320 GHz) and unmodulated beam-cur-
rent pulses. In fact, there is no discrepancy between the
theoretical [2] and experimental [3–5] results. Below,
we will show that this contradiction stems exclusively
from the difference between REB configurations and
energy converters treated theoretically and those used
in experiments. Accordingly, the mechanisms involved
in the formation of the fields of TEM waves are essen-
tially different.

The primary aim of our paper is to clarify the phys-
ical mechanisms for the formation of TEM waves in a
coaxial converter excited directly by a modulated REB
and to analyze this process quantitatively. To do this,
we will work from an exact analytic solution to the key
diffractional problem for an idealized model of a coax-
ial converter excited by a modulated monoenergetic
REB.

2. STATEMENT OF THE PROBLEM 
AND THE METHOD OF SOLUTION

We consider a semi-infinite (z > 0) cylindrical
waveguide with an infinitely thin conducting wall of
radius a. Let this waveguide serve as a collector for an
infinitely thin annular monoenergetic REB with the
same radius and let the entire system be surrounded by
a conducting shell of radius b (Fig. 1).

The total energy flux  entering the converter
under consideration consists of the kinetic energy flux
PK of the beam electrons and the energy flux PPOT of the
self-field of an REB:

(4)

Ptot
in

Ptot
in

PK PPOT.+=

2b
0

r

2a

íÖå
SCW

z

íÖå
SCW

Fig. 1. Schematic of a converter.
At the exit from the converter, the total energy flux
from the edge of a coaxial waveguide is a superposition
of the energy flux PTEM of electromagnetic waves and
the heat flux PI stemming from the beam energy depo-
sition in the collector material via ionization losses:

(5)

We will focus our further analysis on the following
questions:

(i) How does the efficiency of the energy conversion
under discussion,

, (6)

depend on the external parameters of the system (the
relativistic factor γ of an REB, the working frequency
ω, and the geometric parameters of the converter)?

(ii) What fraction of the beam kinetic energy PK is
converted into the energy PTEM of a TEM wave of a
coaxial waveguide and what fraction is expended on
heating the collector material (via ionization losses at
the edge of the inner cylinder of the waveguide)?

(iii) How should we choose the parameters of an
REB and a device in order to ensure the most efficient
conversion of the energy stored in the source into the
energy of a TEM wave?

In order to find adequate answers to these questions,
we develop an analytic theory of a coaxial converter. In
the simplest case of exciting an idealized model con-
verter device shown in Fig. 1 by a harmonically modu-
lated current, this can be done using the theory of cou-
pled integral equations and equivalent problems of con-
jugating analytic functions (see, e.g., [6–8]). The
usefulness of this theory in modeling piecewise uni-
form electrodynamic systems analytically was demon-
strated earlier in solving the problems of matching a
semi-infinite isotropic plasma waveguide with a semi-
infinite coaxial waveguide [9] and a semi-infinite mag-
netized beam–plasma waveguide with the same coaxial
waveguide [2]. Below, we will apply an analogous
mathematical apparatus to solve the following diffrac-
tional problem.

Let a semi-infinite (z > 0) coaxial waveguide
(a ≤ r ≤ b) be excited by a slow axisymmetric SCW of
an REB. Assume that the SCW has a frequency ωm,

wavenumber km = ωm/V0, and current amplitude .
The current density of the SCW can be represented as

(7)

At the entrance edge of a coaxial waveguide, the SCW
current excites all axisymmetric natural TM waves of
the three joined semi-infinite waveguides, specifically, a
cylindrical (z < 0, 0 ≤ r ≤ b), a coaxial (z > 0, a ≤ r ≤ b),
and an inner cylindrical (z > 0, 0 ≤ r ≤ a) waveguide.
Below, we will assume that the beam modulation fre-

Ptot
f

PTEM PI Ptot
in

.≈+=

η PTEM Ptot
in⁄=

J̃m

jz r z t, ,( )) J̃m

2πa
---------δ r a–( ) ikmz iωt–( ).exp≡
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quency ωm is lower than the first boundary frequency

 of the left cylindrical waveguide,

(8)

where c is the speed of light in vacuum and  is the
first root of the zero-order Bessel function J0(x)

(J0( ) = 0,  ≈ 2.405).

Under condition (8), the only wave that can travel a
large distance from the edge of a coaxial waveguide is
a TEM wave; the remaining TM waves are exponen-
tially damped away from the waveguide edge. Let us
find the amplitudes of these waves.

From an electrodynamic standpoint, this model
assumes the boundary conditions that are uniform at
the semiaxes z < 0 and z > 0 of the cylinder r = a. With
such boundary conditions, we can solve the above
problem exactly using the theory of coupled integral
equations and the Rieman–Hilbert boundary-value
problem, which was earlier solved in [2, 9] for the cases
of semi-infinite plasma and beam–plasma waveguides.
Below, we will briefly describe how this approach can
be utilized in solving the problem at hand.

3. SOLUTION

3.1. Formulation of the Problem

The physical problem under discussion reduces to
solving the homogeneous Helmholtz equation for the
field Ez on the outside of a cylinder with the radius
r = a,

(9)

which should be supplemented with the following
piecewise uniform boundary conditions at the cylindri-
cal surface:

(10‡)

(10b)

(10c)

3.2. Choice of the Field Structure

In each of the axially homogeneous regions of the
spatially nonuniform system under consideration, the
solutions to the Maxwell equations can be searched for
as the sum of the SCW fields that are coming from
infinity (from the left) and the SCW fields that are mov-
ing away from the region where the running TM waves
are nonuniform. In other words,
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(a) in region 1, defined by 0 < r < a and –∞ < z < +∞,
we can set

(11‡)

and
(b) in region 2, defined by a < r < b and –∞ < z <

+∞, we can set

(11b)

Here, we introduce the following notation for the SCW
fields:

The fields of TM waves can be searched for as a
superposition of plane waves,

(12‡)

(12b)
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3.3. TM-Wave Amplitudes

Each of the modes in (12) satisfies both equation (9)
and the condition for the field Ez to be continuous at the
cylindrical surface r = a for –∞ < z < +∞. This condi-
tion is a consequence of (10a) and (10c). Conditions
(10b) and (10c) yield the following set of two coupled
integral equations for the unknown function C(k):

(13‡)

(13b)

where

According to Rappoport’s lemma [10], these two equa-
tions are necessary and sufficient conditions for the
integrands to be analytic functions in the upper (+) and
lower (–) half-planes of the complex variable k, respec-
tively:

(14‡)

(14b)

Eliminating the function C(k) from these equations,
we finally arrive at the Rieman–Hilbert inhomogeneous
boundary-value problem for the functions ϕ(±)(k):

(15)

Using (14), we find the desired representations of the
function C(k),

which are convenient for calculating the fields of TM
waves in the regions z > 0 and z < 0, respectively.

Analytic representations of the functions ϕ(±)(k) are
given in the Appendix.

3.4. Evaluation of the Amplitudes of TEM 
and TM Waves

The first representation is convenient for calculating
the field amplitude of the TEM wave, which moves
away from the edge of a coaxial waveguide along the
waveguide axis. The second representation will be used
to calculate the fields of TM waves, which are exponen-
tially damped away from the edge of the coaxial
waveguide and penetrate into the left waveguide.
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The desired TEM-wave amplitude is determined by

the residue of the integrand in the formula for  at
the point k = k0:

(16)

Corrections on the order of γ–2 ! 1 on the right-hand
side of (16) account for the contribution of diffractive
terms proportional to ϕ(+)(k0):

Here, the symbol (k) stands for the solution to the
homogeneous matching problem corresponding to
(15); this solution is bounded at infinity and is analytic
in the upper half-plane of the complex variable k (see
the Appendix).

In the region z < 0, condition (8) implies that the
fields of TM waves are exponentially damped away
from the edge of the inner cylinder of a coaxial
waveguide. The power transferred from the SCW cur-
rent (7) into these fields is

(17)

Here, we introduce the following notation: λs is the sth
root of the Bessel function J0(x) (λ1 ≈ 2.405), |ks |2 =

/b2 –  is the squared absolute value of the sth lon-
gitudinal wavenumber of the field, and η ≡ ln(b/a). The

symbol  stands for the solution to the homoge-
neous matching problem corresponding to (15); this
solution is bounded at infinity and is analytic in the
lower half-plane of the complex variable k (see the
Appendix).

Generally, the right-hand side of (17) is a compli-
cated function of the external parameters of the con-
verter and the REB. The only exception is the range of
sufficiently high energies of an REB (γ2 @ 1) and rela-
tively low beam modulation frequencies for which ine-
quality (8) is satisfied by an ample margin. In this
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range, the analytic asymptotic expression for the partial
beam power Ps transferred into the field power
expended on the excitation of the sth field harmonic is

(18)

where

F0(γ) ≡ ln(|x2 – 1|).

From the plot shown in Fig. 2, we can see that, in the
range of γ values that are of interest from a practical
standpoint, the function F0(γ) depends weakly on the
beam energy. As a result, the right-hand side of (18) is
a monotonically decreasing function of γ.

4. DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

Formulas (17) and (18) illustrate the main results of
the above theoretical analysis of an idealized model
coaxial converter. Going over to a discussion of the
physical aspects of the results obtained, we must point
out the following features of (17) and (18):

(i) their right-hand sides are independent of the
modulation frequency of an REB, and,

(ii) the right-hand side of (18) decreases fairly rap-
idly as both the relativistic factor γ of an REB and the
number s of the beam-excited field harmonic increase.

The first feature implies, in particular, that formulas
(17) and (18) apply not only to REBs with harmoni-
cally modulated currents, which we have analyzed
above, but also to unmodulated beam-current pulses
whose characteristic durations τp satisfy the condition

c2 @ b2.

