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Abstract—A study is made of the motion of a plasma with a frozen-in magnetic field along the electrode sur-
faces in the direction transverse to the magnetic field. A one-dimensional problem of an electrode sheath is for-
mulated in which all of the quantities depend only on the coordinate orthogonal to the electrode surface. Viscous
plasma heating, plasma cooling via heat conduction, and other kinetic effects are taken into consideration.
Account is also taken of the effect of plasma acceleration and of the related current that is transverse to the elec-
trode surfaces and, due to the Hall effect, carries the magnetic flux away from the cathode and toward the anode.
Solving the one-dimensional problem with a constant electric current and constant magnetic field shows that, in
a sheath that forms near the cathode, the solution becomes self-similar, the plasma mass grows linearly, and the
electron magnetization parameter remains unchanged. It is found that the anode sheath cannot be described in
the magnetohydrodynamic approximation, according to which the plasma density in the sheath rapidly vanishes,
while the current through the sheath remains constant. This difficulty can be overcome by incorporating some of
the nonhydrodynamic effects (primarily, electron dispersion), thereby making the problem physically correct.
Solving the problem numerically shows that a decrease in the plasma density in the anode sheath due to the Hall
effect gives rise to additional significant plasma acceleration. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A magnetohydrodynamic (MHD) approach is
widely used to describe the operation of many plasma
devices such as plasma accelerators, dense plasma
focus discharge devices, and liners. The applicability
condition for the validity of the MHD description is

governed by the value of the parameter ξ ≡ ,

where L is the characteristic spatial scale of the plasma
flow. For ξ ! 1, the flow can be described by the ideal
MHD equations into which the electrodes bounding the
plasma region are introduced via the boundary condi-
tions (in the case of a magnetic field parallel to the elec-
trode surfaces, they reduce to the ideal slippage condi-
tion). Near the electrodes, the plasma (which is

assumed to be cold, β ≡  ! 1) flows along the elec-

trode surfaces and is either accelerated or decelerated
under the action of the Lorentz force [jB]/c. The
sheaths that form near the electrodes are characterized
by viscous plasma heating and plasma cooling via heat
conduction. In the electrode sheaths, the Hall effect can
play an important role, because it forces the current to
carry the magnetic flux away from the cathode (thereby
causing plasma compression near the cathode) and
toward the anode (thereby causing plasma rarefaction
near the anode).

Interest in studying electrode sheaths in magnetohy-
drodynamics (see [1–3] and the literature cited therein)
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stems from the following three reasons. First, for diag-
nostic purposes, it is important to know how much the
plasma parameters in the electrode sheaths differ from
those far from the electrodes. Second, the sheath thick-
nesses and the plasma mass in the sheaths can be large
enough to affect the operation of many plasma devices,
as is the case, e.g., with the MAGO chamber [4, 5].
Finally, investigating electrode sheaths is of interest
from a methodological standpoint, because the MHD
approach is insufficient to describe them (especially,
the anode sheath). Below, we will show that, in the
MHD approximation, the density of the plasma accel-
erated near the anode rapidly vanishes, thereby giving
rise to a vacuum sheath similar to that formed by a
shock wave front near the anode [3]. However, in the
case of a shock wave, the time scales were assumed to
be long enough so that a steady-state two-dimensional
structure with a current-free vacuum region forms. In
contrast, in the case in which we are interested here
(when a bulk plasma flow is treated and the time scales
are not too long), the current, which is governed by
MHD effects, should flow in a vacuum (in the MHD
approximation) region. Hence, the MHD approach fails
to describe regions near the anode, thereby necessitat-
ing the incorporation of nonhydrodynamic effects.

Here, we further develop the approach that was
applied earlier in [6], where the plasma was assumed to
be accelerated over long distances and no account was
taken of such important phenomena as plasma turbu-
lence in a boundary sheath [7] and anomalous plasma
2000 MAIK “Nauka/Interperiodica”
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resistivity due to the onset of a lower hybrid drift insta-
bility. Here, we take these phenomena into account and
assume that the plasma is accelerated over shorter dis-
tances. We also consider the motion of a low-density
plasma along the electrode surfaces, in which case the
plasma can be heated to high temperatures, thus mak-
ing it possible to explain neutron generation in the noz-
zle of the MAGO chamber when the neutron energy
distribution is highly anisotropic [8].

2. ONE-DIMENSIONAL PROBLEM

We assume that the electrode sheath thicknesses are
small in comparison with the characteristic spatial
scales of the complete MHD problem. Under this
assumption, we can describe unsteady electrode
sheaths in a one-dimensional approximation in which
all of the quantities depend only on the coordinate per-
pendicular to the electrode surfaces and on time. We
assume that, far from the electrodes, the plasma is
homogeneous with density n0, temperature T0, and con-
stant current density j perpendicular to the electrode
surfaces, the magnetic field B0 being parallel to them.
The Lorentz force [jB]/c acts to accelerate the plasma
in the direction parallel to the electrode surfaces both
near the electrodes and far from them.

Let the coordinate normal to the electrode surfaces
be x and let the magnetic field be directed along the z-
axis, in which case the electric field will be directed
along the y-axis and the plasma will be accelerated in
the same direction. The electrode sheaths are assumed
to be sufficiently thin so that the total pressure has
enough time to be equalized in the x direction; i.e.,

(1)

where the total pressure P0 depends only on time (in
fact, we are solving problems in which P0 is constant
and the density n0, temperature T0, and magnetic field
B0 experience slight time variations due to Joule heat
release and thermal expansion). Along with relation-
ship (1), the dynamics of the electrode sheaths is
described by the following MHD equations: the equa-
tion of motion in the y-direction in terms of the plasma
velocity v,

(2)

where the xy-element of the viscous stress tensor πxy is

(3)

the equation for the magnetic field,

(4)
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where the electric field is represented in Lagrangian
form,

(5)

and the heat-conduction equations for plasma ions and
electrons,

(6)

(7)

where

(8)

(9)

Here, η is the plasma viscosity; σ is the plasma conduc-
tivity; κi  is the ion thermal conductivity; κe is the elec-
tron thermal conductivity; and R, N, and α describe the
Hall and Nernst effects and the heat carried by the cur-
rent, respectively. All of these coefficients depend on
the extent to which the plasma is magnetized. The term
Qi accounts for the energy exchange between electrons
and ions. The formulas for all of these quantities are
presented in [9].

The physical processes incorporated into equations
(2)–(9) occur on different spatial and temporal scales
and may play different roles in different stages of the
evolution of a plasma flow near an electrode. If the
plasma flows along the electrode surface at a constant
velocity (the transverse current density j is equal to
zero), then the structure of the electrode sheath will be
primarily governed by viscosity and ion heat conduc-
tion, in which case the classical viscosity coefficient
and classical ion thermal conductivity are of the same
order of magnitude [9]. If the plasma velocity is ini-
tially coordinate-independent, then, with allowance for
only these two effects, the characteristic plasma tem-
perature in the electrode sheath will be determined by
the squared plasma velocity and the sheath will become

thicker according to the self-similar diffusion law ~ .
If the plasma is accelerated along the electrode sur-

faces (the current transverse to the electrodes is non-
zero), then, due to the Hall effect, the current will carry
the magnetic flux away from the cathode and toward
the anode. If the magnetic diffusion caused by the finite
plasma resistivity is not taken into account, then the
zones in which the Hall effect enhances or reduces the
magnetic flux will be infinitely thin, in which case the
plasma density distributions at the electrode surfaces
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will be described by delta-functions. However, in real-
ity, the magnetic diffusion smears out these zones.
Although the Hall effect and classical magnetic diffu-
sion occur on spatial scales shorter than those charac-
teristic of the plasma viscosity, they are very important
near the electrodes and also on short time scales (see
below). Magnetic diffusion should be analyzed with
allowance for the electron heat conduction, which is of
the same order of magnitude in a magnetized plasma
and smears out the Joule heating region, thereby pre-
venting the formation of an infinitely thin current skin
layer.

However, as will be shown below, the plasma den-
sity falls off to zero near the anode due to the Hall effect
even with allowance for magnetic diffusion. Conse-
quently, our problem is clearly beyond the range of
validity of the MHD approximation. To overcome this
difficulty, we take into account electron inertia.

For some experimental applications, it is of interest
to know the characteristic value of the electric field per-
pendicular to the metal surfaces of the electrodes. With-
out allowance for the collision terms, which are small
in the case of a magnetized plasma, the equation of
motion for the electron fluid yields

However, the equilibrium condition (1), which can be
rewritten as

,

gives

Consequently, it is an easy matter to find Ex from the
known profiles of the plasma density and ion tempera-
ture.

Note that, in a magnetized plasma [ωτ)i @ 1], the
spatial scales characteristic of heat conduction and
plasma viscosity (in our problem, they are described by
small thermal conductivity and a small viscosity coeffi-
cient) become, at a certain stage, shorter than the ion
Larmor radius. Consequently, the MHD approximation
and the relevant kinetic coefficients, strictly speaking,
fail to describe the problem at hand. In order to make
the MHD approach adequate for qualitatively describ-
ing the resulting kinetic problem, we supplement the
coefficients η and κi in equations (3) and (8) in the case
(ωτ)i > 1 by the additional terms

(10)
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(Mi is the mass of an ion), which are nonzero over dis-
tances x from the electrode surfaces shorter than the ion
Larmor radius rLi. Introducing these terms, we incorpo-
rate the kinetic ion fluxes that carry the momentum and
heat from the wall plasma toward the wall.

Possible high current velocities u in the electrode
sheaths at Te ≤ Ti can give rise to a lower hybrid drift
instability and, accordingly, to anomalous resistance.
For a magnetized plasma, we model the anomalous
resistance in accordance with [10], i.e., by setting

(11)

and by introducing the relevant anomalous contribution
to the electron thermal conductivity,

In the electrode sheaths, the possible onset of an
MHD instability (due to large velocity gradients [11])
and, accordingly, a turbulent boundary sheath [7] can
give rise to two-dimensional structures (according to
[11], in the case of subsonic motion, the onset of an
instability with a wave vector parallel to the magnetic
field is hindered). To describe these phenomena in an
averaged fashion in the one-dimensional approxima-
tion used here, we introduce the turbulent diffusion
coefficient equal to

(12)

where δv is the characteristic variation of the plasma
velocity at the distance x from the wall. We also take
into account the related contributions to the viscosity
and magnetic diffusion coefficients and to the electron
and ion thermal conductivities. Below, we will show
that, in reality, turbulent diffusion plays a relatively
minor role until, at a certain time, it starts to develop
and affect the structures of the electrode sheaths.

The initial conditions for a deuterium plasma were
chosen to be as follows: a constant (in space) tempera-
ture Ti = Te = T0 = 2 eV, zero velocity v = 0, constant
magnetic field B = B0 = 105 G, and densities n = n0 = 6 ×
1017 cm–3 (to describe the main plasma flow through the
nozzle of the MAGO plasma chamber [4, 5]) and n =
n0 = 1.5 × 1016 cm–3 (to describe the residual plasma
flow through the nozzle). During the evolution of the
electrode sheaths, the solutions fairly rapidly “forget”
the quite arbitrary small initial temperature T0 = 2 eV.
We will show that the solutions become self-similar
and describe the sheath plasmas with much higher tem-
peratures. Because of the Joule heating, the plasma
temperature far from the electrodes also increases,
regardless of the initial temperature level. As the
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plasma temperature in the electrode sheaths increases,
the heat fluxes to the electrode surfaces become sub-
stantially more intense in comparison with the heat flux
driven by a self-similar cooling wave corresponding to
the initial plasma temperature.

The boundary conditions for equations (2) and (3)
are

At the boundary x = 0, the electric field was speci-
fied to correspond to a magnetic diffusion into the cop-
per wall:

(13)

where χCu is the magnetic diffusion coefficient for cop-
per. At x = ∞, the gradients were assumed to be zero and
the electric field in (5) was described as

EH = –jBR. (14)

The temperatures Ti and Te at the boundary x = 0
were set to be

Ti = Te = 0,

and, at x = ∞, we put

,

in which case the electron heat flux is equal to

Equations (1)–(14) for the anode and cathode differ
in the sign of j: the plus and minus signs refer to the
anode and cathode, respectively. In our one-dimen-
sional problems, we chose the current magnitude j to be
j = cB/4πL with L = 5 cm; this gives j = ±16 kA/cm2,
which approximately corresponds to the parameters of
the MAGO chamber.

3. CATHODE SHEATH

The mass of the plasma in the cathode sheath (from
which the magnetic flux is carried away by the current)
is determined by the relationship

(15)

On short time scales on which the plasma viscosity
and viscous plasma heating are both unimportant, the
plasma mass will be accumulated in a sheath whose
thickness is governed by magnetic diffusion and elec-
tron heat conduction. For this to occur, the rates of mag-
netic diffusion and electron heat conduction should be
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of the same order of magnitude. For a low-β plasma,
this means that

or

(ωτ)e ~ 1.

Since, in this case, the thickness x of the cathode sheath
is equal to

the main plasma parameters of the sheath can be
described by the following self-similar functions:

(16)

where λ is the Coulomb logarithm and m is the mass of
an electron.

The results of solving our one-dimensional problem
numerically for n0 = 6 × 1017 cm–3 justify these self-
similar dependences. For example, by the time t =
0.1 µs (when viscous plasma heating is still insignifi-
cant), formulas (16) give the following characteristic
parameter values: T = 4 eV, n = 9 × 1017 cm–3, and x =
0.04 cm. The relevant profiles shown in Fig. 1a, which
were computed from a one-dimensional model, agree
with these estimates. By this time, the electron and ion
temperatures are essentially the same and, according to
(2), the plasma velocity far from the cathode,

, (17)

is equal to v∞ = 0.8 × 107 cm/s. A decrease in the
plasma velocity in the cathode sheath is governed by
the elevated (near the cathode) plasma density and the
turbulent viscosity coefficient (12). Since the tempera-
ture at the cathode surface is assumed to be zero (i.e.,
the magnetic diffusion coefficient is infinitely large),
the thermal pressure and parameter β at the metal sur-
face are both finite [12]. This means that the plasma
density at the cathode surface is infinitely high.

During the next stage, turbulent diffusion starts to
dominate over magnetic diffusion and the mass of the
plasma involved in turbulent mixing starts to exceed the
mass of the plasma in the sheath from which the mag-
netic flux has been carried away by the current. A com-
parison of relationship (15) with the turbulent diffusion
coefficient (12) taken with the characteristic plasma
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velocity (17) shows that this stage begins at the time

t ~ 0.1 . The viscous plasma heating becomes
important, but we can assume that β ! 1. The electron
and ion temperatures start to differ from one another;
the ion temperature is governed exclusively by viscous
heating due to the friction between the plasma flowing
with the velocity (17) and the cathode surface:

(18)

The characteristic thickness of the electrode sheath
becomes on the order of 0.1vt, where the velocity v is
determined by (17), and increases with the square of
time. According to (15), the characteristic increase in
the plasma density decreases in inverse proportion to t.
The characteristic electron temperature is governed by
the electron–ion heat exchange and increases at a lower
rate in comparison with the characteristic ion tempe-
rature.

For this stage of the evolution of the cathode sheath,
the profiles of the quantities computed at the time t =
0.5 µs in the one-dimensional approximation are shown
in Fig. 1b. At this time, the plasma velocity far from the
cathode is equal to v∞ = 4 × 107 cm/s and the maximum
β is as high as 0.46.

In order to characterize plasma deposition onto the
cathode surface (this process may be of interest for
many MHD problems, because it illustrates the influ-
ence of the cathode sheath on the MHD flow), Fig. 2
demonstrates how the bulk plasma mass decreases with
time due to plasma deposition onto the cathode.
According to (15), the mass of the plasma deposited
onto the cathode [n0∆x] increases approximately lin-
early with time until such effects as viscous plasma
heating and an increase in β come into play and start to
expel the plasma from the cathode sheath.

In the case of acceleration of a low-density (n0 =
1.5 × 1016 cm–3) plasma, the thickness of the cathode
sheath increases much more rapidly. An important role
in the formation of the sheath is played by anomalous
ion viscosity and anomalous ion heat conductivity (on
a spatial scale of approximately the ion Larmor radius
near the cathode surface) described by coefficients (10),
anomalous electron resistivity described by (11), and
anomalous electron heat conductivity. For a low-den-
sity plasma, the profiles of the quantities computed at
the time t = 55 ns are shown in Fig. 3, the plasma veloc-
ity far from the cathode being v∞ = 1.75 × 108 cm/s.
We can see that, for such plasma flow velocities, the
ions in the cathode sheath are heated to temperatures of
about several kiloelectronvolts, the electrons are heated
to fractions of a kiloelectronvolt, and the sheath is as
thick as several millimeters.
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4. ANODE SHEATH

In the initial stage of the evolution of the anode
sheath, in the MHD approximation, the magnetic flux is
carried toward the anode, thereby expelling the plasma
from the anode sheath. As in the cathode sheath, the
time evolution of the main plasma parameters on short
time scales in the anode sheath is described by the self-
similar formulas (16) but with |t0 – t | (where t0 is a cer-
tain time) in place of t. In other words, in the MHD
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Fig. 1. Profiles of the plasma temperature, plasma density,
and plasma velocity near the cathode for n0 = 6 × 1017 cm–3,

T0 = 2 eV, B0 = 105 G, and j = –16 kA/cm2 at the times
t = (a) 0.1 and (b) 0.5 µs.
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approximation, the plasma density in the anode sheath
will fall off to zero over a finite time interval. However,
according to the conditions assumed, the current con-
tinues to flow through the sheath. This contradiction
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Fig. 2. Decrease in the bulk plasma mass, n0∆x, due to the
deposition of a plasma onto the cathode surface as a func-
tion of time.

Fig. 3. Profiles of the plasma temperature, plasma density, and
plasma velocity near the cathode for n0 = 1.5 × 1016 cm–3,

T0 = 2 eV, B0 = 105 G, and j = –16 kA/cm2 at the time t = 55 ns.
can only be resolved by introducing additional kinetic
effects and by treating the problem on short spatial
scales, over which the MHD approximation, strictly
speaking, fails. In our study, we supplement the MHD
model with electron inertia, thus treating spatial scales
of about ~c/ωpe. Using as earlier the MHD approach,
we qualitatively incorporate the terms associated with
electron inertia into Ohm’s law and consider time
scales long enough for the electrons to be described in
the quasisteady approximation; i.e., we neglect the time
derivative ∂ve/∂t and keep only the spatial derivative
vex∂ve/∂x. As a result, the electric field in (5) will con-
tain the additional term

(19)

the corresponding contribution to the equation for the
electron temperature being

Incorporating the additional term into Ohm’s law
makes it possible to compensate for the first (Hall) term
in equation (5) even in the case of a plasma with a very
low density (the Hall term is proportional to ~1/n,
because, for a magnetized plasma, we have R = 1/nec).
Solving the problem as formulated leads to the follow-
ing situation. According to relationships (16) taken
with |t0 – t | in place of t, the vacuum sheath should form
near the anode by the time t0. However, in our
approach, after that time, this sheath will be filled with
a plasma of finite density decreasing exponentially
from the hydrodynamic boundary. The plasma sheath
will become wider as the current carries the magnetic
flux from infinity toward the anode.

Let us turn to an isothermal plasma (T = const) and
consider how the electron inertia described by the addi-
tional term (19) affects the plasma distribution, leading
to the formation of a plasma (rather than vacuum)
sheath near the anode. Near the boundary of the vac-
uum (in the hydrodynamic approximation) sheath, the
plasma distribution is determined by the equations

We assume nT ! B2/8π and take into account that, in
the case of an isothermal plasma, the classical conduc-
tivity, which is proportional to the temperature, is con-
stant. Without allowance for electron inertia, these
equations imply that, near the boundary of the vacuum
sheath, the plasma density behaves as n =
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. However, taking into account elec-
tron inertia results in the characteristic density
~(mj2σ2B2/c2e4T)1/4 varying on the spatial scale

, in which case the plasma density profile,
shown in Fig. 4, decreases toward the anode surface
according to the exponential law ~exp(–e2B2x2/2mc2T).

The current near the anode may strongly accelerate
the plasma in the low-density sheath and, in a real two-
dimensional problem, may give rise to the inflow of a
higher density plasma into the anode sheath from
regions with different y-coordinates where the current
density j is lower and the vacuum sheath is smaller or is
completely absent. In order to describe this effect qual-
itatively, we incorporate the additional electric field
component

(where v∞ and ρ∞ are the plasma velocity and plasma
density far from the anode) into the electric field (13) at
the anode surface.

One-dimensional simulations of the evolution of the
anode sheath were carried out with allowance for the
contribution of E ' to the boundary condition at the
anode surface and for the electron inertia described by
(19). To simplify numerical solution, we increased the
coefficient in (19) by a factor of 100 so that the charac-
teristic spatial scales would not to be too short.

Figure 5a shows profiles of the electron and ion tem-
peratures; plasma density; and plasma velocity at the
time t = 60 ns, when the self-similar solutions (16) pass
over to solutions describing a linearly expanding low-
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Fig. 4. Density profiles of an isothermal plasma near the
hydrodynamic boundary with a vacuum (1) without and
(2) with allowance for electron inertia.
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density region where electron inertia plays a significant
role. At this time, the plasma velocity is maximum
[vmax = 6.1 × 106 cm/s] at the distance x = 9.5 × 10–3 cm
from the anode surface, the plasma velocity far from
the anode being v∞ = 4.8 × 106 cm/s. By this time, the
impact of the additional field E ' on the processes near
the anode can still be neglected: this field is 0.01% of
the Hall electric field EH (14), which delivers the mag-
netic flux from infinity toward the anode surface. The
electric field (13) corresponding to the loss of the mag-
netic flux in the anode material is, at this time, 14%
of EH.
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Fig. 5. Profiles of the plasma temperature, plasma density,
and plasma velocity near the anode for n0 = 6 × 1017 cm–3,

T0 = 2 eV, B0 = 105 G, and j = 16 kA/cm2 at the times t =
(a) 60 ns and (b) 0.5 µs.
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Later, the plasma density in the anode sheath contin-
ues to decrease and the transport of the magnetic flux
due to hydrodynamic motion driven by the electric field
E ' is still unimportant. The decrease in the plasma den-
sity significantly increases the plasma velocity and ion
temperature due to the friction between the plasma and
the anode surface (see Fig. 5b, which corresponds to
the time t = 0.5 µs). At this time, the field E ' is 58% of
EH and electric field (13), associated with the magnetic
field diffusion into the copper wall, falls to 4.7% of EH.
By this time, the Hall electric field accelerates the
plasma electrons, thereby heating them significantly (to
fractions of a kiloelectronvolt). The plasma velocity at
the anode surface [vmax = 6 × 107 cm/s] is higher than
that far from the anode [v∞ = 4 × 107 cm/s].

Figure 6 shows the profiles that are characteristic of
the anode sheath for the case of acceleration of a low-
density plasma at the same time t = 55 ns as that in Fig. 3
for the cathode sheath. We can see that the plasma
velocity near the anode is extremely high—vmax = 5.1 ×
108 cm/s (it is much higher than that far from the
anode—and the electron and ion temperatures are also
high, Ti max = 160 keV and Te max = 48 keV. According to
Fig. 6, DD fusion neutrons can be produced in the
plasma sheath near the anode. If we set the area of the
anode in the region of the nozzle of the MAGO cham-
ber to be S = 170 cm2 [4] and estimate the characteristic
time during which a low-density plasma flows through
the nozzle as ~3 × 10–7 s (the estimate is obtained from
the time over which the current at the entrance to the
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Fig. 6. Profiles of the plasma temperature, plasma density,
and plasma velocity near the anode for n0 = 1.5 × 1016 cm–3,

T0 = 2 eV, B0 = 105 G, and j = 16 kA/cm2 at the time
t = 55 ns.
chamber rapidly ramps down [5]), then, for the temper-
ature and density profiles shown in Fig. 6 and under the
assumption that the plasma ions obey the Maxwellian
distribution, we obtain a neutron yield of about ~1.6 ×
109. This yield will agree with that measured experi-
mentally in the “nose” region of a neutron pulse (5.5 ×
109 neutrons, which is about 6% of the total number of
neutrons in the pulse [8]) if we take into account the
fact that, in comparison with the Maxwellian spectrum,
the ion spectrum should be enriched with a larger num-
ber of high-energy ions produced when a high-speed
ion flow is scattered by the anode surface. The charac-
teristic velocity v = 2.2 × 108 cm/s and characteristic
temperature Ti = 27 keV of the neutron-producing
plasma also agree with those measured in the nose
region of a neutron pulse from the spectrum of emitted
fusion neutrons [8].

A comparison between Figs. 3 and 6 shows that
low-density plasmas in cathode and anode sheaths are
heated very differently. For example, the neutron yield
from the cathode sheath (Fig. 3) should be about two
orders of magnitude lower than that from the anode
sheath; the ion temperature Ti ~ 4 keV and flow velocity
v = 7 × 107 cm/s of the neutron-producing plasma in the
cathode sheath should accordingly be lower than those
in the anode sheath. Presumably, such differences in the
structure of the cathode and anode sheaths may explain
why the MAGO chamber operates in a different mode
and why the neutron yield becomes significantly lower
when the polarity of the electrodes is changed to the
reverse one [4].

5. CONCLUSION

A numerical solution of the one-dimensional prob-
lem describing the evolution of the cathode sheath in
the case of acceleration of a magnetized plasma by a
current of constant density shows that, during a short
initial stage (until the plasma velocity is low and vis-
cous plasma heating is insignificant), a high-density
plasma sheath is formed near the cathode in which the
plasma mass increases linearly with time and the elec-
tron magnetization parameter is (ωτ)e ~ 1. As the
plasma velocity further increases and plasma turbu-

lence develops, from the time t ~ 0.1 , viscous
plasma heating becomes important, the ion temperature
grows with the square of time, and the characteristic
spatial scale also increases with the square of time and
becomes as long as about 4% of the entire path of the
plasma along the cathode surface.

An analysis of the same problem but for the plasma
near the anode shows that the MHD approach is insuf-
ficient to describe the anode sheath: in the MHD
approximation, the plasma density in the sheath rapidly
vanishes, while the current density, according to the
conditions assumed, remains constant. We have over-
come this difficulty by going beyond the scope of the

ωi
1–
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MHD approach, i.e., by introducing electron disper-
sion, in which case the plasma density in the anode
sheath remains small but finite. A low-density plasma
in the anode sheath can be accelerated by the Lorentz
force to velocities much higher than the plasma veloci-
ties far from the anode and can be heated to high tem-
peratures due to the friction on the anode surface. As in
the case of a cathode sheath, the characteristic ion tem-
perature in the anode sheath on long time scales is pro-
portional to the squared plasma velocity and the char-
acteristic spatial scale is governed by the zone of turbu-
lent mixing. Plasma heating in the anode sheath can
initiate fusion reactions; this circumstance may explain
the generation of DD neutrons with an anisotropic
energy distribution in experiments with the MAGO
chamber.
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Abstract—A study is made of physical effects that accompany the convergence of the pinch constriction and
are caused by vortex electric fields generated in the constriction cavity. © 2000 MAIK “Nauka/Interperiodica”.
A fast Z-pinch produced in the electric explosion of
a thin wire by a powerful current pulse has been
actively investigated for more than twenty years [1, 2].
Interest in these investigations is related, in particular,
to the generation of high-temperature dense plasma
objects (hot plasma points) during the pinching of the
plasma column. These hot points are the sources of
intense soft X radiation. At present, it is commonly
accepted that the generation of hot plasma points
(HPPs) in fast pinches is related to MHD instabilities
[2]. According to this concept, HPPs are constrictions
of the plasma column. The formation and further evo-
lution of these constrictions are accompanied by a
number of physical effects. Zhdanov and Trubnikov [3]
pointed to the possibility of the generation of a power-
ful vortex electric field during the breaking of a con-
striction, which is accompanied by the generation of
hard X radiation and superthermal ions. Below, we will
show that this field can be generated during the conver-
gence of the pinch constriction. The vortex electric field
leads to the emergence of a plasma jet that can shunt the
constriction; this explains the experimentally observed
effect of redistribution of the current, which begins to
flow mainly at the periphery of the plasma column [4].

Let us consider the processes occurring during the
convergence of the constriction of the pinch current-
carrying shell (corona). As in [5], we will assume that,
when a thin wire placed in the interelectrode gap of a
high-current accelerator explodes under the action of
the electric current, a plasma is produced that consists
of a core and a current-carrying shell (corona). The
plasma pressure in the corona is balanced by the pres-
sure of the magnetic field produced by the current flow-
ing through the corona, and the radiative cooling of the
shell is balanced by Joule heating. As an example, in
Table 1, we present the estimates [5] for the character-
istic parameters of the corona of a pinch produced in
the electric explosion of a 20-µm-diameter aluminum
wire: the average ion charge Z, the ion density N, the
corona thickness δ1, the outer corona radius R, the
1063-780X/00/2604- $20.00 © 0292
plasma temperature T, the electric field E1, and the
quasi-equilibrium current J.

For simplicity, we will assume the constriction to be
a hollow cylinder with the outer radius b [cm], thick-
ness δ [cm], ion density n [cm–3], and height h [cm];
this cylinder moves toward the pinch axis with the
velocity db/dt = –U. (Note that, according to analytical
solutions [3], such a plasma configuration can form as
a result of the evolution of a local constriction in an
incompressible pinch.) We will assume that the
plasma–vacuum interface coincides with the outer
boundary of the current shell, including the constric-
tion.

We write the longitudinal component of Ohm’s law
in the form E = j/σ + UH/c [6], where j is the current
density in the constriction, H is the azimuthal magnetic
field produced by the current, σ is the plasma electric
conductivity, and c is the speed of light; the thermoelec-
tric force and electron pressure are neglected. From this
expression, it is seen that, when the constriction con-
verges toward the axis, an electric field parallel to the
field E0 = j/σ is generated in it. Representing the azi-
muthal field H as a field produced by the longitudinal
current J(Ä) flowing through the constriction, we
rewrite Ohm’s law in units adopted here as E[V/cm] =
E0 + 2 × 10–9UJ/b, where E0 = J/2πbδσ, σ(s–1) =
20b1(Z)T3/2/Z is the electric conductivity of an unmag-
netized plasma, T [eV] is the plasma temperature, and
Z is the average ion charge (from [6], we can approxi-
mately take b1(Z) = 1.5 for all Z). Assuming the current
J in the constriction to be equal to the quasi-equilibrium
current (i.e., J = 2πRδ1σ1E1), we can write the final
expression for the field E [V/cm] in the constriction in
the laboratory frame as

E = (Rδ1σ1/bδσ)E1 + 2 × 10–9UJ/b, (1)

where R, δ1, and σ1 are the radius, thickness, and con-
ductivity of the current shell, respectively, and E1 is the
electric field in the accelerator diode.
2000 MAIK “Nauka/Interperiodica”
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For estimates we will use the average velocity U =

(1/p) dt of the constriction moving from the

radius R to radius b = R – Ut1 under the action of the
magnetic-field pressure produced by the current J. The
mass of the constriction is M = 2πbδnmi = 2πRδ1Nmi.
Here, p = t1 and mi is the ion mass. In the simplest case,
neglecting the plasma raking, we can write the equation
of motion in the form dv(t)/dt = 10–2J2/Mb. Using the
relationship b(t) = R – Ut, integrating the equation of
motion, and averaging the resulting expression for v(t)
over time t, we obtain U = (10–2J2R/MU2t)[(R – b)/R +
(b/R)ln(b/R)]. It follows from here that

U = 0.1(J/M0.5)[1 + b/(R – b)ln(b/R)]0.5. (1')

Then, we find the vortex field E in the constriction
cavity (i.e., in the region b ≤ r ≤ R) in the laboratory
frame. We will use Faraday’s law taking the integration
contour L in the form of a rectangle lying in the plane
passing through the longitudinal axis of the system.
One of the rectangle’s sides is a segment of the outer
generatrix of the pinch (lying at the radius R), another
passes through the constriction at the radius b and
moves toward the axis with the velocity U, and the
other two are the radial segments passing along the
boundary between the constriction and the unperturbed
region of the corona. The change in the magnetic field
flux Φ through the membrane S bounded by the given
contour can be written in the form

where the surface element dS is oriented perpendicu-
larly to the magnetic field; since ∂H/∂t = 0, we have
dS = hdr. The circulation of the electric field vector
around the closed contour L is

where E(R, t) and E(b) are the values of the electric
field at the radii R and b. In the units adopted, Faraday’s
law takes the form

(2)

where b = b(t) and E(r) is the radial field component.
Differentiating (2) and using the expression E(r = b) =
2 × 10–9UJ/b, we obtain

dE/dt = –4 × 10–9J(U2/b2)(1 + b/h). (3)
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Integrating (3) over time and taking into account that
E(R) = –2 × 10–9UJ/R at b(0) = R, we rewrite the
expression for the field E in a more convenient form:

E(R, t) = –2 × 10–9(UJ/b)[2 – b/R + (2b/h)ln(R/b)]. (4)

It is well known [7] that, in a slowly varying electric
field directed perpendicularly to the magnetic field,
there exists an inertial drift of charged particles with the
velocity V = (mc2/zeH2)dE(R, t)/dt, where E(R, t) is
expressed in electrostatic units and m and e are the mass
and charge of the particle, respectively. Using equation
(3) and substituting the necessary constants and the
expression for H, we can find the ion velocity, which
turns out to be much higher than the electron velocity.
In the units adopted, this velocity can be written as

V = –10–3(AR2U2/Jb2z)(1 + b/h), (5)

where A is the atomic mass of the element. It follows
from here that the distance over which the ions are dis-
placed is

∆z = –10–3(AR2U/zJb)[1 – 0.5b/R + (b/h)ln(R/b)]. (6)

It is easily seen that, if the condition 2 – b/R +
2(b/h)ln(R/b) > 0 is satisfied, then the generated field is
negative, E < 0, which leads to the ion drift from the
cathode to the anode. The drift of ions with respect to
electrons results in the occurrence of a space charge
and electric field; under the action of this field, the
plasma electrons also start moving. In fact, in the uni-
form plasma layer, the displacement of ions results in
the appearance of a charge on the layer boundary.
Equations (4) and (6) give the relation between the dis-
placement ∆z and the field E:

∆z = 2.5 × 105(AR2/zJ2)E(R, t).

