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Abstract—To excite seismic waves with a high coherence, powerful hydroacoustic radiators placed in anatural
reservoir were used. Theoretical estimates and the test data demonstrate a high efficiency of the proposed
method of seismic wave excitation. The calculations are in good agreement with the results of measurements.
The results of phasing the radiation with the use of two monopol e sources separated by a quarter-wave distance
are presented. It is shown that the use of the proposed scheme of excitation makesit possible to control the radi-
ation pattern while obtaining a high coherence of seismic waves. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

In an earlier publication [1], the authors proposed
using the powerful hydroacoustic radiator devel oped at
the Ingtitute of Applied Physics of the Russian Acad-
emy of Sciences [2] as a source of seismic waves.
Owing to the relatively high frequency (about 200 Hz)
and coherence of the radiation produced by such
sources, they can be used for the investigation of near-
surface layers with a high spatial resolution and for the
detection of local inhomogeneities [3].

Thecited paper [1] and the report at aMeeting of the
Acoustical Society of America[4] were devoted to the
theoretical evaluation of the efficiency of radiation of
body seismic waves. It was shown that a radiator
mounted in the upper part of a rigid tube filled with
water and buried in the ground can provide a useful
radiation power comparable with the acoustic power
generated in a water medium. However, the suggested
scheme of excitation has pronounced resonance proper-
ties, which leadsto the necessity of matching its param-
eters. This causes problems in its practical realization.
In this paper, an alternative scheme of excitation isthe-
oretically studied, and the results of itsfield tests [5, 6]
are compared with the theoretical estimates.

Seismically active regions are of most interest for
seismology. These regions are often located near rivers
and lakes. It isof interest to use these natural reservoirs
for matching a hydroacoustic radiator with the ground.
In this case, for an accurate calculation of the radiation
efficiency, it is necessary to take into account a great
number of details (the bottom profile, the contour of the
shore, and so on), which strongly complicates such cal-
culations. Therefore, it is necessary to use idealizations
simplifying the task. Below, we consider a simple the-
oretical model. Then, in the next section, we compare

the predicted and measured values of the velocity of
vibration of the Earth’s surface, which makes it possi-
bleto evaluate the efficiency of radiation. In the follow-
ing section, the possibility of controlling the radiation
of two phased sources is studied, and the last section
summarizes the main results.

THE BASIC THEORETICAL MODEL

Let us consider the following problem. A monopole
source is located in a layer of liquid. This layer is
bounded by an air halfspace (an acoustically soft
boundary) and by an elastic halfspace. It isnecessary to
find the displacements at large distances from the
source and the power of the source radiation.

We combine the axis of symmetry of a cylindrical
coordinate system with the gravity vector passing
through the point where the source is positioned, the
coordinates of this point being (0, —h). We represent the
displacements in the form of scalar (¢, ¢) and vector

(y) potentias[7]:

U = O, -H<z<0 (liquid layer) 0
+1 xy, z>0 (ground).

Due to the axial symmetry of the problem, the poten-
tials can be represented as the following integrals (y x
r=y xz=0):

_ 1 - (1)
o(r,z) = —[o(k, 2)Hg (Kr)Kdk,
]

o(r,2) = L%_[J'(]S(K,Z)Hél)(Kr)KdK, @)
C
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g(r,2) = A%[J'QJ(K,Z)H(ll)(Kr)KdK,
C

where H'" is a Hankel function of the first kind of

order j (the time dependence of al quantities is
assumed to be ~exp(-iwt)). The path of integration is
chosen to satisfy the causality principle. The solution
for the potentials is obtained by the method of sewing
together partial domains by using the continuity of the
displacement and stressfields. In the solution obtained,
it is possible to identify the following terms [9]:

(i) body waves with a spherical divergence—the
contribution of the points of stationary phase;

(i) Rayleigh and Stoneley waves—the contribution
of the poles; and

(iii) one or two lateral waves (for ¢, or ¢, > ¢,)—the
contribution of the branch points (c, and c, are the
velocities of longitudinal and shear waves in the
ground, and ¢, isthe sound velocity in the liquid layer).

We will restrict our analysis to the body waves,
because they are of most interest for tomography of the
Earth’sinterior.t

The stationary points are determined by the condi-
tionsk =k, ,sinB, wherek, = w/c, and k, = w/c, arethe
wave numbers of longitudinal and transverse waves in
the ground, the angle 6 is counted from the z axis of
symmetry of the coordinate system and corresponds to
the direction of the radius vector from the source to the
point of observation

_ .E(ysinB)k;cosb .
_ F(sinB)k,cos6 :
W(R 8) = ———"Z——exp(ik.R),

where R is the distance from the source. Equations (3)
are valid on the condition that k; ,R > 1. The func-
tions E(-) and F(-) determining the spectral amplitudes
of longitudinal and shear waves have the form

E(1) = wikz(l—2r2)sin(y—x)/[A/yz—Tzsin(y)
+imyp? —13((1=21%)°
+40°(1-T°)(y* —1%)) cos(y)],
F(1) = 2iT1—“V22‘ZZE(r),

)

L1 the inverse reaction of radiation to the source characteristics is
of little interest or weak, the near-field analysis is unnecessary.
This is justified when the response is weakly frequency depen-
dent and slight changes in the resonance frequency of the source
do not lead to considerable changes in the characteristics of the
whole radiating system. This situation takes place in many cases
that can be of interest (Figs. 2b, 2c).
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where T = K/Ky, Y = C,/C;, P = C,/Cy, M = P/Py, X =
khap®—1°, andy=kHAp —1°.
We point out the following features of Egs. (4):

1. Theradiation of S-wavesisabsent in thedirection

6, = arcsin4 | because F(®) ~ Jy’—sin’0. This

ryak
angle corresponds to a total reflection (without trans-
formation of the type of wave) of the transverse wave
arriving from the domain z > 0. Therefore, it isimpos-
sibleto excite ashear wavein the solid by a sound wave
propagating in the liquid layer and incident on the
boundary between the two media at the angle corre-
sponding to 6, in the elastic halfspace.

2. The important kinematic relations should be
noted:

2.1. If ¢, and ¢, are greater than ¢, (fast waves), the
radiation of P- and S-wavesisdetermined by theraysin

the liquid within a cone with the apex angle |6] < 6, =
arcsin(c, /¢, ,). One can expect that, for c; , > ¢, only

asmall areabounded by the 8, -rayswill beresponsible
for the excitation of body waves (Fig. 1). This property
can be used for suppressing a certain type of waves by
using the directivity of the source.

2.2. For water-saturated rock, for which c,/c, < 1,
the radiation of S-waves is possible only in a narrow
range of angles 0, and thelongitudinal P-wavesgivethe
main contribution to the total power of the body wave
radiation (Fig. 3).

(iii) The denominator of the first of Eqgs. (4) deter-
mines the normal modes of the liquid layer

sn(y)Jy2 =12 +icos(y)my p? = t2((1 - 212)°
+41°J(1-19)(y*-1%)) = 0.

Solving Eq. (5), it is possible to determine the projec-
tions of the wave vector on the z axis (k) in the
waveguide formed by the boundaries of the liquid
layer. The following limiting cases can be distin-
guished: m — 0 (an acoustically soft boundary, soft
rock) for whichkH=1+m,n=0,1, ...,andm—
(ahard boundary, hard rock) for which k,H = 192 + .
As is seen from Egs. (4), the maximal radiation of P-
and S-waves occurs in the vicinity of the critical fre-
guencies of the waveguide. In the general case, when
0 < m < oo, the critical frequency of the lowest mode
will bewithin c/4H < f < ¢y/2H.

&)

Now we evaluate the efficiency of excitation of seis-
mic waves. The total power is determined by the
expression

1
W= _éRe{IoikV:dsi} , (0)
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where g;, isthe stresstensor, v isthe particle velocity
in a solid in the wave field, and (-)* denotes complex
conjugation.

By using Eqg. (1) withthe conditionk,R, k,R> 1, we
obtain

W = W, +W,,
/2

w, = npcS’J’ ky|$|°R?sinBde, (7
0

w2

W, = npu?IkZupFstjnede,
0

where W, and W, are the powers of compressional and
shear waves, respectively, with the potentials ¢ and @
determined by Egs. (3).

Figures 2a—2c show the dependences of W, and W,
on the parameter k,H. The values of W, and W, are nor-
malized to W, = p,wk,Q*/81t (the acoustic power of a
monopole source in a boundless liquid). The calcula
tions were performed for:

(a) granite with the parameters ¢, = 5000 m/s, ¢, =
2800 m/s, and m= 2.5;

(b) clay with the parameters ¢, = 2000 m/s, ¢, =
1000 m/s, and m= 2; and

(c) water-saturated loam with the parameters ¢, =
1800 m/s, ¢, =200 m/s, and m= 2 [§].

In al cases, we used h/H = 0.5 and the sound veloc-
ity in liquid was assumed to be ¢, = 1500 m/s. The ver-
tical dashed linesin Fig. 2acorrespond to k,H = 172, 1T

The total power W, + W, is less than W, because
part of the radiation energy is transferred by the Ray-
leigh and Stoneley surface waves and, in addition, a
sound propagation occursin theliquid layer. Therefore,
the maximums of the total power are reached near the
critical frequencies of the waveguide. With an increase
in frequency, an increasing number of modesis excited
in the liquid layer, and the values of the radiation max-
imumsin Fig. 2 decrease.

Thus, the proposed scheme of excitation of seismic
waves by a powerful hydroacoustic radiator seems
attractive, because it is possible to achieve a radiation
level comparablewith W, in the case of high coherence.
Since sharp peaksin the frequency dependence of radi-
ated power W, are absent for soft rock with ¢, < ¢, itis
not necessary to adjust the operating frequency. Only
for hard rock, e.g., granite, such an optimization may be
needed. However, in this case, the operating frequency
is determined simply asf = ¢,/4H.

It should be noted that, for moderate values of kyH,
the radiation pattern also does not have any sharp
peaks, and the maximal level of radiation of longitudi-
nal wavesisreached inthedirection @ =0 (Fig. 3). This
property is very important for insonification with the
use of longitudinal waves.
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Fig. 1. Scheme of rays exciting fast seismic waves.
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Fig. 2. Dependence of the power of body waves on the
dimensionless frequency. The thick line corresponds to
compressional waves and the thin line corresponds to shear
waves. Additional comments are in the text.

ESTIMATION OF RADIATION EFFICIENCY.
TEST DATA

The experiments were carried out on the bank of the
Trotsa River (Nizhni Novgorod region, Russia). This
minor forest river has a depth of 4—6 m near the bank
(H = 4.5 m, h = 2 m) where the measurements were
made. A detailed description of the measurements and
the equipment can be found in papers [5, 6]. Figure 4
shows the schematic view of the measurements. The
hydroacoustic transducer used in the experiments had
an acoustic power of W, =400W [1, 2].

It was established [6] that the measured vertical
velocity components are determined mainly by the
reflected body waves (the amplitude of displacements
isinversely proportional to the distance). Thereflecting
horizon was |located at the depth H, = 30 m and did not
have any essential slope. The analysis of the times of
arrival of radiated pulses as a function of distance
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Fig. 3. Directivity of the body wave radiation for the fre-
quency used in the measurements (kyH = 4.25). The param-
eters m, ¢;, and ¢, correspond to the data of Fig. 2c. The
thick line corresponds to the angular distribution of the
compressional wave amplitude and the thin line corre-
spondsto the shear wave. The displacements are normalized
to Up = V/wy where Vj, = kyQ/4TR is the particle velocity in
a boundless liquid in the field of a monopole source with
strength Q.

between the source and the receivers showed that ¢, =
1300-1400 and 18001950 m/s in the upper layer and
at adepth of morethan 30 m, respectively. Theanalysis
by the SASW method [10] with the use of an additional
shock exciter showed that the vel ocity of Rayleigh waves
(measured with agood accuracy) was Vg = 190 m/s. The
value obtained for V; correspondsto ¢, = 200 m/sinthe
upper layer.

Additional hydroacoustical measurements were per-
formed for the determination of the bottom parameters.
It was shown that the first waveguide mode was excited.
Theincrease in pressure near the bottom at a distance of
about 4 m from the source was observed. Thisallowed us
to estimate the angle of total internal reflection 8* =

| I | .I 11l
Positions of the sensors
(the points are spaced at 3 m)

Fig. 4. Schematic view of the measurements at the Trotsa
river. The point P is separated from the radiator by 42 m.
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arcsin(c, /c,) and the velocity of the longitudina wave
propagation in the bottom ¢, = 1700 m/s.

By using the data presented above, we can estimate
the efficiency of radiation. The acoustic power (W) of
the transducer was 400 W at the operating frequency
f = 226 Hz (the consumed €electric power was 700 W
[2]). The volume velocity Q is determined by the
expression

_ 1 2cWo 3
Q=7 | =009 m'ls 8)

The liquid particle velocity (see caption to Fig. 3)

equals
_fQ _ 1/ W
Vd = 2c,R Ry 2mpyc,’ ©)
whereR= ./d* + 4H? isthe distance between the radia-

tor and the receiver and d = |SP| (the thin linein Fig. 4).

Figure 5 shows the dependence of the normal com-
ponent (V,,) of the vibration velocity of the Earth’s sur-
face on the distance. The points correspond to the mea-
sured values of V,,, and the solid line correspondsto the
computed values. The theoretical dependence was con-
structed in the following way:

(1) Theangle of incidence on the boundary (H,,) was
determined as
0 = arctan(d/2H,). (10)

(2) By using the data presented in Fig. 3 with [V
determined by Eq. (9), we calculated the value of V,(0).

(3) This quantity was multiplied by the reflection
coefficient |v|. The reflection coefficient was calculated
for two liquid layers [11] (because of the absence of
reliable data on the velocity of shear wavesin a layer

V, 10° m/s
20+

10%

0.7i L] b
50 100

150 d, m

Fig. 5. Computed and measured amplitudes of the vertical
projection of the velocity of surface vibrations along the
measurement track.
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below the 30-m horizon, it was impossible to make
more accurate calcul ations):

2 . 2
V() = mcosO —A/n"—sin 6,

. 2
mcosO + J/n’—sin“

(1)

where m = p(H, + 0)/p(H, — 0) and n = ¢,(H, —
0)/c,(H, + 0). The quantity v was calculated for m=1
and n = 1350/1850.

(4) The value of |V,(8)v(8)| was multiplied by cos@
to find the normal component of the velocity near the
free surface (V,).