A sharp decrease in the right-hand side of (18) as s
increases indicates that the sum of the fluxes of energy
transferred from an REB to the fields of TM waves
remains finite. On the other hand, the factor γ2 in the
denominator in (18) implies that, under the conditions
adopted here, the total energy flux of the TEM wave,
which moves away from the edge of a coaxial
waveguide, coincides with the potential energy flux of
an REB to within small corrections:

(19)
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Physically, this result can be explained by the fact
that, under the above conditions, the field configuration
of the SCW, which approaches the edge of a coaxial
waveguide, is close to that of the TEM wave, which
travels away from this edge [2]. Since inequality (8)
implies that the field energy cannot be carried away to
the left of the waveguide edge, the SCW energy is con-
verted almost completely into the energy of a TEM
wave. This conversion is attributed to an elementary
effect—coherent transient emission from beam-driven
electron bunches (or, in the case of one current pulse,
emission from a single electron bunch) at the egde of
the inner cylinder of a coaxial waveguide, where the
medium is electrodynamically nonuniform.

Note also that, from an electrodynamic standpoint,
the converter under discussion is a kind of semi-infinite
open-ended waveguide. In fact, recall that microwave
radiation can be emitted from the edge of the inner cyl-
inder of a coaxial waveguide exclusively in the form of
a TEM wave, while the SCW, which approaches this
edge from the left, excites the waveguide. This physical
picture can, in particular, explain why two different
types of converters (the one we have considered above
and the one used in experiments at the NRL [3–5])
operate in different modes. On the one hand, the con-
verter treated in our model is similar to that used in
recent NRL experiments because its coaxial waveguide
was designed to have only one open edge and was
excited by the SCW of an REB. On the other hand, the
assumptions made in our analysis differ from the NRL
experimental conditions in terms of the following three
points.

First, in the NRL experiments [3–5], a coaxial
waveguide was excited with the help of an annular slit
in the inner cylinder of the waveguide. Second, an
annular beam almost reached the slit. Finally, the slit
width D was small in comparison with the wavelength
λ, 2πD ! λ. In contrast, our model naturally refers to
the opposite limiting case 2πD @ λ. Under the condi-
tion b – a ! b, the potential energy of an REB in the
NRL experiments [3–5] was relatively low, which
made it possible to generate fairly intense beam-current
pulses [see (2)]. On the other hand, such a narrow slit
ensured a cophased deceleration of an REB by the
fields of the so-called “surface” TM waves, which are
exponentially damped away from the slit edges.

2.4 γ2.0 2.8 3.2 3.6

0.72

0.74

0.76

0.70

F0(γ)

Fig. 2. Function F0 versus the argument γ.
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On the whole, all of the aforementioned features of
the converter geometry and REB configuration ensured
the governing role of the deceleration of an REB by the
fields of the surface TM waves and the conversion of
the beam kinetic energy into the energy of a TEM wave
in the NRL experiments [3–5].

Because of the lack of experimental data [3–5] on
the kinetic energy lost by an REB in the collector, we
failed to determine whether the measured converter
efficiency ηÂı agrees with the theoretical estimate (6)
and to what extent the measurement results under dis-
cussion are close to the optimum ones, which corre-
spond to the most efficient conversion of REB energy
into the energy of a TEM wave. To make such a com-
parison, it is necessary to carry out theoretical model-
ing of a slit converter (the device used in NRL experi-
ments [3–5]) and experimental measurements of ηexp as
a function of the external parameters of the converter
(including control of the kinetic energy lost by an REB
in the collector).

Summing up the above discussion, we conclude that
coaxial converters can be optimized in the following
two ways: first, by reducing the relative fraction of the
potential energy of an REB and by ensuring its efficient
deceleration by the fields of TM waves that the beam
itself excites (this approach was implemented in the
NRL experiments [3–5]), and second, by forming an
REB with a relatively low kinetic energy flux (the main
fraction of which is lost in the collector) and ensuring
that precisely the potential energy of the REB is effi-
ciently converted into the energy of a TEM wave. The
first way holds promise for REBs with sufficiently high
total currents and energies [see (1)] and the second, for
REBs with relatively low total currents and energies.
Various aspects of creating an optimized version of the
converter (in particular, whether it can compete with
the converter that was fabricated and tested at the NRL)
should be verified experimentally for REBs with rela-
tively low currents and energies.
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APPENDIX

Solution to the Boundary-Value Problem (15)

The boundary-value problem (15) can be reduced to
the standard form [6–8],

, (A.1)Φ +( )
k( ) G0 k( )Φ –( )

k( ) f k( )+=

through the following change of the desired functions
ϕ(±)(k) and the kernel G(k) ≡ [D(k)]–1:

The symbols (k) signify such solutions to the
homogeneous problem (A.1) of matching the analytic
functions

(A.2)

that are bounded at infinity. We emphasize that the

requirement for the functions (k) to be bounded at
infinity is imposed in order for the solution to the
boundary-value problem (A.2) be unique and the total
field energy near the edge of a semi-infinite waveguide
(r = a, z = 0) be finite (the latter is a consequence of
Mikesner’s conditions [11]).

Solutions (A.2) are well known:
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Here, const is an arbitrary constant (which does not
enter the final results); the contours C± pass around the
point k' = k from below (+) and from above (–), respec-
tively; and the integral in braces on the right-hand side
converges at infinity by virtue of the condition

(k)] = 1.

Knowing explicit expressions for the functions

(k), we can readily find explicit solutions to the
inhomogeneous boundary-value problem (A.1),
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in order to obtain analytic representations of the func-
tions ϕ(±)(k), which enter into formulas (16) and (17)
for the desired fields of TM waves:
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Abstract—The electron density in the midplane of a current sheet and far from it is determined from an anal-
ysis of the profiles of the HeII 6560-Å and Hα spectral lines. A new approach to calculating the Stark broaden-
ing of the HeII 6560-Å line is developed. The results obtained can be used to determine the plasma density in
other experimental devices. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the conventional techniques for measuring
the electron density in dense low-temperature plasmas
is the method based on the analysis of the profiles of the
spectral lines of helium ions. The most frequently used
lines are the HeII 4686-Å and HeII 3203-Å lines, which
belong to the Pashen series (Pα and Pβ, respectively)
[1, 2]. In the studies involving a dense current-sheet
plasma produced under high-pressure filling [3], the
evolution of the maximum electron density (i.e., in the
midplane of the sheet) was obtained from the broaden-
ing of the HeII 4686-Å line [4]. The density increased
with time from 4 × 1016 to 9 × 1016 cm–3; accordingly,
the full width at half maximum (FWHM) of the HeII
4686-Å line profile varied within the range ∆λ1/2 = 2.5–
4.1 Å. In [4], the HeII 6560-Å line was also recorded;
the FWHM of this line was unexpectedly large, ∆λ1/2 ≈
47 Å. This line belongs to the Bracket series and corre-
sponds to the transition between the n = 6 and n = 4 lev-
els, where n is the principal quantum number. Since the
typical value of the dipole moment for the n = 6 level
exceeds those for the n = 4 and n = 5 levels, the radia-
tive transitions from which form the Pα and Pβ spectral
lines of the HeII ions, the HeII 6560-Å line should be
more sensitive to the action of the electric field than Pα
and Pβ lines. However, to our knowledge, the Stark
broadening of the HeII 6560-Å line has not yet been
addressed in the literature. One possible explanation is
that the HeII 6560-Å line is overlapped by the intense
Hα line of hydrogen atoms. This effect was also
observed in our experiments. In this case, as is shown
in [4], a rather complicated experimental profile can be
represented as a superposition of two profiles with sig-
nificantly different FWHMs corresponding to the Hα
and HeII 6560-Å lines.
1063-780X/00/2603- $20.00 © 0262
In this study, we calculated the Stark broadening of
the HeII 6560-Å line in the electric microfields of the
plasma electrons and ions. When calculating the effect
produced by the electrons, we used the impact approx-
imation, whereas the quasistatic approximation was
used for the ions. As a result, the relation between the
electron density and the FWHM of the HeII 6560-Å
spectral line was obtained for the first time. This rela-
tion allowed us to determine the electron density in the
current-sheet midplane (from which the spectral lines
of helium ions were emitted) using a new technique
based on measurements of the broadening of the HeII
6560-Å line. It should be emphasized that the new data
agree well with the previous results obtained from the
broadening of the HeII 4686-Å line [4]. The electron
density inferred from the broadening of the Hα line is
nearly 30 times lower than the maximum density in the
sheet. This means that the Hα line is emitted from the
periphery of the current sheet. This confirms the previ-
ous conclusion [4–6] that the lower the excitation
energy of the spectral line, the farther from the mid-
plane of the current sheet is the region from which this
line is emitted.

2. EXPERIMENTAL DEVICE 
AND THE TECHNIQUE 

OF SPECTROSCOPIC MEASUREMENTS
Spectroscopic measurements were carried out in the

CS-3D device [3, 7]. A plane current sheet was pro-
duced when the electric current was generated in a
plasma along the zero line of a two-dimensional mag-
netic field configuration. In these experiments, the gra-
dient of the quasistatic magnetic filed was 570 G/cm,
the half-period of the plasma current pulse was 5 µs,
and the maximum current was 40–60 kA. The diameter
of the quartz vacuum chamber was 18 cm, and the
length of the plasma gap was 60 cm. The current sheet
2000 MAIK “Nauka/Interperiodica”



        

DETERMINATION OF THE PLASMA DENSITY IN A CURRENT SHEET 263

                                                                                                         
was produced under high-pressure helium filling, the
initial pressure being p0 ≈ 300 mtorr [3, 4], which was
nearly one order of magnitude higher than in previous
experiments [7]. The initial electron density corre-

sponding to 100% one-electron ionization was  ≈
1016 cm–3. The maximum density in the formed sheet

was one order of magnitude higher,  ≈ 1017 cm–3,
and the plasma temperature was Te ≈ Ti ≈ 2–3 eV [3, 4].
The sheet width was 2∆x ≈ 15–18 cm, the thickness was
2∆y ≈ 1–2 cm, and the length was ∆z ≈ 60 cm.

