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Abstract—To excite seismic waves with a high coherence, powerful hydroacoustic radiators placed in a natural
reservoir were used. Theoretical estimates and the test data demonstrate a high efficiency of the proposed
method of seismic wave excitation. The calculations are in good agreement with the results of measurements.
The results of phasing the radiation with the use of two monopole sources separated by a quarter-wave distance
are presented. It is shown that the use of the proposed scheme of excitation makes it possible to control the radi-
ation pattern while obtaining a high coherence of seismic waves. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In an earlier publication [1], the authors proposed
using the powerful hydroacoustic radiator developed at
the Institute of Applied Physics of the Russian Acad-
emy of Sciences [2] as a source of seismic waves.
Owing to the relatively high frequency (about 200 Hz)
and coherence of the radiation produced by such
sources, they can be used for the investigation of near-
surface layers with a high spatial resolution and for the
detection of local inhomogeneities [3].

The cited paper [1] and the report at a Meeting of the
Acoustical Society of America [4] were devoted to the
theoretical evaluation of the efficiency of radiation of
body seismic waves. It was shown that a radiator
mounted in the upper part of a rigid tube filled with
water and buried in the ground can provide a useful
radiation power comparable with the acoustic power
generated in a water medium. However, the suggested
scheme of excitation has pronounced resonance proper-
ties, which leads to the necessity of matching its param-
eters. This causes problems in its practical realization.
In this paper, an alternative scheme of excitation is the-
oretically studied, and the results of its field tests [5, 6]
are compared with the theoretical estimates.

Seismically active regions are of most interest for
seismology. These regions are often located near rivers
and lakes. It is of interest to use these natural reservoirs
for matching a hydroacoustic radiator with the ground.
In this case, for an accurate calculation of the radiation
efficiency, it is necessary to take into account a great
number of details (the bottom profile, the contour of the
shore, and so on), which strongly complicates such cal-
culations. Therefore, it is necessary to use idealizations
simplifying the task. Below, we consider a simple the-
oretical model. Then, in the next section, we compare
1063-7710/02/4802- $22.00 © 0121
the predicted and measured values of the velocity of
vibration of the Earth’s surface, which makes it possi-
ble to evaluate the efficiency of radiation. In the follow-
ing section, the possibility of controlling the radiation
of two phased sources is studied, and the last section
summarizes the main results.

THE BASIC THEORETICAL MODEL

Let us consider the following problem. A monopole
source is located in a layer of liquid. This layer is
bounded by an air halfspace (an acoustically soft
boundary) and by an elastic halfspace. It is necessary to
find the displacements at large distances from the
source and the power of the source radiation.

We combine the axis of symmetry of a cylindrical
coordinate system with the gravity vector passing
through the point where the source is positioned, the
coordinates of this point being (0, –h). We represent the
displacements in the form of scalar (φ, ϕ) and vector
(y) potentials [7]:

(1)

Due to the axial symmetry of the problem, the poten-
tials can be represented as the following integrals (y ×
r = y × z = 0):

(2)

U
∇φ , H– z 0    (liquid layer)≤ ≤
∇ϕ ∇ y, z 0    (ground).>×+




=

φ r z,( ) 1
4π
------ φ̂ κ z,( )H0

1( ) κr( )κ κ ,d

C
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ϕ r z,( ) 1
4π
------ ϕ̂ κ z,( )H0

1( ) κr( )κ κ ,d

C

∫=
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where  is a Hankel function of the first kind of
order j (the time dependence of all quantities is
assumed to be ~exp(–iωt)). The path of integration is
chosen to satisfy the causality principle. The solution
for the potentials is obtained by the method of sewing
together partial domains by using the continuity of the
displacement and stress fields. In the solution obtained,
it is possible to identify the following terms [9]:

(i) body waves with a spherical divergence—the
contribution of the points of stationary phase;

(ii) Rayleigh and Stoneley waves—the contribution
of the poles; and

(iii) one or two lateral waves (for c1 or c2 > c0)—the
contribution of the branch points (c1 and c2 are the
velocities of longitudinal and shear waves in the
ground, and c0 is the sound velocity in the liquid layer).

We will restrict our analysis to the body waves,
because they are of most interest for tomography of the
Earth’s interior.1 

The stationary points are determined by the condi-
tions κ = k1, 2sinθ, where k1 = ω/c1 and k2 = ω/c2 are the
wave numbers of longitudinal and transverse waves in
the ground, the angle θ is counted from the z axis of
symmetry of the coordinate system and corresponds to
the direction of the radius vector from the source to the
point of observation

(3)

where R is the distance from the source. Equations (3)
are valid on the condition that k1, 2R @ 1. The func-
tions E(·) and F(·) determining the spectral amplitudes
of longitudinal and shear waves have the form

(4)

1 If the inverse reaction of radiation to the source characteristics is
of little interest or weak, the near-field analysis is unnecessary.
This is justified when the response is weakly frequency depen-
dent and slight changes in the resonance frequency of the source
do not lead to considerable changes in the characteristics of the
whole radiating system. This situation takes place in many cases
that can be of interest (Figs. 2b, 2c).

ψ r z,( ) 1
4π
------ ψ̂ κ z,( )H1

1( ) κr( )κ κ ,d

C

∫=

H j
1( )

ϕ R θ,( ) i
E γ θsin( )k1 θcos

2πR
---------------------------------------- ik1R( ),exp–=

ψ R θ,( )
F θsin( )k2 θcos

2πR
------------------------------------- ik2R( ),exp–=
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ωk2
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+ im p2 τ2– 1 2τ2–( )2(

+ 4τ2 1 τ2–( ) γ2 τ2–( ) ) y( )cos ] ,

F τ( ) 2i
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----------------------E τ( ),=
where τ = κ/k2, γ = c2/c1, p = c2/c0, m = ρ/ρ0, x =

k2h , and y = k2H .

We point out the following features of Eqs. (4):

1. The radiation of S-waves is absent in the direction

θs = , because F(θ) ~ . This

angle corresponds to a total reflection (without trans-
formation of the type of wave) of the transverse wave
arriving from the domain z > 0. Therefore, it is impos-
sible to excite a shear wave in the solid by a sound wave
propagating in the liquid layer and incident on the
boundary between the two media at the angle corre-
sponding to θs in the elastic halfspace.

2. The important kinematic relations should be
noted:

2.1. If c1 and c2 are greater than c0 (fast waves), the
radiation of P- and S-waves is determined by the rays in
the liquid within a cone with the apex angle  ≤  =

/c1, 2). One can expect that, for c1, 2 > c0, only

a small area bounded by the -rays will be responsible
for the excitation of body waves (Fig. 1). This property
can be used for suppressing a certain type of waves by
using the directivity of the source.

2.2. For water-saturated rock, for which c2/c0 ! 1,
the radiation of S-waves is possible only in a narrow
range of angles θ, and the longitudinal P-waves give the
main contribution to the total power of the body wave
radiation (Fig. 3).

(iii) The denominator of the first of Eqs. (4) deter-
mines the normal modes of the liquid layer

(5)

Solving Eq. (5), it is possible to determine the projec-
tions of the wave vector on the z axis (kz) in the
waveguide formed by the boundaries of the liquid
layer. The following limiting cases can be distin-
guished: m  0 (an acoustically soft boundary, soft
rock) for which kzH = π + πn, n = 0, 1, …, and m  ∞
(a hard boundary, hard rock) for which kzH = π/2 + πn.
As is seen from Eqs. (4), the maximal radiation of P-
and S-waves occurs in the vicinity of the critical fre-
quencies of the waveguide. In the general case, when
0 < m < ∞, the critical frequency of the lowest mode
will be within c0/4H < f < c0/2H.

Now we evaluate the efficiency of excitation of seis-
mic waves. The total power is determined by the
expression

(6)

p2 τ2– p2 τ2–

c2

c1
---- 

 arcsin γ2 θsin
2

–

θ θ*
c0(arcsin
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y( ) γ2 τ2–sin i y( )m p2 τ2– 1 2τ2–( )2(cos+
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W
1
2
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where  is the stress tensor, v  is the particle velocity
in a solid in the wave field, and (·)* denotes complex
conjugation.

By using Eq. (1) with the condition k1R, k2R @ 1, we
obtain

(7)

where W1 and W2 are the powers of compressional and
shear waves, respectively, with the potentials ϕ and ψ
determined by Eqs. (3).

Figures 2a–2c show the dependences of W1 and W2
on the parameter k0H. The values of W1 and W2 are nor-
malized to W0 = ρ0ωk0Q2/8π (the acoustic power of a
monopole source in a boundless liquid). The calcula-
tions were performed for:

(a) granite with the parameters c1 = 5000 m/s, c2 =
2800 m/s, and m = 2.5;

(b) clay with the parameters c1 = 2000 m/s, c2 =
1000 m/s, and m = 2; and

(c) water-saturated loam with the parameters c1 =
1800 m/s, c2 = 200 m/s, and m = 2 [8].

In all cases, we used h/H = 0.5 and the sound veloc-
ity in liquid was assumed to be c0 = 1500 m/s. The ver-
tical dashed lines in Fig. 2a correspond to k0H = π/2, π.

The total power W1 + W2 is less than W0, because
part of the radiation energy is transferred by the Ray-
leigh and Stoneley surface waves and, in addition, a
sound propagation occurs in the liquid layer. Therefore,
the maximums of the total power are reached near the
critical frequencies of the waveguide. With an increase
in frequency, an increasing number of modes is excited
in the liquid layer, and the values of the radiation max-
imums in Fig. 2 decrease.

Thus, the proposed scheme of excitation of seismic
waves by a powerful hydroacoustic radiator seems
attractive, because it is possible to achieve a radiation
level comparable with W0 in the case of high coherence.
Since sharp peaks in the frequency dependence of radi-
ated power Wj are absent for soft rock with c2 < c0, it is
not necessary to adjust the operating frequency. Only
for hard rock, e.g., granite, such an optimization may be
needed. However, in this case, the operating frequency
is determined simply as f = c0/4H.

It should be noted that, for moderate values of k0H,
the radiation pattern also does not have any sharp
peaks, and the maximal level of radiation of longitudi-
nal waves is reached in the direction θ = 0 (Fig. 3). This
property is very important for insonification with the
use of longitudinal waves.

σik

W W1 W2,+=

W1 πρω3 k1 ϕ 2R2 θsin θ,d

0

π/2

∫=

W2 πρω3 k2 ψ 2R2 θsin θ,d

0

π/2

∫=
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ESTIMATION OF RADIATION EFFICIENCY. 
TEST DATA

The experiments were carried out on the bank of the
Trotsa River (Nizhni Novgorod region, Russia). This
minor forest river has a depth of 4–6 m near the bank
(H = 4.5 m, h = 2 m) where the measurements were
made. A detailed description of the measurements and
the equipment can be found in papers [5, 6]. Figure 4
shows the schematic view of the measurements. The
hydroacoustic transducer used in the experiments had
an acoustic power of W0 = 400 W [1, 2].

It was established [6] that the measured vertical
velocity components are determined mainly by the
reflected body waves (the amplitude of displacements
is inversely proportional to the distance). The reflecting
horizon was located at the depth Hb = 30 m and did not
have any essential slope. The analysis of the times of
arrival of radiated pulses as a function of distance

θ*

Elastic halfspace

Radiator

100

10–1

10–2

0 1 2 3 4 5 6
k0H

(‡)

(b)

(c)

W1, 2/W0

100

10–1

10–2

100

10–1

10–2

Fig. 1. Scheme of rays exciting fast seismic waves.

Fig. 2. Dependence of the power of body waves on the
dimensionless frequency. The thick line corresponds to
compressional waves and the thin line corresponds to shear
waves. Additional comments are in the text.
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between the source and the receivers showed that c1 =
1300–1400 and 1800–1950 m/s in the upper layer and
at a depth of more than 30 m, respectively. The analysis
by the SASW method [10] with the use of an additional
shock exciter showed that the velocity of Rayleigh waves
(measured with a good accuracy) was VR = 190 m/s. The
value obtained for VR corresponds to c2 . 200 m/s in the
upper layer.

Additional hydroacoustical measurements were per-
formed for the determination of the bottom parameters.
It was shown that the first waveguide mode was excited.
The increase in pressure near the bottom at a distance of
about 4 m from the source was observed. This allowed us
to estimate the angle of total internal reflection  =θ*

0.2

300 60 90 θ

0.4

0.6

0.8

1.0

V1, 2/V0

Fig. 3. Directivity of the body wave radiation for the fre-
quency used in the measurements (k0H = 4.25). The param-
eters m, c1, and c2 correspond to the data of Fig. 2c. The
thick line corresponds to the angular distribution of the
compressional wave amplitude and the thin line corre-
sponds to the shear wave. The displacements are normalized
to U0 = V0/ω, where V0 = k0Q/4πR is the particle velocity in
a boundless liquid in the field of a monopole source with
strength Q.

012345...

Positions of the sensors
(the points are spaced at 3 m)

S
+
C

A

B

DP
d

Landing stage

Fig. 4. Schematic view of the measurements at the Trotsa
river. The point P is separated from the radiator by 42 m.
/c1) and the velocity of the longitudinal wave
propagation in the bottom c1 . 1700 m/s.

By using the data presented above, we can estimate
the efficiency of radiation. The acoustic power (W0) of
the transducer was 400 W at the operating frequency
f = 226 Hz (the consumed electric power was 700 W
[2]). The volume velocity Q is determined by the
expression

(8)

The liquid particle velocity (see caption to Fig. 3)
equals

(9)

where R =  is the distance between the radia-
tor and the receiver and d = |SP| (the thin line in Fig. 4).

Figure 5 shows the dependence of the normal com-
ponent (Vn) of the vibration velocity of the Earth’s sur-
face on the distance. The points correspond to the mea-
sured values of Vn, and the solid line corresponds to the
computed values. The theoretical dependence was con-
structed in the following way:

(1) The angle of incidence on the boundary (Hb) was
determined as

(10)

(2) By using the data presented in Fig. 3 with |V0|
determined by Eq. (9), we calculated the value of V1(θ).

(3) This quantity was multiplied by the reflection
coefficient |ν|. The reflection coefficient was calculated
for two liquid layers [11] (because of the absence of
reliable data on the velocity of shear waves in a layer

c0(arcsin

Q
1
f
---

2c0W0

πρ0
---------------  . 0.09 m3/s.=

V0
fQ

2c0R
------------

1
R
---

W0

2πρ0c0
-----------------,= =

d2 4H2+

θ d/2Hb( ).arctan=

10

50 100 150 d, m

5

2

1

0.7

20
V, 105 m/s

Fig. 5. Computed and measured amplitudes of the vertical
projection of the velocity of surface vibrations along the
measurement track.
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below the 30-m horizon, it was impossible to make
more accurate calculations):

(11)

where m = ρ(Hb + 0)/ρ(Hb – 0) and n = c1(Hb –
0)/c1(Hb + 0). The quantity ν was calculated for m = 1
and n = 1350/1850.

(4) The value of |V1(θ)ν(θ)| was multiplied by cosθ
to find the normal component of the velocity near the
free surface (Vn).

(5) Since the sensors detect also the waves reflected
from the surface, the value of Vn was doubled. The fac-
tor “2” corresponds to the free boundary provided that
c2 ! c1 (c1 = 1350 m/s, c2 = 200 m/s).

(6) The measurements were performed using a set of
eight sensors connected in phase. Therefore, the value
of Vn should be multiplied by

(12)

where L = 10 m, f = 226 Hz, and c1 = 1350 m/s.
Thus, the solid line in Fig. 5 represents the product

|2V0(θ)ν(θ)S(θ)cosθ|.
As is seen from Fig. 5, a good qualitative agreement

is observed between the calculated and measured data.
The relatively wide scatter of experimental data is
caused, on the one hand, by the superposition of multiply
reflected pulses and, on the other hand, by the possible
variations of the layer parameters (z < Hb and z > Hb)
along the measurement track (a change in the water sat-
uration with increasing distance from the shore and so
on). Thus, the theoretical model proposed in the previous
section adequately describes the observed magnitudes of
displacements, which allows one to reliably evaluate the
power of radiation of P-waves. By using the plot shown
in Fig. 2c, we obtain W1 = 0.4W0 = 160 W.

THE USE OF A SYSTEM OF PHASED 
RADIATORS

We used two radiators of the same type placed at the
same point as in Fig. 4. The positions relative to the
water surface differed in that the radiators were at the
depth H – h = 1.77 m and were separated by 3.7 m in
the direction parallel to the measurement track (Fig. 4).
The receiver of the seismic signal was located at point D
(Fig. 4), at a distance of 120 m from the bank.

The frequency of radiation was f = 226 Hz, and the
pulse duration was T . 44.2 ms (ten periods of the car-
rier frequency). The number of pulses used in the
coherent summation was 50. The phase difference of
the carrier frequency of the radiators was changed at
30° intervals from −180° to +180°. The normalized
coherence function of the received seismic signal and

ν θ( ) m θcos n2 θsin
2

––

m θcos n2 θsin
2

–+
---------------------------------------------------,=

S θ( )
πfL/c1( ) θsin[ ]sin

πfL/c1( ) θsin
---------------------------------------------,=
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the reference signal was more than 99% in the vicinity
of the carrier frequency, which is seen clearly in Fig. 6.
The received signal level as a function of the delay and
phase difference of radiators is represented in Fig. 7.
The calculations were made as follows. We assumed
that the mutual influence of radiators is compensated
and the field generated by each radiator is described by
Eqs. (3). The phase factors exp(ik1R) were brought to
the midpoint of the system of two radiators. The synthe-
sized temporal response was determined as a superpo-
sition of contributions of spectral components with the
amplitudes proportional to expressions (3). The transfer
functions of the radiators were also taken into account
in the calculations. The inclusion of the transfer func-
tions made it possible to describe the observed spread-
ing of the radiated pulses and the absence of a sharp
leading edge of the signal. In constructing the synthe-
sized response, we took into account a single reflection
of a compressional wave from the boundary Hb = 30 m
(see above). The shear waves, converted waves, and
multiple reflections were not considered. The scheme
of calculations differed from the scheme used in con-
structing Fig. 5 only in the replacement of the factor
S(θ) by unity, because, in the measurements with
phased radiators, a compact group of receivers was
used.

One can easily see the qualitative agreement
between the results of measurements and the numerical
modeling. The maximal level of the received signal
observed in the experiment was reached for the phase
difference equal to +90°. Along with the reflected com-
pressional waves, which were taken into account in
constructing the synthesized response, the shear waves,
converted waves, and multiple reflections can also be
observed. Presumably, the longer duration of the
response in Fig. 7a can be determined by these factors.

Figure 8 shows the radiation patterns of the group
of two sources. The unit level corresponds to the in-
phase radiation in the direction θ = 0. One can see that,
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The level of 0.99
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226 Hz

Fig. 6. Coherence of radiation. Averaging was made over
50 pulses of radiation. The dashed lines indicate the fre-
quency band corresponding to 90% of the radiation power
(∆ f = 2/T).
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Fig. 8. Directivity of radiation for various phase relations between the sources in the group (calculation).
varying the phase difference between the sources, it is
possible to control effectively the directivity of the
radiation.

CONCLUSION

The analysis of the scheme of excitation of seismic
waves by a hydroacoustic radiator is performed. The
scheme is convenient for practical applications. Unlike
the previous results [1], the proposed scheme of excita-
tion makes it possible to reach high radiation levels in a
wide frequency range. The maximal efficiency of radi-
ation is reached in the vicinity of the critical frequency
of the lowest mode of the liquid layer. This frequency
changes from k0H = π/2 (a soft bottom) to k0H = π (a
hard bottom) and always can be determined experimen-
tally. For the operating frequency f ~ 100 Hz, the opti-
mal depth of a reservoir is from 3 to 6 m, depending on
the bottom characteristics.

The measured values of the vertical displacements
of the Earth’s surface are in a good agreement with the
results of calculations using the proposed computa-
tional model. This conclusion is important, because the
experiment was carried out near the bank of a real nat-
ural reservoir with a variable depth, while, in the model,
a boundless liquid layer of constant thickness is consid-
ered. The calculated value of the useful power is about
160 W and may be as high as 400 W in the case of the
optimization of the operating frequency (Fig. 2). For
comparison, we note that the Vibroseis seismic exciter,
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
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which develops the force of 20 t, radiates approxi-
mately W1 = 14 W and W2 = 430 W at a frequency of
100 Hz [1]. The hydroacoustic transducer excites
mainly compressional waves (for water-saturated
rock), or compressional and shear waves of approxi-
mately equal powers for hard rock. At present, com-
pressional waves are used in most applications, and the
proposed scheme of excitation is best suited for the
generation of waves of this type. Owing to the stability
of the radiator operation and the constancy of the bot-
tom parameters, it is possible to use long-term storage
and coherent data processing [6].

The high degree of coherence of the radiation pro-
duced by the sources together with the simplicity of the
electronic control of their excitation makes it possible
to create phased sources on their basis with a desired
directivity of radiation.
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Abstract—Factorization of tensor integro-differential wave equations of the acoustics of dispersive viscoelas-
tic anisotropic media is performed for the one-dimensional case. The resulting first-order partial differential
equations include integral tensor functionals of the sound velocities of polarized plane wave pulses. The veloc-
ity operators  are expressed in a coordinate-free compact form. They are determined by the kernels of the
integral representations and provide a general description of the kinematics and dynamics of wave packets for
arbitrary propagation directions in anisotropic viscoelastic media. © 2002 MAIK “Nauka/Interperiodica”.

V̂

In monograph [1], Whitham gave some examples of
the factorization of several nonlinear partial differential
wave equations. The factorization reduces the initial
equations to the first-order equations, which can be
solved by the existing methods of characteristics [2].
Various aspects of the factorization approach were also
discussed in [3–6]. For systems of equations, the factor-
ization is complicated because of the necessity to
include the commutations of their matrix coefficients.
The problem of factorization is still more complicated
in the case of integro-differential equations [7, 8] when
the polarization and dispersion of wave packets are
taken into account. At the moment, the theory of sound
beams and pulses is not sufficiently advanced to sys-
tematically describe their polarization and possible
transformations, especially for spatially bounded plane
and solid sound beams in inhomogeneous anisotropic
complex media [9]. A finite-duration shear disturbance
represented by a set of waves of different frequencies is
characterized by a polarization-dependent velocity and
can, to one or another measure, be transformed to a lon-
gitudinal or quasi-longitudinal wave in the presence of
some inhomogeneities (e.g., interfaces) or external
actions (as in parametric acoustics or electroacoustics).
If the phase velocity of this disturbance depends on fre-
quency, the medium is dispersive, and the velocity of
the disturbance as a whole will differ from the veloci-
ties of its individual wave components. From the infi-
nite set of wave states, only three states are stable (trire-
fringence in crystal acoustics). These states correspond
to the eigenwaves (isonormal wave types). Any other
polarization types that are allowed by the isotropic
medium will be decomposed into eigenwaves when the
wave is transmitted into the anisotropic medium, even
if the propagation direction n remains intact, with the
exception of some special directions n (the acoustic
1063-7710/02/4802- $22.00 © 20128
axes). The sets of eigenwaves are characterized by the
spectra of three-dimensional evolution operators (also
called Caushy operators or propagators) for the wave
equations of crystal acoustics.

One of the methods simplifying the solution of wave
equations consists in reducing the latter to first-order
equations (the factorization method) [1], which can be
solved using the known techniques [2]. In the first-
order scalar equations for nondispersive media consid-
ered in [1, 10], the wave velocity appears as the factor
of the spatial derivative. In the case of a system of equa-
tions, the matrix of the velocities (the velocity tensor)
plays the role of this factor. The tensor dispersion rela-
tions are inherent in acoustic materials regardless of the
complexity of their properties (such as linearity, nonlin-
earity, isotropy, anisotropy, and gyrotropy [11–14]).

Below, we consider polarized disturbances with the
wave normals of all their components being parallel to
a fixed direction n. We perform the factorization of the
one-dimensional tensor differential wave equation that
describes the behavior of such disturbances in linear
anisotropic viscoelastic media. On the basis of the fac-
torization of tensor wave equations, we propose an
operator description of polarized acoustic packets.
Malus was the first to show that nonpolarized light
packets can become polarized at reflection. This fact is
indicative of a limited applicability of the scalar
approach. For acoustics, the importance of this infer-
ence follows from the existence of Brewster’s angles
for shear waves [15]. We consider the evolution tensor
solutions, for which the field at the initial point at the
initial moment is assumed to be given. In so doing, we
simultaneously take into account the variations of the
wave field in the longitudinal and transverse subspaces
in the process of propagation. Below, we show how the
002 MAIK “Nauka/Interperiodica”
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factorization method is used to reduce the second-order
tensor wave equation of crystal acoustics of linear
anisotropic viscoelastic media to a first-order integro-
differential equation. This equation involves the sec-

ond-rank velocity tensor , which is expressed as a
function of the elasticity tensor, the viscosity tensor,
and the wave normal vector n. From our consideration,

it follows that the velocity tensor  is simply a mathe-
matical consequence of the Christoffel equations [16].

Consider the factorization of the wave equation of
acoustics of viscoelastic anisotropic media.

The equations of motion of an elastic medium have
the form [16]

where u(r, t) = (ui(r, t)) is the displacement vector of
points of the medium as a function of the radius vector
of the observation point r and time t, σik is the stress
tensor, and ρ is the density of the medium. Summation
is performed over repetitive indices from 1 to 3. Below,
we consider anisotropic viscoelastic media with mem-
ory, for which the Hooke law can be written in the inte-
gral form:

where ciklm is the elasticity tensor characterizing the
instantaneous response of the medium to an external

action,  is the integral operator describing the
aftereffect of the medium, Ciklm(t – t ′) is the kernel of
this operator, and γlm is the strain tensor. Note that, by
virtue of causality, Ciklm(t – t ′) = 0 for negative argu-
ments t – t′. Taking into account that the strain tensor
γlm(r, t) can be expressed through the displacements
ui(r, t) as γlm = (∂ul/∂xm + ∂um/∂xl)/2 and using the sym-
metry of the tensors ciklm and Ciklm with respect to the
permutation of the second and fourth indices, we obtain

(1)

Let a wave packet propagate in the direction speci-
fied by the unit vector n. Introducing the coordinate ζ =
nr along this direction and replacing the spatial deriva-

V̂

V̂

ρ
∂2ui r t,( )

∂t2
----------------------

∂σik r t,( )
∂xk

----------------------,=

σik ciklmγlm Ĉiklmγlm+=

=  ciklmγlm r t,( ) t ′Ciklm t t ′–( )γlm r t ′,( ),d

∞–

t

∫+

Ĉiklm

ρ
∂2ui r t,( )

∂t2
---------------------- ciklm

∂2um r t,( )
∂xk∂xl

-----------------------=

+ t ′Ciklm t t ′–( )
∂2um r t ′,( )

∂xk∂xl

-------------------------.d

∞–

t

∫
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tives ∂/∂xk by nk∂/∂ζ, we represent Eq. (1) in the index-
free form

(2)

where the second-rank tensors Λ and Φ are determined
according to the formulas

(3)

To factorize the wave equation (2) of the acoustics of
viscoelastic anisotropic media, we represent the vector
field of the displacements of points of the medium
u(ζ, t) in the form of the Fourier expansion

(4)

and substitute Eqs. (4) in Eq. (2):

(5)

Introducing the tensor Φ(ω) (the Fourier transform of
the kernel Φ(t))

(6)

and equating the expression in braces in Eq. (5) to zero,
we obtain

Then, we have

(7)

where  is the square root of the operator Λ +
Φ(ω) (about taking the root of operators, see, e.g.,
[17]). The tensor differential operators appearing in

∂2u ζ t,( )
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ρ
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square brackets in Eqs. (7) are commuting, which
allows us to change from Eqs. (7) to the first-order dif-
ferential equations for the vector field of displacements
u(ζ, ω):

(8)

Now, we multiply Eq. (8) by e–iωt/(2π), integrate with
respect to ω from –∞ to +∞, and use transformations (4)
to change from the Fourier transform u(ζ, ω) to u(ζ, t).
As a result, we obtain the first-order tensor integro-dif-
ferential equation in u(ζ, t):

(9)

or

(10)

where the kernel V(t) of the integral operator  is given
by the formula

(11)

The operator  has the dimension of velocity, and we
will call it the operator of phase velocities of elastic
waves in viscoelastic media. The tensor nature of this
operator follows from the anisotropy of the medium,
and its integral nature is caused by the dispersion of
waves, which is a consequence of the viscosity of the
medium. Only when the viscosity vanishes, Eqs. (10)
become local:

(12)

From Eq. (6), it follows that the kernel Φ(t) is
related to the Fourier transform Φ(ω) by the formula

Since Φ(t) = 0 for negative t (due to causality), the ten-
sor function Φ(ω) has a regular analytic continuation to
the upper half-plane of the complex plane ω [18]. The
poles of the function Φ(ω) always lie in the lower half-
plane of the ω plane. The kernel Φ(t) appearing in
Eq. (2) has the meaning of a response function. The
general properties of the response functions, including
those following from the causality requirements, were
discussed in detail in the literature [19].

–iωu ζ ω,( ) Λ Φ ω( )+
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V̂
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∂ζ

-------------------± 0.=

Φ t( ) 1
2π
------ ωe iωt– Φ ω( ).d

∞–

∞

∫=
The wave equation of crystal acoustics, Eq. (2), gen-
eralizes the scalar equation

(13)

which is encountered in different fields of physics [1].
Obvious complications in Eq. (2) are caused by the vis-
coelasticity of the medium and by the fact that different
components of the displacement vector u are mutually
related even in the boundary conditions, the tensor
nature of Eq. (2) being essentially caused by polariza-
tion of the elastic waves.

It is obvious that Eq. (2) cannot be reduced to Eq. (13)
in the case of isotropic nonviscous media as well; i.e.,
it has a tensor (nonscalar) structure even for isotropic
media. We generalize the velocities of elastic waves to
tensor quantities for reasons related to the contents of
the known monographs by Whitham [1] and Lighthill
[20], in which the problem on the velocities (especially,
the group velocities) of linear and nonlinear waves of
different nature occupies one of the most important
places. The group velocity is used for constructing
mathematical models of nonlinear equations for differ-
ent complicated cases of anisotropic nonlinear disper-
sive media. Whitham (see Ch. 5 in monograph [1]) clas-
sified wave systems on the basis of linear, quasi-linear,
and nonlinear first-order equations, as well as systems
of such equations. The factorization of Eq. (13) leads to
the equations

(14)

whose solutions are

(15)

where f and g are arbitrary functions. It is Eq. (14)
rather than Eq. (13) that forms the basis for construct-
ing nonlinear model equations, the simplest of which
has the form

(16)

where the propagation velocity v (ϕ) is a function of the
local disturbance ϕ. Equation (16) is called the quasi-
linear equation, because it is nonlinear in ϕ, but linear
in the derivatives ϕt and ϕx. A general-form nonlinear
equation in the function ϕ(x, t) allows an arbitrary func-
tional relationship between ϕ, ϕt, and ϕx. The key to
solving equations like Eq. (16) is the method of charac-
teristics in the (x, t) plane. Along every characteristic, a
partial differential equation is reduced to an ordinary
differential equation. In certain cases, this fact offers an
analytical solution; in other cases, the partial differen-
tial equation is reduced to a system of ordinary differ-
ential equations that can be solved using the procedures
of step-by-step numerical integration [1].

ϕ tt v 2ϕ xx– 0,=

ϕ t v ϕ x± 0,=

ϕ+ f x v t–( ), ϕ– g x v t+( ),= =

ϕ t v ϕ( )ϕ x+ 0,=
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For nonviscous anisotropic elastic media, the evolu-
tion of the vector field of displacements u in space and
time is described by the formulas

(17)

which are the solutions to Eqs. (12). Here, u0± are the
displacement vectors at the initial point ζ0 at the initial
moment t0 and the functions F and G are arbitrary func-

tions of the tensor arguments ζ – t  and ζ + t ,
which are linear functions of ζ and t. Evolution solu-
tions (17) generalize the d’Alambert solutions (15).
Solutions (17) are the evolution ones, because they
imply that the operator-valued functions F and G are
matrix-type operators (second-rank tensors) acting on
the initial vectors u0±, which are assumed to be given.
Each of solutions (17) corresponds to stable (retaining
their envelope) polarized plane wave packets propagat-
ing along the ζ axis in either positive or negative direc-
tion.

In what follows, we apply the above factorization
method to the wave equation with an exponential kernel
Ciklm(t) for a viscoelastic isotropic medium.

In an isotropic medium, the elasticity tensor has the
form [16]

where δik is the Kronecker delta, c11 = c1111, and c44 =
c2323. We assume that the response of the medium is
described by an exponential function. The tensor
Ciklm(t) is symmetric with respect to permutations of the
indices i, k and l, m and pairs of indices ik and lm. In the
case under consideration, this tensor has the general
form

where t1 and t2 are the relaxation times and θ(t) is the
Heaviside step function (θ(t) = 1 for t > 0 and θ(t) = 0
for t ≤ 0). To simplify the calculations, we assume that
the relaxation times are equal: t1 = t2 ≡ t0. In this case,
the tensors Λ and Φ(t) given by Eqs. (3) take the form

(18)

Here, a1 = c11/ρ, a2 = c44/ρ, b1 = C11/ρ, b2 = C44/ρ, and
τ1 and τ2 are the projective tensors (operators)

where n ⊗ n is the dyad (the direct product of vectors),
n× is the tensor dual with the vector n [16], and 1 is the
unit tensor. The tensors τ1 and τ2 satisfy the conditions

(19)

u+ ζ t,( ) F ζ t Λ–( )u0+,=

u– ζ t,( ) G ζ t Λ+( )u0–,=

Λ Λ

ciklm c11 2c44–( )δikδlm c44 δilδkm δimδkl+( ),+=
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t /t1–

δikδlm[=

+ C44e
t /t2–

δilδkm δimδkl+( ) ]θ t( ),

Λ a jτ j, Φ t( )
j 1=

2

∑ b jτ je
t /t0–

θ t( ).
j 1=

2

∑= =

τ1 n n, τ2⊗ 1 n n⊗– n×2,–= = =

τ1
2 τ1, τ2

2 τ2, τ1τ2 τ2τ1 0.= = = =
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According to relationship (6), the Fourier transform
of the kernel Φ(t) is

The function Φ(ω) has the pole ω = –i/t0 in the lower
half-plane of the complex ω plane.

Using Eq. (11), we determine the kernel V(t) of the

phase velocity integral operator . In view of proper-
ties (19) of the projective tensors τ1 and τ2, the square
root of the tensor Λ + Φ(ω) is

To calculate integral (11), we expand the integrand in
the series

where n!! =1 × 3 × 5 × … × n and (–1)!! ≡ 1. Closing
the integration path by the semicircle of infinite radius
in the lower half-plane of the complex plane ω for t > 0
and in the upper half-plane for t < 0, we obtain

In addition, it is known that

where δ(t) is the Dirac delta function. Then, the kernel
V(t) of the phase velocity operator is given by the for-
mula

and the factorized equation (9) takes the form

(20)
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In the case of an isotropic medium with a small viscos-
ity (bjt0/aj ! 1, j = 1, 2), we can neglect all terms of the
series expansion in n in Eq. (20) except for the first
term. As a result, we obtain the integro-differential
equation

(21)

For nonviscous media, Eqs. (20) and (21) are reduced
to Eq. (12) with tensor Λ given by Eq. (18).

In Eqs. (20) and (21), the projective operators τ1 and
τ2 take into account the variations of the propagating
wave field in the longitudinal and transverse subspaces;
the operator τ2 can be represented as τ2 = e1 ⊗ e1 + e2 ⊗
e2, where e1 and e2 are arbitrary, mutually perpendicu-
lar, unit vectors in the plane of the wave front. In the
case of an anisotropic viscoelastic medium, the phase

velocity operator  is represented as the expansion in
three projective operators of the eigenwaves with a unit
trace (see, e.g., [12]).

In conclusion, we note that modern acoustics brings
into existence the problem of a high-precision descrip-
tion of tensor acoustic fields in space and time, as well
as the determination and quantitative evaluation of the
role of polarization in the focusing, transformation, and
filtering of sound beams. The velocity tensors given by
Eqs. (9)–(11) allow one to progress toward the tensor
Fourier acoustics of wave beams in dispersive and vis-
coelastic anisotropic media. The initial scalarization of
the problem on the ultrasonic propagation may lead to
wrong results because of the possible transformations
of longitudinal waves into transverse waves and vice
versa and because of the existence of the Brewster
angles [15]. In the actual propagation conditions, the
beam of nonpolarized shear waves can become polar-
ized, thus acquiring new physical properties that were
neglected at the beginning. This fact and other circum-
stances should stimulate researchers to use the method
of phase and velocity tensors, which are a direct conse-
quence of the fundamental tensor equations of motion
(Christoffel’s equations).

The factorization of tensor wave equations opens
the way to an extension of mathematical physics by the
introduction of nonlinear tensor equations, which take
into account the fact that a system can have spin
degrees of freedom and generalize the known scalar
equations (such as the Korteweg–de Vries and the Due-
ffing equations). The derivation of the velocity tensors
and their application to some nonlinear dynamic sys-
tems will be the subject of a separate paper.
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Abstract—An active acoustic technique for monitoring the whales is proposed. The technique allows one
to monitor the whales’ crossing of a conventional borderline extending for several tens of kilometers in a
shallow-water area. The potentialities of the technique are demonstrated in the framework of a numerical
experiment by solving the problem of diffraction by model scatterers in an acoustic waveguide. The scat-
terers are selected in the form of soft spheroids with dimensions characteristic of various kinds of cetaceans.
© 2002 MAIK “Nauka/Interperiodica”.
The necessity of remotely monitoring the migration
of cetaceans arose in connection with the sharp
decrease in the population of these large marine mam-
mals in recent years (see, e.g., [1]). This problem is
especially important for shallow-water regions at the
sea shelf, where the existence of cetaceans is threatened
by industrial activities. This paper proposes an active
acoustic technique for monitoring cetaceans by way of
monitoring their crossing a certain conventional bor-
derline extending for several tens of kilometers through
a shallow-water region. From the point of view of phys-
ical acoustics, such a monitoring implied the detection
of the sound field perturbations caused by the diffrac-
tion of sound waves by the body of an animal that
crosses a stationary acoustic track between a stationary
sound source and a receiver. To demonstrate the feasi-
bility of this technique, we present the results of a
numerical experiment in the framework of which we
solve the problem of the diffraction by spherical bodies
in an oceanic-type waveguide. The dimensions of these
bodies and their acoustic parameters (the sound veloc-
ity and the density) are close to the dimensions and
parameters of various species of cetaceans [2, 3]. We
note that the methods of solving the diffraction prob-
lems in a waveguide are well known (see, e.g., [4]).
However, the existing results refer to perfectly rigid
bodies of revolution or opaque screens, whereas in this
paper, we consider a soft spheroid with the parameters
close to the parameters of the medium in the
waveguide (the seawater).

The scheme of the numerical experiment is shown
in Fig. 1. It is assumed that a point source of sound with
the radiation power W0 = 500 W is located at the bottom
of a waveguide with the constant depth H = 40 m, den-
1063-7710/02/4802- $22.00 © 0133
sity ρ = 1 g/cm3, and sound velocity c = 1480 m/s. The
source emits a continuous tone signal at the frequency
f = 300 Hz. The reception is performed by a vertical
chain of three receivers positioned at a distance of 10 km
from the source. The receiver depths are 5, 20, and 40 m.
The waveguide is bounded from above by a free surface
and from below, by an absorbing liquid bottom. The
bottom parameters are as follows: the sound velocity
c1 = 1780 m/s; the density ρ1 = 1.8 g/cm3; and the wave

number k1 = (1 + i ), where α = 0.015. The sound

field perturbations ∆P produced by a soft spheroid
crossing a stationary acoustic track at various angles 
were simulated. The intersection point was located in
the middle between the sound source and the receiver.
[We note that, in this case, the perturbations of the
sound field are on the average minimal, and they
increase when the intersection point moves closer to the
source or to the receiver (for more details see [5]).] The
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Fig. 1. Scheme of the numerical experiment. Letters E, R,
and S indicate the positions of the source, the receiver, and
the scatterer, respectively.
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spheroid dimensions and its acoustic parameters were
selected as follows:

(a) the large axis L = 25 m and the small axis D = 3 m
[typical dimensions of blue whales (Balaenoptera mus-
culus)];

(b) L = 10 m and D = 3 m [gray whales (Eschrich-
tius) and small rorquals (B. acuto-rostrata)];

(c) L = 5 m and D = 1.2 m [white and killer whales
(Delphinapterus leucas and Orcinus orca)].

The sound velocity in a spheroid is cs = 1540 m/s,
the spheroid density is ρs = 1.05 g/cm3, and the submer-
sion depth is zs = 20 m.

A mode description of the acoustic field was used to
calculate the perturbations in a model waveguide. In
this case, the sound pressure P0 produced at the recep-
tion point with the coordinates (r, z) in the cylindrical
coordinate system by a sound source located at the
point (0, z0) can be written in the form

(1)

Here, ψm(z) and ξm are the eigenfunctions and eigen-
values of the Sturm–Liouville boundary-value problem

(ξm = qm + iγm/2), r ≡ |r|, A = , and W0 is the
source power. In the presence of a scattering body, the
complex amplitude of the sound field P at the reception
point was represented as a sum of the direct P0 and scat-
tered Ps fields: P = P0 + Ps. The sound field perturba-
tions were calculated by the formula

(2)

To determine the scattered field, we used the approach
[5, 6] based on the representation of the scattering
matrix of the waveguide modes with the help of the
scattering amplitude of the body in a free space:

(3)

Here, (rs, zs) are the coordinates of the scatterer posi-
tion, rs ≡ |rs|, and Sµm is the scattering matrix

(4)

where  = , σm = ,

k is the wave number, F( , ) is the scattering
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amplitude of the body, and  and  are the wave
vectors of the incident with the index m and scattered
with the index µ waves corresponding to the waveguide
modes.

The scattering amplitude is expressed through the
angles θ and ϕ in a spherical coordinate system con-
nected with the scatterer, and these angles determine
the directions of the wave vectors of the incident and

scattered plane waves, F( , ) ≡ F( , , ,

). In the case of the selected geometry of the numer-
ical experiment (see Fig. 1), these angles are

(5)

where β1, 2 are the azimuth angles determining the posi-
tion of a scatterer with respect to the source and the
receiver (Fig. 1). According to the formulas [7] for the
selected model scatterer (a soft spheroid), the scattering
amplitude can be written in the form

(6)

where εn =  is the Neumann symbol; Snl,

, and  are the angular and radial prolate sphe-
roidal functions of the first and third kinds (the primes
marking the symbols of the radial functions means the

derivatives with respect to ϑ); χs =  (ks =

2πf/cs), ms = ρs/ρ, χ = (k/2) ; and ϑ  =

L/ . The asymptotic formulas for spheroidal
functions and the technique for calculating them
numerically are given in [8].

The results of the numerical experiment for the
velocity of a model scatterer v s = 1 m/s are shown in
Fig. 2. The moment t = 0 corresponds to the situation
when a scatterer crosses the stationary acoustic track.
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As one can see from the figures, the motion of a soft
spheroid causes small characteristic perturbations of
the acoustic field at the reception point. It is natural that
the perturbation magnitude depends on the scatterer
size. However this dependence is complex because of
interference. We note that, in the general case, these
perturbations are asymmetric with respect to the
moment t = 0 when the stationary track is crossed at an
arbitrary angle. The symmetry takes place when the
track is crossed at a right angle or when a scatterer
crosses the track exactly in the middle, while moving at
an arbitrary angle, and the perturbations are detected at
the same depth as the depth of the sound source (z = z0).
(See [9] for more details.)

In the actual conditions of a shallow sea, these per-
turbations can be concealed because of their smallness
by the sound field fluctuations due to the ambient noise.
Indeed, the inclusion of this noise with a typical radia-
tion level of ≅ 80 dB (in a frequency band of 1 Hz) in
the described numerical experiment makes these per-
turbations visually indistinguishable. (See the middle
series of plots in Fig. 2.) In such a situation, it is neces-
sary to use special methods of signal processing to
detect the fact of crossing the stationary track. An
example of the application of one such method [10],
which is based on matched filtering of the indicated
perturbations with subsequent storage for all receivers
used in the numerical experiment, is given in Fig. 2. It
is necessary to note that we used matched quasi-opti-
mal filters for signals with an unknown initial phase.
We also used the calculated perturbations shown in
Fig. 2 (the upper series of plots) as reference signals. As
one can see from Fig. 2 (the lower series of plots), the
utilization of special methods of signal processing pro-
vides an opportunity to detect the moment of crossing
the stationary track even by the smallest cetaceans
(white and killer whales).

In conclusion, we note that the results obtained in
this study demonstrate a possibility for designing the
acoustic monitoring systems for various-size cetaceans
with the use of relatively low-intensity and, therefore,
ecologically safe sound sources. This is essential,
because the acoustic characteristics of the bodies of
these animals are close to the parameters of seawater
and, therefore, their acoustic scattering cross-section is
small. On the other hand, the required small radiation
intensity provides an opportunity to design autono-
mous, long-lived, and relatively cheap sourses. Cer-
tainly, the possibility of detecting the signals scattered
by cetaceans depends not only on the level of the ambi-
ent sea noise but also on the fluctuations of the “direct”
signal detected by the receiver. These fluctuations are
caused by the hydrodynamic variability of the water
medium (internal and surface waves). However, these
fluctuations, as well as the scattered signals, are directly
proportional to the amplitude of emitted signals. The
possibility of detecting the scattered signals against
their background does not depend on the radiation
intensity. We should also note that the hydrodynamic
variability of the medium and, first of all, the field of
internal waves have a considerable spatial anisotropy
and pronounced geographic features, i.e., it depends on
the vertical profile of the medium density, the bottom
relief, and the amplitude of the tidal wave. [For exam-
ple, in the absence of horizontal stratification, internal
waves are completely absent (just this case was ana-
lyzed in the numerical experiment).] In this connection,
a detailed analysis of the prospects of an acoustic mon-
itoring in a specific region of a shallow sea must be con-
ducted with allowance for the possible fluctuations of
the “direct” signal and the acoustic noise, and both
interfering factors included in the analysis must be typ-
ical of this region.
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Abstract—The structure of the displacements in a Rayleigh-type wave that propagates in an isotropic solid
covered with a liquid layer with exponentially varying density and sound velocity is investigated. © 2002 MAIK
“Nauka/Interperiodica”.
An inhomogeneous layer on the surface of a solid is
widely encountered in practice. The layers formed on
the surface of a metal in the processes of rolling and
cold-work hardening are inhomogeneous [1]. On the
surface of a solid exposed to the vapor of its solvent, a
layer with inhomogeneous physical properties is
formed due to sorption processes and dissolution [2].
Similar processes take place in gas sensors whose sens-
ing element is a sorbent film deposited on a solid sub-
strate [3]. Layers with vertical gradients of sound
velocity exist in sea and ocean waters. In this case, the
stratification of the sound velocity essentially affects
the structure of the sound field generated by a point
source [4–7], as well as the propagation of normal
waves in the underwater sound channel [8–11]. In all
cases, the inhomogeneity of a layer on the surface of a
solid affects the characteristics of surface acoustic
waves (SAW). This provides the possibility of obtain-
ing the information on the gradients of the layer param-
eters from acoustic measurements [12].