(5) Since the sensors detect al so the waves reflected
from the surface, the value of V,, was doubled. The fac-
tor “2" corresponds to the free boundary provided that
C, < ¢, (¢, = 1350 m/s, ¢, = 200 m/s).

(6) The measurements were performed using a set of
eight sensors connected in phase. Therefore, the value
of V, should be multiplied by

sin[(ifL/c,)sing)]
(TiL/c,)sn®

S(8) = (12)

whereL =10 m, f = 226 Hz, and ¢, = 1350 m/s.

Thus, the solid line in Fig. 5 represents the product
[2V,(B)v(8)S8)cosH.

Asis seen from Fig. 5, agood qualitative agreement
is observed between the calculated and measured data
The relatively wide scatter of experimental data is
caused, on the one hand, by the superposition of multiply
reflected pulses and, on the other hand, by the possible
variations of the layer parameters (z < H, and z> H,)
along the measurement track (a change in the water sat-
uration with increasing distance from the shore and so
on). Thus, thetheoretical model proposed in the previous
section adequately describes the observed magnitudes of
displacements, which alows oneto reliably evaluate the
power of radiation of P-waves. By using the plot shown
in Fig. 2c, we abtain W, = 0.4W, = 160 W.

THE USE OF A SYSTEM OF PHASED
RADIATORS

We used two radiators of the sametype placed at the
same point as in Fig. 4. The positions relative to the
water surface differed in that the radiators were at the
depth H — h = 1.77 m and were separated by 3.7 min
the direction parall€l to the measurement track (Fig. 4).
The receiver of the seismic signal was located at point D
(Fig. 4), at adistance of 120 m from the bank.

The frequency of radiation was f = 226 Hz, and the
pulse duration was T = 44.2 ms (ten periods of the car-
rier frequency). The number of pulses used in the
coherent summation was 50. The phase difference of
the carrier frequency of the radiators was changed at
30° intervals from —180° to +180°. The normalized
coherence function of the received seismic signal and
2002
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Fig. 6. Coherence of radiation. Averaging was made over
50 pulses of radiation. The dashed lines indicate the fre-
quency band corresponding to 90% of the radiation power
(Af=2/T).

the reference signal was more than 99% in the vicinity
of the carrier frequency, which is seen clearly in Fig. 6.
The received signa level as afunction of the delay and
phase difference of radiators is represented in Fig. 7.
The calculations were made as follows. We assumed
that the mutual influence of radiators is compensated
and the field generated by each radiator is described by
Egs. (3). The phase factors exp(ik;R) were brought to
the midpoint of the system of two radiators. The synthe-
sized temporal response was determined as a superpo-
sition of contributions of spectral components with the
amplitudes proportional to expressions (3). Thetransfer
functions of the radiators were also taken into account
in the calculations. The inclusion of the transfer func-
tions made it possible to describe the observed spread-
ing of the radiated pulses and the absence of a sharp
leading edge of the signal. In constructing the synthe-
sized response, we took into account a single reflection
of acompressiona wave from the boundary H, =30 m
(see above). The shear waves, converted waves, and
multiple reflections were not considered. The scheme
of calculations differed from the scheme used in con-
structing Fig. 5 only in the replacement of the factor
S0) by unity, because, in the measurements with
phased radiators, a compact group of receivers was
used.

One can easily see the quditative agreement
between the results of measurements and the numerical
modeling. The maximal level of the received signal
observed in the experiment was reached for the phase
difference equal to +90°. Along with the reflected com-
pressional waves, which were taken into account in
constructing the synthesized response, the shear waves,
converted waves, and multiple reflections can also be
observed. Presumably, the longer duration of the
response in Fig. 7a can be determined by these factors.

Figure 8 shows the radiation patterns of the group
of two sources. The unit level corresponds to the in-
phase radiation in the direction 6 = 0. One can see that,
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Fig. 7. Received signal level asafunction of the propagation delay and the phase difference between the signals supplied to the two

radiators: (a) measurements and (b) calculation.
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Fig. 8. Directivity of radiation for various phase relations between the sources in the group (calculation).

varying the phase difference between the sources, it is
possible to control effectively the directivity of the
radiation.

CONCLUSION

The analysis of the scheme of excitation of seismic
waves by a hydroacoustic radiator is performed. The
scheme is convenient for practical applications. Unlike
the previous results[1], the proposed scheme of excita-
tion makesit possibleto reach high radiation levelsina
wide frequency range. The maximal efficiency of radi-
ation is reached in the vicinity of the critical frequency
of the lowest mode of the liquid layer. This frequency
changes from k,H = 172 (a soft bottom) to k,H = 11 (a

hard bottom) and always can be determined experimen-
tally. For the operating frequency f ~ 100 Hz, the opti-
mal depth of areservoir isfrom 3to 6 m, depending on
the bottom characteristics.

The measured values of the vertical displacements
of the Earth’s surface are in a good agreement with the
results of calculations using the proposed computa
tional model. This conclusion isimportant, because the
experiment was carried out near the bank of areal nat-
ural reservoir with avariable depth, while, inthe model,
aboundlessliquid layer of constant thicknessis consid-
ered. The calculated value of the useful power is about
160 W and may be as high as 400 W in the case of the
optimization of the operating frequency (Fig. 2). For
comparison, we note that the Vibroseis seismic exciter,
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which develops the force of 20 t, radiates approxi-
mately W, = 14 W and W, = 430 W at a frequency of
100 Hz [1]. The hydroacoustic transducer excites
mainly compressional waves (for water-saturated
rock), or compressional and shear waves of approxi-
mately equal powers for hard rock. At present, com-
pressional waves are used in most applications, and the
proposed scheme of excitation is best suited for the
generation of waves of thistype. Owing to the stability
of the radiator operation and the constancy of the bot-
tom parameters, it is possible to use long-term storage
and coherent data processing [6].

The high degree of coherence of the radiation pro-
duced by the sources together with the smplicity of the
electronic control of their excitation makes it possible
to create phased sources on their basis with a desired
directivity of radiation.
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Abstract—~Factorization of tensor integro-differential wave equations of the acoustics of dispersive viscoelas-
tic anisotropic media is performed for the one-dimensional case. The resulting first-order partial differential
equations include integral tensor functional's of the sound velocities of polarized plane wave pulses. The veloc-
ity operators V are expressed in a coordinate-free compact form. They are determined by the kernels of the
integral representations and provide a general description of the kinematics and dynamics of wave packets for
arbitrary propagation directions in anisotropic viscoelastic media. © 2002 MAIK “ Nauka/Interperiodica” .

In monograph [1], Whitham gave some exampl es of
the factorization of several nonlinear partial differential
wave eguations. The factorization reduces the initial
equations to the first-order equations, which can be
solved by the existing methods of characteristics [2].
Various aspects of the factorization approach were also
discussed in [3-6]. For systems of equations, the factor-
ization is complicated because of the necessity to
include the commutations of their matrix coefficients.
The problem of factorization is still more complicated
in the case of integro-differential equations|[7, 8] when
the polarization and dispersion of wave packets are
taken into account. At the moment, the theory of sound
beams and pulses is not sufficiently advanced to sys-
tematically describe their polarization and possible
transformations, especially for spatially bounded plane
and solid sound beams in inhomogeneous anisotropic
complex media[9]. A finite-duration shear disturbance
represented by a set of waves of different frequenciesis
characterized by a polarization-dependent vel ocity and
can, to one or another measure, be transformed to alon-
gitudinal or quasi-longitudinal wave in the presence of
some inhomogeneities (e.g., interfaces) or externa
actions (asin parametric acoustics or el ectroacoustics).
If the phase vel ocity of this disturbance depends on fre-
guency, the medium is dispersive, and the velocity of
the disturbance as a whole will differ from the veloci-
ties of its individual wave components. From the infi-
nite set of wave states, only three states are stable (trire-
fringencein crystal acoustics). These states correspond
to the eigenwaves (isonormal wave types). Any other
polarization types that are alowed by the isotropic
medium will be decomposed into eigenwaves when the
wave is transmitted into the anisotropic medium, even
if the propagation direction n remains intact, with the
exception of some specia directions n (the acoustic

axes). The sets of eigenwaves are characterized by the
spectra of three-dimensional evolution operators (also
called Caushy operators or propagators) for the wave
equations of crystal acoustics.

One of the methods simplifying the solution of wave
equations consists in reducing the latter to first-order
equations (the factorization method) [1], which can be
solved using the known techniques [2]. In the first-
order scalar equations for nondispersive media consid-
ered in [1, 10], the wave velocity appears as the factor
of the spatial derivative. In the case of asystem of equa-
tions, the matrix of the velocities (the velacity tensor)
plays the role of this factor. The tensor dispersion rela-
tions areinherent in acoustic materialsregardless of the
complexity of their properties (such aslinearity, nonlin-
earity, isotropy, anisotropy, and gyrotropy [11-14]).

Below, we consider polarized disturbances with the
wave normals of all their components being parallel to
afixed direction n. We perform the factorization of the
one-dimensional tensor differential wave equation that
describes the behavior of such disturbances in linear
anisotropic viscoelastic media. On the basis of the fac-
torization of tensor wave equations, we propose an
operator description of polarized acoustic packets.
Malus was the first to show that nonpolarized light
packets can become polarized at reflection. Thisfact is
indicative of a limited applicability of the scalar
approach. For acoustics, the importance of this infer-
ence follows from the existence of Brewster's angles
for shear waves [15]. We consider the evolution tensor
solutions, for which the field at the initial point at the
initial moment is assumed to be given. In so doing, we
simultaneoudly take into account the variations of the
wave field in the longitudinal and transverse subspaces
in the process of propagation. Below, we show how the
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factorization method is used to reduce the second-order
tensor wave equation of crystal acoustics of linear
anisotropic viscoelastic media to a first-order integro-
differential equation. This equation involves the sec-

ond-rank velocity tensor V, which is expressed as a
function of the elasticity tensor, the viscosity tensor,
and the wave normal vector n. From our consideration,

it follows that the velocity tensor V issimply amathe-
matical consequence of the Christoffel equations [16].

Consider the factorization of the wave equation of
acoustics of viscoelastic anisotropic media

The equations of motion of an elastic medium have
the form [16]

00;,(r, 1)
0%y

o°uy(r, t
0 (2 ) _
ot

where u(r, t) = (u(r, t)) is the displacement vector of
points of the medium as a function of the radius vector
of the observation point r and time t, g;, is the stress
tensor, and p is the density of the medium. Summation
is performed over repetitive indicesfrom 1 to 3. Below,
we consider anisotropic viscoelastic media with mem-
ory, for which the Hooke law can be written in the inte-
gra form:

Oik = CiumYim * CikimYim
t

CikmYim(r, 1) + Idt'cimm(t —t)yim(r, t'),

where ¢y, is the elagticity tensor characterizing the
instantaneous response of the medium to an external

action, Cium is the integral operator describing the
aftereffect of the medium, C(t — t') is the kernel of
this operator, and y;,, is the strain tensor. Note that, by
virtue of causality, C,,.(t — t') = 0 for negative argu-
mentst — t'. Taking into account that the strain tensor
Vim(r, 1) can be expressed through the displacements
U (r, t) asyi, = (0u, /0%, + 0u,,/0%)/2 and using the sym-
metry of the tensors ¢, and C,,, with respect to the
permutation of the second and fourth indices, we obtain

o%u(r,t) _ . d°u,(r, t)
p 6'[2 — “ikim axkaxl
t (1)

0°u(r,t
+Idt C|klm(t t)%

Let a wave packet propagate in the direction speci-
fied by the unit vector n. Introducing the coordinate { =
nr along this direction and replacing the spatial deriva
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tives d/0x, by n,0/0¢, we represent Eg. (1) in theindex-
freeform

’u(g,b) _
ot?

PUL) . e U
N P +J'dtd>(t t') Y ,(2)

where the second-rank tensors A and @ are determined
according to the formulas
1 1

Nim = ZCimN; - @iy = =CigmniNy- (3)
P P
To factorize the wave equation (2) of the acoustics of
viscoel astic anisotropic media, we represent the vector
field of the displacements of points of the medium
u(, t) in the form of the Fourier expansion

u(Z,t) = %Tj'dmu(l,w)e_i“’t
- ©))
u(Z, w) = Idtu(z,t)e“*“,
and substitute Egs. (4) in Eq. (2):
L wD 2 92u(Z, w)
d W) AN
I we %—w u(¢, w) Py
(5)
Idtcb(t O u(, @) U(&, W) g 5 =
or’ 0

Introducing the tensor ®(w) (the Fourier transform of
the kernel ®(t))

00 [

D(w) = J’dt’(D(t’)ei“’t'E J'dt'qa(t')e”*“' (6)
0

and equating the expression in bracesin Eq. (5) to zero,
we obtain

—wu(l, w) -

°u(l w) _
[A + P (w)] T 0

Then, we have
[—|w+maz}[—iw— A+ CD(u))aJ
xu(¢, w) =[ iw—JA+P(w) J @

[—|w+m ]u(Z w) = 0,

where JA + ®(w) isthesguareroot of the operator A +
d(w) (about taking the root of operators, see, eg.,
[17]). The tensor differential operators appearing in
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square brackets in Egs. (7) are commuting, which
allows us to change from Egs. (7) to the first-order dif-
ferential equationsfor the vector field of displacements

u(l, w):
—iwu(l, w) £ JA +P(w) au(Z w) _ = 0. )

Now, we multiply Eg. (8) by er"*"/(zn), integrate with
respect to wfrom—oo to +o0, and use transformations (4)
to change from the Fourier transform u(, w) to u({, t).
Asaresult, we obtain the first-order tensor integro-dif-
ferential equation in u({, t):

au au_
\/OZ 0, &)
or
a“(z J’dtV(t t)au(“) 0,
(10)
au(Z, t) , ou(g, t—t') _
ot iJ’dtV(t) a7

wherethekernel \V/(t) of theintegral operator V isgiven
by the formula

0

V(t) = I

—oo

e LA + D (). (11

The operator V has the dimension of velocity, and we
will call it the operator of phase velocities of dastic
waves in viscoelastic media. The tensor nature of this
operator follows from the anisotropy of the medium,
and its integral nature is caused by the dispersion of
waves, which is a consegquence of the viscosity of the
medium. Only when the viscosity vanishes, Egs. (10)
become local:

u(d,t) ou(g,t) _
5 + /A 57 = 0.