Spectroscopic measurements were carried out with
the use of an optical scheme similar to that described in
[4]. Plasma emission in the visible range was collected
by a glass achromatic objective producing a strongly
reduced image of the central 60-cm-long and 1.2- to
1.5-cm-diameter quasi-cylindrical region of the vac-
uum chamber (and, correspondingly, the current sheet)
on the end of a quartz fiber that was 10 m long and
400 µm in diameter. The plasma emission was trans-
mitted along the fiber into the entrance slit of an
MDR-3 monochromator; the focal length of the mono-
chromator entrance lens was 600 mm. In this experi-
ment, we used a 1200-line/mm diffraction grating pro-
viding an inverse linear dispersion of 13 Å/mm. The
spectral line profiles obtained in the monochromator
exit plane were recorded with an MORS-3 multichan-
nel optical recording system [4, 8] and stored in the
memory of a personal computer. The MORS-3 consists
of an image tube and a multichannel CCD detector. The
total inverse linear dispersion of the system was

0.46 Å/channel; the instrumental FWHM was  ≈
3 channels ≈1.4 Å. The spectra were recorded and aver-
aged over time intervals of 0.6–0.7 µs.

3. ANALYSIS OF EXPERIMENTAL DATA

The study of the spectrum of emission from the cur-
rent sheet plasma in the vicinity of the Hα line revealed
that this spectrum changed significantly with time [4].
This is seen from a comparison of Figs. 1 and 2. At the
instant t1 = 0.5 µs, after the electric current has been
excited in the plasma and the current sheet has started
to form, the emission spectrum contains only the Hα
line, whose FWHM is equal to 1.8 Å. At t2 ≈ 3.7 µs,
when the current sheet has already been formed and the
plasma has been compressed into a sheet, the emission
spectrum is a superposition of two lines: the hydrogen
Hα and HeII 6560-Å lines. In this case, the Hα line is
shifted by nearly 6.5 cm–1 (or by nearly three angstroms
in wavelength units) to the red side in comparison with
the position of the center of the HeII 6560-Å line.1 

1 In this paper, the frequency ω is measured in spectroscopic units,
cm–1. The frequency ω expressed in cm–1 and the wavelength λ
expressed in cm are related by ωλ = 1.
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Let us analyze the experimental profile of the Hα
spectral line shown in Fig. 1. The FWHM of this profile

is equal to ∆  ≈ 4.9 cm–1. In this case, the main con-
tribution to the FWHM comes from the instrumental

width, which was equal to ∆  ≈ 3.25 cm–1. The
measurements showed that the spectral line profile
associated with the instrumental broadening was a
Gaussian. In addition, the Doppler effect (at a tempera-
ture of T ≈ 1 eV) also contributed to the broadening of
the Hα line (see [3, 4]), producing a Gaussian profile of
the spectral line. As a result, instrumental plus Doppler
broadenings lead to a Gaussian profile with the FWHM

equal to ∆  ≈ 3.46 cm–1. Hence, the experimental
profile of the Hα line shown in Fig. 1 is a convolution of
a Gaussian profile (resulting from the instrumental plus
Doppler broadenings) and a Stark profile due to the ion
and electron microfields. For analyzing the Stark
broadening of the Hα line, we used the results of [9], in
which the data on the calculated FWHMs of a number
of hydrogen spectral lines in a plasma are presented.
These data take into account both the electron and ion
contributions to the broadening of hydrogen spectral
lines. To estimate the FWHM of the Stark profile, we
assumed this profile to be nearly a Lorentzian. Numer-
ical calculations showed that the best fit to the experi-

mental profile of the FWHM ∆  = 4.9 cm–1 is

obtained if the Gaussian profile of the FWHM ∆  =
3.46 cm–1 is convoluted with the Lorentzian profile of

the FWHM ∆  ≈ 2.69 cm–1. Then, based on the data
from [9], we obtain the following estimate for the elec-
tron density at the periphery of the current sheet: Ne ≈
2.5 × 1015 cm–3, the measurement accuracy being
.20%.
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Fig. 1. Experimental profile of the hydrogen Hα spectral
line (λ = 6563 Å) recorded at the instant t = 0.5 µs. This pro-
file was used to determine the electron density at the periph-
ery of the current sheet, Ne = 2.5 × 1015 cm–3.
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It is seen from Fig. 2 that the experimentally mea-
sured broadening of the HeII 6560-Å line for t = 3.7 µs
was 100 ± 10 cm–1, which is more than one order of mag-
nitude larger than the total half-width of the instrumental
profile and Doppler broadening for Ti = 2 eV [3, 4].

When analyzing the experimental profile of the HeII
6560-Å line shown in Fig. 2, we took into account the
Stark broadening of this line due to the combined
action of the electric fields produced by the plasma
electrons and ions. The contribution from the electrons
was calculated by the impact model, whereas that from
ions was calculated by the quasistatic model [10, 11].
In the calculations, we assumed that the ion electric
microfield F splits the HeII 6560-Å spectral line into a
number of spectral components in accordance with the
linear Stark effect and the electron impact broadening
forms Lorentzian profiles of these spectral components.
According to this assumption, for the fixed value F of
the ion microfield, the spectral line profile was repre-
sented in the form

(1)

Here, the frequency ∆ω is counted from the unper-
turbed position of the HeII 6560-Å line; the quantities
fk are the intensities of the Stark components, whose
positions in the emission spectrum are determined by
the frequencies ∆ω = αkF, where αk is the constant of

SF ∆ω( )
f k

2π
------ γ

∆ω α kF–( )2 γ2 4⁄+
-------------------------------------------------.

k

∑=

1.0

0.2

0.1

–70 0 35 ∆ω, cm–1–35

–70 0 35–35
∆ω, cm–1

Hα
HeII 656.0 nm

Fig. 2. Emission spectrum of the current-sheet plasma in the
red spectral region (on the frequency scale). The spectrum is
a superposition of the helium ion HeII 6560-Å and hydro-
gen Hα spectral lines. The solid line shows the experimental
profile recorded at the instant t = 3.7 µs, and the dashed line
shows the theoretical profile that provides the best fit for the
experimental spectrum. The theoretical spectrum is a super-
position of the calculated profiles of the HeII 6560-Å and
Hα lines. These profiles are shown separately in the insert:
the HeII 6560-Å profile is shown by the solid line, and the
Hα profile is shown by the dashed line.
the linear Stark effect for the kth components; and γ is
the FWHM of the Lorentzian profile formed due to the
electron impact mechanism. The quantities fk and αk are
determined by the quantum numbers corresponding to
the upper and lower energy levels of the HeII ion; their
analytical formulas are presented, e.g., in [12]. For the
impact FWHM γ expressed in cm–1, we used the
approximate formula [11]

(2)

where Ne is the electron density; 〈v〉  is the mean elec-
tron thermal velocity; Ò is the speed of light; RD is the
Debye radius; and ρ0 is the Weisskopf radius,

For the factor I(6, 4), we take the value I (6, 4) = 196,
which can be derived using the results of [13, 14]. The
resulting profile of the I(∆ω) line, emitted by the
ensemble of the HeII ions, can be obtained by averag-
ing the profile SF(∆ω) (1) over the distribution function
W(F) of ion microfields:

(3)

For the ion-microfield distribution W(F), we used the
function proposed in [15] and based on the model of a
uniform neutralizing electron background. We also
used the analytical approximation for this function
from [16]. As a result, numerical calculations of the
profile of the HeII 6560-Å spectral line yield the fol-
lowing approximate relationship for the FWHM ∆λ1/2
and the plasma density Ne (provided that Ne = Ni):

(4)

where ∆λ1/2 is expressed in Å and Ne is expressed in
cm–3. When deriving relationship (4), we assumed the
charged-particle temperature to be 2 eV [3, 4]. Rela-
tionship (4) can be used in the range 1016 ≤ Ne ≤
1017 cm–3.

The emission spectrum Iexp(∆ω) shown in Fig. 2 was
approximated by the function I(∆ω), which is a linear
combination of the functions I1(∆ω) and I2(∆ω):

(5)

where I1(∆ω) is the profile of the HeII 6560 Å line and
I2(∆ω) is the profile of the hydrogen Hα line. The con-
stant κ in (5) was a variable parameter, which was cho-
sen from the condition of the best approximation of the
experimental profile Iexp(∆ω) shown in Fig. 2 by the
theoretical dependence I(∆ω) (5). Two factors played
an important role in approximating the experimental
profile Iexp(∆ω) by the theoretical profile I(∆ω) (5).
First, we took into account that the profile of the Hα line
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is much narrower than the profile of the HeII 6560-Å
line. Second, there is a dip in the center of the profile of
the HeII 6560-Å line, which is a result of the Stark
effect for this line in the quasistatic microfields of the
plasma ions. It follows from here (in view of the fact
that the Hα line lies close to the center of the HeII
6560-Å line) that most of the intensity of the Hα line is
localized near the center of the experimental profile
Iexp(∆ω), whereas most of the intensity of the HeII
6560-Å line is localized in the wings of the experimen-
tal profile Iexp(∆ω).

The theoretical profile I(∆ω) (5), which provides the
best fit for the experimental profile Iexp(∆ω), is shown
in Fig. 2 by the dashed line. Also shown in Fig. 2 are the
profiles I1(∆ω) and I2(∆ω), whose linear combination
yields the resulting profile I(∆ω). Note that the result-
ing profile I(∆ω) shown by the dashed line in Fig. 2 cor-
responds to κ = 1 in (5). The theoretical profile I1(∆ω)
was calculated using formulas (1)–(3) for the plasma
density Ne = Ni = 7 × 1016 cm–3. The accuracy of deter-
mining Ne in this case was .15% and was primarily
related to the measurement accuracy of the broadening
of the HeII 6560-Å line. When analyzing the experi-
mental profile Iexp(∆ω) shown in Fig. 2, we could not
determine exactly the shape of the Hα profile (because
this line partially overlaps the HeII 6560-Å line).
Because of this, for the sake of simplicity, we assumed
the profile I2(∆ω) to be a Lorentzian. In this case, the
best agreement between the approximate profile
Iexp(∆ω) (5) and the experimental profile I(∆ω) was
achieved when the FWHM of the profile I2(∆ω) was
equal to 4.5 cm–1, which coincided to within an accu-
racy of 10% with the FWHM of this spectral line mea-
sured in the previous experiments at t = 0.5 µs (see
above).