However, in determining the parameters of a strati-
fied layer, it is not sufficient to measure the phase and
group velocities of SAW, because these quantities
depend on the layer thickness, the laws governing the
variations of the layer parameters (which, as a rule, are
unknown), and the values of these parameters at one of
the layer boundaries. In the simplest case of a liquid
layer with a linear distribution of its parameters, it is
necessary to determine five quantities: the thickness,
the density, and the sound velocity at the layer bound-
ary and two coefficients characterizing the stratification
of these parameters. In this connection, for an unambig-
uous determination of the structure of the inhomoge-
neous layer, it is necessary either to measure the SAW
velocities at several frequencies or to investigate the
distribution of the displacement amplitudes in the layer
by an optical probe [13]; then, solving the inverse prob-
lem, one can determine the layer parameters and their
gradients. Therefore, the problem of the effect of the
1063-7710/02/4802- $22.00 © 20137
layer inhomogeneity on the particle displacements in
the layer is urgent. The data on the distribution of the
displacement amplitudes in depth are also needed, e.g.,
for calculating the integral of the Rayleigh wave energy
flux over depth and for solving the problems on the
excitation of Rayleigh and Stoneley–Scholte waves at
the interface or on the Rayleigh wave scattering by sur-
face and subsurface defects.

The problem on the distribution of the particle dis-
placements in a SAW field for the case of a homoge-
neous layer overlying an elastic halfspace is considered
in many papers, the main results of which are general-
ized in monographs [14, 15]. It is shown that the pres-
ence of a solid or liquid layer on the surface of an elastic
halfspace leads to changes in the phase velocity and in
the distribution of the amplitudes of particle displace-
ments. For the case of a homogeneous liquid layer, the
dispersion equation and the expressions for the dis-
placement components in a Rayleigh-type wave (RTW)
are given in [14]. It is shown that the displacement com-
ponents vary in the layer by the cosine law, whereas, in
the halfspace, they vary in the same way as in a Ray-
leigh wave, but the depth of the wave localization in the
halfspace decreases with an increase in the layer thick-
ness. The profiles of the amplitudes of the displacement
components in a homogeneous solid layer and in a half-
space are presented in [15] for SAW with vertical and
horizontal polarizations, for layers of various thickness.
The case of a stratified layer can be theoretically inves-
tigated only for some specific laws of the parameter dis-
tribution, for which the wave equation of the inhomo-
geneous medium has analytical solutions [16]. The dis-
persion equations of SAW for some specific laws of the
layer parameter variations are obtained in papers [12,
17, 18], and the effect of the layer inhomogeneity on the
distribution of the particle displacements was not con-
sidered. The objective of this paper is to study the effect
of the stratification of the layer parameters on the dis-
tribution of the displacement components in RTW.
002 MAIK “Nauka/Interperiodica”
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A stratified layer is supposed to be liquid with the
density and sound velocity varying with depth accord-
ing to the laws

(1)

and the halfspace is supposed to be isotropic (Fig. 1).
Let an RTW propagate in the positive direction along
the x axis, the liquid layer occupying the domain –h <
z < 0, and the halfspace occupying the domain z > 0.
Then, in the case of a harmonic dependence on x and t
for α ≠ 0 and β ≠ 0, the expression for the sound pres-
sure in the liquid has the form [18]

(2)

where Jν(Y) and Nν(Y) are the Bessel and Neumann
functions, C1 and C2 are arbitrary constants, and

Y = exp(–βz), k0 = . (3)

The corresponding dispersion equation [18] relating the
wave number k of the RTW to the layer thickness h can
be written as

(4)

where

(5)

(6)

q = , s = , ρ and ρ0 are the densities of
the halfspace material and the liquid at the liquid–half-
space boundary, and kl and kt are the wave numbers of
longitudinal and shear waves in the isotropic medium.
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Fig. 1. Halfspace with a layer.
The horizontal and vertical displacement compo-
nents in the liquid are determined by the expressions
[19]

(7)

respectively. Substituting Eq. (2) into Eqs. (7) and tak-
ing into account the relations between the arbitrary con-
stants from [18], we perform some transformations to
obtain

(8)

(9)

where

(10)

(11)

These expressions cannot be analyzed in analytical
form. Therefore, their analysis was performed on the
basis of the numerical calculations with the use of the
following relations between the parameters of the solid

and the layer:  = 2.5;  = 1/3;  = 1/27; and  =

 = 1/6. The chosen value of α corresponds to a

change in the layer parameters by about a factor of
three at the distance λ0 (λ0 is the wavelength in the liq-
uid layer at the halfspace boundary). The dependences
of the amplitudes of the vertical Wz0 and horizontal Wx0
displacement components in the layer and the halfspace
on the z coordinate for various values of the layer thick-
ness were calculated. For the layer, we used the ampli-
tudes given by Eqs. (8) and (9) and for the halfspace,
the relations derived in [14]

(12)

(13)

where the wave number k is determined from the dis-
persion equation (4).

For the comparison between the amplitudes of dis-
placements with and without the layer, we introduced the
relative amplitudes:  = Wx 0/Uz0R,  = Ux0/Uz0R,
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The vertical coordinate and the layer thickness were
also expressed in relative units: z/λ0 and h/λ0. For com-
parison, we plotted the displacement profiles for the
case of a homogeneous layer (α = β = 0) with the den-
sity ρ0 and the sound velocity c0. The corresponding
expressions for the displacement amplitudes take the
form [14]
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where g = .

Figure 2 shows the dependences of the relative
amplitudes of the vertical displacement components in
the layer  and in the halfspace  on the relative
coordinate z/λ0 for different values of the relative layer
thickness h/λ0. The profiles of the displacement ampli-
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tudes for greater layer thickness are not presented,
because, in this case, according to Eqs. (1), the param-
eters of the liquid at the free layer boundary, reach val-
ues that are noncharacteristic for the liquid.

It is seen that, in the first normal wave (curves 1–3),
 increases for α > 0 (curve 2), as compared to the

homogeneous layer (curve 1), and decreases for α < 0
(curve 3). This behavior of the amplitudes is caused by
a change in the wave resistance (ρc) of the layer: for
α > 0, the wave resistance decreases in the direction of
the free boundary of the layer, which leads to an
increase in the amplitude, as compared to a homoge-
neous layer. In the case of α < 0, an increase in ρc and
a decrease in the amplitude takes place. Within the
layer, the difference in the run of curves 1–3 increases
as the free layer boundary is approached and reaches
the maximal value (–h) at this boundary. The com-
parison of Figs. 2a–2d shows that, with the increase in
the layer thickness, the value of (–h) increases, as
compared to a homogeneous layer for α > 0 and
decreases for α < 0, and further remains constant (Fig. 3).
From Figs. 2a–2d, it is also seen that, for α > 0, the
wave energy concentrates near the free boundary of the
layer: at h/λ0 = 0.5 (Fig. 2d, curve 2),  is close to
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zero in the region 0.15 < z/λ0 < 0 and then rises sharply.
This testifies to the fact that the inhomogeneity leads to
a redistribution of the wave energy within the layer.

For h/λ0 ≥ 0.3, a second normal wave exists. Its dis-

placement amplitudes  are also shown in Figs. 2b–2dWz0
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Fig. 3. Dependence of the relative amplitude (–h) at
the free layer boundary on the relative thickness h/λ0 for the
cases (1) α = 0, (2) α > 0, and (3) α < 0.
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for α = 0 (curve 4), α > 0 (curve 5), and α < 0 (curve 6).
Near the point of origination of this wave (Fig. 2b) in
the case α > 0, the displacement amplitudes in the layer
are smaller than in the first normal wave, whereas, in
half-space, they are greater. This character of displace-
ments in the second normal wave results from the fact
that the phase velocity of this wave lies between the
velocities of the shear and Rayleigh waves in the elastic
halfspace; i.e., the wave is close to a bulk wave and has
a greater localization depth in the halfspace. Since, in
this case, the effect of the layer on the propagation of
SAW is weak, the inhomogeneity affects the value of

 to a lesser extent (the difference in the run of
curves 4–6 is smaller than that of curves 1–3).

As is seen from Fig. 4, the horizontal displacement
components Wx0 and Ux0 vary, depending on the layer
thickness and the sign of the parameter gradients, in the
same way as the corresponding vertical components.
The main difference is the zero value of Wx0 at the free
layer boundary and its discontinuity at the layer–halfs-
pace boundary, which is determined by the boundary
conditions and occurs for both a homogeneous and an
inhomogeneous layer.
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Fig. 4. Dependences of the relative amplitudes in the layer, , and in the halfspace, , on the relative coordinate z/λ0 for
various values of the layer thickness for the cases (1, 4) α = 0, (2, 5) α > 0, and (3, 6) α < 0.
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As indicated by Figs. 2 and 4, the amplitudes 

and  of the displacement components in the half-
space vary insignificantly due to the stratification of the
layer. This results from the fact that the parameters of
the liquid at the halfspace boundary have the same val-
ues in all cases considered above. The corresponding
changes grow with the increase in the layer thickness
and reach 20% for h/λ0 = 0.5 in the plane z = 0. Conse-
quently, the inhomogeneity of the layer leads to a redis-
tribution of energy between the layer and the substrate.
For α > 0, the displacement components Ux and Uz

decrease, as compared to a homogeneous layer (the
energy is transferred from the substrate to the layer),
and for α < 0, these components increase (the energy is
transferred from the layer to the substrate). The layer
inhomogeneity practically does not affect the depth of
the wave penetration into the substrate. 

Thus, the inhomogeneity of a layer on the surface of
a solid essentially affects the amplitudes of the compo-
nents of particle displacements in an RTW. A redistri-
bution of the wave energy takes place between the layer
and the substrate, as well as within the layer, and this
redistribution depends on the layer thickness and the
magnitude and sign of the gradients of the layer param-
eters. By changing the layer thickness and the degree of
its inhomogeneity, it is possible to control the velocity
and the structure of surface waves. This result can find
application in acoustoelectronic signal processors.
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Abstract—Experimental data on the long-range propagation of explosion-generated sound signals in the shal-
low-water northern part of the Sea of Okhotsk are analyzed. The propagation conditions in this region are char-
acterized by a fully-developed underwater sound channel that captures the rays crossing the channel axis at
angles lower than 3°. The experimental data reveal a small increase in the duration of the sound signal in pro-
portion to the range with the proportionality factor lower than 0.00025 s/km. The frequency dependence of
attenuation exhibits a pronounced minimum whose position on the frequency axis is close to the critical fre-
quency of the first “water” mode (about 160 Hz). The increase in the attenuation coefficient at lower frequencies
is confirmed by the field calculations performed with the wave-field computer code and is explained by the
sound energy loss in the bottom sediments. At frequencies higher than 200 Hz, as in the Baltic Sea, the most
probable reason for the attenuation to exceed the absorption in sea water is sound scattering by internal waves.
© 2002 MAIK “Nauka/Interperiodica”.
For years, the researchers of the Acoustics Institute
have repeatedly studied long-range propagation of
explosion-generated sound signals in the underwater
sound channel (USC) of the Sea of Okhotsk. The exper-
iments were carried out in both deep-water [1] and shal-
low-water (125–155 m) parts of the sea.

For the Sea of Okhotsk, a significant spatial variabil-
ity of the oceanographic parameters is characteristic [2,
3]. The northern and north western parts of the sea are
represented by shallow-water areas. The central part
(about 70% of the total sea area) has typical depths of
800–1200 m. On the south, the Kuril Hollow is situated
with sea depths of 3300–3400 m.

The bottom sediments of the Sea of Okhotsk are of a
terrigenic nature. For the region of the experiment in the
northern shallow-water part of the sea, aleurite diatoma-
ceous clays and diatomaceous silts are typical [4].

The waters of the Sea of Okhotsk undergo a
cyclonic circulation. Through the northern straits of the
Kurile Island system, warm surface waters of the
Pacific Ocean arrive, changing their properties as they
pass into the interior areas of the sea. Through the
southern straits, cold waters move from the sea to the
ocean. The Tsushima current introduces warm salt
waters through the La Perouse Strait.

Several stratification types of water masses can be
distinguished in the northern part of the Sea of
Okhotsk. The surface waters (the 30–60-m layer) are
cooled in winter down to the temperature of freezing.
In summer, the near-surface layer is heated up to 6–10°ë,
and, under the mixed layer, an undersurface water
mass forms. In its core, the minimal temperature
1063-7710/02/4802- $22.00 © 20142
reaches –1.7 to –1.5°C. Near the bottom (at a sea
depth of about 150 m), the temperature also remains
negative (–1.4 to –1.6°C).

The experimental studies of long-range sound prop-
agation were carried out in the shallow-water region of
the Sea of Okhotsk in summertime (August). The prop-
agation path was 335 km in length, with the sea depth
changing from 125 to 155 m along the path. Prior to
experimenting, six sets of hydrological measurements
were performed at different distances from the receiv-
ing vessel. By continuously lowering and lifting the
Istok-3 device, the following water parameters were
measured every 1.5 s: the temperature, the electric con-
ductivity (salinity), and the hydrostatic pressure. For
each set of data, the values of these parameters were
recalculated to the sound speeds according to the for-
mula of Wilson [5].

Figure 1 shows the vertical sound speed profiles
measured at both ends and at the middle of the path. At
some fractions of the path, multilayer water structures
were observed with different temperatures in individual
layers. This phenomenon leads to “tongs” in the c(z)
profiles with the tong thickness less than 5–8 m and the
differences in the sound speeds up to 0.4–0.6 m/s. The
depth of the USC axis changed from 30 to 60 m along
the path. The sound speed varied slightly at the axis
depth. The difference in the sound speeds near the bot-
tom and at the channel axis was about 1.5 m/s, and the
corresponding difference between the surface and the
axis reached 55 m/s. In the discontinuity layer, the
sound speed gradient changed from 0.5 to 2 1/s. Below
the USC axis (at depths greater than 50 m), the gradient
was 0.02 1/s, which is close to the hydrostatic value. To
002 MAIK “Nauka/Interperiodica”
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make the profile c(z) more evident, we choose different
scales of the abscissa in Fig. 1 for undersurface waters
and those at horizons deeper than 25–30 m.

To illustrate the variability of the hydrological param-
eters along the path at the depths 30–125 m (within the
100-m layer under the temperature discontinuity layer),
we present the field of sound speeds (Fig. 2) calculated
from the data of measurements. The step in the sound
speed values is 0.2 m/s between the adjacent isospeed
curves. The numbers near the curves indicate the excess
of the sound speed above 1440 m/s. In this picture (at
the bottom), the data obtained from echo-sounding per-
formed during the experimentation are presented (the
scales in distance and depth are the same as at the top
of the picture). Up to a distance of 150–200 km along
the path, a monotone bottom rise took place, and the sea
depth decreased from 150 to 125 m. At longer ranges,
the depth rather sharply increased to 155 m (in a region
of about 50 km in length) and then decreased to 138 m.

Two vessels were used in the experiment. The
receiving vessel drifted approximately 95 nautic miles
south of Magadan. The transmitting vessel took a head-
ing of 270° (in the western direction relative to the
reception point) at 10–11 knots, along the 58° latitude.
From the transmitting vessel, small explosive charges
were dropped and exploded at a depth of 50 m (near the
USC axis) with the use of pressure-sensitive detonators.
A total of 50 charges were exploded. The time interval
between successive explosions varied depending on the
distance. At points nearest to the receiver, it changed
from 2 to 10 min; at distances longer than 50 km, it was
equal to 30 min. At the moment of each charge drop, the
distance between the vessels was determined from the
propagation time of the acoustic signal and then was
refined according to observations periodically per-
formed with the use of the satellite navigation systems
of both vessels. The explosion-generated signals were
received by omnidirectional hydrophones at depths 10,
50, and 120 m.

During experimenting, there was fog, swell of
Beoufort 3, and wind of less than 6 m/s (at about 40°).

The explosion-generated signals that were received
within the frequency band 10–20 Hz to 1–2 kHz from
the distance 10–20 km or more were single-ray arrivals
and had the shape of two short pulses of less than 1-ms
duration. These pulses formed by the shock wave and
the first gas-bubble oscillation were equal in their val-
ues and had the same signs. The time separation of the
pulses corresponds to the period of the first bubble
oscillation (T = 45 ms in our case).

In the case of a multiray reception, each ray in the
time structure of the explosion-generated signal is rep-
resented by its own pair of pulses. The time structure of
the sound field has a twofold nature: each pulse of the
shock wave is followed by that of the gas-bubble oscil-
lation. The first and second halves of the received mul-
tiray signal are identical. To confirm this fact, the cross-
correlation function between the first and second parts
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
of the explosion-generated signal can be used: the max-
imal value of this function is as high as 0.95–0.98.

At shorter distances, time delays between the sig-
nals separately arriving at the receiver are not longer
than the period of the first oscillation (45 ms). At the
distances 190–200 km from the source, they have the
same order of magnitude as this period. Thus, for the
temporal elongation of the signal in the region at hand,
the proportionality factor does not exceed 0.00025 s/km,
which is in a good agreement with the calculation per-
formed with the simplified formulas [6] obtained for a
bilinear c(z) profile.

On the basis of the experimental data analyzed
within a frequency band of 40–1000 Hz, the sound
attenuation coefficients were estimated. These coeffi-
cients were determined by comparing the experimental
decay of the sound field with the cylindrical law of geo-
metrical spread. As a characteristic that is equivalent to
the energy of the explosion-generated signal within the
frequency band ∆f, the following value was used:

where T is the duration of the explosion-generated sig-
nal and pf(t) is the signal sound pressure normalized to

E f p f
2 t( ) t,d
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Fig. 1. Vertical profiles of the sound speed c(z). Data of
measurements supporting the acoustic experiment: (1) near
the receiving vessel, (2) at a distance of 155 km, and (3) at
a distance of 320 km.
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Fig. 2. Sound speed field along the path at depths of 30–125 m. Adjacent isospeed curves differ by 0.2 m/s, the numbers near the
curves indicate the excess of the sound speed over 1440 m/s. The lower part of the figure presents the bottom relief measured by
echo-sounding.
the frequency band ∆f. To obtain the power spectrum of
the explosion-generated signal, a computer code was
used that was earlier developed to analyze the experi-
mental decays of the sound field and to estimate the
attenuation coefficients at individual frequencies.

At the reception depth of 20 m, the signals suffi-
ciently exceeded the noise level at distances shorter
than 17 km. For these signals, the loss die to bottom
reflections is significant. At the two other reception
horizons, all recorded signals are above the noise level
within the frequency band 40–1000 Hz.

As a result of processing the signals received at
depths of 50 and 120 m, the values of the attenuation
coefficients were obtained (Fig. 3). There is nearly no
difference in these values for depths of 50 and 120 m.
The values obtained for the attenuation coefficients are
much higher than the sound absorption coefficients in
the sea water, which are presented in [1] for the Sea of
Okhotsk.
At a frequency of about 200 Hz, a pronounced min-
imum can be noticed in the frequency dependence of
attenuation. Earlier, in analyzing the data of similar
studies [7] in the Baltic Sea, such a minimum was
attributed to the critical frequency of the “water”
modes. This conclusion was attained, because the Bal-
tic-Sea studies were carried out in spring and summer
when the conditions in the propagation channel consid-
erably varied: the critical frequency of the first mode
varied by a factor of two to three and the position of the
minimum in the frequency dependence of attenuation
also changed.

For the experiment in the Sea of Okhotsk, the calcu-
lated critical frequency of the first water mode is about
160 Hz, which does not significantly differ from the fre-
quency of the attenuation minimum. To verify the con-
cept of the relation between the attenuation minimum
and the critical frequency of the water mode, we carried
out a set of calculations with the use of the computer
code by Avilov [8], which accounts for changes in the
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
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propagation conditions along the path, namely: the
changes in the sound speed profiles measured at differ-
ent parts of the path and the data of echo-sounding. The
calculations were performed for the frequency band
40–800 Hz, with the noise-like signals in 1/3-octave
bands. A relatively simple model of the bottom was
used: a liquid layer (with a sound speed of 1600 m/s, a
loss factor of 0.015, and a density of 1.8 g/cm3) overly-
ing a liquid halfspace (2600 m/s, 0.001, and 4.0 g/cm3,
respectively). A good quantitative agreement was
obtained between the calculated and observed low-fre-
quency attenuation coefficients.

Figure 4 shows the results of calculations for the fre-
quencies 50, 100, 200, and 400 Hz. At frequencies
higher than 300–500 Hz, the calculated decays of the
sound field (without the absorption in the water) follow
the cylindrical law of the geometrical spread for the dis-
tances from the source, which exceed 50 km: the devi-
ations of the average decay curves from the cylindrical
law are no higher than 0.5 dB for the entire path. At fre-
quencies lower than 300–500 Hz, the difference
between the calculated and cylindrical decays increases
as the frequency decreases: the additional loss caused
by sound absorption in the bottom sediments becomes
higher for lower frequencies and reaches 0.014 dB/km
at 50 Hz. The latter value agrees well with the experi-
mental data. It is worth mentioning that the objective of
the calculations was not to develop a bottom model for
the specific region. Instead, the calculations were per-
formed to estimate the contribution of the bottom sedi-
ments to the sound attenuation at frequencies lower
than the critical ones and to verify the existence of the
proposed mechanism responsible for the formation of
the minimum in the frequency dependence of attenua-
tion.

At frequencies higher than 200 Hz, the frequency
dependence of the sound attenuation in the shallow-
water part of the Sea of Okhots can be expressed in the
form:

β = 0.205f 1.13 dB/km,

where the frequency is specified in kilohertz. At such
frequencies, the attenuation coefficients in the Sea of
Okhotsk are, by a factor of 3–5, higher than those
obtained in the Baltic Sea. The shapes of the decay
curves are also somewhat different for these seas. In
analyzing the experimental data of the Baltic Sea [7], a
conclusion was made that the sound scattering by inter-
nal waves was the most probable factor responsible for
the observed high attenuation in that region. The analy-
sis included the data of the internal wave observation in
the studies of sound attenuation in the Baltic Sea, as
well as the results of modeling the off-channel sound
scattering by internal waves.

During the experiments in the Sea of Okhotsk, no
observations of internal waves were carried out. As far
as the author knows, only publication [9] exists on mea-
suring internal waves in a coastal zone of the Sea of
Okhotsk. Specifically, the published data referred to the
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
south western part of this sea (the measurements were
performed in a narrow shelf patch near the south-west-
ern coast of Sakhalin) and, hence, cannot be extended
to the large shelf zone of the northern part of the Sea of
Okhotsk. At the same time, the Baltic Sea and the Sea
of Okhotsk have a clearly defined layer of temperature
discontinuity (at a depth of ~25 m) and comparable sea
depths (80–100 m in the Baltic Sea and 125–155 m in
the Sea of Okhotsk). These similarities allows one to
assume that, in the experimental region of the Sea of
Okhotsk, short-period internal waves also exist and
their properties are similar to those of the Baltic Sea.

Using the known limiting angles, at which the water
rays cross the USC axis, and the known full cycle
lengths of these rays, and assuming a similarity of
nature and amplitude of internal waves in the two seas,
one can estimate the difference in attenuation, which is
caused by the sound scattering from the internal waves.
For the Baltic Sea, the angles at which the water rays
cross the USC axis are –(6°–8°) < θ < +(6°–8°), and the
lengh of the full cycle is D = 1.5–2.5 km for these rays.
For the Sea of Okhotsk, the corresponding values are
–2.6° < θ < +2.6° and D = 4–6 km. The loss caused by
scattering is proportional to the cycle length of the
water rays (the internal wave is associated with the tem-
perature discontinuity layer, and the scattering takes
place within the upper half-cycle) and to the squared
limiting angle of their crossing the USC axis (see, e.g.,
[10, 11]). From these considerations, the ratio of the
attenuation coefficients can be estimated for the Baltic
Sea and the Sea of Okhotsk. The calculated ratio proves
to be approximately equal to three, which well agrees
with the experimental estimate (3–5). Of course, this
agreement means nothing more than indirect evidence
in favor of the hypothesis that the sound scattering by
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Fig. 3. Sound attenuation in the shallow-water (125–155 m)
northern part of the Sea of Okhotsk: (s s s s) the experi-
mental attenuation coefficients determined from the decay
of the sound field at a depth of 50 m, (•••• ) similar values
for a depth of 120 m, (n n n n) the calculation with Avilov’s
computer code, and (_ _ _ _ _) the frequency dependence of
attenuation obtained by the formula β = 0.205f 1.13.
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internal waves is the most probable attenuation mecha-
nism (at frequencies higher than the critical one) for
shallow-water sound channels. The real validation of
this hypothesis requires the development of a rigorous
theory of sound scattering by internal waves and a spe-
cial-purpose acoustic experiment including the mea-
surements of the internal waves.

In conclusion, we formulate the main results of the
experiment on long-range propagation of the explosion-
generated signals in the shallow-water (125–155 m)
region of the Sea of Okhotsk with a fully-developed USC.

(i) In the time structure of the multiray explosion-
generated signal received at the USC axis, at the dis-
tances up to 250–300 km, the pulses of the shock wave

0 R, km50 100 150 200 250 300
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β = 0.0215 dB/km
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30

 d
B

Fig. 4. Results of the sound field calculations by Avilov’s
computer code at the frequencies (a) 400, (b) 200, (c) 100,
and (d) 50 Hz in 1/3-octave bands: (1) the range dependence
of the sound level corrected for the cylindrical law of geo-
metrical spread and (2) the linearly approximated decay of
the sound level corrected for the cylindrical law (the linear
approximation by the least-squares method for the part of
the path 50–335 km). At each frequency, near the corre-
sponding curve, the attenuation coefficient is indicated, as
determined from the inclination of the line approximating
the sound level decay corrected for the cylindrical law.
and the first gas-bubble oscillation are well resolved,
each of them individually reproducing the time struc-
ture of the propagating sound field.

(ii) For the conditions of the experiment, a small
increase in the duration of the explosion-generated sig-
nal is observed; the proportionality factor between the
duration and the distance is about 0.00025 s/km (upon
subtracting the period of the bubble oscillation).

(iii) The experimental data on the sound attenuation
within the frequency band 40–1000 Hz are obtained.
The attenuation is much higher than the sound absorp-
tion in the sea medium. The frequency dependence of
attenuation has a minimum at a frequency of about
200 Hz, which is close to the critical frequency of the
first water mode (about 160 Hz).

(iv) The mechanism responsible for the minimum in
the frequency dependence of sound attenuation in the
USC of a shallow sea is revealed. As the frequency
decreases starting from the critical one (for the water
modes), the sound attenuation increases because of the
acoustic energy loss in the bottom sediments. At fre-
quencies higher than the critical one, the most probable
reason for the attenuation to exceed the absorption is
the sound scattering by short-period internal waves.
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Abstract—Propagation of an acoustic beam in a medium with a combined second- and third-order nonlinearity
is studied. The derivation of the dynamics equations and the determination of modes is performed using the
orthogonal-projection operator technique. The problem on the beam evolution considered with allowance for
weak nonlinearity, diffraction, and dissipation leads to a set of equations describing the interaction of directed
waves and a quasi-stationary (thermal) mode. In the conditions of a directed beam, the inclusion of the interac-
tion leads to a modified Khokhlov–Zabolotskaya–Kuznetsov equation with quadratic and cubic nonlinearities.
The solutions to the problem are obtained in the region near the beam axis, in the form of series expansions in
the transverse coordinate up to the focal point. The results of calculations are represented in graphical form for
different nonlinearity combinations. © 2002 MAIK “Nauka/Interperiodica”.
One of the major problems of the theory of nonlin-
ear acoustic waves is related to an adequate description
of the distortions suffered by an acoustic signal in the
course of its propagation in a medium. Any perturba-
tion of a medium can be represented as a superposition
of modes characteristic of a given problem, which
determine the basic possible types of motion. Taking
into account the nonlinearity of a beam leads to the
interaction of modes and to their self-action. A correct
consideration of the mode interaction is most simple
when the separated modes are independent (i.e., they
are separated by the projectors that are orthogonal in
the linear approximation). The modes, as a basis, must
describe all possible types of motion, i.e., the set of pro-
jection operators must be complete.

The basic equations of the theory describing the
propagation of nonlinear acoustic beams are the
Khokhlov–Zabolotskaya (KhZ) and Khokhlov–Zabo-
lotskaya–Kuznetsov (KhZK) equations, which take
into account the viscosity of the medium. These equa-
tions are obtained by the method of a slowly varying
profile, when the evolution of the wave profile is stud-
ied in the x–ct coordinate system moving with the
velocity of the wave propagation in the linear approxi-
mation [1–3].

The KhZ and KhZK equations do not take into
account the effect of the other two modes: the station-
ary mode and the backward wave. The necessity to take
into account the backward wave and the thermal mode
in the one-dimensional dynamics is indicated in the
review [4]. There, it is also demonstrated that the
approximation of one directed acoustic mode leads to
1063-7710/02/4802- $22.00 © 20147
an incorrect value of the time-average flux of angular
momentum. This points to the necessity of taking into
account the mode interaction. In the cited review [4],
attention is given to the generation of the thermal mode
due to the dissipation of the acoustic mode related to
the viscosity of the medium or the attenuation at the
shock wave front. We note that the nonisentropic (ther-
mal) mode must be taken into account even in the
absence of viscosity and heat conductivity of the
medium. This is essential for linear problems with non-
isentropic initial conditions and in studying the nonlin-
ear dynamics, because a nonlinear generation and the
interaction of all modes take place. The thermal mode
determined here as one of the principal modes is not
necessarily the secondary mode caused by the attenua-
tion of an acoustic wave. Traditionally, the thermal
mode is treated as a secondary one [4], which evidently
makes it impossible to consider the problems with
essentially nonisentropic initial conditions.

In this paper, we consider the problem of the propa-
gation and focusing of a nonlinear acoustic beam. For
the derivation of the equations describing the wave
dynamics, we propose the projection operator method.
In the framework of the proposed approach, we obtain
a set of coupled equations describing the interaction of
two acoustic modes (the right and left beams) and the
quasi-stationary thermal mode. These equations take
into account the weak nonlinearity (quadratic and
cubic) of the perturbation, the diffraction, and the dissi-
pation of the beam. We note that, here, we do not use
the assumption concerning the potential character of
the flow. In particular, this approach provides a more
accurate expression for the nonlinear constants in the
002 MAIK “Nauka/Interperiodica”
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KhZK equation (for example, for the right beam) for
the terms with quadratic and cubic nonlinearities. The
calculated coefficients take into account the nonlinear
generation of other modes (the left beam and the sta-
tionary mode) and their inverse influence on the princi-
pal right wave.

Approximate solutions to the equation derived for
the right beam are determined, including the solutions
in the near-focal region, and the plots illustrating the
beam behavior at different distances from the focus and
the effect of the third-order nonlinearity on the profile
dynamics are presented.

PROJECTION OPERATORS.
MODE INTERACTION IN A ONE-DIMENSIONAL 

PROBLEM WITH VISCOSITY
AND HEAT CONDUCTIVITY

Starting from the paper by Kovasznay and Boa The-
Chu [5], in hydrodynamics it is common to single out
three modes (the vortex mode, the sound pressure
mode, and the entropy mode), which separate the types
of possible perturbations according to the character of
motion and dissipation, in studying perturbations in a
viscous heat-conducting medium. In the linear approx-
imation, these modes do not interact and a perturbation
is generally represented as a sum of three modes. We
also suggest the introduction of three modes in the lin-
ear approximation. However, in contrast to [5], we sep-
arate the perturbations according to the basic types of
motion, which are determined by the dispersion rela-
tion in the linear approximation, rather than according
to the character of motion and dissipation. This allows
us to determine the modes using specific relations,
namely, through the eigenvectors of the linear problem.
Here, we restrict our consideration to a relatively sim-
ple case of a homogeneous medium in the absence of
flows as a background. However, since it is easy to for-
mulate the proposed method as an algorithm, it is also
easy to consider stratified media with flows. It is impor-
tant that the modes determined in this way are mutually
orthogonal and form a complete set of basis vectors,
and the relations obtained in the linear approximation
are also valid for a nonlinear case. Let us briefly
describe the idea of the proposed method of mode sep-
aration.

At the first stage, we consider the problem of the
propagation of an acoustic beam in the linear approxi-
mation. As the initial equations, we take the system of
hydrodynamic equations for the density ρ, mass veloc-
ity V along the x axis, and the internal energy of a unit
mass e with the equation of motion in the Navier–
Stokes form. In the equation of energy balance, we
ignore the nonlinear viscous cross terms (which is a
common approach in acoustics: see, e.g., [2, 4]). This
approximation assumes the amplitude of the acoustic
disturbance and the thermoviscosity to be small. In this
case, the contribution of dissipative terms is (as usual
[2]) much smaller than that of nonlinear terms.

(1)

Here, p is pressure, T is temperature, ζ and η are the
coefficients of volume and shear viscosities, respec-
tively, and χ is the coefficient of heat conductivity. The
coefficients of viscosity and heat conductivity are
assumed to be constant, and the background is assumed
to be homogeneous. To make system (1) complete, it is
necessary to add two more equations. For this purpose,
we take the caloric and thermal equations of state: e =
e( p, ρ) and T = T( p, ρ). These equations have the fol-
lowing form for an ideal gas:

(2)

where Cv is the specific heat of the gas at constant vol-
ume and γ = Cp/Cv is the adiabatic constant. Here, we
consider the case of an ideal gas, although the caloric
and thermal equations of state in the general form allow
one to study the dynamics of any liquid or gas. To do
this, it is necessary to expand the small perturbations of
internal energy and temperature into a Taylor series in
the vicinity of the background values of pressure and
density with the required accuracy. Let us change to
new variables:

Here, the background parameters are denoted by the
index 0, λ is the characteristic wavelength, c is the adi-
abatic velocity of sound, and ε is the small amplitude
parameter. Below, we omit the primes marking the
dimensionless quantities. Eliminating T and e from the
initial set of equations and ignoring the viscosity and
heat conductivity, we represent Eqs. (1) in the linear
approximation in the form

(3)
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∂ρ ∂ ρV( )
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Let us consider plane waves representing the mass
velocity as V = Vkexp(iωt – ikx) and the quantities p
and ρ in an analogous form. The dispersion relation
for Eqs. (3) has three roots ω1, 2 = ±k and ω3 = 0, which
correspond to three independent branches of the disper-
sion relation. In this case, ω1 = k describes the wave
propagating to the right, ω2 = –k describes the left wave,
and ω3 = 0 describes the stationary addition to the back-
ground.

The eigenvectors corresponding to these three solu-
tions have the forms e1 = (1, 1, 1)T, e2 = (–1, 1, 1)T, and
e3 = (0, 0, 1)T, whence we have linearly independent
solutions for each branch: ϕ1 = (V1, p1, ρ1)T, ϕ2 = (–V2,
p2, ρ2)T, and ϕ3 = (0, 0, ρ3)T. The corresponding opera-
tors of projection onto each branch can be represented
in the explicit forms

(4)

It is very important that the projectors determined by
Eqs. (4) are mutually orthogonal. This allows a correct
separation of the initial disturbance into independent
(in the linear approximation) modes. The components
of the eigenvectors are evidently related as follows: V1 =
ρ1 = p1, V2 = –ρ2 = –p2, and p3 = V3 = 0. The projection
operators, as usual, satisfy the requirements of normal-

ization and orthogonality: P1 + P2 + P3 = , PkPn = ,

k ≠ n, and PkPk = Pk, where  and  are the unit and null
matrices, respectively.

The fact that it is possible to represent the projection
operators in an explicit form provides an opportunity to
separate any disturbance into the fields of the right and
left waves and the stationary mode. For this purpose, it
is sufficient to apply a corresponding projection opera-
tor to the vector ϕk = Pkϕ.

It is important that the suggested separation into
modes does not imply the separation of disturbances
into vortex and vortex-free ones. Moreover, the station-
ary mode is not necessarily secondary, i.e., generated
by an acoustic wave, as in [4]. This provides an oppor-
tunity to extend the class of the examined problems,
e.g., to the problems with essentially nonisentropic ini-
tial conditions. According to our definition, the thermal
mode is one of the basic types of motion even in media
without viscosity and heat conductivity, in contrast to
the secondary thermal mode caused by the attenuation
of an acoustic wave [4]. It should also be noted that, in
the case of a stratified medium, the elements of the pro-
jection operators are integro-differential operators [6].

The initial set of hydrodynamic equations (1)
neglecting the viscosity and heat conductivity can be
written in the form

(5)

P1 2,

1/2 1/2± 0

1/2± 1/2 0

1/2± 1/2 0 
 
 
 
 
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0 0 0

0 0 0

0 1– 1 
 
 
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 

.= =

Î 0̂

Î 0̂

∂ϕ
∂t
------ Lϕ+ ϕ̃ ,=
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where the function  on the right-hand side of the
equation takes into account the nonlinear terms and has
the form

Let us change to the new variables ρ1, ρ2, and ρ3 and
assume that, for the eigenvectors, the constraint equa-
tions that are determined by the linear problem are
valid: V = V1 + V2 = ρ1 – ρ2, p = p1 + p2 = ρ1 + ρ2, and
ρ = ρ1 + ρ2 + ρ3. Applying the projection operators to
both sides of Eq. (5), we obtain a set of nonlinearly cou-
pled equations for the density perturbations of each
mode:

(6)

where n = 1, 2, 3; c1, 2 = ±1, and c3 = 0. The indices 1, 2,
and 3 correspond to directed and stationary modes,
which in the problem of nonlinear dynamics are appro-
priate to be called quasi-directed and quasi-stationary

modes. The coefficients  are determined in the tables
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In particular, for the right-propagating wave with
allowance for self-action, from Eqs. (6) we obtain the
known evolution equation [1, 2]:

(7)

Assuming the terms connected with viscosity and heat
conductivity in Eqs. (1) to be small, as well as the non-
linear terms, we represent Eqs. (1) in terms of dimen-
sionless variables in the form of Eq. (5) with a new vec-
tor on the right-hand side:

(8)

Here,

are the small dimensionless parameters taking into
account the contributions of viscosity and heat conduc-
tivity. Applying the operator P1 to Eq. (5) with the right-
hand side in the form of Eq. (8), we obtain the Burgers
equation for the right mode with allowance for the self-
action:

(9)

It is necessary to note that, in Eq. (8), the coefficients
before the terms that correspond to the quadratic non-
linearity and thermoviscosity differ from the expres-
sions given in [1–3, 7], where the stationary mode is not
considered and the constraint equations correspond
only to the acoustic modes: p = ρ. It is evident that, with
such a description, the derived equations are unsuitable
for investigating the complete nonlinear dynamics,
because they lead to an incorrect determination of the

matrix elements , which are responsible for the
mode interaction.
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NONLINEAR DYNAMICS OF SOUND BEAMS 
INTERACTING WITH THE THERMAL MODE

Let us consider the problem of the propagation of a
three-dimensional acoustic beam with a weak diver-
gence along the y and z directions, which are orthogo-
nal to the propagation direction. As earlier, we assume
the dissipative and nonlinear terms to be small. As
above, at the first stage we consider the linear problem
without taking into account the heat conductivity and
viscosity:

(10)

Here, ϕ1 = (Vx, Vy, Vz, p, ρ)T and Vx, Vy, and Vz are the
velocity components. Following the concept of a
slowly varying profile (the transverse velocities change
slower) [1, 2, 7], we introduce the dimensionless vari-

ables:  = Vx/εc,  = Vy/εc,  = Vz/εc, y' = y /λ,

and z' = z /λ, where β is the small parameter charac-
terizing the beam divergence. Below, we omit the
primes marking the dimensionless variables. The
matrix in Eq. (10) is of the fifth order:

The corresponding dispersion relation has five roots.
One of the roots ω = 0 corresponds to the stationary
mode. Four other roots correspond to acoustic modes
and are determined by the independent combinations of
ω, kx, ky, and kz with different signs, which satisfy the
condition ω2 = (kx)2 + β[(ky)2 + (kz)2]. Two roots corre-
spond to the right acoustic mode and two roots, to the
left one. We assume that the motion is quasi-plane and
weakly linear, which allows us to treat the correspond-
ing terms in the initial set of equations as small addi-
tions. Taking into account the small nonlinear and ther-
moviscous terms leads to the following set of equa-
tions:

(11)

The operators L and ϕ have the same form as in the case
of the one-dimensional problem,  = ∂ /∂t. Applying
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one-dimensional projection operators to both parts of
the set of equations (11), we obtain coupled equations

(12)

Here, as before, c1, 2 = ±1; c3 = 0; and the coefficients

, which take into account the quadratic nonlinear-
ity, are determined earlier in the tables of Eq. (6). The

coefficients , , and , which determine the
contributions of the beam divergence, thermal conduc-
tivity, and cubic nonlinearity, respectively, are given in
the tables:

 =  = 1, and  = 0 for all i, m.

The set of equations (12) describes the interaction of
three independent modes, i.e., the right, left, and ther-
mal modes. In particular, Eq. (12) yields the known
KhZK equation taking into account the propagation of
only the right wave:

(13)

The latter equation is transformed into the KhZ equa-
tion when δ = 0.
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Let us assume that one of the modes, the right one
for definiteness, prevails, i.e., it is generated predomi-
nantly. This corresponds to the realization of linear
relations (probably, approximate) for this mode. Prob-
lems with initial conditions and boundary-value prob-
lems can be considered in the framework of the indi-
cated approximation (in this case, the correspondence
must exist at the boundary). It is possible to demon-
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strate that a linear boundary-value problem in a semi-
infinite space x > 0 (initially unperturbed) corresponds
to a strict realization of the relations for the right mode
at the boundary and in the whole semi-infinite space.
The generation of other modes by the principal mode
and their evolution is described by Eqs. (12). We use the
nonsingular theory of perturbations to study the gener-
ation of two other modes and their reciprocal effect on
the first one, as in [8, 9]. We assume that the nonlinear-
ity prevails over the viscosity and beam divergence. We
also assume that δ, β ~ ε2. The evolution of the density
disturbance of the first mode with allowance for self-
action is determined by the equation

(14)

For the second and third modes in the first approxi-
mation with allowance for their nonlinear generation,
we have

The solutions to the equations for (x, y, z, t) and

(x, y, z, t) are evidently zero: (x, y, z, t) = 0 and

(x, y, z, t) = 0. Integrating Eq. (14) with respect to
time, we obtain

(15)

Taking this equation into account, we can write for the
next approximation:

(16)

(17)

Taking into account the reciprocal effect of the second
and third modes, according to Eqs. (12), (16), and (17)
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we obtain an evolution equation of the next order for
the first mode:

(18)

where

The new coefficient A1 before the cubic term corre-
sponds to the correction that takes into account the
reciprocal influence of two other modes on the first one,

while  = 1 in the same term takes into account the
self-action of the order of ε2 for the principal mode.

THE MODIFIED KHOKHLOV–ZABOLOTSKAYA 
EQUATION. AN ANALYTICAL SOLUTION

The set of equations (12) and the approximate evo-
lution equation (18) are too complicated to obtain a
general solution, even if we ignore the thermoviscous
terms. Equation (18) differs from the KhZK equation in
the cubic nonlinear term taking into account the effect
of the left beam and quasi-stationary mode (which are
generated in the course of the propagation of the right
acoustic beam) on the right wave.

Let us recall briefly the advances in the study of the
KhZK equation within the last few years. The study of
the KhZ and KhZK equations started in the 1970s. The
method of nonlinear geometric acoustics for high-fre-
quency sources, λ/a ! 1 (a is the characteristic size of
the source), was used at that time [3]. The method
allows one to describe the evolution up to the focal
region, but not within the region itself, because the
expressions become singular. Simultaneously, in
optics, the paraxial approximation was successfully
used. This approximation provided excellent results in
nonlinear optics and laser physics for describing the
self-focusing of a light beam. The successful applica-
tion of the paraxial approach is related to the consider-
ation of narrow-band quasi-harmonic signals and,
therefore, with the possibility of an independent sepa-
ration of the amplitude and the eikonal [3]. However, as
applied to nonlinear acoustics, the approach imposes
restrictions on the domain of applicability of the results
obtained with its help: the solution is adequately

∂
∂t
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∂ρ1
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∂ρ1
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----------- -+

+
ε
2
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1( ) γ 1+( )
∂ρ1

1( )

∂x
------------ ε A1 1+( )ρ1

1( )∂ρ1
1( )

∂x
------------+ 

 
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2
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1
2
--- Ym 1,

1 /2 Y1 m,
1+( )Y1 1,

m / c1 cm–( )
m 2 3,=

∑=

=  –
1
8
--- γ 1+( )2 1.–

T1 1,
1

described near the beam axis only at small distances
from the source, x ! ωa2/2c. Here, ω is the fundamen-
tal frequency of the source, a is the beam radius, and c
is the sound velocity. A signal cannot be treated as a
quasi-harmonic one, and it is necessary to expand the
total field of acoustic pressure as a power series in a
small parameter. The inclusion of higher-order correc-
tions leads to incorrect results, which makes it impossi-
ble in the framework of this approach to describe the
most interesting region where the focusing of a finite-
amplitude sound beam takes place. In acoustics, the
paraxial approach was first used by Rudenko, Soluyan,
and Khokhlov [10].

An analytical method for describing a beam in the
paraxial region was developed recently [11, 12]. This
method makes it possible to study also the motion in the
focal plane. There are also efficient numerical methods
for solving the KhZ equation [13].