If the field in the plasma is Ep, then the polarization is
P ≈ NZe∆z = 2.5 × 105(AR2/ZJ2)Ep. The field created
by the surface charge P is opposite in direction to the
external field and is equal to δÖ[V/cm] = 1.2 × 103πê.
By adding this field to the external vortex field, we find
the field in the plasma: Ep = E/ε, where ε = 1 +
0.144πN(AR2/J2) @ 1 is the plasma permittivity. Since
Ep ! E, the main drift of the charged particles in the
direction perpendicular to both the magnetic field and
the radial component of the vortex electric field is sup-
pressed. (Note that the radial component of the vortex
electric field also increases with time, so that an addi-

Table 1

T, eV 35 40 50 65 80 100

z 7 7 8 8 9 10

δ1, µm 210 50 80 32 22 13

R, µm 1800 1400 850 450 280 130

N × 10–18, cm–3 4.74 3 8.44 29 82 1.37

E1, kV/cm 5.5 27 26.2 101 210 250

J, kA 123 130 144 176 210 250
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tional drift of the jet can also occur in the radial direc-
tion.) Thus, the emergence of the vortex electric field
that increases with time finally results in the emergence
of an annular quasineutral plasma jet propagating with
an ion drift velocity above the constriction, which is
accompanied by a charge separation in the narrow
region near the jet front. At the same time, the negative
electric charge is produced at the anode side of the con-
striction. The jet can reach the opposite end of the cav-
ity and shunt the constriction, which reaches the radius
b2 by time t2. By using equations (1) and (6), we can
easily find the constriction radius b2 and, consequently,
the characteristic time t2 required for the constriction
cavity to be closed at the radius R

where x = R/b2.

When the constriction is shunted by the jet, the cur-
rent through the constriction decreases. This can be
interpreted as the switching of the constriction current
to the pinch periphery, which was observed experimen-
tally in [4]. At the same time, the thermal energy con-
tained in the constriction is rapidly lost via radiation
and the constriction converges by inertia to the pinch
axis. An additional burst of X radiation from the con-
striction can occur in the final stage of convergence due
to deceleration of the constriction on the dense plasma
core or on the pinch axis, when the plasma kinetic
energy MU2/2 is converted into thermal energy with the

h/R( )2
x 1–( )

=  10
8–

A
2
/Mz

2
( ) x 0.5– R/h( ) xln+[ ] 2

x 1– xln–( ),

Table 2

T, eV 35 40 50 65 80 100

h, mm 3.6 2.8 3.4 1.8 0.56 0.26

U, km/s 51 136 106 157 156 158

b2, µm 146 286 52 39 32 26

E2, MV/cm 0.18 0.26 1.19 3.4 4.32 7.42

Ec , MV/cm 1.06 0.6 1.59 4.18 10.5 40.3

Σ, MeV 0.20 0.26 6.4 10.2 0.97 0.08

Σe , MeV  0.06 0.07 0.4 0.61 0.24 0.1

U
E

J0

U
E

J0

(‡) (b)

Fig. 1. Expected shape of the constriction cavity (a) in the
case when it converges and (b) in the case when it expands.
temperature T[eV] = 3.5 × 10–13AU2/Z1, where Z1 is the
average ion charge.

In addition, when the constriction is shunted by the
jet, the ions reach the maximum velocity V2 corre-

sponding to the energy Σ[MeV] = 5.2 × 10–19A  by
time t2 and then are decelerated in the pinch corona and
on the anode, thus ionizing and exciting the plasma ions
and the atoms of the anode material. When the constric-
tion is shunted, the polarization field in the jet vanishes
(i.e., δE = 0), so that the electric field in the constriction
becomes equal to the external vortex field E(R, t2). It is
well known that, in a highly ionized plasma, the elec-
tron mean free path rapidly increases with increasing
the electron energy. In a sufficiently high electric field

E, such that E ≥ Ec ≈ 0.8πZNe3Λ/T = 0.2eΛ/  (where
Λ is the Coulomb logarithm and Rd = 500(T/ZN)0.5 is
the Debye radius), the energy that the electrons gain
between collisions is comparable or greater than the
thermal energy and the electrons pass over to the run-
away regime [7]. However, in lower fields, a partial run-
away regime is also possible for the electrons whose
transport collision frequency is lower than that of the
bulk plasma electrons. At E < Ec, the bulk electrons
move in the electric field E with a quasi-steady drift
velocity, whereas the electrons from the tail of the dis-
tribution function pass over to the runaway regime.
According to [7], for the given field E, the velocity v at
which the electrons moving along the electric field start
passing over to the runaway regime is determined by
the inequality mev2/T > 15Ec/E. Thus, when the jet
shunts the constriction and the current begins to flow
through the jet, the polarization field vanishes and the
electrons can accelerate in the field E2 = E(R, t2) over
the constriction length h; the subsequent deceleration
of electrons on the accelerator cathode can cause
X radiation with the photon energy Σe ~ E2h.

We estimate the effects above with the use of the
data from Table 1. Based on the considerations above,
we will assume that the plasma jet with the ion density
N propagates at the radius R with a velocity equal to the
ion drift velocity V from the pinch corona with temper-
ature T and thickness δ into the constriction cavity of
length h. Table 2 presents the estimates made for the
velocity and radius of the constriction, the particle
energy, and the electric field. (It can be easily shown
that the drift motion of the plasma particles in the jet
can pass over to the runaway regime at b ! b2, i.e., at
the radii at which the model allowing for the constric-
tion breaking and the emergence of the displacement
currents, whose vortex fields accelerate the electrons
[3], is more appropriate.)

From calculations, it follows that the motion of the
constriction is accompanied by the appearance of fairly
strong vortex fields, in which both the ions and elec-
trons can gain energy substantially exceeding the ther-
mal energy.

V2
2

Rd
2
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(a)

(b)

Anode

Fig. 2. Electric explosion of a 8-mm-long, 40-µm-diameter aluminum wire. (a) The current oscillogram: the maximum current is
190 kA, the current rise time is 150 ns, and the period of the reference signal is 40 ns. (b) Subsequent photodetector images: the
diameter of the aperture of the SKhR4 pin-hole camera is 100 µm, the frame exposure time is 12 ns, and the interval between frames
is 10 ns; the first frame starts 75 ns after the beginning of the load current pulse.
Note that the estimates presented relate, first, to a
quasi-equilibrium plasma corona and, second, to a jet
drifting only in the axial direction. The actual processes
are much more complicated. It may be expected that,
with allowance for the corona motion, a jet drifting in
both the radial and axial directions cannot shunt the
constriction. In this case, it will take the form of a radial
plasma protuberance emerging from one of the ends of
the constriction cavity and bent toward the other end
(Fig. 1a).

When the constriction plasma is reflected from the
pinch axis and moves outward, the directions of both
the vortex field and jet propagation change. At the
lower boundary of the constriction cavity, a second jet
emerges, which propagates in both the radial and axial
directions toward the cathode (Fig. 1b). When the first
and second jets meet, the constriction can be shunted so
that the current begins to flow through the jets. Note
that, in this concept, the pinch consists of a set of suc-
cessive constrictions and jets.

The above considerations can be illustrated by the
results of experiments. Wire-explosion experiments
were performed in the SIGNAL high-current generator
with an inductive storage and plasma opening switch
[8]. The generator produced a current pulse with an
amplitude up to 200 kA and a ~100-ns rise time in the
load. The shape of the current pulse was measured by a
Rogowski coil, and the voltage was measured by a
resistive divider; 8-mm-long 20- to 50-µm-diameter
aluminum wires were used as loads.
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
The multiframe imaging of the Z-pinch plasma col-
umn in 0.1- to 10-keV X radiation was carried out with
an SKhR4 frame photorecorder producing five frames
with an exposure time from 3 to 12 ns; the interval
between frames was 3–15 ns.

From the qualitative considerations, it may be
expected that, in the case of a converging constriction,
the jets deflect toward the anode. Such jet dynamics
was recorded experimentally (Figs. 2, 3). When one or
more constrictions change the direction of motion, a
characteristic bending of the jets toward the cathode
can occur, which is clearly seen in the last two frames
in Fig. 2. The structure of two jets shunting the con-
striction is clearly seen in the first upper and lower
frames in Fig. 3b.

In conclusion, we make some general remarks.
First, in obtaining estimates, we implied that the MHD
approximation is applicable. It is well known [9] that
the applicability conditions of the hydrodynamic
approximation for both of the plasma components can
be written in the form (here, the corona thickness δ and
the time τ are chosen as the characteristic space and
time scales of variations in the plasma parameters)

δ @ li , le , τ @ τe , τi ,

where li = 2.97 × 1012 /Z4N(Λ/10) and le = 2.06 ×

1012 /Z2N(Λ/10) are the mean free paths (in cm) and

τi = 2.12 × 106A1/2 /Z4N(Λ/10) and τe = 3.5 ×
104 /Z2N(Λ/10) are the mean free times (in s) for

Ti
2

Te
2

Ti
3 2/

Te
3 2/
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(a)

(b)

Anode

Fig. 3. Electric explosion of a 8-mm-long 20-µm-diameter aluminum wire. (a) The current oscillogram: the maximum current is
150 kA, the current rise time is 80 ns, and the period of the reference signal is 40 ns. (b) Subsequent photodetector images: the diam-
eter of the aperture of the SKhR4 pin-hole chamber is 30 µm for the upper row and 10 µm for the lower row, the frame exposure
time is 7 ns, and the interval between frames is 10 ns; the first frame starts 80 ns after the beginning of the load current pulse.
ions and electrons, respectively [6]. It is seen that, for
the corona plasma whose parameters are presented in
Table 1, at Λ = 10 and equal ion Ti and electron Te tem-
peratures (Ti = Te = T), we have le ~ 10–5–10–6 cm, li ~
10–6–10–7 cm, τe ~ 10–14–10–15 s, and τi ~ 10–13–10–14 s,
so that the hydrodynamic approximation is applicable
in the plasma corona. In addition, the displacement cur-
rent in the plasma corona can be neglected compared to
the conduction current if the characteristic time τ of the
change in the plasma parameters is sufficiently large:
τ @ τei = 10–9–10–10 s, where τei = 3.15 × 107AT3/2/NZ2

is the characteristic electron mean free time in terms of
electron–ion collisions [10]. According to [9], the non-
hydrodynamic stage of the evolution of the Z-pinch
constriction is realized only in the second implosion of
the plasma column; however, the study of this problem
is beyond the scope of this paper.

Second, we used the important assumptions that the
plasma consists of two components and that the space
charge can occur in the plasma, which finally results in
the generation of jets. Obviously, this effect is absent
in the one-fluid two-temperature MHD approximation,
assuming that the plasma is quasineutral [9]. For the
same reason, this effect is also absent in the model in
which only the electron plasma component is taken into
account [9]. Thus, the above effects can occur only in a
two-fluid MHD model incorporating Poisson’s equa-
tion for the electric potential produced by the space
charge.

Finally, it should be noted that the adopted model of
a constriction that converges at a constant velocity
meets difficulties associated with the nonphysical ini-
tial conditions, e.g., the instant onset of the plasma
velocity and vortex electric field at the edge of the con-
striction (at b = R) and the presence of ions with V ≠ 0
at b = R. Although these assumptions are not crucial,
they do not allow us to accurately investigate the prob-
lems related to constriction stability. Moreover, a sce-
nario of the physical processes occurring even in the
presence of only one constriction is very idealized.
Nevertheless, the model of the generation of the vortex
electric field allows a satisfactory qualitative interpreta-
tion of the experimental data.
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Abstract—A two-dimensional axisymmetric configuration of a cumulative gas compression that can be
applied to inertial microfusion is proposed. Both adiabatic gas compression and compression with energy
losses are considered. The limiting gas temperature that can be attained during shock stopping of the cavity
wall is estimated. It is pointed out that the energy losses during the compression cannot be ignored when con-
sidering the cumulative effects occurring in microscopic regions of a gas target of any configuration under the
action of a loading pulse of any shape. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The spherical and cylindrical configurations of a
cumulative gas compression are well known [1]. A
plasma generator with the phase acceleration of a gas in
a cusp configuration is described in [2]. Conical and
biconical configurations were studied in [3]. In this
paper, a two-dimensional axisymmetric configuration
of cumulative gas compression is suggested. This con-
figuration can be applied to inertial microfusion.

2. CONFIGURATION OF A GAS COMPRESSION

The gas cavity (Fig. 1) is spindle-shaped. The width
(maximum diameter) of the cavity is 2h0, and the gen-
eratrix radius is R. Each point of the cavity wall moves
toward the symmetry axis with the velocity W. The
cumulative effect occurs due to the collapse of the cav-
ity wall on the axis accompanied by a decrease in the
angles β in the vertexes of the cavity as the wall
approaches the axis.

The phase velocity vx of the cavity vertexes can be
written in the form

where h is the running value of the half-width of the

cavity. For h ! R, we have vx = W . It is seen that
vx  ∞ as h  0.

The cavity volume Ω is
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For h ! R, we obtain

(1)

The area of the cavity surface is

For h ! R, we obtain

(2)

3. ADIABATIC GAS COMPRESSION
For an ideal gas, the equation of state is p = ρRT and

the isentropic equation is p = Cργ. Thus, the pressure p,
temperature T, and mass density ρ during adiabatic
compression in the proposed cavity are p = p0(h0/h)2.5γ,
T = T0(h0/h)2.5(γ – 1), and ρ = ρ0(h0/h)2.5. Here, the zero
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Fig. 1. Configuration of the cavity.
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index stands for the initial values of the parameters and
γ is the Poisson index. In dimensionless form, these

expressions take the form  = ,  = ,

and  = .

The factor 2.5 in the exponent is intermediate
between analogous factors in the spherical and cylin-
drical configurations (3 and 2, respectively). This indi-
cates that, as the characteristic size of the cavity
decreases, the gas parameters increase at an intermedi-
ate rate.

At high rates of energy deposition, the process of
gas compression begins with the appearance of a shock
wave when the cavity wall starts to move [4]. Hence,
the model of adiabatic compression should be used
starting from a somewhat later instant, e.g., after the
first passage of the shock wave through the gas. The
parameters characterizing the state of the gas at this
instant can be adopted as initial values for the adiabatic
compression.

The asymptotic solutions for converging shock
waves were constructed in [5]. The values of the expo-
nent α in the radial dependence of the pressure varia-
tions at the wave front p ~ r–α for the sphere and cylin-
der were found to be 0.90 and 0.45, respectively. For
the configuration under study, we have α = 0.675,
which is the average between these numbers.

In view of (1) and (2), the mean increase in the gas
temperature in the cavity due to the wave convergence
is written in the form

(for the sphere and cylinder, this quantity is equal to
1.43 and 1.3, respectively). Here, Tf is the temperature
behind the front of the shock wave entering the cavity.

Thus, for W = 13 km/s (which is typical of explosion
facilities [6]), T0 = 293 ä, γ = 5/3, and ρ0 = 3 × 10–4 and
3 × 10–2 g/cm3, the mean temperature in deuterium at
the instant when the shock wave arrives at the cavity
axis is 1.7 eV. An increase in the temperature behind the
reflected wave can be estimated by the formulas for a
plane wave [7], which yield the value 3 eV. The three-
fold increase in W (to values typical of ICF) results in
an increase in the gas temperature by one order of mag-
nitude after the passage of the shock wave.

Figure 2 shows the deuterium temperature during
adiabatic compression as a function of the running cav-
ity parameter h for h0 = 0.1 cm and T0 = 3 eV. It is seen
that a temperature of 0.3 keV (at which easily detected
neutron fluxes are produced) can be achieved for h ~
3 × 10–3 cm and an ignition temperature of 10 keV [8]
can be reached for h ~ 8 × 10–4 cm.
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4. SHOCKLESS COMPRESSION 
WITH ENERGY LOSSES

The energy losses during gas compression can be
estimated using the approaches developed in [9–13].

If the cavity volume Ω changes by dΩ in a time dt,
the change in the internal gas energy dE, which is writ-
ten in the form

is a sum of two components: dE1 and dE2. The dE1 com-
ponent is the increase in the energy due to compression,

and dE2 is the radiative energy loss from the area S of
the cavity surface,

dE
3
2
---nkΩdT ,=

dE1 pdΩ– nkTdΩ,–= =

dE2 SσT
4
dt.–=

10–3

h, cm
10–210–4

101

100

102

103

104

105

10–1

T, eV

1

2

3

4

Fig. 2. Deuterium temperature during compression as a
function of the running cavity parameter h for W = 13 km/s
and T0 = 3 eV: (1) adiabatic compression (ρ0 = 0.0003 and
0.03 g/cm3), (2, 3) compression with energy losses (ρ0 =
0.0003 and 0.03 g/cm3, respectively), and (4) compression
with allowance for energy losses and acceleration of the
cavity wall during its convergence toward the axis (ρ0 =
0.0003 g/cm3).
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Table 1.  Comparison of the characteristic times of plasma cooling due to radiative loss and heat conduction

T, eV 10 100 300

L, cm 0.1 0.01 0.1 0.01 0.1 0.01

τrad, s 7.6 × 10–7 7.6 × 10–8 7.6 × 10–10 7.6 × 10–11 2.8 × 10–11 2.8 × 10–12

τc , s 2 × 10–3 2 × 10–5 6 × 10–6 6 × 10–8 4 × 10–7 4 × 10–9
Taking into account the change in the particle density
n(t) = n0Ω0/Ω(t) = n0(h0/h)5/2 and that, by definition,
W = –dh/dt, we obtain the expression

(3)

The solution to equation (3) expressed through the
dimensionless quantities  = T/T0 and  = h/h0 can be
written as

(4)

For h ! h0, the solution to (3) takes the form

(5)

Note that we assumed the Stefan–Boltzmann cool-
ing to be the main energy-loss mechanism. The reason
for this assumption is seen, first, from a comparison of
the characteristic plasma-cooling times corresponding
to this mechanism and the cooling due to thermal con-
duction in the cavities of lengths L = 0.1 and 0.01 cm.
These times,

,

where T is in eV, are presented in Table 1 for n =
1022 cm–3 and three temperature values. Second, the
Stefan–Boltzmann cooling becomes stronger than the
cooling due to emission from the gas volume if the deu-
terium contains high-Z impurities [4] that are inevitably
present in experiments. Note that, in a pure deuterium
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Table 2.  Mean free paths of free–free radiation (in cm)

T, eV
n, cm–3 10 100 300

1020 140 4.5 × 105 2.1 × 107

1022 0.014 45 2.1 × 103
plasma, the mean free path leff for the Wien wavelength
λmax = 2.6 × 10–5/T of free-free radiation is equal to

(here, T is in eV and λ and l are in cm) and exceeds the
cavity size of interest (0.1–0.01 cm) (see Table 2).

Returning to formulas (4) and (5), we see that, for
h  0, we have T  ∞ independently of the values
of n0 and W. The T(h) dependences calculated according
to (4) for two values of the initial gas mass density,
T0 = 3 eV, and W(h) = const = 13 km/s are shown in
Fig. 2. It is seen that the deviation of these curves from
the adiabatic-compression curve begins from tempera-
tures of ~10 and 100 eV for ρ0 = 0.0003 and 0.03 g/cm3,
respectively.

5. THE EFFECT OF THE CONVERGENCE
OF THE CAVITY WALL TOWARD THE AXIS

The convergence of the cavity wall toward the axis
is taken into account in (3) via the function W(h).

The convergence law for an incompressible inviscid
cylindrical shell is [1]

(6)

where r2 and r1 are the outer and inner shell radii. For
r1  0, we have W = const/r1.

Figure 2 presents an example of calculations by (6)
for a copper wall for ρ0 = 0.0003 g/cm3, W0 = 13 km/s,
r2/r1 = 2, T0 = 1 eV, and h0 = 0.1 cm. It is seen that the
accelerated motion of the cavity wall appreciably
decreases the role of energy losses.

It was shown in [1] that the role that the viscosity of
the cavity wall material plays in the reduction of a
cumulative effect can be decreased to a negligible level
by choosing a sufficiently thick shell and increasing its
energy. From a comparison of the laws of motion of the
walls of spherical bubbles in incompressible and com-
pressible liquids (W ~ 1/r1.5 and ~1/r0.411, respectively),
it follows that the compressibility of the wall material
can substantially decrease the wall acceleration (down
to W(h)  = const). Hence, the actual curve T(h) lies
between curves 2 and 4 (Fig. 2) corresponding to
W(h) = const and W given by (6).
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6. ESTIMATE OF THE LIMITING GAS 
TEMPERATURE DURING THE SHOCK 

DECELERATION OF THE CAVITY WALL

The limiting gas temperature in the cavity is
achieved when the cavity wall is decelerated by the gas
pressure. In some compression regimes h(t), the model
of shock deceleration of the wall is realized [1, 10]
when the wall is stopped by the shock wave propagat-
ing away from the center of the cavity. In this case, the
mass velocity both in the gas and in the wall material is
zero and the pressure in the gas is equal to that in the
wall material behind the wave front and is determined
by the velocity that the wall had before it stopped.

Assuming that the shock adiabat of the wall material
has the form

where p∗  and ρ∗  are the pressure and mass density of
the wall material and c∗  and χ∗  are the parameters of its
D, u-relation, and taking into account (4) and the equa-
tion of state p = nkT, we obtain the following set of
equations for determining Tmax and hmin:

For h ! h0, the quantity Tmax can be written in the
explicit form

(7)

The values of Tmax calculated by (7) for an iron cav-
ity wall (with the D, u-relation taken from [14]) are pre-
sented in Table 3.

These estimates demonstrate that, as in the case of a
spherical configuration, a special law of motion of the
cavity wall should be chosen to provide cool gas com-
pression [1, 4, 8, 11, 15].

7. THE ROLE OF THE NONUNIFORMITY 
OF GAS HEATING

If the gas energy losses during the compression are
ignored, then we can expect that, during the first pas-
sage of the shock wave in the cavity, the temperature
will be higher near the axis and especially high near the
cavity center because of the convergence of the shock
wave and its reflection from the axis. Qualitatively, the
temperature distribution will remain the same in the
main (quasi-isentropic) phase of the compression by a
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sequence of shock waves during the second, third, and
subsequent loading pulses.

However, the picture changes radically if we take
into account the radiative loss during gas compression.
Table 1 indicates that, in the axial region, whose vol-
ume is one order of magnitude smaller than the entire
cavity volume and has a ten times higher temperature,
the Stefan–Boltzmann cooling rate is four orders of
magnitude higher. This means that the radiative heat
conduction equalizes the temperature throughout the
cavity (the higher the temperature, the more rapidly the
equalization proceeds). Thus, we can assume that the
gas temperature and, consequently, the other thermody-
namic parameters in the cavity are uniform. The reason
for this is that the speed of light is much higher than the
substance velocity [9]. Hence, the energy losses during
the compression cannot be ignored when considering
the cumulative effects occurring in the microscopic
regions of the gas target of any configuration under the
action of loading pulses of any shape.

8. POTENTIAL ADVANTAGES
OF THE CONFIGURATION

In conclusion, we list the following potential advan-
tages of the configuration proposed.

(i) The shape of the cavity makes it possible to use a
simpler system for focusing laser radiation in ICF
devices.

(ii) The cavity can be open in its vertexes up to the
start of the wall; during this time, the cavity is accessi-
ble for gas heating, magnetization, increasing the pres-
sure, etc.

(iii) Instabilities are more efficiently suppressed in
the configuration proposed.
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Abstract—The spectra of a plasma relativistic maser are measured. It is shown that the microwave frequency
can be varied from 4 to 28 GHz by varying the plasma density from 4 × 1012 to 7 × 1013 cm–3 at a power of
30−50 MW. The relative width of the emission spectrum is within 50–80% for low plasma densities and
15−30% for high densities. Experimental results are compared with calculations. © 2000 MAIK “Nauka/Inter-
periodica”.
A Cherenkov plasma relativistic maser (PRM) is
based on the Cherenkov mechanism for the excitation
of a slow eigenmode of a plasma waveguide by a high-
current relativistic electron beam (REB). The phase
velocity of the excited wave is approximately equal to
the electron velocity, and the frequency range of the
generated microwaves is determined by the plasma
density and the diameter of a metal waveguide sur-
rounding the plasma.

The first experimental study of a PRM [1] showed
that, as the plasma density increases eightfold, the
microwave emission frequency nearly doubles. In [2],
attempts were made to measure the shape of the PRM
spectrum; finally, in [3], absolute measurements of the
PRM spectrum (in units of MW/GHz) were carried out
with the help of a specially designed calorimetric spec-
trometer. By this time, both the linear and nonlinear
theories of the Cherenkov PRM were well developed
[4]. The problem of an amplifier was solved in the fol-
lowing way. A noisy signal in a wide frequency band
was taken as an input signal, and the longitudinal pro-
file of the emission power along the plasma waveguide
was calculated. The length at which the microwave
power reached its maximum was determined. The
emission spectrum and the efficiency of the amplifier
were studied. The bandwidth of the input signal was
chosen as follows: it was increased from one calcula-
tion to another until the output emission spectrum
became narrower than the input-signal spectrum. In
calculations, the plasma, REB, and waveguide diame-
ters coincided with those of the existing experimental
devices. The REB and the plasma were assumed to be
in a homogeneous, infinitely strong longitudinal exter-
nal magnetic field; i.e., it was assumed that ΩÂ @ ω,
where ΩÂ is the electron cyclotron frequency and ω is
the plasma frequency.

It is known that the onset of a beam–plasma instabil-
ity in a bounded plasma occurs if the plasma density
exceeds the threshold value [5]. In the linear stage of
the instability, the amplitude E of the electric field
oscillations at the frequency f increases along the beam
1063-780X/00/2604- $20.00 © 0303
(along the z-axis) according to the law E = E0eδkz, where
Ö0 is the electric field amplitude at the amplifier input
and δk is the spatial growth rate. Figure 1 shows the cal-
culated frequency dependence of the spatial growth rate
δk for different values of the plasma density.1 It is seen
that, according to linear theory, the mean emission fre-
quency increases with increasing the plasma density;
the frequency band in which the amplification occurs
can be very broad. In contrast, in the nonlinear stage of
amplification, the emission spectrum is markedly nar-
rower. In Fig. 1, the spectrum width is represented by
line segments b–f showing the frequency ranges in
which the spectral density of emission power dP/df
exceeds a level of 0.3 of its maximum value.

A comparison of the experimental spectra of a PRM
with the calculated spectrum of a microwave amplifier
showed that they differed markedly [3]. According to
calculations, the amplifier spectrum had one maximum;
however, in the experiment with an oscillator, two max-
imums were observed. One of these maxima was
observed at low frequencies. The mean frequency of
this spectral component was lower than the calculated
value of the mean amplifier frequency. The high-fre-
quency component of the oscillator emission was
observed near the relativistic electron cyclotron fre-
quency ΩÂ/γ, where γ is the relativistic factor. The ener-
gies of these two spectral components differed insignif-
icantly (by no more than a factor of 2). As the plasma
density np increased from 1.5 × 1013 to 3.8 × 1013 cm–3,
the mean frequency of the low-frequency spectral com-
ponent increased from 5 to 12 GHz, whereas the mean
frequency of the high-frequency spectral component
remained almost unchanged and was equal to 26–
28 GHz (ΩÂ/2πγ = 24 GHz). According to calculations,
the mean amplifier frequency should vary from 10 to
22 GHz and the 26-GHz component should be absent
for np = 1.5 × 1013 cm–3. There was a significant discrep-
ancy in the spectral width ∆f; e.g., the calculation

1 Figure 1 and the calculated curve in Fig. 5 were presented by the
authors of [4].
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yielded ∆f/f ≈ 0.3, whereas the experimental value was
∆f/ f ~ 1.

As was mentioned above, the amplifier was calcu-
lated assuming the external magnetic field to be infi-
nitely strong. In the experiment, we had ΩÂ = (1.4–
0.85)ω. Nevertheless, the generation of gyrotron emis-
sion at the frequency Ωe/γ by an electron beam in
which electrons entering the waveguide only had the
longitudinal velocity component was an unexpected
result.
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Fig. 1. Dependence of the spatial growth rate δk on the fre-
quency f for plasma densities of (a) 0.3, (b) 0.8, (c) 2.3,
(d) 4.4, (e) 6.0, and (f) 7.0 × 1013 cm–3. The curves represent
the results of calculation by linear theory, and the horizontal
line segments on bottom show the results of calculations of
the spectrum width by nonlinear theory.

Fig. 2. Schematic of the PRM: (1) REB, (2) plasma,
(3) metal waveguide, (4) coaxial conical emitting horn,
(5) collector, (6) dielectric window, and (7) hot ring cathode
of the plasma source.
All these discrepancies were discussed in [3], in
which it was noted that “the main discrepancies—a
wide experimental spectrum and the presence of a low-
frequency emission simultaneously with a high-fre-
quency emission—require further theoretical and
experimental investigations.”

In [3], we compared the spectra of the microwave
oscillator with the calculated spectra of an amplifier.
The subsequent theoretical study was aimed at the
development of numerical methods for calculating the
microwave oscillator. The beam instability is convec-
tive in nature; for this reason, generation can occur in a
plasma waveguide of a limited length L if the reflection
coefficient κ of the wave reflecting from the end of the
plasma waveguide is high enough to satisfy the condi-
tion κeδkL > 1. On the other hand, if κ = 1 in the gener-
ation frequency range, then no emission leaves the
microwave oscillator. Therefore, there exists an opti-
mum κ value for which the oscillator emission power is
maximum. In the linear stage of the instability, a high-
current REB generates a broad frequency spectrum
(Fig. 1). If the reflection coefficient κ in the generation
frequency range depends substantially on the fre-
quency, then the spectrum of the microwave oscillator
can differ markedly from that of the microwave ampli-
fier. In the papers on the plasma microwave oscillator
[6, 7], an approximate formula is used to describe the
dependence of κ on the frequency and the dimensions
of a device. Thus, the development of the numerical
model of the microwave oscillator is still far from com-
pletion even for Ωe @ ωp.

This paper is devoted to the experimental study of a
PRM in which, as compared to [3], we changed the
geometry of the transition of a plasma waveguide to a
coaxial emitting horn in order for the coefficient κ to be
independent of the frequency. As a result, the measured
PRM spectrum became close to the calculated spec-
trum of the microwave amplifier [4].

Figure 2 shows the schematic of the experiment.
The Terek-2 accelerator produces a high-current REB
with an electron energy of 500 keV, a beam current of
2 or 3 kA, and a current-pulse duration of 30 ns. An
annular electron beam (1) with a mean radius of rb =
6 mm and thickness of ∆rb = 1 mm passes inside a hol-
low plasma column (2) with a mean radius of rp = 9 mm
and thickness of ∆rp = 1 mm. A coaxial plasma
waveguide consisting of a hollow plasma and a metal
waveguide (3) with a radius of R = 18 mm ends in a
conical horn with metal outer (4) and inner (5) cones.
Microwaves are generated in the plasma waveguide,
enter the metal coaxial horn, and then are output into
free space through a dielectric window (6).

The REB and the plasma are in a homogeneous lon-
gitudinal quasistatic magnetic field (B = 1.3–2.2 T and
the current pulse duration is 5.5 ms). As in the previous
experiments [3, 8], the plasma is created in a discharge
with a hot ring cathode (Fig. 2, position 7). The plasma
source has the following parameters: the cathode volt-
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age is 500 V, the discharge current is up to 90 A, the
working gas is xenon, and the gas pressure is 4.5 ×
10−4 torr. At first, the voltage is applied to the plasma-
source cathode and the plasma is created over 30 µs.
Then, the REB is injected into the plasma. The dis-
charge current is controlled by changing the cathode
temperature, which allows us to change the plasma
density from shot to shot.

To solve the main problem of this study (to carry out
measurements of the PRM spectrum), we used a calo-
rimetric spectrometer described in [3]. The total energy
of the radiation flux from the PRM was measured in
eight frequency bands: 5.1–9.3, 9.3–12.1, 12.1–15.3,
15.3–19.5, 19.5–24.1, 24.1–28.9, 28.9–32.4, and 32.4–
38.8 GHz. The energy spectrum was measured in units
of J/GHz. The measurements of the microwave-pulse
shape allowed us to calculate the power spectrum in
units of MW/GHz. Typical values of the spectral power
density were 2–4 MW/GHz to within a measurement
accuracy of ±0.25 MW/GHz.

Figure 3 shows the dependence of the total emission
energy on the plasma density for several values of the
plasma-waveguide length L = 10, 12.5, 15, and 20 cm.
The total REB energy per one pulse is ≈30 J (at an elec-
tron energy of 500 keV, a current of 2 kA, and pulse
duration of 30 ns). Hence, it follows from Fig. 3 that the
PRM energy efficiency is ≈3%. The microwave-pulse
duration is 20 ns; therefore, the emission power attains
~50 MW and the power efficiency is ≈5%. For L =
20 cm (curve 1), emission arises when the plasma den-
sity exceeds a threshold level of 2.5 × 1012 cm–3. This
value is close to the calculated value of the plasma den-
sity at which, under our conditions, the spatial growth
rate is δk > 0. Since for low plasma densities the maxi-
mum value of the spatial growth rate δkmax increases
with increasing the plasma density (Fig. 1), a PRM with
L = 15 cm operates at a higher plasma density, np = 4 ×
1012 cm–3 (Fig. 3), according to the formula κeδkL > 1.
The fact that the threshold plasma density increases as
the plasma-waveguide length further decreases (L =
12.5, 10 cm) cannot be explained by this simple model
because the value of δkmax for np = 5–6 × 1013 cm–3

(Fig. 1, curves e, f) is lower than the maximum value,
which is attained at np = 2 × 1013 cm–3 (Fig. 1, curves c, d).

Figure 4 shows the PRM spectra for the length of the
plasma waveguide L = 20 cm and different plasma den-
sities. The total microwave-pulse energy expressed in J
is shown in each of the six plots. It is evident that the
mean emission frequency increases from 4 to 28 GHz
as the plasma density varies from 4 × 1012 to 7 ×
1013 cm–3. The accuracy of the measurements of the
spectral width is rather low. It follows from the mea-
surements that the spectral width exceeds the width of
the spectrometer bands; i.e., ∆f > 3 GHz. This can be
inferred from the fact that the microwave frequency is
a continuous function of the plasma density and, for
any value of the plasma density, the measured spectrum
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
never falls into one spectrometer band. The maximum
spectral width is determined by the boundaries shown
in Fig. 4; i.e., this width comprises two or three spec-
trometer bands. In Fig. 5, the calculated dependence of
the mean emission frequency of the microwave ampli-
fier on the plasma density (assuming B  ∞) is com-
pared with the experimental dependences for PRM for
two values of the magnetic field: B = 1.3 and 2.2 T. The
shaded area is the domain in which the calculation
gives dP/df > 0.3 (dP/df)max. It is seen that, for low
plasma densities (low emission frequencies), the exper-
imental results agree with the calculations. For higher
plasma densities, there is a discrepancy between the
experiment and calculation. For example, the experi-
ment shows that, for np = 6 × 1013 cm–3 and ΩÂ = 0.5ω,
the emission frequency f is equal to 21 GHz and, as the
electron cyclotron frequency increases to Ωe = 0.9ωp,
the emission frequency increases to f = 27 GHz. The
calculation for np = 6 × 1013 cm–3 and Ωe @ ωp yields
the frequency f = 32 GHz. Hence, the discrepancy
between the calculation and experiment can be attrib-
uted to the fact that, in the experiment, the condition
Ωe @ ωp is not satisfied at high plasma densities.