4. CONCLUSION

Based on the analysis of the profiles of the Hα and
HeII 6560-Å lines, we have determined the electron
density in different regions of the current sheet. It is
found that, at the current-sheet periphery (from which
the Hα line is emitted), the electron density is equal to
Ne ≈ 2.5 × 1015 cm–3. Thus, based on the new data, we
refined the lower estimate for the electron density in the
sheet presented in our previous paper, Ne ≤ 1016 cm–3

[4]. It is found that, in the central region of the current
sheet (from which the HeII 6560-Å line is emitted), the
density is equal to Ne ≈ 7 × 1016 cm–3, which agrees with
the value of Ne obtained from the broadening of the
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
HeII 4686-Å line [4] under the same experimental con-
ditions. Another important result is the calculation of
the Stark broadening of the HeII 6560-Å line. The
results obtained can be used to determine plasma
parameters in other devices.
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Abstract—A study is made of the dynamics of the ionospheric plasma in the vicinity of an earth satellite
injecting an electron beam. The time evolution of the electric charge of the satellite is determined. The electric
potential of the satellite is found to be well below the beam-cutoff potential. It is shown that, under conditions
typical of active experiments in space, the plasma electrons are capable of neutralizing the satellite’s charge.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The most important problem in preparing active
experiments [1] on electron beam injection into the
Earth’s ionosphere is that of determining the electric
charge Q that appears on a space vehicle (here, we will
speak about earth satellites), because active experi-
ments in space are usually carried out without artificial
systems for neutralizing the charge Q and under the
condition |Ib/I0ç| @ 1, where Ib is the injection current
and I0ç is the current of thermal electrons of the iono-
spheric plasma to the satellite surface with allowance
for the influence of the geomagnetic field H0 at Ib = 0.
As a result, the positive charge Q, which starts to grow
at the time the electrons begin to be injected, may
exceed a critical level at which the beam energy losses
become inadmissible or the electron beam is cut off
[1, 2]. This point is especially important for time inter-
vals shorter than the time required for ionizing neutral
particles and the time of plasma heating by an electron
beam (t < tion, th). The reason is that, when the beam is
injected at altitudes hI > 130 km, the satellite collects
thermal plasma electrons and acquires a negative
charge; this is the only mechanism for neutralizing the
satellite’s positive charge Q [3].

The plasma dynamics in the vicinity of a satellite
and the change in its charge Q were studied in [3–5]
under the assumptions that the electron injection is iso-
tropic and H0 = 0. It was shown that the electric charge
Q that appears on the satellite because of the injected
electrons is such that the electric potential ϕ0 of the sat-
ellite is well below the beam-cutoff potential and the
process of neutralizing the charge Q is oscillatory in
nature. Consequently, under the assumptions adopted
in those papers, the charge Q was neutralized by plasma
electrons. Note that the geomagnetic field H0, which
plays a decisive role in neutralizing the satellite’s
charge and in forming the structure of the plasma
1063-780X/00/2603- $20.00 © 0266
sheath near the satellite surface, can legitimately be
ignored only for satellites moving along a geostation-
ary orbit, at which |H0 | ≈ 0 [6, 7].

Here, we study the dynamics of a magnetized iono-
spheric plasma around a satellite injecting an electron
beam at altitudes hI > 130 km and neutralization of the
satellite’s change Q. We also determine the distribu-
tions of the fields and charged particles in the perturbed
plasma over time intervals t < tion, th.

2. BASIC EQUATIONS

We consider a satellite of radius R0 that orbits the
Earth along the geomagnetic field H0 in the ionospheric
F-layer (hI > 130 km). At t = 0, the satellite starts to
inject an electron beam in the direction of H0; the beam
current Ib(t) is a known function of time. We can
assume that the plasma around the satellite is collision-
less, because the inequalities [1, 6, 7]

(1)

hold in the F-layer (this is also confirmed by experi-
mental data). Here, ω0 is the plasma frequency, ν is the
rate at which the electrons collide with other plasma
particles, le, i are the electron and ion mean free paths,
and Rc is the characteristic dimension of the perturbed
plasma (or the space-charge sheath). We assume that, in
the rest frame of the satellite, the following inequalities
hold:

(2)

where ve, i are the directed electron and ion velocities
and vTe, i are the electron and ion thermal velocities.
Conditions (1) and (2) imply that the processes in the
vicinity of a satellite should be analyzed over time
scales no longer than t ! 1/ν and t ! Rc/ |vi |.

ω0 @ ν , le i,  @ Rc

v e  @ v Te, v i v Ti,<
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Under conditions (1) and (2), the plasma processes
can be described by the set of equations of the quasihy-
drodynamic approximation for a collisionless plasma,
written for the electrons [6] (the background ions serve
merely to maintain plasma quasineutrality). In Eulerian
form, this set can be written as

(3)

(4)

(5)

(6)

where E and B are the electric field and magnetic
induction, ve and ne are the velocity and density of the
plasma electrons, and j is the electric current density of
the beam and plasma electrons.

In equations (3)–(6), we incorporated the displace-
ment current and the convective current, which are usu-
ally neglected in magnetohydrodynamics under the
conventional simplifying assumptions that the plasma
is highly conducting and ω ≈ ω0 ! ωHi , where ωHi is the
ion cyclotron frequency. However, for the processes
around a satellite injecting an electron beam, we have
ω0 @ ωHi [6, 7], so that these currents should be taken
into account. In analyzing equations (3)–(6), we will
not distinguish between the vectors B and H (H is the
magnetic field strength), because the magnetic perme-
ability in the ionospheric plasma is extremely close to
unity [8]. We represent the vectors E and H as

(7)

where Ep and Hp are the electric and magnetic fields of
the plasma, Eb and Hb are those of the beam, and ES is
the electric field of a satellite that is being charged as a
result of electron injection in the absence of a plasma.

Since the inequality Wb @ |eϕ0 | (where Wb is the
beam-electron energy), which holds in most active
experiments on electron beam injection into the iono-
sphere [1], implies that the beam energy losses are low,
the fields and current of a beam can be regarded as
given functions. Consequently, the self-fields of a beam
enter equation (6) only and the beam current density
drops out of equation (3). We neglect the beam front–
driven vortex fields [9], because they are carried away
from a space-charge sheath of radius Rc during a time
interval t ≈ Rc/vb ≤ 10–7 s < 1/ω0 and are subsequently
damped. We also neglect the reverse current If [9],
because, by virtue of rb0 < λE = c/ω0, it satisfies the con-

dition If ≈ −Ib(ω0/c)2π  ! In [10]. In these relation-
ships, vb is the beam velocity, In is the neutralizing cur-
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rent of the plasma electrons, and rb0 is the beam radius
at the exit from the injector.

Equation (3) and the results obtained in [3] enable
us to estimate the field Hp produced by the currents of
the plasma electrons as |Hp| ~ 10–3 Oe; i.e., we have
|Hp/H0 | ! 1. Consequently, the field Hp and equation
(4) can be eliminated from set (3)–(6). Given the above
remarks, we can rewrite equations (3)–(6) as

(8)

(9)

(10)

Since the problem is treated in axisymmetric geom-
etry, the projections of equations (8)–(10) onto the axis
of the spherical coordinate system, which will be used
in further analysis, can be written as

(11)

(12)

(13)

(14)

(15)

(16)

(17)

where ωHe is the electron cyclotron frequency and
ωHb = |e |Hbϕ /mec. Note that, for θ = 0 and π, equations
(11)–(17) pass over to equations (5) from [3], which
describe the dynamics of the plasma electrons near a
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satellite under the assumptions that electron injection is
isotropic and the geomagnetic field is zero (H0 = 0).

Since the self-fields of a beam are assumed to be
prescribed and the electric field of a satellite that is
being charged as a result of electron injection (i.e.,
without allowance for the satellite charging by a neu-
tralizing current) depends exclusively on the beam cur-
rent, these fields can be expressed through the beam
parameters. Following [11], we assume that the elec-
tron beam is cylindrical and obtain

(18)

(19)

(20)

(21)

where Ib(t) = Im fb(t), Im = const < 0, 0 ≤ fb(t) ≤ 1, t' = t –
(R – R0)/vb is the delay time. If the inequality |∆f/f| ! 1
holds for the functions in equations (11)–(17) for a time
(Rc – R0)/vb , then we have t' ≈ t. Below, we will show
that the most rapid plasma processes occur on the time
scale t ~ 1/ω0. For parameter values characteristic of
active ionospheric experiments [1, 6, 7], a comparison
between these time intervals gives (Rc – R0)/vb ! 2π/ω0.
Consequently, the time delay in equations (11)–(17)
can be ignored. Note also that expressions (19) and (20)
are written without allowance for “shadowing” of the
regions around a satellite, because, otherwise, they
would be too involved.

3. INITIAL AND BOUNDARY CONDITIONS
FOR THE BASIC EQUATIONS

Equations (11)–(17) should be supplemented with
the initial conditions characteristic of the vicinity of a
satellite moving along the geomagnetic field H0 in the
ionosphere. However, these conditions, which were
presented in [7], refer to regions with low ion and elec-
tron densities ne, i and are too complicated to be used in
a hydrodynamic description of the plasma processes.
To simplify them, we turn to the inequalities Q(t > 0) @

|Q(0)| and ϕ0(t > 0) @ k / |e | (where k is the Boltz-
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mann constant and  is the plasma electron tempera-
ture), which are satisfied in active experiments with
electron beam injection into the ionosphere. Conse-
quently, in contrast to [7], we can impose the following
initial conditions at t = 0 [3]:

(22)

where σ(t) is the surface charge density. The function

ϕ* = eϕ(0)/k , which was given numerically in [7],
can be approximated by ϕ* = aexp[–b(R/R0 – 1)] –
d(R/R0)–2 [3] with a = 0.418, b = 0.9301, and d = 0.272.

In order to specify the boundary conditions, we
must analyze the properties of the satellite surface and
the plasma sheath structure around the satellite. We
assume the satellite surface to be perfectly conducting.
We also assume the sheath structure to be such that the
satellite surface is perfectly absorbing for plasma elec-
trons and neutralizes the plasma ions that hit it. Al’pert
et al. [7] showed that the plasma sheath around a con-
ducting body is very similar in structure to that around
a perfectly reflecting body. Consequently, the reflection
coefficient A of plasma particles from the surface of a
conducting body should be close to unity:

(23)

where D is the Debye radius. Thus, we can regard the
satellite surface as being almost perfectly conducting,
because the electron and ion mean free paths in the ion-
ospheric plasma are sufficiently long (R0 ~ 100 cm, D ~
1 cm, le, i ~ 104 cm [6, 7]).