(12)

From Eg. (6), it follows that the kernel @(t) is
related to the Fourier transform ®(w) by the formula

00

o(t) = %[ [ doe "0 0.

Since ®(t) = O for negative t (due to causality), the ten-
sor function ®(w) hasaregular analytic continuation to
the upper half-plane of the complex plane w [18]. The
poles of the function ®(w) alwaysliein the lower half-
plane of the w plane. The kernel ®(t) appearing in
Eqg. (2) has the meaning of a response function. The
general properties of the response functions, including
those following from the causality requirements, were
discussed in detail in the literature [19].

BARKOVSKY, FURS

Thewave equation of crystal acoustics, Eq. (2), gen-
eralizes the scalar equation

¢tt - V2¢xx = 0!

which is encountered in different fields of physics[1].
Obvious complicationsin Eq. (2) are caused by thevis-
coelasticity of the medium and by the fact that different
components of the displacement vector u are mutually
related even in the boundary conditions, the tensor
nature of Eq. (2) being essentially caused by polariza-
tion of the elastic waves.

Itisobviousthat Eq. (2) cannot be reduced to Eq. (13)
in the case of isotropic nonviscous media as well; i.e.,
it has a tensor (nonscalar) structure even for isotropic
media. We generalize the velocities of elastic waves to
tensor quantities for reasons related to the contents of
the known monographs by Whitham [1] and Lighthill
[20], inwhich the problem on the vel ocities (especially,
the group velocities) of linear and nonlinear waves of
different nature occupies one of the most important
places. The group velocity is used for constructing
mathematical models of nonlinear equations for differ-
ent complicated cases of anisotropic nonlinear disper-
sive media. Whitham (see Ch. 5in monograph [1]) clas-
sified wave systems on the basis of linear, quasi-linear,
and nonlinear first-order equations, as well as systems
of such equations. Thefactorization of Eq. (13) leadsto
the equations

(13)

¢ti_ Vq)x = O,

whose solutions are

¢, = f(x=vt), ¢_

where f and g are arbitrary functions. It is Eq. (14)
rather than Eqg. (13) that forms the basis for construct-
ing nonlinear model equations, the simplest of which
has the form

(14)

= g(x+ vt), (15)

o+ v(9)dy = 0,

where the propagation velocity v(¢) isafunction of the
local disturbance ¢. Equation (16) is called the quasi-
linear equation, because it is nonlinear in ¢, but linear
in the derivatives ¢, and ¢,. A general-form nonlinear
equationinthefunction ¢(x, t) allowsan arbitrary func-
tional relationship between ¢, ¢,, and ¢,. The key to
solving equationslike Eqg. (16) isthe method of charac-
teristicsin the (x, t) plane. Along every characteristic, a
partial differential equation is reduced to an ordinary
differential equation. In certain cases, thisfact offersan
analytical solution; in other cases, the partial differen-
tial equation is reduced to a system of ordinary differ-
ential equationsthat can be solved using the procedures
of step-by-step numerical integration [1].

(16)
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For nonviscous anisotropic elastic media, the evolu-
tion of the vector field of displacements u in space and
time is described by the formulas

U_,_(Z,t) = F(Z_t'\//_\)u0+a
u_(4,t) = G(Z +tJ/A)ug,

which are the solutions to Egs. (12). Here, u,, are the
displacement vectors at the initial point ¢, at the initial
moment t, and the functions F and G are arbitrary func-

tions of the tensor arguments Z — t./A and Z + t./A,
which are linear functions of ¢ and t. Evolution solu-
tions (17) generalize the d’ Alambert solutions (15).
Solutions (17) are the evolution ones, because they
imply that the operator-valued functions F and G are
matrix-type operators (second-rank tensors) acting on
the initial vectors u,,, which are assumed to be given.
Each of solutions (17) corresponds to stable (retaining
their envelope) polarized plane wave packets propagat-
ing along the  axisin either positive or negative direc-
tion.

In what follows, we apply the above factorization
method to the wave equation with an exponential kernel
Cium(t) for aviscoelastic isotropic medium.

In an isotropic medium, the elasticity tensor has the
form [16]

Ciim = (€11 —2C44) 0k Oym + C44( 8O + Oimdii) s

(17)

where 9§, is the Kronecker delta, ¢,; = ¢,;;;, and ¢y, =
Cr33- We assume that the response of the medium is
described by an exponential function. The tensor
Cium(b) issymmetric with respect to permutations of the
indicesi, kand |, mand pairsof indicesik and Im. In the
case under consideration, this tensor has the general
form

_/1
Ciuam(t) = [(Ci—2Ca)e " 8 dim

(818 + BimBia) 10(1),

where t, and t, are the relaxation times and 6(t) is the
Heaviside step function (6(t) = 1 for t > 0 and 6(t) =
for t < 0). To simplify the calculations, we assume that
the relaxation times are equal: t, = t, = t,,. In this case,
the tensors A\ and @(t) given by Egs. (3) take the form

+Cye

A = Za,r,, o(t) = Zb, 1e 8(t).  (18)

Here, a =c,/p,a,= = C4_4/p’ bl = Cll/pa b2 = C44/p’ and
T, and T, are the projective tensors (operators)

2
1, =n0n, 1,=1-nOn=-n"",

wheren [0 n isthe dyad (the direct product of vectors),
n* isthe tensor dual with the vector n [16], and 1isthe
unit tensor. The tensors 1, and 1, satisfy the conditions
=T (19)

2
T, = T4, 7,7, = 1,1, = 0.
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According to relationship (6), the Fourier transform
of the kernel ®(t) is

ib;
Joo+|/t

d(w) = ZT

The function ®(w) has the pole w = —i/t, in the lower
half-plane of the complex w plane.

Using Eg. (11), we determine the kernel V(t) of the
phase velocity integral operator V. In view of proper-
ties (19) of the projective tensors 1, and 1,, the square
root of the tensor A\ + CD(w) is

AT = 31,

j=1

To calculate integral (11), we expand the integrand in
the series

(o+|/tO

ib,

a + :
w+ilt,

_ — (4)"(2n=3)11 by 7"
- A/Ej{l_nzl nl(w+i/ty)" EQ"’J‘JD}

wheren!! =1 x3 x5 x ... xnand (-1)!! = 1. Closing
the integration path by the semicircle of infinite radius
in the lower half-plane of the complex plane wfort>0
and in the upper half-plane for t < 0, we obtain

doe ™™ (- I) -1 —t/t,
2T e '0(t), n=1.
I(w+|/to) M= 1)' ®)
In addition, it is known that
J’olme“‘*’t = 2m(t),

where &(t) is the Dirac delta function. Then, the kernel
V(t) of the phase velocity operator is given by the for-
mula

V(t) = Z[ [6(t)+e(t)em°

g

(=1)""(2n-3)!! Pyt
Z (n-1)!n! EQAD }TJ’

and the factorized equation (9) takes the form

au(Z,t) au(Z t) » —t'ft,
P [W_\ z J’dt
(20)
(=)™ '(2n-3) T Ju(d, t-t)
Z (n—1)!n! EiZJaD Y } 0.
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In the case of an isotropic medium with asmall viscos-
ity (bty/a < 1,] =1, 2), we can neglect al terms of the
series expansion in n in Eqg. (20) except for the first
term. As a result, we obtain the integro-differential
equation

u(Z, 1) au(Z, 1)
ot i[ﬁ\ a7
@1)
s I
PR

For nonviscous media, Egs. (20) and (21) are reduced
to Eq. (12) with tensor A given by Eq. (18).

In Egs. (20) and (21), the projective operatorst, and
T, take into account the variations of the propagating
wavefield in thelongitudinal and transverse subspaces,
the operator 1, can berepresentedast,=¢, e + e, [
e,, Where e, and e, are arbitrary, mutually perpendicu-
lar, unit vectors in the plane of the wave front. In the
case of an anisotropic viscoelastic medium, the phase

velocity operator V is represented as the expansion in
three projective operators of the eigenwaves with aunit
trace (see, e.g., [12]).

In conclusion, we note that modern acoustics brings
into existence the problem of a high-precision descrip-
tion of tensor acoustic fields in space and time, as well
as the determination and quantitative evaluation of the
role of polarization in the focusing, transformation, and
filtering of sound beams. The velocity tensors given by
Egs. (99—<(11) alow one to progress toward the tensor
Fourier acoustics of wave beams in dispersive and vis-
coelastic anisotropic media. The initial scalarization of
the problem on the ultrasonic propagation may lead to
wrong results because of the possible transformations
of longitudinal waves into transverse waves and vice
versa and because of the existence of the Brewster
angles [15]. In the actua propagation conditions, the
beam of nonpolarized shear waves can become polar-
ized, thus acquiring new physical properties that were
neglected at the beginning. This fact and other circum-
stances should stimul ate researchers to use the method
of phase and velocity tensors, which are adirect conse-
guence of the fundamental tensor equations of motion
(Christoffel’s equations).

The factorization of tensor wave equations opens
the way to an extension of mathematical physics by the
introduction of nonlinear tensor equations, which take
into account the fact that a system can have spin
degrees of freedom and generalize the known scalar
equations (such as the Korteweg—de VVries and the Due-
ffing equations). The derivation of the velocity tensors
and their application to some nonlinear dynamic sys-
tems will be the subject of a separate paper.
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Abstract—An active acoustic technigue for monitoring the whales is proposed. The technique allows one
to monitor the whales' crossing of a conventional borderline extending for several tens of kilometersin a
shallow-water area. The potentialities of the technique are demonstrated in the framework of a numerical
experiment by solving the problem of diffraction by model scatterers in an acoustic waveguide. The scat-
terersare selected in the form of soft spheroids with dimensions characteristic of variouskinds of cetaceans.

© 2002 MAIK “ Nauka/Interperiodica” .

The necessity of remotely monitoring the migration
of cetaceans arose in connection with the sharp
decrease in the population of these large marine mam-
mals in recent years (see, e.g., [1]). This problem is
especialy important for shallow-water regions at the
seashelf, wherethe existence of cetaceansisthreatened
by industrial activities. This paper proposes an active
acoustic technique for monitoring cetaceans by way of
monitoring their crossing a certain conventional bor-
derline extending for several tens of kilometersthrough
ashallow-water region. From the point of view of phys-
ical acoustics, such a monitoring implied the detection
of the sound field perturbations caused by the diffrac-
tion of sound waves by the body of an animal that
Crosses a stationary acoustic track between a stationary
sound source and a receiver. To demonstrate the feasi-
bility of this technique, we present the results of a
numerical experiment in the framework of which we
solve the problem of the diffraction by spherical bodies
in an oceanic-type waveguide. The dimensions of these
bodies and their acoustic parameters (the sound veloc-
ity and the density) are close to the dimensions and
parameters of various species of cetaceans [2, 3]. We
note that the methods of solving the diffraction prob-
lems in a waveguide are well known (see, eg., [4]).
However, the existing results refer to perfectly rigid
bodies of revolution or opaque screens, whereas in this
paper, we consider a soft spheroid with the parameters
close to the parameters of the medium in the
waveguide (the seawater).

The scheme of the numerical experiment is shown
inFig. 1. Itisassumed that a point source of sound with
theradiation power W, = 500 W islocated at the bottom
of awaveguide with the constant depth H = 40 m, den-

sity p = 1 g/cm?, and sound velocity ¢ = 1480 m/s. The
source emits a continuous tone signal at the frequency
f = 300 Hz. The reception is performed by a vertical
chain of three receivers positioned at adistance of 10 km
from the source. Thereceiver depthsare 5, 20, and 40 m.
Thewaveguideis bounded from above by afree surface
and from below, by an absorbing liquid bottom. The
bottom parameters are as follows:. the sound velocity
¢, = 1780 m/s; the density p, = 1.8 g/cm?; and the wave

number k, = Z(T:[—f(l +i % ), wherea =0.015. The sound

1
field perturbations AP produced by a soft spheroid
crossing a stationary acoustic track at various angles ¥
were simulated. The intersection point was located in
the middle between the sound source and the receiver.
[We note that, in this case, the perturbations of the
sound field are on the average minimal, and they
increase when the intersection point moves closer to the
source or to the receiver (for more details see[5]).] The

Fig. 1. Scheme of the numerical experiment. Letters E, R,
and S indicate the positions of the source, the receiver, and
the scatterer, respectively.
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spheroid dimensions and its acoustic parameters were
selected as follows:

(@ thelargeaxisL =25 mand thesmall axisD =3 m
[typical dimensions of blue whales (Balaenoptera mus-
culus)];

(b) L =10 mand D = 3 m [gray whales (Eschrich-
tius) and small rorquals (B. acuto-rostrata)];

() L=5mand D = 1.2 m [white and killer whales
(Delphinapterus leucas and Orcinus orca)].

The sound velocity in a spheroid is ¢, = 1540 m/s,
the spheroid density isps = 1.05 g/cn’, and the submer-
siondepthisz,=20m.

A mode description of the acoustic field was used to
calculate the perturbations in a model waveguide. In
this case, the sound pressure P, produced at the recep-
tion point with the coordinates (r, 2) in the cylindrical
coordinate system by a sound source located at the
point (0, Z,) can be written in the form

Py(r, 2)

exp (i Gl ) e
exp(—ynr/2).
A Ol

Here, Y,(2) and &,,, arethe eigenfunctions and eigen-
values of the Sturm—Liouville boundary-value problem

.TU

i
=G+ iV/2), T = I, A= JpcW,e *, and W, is the
source power. In the presence of a scattering body, the
complex amplitude of the sound field P at the reception
point was represented as asum of the direct P, and scat-
tered P fields: P = P, + Ps. The sound field perturba-
tions were calculated by the formula

AP = |P| —|Py. 2)

To determine the scattered field, we used the approach
[5, 6] based on the representation of the scattering
matrix of the waveguide modes with the help of the
scattering amplitude of the body in a free space:

- AZ qu(ZO)LIJm( )

Py(r,2) = A&Z Si W m(Zo) Win(Zs) W, (2)
W, m

% expli(gnrs+ qu|r _rs|)] exp|: Ymlst y“|l' —r5|i|.
/\/qmrsqu|r - rs| 2

Here, (r, z) are the coordinates of the scatterer posi-
tion, rs=rg, and §,, is the scattering matrix

3)

Sim = 4 ana F(kp, ky) + ana,F(kq, k)
+ ey F (Ko k) + ey F (ke k)1,

- J[un@ = ] o, fie=dh,

o,
k is the wave number, F(k,,, k3) is the scattering

“)

where a;,
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amplitude of the body, and ki, and k;, are the wave

vectors of the incident with the index m and scattered
with theindex p waves corresponding to the waveguide
modes.