We follow the basic concepts [11, 12] in the analyt-
ical description of the beam evolution. We assume the
problem to be cylindrically symmetric and represent
Eq. (18) in cylindrical coordinates:

(19)

where P = p/pp. Here, p is the dimensional pressure, pp

is the peak value of the sound pressure at the source,
σ = x/d, τ = ω(t – x/c), R = r/a, x is the axial coordinate,
d is the focal length, and r is the transverse coordinate.
The quantities r, x, t, c, and ω are dimensional; G = x0/d
is the dimensionless constant;  = 2c3ρ0/ε(γ + 1)ωpp is
the characteristic distance within which the shock wave
is formed; and x0 = ωa2/2βc is the characteristic average
diffraction length for an acoustic beam with the fre-
quency ω. The quantity N = d/  characterizes the qua-
dratic nonlinearity of the beam, and G characterizes the
beam focusing.

This equation differs from the classical KhZ equa-
tion by the presence of the term corresponding to cubic
nonlinearity with the coefficients

Note that the sign of α calculated for an ideal gas with
allowance for the reciprocal effect of modes differs from

the sign of the parameter α0 =  = 1/(γ + 1) when
the calculation takes into account only the self-action of
the right beam. This fact demonstrates the importance
of taking into account the resonance interaction of all
modes.

We try the a solution to the evolution equation (19)
(as in [11, 12]) in the form of a series expansion in pow-
ers of the parameter R = r/a:

τ∂
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– εαMNP2
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Fig. 1. Evolution of the disturbance profile for α = –0.3 and σ = (1) 1.01, (2) 1.2, and (3) 2.0 (the solid lines); the crosses represent
the case without the cubic nonlinearity.
(20)

Then, performing calculations analogous to [11, 12],
but taking into account the contribution of the cubic
term, we obtain a solution for P0 in the form

(21)

(here, we use the same notations as in [11]). In contrast
to the solutions given in [11, 12], the solution given by
Eq. (21) takes into account the contributions of both
quadratic and cubic nonlinearities and also the interac-
tion between different modes. If necessary, it is possible
to obtain a solution for P2 [the next order relative to
Eq. (21)] with the help of the relations similar to those
in [11, 12].

Here, θ0(τ, η) is determined from the solution of a
transcendental equation:

(22)

The following notations are introduced in Eqs. (21)
and (22):
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Now, at ε = 0 (ignoring the cubic nonlinearity), it is
easy to plot the signal profiles for different values of the
parameters N and G characterizing the focusing and the
diffraction, respectively. The simplest way to do this is
to treat Eqs. (21) and (22) as a system of equations in
the form P0 = P0(θ0, η), τ = τ(θ0, η), which determines
(at a fixed value of η) the function P0 = P0(τ) in a para-
metric form. In this case, θ0 plays the role of a parameter.

To plot a signal profile at ε ≠ 0, it is necessary first to
calculate the integral on the right-hand side of Eq. (22).
Regretfully, it is impossible to calculate it analytically
in the general form suitable for analysis. However, at
fixed values of N, G, and η, it can be calculated as a
function of θ0, e.g., with the help of the MAPLE soft-
ware package. In this case, it is possible to obtain the
perturbation profiles in a parametric form with the help
of the same software.

Figure 1 demonstrates the profiles of the beam at
various distances from the source σ with allowance for
the contribution of the cubic nonlinearity. The values of
other parameters determining the contribution of non-

f η( ) η( )cos G η( )sin+( ) 1– ,=

g η( ) N
η2 f η( )ln

2
+

1 G 2–+
------------------------------- 

 
1/2

,=

ζ η( ) Gη f η( )ln+
η G f η( )ln–
-------------------------------- 

  ,arctan=

δ η( ) N2G2

2 1 G2+( )
-----------------------η ηcos G ηsin+( ).ln=
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Fig. 2. Evolution of the disturbance profile for α = 0.3 and M = (1) 0.05, (2) 0.5, and (3) 1.0 (the solid lines); the crosses represent
the case without the cubic nonlinearity.
linearity are selected as follows: N = 0.3 and G = 10.
The value of the parameter α for an ideal diatomic gas
is α = –0.3. The profiles obtained without taking into
account the cubic contribution are shown in the same
figure by crosses, and they closely coincide with the
plots presented in [11, 12].

Figure 2 shows the profiles of the beam at α = –0.3,
N = 0.3, and G = 10 for different values of the nonlin-
earity parameter: M = 0.05, 0.35, and 1.0. The profile
obtained without taking into account the contribution of
the cubic nonlinear term is represented by crosses (it
coincides with the calculations from [10, 11]).

In Fig. 2, the plots obtained with allowance for the
cubic nonlinearity lie below the plots taking into account
only the quadratic term and have sharper peaks. As the
nonlinearity parameter M grows, the wave amplitude
decreases, the peak is shifted to the left, and a loop-type
singularity is formed in the vicinity of the pressure peak.
In the figure, the loops are marked with dots. Basically,
the loop-type singularity can be eliminated analogously
to the “backlash” singularity in the Riemann wave in the
theory of weak shock waves [2].
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Abstract—The algorithms for calculating the direct and inverse transfer constants of an acoustic transducer
with an arbitrary number of intermediate layers between the piezoelectric layer, the acoustic duct, and the rear
acoustic load are described. The results of a numerical analysis are presented and discussed. As an illustration,
a 100-MHz transducer formed by a (Y + 36°)-cut LiNbO3 plate fixed on a fused-quartz acoustic duct with the
help of five metal layers is considered. The other side of the plate carries two metal layers and a rear load. The
phase–frequency characteristics and the transformation loss as a function of frequency are analyzed for the
cases of direct and inverse transformation under the assumption that the signal is supplied and retrieved by a
two-wire line. © 2002 MAIK “Nauka/Interperiodica”.
The well-known works (e.g., [1–7]) on the analysis
of acoustic transducers for volume waves considered
the direct transformation of the electromagnetic energy
to the acoustic one. The sought-for quantity was the
ratio of powers of the transformed waves, which is usu-
ally called the conversion coefficient. The phase–fre-
quency characteristic was not considered in the above-
mentioned works. It is useful to find out, what the
phase–frequency and the amplitude–frequency charac-
teristics of a complex multilayer piezotransducer are
and how can they be controlled. This information is
important, e.g., for the formation of an optimal impulse
response of a transducer operating in the mode of emis-
sion and reception of short videopulses in a pulsed
acoustic microscope [8, 9]. The means that influence to
some extent the phase–frequency and amplitude–fre-
quency properties of a transducer could be intermediate
layers introduced between the piezoelectric, the acous-
tic duct, and the rear acoustic load. The latter can also
be considered as a structure component intended for
correcting the above-mentioned characteristics.

The quantity that most fully characterizes a trans-
ducer is the transfer function or transfer constant,
which is the ratio of the complex amplitudes of the
transformed waves. Knowing this constant allows one
to determine the above-mentioned conversion coeffi-
cient and the phase difference between the output and
input signals.

It is well known that the reciprocity theorem holds
for a piezoelectric transducer [10]. However, it would
be interesting to compare the direct and the inverse
transfer constant for a specific example of a complex
multilayer piezoelectric element used at high and
microwave frequencies.

The purpose of this paper is to develop the algo-
rithms and the programs for calculating both the direct
1063-7710/02/4802- $22.00 © 20155
and the inverse transfer constants of an acoustic trans-
ducer for volume waves with an arbitrary number of
intermediate layers and with a rear acoustic load. The
electromagnetic signal is supplied to or retrieved from
the transducer by a two-wire line with a given wave
resistance. A parasitic shunt capacitance and a connect-
ing-wire inductance with an active loss resistance are
also assumed to be connected with the piezoelectric
element in parallel and in series, respectively.

THE MODEL UNDER ANALYSIS
AND THE ASSUMPTIONS

Figure 1 demonstrates schematically the transducer
under analysis. Between the piezoelectric layer 1 and
the acoustic duct 2 there are M intermediate layers (sub-

h31

b

Rlos
Csh

L
a a

b

1 23 3n 3N 2M 2m 2131

h3n h3N h1 h2M h2m h21

Fig. 1. The model of a piezoelectric transducer: (1) piezo-
electric, (2) acoustic duct, and (3) rear acoustic load; the
indices 2m and 3n represent the sublayer and superlayer
numbers, respectively; Csh is the parasitic shunt capacitance
and Rlos and L are the active resistance and the inductance
of the conductor connecting the transducer with the trans-
mission line.
002 MAIK “Nauka/Interperiodica”



 

156

        

GRIGOR’EV 

 

et al

 

.

                                                                                                                                   
layers) with the common index 2 and individual num-
bers m increasing from 1 to M towards the piezoelectric
layer. On the other side, between the piezoelectric and
the rear load 3, there are also N media (superlayers)
with the common index 3 and numbers n changing from
1 to N in the direction from the rear load to the piezo-
electric. The sublayers and superlayers are short acous-
tic waveguides with given lengths h2m and h3n, acoustic
velocities v 2m and v 3n, and acoustic wave resistances
Z2m0 and Z3n0. We take that the acoustic duct and the rear
load have infinite lengths and the given acoustic wave
resistances Z20 and Z30, respectively. The sublayer and
the superlayer with the numbers 2M and 3N, respec-
tively, are metal electrodes. In the diagram, they are
connected with the terminals bb, which in their turn are
connected with the parasitic shunt capacitance Csh. The
two-wire transmission line with the wave resistance Z0
is connected with the terminals aa. The latter, in their
turn, are linked up to the terminals bb through the
inductance L and the loss resistance Rlos.

In the case of direct transformation, the direct elec-
tromagnetic (EM) wave arrives at the electric side of
the transducer through the transmission line. The EM
wave creates a complex voltage amplitude Vaa+ across
the terminals aa, which we take to be the input one. In
the case of the inverse transformation, a voltage appears
across the same terminals, and the complex amplitude
of this voltage Vaa+ is taken to be the output one. In the
first case, the generator producing the signal is assumed
to be matched with the transmission line, i.e., its inter-
nal resistance is equal to Z0. In the second case, the line
is loaded by the matched resistance Z0.

On the acoustic side, it is the acoustic duct cross sec-
tion at the boundary with the first sublayer (m = 1) that
is taken as the output or input, depending on the trans-
formation direction. The output signal or the input one
is assumed to be the elastic stress of the acoustic wave
outgoing or incoming through the duct with the com-
plex amplitude T2+ at the aforesaid boundary.

The desired transfer constants can be defined as fol-
lows:

(1)

in the case of the direct transformation, and

(2)

in the case of the inverse one.
Here, s is the area of the piezoelectric element.

Defined in this way, the aforesaid coefficients are
dimensionless quantities, and their absolute values
squared are equal to the well-known transformation
coefficients η+ = Pac/PEM+ and η– = PEM/Pac+, where Pac
and PEM are the acoustic and electromagnetic powers,
respectively.

The problem will be solved in the one-dimensional
approximation (∂/∂x = ∂/∂y = 0) on the assumption that
the attenuation and diffraction of waves, as well as the

K+ Z0s/Z20 T2+/Vaa+( )=

K– Z20/ Z0s( ) Vaa+/T2+( )=
conductivity of the piezoelectric, are negligibly small;
in addition, all sublayers, superlayers, and the rear load
are assumed to be isotropic; and the piezoelectric and
the acoustic duct are oriented in such a way that the ten-
sor equations describing the electromechanical pro-
cesses in the media under consideration are reduced to
scalar equations.

GENERAL RELATIONS

The equations relating the electric and mechanical
quantities in the piezoelectric have the form

(3)

(4)

(5)

where T1 is elastic stress; u1 is the elastic strain; D is the
electric displacement (induction); E is the alternating
electric field strength; c1, e, and ε are the elastic con-
stant, the piezoelectric modulus, and the dielectric con-
stant, respectively.

As follows from Eq. (5), D is coordinate indepen-
dent and, consequently, is a function of time only and
has the form D = D0e jωt, where the amplitude D0 can
generally be considered a complex quantity.

In the piezoelectric layer, both the direct and inverse
waves of the elastic strain exist simultaneously:

(6)

Here, β1, u1+, and u1– are the propagation constant and
the complex amplitudes of these waves, respectively; z
is the coordinate with the positive direction from the
power source to the load. The coordinate origin is at the
piezoelectric layer boundary closest to the aforemen-
tioned source.

To determine the voltage across the piezoelectric
layer (see the terminals bb in Fig. 1) in the quasistatic
approximation (rotE = 0), we use Eq. (4) and obtain

(7)

The complex quantities D0, u1+, and u1– are determined
by the continuity conditions for the acoustic stress and
the current (or impedance) at the piezoelectric bound-
aries and also by the parameters of the electric circuit
connected to the terminals bb.

The electric current Ie flowing in the external circuit
equals the displacement current in the piezoelectric:

(8)

where Je is the displacement current density.

T1 c1∂u1/∂z eE,–=

D e∂u1/∂z εE,+=

∂D/∂z 0,=

u1 u1+ jβ1z–( )exp u1– jβ1z( )exp .+=

Vbb E1 zd

0

h1

∫=

=  
D0h1

ε
------------

e
ε
-- u1+ e

jβ1h1–
1–( ) u1– e

jβ1h1 1–( )+[ ] .–

Ie Jes ∂D/∂t( )s jωDs,= = =
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Using Eqs. (3) and (6), we represent the acoustic
stress and the acoustic current in the piezoelectric
layer as

(9)

(10)

Here, c* = c1(1 + k2) is the elastic constant renormal-
ized due to the piezoelectric effect, k2 = e2/c1ε is the
electromechanical coupling factor squared.

The sublayers connecting the piezoelectric layer
with the acoustic duct are a cascade connection of
acoustic waveguide sections. Each of them is a linear
two-port network connecting the input acoustic stress

T1 z( ) c* – jβ1u1+e
jβ1z–

jβ1u1–e
jβ1z

+( ) e
ε
--D0,–=

I1 z( ) ∂u1/∂t( )s jωs u1+e
jβ1z–

u1–e
jβ1z

+( ).–=–=
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
Tm, in and current Im, in with the output ones Tm, out and
Im, out. The transfer matrix for a section of the uniform
waveguide has the form [11]

(11)

where m is the layer number; θm = ωh2m/v 2m.

The acoustic wave resistance of the rear load Z30 is
transformed by the series of N superlayers into some
impedance ZN in the input plane of the superlayer
immediately adjacent to the piezoelectric. The value of
ZN can be found by applying the well-known expression

a[ ] θ2mcos j Z2m0/s( ) θ2msin

j s θ2msin( )/Z2m0 θ2mcos
,=
(12)Z3n Z3n0

Z3 n 1–, ωh3n/v 3n( )cos jZ3n0 ωh3n/v 3n( )sin+
Z3n0 ωh3n/v 3n( )cos jZ3 n 1–, ωh3n/v 3n( )sin+
----------------------------------------------------------------------------------------------------------=
to each superlayer in turn, from n = 1 to n = N, by taking
Z3, n – 1 = Z30 at n = 1. Here, Z3n and Z3, n – 1 are the acous-
tic impedances at the input boundaries of the superlay-
ers with numbers n and (n – 1).

DIRECT TRANSFORMATION
Let the input signal be the voltage with a complex

amplitude Vaa+ induced across the terminals aa by the
direct wave in the transmission line. The piezoelectric
element is electrically characterized (at the terminals bb)
by the so-called radiation impedance Z rad. Taking into
account the shunt capacitance Csh along with the series
inductance L and resistance Rlos, we obtain the imped-
ance across the terminals aa:

(13)

This impedance loads the transmission line with the
wave resistance Z0. The reflection coefficient for the
wave of voltage across the aforesaid terminals is

(14)

Evidently,

(15)

where Vaa is the complex amplitude of the total voltage
across the terminals aa, Vaa = Vaa+ + Vaa–, and Vaa– is its
part corresponding to the reflected wave.

The voltage Vaa induced by the source of the signal
causes the appearance of voltage across the piezoelec-
tric element (the bb terminals). As a consequence, a sta-
tionary wave of elastic strain with complex amplitudes
u1+ and u1– is excited in the piezoelectric. The waves of
acoustic stress and acoustic current appear. The latter
two have complex amplitudes T1(h1) and I1(h1) at the
sublayer boundary and are calculated according to
Eqs. (9) and (10), if u1+, u1–, and D0 are known. The val-

Zaa Rlos jωL Zrad/ 1 jωCshZrad+( ).+ +=

ΓE Zaa Z0–( )/ Zaa Z0+( ).=

Vaa+ Vaa/ 1 ΓE+( ),=
ues found are the input values for the sublayer chain.
Using the transfer matrix (11) and applying it in turn
to all sublayers, from m = M to m = 1, one can find the
acoustic stress and current at the output boundary of
the last sublayer. The resulting value T21, out = T2+ is
just the desired acoustic stress at the output of the trans-
ducer (at the input of the acoustic duct). One has but to
find the transfer constant according to definition (1).

To put the above algorithm into effect, it is useful to
introduce the dimensionless displacements  =
u1±/N0, where N0 is a norm defined by the formula

Then, the continuity conditions for the acoustic imped-
ances at the piezoelectric boundaries take the form

(16)

(17)

Here, ZN and ZM are the acoustic impedances in the
superlayer at n = N and in the sublayer at m = M at the
piezoelectric boundaries. The first impedance is calcu-
lated by a successive application of formula (12), by
varying n from 1 to N. The second impedance is found
by the same formula, replacing n by m and varying m
from m = 1 to m = M with taking Z2, m – 1 = Z20 at m = 1.
The solution of the system of Eqs. (16), (17) gives the
complex dimensionless strain amplitudes  and .

The electric radiation impedance of the piezoelec-
tric element can be found by dividing voltage (7) by

u1±'

N0 eD0/Z10εω.=

u1+' e
jβ1h1– ZM

Z10
------- 1– 

  u1–' e
jβ1h1 ZM

Z10
------- 1+ 

 + j,–=

u1+' ZN

Z10
------- 1+ 

  u1–' ZN

Z10
------- 1– 

 + j.=

u1+' u1–'
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current (8). Changing to the dimensionless quantities,
we obtain

(18)

where X0 = 1/ωC0 is the capacitive resistance of the
piezoelectric element and C0 = εs/h1 is its static capaci-
tance.

The electric impedance Zaa across the terminals aa
and the reflection coefficient ΓE are determined by
Eqs. (13) and (14), respectively. Taking that the electric
displacement D is predetermined and using the Kirch-
hoff rules for the electric circuit containing the piezo-
electric element with the impedance Z rad, the shunt
capacitance Csh, the inductance L, and the resistance
Rlos, one easily obtains

Substituting this formula into Eq. (15) and expressing
D0 through the norm N0, we obtain the complex ampli-
tude of the voltage at the input of the transducer:

(19)

Introducing the dimensionless strains in Eqs. (9) and
(10) and taking z = h1, we find the complex amplitudes
of acoustic stress and current at the output of the piezo-
electric to the sublayer with the number M:

(20)

(21)

The values obtained are the input ones for the cas-
cade connection of the two-port networks represented
by the media between the piezoelectric and the acoustic
duct. Using the transfer matrix (11), one can write the
equations that provide the output stress and current
amplitudes for each layer, if the input ones are given:

(22)

(23)

The output values, T2m, out and I2m, out, for the layer with the
number 2m are the input ones, T2(m – 1), in and I2(m – 1), in,
for the layer 2(m – 1). Performing the calculations by
Eqs. (22) and (23) with m changing from M to 1, we
obtain the complex amplitude T2+ of acoustic stress at

Zrad

X0
-------- – j j

k2

1 k2+( )
------------------- 1

β1h1( )
---------------+=

× u1+' e
jβ1h1–

1–( ) u1–' e
jβ1h1 1–( )+[ ] ,

Vaa jωD0s 1 jωCshZrad+( )Zaa.=

Vaa+

N0
---------- jω2s

1 k2+( )ε0εrZ10

v 1
------------------------------------=

× 1 jωCshZrad+( )
Zaa

1 ΓE+( )
--------------------.

T1 z h1=( )
N0

------------------------- jZ10ω –u1+' e
jβ1h1–

u1–' e
jβ1h1 j+ +[ ] ,=

I1 z h1=( )
N0

------------------------ j– ωs u1+' e
jβ1h1–

u1–' e
jβ1h1+( ).=

T2m out, θ2mcos( )T2m in, j
Z2m0

s
---------- θ2msin( )I2m in, ,–=

I2m out, – j
s θ2msin

Z2m0
------------------T2m in, θ2mcos( )I2m in, .+=
the transducer output. Then the sought-for transfer con-
stant K+ can be determined by Eq. (1). The transforma-
tion coefficient is

(24)

and the phase difference between the excited acoustic
wave and the direct EM wave supplied to the trans-
ducer is

(25)

INVERSE TRANSFORMATION

Let an acoustic wave be supplied through the acous-
tic duct to the transducer and let this wave have a given
complex strain amplitude u2+ at the boundary with the
first sublayer. Then, at this boundary, the acoustic stress
and current of the wave have the amplitudes

(26)

(27)

The reflected waves are combined with the incident
ones and give rise to the complex amplitudes of acous-
tic stress and current at the boundary:

(28)

(29)

where ΓT is the reflection coefficient of the elastic-
stress wave, which can be easily found, if the acoustic
impedance of the piezoelectric element Z2 is known. In
the case of the inverse transformation, this impedance
characterizes the load of the acoustic duct. A technique
for calculating Z2 and then ΓT will be shown below [see
Eq. (42)].

Suppose that we found T2 and I2, which are the input
quantities T21, in and I21, in for the series of sublayers.
Considering the system of sublayers as a cascade con-
nection of linear two-port networks characterized by
the transfer matrix (11), one can determine the corre-
sponding amplitudes T2M, out and I2M, out at the output of
the entire system. The calculations are performed by
Eqs. (22) and (23). After their M-fold application, we
obtain the acoustic stress and current amplitudes T1 and
I1 at the input of the piezoelectric at z = 0. In the piezo-
electric, we have the strain waves with the amplitudes
u1+ and u1– and the current density Je, which are related
to the values of T1 and I1 determined above by the for-
mulas

(30)

(31)

η+ K+
2,=

ϕ+

Im K+( )
Re K+( )
------------------.arctan=

T2+ jZ20ωu2+,–=

I2+ jωu2+s.–=

T2 jZ20ωu2+ 1 ΓT+( ),–=

I2 jωu2+s 1 ΓT–( ),–=

– jZ10ω u1+ u1––( ) jJe
1
ω
---- k2

1 k2+
--------------

Z10v 1

ε
--------------+ T1,=

jωs u1+ u1–+( )– I1.=
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Knowing Je, one can also easily calculate the voltage
amplitude Vaa+ at the output of the transducer (the ter-
minals aa).

Equations (30) and (31) involve three unknown
interrelated quantities u1+, u1–, and Je. To find the last
one, it is necessary to obtain one more equation. For
this purpose, one can use the condition for the existence
of stationary oscillations at the terminals bb:

(32)

where Zpiez is the electric impedance of the piezoelec-
tric element in the case of inverse transformation, and
ZL is the load impedance at the terminals bb. The first
quantity can be calculated by dividing voltage (7)
across the piezoelectric element by current (8). The sec-
ond quantity can be found by the formula

(33)

As a result, we obtain from Eq. (32):

(34)

From Eqs. (30), (31), and (34), one can easily deter-
mine numerically the complex amplitude of the density
Je of electric current flowing through the piezoelectric
element and, then, calculate the amplitude of the volt-
age across the terminals aa:

(35)

Turn now to the beginning of this section and dem-
onstrate how the reflection coefficient ΓT is found. Out-
line first the way of solving this problem. First, it is nec-
essary to calculate the dimensionless amplitudes of the
direct and inverse waves  and  in the piezoelec-
tric. Then, we find the amplitudes of the normalized
acoustic stress T1/N0 and current I1/N0 in the piezoelec-
tric at the sublayer boundary z = h1. Further, using the
transfer matrix (11), these quantities should be recalcu-
lated to the acoustic duct output, i.e., T21, in/N0 and
I21, in/N0 should be found, their ratio being the acoustic
impedance Z2 in the output plane of the acoustic duct. It
is the latter quantity that determines the sought-for
reflection coefficient ΓT.

The continuity condition for the impedance at the
boundary z = h1 between the piezoelectric and the adja-
cent superlayer, when written for the dimensionless dis-
placement amplitudes, has the form

(36)

Here, Z3N is calculated by Eq. (12).

Zpiez ZL+ 0,=

ZL

Z0 Rlos jωL+ +
1 jωCsh Z0 Rlos jωL+ +( )+
------------------------------------------------------------------.=

u1+ 1 e
jβ1h1–

–( ) u1– 1 e
jβ1h1–( )+

+ Jes ZL jX0–( ) 1 k2+

k2
-------------- ε

Z10v 1
-------------- 0.=

Vaa+

JesZLZ0

Z0 Rlos jωL+ +
-------------------------------------.=

u1+' u1–'

u1+' Z3N

Z10
-------- 1– 

  e
jβ1h1–

u1–' Z3N

Z10
-------- 1+ 

  e
jβ1h1+ j.–=
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At the other boundary, at z = 0, we cannot write a
similar condition, because, in this case, the acoustic
impedance at this boundary is the sought-for quantity
depending on the electric load of the piezoelectric ele-
ment. Therefore, as the second equation, we use the
condition of the existence of stationary oscillations
written for the terminals bb. Using the dimensionless
strain amplitudes, we obtain

(37)

The normalized acoustic strain and current in the piezo-
electric at the boundary z = 0 (i.e., at the output of the
sublayer 2M) are

(38)

(39)

Using the transfer matrix (11), we can write the equa-
tions allowing one to determine the input stress and cur-
rent amplitudes for each sublayer, if the output ones are
known:

(40)

(41)

Taking the stress and the current at the 2M-sublayer
output to be equal to the values from Eqs. (38) and (39)
and then applying successively Eqs. (40) and (41) for m
varying from M to 1, one can calculate T21, in and I21, in,
whose ratio gives the acoustic impedance Z2. Then, the
sought-for reflection coefficient will be

(42)

It is this value ΓT that should be substituted into Eqs. (28)
and (29).

The transfer constant K– is calculated according to
definition (2). In this case, the amplitude of the output
voltage Vaa+ is determined by Eq. (33), and the ampli-
tude of the input elastic stress T2+ is found by Eq. (26).

The coefficient for the inverse (acoustoelectric) trans-
formation is calculated by Eq. (24), and the phase differ-
ence between the output and input signals is calculated
by Eq. (25) with a change of indices from + to –.

COMPARISON OF THE DIRECT AND INVERSE 
TRANSFER CONSTANTS

On the basis of the above algorithms, two indepen-
dent PC programs with the outer frequency loop were
developed.
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=  
β1h1( ) 1 k2+( )
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I2M out, /N0 jω– u1+' u1–'+( )s.=

T2m in,  = θ2mcos( )T2m out, j
Z2m 0,

s
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I2m in, j
s θ2msin

Z2m 0,
------------------T2m out, θ2mcos( )I2m out, .+=

ΓT

Z2 Z20–
Z2 Z20+
-------------------.=
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For the case of the direct transformation, the pro-
gram successively executes the inner loops of calculat-
ing the values of ZM and ZN by Eq. (12); the simulta-
neous solution of Eqs. (16) and (17); the calculations by
Eqs. (18), (13), (14), and (19)–(21); the inner loop of
calculation by Eqs. (22) and (23); and, finally, the cal-
culation of K+, η+, and ϕ+ by Eqs. (1), (24), and (25).

For the inverse transformation, the program suc-
cessively executes the inner loop of calculating ZN by
Eq. (12); the simultaneous solution of Eqs. (36) and
(37); calculations by Eqs. (38) and (39); the inner loop
of calculation by Eqs. (40) and (41); calculations by
Eqs. (28), (29), and (42); the M-fold loop of calculation
by Eqs. (22) and (23); calculations by Eq. (33); the
simultaneous solution of Eqs. (30), (31), and (34); cal-
culations by Eq. (35); and, finally, the calculation of K–,
η–, and ϕ– by Eqs. (2), (24), and (25) after changing the
indices + to – in Eqs. (24) and (25).
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Fig. 2. Frequency dependences of the transformation coef-
ficient η( f ) and the phase shift ϕ( f ) between the output and
input signals. The piezoelectric is (Y + 36°)-cut lithium nio-
bate (32 µm). The acoustic duct is fused quartz. The rear
load is epoxy resin. The sublayers (beginning from the piezo-
electric layer) are chromium (0.04 µm), copper (0.2 µm),
indium (1 µm), copper (0.2 µm), and chromium (0.04 µm).
The superlayers are (in the same order) chromium (0.04 µm)
and copper (0.2 µm). L = 6 nH, Rlos = 0.5 Ω , Csh = 0, Z0 =
50 Ω . The diameter of the transducer is 5 mm.
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Fig. 3. The same as in Fig. 2 for the thickness of the indium
layer 6.5 µm.
The model analyzed was the structure shown in
Fig. 1. The piezoelectric layer was taken to be con-
nected with the acoustic duct by five intermediate metal
sublayers, and the other side of the piezoelectric was
loaded with a rear absorbing load with the help of two
metal superlayers. It was assumed that, depending on
the transformation direction, the line was either
matched with the generator or loaded by a matched
load. The transformation coefficient and the phase dif-
ference between the output and the input signals were
calculated by Eqs. (24) and (25).

The analysis included wide-range variations of the
layers thickness, the acoustic wave resistance of layers
and the sound velocity in them, the inductance and the
active resistance of the connecting wire, the wave resis-
tance of the transmission line, the acoustic wave resis-
tances of the acoustic duct and the rear absorbing load,
the parasitic shunt capacitance, and the area and thick-
ness of the piezoelectric element.

In all cases, the direct and the inverse transfer con-
stants differed only in sign: K+ = –K–, while  and,
consequently, the angle ϕ were the same. The fre-
quency dependences of the angles ϕ+ and ϕ– were
almost linear with negative derivatives ∂ϕ/∂f in the
vicinity of the maximal values of η+ or η–. It is well
known that the linear frequency dependence of the out-
put–input phase shift takes place but in the case of the
transmission line section without dispersion.

Figures 2 and 3 illustrate the results of calculating
η+ and ϕ+ as functions of frequency for two specific
transducers. Similar curves are obtained in the case of
the inverse transformation. The transducers in question
were structures consisting of a (Y + 36°)-cut lithium
niobate plate, an acoustic duct made of fused quartz, a
rear acoustic load of epoxy resin, five sublayers, and
two superlayers. The materials and the thicknesses of
the sublayers and superlayers, as well as the necessary
geometric and electric parameters of the transducers, are
indicated in the cutline of Fig. 2. The results presented in
Figs. 2 and 3 were obtained for the 10–450 MHz fre-
quency range. The dependence η( f ) has two maximums
in the aforementioned range. One is near 100 MHz, and
the other is at about 320 MHz. The second maximum
relates to the excitation of the so-called third harmonic.
The calculation at higher frequencies reveals other
maximums at frequencies of ~560 MHz (the fifth har-
monic), ~790 MHz (the seventh harmonic), and so on.
The effectiveness of excitation decreases compared to
the previous maximum by ~10, ~5, ~3 dB, etc., respec-
tively. The nonsymmetric nature of the curves is caused
by the influence of intermediate layers. Variations of
their thickness can lead to a considerable change in the
curves’ shapes. It can be seen that, for a thin indium
layer (1 µm), the dependence η( f ) (see Fig. 2) is nar-
rower, though higher, than for a thick layer (6.5 µm)
(see Fig. 3). As for the phase shift ϕ, its frequency
dependence obtained for the thin indium layer is less
steep and deviates more widely from a linear one. The

ϕtan
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observed jumps of the phase angle are exactly equal to
π, and the derivative ∂ϕ/∂f at the jump points remains
continuous.

It should be noted that, in the frequency interval
from ~0.18 to ~0.25 GHz, the phase angle exhibits a
smooth curve similar to an upturned letter N with a
region where the derivative is ∂ϕ/∂f > 0. This is
observed near the point, where the transformation coef-
ficient drops to zero.

CONCLUSION
In this paper, on the basis of the wave approach, we

developed algorithms for calculating the direct and
inverse transfer constants of a piezoelectric transducer
with an arbitrary number of intermediate layers and
with a rear load. We also developed the programs for a
PC and applied them to diverse variants of transducers,
which allowed us to demonstrate that the direct and the
inverse transfer constants differ only in sign. The
amplitude–frequency and phase–frequency character-
istics obtained for the direct transformation and the
inverse one fully coincide. The algorithms developed
for calculating the transfer constants can be used in the
analysis of the pulse responses of complex multilayer
piezoelectric transducers.
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Abstract—Reflection of zero-order normal acoustic waves excited in a thin piezoelectric plate from a set of
conducting strips of a finite thickness is studied both theoretically and experimentally. The analysis shows that
the effects produced by the short-circuiting of the plate surface and by the elastic load on the impedance ratio
of adjacent plate segments are in opposition to each other. These effects can be commensurable, and, hence, for
each wave type, there is a certain value of the strip thickness at which the reflection coefficient becomes equal
to zero. The experimental results obtained for a shear horizontal normal wave (an SH0 wave) propagating in a
lithium niobate plate are in good agreement with the theory and justify the use of the equivalent-circuit model
in analyzing the properties of reflectors of the type under study. © 2002 MAIK “Nauka/Interperiodica”.
A reflector for normal acoustic waves is a useful,
and often indispensable, component for many practical
applications [1, 2]. Such reflectors are used in resona-
tors, unilateral SAW transducers, delay lines with low-
level spurious signals, directional couplers, various
kinds of filters, etc. Several types of reflection gratings
based on the use of electric and mechanical loads, as well
as etched grooves on a substrate surface, have been suc-
cessfully implemented in the design of SAW reflectors.

Recently, normal acoustic waves in thin plates have
attracted considerable interest because of their unique
properties, which are promising for designing new sen-
sors and data processing devices and also for studying
the properties of materials [3]. Evidently, the aforemen-
tioned types of SAW reflectors can also be used for the
reflection of acoustic waves in plates. The reflection of
a zero-order normal acoustic wave with the shear hori-
zontal polarization (an SH0 wave) from a set of thin
conducting strips arranged on the Y–X surface of lith-
ium niobate was studied in [4]. The results of this study
showed that the reflection of normal acoustic waves in
plates was more efficient than the reflection of SAW
propagating in the same material. This result is
explained by the stronger electromechanical coupling
of waves in plates, as compared to SAW. From physical
considerations, one would expect that gratings with a
periodic mechanical load must also be more effective
for waves in plates. In this paper, we present the first
results obtained by studying the reflection of zero-order
normal acoustic waves from a grating with a periodic
mechanical load.
1063-7710/02/4802- $22.00 © 20162
To calculate the characteristics of such a reflector,
we used an equivalent circuit consisting of alternating
segments of sound channels with different wave imped-
ances. The theoretical analysis showed that an efficient
reflection of zero-order normal acoustic waves can be
achieved by using a grating with a relatively small num-
ber of elements. The experimental study of an SH0 wave
reflector that was made on the basis of silver strips
deposited on a thin lithium niobate plate showed a good
agreement with the theoretical results. This fact justi-
fied the use of the equivalent-circuit model in analyzing
the reflection of acoustic waves in piezoelectric plates
under the effect of a purely mechanical load.

Let us consider the theoretical model of a reflector
with a mechanical load. The structure of such a reflec-
tor is shown in Fig. 1. It consists of a grating formed by
finite-thickness strips deposited on the surface of a
plate. Adjacent plate segments have different acoustic
impedances, and, therefore, a propagating wave is
reflected from every strip and gives rise to a resulting
reflected wave. The operation of this reflector with
allowance for multiple internal reflections can be ana-
lyzed with the help of the equivalent circuit convention-
ally used for SAW [5]. The circuit was modified for
describing the reflection of acoustic waves in plates
from a set of thin conducting electrodes [4]. The modi-
fied circuit contains no electromechanical transducers,
because the aforementioned electrodes are not con-
nected with each other. The modified circuit used in our
study is shown in Fig. 2. Each grating element is repre-
002 MAIK “Nauka/Interperiodica”
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sented by a T-section, and the elements of the circuit are
characterized by the quantities

(1)

(2)

(3)

(4)

Here, a and b are the lengths of the reflector seg-
ments with and without mechanical load, respectively
(see Fig. 1), and Z = vρS and k are the total mechanical
impedance and the wave number in the plate without
load, where ρ is the density, v  is the wave velocity, and
S is the cross-sectional area of the acoustic waveguide.
The quantities Zm = vmρmSm and km are the mechanical
impedances and the wave numbers for the mechani-
cally loaded segments, where ρm and Sm are the effec-
tive densities and cross-sectional areas of the two-layer
waveguide. The meaning of these two quantities will be
explained below. The total reflection coefficient R of
the whole grating can be determined from the relation
R = (Z – Zin)/(Z + Zin), where Zin is the total input imped-
ance of the whole reflector. The equivalent circuit
shown in Fig. 2 allows one to calculate the reflection
coefficient as a function of the frequency and the num-
ber of reflecting elements for different values of the
impedance ratio of adjacent segments Zm/Z. Evidently,
the reflection of the acoustic wave is caused by a jump
in the wave parameters of the grating elements, namely,
when Zm /Z ≠ 1. The wider the ratio Zm/Z differs from
unity, the greater the reflection coefficient is. Figure 3
shows the characteristic dependences of the reflection
coefficient on the ratio Zm/Z at the central frequency for
different numbers of strips in the grating.

Now, let us estimate the impedance ratio Zm/Z for a
reflector with a mechanical load. In the case of thin con-
ducting electrodes whose mass is neglected, we have
Zm/Z = vm/v  [4]. In the case of a grating with a periodic
mechanical load, the situation becomes more compli-
cated, because the adjacent segments differ not only in
velocity, but also in density and in cross-sectional area.
As the effective density for a mechanically loaded seg-
ment of the grating, we used the density value averaged
over the cross section of the waveguide; i.e., the den-
sity ratio was determined by the formula ρm/ρ = [ρh +
ρ1d)]/ρ(h + d), where ρ1 and d are the density and the
thickness of the layer, respectively. The ratio of the cross-
sectional areas was determined as Sm/S = (h + d)/h.

To determine the velocities v  and vm, we performed
a rigorous analysis of zero-order normal acoustic waves
propagating in single-layer and two-layer waveguides
based on lithium niobate. We assumed that the substrate
thickness was much smaller than the wavelength λ, i.e.,
h/λ ! 1. In this case, only three types of waves can
propagate in the plate: two Lamb normal waves (the
antisymmetric A0 wave and the symmetric S0 wave) and

Z1 iZ kb/2( ),tan=

Z2 iZ/ kb( ),sin–=

Z1m iZm kma/2( ),tan=

Z2m iZm/ kma( ).sin–=
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one shear horizontal normal wave (the SH0 wave). For
each of these waves, the cut of the plate, the propaga-
tion direction, and the plate thickness were selected so
as to obtain the maximal coefficient of electromechan-
ical coupling K. For lithium niobate, the corresponding
parameters for each of the aforementioned modes are as
follows [6]: for the A0 wave, the Y + 128° cut, the X
direction of propagation, and h/λ = 0.25; for the S0

wave, the Y cut, the X + 50° direction of propagation,
and h/λ = 0.1; and for the SH0 wave, the Y cut, the X
direction of propagation, and h/λ = 0.1.
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Fig. 1. Structure of a reflector for waves in a plate. The
reflector contains N reflecting elements.

Fig. 2. Equivalent circuit of a reflector with a mechanical
load.

Fig. 3. Dependence of the reflection coefficient on the
impedance ratio Zm/Z at the central frequency for different
numbers of strips in the reflection grating: N = (1) 2, (2) 5,
(3) 8, and (4) 12.
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The mechanical loads were metal layers, which
were easy to deposit and allowed a choice of acoustic
impedance in a wide range of values. At first, we deter-
mined the wave velocity v  for a given plate thickness
h/λ. For this purpose, we used the method described in
[7]. To determine the velocity vm, we analyzed the
propagation of acoustic waves in a two-layer structure
containing a piezoelectric substrate and a perfectly con-
ducting elastic layer of finite thickness. We used the
standard equations of motion for both elastic media, the
Laplace equation for the piezoelectric plate and the
vacuum, and the corresponding equations of state. The
mechanical and electric boundary conditions were as
follows: (i) the stress and displacement continuity and
the zero value of the electric potential at the boundary
between the two elastic media; (ii) the continuity of
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Fig. 4. Dependence of the impedance ratio Zm /Z on d/h for
the (a) A0, (b) S0, and (c) SH0 waves. The layers are made
of (1) gold, (2) silver, (3) titanium, and (4) aluminum. The
surface areas between the strips are electrically free (the
solid lines) and short-circuited by a thin conducting film
(the dashed lines).
both the electric potential and the normal component of
the electric displacement and the zero stress value at the
piezoelectric–vacuum boundary; and (iii) the zero stress
value at the layer–vacuum boundary. From the theo-
retical analysis, we determined the dependence of the
velocity on the normalized thickness h/λm for a given
ratio d/h. Then, to determine the velocity v m and the
normalized plate thickness h/λm, we used the condi-
tion

(5)

which meant that the frequency of the propagating
wave was the same within loaded and unloaded seg-
ments.

The calculated dependences of the impedance ratio
on d/h are shown in Figs. 4a–4c for the A0, S0, and SH0
waves, respectively. The mechanical load was made of
the following materials: gold, silver, titanium, and
aluminum with the densities 19.31, 10.5, 4.5, and
2.7 g/cm3, respectively. The density of lithium niobate
was 4.628 g/cm3. Figure 4 presents the results for two
situations: the regions between the strips are electri-
cally free (the solid lines) and short-circuited by a thin
conducting film (the dashed lines).

In the first case, two factors are present: a mechani-
cal load on the surface and the short-circuiting of the
surface. The latter factor reduces the acoustic imped-
ance, whereas the mechanical load causes an increase
in the acoustic impedance with increasing layer thick-
ness. Thus, the aforementioned factors “work” in oppo-
site directions; i.e., for certain values of d/h, the
acoustic impedance ratio becomes equal to unity. This
occurs when the electric and mechanical effects com-
pensate each other and the total reflection coefficient
is equal to zero.

When the regions between the strips are short-cir-
cuited, the jump in the electric boundary conditions is
absent, and the reflection is caused by the mechanical
load only.

The aforementioned dependences allow one to opti-
mize the situation when the impedance ratio is suffi-
cient to obtain an efficient reflector governed exclu-
sively by the mechanical load.

In line with the results presented above, we per-
formed an experimental study of the reflection of an
SH0 wave from a grating with a purely mechanical load.
The acoustic waveguide was made on the basis of a
Y-cut lithium niobate plate with the direction of propa-
gation along the X axis. To excite an acoustic wave at an
operating frequency of 3 MHz, we used an interdigital
transducer with a period of 1.2 mm and with two finger
pairs. To reduce the reflection of the acoustic wave from
the transducer and to reduce the level of the multiple
reflection signal, the transducer was made on the basis
of split electrodes. The capacitance of the transducer
was compensated by a corresponding inductance, and
the transducer was matched with the transmission line
through a matching transformer. The reflector consisted

h/λm( )v m h1/λ1( )v ,=
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of five silver strips 10 µm thick, which were vacuum
deposited with a period of 0.6 mm on the plate surface.
To obtain a good adhesion of the reflecting strips, we
first deposited a thin chromium film. This film short-
circuited the tangential components of the electric field
accompanying the wave within the unloaded segments,
and, thus, the reflection occurred due to the mechanical
load only. The amplitudes of the incident and reflected
waves, Ai and Ar , were measured in a pulsed mode
using an electrostatic probe [4]. The latter was a piece
of a coaxial line whose central lead ended in a thin
tungsten needle 100 µm in diameter. The opposite end
of the coaxial line was cable-connected with the mea-
suring oscilloscope. The tungsten needle of the probe
touched the surface of the piezoelectric and could be
moved smoothly from the transducer to the reflector by
a precision mechanism. With the propagation of an
acoustic wave pulse, an electric signal proportional to
the strength of the piezoelectric field accompanying the
wave appeared at the probe output. By changing the
probe position, it was possible to separate in time the
pulses corresponding to the incident and reflected
waves on the screen of the oscilloscope. After the
amplitudes of these waves were measured, the reflec-
tion coefficient R was calculated as R = Ar/Ai. To study
the reflection of acoustic waves at different values of
d/h, the plate thickness was decreased by polishing the
back side of the plate. For this purpose, we used a spe-
cial glass unit intended for fastening the plate, as
described in [8]. This method allowed us to reduce the
plate thickness from its initial value of 500 µm to a ter-
minal value of 100 µm and to measure the characteris-
tics of the reflector for several intermediate values of
d/h. Figure 5 shows the reflection coefficient obtained
from the experiment as a function of the plate thickness
along with the corresponding theoretical dependence
calculated with allowance for the short-circuiting of the
surface. One can see a good agreement between the
experimental data and the theoretical curve.

Thus, the theoretical analysis shows that, for a
reflector based on a set of conducting strips of finite
thickness, the effect of short-circuiting of the plate sur-
face and the effect of an elastic load on the impedance
ratio of adjacent plate segments are in opposition to
each other. For the efficiency of a reflector of acoustic
waves in plates, the effects of a mechanical load and the
short-circuiting of the plate surface are commensura-
ble. Therefore, for each type of waves, there exists a
certain value of the strip thickness at which the reflec-
tion coefficient becomes zero. This conclusion is of
practical importance for the development of a reflector
with a controlled reflection coefficient. The experimen-
tal results presented above are in good agreement with
the theory and testify that the use of the model based on
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
equivalent circuits is suitable for analyzing the reflec-
tors under discussion.
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Abstract—An approach based on the redistribution of acoustic energy between waveguide modes is used to
state the inverse problem of sound scattering from small compact inhomogeneities in a shallow-water
waveguide. Numerical results are presented. © 2002 MAIK “Nauka/Interperiodica”.
As shown in earlier publications [1, 2], three-dimen-
sional problems of sound scattering in a shallow-water
waveguide can be successfully approached from the
point of view of the energy redistribution between
waveguide modes. Weston and Fawcett [2] considered
the sound scattering by the bottom inhomogeneities
and derived simple formulas for the mode conversion
coefficients, Smn, which determine the amount of the
acoustic energy scattered into the nth mode from the
mth mode of the incident field. Fawcett [3] applied
these formulas to reconstruct the form of axially sym-
metric inhomogeneities of the bottom by remote sens-
ing. Similar formulas were derived by Fawcett [4] for
acoustic scattering by three-dimensional axially sym-
metric inhomogeneities of the density and sound veloc-
ity. The representation of the sound field as the super-
position of modes was used to state inverse problems of
scattering and minimization [5].

In the previous paper [6], we obtained new formulas
for the mode conversion coefficients, Smn, from small
compact inhomogeneities of the density, the sound
velocity, and the internal boundaries of the sea bottom.
In these formulas, the inhomogeneities are represented
as the Fourier and Fourier–Bessel series in angular and
radial coordinates, respectively. This leads to a more
detailed analytical description of acoustic scattering.