With these considerations, we can specify the
boundary conditions as follows [12]:

(24)

(25)

where

N is the normal to the satellite surface, and

. (26)

We assume that the plasma outside a space-charge
sheath of radius Rc is unperturbed. Since the satellite
surface is regarded as being almost perfectly conduct-
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ing, the time evolution of the satellite’s charge can be
described by

(27)

4. DISCUSSION OF THE RESULTS

Equations (11)–(17) were solved by a finite-differ-
ence method [13]. The parameters of the problem were
chosen in accordance with the ELECTRON ECHO-1
and ARAKS experiments [1], because they yielded the
most rewarding insights into the physical processes
accompanying the injection of electron beams from a
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Fig. 1. Time evolution of the satellite’s charge and electron
plasma density at a distance ∆R from the satellite (in arbi-
trary units).
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satellite: Ib = const = –0.5 A, Wb = 10 keV, rb0 = 15 cm,

R0 = 50 cm,  = 5 × 105 cm–3, and  = 103 K. Some
results of solving the problem are illustrated graphi-
cally in Figs. 1–5.

Figures 1–3 present time evolutions of the functions
Q, ne , ER, Eθ, Eϕ (ER = ESR + EpR + EbR , Eθ = Epθ +
Ebθ, Eϕ = Epϕ), veR, veθ, and veϕ . All the time evolutions
(except for Q) are plotted at the point R = R0 + ∆R, θ =
60°, where ∆R is the grid size along the R-coordinate.
Figures 1–3 show that neutralization of the satellite’s
charge is accompanied by unsteady oscillatory pro-
cesses with a tendency to reach an equilibrium state.
The time evolution of the main frequency ω1 ≈ ω0,
which characterizes the oscillatory character of the pro-
cesses, is seen to be modulated at the frequency
ω2 ≈ ωHe; moreover, we have ω1 < ω0 and ω2 < ωçÂ,
because dissipation [14] acts to increase the period of
the oscillatory processes [15]. The phases of the quan-
tities under consideration are related as follows: the
functions Q (and ER), Eθ, and Eϕ are shifted in the phase
by ψ ≈ π/2 with respect to veR, veθ, and veϕ, respec-
tively, and the function ne is shifted by ψ ≈ –π with
respect to Q and ER because of the plasma inductance
due to electron inertia in an alternating electric field [16].

The solutions obtained in the linear approximation
are close to the solution of the equation for forced oscil-
lations with friction near the resonance ω ≈ ω0 + ωHe

[16] under the condition λ ! ωHe ! ω0 , where λ ~
105 s–1 is the friction coefficient [17]. Over the time
interval t ~ 1/λ, the oscillations have the form x ≈
−B(t)cos(ω0t + ψ(t)), where B(t) = F(t)/2meω0ωHe is a
slowly varying amplitude and ψ(t) is a slowly varying
phase. We can see that the amplitude B(t) experiences
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slow periodic variations around its steady-state value,
the time required for the oscillations to be established

being t ~ 1/λ ! tion, th [3]. For example, if F(t) = e〈 〉,
〈 〉 ≈ 7 × 10–4 esu (t ≈ 4 µs), then, for veR, we obtain

ω0B(t) = e〈 〉/2meωHe ≈ 2.3 × 107 cm/s, which agrees
well with the parameter values obtained by solving
equations (11)–(17) (Fig. 3).

To estimate the potential ϕ0, we turn to Fig. 5, which
shows that 〈veR(R0 + 0, θ, t)〉  ≈ –2.6 × 108 cm/s, so we

obtain ϕ0 ~ me /2|e| ≈ 19 V. Consequently, we have
|e|ϕ0 ! Wb; i.e., the beam energy losses are small and
the assumption that Wb ≈ const is valid. To determine
the analytic dependence of the potential ϕ0 on the
experimental parameters, it is necessary to investigate
the structure of the space-charge sheath. This problem
will be studied separately in a subsequent paper. When
the potential ϕ0 is very high, such that R0 @ D and

|ϕ0 |  @ (k / |e |)(Rc/D)4/3 [7], we have ϕ ~ ϕ0R0/R near

ẼR
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Fig. 4. The electric field components, the components of the
plasma electron velocity, and the plasma electron density
versus the angle θ at a distance ∆R from the satellite (in arbi-
trary units).
the satellite surface. This circumstance made it possible
to simplify the derivation of the desired analytic depen-
dence obtained in [4] for isotropic electron injection
under the condition H0 = 0.

Figures 4 and 5 illustrate the solutions to equations
(11)–(17) at t = 2 µs versus the angle θ (for R = R0 + ∆R)
and the radius R (for θ = 60°), respectively. Figure 4
shows that all of the functions, except for veR, depend
strongly on the angle θ, primarily because of the large
variations in Eθ(θ) and Eϕ(θ). Since ER(θ) ≈ const, we
have veR(θ) ≈ const. From Fig. 5, we can see that the
solutions change sharply across a sheath of thickness
1 ≤ R/R0 ≤ 1.5 around the satellite and, at larger dis-
tances from the satellite surface, they remain essen-
tially unchanged. Since the sheath thickness is smaller
than the electron Larmor radius, the drift approxima-
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Fig. 5. The electric field components, the components of the
plasma electron velocity, and the plasma electron density
versus the radius R for θ = 60° (in arbitrary units).
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tion cannot be used to determine the parameters of the
perturbed plasma.

The simplifying assumptions made in solving the
problem allowed us to employ a quasihydrodynamic
description of the processes occurring in the plasma
and to neglect ion motion. However, we also assumed
that the initial distribution of charged plasma particles
differs from the conventional one and the initial radii of
the electron beams are larger than those characteristic
of actual space experiments (rb0 = 1–3 cm [1]). Regard-
ing the effect of these factors on the solutions obtained,
we offer the following comments.

According to Figs. 3 and 5, the relationship |ve | @
vTe ~ 107 cm/s holds over an entire sheath of radius Rc

[6, 7], which justifies the use of the quasihydrodynamic
approximation. Since the problem was solved over the
time interval 0 ≤ t ≤ 4 µs, over which the satellite’s

charge satisfies the relationships |vi | ~ eQt/  <

vTi ~ 105 cm/s and t ! 1/ν ~ 10–4 s ! Rc/|vi| = 2.5R0/|vi| ~
10–3 s [6, 7], we were justified in neglecting ion motion.
We used an unconventional initial distribution of
charged plasma particles around a satellite, because the
hydrodynamic approximation is inapplicable to the

region with  ≈ 0, which forms just behind an orbit-
ing satellite. As initial conditions, we adopted the con-
ditions near a satellite at rest, because the incident

plasma flow ahead of a satellite is such that ne, i ≈ 2
[3, 7]. We also increased the radius of the injected beam
so as to avoid the formation of regions with a very low
electron density and/or the escape of all of the electrons
from the region occupied by the beam under the action
of its own electric field Eb.

In conclusion, note that the results obtained in our
study may be useful in planning active space experi-
ments with wire arrays [18] and in interpreting the rel-
evant experimental data.
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Abstract—The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various
shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the dis-
charges exhibit a common feature that is independent of the antenna-electrode design: near the electrode sur-
face, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped
like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the dis-
charge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron
density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes
the effect even more pronounced. As the electron density decreases due to dissociative recombination, the
microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Pre-
sumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission
intensity at the periphery of the discharge. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, much attention is drawn to stimulated
microwave discharges [1–4]. The electrode microwave
discharge also belongs to this class of discharges and
differs only in that the energy is supplied to the dis-
charge along the initiating antenna. Although such dis-
charges have a number of interesting features and a
wide range of potential applications (e.g., in plasmo-
chemistry, for producing diamond coatings [5]), they
have remained until now the least understood type of
microwave discharges. In [6, 7], these discharges were
treated phenomenologically, the spatial structure of the
discharge with a cylindrical electrode was described,
and results of probe measurements were presented.
However, information on the nature of these discharges
is lacking and the physical processes giving rise to
these discharges are still poorly studied.

The aim of this paper is to study the effect of the
shape and size of the electrodes on the properties of
the discharge, to determine the structure of an elec-
trode microwave discharge in hydrogen at pressures of
1−8 torr from space-resolved measurements of the inte-
gral plasma emission intensity, and to reconstruct the
picture of physical processes giving rise to the structure
observed.

2. EXPERIMENTAL SETUP

The discharge chamber was a metallic cylinder
8.5 cm in diameter with an antenna inserted through a
vacuum-tight connection at its end. The antenna was a
component of a coaxial-to-waveguide converter, which
was adjusted with the help of a short-circuiting piston
1063-780X/00/2603- $20.00 © 20272
(Fig. 1). Antennas of different shapes and sizes were
used. The discharge was initiated around the antenna
(the exciting electrode), and its size was substantially
smaller than the chamber diameter and the distance to
the chamber’s lower end. The measurements were car-
ried out in the flow system. We used a microwave gen-
erator with an output power up to 170 W and a fre-
quency of 2.45 GHz. The discharge emission passed
through a window in the wall of the discharge chamber,

H10

1
2

3

4

5

76

Fig. 1. Schematic of the experimental setup: (1) plasma, (2)
discharge chamber, (3) electrode, (4) waveguide-to-coaxial
converter, (5) window, (6) collimator, and (7) fiber.
000 MAIK “Nauka/Interperiodica”
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Fig. 2. Structure of discharges with different electrodes: (1) cylindrical electrode at (1.1) 1–3 and (1.2) 4–8-torr pressure, (2, 3) thin
wire, (4) trident twisted from a wire, and (5) wire spiral. Positions 1–4 show the change in the discharge shape with increasing the
incident power.
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fell into a diaphragm collimator, and was led to a pho-
tomultiplier through a fiber. The collimator collected
emission from the discharge region ~1.5 mm in diame-
ter. The collimator could be displaced in the plane par-
allel to the window both in the vertical and horizontal
directions; its coordinates were recorded by a two-
coordinate recorder. The second recorder input was
used to measure signals from an amplifier connected to
the photomultiplier. As a result, we obtained the distri-
bution of the integral plasma emission intensity I both
along the antenna axis (the axis of symmetry of the dis-
charge) and in the transverse direction.