The scattering amplitude is expressed through the
angles 6 and ¢ in a spherical coordinate system con-
nected with the scatterer, and these angles determine
the directions of the wave vectors of the incident and

scattered plane waves, F(kj,, ki) = F(8;,, ¢r, 6

¢i ). Inthe case of the selected geometry of the numer-
ical experiment (see Fig. 1), these angles are

f g - [PmCOS(Y + Bu)
6, =606, = arccos K 0
b rf.os(Y —B.)
B, =6, = arccosD—k i
- 5)
£ ] m [
o = MFarctan/———-,
¢ oSy + B

N o
0% = n¥ arcctanE—~—1

g Cg,sin(y - B
where 3, , arethe azimuth angles determining the posi-
tion of a scatterer with respect to the source and the
receiver (Fig. 1). According to the formulas [7] for the

selected model scatterer (asoft spheroid), the scattering
amplitude can be written in the form

2SS €nSulx, c0s83)S(x, 0os6))

n=0l=n
M R(nP(x )R (Xs 9) = R’ (X, 9) R’ (X 9)
S RY (e DRV, 9) - RY (X, 9)RP(Xs 9) (6)

F(km k) =

x cos[N(¢m—0,)],
1, =0 .
where g, = % n 0 is the Neumann symbol; S,

R, and R are the angular and radial prolate sphe-

roidal functions of the first and third kinds (the primes
marking the symbols of the radial functions means the

%JLZ—Dz (ks =

2mfic), my = podp, X = (K2)AJL*—D?; and 9 =

L//L*~D?. The asymptotic formulas for spheroidal
functions and the technique for calculating them
numerically are givenin [8].

The results of the numerical experiment for the
velocity of a model scatterer v, = 1 m/s are shown in
Fig. 2. The moment t = O corresponds to the situation
when a scatterer crosses the stationary acoustic track.

derivatives with respect to 3); Xs =
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As one can see from the figures, the motion of a soft
spheroid causes small characteristic perturbations of
the acoustic field at the reception point. It is natural that
the perturbation magnitude depends on the scatterer
size. However this dependence is complex because of
interference. We note that, in the genera case, these
perturbations are asymmetric with respect to the
moment t = 0 when the stationary track is crossed at an
arbitrary angle. The symmetry takes place when the
track is crossed at a right angle or when a scatterer
crossesthetrack exactly in the middle, while moving at
an arbitrary angle, and the perturbations are detected at
the same depth as the depth of the sound source (z= z,).
(See[9] for more details.)

In the actual conditions of a shallow sea, these per-
turbations can be concealed because of their smallness
by the sound field fluctuations due to the ambient noise.
Indeed, the inclusion of this noise with atypical radia-
tion level of J80 dB (in a frequency band of 1 Hz) in
the described numerical experiment makes these per-
turbations visualy indistinguishable. (See the middle
seriesof plotsin Fig. 2.) In such asituation, it is neces-
sary to use specia methods of signal processing to
detect the fact of crossing the stationary track. An
example of the application of one such method [10],
which is based on matched filtering of the indicated
perturbations with subsequent storage for all receivers
used in the numerical experiment, is given in Fig. 2. It
is necessary to note that we used matched quasi-opti-
mal filters for signals with an unknown initial phase.
We also used the calculated perturbations shown in
Fig. 2 (the upper seriesof plots) asreferencesignals. As
one can see from Fig. 2 (the lower series of plots), the
utilization of special methods of signal processing pro-
vides an opportunity to detect the moment of crossing
the stationary track even by the smallest cetaceans
(white and killer whales).

In conclusion, we note that the results obtained in
this study demonstrate a possibility for designing the
acoustic monitoring systems for various-size cetaceans
with the use of relatively low-intensity and, therefore,
ecologically safe sound sources. This is essential,
because the acoustic characteristics of the bodies of
these animals are close to the parameters of seawater
and, therefore, their acoustic scattering cross-section is
small. On the other hand, the required small radiation
intensity provides an opportunity to design autono-
mous, long-lived, and relatively cheap sourses. Cer-
tainly, the possibility of detecting the signals scattered
by cetaceans depends not only on the level of the ambi-
ent sea noise but also on the fluctuations of the “direct”
signal detected by the receiver. These fluctuations are
caused by the hydrodynamic variability of the water

BEL’KOVICH et al.

medium (internal and surface waves). However, these
fluctuations, aswell asthe scattered signals, are directly
proportional to the amplitude of emitted signals. The
possibility of detecting the scattered signals against
their background does not depend on the radiation
intensity. We should also note that the hydrodynamic
variability of the medium and, first of al, the field of
internal waves have a considerable spatial anisotropy
and pronounced geographic features, i.e., it depends on
the vertical profile of the medium density, the bottom
relief, and the amplitude of the tidal wave. [For exam-
ple, in the absence of horizontal stratification, internal
waves are completely absent (just this case was ana-
lyzed in the numerical experiment).] Inthisconnection,
adetailed analysis of the prospects of an acoustic mon-
itoring in aspecific region of ashallow seamust be con-
ducted with allowance for the possible fluctuations of
the “direct” signal and the acoustic noise, and both
interfering factorsincluded in the analysis must be typ-
ical of thisregion.
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Abstract—The structure of the displacements in a Rayleigh-type wave that propagates in an isotropic solid
covered with aliquid layer with exponentially varying density and sound velocity isinvestigated. © 2002 MAIK

“ Nauka/Interperiodica” .

An inhomogeneous layer on the surface of asolid is
widely encountered in practice. The layers formed on
the surface of a metal in the processes of rolling and
cold-work hardening are inhomogeneous [1]. On the
surface of a solid exposed to the vapor of its solvent, a
layer with inhomogeneous physical properties is
formed due to sorption processes and dissolution [2].
Similar processes take placein gas sensors whose sens-
ing element is a sorbent film deposited on a solid sub-
strate [3]. Layers with vertical gradients of sound
velocity exist in sea and ocean waters. In this case, the
dtratification of the sound velocity essentially affects
the structure of the sound field generated by a point
source [4-7], as well as the propagation of normal
waves in the underwater sound channel [8-11]. In all
cases, the inhomogeneity of alayer on the surface of a
solid affects the characteristics of surface acoustic
waves (SAW). This provides the possibility of obtain-
ing the information on the gradients of the layer param-
eters from acoustic measurements [12].

However, in determining the parameters of a strati-
fied layer, it is not sufficient to measure the phase and
group velocities of SAW, because these quantities
depend on the layer thickness, the laws governing the
variations of the layer parameters (which, asarule, are
unknown), and the values of these parameters at one of
the layer boundaries. In the smplest case of a liquid
layer with a linear distribution of its parameters, it is
necessary to determine five quantities: the thickness,
the density, and the sound velocity at the layer bound-
ary and two coefficients characterizing the stratification
of these parameters. In this connection, for an unambig-
uous determination of the structure of the inhomoge-
neous layer, it is necessary either to measure the SAW
velocities at several frequencies or to investigate the
distribution of the displacement amplitudesin the layer
by an optical probe[13]; then, solving the inverse prob-
lem, one can determine the layer parameters and their
gradients. Therefore, the problem of the effect of the

layer inhomogeneity on the particle displacements in
the layer is urgent. The data on the distribution of the
displacement amplitudes in depth are also needed, e.g.,
for calculating the integral of the Rayleigh wave energy
flux over depth and for solving the problems on the
excitation of Rayleigh and Stoneley—Scholte waves at
the interface or on the Rayleigh wave scattering by sur-
face and subsurface defects.

The problem on the distribution of the particle dis-
placements in a SAW field for the case of a homoge-
neous layer overlying an elastic halfspaceis considered
in many papers, the main results of which are general-
ized in monographs [14, 15]. It is shown that the pres-
enceof asolid or liquid layer on the surface of an elastic
halfspace leads to changes in the phase velocity and in
the distribution of the amplitudes of particle displace-
ments. For the case of a homogeneous liquid layer, the
dispersion equation and the expressions for the dis-
placement componentsin aRayleigh-type wave (RTW)
aregivenin[14]. Itisshown that the displacement com-
ponents vary in the layer by the cosine law, whereas, in
the halfspace, they vary in the same way as in a Ray-
leigh wave, but the depth of the wave localization in the
halfspace decreases with an increase in the layer thick-
ness. The profiles of the amplitudes of the displacement
componentsin ahomogeneous solid layer and in ahalf-
space are presented in [15] for SAW with vertical and
horizontal polarizations, for layers of variousthickness.
The case of astratified layer can be theoretically inves-
tigated only for some specific laws of the parameter dis-
tribution, for which the wave equation of the inhomo-
geneous medium has analytical solutions[16]. Thedis-
persion equations of SAW for some specific laws of the
layer parameter variations are obtained in papers [12,
17, 18], and the effect of the layer inhomogeneity on the
distribution of the particle displacements was not con-
sidered. The objective of this paper isto study the effect
of the stratification of the layer parameters on the dis-
tribution of the displacement componentsin RTW.

1063-7710/02/4802-0137$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Halfspace with alayer.

A stratified layer is supposed to be liquid with the
density and sound velocity varying with depth accord-
ing to the laws

P = poexp(az), c = cexp(P2), (1

and the halfspace is supposed to be isotropic (Fig. 1).
Let an RTW propagate in the positive direction along
the x axis, the liquid layer occupying the domain —h <
z < 0, and the halfspace occupying the domain z > 0.
Then, in the case of a harmonic dependence on x and t
for o # 0 and 3 # 0, the expression for the sound pres-
surein the liquid has the form [18]

P = [C1Jy(Y) + CoNy(Y)]
x exp(—az/2) expi(wt —kx),

where J,(Y) and N,(Y) are the Bessel and Neumann
functions, C, and C, are arbitrary constants, and

2

kO w
Y = — exp(—f32), ==, 3

[ p(-B2), kK c 3)
The corresponding dispersion equation [ 18] relating the
wave number k of the RTW to the layer thickness h can

be written as
4

APgs— (K2 + D)7 = pgg(, )
where
D = %+VB
BRNW(YDIa (V) = (YN, s (V) O
B 3N, (YD) = 3, (YN, (Vo)
k. _ s a
Yo—lﬁl, Y, = Yoexp(Bh), v 4[3 , (6)

q= K-k, s= /K -k, p and p, are the densities of
the halfspace material and the liquid at the liquid-half-
space boundary, and k, and k; are the wave numbers of

longitudinal and shear waves in the isotropic medium.
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The horizontal and vertical displacement compo-
nents in the liquid are determined by the expressions
[19]

1 0P _ 1 0P
R and W, = o0z’ (7
respectively. Substituting Eq. (2) into Egs. (7) and tak-
ing into account the relations between the arbitrary con-
stants from [18], we perform some transformations to
obtain

W, =

_ pkakiDy
U +SHD ®)
x exp(—az/2)expi(wt —kx—T102),

AL

W, = (k2+ Dexp(—az/2)exp|(oot kx), (9)

where
Nv(Yl) JV(Y) - Jv(Yl) Nv(Y)
Jv(YO) Nv(Yl) - ‘Jv(Yl) NV(YO) ’

D, = E%-l-B\HDl

D, = (10)

(11)
Ju (Y1) Ny 1 (Y) = Ny (Y1) Jy_(Y)

AN AT AESN ALNCAR

These expressions cannot be analyzed in analytical
form. Therefore, their analysis was performed on the
basis of the numerical calculations with the use of the
following relations between the parameters of the solid

Ki K qlal _
andthelayer: £ =25, 2t —1/3; 2 = 127; an
¥ Po Ko % I<o
Bl _

Ko
change in the layer parameters by about a factor of
three at the distance A, (A, is the wavelength in the lig-
uid layer at the halfspace boundary). The dependences
of the amplitudes of the vertical W,, and horizontal W,
displacement componentsin thelayer and the halfspace
on the zcoordinate for various values of the layer thick-
ness were calculated. For the layer, we used the ampli-
tudes given by Egs. (8) and (9) and for the halfspace,
therelations derived in [14]

Uy = Ak[exp(—qz)

= 1/6. The chosen value of a corresponds to a

gs exp(—sz)} (12)
S

2

22k SZexp(—sz)}, (13)

Uy = —ACI[GXIO(—OIZ)—

where the wave number Kk is determined from the dis-
persion equation (4).

For the comparison between the amplitudes of dis-
placementswith and without the layer, weintroduced the

relative amplitudes: Wyo = W,o/U,or, Uxo = U,o/Ur,

ACOUSTICAL PHYSICS Vol. 48 No.2 2002
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Fig. 2. Dependences of the relative amplitudesin the layer, W, , and in the halfspace, U,q, on the relative coordinate z/A, for var-
ious values of the layer thickness and for the cases (1, 4) a =0, (2,5) a >0, and (3, 6) a < 0.

W, = Wy/Ur and U, = Uy/U g, Where U, are
displacement amplitudes (12) and (13) in the Rayleigh
waveintheplanez=0at h=0and k = ky (kg isthe solu-
tion to Eq. (4) with the right-hand side equal to zero).
The vertical coordinate and the layer thickness were
also expressed in relative units: z/A, and h/A,,. For com-
parison, we plotted the displacement profiles for the
case of ahomogeneous layer (a = 3 = 0) with the den-
sity p, and the sound velocity c,. The corresponding
expressions for the displacement amplitudes take the
form [14]

W, = Ak dkrsnloz )

g(k” +s”)cos(gh) (14)
W,, = Aktqk;cosz[g(z+ h)],

(k”+ s%) cos(gh)

whereg = /K5 — K.

Figure 2 shows the dependences of the relative
amplitudes of the vertical displacement componentsin
the layer W, and in the halfspace U, on the relative
coordinate z/A, for different values of the relative layer
thickness h/A,. The profiles of the displacement ampli-
No. 2

ACOUSTICAL PHYSICS Vol. 48 2002

tudes for greater layer thickness are not presented,
because, in this case, according to Egs. (1), the param-
eters of theliquid at the free layer boundary, reach val-
ues that are noncharacteristic for the liquid.