In this paper, on the basis of these formulas, we state
the problem of the reconstruction of an inhomogeneity
from the observation data obtained in the far field. The
problem is formulated as a linear operator equation of
the first kind, which can be solved by the method of sin-
gular value decomposition. Cutting off the series repre-
senting inhomogeneities gives a regularizing effect,
which complements the mechanism of the regulariza-
tion on the basis of the selection of singular vectors
with small singular values. Such a statement, contrary
to that used in [5], allows one to solve problems of
higher dimension with a smaller amount of computa-
1063-7710/02/4802- $22.00 © 20166
tion. For simplicity, we consider only the case of a sur-
face inhomogeneity of the sea bottom. The efficiency of
the approach is illustrated by the results of model cal-
culations.

STATEMENT OF THE INVERSE PROBLEM

We consider a stationary sound field of circular fre-
quency ω, which is described by the complex sound
pressure u in the region –H ≤ z ≤ 0, where z is the ver-
tical coordinate. The horizontal coordinates are denoted
by x and y.

We assume that the density ρ and the sound velocity
Ò are piecewise continuous functions with discontinui-
ties at the surface z = h(x, y), at which the following
conditions are fulfilled

where the symbols + and – denote the limits of the
variables at a considered point z = z0 from above, i.e.,
at z > z0, and from below, respectively, and ∂/∂n denotes
the derivative with respect to the normal.

Next, we assume that the sound velocity and the
density above and below the interface depend only on
z, and a function describing this interface can be repre-
sented as h(x, y) = h0 + h1(x, y), where h0 is a constant
and h1 is a small quantity, as compared to the typical
wavelength L = 2πc0/ω (c0 is the typical sound veloc-
ity), and is zero outside a limited region Ω .

In the Born approximation, the acoustic pressure is
represented by u = uinc + usc, where uinc is the incident
field and usc is the principal term of the scattered field. As
the incident field, we consider the field of a vertically dis-
tributed source (a vertical array) located at the point with
the horizontal coordinates x0, y0. Such a field can be rep-

u+ u–,
1
ρ
--- u∂

n∂
----- 

 
+

1
ρ
--- u∂

n∂
----- 

 
–

,= =
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resented as a linear combination of modes: uinc =

(kjξ)φj(z), where ξ = 
and φj and kj are determined by the eigenvalue problem

with the internal boundary conditions

at z = h0 and with the eigenfunction normalization

The scattered field can also be represented as a lin-
ear combination of the functions φj with range-depen-
dent coefficients. In particular, if the incident field con-

sists of a single mode uinc = (kjξ)φj(z), the scattered
field can be represented as

where the coefficients Sjn , which are called the mode
conversion coefficients, describe the scattering from the
jth mode of the incident field to the nth scattering mode.
In practice, these coefficients are easily obtained from
the analysis of the mode composition of the sound field
measured by vertical or horizontal arrays.

The expressions for the mode conversion coeffi-
cients Sjn derived in [6] are used to represent h1 as a
double Fourier and Fourier–Bessel series (see, e.g., [8])
in angular and radial coordinates, respectively, in the
cylindrical coordinate system (r, α, z):

where L is such that the region Ω is within the circle of
radius L with the center at the coordinate origin, γp are
the positive roots of the equation Jm(r) = 0, and Jm are
the Bessel functions. Denoting the horizontal coordi-
nates of the receiver and the source by (rr , αr) and
(r0 , α0), respectively, we write the expressions for Sjn

from [6] as the Fourier series

(1)

where the coefficients  are given by the formula

(2)
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where

(3)

In these formulas, it is assumed that rr is large enough

to replace the Hankel functions (knrr) by the prin-
ciple terms of their asymptotics at rr  ∞. We note
that no similar limitations are imposed on the source
coordinates.

Formulas (1) and (2) determine the linear transfor-
mations from the data specifying the inhomogeneity to
the scattering data:

where –∞ < m < ∞, 1 ≤ p < ∞, –∞ < s < ∞, and 0 < j,
n ≤ M, where M is the number of the modes under con-
sideration; (rr , αr) ∈ Er and (r0 , α0) ∈ Es; Er and Es are
the sets of the horizontal coordinates of the points
where the sources and receivers are located. The matrix

elements of the operator  in the key case of a single
source and a single receiver are given by Eq. (3).

The inverse problem consists in the inversion of
these operators on the measured scattering data, i.e., in
solving the operator equations of the first kind. The use

of the scattering data { (rr; r0, α0)} is natural, if
measurements were carried out on the circles of suffi-
ciently large radius. The typical finite-dimension
approximation of this problem is obtained by limiting

the number of the reconstructed coefficients  and
the number of the Fourier harmonics in the mode con-
version coefficients and by presetting the finite sets Er

and Es. In this case, we do not require that the number
of the reconstructed coefficients coincide with the
dimension of the space of scattering data. In this situa-
tion, we deal with a pseudoinversion of the operator A,
and in this paper, we suggest using the method of
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pseudoinversion based on the singular value decompo-
sition [7]. This method includes the regularization pro-
cedure, which consists in projecting the solution on the
halfspace that is orthogonal to singular vectors with
singular values lying in the interval (–e, e), where e is
the regularization parameter.

NUMERICAL RESULTS

Calculations were carried out for a two-layered
medium (water/bottom) with a constant density and a
constant velocity for each layer. For the water layer
with a thickness of 200 m, the density and the sound
velocity were taken to be 1000 kg/m3 and 1470 m/s,
respectively; for the bottom layer with a thickness of
500 m, these parameters were 1150 kg/m3 and 2000 m/s.
The sound frequency was 20 Hz. For these conditions,
there are four propagating modes, which persist when
the thickness of the bottom layer tends to infinity. Only
these four modes were used in the calculations.

The test inhomogeneities of the sea bottom were
given by the functions

(4)

The parameter σ was taken equal to 30, A0 = 1, A1 = 8 ×
10–2, A2 = 3 × 10–3, and A3 = 1 × 10–4. Thus, each inho-
mogeneity was described by only one angular cosine

Fourier harmonic Re (r) = AMrMexp(–r2/σ2). In the
argument r, the functions (4) are well approximated by
the Fourier–Bessel series of eight terms. These data
were used for calculating the scattering coefficients Sjn ,
where j, n = 1, …, 4, for the sources with the coordi-
nates r0 = 500 m, α0 = 0°, 90°, 180°, and 270°.

In this case, for the values of r0 that are large enough

to replace the Hankel function (kjr0) by its asymp-
totics, the coefficients Sjn have closed expressions

where

These expressions were used for testing the accuracy of
the representations of the functions of inhomogeneities
by their Fourier–Bessel series.
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The inverse problem was solved with the use of the
scattering data { (rr; r0, α0)}. The calculations were
carried out in the MATLAB system. In this system, the
method of pseudoinversion on the basis of the singular
value decomposition was represented by the pinv pro-
cedure. For the calculations, the scattering data were
prepared in the following way: the exact values 
were supplemented by a Gaussian white noise with a

normal deviation of 3% from the mean value of .
The calculations were carried out for several realiza-
tions of noise, with two and four sources [in Figs. 1–3,
versions (a) and (b), respectively]. Because of symme-
try, we used only the mode conversion coefficients Sjn

that satisfy the condition n ≥ j, so that their number
was equal to 10, and the number of angular harmonics
in each coefficient was 21. The number of the Fourier–
Bessel coefficients in the reconstructed function h1
was eight, the number of the angular Fourier harmon-
ics varied.

Figures 1–4 show the results of calculations for M =
2. In Figs. 1–3, the exact harmonic AMrMexp(–r2/σ2) is

compared with the functions Re (r) reconstructed
using eight terms in the Fourier–Bessel series whose
coefficients were obtained by the pseudoinversion of
the operator  for three different realizations of ran-
dom noise.

Figures 1 and 2 show the effect of the method of the
pseudoinversion based on the singular value decompo-
sition on the results of calculating the regularization
parameter. The regularizing effect of cutting off the
series representing the inhomogeneities is shown in
Fig. 3. In all calculations, the mean square deviations of
the harmonics that are not shown in the figures from
zero in terms of the mean-square norm are the same as
the deviations of the reconstructed fundamental har-
monic from the exact one. This is clearly seen in Fig. 4,
which exhibits the form of the surface of the initial
function and the surface reconstructed by 17 Fourier
harmonics with the regularization parameter 5 × 10–6

for four sources (see Fig. 1b).
The calculations carried out for all remaining func-

tions of the form of Eq. (4) for M = 0, 1, 3 provide, in
general, the same results.

The amount of computation, which can be estimated
as a moderate one, is mainly related to constructing the

matrix of the operator . Note that, in this case, the
basic properties of the sound waveguide are also
encoded in the matrix. The amount of calculation
related to the solution of the operator equation (the
pseudoinversion) is relatively insignificant.

Thus, the model calculations show that the state-
ment of the inverse problem as a linear operator equa-
tion on the basis of the formulas for solving the direct
problem from the previous paper [6] provides the nec-
essary regularization and allows an efficient solution of

Ŝ jns

Ŝ jns

Ŝ jns

ĥ1M

Â

Â
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Fig. 1. Reconstruction of the inhomogeneity function (3) for M = 2 with allowance for 17 angular Fourier harmonics: the initial function
(the solid line) and the solutions to the inverse problem (the dashed lines) for three realizations of 3% noise. (a) Two sources at the
angles α0 = 0° and 90°; (b) four sources at the angles α0 = 0°, 90°, 180°, and 270°. The regularization parameter is e = 5 × 10–6.

Fig. 2. Reconstruction of the inhomogeneity function (4) for M = 2 with allowance for 17 angular Fourier harmonics: the initial
function (the solid line) and the solutions to the inverse problem (the dashed lines) for three realizations of 3% noise. Versions (a)
and (b) are the same as in Fig. 1. The regularization parameter is e = 1 × 10–6.

Fig. 3. Reconstruction of the inhomogeneity function (4) for M = 2 with allowance for seven angular Fourier harmonics: the initial
function (the solid line) and the solutions to the inverse problem (the dashed lines) for three realizations of 3% noise. Versions (a)
and (b) are the same as in Fig. 1. The regularization parameter is e = 5 × 10–6.
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Fig. 4. Surface of the sea bottom inhomogeneities described by function (4) for M = 2: (a) the initial surface and (b) the surface
reconstructed on the basis of the data obtained from four sources (Fig. 1b).
the inverse problem by conventional means. This
makes the proposed approach suitable for use in prac-
tice for field experiments.

The reviewer of this paper pointed to significant
coherent effects that accompany the backscattering of
sound [9]. These effects cannot be taken into account in
the Born approximation used in this paper. To include
them in the consideration, the formalism must be
extended, which will be the subject of the following
studies.
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Abstract—Rayleigh-type flexural waves localized near the edge of a thin anisotropic layered plate are investi-
gated. The following effects are revealed: a wave attenuation with oscillations, a change of sign of the energy flux
for certain types of anisotropy, and the appearance of stationary waves. © 2002 MAIK “Nauka/Interperiodica”.
To all appearance, flexural waves of the Rayleigh
type were first investigated in [1] for the case of aniso-
tropic media. Such waves must be taken into account at
the excitation of a free edge, of the edge contact of dif-
ferent materials, etc. [2–4]. However, unlike plane Ray-
leigh waves, which are basic in a number of technolo-
gies used for nondestructive testing, seismic monitor-
ing, and the like (the bibliography for the case of
anisotropic media is presented, e.g., in [5, 6]), flexural
waves are not so famous. The reason is the compara-
tively small damping coefficient of a flexural wave (of
the order of ν4, where ν is the Poisson ratio) in an iso-
tropic medium. The appearance and widespread use of
promising composite materials raises the following nat-
ural questions:

(i) do the Rayleigh flexural waves exist in media
with a rather general type of anisotropy;

(ii) if so, what are their properties (the energy, the
damping factors, etc.);

(iii) how are these properties affected by the stack-
ing asymmetry in layered media (the correlation
between flexure and the plane strained state).

In spite of the interest manifested by some authors
[4], no detailed investigations of this problem were
published. This paper gives the answers to the first two
questions.
1063-7710/02/4802- $22.00 © 20171
Consider a thin packet with a symmetric structure,
which consists of anisotropic elastic layers. Denote the
total thickness of the packet by 2h, use the dimension-
less orthogonal coordinates x1, x2 normalized to h, and
take the internal stress-strained state of the layered
packet to be a long-wave one, i.e., satisfying the classi-
cal relations of the theory of layered plates [7]. The
interlayer contact is supposed to be an ideal one. All the
elastic constants below are taken to be normalized to
the maximal value (out of the packet layers) of the
Young modulus, and the densities are normalized simi-
larly.

Consider now harmonic oscillations of a semi-infi-
nite packet characterized by the flexural stiffness

matrix D =  and occupying the region Ω: x2 ≥ 0,
–∞ < x1 < ∞. The packet edge x2 = 0 is taken to be stress-
free. Then, the normal deflection w = w∗ (x1, x2)exp(iωt),
normalized to the half-thickness h, satisfies the equation

(1)

and the free-edge boundary conditions

d pq
3

L3 ∂1 ∂2,( ) ρω2–{ } w* 0,=

L3 ∂1 ∂2,( ) d11
3 ∂1

4 4d16
3 ∂1

3∂2+≡

+ 2 d12
3 2d66

3+( )∂1
2∂2

2 4d26
3 ∂1∂2

3 d22
3 ∂2

4,+ +
(2)M ∂1 ∂2,( )w* 0, F ∂1 ∂2,( )w* 0,= =

M

F
–

d12
3 ∂1

2 d26
3 ∂1∂2 d22

3 ∂2
2+ +

2d16
3 ∂1

3 d12
3 4d66

3+( )∂1
2∂2 4d26

3 ∂1∂2
2 d22

3 ∂2
3+ + +

,=
where ω is the cyclic frequency, ρ is the dimensionless
integral density, and M and F are operators correspond-
ing to the normal moment M22 and the normal intersect-
ing Kirchhoff force P2z = 2∂1M12 + ∂2M22.
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Let us analyze the possibilities for the existence of
wave solutions propagating along the edge and expo-
nentially decaying inside the packet, i.e., the Rayleigh-
type solutions

We use the designations

where d is some stiffness value chosen for the normal-
ization. Taking for definiteness k1 > 0, we obtain from
Eq. (1) a characteristic equation with constant coeffi-
cients for the parameter ξ:

(3)

The following statements are evident.
Statement 1. In the absence of mixed stiffness con-

stants (d16 = d26 = 0), Eq. (3) can have purely imaginary

w* Ae
i k1x1 k2x2+( )

, A const, Im k2 0.<= =

d pq

d pq
3

d
-------, s4 ρω2

dk1
4

---------, ξ
k2

k1
----,= = =

L 1 ξ,( ) s4– d11 4d16ξ+≡

+ 2 d12 2d66+( )ξ2 4d26ξ
3 d22ξ

4 s4–+ + 0.=
roots ξ: Reξ = 0; otherwise, the roots are real or com-
plex ones.

Statement 2. All the complex roots of Eq. (3) are
conjugate; two pairs of complex conjugate roots (along
with the flexural wave of the Rayleigh type) can exist

only in the range s < s∗ ,  = .

Indeed, the fourth-order characteristic polynomial
L(1, ξ) is positive definite in the space of real numbers
ξ. At s = s∗ , due to the polynomial smoothness, Eq. (3)
has at least one real root with a twofold multiplicity. For
s > s∗ , the number of real roots is no less than two.
Thus, for s ≥ s∗ , there is no more than one pair of com-
plex conjugate roots, which is insufficient to satisfy two
boundary conditions (2) with a simultaneous exponen-
tial decay along the x2 axis.

Statement 3. The phase velocity VR of the Rayleigh-
type flexural wave is bounded from above

Denote the sought-for pair of complex roots by ξ1, 2
(Imξ1, 2 > 0). The edge conditions (2) take the form

s*
4 L 1 ξ,( )

ξ R∈
inf

V R V*, V*< s*
2 k1 d/ρ.=
(4)

(5)

det∆ s( ) 0,=

∆ s( ) d12 2d26ξ1 d22ξ1
2+ + d12 2d26ξ2 d22ξ2

2+ +

2d16 d12 4d66+( )ξ1 4d26ξ1
2 d22ξ1

3+ + + 2d16 d12 4d66+( )ξ2 4d26ξ2
2 d22ξ2

3+ + +
,=

A2

A1
------

d12 2d26ξ1 d22ξ1
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d12 2d26ξ2 d22ξ2
2+ +

------------------------------------------------, w* x1 x2,( ) A1e
iξ1k1x2 A2e

iξ2k1x2+{ } e
ik1x1,=–=
i.e., the problem of the existence of the desired waves is
reduced to analyzing the roots s of Eq. (4) on the
branches ξ1(s) and ξ2(s).

In the specific case of an orthotropic medium with
the main axes coinciding with x1 and x2, the situation is
considerably simplified. The mixed stiffness constants
are d16 = d26 = 0, and the characteristic equation (3) has
purely imaginary branches of the roots ξ1(s) and ξ2(s).
Choosing the normalizing coefficient d = d22, we obtain

(6)

When s4 ∈  [E2 – D, C2 – D], the function f(s) varies
from 0 to +∞, i.e., the real root s of Eq. (6) always exists
and is expressed as

ξ1 2, i C D s4++−{ }
1/2

, D C
2 d11

d22
-------,–= =
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1,= =

f s( ) 1 det ∆ s( )⇔ 0= = .
(7)

where the positive definiteness of the radicals follows
from that of the elastic constants tensor. It is easily seen
that the amplitude ratio (5) is also real. It is the real part
of the solution Re{w∗ (x1, x2)eiωt} that has a physical
meaning, and the angular displacements of cross sec-
tions θ1, θ2 and the longitudinal displacements u1, u2 are
given by the formulas
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Hence, at the real amplitude A1, the displacements u1, u2
(and the angles θ1, θ2) follow the harmonic law with a
phase difference of –π/2. In one period of oscillations,
an arbitrary point (x1, x2) describes an ellipse by moving
in the positive direction, and the semi-axes of the
ellipse exponentially decrease with distance from the
free edge.

In the specific case of an isotropic (and transversely
isotropic) medium, Eq. (7) leads to the well-known
relation derived by Yu.K. Konenkov [1]:

where ν is the Poisson ratio.
It is also of interest to analyze the qualitative behav-

ior of the phase velocity VR (its ratio to the velocity VB
of a common flexural wave with the wave vector k) and
the period-average value of the power flow I

where the dot means the time derivative and M11 and
P1z = 2∂2M12 + ∂1M11 are the normal moment and the
intersecting Kirchhoff force in the packet cross section
perpendicular to the x1 axis.

With a view of a numerical illustration, we take two
types of an orthotropic material: the carbon-filled plas-
tic (CP) with the Young moduli E1 = 12800 and E2 =
840, the shear modulus G12 = 460 kg/mm2, the Poisson
ratio ν12 = 0.37, and the density ρ = 1.5 g/cm3; and the
organic plastic (OP) with the respective constants E1 =
2600, E2 = 1800, G12 = 230, ν12 = 0.14, and ρ = 1.4. The
main orthotropic axes either coincide with the reference
axes (CP/0) or are rotated through the right angle
(CP/90); the thickness is taken to be 2h = 1 mm and d =
max(d11, d22).

The typical values of s and the normalized values of
the radiation power of the wave under study are as fol-
lows:
s = 0.99982π (for CP/0) and 0.506225π (for CP/90),
min(Imξ1, Imξ2) = 0.0362 (for CP/0) and 0.00949

(for CP/90),
I/ωd |k1A1|2 = –61.0861 (for CP/0) and –15.38159

(for CP/90);

s 1 ν–( ) 3ν 1– 2 1 2ν– 2ν2++( ){ }
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s = 0.99769π (for OP/0) and 0.91085π (for OP/90),
min(Imξ1, Imξ2) = 0.0444 (for OP/0) and 0.03616

(for OP/90),
I/ωd |k1A1|2 = –56.6055 (for OP/0) and –48.26285

(for OP/90).
The curves for the velocity ratio are presented in

Fig. 1.
Thus, for the case of orthotropic materials with stan-

dard orientation, we can make the following conclu-
sions:

(i) the flexural wave of the Rayleigh type exists at all
times;

(ii) the damping factor min(Imξ1, Imξ2) proves to
be higher than that for an isotropic medium, where the
corresponding value does not exceed 0.01;

(iii) the phase velocity of the Rayleigh flexural wave
is not minimal among all possible flexural waves, as it
is in the case of an isotropic medium.

In a more general case of anisotropy (d16, d26 ≠ 0), it
is impossible to find analytical expressions for the roots
ξ1(s), ξ2(s), and one has to resort to numerical analysis.
The search procedure is as follows: the parameter s is
specified, and two solutions ξ1(s) and ξ2(s) are deter-
mined from Eq. (3), then Eq. (4) is checked (the real and
imaginary parts of det∆(s)). Let us model the situation
using the examples of the T material (ρ = 1.58 g/cm3,
E1 = 13000, E2 = 975, G12 = 600 kg/mm2, and ν12 =
0.27), and the E material (ρ = 2, E1 = 4500, E2 = 1300,

G12 = 440, and ν12 = 0.29) whose principal axes , 
are rotated through the angle 0 < ψ < π/2 with respect
to the axes x1 and x2. The curves for the typical values
of s(ψ), the branches ξ1(ψ), ξ2(ψ), and the amplitude
ratio (5) are presented in Figs. 2–5.

The behavior of the radiation power I(ψ) is also of
interest (the curves for the normalized values of this
function are presented in Fig. 6). When k1 > 0, the

x1' x2'

1

0 1

2
1

2

3

4

ϕ

Fig. 1. Velocity ratio VR/VB in polar coordinates for the
materials (1) CP/0, (2) CP/90, (3) OP/0, and (4) OP/90.
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power flux should seemingly be negative. For both
materials, however, one can find the critical value of the
orientation angle, ψ∗  = 0.07647π (T) and 0.10492π (E),
when the sought-for wave turns into a stationary one,
and then (at ψ > ψ∗ ) changes the direction of energy

0.5
0

s(ψ)

1

0
0.5

ψ/π

0.5

1.0

T

E

ψ/π

–1

–2

1

2

Reξ
–Imξ

0
0.5

ψ/π

–1

–2

1

2Reξ
–Imξ

Fig. 2. Characteristic value curves for T and E.

Fig. 3. Roots ξ1(ψ) and ξ2(ψ) for T.

Fig. 4. Roots ξ1(ψ) and ξ2(ψ) for E.
transfer. Further more, at the next critical angle, ψ∗∗  =
0.22862π (T) and 0.29861π (E), the wave again
becomes stationary, and at ψ > ψ∗∗  the negative sign of
the power flux is restored. This fact is new and peculiar
exclusively to media with a sufficiently general anisot-
ropy (d16, d26 ≠ 0). This fact was not noted earlier for the
anisotropic media, and it is fundamentally absent in the
case of isotropic media or conventionally oriented
orthotropic ones.

To clarify the effect, consider the behavior of the
generalized acoustic impedances

Following the elementary analogy for the damped har-
monic oscillator

(8)

one can expect a positive value of Re(Im + Ip) and a pos-
sible change of sign of the imaginary part. Figures 7–9
demonstrate the curves for the real and imaginary parts
of the generalized impedances Im, Ip, Im + Ip for three
values of the angle ψ: beyond the interval [ψ∗ , ψ∗∗ ]
(Figs. 7, 9) and within the interval (Fig. 8). It can be
seen that, beyond the interval [ψ∗ , ψ∗∗ ], the qualitative
analogy with Eq. (8) is valid, while at the intermediate
value of ψ, an active edge zone with the opposite direc-
tion of the energy flow is present, which leads to the
change of sign of the integral I. This situation takes
place at any intermediate value of ψ. In particular, if one
considers the value of Re(Im + Ip) at one point x1 = 0 as
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Fig. 5. Amplitude ratio A2/A1 as a function of ψ for the (1)
T and (2) E materials.
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a function of ψ, this function will change its sign from
positive to negative and back, at certain values to the
left and to the right of the interval of critical angles,
respectively. Between these values, the width of the
opposite-energy-flow zone is finite, while between the
critical angles it is this zone that dominates the radia-
tion power integral.

Thus, we can state that the Rayleigh flexural waves
in anisotropic media essentially and qualitatively differ
from both Rayleigh compression-tension-shear waves
[5, 6] and flexural waves in isotropic media.
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Abstract—The interference immunity of a focused antenna in the field of interference produced by dis-
crete wideband sources is considered. It is shown that the focused antenna that processes the signal by the
dark-field method provides a high interference immunity. Calculations show that this signal processing
technique can provide acoustic monitoring in the presence of intense interference produced by ships. ©
2002 MAIK “Nauka/Interperiodica”.
Interest in issues concerned with signal extraction in
the presence of interferences persists (see, e.g., [1, 2]).
These issues are topical in acoustics, because, in many
applications, the interference is not a uniformly distrib-
uted noise, but exhibits a significant regularity. A clas-
sical example of such an interference is the noise pro-
duced by ships, which prevails at low frequencies (from
10 to 200–300 Hz) [3]. Such interferences can be
rejected using long antennas with signal processing that
is capable of eliminating or substantially suppressing
the effect of noise produced by discrete sources.
Among the methods that efficiently reject such interfer-
ences, adaptive methods [4] are most popular. How-
ever, in acoustic communications through a medium
with a complex irregular structure, the efficiency of
these methods diminishes [5, 6]. It should be noted that
the requirements of regularity of the medium that pro-
vide the efficiency of the adaptive methods become
much more stringent with an increase in the number of
the antenna array elements and in the antenna length.
Increasing the antenna aperture is useful and necessary
for suppressing interferences produced by scattering
from a rough water surface typical of acoustics.

The proven method referred to as the shadow or the
dark-field method has long been known in optics [7].
This method is capable of rejecting (darkening) the
interference sources in the presence of irregular aberra-
tions produced by optical elements. A distinctive fea-
ture of this method is that, with an increase in lens aper-
ture, it significantly relaxes the requirements imposed
on the regularity of the wave field. A similar method
can also be applied in acoustics [8]. As shown in [8], the
acoustic dark-field method used for processing signals
received by a sufficiently long (focused) antenna array
basically differs from the signal processing in adaptive
arrays. The dark-field method applied to the focused
antenna is conceptually close to the cepstral analysis
[9], which is widely used in acoustics.

A focused antenna operating with a monochromatic
acoustic field has been considered in [8]. In this paper,
1063-7710/02/4802- $22.00 © 0176
we extend the dark-field method used with the focused
antenna to the case of a wideband signal.

In solving this problem, we limit our consideration
to the minimal number of sources—to just two sources,
one of which is stronger than the other. We will show
that, in this case, the coordinates and the intensity of the
weaker source can be determined in the presence of the
strong source, the only limiting factor being the distrib-
uted noise rather than the intensity of the strong source.
The problem is solved by linear filtering. Therefore, if
it can be solved in this simplified form, one can expect
to succeed in the case of multiple sources. The supposi-
tion that there are only two sources does not present a
fundamental limitation. It allows us to focus on the
method and results, leaving the difficulties (mostly
mathematical) associated with multiple sources to
future analysis.

Let two sources (a strong source and a weak one)
with a continuous spectrum be present. Let the sources
be uncorrelated. This assumption is adopted only to
make the problem definite. The problem is solved iden-
tically for uncorrelated and for correlated (completely
or in part) sources. We emphasize that the adaptive
methods use uncorrelated signals. The antenna consists
of a number of hydrophones uniformly spaced a distance
s apart in the horizontal direction. The antenna aperture
is sufficient to be focused at all operating frequencies.
These conditions are thoroughly studied in [8].

Let us determine the coordinates of the strong
source with the help of the focused antenna. We assume
that the signal produced by the strong source on the
receiver antenna exceeds the signal produced by the weak
source enough (in the numerical example, by 40 dB) for
the radiation from the weak source to be neglected. The
frequency spectrum of the spherical wave field pro-
duced by the wideband source and incident on the
hydrophone number n of the linear antenna can be rep-
resented as

(1)P ω n,( ) G ω( ) iωT n( )[ ] .exp=
2002 MAIK “Nauka/Interperiodica”



        

INTERFERENCE IMMUNITY OF A FOCUSED ANTENNA 177

                                                                                                                
Here, G(ω) is the frequency spectrum of the field
produced by the source, ω is the frequency, and T(n) is
the delay of the source signal incident on the hydro-
phone number n. If the wave is spherical and the source
resides on the perpendicular erected to the antenna at its
central element, we have

(2)

where c is the light velocity, R is the distance to the
source normalized by s, and m is the index of the central
hydrophone.

The source coordinates can be found from the maxi-
mal response of the antenna, which occurs when the
spherical wave front is compensated. This is a maximum
of the following expression in the variables q and r:

(3)

Here,

(4)

Expression (3) reaches its maximum when the
spherical wave front is compensated completely. This
occurs when r = R and q = m in formula (4), which
yields the source coordinates.

The above search procedure was simulated using
the following parameters. The antenna consisted of
256 hydrophones. Both sources emitted uncorrelated
Gaussian random signals with realizations being 32 ele-
ments long. In accordance with results obtained in [10,
11], the spectrum of the emitted signals was supple-
mented with zeroes to extend the length of the realiza-
tion by a factor of eight. This operation was necessary,
because, in numerical calculations, the delay given by
Eqs. (2) and (4) can take only discrete values. A.A. Pav-
lenko showed that the additional zeroes in the spectrum
significantly reduce the effect of delay quantization
errors. The distance was R = 128 (half-length of the
antenna), and m = 128.

The surface determined by Eq. (3) is illustrated in
Fig. 1 by a function of r and q. This surface can be used
to find the curvature of the incident wave front. Unfor-
tunately, this processing procedure does not comply
with the dark-field method. The radiation from the
source can be screened in its most intense part, but this
action will not extract the field of the weaker source,
because Eq. (3) involves an irreversible operation (sum-
mation over frequencies).

To apply the dark-field method, we should eliminate
the summation over frequencies, which makes Eq. (3)
irreversible.

We write the spectrum of the stronger signal [let this
be P1(ω, n)] using Eq. (1) at R = 256 (the antenna
length). The spectrum of the second signal should be

T n( ) s
c
-- R2 n m–( )2+ ,=

U q r,( ) P ω n,( ) iωM q r n, ,( )–[ ]exp
n

∑
2

ω.d

ω
∫=

M q r,( ) s
c
-- r2 n q–( )2+ .=
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written so as to take into account its shift by the angle
ϑ  from the normal to the antenna:

(5)

where T 2(n) is given by Eq. (2) at R2 = 64 and h =

sin(ϑ). The spectrum of the signal at the hydrophones

will be

(6)

First of all, let us compensate the front curvature of
the stronger wave. The parameters of this wave are
obtained by the signal processing described above. To
compensate the front curvature of the stronger wave,
one should apply the following operation

(7)

Then we should obtain the spatial spectrum of the
signal at the antenna for each frequency ω by applying
the Fourier transform to Eq. (7) with respect to n. Let us
denote the spatial frequency corresponding to the vari-
able n as ν. To visualize this spatial spectrum, we inte-
grate its squared magnitude with respect to the fre-
quency ω:

(8)

Here, Φx[Z(x)] means the Fourier transform of the
function Z(x) with respect to x.

The function S(ν) defined by Eq. (8) is illustrated in
Fig. 2a. Both signals are seen in the figure: the strong
one as a discrete spectral line and the weak one as a
blurred curve, because the curvature of the weak sig-

P2 ω n,( ) G2 ω( ) iω T2 n( ) hn+[ ]{ } ,exp=

s
c
--

PC ω n,( ) P1 ω n,( ) 10 2– P2 ω n,( ).+=

W ω n,( ) PC ω n,( ) iωT1 n( )–[ ] .exp=

S ν( ) Φn W ω n,( )[ ] 2 ω.d

ω
∫=

Fig. 1. Fragment of the field of view of the focused antenna.
The axes represent the direction towards the source and the
distance to it. The vertical axis represents the sum of inten-
sities of the received signal over all frequencies of the
antenna frequency range.
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Fig. 2. The intensity integrated over all signal frequencies in decibels with respect to the maximum of the focused signal of the
strong source versus the angle of arrival of the incident wave normalized by the antenna resolution. The antenna is focused at the
strong source, and the source signal is (a) not darkened and (b) darkened. Figure 2c refers to the antenna focused at the weak source
with the strong source darkened.
nal’s front is greater, which considerably broadens its
spatial spectrum.

To implement the dark-field method, one must
block the domain (reduce the signal in it to zero) occu-
pied by the spatial spectrum of the strong signal
shown in Fig. 2a. This should be done necessarily and

Fig. 3. Fragment of the field of view of the focused antenna
near the weak source with the strong source darkened. The
axes are labeled as in Fig. 1.
exclusively for the function Φn[W(ω, n)] rather than for
S(ν). After that, we integrate the result with respect to
the frequency ω as in Eq. (8) to obtain the function
shown in Fig. 2b.

Now, only the weak signal is present. To find its
parameters, it is necessary to compensate the curvature
of its wave front. To this end, we go over from the spec-
trum to the signal by applying the inverse Fourier trans-
form with respect to frequency ν and multiply the result
by the factor

(9)

The first exponential here is necessary for compen-
sating the factor in the weak signal that removes the
wave front curvature of the strong signal. The second
exponential serves for removing the curvature of the
wave front of the weak signal by choosing the appropri-
ate q and r. The result of this procedure is shown in
Fig. 2c. The process of fitting the parameters for
removing the curvature of the small-signal wave front
is illustrated in Fig. 3.

The effect of the dark-field method is clearly seen in
Fig. 4. The field of the strong source is not darkened
(the spatial spectrum in the corresponding domain is
multiplied by unity rather than by zero). As a result, the
field of the strong source covers the field of the weak
source completely, although the antenna is focused at

E ω n,( ) iωT1 n( )[ ] iωM q r,( )–[ ] .expexp=
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the weak source rather than at the strong one. The lower
part of Fig. 4 shows the result when the field of the
strong source is darkened. The difference in the resid-
ual background levels is almost 70 dB, which illustrates
the interference immunity of the focused antenna in this
example.

Basically, such a processing is applicable to the case
of multiple sources. The number of sources that can
effectively be darkened is determined by the number of
array elements. The point is that the darkening of each
element reduces the number of antenna elements.

In the above calculations, it is important that the
antenna is ideal. Both the spread in the positions of
individual antenna elements and the random variations
of the amplitude and phase of the field incident on them
are ignored. If the fact that the antenna is not ideal is
taken into account, the result will change. The corre-
sponding study requires additional calculations and,
perhaps, experiments.

Here, we only note that the above method for pro-
cessing the signals received by a focused antenna can
give a similar interference immunity in the presence of
multipath propagation and when the parameters of the
antenna and the fluctuating medium are spread ran-
domly. In the presence of multipath propagation, a long
focused antenna may resolve or not resolve the virtual
sources that appear in this case. If the antenna does not
resolve such sources, its interference immunity remains
the same as in a homogeneous unbounded space. If the
antenna resolves these sources, they can be eliminated
exactly as the real sources. This possibility has been
demonstrated in [8], where it was shown that the effect

0

–20

–40

–60

–80

–100

–120
–300 –200 –100 0 100 200 300

Fig. 4. Field of view of the antenna focused at the weak
source with the field produced by the strong source not
darkened (the upper curve) and darkened (the lower curve).
The axes are labeled as in Fig. 2.
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of dispersion due to the propagation of sound in a
waveguide can be compensated by increasing the dark-
ened area of the focused antenna. The two most prom-
ising results were obtained in [11]. The first consists in
the consideration of the dark-field method that works in
the presence of high phase distortions in the antenna.
The second consists in that it was demonstrated how to
determine the phase distortions in the antenna from the
field of the strong source alone in order to compensate
them in the same way as the wave front curvature.
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Abstract—The time correlation function of a noise signal propagating in an arctic-type waveguide is consid-
ered. For a coherent signal, the time cross-correlation function is formed with the use of either the total signal,
or a single selected mode, or a reference signal at one of the correlator inputs. The use of narrow-band signals
is shown to be preferable, because the waveguide dispersion affects the waveguide response. It is demonstrated
that, for tomographic investigations in a waveguide irregular along the path, it is expedient to correlate the sig-
nals received at two different points that are selected on the path so as to enclose the waveguide part the vari-
ability of whose parameters is the object of interest. © 2002 MAIK “Nauka/Interperiodica”.
Acoustic tomography is determined as the method
of reconstructing the local characteristics of an object
from a set of its integral characteristics (projections) by
subjecting them to special processing [1]. In a wider
sense, tomography can be interpreted as a method for
obtaining the information on the internal structure of
the object of interest from the characteristics of the
probing signal (see [1], p. 7). For example, in an inho-
mogeneous medium, one has to estimate the variation
of the sound velocity profile within a part of the path. In
this paper, the problem of determining the variations of
the waveguide parameters from the characteristics of
the received signal, i.e., the inverse problem, is not con-
sidered. This study is limited to a direct problem: we
show that these variations can be revealed by the time
correlation functions of a noise signal. In the cited pub-
lication [1], the authors consider deterministic signals
including harmonic and pulsed ones. Below, we con-
sider an acoustic signal formed by a noise source,
which, within the observed realization, possesses statis-
tically stationary and ergodic properties as a function of
time.

The sound pressure produced by a narrow-band
point source in a waveguide can be represented in terms
of a mode expansion [2, 3]:

(1)

Here, the constant w is expressed in µPa and corre-
sponds to a frequency band of 1 Hz: 20  = W,
where W characterizes the source power in decibels in
a frequency band of 1 Hz at a distance of 1 m from the
source; ∆f is the frequency band of the signal. The sum-
mation over m is performed over all modes of the dis-

p r z t, ,( )

=  w ∆f pm r( )Φm z( )F t tm–( ) iω0t–( ).exp
m

∑

wlog
1063-7710/02/4802- $22.00 © 20180
crete spectrum [4]. The waves of the continuous spec-
trum (the continuum) are taken into account in the
sound scattering from the bottom as a component
(along the horizontal coordinate r) of the mode attenu-
ation (damping). These waves affect the imaginary part
of the longitudinal wave number ςm(r) of a mode when
the waveguide is irregular in r. We call a waveguide a
plane-layered one, if its deterministic parameters do not
depend on r. The function Φm(z) is the eigenfunction of
the waveguide [2–5]. The z axis is directed downward,
and the value z = 0 corresponds to the mean level of free
water. The eigenfunctions are orthonormalized by the
condition

(2)

The braces denote the orthonormalization operation
whose form depends on the parameters of the bound-
aries. In a liquid medium, this operation is reduced to
an integral of the product of eigenfunctions with the
weighting function ρ(z), which is the density of the liq-
uid, with respect to z. The integration is performed over
the whole liquid column [4, 5].

In the narrow-band approximation, within the signal
frequency band, no considerable variations occur in the
eigenfunctions of the waveguide and in the group
velocities vm of modes determined by the relationship

where ω = 2πf, f is the frequency of sound, ω0 = 2πf0,
and f0 is the central frequency of the signal in hertz.

Φm z( )Φn z( ){ }
1 for n m=

0 for n m.≠
=

v m
1– ∂ςm

∂ω
--------

ω ω0=

,=
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The function pm(r) characterizes the spatial variabil-
ity (in the distance r) of the sound field. For a coherent
field in a plane-layered waveguide, we have

(3)

where z0 is the depth of the sound source. Similarly, the
quantity pm(r) is calculated for the central frequency in
the case of a narrow-band signal.

Thus, we calculate the quantities pm(r), Φm(z), and
ςm by the program for calculating the harmonic sound
field at the frequency f0. Expression (1) describes a
coherent field, if a stochastic scattering occurs in the
waveguide along the sound propagation paths. If the
waveguide parameters wary regularly with r, i.e., the
variability can be described by deterministic functions
of r, the quantity pm(r) can be calculated either in the
adiabatic approximation [3, 4] neglecting the regular
scattering or in the approximation taking into account
the regular scattering (transformation) of modes [6–8].
The regular scattering is related to the variations of the
eigenfunctions with r, which results in the violation of
the orthogonality condition for different-number
modes calculated for different r:

 for n ≠ m.

In both approximations, the calculations are based
on the Pierce scheme known as the vertical-mode and
horizontal-ray approximation [1, 3, 4]. The sound field
of a mode is calculated along the mode ray described in
the horizontal plane by an eikonal-type equation whose
right-hand side contains the longitudinal wave number
of the mode instead of the wave number in water. The
calculation of the mode rays can be performed by the
well proven programs for a two-dimensional waveguide.
The coefficients pm(r) are calculated along the mode
rays by using a transport equation or another scheme,
e.g., of the type used in [6, 7]. In these calculations, at
each step along the distance, one has to take into
account the mutual transformations of modes of the dis-
crete spectrum.

In Eq. (1), t is time and tm is the propagation time
of the mth mode between the transmission and recep-
tion points spaced at a distance r. In a plane-layered
waveguide, tm = r/vm. In the adiabatic approximation,

tm = . In the regular scattering approxima-

tion, the calculation is more complicated, because new
modes can be formed in the course of the propagation.
In addition, pm(r) can be affected by the contributions
made by other modes because of the scattering.

The noise character of the signal is determined by a
random homogeneous ergodic function of time F(t). We

assume that  = B(τ), where B(0) = 1 and
the overbar denotes averaging over time. Therefore, we

have  = 0. The time correlation function of the

pm r( ) iπΦm z0( )H0
1( ) ςmr( ),=

Φm z( )
r r1=

Φn z( ) r r1 ∆r+={ } 0≠

η /v η( )d
0

r∫

F t( )F t τ–( )

p r z,( )
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sound pressure is nonzero. This deterministic quantity
corresponds to the second statistical moment [7].

The time cross-correlation function is determined
by the expression

Substituting Eq. (1) in this expression, we obtain

(4)

We assume that, at the point of observation, the sig-
nal is received by a vertical array with the sensitivity of
its elements being determined according to the vertical
variability of the Nth eigenfunction. Then, the Nth
mode can be singled out of the sound field. For this pur-
pose, we multiply Eq. (4) by ΦN(z2) and integrate the
result with respect to z2, at least over the layer of the
concentration of the Nth mode. Applying the condition
of orthogonality of modes, we obtain

(5)

This expression is analogous in its structure to the
pulsed waveguide response in which the role of the
envelope of the transmitted signal is played by B(τ) and
the time t is replaced by the delay τ. A similar result can
be obtained when the Nth mode is separated in its
arrival time tN from the modes with m ≠ n. Manipulating
the delay at one of the correlator inputs, we can obtain
a pulsed-response-type expression.

A widely used method [9, 10] is based on the cor-
relation of the received signal with the reference one
F(t – τ)exp[iω0(t – τ)]. Then, we obtain the expression

(6)

This formula is analogous to the expression for the
pulsed waveguide response in which the role of the
pressure pulse is played by Pc(r, z, τ). The advantage
over the pulsed waveguide response caused by a pulsed
signal is that one can obtain an analog of the pulse at the
point of observation when the signal has a low power
near the source. The required energy is accumulated
because of the use of a signal of long duration. This
way, one obtains a high signal-to-noise ratio due to the
effect of a quasi-coherent accumulation. The disadvan-
tage of this approach is its high sensitivity to the effects
related to the movements of the transmission and recep-
tion points and to the variations of the waveguide
parameters with time. An example is the Doppler effect,
which less strongly affects the correlation function of

Kc r1 r2 z1 z2; τ, , ,( ) p r1 z1 t, ,( )p* r2 z2 t τ–, ,( ).=

Kc r1 r1 z1 z2; τ, , ,( ) w2∆f pm r1( )pm r2( )
n

∑
m

∑=

× Φm z1( )Φn z2( )B τ tm– tn+( ) iω0τ–( ).exp

KN r1 r2 z1; τ, ,( ) w2∆f pN* r2( ) pm r1( )
m

∑=

× Φm z1( )B τ tm– tn+( ) iω0τ–( ).exp

Pc r z τ, ,( )

=  w ∆f pm r( )Φm z( )B τ tm–( ) iω0τ–( ).exp
m

∑



182 KUDRYASHOV
the type given by Eq. (5), if it produces approximately
equal effects on all modes forming the pulsed response.

Expressions (4)–(6) correspond to a coherent field,
i.e., a field averaged over an ensemble of realizations of
stochastic scatterers. In calculating the variance of the
sound pressure of the total field, we use the transport
equation in the approximation of a multiple forward
scattering and a single backward scattering [11, 12]. If
the parameters of the waveguide vary regularly with r
while the scale of these variations is (as usual) much
greater than the horizontal correlation radii of stochas-
tic scatterers, the calculation of the mean intensity of
the total field is performed in the same way as the cal-
culation for a plane-layered (on the average over an
ensemble of scatterers) waveguide, but with allowance
for the regular variability. If, in a plane-layered (on the
average) waveguide, the mode transformation coeffi-
cients [7, 11–13] determined by the stochastic scatter-
ing are independent of r, then, in an irregular
waveguide, one has to solve the differential transport
equation with allowance for the variations of the aver-
age (over the ensemble of the scatterer realizations)
mode transformation coefficients.

The expressions presented above for the time corre-
lation functions describe these functions in the complex
form. To adjust them to the real experiment, it is neces-
sary to separate their real part, which, as a function of
the delay τ, can be reduced to the form A(τ)cos(w0τ).
The information is carried by the envelope of the corre-
lation function A(τ). Its structure depends on the form
of the function B(τ), and the latter depends on the
energy spectrum of the transmitted signal, as well as on
the characteristics of the receiving filter and, especially
on the frequency band ∆f of the signal transmitted
through the filter. In particular, the time correlation
scale τ0 of the function B(τ) is proportional to 1/∆f.
Hence, by increasing ∆f, we reduce τ0 and, as a result,
obtain a narrower (in the delay) peak of the envelope of
the time correlation function corresponding to a spe-
cific mode.