3. GENERAL FEATURES OF THE DISCHARGE

The dependence of the discharge structure on the
shape and size of the initiating electrodes was investi-
gated at a pressure of 1 torr.

3.1. Cylindrical Electrode

3.1.1. Pipes and rods 6 or 4 mm in diameter. The
discharge usually consisted of two regions: a bright thin
sheath near the electrode and a less bright region sur-
rounding the sheath. The latter was usually spherically
shaped and had a sharp boundary (further, this region
will be referred to as the “sphere”). The brightness of
the discharge in the interior of the sphere (outside of the
thin sheath) was less compared to the periphery. The
volume and brightness of the sheath and sphere
increase with increasing the incident power and
decrease with increasing the pressure. At higher pres-
sures and low powers, the sphere is adjacent to the thin
sheath or completely disappears. The thin sheath first
appeared near the end of the cylindrical electrode; as
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
the incident power increased, the sheath extended along
the cylindrical surface toward the microwave generator.
When viewed from the electrode end, the sheath was
shaped like a ring situated at the periphery of the elec-
trode independently of whether pipe- or rod-electrodes
were used. At pressures of 1–3 torr, the sphere had an
almost regular shape and its center was situated some-
what lower than the electrode end (the higher the
power, the lower the center was situated). The thickness
of the sphere was maximum immediately under the
electrode and decreased with distance from the elec-
trode end, so that the upper part of the sphere was
almost invisible near the electrode. As the pressure
increased, the sphere changed shape (Fig. 2). Stainless-
steel and copper electrodes were used. The heating
traces were observed on the surface of the stainless-
steel electrode, which is evidence of substantial heat-
ing.

3.1.2. Thin (0.5 mm in diameter) wire. A charac-
teristic feature of a thin-electrode discharge was that
the discharge could be ignited at a lower power supply.
A weak plasma glow appeared at the end of the wire
even at an incident power of W = 2 W. At high powers,
the sphere elongated and took the shape of an ellipsoid,
following the plasma sheath which extended along the
electrode as the incident power increased (Fig. 2, posi-
tion 2).

3.2. Thin Wire Bent at a Right Angle near Its End

In comparison with Section 3.1, the new feature is
that, at high W values, the sphere produced a sprout that
surrounded the electrode bend and then went up (Fig. 2,
position 3).
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3.3. A Trident Twisted from a Thin Wire 
and Inserted into a Pipe Electrode

The discharge first appeared near the sharp edge. As
W increased, the discharge arose near the round ends as
well and a thin plasma sheath arose along each end of
the trident, each sheath being surrounded by its individ-
ual sphere following the sheath. Then, the spheres
approached each other and became deformed so that
there was always a dark gap between them. As W fur-
ther increased, the discharge arose near the pipe edge as
well. In this case, the size and brightness of the dis-
charge at the wire decreased (Fig. 2, position 4).
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Fig. 3. Spatial distribution of the plasma emission intensity
in the case of a cylindrical electrode 6 mm in diameter at a
pressure of 1 torr and incident power of 90 W.

Fig. 4. Distribution of the plasma emission intensity I(z)
along the discharge axis at a pressure of 1 torr and different
values of the incident power: (1) 29, (2) 50, (3) 70, and (4)
92 W.

 end
3.4. A Wire Wound as a Spiral

Thin plasma sheaths arose simultaneously near sev-
eral loops of the spiral and then skipped from one loop
to another. Spheres were formed around sheaths (Fig. 2,
position 5; experiments were also carried out with spi-
rals of another shape).

In the cases considered in Sections 3.1.2–3.4, when
W exceeded a certain threshold value, another dis-
charge arose near the point where the electrode entered
the chamber. In this case, either the discharge situated
near the end of the electrode quenched or its size and
brightness decreased substantially, because most of the
input energy was released in the discharge nearest to
the generator. As W increased further, the intensity and
size of the discharge situated near the electrode end
decreased (up to the complete disappearance of the dis-
charge).

Thus, independently of the electrode shape, the dis-
charge always consisted of two regions: a bright thin
sheath near the electrode and a less bright (usually
spherical) region surrounding the sheath. Hence, the
shape of electrodes has little or no effect on the struc-
ture of the discharge. Below, we consider in detail the
structure of the discharge with a cylindrical electrode.
The common feature is that the discharge always
occurred at high levels of reflection of microwaves; in
the experiments, the standing-wave factor varied from
6 to 11.

Note that spherical structures were observed in dc
[8], RF [9, 10], and microwave [3] discharges at pres-
sures of 10–2–100 torr.

4. RESULTS OF EXPERIMENTS
WITH CYLINDRICAL ELECTRODES

The basic structure of the discharge glow becomes
clear from Fig. 3: there is a bright thin sheath near the
electrode, and the emission intensity increases at the
periphery of the discharge.

At pressures of 1–8 torr, the distributions of the
plasma emission intensity along the electrode, I(z),
were measured for various values of the incident power
(Fig. 4). The curves are plotted versus the incident
power, because in our discharge system, the only possi-
bility to find the absorbed power is to calculate it from
the power balance by subtracting the reflected power.
The absorbed power calculated in this way is 10–30 W
for an incident power of 20–90 W. The absorbed power
is a linear function of the incident power. However, the
question of which portion of energy is absorbed by the
plasma itself remains open. The total intensity of the
discharge emission depends linearly on the incident
power for any pressures except for pressures close to
1 torr. The latter is likely due to the fact that, at this
pressure, the plasma impedance strongly affects the
electrodynamic properties of the system.

Figure 5 shows the dependences I(z) for various
pressures and the same incident power. The curves I(z)
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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show that there are two luminous regions, which
change depending on W and p as described above. It is
also seen that the emission intensity decreases from the
periphery to the center of the discharge. Figure 6 shows
the ratio between the total emission intensities of the
sheath and the spherical part of the discharge. This ratio
was calculated by integrating the function I(z) over the
sheath region and the sphere region. It is seen that the
dominant contribution to the discharge emission comes
from the bright sheath near the antenna.

5. DISCUSSION OF THE RESULTS

The structure of the discharge emission and the
appearance of a bright thin sheath surrounding the
antenna can be explained as follows.

The intensity of plasma emission is equal to I(r) ~
ne(r)kbΣ(r), where ne(r) is the electron density and

kbΣ(r) ~ v〉 is the total excitation coefficient
(here, the angular brackets mean the averaging over the
electron energy distribution function and the sum is
taken over all radiating states with the excitation cross
sections σi). Hence, spatial variations in the plasma
emission near the antenna may be caused by variations
in the radial profiles of ne and/or kbΣ. However, the pri-
mary cause of these dependences should be a sharp (at
a length of 1 mm) change in the amplitude of the micro-
wave field. For further analysis, it is important to keep
in mind the experimental fact (see Fig. 6) that the vol-
ume-integrated intensity of the sheath emission always
exceeds that of the spherical part of the discharge. This
allows us to conclude that the energy deposition in the
electrode sheath is higher than that in the spherical
region. Taking into account the difference between the
volumes, we can say that the energy deposition in the
electrode sheath is higher by several orders of magni-
tude.

The aforesaid allows us to obtain the following esti-
mate for the electron density in the plasma sheath
assuming that the total power is released in this sheath:
Wsp = δeffνeffne (where  is the average electron
energy, δeff is the mean fraction of the energy lost by an
electron in one collision with a heavy particle, and νeff
is the effective frequency of collisions between elec-
trons and heavy particles. The calculation for a hydro-
gen microwave plasma by the Boltzmann equation (the
numerical scheme is described in [11]) for a pressure of
1 torr and a microwave-field amplitude of 100 V/cm
shows that δeff ~ 10–2,  ~ 4 eV, and νeff ~ 109 s–1. Tak-
ing this into account, we obtain that ne ~ 1013 cm–3.
Note that, at such densities, the electron heat conduc-
tion should equalize possible variations of the average
electron energy across the sheath.

We can distinguish two regions in the sheath. The
first region is adjacent to the electrode, and the electron
density here varies from zero (on the antenna surface)
to the maximum value. The second region spans from

〈 σii∑

ε ε

ε
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this point up to the periphery of the discharge. In the
first region, because of the closeness to the electrode
surface, the loss of charged particles occurs primarily
through their diffusion to the electrode (τd ~ Λ2/Da ~
10−7 s). It is of interest to consider the second region.

The spatial electron density distribution is governed
by the balance equation for charged particles and
depends on both the spatial distribution of the ioniza-
tion rate and the ratio of the loss of charge particles
through diffusion to the loss through recombination.
Outside the sheath, the characteristic diffusion time is
determined by the discharge dimensions and is equal to
τd ~ Λ2/Da (Da ≈ µ+), where (De/µe) is the ambipolar
diffusion coefficient; µ+, µe are the ion and electron
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Fig. 5. Distribution of the plasma emission intensity I(z)
along the discharge axis at W = 20 W and different pres-
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Fig. 6. Ratio between the total emission intensities of the
sheath and spherical part of the discharge at (1) 1, (2) 2,
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mobilities, respectively; and De is the coefficient of free

electron diffusion. The mobility of  ions (which are
the most abundant ions [11]) in hydrogen at a pressure
of 1 torr is equal to µ+ ~ 8000 cm2/V s; thus, we obtain
Da ~ 2 × 104 cm2/s and τd ~ 10–5 s.

The characteristic dissociative electron–ion recom-
bination time is τr ~ 1/neγr ~ 10–6 s for an electron den-
sity of ne ~ 1013 cm–3 (for γr ~ (2–3) × 10–6 [12]). Con-
sequently, the spatial variations in the charge-particle
density profile outside the bright plasma sheath are
governed by the volume recombination and the electron
density profile must be similar to the field profile. This
means that the intensity of the discharge emission
decreases with distance from the sheath.

The variations in the radial profile of the electric field
can be caused by several effects. One cause is the skin-
ning of the field at the length ∆sk = –(ω/c)Im[ε(ne)]1/2,
where ε(ne) is the plasma permittivity. We can estimate
ne assuming that the skin depth is equal to the sheath
thickness ∆. Then, we obtain the value ne ~ 1013 cm–3,
which coincides with the above estimate for the elec-
tron density in the sheath.