It is seen that, in the first normal wave (curves 1-3),

W, increases for a > 0 (curve 2), as compared to the
homogeneous layer (curve 1), and decreases for a <0
(curve 3). This behavior of the amplitudesis caused by
a change in the wave resistance (pc) of the layer: for
a > 0, the wave resistance decreases in the direction of
the free boundary of the layer, which leads to an
increase in the amplitude, as compared to a homoge-
neous layer. In the case of a <0, an increase in pc and
a decrease in the amplitude takes place. Within the
layer, the difference in the run of curves /-3 increases
as the free layer boundary is approached and reaches

the maximal value W,o (-h) at this boundary. The com-
parison of Figs. 2a—2d shows that, with the increase in

the layer thickness, the value of W (~h) increases, as
compared to a homogeneous layer for a > 0 and
decreasesfor a <0, and further remains constant (Fig. 3).
From Figs. 2a-2d, it is also seen that, for a > 0, the
wave energy concentrates near the free boundary of the

layer: at h/A, = 0.5 (Fig. 2d, curve 2), W, is close to
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Fig. 3. Dependence of the relative amplitude W,q (<h) at
the freelayer boundary on the relative thickness h/A for the
cases()a=0,(2)a>0,and (3) a <0.

zerointheregion 0.15 < z/A, < 0 and then rises sharply.
Thistestifiesto the fact that the inhomogeneity leadsto
aredistribution of the wave energy within the layer.

For h/A, = 0.3, a second normal wave exists. Its dis-
placement amplitudes Wy, are also shownin Figs. 2b—2d

(a)

0

=
(=)
JS!
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for a =0 (curve4), a >0 (curve ), and a <0 (curve6).
Near the point of origination of this wave (Fig. 2b) in
the case a > 0, the displacement amplitudesin the layer
are smaller than in the first normal wave, whereas, in
half-space, they are greater. This character of displace-
ments in the second normal wave results from the fact
that the phase velocity of this wave lies between the
velocities of the shear and Rayleigh wavesin theelastic
halfspace; i.e., the waveis close to a bulk wave and has
a greater localization depth in the halfspace. Since, in
this case, the effect of the layer on the propagation of
SAW is weak, the inhomogeneity affects the value of

W, to a lesser extent (the difference in the run of
curves4—6 is smaller than that of curves 1-3).

Asis seen from Fig. 4, the horizontal displacement
components W,, and U,, vary, depending on the layer
thickness and the sign of the parameter gradients, in the
same way as the corresponding vertical components.
The main difference is the zero value of W, at the free
layer boundary and its discontinuity at the layer—halfs-
pace boundary, which is determined by the boundary
conditions and occurs for both a homogeneous and an
inhomogeneous layer.

0.4 z/\,

Fig. 4. Dependences of the relative amplitudes in the layer, W, , and in the halfspace, U,q, on the relative coordinate z/A for
various values of the layer thicknessfor thecases (1,4) a =0, (2,5) a >0, and (3, 6) a <O0.
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As indicated by Figs. 2 and 4, the amplitudes U

and U, of the displacement components in the half-
space vary insignificantly due to the stratification of the
layer. This results from the fact that the parameters of
the liquid at the halfspace boundary have the same val-
ues in al cases considered above. The corresponding
changes grow with the increase in the layer thickness
and reach 20% for h/A, = 0.5 in the plane z = 0. Conse-
guently, the inhomogeneity of the layer leadsto aredis-
tribution of energy between the layer and the substrate.
For a > 0, the displacement components U, and U,
decrease, as compared to a homogeneous layer (the
energy is transferred from the substrate to the layer),
and for a <0, these componentsincrease (the energy is
transferred from the layer to the substrate). The layer
inhomogeneity practically does not affect the depth of
the wave penetration into the substrate.

Thus, theinhomogeneity of alayer on the surface of
asolid essentially affects the amplitudes of the compo-
nents of particle displacementsin an RTW. A redistri-
bution of the wave energy takes place between the layer
and the substrate, as well as within the layer, and this
redistribution depends on the layer thickness and the
magnitude and sign of the gradients of the layer param-
eters. By changing the layer thickness and the degree of
its inhomogeneity, it is possible to control the velocity
and the structure of surface waves. This result can find
application in acoustoel ectronic signal processors.
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Abstract—Experimental data on the long-range propagation of explosion-generated sound signals in the shal-
low-water northern part of the Sea of Okhotsk are analyzed. The propagation conditionsin this region are char-
acterized by a fully-developed underwater sound channel that captures the rays crossing the channel axis at
angles lower than 3°. The experimental datareveal a small increase in the duration of the sound signal in pro-
portion to the range with the proportionality factor lower than 0.00025 s’km. The frequency dependence of
attenuation exhibits a pronounced minimum whose position on the frequency axis is close to the critical fre-
guency of thefirst “water” mode (about 160 Hz). Theincreasein the attenuation coefficient at lower frequencies
is confirmed by the field calculations performed with the wave-field computer code and is explained by the
sound energy loss in the bottom sediments. At frequencies higher than 200 Hz, as in the Baltic Sea, the most
probabl e reason for the attenuation to exceed the absorption in seawater is sound scattering by internal waves.

© 2002 MAIK “ Nauka/lnterperiodica” .

For years, the researchers of the Acoustics Institute
have repeatedly studied long-range propagation of
explosion-generated sound signals in the underwater
sound channel (USC) of the Sea of Okhotsk. The exper-
imentswere carried out in both deep-water [1] and shal-
low-water (125-155 m) parts of the sea.

For the Sea of Okhotsk, asignificant spatial variabil-
ity of the oceanographic parametersis characteristic[2,
3]. The northern and north western parts of the sea are
represented by shallow-water areas. The central part
(about 70% of the total sea area) has typical depths of
800-1200 m. On the south, the Kuril Hollow is situated
with sea depths of 3300-3400 m.

The bottom sediments of the Sea of Okhotsk are of a
terrigenic nature. For the region of the experiment in the
northern shallow-water part of the sea, aeurite diatoma-
ceous clays and diatomaceous silts are typical [4].

The waters of the Sea of Okhotsk undergo a
cyclonic circulation. Through the northern straits of the
Kurile Island system, warm surface waters of the
Pacific Ocean arrive, changing their properties as they
pass into the interior areas of the sea. Through the
southern straits, cold waters move from the sea to the
ocean. The Tsushima current introduces warm salt
waters through the La Perouse Strait.

Several stratification types of water masses can be
distinguished in the northern part of the Sea of
Okhotsk. The surface waters (the 30—60-m layer) are
cooled in winter down to the temperature of freezing.
In summer, the near-surface layer isheated up to 6-10°C,
and, under the mixed layer, an undersurface water
mass forms. In its core, the minimal temperature

reaches —1.7 to —1.5°C. Near the bottom (at a sea
depth of about 150 m), the temperature also remains
negative (1.4 to -1.6°C).

The experimental studies of long-range sound prop-
agation were carried out in the shallow-water region of
the Sea of Okhotsk in summertime (August). The prop-
agation path was 335 km in length, with the sea depth
changing from 125 to 155 m along the path. Prior to
experimenting, six sets of hydrological measurements
were performed at different distances from the receiv-
ing vessel. By continuously lowering and lifting the
Istok-3 device, the following water parameters were
measured every 1.5 s: the temperature, the electric con-
ductivity (salinity), and the hydrostatic pressure. For
each set of data, the values of these parameters were
recalculated to the sound speeds according to the for-
mula of Wilson [5].

Figure 1 shows the vertical sound speed profiles
measured at both ends and at the middle of the path. At
some fractions of the path, multilayer water structures
were observed with different temperaturesinindividual
layers. This phenomenon leads to “tongs’ in the c(2)
profiles with the tong thickness |ess than 5-8 m and the
differences in the sound speeds up to 0.4-0.6 m/s. The
depth of the USC axis changed from 30 to 60 m along
the path. The sound speed varied dightly at the axis
depth. The difference in the sound speeds near the bot-
tom and at the channel axis was about 1.5 m/s, and the
corresponding difference between the surface and the
axis reached 55 m/s. In the discontinuity layer, the
sound speed gradient changed from 0.5to 2 1/s. Below
the USC axis (at depths greater than 50 m), the gradient
was 0.02 /s, which is close to the hydrostatic value. To
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make the profile c(z) more evident, we choose different
scales of the abscissain Fig. 1 for undersurface waters
and those at horizons deeper than 25-30 m.

Toillustrate the variability of the hydrological param-
eters dong the path at the depths 30-125 m (within the
100-m layer under the temperature discontinuity layer),
we present the field of sound speeds (Fig. 2) calculated
from the data of measurements. The step in the sound
speed values is 0.2 m/s between the adjacent isospeed
curves. The numbers near the curvesindicate the excess
of the sound speed above 1440 m/s. In this picture (at
the bottom), the data obtained from echo-sounding per-
formed during the experimentation are presented (the
scales in distance and depth are the same as at the top
of the picture). Up to a distance of 150-200 km along
the path, amonotone bottom rise took place, and the sea
depth decreased from 150 to 125 m. At longer ranges,
the depth rather sharply increased to 155 m (in aregion
of about 50 kmin length) and then decreased to 138 m.

Two vessels were used in the experiment. The
receiving vessel drifted approximately 95 nautic miles
south of Magadan. The transmitting vessel took a head-
ing of 270° (in the western direction relative to the
reception point) at 10-11 knots, along the 58° latitude.
From the transmitting vessel, small explosive charges
were dropped and exploded at adepth of 50 m (near the
USC axis) with the use of pressure-sensitive detonators.
A total of 50 charges were exploded. The time interval
between successive explosions varied depending on the
distance. At points nearest to the receiver, it changed
from 2to 10 min; at distances longer than 50 km, it was
equal to 30 min. At themoment of each chargedrop, the
distance between the vessels was determined from the
propagation time of the acoustic signal and then was
refined according to observations periodically per-
formed with the use of the satellite navigation systems
of both vessels. The explosion-generated signals were
received by omnidirectional hydrophones at depths 10,
50, and 120 m.

During experimenting, there was fog, swell of
Beoufort 3, and wind of less than 6 m/s (at about 40°).

The explosion-generated signals that were received
within the frequency band 10-20 Hz to 1-2 kHz from
the distance 10-20 km or more were single-ray arrivals
and had the shape of two short pulses of lessthan 1-ms
duration. These pulses formed by the shock wave and
the first gas-bubble oscillation were equal in their val-
ues and had the same signs. The time separation of the
pulses corresponds to the period of the first bubble
oscillation (T = 45 msin our case).

In the case of a multiray reception, each ray in the
time structure of the explosion-generated signal is rep-
resented by itsown pair of pulses. The time structure of
the sound field has a twofold nature: each pulse of the
shock wave isfollowed by that of the gas-bubble oscil-
lation. The first and second halves of the received mul-
tiray signal areidentical. To confirm thisfact, the cross-
correlation function between the first and second parts
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Fig. 1. Vertical profiles of the sound speed c(z). Data of
measurements supporting the acoustic experiment: (1) near
the receiving vessel, (2) at a distance of 155 km, and (3) at
adistance of 320 km.

of the explosion-generated signal can be used: the max-
imal value of thisfunction is as high as 0.95-0.98.

At shorter distances, time delays between the sig-
nals separately arriving at the receiver are not longer
than the period of the first oscillation (45 ms). At the
distances 190200 km from the source, they have the
same order of magnitude as this period. Thus, for the
tempora elongation of the signal in the region at hand,
the proportionality factor does not exceed 0.00025 s'km,
which isin a good agreement with the calculation per-
formed with the simplified formulas [6] obtained for a
bilinear c(2) profile.

On the basis of the experimental data analyzed
within a frequency band of 40-1000 Hz, the sound
attenuation coefficients were estimated. These coeffi-
cients were determined by comparing the experimental
decay of the sound field with the cylindrical law of geo-
metrical spread. As a characteristic that is equivalent to
the energy of the explosion-generated signal within the
frequency band Af, the following value was used:

T

E = jp?(t)dt,
0

where T is the duration of the explosion-generated sig-
nal and ps(t) isthe signal sound pressure normalized to
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the frequency band Af. To obtain the power spectrum of
the explosion-generated signal, a computer code was
used that was earlier developed to analyze the experi-
mental decays of the sound field and to estimate the
attenuation coefficients at individual frequencies.

At the reception depth of 20 m, the signals suffi-
ciently exceeded the noise level at distances shorter
than 17 km. For these signals, the loss die to bottom
reflections is significant. At the two other reception
horizons, all recorded signals are above the noise level
within the frequency band 40-1000 Hz.

As a result of processing the signals received at
depths of 50 and 120 m, the values of the attenuation
coefficients were obtained (Fig. 3). There is nearly no
difference in these values for depths of 50 and 120 m.
The values obtained for the attenuation coefficients are
much higher than the sound absorption coefficients in
the sea water, which are presented in [1] for the Sea of
Okhotsk.

At afrequency of about 200 Hz, a pronounced min-
imum can be noticed in the frequency dependence of
attenuation. Earlier, in analyzing the data of similar
studies [7] in the Baltic Sea, such a minimum was
attributed to the critical frequency of the “water”
modes. This conclusion was attained, because the Bal-
tic-Sea studies were carried out in spring and summer
when the conditionsin the propagation channel consid-
erably varied: the critical frequency of the first mode
varied by afactor of two to three and the position of the
minimum in the frequency dependence of attenuation
also changed.

For the experiment in the Sea of Okhotsk, the calcu-
lated critical frequency of the first water mode is about
160 Hz, which does not significantly differ fromthefre-
guency of the attenuation minimum. To verify the con-
cept of the relation between the attenuation minimum
and the critical frequency of the water mode, we carried
out a set of calculations with the use of the computer
code by Avilov [8], which accounts for changes in the
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propagation conditions along the path, namely: the
changesin the sound speed profiles measured at differ-
ent parts of the path and the data of echo-sounding. The
calculations were performed for the frequency band
40-800 Hz, with the noise-like signals in 1/3-octave
bands. A relatively simple model of the bottom was
used: aliquid layer (with a sound speed of 1600 m/s, a
loss factor of 0.015, and adensity of 1.8 g/cm?) overly-
ing aliquid halfspace (2600 m/s, 0.001, and 4.0 g/cm?,
respectively). A good quantitative agreement was
obtai ned between the calcul ated and observed low-fre-
guency attenuation coefficients.