The peak of the envelope of the mth mode corre-
sponds to the point τ = tm on the delay axis. Since tm is
different for different modes, the received pulse is
spread. For the water modes propagating in an arctic
waveguide whose axis is adjacent to the ice cover, the
minimal group velocity is characteristic of the modes
that are captured by the near-ice layer lying between the
ice cover and the Atlantic water layer. The thickness of
the near-ice layer varies from 250 to 450 m with
increasing distance from the Fram strait toward the
coast of Canada. This is explained by the fact that the
warm Atlantic waters arriving from the northern Atlan-
tic become spread as they move further in the eastern
direction. In the Atlantic waters, the sound velocity gra-
dient is close to zero, whereas in the near-ice layer, the
gradient of c(z) is maximal, its average value being
equal to 5–6 hydrostatic gradients. Under the Atlantic
water layer, at depths greater than 750–10000 m, the
arctic water layer is observed with the vertical sound
velocity gradient close to the hydrostatic one. The
waves refracted within this layer (the refraction is pos-
itive) have the maximal group velocities and, hence, the
minimal propagation times tm. These waves form the
leading edge of the acoustic pulse. The waves captured
by the near-ice channel are the last to arrive. Figure 1a
shows the profile c(z) for the central region of the Arctic
basin. At a frequency of 20.1 Hz, for the free water sur-
face, the group velocities of the first three modes are
equal to 1439.168, 1451.375, and 1455.384 m/s. Let us
consider an ice cover 65% of which is smooth ice and
the rest is hummocky ice. The longitudinal wave veloc-
ity cl in ice is 3500(1 – i0.004) m/s, the shear wave
velocity is ct = 1800(1 – i0.04) m/s, and the ice density
is 0.91 g/cm3. According to the histogram of the lower
surface of ice, the thickness of smooth ice is h1 = 2.6 m,
the square root of the variance of the ice draught is
σ1 = 1.8 m, and at the upper surface of the smooth ice,

 = 0.4 m. For hummocky ice, we have h2 = 6.6 m and
σ2 = 3.3 m. The horizontal correlation scales of rough-
ness are 120 and 44 m for smooth and hummocky ice,
respectively.

The coefficients of sound reflection from the ice
cover were studied in [14, 15].

In the presence of the ice cover, the group velocities
of the first three water modes are 1439.112, 1450.51,
and 1455.211 m/s. From the comparison of these values
with the corresponding values for a free water surface,
one can see that the ice cover has almost no effect on
the group velocities of normal waves.

The ice cover affects the attenuation coefficients of
normal waves. For an acoustically soft boundary, at a
frequency of 21 Hz, the attenuation coefficients of the
first three water modes are equal to 0.000055 dB/km.
This value is determined by the sound absorption in
water. In the presence of the ice cover, we obtain
0.01801, 0.00735, and 0.00503 dB/km. The calcula-
tions were performed as in the previous publications
[14, 15]. The maximal spatial attenuation is observed
for the lowest-order modes. The first mode is captured
by the near-ice channel and has its maximum at a depth
of 160 m, although this mode partially penetrates the
Atlantic water layer.

Within the narrow-band approximation, a broaden-
ing of the signal bandwidth ∆f narrows the pulse peak
of a mode. One would expect that the greater ∆f, the
easier the identification of modes separated by a delay
time exceeding τ0. However, this tendency is limited by
the waveguide dispersion of modes, which leads to
changes in tm, Φm(z), and pm(r). For example, if tm var-
ies by more than 1/∆f, the mode peak is destroyed
becoming broader, and the form of the envelope of the
time correlation function changes. The waveguide dis-
persion depends on the waveguide parameters.

To switch to the broadband approximation, we use
the scheme described in [16]. We assume that, in the

σ̃1
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frequency band ∆f, the energy spectrum of the signal is
described by the function G(ω) normalized so as to sat-
isfy the condition

where ∆ω = 2π∆f. We divide the frequency band ∆f
into intervals ∆ fj:

We assume that, in the frequency band ∆fj , the signal is
a narrow-band one with f0j being the central frequency
of the jth component; ω0j = 2πf0j. We calculate the par-
tial time correlation functions for each of the compo-
nents in the frequency band ∆fj and combine them with
allowance for the phases and with the weighting factors
G(ω0j). As shown in [16], a broadband correlation func-
tion is characterized by changes in both its envelope
and carrier, and the latter may not coincide with
cos(ω0τ).

Let us consider an example demonstrating the effect
of the waveguide dispersion on the signal form. We
assume that the sound velocity profile and the parameters
of the bottom and the ice cover do not vary along the
waveguide. The sound velocity profile is presented in
Fig. 1a. The waveguide depth (corresponding to the
water–ground boundary) is 3000 m. The bottom is mod-
eled by a homogeneous elastic halfspace characterized by
the longitudinal wave velocity cl = 1850(1 – i0.01) m/s,
the shear wave velocity ct = 350(1 – i0.01) m/s, and den-
sity equal to 2 g/cm3. According to the histogram
obtained for the central Arctic region to the west of the
Lomonosov ridge, 65% of the ice cover is smooth ice
with an average thickness h1 = 2.6 m, the average
drought (the square root of the roughness variance)
σ1 = 1.8 m, and the average height of roughness at the
upper boundary σ1/4.5. For the hummocky part of the
ice cover, the parameters are h2 = 6.6 m and σ2 = 3.3 m.
The ratio of the hummock height to its drought in
water is 1/4. The density of ice is 0.91 g/cm3, and the
wave velocities are cl = 3500(1 – i0.04) m/s and ct =
1800(1 – i0.04) m/s.

We consider the envelope of the pulsed response
of the waveguide Pc(r, z, τ) for z = z0 = 60 m and W =
100 dB/Hz. The distance between the transmission
and reception points is 900 km. The mean frequency
of sound is f0 = 21 Hz, and the signal bandwidth
(resultant of the transmitted signal and the receiving
filter) is 7.5 Hz.

The result of the calculation in the narrow-band
approximation is shown in Fig. 2. Figure 3 presents
the result obtained in the broadband approximation. In
Fig. 2, one can notice the angular dispersion, i.e., the

G ω( )
ω0 ∆ω/2–

ω0 ∆ω/2+

∫ 1,=

∆ f j

j 1=

J

∑ ∆f .=
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mode dispersion. The higher-order water modes are the
first to arrive. The contribution of the bottom-reflected
waves is insignificant due to the high attenuation
caused by the bottom reflection. The first water mode
arrives last. In the narrow-band approximation, the
width of each pulse corresponding to an individual
mode is proportional to 1/∆f. In the broadband approx-
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Fig. 1. Sound velocity profiles c(z).
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Fig. 2. Calculated envelope of the time correlation function
Pc(r, z, τ) in the narrow-band approximation for f0 = 21 Hz,
∆f = 7.5 Hz, r = 900 km, z = z0 = 60 m, and W = 100 dB/Hz.
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imation, the time of the mode propagation within the
signal bandwidth varies considerably. This effect is
most pronounced for the second water mode, which is
transformed from a narrow pulse to a pulse spread in
the arrival time. For the first water mode, the waveguide
dispersion proves to be much weaker, although this
mode exhibits a broadening of the peak of its envelope.
However, the position of the top of this peak is the same
in both approximations. When the signal bandwidth is
∆f = 2 Hz, the signal remains narrow-band within the
whole 900-km-long propagation path. The correspond-
ing plot is shown in Fig. 4. It is similar to the plot pre-
sented in Fig. 2 with some deviations in the amplitudes
and widths of the peaks.

In Fig. 4, peak 1 corresponds to the arrival of the first
water mode at a distance of 900 km, and peak 2 corre-
sponds to the arrival of the same mode at a 1.5 km
shorter distance. The delay between these two peaks is
approximately equal to 1 s, which should be expected
taking into account the sound velocity in water. The
supplement to the plot of the envelope of the signal cor-
relation function is made for the following reasons. The
expressions presented above for the time correlation
functions imply the averaging over an infinite realiza-
tion. In reality, the time interval T, over which the aver-
aging is performed, is finite due to both technical fac-
tors and time variations of the waveguide parameters,
which lead to the violation of the statistical stationary
state and ergodicity of the noise signal. In addition, the
spatial positions of the transmitter and the receiver can
vary because of the drift of the ice fields to which the
transmitter and the receiver are attached. It is possible
that the transmitter and the receiver are objects inde-
pendently moving in water. The motion of the objects
leads to changes in the form of the correlation function,
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Fig. 3. Calculation for the same waveguide parameters as in
Fig. 1 in the broadband approximation.
i.e., a deterministic quantity, which is used in solving
the problems of monitoring where even the roll of the
transmitting and receiving systems can deteriorate the
measurement results. The finiteness of the averaging
interval T leads to the appearance of a fluctuation com-
ponent with a variance proportional to (∆f T)–1 at the
correlator output. The fluctuation component masks the
deterministic component and imposes a limitation on
the measurement accuracy and on the very possibility
of detecting the deterministic component. Hence, the
stability of the parameters of the experiment in time is
of fundamental importance.

The above consideration may have another applica-
tion. Let us assume that the transmitter–receiver dis-
tance is unknown, but the direction of the signal arrival
is known. For example, the signal is received by a hor-
izontal array or a set of receivers, which can be used to
form a receiving system with spatial selectivity. By
placing a test hydrophone at a known distance from the
receiving system in the direction from which the signal
arrives, or introducing simple geometric corrections,
we determine the time delay between the signal arrivals
at the receiver and at the test hydrophone. Knowing this
delay and the delays in the signal propagation times to
the points of observation from the transmitter, through
simple calculations we determine the distance between
the transmitting and receiving systems. In our case, the
distance is about 900 km (which can be easily verified).
More precisely, the calculation yields approximately
930 km with allowance for the accuracy of the determi-
nation of the peak positions on the delay axis. The posi-
tion of a peak can be determined with higher accuracy,
if the peak is made sharper by using, e.g., receiving fil-
ters whose frequency characteristic provides sharper
peaks.
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Fig. 4. (1) Same as in Fig. 2, but for ∆f = 2 Hz; (2) the
dashed curve corresponds to a 1.5 km shorter distance.
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The problem of determining the distance becomes
more complicated when the waveguide parameters vary
along the sound propagation path, as well as in the pres-
ence of an additive noise caused by the medium and a
multiplicative noise caused by the stochastic scattering
of sound. In the case under consideration, the latter can
be neglected, so that the signal is a coherent one.

As the second example, we consider a path that is
irregular in the distance r. The parameters of the path
are taken from the experiment carried out by research-
ers from the Acoustics Institute in the 1980s [17]. The
path contains a shallow-water part whose parameters
correspond to the Franz–Victoria trough. The length of
the shallow-water part is 5 km. The slope of the bottom
extends to a distance of 110 km where the depth reaches
a value of 3 km. At distances from 110 to 200 km, a
deep-water region was observed in the experiment. In
the calculations, we assume that this region extends to
a distance of 900 km in the direction of the general
decline of the waveguide depth. In the deep-water
region, the sound velocity profile c(z) corresponds to
curve 2 in Fig. 1b. In the shallow-water region, the
sound velocity takes the values 1440, 1450.2, 1451.4,
and 1444.5 m/s at the depths 0, 50, 140, 170, and 400 m,
respectively. Recall that the initial, i.e., zero, depth in
the profiles c(z) corresponds to the free water level,
although the water layer begins below the ice cover, and
this fact is taken into account in the calculations by
recalculating the sound velocity profile according to the
position of the ice–water boundary. To describe the
variation of the sound velocity profile from shallow-
water to deep-water one within the irregular region, we
use linear interpolation. The parameters of ice in the
deep-water region are the same as in the preceding
example. In the shallow-water region, the ice cover is
smooth everywhere. Its thickness is 1 m, the average
drought is σ = 0.6 m, and the correlation scale of the ice
roughness is 40 m. The ground is considered as an elas-
tic halfspace with Òl = 1800(1 – i0.005) m/s and Òt =
350(1 – i0.005) m/s. The ground density is 2 g/cm3.
These parameters approximately correspond to the
shallow-water region and the initial part of the slope at
low frequencies. We use the same parameters for the
ground in the deep-water region, because, at a distance
of 900 km, the contribution of the bottom reflections is
insignificant, if the waves reflected from the bottom in
the regular deep-water region of the waveguide are con-
sidered.

The source of sound generates a noise signal with
the central frequency f0 = 21 Hz and is observed in the
frequency band ∆f = 2 Hz. The transmission depth is
40 m, and the reception depth is 50 m.

The study of the sound propagation along a path that
contains deep-water and shallow-water regions is not
only of scientific interest, but also of practical value.
Large and heavy transmitting and receiving systems
intended for long-term operation are rather installed in
shallow-water regions for technical reasons. In a
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
coastal zone, such systems can be cable-connected with
stationary coastal stations.

As for the observations (e.g., climate monitoring),
they should be performed in the deep-water regions of
the arctic ocean, because these regions are character-
ized by a relative stability of the water column parame-
ters in depth. The coastal part of the slope and the shal-
low-water regions are characterized by unstable acous-
tic parameters of the water column because of such
phenomena as tides, seasonal variability, and currents.
The variations of the sound velocity profile that occur
in the deep-water regions due to the variations of the
salinity and temperature of the water layers are rela-
tively small. Hence, the variations caused by these phe-
nomena in the mode propagation times are also small.
Therefore, the perturbations introduced by the shallow-
water parts of the path can cause considerable varia-
tions of the pulse structure of the signal. For example,
we note the following factor. In shallow-water regions
at high frequencies, the group velocities of modes usu-
ally decrease with increasing mode number. In deep-
water regions, the situation is reversed. As a result, the
differences in the mode propagation times tm can vanish
[10]. As the zero time of the mode propagation over an
irregular path, it is convenient to take the instant of the
mode transition from a surface–bottom mode to the
stage of its separation from the bottom reflection, i.e.,
to a water mode. For example, on the path under study,
the first water mode, which is concentrated in a narrow
layer near the sound channel axis, at low frequencies
(20 Hz and higher) becomes separated from the bottom
and passes to the adiabatic stage (for the coherent com-
ponent of the sound pressure) starting approximately
from a distance of 10 km and beyond, when the sound
source is positioned in the shallow-water region. In the
experiment on the time monitoring of this mode, it is
expedient to construct the time correlation function by
formula (5), where N = 2 (the first mode at frequencies
of several tens of hertz is the flexural wave of the ice
cover, which rapidly attenuates with increasing dis-
tance r); thus, N = 2 corresponds to the first water mode.

Figure 5 presents the envelope of the time correla-
tion function (5) as a function of the delay for an irreg-
ular path on the condition that the total coherent noise
signal received at a distance of 900 km correlates with
the first water mode of the same signal received at a dis-
tance of 10 km. The envelope is similar in its shape to
the pulse transmitted through a distance of 890 km. The
higher-order modes arrive first, forming a kind of a sin-
gle pulse. Then the pulse corresponding to the first
water mode arrives; this mode is the only one captured
by the near-ice water layer at a frequency of 21 Hz.

At the given transmitter and receiver depths, the first
water mode prevails in the signal received at a distance
of 10 km. Therefore, if we construct a time correlation
function for the same conditions, but by formula (4), for
r2 = 10 km and r1 = 900 km, the envelope of the cross-
correlation function Kc will take the form shown in
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Fig. 5 with a rather small difference between the enve-
lopes of the time cross-correlation functions: the peak
positions on the time delay axis are identical, but the
maximal values are somewhat smaller in the second
case, because the magnitude of the eigenfunction of the
first water mode is less than unity.

Figure 6 presents a plot for the case similar to that of
Fig. 5. The only difference is that, for the deep-water
region, we used the sound velocity profile given by
curve 1 from Fig. 1b. The change in the sound velocity
profile caused a noticeable change in the time (delay)
structure of the envelope. The changes in the mode
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Fig. 5. Envelope of the time correlation function given by
Eq. (5) for an irregular propagation path; r1 = 900 km and
r2 = 10 km.

Fig. 6. Same as in Fig. 5, but for the sound velocity profile
corresponding to curve 1 from Fig. 1b.
propagation times are most pronounced for the modes
of the first numbers, which are concentrated in the
water layers where the changes in the sound velocity
profile are maximal.

Thus, with the above formulation of the problem, it
is possible to reveal a change in the sound velocity pro-
file within a given part of the sound propagation path,
e.g., in the course of a long-term experiment, on condi-
tion that the path geometry and the transmitted signal
are invariable.
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Abstract—The problem of detecting a permeable stratum blocked by a mudcake with the help of acoustic
measurements inside a borehole is considered. Different physical models of the mudcake are compared: in
the form of a highly viscous liquid layer, in the form of a soft elastic shell, and in the form of an elastic shell
fixed in an arbitrary way to the borehole walls. Numerical calculations are presented for the wave field in a
borehole. © 2002 MAIK “Nauka/Interperiodica”.
In view of the numerous predictions concerning the
exhaustion of basic oil reserves, the problems of both
prospecting for new deposits and efficient use of known
oil supplies become increasingly important. For years,
studies had been carried out to determine the relation
between the properties of low-frequency Stoneley
waves excited in a borehole and the permeability of the
surrounding medium.

Laboratory experiments [1] showed that the proper-
ties of Stoneley waves in a borehole surrounded by a
permeable medium are adequately described by the
Biot theory [2, 3]. However, in actual conditions, the
walls of the borehole can be covered with an almost
impermeable layer, which considerably reduces the
fluid flow from the reservoir to the well. The formation
of such a layer, namely, a mudcake, can be caused, e.g.,
by the drilling mud that is deposited on the walls of the
borehole or penetrates under hydrostatic pressure into
the porous medium. On the other hand, experiments [4]
showed that in the course of drilling, solid particles of
rock can penetrate into the pores of the borehole walls
and form a thin (<0.5 mm) barrier, which is 100 to
20000 times less permeable than the surrounding
medium. It was shown that this process leads to a
decrease in the average permeability of rock by a factor
of 2–150. Thus, a mudcake considerably reduces the
production of an oil pool and can even hinder its detec-
tion by a fluid flow.

Currently, none of the existing technologies is able
to determine the position of a permeable stratum in the
presence of a mudcake in a borehole. The first step in
the development of such technologies is a theoretical
study of the effect of a mudcake on the acoustic wave
field inside a borehole. For this purpose, it is necessary
to develop a model that adequately describes the mud-
cake. Active studies in this area of research are carried
out in the United States [5, 6]. For example, some
authors [5] represent a mudcake as an impermeable thin
1063-7710/02/4802- $22.00 © 20187
elastic membrane, and other authors [6] consider the
mudcake as a layer of rock with a reduced permeability.
In both cited publications, a complete wave problem for
the Biot model was solved for an arbitrary frequency
range, which considerably complicates the description
and the physical interpretation of the results.

In this paper, we consider only the long-wave
approximation, because, in acoustic measurements, the
characteristic wavelengths observed in both the sur-
rounding medium and the borehole fluid are usually
much greater than the borehole diameter. Three differ-
ent physical models of the mudcake are developed. In
the first model, the mudcake is described as a highly
viscous liquid layer formed in a permeable porous
medium of the stratum. This representation can be eas-
ily reduced to the model of a low-permeability layer [6]
and, from this point of view, it is more general. In the
second model, the mudcake is considered as a free elas-
tic shell situated near the wall of the borehole. The third
model differs from the second in that the shell is fixed
in an arbitrary way to the borehole walls. This model
includes an additional assumption that the shell thick-
ness is much smaller than the borehole diameter.

For each of the models, numerical calculations are
performed to determine the wave field inside a borehole
intersecting a permeable stratum that is blocked by a
mudcake. The calculations make it possible to draw the
conclusions concerning the possibility of detecting a
permeable stratum in the case of a wave and a mudcake
with characteristic parameters.

The frequency range used in vertical seismic profil-
ing as a rule does not exceed several hundreds of hertz,
and the borehole diameter does not exceed 20 cm.
Hence, the characteristic wavelengths in both the bore-
hole fluid and the surrounding medium far exceed the
borehole diameter. Therefore, in deriving equations, we
use the long-wave approximation λ @ b (b is the bore-
hole radius).
002 MAIK “Nauka/Interperiodica”
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The propagation of small-amplitude waves in a liq-
uid is described by the equations of motion, continuity,
and state:

(1)

Here, Pf (r, z, t), ρf (r, z, t), and V( f ) = { (r, z, t), 0,

(r, z, t)} denote the deviations of the local pressure,
density, and mass velocity, respectively, from their

equilibrium values;  and c0 are the initial density of
the liquid and the sound velocity in it.

In the long-wave approximation, it is natural to
characterize the sound field in the borehole by the
dynamical quantities averaged over the borehole cross
section [7, 8]:

(2)

Here, b is the radius of the borehole. In Eqs. (1) and (2),
we took into account that, in the long-wave approxima-
tion, the distributions of the dynamical quantities in the
borehole are axially symmetric, so that averaging over
the angle yields the factor 2π.

According to Eqs. (2), after averaging the equation
of continuity and the equation of motion (its projection
on the borehole axis) over the borehole cross section,
we obtain the relationships

(3)

(4)

Combining Eqs. (3) and (4), we obtain an inhomo-
geneous wave equation for the pressure field in a fluid-
filled borehole:

(5)
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or, in terms of the frequency representation,

(6)

When transverse filtration flows in the borehole–
stratum system are absent, the fluid velocity near the
borehole boundary coincides with the velocity charac-
terizing the displacement of the borehole walls (or the
inner surface of the mudcake). The fluid filtration
through the mud is neglected in this case.

In the long-wave approximation, to obtain a closed
equation for the pressure in the borehole, we can use the
quasistatic relation between the applied pressure and
the displacement of the borehole walls (the inner sur-
face of the mudcake), which can be determined from
the static equations of the theory of elasticity [7–9].
Since we limit our consideration to the linear approxi-
mation, this relation will also be linear:

(7)

Then, the closed equation for the pressure will have the
form

(8)

where the wave number is determined by the expres-
sion

(9)

This expression can also be represented in the form [5, 6]

(10)

where S(ω) = c–1(ω) is the slowness, i.e., the reciprocal
of the phase velocity of the tube wave, and Q is the
Q-factor.

The coefficients Ä and Ç in Eq. (7) depend on the
parameters of the borehole wall, the mud, and the
fluid. For simple cases, these coefficients are well
known. If the borehole is surrounded by a homoge-
neous elastic medium, these coefficients are A =
iωb/2µ and B = –Pext A, where µ is the shear modulus
of the elastic medium and Pext is the effective external
stress. Then, the wave number will be determined by
the expression

(11)

If the elastic medium under consideration is charac-
terized by a nonzero permeability, the expression for
the velocity will have an additional term associated
with the transverse filtration flows in the borehole–stra-
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tum system. In this case, the wave number will have the
form [8]:

(12)

where the argument z = b is determined by

both the frequency and the combination of the parame-
ters characterizing the porosity m0, the permeability k0,
and the dynamic viscosity of the fluid η; K0 and K1 are
the Macdonald functions.

In this paper, we determine the coefficients of the
quasistatic relation between the applied pressure and
the displacement of the inner surface of the mudcake.
For this purpose, we consider the following system: a
borehole in a permeable homogeneous elastic medium
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blocked by a mudcake. The main problem is that the
mudcake may exhibit different properties in different
conditions. Therefore, we developed several models of
the mudcake [10]. In fact, only two fundamentally dif-
ferent ways are possible in describing this object: the
mudcake can be considered either as a highly viscous
liquid or as a solid shell.

MODEL OF A MUDCAKE AS A HIGHLY 
VISCOUS LIQUID

This model represents the mudcake as a highly vis-
cous liquid layer formed in the porous medium of a per-
meable stratum. In the framework of this model, the
coefficients characterizing the relation between the
velocity of the inner mud surface and the pressure have
the form (see Appendix A):
(13)

(14)

where R0 is the inner radius of the mud layer (in this model, it coincides with the borehole radius b); R1 is the outer

radius of the mud layer; a2 = k0Kf /ηm0; γj = ; j = 1, 2, where 1 corresponds to the mud and 2 to the fluid;
K0, I0, K1, and I1 are zero-order and first-order modified Bessel functions;
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Taking into account the elastic motion of the borehole
walls, we obtain an expression for the wave number
describing the wave propagation in the borehole:

(15)

When the thickness of the mudcake is zero, i.e., R0 =
R1, this expression is reduced to Eq. (12).

In [6], the authors described the mudcake in the
framework of the Biot model as a thin layer of the sur-
rounding elastic medium with a reduced permeability
kimp. Since permeability is involved in Eq. (13) only in
combination with the viscosity, k/η, our model can be
easily reduced to the model described in [6]. For this
purpose, it is sufficient to assume that the compression
modulus of the mud is equal to that of the fluid: Kf1 =
Kf2. Then, by varying the viscosity of the mud, we
effectively vary the permeability of rock. The cited
publication [6] presents the low-frequency approxima-
tion of the total result (see Eq. (13) in [6]):

K2 ω2 1

c0
2

----
ρ f

0

µ
----- i

2ρ f
0

b
---------

A1

ω
------–+ .=
(16)

where

 and  are the zero-order and first-order Hankel

functions of the first kind, and  is a fairly complex
combination of the porosity and the elastic moduli that
characterize the skeleton of the porous medium and the
fluid (detailed formulas can be found in [5]). Perform-
ing the numerical comparison, we took into account the

difference between  and Kf by introducing a correc-
tion factor close to unity.
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Table 1.  Parameters used in the calculations

Fluid-filled borehole Fluid density , kg/m3 1000

Sound velocity in the fluid c0, m/s 1500

Fluid viscosity η, Pa s 0.001

Borehole radius b, cm 14.5

Porous medium Longitudinal wave velocity cp, m/s 3735

Transverse wave velocity cs, m/s 2080

Density of rock ρb, kg/m3 2337

Porosity m0 0.2

Permeability k0, D 0.1

Mudcake Sound velocity in the mud cCL, m/s 1500

Mud viscosity ηCL, Pa s [0.001–0.1]

Mud density ρCL, kg/m3 1000

Mudcake thickness R1 – R0, mm 1

ρ f
0

When the thickness of the mudcake is zero, Eq. (16)
is reduced to an expression equivalent to Eq. (12):

(17)

It should be noted that, to change to the frequency rep-
resentation, we used the Fourier transform with the core
eiωt, whereas in the aforementioned publications [5, 6],
the core e–iωt was used. Therefore, to compare results, it

K2 ω2 1

c0
2

----
ρ f

0

µ
----- 2ρ f

0 m0

K̃
------1

z̃
---

H1
1( ) z̃( )

H0
1( ) z̃( )

-----------------–+ .=
is necessary to perform the substitution ω  –ω. Tak-
ing into account the relation between the Hankel and

Macdonald functions, Kν(z) = iν + 1 (iz) [11], one

can easily verify that Eqs. (12) and (17) are structurally
identical.

To compare our model of a highly viscous liquid
with the model of a low-permeability layer, we used Eq.
(16) and the parameters from [6] (Table 1). The results
of this comparison are presented in Fig. 1.

π
2
--- Hν

1( )
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Fig. 1. Comparison of the frequency dependences of the phase velocity c(ω)/c0 (left) and the damping factor 1/Q (right) calculated
using the model of a highly viscous liquid (the solid curves) for the parameters k0/ηCL = 1 and 15 D/Pa s with the corresponding
dependences obtained for the model of a low-permeability layer [5]. The dashed curves correspond to the calculations for an open
borehole.
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MODEL OF THE MUDCAKE AS AN ELASTIC 
CYLINDRICAL SHELL

In this model, the mudcake is represented as an elastic
cylindrical shell, which has the inner radius R0 and the
outer radius R1 and is situated near the inner surface of
the borehole (see Appendix B). The coefficients charac-
terizing the quasistatic relation between the velocity of
the inner mud surface and the pressure have the form

(18)

(19)

where

and the parameter d is determined by the following
expressions depending on the type of the stressed state:

d =  when the shell ends are free (σzz = 0)

and

d =  when the shell ends are fixed (uzz = 0).

Index 1 corresponds to the mudcake, and index 2 to
the porous elastic medium.

We note that, in this model, the coefficient B is not
related to A by Eq. (14), so that the velocity character-
izing the displacement of the inner mud surface is not
proportional to the difference between the pressures
inside the borehole and at infinity. This is a conse-
quence of the fact that, under pressure, the mudcake is
not only displaced as a whole, but it is also deformed,
i.e., its thickness changes.

In [5], the mudcake was considered as an elastic mem-
brane. The result obtained in this case in the low-fre-
quency approximation is as follows (Eq. (58) from [5]):

(20)

where
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and WMC is the membrane stiffness, this parameter
being artificially introduced in the boundary condi-
tion between the porous medium and the mudcake:
σrr1(b) = P2(b) + WMC[Ur2(b) – ur2(b)]. Here, σrr is the
radial component of the stress tensor at the surface of
the mudcake; P2 is the fluid pressure in the pores; and
Ur2 and ur2 are the displacements of the fluid and the
skeleton of the porous medium, respectively. In the case
WMC = ∞, this condition is reduced to the zero differ-
ence between the displacements: Ur2(b) – ur2(b) = 0. In
the case WMC = 0, we obtain the equality of pressures:
σrr1(b) = P2(b).

In developing our model, we used the latter condi-
tion, i.e., the condition of equal pressures (see Appen-
dix B). Therefore, to perform the comparison, we must
set WMC = 0 in Eq. (20).

Substituting A2 into Eq. (9), we obtain the wave
number of the tube wave in our model. If we separate

the term /Mf and use the formula d1 = (λ1 + µ1)/µ1

corresponding to the case of fixed ends (uzz = 0), the
wave number can be written in the form

(21)

where X = 2µ2µ1fc  is the term that distin-

guishes our result from Eq. (20) at WMC = 0.
When the membrane thickness is equal to zero, i.e.,

R1 – R0 = 0, we have fc = 0, which yields X = 0, and the
results coincide. In the other limiting case k0  0, we
have Wp  ∞, and both Eqs. (20) and (21) are reduced
to the expression

(22)

Figure 2 shows the results of calculations by Eqs. (20)
and (21) for the parameters presented in Table 2 (the
values of the parameters are taken from [5]).

STATISTICAL MODEL

To compare the model of a highly viscous liquid
with the cylindrical shell model, it is necessary to cal-
culate the wave field inside the borehole. In the follow-
ing section, we will show that the results obtained with
these two models differ considerably. The calculations
using the cylindrical shell model with the characteristic
parameters show that the mudcake practically does not
affect the wave field (this conclusion was also made in
[5]), whereas the calculations performed in the frame-
work of the model of a highly viscous liquid show con-
siderable changes in the wave field structure due to the
mudcake.
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Fig. 2. Comparison of the frequency dependences of the Stoneley wave slowness S(ω) (left) and the damping factor 1/Q (right) cal-
culated using the model of an elastic membrane for the parameters h = 3 mm (the solid curves) and 6 mm (the dot-and-dash curves)
with the corresponding dependences obtained for the membrane model [5]. The triangles refer to h = 3 mm and the diamonds refer
to h = 6 mm. The dashed curves represent the calculations for an open borehole.
This discrepancy between the results called for the
development of a more realistic model in which the
mudcake is considered as a thin cylindrical elastic shell
fixed to the borehole walls in an arbitrary way (see
Appendix C). This model contains a random parame-
ter—the distance between the fixing points. Varying its
average value, one can obtain the results similar to
those derived from the two models considered above. In
the case under consideration, the coefficients in Eq. (7)
have the form

(23)
A3

iωb
2µ
---------

iω
W̃MC K f zK0 z( )/ m0bK1 z( )( )+
------------------------------------------------------------------------,+=

B3 PextA3,–=
Table 2.  Parameters used in the calculations

Fluid-filled borehole Fluid density , kg/m3 1000

Sound velocity in the fluid c0, m/s 1500

Fluid viscosity η, Pa s 0.001

Borehole radius b, cm 10.5

Porous medium Longitudinal wave velocity cp, m/s 3360

Transverse wave velocity cs, m/s 1675

Density of rock ρb, kg/m3 2670

Porosity m0 0.2

Permeability k0, D 0.1

Mudcake Longitudinal wave velocity in the mud , m/s 1500

Transverse wave velocity in the mud , Pa s 320

Mud density ρCL, kg/m3 1100

Mudcake thickness R1 – R0, mm [0–6]

ρ f
0

cCL
p

cCL
s
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Fig. 3. Comparison of the frequency dependences of the phase velocity c(ω)/c0 (left) and the damping factor 1/Q (right) for different
models of the mudcake: (1) the highly viscous liquid model, (2) the elastic shell model, and (3) the statistical model. The dashed
curves correspond to an open borehole.
where

 = 2  

is the shell stiffness; h is the shell thickness; E and σ are
the Young modulus and the Poisson ratio, respectively;

τ = ; s =  – 1;  is the average distance between

the fixing points; and D is its variance. The wave num-
ber is expressed by the formula

(24)

We note that, in this model, the velocity of the inner
surface of the mudcake is proportional to the pressure
difference Pf – Pext despite the fact that, as in the previ-
ous case, the mudcake is described as a solid body. This
is a consequence of the thin shell approximation.

Figure 3 presents the comparison of the frequency
dependences of the phase velocity and the damping fac-
tor of a tube wave for the model of a highly viscous liq-
uid, the elastic shell model, and the statistical model.
The calculations were performed using the parameters
from Table 2. The mud viscosity was ηCL = 0.1 Pa s; the
mudcake thickness was h = 5 mm; the average length
and its variance in the statistical model were taken to be
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 = 4 mm and D = 13 mm2. These parameters were
selected so as to demonstrate most clearly the interme-
diate position of the statistical model.

Below, we present examples of calculated seismo-
grams that illustrate the effect of the mudcake on the
acoustic wave field generated in a borehole by a pulsed
source positioned inside the borehole. To obtain the
seismograms, we used the TUBEWAVE software [7,
8], which allowed us to calculate the wave field in a
borehole embedded in a stratified elastic medium.

Figure 4a shows the simplest case of a borehole in a
homogeneous elastic medium. In this case, a wave
propagates in the borehole without reflections. If a per-
meable stratum with the same elastic parameters as
those of the surrounding medium is introduced in the
system, a difference will appear in the fluid velocities
near the borehole walls. Then, the wave numbers given
by Eqs. (11) and (12) will differ by only the second term
in Eq. (12), i.e., the term associated with the permeabil-
ity. This may give rise to a reflected wave (Fig. 4b).

In our calculations, we used the following parame-

ters: the initial fluid density  = 1000 kg/m3; the initial
fluid velocity cf = 1500 m/s; the fluid viscosity η =
0.001 Pa s; the borehole radius b = 10 cm; the density
of the surrounding elastic medium ρ = 2000 kg/m3; the
longitudinal and transverse velocities of sound in this
medium cp = 4500 m/s and cs = 2500 m/s, respectively;
the thickness of the permeable stratum (for the case cor-
responding to Fig. 4b) d = 4 m; the porosity of the
medium m0 = 15%; and the permeability of the medium

L

ρ f
0
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Fig. 4. Synthetic seismograms illustrating the propagation of Stoneley waves in a borehole (a) in the absence and (b) in the presence
of a permeable stratum.
k0 = 10 D. The permeability was chosen to be high to
make the effect under investigation more pronounced.

Now, let us assume that the permeable stratum is
blocked by mud. Depending on the mudcake and stra-
tum parameters, three situations are possible:

(a) mud is amenable to varying pressure; then, the
seismogram has the form shown in Fig. 4a, i.e., the stra-
tum is clearly “visible”;

(b) mud is resistant to varying pressure; then, the
seismogram has the form shown in Fig. 4b, i.e., the stra-
tum is “invisible”;

(c) the intermediate situation.

Thus, the effect of the mudcake on the wave field
should manifest itself as a change in the amplitude ratio
of the reflected and transmitted waves. The stronger the
mudcake blocks the permeable stratum, the smaller the
amplitude of the reflected wave.

For each model of the mudcake and for a fixed mud-
cake thickness h = 1 cm and with fixed parameters for
the borehole, we chose mud parameters that correspond
to each of the three aforementioned situations (Fig. 5).

In the model of a highly viscous liquid, the perme-

able stratum is visible at  = 1 and invisible

when  @ 1, and the intermediate situation is

ηCL/KCL

η f /K f

--------------------

ηCL/KCL

η f /K f
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realized when  >≈ 1. In the elastic shell model,

the stratum is visible when µ1/µ2 ! 1 and invisible
when µ1/µ2 @ 1, and the situation is intermediate when
µ1/µ2 ≈ 1. In the framework of the statistical model, the

stratum is visible when  ! 1 and invisible when

 @ 1, and the intermediate situation corresponds

to  ≈ 1.

Calculations performed for the characteristic param-
eters of both borehole and mud showed that, for the
highly viscous liquid model, case (b) is realized (the stra-
tum is invisible), and for the elastic shell model, case (a)
takes place (the stratum is clearly visible). This is the dis-
crepancy of the results that was mentioned above. In the
calculations, we used the following characteristic param-
eters of mud: the density ρCL = 2000 kg/m3, the longitu-

dinal sound velocity  = 1000 m/s, the transverse sound

velocity (for the elastic shell model)  = 500 m/s, and
the viscosity ηCL = 1–100 Pa s. A similar calculation for
the statistical model showed that case (a) is most likely
to be realized.
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Fig. 5. Synthetic seismograms illustrating the effect of the mudcake on the reflection of Stoneley waves and their transmission
through a blocked permeable interval for the cases of (a) a weak, (b) intermediate, and (c) strong blockage. The parameters corre-
sponding to these cases for (1) the model of a highly viscous liquid, (2) the elastic shell model, and (3) the statistical model are as

follows: case (a): (1)  = 1, (2)  ! 1, (3)  ! 1; case (b): (1)  >≈ 1, (2)  ≈ 1, (3)  ≈ 1;

case (c): (1)  @ 1, (2)  @ 1, (3)  @ 1.
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Thus, in this paper, we discussed the problem of
detecting a blocked permeable stratum by means of
acoustic measurements in a borehole. In this context,
we studied the response of such an object as a mudcake
to the effect of an acoustic wave field. Several ways of
describing the mudcake were proposed, and it was
found that its response to the effect of acoustic waves
strongly depends on the mudcake model. The calcula-
tion performed in the framework of the model repre-
senting the mudcake as a highly viscous liquid layer
showed that, in the case of a viscosity characteristic of
a mud solution, a mudcake several millimeters thick
completely blocks the permeable interval. A similar
calculation using the elastic shell model yields the
opposite result even for a one-centimeter-thick mud-
cake. A more realistic model representing the mudcake
as an elastic membrane fixed in an arbitrary way to the
borehole surface allowed us to combine the two previ-
ous results by averaging them with different weights.
Formally, this procedure resulted in the introduction of

the effective stiffness of the membrane . In [5], the
membrane stiffness was introduced as a parameter,

W̃MC
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whereas, in this paper, we proposed a new method for
its calculation. We showed that, in the low-frequency
limit, the results obtained in [5, 6] in the framework of
the Biot theory agree well with the results obtained by
us. However, the results obtained in this paper are
derived in a much simpler way and have a clearer phys-
ical interpretation.

In closing, we conclude that, currently, there exists
a theoretical basis for the determination of mud-cake-
blocked permeable intervals in a borehole from the
character of the propagation of Stoneley waves. How-
ever, the choice of the most adequate model of a mud-
cake is hampered by the lack of experimental data.

APPENDIX A

(THE HIGHLY VISCOUS LIQUID MODEL)

In the framework of this model, a mudcake is con-
sidered as a highly viscous liquid layer formed in the
porous medium of a permeable stratum and character-
ized by the inner radius R0 and the outer radius R1.
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A laminar fluid flow in a porous medium is
described by the continuity equation and the Darcy law:

(A.1)

where m and m0 are the current and initial porosities of

the medium, respectively; ρf and  are the current and
initial densities of the fluid; V( f ) is the mass velocity of
the fluid (the skeleton of the porous medium is assumed
to be stationary); k0 is the permeability of the medium;
and η is the dynamic viscosity of the fluid.

Setting m = m0 = const (i.e., neglecting in this way
the contact compressibility) and taking into account the
compressibility of the fluid according to the relation-

ship ρf = , we linearize Eqs. (A.1):

(A.2)

Here, Kf is the bulk modulus of the fluid. From
Eqs. (A.2), we easily obtain the filtration equation

(A.3)

where a2 = k0Kf/ηm0 and ∆ is the Laplacian. We seek
the solution in the form Ppor = Pext + P(r, t).

In terms of the frequency representation with allow-
ance for the cylindrical symmetry, the problem of filtra-
tion can be formulated as follows:

(A.4)
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The general solution for R0 < r < R1 has the form

(A.5)

where K0, I0, K1, and I1 are the zero-order and first-
order modified Bessel functions [11]. The constants Ci

are determined from the following boundary condi-
tions: at long distances from the borehole, the deviation
of the pressure from the equilibrium value should tend
to zero, i.e., P(r  ∞, ω)  0. At the mud–fluid
boundary in the porous medium, the conditions of
equal pressures and equal velocities must be satisfied,
and at the borehole boundary, the mud pressure should
be equal to the fluid pressure in the borehole:

(A.6)

Here, Pf represents the deviation of the pressure in
the borehole from the equilibrium pressure.

Thus, substituting the general solutions (A.5) into
Eqs. (A.6), we obtain a set of equations for the determi-
nation of the constants Ci. Using the solution of the fil-
tration problem for R0 < r < R1 and Eqs. (A.2) relating
V( f ) and P, we obtain (through cumbersome transfor-
mations, which are omitted here) an expression for the
filtration velocity at the inner boundary of the borehole:
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One can easily verify that, at R0 = R1, i.e., when the mud
layer thickness is equal to zero, Eq. (A.7) is reduced to
the expression, which coincides with the result
obtained in [5] by solving a simple filtration problem
without the mud layer:
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(A.8)

One can also show that Eq. (A.7) transforms to Eq. (A.8)
when the parameters of the fluid and the mud are equal,
i.e., when γ1 = γ2.

APPENDIX B

(THE CYLINDRICAL ELASTIC SHELL MODEL)

In this model, the mudcake is represented as an elas-
tic shell characterized by the inner radius R0 and the
outer radius R1 and situated near the inner surface of the
borehole with the radius R2 (Fig. 6). We assume that
only radial displacements take place. Then, from the
conditions of equal pressures and displacements at the
layer boundaries, we obtain an expression for the dis-
placement velocity of the mudcake with allowance for
the transverse flows in the borehole–stratum system.

The equilibrium equation for a solid under a surface
force has the form [12]

where σ is the Poisson ratio.

The deformation caused by a pressure that is uni-
form along the tube has the form of a radial displace-
ment ur = u(r). In this case, we obtain

(B.1)

Using the Hooke law, we derive an expression for the
radial component of the stress tensor:

(B.2)

where d =  when the ends of the shell are free

(σzz = 0) and d =  when the ends are fixed (uzz = 0).

We will first consider the fluid in layer III as a solid
by formally introducing its shear modulus µ f , and, in
the final formula, we will set µ f = 0. Then, according to
Eqs. (B.1), the displacement of the fluid has the form

(B.3)

v
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Using Eqs. (A.1)–(A.5) from Appendix A, we obtain
the expressions for the pressure and the fluid displace-
ment in the porous medium:

(B.4)

(B.5)

Now, we formulate the conditions of the equality of
pressures and displacements at the layer boundaries:

(B.6)

The displacement at the fluid–porous medium bound-
ary (r = R2) is determined by the filtration of the fluid
and the elastic displacement of the porous medium:

(B.7)

The conditions at infinity have the form

(B.8)

Substituting Eqs. (B.1) and (B.2) into the boundary
conditions (B.6)–(B.8), we obtain a set of linear equa-
tions in the unknowns a1, b1, bf, b2, and C:
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IV r( ) Pext CK0 iω/a2r( ),+=
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IV r( ) C

1
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-----------------K1 iω/a2r( ).=
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III R1( ),=
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III R1( ).=

ur
III R2( ) ur

IV R2( ) m0urpor
IV R2( ),+=
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III R2( ) σrr

IV R2( ) Ppor
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σrr
IV ∞( ) P– ext,=

Ppor
IV ∞( ) Pext.=

I

II

III IV

Fig. 6. Geometry of the problem for a borehole blocked by a
mudcake: (I) the borehole fluid, (II) the mudcake, (III) the
intermediate fluid layer, and (IV) the surrounding perme-
able porous medium.
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(B.9)

Solving this set of equations and setting µ f = 0, we derive an equation for the displacement of the mudcake:

(B.10)
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The corresponding velocity in the frequency repre-
sentation is related to displacement (B.10) by the factor
iω: v (ω) = iωu(ω). We limit our consideration to the
case R1 = R2, i.e., to the case of a mud layer immedi-
ately adjacent to the borehole wall. Then, we have

(B.11)

For a shell of zero thickness (R0 = R1), Eq. (B.11)
takes the form

(B.12)

Expression (B.12) coincides with Eq. (A.8) correct
to the term iωR0∆P/2µ2, which represents the velocity
determined by the elastic motion of the borehole walls.
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APPENDIX C

(THE STATISTICAL MODEL)

In the two preceding appendixes, we considered the
model of a highly viscous liquid and the elastic shell
model. These models yielded entirely different results.
In the case of a highly viscous liquid, the filtration flows
can be neglected. On the other hand, in the elastic shell
model, a one-centimeter-thick mudcake practically
does not affect the velocity of the fluid near the bore-
hole walls.

This discrepancy between the results required the
development of a more realistic model. In such a
model, the mudcake is considered as a thin elastic
cylindrical shell fixed in an arbitrary way to the bore-
hole walls. For simplicity, we assume that the positions
of the fixing points obey cylindrical symmetry. The dis-
tance between the neighboring fixing points L is a ran-
dom value whose distribution is described by some
probability density. The probability density function is
unknown, but we can assume that its behavior is similar
to the Gaussian distribution, because L depends on
many parameters. Then, the probability density func-
tion should have a dome-like shape characterized by a
mean value and a variance of L; it should be defined
within the interval 0 < L < ∞ and normalized to unity.
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In this paper, for simplicity and convenience, we use
the probability density function in the form

(C.1)

where s is a positive integer.

Averaging of the Mudcake Displacement
within a Single Cell

The equilibrium equation for a thin cylindrical plate
in the absence of the dependence on the azimuth angle
has the form [12]

(C.2)

where ξ is the radial displacement of the plate, E is the
Young modulus, σ is the Poisson ratio, h is the plate
thickness, R is the borehole radius, and ∆P is the differ-
ence between the pressures on the two sides of the
plate: ∆P = Pf – Pout.
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The boundary conditions have the form

ξ(x) = 0 and ξ(x) = 0 at x = 0, L.

These boundary conditions allow us to consider the
plate fixed at many different points as a set of individual
cells, which are fixed at their ends and have different
lengths. We introduce the notation

k4 = . (C.3)

Evidently, a particular solution to inhomogeneous
equation (C.2) is ξ1 = ∆P/Dk4, and the general solution
to the homogeneous equation can be easily determined
by applying the substitution ξ = exp(λx). From the con-
dition that the displacements be real and from the
boundary conditions, we obtain the expression for the
displacement ξ of a cylindrical shell fixed at the edges.
Averaging this expression for ξ over x, we obtain

(C.4)
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and b = kL/ .
The function F(b) has the following asymptotics:

F(b)  b4/180 and F(b)  1 – 2/b. Since the
function F(b) has a fairly complex form, we select an
approximating function of a simpler form for the sub-
sequent calculations:

(C.6)

When b is small, the function f(b) behaves as (b/δ)4

and, when b is large, f(b) ≈ 1 – 4δ/b. By varying the
parameter δ, it is possible to obtain a coincidence of the
functions F(b) and f(b) for different values of b.