Another mechanism for the field variations is
described in [13, 14], in which self- consistent steady-
state electron-density and field distributions are consid-
ered. These distributions are established as a result of
the balance of ionization, diffusion, and attachment
processes in an RF discharge with dimensions less than
the wavelength. In those papers, variations in the elec-
tric-field component that is normal to the electrode sur-
face and parallel to the electron-density gradient were
studied. In particular, the discharge in a radially sym-
metric field produced by a single electrode was consid-
ered. It was shown that, in this case, the plasma-layer
thickness is equal to ∆ ~ La = (Da/νa)1/2, where νa is the
attachment frequency. In our case, the main process
leading to the volume loss of charged particles is the
dissociative electron–ion recombination. An analysis of
the basic equations shows that the method used in those
studies can be formally applied to our case if we replace
the attachment rate νa with the recombination rate νr =
neγr. Estimates show that the plasma layer with thick-
ness ∆ ~ 1 mm is formed when ne ~ 1013 cm–3. This
coincides with the above estimate based on the assump-
tion that the plasma-sheath thickness is equal to the
skin depth and means that additional data are needed to
clarify the role of each of the considered mechanisms
in the formation of a plasma sheath near the electrode.

Now, we consider whether the average electron
energy can vary at a length equal to the sheath thick-
ness. The characteristic electron-energy relaxation

length is equal to λε ~ vav/ νeff, where vav ~ 108 cm/s
is the average electron energy. Estimates show that λε ~
1 cm. Hence, variations in the average electron energy
cannot be large.

H3
+

δeff
1/2
Nevertheless, these variations must be taken into
consideration because even small variations in the aver-
age electron energy lead to significant variations in the
rate coefficients of the processes initiated by electron
impact, and these variations increase as the ratio ε/
increases. For example, the numerical solution of the
Boltzmann equation for a hydrogen microwave plasma
at a pressure of 1 torr shows that, if the amplitude of the
microwave field decreases by a factor of 1.5 (from 150
to 100 V/cm), then  decreases by 20% and the direct-
ionization coefficient decreases by a factor of 10. This
leads to more pronounced variations in the discharge
emission intensity in the radial direction.

Under certain conditions, the presence of plasma
resonance can affect the field structure. This mecha-
nism can become significant at low pressures. How-
ever, the described structure of the discharge was
observed even at pressures as high as several tens of
torr [3, 6, 7], when the electron collision frequency sub-
stantially exceeds the field frequency and this mecha-
nism cannot play a decisive role.

Hence, the spatial structure of the discharge can be
explained as follows.

In a nonuniform microwave field produced by an
antenna in a large chamber, a narrow plasma region
with a high field gradient is created near the antenna
surface. This region is characterized by high values of
the specific energy deposition, electron density, and
emission intensity. Because of volume recombination,
the electron density rapidly decreases with the radius,
whereas both the excitation rate coefficients for radiat-
ing states of heavy particles and the emission intensity
decrease with the radius. The decrease in the electron
density leads to a more uniform distribution of the
microwave-field amplitude and plasma emission in the
spherical region. Based on the probe measurements, the
conclusion was made in [7] that a surface wave propa-
gates along the spherical boundary of the discharge and
this wave is concentrated in the surface layer. The
increase in the emission intensity at the edge of the
spherical region can be explained by the effect of the
surface wave.

The described mechanism of the formation of the
discharge structure allows a consistent explanation of
the existence of this structure over a wide pressure
range in which the discharge was observed.

6. CONCLUSION

An electrode microwave discharge in hydrogen with
electrodes of various shapes and sizes has been studied
experimentally. It is found that the discharges in such
systems exhibit a common feature that is independent
of the design of the antenna electrode: near the elec-
trode surface, there is a thin bright sheath surrounded
by a less bright, sharply bounded region, which is usu-
ally shaped like a sphere. It is suggested that the struc-
ture observed arises because the microwave field main-

ε

ε
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taining the discharge is strongly nonuniform. Near the
electrode, there exists a thin plasma sheath with a high
electron-density gradient. A strong dependence of the
electron-impact excitation coefficient on the electric
field makes the effect even more pronounced. As the
electron density decreases due to dissociative recombi-
nation, the microwave-field gradient decreases and the
discharge emission intensity tends to a nearly constant
value. Presumably, in the boundary region of the dis-
charge, there exists a surface wave, which increases the
emission intensity at the periphery of the discharge.
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Abstract—The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules
in the a1∆g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees
of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solv-
ing the Boltzmann equation is in good agreement with the experimental data. © 2000 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Electron-excited molecules can play an important
role in plasma kinetics, especially if we consider long-
lived states. One of the most long-lived electron states
is the a1∆g oxygen state with an energy of 0.98 eV. For
brevity, oxygen in this state will be further referred to
as singlet oxygen. It is well known that, when a singlet-

oxygen molecule collides with O– and  negative
ions, it causes their disintegration. However, the inter-
action of singlet-oxygen molecules with electrons is
still poorly investigated.

Excitation of the discharge in an oxygen jet flowing
out of a chemical reactor based on the bubbling of chlo-
rine through a solution of H2O2 and KOH allows inves-
tigation of a plasma in a wide range of degrees of oxy-
gen excitation (up to 100% of singlet oxygen). Such
discharges can provide new information on electron
scattering by singlet-oxygen molecules.

An oxygen–iodine chemical laser based on the con-
version of singlet-oxygen energy [1] shows promise for
industrial applications as one of the few powerful lasers
generating in the near-infrared region (λ = 1.315 µm).
However, the use of a highly efficient chemical reaction
for singlet-oxygen production has some disadvantages
limiting the area of laser application, because the chem-
icals used are highly aggressive and toxic. This is of
particular importance in connection with the problem
of environment pollution control. Therefore, it seems
reasonable to replace a chemical singlet-oxygen gener-
ator (SOG) with an electric-discharge generator. This
allows us to get rid of liquid chemical components and
holds promise for achieving higher pressures at the
generator output [2].

On the other hand, the gas discharge in an oxygen–
iodine chemical laser can also be used to generate
iodine atoms in gas by dissociating iodine-containing

O2
–

1063-780X/00/2603- $20.00 © 20278
compounds that do not quench singlet oxygen [3]. In
this case, it is possible to gain a high peak power of the
iodine laser that can hardly be achieved with other
methods.

All this has motivated studies of the characteristics
of a discharge in oxygen with a high concentration of
singlet oxygen.

In this paper, we study the breakdown characteris-
tics of a low-pressure discharge in oxygen with 50%
singlet oxygen and compare them with the breakdown
characteristics of unexcited oxygen. A high concentra-
tion of singlet oxygen is obtained in a bubbling chemi-
cal generator with a discharge unit attached to the gen-
erator output.

2. EXPERIMENT

In order to obtain oxygen fluxes with a high concen-
tration of excited é2(a1∆g) molecules, we used the
reaction of chlorinating the alkaline solution of hydro-
gen peroxide. This reaction is the most efficient source
of singlet oxygen [1]. The reaction proceeded in a sim-
ple and reliable bubbling SOG consisting of a quartz
cylinder 150 mm in diameter and 270 mm in height,
which was filled with a working solution (a mixture of
750 ml of 50% H2O2 and 400 ml of 50% KOH aqueous
solutions). Chlorine was supplied through the punched
bottom. Singlet oxygen was produced as a result of the
reaction of chlorine with the surface film of the solu-
tion. For the 100 l/s fixed pumping rate, the SOG pro-
vided an oxygen flux with a pressure up to 3 torr and a
singlet-oxygen content up to 50% with respect to the
total oxygen pressure. Since the generator used the
hydrogen peroxide and alkaline aqueous solutions, the
gas flux at the generator output contained water vapor.
The water-vapor content depends on the solution tem-
perature. Since the reaction of the singlet-oxygen pro-
duction is exothermic, the temperature does not stay
000 MAIK “Nauka/Interperiodica”
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constant in the course of experiment; consequently, the
water content also changes.

The breakdown voltage as a function of the compo-
sition, temperature, and pressure of the gas mixture was
measured in the discharge chamber connected to the
gas channel at a 25-cm distance from the SOG. The
electric field was directed perpendicularly to the gas
flow (Fig. 1). The sphere–plane electrode system made
of stainless steel consisted of a plane electrode
54.8 mm in diameter and 10 mm thick, with rounded
edges (curvature radius 5 mm) and a sphere 20.2 mm in
diameter. The gap 

 

d

 

 between the electrodes was
6.6 mm. The dc voltage (which can be smoothly varied
in the range 100–2500 V) was applied to the discharge
chamber by a VMS-2500 stabilized source through a
100 k

 

Ω

 

 limiting resistor. The spherical electrode was at
the negative potential.

The voltage 

 

U

 

 at the discharge-chamber electrodes
was monitored by a highly resistive (

 

R

 

 > 10 M

 

Ω

 

) B7-22
digital voltmeter. The breakdown instant was deter-
mined by a sharp decrease in the voltage at the dis-
charge chamber as the output voltage of the source was
smoothly increased. The accuracy of determining the
breakdown voltage was ~0.5%. To decrease the experi-
mental error, each measurement was carried out four
times in approximately one minute; during this time,
the basic parameters of the gas mixture flowing through
the discharge chamber remained almost unchanged.

Before the working solution was poured into the
SOG, we measured the breakdown voltage as a func-
tion of the dry-oxygen pressure. The results were used
to test the method and determine the extent to which the
water pressure affects the measurements. With the
same purpose, we carried out measurements at different
temperatures of the working gas. The measurements
showed that, as the temperature of the solution
increases (which is equivalent to an increase in the
water-vapor pressure), the breakdown voltage
increases, which is opposite to the effect produced by
singlet oxygen. Since the water-vapor pressure in the
singlet-oxygen generation regime can exceed the
water-vapor pressure in the unexcited-oxygen bubbling
regime, the observed difference in the values of the
measured breakdown voltage can be attributed to the
presence of singlet-oxygen molecules in the gas flow.
In the first five columns of the table, we present exper-
imental data for different pressures of the mixture and
different water-vapor contents. The value of the electric
field is defined as 

 

U

 

/

 

d

 

. The last column presents the cal-
culated (for the given 

 

E

 

/

 

N

 

) values of 

 

α

 

d

 

,

 

 where 

 

α

 

 is the
first Townsend coefficient. We studied both the mix-
tures that do not contain singlet oxygen and those with
50% singlet oxygen.