The maximum widths of the experimental spectra
are shown in Fig. 5 by vertical line segments. As was
mentioned above, the spectral width is measured rather
roughly. Nevertheless, we can conclude that, for low
plasma densities, the experimental spectral width is
approximately equal to the calculated value; for high
plasma densities, the experimental spectral width
exceeds the calculated values.

The coincidence of the experimental results with the
calculated dependence of the emission frequency on
the plasma density f(np) is the most reliable argument in
favor that the generated mode is the azimuthally sym-
metric lowest radial mode of the slow plasma wave. In
our previous papers, we suggested that the generated
mode was precisely this mode, but the dependence f(np)

2
np, 1013 Òm–3

1
2
3

4 6 80

0.5

1.0

E, J

4

Fig. 3. Microwave-pulse energy as a function of the plasma
density for different values of the interaction length: (1) 20,
(2) 15, (3) 12.5, and (4) 10 cm at B = 2.2 T, rp = 0.9 cm, rb =

0.6 cm, and p = 4.5 × 10–4 torr; the working gas is xenon.
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Fig. 4. Spectra of the plasma microwave oscillator for plasma densities of (a) 0.4, (b) 0.8, (c) 2.3, (d) 4.4, (e) 6.0, and (f) 7.0 ×
1013 cm–3 at B = 2.2 T, L = 20 cm, rp = 0.9 cm, rb = 0.6 cm, and p = 4.5 × 10–4 torr.
did not confirm this suggestion. Our suggestion was
based on the fact that emission was observed in the fre-
quency range ω < ω and the threshold value of the
plasma density (for long plasma waveguides) coincided
with the calculated one.
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Fig. 5. Mean emission frequency as a function of the plasma
frequency fp = ωp/2π. Experimental curves 1 and 2 corre-
spond to B = 1.3 and 2.2 T, respectively. The shaded domain
shows the results of calculations by nonlinear theory. The
vertical line segments indicate the maximum measured
spectral width.
It is seen from Fig. 3 (curve 1) that the measured
emission power remains almost constant as the plasma
density varies. This is due to the fact that the maximum
value of the spatial growth rate δk remains at nearly the
same level for different values of the plasma density
(Fig. 1). Furthermore, this means that the coefficient of
reflection from the transition of the plasma waveguide
to the vacuum coaxial waveguide remains nearly con-
stant when the plasma density and the generation fre-
quency change simultaneously.

As is known, filling a waveguide with a plasma
makes it possible to transport currents exceeding the
limiting vacuum current [9]. Therefore, it is interesting
to examine how the microwave power depends on the
current. All of the above results were obtained at a cur-
rent of 2 kA, whereas the limiting vacuum current was
equal to 3.5 kA. The increase in the beam current to
3 kA did not lead to an increase in the microwave
power. This agrees with the theoretical prediction [10]
that the amplifier efficiency decreases as the beam cur-
rent approaches the limiting vacuum current.

Thus, it is experimentally shown that, in a Cheren-
kov PRM, the azimuthally symmetric lowest radial
mode of a slow plasma wave can be generated over a
wide range of plasma densities. For the first time, a sev-
enfold frequency change (from 4 to 28 GHz) was
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obtained at a power of 30–50 MW by changing only the
plasma density. From a practical standpoint, it is impor-
tant that such a frequency change can be performed
during a time of about 30 µs, which is determined by
the rate of the plasma density variation.

Further progress in PRM studies requires the devel-
opment of a numerical model for a plasma microwave
oscillator, which will make it possible to increase the
PRM efficiency to 15–20%, as is predicted by the cal-
culations of the amplifier. These calculations show that
the width of the emission spectrum can be varied by
changing the gap between the beam and the hollow
plasma. However, to date, we have failed to implement
such control of the spectral width at a constant micro-
wave-oscillator power. These two problems form the
basis for future PRM studies.
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Abstract—Solutions to the vortex electron anisotropic hydrodynamic equations are investigated that describe
nonlinear helical waves in an anisotropic magnetized plasma. The possibility of constructing such solutions is
provided by the symmetry properties of the equations. An optimum family of one-dimensional subgroups of a
symmetry group consistent with the equations is constructed that makes it possible to derive other, essentially
different solutions. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In order to describe the dynamics of electron flows
in a plasma with an anisotropic electron energy distri-
bution, Bychenkov et al. [1] developed the vortex elec-
tron anisotropic hydrodynamic (VEAH) model—a
quasi-hydrodynamic model that is based on equations
for the moments of the distribution function and
describes the dynamic properties of an anisotropic col-
lisionless plasma via the equations for the magnetic

field vector B and the electron pressure tensor . The
VEAH model, being much simpler than the kinetic
model, provides an efficient tool for describing the phe-
nomena in an anisotropic plasma analytically.

The most detailed study of VEAH equations has
been carried out in the one-dimensional approximation
in planar geometry, in which case the magnetic field has
a single nonzero component and the pressure tensor is
characterized by three nonzero elements. Bychenkov
et al. [2] compared the results obtained from the hydro-
dynamic and kinetic models by simulating, as an exam-
ple, the relaxation of the Weibel instability [3] and
found that they are in qualitative agreement. Here, we
study one-dimensional VEAH equations for a magne-
tized plasma in the case in which a nonequilibrium
magnetic field has two nonzero components and all of
the six independent elements of the pressure tensor
should be taken into account. Our purpose here is to
search for analytic solutions to these equations. We
obtain an analytic solution that, on the one hand, can
serve to test the algorithms for solving VEAH equa-
tions numerically and, on the other hand, describes the
possible state of an anisotropic plasma. This solution
refers to waves with a helical polarization of the per-
turbed magnetic field and makes it possible to trace the
evolution of these waves in the VEAH model.

P̂
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2. BASIC EQUATIONS

We assume that the nonequilibrium magnetic field
B = (0, By, Bz) and the pressure tensor elements Pij

depend only on the x-coordinate and time t. In this case,
the VEAH equations for an anisotropic plasma in a uni-
form magnetic field B0 = (B0, 0, 0) can be written as
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Equations (1) are written in dimensionless variables:
the magnetic field, pressure tensor elements, coordi-
nate, and time are expressed, respectively, in units of

, P∗ , c/ωp, and c/ωp , where ωp is the

plasma frequency, me is the electron mass, ne is the elec-
tron density, and P∗  is an arbitrary normalizing pres-
sure. Note that, in these variables, the quantity B0
acquires the meaning of the plasma parameter β—the
ratio of the magnetic pressure to the thermal plasma
pressure.

Equations (1) have the energy integral

(2)

and a first integral that coincides with the determinant
of the pressure tensor:

(3)

The presence of the first integral implies that the prod-
uct of the diagonal elements of the pressure tensor,
P1P2P3 = C(x), is time-independent and, consequently,
remains unchanged at each spatial point, thereby limit-
ing the fraction of the electron thermal energy that can
be converted into magnetic-field energy.

We consider small perturbations ∝ exp(iωt – ikx) of
the initial plasma state, which is characterized by the
electron pressure tensor

(4)

The spectrum of these perturbations, which are trans-
verse right-polarized waves, can be evaluated from
equations (1):

(5)

Relationship (5) describes two oscillation branches: the
plus sign corresponds to the stable cyclotron mode and
the minus sign refers to the helicons [4]. For P⊥  > P||
and under the condition B0 < 2(1 + k2)γW(k), where

γW(k) = k  is the growth rate of the
Weibel instability [3], the helicon mode is unstable

– Pxz Bz

∂2
Bz

∂x
2

-----------–
 
 
 

B0 Pzz Pyy–( ).+

4πP* P* /mene

x By
2

Bz
2 ∂By

∂x
--------- 

 
2 ∂Bz

∂x
-------- 

 
2

Pxx Pyy Pzz+ + + + + +d∫
=  const

PxxPyyPzz 2PxyPxzPyz Pxy
2

Pzz–+

– Pxz
2

Pyy Pyz
2

Pxx– C x( ).=

Pij0

P|| 0 0

0 P⊥ 0

0 0 P⊥ 
 
 
 
 

.=

ω k( ) B0
1 2k

2
+

2 1 k
2

+( )
---------------------

B0
2

4 1 k
2

+( )
2

----------------------- k
2
P||

k
2
P⊥

1 k
2

+
--------------–+ .±=

P⊥ / 1 k
2

+( ) P||–
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
with the growth rate

.

Helicons are waves with a special helical polarization.
Below, we will treat equations (1) in order to derive
nonlinear solutions that possess helical symmetry and
make it possible to follow the nonlinear evolution of
helical waves in the VEAH model.

3. VEAH SOLUTIONS HAVING HELICAL 
SYMMETRY

To search for the desired class of solutions, we start
by noting that equations (1) possess helical symmetry.
This means that, if the functions B(x, t) and Pij(x, t) are
solutions to the basic equations (1), then the functions

(6)

will also satisfy these equations. In (6), the matrix A(θ)
describes the operation of rotating by an angle of θ
about the x-axis,

and the coordinate is transformed as x = x' + θ/k, where
the nonzero quantity k specifies the spatial scale of the
transformation. We can readily see that transformations
(6) do not change the functions of the form

(7)

where (kx) is the matrix inverse to A(kx) = A(θ)|θ = kx .
Substituting formulas (7) into the basic equations, we
obtain the set of ordinary differential equations
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Ṡ 1 k
2

+( ) byRxz bzRxy–( ),=



310 TEREKHIN et al.
where S = (Ryy + Rzz)/2 = (Pyy + Pzz)/2 and D = (Rzz –
Ryy)/2. In accordance with (4), we will solve these equa-
tions with the initial conditions Rxy(0) = Rxz(0) =
Ryz(0) = D(0) = 0, Rxx(0) = P||, and S(0) = P⊥ . We also
assume that the amplitude of the seed magnetic pertur-

bation is small: b(0) =  = ε.

From equations (8) with the initial conditions
adopted, we can find the integrals that relate the thermal
energy of the electrons moving parallel and perpendic-
ular to the x-axis to the magnetic field magnitude:

(9)

We can see that, as the magnetic field increases, the
transverse pressure of the electrons falls off, while their
longitudinal pressure rises. Note that expressions (9)
are hydrodynamic analogues of the approximate con-
servation laws obtained by Davidson and Hammer [5]
using a kinetic approach.

We change the variables according to the prescrip-
tion

which corresponds to the transformation to the coordi-
nate system x, y', z' with the z'-axis directed along the
vector B of a nonequilibrium magnetic field at each
spatial point. The magnetic field components are
related to the variables b and ϕ as

so that the solution under consideration describes non-
linear helical waves whose amplitude depends solely
on time. The variable ϕ is the time-dependent part of
the angle through which the vector of a nonequilibrium
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magnetic field rotates. The quantities b, X, Y, and Ω = 
satisfy the ordinary differential equations

(10)

Since the variable ϕ drops out of the equations, its ini-
tial value will not affect the evolution of the desired
solution. We will solve equations (10) with the initial

conditions b(0) = ε, (0) = 0, 2X(0) = –ε2(1 + k2)2/k2,
Y(0) = 0, and Ω(0) = B0k2(1 + k2), which correspond to
the assumption that, at the initial instant, the helical
magnetic field configuration was created in a plasma by
the relevant current system.

We will investigate the solutions to equations (10)
by assigning the values from the instability domain to
the wave vector k and the external magnetic field B0,
because, in the stability region, there are only small
oscillations that can be described in terms of linear the-
ory. Specifically, we will treat B0 = 0.1 (the magnetic
pressure is much lower than the thermal plasma pres-
sure) and B0 = 1 and set k = 1 in both cases so that the
growth rate will be close to its maximum value. The
solutions to equations (10) for these cases are shown in
the figure. In the initial stage, the magnetic field ampli-
tude grows exponentially at a rate close to that pre-
dicted by linear theory, the instantaneous frequency Ω
also being close to Re[ω(k)]. The plots of the electron
pressure components in the (x, y', z') coordinate system
show that the mechanisms for the growth of the mag-
netic field and electric current jz' = kb in the two cases
under analysis are essentially different. For B0 = 0.1,
the thermal energy of the electrons moving across a
nonequilibrium magnetic field is converted into the
energy of the magnetic field and current, in which case,
according to (9), a decrease in the Py'y' element is
accompanied by an increase in the Pxx element because
of the electron gyration in a nonequilibrium magnetic
field. For B0 = 1, the overall picture of electron flows in
the exponential growth stage of the magnetic field is
more complicated: the Py'y' and Pz'z' elements fall off by
approximately equal amounts. We have also found that,
in the cases under discussion, the instability saturates in
different ways. In the case of a weak external magnetic
field, in the saturation stage, two peaks appear in the
profile of the magnetic field amplitude and the instanta-
neous frequency changes sign; i.e., the magnetic field
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Time evolutions of the magnetic field amplitude b, instantaneous frequency Ω, and electron pressure elements Pz'z' (solid curve), Py'y'
(dashed curve), Pxx (dotted curve), and Py'z' (dashed-and-dotted curve) in the (x, y', z') coordinate system for (a, c, e) k = 1 and
B0 = 0.1 and (b, d, f) k = 1 and B0 = 1.
vector starts to rotate in the opposite direction. On the
other hand, in both cases, the magnetic field saturates
nearly at the same level bmax ≈ 0.35. The cases have
another common feature: in the saturation stage, the
electron thermal energy is redistributed in the (y'z')
plane so that the Py'y' element falls off and the Pz'z' ele-
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
ment rises. Then, the magnetic field amplitude and the
pressure tensor elements evolve to their initial values
and the process repeats over and over again.

In the absence of a constant magnetic field, we must
set Ω(0) = 0, in which case we can show that the elec-
tron pressure along the nonequilibrium magnetic field
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remains constant and is equal to Pz'z' = P⊥ , while the
pressure across the field changes according to the law
Py'y' = P⊥  – (b2 – ε2)(1 + k2)/k2. Equations (10) reduce to
the following equation describing the magnetic field
evolution in a standing wave [6]:

(11)

This equation can be solved exactly. The first integral of
(11),

implies that the magnetic field is a bounded function,
which varies in the range

(i.e., when the condition corresponding to the onset of
the Weibel instability holds); otherwise, it varies in the
range b2 < ε2. Integrating equation (11) again, we obtain
the following relationship, which implicitly contains
information about the magnetic field evolution in terms
of an elliptic integral:

(12)

This formula describes two types of solutions to equa-
tion (10). The first type refers to the conditions for the
onset of the Weibel instability and describes periodic
oscillations of the magnetic field during which the
magnetic field direction remains unchanged at each
spatial point, the oscillation period being

The solutions of the second type describe oscillations
about the steady state b = 0 during which the magnetic
field periodically reverses direction.

4. CONCLUSION

We have obtained a solution to the VEAH equations
that describes the nonlinear evolution of waves with
helical polarization in an anisotropic magnetized
plasma. The characteristic feature of these waves is that
the amplitude of their magnetic field varies periodically
with time. This corresponds to periodic energy
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exchange between the thermal electrons and the mag-
netic field. Such waves evolve from a seed magnetic
field perturbation that depends on the coordinate in a
heliconlike fashion in a plasma that is isotropic in the
plane orthogonal to the axis along which the plasma is
inhomogeneous. The solution obtained can be used to
test the algorithms for solving VEAH equations numer-
ically. We have also classified one-dimensional sub-
groups of the symmetry group consistent with the
VEAH equations that make it possible to derive some
other types of solutions.
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APPENDIX

Symmetry Group for the VEAH Equations

We can show that the solution obtained above can
also be derived as a solution that is invariant under the
group of point transformations admitted by the VEAH
equations. However, this solution is not the only invari-
ant solution. The method for constructing the complete
family of invariant solutions of a given range 1 for the
sets of differential equations of the form (1) is well
known and can be found in the literature (see, e.g.,
[7, 8]). Here, we describe only the most important
aspects.

Group G of the point transformations consistent
with equations (1) is generated by translations along
the t- and x-axes,

(13)

(14)

and by rotations around the x-axis,

(15)

where A(θ) is the matrix of rotations and t0, x0, and θ
are arbitrary real quantities. Also, equations (1) admit a
discrete transformation (t, B) ° (– t, –B), which corre-
sponds to time inversion. The infinitesimal operators of
transformations (13)–(15),

(16)

constitute the basis of the three-dimensional Lie alge-
bra L3 . The most complete (optimum) family of dissim-
ilar one-dimensional subalgebras in basis (16) is com-
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posed of these operators and their linear combinations,

where αi are arbitrary nonzero constants. Each of these
subgroups, except for the one related to the operator X3,
provides the possibility of reducing equations (1) to a
set of ordinary differential equations via the standard
procedure. The solution obtained above corresponds to
the subgroup related to the operator X2 + kX3. Unfortu-
nately, in most of the remaining cases, the set of ordi-
nary differential equations is very involved and difficult
to analyze.
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Abstract—It is found experimentally that the broadening of the pump-wave spectrum affects the parametric
instability in an inhomogeneous plasma more weakly than is predicted by theory. The suppression of the abso-
lute instability is only observed for a pump-wave spectrum width of 2π∆f > 100γ, which is much greater than
the instability growth rate γ. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to widespread opinion based on the theo-
retical results obtained for a homogeneous plasma [1, 2],
stochastic phase modulation of a pump wave is an effi-
cient method for controlling parametric decay instabil-
ities in a plasma. The theory predicts that the paramet-
ric decay instability is suppressed when the width of the
pump wave spectrum exceeds the instability growth
rate. Such a suppression was observed in experiments
[3, 4] in which stochastic and sinusoidal phase modula-
tion of the pump wave was used and the plasma was
uniform. Here, we present experimental results from
studies of the influence of stochastic and sinusoidal
phase modulation of the pump wave on the absolute
parametric instability associated with stimulated back-
ward scattering (SBS) in an inhomogeneous plasma. It
is shown that the above prediction is not universally
valid and, presumably, is only applicable to homoge-
neous plasmas.

2. SCHEME OF THE EXPERIMENT

Experiments were carried out in the Granit device
[5]. The plasma was produced through electron-cyclo-
tron breakdown in a 100-cm-long quartz balloon 2 cm
in diameter filled with argon at a pressure of 2 ×
10−2 torr. The balloon was in a 3-kG homogeneous
magnetic field. The plasma was inhomogeneous both
across and along the magnetic field, ne = ne(r, z). The
maximum electron density in the breakdown region
was ne = 1012 cm–3, and the electron temperature in the
discharge was Te ≈ 2 eV. A pump wave—the Trivel-
piece–Gould (TG) mode at a frequency of f0 =
2480 MHz—was excited in the plasma with the help of
a waveguide. The scheme of the excitation and propa-
gation of the TG mode is shown in Fig. 1. The central
1063-780X/00/2604- $20.00 © 20314
part of the plasma column with the electron density
ne(r, z) > nc is a plasma waveguide for the TG mode. As
the TG mode propagates through this waveguide
toward the lower density, its amplitude and wavenum-
ber grow [5]. This growth becomes particularly rapid
near the point on the discharge axis where ne(0, z) = nc

(i.e., 2πf0 = ωp = (4πnee2/me)1/2). In the vicinity of this
point, which is a focuslike attractor of ray trajectories
for the TG mode, the oblique Langmuir wave linearly
transforms into a “warm” plasma wave.

In this region, where the electric field of the wave is
maximum, the onset of the SBS parametric instability,
l0   + s, can occur. This instability was observed
previously in experiments with a monochromatic pump
wave [6]. It was found that, at low pumping powers
[P0 < 20 mW], the onset of the convective decay insta-

l0'

P0

Ps Pr

n = nc
2

1
PsPt

Focus

H

Fig. 1. Schematic diagram of the wave propagation:
(1) quartz balloon; (2) waveguide; and P0, Pr, Pt, and Ps are
the incident, reflected, transmitted, and scattered waves,
respectively.
000 MAIK “Nauka/Interperiodica”
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bility is accompanied by the generation of a reflected
fundamental TG mode  and an ion-acoustic wave
propagating along the magnetic field toward the lower
density. In this case, a red satellite arises in the spec-
trum of the scattered signal; this satellite is shifted from
the pumping frequency by 3 MHz (Fig. 2a). At low
pumping powers, P0 < Pth = 20 mW, the satellite ampli-
tude increases exponentially with the pumping power,
ln[As(P0)] ~ P0 [6], which corresponds to the convective
instability.

When the pumping power exceeds the threshold
value, P0 > Pth = 20 mW, the dependence of the satellite
amplitude on the pumping power As(P0) becomes stron-
ger (Fig. 3, curve ∆f = 0). In this case, the level of the
scattered signal increases by more than four orders of
magnitude if the pumping power varies by several per-
cent. This was interpreted in [7] as the onset of the
absolute parametric instability l0   + s. As the
pumping power increases, the instability growth rate
increases in the interval γ ~ 1–2 × 106 s–1. The portion of
the curve describing the exponential dependence
Aps(P0) for low pumping powers in Fig. 3 is absent
because the sensitivity of the diagnostic equipment in
this experiment was somewhat lower than that used in
measurements of a similar dependence As(P0) in [6]. At
a power of P0 ~ 40 mW, which is twice as high as the
threshold power for the absolute instability, we
observed a strong, almost complete parametric reflec-
tion of the pump wave. In this case, the scattered-signal
spectrum had the shape shown in Fig. 2a.

According to [7], the mechanism responsible for the
onset of the absolute instability is associated with the
intricate spatial structure of the pump wave, in which a
small fraction of the first radial mode P1 ≤ 0.1P0 is
present. In the presence of the first radial mode of the
pump wave, the second region of the resonant three-
wave interaction arises and the feedback loop is
formed. According to [7, 8], the instability growth rate
and the structure of the spectrum are determined by the
time during which the ion-acoustic wave propagates
through the feedback loop.

3. EXPERIMENTAL RESULTS

In this experiment, we studied the influence of a sto-
chastic and harmonic frequency modulation of the
pump wave on the absolute parametric SBS instability,
l0   + s.

The frequency modulation of pump microwaves
was performed with a specially designed generator
whose output signal had the form

Here, ∆f(Uc) is the frequency deviation under the action
of the controlling voltage Uc. The generator had the fol-
lowing parameters: the mean frequency was f0 ≈

l0'

l0'

l0'

U t( ) Um 2π f 0 ∆f Uc( )±[ ] t.cos=
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Fig. 2. Spectrum of the scattered signal in the cases of (a) a
monochromatic pump wave and (b) harmonic modulation of
the pumping frequency.

Fig. 3. Amplitude of the scattered signal as a function of the
pumping power for different values of the frequency devia-
tion: (1) 0, (2) 20, (3) 40, (4) 100, and (5) 150 MHz; ∆ f = 0
corresponds to monochromatic pumping, and P0 = 0 dB cor-
responds to 100 mW.
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2.7 GHz, the maximum frequency deviation was
∆fmax ~ ±500 MHz when Uc varied from 3 to 20 V, and
the transmission frequency band of the control signals
was 0–50 MHz. This allowed us to control the genera-
tor frequency sufficiently rapidly using various laws for
the frequency change. For the harmonic frequency
modulation ∆f(Uc), the controlling sinusoidal voltage
Uc at the frequency fm was fed from a G4-102 RF gen-
erator. For the stochastic frequency modulation of the
generator signals, the controlling voltage Uc was
formed from the photocurrent of a photomultiplier
operating in the photon-counting mode when its photo-
cathode was illuminated by a filament lamp. In this
case, the spectrum of the photocurrent in the multiplier
working frequency band well approximates the white-
noise spectrum. Thus, the control-signal spectrum
formed in our experiment with the help of an FEU-140
photomultiplier and measured by an S4-25 spectrum
analyzer in the frequency band up to 50 MHz was
almost uniform.

In the general case, the spectrum of frequency-mod-
ulated oscillations is the Fourier transform of a signal
and, depending on the modulation law, has a rather
complicated form. Since the analytical representation
of the spectral function of a frequency-modulated sig-
nal is a complicated problem (especially in the case of
stochastic frequency modulation), the spectrum of this
signal was measured in the experiment with the help of
an SK4-62 spectrum analyzer. To attain the required
width and homogeneity of the power density in the
spectrum of the frequency-modulated pump wave, we
varied the modulation depth of the pumping generator
and the operating conditions of the photomultiplier. In

200150100500
∆f, MHz

3

2

Pth, arb. units

1

1

2

Fig. 4. The threshold power of the absolute instability as a
function of the frequency deviation for (1) harmonic modu-
lation (fm = 1.8 MHz) and (2) stochastic modulation.
the experiment, the instantaneous values of the pump-
ing frequency were within the range f0 – ∆f/2 < f < f0 +
∆f/2 and the frequency deviation ∆f was up to 200 MHz.

The modulation of the pumping frequency caused a
substantial broadening of its spectrum, thus impeding
direct observation of the satellite arising in the scatter-
ing spectrum in the presence of instability. Therefore,
when studying the ion-acoustic wave generated due to
the instability, we used the enhanced-scattering tech-
nique [6]. To do this, the probing low-power (Pp <
5 mW) TG mode was excited at a frequency fp =
2350 MHz with the same waveguide that was used to
excite the pump wave (Fig. 1). The probing-wave fre-
quency was chosen to be lower than the minimum fre-
quency of the modulated pump wave: fp < f0 – ∆f/2. This
allowed us to obtain information about the amplitude of
decay waves by analyzing the scattering spectra. The
scattering of the probing wave by the decay ion-acous-
tic wave occurred outside the instability region at a dis-
tance of ∆z ≈ 2a(f0 – fp)/f0 ≈ 0.52 cm from the focus for
the central frequency f0 of the pump wave on the lower-

density side, where a =  = 5 cm is the

constant of the exponential law describing the decrease
in the plasma density. This allowed us to obtain infor-
mation about the decay-wave amplitude from analysis
of the scattering spectra of the probing wave. In the
experiment, we studied the dependence of the scat-
tered-signal amplitude on the pumping power Aps(P0)
and on the character of the frequency modulation.

The influence of the stochastic modulation of the
pump wave on the development of the parametric insta-
bility is demonstrated in Fig. 3. The figure shows the
dependences of the amplitude of the signal of the scat-
tered probing wave on the pumping power Aps(P0)
obtained for various widths of the pump-wave spec-
trum. It is seen that the suppression of the SBS instabil-
ity occurs when the pumping-frequency deviation is
∆f > 40 MHz, which is 20 times higher than the insta-
bility growth rate γ ~ (1–2) × 106 s–1. The correspond-
ing spatial broadening of the decay region, ∆z =
(2∆f/f0) a ≈ 0.2 cm, is comparable with the size of the
feedback loop giving rise to the instability [7]. For
smaller deviations, ∆f < 40 MHz, the effect of the sto-
chastic modulation of the pump wave on the instability
is less pronounced.

The suppression effect is most pronounced near the
instability threshold. Figure 4 (closed circles) shows
that, when the pump-wave spectrum width increases to
200 MHz, the threshold power Pth for the excitation of
the absolute instability increases by a factor of ~1.8.
However, far from the threshold, for P0 = 0 dB (Fig. 3),
which corresponds to a pumping power of ~100 mW,
the effect of the stochastic frequency modulation of the
pump wave is much less. Thus, for ∆f = 150 MHz, the
instability is only slightly suppressed; i.e., the scat-
tered-wave amplitude decreases twofold.
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An unexpectedly weak effect of the stochastic fre-
quency modulation on the absolute SBS instability,
l0   + s, was observed in the coherent instability
regime [8] in which the temporal and spatial coherence
of the interacting waves plays a decisive role. In this
case, the scattered-signal spectrum, unlike the spec-
trum with a half-width of ~1 MHz shown in Fig. 2a,
consisted of two or three narrow lines that had half-
widths less than 100 kHz and corresponded to the insta-
bility eigenmodes. Strong suppression was observed
only for ∆f ~ 120 MHz; in this case, the fine spectral
structure took place even for such a high value of the
frequency deviation.

In the experiment, the influence of the harmonic fre-
quency modulation of the pump wave on the parametric
SBS instability was also studied over a wide range of
the modulation frequency from 0.1 to 10 MHz. It
turned out that the suppression effect is more pro-
nounced for the harmonic modulation as compared
with the stochastic frequency modulation and depends
not only on the width of the pump-wave spectrum but
also on the modulation frequency fm . Figure 2b shows
the satellite spectrum for modulated pumping with a
spectral width of ∆f = 60 MHz at fm = 1.8 MHz. It is
seen that the most pronounced decrease in the scat-
tered-signal amplitude (by more than two orders of
magnitude) occurs at the frequency f – fp = –3 MHz,
corresponding to the maximum of the satellite of the
monochromatic pump wave (Fig. 2a). At the same time,
new spectral components appear both in the Stocks,
f – fp = –6 MHz, and anti-Stocks, f – fp = +1.5 MHz,
spectral regions. The spectrum (Fig. 2b) is similar to the
spectrum observed in the case of the absolute paramet-
ric instability associated with stimulated forward scat-
tering (SFS) in earlier experiments in the same device
[9]. The mechanism of the SFS instability is associated
with the presence of two closely spaced plasma regions
in which the three-wave decay conditions are simulta-
neously satisfied.

Figure 4 shows the threshold power for the instabil-
ity as a function of the pumping frequency deviation for
a modulation frequency of fm ~ 1.8 MHz. It is seen that,
for ∆f = 150 MHz, the threshold power increases three-
fold. Far from the threshold, the effect of the modula-
tion on the instability is less pronounced, as was also
observed in the case of stochastic modulation.

The time evolution of the instability was studied in
an experiment with the use of an S4-80 pulsed spec-
trum analyzer. The analyzer strobe duration was ~1 µs.
In the experiment, we used pulsed pumping with a
pulse duration of 15 µs and a simultaneously applied
harmonic frequency modulation at a frequency of
1.8 MHz. Figure 5 shows the time behavior of the scat-
tered-signal amplitude for various values of the pump-
ing frequency deviation. As is seen in the figure, all of
the curves demonstrate a well-defined exponential
growth followed by saturation and, then, slow growth.
The instability growth rate was determined from the

l0'
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exponential part of the curves. The dependence of the
growth rate on the pumping frequency modulation is
presented in Fig. 6. It is seen that, as the deviation
increases to 100 MHz, the growth rate decreases only
threefold. The figure also shows a similar dependence
for the case of stochastic modulation. The difference in
the growth rates in Fig. 6 again shows that the stochas-
tic modulation has a less pronounced effect on the
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Fig. 5. Time dependence of the scattering-signal amplitude
for different values of the frequency deviation: (1) 0, (2) 20,
(3) 40, (4) 60, and (5) 80 MHz.
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Fig. 6. Growth rate of absolute instability as a function of
the frequency deviation for (1) harmonic modulation ( fm =
1.8 MHz) and (2) stochastic modulation.
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absolute instability l0   + s in comparison with the
harmonic frequency modulation.

Figure 7 shows the scattered-signal amplitude as a
function of the modulation frequency for different
widths of the pump-wave spectrum. The dashed line
parallel to the abscissa shows the level of the scattered
signal for a monochromatic pump wave (∆f = 0). The
signal is close to this level at fm > 1.5 MHz and fm <
0.6 MHz. However, around fm = 1 MHz, within a wide
range of deviation values, 10 < ∆f < 100 MHz, resonant
suppression of the signal is observed. This is most pro-
nounced within the range 40 < ∆f < 80 MHz.

This effect, along with an unexpectedly high stabil-
ity of the stimulated-scattering coherent mode in the
case of stochastic modulation, has yet to be explained,
because a satisfactory theoretical interpretation of these
effects is still lacking. The increase in the scattered sig-
nal for ∆f = 120 MHz and fm = 0.5 MHz (Fig. 5) is pre-
sumably related to the enhancement of decay instability
occurring if the velocity of propagation of the decay
point coincides with that of the ion-acoustic wave [10].

4. DISCUSSION OF RESULTS

The above experimental results show that the sup-
pression of the absolute instability occurs when the fre-
quency broadening of the pump-wave spectrum is
equal to tens of megahertz, which is well above the ion-
acoustic wave frequency and the maximum instability
growth rate predicted by the theory for homogeneous
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Fig. 7. Resonant suppression of the instability caused by
harmonic frequency modulation of the pump wave for dif-
ferent values of the frequency deviation: (1) 15, (2) 30,
(3) 60, and (4) 120 MHz.
plasma. Moreover, this broadening is considerably
greater than the instability growth rate measured in the
experiment. This contradicts the homogeneous-plasma
theory, which predicts that suppression should occur
for 2π∆f > γ. Apparently, this discrepancy can be
explained taking into consideration specific features of
the three-wave interaction in an inhomogeneous
plasma. The fact is that, in an inhomogeneous plasma,
various spectral components of the pump wave can
interact with the same ion-acoustic wave, generating
daughter waves at the shifted frequencies satisfying the
relation f ' = f0 + ∆f + fs. Such an interaction occurs in
spatially shifted points; in the case of backward scatter-
ing, these points satisfy the decay condition 2k0(f0 + ∆f,
x + ∆x) = ks. In the case of small frequency deviations,
the shift is defined as ∆x = 4π∆f(l2/v), where l2 =
2dk0/dx and v is the group velocity of the daughter
wave. Strong suppression of the absolute instability
should take place when the shift is greater than the size
of the feedback loop, L. According to [7], the instability
growth rate is determined by the propagation time of
the ion-acoustic wave through the feedback loop L/cs

and is defined by the relation γ = πK(cs/L), where K =
(γ0l)2/(vcs) and γ0 is the instability growth rate predicted
by the homogeneous-plasma theory. Combining the
above equations, it is easy to obtain the criterion for
suppression of the instability in an inhomogeneous

plasma, ∆f > 0.25( /γ), which agrees with the obser-
vations described above.