Averaging of the Mudcake Displacement
over All Cells

Let the distribution of the cell length L be described
by the probability density G(L). Then, the procedure of
averaging over L has the form

(C.7)

Performing the integration in (C.7), we replace the
function F(b) in the integrand by the function f(b) given
by Eq. (C.6). The parameter δ is chosen so as to make
the functions F(b) and f(b) as close as possible to each
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other near the maximum of the function G(b(L)) given
by Eq. (C.1). In this case, we obtain

(C.8)

where

(C.9)

This integral can be calculated. Then, the average dis-
placement will have the form

Here,

where Ei(x) = dt.

The analytical form of the function Φ(αδ, s) is rather
complicated. Since our aim is to obtain the most simple
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function that is convenient for calculations and ade-
quately describes the main features of the behavior of
the physical quantity, we again use an approximating
function. It has the form

(C.10)

where the parameters A1, A2, B1, and B2 are chosen so
as to obtain the closest approximation of the initial
function. In the calculations, we used the values A1 = 2,
A2 = 25, B1 = 1, and B2 = 4.

Substituting the initial parameters of the problem,
we obtain

(C.11)

In this formula, the displacement is expressed
through the pressure difference between the two sides
of the shell. Now, we introduce in our consideration the
permeable stratum and the filtration flows from it (as in
the previous model). Since we already averaged the dis-
placement along the borehole, we now consider the
mudcake as an ordinary (not fixed) shell. Then, by anal-
ogy with (B.1)–(B.8), we obtain the set of equations

(C.12)

Solving this set, we obtain

(C.13)

The corresponding velocity in the frequency represen-
tation is related to displacement (C.13) by the factor iω:
v (ω) = iωu(ω). It is also necessary to take into account
the elastic motion of the borehole walls. This is accom-
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plished by introducing an additional term in the expres-
sion for the velocity. The final result has the form

(C.14)

When the thickness of the mudcake tends to zero, we have

  0, and Eq. (C.14) is reduced to Eq. (B.12).
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Abstract—When fish strength is estimated indirectly from the sounder echo amplitudes, the inverse techniques
of solving the so-called “single-beam integral equation” are quite satisfactorily used. This approach needs prior
knowledge of the beam pattern PDF, as it represents the kernel of the integral equation to be solved and is usually
calculated under the assumption of a uniform spatial distribution of fish. However, it may be shown that in some
cases this assumption is not necessarily justified. For instance, when the density of fish increases, one receives
multiple echoes from the same single fish in successive transmissions, which results in observing so-called fish
echo traces. Typically used fish counting methods are either simple direct echo counting statistics or fish traces
statistics [1]. Increased fish concentration is not only the reason of multiple echo formation resulting in the fish
traces in consecutive pings. As it is easily seen from the geometry of the phenomenon, even a relatively low-den-
sity fish aggregation forms multiple echoes and, hence, fish traces if the vessel (or fish) relative speed is low
enough and the beam pattern angular width (sampling volume) is large enough. In some situations, the uniform
assumption works properly only for the cases of large numbers of samples. Taking into account this phenomenon,
the accuracy of the solution can be improved by including the fish traces counting statistics in calculating the beam
pattern PDF. In this paper, two different models of fish traces statistics are investigated: one assuming the vessel
movement with stationary fish and the other with a stationary vessel and moving fish. Both approaches are mod-
eled numerically and verified experimentally using the data obtained from a dual-beam system. The comparison
of both approaches, i.e., for single echo traces and multiple echoes, is carried out using Windowed Singular Value
Decomposition (WSVD) and Expectation Maximization and Smoothing (EMS) inverse techniques of fish target
strength estimation in both the absolute domain (backscattering length estimation) and the logarithmic domain
(target strength estimation). © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Indirect methods of fish target strength estimation
using single beam echosounder systems fall into the
category of inverse problems in which the probability
density function (PDF) of target strength is estimated
from fish echoes. Due to hydroacoustics system charac-
teristics, the reconstruction of the fish target strength
PDF is based on incomplete data [2]. This kind of prob-
lem is an example of the statistical linear inverse prob-
lem, which is typically ill-conditioned and can be
solved using direct inverse techniques, based on regu-
larization or iterative techniques in which additional
constraints are specified. In most cases, the observed
data are restricted to the certain echo amplitude dynamic
range limited by the side-lobe level. This approach
allows omission of the problem of ambiguity of the beam
pattern function [2]. However, to calculate this function,
an additional assumption on the spatial distribution of
fish in the beam pattern volume is to be made.

The statistics of the so-called fish traces, which are
represented by multiple echoes received from the same
fish in consecutive echosounder transmissions, and
beam pattern probability density function (PDF) seem
to be two absolutely separate and unrelated issues. The

1 This article was submitted by the author in English.
1063-7710/02/4802- $22.00 © 20201
first one is used in the analysis of fish counts estimates
[1], whereas the second one plays a crucial role in indi-
rect fish target strength estimation [2]. However, it
appears that these two seemingly separate problems are
closely related when one considers the PDF of the beam
pattern in the context of multiple echoes from individ-
ual fish.

The widely used assumption of a uniform spatial
distribution of fish in the water column leads to a sine-
law distribution of the angular position of the fish. This
assumption is valid only for the case of single or non-
multiple echoes received from individual fish in con-
secutive pings. However, when acquiring actual data
from acoustic surveys, the multiple or correlated ech-
oes may be collected from the same fish forming the
fish traces.

In this paper, the analysis of two models of fish
traces is presented and the PDF’s of the number of mul-
tiple echoes occurring in fish traces and the angular
position of the fish are also derived. Later on, the beam
pattern PDF is calculated based on the same assump-
tions as in the case of the fish traces statistics. Finally,
the beam pattern PDF is used as the kernel of the “sin-
gle beam integral equation” for reconstructing the fish
target strength estimate from the echo data.
002 MAIK “Nauka/Interperiodica”
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(a) Model 1—ρ1:U(0, r) (b) Model 2—α:U(0, π/2)
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Fig. 1. Geometry of two models for the number of echoes in fish traces analysis.
FORMULATION OF THE PROBLEM

Two models of the fish traces statistics, the geometry
of which is illustrated in Fig. 1, have been considered:

(1) a moving vessel model with stationary fish,

(2) a moving fish model with a stationary vessel.

In the first model, the uniform vessel movement
with stationary fish is assumed as detailed in Fig. 1a.
The second model assumes a fish movement along an
arbitrary path in the transducer beam pattern cross-sec-
tion, as shown in Fig. 1b.

Let us further assume that the distribution of the
variable z representing the depth at which fish appears
in the conical area defined by observation angle θmax is
uniform, i.e.,

(1)

where zmax represents the maximum depth. Due to the
linear relation between depth and radius of a circular
slice z = r , the distribution of the random vari-
able r also becomes uniform, i.e.,

(2)

where rmax = zmax/  is the maximum possible
radius of the circular cross-section of the beam pattern.

MOVING VESSEL
AND STATIONARY FISH MODEL

In the first model, all fish traces represent parallel
lines crossing every circular slice of the observation
cone. Thus, the fish position in consecutive pings can be
represented by equidistant points on parallel chords.

pz z( ) 1
zmax
---------,=

θmaxtan

pr r( ) 1
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---------,=

θmaxtan
The unknown statistics of the number of fish N1 can be
derived from the geometrical equation:

(3)

where ∆d represents the sampling distance between
consecutive points. The random variable r represents
the radius of a circle, and the random variable ρ1 repre-
sents the distance between the center of that circle and
the trace of the fish. In this model, one assumes that a
fish may appear in the circle in such a way that the dis-
tance from the centre to the trace of the fish is equally
probable, so that, in other words, the distribution of ρ1
is uniform in a range interval (0, r). This allows us to
treat the random variable ρ1 as a product of two random
variables ρ1 = r u, where the variable u is represented by
a normalized uniform distribution. Substituting this
relation into Eq. (3), we obtain:

(4)

Now we can treat again the number N of fish traces as
a product of two random variables x = 2r /∆d and y =
(1 – u2)1/2 and calculate the probability distribution func-

tion as an integral equation pz(z) = (x)py(z/x)/xdx,

which gives the PDF of N as
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which, in its turn, yields
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The expression ∆d/(2rmax) in Eq. (6) may be treated as
the parameter of the data measurement system and can
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be calculated from the relation for the mean value of the
random variable:

(7)

The probability density function of the number of
echoes in fish traces for this model is presented in Fig. 2.

MOVING FISH
AND STATIONARY VESSEL MODEL

In the second model, one assumes that the fish
crosses an arbitrary circular cross-section of the conical
sampled volume with an equally probable angle α.
From geometrical relations, the number of fish traces
can be expressed as

(8)

where the random variable α represents the crossing
angle. The unknown distribution of the number of fish
echoes in the fish trace N2 can be derived again from the
equation determining the PDF of the product of two
random variables x = 2r/∆d and y = sinα. Assuming a
uniform distribution of the angle α, we obtain:

(9)

which eventually leads to:

(10)

The mean value of the random variable N2 with a PDF
in the form of Eq. (10) is given by:

(11)

The probability density function of the number of
echoes in fish traces for this model is presented in Fig. 3.

STATISTICS OF THE ANGULAR POSITION
OF FISH FOR MULTIPLE ECHO TRACES

Let us now consider the distribution of the angular
position of fish θ in the transducer beam that is neces-
sary for calculating the beam pattern PDF. The random
variable θ can be expressed as (see Fig. 4):

(12)
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where the random variable z represents the fish depth
and the random variables R and ρ represent the fish
position coordinates related by the equation R2 = ρ2 +
z2. Let us also consider the random variable t called the
trace distance, which represents the distance of the fish
from the crossing point of the circular slice. Assuming
that the fish swims on the chord and is “sampled” uni-
formly in the consecutive pings, we can treat its PDF as
uniform in a range (0, 2rsinα). Thus, the trace distance
random variable can be expressed as t = 2rsinα u,
where u again has a normalized uniform distribution.
Taking into account the cosine law in the nonright-
angled triangle (Fig. 4) we obtain:

(13)
ρ2 r 2 t 2 2rt αsin–+=

=  r 2 1 2 αsin( )2 u u2–( )–( ).
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Fig. 2. Theoretical probability density function (PDF) of the
number N of echoes in fish traces for moving vessel and sta-
tionary fish model.

Fig. 3. Theoretical PDF of the number N of echoes in fish
traces for moving fish and stationary vessel model.
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Fig. 4. Geometry of multiple echo traces of the fish.
Substituting z = r , which removes the z depen-
dence from Eq. (5) and the r dependence in Eq. (6), we
receive the equation for the angular position θ:

(14)

Equation (7) shows that the distribution of the angular
position θ depends only on the distribution of the cross-
ing angle α as random variable u represents uniform
distribution resulting in the PDF of variable u – u2

expressed as (x) = (1/4 – x)–1/2. The distribution of

the variable α depends on the angular relations between
fish and vessel movement [2] and can change from
sine-law, when the stationary fish model is used, to uni-
form distribution when the stationary vessel model is
used. Both models give the distribution of the variable
4sin2α as (x) = (4x – x2)–1/2/π for the sine-law

model or (x) = (4 – x)–1/2/4 for the uniform distri-

bution one. Finally, using the formulae for the PDF of
the product of random variables and transforming
according to Eq. (7), we receive for the first and the sec-
ond model, respectively:

(15)
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where K(k) = 1 – k2sin2ϕ)–1/2dϕ represents a com-

plete elliptic integral of the first kind.

Both distributions are illustrated in Fig. 5. It is worth
to note that, as one could expect, there are more echoes
received from larger angles, which results in an
increase in the distribution as compared to the sinelike
distribution known for the case of nonmultiple echoes
received from a single fish.

BEAM PATTERN PDF BASICS

To derive the beam pattern PDF, let us first con-
sider an ideal circular piston transducer in an infinite
baffle, for which the one-way beam pattern function b
is given by

(17)

where x is defined by x = kasinθ, k is the wave number,
a is the transducer radius, and Jn is the Bessel function
of the first kind of order n. The logarithmic form of the
two-way pattern in decibels is derived by the simple
transform B(θ) = 10 (θ)2 = 20 (θ).

The beam pattern PDF pB(B) represents the kernel
function of the inverse problem for a two-way system
and can be obtained from its absolute variable form

(
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π2∫
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x
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blog blog
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Fig. 5. Theoretical distribution of the angular position θ for the two analysed models.

pθ1 pθ2
pb, which can be expressed as a parametric function
pb(b) = (b2(θ), pb(θ)) with the angle θ as a parameter:

(18)

where pθ is a probability density function of the random
angular position of fish. Then, using a logarithmic
transform of variables B(b) = 20 , its PDF relation
can be written as

(19)

A typical approach in the PDF calculation of the
angular fish position pθ is based on the assumption of a
uniform distribution of fish in the water column (further
called nonmultiple echoes statistics), which gives the
sine-law distribution of the angular position θ [1]:

(20)

where θmax is the maximum angle of the beam pattern
involved in the calculation. However, as will be shown
in the next section, for datasets obtained during a sur-
vey where several echoes from one fish are present in
consecutive pings, a more accurate assumption should
be made.

BEAM PATTERN PDF FOR AN ACTUAL SYSTEM

The way of calculating the beam pattern PDF for a
Biosonics’s dual-beam ESP (i.e., Echosounder Signal
Processor) system is presented. The ESP system uses a
dual-beam (6°/15°) digital echosounder of 420 kHz
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operating frequency and 0.4 ms pulse length. The cal-
culation of the beam pattern is performed only for a
narrow beam channel, as echo from this channel can be
used for inverting the target strength of the fish. The
beam pattern was fitted using the following approxima-
tion proposed in [1]:

(21)

where the exponential coefficient γ = –0.1 was fitted
numerically to the actual pattern. The logarithmic
transform and the inclusion of nonmultiple echo statis-
tics, Eq. (20), leads to the equation

(22)

and the inclusion of multiple echo statistics, Eq. (15),
leads to the equation

(23)

where θ can be calculated as the inverse of b(θ) from
Eq. (20):

Figure 6 illustrates the approximation of the actual
beam pattern of a narrow beam channel and two PDF
functions, one with nonmultiple echo assumption and
the other with multiple echo assumption.
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SURVEY RESULTS

To justify the correctness of the presented analysis and
validate its results, actual fish echo data was used. The data
was acquired from an acoustic survey on pelagic fish pop-
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Fig. 7. Sample distribution of the number of multiple
echoes in fish traces from survey.
ulations (mostly salmon and trout) in Coeur d’Alene Lake,
Idaho (provided by J.B. Hedgepeth, Biosonics Inc., Seat-
tle and E. Parkinson, University of Vancouver, Canada)
using a dual-beam digital echosounder of 420 kHz
operating frequency and 0.4 ms pulse length. There
were processed records of over 6500 pings from which
over 10000 fish echoes were extracted for analysis and,
using software algorithms, 2009 fish were counted. The
distribution of the number N of multiple echoes in fish
traces is shown in Fig. 7 in the form of a histogram. The
results match Model 2 of distribution presented in Fig. 5.
However, it is also possible that it matches Model 1 due
to the border effect in obtaining the PDF estimate by the
histogram technique (the range between N = 0 and N = 1
cumulates as only N = 1 has physical sense).

Numerical experiments conducted on survey data
show good agreement with the presented models of fish
statistical behavior during measurements. The mean
value of the distribution is equal to 5.3. It is worth not-
ing that in practice it is possible that the complicated
fish behavior can be modeled by a mixture of Model
1 and Model 2 due to the relative movement of the fish
and the vessel. Model 2 with a uniform distribution of
the crossing angle represents a more “random” case
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
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Fig. 9. Results of the fish target strength TS estimation and the backscattering length LBS estimation using multiple echo statistics. 
than Model 1 with its sine-law distribution of the cross-
ing angle.

Two different inverse techniques were used to
observe the difference in the results obtained by using
both assumptions concerning multiple echoes cases.
The first technique, Windowed Singular Value Decom-
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
position with nonnegative constraint, as a direct method
of calculation represents the classical approach to solv-
ing ill-conditioned integrals. The second technique is
more sophisticated: Expectation, Maximization, and
Smoothing based on an iterative algorithm with statis-
tical constraints, which also seems to be the more
robust inverse technique [3]. The results of the typically
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used assumption of nonmultiple echoes statistics are
presented in Fig. 8, and the results of using multiple
echoes statistics are shown in Fig. 9.

CONCLUSION

Two different approaches to the statistics of fish
echo traces in the calculation of the beam pattern PDF
were analysed in this paper. When the data acquired
during surveys contain multiple echoes from single
fish, it appears that the typically used approach is not
adequate. The presence of a multiple number of echoes
in the fish traces can be verified numerically during data
postprocessing, which may show that the more ade-
quate approach needs to use the statistics of the number
of multiple echoes in fish traces. The results presented
in the paper allow use of multiple echo statistics for the
beam pattern PDF calculation.

The results of using two different assumptions on
the statistics of fish echo traces in the process of recon-
structing the target strength and backscattering length
of the fish population from single beam data are pre-
sented in the paper. When the data acquired during
measurements contain multiple echoes from one fish, a
more adequate approach is suggested. The presence of
a multiple number of fish echo traces was verified
numerically during data postprocessing resulting in a
distribution of the number of multiple echoes in fish
traces. The results allow one to use multiple echo statis-
tics for the beam pattern calculation [4].

Figures 8 and 9 shows that both inverse techniques
perform better when proper assumptions are made. It is
worth noting that, when the kernel of the single-beam
integral is properly chosen, the large artefacts in esti-
mates disappear. It is especially observed in the case of
reconstructing the backscattering length, which repre-
sents numerically a more ill-posed situation. The esti-
mates presented in Fig. 8 suggested the existence of a
large number of very small fishes, which after verifica-
tion using the dual-beam data appeared to be incorrect.
By contrast, the results presented in Fig. 9 clearly show
the existence of one group of large fish with the other
smaller group of smaller fish (using the WSVD
method). Note also that the EMS method may over-
smooth the PDF and create an impression of the exist-
ence of only one group of fish.
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Abstract—Mechanisms of the self-action of sound in quasi-stationary gases with nonequilibrium-excited
vibrational states of molecules are considered. It is demonstrated that the observation of a self-focusing of
sound is possible in such media. Two mechanisms of the self-action of sound are responsible for the self-focus-
ing in an acoustically active medium: the cooling of gas by sound and the excitation of acoustic streamings in
opposite directions. © 2002 MAIK “Nauka/Interperiodica”.
Various mechanisms of the self-action of sound that
lead to its defocusing or self-focusing in heat-conduct-
ing viscous media are considered in [1–11]. According
to the estimates [4], it was demonstrated that the contri-
bution to the self-action of a beam observed before the
shock formation can be made only by the mechanisms
related to the heating of the liquid because of the sound
absorption and to the excitation of a longitudinal acous-
tic streaming. In liquids and gases in thermodynamic
equilibrium the second mechanism always leads to the
defocusing of sound, because the direction of the
acoustic streaming coincides with the propagation
direction of a sound beam. As for the thermal mecha-
nism, it leads to a self-focusing in the case of the sound
propagation in liquids (except for water) and to defo-
cusing in the case of the sound propagation in a gaseous
medium, because in the latter case, the sound velocity
increases with temperature. Therefore, the sound prop-
agates faster in the central, hotter, part of a beam than
in the less heated peripheral region, and a diverging
thermal lens is formed in the medium.

It was demonstrated in [12] that the situation
changes in thermodynamically nonequilibrium media,
e.g., in a vibrationally excited molecular gas. The
dynamic properties of such a medium are determined
by the second viscosity whose sign depends on the
degree of nonequilibrium [13, 14]. In media with a neg-
ative second viscosity, the dissipated energy flux is
directed from the medium to the wave, and such a
medium acquires focusing properties. However, the
strong inhomogeneity of nonequilibrium media pre-
vents the observation of the self-focusing of sound.
From this point of view, nonstationary nonequilibrium
media are of interest. On the one hand, these media stay
acoustically active, as was demonstrated in [15–17]. On
the other hand, there is no need to provide for a special
heat sink in them, and such a medium can be fairly
1063-7710/02/4802- $22.00 © 20209
homogeneous within the time ∆t < τT = a2/χ, where a is
the characteristic dimension of the system and χ is the
thermal diffusivity.

This paper considers both mechanisms of the self-
action of sound propagating in a quasi-stationary,
vibrationally excited gas.

The initial set of equations of gas dynamics has the
form

(1)

Here, d/dt = ∂/∂t + V∇ ; V, ρ, P, and T are the veloc-
ity in the gas, its density, pressure, and temperature; η
is the shear-viscosity coefficient; m is the molecular
mass; Ev and Ee are the vibrational energy per molecule
and its equilibrium value; τv is the vibrational relax-
ation time; and Q is the power of the energy source that
maintains the excitation of vibrational states. For sim-
plicity, we assume that Q, χ, and η are independent of
T and ρ; CV` and CP` are the heat capacities of transla-
tional and rotational degrees of freedom (and also of
equilibrium vibrational modes) at constant volume and
pressure. The equations are written in terms of energy
units. In the case of cylindrically symmetric beams, the
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vector V has two components: the longitudinal compo-
nent U and the transverse component W. The transverse
velocity component W, which results from the diver-
gence, is the quantity of a higher degree of smallness
than U.

We try a solution to Eqs. (1) in the form
(2)

U U 0( ) r x t, ,( )=

+
U 1( )

2
--------- r x t, ,( ) –i ω td∫ ikx+[ ]exp c.c.,+

P P0 t( ) P
0( )

r x t, ,( )+=

+
P 1( )

2
-------- r x t, ,( ) –i ω td∫ ikx+[ ]exp c.c.,+
and analogously, for other components, where ω and k
are the frequency and the wave vector of an acoustic
wave. In a quasi-stationary approximation, the parame-
ters of a nonequilibrium medium must change slowly in
comparison with ω, i.e.,

where S = ( )/T0 is the degree of nonequilibrium

in the medium and  and  are the unperturbed val-
ues of the vibrational energy and its equilibrium value.
In addition, the length of an acoustic pulse must lie in
the range ω–1 ! ti < τT .

The acoustic streaming U(0) caused by an acoustic
wave of frequency ω is assumed to be incompressible.
We use the geometric-acoustics approximation, in
which U(0), U(1), P(0), P(1), and other complex ampli-
tudes are assumed to be functions slowly varying with
t, x, and r, which satisfy the condition

where ε is the smallness parameter.
The geometric-acoustics approximation is applicable

when the beam width is a > 2π/k. The complex ampli-
tudes for a high-frequency acoustic wave (ωτv @ 1) are
linearly related:

(3)

where ∇ ⊥  is the transverse gradient, U` =  is
the velocity of high-frequency sound, and γ̀  = CP`/CV`.

Substituting Eqs. (2) with the relations between
the components given by Eqs. (3) into the set of equa-
tions (1), we obtain a system of three reduced equations
describing the self-action of sound.

1
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The equation that determines the sound amplitude
variation has the form

(4)

This equation ignores the cubic terms ~U(1)|U(1)|2,
which correspond to an inertialess change of state [7, 8]
and, according to [4], make no significant contribution
to the self-action of sound at distances L < Lp, where Lp
is the distance of shock formation. If the characteristic
length of self-focusing is LF > Lp, self-focusing is also
possible [5, 18, 19] but difficult to describe analytically,
and this case is beyond our consideration. The terms on
the right-hand side of Eq. (4) correspond to two mech-
anisms of self-action: the excitation of acoustic stream-
ing and the heating of the medium by sound. The dissi-
pation coefficient is g = δ + gV , where

is the coefficient of sound absorption in a heat-conduct-
ing viscous medium,

is the coefficient of the velocity perturbation growth in
a quasi-stationary medium [15–17], and

is the absorption (or amplification at ξ < 0) coefficient
related to the presence of relaxation processes in the
medium and to the second viscosity ξ formed by them.
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The second-viscosity coefficient at ωτv @ 1 has the
form [14]

Here, U0 =  is the velocity of low-fre-

quency sound (ωτv ! 1);  = CP` + Cv + S(τvT + 1)

and  = CV` + Cv + SτvT are the low-frequency heat
capacities at constant pressure and at constant volume,
τvT = ∂lnτv /∂lnT0, and Cv is the equilibrium vibra-
tional heat capacity.

The second viscosity (and α`) are negative when
Cv + S(τvT – CV`) < 0. This condition corresponds to the
presence of a positive feedback between the acoustic
perturbation and the heat release from the nonequilib-
rium degrees of freedom and, hence, to a sound ampli-
fication.

It should be noted that, in stationary media with
ξ < 0, the perturbations of the velocity, pressure, and
density in an acoustic wave increase with the same
increment α`, whereas in quasi-stationary media, the
increments of these perturbations have different forms
[15–17]. For example, the pressure perturbation
increases with the increment

The second equation of the set describes the devel-
opment of a longitudinal acoustic streaming:

(5)

In this equation, we ignore the diffraction changes
of the amplitude U(0). Moreover, in the following calcu-
lations, we ignore in Eq. (5) the value of the longitudi-
nal pressure gradient, which is insignificant when
U(0) ! U` [3, 4].

The right-hand side of Eq. (5) represents the driving
force caused by the acoustic radiation pressure and
determined by the change of the amplitude of an acous-
tic wave in a dissipative medium. Equation (5) coin-
cides with the equation describing, e.g., an Eckart flow
correct to the form of the absorption coefficient [20].
However, one should note that, for g > 0, this flow is
always directed in the direction of the sound propaga-
tion, whereas in an amplifying medium with g < 0, the
sign of the driving force changes and the acoustic
streaming becomes opposite.

The third equation of the set describes the tempera-
ture change in a medium under the effect of intense
sound:

(6)
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where χ0 = χCP∞/ .

In Eq. (6), we ignore the term responsible for the
adiabatic mechanism of heating and the value of
∂P(0)/∂t, which is admissible for ti > (4U`g)–1 and
a/U` [4].

According to Eq. (6), an acoustically active medium
in the field of an intense sound wave is not heated but,
on the contrary, cooled.

We can further simplify the set of equations (4)–(6)
with the help of the known methods of nonlinear geo-
metric optics (acoustics) [21]. For this purpose, we rep-
resent the complex amplitude U(1) in the form

where A is the real wave amplitude, ψ is the eikonal,
and ζ = x – U∞t is the “traveling” wave coordinate, and
substitute it into Eq. (4). Ignoring the diffraction term,
we finally obtain

(7)

(8)

where I = A2 and θ = ∇ ⊥ ψ is the inclination angle of a
ray with respect to the x axis. In the case of a beam char-
acterized by a radius a0, an initial parabolic profile of
intensity, and a plane wave front, the solutions to Eqs. (7)
and (8) can be tried in the form

where I0 = , A0 is the initial amplitude of the beam at

its axis, and a(ζ, t) = a0exp  is the beam width.

Then, in the case of a dimensionless beam width
f = a/a0, Eq. (8) can be reduced to the form

(9)

We assume the dependences of T (0) and U(0) on r to
also be parabolic, which is a good approximation of an
exact solution to Eqs. (5) and (6) for ti < τT, ρ0a2/η [6]:

(10)

CP
0

U 1( ) A ζ r t, ,( ) ikψ ζ r t, ,( )[ ] ,exp=

∂I
∂ζ
------ θ∇ ⊥ I I ∇ ⊥ θ 2gI+ + + 0,=
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Substituting Eqs. (10) into Eqs. (5), (6), and (9), we
obtain

(11)

(12)

(13)

If the background values of temperature change
insignificantly within the characteristic time of the
sound beam focusing τF (τF∂T0/∂t ! T0), the set of
equations (11)–(13) can be reduced to a single equation
after differentiating Eq. (11) with respect to time:

(14)

where N = π I0/ 2 is the total power of the sound
beam and

The exponential factor on the right-hand side of
Eq. (14) enhances the nonlinear refraction in an ampli-
fying medium (g < 0) and reduces it in an absorbing
medium (g > 0). We can ignore this factor in the
approximation of a thick lens (|g|LF < 1). In this case,
Eq. (14) coincides with the corresponding equation
from [6], correct to the form of the quantity α.

According to [6], when α > 0, one can observe the
self-focusing of sound with the characteristic focusing
length LF ≈ (4.7/αE)1/2, where E =  is the energy

of the sound beam.
The quantity α is always positive, e.g., in liquids

(apart from water), when thermal self-action prevails
over the streaming one. In equilibrium gaseous media,
both mechanisms of the self-action always lead to a
defocusing of sound (α < 0). On the contrary, in an
acoustically active nonequilibrium medium, both
mechanisms make a positive contribution to the coeffi-
cient α. Exceptions are strongly nonequilibrium media,

in which  < 0.

Now, we present the estimates of the characteristic
quantities for a typical laser medium ëé2 : N2 : He =
1 : 2 : 3 with P0 = 1 atm, T0 = 300 K, τv ≈ 10–5 s, and
τvT ≈ –3.4 [14].

In the case of a specific energy contribution to the
vibrational degrees of freedom W = 50 mJ/cm3, the
value of S is S ≈ 0.5. Then, for a sound beam with the
radius a0 = 1 cm and the frequency ω = 5 × 105 Hz, the

1
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2 ρ0
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γ∞

CP
0

------+ 
  .–=

N td
0

t∫

CP
0

absorption coefficient is δ ≈ 10–3 cm–1 and the amplifi-
cation coefficient is gV ≈ 0.5 cm–1. We obtain the value
of the critical energy Ecr necessary for the observation
of the self-focusing from the condition LF = Ld , where

Ld = k /2 is the characteristic diffraction length:

The condition LF < Ld must be satisfied for the
observation of self-focusing. For example, at E = 9Ecr
and ti = 1 s, we have LF = Ld/3 ( 2 cm. In this case, the
distance at which a shock is formed, is equal to [20]

Such a pulse also satisfies the condition ti < τT ≈ 1.5 s.
Thus, this paper demonstrates the fundamental pos-

sibility to observe the self-focusing of sound in a quasi-
stationary, vibrationally excited gas. Two mechanisms
of self-action cause the self-focusing of sound in an
acoustically active medium: the cooling of gas by
sound and the excitation of acoustic streamings in
opposite directions.
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Abstract—Experimental results and theoretical estimates are presented to demonstrate the prospects of
using the acoustic nonlinearity of a gel-like medium for increasing the efficiency of the shear wave genera-
tion in it by a pulsed ultrasonic beam. The experiment is based on the propagation of a focused beam of lon-
gitudinal acoustic waves at a frequency of 1.1 MHz in a gelatin sample and on the detection of shear waves
by the optical method [1]. It is demonstrated that the amplitude of the shear wave excited by a nonlinear
acoustic pulse can be increased by an order of magnitude owing to the formation of shock fronts in the profile
of this pulse. © 2002 MAIK “Nauka/Interperiodica”.
An ultrasonic wave that experiences both absorption
and scattering in the course of its propagation transfers
part of its momentum to the medium. As a conse-
quence, an amplitude-modulated wave produces low-
frequency (medium) elastic stresses in the medium, i.e.,
the radiation pressure [2]. In the case of the ultrasound
localization in the form of a beam, the corresponding
shear stresses produce a transverse wave propagating in
the direction perpendicular to the beam axis (Fig. 1). In
common solids, this effect is minor; however, it can
become noticeable in gel-like media, where the shear
modulus is small and the corresponding shear strain is
relatively large. Such media are rubbers, gels, and soft
biological tissues. The detection of the amplitude or the
propagation velocity of the transverse disturbances pro-
vides an opportunity to measure the shear modulus of
the medium [1]. This method can be promising for
medical applications, e.g., for an early detection of can-
cer, since the values of the shear moduli for healthy and
cancer-affected tissues differ by orders of magnitude
[3]. If a focused acoustic beam is used, an efficient gen-
eration of shear waves occurs only in the focal region.
Thus, it is possible to obtain a local excitation of shear
waves in a medium at a large distance from the source
of radiation.

The main difficulty in the utilization of this effect is
connected with the fact that the excited shear waves are
usually very weak, and, therefore, difficult to detect.
Hence, it is important to find ways to increase the effi-
ciency of the generation of shear stresses. Here we sug-
gest one such method namely, to use large-amplitude
focused ultrasonic pulses whose profiles are nonlin-
early distorted in the course of their propagation for
increasing the efficiency of the generation of shear-
1063-7710/02/4802- $22.00 © 20214
wave signals. Experiments on samples made of gelatin
with different concentration (i.e., with different values
of the shear modulus) are described. It is demonstrated
that, in the case of a constant total energy of the acous-
tic pulse, it is possible to obtain an amplification of the
shear wave by reducing the duration of the excitation
pulse and by simultaneously increasing its amplitude to
the values at which shock fronts are formed in the wave
profile. A theoretical calculation is conducted to com-
pare the efficiencies of the shear wave excitation with
and without allowance for the medium nonlinearity and
to evaluate the gain.

Shear
wave

Pulsed
ultrasonic

beam

Fig. 1. Excitation of a shear wave due to the absorption of a
focused ultrasonic pulse. The dashed lines indicate the
boundaries of the ultrasonic beam. The solid lines illustrate
the deformation of the medium: in the initial unperturbed
state, they formed a family of equidistant vertical straight
lines. The absorbed ultrasonic pulse exerts a radiation pres-
sure on the medium, and the shear stress arising in this case
produces a quasi-cylindrical shear wave traveling away
from the beam axis.
002 MAIK “Nauka/Interperiodica”
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The setup used in the experiments is schematically
represented in Fig. 2. An ultrasonic beam was produced
by a focusing piezoceramic transducer 10 cm in diam-
eter with a 20-cm curvature radius. The transducer
operated at a resonance frequency of 1.1 MHz [4]. The
longitudinal and transverse dimensions of the focal
region, which were measured according to the zeros of
the amplitude distribution of the pressure field, were 87
and 7 mm, respectively. The transducer was excited by
an electric signal from an HP33120A generator using
an ENI AP400B power amplifier. We used a pulsed
regime of excitation with rectangular envelopes of
pulses. The pulse duration varied from 40 to 700 µs.
The source was submerged into a water basin with the
dimensions 20 × 20 × 60 cm3 and could be moved with
the help of a positioning system (Velmex VP9000,
USA) in three mutually perpendicular directions. A gel-
atin sample shaped as a cylinder with a diameter of
80 mm and a generatrix of 65 mm was placed into the
focal region of the ultrasonic beam. Figure 3 shows a
photograph of the ultrasonic transducer (on the left) and
one of the samples (on the right). The sample was posi-
tioned in such a way that the cylinder axis coincided
with the acoustic axis and the central section of the cyl-
inder lay in the focal plane of the source. An optical
system described in [1] was selected to detect the shear
waves. The beam of a helium-neon laser was focused at
the edge of an opaque particle 60–300 µm in size,
which was placed in the medium. On the shear wave
arrival, the particle moved and modulated the transmit-
ted energy of the laser beam. The light signal detected
further by a photodiode was proportional to the shear
displacement. To incorporate such modulator particles
into the medium, gelatin samples were manufactured in
two stages, which provided an opportunity to put the
particles into the central section perpendicular to the
cylinder axis.

The purpose of our measurements was to demon-
strate that the use of an acoustic wave with shocks in its
profile makes the excitation of shear-wave signals
much more efficient. Ultrasonic pulses with different
amplitudes, but with the same energy (which was
attained by the corresponding choice of the pulse dura-
tion) were used. If the ultrasonic propagation in the
medium were linear, the amplitude of the shear waves
excited by acoustic pulses with the same energy would
be the same [1]. However, in the presence of nonlinear-
ity, the profile of an ultrasonic wave in the focal region
of the beam becomes distorted, and in the case of a
rather large amplitude, shock fronts arise, i.e., a saw-
tooth profile is formed. As a consequence, the wave is
absorbed more efficiently and transfers a greater part of
its momentum to the medium, as compared to the case
of linear propagation. Thus in the nonlinear regime, one
can expect a considerable increase in the amplitude of
the shear disturbance generated by the ultrasonic wave.

The regime calibration according to the total energy
of acoustic pulses was performed by measuring the
average radiation force exerted by a periodic sequence
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
of pulses on a wide-aperture target absorber [5]. The
target was shaped as a cylinder 12 cm in diameter and
5 cm in height and was made of rubber of the type of an
RTV-2 two-component silicon elastomer, which had a
large absorption coefficient and an acoustic impedance
close to the impedance of water. To measure the radia-
tion force, an acoustic beam was directed to the
absorber from below and the absorber was weighted
both under the ultrasonic irradiation and immediately
after switching off the source of ultrasound [6]. In such
measurements, the change in the absorber weight ∆P
and the average ultrasonic power W are related as
∆P/W = 67 mg/W [5]. On the basis of these measure-
ments, several regimes of operation with different
lengths and amplitudes of pulses were selected for a
preset acoustic energy.

18

2

7

9

6

3 4 10

5

Fig. 2. Experimental setup: (1) a water basin, (2) an ultra-
sonic transducer, (3) an electric power amplifier, (4) a gen-
erator, (5) a gelatin sample, (6) a micropositioning sys-
tem, (7) a shutter particle, (8) a beam of a He-Ne laser,
(9) a photodiode, and (10) a digital oscilloscope.

Fig. 3. Photograph of the piezoceramic transducer (on the
left) and the gelatin sample (on the right).
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Fig. 4. Shape of an ultrasonic pulse at the focal point in the (a, b) broad and (c, d) narrow time windows: (a, c) a nonlinear regime
and (b, d) a quasi-linear regime.
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Fig. 5. Time profiles of a shear pulse (the photodiode sig-
nal u) measured in the focal plane at three different dis-
tances from the acoustic axis r: (a) a nonlinear regime and
(b) a quasi-linear regime. The values of the displacement u
(for all curves) are normalized to its maximal value in the
nonlinear regime umax.
To verify that, in the selected regimes, the acoustic
signals were really subjected to nonlinear distortions,
the measurements of the wave form in the focal region
of the beam were also conducted using a self-made
broadband PVDF membrane hydrophone with a sensi-
tive area 0.5 mm in diameter. The rear side of the PVDF
film was acoustically loaded by a thick layer of trans-
former oil, which provided an opportunity to eliminate
the stray capacitance and enhance the locality of recep-
tion [7]. Figure 4 shows the wave profiles of the shortest
and longest pulses in the focal region of the source. Fig-
ures 4a and 4b show the whole pulses, and Figs. 4c and
4d, three periods from their central parts. It should be
noted that the electric signal at the piezoelectric trans-
ducer and, therefore, the ultrasonic wave emitted by it
were sinusoidal in both cases. As one can see from
Fig. 4, in the focus, the wave is strongly distorted, espe-
cially, in the case of a large amplitude: shock fronts are
clearly visible in the profile of the first pulse, whereas
the second profile is distorted to a lesser extent. Thus,
the effect of the acoustic nonlinearity of the medium
must manifest itself in the comparison of the efficien-
cies of the shear wave generation in the two indicated
regimes.

Figure 5 demonstrates the experimentally measured
profiles of a shear pulse in the focal plane at different
distances from the acoustic axis of the beam (5, 6, and
7 mm, respectively). Figure 5a corresponds to the shear
wave excitation by a short high-amplitude pulse (a non-
linear regime) and Fig. 5b corresponds to the excitation
by a long pulse with a much smaller amplitude (a quasi-
linear regime) and with the same total energy E = 4.2 mJ.
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
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All curves are normalized to the maximal displacement
at the beam axis in the nonlinear excitation regime. It is
necessary to note that the vertical scales in Figs. 5a and
5b differ by a factor of ten. Thus, although the signal
profiles in the nonlinear and quasi-linear regimes look
almost the same at the corresponding distances, the
amplitudes of shear waves differ essentially. In the
quasi-linear regime, the signals were weak and their
amplitude was comparable to the noise amplitude.
Therefore, the curves were obtained by averaging over
300–400 realizations. Thus, the assumption that the
efficiency of the shear wave generation grows when the
acoustic nonlinearity of the medium comes into play
was confirmed. Similar results were obtained for other
regimes of excitation with different pulse energies and
for samples with different gelatin concentrations.

It is of interest to know how far from the point of
excitation it is possible to detect the shear waves. Fig-
ure 6 demonstrates the transverse distribution of the
peak displacement in the shear wave excited in the non-
linear regime (with the ultrasonic pulse duration equal
to 55 µs and the total energy of a single pulse equal to
4.2 mJ) in a sample with a gelatin concentration of
4.5%. The dashed line in the same figure shows the
experimentally measured transverse distribution of the
intensity of an acoustic wave in the focal plane, which
corresponds to the distribution of the sources of shear
waves. Both curves are normalized to the correspond-
ing maximal values. One can see clearly that, although
a shear wave decays rapidly, it still propagates to a con-
siderable distance from the acoustic beam. This pro-
vides an opportunity to measure the velocity of shear
waves ct with a sufficiently high accuracy and, hence, to

determine the shear modulus µ = ρ .ct
2

1.0

0.5

0
–15 –10 –5 0 5 10 r, mm

u/u max

Fig. 6. Transverse distribution of the shear wave amplitude
measured in the focal plane of the source in the nonlinear
regime (the solid line) and the transverse profile of intensity
(the dashed line). The curves are normalized to the corre-
sponding maximal values.
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Figure 7 presents the detection time of the peak of a
shear pulse versus the distance r between the detection
point and the axis of the ultrasonic beam. The two
curves correspond to two different concentrations of
gelatin (4.5 and 6.7%) and are obtained using nonlinear
acoustic pulses. The slope of these curves is inversely
proportional to the propagation velocity of shear waves
in the corresponding material. The experimental results
shown in Fig. 7 for the gelatin concentrations 4.5 and
6.7% give the values of the velocity ct = 0.8 and 1.2 m/s
and the shear modulus µ = 690 and 1450 Pa, respec-
tively. These values coincide with the shear modulus
measured by the indentation method using a rigid
sphere [8, 9]. Thus, the remote excitation and detection
of shear waves provide an opportunity to determine the
shear modulus.

Let us proceed to the theoretical description of the
observed effects. The shear disturbances can be
described in the framework of the linear theory because
of their smallness. The displacement u of the particles
of the elastic medium in the force field F can be
described by the equation

(1)

where ρ is the density of the medium; K and µ are the
bulk modulus and the shear modulus, respectively; F is
the volume density of forces acting from the side of the
ultrasonic beam; and t is time. Let a weakly divergent
beam of acoustic waves, which has a circular cross sec-
tion, propagate in the medium. We denote the longitu-
dinal and the transverse coordinates by z and r, respec-
tively. Then, we can ignore the transverse component Fr
of the force F because of its smallness in comparison
with the longitudinal component Fz.

ρ∂2u

∂2t
-------- K

µ
3
---+ 

  graddivu µ∆u ρF,+ +=

15

10

5

0
–15 –10 –5 0 5 10

t, ms

r, mm

Fig. 7. Delay time of the peak of the shear wave versus the
transverse coordinate r. The measurements were performed
in the nonlinear regime for two gelatin concentrations: 4.5%
(the dashed line) and 6.7% (the solid line).
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We note that, if the transverse dimension of the
beam is much smaller than the absorption length, the
force Fz varies mainly in the transverse direction by
decreasing with the distance from the axis, whereas its
dependence on the longitudinal coordinate is weak. In
the indicated conditions, we can ignore the dependence
of the deformation of the medium on the longitudinal
coordinate and assume that the displacement of parti-
cles occurs only along the z axis. In this case, Eq. (1)
takes the form of an inhomogeneous wave equation for
a shear cylindrical wave:

(2)

where ct =  is the velocity of shear waves and

 =  is the transverse Laplacian. The form

of the solution to the wave equation (2) is determined
by the dependence of the volume force Fz on the coor-
dinate and time. If the dependence of the force on time
at all space points is described by the same function
ϕ(t), the expression Fz = Φ(r)ϕ(t), where Φ(r) describes
the transverse profile of the acoustic beam, is true. As
we demonstrated in our previous paper [1], in the case
of a short pulse ϕ = δ(t) with the transverse profile of
the beam in the form Φ(r) = F0(1 + r2/a2)–3/2, the solu-
tion to Eq. (2), i.e., the pulsed response, is expressed
analytically as

(3)

where A = 1 + (r + ctt)2/a2, B = 1 + (r – ctt)2/a2, a is the
radius of the sound beam, and θ(t) is the Heaviside step
function. According to Eq. (3), the characteristic dura-
tion of the pulsed response coincides with the traveling
time of the shear wave through the excitation region
ta = a/ct . In the case of an arbitrary function ϕ(t), the
solution has the form of a convolution uz = h ∗  ϕ. If the
action duration is t0 ! ta, the profile of the shear wave
coincides with the profile of the pulsed response: uz =
t0h(r, t). As one can see from Eq. (3), the displacement
of the medium manifests itself most strongly at the
beam axis (r = 0), where it depends on time as uz =
F0t/ (1+(ct t /a)2). Hence, the maximal displacement of
the medium under the effect of a pulsed radiation
force is

(4)

The result given by Eq. (4) corresponds to the following
time dependence of the volume force at the beam axis:
Fz(0, t) = F0 in the interval 0 ≤ t ≤ t0 and Fz = 0 outside
this interval.

To compare the linear and nonlinear regimes of
excitation, it is necessary to calculate the volume force.

∂2uz
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aF0

2ct
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AB
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umax

at0F0

2ct
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The force of radiation pressure in a viscous heat-con-
ducting medium can be written in the form [10]

(5)

where cl is the velocity of longitudinal waves; p is the

acoustic pressure in the ultrasonic beam; b = ζ +  +

 is the dissipation coefficient; ζ and η are

the volume and shear viscosities; κ is the coefficient of
heat conductivity; Cp and Cv are the specific heats at
constant pressure and at constant volume, respectively;
and the overbar means averaging over the period of the
ultrasonic wave. When small-amplitude ultrasound is
used, the wave form within a pulse is sinusoidal: p =
p0sinωt. In this case, we obtain from Eq. (5):

(6)

where α = bω2/2ρ  is the ultrasonic absorption coef-
ficient and the superscript “lin” indicates the linear
case.

Taking into account the fact that I = /2ρcl is the
wave intensity, from Eqs. (4) and (6) we obtain

(7)

As one can see from this expression, the medium dis-
placement under the effect of the radiation force is pro-
portional to the quantity t0I, i.e., it is determined by the
energy of the ultrasonic pulse rather than by its inten-
sity. Therefore, in the linear regime, ultrasonic pulses
with different amplitudes p0 but with the same total
energy produce identical shear-wave signals.