3. PROCESSING THE EXPERIMENTAL DATA

The data from the table are plotted in Fig. 2 in the
form of the dependence of the breakdown voltage on

the parameter 

 

Nd

 

 (the so-called Paschen curve for the
breakdown of a uniform gap [4]). The same figure pre-
sents the Thomas–Bets and Davies [5] data for pure
oxygen taken from [6]. Our data for dry oxygen and
those cited are connected by polygonal lines. It is seen
that the behavior of the breakdown voltage with
increasing 

 

Nd

 

 is similar in both cases. The difference in
the values of the breakdown voltage measured in [5]
and in our experiments may be ascribed to the differ-
ence in the cathode substance (steel in our experiments,
gold and platinum in [5]).

The experimental points related to humid oxygen
and the mixture containing singlet oxygen are not con-
nected by curves, because at first glance the scatter in
these points is on the same order as the distance
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Fig. 1.

 

 Schematic of experiments on the measurement of the
breakdown voltage for a glow discharge: (

 

1

 

) discharge
chamber, (
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) plane electrode, (

 

3

 

) spherical electrode,
(
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) gas-mixture flow, (
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) VMS-2500 dc high-voltage source,
(
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) limiting ballast resistor, and (
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) digital voltmeter.
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 Breakdown voltage as a function of 
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2

 

, 

 

11

 

, 

 

14

 

, 

 

15

 

, and 
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 relate
to the mixture containing 50% singlet oxygen. The symbol
numbers correspond to the row numbers in the table.
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Table

no. O2 + O2(1∆), torr O2(1∆) H2O, torr U, V Nd, 1018 cm–2 E/N, 10–16 V cm2 αd

1 1.4 – 0.1 543 0.0327 166.2 11.31

2 1.4 + 0.1 520 0.0327 159.2 11.32

3 2.1 – 0.15 604 0.0490 123.3 13.86

4 2.0 + 0.15 565 0.0468 120.7 13.52

5 2.1 – 0.09 606 0.0477 127.1 13.82

6 2.0 + 0.09 552 0.0455 121.3 13.22

7 1.4 – 0.2 541 0.0348 155.2 11.56

8 1.4 + 0.2 533 0.0348 152.9 11.83

9 2.1 – 0.03 600 0.0464 129.3 13.62

10 2.1 – 0.27 611 0.0516 118.4 14.12

11 2.0 + 0.7 603 0.0588 102.5 14.66

12 0.88 – 0.01 495.6 0.0194 255.7 8.23

13 0.9 + 0.01 478 0.0198 241.2 8.37

14 0.9 + 0.03 479 0.0203 236.5 8.46

15 0.9 + 0.06 482 0.0209 230.5 8.59

16 0.9 + 0.07 490 0.0211 231.9 8.68

17 0.97 – – 535.8 0.0211 253.6 12.27

18 1.66 – – 579.6 0.0362 160.3 8.96
between the sets of points. Note that the breakdown
voltage for dry oxygen substantially exceeds that for
humid oxygen. To understand the reason for this differ-
ence, we calculated the first Townsend coefficient α for
the oxygen–water vapor mixtures and the mixtures of a
gas containing singlet oxygen with water vapor at the

0
[H2O], %

5 10 15 20

11

10

12

14
αd 

1

2
13

25

Fig. 3. Parameter αd as a function of the water-vapor con-
centration at P = 2.1 torr and E/N = 120 × 10–16 V cm2 for
(1) unexcited oxygen and (2) mixture containing 50% sin-
glet oxygen.
constant total gas density. This coefficient for the typi-
cal value of the reduced field E/N = 120 × 10–16 V cm2

is presented in Fig. 3.

In calculating the Townsend coefficient, we solved
the Boltzmann equation for the electron energy distri-
bution function (EEDF) taking into account certain
processes of electron excitation of oxygen molecules,
ionization, and attachment. We used the two-term
approximation and found the EEDF under nonsteady
Townsend conditions. Such a formulation of the prob-
lem does not completely correspond to the experiment,
but is rather close to it if the influence of the ionization
on the EEDF is included correctly. The most of the nec-
essary cross sections are taken from [6]. Because of the
high values of E/N (see table), the calculated quantity
αd is almost insensitive to uncertainties in the cross-
section data. The ionization cross sections appear to be
of the most importance (for example, the dissociative
attachment rate for singlet oxygen and oxygen in the
ground state is two orders of magnitude less than the
ionization rate). The direct data on the ionization cross
sections for singlet oxygen are absent. However, the
position of the molecular terms for é2(a1∆g) and
é2(X3Σg) states allows us to say that a simple down-
ward shift along the energy axis gives satisfactory ion-
ization cross section for singlet oxygen. The cross sec-
tion for the collisions of the second kind was found
from the principle of detailed balance. It was verified
that, for typical values of E/N, collisions of the second
kind have little or no effect on the EEDF shape. The
other cross sections for inelastic collisions with singlet-
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
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oxygen molecules were also taken to be equal to the
corresponding cross sections for the ground state with
a 0.98-eV shift. The transport cross section for singlet
oxygen was assumed to be the same as that for the
ground state of oxygen. The set of cross sections for
scattering by water molecules was chosen according to
[7]. For mixtures containing singlet oxygen, the dimen-
sionless quantity αd characterizing the amplification in
the electron avalanche is somewhat more sensitive to
the water-vapor content. However, on the whole, the
water vapor insignificantly influences the ionization
rate; estimates show that this influence can be
neglected. Estimates also show that, for values of E/N
typical of the breakdown, the attachment processes can
be neglected. Thus, the observed difference in the
breakdown voltage for dry and humid oxygen can only
be explained by the change in the secondary-emission
properties of the cathode surface in the presence of
water vapor. Further, we will neglect the possible
dependence of the effective secondary-emission coeffi-
cient on the water-vapor concentration at a constant gas
density. The reason for ignoring both this dependence
and the role of singlet oxygen in the secondary-emis-
sion processes is seen in Fig. 4, in which the quantity
αd calculated for the experimental values of the break-
down voltage (see also the last column of the table) is
plotted as a function of Nd. It is seen that almost all of
the points lie on the same smooth curve. The dry-oxy-
gen data are somewhat apart (points 17 and 18), which
can be explained by the difference in the effective sec-
ondary-emission coefficients, as was mentioned above.
Note that, according to the elementary breakdown the-
ory, the almost twofold change in αd corresponds to the
change in the secondary-emission coefficient γ from
10–6.5 to 10–3.5. The exact reason for such a change in γ
is not clear. However, it is noted in [8] that, in the gen-
eral case, the quantity αd varies within the range 9 <
αd < 18. The possible reasons for the change in the
breakdown value of αd are also discussed in [8].

Thus, if we assume that αd is independent of the
concentration of singlet oxygen and water vapor
(Fig. 3), which is confirmed by the set of points in
Fig. 4, we can calculate the breakdown voltage and
compare it with the experimental values. The calcula-
tion procedure is clarified in Fig. 5. The first two items
in the table are obtained for humid oxygen and the mix-
ture containing singlet oxygen at the same gas density.
In this case, by calculating αd for humid air for the
experimentally determined value of E/N corresponding
to the breakdown and equating this value to αd for the
mixture containing singlet oxygen, we find E/N for the
breakdown in the mixture containing singlet oxygen. In
the particular case corresponding to Fig. 5, the calcu-
lated values of E/N and U in the mixture containing
50% singlet oxygen are in good agreement with the
experiment. The remaining points do not contain data
referring to the constant value of Nd; consequently, the
direct calculation of the difference between the break-
PLASMA PHYSICS REPORTS      Vol. 26      No. 3      2000
down voltages is impossible. Therefore, we use the fol-
lowing procedure.

The dependence of N/E on Nd was approximated by
the second-power polynomial and drawn through the
experimental points for the humid-air breakdown (solid
line in Fig. 6). Note that the points on the solid and
dashed curves at the same value of E/N correspond to
the same calculated values of αd. Assuming that αd is
independent of the concentrations of water and singlet
oxygen, we derived the dependence of N/E on Nd for
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Fig. 4. Parameter αd as a function of Nd. The curve is plot-
ted using the data from the table. The symbol numbers cor-
respond to the row numbers in the table. The solid curve is
the polynomial interpolation.
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Fig. 5. Explanation for the calculation of the breakdown
fields. The dashed and solid lines correspond to humid oxy-
gen (1.4 torr O2 + 0.1 torr H2O) and the mixture containing
singlet oxygen. The arrow shows the experimental value of
E/N.
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the 50% singlet-oxygen mixture (dashed curve in
Fig. 6). As is seen, the theoretical curve agrees well
with the experimental data. The size of the markers in
the figure is approximately equal to the experimental
error. The use of a large number of the experimental
points allows us to conclude that the threshold break-
down voltage decreases when oxygen is excited on the
singlet level. Good agreement between the theoretical
and experimental data also justifies the procedure of
calculating the singlet-oxygen ionization cross section
that is based on the assumption that this cross section is
equal to the oxygen ionization cross section in the
ground state shifted 0.98 eV toward the lower energies.

1
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Nd, 1018 Òm–2
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0.006
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0.004
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Fig. 6. Comparison of the calculated breakdown values of
E/N with the experimental data. The solid line is the polyno-
mial interpolation of the experimental data for unexcited
oxygen, and the dashed line is calculated for the mixtures
containing singlet oxygen. The symbol numbers correspond
to the row numbers in the table.
4. CONCLUSION

We have experimentally observed a decrease in the
breakdown voltage in the presence of 50% é2(a1∆g) in
a mixture of oxygen with water vapor as compared to
an unexcited gas. This effect is explained by the
increase in the ionization rate due to a lower ionization
potential for the a1∆g state compared to the ground
state. The results of calculations agree well with the
experimental data.
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