Figure 4 showstheresults of calculationsfor thefre-
guencies 50, 100, 200, and 400 Hz. At frequencies
higher than 300-500 Hz, the calculated decays of the
sound field (without the absorption in the water) follow
the cylindrical law of the geometrical spread for thedis-
tances from the source, which exceed 50 km: the devi-
ations of the average decay curves from the cylindrical
law are no higher than 0.5 dB for the entire path. At fre-
guencies lower than 300-500 Hz, the difference
between the cal culated and cylindrical decaysincreases
as the frequency decreases. the additional loss caused
by sound absorption in the bottom sediments becomes
higher for lower frequencies and reaches 0.014 dB/km
at 50 Hz. The latter value agrees well with the experi-
mental data. It isworth mentioning that the objective of
the cal culations was not to devel op a bottom model for
the specific region. Instead, the calculations were per-
formed to estimate the contribution of the bottom sedi-
ments to the sound attenuation at frequencies lower
than the critical ones and to verify the existence of the
proposed mechanism responsible for the formation of
the minimum in the frequency dependence of attenua-
tion.

At frequencies higher than 200 Hz, the frequency
dependence of the sound attenuation in the shallow-
water part of the Sea of Okhots can be expressed in the
form:

B =0.205f 113 dB/km,

where the frequency is specified in kilohertz. At such
frequencies, the attenuation coefficients in the Sea of
Okhotsk are, by a factor of 3-5, higher than those
obtained in the Baltic Sea. The shapes of the decay
curves are also somewhat different for these seas. In
analyzing the experimental data of the Baltic Sea[7], a
conclusion was made that the sound scattering by inter-
nal waves was the most probable factor responsible for
the observed high attenuation in that region. The analy-
sisincluded the data of theinternal wave observationin
the studies of sound attenuation in the Baltic Sea, as
well as the results of modeling the off-channel sound
scattering by internal waves.

During the experiments in the Sea of Okhotsk, no
observations of internal waves were carried out. As far
asthe author knows, only publication [9] exists on mea-
suring internal waves in a coastal zone of the Sea of
Okhotsk. Specifically, the published datareferred to the
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for adepth of 120 m, (2 2 2 A) the calculation with Avilov's
computer code, and (__ _ _ _ ) thefrequency dependence of

attenuation obtained by the formula g = 0.205f 113

south western part of this sea (the measurements were
performed in anarrow shelf patch near the south-west-
ern coast of Sakhalin) and, hence, cannot be extended
to the large shelf zone of the northern part of the Sea of
Okhotsk. At the same time, the Baltic Sea and the Sea
of Okhotsk have a clearly defined layer of temperature
discontinuity (at adepth of ~25 m) and comparable sea
depths (80—-100 m in the Baltic Sea and 125-155 m in
the Sea of Okhotsk). These similarities alows one to
assume that, in the experimenta region of the Sea of
Okhotsk, short-period internal waves also exist and
their properties are similar to those of the Baltic Sea.

Using the known limiting angles, at which the water
rays cross the USC axis, and the known full cycle
lengths of these rays, and assuming a similarity of
nature and amplitude of internal wavesin the two sesas,
one can estimate the difference in attenuation, whichis
caused by the sound scattering from the internal waves.
For the Baltic Sea, the angles at which the water rays
crossthe USC axisare—{6°-8°) < 8 < +(6°-8°), and the
lengh of thefull cycleisD = 1.5-2.5 km for these rays.
For the Sea of Okhotsk, the corresponding values are
—2.6° <0< +2.6° and D = 46 km. The loss caused by
scattering is proportional to the cycle length of the
water rays (theinternal wave isassociated with the tem-
perature discontinuity layer, and the scattering takes
place within the upper haf-cycle) and to the squared
limiting angle of their crossing the USC axis (see, e.g.,
[10, 11]). From these considerations, the ratio of the
attenuation coefficients can be estimated for the Baltic
Sea and the Sea of Okhotsk. The calculated ratio proves
to be approximately equal to three, which well agrees
with the experimental estimate (3-5). Of course, this
agreement means nothing more than indirect evidence
in favor of the hypothesis that the sound scattering by
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the path 50-335 km). At each frequency, near the corre-
sponding curve, the attenuation coefficient is indicated, as
determined from the inclination of the line approximating
the sound level decay corrected for the cylindrical law.

internal wavesisthe most probabl e attenuation mecha
nism (at frequencies higher than the critical one) for
shallow-water sound channels. The real validation of
this hypothesis requires the development of a rigorous
theory of sound scattering by internal waves and a spe-
cia-purpose acoustic experiment including the mea-
surements of the internal waves.

In conclusion, we formulate the main results of the
experiment on long-range propagation of the explosion-
generated signals in the shalow-water (125-155 m)
region of the Seaof Okhotsk with afully-developed USC.

() In the time structure of the multiray explosion-
generated signa received at the USC axis, at the dis-
tances up to 250-300 km, the pulses of the shock wave

VADOV

and the first gas-bubble oscillation are well resolved,
each of them individually reproducing the time struc-
ture of the propagating sound field.

(ii) For the conditions of the experiment, a small
increase in the duration of the explosion-generated sig-
nal is observed; the proportionality factor between the
duration and the distance is about 0.00025 s’km (upon
subtracting the period of the bubble oscillation).

(iii) The experimental data on the sound attenuation
within the frequency band 40-1000 Hz are obtained.
The attenuation is much higher than the sound absorp-
tion in the sea medium. The frequency dependence of
attenuation has a minimum at a frequency of about
200 Hz, which is close to the critical frequency of the
first water mode (about 160 Hz).

(iv) The mechanism responsible for the minimum in
the frequency dependence of sound attenuation in the
USC of a shallow sea is revealed. As the frequency
decreases starting from the critical one (for the water
modes), the sound attenuation increases because of the
acoustic energy loss in the bottom sediments. At fre-
guencies higher than the critical one, the most probable
reason for the attenuation to exceed the absorption is
the sound scattering by short-period internal waves.
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Abstract—Propagation of an acoustic beam in amedium with acombined second- and third-order nonlinearity
is studied. The derivation of the dynamics equations and the determination of modes is performed using the
orthogonal -projection operator technique. The problem on the beam evolution considered with allowance for
weak nonlinearity, diffraction, and dissipation leads to a set of equations describing the interaction of directed
waves and a quasi-stationary (thermal) mode. In the conditions of adirected beam, theinclusion of theinterac-
tion leads to a modified Khokhlov—Zabol otskaya—Kuznetsov equation with quadratic and cubic nonlinearities.
The solutions to the problem are obtained in the region near the beam axis, in the form of series expansionsin
the transverse coordinate up to the focal point. The results of calculations are represented in graphical form for
different nonlinearity combinations. © 2002 MAIK “ Nauka/Interperiodica” .

One of the magjor problems of the theory of nonlin-
ear acoustic waves isrelated to an adequate description
of the distortions suffered by an acoustic signal in the
course of its propagation in a medium. Any perturba-
tion of amedium can be represented as a superposition
of modes characteristic of a given problem, which
determine the basic possible types of mation. Taking
into account the nonlinearity of a beam leads to the
interaction of modes and to their self-action. A correct
consideration of the mode interaction is most simple
when the separated modes are independent (i.e., they
are separated by the projectors that are orthogonal in
the linear approximation). The modes, as a basis, must
describe all possibletypes of maotion, i.e., the set of pro-
jection operators must be complete.

The basic equations of the theory describing the
propagation of nonlinear acoustic beams are the
Khokhlov—Zabolotskaya (KhZ) and Khokhlov—Zabo-
lotskaya—Kuznetsov (KhZK) equations, which take
into account the viscosity of the medium. These equa
tions are obtained by the method of a slowly varying
profile, when the evolution of the wave profile is stud-
ied in the x—ct coordinate system moving with the
velocity of the wave propagation in the linear approxi-
mation [1-3].

The KhZ and KhZK equations do not take into
account the effect of the other two maodes: the station-
ary mode and the backward wave. The necessity to take
into account the backward wave and the thermal mode
in the one-dimensional dynamics is indicated in the
review [4]. There, it is aso demonstrated that the
approximation of one directed acoustic mode leads to

an incorrect value of the time-average flux of angular
momentum. This points to the necessity of taking into
account the mode interaction. In the cited review [4],
attention is given to the generation of the thermal mode
due to the dissipation of the acoustic mode related to
the viscosity of the medium or the attenuation at the
shock wave front. We note that the nonisentropic (ther-
mal) mode must be taken into account even in the
absence of viscosity and heat conductivity of the
medium. Thisisessential for linear problems with non-
isentropic initial conditions and in studying the nonlin-
ear dynamics, because a nonlinear generation and the
interaction of all modes take place. The thermal mode
determined here as one of the principal modes is not
necessarily the secondary mode caused by the attenua-
tion of an acoustic wave. Traditionally, the thermal
mode istreated as asecondary one [4], which evidently
makes it impossible to consider the problems with
essentially nonisentropic initial conditions.

In this paper, we consider the problem of the propa-
gation and focusing of a nonlinear acoustic beam. For
the derivation of the eguations describing the wave
dynamics, we propose the projection operator method.
In the framework of the proposed approach, we obtain
aset of coupled equations describing the interaction of
two acoustic modes (the right and left beams) and the
guasi-stationary therma mode. These equations take
into account the weak nonlinearity (quadratic and
cubic) of the perturbation, the diffraction, and the dissi-
pation of the beam. We note that, here, we do not use
the assumption concerning the potential character of
the flow. In particular, this approach provides a more
accurate expression for the nonlinear constants in the
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KhzK equation (for example, for the right beam) for
the terms with quadratic and cubic nonlinearities. The
calculated coefficients take into account the nonlinear
generation of other modes (the left beam and the sta-
tionary mode) and their inverse influence on the princi-
pal right wave.

Approximate solutions to the equation derived for
the right beam are determined, including the solutions
in the near-focal region, and the plots illustrating the
beam behavior at different distances from the focus and
the effect of the third-order nonlinearity on the profile
dynamics are presented.

PROJECTION OPERATORS.

MODE INTERACTION IN A ONE-DIMENSIONAL
PROBLEM WITH VISCOSITY
AND HEAT CONDUCTIVITY

Starting from the paper by Kovasznay and Boa The-
Chu [5], in hydrodynamics it is common to single out
three modes (the vortex mode, the sound pressure
mode, and the entropy mode), which separate the types
of possible perturbations according to the character of
motion and dissipation, in studying perturbations in a
viscous heat-conducting medium. In the linear approx-
imation, these modes do not interact and a perturbation
is generally represented as a sum of three modes. We
also suggest the introduction of three modes in the lin-
ear approximation. However, in contrast to [5], we sep-
arate the perturbations according to the basic types of
motion, which are determined by the dispersion rela
tion in the linear approximation, rather than according
to the character of motion and dissipation. This alows
us to determine the modes using specific relations,
namely, through the eigenvectors of the linear problem.
Here, we restrict our consideration to arelatively sim-
ple case of a homogeneous medium in the absence of
flows as a background. However, sinceit is easy to for-
mulate the proposed method as an algorithm, it is aso
easy to consider stratified mediawith flows. It isimpor-
tant that the modes determined in thisway are mutually
orthogonal and form a complete set of basis vectors,
and the relations obtained in the linear approximation
are aso valid for a nonlinear case. Let us briefly
describe the idea of the proposed method of mode sep-
aration.

At the first stage, we consider the problem of the
propagation of an acoustic beam in the linear approxi-
mation. As the initial equations, we take the system of
hydrodynamic equations for the density p, mass veloc-
ity V along the x axis, and the internal energy of a unit
mass e with the equation of motion in the Navier—
Stokes form. In the equation of energy balance, we
ignore the nonlinear viscous cross terms (which is a
common approach in acoustics: see, e.g., [2, 4]). This
approximation assumes the amplitude of the acoustic
disturbance and the thermoviscosity to be small. Inthis
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case, the contribution of dissipative terms is (as usual
[2]) much smaller than that of nonlinear terms.
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Here, p is pressure, T is temperature, ¢ and ) are the
coefficients of volume and shear viscosities, respec-
tively, and x isthe coefficient of heat conductivity. The
coefficients of viscosity and heat conductivity are
assumed to be constant, and the background is assumed
to be homogeneous. To make system (1) complete, it is
necessary to add two more equations. For this purpose,
we take the caloric and thermal equations of state: e =
e(p, p) and T = T(p, p). These equations have the fol-
lowing form for an ideal gas:

= p T = —p 2

p(y—1)’ p(y-1)C,’ @
where C, is the specific heat of the gas at constant vol-
ume and y = C,/C, isthe adiabatic constant. Here, we
consider the case of an ideal gas, athough the caoric
and thermal equations of statein the general form allow
one to study the dynamics of any liquid or gas. To do
this, it is necessary to expand the small perturbations of
internal energy and temperature into a Taylor seriesin
the vicinity of the background values of pressure and
density with the required accuracy. Let us change to
new variables:

€C N A

Here, the background parameters are denoted by the
index O, A isthe characteristic wavelength, cisthe adi-
abatic velocity of sound, and € is the small amplitude
parameter. Below, we omit the primes marking the
dimensionless quantities. Eliminating T and e from the
initial set of equations and ignoring the viscosity and
heat conductivity, we represent Egs. (1) in the linear
approximation in the form
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Let us consider plane waves representing the mass
velocity as V = V,exp(iwt — ikx) and the quantities p
and p in an analogous form. The dispersion relation
for Egs. (3) hasthreeroots w, , = +k and w, = 0, which
correspond to three independent branches of the disper-
sion relation. In this case, w, = k describes the wave
propagating to theright, w, = —k describestheleft wave,
and w, = 0 describes the stationary addition to the back-
ground.

The eigenvectors corresponding to these three solu-
tionshavetheformse, =(1,1,1)",e,=(-1, 1, )T, and
e, = (0, 0, 1)T, whence we have linearly independent
solutions for each branch: ¢, = (V,, p;, p)", §, = (-V,,
P, Po)T, and ¢; = (0, 0, p;)". The corresponding opera-
tors of projection onto each branch can be represented
in the explicit forms

0 0 0 0
g 12 £1/2 07 50 0 07

Pi,=0+1/2 1/2 o0, P3= Eo 0 0% )
Ox1/2 1/2 0 00-11n

It is very important that the projectors determined by
Eqgs. (4) are mutually orthogonal. This allows a correct
separation of the initial disturbance into independent
(in the linear approximation) modes. The components
of the eigenvectors are evidently related asfollows: V, =

P =P, Vo =—p, =—P,, and p; = V5 = 0. The projection
operators, as usual, satisfy the requirements of normal-

ization and orthogonality: P, + P, + Py =1, P,P, = 0,

k#n,and P,P,=P,, where| and 0 arethe unitand null
matrices, respectively.