Now let us consider the case of the shear wave exci-
tation by an acoustic pulse of the same duration t0 but
with a saw-tooth carrier instead of the sinusoidal one.
An ultrasonic wave acquires such a shape as a result of
its nonlinear evolution (see Fig. 4c). The wave propaga-
tion in a nonlinear dissipative medium is described by
the Burgers equation

(8)

where τ = t – z/cl is time in the moving coordinate sys-
tem and ε is the acoustic nonlinearity parameter of the
medium. The profile of a saw-tooth wave within a sin-
gle period is described by the Khokhlov solution [11]

(9)

where ps is the value of the pressure jump at the shock
front. It depends on the distance as ps = 2πp0/(1 + σ),
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where σ = εωp0z/ρ  is the distance from the source
divided by the length of the shock formation and p0 is a
certain characteristic value of the wave amplitude.
However, the specific form of the function ps(z) is
unimportant for our calculations. We are interested in
the case of waves with large amplitudes, ps/bω @ 1.
Formally, the consideration of large-amplitude waves
corresponds to the transition b  0 in Eq. (9). In this
case, a shock is formed in the profile. Substituting Eq. (9)
into expression (5) for the force of radiation pressure,
performing the averaging, and passing to the limit
b  0, we obtain

(10)

Here, f = ω/2π is the wave frequency. The superscript
“nl” indicates that the estimate given by Eq. (10)
belongs to the case of the nonlinear ultrasonic propaga-
tion. Let us indicate two important features of the non-
linear case (Eq. (10)) that make it different from the lin-
ear case (Eq. (6)). First, the radiation force does not
depend on the linear absorption coefficient of the
medium. Second, the radiation force in the case of a
saw-tooth profile is proportional to the third power of
the wave amplitude rather than to the second power.
The latter fact is fundamental and testifies to the possi-
bility of increasing the efficiency of the shear wave gen-
eration in the nonlinear regime. We note that the inten-

sity of a saw-tooth wave is expressed as I = /12ρcl.
From Eqs. (4) and (10), we obtain

(11)

As one can see, in the case of a fixed wave energy (t0I =
const), the generation efficiency is directly proportional
to the value of the pressure jump ps at the shock fronts of
the saw-tooth wave. Remember that there is no depen-
dence on the amplitude in the linear case (see Eq. (7)).
Comparing Eqs. (7) and (11) in the case of the same
intensities of the sinusoidal and saw-tooth waves, we
obtain the following amplitude ratio of the shear-wave
signals:

(12)

Thus, we obtain that the factor K is proportional to
the amplitude of the acoustic wave ps, i.e., it can be
much greater than unity for a high-intensity ultrasound.
The parameters in gelatin have the following character-
istic values: α = 1 m–1, ε = 4, ρ = 103 kg/m3, and cl =
1.5 × 103 m/s. For ultrasonic waves with the amplitude
ps = 107 Pa and the frequency f = 106 Hz used in the
experiment, we obtain that, at a given pulse energy, the
maximal displacement value observed in a medium
with a pronounced nonlinearity is approximately ten
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times greater than in the case of linear propagation. This
estimate is confirmed by the experiment (see Fig. 5).

Therefore, the efficiency of the shear wave genera-
tion can be considerably increased by using pulses
whose wave profiles contain shock fronts. Certainly,
when using saw-tooth signals for medical purposes, it
is necessary to be sure that they cause no tissue damage,
i.e., there is no cavitation and no overheating of the
medium. Such conditions are obtained by using rarely
repeated short pulses of the megahertz frequency range.
For example, saw-tooth profiles are observed in the
course of the operation of some diagnostic ultrasonic
devices intended for cardiological applications [12].

ACKNOWLEDGMENTS
We are grateful to V.V. Yakushev for manufacturing

the PVDF films and for discussing the characteristic
features of the calibration of our acoustic sensors. We
are also grateful to D. Cathignol for providing us with
the components of the device for measuring the total
power of the beam by the radiation force.

The work was supported by the CRDF, project
no. RP2-2099, the FIRCA-NIH, project no. DK43881, and
the program “Universities of Russia,” project no. 1-5286.

REFERENCES
1. V. G. Andreev, V. N. Dmitriev, Yu. A. Pishchal’nikov, et al.,

Akust. Zh. 43, 149 (1997) [Acoust. Phys. 43, 123 (1997)].
2. L. K. Zarembo and V. A. Krasil’nikov, Introduction to

Nonlinear Acoustics (Nauka, Moscow, 1966), pp. 178–
205.

3. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, et al.,
Ultrasound Med. Biol. 24 (9), 1419 (1998).

4. R. O. Cleveland, O. A. Sapozhnikov, V. R. Bailey, and
L. A. Crum, J. Acoust. Soc. Am. 107, 1745 (2000).

5. IEEE Std 790-1989, IEEE Guide for Medical Ultra-
sound Field Parameter Measurements (ANSI) (IEEE,
New York, 1990).

6. A. E. Ponomarev, Yu. A. Pishchal’nikov, T. V. Sinilo, and
O. A. Sapozhnikov, in Proceedings of the VII All-Rus-
sian School–Seminar on Wave Phenomena in Inhomoge-
neous Media, Krasnovidovo, Moscow region, May 2000
(Moscow State Univ., Moscow, 2000), Vol. 1, p. 34.

7. J. Tavakkoli, A. Birer, and D. Cathignol, Shock Waves 5,
369 (1996).

8. N. E. Waters, Br. J. Appl. Phys. 16, 557 (1965).
9. V. G. Andreev and A. V. Vedernikov, Vestn. Mosk. Univ.,

Ser. 3: Fiz., Astron., No. 1, 34 (2001).
10. N. S. Bakhvalov, Ya. M. Zhileœkin, and E. A. Zabo-

lotskaya, Nonlinear Theory of Sound Beams (Nauka,
Moscow, 1982; AIP, New York, 1987).

11. O. V. Rudenko and S. I. Soluyan, Theoretical Founda-
tions of Nonlinear Acoustics (Nauka, Moscow, 1975;
Consultants Bureau, New York, 1977).

12. Output Measurements for Medical Ultrasound, Ed. by
R. C. Preston (Springer, Berlin, 1991).

Translated by M. Lyamshev



  

Acoustical Physics, Vol. 48, No. 2, 2002, pp. 220–224. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 48, No. 2, 2002, pp. 260–265.
Original Russian Text Copyright © 2002 by A. Pushkarev, M. Pushkarev, Remnev.

               
Sound Waves Generated Due to the Absorption of a Pulsed 
Electron Beam in Gas

A. I. Pushkarev, M. A. Pushkarev, and G. E. Remnev
Research Institute of High Voltages, Tomsk Polytechnical University, pr. Lenina 2, Tomsk, 634050 Russia

e-mail: kedr@ephc.tomsk.ru
Received June 29, 2001

Abstract—The results of an experimental investigation of acoustic vibrations (their frequency, amplitude, and
attenuation coefficient) generated in a gas mixture as a result of the injection of a high-current pulsed electron
beam into a closed reactor are presented. It is shown that the change in the phase composition of the initial mix-
ture under the action of the electron beam leads to a change in the frequency of the sound waves and to an
increase in the attenuation coefficient. By measuring the change in frequency, it is possible to evaluate with suf-
ficient accuracy (about 2%) the degree of conversion of the initial products in the plasmochemical process.
Relations describing the dependence of the sound energy attenuation coefficient on the size of the reactor and
on the thermal and physical properties of the gases under study are derived. It is shown that a simple experi-
mental setup measuring the parameters of acoustic waves can be used for monitoring the plasmochemical pro-
cesses initiated by a pulsed excitation of a gas mixture. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The plasmochemical processes that accompany the
injection of an electron beam in a gas or the volume
gaseous discharges are currently considered as an alter-
native to thermodynamical-equilibrium chemical pro-
cesses. Unlike these, in plasmochemical reactions the
main part of energy of the source of excitation (up to
80–90%) is delivered to the vibrational degrees of free-
dom of molecules, which provides a high efficiency of
chemical processes [1, 2]. The plasmochemical meth-
ods of film deposition from ionized vapor make it possi-
ble to fabricate high-quality multilayer structures [3, 4].
In volume gaseous discharges and under an electron
beam injection, an efficient dissociation of NOx and
SO2 molecules is observed [5–7]. Plasmochemical pro-
cesses find applications in dry etching of Ni, Fe, and
other thin films [8] and in sterilization [9]. For monitor-
ing the plasmochemical processes, optical methods
(emission and absorption spectroscopy, Rayleigh scat-
tering, and so on) and mass spectrometry methods are
used [10]. These methods require complicated equip-
ment and optical access to the reaction zone.

When the energy of a pulsed source of excitation (a
pulsed microwave discharge, a pulsed high-current
electron beam, a gaseous discharge, and so on) dissi-
pates in a closed plasmochemical reactor, the radiation-
acoustic effect [11] leads to the generation of acoustic
vibrations, which are determined by the nonuniformity
of excitation (and, accordingly, of heating) of the
reagent gases. The measurement of the parameters of
sound waves does not require complicated equipment
but provides ample data on the processes that occur in
the plasmochemical reactor.
1063-7710/02/4802- $22.00 © 20220
EXPERIMENTAL SETUP

This paper presents the results of investigation of the
sound waves generated in one-, two-, and three-compo-
nent gas mixtures as a result of the dissipation of the
energy of a pulsed high-current electron beam in a
closed plasmochemical reactor (PCR). A Temp acceler-
ator [12] operating in an electron mode was used as a
source of a high-current electron beam (HCEB) with
the following parameters: the maximal electron energy
300 keV, the current of the beam at the maximum 12 kA,
and the pulse width at the half-amplitude level 60 ns.
The PCR had the form of a tube. Electrons were
injected in the tube at its end through a titanium foil.

Two reactors with different dimensions were used in
the experiments: one with a diameter of 6 cm and a
length of 11.5 cm and the other with a diameter of 9 cm
and a length of 30 cm. The sound waves were detected
by a differential pressure transducer capable of measur-
ing pressure variations in the reactor with frequencies
up to 3.5 kHz. The gases studied in the experiment were
as follows: argon, nitrogen, oxygen, methane, silicon
tetrachloride, tungsten hexafluoride, and their mixtures.

INVESTIGATION OF THE SOUND WAVE 
FREQUENCY

In a closed reactor with rigid walls, after the dissipa-
tion of a pulsed electron beam, standing waves are gen-
erated whose frequency in an ideal gas is [13]

(1)f n
n
2l
----- γRT

µ
----------,=
002 MAIK “Nauka/Interperiodica”
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where n is the serial number of harmonic (n = 1, 2, …),
l is the length of the reactor, γ is the adiabatic exponent,
R is the universal gas constant, and T and µ are the tem-
perature and molar mass of gas in the reactor.

In the experiments, we recorded the sound vibra-
tions corresponding to the generation of standing waves
along and across the reactor. For our investigations, we
chose the lowest component of the sound waves with
the fundamental frequency of waves propagating along
the reactor (n = 1 in Eq. (1)).

The dependences of the frequency of sound vibra-
tions in the PCR on the parameter (γ/µ)0.5 for the one-
component gases in the reactors 11.5 and 30 cm long
are shown in Fig. 1. The dots correspond to experimen-
tal data and the lines correspond to calculations by
Eq. (1) for l = (1) 11.5 and (2) 30 cm. As seen from this
figure, in the investigated frequency range, the sound
vibrations are adequately described by the relation for
ideal gases.

The measurement of the frequency of sound vibra-
tions generated due to the dissipation of energy of the
pulsed source of excitation makes it possible to monitor
the plasmochemical reactions resulting in the formation
of solid products, e.g., CO2  C + O2, WF6  W +
3F2, etc. The minimal degree of conversion of the initial
gas that can be detected by the change in frequency
does not exceed 2% for the attained accuracy of the fre-
quency measurement. The low attenuation of sound
waves makes it possible to measure the vibration fre-
quency accurate to 0.5%.

In actual plasmochemical reactions, multicompo-
nent gas mixtures are used, and the products of reac-
tions are also gas mixtures. In calculating the frequency
of sound vibrations, one has to take into account the
weight coefficient of every component of the gas mix-
ture and perform the calculation by the formula [14]

(2)

where m0 is the total mass of all components of the gas
mixture and mi , γi , and µi are the mass, the adiabatic
exponent, and the molar mass of the ith component,
respectively. Taking into account that the mass of the ith
component is

mi = 1.66 × 10–27µiNi = Kµi ,

where Ni is the number of molecules of the ith compo-
nent, Pi is its partial pressure, V is the volume of the
PCR, P0 = 760 torr, and K is a constant, Eq. (2) can be

f sw
RT

2l m0

----------------
γimi

µi

----------
i

∑ ,=

PiV
P0

---------
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written in the form that is more convenient for data pro-
cessing

(3)

The measurements of the frequency of sound vibra-
tions excited in the PCR due to the injection of an
HCEB in two- and three-component mixtures showed
that the discrepancy between the values calculated by
Eq. (3) and the experimental values did not exceed
10%, and at the frequencies lower than 400 Hz the dis-
crepancy was less than 5%. The dependence of the fre-
quency of sound vibrations generated in the PCR due to
the injection of an electron beam in two- and three-
component mixtures on the parameter ϕ,

is shown in Fig. 2. The dots correspond to experimental
data and the line corresponds to the calculation by Eq. (3).

By simple calculations, it is possible to show that,
for a chemical reaction in which the initial mixture of
reagents and the final mixture obtained in the reaction,
are gases, the frequency of sound vibrations measured
after the reaction is equal to the vibration frequency in
the initial mixture. However, if solid or liquid products
are obtained in the reaction, the frequency of the sound
waves will change.

The proposed technique for monitoring the plasmo-
chemical reaction by the change in frequency of sound
vibrations was used in studying the direct reduction of
tungsten from tungsten hexafluoride under the action of
an HCEB [15]. The results were in good agreement
with the data obtained by weighing the substrate placed
in the reactor.

f sw

RT γiPi

i

∑
2l µiPi

i

∑
---------------------------------.=

ϕ γ iPi

i

∑   µiPi

i

∑ ,=

1

2

1500
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0.05 0.10 0.15 0.20 (γ/µ)0.5

Fig. 1. Frequency of sound vibrations in the PCRs (1) 11.5
and (2) 30 cm long as a function of the ratio of the adiabatic
exponent to the molar mass for single-component gases.
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INVESTIGATION OF THE SOUND WAVE 
ENERGY

In a closed volume of the PCR, with the injection of
an electron beam, standing waves are generated, the
form of which is in our case nearly sinusoidal. Then,
the energy of the sound vibrations is described by the
expression [13]

where β is the compressibility of the medium, ∆Psw is
the amplitude of the sound waves, and V is the volume
of the reactor. When the degree of compression is low
(∆Psw ! 1) and the law of momentum conservation is
valid (a low attenuation), the compressibility of the
medium can be calculated by the formula [13]

where ρ is the gas density and csw is the sound velocity
in gas.

E 0.25β∆Psw
2 V ,=

β ρcsw
2( ) 1–

,=

400
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Fig. 2. Frequency of sound vibrations in the 30-cm-long
PCR as a function of the parameter ϕ for a gas mixture.

Fig. 3. Energy of sound vibrations in the PCR as a function
of the energy of the electron beam absorbed in a gas.
The dependence of the energy of sound vibrations in
the reactor on the energy of the electron beam absorbed
in gas is shown in Fig. 3. The energy of the HCEB
absorbed by the gas was measured by the change in
pressure in the reactor after the injection of the HCEB
(as in [16]). The pressure was measured by the same
differential pressure transducer that was used for
detecting the sound waves.

For nitrogen and argon, a good correlation between
the energy of sound vibrations and the energy contribu-
tion of the electron beam to gas was observed in a wide
range of pressures (and, accordingly, in a wide range of
energy contributions of the beam to gas), which makes
it possible to evaluate the energy contribution of the
electron beam to gas by the sound wave amplitude. The
energy of sound waves was about 0.2% of the energy of
the electron beam absorbed in the gas.

INVESTIGATION OF THE SOUND WAVE 
ATTENUATION

Since the form of sound vibrations generated in the
reactor due to the injection of the HCEB is nearly sinu-
soidal, the change in the energy of sound waves due to
the absorption is described by the relation [13]

where α is the absorption coefficient.
When a sound wave propagates in a tube closed at

both ends, the absorption coefficient equals

where α1 is the sound absorption coefficient for the
propagation in an unbounded gas, α2 is the absorption
coefficient due to the reflection from the side walls of
the tube for the propagation along the tube, α3 is the
absorption coefficient due to the reflection from the
tube ends, and α4 is the absorption coefficient due to the
friction at the tube walls.

The absorption coefficient of the sound wave energy
in gas due to the heat conduction and the shear viscosity
of gas can be determined by the Stokes–Kirchhoff for-
mula [13]

(4)

where η is the coefficient of shear viscosity of gas
(g/cm s), χ is the coefficient of heat conduction
(cal/cm s deg), and Cv and Cp are the heat capacities of
gas at constant volume and at constant pressure, respec-
tively.

For a low-frequency sound wave propagating along
a circular tube, when the condition λ > 1.7d (where λ is
the wavelength and d is the tube diameter) is satisfied,
the wave front is plane and the sound energy attenua-
tion coefficient for the propagation along a tube with

E t( ) E0e α t– ,=

α α 1 α2 α3 α4,+ + +=

α1

2πf sw( )2

2ρcsw
2

--------------------- 4
3
---η χ 1

Cv
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ideally heat-conducting walls can be calculated by the
Kirchhoff formula [17]

(5)

where r0 is the tube radius.
Taking into account that ρ = ρ0P/P0, where P is the

pressure of gas in the reactor, ρ0 is the gas density at
normal conditions, and P0 = 760 torr, we obtain from
Eq. (5):

where

(6)

It can be shown that the temporal absorption coeffi-
cient for the sound wave energy in a closed reactor with
multiple reflection from its ends is equal to

(7)

where l is the length of the reactor and δ is the energy
absorption coefficient of a sound wave at a single
reflection.

For normal incidence of a plane sound wave on a
metal wall, which is a good heat conductor, the energy
absorption coefficient equals [17]

(8)

However, if we consider only normal incidence of a
sound wave on the ends of the reactor, we should
neglect the absorption of the sound wave energy at
reflection from the side walls of the reactor (i.e., α2 =
0). In this case, the sound absorption will be deter-
mined only by the heat conduction and the gas viscos-
ity (Eq. (4)) and by the absorption at reflection from the
reactor ends (Eqs. (7) and (8)). As will be shown below,
the experimentally measured sound energy absorption
coefficients in the reactor are several times greater than
the values calculated by formulas (4), (7), and (8). Con-
sequently, in the reflection from the ends of the reactor,
it is necessary to take into account the dependence of
the absorption coefficient on the angle of incidence and
perform calculations by the formula [17]

(9)

Taking into account that, for δ ! 1, ln(1 – δ) ≈ δ, from
Eqs. (9) and (7) we derive
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where

(10)

The inclusion of the sound wave energy loss due to
the friction at the walls is important when the diameter
of the tube is comparable with the mean free path of gas
molecules, i.e., for capillary tubes. In our case, we can
assume that α4 ≈ 0.

Numerical estimates of the contributions of various
mechanisms of sound absorption in the reactor show
that the influence of volume absorption (due to the heat
conduction and gas viscosity) is insignificant. For
example, for sound waves generated in a 30-cm PCR
filled with nitrogen at a pressure of 500 torr, we have
α1 = 1.8 × 10–3 s–1, α2 = 5.9 s–1, and α3 = 7.7 s–1.

The summary absorption coefficient taking into
account only the normal incidence of sound waves (i.e.,
α2 = 0, α3 = 1.2 s–1) is much smaller than the experi-
mentally measured coefficient of sound absorption for
these conditions (14.7 s–1). Then, the expression for the
summary absorption coefficient of the sound wave
energy in a closed reactor can be written as

(11)

where K1 and K2 are calculated by Eqs. (6) and (10), r0
and l are the radius and length of the reactor in centime-
ters, fsw is measured in hertz, and P is in torrs.

The values of the coefficients K1 and K2 for the
investigated gases are given in the table.

It is important to note that, for the propagation of
sound waves in a closed reactor, the main contribution
(60–80%) to the absorption is made by the gas viscos-
ity. The magnitude of the second term in Eqs. (5) and
(9) is 3–9 times greater (for various gases) than the
magnitude of the first term. The contributions of the
side walls and ends of the reactor to the absorption of
the sound wave energy are approximately equal for a
large reactor.

The dependence of the sound energy absorption
coefficient in the reactor on the pressure for various
gases is shown in Fig. 4. For the comparison of the
attenuation coefficients observed in different plasmo-
chemical reactors (with the lengths 11.5 and 30 cm) and
in various gases, the value of the attenuation coefficient

K2 csw 0.39 γ 1–( ) χ
γCp

--------- 0.37 η
γ
---+ .=

α
K1

r0
------

K2

l
------+ 

  f sw

P
-------,=

Table

Gas K1 K2

N2 25 218

O2 27 189

Ar 32 254

WF6 6.5 52
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was normalized to the coefficient K calculated by the
formula

The dots in Fig. 4 correspond to experimental mea-
surements, and curve 1 is calculated by Eq. (11). For
nitrogen, argon, and oxygen, the discrepancy between
the calculated and experimental values of the absorp-
tion coefficient does not exceed 30%.

For sound waves generated due to the dissipation of
a pulsed electron beam in the WF6 vapor (curve 2 in
Fig. 4), the experimentally obtained values of the
absorption coefficient far exceed (by a factor of 14–15)
the values calculated by Eq. (11). This may be caused
by the formation of clusters in the reactor with the
injection of the electron beam. The presence of large
particles in the volume of gas leads to an increase in the
absorption of sound waves. At the injection of the
HCEB in WF6, the direct reduction of tungsten in the
form of nano-sized particles take place, which results
not only in an increase in the frequency of sound waves
[15], but also in a considerable growth of the sound
energy absorption.

CONCLUSION

The described investigations of the sound waves
generated in a closed reactor due to the dissipation of
the energy of a pulsed electron beam show that a simple
experimental setup detecting acoustic vibrations makes

K f sw
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l
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Fig. 4. Normalized coefficient of sound absorption in the
reactor as a function of pressure.
it possible to monitor with a high accuracy the plasmo-
chemical process that is accompanied by a change in
the phase composition of the initial reagent mixture.
The formation of clusters in the volume of the reactor
leads to a change in the frequency of sound waves and
to a considerable increase in the attenuation of the
vibration amplitude. Thus, the sound-wave diagnostics
can be used for monitoring plasmochemical processes.
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Abstract—Diffraction of an acoustic wave by an elastic cylinder near the surface of an elastic halfspace is con-
sidered. The solution relies on a Helmholtz-type integral equation and uses the Green function of an elastic half-
space. The latter function is represented in the form of an integral over the Sommerfeld contour on the plane of
a complex variable that has the meaning of the angle of the wave incidence on the halfspace boundary. An inte-
gral equation for the sound pressure distribution over the cylinder surface is derived. This equation is reduced
to an infinite system of equations for the Fourier-series expansion coefficients of this distribution. The results
obtained are valid for the diffraction of a cylindrical wave and a plane wave. They also describe the diffraction
of a spherical wave when the transmitter and receiver are far from the cylinder and lie in one plane that is orthog-
onal to the cylinder axis. © 2002 MAIK “Nauka/Interperiodica”.
† If a body is located near a sound-reflecting bound-
ary, an emitted or diffracted sound experiences multiple
reflections between the body and the boundary, which
can significantly change the pattern of the acoustic
field. The sound diffraction by bodies located near a
planar boundary has been extensively studied. The
T-matrix method combined with the summation of
multiply reflected waves was used to study the scatter-
ing from particular bodies located near a liquid halfs-
pace [1, 2]. A cylinder with rounded ends and an elastic
spherical shell were considered. In [3–5], the problem
was solved by replacing the reflecting boundary with
the object image symmetric about this boundary. Such
a replacement leads to a problem of diffraction by two
bodies, which is solved using the summation theorem
for the special functions involved in the sound field
expansions and is reduced to an infinite system of equa-
tions. The methods for solving such problems can be
found in [6–8]. However, the replacement of the bound-
ary with a symmetric object image is only valid for a
perfect (acoustically hard or soft) boundary. In the case
of an elastic or impedance boundary, this method is
inapplicable. The situation is the same as in the classi-
cal problem of the spherical wave reflection from an
impedance plane, whose solution is described in [9].

This paper addresses the diffraction by an elastic
cylinder located near an elastic or impedance halfspace.
The halfspace may be stratified or covered with an elas-
tic plate. The dependence of the reflection coefficient or
the input impedance of the halfspace surface on the
incidence angle is assumed to be known.

† Deceased.
1063-7710/02/4802- $22.00 © 0225
The solution presented below is a rigorous solution
to the two-dimensional problem, i.e., to the problem of
diffraction of a cylindrical acoustic wave by an elastic
cylinder when the cylinder axis and the axes of the
cylindrical source and the receiver are parallel to each
other and to the surface of the halfspace. However, as
shown in the appendix, the results obtained are valid for
the diffraction of the cylindrical wave and for the dif-
fraction of the spherical wave when the receive and
transmit points lie in one plane that is orthogonal to the
cylinder axis and the distance from one of these points
to the cylinder is large in terms of the wavelength. In
this case, the only difference in the solutions for the
incident cylindrical and spherical waves is that, for the
cylindrical wave, the amplitude of the wave scattered
from the cylinder (and, therefore, the radius of the equiv-

alent sphere) is by a factor of  greater than that for the
spherical wave. This fact was noted earlier in [10].

Let us derive a system of equations for the coeffi-
cients of the Fourier series expansion of the total acous-
tic field on the cylinder surface.

The coordinate system is illustrated in Fig. 1. Let a
line source M0 oriented normally to the plane of the
drawing emit the cylindrical wave

(1)

where k = ω/c is the wave number; ρ and c are the density
of the upper halfspace and the acoustic velocity in it,
respectively; Q is the source strength; and G0(r0, r1) =

i (k|r1 – r0|)/4 is the Green function for a free space.

2

pi r1( ) ikρcQG0 r0 r1,( ),–=

H0
1( )
2002 MAIK “Nauka/Interperiodica”
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In the upper halfspace, the total acoustic field satis-
fies the Helmholtz-type integral equation

(2)

Here, the surface of integration, S, consists of the sur-
face of the cylinder and the surface of the halfspace.
The derivation of Eq. (2) can be found in [11] (appen-
dix). The subscript 2 indicates that the derivative is
taken along the normal at the point r2, which lies at the
surface of the cylinder in the integral over the surface
Scyl and at the surface of the halfspace in the integral
over the halfspace surface Sh. As the Green function
G(r1, r2), any Green function of the Helmholtz differen-
tial equation can be used. To eliminate the integration
over the infinite surface, we choose the Green function
for the upper halfspace so as to satisfy the boundary
conditions at the surface (see [11]):

(3)

where γ = ,  = exp(i2kbγ)Ah, Ah(u) = (whγ –
1)/(whγ + 1), wh = Zh/(ρc), and Zh is the input imped-
ance of the elastic halfspace. The change of variables
u = sinθ transforms the expression for Ah(u) into the
formula

(4)

which gives the reflection coefficient for the plane wave
incident on the boundary of the elastic halfspace at the
angle θ. Note that, for a locally responding surface (i.e.,
a surface whose properties are described by the normal
impedance), the impedance wh is independent of the

p r1( ) ikρcQG r1 r0,( )–=

+ p r2( )
∂G r1 r2,( )

∂n2
-------------------------

∂p r2( )
∂n2

----------------G r1 r2,( )– S.d

S Sh Scyl+=

∫

G r1 r2,( ) i
4π
------ iku x1 x2–( )( )exp

∞–

∞

∫=

× ikγ y1 y2–( )exp Ah' ikγ y1 y2+( )( )exp+[ ] du
γ

------,

1 u2– Ah'

Ah θ( )
wh θcos 1–
wh θcos 1+
---------------------------,=

x

y

ϕ1

Sh

Scyl

y = –b

ϕ0

ϕ2
r1

r0
M0

O

r2

Fig. 1. Coordinate system.
incidence angle, whereas, for an elastic surface, the
impedance depends on this angle. The following
expression for this impedance is presented in [9]:

(5)

Here, wl = (ρ1cl)/(ρc) and wt = (ρ1ct)/(ρc) are the wave
impedances of the lower halfspace normalized by ρc.
The subscripts l and t refer to longitudinal and shear
waves, respectively; cl and ct are the velocities of these
waves; and ρ1 is the density of the medium. The angles
of refraction θl and θt satisfy the Snell law: sinθl =
sinθ(cl /c) and sinθt = sinθ(ct/c).

Let us write the distributions of the sound pressure
and of the normal component of the particle velocity
over the surface of the halfspace as the Fourier integrals
representing the expansions in the wave numbers:

(6)

(7)

In these expressions, x2 denotes a point on the surface
of the halfspace. For each plane wave, the complex
amplitudes of the sound pressure and particle velocity
are related as P(u) = –Zh(u)V(u). These expressions
yield the formula for the normal derivative of the sound
pressure at the surface of the halfspace, which enters
into Eq. (2):

(8)

Substituting Eqs. (3), (6), and (8) into Eq. (2), we obtain
that the integral over the halfspace surface Sh is zero
and only the integral over the cylinder surface Scyl is
left. Thus, the use of the Green function given by
expression (3) eliminates the integration over the infi-
nite surface.

Expression (3) can be represented as G = G0 + G1,
where G0 is the Green function for a free space and the
term G1 determines the field reflected from the bound-
ary of the halfspace, i.e.,

(9)

(10)

wh wl

2θtcos
2

θlcos
------------------ wt

2θtsin
2

θtcos
-----------------.+=

p x2( ) P u( ) ikux2( )exp u,d

∞–

∞

∫=

v n x2( ) 1
iωρ
--------- ∂p

∂n2
-------- V u( ) ikux2( )exp u.d

∞–

∞

∫= =

∂p r2( )
∂n2

---------------- ik
P u( )
wh u( )
-------------- ikux2( )exp u.d

∞–

∞

∫–=

G0 r1 r2,( ) i
4
---H0

1( ) k r1 r2–( )=

=  
i
4
---

Jn kr1( )Hn
1( ) kr2( )

Jn kr2( )Hn
1( ) kr1( ) 

 
 

in ϕ1 ϕ2–( )( ), 
r2 r1,>
r1 r2,>

exp
n ∞–=

∞

∑
G1 r1 r2,( )

=  
i

4π
------ Ah' ik u x1 x2–( ) γ y1 y2+( )+( )[ ]exp

ud
γ

------.

∞–

∞

∫
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Expression (9) represents the summation theorem for
the cylindrical functions. Using the change of variables
u = sinθ and γ = cosθ and switching to the cylindrical
coordinates x1 = r1sinϕ1, y1 = r1cosϕ1, x2 = r2sinϕ2,
and y2 = r2cosϕ2, we obtain

(11)

Here, Γ is the Sommerfeld contour: –π/2 + i∞, π/2 – i∞.
Using the expansion of a plane wave in cylindrical
functions

(12)

we obtain

(13)

where fm + n are the coefficients defined as

(14)

For an acoustically hard or acoustically soft surface of
the halfspace, Ah = 1 or –1, respectively. Then, expres-
sion (14) takes the form of an integral representation of

the Hankel function, which yields fs = (2kb),
where the plus and minus signs refer to the acoustically
hard and acoustically soft surfaces, respectively.
Applying the summation theorem twice, one can show
that, in these particular cases, the term G1 is expressed

by the formula G1 = i (kR')/4, which describes the
field of the image line source; in this case, R' =

.

Let us represent the unknown distribution of the
total sound pressure on the surface of the cylinder as the
expansion

(15)

where pq are the unknown coefficients. The normal
component of the particle velocity in the medium at the
surface of the cylinder is equal to the radial component

G1 r1 r2,( ) i
4π
------ Ah' θ( )

Γ
∫=

× ikr1 ϕ1 θ–( )cos[ ] ikr2 ϕ2 θ+( )cos[ ] dθ.expexp

ikr αcos( )exp imJm kr( ) imα( )exp ,
m ∞–=

∞

∑=

G1 r1 r2,( ) i
4
--- i–( )nJn kr1( ) inϕ1( )exp

n ∞–=

∞

∑=

× i–( )mJm kr2( ) imϕ2–( ) f m n+ ,exp
m ∞–=

∞

∑

f s
i–( )s

π
----------- Ah θcos( ) i2kb θcos isθ+[ ]exp θ.d

Γ
∫=

Hs
1( )±

H0
1( )

x1 x2–( )2 y1 y2+( )2+

p r ϕ,( )
r a= pq iqϕ( ),exp

q ∞–=

∞

∑=
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of the particle velocity of the cylinder and can be repre-
sented as the expansion

The coefficients pq and v q are related as v q = –pq/Zq,
where Zq are the mode impedances of the elastic cylin-
der oscillations, which are given by Eq. (A.3) of the
appendix. Therefore, we obtain

(16)

Here, wq = Zq/(ρc) are the mode impedances normal-
ized by the wave impedance of the medium.

Let us place the observation point at the surface of
the cylinder, substitute the above expressions into inte-
gral relationship (2), and take into account that, with the
Green function chosen above, the integration can be
performed only over the cylinder surface. The follow-
ing transformations are simple, but cumbersome.
Therefore, we only describe their main stages:

(a) Substitute expansion (15) at ϕ = ϕ1 in Eq. (2) on
its left-hand side.

(b) Substitute the Green function with Eqs. (9) and
(13) it involves into the first term on the right-hand side
by replacing r2 and ϕ2 with ‡ and ϕ0.

(c) Substitute expansions (15) and (16) of the distri-
butions of the sound pressure and its normal derivative
over the surface of the cylinder into the integrand.

(d) Substitute the Green function into the integrand
by performing the differentiation along the normal with
respect to the variable r2. After completing the differen-
tiation, set r1 = r2 = a. When calculating the derivative
in Eq. (9), one should first let the point r2 tend to the
surface, i.e., assume that r1 > r2 and use the lower line
of formula (9); take the derivative with respect to r2;
and then set r1 = r2 = a.

(e) Integrate with respect to ϕ2 with allowance for
the orthogonality relationships for the exponential fac-
tors. As a result, the sums over m and n involved in the
integrand and containing ϕ2 vanish except for the terms
with n = q or m = q.

(f) Change the order of the summation in the double
sums, i.e., use the change of variables n  q, to obtain
the factors exp(iqϕ2) in all their terms. Since all the sums
over q are Fourier series, the equation obtained must be
satisfied for each term of the sum over q.

(g) Using the well-known identity (ka) (ka) =

Jn(ka) (ka) – 2i/(πka), obtain the system of equa-
tions for the coefficients pq:

(17)

v ϕ( ) v q iqϕ( )exp
q ∞–=

∞

∑ 1
iωρ
---------

n∂
∂p

r a=

.= =

n∂
∂p

r a=

ik
pq

wq

------ iqϕ( ).exp
q ∞–=

∞

∑–=

     

Jn' Hn
1( )

Hn
1( )'

pq pnzqn

n ∞–=

∞

∑+ bq, q ∞ … ∞,–= =
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where

(18)

(19)

Note that the coefficients zqn of the matrix depend on
neither the source position nor the position of the obser-
vation point. The free terms bq depend on the source
position but are independent of the position of the
observation point.

To find the sound pressure p at the observation point
M1, we again resort to Eq. (2) and represent it, using
Eqs. (9) and (13), as a sum of the incident cylindrical
wave pi , the wave pr reflected from the halfspace
boundary, and the wave ps scattered by the cylinder
(with allowance for the multiple scattering between the
cylinder and the halfspace):

(20)

where

(21)

(22)

(23)

First, consider Eq. (22). Substitute representation
(14) into it and, in each sum, expand the plane wave in
cylindrical functions. As a result, we obtain the integral
representation for the reflected wave:

(24)

This expression differs from Eq. (11) in the constant
factor and in the subscripts that indicate the positions of
the source and the observation point with the coordi-
nates (r0, ϕ0) and (r1, ϕ1), respectively. Expression (24)
is an expansion of the reflected cylindrical wave similar
to the Weyl–Brekhovskikh integral [9] in the classical

zqn

wq

wn

------ 1–( )q n+ Jn ka( ) iwnJn' ka( )–

Hq
1( ) ka( ) iwqHq

1( )' ka( )–
--------------------------------------------------------- f q n+ ,=

bq
ρcQ
2πa
----------

wq

Hq
1( ) ka( ) iwqHq

1( )' ka( )–
---------------------------------------------------------=

× Hq
1( ) kr0( ) iqϕ0–( ) ∫exp





+ 1–( )m q+ Jm kr0( ) imϕ0–( ) f m q+exp
m ∞–=

∞

∑ 



.

p pi pr ps,+ +=

pi kρcQH0
1( ) k r1 r0–( )/4,=

pr
kρcQ

4
-------------- i–( )nJn kr1( ) inϕ1( )exp

n ∞–=

∞

∑=

× i–( )mJm kr0( ) imϕ0–( ) f m n+ ,exp
m ∞–=

∞

∑

ps p r2( )
∂G r1 r2,( )

∂n2
-------------------------

∂p r2( )
∂n2

----------------G r1 r2,( )– S.d

Scyl

∫=

pr
kρcQ

4π
-------------- Ah θ( ) ik 2b θcos([exp

Γ
∫=

+ r1 ϕ1 θ+( )cos r0 ϕ0 θ–( )cos+ ]dθ.
problem of the spherical wave reflection from an elastic
halfspace.

To find the scattered field, substitute expansion (15)
and the Green function, written as the sum of expres-
sions (9) and (13), into formula (23). Assume that the
point r2 resides on the cylinder surface, i.e., r2 = a.
Since, in this case, r1 > r2, we should use the lower line
in formula (9). Then, we obtain

(25)

where

(26)

(27)

System of equations (17) and expression (25) deter-
mine the scattering field in terms of the coefficients of
the Fourier series expansion of the total field on the cyl-
inder surface. Therefore, when the radius of the cylin-
der decreases, these coefficients tend to the expansion
coefficients of the sum of the incident and scattered
fields rather than to zero. Hence, it is reasonable to
transform these coefficients so as to extract the coeffi-
cients of expansion of the scattered field, which tend to
zero as the radius of the cylinder decreases. To this end,
we introduce new expansion coefficients aq, which are
related to the coefficients pq as

(28)

Then, the system of equations (17)–(19) will have the
form

(29)

(30)

(31)

ps
πka

2
---------–=

× pqsqHq
1( ) kr1( ) iqϕ1( )exp

q ∞–=

∞

∑ pqsquq

q ∞–=

∞

∑+ ,

uq 1–( )n q+ Jn kr1( ) inϕ1( ) f n q+ ,exp
n ∞–=

∞

∑=

sq Jq ka( ) iwqJq' ka( )–( )/wq.=

pq aq
2

πka
---------

wq

Jq ka( ) iwqJq' ka( )–
-----------------------------------------------.–=

aq anDnq

n ∞–=

∞

∑+ Eq, q ∞ … ∞,–= =

Dnq aq
0( )

1–( )q n+ f q n+ ,–=

Eq aq
0( )kρcQ

4
-------------- Hq

1( ) kr0( ) iqϕ0–( ) ∫exp=

+ 1–( )m q+ Jm kr0( ) imϕ0–( ) f m q+exp
m ∞–=

∞

∑ ,
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and the scattered field (25) will take the form

(32)

In Eqs. (30) and (31), the coefficients  are deter-
mined by formulas (A.2).

To obtain an asymptotic expression for the case
when the receiver and transmitter are far from the cyl-
inder, we first consider the field reflected from the
plane. If at least one of the wave distances, kr1 or kr0, is
much greater than unity, the integral in Eq. (24) can be
calculated by the saddle-point method. Poles of the
function Ah(θ) that may be crossed in the course of the
deformation of the integration path can be neglected,
because the residues at these poles produce surface
waves, which decay exponentially with distance from
the surface. In the exponent, we can single out the term
ik(h0 + h1)cosθ, where h0 = b + r0cosθ and h1 = b +
r1cosθ are the distances from the transmitter and the
observation point to the surface, respectively. There-
fore, the calculation of the residues gives rise to the fac-
tor exp(–k(h0 + h1)Re(cosθ)). The amplitude of the
surface wave thus depends on the sum h0 + h1 rather
than on each distance individually. Hence, if the dis-
tance from at least one of these points to the surface is
longer than the wavelength, the contribution of the
residue can be neglected. This fact has been noted in
relation to the problem of the spherical wave reflec-
tion from a halfspace [9].

The value of the variable of integration correspond-
ing to the saddle point is determined as

(33)

As follows from Fig. 2, θ0 is equal to the angle of inci-
dence of sound at the point corresponding to the specu-
lar reflection. After calculating the integral, we obtain

(34)

where l = r1cos(ϕ1 + ϕ0) + 2bcosθ0 + r0cos(ϕ0 – θ0) is
the total distance M0SM1 (Fig. 2). The first, second, and
third terms of the expression for l are the lengths of the
segments A, AB, and BM0, respectively. Thus, in the
far-field region, the reflected field is expectedly formed
as a result of the emission of a cylindrical image source
with the amplitude that is proportional to the reflection
coefficient of sound at the angle of incidence corre-
sponding to the geometrical optics reflection.

ps aq Hq
1( ) kr1( ) iqϕ1( ) ∫exp

q ∞–=

∞

∑=

+ 1–( )n q+ Jn kr1( ) inϕ1( ) f n q+exp
n ∞–=

∞

∑ .

aq
0( )

θ0tan
r0 ϕ0sin r1 ϕ1sin–

2b r0 ϕ0cos r1 ϕ1cos+ +
----------------------------------------------------------.=

pr Ah θ0( )kρcQ
4

-------------- 2
πkl
-------- ikl iπ/4–( ),exp≈

kr1 @ 1, k h0 h1+( ) @ 1,

M '1
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If the source is at a long distance from the cylinder,
i.e., kr0 @ 1, Eq. (31) can be simplified. To this end, we
represent the sum that appears in this expression as

(35)

When kr0 @ 1, this integral can be calculated by the
saddle-point method. If r0 @ b and kr0 @ q, the saddle
point is θ0 ≈ ϕ0. When transforming the integration path
into the steepest descent path, it can cross the poles of
the function Ah(θ). The residues at these poles deter-
mine the surface waves near the halfspace boundary.
However, since the contributions of these poles
decrease exponentially with the distance from the
boundary, they can be ignored when calculating the
field produced by a distant source. Note that all contri-
butions of the poles and the corresponding surface
waves produced by the interaction between the closely
spaced cylinder and boundary are taken into account
rigorously, because they are described by the coeffi-
cients fq + m, which enter into the matrix coefficients zqm.

After calculating the integral, we obtain the system
of equations

(36)

where the coefficients of the matrix coincide with the
coefficients given by Eq. (30) and the right-hand sides
are written as

(37)

m ∞–=

∞

∑ iq

π
--- Ah θ( )

Γ
∫=

× ik 2b θcos r0 θ ϕ0–( )cos+( ) iqθ+( )exp θ.d

aq anDqn
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∑+ Fq, q ∞ … ∞,–= =

Fq pi
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aq
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ϕ1
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θ0b

O

b

O' h1
A

M1'
r1

ϕ1

S
B

π/2 – (ϕ1 + θ0)

Fig. 2. To the derivation of Eqs. (33) and (34).
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Here,  represents the sound pressure in a free space
at a point lying on the cylinder axis, i.e.,

For the diffraction of a unit-amplitude plane wave,

one should set  = 1 and replace the sign of approx-
imate equality with the sign of exact equality.

Let us calculate the sound pressure in the scattered
wave at the observation point located far from the cyl-
inder when kr1 @ 1. The sum over n in Eq. (32) can be
represented as

(38)

In the far-field region, i.e., under the constraints
imposed when calculating integral (35), integral (38)
can also be calculated by the saddle point method. The
saddle point is determined as θ0 = –ϕ1. Then, we obtain
the scattered field as

(39)

where

(40)

The system of equations (36) and expressions (39)
and (40) completely determine the scattered field
formed in the far zone as a result of the diffraction of a
plane wave and also of a cylindrical wave by an elastic
cylinder located near a boundary of an elastic halfs-
pace.

In system of equations (36), the indices assume pos-
itive and negative values, whereas the existing pro-
grams for solving systems of linear equations handle
only positive indices. If the variables are renumbered
through shifting their indices by a constant value, the
most significant terms (for example, a0 and a1) will
occur in the middle of the system, which is inconve-
nient when an infinite system of equations is solved by
the reduction method. It is therefore reasonable to rear-
range the system so as to make all indices positive and
place the most significant terms at the beginning of the
system. It is also useful to separate the solution into the
symmetric and antisymmetric parts about ϕ1 = 0. The
system of equations can thus be split into two systems,
each of them being twice as small as the original sys-
tem, which reduces the computation time when the
dimension of the system is large. The manipulations
and final formulas are omitted here for brevity.

pi
0( )

pi
0( ) kρcQ

4
-------------- 2

πkr0
----------- ikr0 iπ/4–( ).exp≈

pi
0( )

n ∞–=

∞

∑ iq

π
--- Ah θ( )

Γ
∫=

× ik 2b θcos r1 ϕ1 θ+( )cos+( ) iqθ+[ ] dθ.exp

ps
2

πkr1
----------- ikr1 iπ/4–( )Φs ϕ1( ),exp=

Φs ϕ1( ) aq i–( )q

q ∞–=

∞

∑≈

× iqϕ1( )exp 1–( )q iqϕ1–( )Ah'exp ϕ1( )+[ ] .
Consider the calculation of coefficients fn + q defined
by integral (14). Let us split this integral into integrals
over the segments (–π/2 + i∞, –π/2), (–π/2, π/2), and
(π/2, π/2 – i∞). In the first and third of these integrals,
we change the variables θ = –π/2 + iα and π/2 – iα,
respectively. Denoting Ah(θ) at θ = ±(π/2 – iα) as

(α), we obtain fs = (–i)s(I1 – iI2)/π, where

(41)

(42)

(43)

and the refraction angles θl and θt, which enter into
Eq. (5), are written as

(44)

The function Ah(θ) does not have any poles on the
real axis of the complex plane of θ. Therefore, the inte-
gral I1 is calculated in a straightforward manner. When

the medium is lossless, the function (α) can
increase without limit at certain points of the integra-
tion path, which corresponds to the condition of the
generation of surface waves. In this case, a residue at
the pole should be added. The pole is however found as
a solution to an intricate transcendental equation. It is
therefore simpler to assume that the reflecting halfs-
pace is always lossy and that the velocities of the longi-
tudinal and transverse waves are complex-valued.