5. CONCLUSION

The experiments have shown that, in an inhomoge-
neous plasma, the broadening of the pump frequency
spectrum affects the parametric instability much more
weakly than is predicted by the theory of decay insta-
bilities in a homogeneous plasma [1, 2]. The suppres-
sion of the absolute instability is only observed for a
pump-wave spectrum width of 2π∆f > 100γ, which is
much greater than the instability growth rate γ. It is sug-
gested that the suppression of the absolute instability
takes place when the spatial broadening of the paramet-
ric-decay region due to variations in the pumping fre-
quency exceeds the size of the feedback loop responsi-
ble for the onset of the instability. It is found that sto-
chastic pump-wave frequency modulation results in a
high stability of coherent eigenmodes of the absolute
instability.
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Abstract—Initiation of electric air breakdown under normal conditions by a long laser spark is studied
experimentally. A qualitative model explaining the effects observed is presented. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

When analyzing the discrepancies between the the-
ory of electric gas breakdown (EGB) and experiments,
we can distinguish three groups of problems. The first
group concerns the problems for which the theory and
experiments are in reasonable agreement, specifically,
the main body of the energy estimates and calculations.
These problems do not require the revision of the the-
ory. The second group describes the gradually changing
spatial and temporal breakdown-wave characteristics.
In present-day EGB theory, most attention is focused
on just these problems, which are surveyed in [1]. The
restrained pessimism of the authors is primarily associ-
ated with the fact that the present-day theory still fails
to explain some parameters of the EGB waves, the
more so since the existing model is incapable of
explaining the development of the EGB waves from the
middle of the interelectrode gap and describes the iner-
tial propagation of streamers as a pulse relaxation. That
this group of problems is far from being completely
solved calls for a significant revision of the EGB
model, although attempts to quantitatively refine the
existing model are still possible.

The third group of problems requires the revision of
the basis of the model. This group deals with the pro-
cesses in which the spatial and temporal EGB charac-
teristics change stepwise. The well-known manifesta-
tions of these phenomena are the transition from the
avalanche to a streamer, transverse nonuniformity of
the streamer region of the leader, and the stepwise
nature of the lightning leader and the leader of a long
laboratory spark. The necessity of the revision of the
model is determined by the fact that the mathematical
apparatus of the present-day quasi-electrostatic model
does not contain the necessary elements to obtain solu-
tions adequately describing these phenomena.

It is desirable to base a new model on experiments
in which the temporal stepwise nature and the spatial
nonuniformity of EGB are pronounced most clearly.
For this purpose, it is convenient to use the experiments
on the initiation of EGB by a long laser spark (LLS). An
additional argument in favor of using these experiments
as a basis for a new model is the relatively soft require-
1063-780X/00/2604- $20.00 © 0320
ments for spatial and temporal resolutions at the
present stage of investigation. It is also important that
the spatial location of the EGB wave is strongly deter-
mined and the timing accuracy of the diagnostics with
respect to the laser pulse is very high. This paper is
devoted to a description of these experiments. In addi-
tion, a qualitative model explaining the experimental
results is proposed.

LLSs were first studied in [2]. They usually have a
bead structure and propagate along the optical axis of
the system with a velocity of ~109 cm/s. In order to
avoid the bead structure of the spark, it was proposed in
[3] to use a conical lens that focuses the laser beam into
a line with a length of several diameters of the laser
beam along the axis of the system. A bead LLS with a
total length of several tens of meters was observed in
[4]. As a rule, in order to obtain LLSs, either
Q-switched neodymium-glass lasers or e-beam-con-
trolled CO2 lasers are used. Except for the energy and
power requirements associated with the threshold for
optical gas breakdown, no demands on other laser
parameters, such as divergence, time contrast, and radi-
ation uniformity over the beam cross section, are
imposed. Thus, the LLS is a relatively cheep instrument
for physical investigations.

The first experiment on EGB initiation with the use
of an LLS is described in [5]. A 50-cm-long linear
breakdown was obtained in air under normal conditions
with a 10 kV/cm average electric field. The breakdown
also occurred in the absence of an LLS, but the EGB
wave evolved along a line markedly deviating from the
straight line. Paper [5] and subsequent papers [6, 7] ini-
tiated a series of studies on high-voltage breakdown. In
accordance with the basic effect obtained with the use
of an LLS, this regime will be referred to as a guiding
regime. Seemingly, this series can also include experi-
ments on the initiation of EGB in long gaps by ultravi-
olet laser radiation, which causes no LLS but produces
multiphoton gas preionization [8, 9].

The second line of investigation is the initiation of
an EGB in superlong gaps, i.e., gaps whose length
exceeds the LLS length [10–13]. This regime can be
called a partially guiding regime, because the rectilin-
2000 MAIK “Nauka/Interperiodica”
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ear structure of the EGB wave is observed only in
regions where the LLS exists.

A recently developed third line of investigation
involves the use of conical lenses to produce elongated
switches with an interelectrode gap up to 10 cm long
[14–18]. This regime can be called the switch regime,
taking into account the basic goal of the investigations
and some unique properties of this type of switch.
Finally, the fourth line of investigation of a low-voltage
breakdown was started in [19–23], in which the average
electric field was 1 kV/cm or less and no electric break-
down was observed in the absence of an LLS. We will
refer to this regime as the initiation regime, in accor-
dance with the basic effect obtained with the use of an
LLS. Below, we will focus on this effect.

EGB modeling with the use of an LLS has consider-
able promise as is shown in [24], where three funda-
mental features of the EGB streamer stage were
observed in the guiding regime: the development of a
streamer from the middle of the interelectrode gap and
the stepwise and inertial nature character of the
streamer propagation. However, EGB modeling with
the use of an LLS in the guiding regime did not reveal
qualitatively new effects, in contrast to the initiation
regime, in which such effects were observed. We note
that, in the guiding regime, only one type of EGB wave
can be modeled, whereas in the initiation regime, two
types of EGB waves and the transition of one wave into
another can be modeled. This is why the experiments
carried out in the initiation regime are of greater inter-
est. It should be noted that all of the experiments in the
initiation regime were carried out in air under normal
conditions.

2. CALCULATIONS OF THE INITIATION 
REGIME

In one of the first papers devoted to this line of
investigation [19], it was shown that a spatial resolution
of ~1 mm and temporal resolution of ~1 µs are suffi-
cient to obtain important information. A present-day
experimental facility can easily satisfy these condi-
tions.

As a basic geometry of the experiment, we chose a
coaxial line with a broken axis, in which, after the
bridging of the gap, the discharge was excited on the
axis of a chamber with a reverse-current conductor.
Such geometry allowed us to eliminate both the influ-
ence of strays on the processes under study and the dis-
tortion of the gap field by foreign conducting objects
and to carry out rather accurate calculations (due to the
fixed chamber inductance). This also suggests the
chance to test one of the controversial points of EGB
theory—the problem of the streamer carrying away the
electrode potential. One of the coaxial electrodes was a
tube along which laser radiation propagated; another
one was a needle whose potential was opposite in sign
with respect to the potential of the reverse-current con-
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
ductor. The streamer was assumed to propagate from
the needle to the tube. In this case, if the electrode
potential is carried away by the streamer, the value and
the distribution of the field near the streamer head are
continuously reproduced and the length of the break-
down gap is limited only by the LLS parameters.

The first experiments carried out to test this hypoth-
esis showed that, if the LLS parameters are stable and
the LLS length exceeds the length of the interelectrode
gap, the threshold waiting voltage responsible for the
electric phase of the breakdown depends weakly on the
length of the interelectrode gap up to a certain (thresh-
old) length and then sharply increases [20]. A similar
result was independently obtained in [23] for a different
electric-field geometry. It was established in [20] that
the threshold gap length for the low-voltage breakdown
is determined by both the physical properties of the
plasma produced by an LLS and the technological
parameters of the chamber design, in particular, the
diameter of the reverse-current conductors. The
obtained dependence of the threshold gap length on the
applied voltage was found to be close to exponential
and differed substantially from the analogous depen-
dences for both the avalanche and streamer EGB mod-
els. Experimentally, this problem can be settled only
with the use of high-speed photorecording of the break-
down wave emerging in the interval between the optical
breakdown and electric discharge. This interval can
exceed 100 µs [19]; therefore, this process can be
recorded, e.g., by an SFR-2M high-speed photore-
corder with a rotating mirror. In this case, the optical
breakdown, which lasts about 10 ns for a neodymium
laser and about 1 µs for a CO2 laser, can be reliably dis-
tinguished from the final, arc-discharge phase.

The schematic of the experiment is presented in
Fig. 1. Its basic elements listed in the figure caption
were changed insignificantly from experiment to exper-
iment. The polarity was changed by rotating the cham-
ber with respect to the laser beam and subsequent
change in the electrode locations. High-speed photore-
cording was carried out in both the continuous regime
with the use of a Dove prism and the frame regime
without a Dove prism. Typical pictures obtained by fast
continuous recording of the process of EGB initiation
by an LLS were presented in [19]. Similar pictures are
also typical of the guiding regime [6]. The quantitative
results obtained from these experiments are the number
of points of the optical breakdown in the interelectrode
gap, the afterglow time of these points, and the degree
of correlation of the spatial positions of these points
with the brightest points of a subsequent arc discharge.
Obviously, this is information of secondary impor-
tance. The most important information concerning the
onset of the electric-breakdown wave between the opti-
cal breakdown and arc discharge can be obtained only
with frame-by-frame recording. These experiments
were carried out with use of a 15-cm-diameter camera;
the electrodes were a 36-mm-diameter tube and a
1-mm-diameter needle. The interelectrode distance was
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Fig. 1. Schematic of the experiment: (1) cathode, (2) anode, (3) focusing mirror, (4) splitting plate, (5) photodetector, (6) oscillo-
graph, (7) Rogowski coil, (8) SFR, and (9) emitter of the longitudinal electric field.
12 cm. EGB was initiated by a CO2 laser [25] (100-J
energy and 1-µs pulse duration).

Figures 2 and 3 present typical images illustrating
the onset of the EGB wave in two different experi-
ments. The electrodes are also shown schematically,
which allows one to see the direction of the wave prop-
agation and determine the absolute dimensions of the
breakdown wave by comparing it with the sizes of the
electrodes and interelectrode gap. The frame exposure
time and the time interval between frames were 4 µs.
The instant (in µs) corresponding to the middle of the
exposure time can be determined from the expression
t = 2 + 4 N, where N = 0, 1, 2 … is the frame number;
N = 0 corresponds to the first occurrence of the LLS.
The basic results of frame-by-frame recording are the
following:

(i) Two basic types of EGB waves were observed:
the primary wave (PW) and secondary wave (SW).

(ii) The PW has the shape of a piston with a charac-
teristic size of 1 cm. For any electrode polarity, this
wave moves from the tube to the needle with velocity
of the order of 105 cm/s, corresponding to the thermal
velocity of air ions. The size of a PW exceeds the char-
acteristic size of the points of the optical LLS break-
down by almost one order of magnitude; the emission
from these points lasts several microseconds. No effect
of a discrete LLS structure on the PW shape and veloc-
ity was observed.

(iii) The SW is 1–2 mm in transverse size and prop-
agated in the direction of the maximum preionization
determined by the LLS optical-breakdown points.
Before the occurrence of the SW, a uniform luminous
channel less than 1 mm in diameter was seen between
the front of the PW and the needle electrode (Fig. 2,
frames 20, 24, 26). The time resolution was insufficient
to determine the direction of the SW propagation but
allowed us to estimate the SW velocity from below as
V * 107 cm/s; i.e., this velocity was on the order of the
electron thermal velocity at a temperature close to room
temperature and higher.

(iv) After the PW passed more than half of the inter-
electrode distance, it went over into the SW.

(v) The PW diameter changed only slightly in the
course of propagation and was almost doubled in the
final stage. This could be related to an increase in the
emission intensity from the PW cylindrical boundary.

(vi) The EGB began with the formation of a cylin-
drical luminous region near the tube electrode. This
was a standing wave that contracted near the electrode
end and from which the PW detached. The diameter of
the standing wave was either equal to the PW diameter
or exceeded it threefold (Fig. 3, frames 2, 4, 6, 8, and
10). Moreover, during the formation of the standing
wave, a cylindrical skin layer was observed (Fig. 3,
frames 2, 4, and 6).

(vii) In the initial stage of propagation, the PW
could have a double structure in the longitudinal direc-
tion, which further went over into a single one. The
emission intensity from the leading part of the PW was
lower than the intensity from the trailing one. This
could be associated with the fact that the energy was
supplied to the PW from the tube electrode and was
partially absorbed in the trailing part of the PW (Fig. 2,
frames 7, 10, 20, and 24).

(viii) In the final stage of the PW propagation, an
additional wave process—a tail wave—occurred
between the PW trailing edge and the SW (Fig. 2,
frames 10, 18, 20, 24, and 26).

(ix) In some experiments, we observed the propaga-
tion of the reverse wave (a luminous spot of undefined
configuration) from the needle electrode toward the
tube electrode (Fig. 3, frames 12, 14). Such a shape of
the reverse wave could be ascribed to the fact that it was
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
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Frame 0 Frame 20

Frame 7 Frame 24

Frame 10 Frame 26

Frame 18 Frame 29

Fig. 2. Evolution of the EGB wave, U = +50 kV.
formed on the support of the needle (a tube with an
X-shaped bridge), rather than on the needle itself.

(x) PWs were also observed before the LLS was
produced. This was associated with air preionization by
ASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
background laser radiation. The coma aberration of the
focusing system was the reason why background radi-
ation produced a 2-cm-diameter luminous spot in the
focal plane; the PWs propagated from both sides of this
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Frame 1 Frame 8

Frame 2 Frame 10

Frame 4 Frame 12

Frame 6 Frame 14

Fig. 3. Formation of the standing wave and the departure of the PW from the standing wave, U = –39 kV.
spot. The experimental conditions did not allow us to
accurately measure the coordinates of these PWs.

(xi) Small metal fragments driven out from the sup-
port unit of the needle electrode by laser radiation had
no appreciable effect on EGB waves (Fig. 2, frames 7,
26).

Figure 4 shows the PW propagation; the longitudi-
nal coordinate is counted from the middle of a double
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
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Fig. 4. Time dependence of the longitudinal coordinate of (1–3) the PWs and (4) the boundary of the standing wave: U = (1) + 50,
(2) –39, (3) –39, and (4) –39 kV.
pistonlike PW or from the leading edge of a single PW.
The voltage sign shows the polarity of the tube voltage.
The spatial and temporal error bars correspond to the
frame exposure time and the longitudinal size of the
breakdown wave. This picture allows a more exact
determination of the velocity of the breakdown wave
and the coordinates where it starts and finishes, as well
as the time when the standing wave forms. The process-
ing of the figure gives the following values for the PW
velocities: V1 = 3.2 × 104 cm/s, V2 = 3.7 × 104 cm/s, and
V3 = 2.4 × 105 cm/s. The velocity with which the stand-
ing wave contracts is V4 = 5 × 104 cm/s. The initial PW
coordinates are z01 = 1.4 cm, z02 = 2.4 cm, and z04 =
4.2 cm, and the time during which the standing wave is
formed is t3 = 30 µs.

3. QUALITATIVE MODEL

Although the PW and SW are similar in appearance
to an avalanche–streamer transition, the factors listed
above cannot be explained in the existing EGB model.
The avalanche model should be completely rejected,
because, in this model, the direction of the PW propa-
gation is independent of the polarity of electrodes. In
order to discard the streamer model, it should be taken
into account that all of the well-known wave processes
can be broken into two groups: frontal and coherent
processes. In the former, the energy is deposited at the
wave front; the latter are related to the action of a dis-
tant (point or volume) source. In order to describe the
coherent processes, it is necessary to introduce the
notion of the phase. In describing the frontal processes,
this is not required. Therefore, the avalanche and
streamer models developed for frontal waves cannot
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
explain the phase effects observed during the evolution
of PWs, standing waves, and tail waves. This is the rea-
son why it is necessary to consider an alternative,
plasma-waveguide model. Applied to the experiments
in question, its basic concepts are the following:

(i) Due to emission from the points of optical break-
down, the laser spark forms a cylindrical plasma chan-
nel several centimeters in diameter.

(ii) The density of charge carriers in this channel
decreases continuously until the resonance occurs with
the electromagnetic oscillations produced in the chan-
nel under the action of the applied voltage. The channel
diameter is stabilized, and the difference in the reflec-
tion coefficients for the electromagnetic wave at the
ends of the channel determines the propagation direc-
tion of a solitary traveling wave.

(iii) The relative stabilization of the PW channel
diameter allows us to assume that it is the surface
(rather than space) dissipation that plays a decisive role.
This dissipation occurs in the vicinity of a cylindrical
surface where the charge-carrier density is close to the
critical density for the characteristic frequency of the
electromagnetic field generated in the channel.

(iv) It seems that the PW–SW transition, which is
characterized by a jump in the propagation velocity and
a decrease in the diameter of the breakdown wave, can
be associated with the transition from an ion-acoustic
wave to an electron Langmuir wave.

(v) The longitudinal propagation of a PW and its
interaction with the channel medium suggest that there
exists a substantial longitudinal component of the alter-
nating electric field. Thus, the wave in question should
be sought in the class of longitudinal surface waves.
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This model allows us to qualitatively explain why
curves 1, 2, and 3 in Fig. 4 do not pass through the coor-
dinate origin. For a PW to develop, it is necessary to
form a reflecting plasma mirror on the end of the tube
electrode; the standing wave plays the role of such a
mirror. Curves 1 and 2 are related to strong background
laser radiation during which a standing wave is pro-
duced. Curve 3 corresponds to the case of weak back-
ground laser radiation, when the formation of the stand-
ing wave begins after the emergence of an LLS.

4. ADDITIONAL EXPERIMENTS

According to point (v) of the previous section, there
should exist natural frequencies of the longitudinal
electric field in the plasma waveguide produced by an
LLS. It is seen from Fig. 3 that there must be no less
than two such frequencies. An additional series of
experiments was carried out to determine these fre-
quencies [22]. The initial schematic of the experiment
(Fig. 1) was somewhat changed. The chamber used had
an 18-cm-diameter reverse-current conductor. In order
to improve the quality of the plasma resonator pro-
duced by an LLS in the interelectrode gap, the elec-
trodes used were two 12-mm-diameter tubes; the dis-
tance between the electrodes was either 7.5 or 10 cm.
An emitter of the longitudinal electric-field component
was mounted on one of the electrodes. The emitter was
connected to one of the elements of the capacitive
divider (C2) connected in parallel with the basic capac-
itive storage C. The radiator winding and capacitor C2
produced a high-quality resonant oscillatory circuit of
positive feedback. This feedback was weak because of
frequency–phase mismatching.

By varying the C2 capacitance, we adjusted the
eigenfrequency of the feedback circuit so that oscilla-
tions were excited in the cylindrical plasma resonator
produced by an LLS and evolving in the applied elec-
tric field. The current oscillations in the plasma column
were measured by a Rogowski coil and recorded by an
S8-13 oscillograph. The LLS source was a neodymium
laser (with 10-J energy and 3-ns pulse duration). A con-
stant waiting voltage across the interelectrode gap
(5−7 kV) was maintained at a level below the EGB
threshold.

From traces of the electric current in the discharge
gap (decaying sinusoids), we determined the oscillation
period τ and the decay rate γ. We managed to record
two low-frequency oscillation modes: the oscillation
period and the decay rate of the first mode were τ =
0.5 µs and γ = (1.5 ± 0.3) µs, respectively, and those of
the second mode were τ = 1.5 µs, γ = (23 ± 7) µs. The
error in γ is the statistical scatter from different experi-
ments. The scatter in τ was not observed, so the error in
this quantity was evaluated by the time error in the
oscillograph measurements; i.e., it was less than 10%.
The absolute calibration of the Rogowski coil was not
performed; however, the calculation of the Rogowski
coil sensitivity allows us to estimate the current ampli-
tude in the first maximum to be 0.2–0.4 A. Variations in
the interelectrode distance from 7.5 to 10 cm had no
effect on the recorded parameters.

5. ANALYSIS OF THE RESULTS
An analysis of the results obtained reduces mainly

to the identification of the evolving primary EGB wave
and determination of the state of the plasma channel in
which it propagates. An additional analysis allows us to
identify the secondary wave based on the available
data.

The observed PW should be classified as an ion-
acoustic wave, because photorecording shows that its
propagation velocity corresponds to the thermal veloc-
ity of air ions; in this case, a substantial energy
exchange between the wave and medium is observed.
This wave can also be classified as a surface (rather
than space) wave, because it follows from the measure-
ments that the dependence of its decay rate on the fre-
quency is stronger than linear. This agrees with the pho-
torecording images in which a cylindrical skin layer is
clearly seen in the initial stage of the formation of a
standing wave. A monotonically increasing ion-acous-
tic dispersion curve ω(k) in a plasma waveguide [26],

which goes over to the asymptote ωi/ , qualitatively
explains the mentioned difference in the velocities of
PWs (see Section 2). However, based on the above
dependence, the results of photorecording still cannot
be interpreted as the lower spatial modes of ion plasma
oscillations. This fact imposes additional requirements
on both future theoretical developments and experi-
ments.

When analyzing the structure of the channel in
which the PW propagates, it is necessary to distinguish
the region of admissible values of the temperature T
and charge-carrier density n in the plane (T–n). From
frame-by-frame photorecording, it follows that the
Debye radius must be less than 0.1 cm. Therefore, we
have T/n < 4 × 10–8 eV cm3. On the other hand, any
plasma component in the channel must have a temper-
ature no less than room temperature; i.e., T > 0.025 eV.
A simultaneous analysis of these requirements leads to
the charge-carrier density n > 6 × 105 cm–3. Note that,
since we did not make any assumptions about the mass
of charge carriers, this condition must hold for both the
electron and ion components.

Taking into account that the frequency of the surface
wave is close to either the ion plasma frequency or the
electron Langmuir frequency, we can determine the
critical densities of ions and electrons on this surface
under the conditions of the resonance experiments. For
the electron component, the critical densities are 2.5 ×
103 and 2.2 × 104 cm–3 for the first and second recorded
modes, respectively. For the ions, the critical densities
are four orders higher: 108 and 109 cm–3 for  and 
ions. This agrees with the results of [6], in which simi-
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lar values for the charge-carrier densities were obtained
under similar conditions from both the analysis of the
balance equations and direct probe measurements.

By comparing the obtained values of the critical
densities of charge carriers with admissible values of
the charge-carrier densities, we can infer that it is the
ions that are responsible for the collective effects in the
PW, whereas the electrons behave as a background gas.
The SW should be interpreted as an electron Langmuir
wave. The reason for this is the coincidence of the SW
velocity estimated from photorecording with the elec-
tron thermal velocity. This is also confirmed by the
results of [6], in which EGB began with the excitation
of an SW and the SW average velocity varied in the
range 107–108 cm/s, depending on the applied voltage.
Direct experimental measurements are insufficient to
classify the SW as a surface or space wave. Neverthe-
less, the presented experimental data and estimates
allow us to assume that the PW–SW transition is
related to the increase in the electron density in the
course of PW propagation until the electron resonator
is produced on the axis of the ion-acoustic resonator.
From an analysis of the admissible values of the
charge-carrier densities, we can estimate the electron
density in the SW and obtain the threshold conditions
for the SW onset, n > 108–109 cm–3, and to evaluate the
range of the eigenfrequencies of the corresponding
plasma waveguide as ν > 109 Hz.

6. CONCLUSION

In conclusion, we note that there is no direct anal-
ogy between the PW and the avalanche or streamer. The
analogy may be carried out only from a methodological
standpoint, because it is necessary to take into account
that all of the experimentally observed space–time
EGB effects that cannot be explained in the avalanche–
streamer model may be qualitatively interpreted with
the use of phase and dispersion relations typical of
plasma processes.
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Abstract—The neutral-gas temperature in a low-pressure (50 Pa) capacitive RF discharge in a CF4 + O2 mix-
ture is determined from the heating kinetics of a gallium arsenide single crystal, which is chemically inert to
any radicals in a fluorine-containing plasma. Experimental methods are discussed that make it possible to con-
firm the absence of heat sources capable of additional heating of the calorimeter in the discharge. The features
and applicability limits of the method of non-steady-state gas thermometry in a weakly ionized nonequilibrium
plasma are discussed. The method proposed is compared with conventional steady-state methods based on mea-
surements of the established temperature of a thermal probe in the discharge. Temperature scanning makes it
possible to study dependences that cannot be investigated by steady-state methods, in particular, the tempera-
ture dependence of the calorimeter heating power, which is very important for diagnosing the processes of
plasma–surface heat transfer. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Plasma and plasmochemical technologies can be
successfully developed only if there is a sufficiently
wide range of fast-operating diagnostics. The absence
of such methods in microtechnology leads to a situation
in which the regimes of plasma–surface interaction in
the majority of research and commercial devices are
sought for only from the final result, by the trial-and-
error method for each individual device. One of the
important discharge parameters is the neutral-gas tem-
perature. At low pressures (~1 torr and below), the gas
temperature Tg depends on the state of the reactor wall,
because the rates of the surface processes involving
excited states or radicals can vary over orders of mag-
nitude depending on the composition and properties of
the absorbed layers. The excited states can either sub-
stantially contribute to gas heating in the bulk of the
discharge [1] or can be deactivated on the wall and the
electrode surface. Therefore, the measurement of Tg in
a discharge is one of the methods allowing one to con-
trol the reproducibility of microtechnological pro-
cesses. The simplest and most frequently used mea-
surement techniques are contact diagnostics. In recent
years, contact thermometers (thermocouples and ther-
moresistors), the data from which are recorded by the
electric signals, have been replaced with contact ther-
mometers based on optical recording [2–4], whose
advantage is that the signal is insensitive to electrical
noise. Nonsteady-state methods provide more informa-
tive measurements as compared to steady-state ones,
but with poorer spatial resolution. At present, these
methods are employed only in large-volume plasmo-
chemical reactors (10–20 cm in radius).
1063-780X/00/2604- $20.00 © 0328
Previously, measurements of the gas temperature by
scanning calorimetry were carried out with the use of a
silicon single crystal. For some gases (He, Ar, N2, O2,
or CF4) at pressures from 10 to 100 Pa, measurements
were carried out in an RF discharge [2, 5]. However, we
failed to measure the gas temperature in mixtures of tet-
rafluorinemethane and oxygen (CF4 + O2) because of
the surface exothermic reaction between atomic fluo-
rine and silicon. This mixture (along with others) is
widely used in plasmochemical microtechnology to
etch silicon during the production of integrated micro-
circuits, optical devices, etc. Therefore, it is necessary
to develop the methods for measuring the gas tempera-
ture in these chemically active media.

In this paper, we present the results of measuring the
gas temperature in an RF discharge excited in a cylin-
drical reactor in a CF4 + O2 mixture. The calorimeter is
made of a GaAs single crystal, which is chemically
inert to fluorine-containing plasma. We also discuss
some features of the method that are important for the
interpretation of the experimental results.

2. EXPERIMENT

The measurements were carried out in a 45-cm-long
cylindrical quartz reactor with an inner diameter of
19 cm (the schematic of the reactor is described in
[6, 7]). Semicylindrical external electrodes excited an
RF discharge at a frequency of 13.56 MHz. The elec-
trodes were separated from the plasma by a 5-mm-thick
quartz wall. The deposited power was 260 W. The pres-
sure of the CF4 + O2 mixture was 50 Pa, and the circu-
lation rate was ~100 cm3/min. A small additive of oxy-
gen in the discharge mixture led to a substantial
2000 MAIK “Nauka/Interperiodica”
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increase in the concentration of atomic fluorine com-
pared to a discharge in pure tetrafluorinemethane, all
other conditions being the same [8, 9]. The discharge in
a mixture of the same composition but with a small
amount of CF4 results in a high degree of dissociation
of oxygen [10]. The oxygen content in the mixture var-
ied from zero to 100%. The calorimeter was made of a
polished 0.43-mm-thick gallium arsenide monocrystal-
line plate 2 × 2 cm in size. The electric resistivity of the
semi- insulating chromium-doped crystal was approxi-
mately 10 MΩ cm [11]. The crystal attached to two
quartz rods 1.5 mm in diameter was located on the axis
of the reactor. One end of the cylindrical reactor was a
polished quartz plate, which served as an optical win-
dow. After the discharge was switched on and off, the
crystal temperature T(t) was measured by laser interfer-
ometry [12]. Probing radiation of an He–Ne laser with
a wavelength of 1.15 µm fell on the crystal at an angle
of 5° in order to eliminate interference in the optical
window, which was also heated by thermal flux from
the discharge, and was reflected to a photodetector (an
FD-7G germanium photodiode operating in the photo-
galvanic regime). In addition to the 1.15-µm wave-
length radiation, an LG-126 laser produced radiation at
the 1.08-µm wavelength with the power one order of
magnitude less than the radiation at the main wave-
length. Both of these lines fall into the transparency
range of the crystal; therefore, these waves interfered in
the crystal and caused beating at the photodetector. In
order to avoid this effect, an interference filter (with a
maximum transparency at 1.15 µm) was placed in front
of the photodetector to cut off the 1.08-µm line. The
interferogram (Fig. 1) was recorded by an H-3021
recorder. The temperature was determined at the
instants corresponding to the extremums of the interfer-
ogram. The random error of the temperature measure-
ments was less than 0.1 K in the range T = 300–700 K.

In contrast to silicon single crystals (as well as
quartz glass), the GaAs crystal does not interact with
fluorine-containing radicals (including atomic fluo-
rine). For this reason, the heating of a GaAs crystal in
the fluorine-containing plasma is not accompanied by
the thermal effect of plasmochemical reaction. Another
advantage of gallium arsenide over silicon is a higher
temperature sensitivity in laser-interferometry mea-
surements [13]. This leads to a greater number of inter-
ference extremums per unit temperature interval for a
GaAs crystal than for a silicon crystal of the same
thickness. The third advantage of GaAs over Si is a
wider band gap of the crystal (Eg ≈ 1.4 eV for GaAs and
Eg ≈ 1.1 eV for Si). Therefore, the radiative loss at high
temperatures is smaller with a GaAs calorimeter
because thermal radiation from the crystal is caused by
free carriers (electrons in the conduction band and
holes in the valence band), whose concentration
increases with temperature according to the Arrhenius
law with the activation energy equal to the half-width of
the band gap of the crystal [14]. Under the same dis-
charge conditions, a GaAs calorimeter is heated to a
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
higher temperature than a silicon one; i.e., the temper-
ature scanning range for a GaAs calorimeter is wider
than for a silicon calorimeter (and substantially wider
than for a quartz calorimeter, which has the highest rate
of radiative heat removal).

3. RESULTS AND DISCUSSION

Time dependences of the crystal temperature after
switching on and off the discharge are presented in
Fig. 2. The discharge was excited in a CF4 + O2 mixture
at different partial pressures of the components. It is
seen that the crystal is heated to the highest temperature
in the oxygen plasma. The temperature of a GaAs crys-
tal in the discharge reaches 370°ë, whereas the steady-
state temperature of a silicon crystal is lower by 50°C
under the same conditions; this is a result of lower radi-
ative heat removal from GaAs.

An addition of tetrafluorinemethane to oxygen
sharply decreases the steady-state crystal temperature
in the discharge. By differentiating the dependences
T(t), we constructed the temperature dependences of
the power density D = cρh(dT/dt) spent on crystal heat-
ing in the discharge (here, c, ρ, and h are the specific
heat, density, and thickness of the crystal, respectively).
These dependences are presented in Fig. 3. In order to
exclude time from the consideration and construct the
temperature dependences, the heat transfer should be
quasisteady; i.e., all of the processes should proceed as
if the heating rate is zero. The coincidence of depen-
dences D(T) for calorimeters of different thicknesses
(which differs by a factor of 3) proves that the heat-
transfer rate is determined only by the instantaneous
temperature of the surface and is independent of the
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Fig. 1. Time dependence of the radiation intensity (λ =
1.15 µm) reflected from a 0.43-mm-thick GaAs single crys-
tal inserted in an RF discharge in a CF4 + O2 mixture at a
50-Pa pressure. The measurements are carried out after the
RF discharge was switched on and off. The arrow shows the
instant the discharge was switched off.
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process duration; i.e., the heat transfer is actually qua-
sisteady.

To determine the gas temperature, we extrapolate
the linear dependence D(T) to the point of intersection
with the abscissa. The value of T at which the condition
dT/dt = 0 holds is equal to the gas temperature. This
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Fig. 2. Time dependence of the temperature of a GaAs crys-
tal in a CF4 + O2 mixture at a 50-Pa pressure after the RF
discharge was switched on and off. The vertical arrows
show the instants the discharge was switched off. The oxy-
gen content in mixture is (1) 20, (2) 40, (3) 60, (4) 90, and
(5) 100%.

Fig. 3. Temperature dependence of the power density heat-
ing the calorimeter in the RF discharge in a CF4 + O2 mix-
ture. The oxygen content in the mixture is (1) 20, (2) 40,
(3) 60, (4) 90, and (5) 100%.
method is based on the fact that almost the entire heat
flux falling on the calorimeter surface is associated with
a sole heat-transfer mechanism. This mechanism
includes both the energy transport from the discharge to
the surface by neutral-particle molecular heat conduc-
tion and the relaxation of the translational energy of
particles in their collisions with the surface. This mech-
anism is characterized by the following features.

(i) The power deposited on the surface decreases
with the surface temperature. It is usually assumed [15]
that the dependence D(T) must be nonlinear if the initial
difference between the gas and surface temperatures is
greater than several degrees. However, this is not the
case at low gas pressures: the dependence D(T) is linear
even for an initial temperature difference of several
hundred degrees [7]. We also observed the linear tem-
perature dependence D = A – BT. Using an empirical
approximation based on the plots D(T) (Fig. 3), we
determine both parameters A and B. If the heat-transfer
rate is determined only by the transport and relaxation
of the particle kinetic energy, the dependence has the
form D = 2α(Tg – T), where α is the heat transfer coef-
ficient and Tg is the gas temperature outside the thermal
boundary layer. Thus, B = 2α and A/B = Tg. The devia-
tion of the dependence D(T) from linear points to the
presence of additional heat sources (e.g., heat release in
the surface plasmochemical reaction [16]).

(ii) The heat-transfer rate is limited by the rate of
energy transfer across the boundary layer, whose thick-
ness is comparable with the characteristic size of the
calorimeter. To verify this, we examined how the heat-
ing rate constant k (s–1) = 2α/cρh changes when the cal-
orimeter size is varied. If the rate constant increases
with decreasing the calorimeter size, then the limiting
process is the diffusive heat transfer. The reason is that,
as the calorimeter size decreases, the thickness of the
boundary layer near the surface also decreases and the
temperature gradient in the layer and the density of the
heat flux on the surface increase. Hence, we obtain that
the characteristic heating time τ = k–1 decreases with
decreasing the crystal size.

(iii) The surface properties have no effect on the
heat-transfer rate because the relaxation of the kinetic
energy of particles in their collisions with the surface
proceeds during a single collision and, thus, cannot be
a limiting factor. We can verify this by comparing the
heating kinetics for calorimeters of the same shape and
mass but with different surface properties (e.g., with
deposited thin films whose surface accommodation
coefficients for kinetic energy are different; to ensure
this, the surface material should include atoms with
very different atomic masses [17]). It is difficult to
check the calorimeter for this property, because any
calorimeter surface is covered with an absorbed-water
film, which is hard to remove.