Thefact that it is possible to represent the projection
operatorsin an explicit form provides an opportunity to
separate any disturbance into the fields of the right and
left waves and the stationary mode. For this purpose, it
is sufficient to apply a corresponding projection opera-
tor to the vector ¢ = Py,.

It is important that the suggested separation into
modes does not imply the separation of disturbances
into vortex and vortex-free ones. Moreover, the station-
ary mode is not necessarily secondary, i.e., generated
by an acoustic wave, asin [4]. This provides an oppor-
tunity to extend the class of the examined problems,
e.g., to the problems with essentially nonisentropic ini-
tial conditions. According to our definition, the thermal
mode is one of the basic types of motion even in media
without viscosity and heat conductivity, in contrast to
the secondary thermal mode caused by the attenuation
of an acoustic wave [4]. It should also be noted that, in
the case of a stratified medium, the elements of the pro-
jection operators are integro-differential operators [6].

The initial set of hydrodynamic equations (1)
neglecting the viscosity and heat conductivity can be
written in the form

D=4, 5)
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where the function ¢ on the right-hand side of the
equation takes into account the nonlinear terms and has
the form

g.,o0v,K opQd

. O

§ = evoP_y \%+O(s)
0O ox
O "9
D_V@_pWD
O "ax FaxU

Let us change to the new variables p,, p,, and p; and
assume that, for the eigenvectors, the constraint equa-
tions that are determined by the linear problem are
vaid: V=V, +V,=p,—p,, p=p, + P, = P, + P, and
p =p; + P, + P3. Applying the projection operators to
both sides of Eq. (5), we obtain aset of nonlinearly cou-
pled equations for the density perturbations of each
mode:

0Py, 9Py €

ot ox 2

im=1

n 0
Yi,mpi&pm"'o(ez) = Oa (6)

wheren=1,2,3;¢, ,==*1,andc; =0. Theindices 1, 2,
and 3 correspond to directed and stationary modes,
which in the problem of nonlinear dynamics are appro-
priate to be called quasi-directed and quasi-stationary

modes. The coefficients Y:f m aredetermined in thetables

Y m 1 2 3
i
1 y+1 —(y+1) 0
2 y-3 —=y+D 0
3 -1 -1 0
Y m 1 2 3
1
1 y+1 —(y=-3) 0
2 y+1 —(y+1) 0
3 1 1 0
Y m 1 2 3
1
1 2(y-1) 2(y-1) 2
2 “2(y-1) 2(y-1) -2
3 2 -2 0
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In particular, for the right-propagating wave with
allowance for self-action, from Egs. (6) we obtain the
known evolution equation [1, 2]:

0p; , 0P, y+1 0 2 =
at + ax+8 2 plaxpl+o(€) - 0 (7)

Assuming the terms connected with viscosity and heat
conductivity in Egs. (1) to be small, as well asthe non-
linear terms, we represent Egs. (1) in terms of dimen-
sionlessvariablesin the form of Eq. (5) with anew vec-
tor on the right-hand side:

0,8V, 0p0
%F ax axg 0 .90
oP
$ = egvoP_ pa_vg+s2D o
0 ox '"ox E 0 E
U U
0 590V O
ST
U | 3
0% OZ(VD—P)EJ' O(¢", €3).
_ 2
-1 o g
0 0 U
Here,
- ann_1 -yol _1p 1
% ng 30p,cA’ % XECV C.Hpoch’
and & = 5,+0,

are the small dimensionless parameters taking into
account the contributions of viscosity and heat conduc-
tivity. Applying the operator P, to Eq. (5) with theright-
hand side in the form of Eq. (8), we obtain the Burgers
equation for the right mode with allowance for the self-
action:

op,0p, y+1 9 89° ,
3t T ox TE 7 PigxPiT 3,2 T O £0) =0

It is necessary to note that, in Eq. (8), the coefficients
before the terms that correspond to the quadratic non-
linearity and thermoviscosity differ from the expres-
sionsgivenin[1-3, 7], where the stationary modeis not
considered and the constraint equations correspond
only to the acoustic modes: p = p. It isevident that, with
such a description, the derived equations are unsuitable
for investigating the complete nonlinear dynamics,
because they lead to an incorrect determination of the

matrix elements Yi‘fm, which are responsible for the
mode interaction.

VERESHCHAGINA, PERELOMOVA

NONLINEAR DYNAMICS OF SOUND BEAMS
INTERACTING WITH THE THERMAL MODE

Let us consider the problem of the propagation of a
three-dimensional acoustic beam with a weak diver-
gence along the y and z directions, which are orthogo-
nal to the propagation direction. As earlier, we assume
the dissipative and nonlinear terms to be small. As
above, at thefirst stage we consider the linear problem
without taking into account the heat conductivity and
viscosity:

09,

Hae’ ¢1 = (VX9 Vy7 VZ» p, p)T and Vx, Vy, and VZ are the
velocity components. Following the concept of a

slowly varying profile (the transverse vel ocities change
slower) [1, 2, 7], we introduce the dimensionless vari-

ables: V, =V, /ec, Vy =\, /ec, V, =V, /ec,y =y /B/A,

and Z = z./B/\, where B isthe small parameter charac-
terizing the beam divergence. Below, we omit the
primes marking the dimensionless variables. The
matrix in Eq. (10) is of the fifth order:

(10)

O] d |
0o 0 0 = 00
0 oxX [
0 5 O
0o o 0 = o0
0 ﬁzay 0
L, =0 /B2 i
1 Do 0 0 Ba_zom'
0 0
d d 9
09 Rl BRY 0
Daxﬁay“/_az 0 OD
09 52 5L o of
0 ox 0 0z OJ

The corresponding dispersion relation hasfiveroots.
One of the roots w = 0 corresponds to the stationary
mode. Four other roots correspond to acoustic modes
and are determined by the independent combinations of
w, k,, k,, and k, with different signs, which satisfy the
condition w? = (k)* + B[(k,)?* + (k)?]. Two roots corre-
spond to the right acoustic mode and two roots, to the
left one. We assume that the motion is quasi-plane and
weakly linear, which allows us to treat the correspond-
ing terms in the initial set of equations as small addi-
tions. Taking into account the small nonlinear and ther-
moviscous terms leads to the following set of equa
tions:

00 .0 o’ aZDqu x
EEBTLD"”BE@?*@@%”’* (11)

The operatorsL and ¢ havethe sameform asin the case
of the one-dimensional problem, ¢, = ¢ /ot. Applying
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one-dimensional projection operators to both parts of
the set of equations (11), we obtain coupled equations

0Py, 9Pn 9
St 5 Vioden
L2 s 89 o0
5_2_1 .mppmax(pl P2) * ZZ ng W)

g%6y2+6_mz@ p, + O(e* &P, €d) = 0.

Here, as before, ¢, , = £1; ¢; = 0; and the coefficients
Y{ m, Which take into account the quadratic nonlinear-
ity, are determined earlier in the tables of Eq. (6). The

coefficients ©;, B, and T ,,, which determine the

contributions of the beam divergence, thermal conduc-
tivity, and cubic nonlinearity, respectively, are givenin
the tables:

B'ln 1 2 3 O'n123

[ i

1 -0 8,-9, &/(y-1) | |1]| 110}
20 85,-3, -3 d,l(y—-1) 2| 110
3| 25, 25, —25,/(y—1) 3| 000

Tr =T, =1,and TS, =Oforali,m

The set of equations (12) describestheinteraction of
three independent modes, i.e., the right, left, and ther-
mal modes. In particular, Eqg. (12) yields the known
KhzK equation taking into account the propagation of
only the right wave:

0 9P, eyl 0, 5azpD
2z L °00
atlax & 2 Pt 2972 H (13)
_Bmo® 2 _

T —p+O(s,86,sB)—0.
205y oA

The latter equation is transformed into the KhZ equa-
tionwhen d = 0.

THE MODIFIED
KHOKHLOV-ZABOLOTSKAYA-KUZNETSOV
EQUATION

Let us assume that one of the modes, the right one
for definiteness, prevails, i.e., it is generated predomi-
nantly. This corresponds to the realization of linear
relations (probably, approximate) for this mode. Prob-
lems with initial conditions and boundary-value prob-
lems can be considered in the framework of the indi-
cated approximation (in this case, the correspondence
must exist at the boundary). It is possible to demon-
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dtrate that a linear boundary-value problem in a semi-
infinite space x > 0 (initially unperturbed) corresponds
to astrict realization of the relations for the right mode
at the boundary and in the whole semi-infinite space.
The generation of other modes by the principal mode
and their evolution isdescribed by Egs. (12). We usethe
nonsingular theory of perturbations to study the gener-
ation of two other modes and their reciprocal effect on
thefirst one, asin [8, 9]. We assume that the nonlinear-
ity prevails over the viscosity and beam divergence. We
also assumethat &, 3 ~ €2. The evolution of the density
disturbance of the first mode with allowance for self-
action is determined by the equation

aB)p(O) py +Ey 1)p(O)apl +8_2 2001
otUat ax 2 27 9x
(14)
(0)
6691536 OD(O)_O_

P
2 gx* 0 20y azzjl

For the second and third modes in the first approxi-
mation with allowance for their nonlinear generation,
we have

€
20 yzt) = P =5y + 1)

(0)

J’p(o’(xﬂ—r,y,z,r)— (x+t-T1,y,2T1)dT,

(0)

Py, zt) = pP+e(y-1)

0
J'p(o)(x, Y, Z, T)&pio)(x, y, z, T)drt.

The solutions to the equations for p(o’ (X, Y, z t) and
oY (x,y, z t) are evidently zero: p% (x,y, z, t) = 0 and

(O) (X Y,z t) = 0. Integrating Eq. (14) with respect to
t|me we obtain

IRC)

ot !

Taking this equation into account, we can write for the
next approximation:

(X Y,21) +—— (O)(x y,z,t) = O(g). (15)

P (%, ¥, 2,1) 6

= S0 00y, 20~ (o0t y, 2. 0) ],

ps (%, ¥, 2, 1) an

- _Ely- 1)[(p‘o)(x,y,z,t)) ~(p"(x,,2,0))7.

Taking into account the reciprocal effect of the second
and third modes, according to Egs. (12), (16), and (17)
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we obtain an evolution equation of the next order for
the first mode:

9 ap(l) ap(l)
at{ ot ox

(1) pil) (1)ap1 op1 ]
1E{v+1) +e(A+Dpi 5 (18)

_l_éazp(l) _EDa_Z+a_ZDp(1) -0
2" 9x ZEbyz Y an ' ’
where
1
Av=3 Y (Ymal2+ Y1 0)YT/(cy—Cp)

m=23
=_1 2_

The new coefficient A, before the cubic term corre-
sponds to the correction that takes into account the
reciprocal influence of two other modes on thefirst one,

while T3 ; = 1 in the same term takes into account the
self-action of the order of € for the principal mode.

THE MODIFIED KHOKHLOV—-ZABOLOTSKAYA
EQUATION. AN ANALYTICAL SOLUTION

The set of equations (12) and the approximate evo-
lution equation (18) are too complicated to obtain a
general solution, even if we ignore the thermoviscous
terms. Equation (18) differsfrom the KhZK equationin
the cubic nonlinear term taking into account the effect
of the left beam and quasi-stationary mode (which are
generated in the course of the propagation of the right
acoustic beam) on the right wave.

Let usrecall briefly the advances in the study of the
KhzK equation within the last few years. The study of
the KhZ and KhZK equations started in the 1970s. The
method of nonlinear geometric acoustics for high-fre-
guency sources, A/a < 1 (aisthe characteristic size of
the source), was used at that time [3]. The method
allows one to describe the evolution up to the focal
region, but not within the region itself, because the
expressions become singular. Simultaneoudly, in
optics, the paraxial approximation was successfully
used. This approximation provided excellent resultsin
nonlinear optics and laser physics for describing the
self-focusing of a light beam. The successful applica
tion of the paraxial approach is related to the consider-
ation of narrow-band quasi-harmonic signals and,
therefore, with the possibility of an independent sepa-
ration of the amplitude and the eikonal [3]. However, as
applied to nonlinear acoustics, the approach imposes
restrictions on the domain of applicability of the results
obtained with its help: the solution is adequately
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described near the beam axis only at small distances
from the source, x < wa?/2c. Here, wis the fundamen-
tal frequency of the source, a isthe beam radius, and c
is the sound velocity. A signal cannot be treated as a
guasi-harmonic one, and it is necessary to expand the
total field of acoustic pressure as a power series in a
small parameter. The inclusion of higher-order correc-
tions leadsto incorrect results, which makesit impossi-
ble in the framework of this approach to describe the
most interesting region where the focusing of afinite-
amplitude sound beam takes place. In acoustics, the
paraxia approach wasfirst used by Rudenko, Soluyan,
and Khokhlov [10].

An analytical method for describing a beam in the
paraxial region was developed recently [11, 12]. This
method makesit possibleto study also themotioninthe
focal plane. There are a so efficient numerical methods
for solving the KhZ equation [13].

We follow the basic concepts [11, 12] in the analyt-
ical description of the beam evolution. We assume the
problem to be cylindrically symmetric and represent
Eq. (18) in cylindrical coordinates:

aroP 0P 20P
ﬁ[%—NPa —eaMNP? }
(19)
_ [a P, 10P}
~ 26|35 ROR)

where P = p/p,. Here, p isthe dimensional pressure, p,
is the peak value of the sound pressure at the source,
0 =x/d, T= w(t—x/c), R=r/a, xisthe axial coordinate,
disthefocal length, and r is the transverse coordinate.
The quantitiesr, x, t, ¢, and w are dimensiona; G = x,/d
is the dimensionless constant; X = 2¢3py/s(y + Dawp, is
the characteristic distance within which the shock wave
isformed; and x, = wa?/2[3c isthe characteristic average
diffraction length for an acoustic beam with the fre-
quency w. The quantity N = d/X characterizes the qua-
dratic nonlinearity of the beam, and G characterizesthe
beam focusing.

This equation differs from the classical KhZ equa
tion by the presence of the term corresponding to cubic
nonlinearity with the coefficients

P AT y+1)

2+ 4= 1 - g8
C Po Y11
Note that the sign of a calculated for an ideal gas with
allowance for the reciprocal effect of modes differs from
thesign of the parameter o= Ty 1/Y1 1 = 1/(y+ 1) when
the cal culation takesinto account only the self-action of
the right beam. This fact demonstrates the importance

of taking into account the resonance interaction of al
modes.