Integral (42) converges fast, the integrand starting to
decrease rapidly when  > nα(2kb). Note that, due
to the sharp maxima in the integrand, in order to
decrease the computation time, it is reasonable to split
the integration interval into a number of shorter inter-
vals and calculate each of these integrals using a
quadrature formula rather than integrate over the entire
interval at once. In this study, we used the Gaussian
quadrature formula with the automatic selection of the
number of nodes.

The system of equations was solved by reduction.
To obtain the result with at least three true decimal dig-
its, it was sufficient to retain 1.2kα + 3 terms in the
series and, accordingly, the same number of equations
in the system. The convergence of the system depends
on the distance between the cylinder and the surface of
the halfspace and persists until the cylinder touches the
boundary.

When calculating the bistatic scattering patterns
produced by the elastic cylinder (Fig. 3), we took into

Ah
1( )

I1 Ah θ( ) i2kb θcos( )exp nθ( )cos θ,d

0

π/2

∫=

I2 Ah
1( ) α( ) 2kb αsinh–( )exp

0

∞

∫=

× iπn/2 nα+( )exp iπn/2 nα+( )–( )exp+[ ] dα ,

Ah
1( ) α( )

iwh αsinh 1–
iwh αsinh 1+
--------------------------------,=

θlsin cl/c( ) α , θtsincosh ct/c( ) α .cosh= =

Ah
1( )

αsinh
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Fig. 3. Bistatic scattering patterns for an elastic cylinder located near the surface of a liquid halfspace (the solid lines) and in a free

space (the dotted lines): kb = (a) 7.0 and (b) 3.0, ρm = 2000 kg/m3, ka = 3.0,  = 2000 m/s,  = 300 m/s,  = 0.1,

 = 0.2, ρ1 = 1800 kg/m3, cl = 2000 m/s, εl = 0.01, and ϕ0 = 80° (α0 = 10°).
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account the active loss in the cylinder material. The
coefficients that characterize the sound attenuation for
the transverse waves were assumed to be twice as large
as those for the longitudinal waves, which is typical of
elastic media (rubber-like materials). In Fig. 3 and the
subsequent figures, the plots are constructed versus the
angular coordinate α1 = 90° – ϕ1.

As compared to the scattering patterns in a free
space, the patterns produced by a cylinder located near
a boundary are more nonuniform. The additional max-
ima and minima in the patterns occur due to the multi-
ply reflected waves and the interference between them.
The longer the distance between the cylinder and the
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
boundary is, the smaller the angular spacing between
the extrema of the plots. At certain directions, the
amplitude of the wave scattered by the cylinder located
near the halfspace boundary was found to be 2–3 times
greater than the amplitude of the wave scattered by the
cylinder located in a free space.

The dependence of the scattering amplitude on the
wave radius of the cylinder exhibits an oscillatory behav-
ior (Fig. 4). Oscillations of two types are observed here.
One of them is associated with the resonance oscilla-
tions of the cylinder, and the other is produced by the
interference of the waves multiply scattered between
the cylinder and the plane. The frequency of the oscil-
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ρ1 = 2700 kg/m3, cl = 6100 m/s, ct = 3050 m/s, εl = 0.001, and εt = 0.002.

cl
cyl( )

ct
cyl( ) εl

cyl( ) εt
cyl( )
lations increases with the distance between the cylinder
and the halfspace surface.

The above results refer to a cylinder located near a
liquid halfspace. Figure 5 shows the backscatter
(monostatic) pattern for the elastic halfspace. The back-
scatter patterns exhibit sharp maxima due to the excita-
tion of the longitudinal and transverse waves. The
angles at which these maxima occur satisfy the condi-
tions sinϕ1 ≈ c/cl and sinϕ1 ≈ c/ct. In Fig. 5, these angles
correspond to α1 = π/2 – ϕ1 of 57° and 123° for the
shear waves and 76° and 104° for the longitudinal
waves.
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APPENDIX

RELATION BETWEEN THE SOLUTIONS
TO THE PROBLEMS OF THE DIFFRACTION
OF CYLINDRICAL AND SPHERICAL WAVES

BY A CYLINDER

Paper [12] was the first to consider the diffraction of
a plane wave by an elastic cylinder. Later, similar prob-
lems in various formulations were solved in a number
of works (see, e.g., [13, 14]). The diffraction of a spher-
ical acoustic wave by an elastic cylinder was first con-
sidered in [15]. However, as it is indicated above, the
solution is expressed in terms of rather intricate com-
plex integrals of cylindrical functions of a complex
argument, which are very difficult to calculate. There-
fore, in this paper, we use an exact solution to the two-
dimensional problem, while a solution for the spherical
incident wave is obtained for the asymptotic case when
the transmitter and receiver are far from the cylinder.

Let a cylinder of radius ‡ be centered at the origin of
coordinates and r1, ϕ1 and r0, ϕ0 be the coordinates of
the observation point and of a line source of a cylindri-
cal wave, respectively. The diffracted field is given by
the well-known expansion (see, e.g., [10])

(A.1)

where

(A.2)

Here, wn = Zn/ρc are the mode impedances of the elastic
cylinder normalized by ρc. Expressions for the imped-
ances Zn can be found in [7]:

(A.3)

where kl = ω/  and kt = ω/  are the wave num-
bers of the longitudinal and shear waves in the material

ps
cyl( ) kρcQ

4
--------------=

× an
0( )Hn

1( ) kr0( )Hn
1( ) kr1( ) in ϕ1 ϕ0–( )( ),exp

n ∞–=

∞

∑

an
0( ) ka( )

Jn ka( ) iwnJn' ka( )–

Hn
1( ) ka( ) iwnHn

1( )' ka( )–
---------------------------------------------------------.–=

Zn

iρmct
cyl( )

kta
-------------------=

×
F1 kla( )F kta( ) 2F3 kla( )F2 kta( )–

nJn kta( )F1 kla( ) klJn' kla( )F2 kta( )–
--------------------------------------------------------------------------------------,

cl
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cyl( )
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of the cylinder, ρm is the density of the material of the
cylinder, and

(A.4)

In expression (A.3), a misprint present in [7] is cor-
rected.

When kr0 @ 1 and kr1 @ 1, we use asymptotic
expressions for the Hankel functions and normalize the
scattered field by the sound pressure of the incident
wave at the cylinder axis, i.e., by

to obtain the ratio of the sound pressure amplitude of
the scattered wave to the amplitude of the incident wave
at the origin

(A.5)

where

(A.6)

Assume that the sound is radiated by a spherical
source and the distance between the source and the cyl-
inder axis is r0. Then, the sound pressure in a free space
at a point located at this distance will be

(A.7)

To derive an expression for the scattered field in the
three-dimensional case, i.e., for a spherical wave, we use
the following familiar technique [10, 16]: we replace k with

 everywhere; multiply by exp[i (z1 –
z0)]/(2π), where z1 and z0 are the coordinates of the
observation point and the source along the cylinder axis
(Fig. A); and integrate with respect to ξ between the
infinite limits. As a result, we obtain

(A.8)

F1 x( ) 2n xJn' x( ) Jn x( )–( );=

F2 x( ) x2Jn'' x( ) xJn' x( )– n2Jn x( );+=

F3 x( ) x2 Jn'' x( ) 1 cl
cyl( )/ct

cyl( )( )2
/2–( )Jn x( )+[ ] .=
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cyl( ) kρcQ

4
--------------H0

1( ) kr0( )=

≈ kρcQ
4

-------------- 2
πkr0
----------- ikr0 iπ/4–( ),exp

ps
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p0
cyl( )----------- 2

πkr1
----------- ikr1 iπ/4–( )Φs ka( ),exp=

Φs ka( ) 1–( )nan
0( ) ka( ) in ϕ0 ϕ1–( )( ).exp

n ∞–=

n ∞=

∑=

p0
sph( ) ikρcQ

ikr0( )exp
4πr0

------------------------.–=

k2 ξ2– k2 ξ2–

ps
sph( ) iρcQ–

4π2 r0r1

----------------------=

× i k2 ξ2– r1 r0+( ) iξ z1 z0–( )+[ ]exp

∞–

∞

∫

× Φs k2 ξ2– a( )dξ .
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Since we consider the case when kr0 @ 1 and kr1 @ 1,
the integral can be calculated by the stationary phase
method. For simplicity, assume that the source and the
receiver are located in one plane that is orthogonal to
the axis, i.e., z1 = z0. Then, we obtain

(A.9)

We normalize this quantity by the sound pressure at the
axis in a free space (i.e., in the absence of the cylinder),
which is given by Eq. (A.7). As a result, we arrive at the
expression

(A.10)

The comparison of expressions (A.5) and (A.10) yields
that the function Φs(ka), which depends on the radius of
the cylinder and its elastic characteristics and on the
scattering angles, is the same for the cylindrical and
spherical sources, whereas the distance dependence of
the scattering amplitudes are different. In a particular
case when the source and the receiver are at the same
point, i.e., r1 = r0, we have

(A.11)

Contrasting this expression with formula (A.6), we
obtain that, for the spherical source, the scattering

amplitude is  times smaller than that for the line
source. As was noted in [10], this fact can be explained
as follows. When the spherical wave is diffracted by a
cylinder, the Fresnel zones, i.e., antiphase regions
whose contributions partly compensate for each other,
occur on the surface of the cylinder along its axis. The
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Fig. A. Coordinate system for the three-dimensional
problem.
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radius of the equivalent sphere for the diffraction of the
spherical wave by an infinite cylinder can be obtained
through the comparison of expression (A.11) with a
similar expression for the acoustically hard or acousti-
cally soft sphere of radius aequiv that is large in terms of
the wavelength. In this case, the following well-known
expression is valid:

(A.12)

Equating expressions (A.11) and (A.12), we obtain
the radius of the equivalent sphere for the spherical
wave incident on the cylinder:

(A.13)

To obtain the radius of the equivalent sphere for the
backscattered field, we should set ϕ1 = ϕ0 in the expres-
sions for Φs. Note that, in [7], the positive angular
direction is opposite to that accepted in this paper;
therefore, in the tables given there in the appendix, the
values associated with the backscatter are denoted as
Φs(π).

The radius of the equivalent sphere for the incidence
of a cylindrical or plane wave on a cylinder can be
found by equating expressions (A.5) and (A.12), which
yields

(A.14)

Thus, the radius of the equivalent sphere for a plane or
cylindrical wave incident on an infinite cylinder is

found to be  times greater than that for a spherical
incident wave.

As follows from Eqs. (A.13) and (A.14), the radius
of the equivalent sphere for an infinite cylinder depends
on the distance between the source and the cylinder.
This property is also associated with the Fresnel zones
that occur along the cylinder axis (see, e.g., [10]). The
size of the first zone, which makes the greatest contri-
bution to the scattered field, increases with the distance.

ps
sph( )

p0
sph( )------------

aequiv

2r1
-----------.=

aequiv 2
r1

πk
------ Φs ka( ) .=

aequiv 2
2r1

πk
------- Φs ka( ) .=

2

Since the radius of the equivalent sphere increases with
the distance between the cylinder and the source and

receiver position as , the amplitude of the scattered

field decreases by the cylindrical law  rather than

by the spherical law .
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In practice, a vibration insulation for flexural waves
in beams and plates is obtained with the use of resona-
tors [1–7]. The simplest resonator is a spring–mass sys-
tem [8–10]. When such a resonator is positioned nor-
mally to a plate and attached to it by a spring, it pro-
vides effective scattering of flexural waves propagating
in the plate. The vibration insulation occurs because of
the scattering (reflection) of flexural waves from the
resonators [3, 4, 6]. A dissipative loss in a resonator
reduces the efficiency of its operation as a scatterer for
flexural waves. Earlier [11], it was shown that, at a cer-
tain value of the dissipation factor, the power absorbed
by a resonator reaches its maximum and becomes equal
to the power scattered by this resonator. The latter prop-
erty of resonators with dissipation can be used for
designing efficient absorbers of flexural waves propagat-
ing in beams and plates. Wide-band absorbers consisting
of several resonant elements were studied in [12].

Consider a thin semi-infinite cantilever beam coin-
cident with the semiaxis x > 0 so that its fixed end is at
x = 0. A harmonic flexural wave propagating along the
beam is characterized by the displacement

where k and ω are the wave number and the circular fre-
quency, respectively. The reflection from the fixed end
gives rise to two waves one of which is homogeneous
and the other inhomogeneous. The reflected field has
the form

The total field in the beam is expressed as

(1)

In this standing field, the antinodes occur at the points

where n represents any arbitrary positive integer. At
some of the antinodes of the field w(0) (e.g., at x = xq ≡
H), we attach a resonator to the beam and assume that
the resonator has a mass m and an elastic coefficient
κ(1 – iε), where ε is the dissipation factor. Under the

w i( ) x t,( ) i kx ωt+( )–[ ] ,exp=

w r( ) x t,( ) ieikx 1 i+( )e kx––{ } e iωt– .=

w 0( ) x t,( ) w i( ) x t,( ) w r( ) x t,( )+=

=  1 i+( ) kx( )cos kx( )sin– e kx––{ } e iωt– .

xn
4n 1–( )π

4k
-----------------------,≈
1063-7710/02/4802- $22.00 © 20235
effect of the field w(0)(x, t), the resonator is excited and
generates a field w(1)(x, t). The total field w in the beam
with the resonator is equal to the sum w(0) + w(1). Let us
show that, at the resonance frequency, at a certain value
of the dissipation factor ε, the travelling flexural wave
exp[i(kx – ωt)] propagating in the total field w(x, t) in
the region x > H is absent.

Denote the displacement of the resonator mass by
w'(t). The equation of motion of this mass has the form

(2)

where the force F is determined by the formula

(3)

The equation of motion of the beam connected with
the resonator can be written as

(4)

where ρ and G are the linear density and flexural rigid-
ity of the beam, respectively, and δ(x) is the delta func-
tion. The wave number of the flexural wave is equal to

. Since w(i) and w(r) are free waves, we can

replace w by w(1) on the left-hand side of Eq. (4). The
displacement w(1) satisfies the boundary condition

(5)

The scattered field in the beam can be derived as fol-
lows. We calculate the displacement produced in a
semi-infinite beam by a harmonic point force F(t) =
F0exp(–iωt), where F0 is a complex amplitude. In an
infinite beam, this point force causes the displacement

m
d2w'

dt2
---------- F t( ),–=

F t( ) κ 1 iε–( ) w' t( ) w H t,( )–[ ] .=

ρd2w

dt2
--------- G

d4w

dx4
---------+ F t( )δ x H–( ),=

ρ
G
----ω2

 
 

1
4
---

w 1( ) dw 1( )

dx
------------ 0 at x 0.= = =

w 2( ) x t,( )
iF0

4Gk3
------------ ik x H–[ ]exp{=

+ i k x H––[ ]exp } iωt–( ).exp
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Taking into account the waves reflected from the fixed
end x = 0, we obtain the following expressions for w(1):

(6)

(7)

We select the force amplitude F0 so as to satisfy
Eq. (3). According to Eq. (2), the displacement of the
mass will have the form

(8)

Substituting Eqs. (1), (6), and (8) in Eq. (3), we obtain
the desired force amplitude

(9)

where

is the compliance of the semi-infinite beam with respect
to the point force. Neglecting small quantities of the

order of exp(–kH) ≡ exp –(4q – 1) , we obtain the

approximate expressions

The scattered field w(1) is calculated by substituting
F0 in Eqs. (6) and (7).

The resonance scattering occurs at the frequency ω0
determined from the equation

(10)
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At the resonance frequency, the force amplitude is

Let us separate the wave travelling along the x axis
from the total field w = w(0) + w(1). According to Eqs. (1)
and (7), the amplitude of this wave is expressed as

At the frequency ω = ω0, we approximately obtain

When the dissipation factor ε is approximately equal to
κ/(2Gk3), the amplitude A becomes zero. This means
that the resonator completely absorbs the incident
wave.

A similar consideration is possible for a plate. Let a
semibounded plate lie in the upper xy half-plane and be
rigidly clamped along the boundary y = 0. A harmonic
flexural wave incident on this boundary is characterized
by the displacement

where  and  are the projections of the wave vec-
tor of the incident wave on the x and y axes, respec-
tively. The total field w(0) in the plate is equal to the sum
of the incident and reflected waves:

(11)

where

In this field, the antinodes occur on the lines yn ≈

, where n is any integer. We attach

identical resonators with masses m and elastic coeffi-
cients κ(1 – iε) to the plate along one of these lines
(e.g., y = yq ≡ H) at the points x = xs ≡ sL, where s = 0,
±1, ±2, … . The resonators are excited by the field w(0)

and generate the field w(1). The total field in the plate
with the resonators is w = w(0) + w(1).

Let us denote the displacement of the mass of the
sth resonator [which is attached to the plate at the
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point (xs, H)] by (t). The equation of motion of this
mass has the form

(12)

where the force Fs is determined by the formula

(13)

The equation describing the motion of the plate con-
nected with the resonators can be written in the form

where ρ and G are the surface density and the flexural
rigidity of the plate, respectively, and ∆ is the Lapla-
cian. On the left-hand side of this equation, the quantity
w can be replaced by w(1).

The structure of the scattered field is determined by
the period of the scattering array (chain) of resonators,

and the quantity w(1)(x, y, t)exp(–i x) is a periodic
function of x with a period L. Then, in the presence of
the exciting field given by Eq. (11), the force Fs(t) can
be represented in the form

where F is the force amplitude at s = 0. The scattered
field in the plate is obtained in the same way as the scat-
tered field in a beam. In an unbounded plate, the chain
of point forces Fs(t) generates the field

where

Taking into account the waves reflected from the
clamped boundary y = 0, we obtain the following
expression for w(1) at y ≥ H:

(14)
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where sinϕn = . In Eq. (14), the first term in the

braces represents a homogeneous plane wave for  <

k and an inhomogeneous plane wave for  > k, and
the second term in the braces always represents an
inhomogeneous wave.

We select the force amplitude F so as to satisfy
Eq. (13). The displacement of the plate at the point of
the resonator attachment is understood as the displace-
ment averaged over the contact area between the plate
and the resonator. According to Eq. (12), the displace-

ment (t) is equal to . Substituting w(0), w(1), and

 in Eq. (13), we derive the desired force amplitude

where

Averaging is performed over a square area whose side 2a
is small compared to the flexural wavelength; εn ≈ 1

when a ! 1.

The scattered field is obtained from Eq. (14) by sub-
stituting F into it. The resonance scattering occurs at
the frequencies determined from the equation

This dispersion equation is identical in form to Eq. (10).
However, because of the complex dependence of Y on
frequency, it may have several solutions. At the reso-
nance frequency, the amplitude of the nth scattered

+ i
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homogeneous spectrum (i.e., scattered homogeneous
plane wave) has the form

(15)

where

(16)

Here, the prime denotes the summation over all s at

which  is real.

When the period of the chain is smaller than λ(1 +

sinθ)–1, where θ =  is the angle of the wave

incidence and λ = , only the “zeroth” spectrum is

homogeneous in the scattered field given by Eq. (14).
Then, from Eqs. (15) and (16), we derive the expres-
sions

Combining the homogeneous reflected wave with the
zeroth scattered spectrum, we obtain a travelling homo-
geneous wave with the amplitude A equal to

An
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When the dissipation factor ε is approximately equal to

, the amplitude A becomes zero. This means

that the chain of resonators completely absorbs the inci-
dent wave.

REFERENCES

1. I. I. Klyukin, Akust. Zh. 6, 213 (1960) [Sov. Phys.
Acoust. 6, 209 (1960)].

2. I. I. Klyukin and Yu. D. Sergeev, Akust. Zh. 10, 60
(1964) [Sov. Phys. Acoust. 10, 49 (1964)].

3. M. A. Isakovich, V. I. Kashina, and V. V. Tyutekin, in
Marine Instrument Making, Ser. Acoust. (Inst. of Acous-
tics, USSR Acad. Sci., Moscow, 1972), Issue 1, pp. 117–
125.

4. M. A. Isakovich, V. I. Kashina, and V. V. Tyutekin, USSR
Inventor’s Certificate No. 440509, Byull. Izobret.,
No. 31 (1974).

5. M. A. Isakovich, V. I. Kashina, and V. V. Tyutekin, Akust.
Zh. 23, 384 (1977) [Sov. Phys. Acoust. 23, 214 (1977)].

6. L. S. Tsil’ker, Akust. Zh. 26, 606 (1980) [Sov. Phys.
Acoust. 26, 336 (1980)].

7. R. J. Nagem, I. Velikovik, and G. Sandri, J. Sound Vibr.
207, 429 (1997).

8. Acoustics Handbook, Ed. by Malcolm J. Crocker (Wiley,
New York, 1997).

9. M. Gurgoze and H. Batan, J. Sound Vibr. 195, 163
(1996).

10. M. Gurgoze, J. Sound Vibr. 223, 667 (1999).
11. A. D. Lapin, Akust. Zh. 33, 278 (1987) [Sov. Phys.

Acoust. 33, 164 (1987)].
12. V. V. Tyutekin and A. P. Shkvarnikov, Akust. Zh. 18, 441

(1972) [Sov. Phys. Acoust. 18, 369 (1972)].

Translated by E. Golyamina

κ
2LGk2ky

0
----------------------
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002



  

Acoustical Physics, Vol. 48, No. 2, 2002, pp. 239–242. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 48, No. 2, 2002, pp. 281–284.
Original Russian Text Copyright © 2002 by Ostrovski

 

œ

 

.

                                                                                                                                                     

SHORT
COMMUNICATIONS
Statistical Properties of the Sidelobe Level of an Acoustic 
Parametric Antenna

D. B. Ostrovski œ
Morfizpribor Central Research Institute, Chkalovskiœ pr. 46, St. Petersburg, 197376 Russia

e-mail: mfp@mail.wplus.net
Received May 14, 2001
An advantage of a parametric transmitting antenna
(PTA) is that it has lower sidelobes than traditional
antennas [1], which provides a low level of interfer-
ences created by the surface and volume reverberation
and also enhances hiding of the transmission. The
angular pressure dependence P(θ, β) at the difference
frequency can be written as

(1)

where (θ, β) are the angular coordinates; Pf 1, 2(θ, β) is
the pressure produced by the source at the partial pump-
ing frequencies f1 and f2, respectively; and Ψ is a func-
tion independent of angles (θ, β), which is different for
different PTA models [1–5].

Since the directional pattern determines only the
angular antenna characteristics, the PTA factor [6], or
the nonnormalized directional pattern, can be written as

(2)

where Rf 1, 2(θ, β) are the partial patterns at the frequen-
cies f1 and f2.

As for real sources, the parameters of their elements
are spread; therefore, Rf 1(θ, β), Rf 2(θ, β), and, hence,
R(θ, β) are random variables. The statistical character-
istics of R(θ, β) are determined by the statistical char-
acteristics of Rf 1(θ, β) and Rf 2(θ, β). The only known
work on the statistical characteristics of PTA [7] studies
only the pressure at the difference frequency at the
maximum of the directional pattern versus the spread in
the partial pumping frequencies. Therefore, it is of
interest to study the statistic of PTA’s sidelobes.

Consider the statistical characteristics of a random
PTA’s pattern in the general case, as this is customary
in the statistical theory of antennas [6, 8]; i.e., with
allowance for errors in the excitation amplitude and
phase, for errors in element settings, and for element
failures. We will normalize function (2) by its mean
value; then the magnitude of the normalized pattern is

(3)

P θ β,( ) P f 1 θ β,( )P f 2 θ β,( )Ψ,=

R θ β,( ) R f 1 θ β,( )R f 2 θ β,( ),=

R θ β,( ) A R f 1 θ β,( )R f 2 θ β,( ) ,=
1063-7710/02/4802- $22.00 © 0239
where

(4)

For simplicity sake, we denote |Rf i(θ, β)| = Ri , i = 1, 2.
The pumping signal can be applied to the antenna in

a two-channel or one-channel excitation mode [1]. In
the first mode, the source array is divided into two
equal, though statistically independent, overlapping
subarrays. In the one-channel excitation mode, the beat
signal between the pumping frequencies is applied to
each element of the source.

First, consider the two-channel excitation mode.
Since the subarrays that constitute the PTA pumping
source are statistically independent, the mean value and
variance of the pattern at the difference frequency are
expressed in terms of the mean values and variances of
the partial directional patterns:

As shown in [8], the functions R1 and R2 are
described by the Rician distribution:

(5)

where Qi and σi (i = 1, 2) are the distribution parame-
ters.

For a traditional antenna representing the source,
i.e., when Q/σ > 3–4, the Rician distribution (5) goes
over into the Gaussian distribution; when Q/σ < 0.5, it
changes to the Rayleigh distribution [9]

(6)

whose mean value and variance are

(7)

Since our primary interest is in low sidelobe levels,
we assume that the magnitude of the directional pattern

1/A R f 1 θ β,( ) R f 2 q β,( ) .=

R R1R2, DR DR1DR2 R1
2
DR2 R2

2
DR1.+ += =

f Ri( )
Ri

σi
2

-----
Ri

2 Qi
2+

2σi
2

------------------–
 
 
 

I0

RiQi

σi
2

----------- 
  ,exp=

f R( ) R

σ2
----- R2

2σ2
---------– 

  ,exp=

M R[ ] σ π/2, D R[ ] σ 2 2 π/2–( ).= =
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is characterized by distribution (6). In this case, the par-
tial patterns are independent and, therefore, the magni-
tude of the normalized pattern at the difference fre-
quency is characterized by the two-dimensional Ray-
leigh distribution

(8)

where the parameters σ1, 2 of the distribution corre-
spond to the random variables X and Y, i.e., to R1 and R2.

Let us express σ in terms of the statistical character-
istics of fluctuations of the antenna elements. The array
factor R(θ, β) is

(9)

where Am0 is the nominal excitation coefficient of the
mth element, N0 is the nominal number of elements, k
is the wave vector, and rm0 is the nominal position vec-
tor of the array element.

Summarizing the data presented in [6, 8, 10], we
represent the scatter coefficient ∆m for the parameters of
the mth element as

(10)

where am is the failure parameter, which equals unity
with a probability p when the element is operable and
zero with probability 1–p when it fails; δm is the relative
amplitude error; and δrm is the fluctuation in the ele-
ment position.

Let us assume for definiteness sake that the fluctua-
tions possess the following properties:

(i) elements and fluctuations of different types are
statistically independent;

(ii) fluctuations are uniformly distributed over the
antenna aperture;

(iii) elements are statistically indistinguishable;
(iv) phase errors and adjustment errors have the

Gaussian distribution with zero mean values; standard
deviations of the amplitude, phase, and adjustment
errors are σ∆, σϕ, and σd, respectively.

As follows from [8], the parameter σ of distribution
(6) subject to these assumptions has the form

(11)

where Rel is the directional pattern of one element (in
the case of a planar antenna and complete compensa-

f x y,( ) xy
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2σ2

2
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2σ1σ2
----------------– 

  ,exp=
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∑=

∆m am 1 δm+( ) iϕm( ) i k k0–( )δrm[ ] ,expexp=

σi
2 1 σ∆

2 p –σϕ
2 ki

2σd
2–( )exp–+

2 p –σϕ
2 k2σd

2–( )exp
------------------------------------------------------------------=
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2 θ β f i, ,( ) Am0

2 / Am0

m 1=

M

∑ 
 
 

2

,
m 1=

M

∑

tion [6]); M is the number of elements (for the two-
channel mode, M = N0/2); N0 is the nominal number of
elements in the source; and ki = 2πfi /c.

As follows from Eq. (11), the quantities dependent
on the frequency fi are the element pattern Rel and the
wave number k. Since the condition fi/F ≈ 10 (F is the
difference frequency) is usually met and, therefore, f1 ≈
f2 ≈ f0 = ( f1 + f2)/2, we can assume that σ1 = σ2 = σ( f0).
Replacing σ1, 2 in Eq. (8) with σ, we obtain the distribu-
tion density of PTA’s pattern in the form of the product
of independent random variables [11]:

(12)

where K0(z) is the Macdonald function, whose mean
value and variance are

(13)

Figure 1a shows the histogram and distribution (12),
which approximates it. We performed simulations for
an antenna with the average pumping frequency f0 =
50 kHz, difference frequency F = 5 kHz, and total num-
ber of elements N0 = 18 × 18. The levels of partial direc-
tional patterns were 0.0266 and 0.0264. The numerical
characteristics of the fluctuations obtained from n =
1000 realizations were as follows: p = 0.9, σ∆ = 0.7,
σϕ = 0.3, and σd = 2 mm. The solid curve refers to the
parameter σ obtained from formula (13); the dashed
curve, from formula (11). The two curves virtually
coincide and approximate with statistical confidence
the directional pattern distribution of the parametric
radiator excited in the two-channel mode.

Consider the one-channel excitation mode. As fol-
lows from the expressions that describe the models of
the parametric radiator, in the one-channel excitation
mode, the pressures Pf 1 and Pf 2 are created by the
whole antenna aperture. Accordingly, the partial direc-
tional patterns R1 and R2 are formed by all elements of
the source. The PTA pattern is calculated by formula (3),
but, in this case, the partial patterns R1 and R2 are not
independent.

Each of the partial patterns is a random (in general,
nonstationary) process in frequency. At the same time,
at f/F @ 1, in the theory of the parametric radiator [4, 5],
the product of pressures at the frequencies f1 and f2 in
formula (1) is replaced by the squared pressure at the

frequency f0: Pf 1Pf 2 ≅ . Then, PTA pattern (3) goes
over into

i.e., becomes equal to a squared directional pattern of
the source at the frequency f0.

The original directional pattern of the source has
Rician distribution (5). The square of this random vari-

f R( ) RK0 R/σ2( )/σ4,=

M R[ ] πσ2/2, D R[ ] σ 4 4 π2/4–( ).= =

P f 0
2

R θ β,( ) A R f 0 θ β,( ) 2, 1/A R f 0 θ β,( ) 2
,= =
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Table

Mode
Mean value Variance

formula ζM formula ζD

Linear 1 σ2(2 – π/2) 1

Two-channel πσ2 4σ4(4 – π2/4) 2σ2(4 + π)

One-channel 2σ2 4σ4 8σ2/(4 – π)

X(2)/X(1) – π/2 > 1 – 4 – π2/4 > 1

σ π/2

σ 2π

2σ 2π
able, i.e., the directional pattern of the parametric
antenna, will have the distribution

(14)

where the parameter Q = |R0( f0)| is the nominal pattern
of the source and σ is determined by formula (11) at
M = N0.

If Q/σ > 3, the directional pattern of the PTA is dis-
tributed as a squared Gaussian variable

When Q/σ < 0.5, the directional pattern of the PTA
operating in the one-channel mode has the distribution

The results of simulations shown in Fig. 1b refer to
the same source antenna as in the two-channel mode. In
this case, we consider the direction, in which Q/σ ≈ 1;
therefore, the approximating curve is calculated by for-
mula (14).

Let us compare the parametric radiator operating in
different excitation modes and the traditional (linear
acoustic) antenna in terms of their stability to fluctua-
tions of the statistical characteristics at the same num-
ber of elements N0 and at the same fluctuation parame-
ters σ∆, σϕ, σd, and p. We consider small directional pat-
tern levels satisfying the condition Q/σ < 0.5. The table
summarizes the formulas for the mean value and vari-
ance and for the ratios of the PTA’s statistical character-
istics to similar characteristics of the linear antenna. In
the table, ζM is the ratio of the mean value of the PTA
pattern in the two-channel (one-channel) excitation
mode to that of the linear antenna, and ζD is the variance
ratio. As the parameter σ, we use the parameter of the
linear antenna, which is taken into account in the
respective formulas for the two-channel mode. The bot-

f R( ) 1

2σ2
--------- R Q2+

2σ2
----------------– 

  I0
RQ

σ2
------------ 

  ,exp=

f R( ) 1

2σ 2πR
---------------------- R Q–( )2

2σ2
-------------------------– .exp=

f R( ) 1

2σ2
--------- R

2σ2
---------– 

  .exp=
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tom row of the table compares the two excitation modes
of the parametric radiator, X(2) and X(1).

The parameter σ is on the order of 1/N0; therefore,
the sidelobe level of the PIA directional pattern is more
stable to random fluctuations both in mean value and in
variance, i.e., it has a lower average level and a smaller
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Fig. 1. Distribution histograms and the approximating func-
tions: (a) the two-channel mode and (b) the one-channel
mode.
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spread. The one-channel excitation mode is more stable
to element parameter fluctuations than the two-channel
mode.
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CHRONICLE

       
Yuriœ Mikhaœlovich Sukharevskiœ (On His 95th Birthday)
Professor Yuriœ Mikhaœlovich Sukharevskiœ—a doc-
tor of engineering, a laureate of the USSR State Award,
and a prominent scientist whose activity has been
closely connected with the development of Russian
hydroacoustics—turned ninety-five.

Sukharevskiœ was born in Moscow on September 8,
1906. In 1930, he graduated from the Moscow Power
Institute, where he specialized in electrical engineering.
Simultaneously, he studied music at the Piano Faculty
of the Moscow Conservatory. After receiving his mas-
ter’s degree in music in 1931, he became a post-gradu-
ate student and continued his studies at the conserva-
tory until 1935.

Sukharevskiœ’s first research project dates back to
1929, when he was still a student. His first publication
appeared in 1930. At that time, he was already working
at the Moscow Electrical Plant. Later that same year, he
became a researcher at the Acoustic Laboratory of the
Central Research Institute of the People’s Commissar-
iat of Communication. There, his attention was directed
toward the problems of using electroacoustic equip-
1063-7710/02/4802- $22.00 © 0243
ment for reception and high-fidelity reproduction of
speech and music produced in broadcasting studios and
concert halls. The change in the scientific interests of
Sukharevskiœ was explained by his natural desire to
combine his two professions—engineering and music.
In 1931–1935, he published a number of papers on
electroacoustics and architectural acoustics and, in
1936, he published a monograph entitled Modern Elec-
troacoustics and Wire Broadcasting. Another book
written in collaboration with A.V. Rabinovich entitled
Broadcasting Studios and Microphones appeared in
1938.

Sukharevskiœ was also involved in the problems of
electroacoustic metrology. In 1934, at the Central
Research Institute of the People’s Commissariat of
Communication, he developed and designed Russia’s
first test bench for the absolute calibration of micro-
phones and for testing loudspeaker characteristics,
including nonlinearity. In 1936, he completed Russia’s
first acoustic test site for powerful sound sources,
where he performed extensive studies of the directional
characteristics of acoustic horns. The results of these
studies were published in 1938 in Elektrosvyaz’. At that
time, Sukharevskiœ was working on the development of
acoustical systems for the All-Union agricultural exhi-
bition in Izmailovo Park, Moscow. There, he supervised
the installation of the first outdoor anechoic distributed
system of loudspeakers, which simulated the effect of
large concert hall reverberation.

In 1938, Sukharevskiœ became a senior researcher at
the Physical Institute of the Academy of Sciences of the
USSR. In 1939–1940, he performed theoretical and
experimental studies of acoustic feedback that
restricted the possibilities of sound amplification in
sound-amplifying systems. The results of these studies
were published in Doklady Akademii Nauk SSSR.

In 1939, Sukharevskiœ received his candidate
degree, and, in 1940, he became a doctor of engineer-
ing. His doctoral dissertation was entitled Methods for
Calculating Sound-Amplification Systems. One of his
official reviewers was N.N. Andreev.

Upon the German invasion of the USSR in World
War II, Sukharevskiœ began working on military acous-
tical problems. The research and development projects
carried out by Sukharevskiœ and his colleagues during
the war were described in his paper in Acoustical Phys-
ics in 1996. Specifically, Sukharevskiœ described his
work in collaboration with D.I. Blokhintsev on the
improvement of sound-detecting horns used in anti-air-
craft artillery in 1942 and the full-scale experiments
2002 MAIK “Nauka/Interperiodica”
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performed in collaboration with V.S. Grigor’ev in the
Pacific Ocean in 1944. These experiments dealt with
the characteristics of sonars used on Russian and for-
eign naval vessels and submarines. Simultaneously,
Sukharevskiœ studied sound reflection from the hulls of
ships and the acoustic parameters of the ocean that
determine the operating range of sonars.

For his contribution to the defense potential of the
USSR, Sukharevskiœ was awarded an Order of the Red
Banner of Labor.

The experience gained by Sukharevskiœ during his
work in the Pacific determined his continued career in
hydroacoustics. The program proposed by Sukha-
revskiœ for extensive studies in this area was the impetus
for organizing an experimental hydroacoustic base for
the Physical Institute of the Academy of Sciences of the
USSR, namely, a marine research station with a coastal
laboratory, stationary transmitting–receiving antennas,
and research ships. The idea of organizing such a sta-
tion was approved by S.I. Vavilov, director of the Phys-
ical Institute. During the next fifteen years, Sukha-
revskiœ worked on the realization of this idea.

In 1945–1948, using the ships of the Black Sea
Fleet, Sukharevskiœ continued his studies (including
those of sea reverberation) that were started during his
work in the Pacific. The results of these studies were
published in Doklady Akademii Nauk SSSR (1948).
Sukharevskiœ was authorized to select the optimal loca-
tion for the marine station. The main criterion was that
the station should be near a deep-water region. The
Caucasian coastal region of the Black Sea satisfied this
requirement. In addition, the warm climate allowed full-
scale investigations year-round in any weather condition.
The region could also be considered as a 1 : 2–1 : 3 scale
model of the northwestern Pacific. The final choice was
Cape Sukhumi, with a bottom slope of 35°. This place
was most convenient because of the nearby port facili-
ties for research ships.

In 1948, Sukharevskiœ organized an expedition to
the Black Sea. With a small group of researchers and
the support of the Black Sea Fleet, he established a tem-
porary marine station at Cape Sukhumi equipped with
hydroacoustic antennas, which he designed, and mock-
ups of the electronic and recording systems installed at
the Sukhumi lighthouse. Using this equipment, he con-
ducted investigations of sound reflection from ships
and submarines. The newly developed stationary equip-
ment was also used for studying the acoustic parame-
ters of the marine environment: the sound absorption in
sea water and the sound scattering from the sea bottom
and surface.

In 1953, studies of the sound propagation through
the sea began and, specifically, the studies of sound
fields in the regions of geometric shadow. In 1954,
these studies resulted in the discovery of the far zones
of underwater insonification, or the so-called conver-
gence zones. Describing this effect in 1956, Sukha-
revskiœ suggested that it could open up possibilities for
long-range underwater detection and ranging in the
audio frequency range. He proposed the 3/2 power law
to describe the frequency dependence of sound absorp-
tion in the sea.

In 1954, the Acoustical Laboratory of the Physical
Institute of the Academy of Sciences of the USSR was
reorganized into the Acoustics Institute of the Academy
of Sciences of the USSR. Simultaneously, the Sukhumi
expedition received the title of the Sukhumi Marine
Research Station of the Acoustics Institute. At that
time, the capital construction of the marine research
station was in progress and new equipment was
installed. The program of studying the far zones of
insonification was extended, and other hydroacoustic
investigations were carried out. They included the
sound reflection from wakes of ships, the sound fluctu-
ations caused by the inhomogeneity and dynamics of
the marine environment (in relation to underwater com-
munication and target indication), and the static charac-
teristics of sea reverberation.

In 1959, Sukharevskiœ proposed a method to
increase the operating range of existing hydroacoustic
equipment by more than an order of magnitude using
the effect of far zones of insonification. He calculated
the parameters of the corresponding shipborne hydroa-
coustic systems that allowed such long-range opera-
tion. He initiated and supervised the development of the
first Russian long-range hydroacoustic system for mass
production. For this work, Sukharevskiœ received a
USSR State Award.

Sukharevskiœ combined his scientific work with the
education of two research groups in Moscow and
Sukhumi. His friend and colleague, theoretical physi-
cist G.D. Malyuzhinets, assisted him in his work.
Together, they contributed largely to the development
of the theoretical studies of sound scattering from thin-
walled elastic shells, hydrodynamic cavitation, and
sound scattering from the sea surface.

In 1959, Sukharevskiœ supervised the Soviet–China
marine expedition on hydroacoustics.

In 1961–1966, Sukharevskiœ held the office of Dep-
uty Director of the Acoustics Institute. While perform-
ing his administrative duties, he continued his collabo-
ration with industrial institutes, design offices, and
naval institutions in developing new hydroacoustic
equipment. Using his experience in studying different
aspects of hydroacoustic problems, Sukharevskiœ
undertook the complex investigation of the triad repre-
sented by a hydroacoustic system, the environment, and
a ship with the aim to optimize the operating frequency.
In contrast to the conventional deterministic represen-
tation of marine environment parameters, he consid-
ered the statistics of the main parameters for a global
set of various acoustic conditions in the ocean and stud-
ied the operating range of a hydroacoustic system as a
probabilistic quantity.

The probabilistic approach developed by Sukha-
revskiœ for describing the operating range of hydroa-
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coustic systems and the new technique he proposed for
range estimation offered the possibility of making the
operation of hydroacoustic systems more reliable. This
possibility is based on the fact that the parameter indi-
cating the efficiency of a hydroacoustic system, i.e., the
operating range, is guaranteed with a given integrated
probability. The approach proved to be of dramatic sig-
nificance for this area of research. The main results of
these studies were published by Sukharevskiœ in Acous-
tical Physics in 1995. Throughout the years, Sukha-
revskiœ investigated the prospects of hydroacoustic sci-
ence and engineering. During a ten-year period, he gave
lectures on hydroacoustics at the Institute of the
Improvement of Professional Skills for the leading spe-
cialists of the shipbuilding industry. At the present time,
Sukharevskiœ is a principle researcher at the Acoustics
Institute.

Sukharevskiœ’s achievements in various fields of
acoustics, as well as his entire career in science, testify
to his outstanding abilities. Sukharevskiœ is a prominent
and far-seeing scientist. He made a significant contribu-
tion to the introduction of scientific results into modern
engineering.

Sukharevskiœ is the author of more than 150 scien-
tific publications. He is not only a talented researcher
but also an excellent teacher of young scientists. His
scientific school is well known as the one of top-level
acousticians. The ability to select and educate students
is one of the most remarkable skills of Sukharevskiœ. He
ACOUSTICAL PHYSICS      Vol. 48      No. 2      2002
educated more than 30 doctors and candidates of sci-
ence, including some members and corresponding
members of the Academy of Sciences, honored scien-
tists and engineers, and honored inventors. Some of his
students hold leading posts at various research insti-
tutes and design offices.

Sukharevskiœ carries authority with broad circles of
acoustical physicists, designers of hydroacoustic equip-
ment, and Navy specialists. For his services to the
country, Sukharevskiœ was awarded two Orders of the
Red Banner of Labor, an Order of the October Revolu-
tion, a Badge of Honor, a Valiant Labor during the
Patriotic War Medal, and other medals.

Sukharevskiœ is a man of duty, responsibility, and
exceptional, enduring capabilities. In 1996, he became
a laureate of the competition among the best publica-
tions of 1995 appearing in the journals of the Russian
Academy of Sciences. Sukharevskiœ was awarded a
special grant from the President of the Russian Federa-
tion as a prominent scientist of Russia.

The interests of Sukharevskiœ reach far beyond his
professional occupation in science. His friends and col-
leagues enjoy his musical performances at parties held
at the Acoustics Institute.

We wish Yuriœ Mikhaœlovich Sukharevskiœ good
health and many happy years to come.

Translated by E. Golyamina
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CHRONICLE

   
In Memory of Evgeniœ L’vovich Shenderov
(June 1, 1935–September 1, 2001) 
Evgeniœ L’vovich Shenderov—Honored Scientist
and Engineer of the Russian Federation, Doctor of
Engineering, Professor, and Head of the Research Sec-
tor of the Morfizpribor Central Research Institute—
passed away after a brief illness. 

Shenderov started working at the Morfizpribor Cen-
tral Research Institute immediately after his graduation
from the Leningrad Elecrotechnical Institute in 1957.
For more than 44 years, his work was related to the for-
mation and development of one of the most important
areas of modern underwater acoustics: the study of the
effect of sonar domes on the parameters of hydroacous-
tic arrays. He developed techniques for calculating the
acoustic permeability of sonar domes and proposed
new designs of sound-transparent parts of domes,
which have found practical application in the design of
naval ships and submarines. Shenderov was a talented
1063-7710/02/4802- $22.00 © 20246
scientist and outstanding engineer. He founded a scien-
tific school, the work of which made a critical contribu-
tion to the development of underwater acoustics. The
scope of Shenderov’s scientific interests was rather
wide. He published a number of fundamental works
devoted to the diffraction of sound waves by elastic
plates and shells, the optical visualization of sound
fields diffracted by complex-shaped bodies, and the
theoretical methods of analyzing the sound fields and
sound wave diffraction by ship hulls. Shenderov is the
author of more than 100 scientific publications and
50 inventions. Many of his papers were published in
Acoustical Physics and in the Journal of the Acoustical
Society of America (JASA). Shenderov wrote two fun-
damental monographs on theoretical acoustics: Wave
Problems of Underwater Acoustics (1972) and Radia-
tion and Scattering of Sound (1989). He was also
involved in tutorial activities and was known as an
excellent lecturer. In different higher educational insti-
tutes of St. Petersburg, he gave lectures on sound radi-
ation, wave propagation, and oscillation of mechanical
systems. Shenderov presented his papers at many sci-
entific conferences. The last paper he prepared was pre-
sented by his colleagues at the 17th International Con-
gress on Acoustics in Rome, two days after his death. 

Shenderov was a member of the Scientific Council
on Acoustics of the Russian Academy of Sciences and
a member of the Editorial Council of Acoustical Phys-
ics. For years, he was a co-chairman of the Leningrad
(now, St. Petersburg) seminar of the Scientific Council
on Acoustics of the Russian Academy of Sciences. 

Shenderov was a charming and benevolent person.
Being a true intellectual, he was fairly democratic and
friendly toward other people. He carried indisputable
authority with all who knew him not only in his profes-
sion but also in other areas. Shenderov had a wide vari-
ety of hobbies: he was a yachtsman, tourist, downhill
skier, free diver, underwater photographer, cabinet-
maker, gardener, and oven maker. 

This outstanding scientist, talented engineer, and
good friend has passed away. The shining memory of
Evgeniœ L’vovich Shenderov will forever remain in the
hearts of those who were lucky enough to have known
this wonderful person. 

Translated by E. Golyamina
002 MAIK “Nauka/Interperiodica”
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