(iv) When the power deposited in the discharge is
varied, the changes in the parameters α and Tg corre-
late: an increase in the temperature Tg results in an
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
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increase in the parameter α ~ λ ~ (Tg)n (here, λ is the
heat conductivity of a gas and n ≈ 0.7–1, depending on
the gas species). This fact allows us to distinguish the
effect of gas heat conduction and thermal effects of the
catalytic and chemical processes on the surface when
the dependence D(T) is linear because of the weak tem-
perature dependence of the rates of heterogeneous pro-
cesses. The influence of heat release due to heteroge-
neous processes on the heating manifests itself in the
apparent increase in Tg and simultaneous apparent
decrease in α with increasing the deposited power.
Such behavior is unlikely to occur; therefore, there
must be an additional heat source that is not related to
the gas heat conduction. Just in this fashion, we found
an additional heat source on the surfaces of an Si single
crystal and SiO2 film in a CF4 + O2 plasma. Thus, the
limited applicability of a silicon calorimeter for the
diagnostics of a fluorine-containing plasma was dem-
onstrated. Figure 4 shows the parameters α and Tg as
functions of the deposited power in a CF4 discharge.
Both parameters increase simultaneously with increas-
ing the deposited power; this shows that the heat release
due to deactivation of the excited levels on the crystal
surface is insignificant.

Experiments carried out to verify each of the above
features prove that, for a low deposited power, the cal-
orimeter heating is associated with a sole heat-transfer
mechanism. Thus, the calorimeter is catalytically and
chemically inert. Therefore, the neutral gas temperature
in the discharge can be determined from the heating
kinetics of the calorimeter. The contribution of both the
ion bombardment and charged-particle recombination
on the surface to the crystal heating is less than 10–3 of
the power of the integral heat source, because the degree
of ionization in the discharge is fairly low (~10–6). Radi-
ation from the discharge is also insignificant for the
thermal balance in the crystal. This was confirmed in
experiments with crystals covered with antireflective
dielectric films with thicknesses from 0.2 to 1µm; in
this case, the absorption of the optical radiation falling
on the crystal increased by a factor of 1.5 to 2.

The gas temperature in the discharge and the heat
transfer coefficient for different oxygen contents in a
CF4 + O2 mixture are shown in Fig. 5. It is seen that α
is a nonmonotonic function of the oxygen content. This
is also seen in Fig. 3, where the inclination of the D(T)
curves changes nonmonotonically. The dependence of
the heat transfer coefficient on the oxygen content in
the mixture is related to the change in the degree of dis-
sociation of the gas, which manifests itself in the
change of the gas thermal conductivity. The degree of
dissociation of O2 is maximum when a small amount
(approximately 10%) of CF4 is added; in this case, the
heat transfer coefficient is also maximum. The reason
for the nonmonotonic dependence of the axial gas tem-
perature in the reactor on the oxygen content is
unknown, because we do not know all of the chemical
processes contributing to the gas heating (the heating of
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
molecules by elastic collisions with electrons is insig-
nificant under the conditions of our experiment). The
gas temperature in the oxygen discharge is ~150 K
above that in the mixture. This may be associated with
the different distributions of the RF power deposition in
the discharges. With the same spatial distribution of the
power deposition, the temperature on the reactor axis
should be higher in a heavier gas with a lower thermal
conductivity.
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The measurement error in Tg is mainly determined
by low-frequency (~0.01–0.1 Hz) fluctuations of the
deposited power. The change in the deposited power
causes a change in the gas temperature, which leads to
the deviation of the D(T) dependence from linear
(Fig. 3, upper curve). Depending on the number of
points that are used to determine the parameters of the
empirical approximation D = A – BT, the obtained value
of Tg falls within a range of 20–40 K. Therefore, the
random measurement error is assumed to be ±20 K.
Fluctuations of the energy deposition are peculiar to
any individual device and discharge; therefore, the pre-
sented estimate for the error is only tentative and cannot
serve as an actual characteristic of the method.

In the discharge with 80–100% CF4, the quartz
walls of the reactor are heated only slightly in contrast
to O2, N2, or Ar discharges, in which the wall tempera-
ture increases by 20–40 K in 2–3 min with the same
deposited power. The heat balance of the discharge is
still unknown. The neutral particle gains, on average,
1–2-eV energy in the time it stays in the reactor
(~0.1 s). The questions of where, in which process, and
at which rate this energy is transferred to the solid body
or released in some other way (e.g., in the pumping sys-
tem outside the reactor) are still unanswered.

4. COMPARISON OF STEADY-STATE 
AND NONSTEADY-STATE MEASUREMENTS 

OF Tg

To perform contact measurements of the gas tem-
perature in discharges, thermal probes with a size as
small as possible are usually used [18]. The restrictions
on the probe size are determined by the need to
decrease perturbations introduced in the discharge by
the thermal probe. However, this results in a loss of
information necessary for the interpretation of the
experimental data. Let us consider the simplest heat-
balance equation for the thermal detector, assuming
that the heterogeneous processes and corresponding
heat release are absent:

Here, m is the mass of the heat detector, S is its surface
area, ε is the effective emission coefficient (with the
geometry of the experiment being taken into account),
σ is the Stefan–Boltzmann constant, and T0 is the wall
temperature. The temperature-relaxation time of a
small-mass thermal detector (e.g., a thermojunction
0.2–0.4 mm in diameter or a portion of a 0.1-mm-diam-
eter optical fiber) is comparable with the relaxation
time of the discharge parameters (~0.1–1 s). Therefore,
for analysis, we use only the established temperature of
a thermal probe, when the heat flux from the discharge
is balanced out by the radiative heat removal. Thermal
equilibrium (T = Tg) is possible only for a nonemissive
thermal probe. For ε ≠ 0, the heat balance equation con-
tains two unknowns (α and Tg), so that, in order to

cmdT dt⁄ αS Tg T–( ) εσS T
4

T0
4

–( ).–=
determine Tg, we need to know the heat transfer coeffi-
cient. In the previous section, it was shown that, in the
non-steady-state method, the coefficient α is deter-
mined by the inclination of the curve D(T) in each par-
ticular experiment. In steady-state measurements [18],
the heat transfer coefficient is determined from the sim-
ilarity theory. For small Knudsen numbers (Kn ! 1),
we have α = Nuλ/L ~ (Tg)nL–1, where Nu is the Nusselt
number determined from the probe shape, L is the char-
acteristic size of the probe, and n ≤ 1. In this case, the
rate of the heat transfer between the gas and surface is
independent of the surface properties, because the main
resistance to the heat transport is offered by the bound-
ary layer. However, for the gas pressures p ≤ 1–3 torr,
the condition of the applicability of the continuous-
medium model is violated for thermal probes with a
characteristic size of L ~ 1 mm. In the intermediate
pressure range, the coefficient α is lower than in the
case when the continuous-medium model is valid. In
addition, this coefficient depends on the pressure and
on the accommodation coefficient γ of the kinetic
energy: α ~ γp(Tg)–1/2.

Extrapolation of the results of the similarity theory,
which is valid for heat transfer in a continuous medium,
to the intermediate pressure range (Kn ~ 1) results in a
severalfold overestimation of the coefficient α and a too
low value of Tg. This error seems to increase with
decreasing the pressure and increasing the gas temper-
ature. Thus, the steady-state methods for determining
the gas temperature with the use of emissive thermal
probes are inapplicable in the intermediate pressure
range, because we failed to measure the heat transfer
coefficient and the probe temperature simultaneously.
For example, if the measured values are T = 700 K, T0 =
300 K, and ε = 1, then, in a CF4 discharge at p = 0.3 torr,
we obtain Tg ≈ 770 or 1260 K, depending on which
approximation for α is chosen for the measurements
carried out with a spherical thermal probe 0.5 mm in
diameter.

The detector (the data from which are recorded by
an electric signal) is a thermocouple placed inside a
quartz or glass tube 1 mm in diameter. The tube walls
are approximately 0.1 mm thick and are optically thick
in the spectral region λ ≥ 3–5 µm, where, at the temper-
ature T ≤ 1000 K, the Planck function is maximum. The
result of measuring Tg with this detector in the steady-
state regime at pressures p ≤ 3 torr cannot be reliably
interpreted because of a lack of exact data on the heat
transfer coefficient. In order to substantially (almost to
zero) decrease the emission coefficient of the detector,
the thermocouple surface can be protected by a plasmo-
chemically deposited dielectric coating several tens of
µm thick. In this case, the emission coefficient of the
detector is almost the same as that of metal and does not
exceed 0.01–0.03 in the infrared spectral region
(instead of ε ≈ 0.9 for a glass tube). Thus, we can avoid
the need for determining the heat transfer coefficient
and go over from the measurements in the heat-flux
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
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regime to the regime close to thermal equilibrium
between the detector and the gas. However, the mea-
surements still provide limited information. For exam-
ple, in the steady-state regime, we cannot separate the
experimentally measured total heat flux into compo-
nents related to different heat-transfer mechanisms.
Also, we cannot study the kinetics of the heat transfer
between the plasma and the surface. The non-steady-
state method, which allows us to obtain the entire phase
trajectory of the plasma–surface system in the temper-
ature–power variables in each experiment, is much
more informative than the steady-state method provid-
ing a single point of the phase trajectory.

The relaxation method allows us to determine the
temperature dependence of the power heating the calo-
rimeter. Such dependences cannot be obtained by the
steady-state methods. This is an important advantage of
scanning calorimetry over ordinary thermocouple mea-
surements in the discharge. Scanning calorimetry
allows experimental verification of the hypotheses for
the heat-transfer mechanisms, which is impossible with
the use of thermocouples. The relaxation method, in
which information is read remotely with the use of a
laser, makes it possible to use calorimeters made of var-
ious materials (Si, GaAs, and sapphire single crystals;
glasses; etc.) and to vary the calorimeter size and sur-
face properties. Presumably, for any chemically active
medium, it is possible to find the material either to pro-
duce a calorimeter (as is done in this paper) or deposit
thin protective films on the calorimeter surface in order
to eliminate the thermal effect of surface plasmochem-
ical reactions.

The temperature dependence D(T) can be obtained
due to the fact that the heating time of the calorimeter
substantially exceeds the time needed for the discharge
parameters to reach the steady state. However, the high
heat capacity that can be achieved only in large-size
calorimeters results in a low spatial resolution. We have
not yet considered the trade-off problem of the mini-
mum size of the calorimeter against maximum infor-
mation. In this paper, the high spatial resolution of mea-
surements is of minor importance, because we study
the temperature near the reactor axis, where the radial
dependence is gently sloping. However, if there is a
need to measure Tg in the region of large temperature
gradients (e.g., near the reactor walls), the problem of
the crystal size is important and requires special
analysis.

5. CONCLUSION

The possibility of measuring the gas temperature in
a discharge by the heating kinetics of the calorimeter is
based on the fact that, under the conditions of our
experiment, the basic heat flux is that resulting from the
relaxation of translational (and maybe rotational)
degrees of freedom of the particles. Evidence for this
statement can be formulated in the form of several con-
ditions that can be verified experimentally. One of the
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
arguments in favor of the absence of additional thermal
sources is the following. As the deposited power
increases, the gas temperature increases, whereas the
heating time constant of the calorimeter decreases. The
reason for such behavior is that the time constant
depends on the thermal conductivity (i.e., temperature)
of the gas outside the thermal boundary layer. There-
fore, as the gas temperature increases, the thermal resis-
tance decreases and both the heat transfer coefficient
and the heating time constant τ ~ (Tg)–n (n ~ 1) increase.
If there is an additional heat source (e.g., heat release
with the Arrhenius temperature dependence of the
rate), the increase in the deposited power can result in
an apparent increase in the heating time constant even
to infinity (in this case, the curve D(T) is in parallel to
the abscissa). Since a simultaneous increase in Tg and τ
is impossible, the observed deviation of the experimen-
tal data from the standard behavior can be evidence that
the heat transport is associated not only with the relax-
ation of translational and rotational degrees of freedom
of the particles on the surface but also with an addi-
tional heat source. Such a pattern was previously
observed when Tg was measured in a CF4 + O2 plasma
with a silicon single-crystal calorimeter covered with
an oxide film.

To measure the gas temperature in a chemically
active medium, the calorimeter should be made of
materials that do not produce volatile reaction products
in interactions with active particles. In this case, the
thermal effect of the surface plasmochemical reaction
is associated with the formation of one or more mono-
layers consisting of reaction products. After several
layers are formed, the reaction slows down and then
terminates, because the reagents (chemically active
particles from the discharge and crystal-lattice atoms)
are spatially separated by these layers. It is this tech-
nique that allows measurements in oxygen or nitrogen
plasma with the use of a silicon calorimeter (silicon
oxides and nitrides are nonvolatile at such low temper-
atures) or in a CF4 + O2 discharge with the use of a
GaAs calorimeter (produced fluorides are nonvolatile).
For discharges in mixtures containing chlorine and bro-
mine, in which GaAs undergoes etching, other calorim-
eter materials should be used.

Obviously, any calorimeter measures its own tem-
perature. For the lack of data on the heat-transfer kinet-
ics, it is not always possible to find the relation between
the steady-state temperature of the emissive thermal
probe and the gas temperature. At pressures of
0.1−1 torr, Tg measurements with the use of thermo-
couples and other thermal detectors are almost always
wrong (the gas temperature is underestimated by tens
or hundreds of degrees due to the erroneous assumption
of the heat transfer coefficient). Therefore, in order to
carry out measurements in the intermediate pressure
range in the regime of thermal equilibrium with a gas
(rather than in the heat-flux regime), it is more appro-
priate to employ nonemissive thermal probes. None-
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missive thermal detectors can be produced by standard
plasmochemical methods that are widely used in
microtechnology. A submicron dielectric film depos-
ited on the surface of a metal probe serves two pur-
poses: the surface becomes catalytically inert, and the
emission coefficient of the obtained structure is lower
by a factor of several tens than the emission coefficient
of glass tubes that are presently being used in thermo-
couple measurements. However, even with the use of
new technologies, it is impossible to make steady-state
thermometry measurements in discharges more infor-
mative. The most that can be obtained by steady-state
methods is the determination of Tg, whereas for non-
steady-state methods this is only the starting point from
which the study of the mechanisms for plasma–surface
heat transfer begins.
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1 1. PLASMA ELECTRONICS

Plasma electronics and plasma methods of acceler-
ating charged particles have become an integral part of
plasma physics and accelerator science and technology
[1–3]. Until recently, nonlinear and quasilinear theories
of the beam–plasma interaction (BPI) and, accordingly,
the theory of beam–plasma oscillators and amplifiers
took into account only beam-related nonlinear effects
and described plasma-related effects in the linear
approximation. In the last few years, the generation and
amplification of microwave radiation has been investi-
gated self-consistently in the nonrelativistic approxi-
mation with allowance for the effect of microwaves
excited in the BPI on the plasma parameters (primarily,
on the plasma density). It was shown that plasma-
related nonlinear effects (longitudinal and transverse
ponderomotive forces and parametric resonances)
cause the microwaves excited in the BPI to generate ion
oscillations and waves, thereby changing the plasma
density. As a result, the plasma becomes inhomoge-
neous2 and unsteady, which may lower the intensity of
the excited microwaves (or even stop their excitation)
and substantially change the microwave spectrum
[4, 5]. A theory developed with allowance for the pon-
deromotive forces in a plasma makes it possible to infer
the processes that reduce the intensity of microwaves
excited in the BPI or even prevent their excitation. The
theoretical predictions agree well with the experimen-
tal data [6]. The next step in this direction is to investi-
gate how to avoid unfavorable effects associated with
the ponderomotive forces in the course of BPI in a
plasma.

1 Supplemented version of the address at the opening of the
VI International Seminar on Plasma Electronics and New Accel-
eration Techniques, Kharkov, 1998.

2 Recall that the plasma homogeneity is of crucial importance
because of the resonant nature of the wave–particle interaction
(νph = νpar), which underlies collective BPI. Consequently, the
generation and amplification of microwaves in the BPI are very
sensitive to the plasma inhomogeneity, which results, in particu-
lar, from nonlinear plasma processes.
1063-780X/00/2604- $20.00 © 20335
The way in which microwaves become coupled
nonlinearly with low-frequency plasma oscillations
and waves is well described in [7–9]. The main diffi-
culty in constructing the relevant theory is the necessity
of describing self-consistently not only the aforemen-
tioned processes but also (in the nonlinear approxima-
tion) the excitation of waves in the BPI and their evolu-
tion.

The influence of parametric instabilities on the BPI
was studied by Karas’ et al. [10, 11]. They investigated
the problem of how a periodic plasma inhomogeneity
affects the BPI by analyzing a three-wave interaction
(involving ion acoustic, electromagnetic, and plasma
waves) under the assumption that the ion acoustic wave
is specified a priori. They showed in particular that, if
the three waves stay synchronized with each other in
time and space and if the plasma wave amplitude is
smaller than the amplitude at which the plasma wave
starts to trap the beam electrons, then the BPI may be
more efficient.

In reviewing the recent progress in plasma electron-
ics, it is necessary to point out the advances achieved in
investigating and fabricating high-power long-pulse
plasma-based microwave oscillators. Among the
papers on this topic, we should, first of all, mention the
paper by Goebel et al. [12], in which they described
their work on creating a microwave Plasma-Assisted
Slow-Wave Oscillator (PASOTRON). The
PASOTRON is already capable of operating at a power
of about 5 MW, the pulse duration being 100 µs. Such
a high efficiency of the oscillator is, to a great extent,
attributed to its operation with a plasma, although, as is
seen from the literature, the advantages of using plas-
mas in electrodynamic systems (such as waveguides
and resonators) are not employed in full measure. In
particular, this concerns the possibility of controlling
dispersion properties by varying plasma parameters.
However, other plasma functions are well employed in
the PASOTRON. First, the plasma created in a hollow
cathode serves as a very efficient electron emitter, such
000 MAIK “Nauka/Interperiodica”
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that it ensures current densities of 50–80 A/cm2.
Another important feature is the possibility of focusing
an electron beam in the BPI region without using a
magnetic field, in which case the role of the external
magnetic field is played by beam self-pinching in the
plasma. These results are great importance for studies
carried out with traditional plasma-based microwave
devices. However, with the aim of better realizing the
advantages of plasma electronics, the beam electrons
should also be accelerated in a plasma (rather than in a
vacuum) in order to overcome the restrictions on the
beam current magnitude that are associated with the
electron space charge in the beam.

In recent years, interesting and important papers
have been published on the radical modification of
klystrons via the collective interaction of charged-par-
ticle beams with plasmas and on klystron bunching as
a means of producing ultrashort (shorter than 100 fs)
electron bunches, which are utilized in new plasma-
based charged-particle acceleration schemes and can
also be used to create intense sources of infrared radia-
tion.

Katsouleas and Clayton [13] suggested to excite
electromagnetic wake waves in a plasma by intense
laser light, which can be used to ionize a neutral gas
layer and create a plasma slab with controlled parame-
ters. Momentum transfer from the electromagnetic
wake field to a relativistic electron beam (REB) in a
plasma slab causes the beam to propagate in the drift
space and evolve into a periodic train of short electron
bunches.

Pasour et al. [14] developed and created a high-
power klystron, in which bunching occurs under the
action of an electromagnetic wake wave excited by the
leading edge of a high-current REB propagating in a
plasma. The electric field modulates the wake wave of
an REB with an initially uniform density and thus
breaks the beam up into a periodic train of very short
bunches, which excite an electromagnetic field in a
conventional waveguide structure. The length and rep-
etition rate of the bunches are controlled merely by
varying the plasma density. The most important feature
of this klystron, in which electromagnetic waves are
actually generated during the BPI, is that there is no
need to solve a complicated problem of converting
electrostatic space-charge waves into the emitted elec-
tromagnetic radiation.

Another way of utilizing the plasma in order to sub-
stantially increase the efficiency of present-day (rather
than conventional) oscillators and amplifiers (espe-
cially those operating in millimeter, submillimeter, and
even shorter wavelength ranges) is to exploit oblique
waves excited in the plasma of free electron lasers
instead of mechanical wigglers, which restrict the pos-
sibility of shortening the wavelengths of the excited
microwaves [15].

Despite the significant progress achieved in plasma
electronics, there are still a number of questions that
lack adequate answers. The most important problem
here is that of investigating the interaction between sto-
chastic electromagnetic radiation and matter both theo-
retically and experimentally. The development and cre-
ation of beam–plasma microwave oscillators and
amplifiers have been the subject of significant research
efforts. Now, the theory of microwave sources has been
constructed (at least in the linear approximation) and
the sources have been fabricated, so that an important
step has been taken toward studying stochastization
processes in the BPI and it has become relevant to
examine the interaction of stochastic radiation with
matter and, in particular, to continue investigations of
the interaction between stochastic radiation with
charged particles in a plasma. Bass et al. [16] demon-
strated the possibility of efficient plasma heating by
stochastic radiation in the BPI. The physical mecha-
nism underlying such heating is trivial. It is well known
that, in the course of interaction of a regular microwave
field with a charged particle, the particle energy aver-
aged over the microwave field period does not grow if
binary collisions are neglected. In the presence of col-
lisions, the averaged particle energy changes in propor-
tion to the collision frequency. This effect can be
explained in a trivial way as follows: since collisions
change the phase of a particle in the microwave field,
the averaged (over the field period) energy acquired by
a particle due to collisions is nonzero. If the phase of an
electromagnetic field undergoes a random jump, the
phase of a particle in the field will change in the same
manner as in the binary collision event. However, elec-
tromagnetic random-phase fields are a particular case
of stochastic electromagnetic fields: in interactions
with particles, they play a role similar to binary colli-
sions; the rate at which the field phase undergoes jumps
is an analogue of the frequency of binary collisions;
and the averaged (over the field period) energy acquired
by a particle is proportional to this rate. This simple
example clearly illustrates one of the features of the
interaction between charged particles and random elec-
tromagnetic fields.

Since the electromagnetic-field–particle interaction
underlies many processes involving the interaction
between radiation and matter, we may expect that the
stochastic-radiation–charged-particle interaction will
differ from the interaction of regular (in particular,
microwave) radiation with charged particles in some
important aspects. We can state that investigating the
interaction between stochastic microwave fields and
matter will serve to substantially generalize the theory
of radiation–matter interaction and significantly extend
the area in which this interaction may find practical
applications. It is well known that stochastic electro-
magnetic fields can serve to efficiently accelerate
charged particles and heat plasmas; they can also take
part in many other processes that are important from
the standpoint of plasma electronics. Recall that, even
in the absence of binary collisions and even when par-
ticles and electromagnetic fields propagate in a nonres-
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
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onant or asynchronous fashion, these phenomena are
accompanied by energy transfer between stochastic
microwave fields and charged particles. Of course, the
average energy transferred from an electromagnetic

field to charged particles increases in proportion to 
rather than t, as in the case of resonant interaction.
However, since the fraction of the energy exchanged
between the field and the particles can be fairly signifi-
cant, it is necessary to take into account the interaction
between charged particles and stochastic electromag-
netic fields together with other nonlinear effects that are
described by terms proportional to ~E2. Comparing the
expression for the energy acquired by a charged parti-
cle interacting with a regular microwave field in the
presence of binary collisions with the relevant expres-
sion for the case of interaction with a stochastic electro-
magnetic field in the absence of binary collisions (the
latter expression has been derived using a partially phe-
nomenological, quasilinear theory of a weakly turbu-
lent plasma with allowance for correlations among sto-
chastic electromagnetic fields), we can see that these
expressions are similar to each other and contain the

inverse correlation time  in place of the frequency
of the binary collisions [16].3

Recall that there is both theoretical and experimen-
tal evidence (such as plasma heating and charged-parti-
cle acceleration) for possible efficient interaction of
stochastic microwave radiation with charged particles.
Then, the question naturally arises as to how much the
interaction between stochastic radiation with matter
differs from the interaction of regular microwave fields
with charged particles. Let us list some relatively sim-
ple (not too involved) theoretical and experimental
problems that are to be solved in the future:

1. Investigation of the absorption of stochastic
microwave radiation in plasmas, metals, superconduc-
tors, semiconductors, dielectrics, and ferrites in the
hydrodynamic and kinetic approximations.

2. Investigation of normal and anomalous skin
effects in plasmas, metals, semiconductors, and fer-
rites.

3. Derivation of analogues of the Leontovich–Rytov
boundary conditions for stochastic fields.

4. Investigation of the possibility of deriving an ana-
logue of the Kramers–Kronig relation for stochastic
fields.

5. Investigation of the parametric resonance in sto-
chastic microwave fields.

6. Derivation of the expression for the microwave
pressure force in stochastic electromagnetic fields.

7. Investigation of the characteristic features of the
generation and amplification of stochastic radiation in

3 In [16], the plasma nonlinearity was taken into account merely by
introducing a correlator of the Fourier components of a stochastic
electric field, while the other nonlinear effects were neglected.

t

τcor
1–
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millimeter, submillimeter, visible, ultraviolet (UV),
and X-ray spectral ranges.

8. Investigation of the interaction of stochastic radi-
ation with solid-state and space plasmas.

9. Investigation of the possibility of charged-particle
acceleration by stochastic fields in vacuum.

10. Investigation of the effect of stochastic radiation
on the processes in Josephson transitions.

11. Investigation of the “stochastic resonance” from
the standpoint of applications to plasmas and devices
based on the Josephson effect (SQUIDs, etc.).4

We should say a few words about the last problem.
In the early 1980s, a very interesting phenomenon,
which was called “stochastic resonance,” was predicted
theoretically and then confirmed experimentally.
Although, in my opinion, this name is not quite correct
and the physical mechanisms underlying this phenom-
enon have not yet been clarified in full measure, numer-
ous theoretical and experimental investigations have
shown that this fundamental phenomenon is peculiar to
many nonlinear systems. In this connection, we refer
the reader to original papers [17–19], very useful
reviews [20, 21], and an interesting paper by Klimon-
tovich [22], which was modestly entitled “Methodolog-
ical Notes …,” but turned out to be of much greater
importance.5 Among the properties of stochastic reso-
nance, the most important for practical applications is
surely the following feature, which, at first glance,
seems to be paradoxical: a stochastic perturbation act-
ing on, e.g., a bistable system can increase the signal-
to-noise ratio, the signal being a regular determinate
perturbation. Hence, in contrast to the widely held
opinion that a stochastic perturbation (noise) worsens
the parameters of a dynamic system, such a perturba-
tion in the case at hand can improve them. Note that it
is not the only example of the favorable effect of sto-
chastic perturbations: they can also be exploited for
charged-particle acceleration (the Fermi mechanism),
heating of collisionless plasmas, and other applica-
tions. For example, stochastic resonance may be used
in a new generation of devices—SQUIDs—despite
considerable natural and technological noises.

The phenomenon of the phase synchronization of a
system of stochastic oscillators is closely related to the
phenomenon of stochastic resonance. Phase synchroni-
zation is now being actively studied [23], in particular,
with the aim to synchronize numerous generators of
stochastic oscillations and waves.

4 In recent years, considerable interest has arisen regarding the fol-
lowing two problems:
(i) Investigation of the reasons for the shortening of a pulse in
high-power relativistic microwave oscillators.
(ii) Investigation of the processes in plasma opening switches.

5 The papers by A.A. Andronov, A.A. Vitt, and L.S. Pontryagin
(1933) and H.A. Kramers (1940) also stand out as significant con-
tributions to the theory of the effect of stochastic perturbations on
nonlinear systems.
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The next problem (the most important problem
being the study of the interaction between stochastic
radiation and matter) in plasma electronics is to achieve
the generation and amplification of microwaves in mil-
limeter, submillimeter, and even shorter wavelength
ranges by either increasing the plasma density or by
changing the frequency with the help of either Doppler
or Compton effects associated with relativistic electron
motion. At present, novel methods of upshifting the fre-
quency (the so-called photon acceleration) are being
actively studied. Increasing the plasma density involves
considerable difficulties because binary collisions and
collective interactions increase the dissipation of the
energy of beam electrons, plasma electrons, and
excited electromagnetic waves.

For example, even in a fully ionized plasma, the col-

lision frequency is νst ~ np/ , while the Langmuir
frequency of the oscillations increases according to the

law ωp ~ . The way of lowering the collision fre-
quency ν by increasing the electron temperature is inef-
ficient. Of course, the unfavorable effect of collisions
may be overcome by using short pulses (such that τpul <

), in which case, however, the pulses should be
extremely short. We emphasize that, in plasma-based
schemes for particle acceleration by space-charge wake
fields, the relevant wake waves were already excited in
a gas plasma of density 1017–1018 cm–3 (but the lifetime
of such a plasma was very short).

Millimeter and centimeter waves were successfully
generated in the interaction between an REB and a
dense (~1014–1016 cm–3) plasma, the beam pulse dura-
tion being about 2 µs.

The most natural way to shorten the wavelength of
the excited microwave radiation is to generate micro-
waves in fairly homogeneous, solid-state, “quiescent”
plasmas with very high densities (1014–1018 cm–3 for
semiconductors and 1022–1023 cm–3 for metals). The
very first experiments on the generation of electromag-
netic waves in a semiconductor plasma in the collective
BPI were carried out by Kornilov et al. [24], who took
into account the remark made by Mandel’shtam (which
is often cited in the literature) that, if the channel radius
in a solid body is smaller than the wavelength, then an
electromagnetic wave will propagate as if there is no
channel. In those experiments, the authors succeeded in
generating electromagnetic waves at a frequency of
3.7 × 1010 Hz by injecting electron beams into a 2-mm-
wide channel in a semiconductor (germanium) at liq-
uid-nitrogen temperature. The generation was gov-
erned by the beam–plasma dissipative instability (the
temperature of a semiconductor sample was varied
from 250 to 300 K and the plasma density in a semicon-
ductor was varied from 2.3 to 2.6 × 1013 cm–3).

We can expect that increased interest in a somewhat
exotic scheme of particle acceleration in crystals
(in which case the plasma density is as high as

Te
3 2/

np
1/2

νst
1–
1022−1023 cm–3) will stimulate active theoretical and
experimental investigations on the generation of micro-
wave radiation with very short wavelengths in solid-
state plasmas.

It is well known that the frequency of the oscilla-
tions excited in a plasma of an REB in the absence of a
magnetic field is no higher than ωp, so that the problem
arises as to how to convert oscillations with frequencies
below the Langmuir frequency into those in the fre-
quency range far above ωp. This problem can be solved
with the help of the Doppler effect and stimulated
Compton effect associated with the motion of an REB
and the effect of stimulated Raman scattering. In this
way, it might be expedient to create a plasma-based free
electron laser in which the role of the wiggler will be
played by an oblique plasma wave [15]. The methods
based on the reflection of microwave radiation from a
moving plasma or propagating ionization front are
decidedly promising in terms of increasing the fre-
quency of the waves emitted from plasma-filled or gas-
filled sources [25–28].

Among the recent works on relativistic plasma elec-
tronics, we should mention the fundamental paper pre-
sented at this seminar by A.A. Rukhadze and
P.S. Strelkov and very important studies by E. Shamilo-
glu et al. and V.L. Granatstein et al., which were pub-
lished in the collection of papers Digest of Technical
Papers of International Workshop on High-Power
Microwave Generation and Pulse Shortening, Edin-
burgh, 1997, Ed. by F.I. Ogee et al.

2. PLASMA ACCELERATION
OF CHARGED PARTICLES

One of the most promising present-day methods for
collective acceleration [29–37] is a plasma-based
scheme for particle acceleration by space-charge waves
[34], which has already been investigated in many
papers [30–37]. Among them is [34], in which the
scheme was proposed; a very important paper [38], in
which Tajima and Dawson suggested new efficient
methods for exciting plasma waves by laser light
[plasma beat-wave accelerator (PBWA) and laser
wake-field accelerator (LWFA) schemes] and analyzed
some relevant problems of particle acceleration; and a
paper by Chen et al. [39], who proposed to excite
plasma waves by a short electron bunch or a periodic
train of electron bunches [plasma wake-field accelera-
tor (PWFA)]. An important point here is that it was sug-
gested to accelerate particles by wake plasma waves.
Theoretical investigations [40, 41] (see also [42, 43])
and experimental works [44–47] (see also [48]) also
substantially contributed to the development of acceler-
ation schemes based on laser-driven plasma waves, and
papers [49, 50] made significant contributions to
research on the excitation of wake plasma waves by
electron bunches in PWFA schemes. In recent years,
the wake-field acceleration (WFA) method has been
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substantially modified: a new version—self-modulated
WFA (SMWFA), which is based on the self-modula-
tion of a laser pulse—was proposed in [51, 52] (see also
[53–55]). The most impressive results on plasma accel-
eration of charged particles were obtained in experi-
ments described in [56, 57], in which the accelerating
fields at short distances were as strong as 1.5–20 ×
108 V/cm and particles were accelerated to energies of
100–300 MeV over distances of about 1 cm. Thus, the
LWFA acceleration scheme is now being actively
developed. The results achieved in the acceleration
method based on relativistic electron bunch–driven
wake plasma waves are not so significant: the acceler-
ating fields are about 50 kV/cm, the bunch charge being
about 4 nC. Recent progress in producing short dense
electron bunches raises the hope that very strong
accelerating fields will be achieved in PWFA research
[13, 58].6

We should also say a few words about new possibil-
ities of further increasing the accelerating field. Recall
that the maximum electric field of a relativistic space-

charge wave in a plasma is Emax =  =

, where n~p is the maximum density in
the space-charge wave. The ratio n~p/n0p is governed by
the way in which the space-charge wave is initiated. In
experiments on laser excitation, this ratio is less than
15% (LWFA), and in experiments on the generation of
plasma waves by electron bunches it is about 3%
(PWFA). According to [57], for LWFA, we have

n~p/n0p = a2/ , where a = , EL is the elec-

tric field, and λL is the laser wavelength. For the excita-
tion of wake plasma waves by electron bunches
(PWFA), this ratio is known to be equal to n~p/n0p ~
nb/n0p [66], where nb is the beam density.7 Conse-
quently, the maximum electric field in a plasma wave
can be increased by increasing the laser field and/or
laser wavelength as well as the density of the electron
bunch exciting the plasma wave (or by searching for
new ways of generating plasma waves). Comparing the

ratios n~p /n0p for LWFA and PWFA gives  ≈

, thereby determining the electron density in the

bunch nb that is required to excite a plasma wave with
the same maximum electric field as that of a laser-
driven plasma wave. This relationship implies that, in

6 Theoretical and experimental advances in PWFA research were
reviewed in papers [53–64] and other works and its present status
was discussed in detail by Andreev and Gorbunov [65] (see also
[57]).

7 This relationship is valid only in the linear approximation, when
nb/n0p ! 1.

n~ p

n0 p

-------

4πe
2
n0 pmc

2γ

1 a2+
eELλL

2mc
2
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eELλL

2mc
2

--------------- 
  2
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n0 p
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order to generate such a plasma wave in PWFA, it is
necessary to make the ratio nb/n0p as large as possible.
Note that the case nb/n0p ~ 1 goes beyond the applica-
bility range of the above expression for Emax in LWFA,
because it was derived under the assumption a ! 1.

Another trivial way for increasing Emax is to initiate
waves in higher density plasmas, in particular, in a
solid-state plasma. Recall that, by virtue of the relation-

ship ωp ≈ , the wavelength of the wave excited in
the plasma can be made shorter only by increasing the
plasma density (see the first part of the review pre-
sented), so it becomes clear that increasing the maxi-
mum electric field of a space-charge wake wave also
requires the plasma density to be increased. Hence, the
plasma-based schemes for the generation and amplifi-
cation of microwave radiation and for the acceleration
of charged particles should utilize higher density plas-
mas, in particular, solid-state and semiconductor [24]
plasmas. However, the plasma density in semiconduc-
tors (np ~ 1014–1018 cm–3) is lower than the gas plasma
density that has already been achieved in experiments
on LWFA (~1019 cm–3). Consequently, in developing
plasma-based particle accelerators, it seems natural to
turn to the plasma of metals, in which the density of
free electrons is as high as 1022–1023 cm–3. Chen and
Nable [67, 68] proposed a very daring but somewhat
exotic8 idea of implementing LWFA, which, however,
involves solving the following challenging problems:

(i) launching laser light into a metal,
(ii) exciting space-charge waves in a metal plasma

by laser light,
(iii) weakening the effect of multiple scattering of a

beam of accelerated particles by the plasma electrons
that occur between the channeling planes, and

(iv) solving a very important problem of preventing
the destruction of crystals affected by extremely pow-

erful laser radiation via utilizing very short (~ )
laser pulses.

According to the estimates made in [67], the energy
density required to generate accelerating fields of about
100 GeV/cm should be as high as 3 × 107 J/cm3.

Recall that the electric field of a space-charge wave
is governed by the way in which it is generated. Chen
and Nable [68] proposed to excite a plasma wave by
laser light via either the method used in LWFA or the
method suggested by Katsouleas et al. [69], which
involves the interaction between laser radiation and a
plasma whose density is made periodically nonuniform
in space by an acoustic wave or with the help of a dif-
fraction grating. The latter method is based on the

8 Note that there are things that seem to be exotic at the time they
appear but presently become conventional. Thus, the methods of
collective acceleration (in particular, the scheme for accelerating
charged particles by space-charge waves in a plasma), which were
proposed in 1956, appeared to be even more exotic at that time.

np

ωp
1–
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three-wave interaction involving a laser wave, ion
acoustic wave, and Langmuir plasma wave. The wave
interaction can give rise to a plasma wave with the fre-
quency ωp and wavenumber kp only under the following
conditions: ωL ≈ ωp, ωs ! ωp, kLωL is close to zero, and
the wavenumber of an ion acoustic wave is equal to kp.
The phase velocity vph = ωp/kp of the excited plasma
wave is close to c.

The first method suggested by the authors of [68] is
the generation of wake plasma waves by short laser
pulses (as is done in the LWFA scheme), in which case
the condition ωL @ ωp should be satisfied. Since ωp ≈
1016 in both methods, it is necessary to develop and cre-
ate extrapowerful UV lasers. It is suggested that a
plasma density of about ~1023 cm–3 will be achieved by
ionizing the atoms of a solid body by the same UV
laser. In this way, however, the fact that laser light will
be strongly damped because of the strong absorption
should also be taken into account. To answer the ques-
tion of whether the very daring and interesting ideas
expounded by Chen and Nable [67, 68] can be imple-
mented in practice, it is necessary to determine how
deep intense UV laser light can penetrate into a metal
with allowance for the losses from ionization and pho-
toeffect. Keeping in mind the fact that even very short
laser pulses of enormous power will destroy a solid
body, Chen and Nable [67, 68] proposed to accelerate
charged particles in optical fibers or thin metal films, in
which case laser radiation may become easier to launch
into a crystal. They are justified in suggesting that pre-
liminary experiments in this direction can be performed
with semiconductors in which the electron density is as
high as ~1018 cm–3. In this connection, we must point
out very interesting works [70, 71], in which the phe-
nomenon of anomalous penetration of visible laser
pulses into a semiconductor was predicted theoretically
and discovered experimentally. In the opinion of the
authors of [70, 71], this anomaly can be attributed to the
excitation of surface plasma waves.

Note that the maximum possible electric field in a
steady-state space-charge wave in a plasma is limited
by the condition that the velocity acquired by the
plasma electrons in the field of this wave is equal to the
wave phase velocity, ve = vph , so that Emax =

 [72].

Another idea (of no less importance) originated by
Chen and Nable [67, 68] is that of utilizing solid-state
crystal bodies in order to raise the electric field via
laser-driven plasma waves, in which case the crystal-
line properties may also help to generate high-bright-
ness beams of accelerated particles through the chan-
neling effect. In fact, under the channeling conditions,
strong accelerating fields and the very high rates at
which accelerated particles acquire energy can substan-
tially lower the emittance of a beam of accelerated par-
ticles; however, it is necessary to take into account the

4πn0 pmc
2

2γ 1–( )
fact that the channeling angle is equal to ψ ~ ,
where ev is the depth of the potential well (or the height
of the potential barrier that forms between the lattice
planes of the crystal). For very high energies εp, this
angle is very small. For this and other reasons, the
method of lowering the emittance of a beam of charged
particles accelerated to extremely high energies in crys-
tals requires more detailed theoretical and experimental
investigations.

It may be that Chen and Nable’s ideas will not be
implemented in full measure in the near future. How-
ever, some of the aspects of this acceleration method
can be used to create very high energy (about
1013−1018 eV) particle accelerators.

Another scheme for charged-particle acceleration in
crystals was proposed by Tajima et al. [73, 74] and was
further developed in subsequent works. This scheme is
based on the analogy with particle acceleration in
microwave waveguides with periodically spaced metal
or dielectric disks and implies acceleration via hard
X radiation, for which a periodic crystalline structure
plays the same role that periodically spaced disks play
for microwave radiation in waveguides. The use of
crystals for particle acceleration via hard X radiation on
the basis of the Borman effect [73] eliminates the prob-
lems of launching laser radiation into a crystal and of
guiding laser pulses over relatively large distances in a
crystal. Tajima and Covenago [73] proposed to channel
accelerated charged particles in a crystal in order to
reduce their scattering. They also noted that Hofstadter
had already originated analogous ideas in his unpub-
lished paper.

Now, we will say a few words about research on
charged-particle acceleration in solids. Grishaev and
Nasonov [75] suggested to accelerate charged particles
by longitudinal polarization waves of an optically
active matter that are driven by beatings of two electro-
magnetic waves and noted that the channeling effect
can serve to reduce the divergence of a beam of accel-
erated particles due to their multiple scattering. Tajima
and Covenago [73] proposed to accelerate charged par-
ticles in crystals by hard X radiation and to lower the
divergence of a beam of accelerated particles by chan-
neling them. They also studied some other aspects of
this acceleration method.

Above, we have briefly reviewed the results
obtained by Chen and Nable in their papers [67, 68],
which were published under promising titles and now
seem to be of even greater importance. Let us say some
more words about those papers. Examining the pros-
pects for the new concept of accelerating charged par-
ticles by laser radiation in a solid body, Chen and Nable
determined the electric field of a plasma wave in a
metal from the relationship that was obtained for the
maximum field of a nonlinear wave propagating in a
plasma by solving the problem of natural waves. How-
ever, the electric field should clearly be estimated by
solving the problem of induced oscillations and waves.

ev /εp
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Since the electric field of the plasma wave is very sen-
sitive to the way in which the wave is excited (see
above), deriving the final expression for the electric
field of the plasma wave requires solving the problem
of its excitation in the case at hand.

3. ACCELERATION OF CHARGED
PARTICLES IN VACUUM9 

Despite substantial progress in the acceleration of
charged particles in media (in particular, in plasmas),
the question of whether the potentialities of particle
acceleration in vacuum have already been exhausted is
still relevant, especially, in connection with the fabrica-
tion of lasers, whose power can now be as high as sev-
eral hundred terawatts. Terawatt lasers are capable of
generating pulses whose power density at the focus is
1019–1020 W/cm2 and electric field is about 1012 V/cm2,
which is higher than the atomic electric field. This
brings up the question of whether such strong fields can
serve to accelerate charged particles in vacuum to high
energies such that the velocity of the accelerated parti-
cles is close to the speed of light c and, accordingly, the
phase velocity of the accelerating laser wave, which is
synchronized with the velocity of the accelerated parti-
cles, is equal to c. The paper by Lawson [76] contrib-
uted substantially to research on vacuum accelerators.
Now, it is clear that, in a vacuum, neither internal waves
nor their complex superpositions such that the forces
accelerating a particle are linear in the electric field can
be used to accelerate charged particles [77, 78],
because it is impossible to maintain a prolonged syn-
chronization between the accelerating electromagnetic
wave and the motion of accelerated particles (or
because electromagnetic-field configurations required
for acceleration are lacking). On the other hand, in vac-
uum, charged particles can be accelerated via forces
that are nonlinear (e.g., quadratic) in the electric field
using stimulated Compton scattering (the Kapitsa–
Dirac effect, i.e., acceleration by radiation pressure–
driven ponderomotive forces) [77, 78]. Note that
Gaponov and Miller [79] were the first to propose
charged particle acceleration by a moving potential
well formed by two oppositely propagating electro-
magnetic waves in an unrippled waveguide.

The results of computer simulations carried out in
[80] are also of great importance for studying particle
acceleration in vacuum. Katsouleas et al. [80] showed
that, depending on the value of the nonlinearity factor
µ = eELλL/2πmc2, the particles either cannot be accel-
erated (at µ = 0.4) or can be involved in the acceleration
process (at µ = 4.0). They also found that the transverse
component of the electric field of a laser wave plays a
decisive role in particle acceleration. However, it is not

9 Here, we will be interested in acceleration in free vacuum either
in the absence of waveguides, mirrors, diffraction gratings, etc.,
or when they are positioned at distances long enough for surface
waves to be neglected.
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clear whether the emission of photons by an electron in
a laser wave field was taken into account in [80].

In my opinion, among the most interesting methods
for accelerating charged particles in vacuum are accel-
eration with the help of a light spot [78] and accelera-
tion in the AXION device [81].

ACKNOWLEDGMENTS

I am grateful to V.I. Karas’ for his gentle but impla-
cable pressure in writing this paper. I would like to
thank N.F. Shul’ga for fruitful discussions of the
problems related to the channeling of relativistic
charged particles in crystals. This work was supported
in part by  the International Science Foundation, grant
no. EPU 052021.

REFERENCES
1. Ya. B. Faœnberg, Fiz. Plazmy 11, 1398 (1985) [Sov. J.

Plasma Phys. 11, 803 (1985)].
2. Ya. B. Faœnberg, Fiz. Plazmy 20, 613 (1994) [Plasma

Phys. Rep. 20, 549 (1994)].
3. Ya. B. Faœnberg and A. A. Rukhadze, in Encyclopedia of

Physics (Rossiœskaya Éntsiklopediya, Moscow, 1992),
Vol. 3, p. 606.

4. Yu. P. Bliokh, M. G. Lyubarskiœ, and V. O. Podobinskiœ,
Fiz. Plazmy 20, 910 (1994) [Plasma Phys. Rep. 20, 817
(1994)].

5. Yu. P. Bliokh, Ya. B. Faœnberg, M. G. Lubarsky, et al., in
Proceedings of International Conference on High-
Power Particle Beams, Haifa, 1998, Vol. 2, p. 699.

6. V. S. Antipov, A. N. Antonov, V. A. Balakirev, et al., in
Proceedings of International Conference on High-
Power Particle Beams, Haifa, 1998, Vol. 2, p. 760.

7. V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1745 (1972)
[Sov. Phys. JETP 35, 908 (1972)].

8. V. N. Oraevskiœ and R. Z. Sagdeev, Zh. Tekh. Fiz. 32,
1291 (1962) [Sov. Phys. Tech. Phys. 7, 955 (1962)].

9. V. P. Silin, Zh. Éksp. Teor. Fiz. 48, 1669 (1965) [Sov.
Phys. JETP 21, 1121 (1965)].

10. V. I. Karas’, V. A. Balakirev, Ya. B. Fainberg, et al., in
Proceedings of International Conference on High-
Power Particle Beams, Haifa, 1998, Vol. 1, p. 392.

11. V. A. Balakirev, V. I. Karas’, E. A. Kornilov, and Ya. B. Faœn-
berg, Fiz. Plazmy 24, 738 (1998) [Plasma Phys. Rep. 24,
684 (1998)].

12. O. M. Goebel, R. W. Schumacher, J. M. Butler, et al.,
Proc. SPIE (Intense Microwave and Particle Beams)
2843, 69 (1996).

13. T. Katsouleas and C. Clayton, IEEE Trans. Plasma Sci.
24, 443 (1996).

14. J. A. Pasour, R. Seeley, D. Smithe, and K. Nguen, Rev.
Sci. Instrum. 68, 3229 (1997).

15. V. A. Balakirev, V. I. Miroshnichenko, and Ya. B. Faœn-
berg, Fiz. Plazmy 12, 983 (1986) [Sov. J. Plasma Phys.
12, 563 (1986)].

16. F. G. Bass, Ya. B. Faœnberg, and V. D. Shapiro, Zh. Éksp.
Teor. Fiz. 49, 329 (1965) [Sov. Phys. JETP 22, 230
(1965)].



342 FAŒNBERG
17. A. Hibbs, A. L. Singsaag, E. W. Jacobs, et al., J. Appl.
Phys. 77, 2582 (1995).

18. M. I. Dykman, P. V. E. McClinton, P. Manella, and N.
Stokes, Pis’ma Zh. Éksp. Teor. Fiz. 52, 780 (1990)
[JETP Lett. 52, 141 (1990)].

19. R. Bensi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453
(1981).

20. V. S. Anishchenko, A. B. Neœman, F. Moss, and L. Shi-
mansky-Gayer, Usp. Fiz. Nauk 169, 8 (1999).

21. A. Bulsara and J. Yammaitoni, Phys. Today 49 (3), 36
(1996).

22. Yu. L. Klimontovich, Usp. Fiz. Nauk 169, 39 (1999).
23. M. Rosenblum, Phys. Rev. Lett. 76, 1804 (1996).
24. E. A. Kornilov, S. A. Nekrashevich, Ya. B. Faœnberg, and

N. A. Shokhovtsev, Pis’ma Zh. Éksp. Teor. Fiz. 11, 284
(1970) [JETP Lett. 11, 185 (1970)].

25. O. G. Zagorodnov, A. M. Egorov, and Ya. B. Faœnberg,
Zh. Éksp. Teor. Fiz. 38, 7 (1960) [Sov. Phys. JETP 11, 4
(1960)].

26. V. I. Semenova, Izv. Vyssh. Uchebn. Zaved., Radiofiz.
10, 1077 (1967) [Sov. Radiophys. Quantum Electron.
10, 399 (1967)].

27. T. Katsouleas, J. Dawson, et al., AIP Conf. Proc. 335,
584 (1994).

28. S. C. Wilks, J. M. Dawson, W. B. Mori, et al., Phys. Rev.
Lett. 62, 2600 (1989).

29. V. I. Veksler, in Proceedings of CERN Symposium on
High-Energy Physics, Geneva, 1956, Vol. 1, p. 80.

30. V. I. Veksler, At. Énerg. 2, 427 (1957).
31. V. I. Veksler and V. P. Sarantsev, At. Énerg. 24, 317

(1968).
32. G. I. Budker, in Proceedings of CERN Symposium on

High-Energy Physics, Geneva, 1956, Vol. 1, p. 68.
33. G. I. Budker, At. Énerg. 1, 9 (1956).
34. Ya. B. Faœnberg, in Proceedings of CERN Symposium on

High-Energy Physics, Geneva, 1956, Vol. 1, p. 84.
35. Ya. B. Faœnberg, At. Énerg. 6, 431 (1959).
36. Ya. B. Faœnberg, Usp. Fiz. Nauk 93, 617 (1967) [Sov.

Phys. Usp. 10, 750 (1967)].
37. Ya. B. Faœnberg, Part. Accel. 6, 95 (1975).
38. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267

(1979).
39. P. Chen, J. M. Dawson, T. Katsouleas, et al., Phys. Rev.

Lett. 54, 693 (1985).
40. L. M. Gorbunov and V. I. Kirsanov, Zh. Éksp. Teor. Fiz.

93, 509 (1987) [Sov. Phys. JETP 66, 290 (1987)].
41. P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Appl.

Phys. Lett. 53, 2146 (1988).
42. S. V. Bulanov, V. I. Kirsanov, and A. S. Sakharov, Fiz.

Plazmy 16, 935 (1990) [Sov. J. Plasma Phys. 16, 543
(1990)].

43. O. V. Batishchev, V. I. Karas’, and Yu. S. Sigov, Fiz.
Plazmy 20, 654 (1994) [Plasma Phys. Rep. 20, 587
(1994)].

44. C. Joshi, T. Tajima, J. M. Dawson, et al., Phys. Rev. Lett.
47, 1285 (1981).

45. C. E. Clayton, C. Joshi, C. Darrow, and D. Umstadter,
Phys. Rev. Lett. 54, 2343 (1983).
46. C. Joshi, W. B. Mori, T. Katsouleas, et al., Nature (Lon-
don) 311, 525 (1984).

47. C. E. Clayton, K. A. Marsh, A. Dyson, et al., Phys. Rev.
Lett. 70, 37 (1993).

48. F. Amiranoff, M. Laberge, J. R. Marques, et al., Phys.
Rev. Lett. 68, 3710 (1992).

49. J. B. Rosenzweig, Preprint No. 90/40 (Fermi National
Accelerator Laboratory, Batavia, IL, 1990).

50. A. Ts. Amatuni, M. R. Magomedov, E. V. Sekhposyan,
and S. S. Élbakyan, Fiz. Plazmy 5, 85 (1979) [Sov. J.
Plasma Phys. 5, 49 (1979)].

51. N. E. Andreev, Pis’ma Zh. Éksp. Teor. Fiz. 55, 551
(1992) [JETP Lett. 55, 571 (1992)].

52. J. Krall, A. Ting, E. Esarey, and P. Sprangle, Phys. Rev.
E 48, 2157 (1993).

53. T. Antonsen and P. Mora, Phys. Rev. Lett. 69, 2204
(1992).

54. P. Sprangle, E. Esarey, J. Krall, and J. Joyce, Phys. Rev.
Lett. 69, 2200 (1992).

55. V. A. Balakirev et al., Vopr. At. Nauki Tekh., Ser.: Yader-
nofiz. Metody, No. 6, 168 (1990).

56. A. Modena, Z. Najimidin, A. E. Dangor, et al., Nature
(London) 337, 606 (1995).

57. K. Nakajma, D. Fisher, T. Kawakubo, et al., Phys. Rev.
Lett. 74, 4428 (1995); K. Nakajma and A. Ogata, in Pro-
ceedings of 11th Symposium on Accelerator Science and
Technology, Harima, 1997, p. 36.

58. D. Umstadter, J. K. Kim, and E. Dodd, Phys. Rev. Lett.
76, 2073 (1996).

59. S. V. Bulanov, V. A. Vshivkov, G. I. Dudnikova, et al.,
Fiz. Plazmy 23, 284 (1997) [Plasma Phys. Rep. 23, 259
(1997)].

60. N. E. Andreev, L. M. Gorbunov, and A. A. Frolov, Fiz.
Plazmy 24, 888 (1998) [Plasma Phys. Rep. 24, 825
(1998)].

61. V. I. Karas’, I. V. Karas’, V. D. Levchenko, et al., Fiz.
Plazmy 23, 311 (1997) [Plasma Phys. Rep. 23, 285
(1997)].

62. Ya. B. Faœnberg, Fiz. Plazmy 23, 275 (1997) [Plasma
Phys. Rep. 23, 251 (1997)].

63. T. Katsouleas and W. Mori, AIP Conf. Proc. 335, 112
(1994).

64. P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. A 41,
4463 (1990).

65. N. E. Andreev and L. M. Gorbunov, Usp. Fiz. Nauk 169,
53 (1999).

66. T. Katsouleas, Phys. Rev. A 33, 2066 (1986).
67. P. Chen and R. Nable, Advanced Acceleration Concepts,

Ed. by S. Chattopadhyay, S. McCullough, and P. Dane
(AIP, New York, 1997), p. 273.

68. P. Chen and R. Nable, New Modes of Particle Accelera-
tion, Ed. by Z. Parsa (AIP, New York, 1997), p. 95.

69. T. Katsouleas, J. Dawson, D. Sultana, and Y. Yan, IEEE
Trans. Nucl. Sci. 32, 3554 (1985).

70. S. C. Kitson, W. L. Barnes, J. R. Sambles, Phys. Rev.
Lett. 77, 2670 (1996).

71. T. W. Ebessen, H. J. Lezec, and H. F. Ghaemi, Nature
(London) 391, 667 (1998).

72. A. I. Akhiezer and R. V. Polovin, Zh. Éksp. Teor. Fiz. 30,
915 (1956) [Sov. Phys. JETP 3, 696 (1956)].
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000



PLASMA ELECTRONICS AND PLASMA ACCELERATION OF CHARGED PARTICLES 343
73. T. Tajima and M. Covenago, Phys. Rev. Lett. 59, 1440
(1987).

74. T. Tajima and B. S. Newberger, Phys. Rev. A 40, 6897
(1989).

75. I. A. Grishaev and N. N. Nasonov, Pis’ma Zh. Tekh. Fiz.
3, 1084 (1977) [Sov. Tech. Phys. Lett. 3, 446 (1977)].

76. J. Lawson, IEEE Trans. Nucl. Sci. 26, 4217 (1979).
77. R. Palmer, AIP Conf. Proc. 335, 90 (1994).
78. N. B. Baranova, M. O. Skully, and B. Ya. Zel’dovich, Zh.

Éksp. Teor. Fiz. 105, 469 (1994) [JETP 78, 249 (1994)].
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
79. A. V. Gaponov and M. A. Miller, Zh. Éksp. Teor. Fiz. 34,
242 (1958) [Sov. Phys. JETP 7, 168 (1958)].

80. T. Katsouleas, W. B. Mori, J. S. Wurtele, et al., in New
Modes of Particle Acceleration, Ed. by Z. Parsa (AIP,
New York, 1997), p. 21.

81. L. C. Steinhauer and W. D. Kimura, J. Appl. Phys. 72,
3237 (1992).

Translated by G. V. Shepekina



  

Plasma Physics Reports, Vol. 26, No. 4, 2000, pp. 344–350. Translated from Fizika Plazmy, Vol. 26, No. 4, 2000, pp. 371–377.
Original Russian Text Copyright © 2000 by Butenko, Gorozhanin, Egorov, Ivanov, Ognivenko, Onishchenko, Prishchepov.

                                                        

PLASMA ELECTRONICS
AND NEW ACCELERATION METHODS
Theoretical and Experimental Investigations of the Excitation 
of High-Frequency Oscillations in an Ion Collective Accelerator 

Model Based on the Doppler Effect
V. I. Butenko, D. V. Gorozhanin, A. M. Egorov, B. I. Ivanov*, V. V. Ognivenko,

I. N. Onishchenko, and V. P. Prishchepov
Kharkov Institute for Physics and Technology, National Science Center, 

Akademicheskaya ul. 1, Kharkov, 310108 Ukraine
*e-mail: ivanovbi@kipt.kharkov.ua

Received April 30, 1999

Abstract—Results are presented from studies of a two-beam scheme of ion acceleration by a high-frequency
field excited by an electron beam due to the instabilities associated with anomalous and normal Doppler effects.
The dynamics of the excitation of eigenmodes in a periodic slow wave structure (SWS) by a relativistic electron
beam via the anomalous Doppler effect is investigated theoretically. Mechanisms for the saturation of the insta-
bility are considered, analytical expressions for the maximum field amplitude and the efficiency with which the
energy of beam electrons is converted into the energy of the excited wave are derived, and the results of numer-
ical simulations of such excitation are presented. An experimental stand designed to test the principles and pos-
sibility of proton acceleration up to an energy of 8 MeV at a current up to 3 A is described. A double resonance
(associated with anomalous and normal Doppler effects) occurring in the interaction of an electron beam with
a helical SWS is studied experimentally. In this case, an increase in the efficiency with which the accelerating
high-frequency field is excited is observed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many problems of plasma physics and technology
have much in common with the problems of the physics
and technology of charged-particle accelerators, such
as the interaction of charged particles with electromag-
netic fields, collective effects, instabilities, production
of high-power particle beams for plasma heating and
inertial confinement fusion, and radiation stability of
reactor materials. In this connection, the importance of
the development of new acceleration methods, in par-
ticular, plasma accelerators and two-beam accelerators
(see, e.g., [1, 2]), should be emphasized.

An increase in the current in existing linear acceler-
ators is limited in particular by the fact that the acceler-
ating RF field is defocusing in the radial direction [3].
This limitation is overcome in collective (plasma)
accelerators in which the particles are accelerated by
space electromagnetic E-waves whose amplitude is
maximum on the axis [1]. In the two-beam linear elec-
tron–ion accelerator under consideration, a high-power
electron beam can excite an RF field that is both accel-
erating and focusing. In this case, a substantial increase
in both the current of the accelerated ions and the accel-
eration rate can be achieved.

The concept of a two-beam high-current ion acceler-
ator based on the Doppler effect was proposed in [4, 5].
According to this concept, an RF field that is both
accelerating and focusing is generated by means of an
intense electron beam injected into a spatially periodic
1063-780X/00/2604- $20.00 © 0344
structure of a linear accelerator along its axis. Simulta-
neously and in the same way, the ion beam to be accel-
erated is injected. The RF field is excited due to the
cyclotron instability associated with anomalous and
normal Doppler effects (ADE and NDE, respectively).
Thus, in order to excite an RF field via ADE or NDE,
the transverse field of a certain spatial harmonic of the
slow wave structure (SWS) is employed, whereas the
longitudinal field of the corresponding resonant spatial
harmonic is used to accelerate the ions. The corre-
sponding diagram is presented in Fig. 1, where the peri-
odic function ω(kz) shows the dispersion relation for the
electrodynamic structure. The points of intersection of
this curve with the straight lines ω = kzv – ωc, ω = kzv +
ωc, and ω = kzvi correspond, respectively, to the ADE
and NDE excitation of the RF field and ion acceleration
by the excited wave. Here, z is the longitudinal coordi-
nate, kz is the longitudinal wavenumber, v is the elec-
tron velocity, ω is the frequency of excited oscillations
(which is equal to the eigenfrequency of the structure),
ωc is the electron cyclotron frequency, and vi is the ion
velocity.

This acceleration scheme, which is intermediate (or
hybrid) between conventional and collective accelera-
tors, uses the well-studied and technologically devel-
oped electrodynamic structure of the former and
intense accelerating and focusing RF fields of the latter.
Its basic advantages are the following. (i) Near the axis
(i.e., in the region occupied by the electron beam with
2000 MAIK “Nauka/Interperiodica”
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the space-charge cyclotron wave excited in it), the res-
onantly excited field is spatial; this provides (as in a
plasma waveguide [1]) both radial and phase stability
of the accelerated ion beam. (ii) The intensity of the
accelerated field on the axis is higher than at the ends of
the drift tube (in conventional accelerators, the situa-
tion is opposite). (iii) The ADE excitation of the accel-
erating and focusing RF fields can proceed without a
change in the eigenfrequency of the resonator and
phase velocity of the wave; this substantially facilitates
the calculations and the maintenance of the accelerator
parameters. (iv) Correlated variations in both the wave
phase velocity and the magnetic field along the acceler-
ator provide the resonant ADE excitation of the
required type of oscillations and the suppression of
other instabilities (due to the nonuniformity of the exci-
tation conditions for the latter). (v) There is the possi-
bility of the excitation of an accelerating wave with a
low phase velocity by a relativistic electron beam; in
this case, the nonlinear effects associated with the
trapping of the beam electrons by the excited wave can
be neglected up to field values on the order of 105–
106 V/cm.

Preliminary estimates showed that this type of ion
accelerator has considerable promise. The design and
working tolerances are basically the same as in conven-
tional linear accelerators and powerful microwave
devices (i.e., it is achievable in practice). An accelerat-
ing field of about 105 V/cm was obtained experimen-
tally in [6] using an H-type structure (with the drift
tubes placed on reversed hangers) excited by an intense
electron beam via ADE. In order to develop such an
acceleration method, we carried out theoretical and
experimental studies and computer simulations and
designed an experimental acceleration stand.

This paper is organized as follows. In Section 2, we
theoretically study the ADE excitation of the accelerat-
ing field in a periodic SWS by a relativistic electron
beam. In Section 3, we describe an experimental accel-
eration stand designed to test this acceleration scheme.
In order to increase the acceleration efficiency, it seems
advantageous to excite RF oscillations under the condi-
tions of ADE–NDE double resonance. The results of
experiments on the interaction of an electron beam with
a helical SWS under these resonance conditions are
presented in Section 4.

2. ADE EXCITATION OF THE ACCELERATING 
FIELD BY A RELATIVISTIC 

ELECTRON BEAM

Let us consider the ADE excitation of an axially
symmetric E-mode by an electron beam in a periodic
SWS. A monoenergetic annular relativistic electron
beam is injected at z = 0 with the velocity v(z = 0) = ezv0

along the symmetry axis (the z-axis) of the system. The
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
beam current density is

where Ib and rb are the current and the radius of the
beam, respectively, and ez is the unit vector along the
z-axis.

We assume that the beam and the SWS are in a uni-
form external magnetic field H = ezH0. We consider the
spatial amplification of an axially symmetric E-wave
by this beam under the condition of the ADE resonance

(1)

where ω and kz are the frequency and the longitudinal
wavenumber, respectively; ωH = |e |H0/mc, γ0 = (1 –

/c2)–1/2; e and m are the charge and mass of an elec-
tron; and c is the speed of light in a vacuum.

The electric field of the wave propagating in a peri-
odic SWS in the positive direction along the z-axis can
be represented as a superposition of spatial harmonics

(2)

where Cs(z) is the slowly varying (along the z-axis)
field amplitude, ksn = hs + 2πn/L is the longitudinal
wavenumber of the nth spatial harmonic, L is the struc-
ture period, and αsn are the dimensionless coefficients
characterizing the relative amplitude of the nth spatial
harmonic. The axially symmetric E-wave in question
has the components Ez, Er, and Hϕ, and the functions

(r) and (r) in the region of the beam–wave
interaction can be written as

(3)

jzb r( )
Ib

2πr
---------δ r rb–( ),=

ω kzv 0 ωH/γ0,–=

v 0
2

E r t,( ) Re Cs z( )Es r( ) iωt–( )exp[ ] ,=

Es r( ) α snEs
n( )

r( ) iksnz[ ] ,exp
n ∞–=

∞

∑=

Es
n( ) Hs

n( )

Esz
n( )

I0 k ⊥ r( ), Esr
n( )

i
ksn

k ⊥
------ I1 k ⊥ r( ),–= =

Hsϕ
n( )

i
k
k ⊥
----- I1 k ⊥ r( ),–=

ω 
= 

k zv
 +

 ω
c

ω =
 k zv

 –
 ω c

ω = k zv i

ω

kz

Fig. 1. Dispersion curves for a periodic SWS.
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where k = ω/c; k⊥  =  is the transverse wave-
number specified by the boundary conditions for the
field on the waveguide wall and I0 and I1 are the modi-
fied Bessel functions.

Below, we assume that the electron beam is in reso-
nance (1) with the mth spatial harmonic of the field, kz =
ksm ≡ km. Then, taking into account only the resonant
terms, we can write the nonlinear equations of motion
of the beam electrons in Lagrangian variables and the
equation for the slowly varying wave amplitude in the
following form [7]:

(4)

(5)

(6)

(7)

Here, p1 = β+γexp[i(ωt∧  – kmz – ϕ(0, t0))], p3 = βzγ,

ξ = kmz, v+ = vx + ivy, β+ = v+/c, γ = (1 –  – )–1/2,

β⊥  = |β+|, A = Cs, ν = ,

ϕ = (z, t0)/x∧ (z, t0)], x∧ (z, t0) and y∧ (z, t0) are
the transverse coordinates of an electron, τ0 = ωt0/2π, t0
is the time the electron enter the region z > 0, Ns =

ez{[EsH–s] – [E–sHs]} is the norm for the wave

with index s, and IA = mc3/ |e | = 17 kA.

Note that, when deducing equations (4)–(6), the
expression for the longitudinal component of the elec-

tric field (r) was expanded into a series in the small
parameter k⊥ rL near the initial electron coordinates;
here, rL = |v+ |γ/ωH is the electron Larmor radius.

Equations (4)–(6) have the following integrals [7, 8]:
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Here, ψ = arg( A), βph = ω/kmc, η(ξ) is the electron
efficiency, and

(11)

Relation (10) is obtained in the hydrodynamic approx-
imation, assuming that the absolute value of the elec-
tron momentum is independent of the injection time t0.

From equations (5) and (6) it follows that, in the ini-
tial stage of the instability (in the linear approxima-
tion), the wave amplitude increases according to the
law

(12)

where ρ = (  – βph)  and cosh(x) is the hyperbolic
cosine.

It is seen that the spatial growth rate of the instabil-

ity is proportional to . Such a dependence of the
growth rate on the beam current is also characteristic of
the ADE instability of a transverse wave [9].

We now consider the nonlinear stage and regimes of
the instability saturation. From equations (4) and (6), it
follows that the instability saturates if one of the condi-

tions cosψ = 0 or βzγ = p3* = kmωH/ c is satisfied
[7, 8]. Let the instability saturate at cosψ = 0 and p3 >
p3*. In this case, the right-hand side of equation (10) is
negative; consequently, in the saturation state, the heli-
cal phase is equal to –π/2. For ψ = –π/2, from equations
(8)–(10), we can obtain the maximum values of the
energy, momentum, and amplitude of the wave. In the
case when the beam–electron energy loss is small, η ! 1,
we also obtain from these equations the electron effi-
ciency and the wave amplitude in the saturation state,

(13)

(13a)

where γph = km/k⊥ . It is seen from (13) that, in the case
in question, the efficiency increases with increasing the
beam current.

Now, we consider the case when the saturation of
the instability occurs at p3 = p3*. From equation (9), we
determine the corresponding value of γ and find the
expressions for the efficiency and maximum wave
amplitude in the saturation regime in question:

(14)
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(14a)

It is seen from (14) that, in this case, the efficiency
is independent of the beam current. For βph ! 1, expres-
sion (14) takes a simpler form:

(15)

The expression for the threshold value of the parameter
ρ∗  separating the two above instability regimes is

(16)

For ρ < ρ∗ , the instability saturates at ψ = –π/2 and the

efficiency is determined by (13). For ρ > ρ∗ , the insta-

bility saturates when the longitudinal momentum takes
the value p3 = p3*; in this case, the efficiency is deter-
mined by (14).

The results of the numerical solution of equations
(4)–(6) for an initial electron beam energy of 300 keV
(γ0 = 1.6), wave amplitude of ε0 = 5 × 10–3 (ε = A/ρ), and
phase velocity of vph = 0.1c are presented in Figs. 2 and
3. Figure 2 shows the dimensionless wave amplitude ε
as a function of the longitudinal coordinate ζ (ζ = ρξ)
for the amplification coefficient that is lower (curve 1,
ρ = 0.003) and higher (curve 2, ρ = 0.1) than the thresh-
old one. For the above wave and beam parameters, the
threshold value of ρ is ρ∗  = 0.042. It is seen that the

maximum value of the wave amplitude in the saturation
state increases with increasing ρ. For ρ < ρ∗ , the wave

amplitude reaches its maximum and then monotoni-
cally decreases to the initial value. For ρ > ρ∗ , the lon-

gitudinal profile of the wave amplitude in the saturation
state is nonmonotonic; this is due to the competition of
the two above saturation mechanisms.

Figure 3 presents the maximum efficiency as a func-
tion of the normalized amplification coefficient ρ. It is
seen that, for ρ < ρ∗ , the maximum efficiency increases

with increasing ρ. For ρ ! ρ∗ , the efficiency increases

linearly with increasing ρ [see (13)], and, for ρ > ρ∗ ,

ηmax is independent of ρ [cf. (14)]. The values of ηmax
and Amax calculated by formulas (13)–(14a) for the cor-
responding values of the parameter ρ and the above
beam and wave parameters are in good agreement with
the results of numerical calculations.

Thus, formula (16) determines the threshold value
of the spatial growth rate; this value separates the qual-
itatively different saturation regimes. For a growth rate
less than the threshold one, the efficiency is propor-
tional to the spatial amplification coefficient and
increases with increasing the beam current. For spatial
growth rates larger than the threshold one, the effi-
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ciency in the saturation state reaches its maximum
value proportional to the square of the ratio of the phase
velocity of the field harmonic that is in synchronism
with the beam to the speed of light; as the beam current
increases further, the efficiency remains unchanged.
The maximum achievable values of the electron effi-
ciency in this regime correspond to the excitation of an
axially symmetric E-wave by a relativistic electron
beam in both ADE-based amplifiers and oscillators.

3. EXPERIMENTAL ACCELERATION STAND

To test the proposed acceleration scheme, an exper-
imental acceleration stand (EAS) is currently being cre-
ated in which protons can be accelerated up to 8 MeV
at a current up to 3 A. To save money, we used the avail-
able 5-MeV-energy 30-mA-current Ural-5 proton
accelerator as an injector. With an appropriate injector,
the EAS current can attain 3 A. In the EAS, the ADE
excitation of the accelerating and focusing RF field in
the H-type periodic structure will be produced by a
high-current electron beam (the preliminary experi-
ments are described in [6, 10, 11]). Resonant space-
charge waves excited in the electron beam ensure both
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Fig. 2. Normalized wave amplitude as a function of the lon-
gitudinal coordinate ζ for ρ = (1) 0.03 and (2) 0.1.

Fig. 3. Maximum efficiency as a function of the normalized
amplification coefficient ρ.
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radial and phase stability of the proton beam. The sche-
matic, description, and parameters of the EAS are pre-
sented in [4, 5]. When determining the EAS parame-
ters, we assumed that the frequency of the resonator
loaded with a beam is equal to the frequency of the res-
onator without a beam. In our case, this assumption is
valid because, for the ADE cyclotron instability, we can
choose the conditions under which the shift of the res-
onator frequency is equal to zero.

The ADE excitation of RF oscillations is accompa-
nied by an increase in the Larmor radius of the beam
electrons (this effect was experimentally studied in
[12]). As the electron beam propagates in the resonator,
both its radius and the radius of the drift tubes increase.
The simultaneous increase in both the radius of the drift
tubes and the period of the accelerating structure from
the input to output end of the resonator facilitates the
maintenance of the constant acceleration rate over the
resonator.

In order to avoid excessive longitudinal deceleration
and an increase in the beam radius, the beam current
and energy are chosen to be sufficiently large. To sim-
plify calculations and increase their reliability, as well
as to facilitate the adjustment of the accelerator, in this
stage of investigations, we chose conditions under
which the energy loss of the electron beam is small;
therefore, the efficiency of the energy transfer from the
electron beam to the ion beam is also small (less than
1%). The methods of substantially increasing the effi-
ciency are discussed in [4].

In the EAS, the H-type resonator is excited by an
electron beam produced by a transverse-compression
electron gun. The electron beam is focused by magnetic
coils and a solenoid. The electron-gun voltage is sup-
plied from a high-voltage pulse transformer. The proton
beam of the Ural-5 accelerator is injected through the
central aperture in the cathode of the electron gun and
passes along the axis of the H-resonator, where it is
accelerated to 8 MeV. The solenoid, which consists of
15 coils, produces a resonant, longitudinally nonuni-
form magnetic field. Magnetic-discharge and turbomo-
lecular pumps maintain a vacuum at a level of 10–7 torr.
At the output, there are an electron collector, an ion col-
lector with a movable bottom, and pump pipes. The
electron injector consists of an electron gun and an
industrially produced supply unit of a high-power
klystron. The main element of the accelerating unit is
an H-type resonator with the drift tubes mounted on
counter hangers. The basic parameters of the Ural-5
accelerator–injector and designed EAS are the follow-
ing: the initial proton energy is 5 MeV; the ion current
is 30 mA; the electron-beam energy is 350 keV; the
electron-beam current is 150 A; the pulse duration is
2.5 µs; the pulse repetition rate is 1 Hz; the initial and
final electron-beam radii are 1.3 and 2.4 cm, respec-
tively; the magnetic fields at the input and output are
609 Oe and 439 Oe, respectively; the resonator length
is 161 cm; the working frequency is 148.5 MHz; the
accelerating field is 56 kV/cm; the synchronous phase
is 65°; and the shunt impedance is 35 MΩ/m.

At present, a one-to-one model of the accelerator
resonator has been produced and the RF-field distribu-
tion along the resonator has been measured. Using
adjusting elements, we obtained the required uniform
RF-field distribution in the gaps. A solenoid with the
required distribution of the magnetic field was calcu-
lated in [12] by the regularization method developed
for the solution of ill-posed inverse problems [14].

4. INCREASING THE EFFICIENCY
OF THE RF FIELD EXCITATION 

VIA THE DOPPLER EFFECT

To increase the excitation efficiency of RF oscilla-
tions in the SWS, it seems promising to produce the
double-resonance conditions, when, for the given fre-
quency, the resonance conditions for ADE (ω = kz1v –
ωH) and NDE (ω = kz2v + ωH) are simultaneously satis-
fied. Here, ω is the circular frequency, kz is the wave-
number, v is the electron-beam velocity, and ωH is the
electron cyclotron frequency. In [15], it was theoreti-
cally shown that, in a spatially periodic SWS, the
amplification coefficient of RF oscillations increases
substantially in the case of double resonance; conse-
quently, the kinetic energy lost by the electron beam
also increases. Here, we present the results from exper-
imental studies of the double resonance with the use of
a helical resonator, which allows us to satisfy the reso-
nance conditions for ADE and NDE simultaneously.
This is possible due to the specific shape of the disper-
sion curves of azimuthally asymmetric waves in a heli-
3

3
4

2

1

Electron beam

H0

Fig. 4. Schematic of the experiment: (1) source of the accelerating voltage, (2) resonator, (3) RF measuring units, and (4) beam col-
lector.
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cal SWS. ADE excitation of this type of wave by an
electron beam was studied experimentally and theoret-
ically in [12, 16].

The schematic of the experiment is presented in
Fig. 4. An electron beam (with an energy up to 50 keV
and current up to 1 A) focused by an external magnetic
field (up to 1 kOe) was injected into the SWS along the
axis of the system. The SWS was a spiral segment
placed into a multimode cylindrical resonator. The
parameters of the experiment were chosen such that,
for the given frequency and phase velocity of the azi-
muthally asymmetric helical mode, the ADE resonance
conditions hold. (Note that, in the case of rectilinear
motion of charged particles, the ADE instability can
develop in the system even without the preliminary
spinup of the beam electrons [9].)

The experiment showed (see Fig. 5) that RF oscilla-
tions were excited most efficiently in a rather narrow
range of the parameter v/vph, where vph is the phase
velocity of the SWS mode. Keeping in mind the aim of
the paper and in order to explain this fact quantitatively,
we carried out “cold” measurements of the dispersion
properties of the SWS. The results obtained showed
that, at the frequency of RF oscillations generated by
the beam, the degeneration of the dispersion curve with
respect to three characteristic wavenumber values
occurred. The longitudinal distribution of the electric
field |E(z)|2, which was measured by the perturbation
method, was compared with the field distribution
obtained by computer simulations (Fig. 6). The total
electric field was represented as

where A is the weight coefficient (for the waveguide
mode and two asymmetric helical modes) and λ is the
corresponding wavelength; the ADE and NDE reso-
nance conditions were satisfied for the asymmetric
helical modes with λ1 and λ2, respectively. Graphically,
this situation is presented in Fig. 7, where the disper-
sion curves for (1) the waveguide mode, (2) the asym-
metric helical mode, and (3, 4) the beam cyclotron
waves are plotted. The region of intersection of the
beam cyclotron waves with curve 2 corresponds to the
resonance conditions for the ADE and NDE excitation.

Straight line 5 shows the asymptote ω = kzc/ ,
where εeff ≈ 2 is the effective dielectric constant and c is
the speed of light.

At certain values of λ and A, the measured and mod-
eled distributions of |E(z)|2 almost coincide (the dis-
crepancy is less than 10%). Calculations showed that,
in the experiment, the coupling of the ADE and NDE
branches of the beam–SWS system occurred; i.e., the
resonance conditions for ADE and NDE were satisfied
simultaneously. As a result, conditions for the excita-
tion of RF oscillations were optimum with respect to
the parameter v/vph1 (or ω/ωH).

E z( ) 2
A1

2π
λ1
------zsin A2

2π
λ2
------zsin A3

2π
λ3
------zsin+ +

2

,=

εeff
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The physical meaning of the increase in the effi-
ciency with which the beam kinetic energy is converted
into the RF field oscillation energy in the case when the
ADE and NDE resonances are satisfied simultaneously
is the following. A rectilinear electron beam excites RF
oscillations in the SWS under conditions of the ADE
resonance. According to the theory of ADE [17], this is
accompanied by the increase in the transverse (azi-

v0/vph1

PRF/P0

1.381.34

0.8

0.4

4

3

2

1

0 30252015105
z, cm

|E(z)|2

Fig. 5. Generated power as a function of the ratio of the
beam velocity to the wave phase velocity.

Fig. 6. Distribution of the electric field along the resonator.

–0.1 0 0.1 0.2 0.3 kz/2π, cm–1
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ω/2π, GHz
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1 2

43

Fig. 7. Dispersion curves in the case of a helical SWS.
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muthal) beam-electron energy, which can also be con-
verted via NDE into the energy of the excited RF field.

Thus, in the experiment, the ADE–NDE double res-
onance is realized. In this case, the power of the excited
RF oscillations increases, which is accompanied by an
increase in the electron-beam energy loss. All of these
results hold promise for using this mechanism in the
two-beam accelerators in question.

5. CONCLUSION
In this paper, the results from theoretical investiga-

tions of the ADE excitation of an RF field and experi-
ments on the excitation of RF oscillations under the
conditions of ADE–NDE double resonance are pre-
sented and the experimental acceleration stand is
described.
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Abstract—Plasma current lenses in a nonuniform, programmed longitudinal magnetic field are considered.
The longitudinal magnetic field determines the variations in the radius of the current channel, the current den-
sity, and the focusing azimuthal magnetic field. The efficiency of such plasma lenses can be increased by simul-
taneously decreasing the radii of both the current channel and the focused beam. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Plasma current lenses, in which charged-particle
beams are focused by the azimuthal magnetic field pro-
duced by the longitudinal plasma current, show prom-
ise for investigations related to inertial confinement
fusion [1] and the physics of high-energy particles [2].
The basic advantages of these lenses are their high
focusing power and neutralization of the beam space
charge.

Beam focusing by a cylindrical, longitudinally and
radially uniform plasma current lens was studied in [3–
5]. In particular, in experiments [5], carried out under a
heavy-ion fusion program, a 2.2-GeV gold-ion beam
was focused to a 0.25-mm-diameter spot at a focal dis-
tance of 14 cm, the spot diameter being determined
only by the initial emittance of the beam. In this paper,
we consider a “thick,” longitudinally nonuniform adia-
batic plasma lens in which, by means of an external
magnetic field, the current-channel diameter is reduced
as the diameter of the focused beam decreases; as a
result, the efficiency of the lens increases. In some
aspects, this scheme is similar to a “passive” adiabatic
plasma lens in which the plasma density changes in the
longitudinal direction [6].

2. CALCULATION OF FOCUSING 
IN NONUNIFORM PLASMA LENSES

2.1. Plasma Current Lens in an Arbitrary Solenoid

Let us consider the focusing of an ion beam in the
azimuthal magnetic field produced by a longitudinal
current in a plasma. We will investigate the case when
the current-channel radius is determined by an external
nonuniform magnetic field. The problem will be solved
1063-780X/00/2604- $20.00 © 20351
in the paraxial approximation. In this case, the equation
for the magnetic surfaces is (see, e.g., [7, 8])

(1)

where a(z) is the running radius of the magnetic surface
and Bz(z) is the longitudinal magnetic field on the axis;
Bz(0) and a(0) are determined by the boundary condi-
tions at z = 0. We assume that the magnetic field is
strong enough so that the electrons carrying the plasma
current move along the nested magnetic surfaces. In
this case, the boundary condition at z = 0 takes the form
a(0) = b, where b is the outer radius of the electrode pro-
ducing the plasma current (e.g., it may be the inner
electrode of the plasma gun, which is at the capacitor-
battery potential and whose output end is located at
z = 0; see below). From equation (1), it is easily seen
that, if the magnetic surfaces are equally spaced in a
certain cross section, then they are equally spaced in
any other cross section. As a result, if the current den-
sity is uniform throughout the cross section near the
electron emitter, it will be uniform in any cross section,
which is necessary for the focusing free of spherical
aberration. The equation for the trajectories of the
focused ions is

(2)

where I is the plasma current, Ze and M are the ion
charge and mass, c is the speed of light, v is the ion
velocity, and Bz(0) is the magnetic field near the
plasma-gun end. In the Plasma Lens device (see
below), the ratio Bz(z)/Bz(0) is determined by the mag-
netic-field geometry; in our case, it is a short solenoid.
As the ions are focused and the current channel in the
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plasma is compressed by the magnetic field of a short
solenoid, a fraction of the ions (injected at large radii)
can move outside the current channel for a certain time.
These ions are also deflected toward the axis but do not
attain the common focus. Outside the current channel,
the equation of motion for them is

(3)r'' κ
r
---+ 0, κ 2ZeI

c2Mv
--------------.= =

10
z, cm
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800

Bz, G
1

2

z, cm
20 40 60 800

0.2

1.0
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0.6

0.4
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100zÒ

Fig. 1. Longitudinal profile of the external magnetic field in
the case of a parallel beam: (1) the required field and (2) the
field created by an optimized solenoid.

Fig. 2. Trajectories of the focused protons.

10 10

1 2 3 4 5 6 7 8

911 11

Fig. 3. Schematic of the device: (1) proton injector, (2) first
stage of the accelerator, (3) the output stage of the accele-
rator, (4) plasma gun, (5) gas valve, (6) horn antenna,
(7) chamber, (8) fluorescent screen, (9) solenoid, (10) RF
sources, and (11) magnetic-field detectors.
An example of the calculated trajectories of the
5-MeV protons is presented below; the results are com-
pared with the experiment.

2.2. Plasma Current Lens with an Optimized Solenoid

In order to increase the efficiency of the plasma lens,
it is necessary to optimize the longitudinal profile of the
external magnetic field so that the current-channel
radius coincides with the radius of the focused beam.
Then, it is required to calculate the parameters of a
solenoid producing such a magnetic surface and deter-
mine the trajectory of the focused ions. We carried out
calculations for the paraxial ion trajectories and parax-
ial magnetic surfaces. For the outer ions, which deter-
mine the radius of the focused beam, the boundary
magnetic surface, and the current-channel radius, the
motion equation has the form of (3) at r ≡ rms. This
equation was solved by the Runge–Kutta method. As a
result, we found the function rms(z), which determines
the sought-for magnetic surface in the case when the
ions are injected parallel to the z-axis. For the boundary
conditions Bz(0) = 200 G and rms(0) = 1 cm, from equa-
tion (1) we found the profile of the magnetic field on the
axis of the system (Fig. 1) for the parameters of our
experiment (see below).

The parameters of the solenoid producing the
required magnetic field were calculated by Tikhonov’s
regularization procedure [9] (Fig. 1, curve 2) by using
the technique developed in [10]. The trajectories of ions
propagating inside the current channel are described by
equation (2), where b = rms(0) = 1 cm.

The results of the computer modeling of the focus-
ing of a parallel proton beam (with account of the
parameters of the plasma lens taken from the experi-
ment) are presented in Fig. 2. The heavy line shows the
current-channel boundary formed by the calculated
nonuniform solenoid. The vertical line z = zc shows the
position of the cathode, which can be, e.g., a wire mesh
emitting electrons in order to maintain the plasma cur-
rent. Behind the mesh, the focusing power of the lens is
equal to zero so that the so-called inertial proton focus-
ing takes place. In this scheme, the protons move inside
the channel in which the current density is radially uni-
form; therefore, all of the protons are focused at the
same point.

3. PLASMA LENS DEVICE AND URAL-5 
ACCELERATOR

Experiments on the focusing of a 5-MeV proton
beam were carried out in the Plasma Lens device and
the Ural-5 accelerator (some of these results are pre-
sented in [11]). The Plasma Lens device (Fig. 3)
includes a coaxial plasma gun (4) with two 40-cm-long
electrodes, 3 and 7 cm in diameter. The inner annular
electrode has a 2.5-cm-diameter aperture, through
which a 5-MeV proton beam enters the plasma lens
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
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chamber. The chamber is a 70-cm-long glass tube
10 cm in diameter. A short solenoid (9) 19 cm long and
15 cm in inner diameter encloses the tube. The maxi-
mum value of the magnetic field is 1 kG. The plasma
gun is supplied from a capacitor battery with a 30-µF
capacitance and charging voltage up to 10 kV. The
working gas (hydrogen) enters the gun through a pulsed
electromagnetic valve (5). The optimum amount of
injected gas is 2–3 cm3. The plasma temperature Te ~
1−3 eV was measured by the Stark broadening of the Hβ
and Hγ spectral lines. For a 4- to 8-kV gun voltage, the
plasma-flow velocity varied from 6 × 106 to 107 cm/s.
The plasma density reached a value of 1016 cm–3 and
then decreased to 1011 cm–3 over 100–200 µs.

The injected 5-MeV protons were produced in the
Ural-5 accelerator, which is one of the first accelerators
with high-frequency quadrupole focusing proposed by
Kapchinskiœ and Teplyakov (see, e.g., [12, 13]). The
accelerator consists of the following basic elements
(Fig. 3): (1) a proton injector (100-keV proton energy,
100-mA proton current, and 50-µs pulse duration),
(2) the first stage of the accelerator (700-keV energy,
100-mA proton current, and 30-µs pulse duration),
(3) the output stage of the accelerator (5-MeV energy,
proton current to 30 mA, and 30-µs pulse duration), and
(10) RF power amplifiers (RF power of ~1 MW and
pulse duration of 100 µs). In order to improve the
parameters as well as the reliability and stability of
operation with the plasma lens, the Ural-5 accelerator
was specially modernized.

4. EXPERIMENTS ON THE FOCUSING 
OF A 5-MeV PROTON BEAM

In addition to experiments described in [11], we per-
formed measurements of the radial distribution of the
azimuthal magnetic field at a distance of 42 cm from
the plasma-gun output. The measurements were carried
out using a 3-mm-diameter magnetic probe, which was
introduced into the chamber through a 5-mm-diameter
glass tube; this allowed us to move the probe along the
chamber radius. The results of measurements are
shown in Fig. 4. As is seen, the current-channel radius
is ≈1 or 2 cm and the maximum magnetic field is ≈250
or 115 G for the switched-on and switched-off sole-
noid, respectively.

In experiments, we measured the diameter of a
5-MeV proton beam passing through the plasma at dif-
ferent instants with respect to the instant the plasma
gun is switched on. For measurements, we used a 6-cm-
diameter and 8-mm-thick fluorescent polystyrene
screen. The screen was positioned 90 cm from the
plasma-gun output and was protected against plasma
radiation by a 12-µm aluminum foil, which was trans-
parent for the 5-MeV protons. In all experiments, at the
initial instant, the central electrode was positively
charged. The gun voltage was 6 kV. The focusing was
observed at 12- to 16- and 24- to 28-µs delays with
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
respect the start of the gun discharge, which corre-
sponded to the maximums of the plasma current mea-
sured by the Rogowski coil. The image of the proton
beam on the screen was recorded by a digital camera.
The average radius of the focused beam was 0.7 cm (in
the absence of a plasma, it was equal to 3 cm). Calcula-
tion of the beam radius on the screen using equations
(1) and (2) and the measured values of the current chan-
nel radius (1.3 cm), magnetic field (250 G), and initial
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Fig. 4. Radial profile of the azimuthal magnetic field (curves
1 and 2 correspond to the switched-on and switched-off
solenoids, respectively).

z, cm
20 40 60

0

–0.5

1.5

1.0

0.5

r, cm

10080

Fig. 5. 5-MeV proton trajectories calculated for the experi-
mental conditions.
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Fig. 6. Schematic of an optimized solenoid in the case of a
diverging beam.
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beam divergence (0.015 rad) gives the value of 0.6 cm
(Fig. 5), which agrees with the experimental result. A
parabolic curve at the top of Fig. 5 presents the radius
of the current channel formed by the short solenoid
used in this experiment. The protons injected at a radius
of <0.7 cm are focused at z = 70 cm. The screen was
positioned at z = 90 cm, and the second electrode of the
current channel (a copper wire mesh) was located at z =

z, cm
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Fig. 8. Relative deviation of the magnetic field produced by
an optimized solenoid from the calculated magnetic field.

Fig. 9. Proton trajectories in the field of an optimized sole-
noid in the case of a diverging beam.
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Fig. 7. Longitudinal profile of the external magnetic field
created by an optimized solenoid.
60 cm. It is seen in Fig. 5 that the protons injected at
large radii propagate outside the current channel and do
not get the focus.

5. OPTIMIZATION OF THE SOLENOID
IN THE CASE OF A DIVERGING PROTON BEAM

By analogy with the method used in Section 2, we
calculated the solenoid for the case of a diverging pro-
ton beam with zero emittance and the beam divergence
as a function of radius, α(r) = α0r/r0, where α0 =
0.015 rad is the angle of deflection of the outer injected
protons from the axis. We calculated the solenoid
parameters for which the outer-proton trajectories coin-
cide with the current-channel boundary formed by the
corresponding magnetic surface. Figure 6 shows the
calculated size and position of the solenoid coils for a
current density in the coils of 1.6 A/mm2.

Figure 7 shows the longitudinal magnetic field Bc(z)
produced by an optimized solenoid as a function of the
longitudinal coordinate. Figure 8 shows the relative
deviation of the magnetic field, ∆B/B(z) = [B(z) –
Bc(z)]/B(z), where B(z) is the required magnetic field
obtained from the condition of coincidence between the
outer-proton trajectory and the magnetic surface.

The proton trajectories in the current channel pro-
duced by the magnetic field of an optimized solenoid
are presented in Fig. 9. The heavy curve shows the cal-
culated current-channel boundary produced by a non-
uniform solenoid. The vertical line at z = 72 cm shows
the position of the cathode for the current flowing
through the plasma. The cathode (wire mesh) was
assumed to be transparent to the focused beam. Since
we assume the density to be radially uniform, all the
protons are focused at the same point.

A subsequent experimental study will be devoted to
the proton focusing in an optimized magnetic field. The
efficiency of the plasma lens can be increased due to the
simultaneous consistent decrease in the radii of both
the current channel and the focused beam.
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Abstract—It is shown that, in resonant high-energy electron linear accelerators, undulator radiation should be
observed, which is emitted by off-axis beam particles interacting with the transverse field of nonsynchronous
spatial harmonics of the fundamental axisymmetric mode of a periodic accelerating structure. The mean power
emitted by an individual electron is proportional to the squared distance between the electron and the acceler-
ator axis and to the squared electron energy. This circumstance may limit the maximum energy to which off-
axis beam electrons can be accelerated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A major advantage of linear accelerators (linacs)
over cyclic accelerators is that the power emitted by the
accelerated particles is independent of their kinetic
energy. At present, the maximum achievable energies
in linacs are limited primarily by the mean acceleration
rate and realistic acceleration lengths so that linacs
capable of accelerating electrons (positrons) to ter-
aelectronvolt energies are now being actively devel-
oped around the world. In this area, significant progress
has been achieved in developing resonant linacs with
periodic structures providing high accelerating gradi-
ents [1]. We should, however, mention an important
factor that limits the maximum achievable energy in
periodic structures: off-axis particles lose their kinetic
energy via undulator photon emission [2, 3] in the
transverse field of nonsynchronous spatial harmonics
of the fundamental mode of a periodic linear accelerat-
ing structure.

Here, we apply the classical electrodynamic
approach in order to consider the mechanism for this
kind of photon emission and to derive an expression for
the maximum energy to which the particles in resonant
linacs can be accelerated.

2. MAXIMUM ENERGY OF AN OFF-AXIS 
PARTICLE IN A PERIODIC ACCELERATING 

STRUCTURE

The total power emitted by an ultrarelativistic elec-
tron moving along the z-axis of an accelerated structure
can be represented as [4]

(1)P . 
2e

2

3c
3

-------- γ6 dv z

dt
--------- 

 
2

γ4 dv ⊥

dt
---------- 

 
2

+ 
  ,
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where c is the speed of light in a vacuum, e is the charge
of an electron or a positron (below, we will speak only
about electrons), γ is the Lorentz factor, and vz and v⊥
are the longitudinal and transverse electron velocities
such that vz ≈ c and vz @ v⊥ .

It is well known that the power emitted by a particle
accelerated in the longitudinal direction is independent
of its energy and is extremely low [4, 5]. The possible
effect of the transverse fields on the emission from a
particle in linacs has not yet been considered. However,
because of the finite transverse dimensions of real
beams and/or the deviation of beams from the linac
axis, off-axis beam particles should experience rapidly
oscillating transverse forces driven by nonsynchronous
spatial modes inherent (by virtue of the Floquet theo-
rem) in periodic accelerating structures.

We consider axisymmetric accelerating structures
that are traditionally used in acceleration techniques. In
the paraxial approximation, the radial force acting upon
an ultrarelativistic particle can be written as [4]

(2)

where Ez is the longitudinal electric field at the axis of
the structure and r is the distance between the acceler-
ated particle and the axis. Without loss of generality, we
will deal with a traveling-wave periodic structure. We
represent the field at the axis in the Floquet form [4]:

(3)

where hn = ω/c + 2πn/D is the longitudinal wavenum-
ber, ω is the angular frequency of the electromagnetic
field, and D is the period of the structure. The relative
amplitude bn of the nth spatial harmonics is normalized

Fr . 
er
2
----- d

dz
-----Ez,–

Ez E0 bn hnz ωt–( ),cos
n ∞–=

∞

∑=
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to the amplitude E0 of the fundamental accelerating
harmonic so that b0 = 1.

We substitute (3) into (2) and assume that the longi-
tudinal coordinate of an ultrarelativistic particle
depends on time as z = c(t – t0). As a result, we arrive at
the equation of radial electron motion [6, 7]:

(4)

where ϕn = ϕ0 + 2πnct0/D and ϕ0 = ωt0 is the particle
phase with respect to the phase of the synchronous har-
monic.

Note that the mean energy of an accelerated particle
changes on a time scale longer than the oscillation
period D/c. This indicates that the rapidly oscillating
rate (4) of particle acceleration in the radial direction is
inversely proportional to the relativistic mass of the
particle.

Inserting the radial acceleration rate (4) into (1) and
averaging the resulting formula over the period D/c, we
obtain the following expression for the mean power
emitted by a charged particle accelerated in a periodic
linear structure:

(5)

where W = mc2γ is the net particle energy and the coef-

ficient ν(ϕ0) = [  + bnb–ncos(2ϕ0)] is deter-
mined by the spectral content of the spatial harmonics
of a periodic structure.

Expression (5) implies that a particle moving at a
finite distance r from the axis of the accelerating struc-
ture should emit photons. Since the emission power
increases in proportion to the squared kinetic energy of
the particle, we may anticipate that the particle can only
be accelerated to a certain limiting energy at which the
power emitted by the particle equals the power the par-
ticle gains in an accelerating wave field. This corre-
sponds to the power balance relation

(6)

Substituting (5) into (6) gives the maximum energy
of an off-axis particle,

(7)

where r0 is the classical radius of an electron.

Now, we analyze the applicability condition for the
validity of the classical electrodynamic description of
the emission from an ultrarelativistic electron. Accord-
ing to [2, 8], the electrodynamic approach is valid if the
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electromagnetic wave energy in the rest frame of an
electron is much lower than the electron rest energy:

(8)

If we examine condition (8) in the context of the devel-
opment of linear colliders operating in the X-ray range
and for which D ~ 1 cm, we will find that relationship
(7) is valid for electron energies satisfying the condi-
tion

where h is Planck’s constant and Λc is the Compton
wavelength of an electron.

The figure shows the maximum energy of a particle
as a function of its radial position r/λ with respect to the
axis over the interval from δr/λ (the relative amplitude
of the betatron oscillations of the beam particles in the
focusing system of an accelerator) to a/λ (the relative
aperture width of the accelerating structure; usually,
a/λ . 0.2 [11]) in the radial direction. The profile of the
maximum energy was obtained from expression (7)
taken with the parameter values characteristic of the
next generation of resonant linear colliders (E0 ~
100 MV/m [1] and D = λ/3) and with the coefficient
ν(0) = 0.154, which was computed with the
SUPERFISH code [9] for a SLAC-like structure [10].
We can see that, for typical permissible relative devia-
tions from the axis, δr/λ . 0.0036 [11], the maximum
energy to which the particles can be accelerated is
about 90 TeV, which is almost two orders of magnitude
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Maximum attainable energy Wm as a function of the radial
position r/λ of an electron with respect to the axis of the
accelerating structure. Point 1 corresponds to r/λ = δr/λ =
0.0036 and point 2, to r/λ = a/λ = 0.2.
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higher than the desired attainable energies in linear col-
liders currently under development. However, expres-
sion (7) implies that the stronger the accelerating field
E0 (i.e., the higher the acceleration rate), the lower the
maximum achievable energy. Additionally, if we take
into account the fact that, according to the estimates
presented in [11], the relative deviation of the beam
particles from the axis is essentially independent of the
wavelength λ of the accelerating wave, δr/λ . const,
then, with allowance for the dependence E0 ~ λ–7/8 [12],
we find that the maximum achievable energy will fall
off with λ according to the law

(9)

3. EMISSION FROM AN ACCELERATED 
ELECTRON BUNCH

Here, we consider the power emitted by an acceler-
ated electron bunch. High-energy accelerated particles
for which the characteristic wavelength of the emitted
photons is much shorter than the mean distance
between the particles in the bunch emit photons inde-
pendently of each other. In this case, the total power
emitted by the bunch is equal to the sum of the powers
emitted by the electrons [2]:

(10)

where the summation is carried out over all bunch elec-
trons.

Expression (10) shows that either a bunch with finite
transverse dimensions or a bunch accelerated at a cer-
tain distance from the axis will emit radiation. One can
see that, when the bunch particles are accelerated to
such energies that the power emitted by the bunch
becomes comparable to the power acquired by bunch in
the accelerating wave field, the acceleration process
ceases to be efficient, which corresponds to the con-
dition

(11)

Let us derive an expression for the maximum
achievable root-mean-square energy of the bunch under
the balance relation (11) between the radiated and
absorbed powers. We consider the case in which the
correlations between the energy of the particle and its
radial coordinate can be neglected. This case is typical
of, e.g., coherent betatron oscillations of the beam par-
ticles in the focusing system of an accelerator, which
the bunch being displaced from the axis as a single
entity. Note that, according to (11), the microwave
power absorbed by a bunch that is displaced from the
axis as a single entity will be completely converted into
the power of the emitted photons. We substitute (10)

Wm λ 7/16
.∝
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Ptot ceE0 ϕ0 i, .cos
i

∑=
into the power balance relation (11) and average the
resulting expression over all bunch particles to obtain
the maximum achievable root-mean-square energy of a
particle in the bunch,

(12)

where the angle brackets denote averaging over the

bunch particles and σr ≡  is the standard devia-
tion of the particles from the axis of the structure. Since
the coefficient ν(ϕ0) depends weakly on the particle
phase, it is taken with the phase ϕ0 corresponding to the
bunch center.

4. CONCLUSION

We have analyzed the mechanism for conversion of
the kinetic energy of particles accelerated in the longi-
tudinal direction into the energy of photons emitted by
the particles in the course of their interaction with com-
paratively weak transverse fields of the nonresonant
spatial harmonics in periodic accelerating structures.
We have also studied the conditions under which this
conversion occurs. It is evident that, in the conversion
mechanism, a major role is played by high particle
energies and by a rapidly oscillating transverse (undu-
lator) force along the path of the beam.

It should be noted that the problem of longitudinal
and transverse dynamics of accelerated particles in the
energy range in which the power loss due to photon
emission becomes dominant (i.e., when the decelerat-
ing force arising from photon emission should be incor-
porated into the motion equations) requires further
research. It is also of interest to study how the fluctua-
tions associated with the quantum character of photon
emission from accelerated particles affect the beam
dynamics.
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Abstract—The possibility of forming and emitting high-power electromagnetic pulses by means of an insu-
lated rod antenna excited by a short-duration high-current electron beam is studied. It is found experimentally
that the amplitude of the emitted pulses and their characteristic period depend on the antenna length. The poten-
tialities of the method proposed as applied to the generation of intense videopulses are discussed. © 2000 MAIK
“Nauka/Interperiodica”.
† 1. INTRODUCTION

The principles of the formation of high-power elec-
tromagnetic radiation in beam–plasma systems were
first formulated in theoretical works by Faœnberg [1–3]
and confirmed experimentally in [4–6]. Further devel-
opment of these ideas and advances in the production
of superintense charged-particle beams have provided
considerable progress in super-high-power electronics.

An important line of investigations in this field is the
production of intense electromagnetic (EM) pulses by
converting the energy of a high-current relativistic elec-
tron beam (REB) into EM energy through direct exci-
tation of an antenna–feeder system (AFS). Experiments
with a premodulated beam [7] demonstrated that the
efficiency of this conversion mechanism is fairly high
(higher than 50%). In [8], direct excitation of an AFS
by a modulated beam was used to measure the modula-
tion depth of a beam propagating in a plasma. Of par-
ticular interest is to examine the potentialities of the
method of direct excitation of an AFS by an electron
beam for generating short-duration high-power EM
pulses. As is known [9, 10], such pulses contain intense
low-frequency spectral components, which are very
promising for near-surface introscopy of the Earth,
geological surveys of the sea shelf, and other investiga-
tions in which conventional high-frequency probing is
inefficient.

The objective of this paper is to experimentally
study the possibility of emitting high-power nanosec-
ond EM pulses by exciting an AFS (in particular, a rod

† Deceased.
1063-780X/00/2604- $20.00 © 0360
antenna) by an unmodulated short-duration high-cur-
rent REB.

2. EXPERIMENT
Experimental studies of the excitation of a rod

antenna by a short-duration high-current relativistic
electron beam were carried out in a device producing
pulsed electron beams with the following parame-
ters: energy E = 0.5–1.5 MeV, current I = 5–15 kA,
pulse duration up to 15 ns, and current rise duration
~0.5−1 ns.

In the experiments, we used 1- to 3-m-long rod
antennas, 10–20 mm in diameter. The field of the emit-
ted radiation was measured by a TEM horn antenna
located ~5 m from the middle of the emitting antenna.

Figure 1 shows the schematic of the experiment.
The electron flux is emitted from the cathode 1 when
the accelerating voltage is applied across the anode–
cathode gap. An anode 2 is made from a stainless steel
grid with a transmittance of 85%. The beam current
was measured by the Rogowski coil 4. To prevent elec-
tric breakdown and give the necessary shape to the
electron beam, we used a 0.5- to 1.5-kOe magnetic field
created by coils 3. The beam current was shorted to a
cylindrical graphite collector 5 located 20 mm from the
anode grid and mounted on a hemispheric insulator
protecting the collector from electric breakdown. A rod
antenna 7 was connected directly to the collector; in the
experiments, the antenna length varied from 1 to 3 m.

At the horn of a receiving antenna 8, the input
impedance was equal to 377 Ω; near the cable connec-
tion, it was equal to 77 Ω . The angle between the axes
of the emitting and receiving antennas was 25°–30°.
2000 MAIK “Nauka/Interperiodica”
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The aim of the experiments was to study the depen-
dence of the characteristics of the generated EM pulses
on the length of the emitting rod antenna. Figures 2–4
show the traces of signals detected by the receiving
antenna for rod lengths of 1, 2, and 3 m, respectively,
and the traces of the beam current at the collector. To
specify the time scale, a calibration signal with a period
of 20 ns is also shown.

As is seen from Figs. 2–4, the signal detected by the
receiving antenna consists of irregular oscillations with
a characteristic period on the order of the beam-current
duration. It is clearly seen that the characteristic period
and amplitude of the signal depend on the length of the
emitting rod. Note that the recorded signal is similar in
shape to the optimum signal for the superbroadband
location with µ = ∆f/f ≈ 4/N = 0.66 [11]. The measured
electric field at the horn of the receiving antenna was
~10–30 V cm–1 for a 3-m-long emitting rod, and the
amplitudes of signals emitted by 2- and 3-m-long
antennas exceeded by 10 and 15 dB, respectively, those
of signals emitted by a 1-m-long antenna. The charac-
teristic period of oscillations also increased in propor-
tion τ2/τ1 ≈ 1.3 and τ3/τ1 ≈ 1.5, where τ1, τ2, and τ3 are
the characteristic periods of signals emitted by the
antennas with lengths of 1, 2, and 3 m, respectively. The
emitted pulses were rather short, which is typical of
videopulses. We analyzed the experimental data assum-
ing the dipole character of the antenna emission. Such
an approximation is based on the fact that, in the exper-
iment, the characteristic emission wavelength is much
longer than the antenna length, λ @ L. Therefore, from
the measured value of the electric field at the horn of the
receiving antenna, we can estimate both the character-
istic value of the current flowing through the rod and
the emitted power. In our case, the expressions for the
electric and magnetic field components lying in the
horn plane of the receiving antenna are

where I is the current flowing through the rod antenna,
r is the distance from the rod center to the receiving
antenna, ϑ  is the angle between the axes of the rod and

the receiving antenna, and ω and k =  are the char-

acteristic frequency and wavenumber of the rod emis-
sion. Then, for the parameter values r ≈ 4 m, λ ≈ 12 m,
ϑ ≈ 25°, and L = 3 m, we obtain that the characteristic
current through the rod antenna is ~1 kA. The total
emitted power for the given parameters is equal to
10−20 MW.
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Fig. 1. Schematic of the experiment.

Fig. 2. Traces of (1) the emission signal and (2) beam cur-
rent for an antenna length of 1 m and attenuation of 10 dB.
The frequency of the calibration signal is 50 MHz.

Fig. 3. Same as in Fig. 2 for an antenna length of 2 m and
attenuation of 20 dB.

Fig. 4. Same as in Fig. 2 for an antenna length of 3 m and
attenuation of 20 dB.



 

362

        

GAPONENKO 

 

et al

 

.

                      
3. CONCLUSION

It is experimentally shown for the first time that
intense nanosecond EM pulses can be generated by
means of an insulated rod antenna excited directly by a
short-duration high-current REB. The characteristic
period and amplitude of the pulses increase with
increasing the length of the emitting rod, provided that
the pulse duration is kept constant.

To clarify the generation mechanism and determine
the optimum generation conditions, we plan to carry
out a series of experimental and theoretical investiga-
tions.
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Abstract—A study is made of the generation of electron Bernstein waves in the interaction of a microwave
field with a magnetized plasma during electron cyclotron heating. Parametric resonance accompanied by simul-
taneous conversion of microwave-field energy into the energy of numerous waves is analyzed. The relevant dis-
persion relation is investigated using the Hill method, which has recently been applied for the first time to exam-
ine the parametric interaction between high-power microwave radiation and plasmas. It is shown that the dis-
persion relation can be used to describe the onset of modulational instability at multimode parametric
resonance. The growth rate of the modulational instability is obtained. Efficient energy transfer from the micro-
wave field into Bernstein modes and, accordingly, into plasma electrons may be one of the main mechanisms
for electron cyclotron resonance plasma heating. © 2000 MAIK “Nauka/Interperiodica”.
The nonlinear parametric interaction of microwave
radiation with a plasma, which gives rise to a resonant
instability, was investigated in detail by Silin [1]. Gra-
dov and Zyunder [2] applied the method developed by
Silin to consider the parametric excitation of waves
propagating approximately along the magnetic field,
when the pump wave frequency is close to the electron
cyclotron frequency. Here, we study the problem of the
generation of Bernstein modes under electron cyclo-
tron heating conditions. Interest in this problem stems
primarily from the fact that, under these conditions, all
of the modes of the pump wave resonantly generate
numerous waves, in which case the wave excitation is
very sensitive to the frequency detuning ∆ = ω0 – Ω
(where ω0 is the pump wave frequency and Ω is the
electron cyclotron frequency): the value of ∆ deter-
mines which particular wave is preferentially gene-
rated.

We consider a homogeneous plasma that is affected
by an alternating electric field E(t) = E0sinω0t whose
frequency is close to the electron cyclotron frequency,
ω0 ≈ Ω ≡ eB/mc, and which is directed transverse to a
constant magnetic field B.

The growth rate of the excited waves is determined
from the equation [1]

(1)

where Inm is the identity matrix, D  = Jn – m(µ),

 = Jm – n(µ), µ = |ka|, k is the wave vector
(which is the same for all of the generated waves), a is
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the amplitude of the electron oscillations in the pump
field, Jn(µ) is an nth order Bessel function of the first
kind,

(2)

and δεα(ω + nω0, k) is the contribution of the plasma
particles of species α = e, i to the longitudinal dielectric
function. In the case of a high-frequency pump wave,
the ion contribution to the longitudinal dielectric func-
tion can be written as

(3)

where ωLi is the Langmuir frequency of the plasma ions
(which are assumed to be unmagnetized).

Note that the infinite-order determinant D(ω, k) is a
periodic function of frequency with the period ω0, in
which case the simple poles are the only singular points
of the matrix elements in (1) on the complex plane ω.
Baitin and Ivanov [3] proposed an efficient approach
for investigating infinite-order determinants. This
approach is based on the Hill method [4] and makes it
possible to find the roots of the dispersion relation with-
out any a priori assumptions regarding the presence of
small parameters. Following this approach, we repre-
sent the meromorphic function D(ω, k) as an infinite
series,

(4)
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where Kαn = , ωαn are the

roots of the equations 1 + δεα(ω, k) = 0, and Dαn is the
determinant of the matrix D(ω = ωαn) in which the row

πDαn 2πωαn/ω0( )sin
ω0∂δεα ω k,( )/∂ω ω ωαn=

----------------------------------------------------------

where a singularity at ω = ωαn is present is assumed to

be regularized by replacing unity with zero and 
with minus unity.

Substituting the explicit expression (3) for δεi(ω)
into (4) yields
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∑

Using the Mittag–Leffler theorem of the series expan-
sion of a meromorphic function [4], we can show that
(5) is a representation of the meromorphic function

(6)

Note that expression (6) is valid for arbitrary values of ω.
In the limit of small ω values, our equation D(ω, k) = 0
passes over to the familiar equation

(7)

which was derived by Silin [1] for ω ! ω0. The quantity

 in (7) is described by formula (2) with expression
(3).

In our problem of the excitation of Bernstein modes,
the wave vector k is perpendicular to the magnetic field
and the electron contribution to the longitudinal dielec-
tric function is (see, e.g., [5])

(8)

where Φn = In(k2 )exp(–k2 )/k2 , rDe is the elec-
tron Debye radius, ρe is the electron gyroradius, and
In(x) is an nth order Bessel function of the imaginary
argument. The dispersion relation 1 + δεe = 0 gives the
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following spectrum of the eigenfrequencies of the
Bernstein modes:

(9)

Formula (9) is valid for strongly magnetized electrons
(ρe < rDe), in which case we have Φn(k) ! 1 so that the
pump field harmonics are in resonance with all of the
Bernstein modes.

The roots of the equation D(ω, k) = 0 lie near the
poles of the function in (5) [or (6)]; i.e., we have ω ≈
nω0 with n = 0, ±1, ±2, …. Consequently, the periodic-
ity of the determinant allows us to consider only the
case of small ω values. Generally, it seems to be more
convenient to use equation (5) rather than equation (7),

because ω does not enter the expression for . How-
ever, for the specific electron contribution (8), both of
these equations are equivalent.

Below, we will be concerned with an aperiodic
instability, assuming that ω is purely imaginary. Substi-
tuting (8) and (9) into (5) or (7) gives the final disper-
sion relation

(10)

where ∆ is the detuning defined above and, under the
conditions adopted (ρe < rDe), the second term in paren-
theses is small for all values of the wave vector.

We investigate equation (10) starting with the limit
of short wavelengths, kρe @ 1, in which the asymptotic
expressions for all of the functions Φn(k) are the same

regardless of n: Φn(k) ≈ 1/( k3 ρe) ≡ Φ(k). In this
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case, the series in equation (10) can be summed up
using the formula [1, 6]

As a result, we obtain

(11)

where ν = ω/(∆ – ΩΦ). A completely analytic treatment
of equation (11) is possible only in the case µ < 1. In the
limit |ω| ! ωLi, this equation can be reduced to a qua-
dratic equation, which has unstable solutions only in a
narrow range of detunings (ΩΦ(k)(1 – µ2/2) < ∆ <
ΩΦ(k), and the growth rate is maximum,

, (12)

at ∆ = ΩΦ(k)(1 – µ2/4) (here, γ = –iω). Formula (12)
shows that, as the wave vector increases, the maximum
growth rate decreases in proportion to 1/k. Conse-
quently, it is expedient to examine the range of small
kρe values.

To do this, we again restrict ourselves to the limit
|ω| ! ωLi , in which the solutions to equation (10) lie
close to the roots of the denominators in the series. To
find the nth root, it suffices to equate the denominator
of the nth term in the series to zero and to solve the
resulting equation. In this case, unstable solutions exist

in the range ΩΦn(k)(1 – 2 (µ)) < ∆ < ΩΦn(k) and the
growth rate is maximum,

(13)

at ∆ = ΩΦn(k)(1 – (µ)). For n = 1, the growth rate, as
a function of the wave vector, is maximum at kρ ≈ 2.
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The problem that we have analyzed here may be
important for electron cyclotron heating of plasmas
confined in magnetic devices. Thus, in the case in
which an electromagnetic wave enters the device by
crossing its end and propagates along its axis, the phys-
ical picture will be as follows. Since the magnetic field
changes along the device axis, the electron cyclotron
frequency and hence the value of the detuning will
change accordingly. As the pump wave penetrates into
the plasma, different Bernstein modes are excited one
after another and propagate across the magnetic field.

Using the Hill method for regularizing infinite-order
determinants, we have derived dispersion relations (5)
and (6), which describe the parametric interaction
between long-wavelength microwave radiation and a
plasma. These fairly general dispersion relations,
which were obtained only under the assumption that
the plasma ions are unmagnetized, possess all of the
properties of the determinant in (1); in particular, they
are periodic in frequency, the period being equal to that
of the pump wave.
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Abstract—The effect of an RF field on a steady-state beam–plasma discharge with a plane electrode placed
parallel to a sheetlike electron beam is studied experimentally. The plasma parameters were measured by a sin-
gle probe, and the electron distribution function was determined with the use of an electrostatic analyzer. The
energy and current of the electron beam were EB = 2.5 keV and JB = 0.05–1.5 A, respectively. The working
pressure was p = 2 × 10–5–10–3 torr. The frequency of the external RF field was 13.56 MHz. Both the steady-
state regimes in which the RF field had no effect on the plasma parameters and regimes with a pronounced effect
of the RF field were observed. The experiments show that the regime of the discharge depends strongly on the
plasma density and the magnetic field. The parametric instability is studied theoretically in the weak-turbulence
approximation. It is shown that, due to the decay nature of the spectrum of plasma oscillations, the onset of
instability is accompanied by the transfer of the energy of fluctuations over the spectrum, from the pump fre-
quency toward its harmonics. © 2000 MAIK “Nauka/Interperiodica”.
A low-pressure steady-state beam–plasma dis-
charge (BPD) in a longitudinal magnetic field is an effi-
cient tool for producing plasmochemical dissociation
reactions [1, 2]. It can also be used in technology for
surface treating. The efficiency of surface treating
increases in the presence of flows of high-energy ions,
which can be produced by combining a BPD with an
RF discharge (combined BPD–RF discharge). The
interaction of an RF electric field with a magnetized
plasma is also of great interest for heating plasma elec-
trons and ions.

In this paper, we consider a combined BPD–RF dis-
charge, in which a potential RF electric field (Ω = 8.5 ×
107 s–1) perpendicular to the magnetic field is applied to
a conventional BPD. The schematic of the experiment
is presented in Fig. 1 (see [3] for details).

The plasma was produced in argon at a pressure of
10–4–10–3 torr by a sheetlike electron beam with an
energy of 2 keV and current of 0.05–1 A and was con-
fined by a 300- to 500-G magnetic field. An electron
beam propagated along the magnetic field. In the
absence of an RF field, the shape of the beam-electron
distribution function (BEDF) on the whole varied
according to the one-dimensional quasilinear theory
(Fig. 2). However, in developed BPDs, the relaxation
length was several times greater than that predicted by
the theory. (This well-known discrepancy has led to the
development of the theory of strong turbulence, which,
however, predicts a relaxation length substantially
larger than that observed in experiments [4].)

In some cases, when an external RF field was
applied to a BPD plasma, the discharge was quenched.
1063-780X/00/2604- $20.00 © 20366
This occurred when the plasma density and tempera-
ture were low, n < (2–3) × 1011 cm–3 and Te < 2–3 eV.
The quenching manifested itself in a decrease in the
plasma density by more than one order of magnitude
when the RF field was switched on. In this case, near
the electron beam, at distances more than several elec-
tron cyclotron radii from the field source, the electric
field was 1–2 V/cm. The plasma parameters and the

Electric field

Magnetic field

Electron beam

B

E

B

Fig. 1. Beam–plasma discharge device with a sheetlike
beam.
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local potential of the RF field were measured by a
Langmuir probe. To measure the plasma density np and
the electron temperature Te, a high-frequency filter was
introduced into the probe circuit. The probe could be
moved in the direction perpendicular to the direction of
electron-beam propagation, which allowed us to mea-
sure the spatial distributions of the plasma parameters.

The RF potential  was measured by the shift of the
probe floating potential VS according to the expression

VS = –(Te/e)ln(e /Te) [5]. The beam-electron energy
analyzer based on the retarding-field method was posi-
tioned at the end of the experimental chamber and mea-
sured the BEDF. The spectra of plasma oscillations
excited under the parametric action of the RF field were
also analyzed (Fig. 3). The spectrum consisted of a
series of peaks localized near harmonics of the pump
frequency. This is evidence of the transfer of the energy
of fluctuations to the high-frequency region of the spec-
trum.

Such a spectrum is very different from that pre-
dicted by the well-known theoretical models (see, e.g.,
[6, 7]). According to those models, the energy of fluc-
tuations must be transferred toward low frequencies
(down to the lower hybrid frequency ΩLH) and small
wavenumbers k ≈ 0. After that, the plasma should come
to a highly turbulent state, which should be accompa-
nied by the formation of a Langmuir condensate. In the
above papers, the basic nonlinear process leading to
saturation of the parametric instability is the induced
scattering of plasma waves by ions.

Here, we propose another scenario of the onset of
the instability. In the magnetic field, the plasma oscilla-
tions in the frequency range under study are described

Ṽ

Ṽ

BEDF, 104 eV–1

10

5

0 1 2 3 4
E, keV

1 2

3

4

3' 2'

Fig. 2. (1) Initial BEDF and (2–4) BEDFs measured at the
device output in the absence of an RF field for the beam cur-
rents I = (2) 0.05, (3) 0.25, and (4) 0.7 A. The arrows show
the lower beam energy calculated by the quasilinear theory.
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by the following dispersion relation [8]:

(1)

where ΩLH ≤ ω < ωce, ωce is the electron cyclotron fre-

quency; A0 = I0( )exp(– ), ρe is the electron
cyclotron radius; I0(x) is the modified Bessel function;

y = (kz/k) , M and m are the ion and electron masses,

respectively; ω/|kz| > vTe; k = |k|; and k⊥  is the wave-vec-
tor component perpendicular to the magnetic field. The
magnetic field is directed along the z-axis.

The dispersion curve ω(k) can be conventionally
divided into two regions: the electron region (k ! 1 and
the ion-acoustic region (k > 1).

The external RF field drives the parametric instabil-
ity with the maximum growth rates

in the electron region and

in the ion region (here, ue is the electron drift velocity
and cs is the speed of sound), which results in the exci-
tation of the wave packets P1e and P1i in the electron and
ion-acoustic regions, respectively. Two waves both
belonging to any of these packets and having the fre-
quencies ω1 ≈ ω2 ≈ Ω generate long-wavelength oscilla-
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Fig. 3. The spectrum of plasma oscillations excited under
the parametric action of an external RF field.
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tions with the frequency ω in the electron region such
that

ω = ω1 + ω2, k = k1 + k2.

These conditions, which are usually referred to as
the decay conditions, are consistent with equation (1).
Evidently, ω ≈ 2Ω; thus, a packet P2 emerges near the
second harmonic of the pump frequency. Similarly, two
waves belonging to the packets P1e and P2 generate the
wave with frequency ≈3Ω , etc. Thus, we obtain the set
of packets near the harmonics of the pump frequency.
Since these packets relate to the long-wavelength elec-
tron region, they can be easily recorded in the experi-
ment.

As for short-wavelength oscillations excited in the
ion-acoustic region, it is difficult to observe them
directly. Nevertheless, they manifest themselves indi-
rectly through their strong effect on the beam–plasma
instability. Since the growth rate of the instability is

proportional to /Ω2u2 ~  (where u is the
beam velocity), it strongly decreases in the presence of
short-wavelength oscillations, so that the beam relax-
ation is suppressed.

ωpe
2

cs
2

ki
2 k ⊥

2⁄
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Abstract—A nonlinear equation is derived and its analytic solution describing a soliton-like perturbation prop-
agating at velocity close to the speed of light is found. It is shown that the rate at which the amplitude of a soliton
excited by a cold electron beam in a magnetized plasma-filled waveguide grows is proportional to (nb/n0)1/3, as
is the linear growth rate of the beam–plasma instability. © 2000 MAIK “Nauka/Interperiodica”.
In studying the generation of wake plasma waves,
Bulanov et al. [1] focused most of their attention on the
formation of electromagnetic solitons that cannot be
described in the envelope approximation. The soliton is
generated in the wake of an electromagnetic pulse in
the form of a nonlinear wideband electromagnetic
pulse. In recent years, ultrashort wideband wave pulses
and their applications have been analyzed in a number
of papers (see, e.g., [2, 3]).

The interaction of high-power laser radiation with a
plasma is characterized by qualitatively new effects, in
particular, the formation of soliton-like perturbations.
There is experimental evidence that solitons are gener-
ated when the dispersion curve for the excited oscilla-
tions has a straight line segment.

Analytic solutions describing solitons propagating
at the speed of light in an unbounded plasma have been
sought in many papers (see, e.g., [2]). Here, we analyt-
ically study a soliton-like perturbation propagating in a
plasma waveguide. In a magnetized plasma, one of the
modes of high-frequency oscillations is described by
the dispersion law

(1)

where ωp is the Langmuir frequency of the plasma elec-
trons, ω and k are the frequency and wave vector of the
wave, and c is the speed of light. We can see that, for
ωp @ ck, the dispersion relation is almost linear, ω ≈ ck.
Consequently, we can expect that this mode can give
rise to a soliton-like perturbation. Let us construct a
nonlinear equation describing such a soliton.

We consider a plane plasma-filled metal waveguide
of length a in the y direction. Let a soliton-like pertur-
bation of the electric potential ϕ propagate with the
velocity Vs along the z-axis. We assume that the solu-
tion amplitude –ϕ0 is small and that the soliton is sym-
metric; i.e., the potential ϕ is independent of the coor-
dinates in the plane orthogonal to the vector Vs. We

ω ckωp / ωp
2

c
2
k

2
+( )

1/2
,=
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start by analyzing a soliton that is steady-state in the
comoving frame of reference. From the Maxwell equa-
tions, we obtain the following equation for the electric
field E of a soliton:

(2)

where n and v are the density and velocity of the plasma
electrons, which can be evaluated from the Vlasov
equation for the electron distribution function fe,

(3)

The assumption that the magnetic field, directed along
the z-axis, is infinitely strong (H0  ∞) allows us to
neglect electron motion across the magnetic field. Since
we are seeking the solution describing a soliton that
propagates with the velocity Vs and is steady-state in
the comoving frame of reference, we can specify the
dependence of fe on time and coordinates in the form
z – Vs t. In this case, equation (3) reduces to

(4)

where Ez = –∂ϕ/∂z, so that the perturbed electron den-
sity δn = n – n0 and the z-component of the electron cur-
rent take the form

(5)

We take into account (5) and keep the second-order
terms in (2) to arrive at the nonlinear equation:

(6)

where the prime denotes the spatial derivative in the
propagation direction of the soliton and k⊥  is the trans-
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verse component of the wave vector. Integrating (6)

yields the following equation for φ = eϕ /me :

(7)

Using the condition  = 0, we find the veloc-

ity of a soliton propagating in the form of an electric-
potential well:

(8)

We can see that the soliton is formed by the two modes
described by the dispersion relations ω ≈ ωpk/k⊥  and
ω ≈ ck and that the soliton velocity increases as its
amplitude grows.

Defining the soliton width as ∆ξ = φ0/ , we

approximately obtain

(9)

For ck⊥ /ωp ! 1, we have ∆ξ ≈ 2c2(2me/eϕ0)1/2/ωp. The
soliton width ∆ξ is seen to decrease as the soliton
amplitude ϕ0 grows. The properties of the soliton can
be controlled by varying the two parameters k⊥  and ωp.

Using (8), we arrive at the following solution to
equation (7):

(10)

where ξ is the coordinate in the propagation direction

of the soliton and η =  + /c2.

Up to this point, we have described a steady-state
soliton. Now we consider its interaction with a cold,
low-density (nb0 ! n0) electron beam. Retaining the
time derivative in the Vlasov equation (3) and using the
methods of the perturbation theory allows us to obtain
the following equation for the electron distribution
function fe :

(11)

where  is a quasisteady electron distribution func-

tion, which satisfies equation (4), and  is a correc-
tion introduced by the unsteady character of the poten-
tial φ(t). Integrating (11) over velocities, we can find the
spatial derivative of the next-order correction to the
electron density. The perturbed beam electron density
can be evaluated from the electron hydrodynamic equa-
tions at Vb ≈ Vs:

(12)
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From (11), (12), and Poisson’s equation, we have

(13)

Using (6), (7), and (13), we can construct the equation

, (14)

whose solution can be obtained using the formula

(15)

where µ(ξ) = 1/cosh2(ξ /∆ξ(φ0)) by virtue of (9) and
(10). In (15), we took into account the change δVs in the
velocity of the soliton due to its interaction with the
beam electrons. From (14) and (15), we obtain the fol-
lowing expressions for δVs and for the rate γ = ∂lnφ0/∂t
at which the amplitude φ0 grows:

(16)

Note that both of these expressions contain the
parameter (nb0/n0)1/3, as in the case of a linear beam–
plasma instability.

Hence, we have shown that the interaction between
a cold electron beam and a soliton causes the soliton
amplitude to grow. This conclusion agrees with the
results obtained in [4–24] for soliton-like perturbations
in a nonequilibrium plasma.

From (8), (9), and (16), we can see that a soliton in
an unbounded plasma (i.e., at  = 0) possesses the fol-
lowing properties:

(17)
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Semen Samoœlovich Moiseev
(In Honor of His 70th Birthday)
On November 23, 1999, we celebrated the
70th birthday of Semen Samoœlovich Moiseev, a well-
known theoretical physicist, professor, and principal
researcher at the Institute of Space Research of the Rus-
sian Academy of Sciences.

Versatile scientific activity of S.S. Moiseev has been
related to the development of a number of important
directions in plasma physics, hydrodynamics, and
nuclear energetics. His works, which were always in
the vanguard of scientific research, have gained world-
wide recognition in the scientific community.

After graduating with honors from Kharkov State
University (KSU) in 1952, he worked as a teacher in
Slavyansk and Poltava. However, his inquisitive intel-
lect desired new knowledge, the more so since at that
time a new, extremely important and complicated prob-
lem arose—the problem of creating a fundamentally
new power source based on controlled nuclear fusion.
Thus, in 1960, he radically changed his occupation and
moved to Novosibirsk, where he began to work at the
Institute of Nuclear Physics of the Siberian Division of
the USSR Academy of Sciences. There, at the labora-
063-780X/00/2604- $20.00 © 20372
tory headed by Academician R.Z. Sagdeev, S.S. Moi-
seev, together with A.A. Galeev, V.E. Zakharov,
V.N. Oraevskiœ, G.M. Zaslavskiœ, and other internation-
ally known scientists, obtained pioneering results,
which were reported at the largest international confer-
ences and were the basis for his candidate’s and doc-
toral theses. Among them, it is worth noting the solu-
tion to the problem of anomalous Bohm’s diffusion in
fusion devices, the studies on low-frequency instabili-
ties in inhomogeneous plasmas and transformation of
electromagnetic waves in nonsteady and inhomoge-
neous plasmas, and the development of principles of
novel plasma diagnostics based on the generation of
higher harmonics in plasma resonance layers.

In 1968, S.S. Moiseev moved to the Kharkov Insti-
tute for Physics and Technology (KIPT), the laboratory
headed by Academician Ya.B. Faœnberg. There, he fur-
ther developed his earlier studies concerning plasma
stability and plasma heating as applied to beam–plasma
systems and proposed new, original ideas in other fields
of plasma physics, among them, a model of the nonlo-
cal transfer of electromagnetic signals in inhomoge-
neous plasmas (the effect of induced transparency of
wave barriers), new mechanisms for the generation of
electromagnetic radiation associated with the wave
transformation due to plasma density gradients, focus-
ing and channeling of radiation in a plasma, the reso-
nant-cone effect in the excitation of electromagnetic
waves by small-size sources, and the modulational
instability. He developed new approaches to the theory
of strong hydrodynamic turbulence and the formation
of nonequilibrium power-law distributions of charged
particles in collisional media. The results obtained were
very important for practical applications, and S.S. Moi-
seev received a series of inventor’s certificates. For
their work on induced transparency of wave barriers in
a plasma, S.S. Moiseev and his colleagues were
awarded the 1979 Ukrainian SSR State Prize in Science
and Technology.

In 1980, S.S. Moiseev began to work in Moscow at
the Institute of Space Research of the USSR Academy
of Sciences, where he was invited by Academician
R.Z. Sagdeev. There, he developed new approaches to
increasing the efficiency of absorption of high-power
laser radiation in an inhomogeneous plasma via the
channeling and self-focusing of laser beams. The
results of his long-term studies on the mechanisms for
the generation of electromagnetic radiation in a plasma
were published in the monograph Nonequilibrium and
000 MAIK “Nauka/Interperiodica”



        

SEMEN SAMO

 

Œ

 

LOVICH MOISEEV (IN HONOR OF HIS 70TH BIRTHDAY) 373

                 
Resonant Processes in Plasma Radiophysics (Nauka,
Moscow, 1982) written together with A. A. Rukhadze,
A.B. Shvartsburg, M.V. Kuzelev, and N.S. Erokhin. For
his research in plasma physics, S.S. Moiseev was
awarded the 1987 USSR State Prize in Science and
Technology.

He also carried out investigations in hydrodynam-
ics. An important result of these investigations was the
discovery of a helical mechanism for the generation of
large-scale tropical vortices (see the well-known paper
by S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Kho-
menko, and A.M. Shukurov published in 1983 in Dokl.
Akad. Nauk SSSR [Sov. Phys. Doklady]). This made it
possible to develop a new approach to the important
problem of typhoon formation and monitoring of
cyclogenesis zones. Based on the results obtained, two
expeditions to the Pacific Ocean were organized to
carry out in situ measurements in the zones of intensive
cyclogenesis. The theory of inverse helical cascade
developed at the Institute of Space Research allowed
S.S. Moiseev to elaborate the system of physical pre-
cursors and indicators of tropical cyclones. These stud-
ies laid the theoretical foundations of the contemporary
methods for forecasting large-scale crisis processes in
the atmosphere, such as typhoons and extratropical
cyclones. The experimental data from the expeditions
showed that these indicators may be abnormal fluctua-
tions of background atmospheric parameters, such as
infrasound activity, the dynamics of fractal parameters,
and the helicity of atmospheric turbulence. Later, he
investigated this field of research in more detail: he ana-
lyzed the formation of non-Kolmogorov spectra, exam-
ined the structural properties of hydrodynamic helical
turbulence and the mechanisms for helicity generation,
and studied the influence of turbulence helicity on par-
ticle and energy transport. In essence, he founded a new
line of investigation—the helical dynamics of nonlin-
ear media—which has various applications in hydrody-
namics, plasma physics, biophysics, the physics of the
Earth’s liquid core, etc.

Along with these studies, S.S. Moiseev, together
with V.I. Karas’, V.I. Muratov, I.I. Zalyubovskiœ,
S.P. Kononenko, V.E. Novikov, and other colleagues
from KIPT and KSU, investigated nonequilibrium
power-law particle distributions in solid-state plasmas
and developed the principles of their applications for
direct and more efficient nuclear-to-electric energy
conversion. In particular, based on theoretical and
experimental results, they proposed a new secondary-
PLASMA PHYSICS REPORTS      Vol. 26      No. 4      2000
emission radioisotope current source, which has obvi-
ous advantages in comparison with available nuclear
batteries. The creation of a prototype of such a battery
will stimulate the development of prospective future
technologies of fabricating multilayer thin-metal-film
structures.

In recent years, S.S. Moiseev has investigated very
interesting chiral effects, which play an important role,
e.g., in producing new materials with unusual electro-
dynamic characteristics. These studies are related to
another promising area of investigation—the electrody-
namics of bianizotropic media.

Due to Moiseev’s talent for intuiting new, promising
directions in physics, his works have stimulated a num-
ber of new lines of investigations. Many of his results
have been confirmed experimentally and gained world-
wide recognition. Although S.S. Moiseev is a theorist,
he always tries to initiate experimental testing of the
results obtained. He is justly recognized as a classic
researcher in plasma physics. His style of work, kind-
ness, sociability, and striking spiritual power make a
deep impression on those around him. Owing to him,
many of his pupils have achieved great success and
gained wide recognition in the scientific community.

S.S. Moiseev spends a great deal of time and energy
on the development of international collaboration. He
has worked at various renowned science centers, such
as the MHD Research Center of Ben-Gurion University
(Israel) and the Nieuwegein Institute of Plasma Physics
(Netherlands).

For a long time, S.S. Moiseev has been a convener
of one of the sections of the General Assemblies of the
European Geographic Society; he has been a member
of the organizing committees of several large interna-
tional conferences.

Friends, colleagues, and pupils of Semen Samoœlo-
vich Moiseev heartily congratulate him on his seventi-
eth birthday and wish him robust health, happiness, and
further success in his creative work.

R.Z. Sagdeev, A.A. Galeev, V.E. Zakharov,
V.N. Oraevskiœ, V.M. Balebanov, A.M. Dykhne,
V.P. Silin, A.B. Mikhaœlovskiœ, A.A. Rukhadze,

R.A. Kovrazhkin, E.A. Kuznetsov, L.M. Zelenyœ,
O.A. Pokhotelov, Yu.I. Gal’perin,

M.B. Gokhberg, and N.S. Erokhin
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