We try the a solution to the evolution equation (19)
(asin[11, 12]) intheform of a series expansion in pow-
ers of the parameter R=r/a:

M =
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Fig. 1. Evolution of the disturbance profile for a =-0.3and o = (1) 1.01, (2) 1.2, and (3) 2.0 (the solid lines); the crosses represent

the case without the cubic nonlinearity.

P(R, 0,8) = Py(o, 8)

2 4 (20)
¥ %Pz(o, 0) + %P4(0, 0)+....

Then, performing calculations analogous to [11, 12],
but taking into account the contribution of the cubic
term, we obtain a solution for P, in the form

Poln, 1) = s Sn(n—00) + HWsin(n 1))
an

rl ]
MG :9W) gin (1~ ¢ (n"))sin(n =)’

2 Jf(n)
0
(here, we use the same notations asin [11]). In contrast
to the solutions given in [11, 12], the solution given by
Eqg. (21) takes into account the contributions of both
quadratic and cubic nonlinearities and also the interac-
tion between different modes. If necessary, itispossible
to obtain a solution for P, [the next order relative to
Eqg. (21)] with the help of the relations similar to those
in[11, 12].
Here, B,(T, n) is determined from the solution of a
transcendental equation:

T = 8,-g(n)sn(8+ (1)) ~aNMG

f _ 1 ' 2 (22)

x| Sn(8+ ) + 50(m)sin(n’=2(1) | dn'=3(n).
0

The following notations are introduced in Egs. (21)
and (22):
No. 2
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f(n) = (cos(n) +Gsin(n))™,

2 2 1/2
- Ot I f ()T
a(n) = N

1+62 U7
_ Gn+Inf(n)n
{n) = ardanﬂ]——Glnf(n)D’
N'G" Gsi
5(n) = —— + .
(n) 2(1+G2)n n(cosn + Gsinn)

Now, at € = O (ignoring the cubic nonlinearity), it is
easy to plot the signal profilesfor different values of the
parameters N and G characterizing the focusing and the
diffraction, respectively. The simplest way to do thisis
to treat Egs. (21) and (22) as a system of equations in
the form P, = Py(8,, n), T = 1(6,, n), which determines
(at afixed value of n) the function P, = Py(T) in a para-
metric form. Inthis case, 8, playstherole of aparameter.

To plot asignal profileat € # 0, it is necessary first to
calculate the integral on the right-hand side of Eq. (22).
Regretfully, it isimpossible to calculate it analytically
in the general form suitable for analysis. However, at
fixed values of N, G, and n, it can be calculated as a
function of 6,, e.g., with the help of the MAPLE soft-
ware package. In this case, it is possible to obtain the
perturbation profiles in a parametric form with the help
of the same software.

Figure 1 demonstrates the profiles of the beam at
various distances from the source o with allowance for
the contribution of the cubic nonlinearity. The values of
other parameters determining the contribution of non-
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Fig. 2. Evolution of the disturbance profile for a = 0.3 and M = (1) 0.05, (2) 0.5, and (3) 1.0 (the solid lines); the crosses represent

the case without the cubic nonlinearity.

linearity are selected as follows: N = 0.3 and G = 10.
The value of the parameter a for an ideal diatomic gas
is a = —0.3. The profiles obtained without taking into
account the cubic contribution are shown in the same
figure by crosses, and they closely coincide with the
plots presented in [11, 12].

Figure 2 shows the profiles of the beam at a = -0.3,
N = 0.3, and G = 10 for different values of the nonlin-
earity parameter: M = 0.05, 0.35, and 1.0. The profile
obtai ned without taking into account the contribution of
the cubic nonlinear term is represented by crosses (it
coincides with the calculations from [10, 11]).

In Fig. 2, the plots obtained with allowance for the
cubic nonlinearity lie below the plots taking into account
only the quadratic term and have sharper peaks. As the
nonlinearity parameter M grows, the wave amplitude
decreases, the peak is shifted to the left, and aloop-type
singularity isformed in the vicinity of the pressure peak.
In the figure, the loops are marked with dots. Basically,
the loop-type singularity can be eliminated analogously
to the “backlash” singularity in the Riemann wave in the
theory of weak shock waves[2].
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Abstract—The algorithms for calculating the direct and inverse transfer constants of an acoustic transducer
with an arbitrary number of intermediate layers between the piezoel ectric layer, the acoustic duct, and the rear
acoustic load are described. The results of a numerical analysis are presented and discussed. As an illustration,
a 100-MHz transducer formed by a (Y + 36°)-cut LiNbO; plate fixed on a fused-quartz acoustic duct with the
help of five metal layersis considered. The other side of the plate carries two metal layers and arear load. The
phase—frequency characteristics and the transformation loss as a function of frequency are analyzed for the
cases of direct and inverse transformation under the assumption that the signal is supplied and retrieved by a

two-wire line. © 2002 MAIK “ Nauka/Interperiodica” .

The well-known works (e.g., [1-7]) on the analysis
of acoustic transducers for volume waves considered
the direct transformation of the el ectromagnetic energy
to the acoustic one. The sought-for quantity was the
ratio of powers of the transformed waves, which is usu-
aly caled the conversion coefficient. The phase—fre-
guency characteristic was not considered in the above-
mentioned works. It is useful to find out, what the
phase—frequency and the amplitude—frequency charac-
teristics of a complex multilayer piezotransducer are
and how can they be controlled. This information is
important, e.g., for the formation of an optimal impulse
response of atransducer operating in the mode of emis-
sion and reception of short videopulses in a pulsed
acoustic microscope [8, 9]. The meansthat influenceto
some extent the phase—frequency and amplitude—fre-
guency properties of atransducer could beintermediate
layers introduced between the piezoelectric, the acous-
tic duct, and the rear acoustic load. The latter can also
be considered as a structure component intended for
correcting the above-mentioned characteristics.

The quantity that most fully characterizes a trans-
ducer is the transfer function or transfer constant,
which is the ratio of the complex amplitudes of the
transformed waves. Knowing this constant allows one
to determine the above-mentioned conversion coeffi-
cient and the phase difference between the output and
input signals.

It is well known that the reciprocity theorem holds
for a piezoelectric transducer [10]. However, it would
be interesting to compare the direct and the inverse
transfer constant for a specific example of a complex
multilayer piezoelectric element used at high and
microwave frequencies.

The purpose of this paper is to develop the algo-
rithms and the programs for cal culating both the direct

and the inverse transfer constants of an acoustic trans-
ducer for volume waves with an arbitrary number of
intermediate layers and with a rear acoustic load. The
electromagnetic signal is supplied to or retrieved from
the transducer by a two-wire line with a given wave
resistance. A parasitic shunt capacitance and a connect-
ing-wire inductance with an active loss resistance are
also assumed to be connected with the piezoelectric
element in parallel and in series, respectively.

THE MODEL UNDER ANALYSIS
AND THE ASSUMPTIONS

Figure 1 demonstrates schematically the transducer
under analysis. Between the piezoelectric layer 1 and
the acoustic duct 2 there are M intermediate layers (sub-

sy By by oy o R
I SO I g s D
g 3n 3N| 1 |2M 2m k
,,,,,,,,,,,,,, b ;
Rlos Con
L
a a

Fig. 1. The model of a piezoelectric transducer: (1) piezo-
electric, (2) acoustic duct, and (3) rear acoustic load; the
indices 2m and 3n represent the sublayer and superlayer
numbers, respectively; C;, isthe parasitic shunt capacitance
and Ry, and L are the active resistance and the inductance
of the conductor connecting the transducer with the trans-
mission line.
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layers) with the common index 2 and individual num-
bersmincreasing from 1 to M towards the piezoel ectric
layer. On the other side, between the piezoelectric and
the rear load 3, there are also N media (superlayers)
with the common index 3 and numbers n changing from
1to N in the direction from the rear load to the piezo-
electric. The sublayers and superlayers are short acous-
tic waveguides with given lengths h,,, and h,,,, acoustic
velocities v,,,, and v;,, and acoustic wave resistances
Z,m @nd Z;,,,. We take that the acoustic duct and the rear
load have infinite lengths and the given acoustic wave
resistances Z,, and Z,,, respectively. The sublayer and
the superlayer with the numbers 2M and 3N, respec-
tively, are metal electrodes. In the diagram, they are
connected with the terminals bb, which in their turn are
connected with the parasitic shunt capacitance C,. The
two-wire transmission line with the wave resistance Z,
is connected with the terminals aa. The latter, in their
turn, are linked up to the terminals bb through the
inductance L and the loss resistance R,

In the case of direct transformation, the direct elec-
tromagnetic (EM) wave arrives at the electric side of
the transducer through the transmission line. The EM
wave creates a complex voltage amplitude V,,, across
the terminals aa, which we take to be the input one. In
the case of theinversetransformation, avoltage appears
across the same terminals, and the complex amplitude
of this voltage V,,, is taken to be the output one. In the
first case, the generator producing the signal is assumed
to be matched with the transmission ling, i.e,, itsinter-
nal resistanceisequal to Z,. Inthe second case, the line
is loaded by the matched resistance Z,,.

Ontheacoustic side, it isthe acoustic duct cross sec-
tion at the boundary with the first sublayer (m = 1) that
istaken as the output or input, depending on the trans-
formation direction. The output signal or the input one
is assumed to be the elastic stress of the acoustic wave
outgoing or incoming through the duct with the com-
plex amplitude T,, at the aforesaid boundary.

The desired transfer constants can be defined asfol-
lows:

Ky = JZoSIZog(T 2/ V gas) (1)

in the case of the direct transformation, and

K. = JZy/(ZoS)(Vaas! T2) ()
in the case of the inverse one.

Here, s is the area of the piezoelectric element.
Defined in this way, the aforesaid coefficients are
dimensionless quantities, and their absolute values
squared are equal to the well-known transformation
coefficients n, = P./Pgm.,. and n_ = Pgy/Pq., Where P
and Py, are the acoustic and electromagnetic powers,
respectively.

The problem will be solved in the one-dimensional
approximation (9/0x = 0/dy = 0) on the assumption that
the attenuation and diffraction of waves, as well as the
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conductivity of the piezoelectric, are negligibly small;
in addition, all sublayers, superlayers, and the rear load
are assumed to be isotropic; and the piezoelectric and
the acoustic duct are oriented in such away that the ten-
sor equations describing the electromechanical pro-
cesses in the media under consideration are reduced to
scalar equations.

GENERAL RELATIONS

The equations relating the electric and mechanical
guantities in the piezoelectric have the form

T, = ¢,0u,/0z—€E, 3)
D = edu,/0z+¢€E, 4)
oD/dz = 0, )

where T, iselastic stress; u, istheelastic strain; D isthe
electric displacement (induction); E is the alternating
electric field strength; ¢,, e, and € are the elastic con-
stant, the piezoel ectric modulus, and the dielectric con-
stant, respectively.

As follows from Eqg. (5), D is coordinate indepen-
dent and, consequently, is a function of time only and
has the form D = D,e/*, where the amplitude D, can
generally be considered a complex quantity.

In the piezoel ectric layer, both the direct and inverse
waves of the elastic strain exist simultaneously:

U = U, exp(=jB,2) +u,_exp(jB,2). (6)

Here, 3, u,,, and u,_ are the propagation constant and
the complex amplitudes of these waves, respectively; z
is the coordinate with the positive direction from the
power sourceto theload. The coordinate originisat the
piezoelectric layer boundary closest to the aforemen-
tioned source.

To determine the voltage across the piezoelectric
layer (see the terminals bb in Fig. 1) in the quasistatic
approximation (rotE = 0), we use Eq. (4) and obtain

hy
Vy, = [E,dz
'! 7
DOhl
€

—B1hy

e B
_;:[u1+(e o

= -1 +u,_(e""=1)].

The complex quantities D,, u,,, and u,_ are determined
by the continuity conditions for the acoustic stress and
the current (or impedance) at the piezoelectric bound-
aries and aso by the parameters of the electric circuit
connected to the terminals bb.

The electric current |, flowing in the externa circuit
equals the displacement current in the piezoel ectric:

le = J.,s = (0D/ot)s = jwDs, ®)

where J, is the displacement current density.

ACOUSTICAL PHYSICS Vol. 48 No.2 2002
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Using Egs. (3) and (6), we represent the acoustic
stress and the acoustic current in the piezoelectric
layer as

—jB,z Jl31

)—-Do, €))

—jB,z +u,_e 1I31

Ti(2) = c*(=jBue " + By e

11(2) = ~(0u,/0t)s = —jws(uy.e )- (10)

Here, c* = ¢,(1 + k?) is the elastic constant renormal-
ized due to the piezoelectric effect, k> = €%/c,€ is the
electromechanical coupling factor squared.

The sublayers connecting the piezoelectric layer
with the acoustic duct are a cascade connection of
acoustic waveguide sections. Each of them is a linear
two-port network connecting the input acoustic stress

Z3 n_1C0S(Wh3,/V 3,) + ] Z3,0SIN(WN3,/V 3,)
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T @d current |, ;, with the output ones T, ,,, and
Im ou- The transfer matrix for a section of the uniform
waveguide has the form [11]

[a] = c0os6,,, J(Zomo! S) SINB,,

j(ssiNB,,)/ Zomo cos0,,,

(11)

where misthe layer number; 6, = wh,/V,,

The acoustic wave resistance of the rear load Z;, is
transformed by the series of N superlayers into some
impedance Z in the input plane of the superlayer
immediately adjacent to the piezoelectric. The value of
Z, can befound by applying the well-known expression

Z3n =

to each superlayer inturn, fromn=1ton= N, by taking
Z; n_1=Zzatn=1 Here Z;,and Z; ,_, aretheacous-
tic impedances at the input boundaries of the superlay-
erswith numbersn and (n—1).

DIRECT TRANSFORMATION

Let the input signal be the voltage with a complex
amplitude V,,, induced across the terminals aa by the
direct wave in the transmission line. The piezoelectric
element iselectrically characterized (at the terminal s bb)
by the so-called radiation impedance Z,,4. Taking into
account the shunt capacitance C, along with the series
inductance L and resistance R, we obtain the imped-
ance across the terminals aa:

Zaa = Rlos + jQ)L + Zrad/(l + ijsthad)- (13)

This impedance loads the transmission line with the
wave resistance Z,. The reflection coefficient for the
wave of voltage across the aforesaid terminalsis

I_E = (Zaa_zo)/(zaa+ ZO)-
Evidently,

(14)

Vaar = Va/ (1+T¢), (15)

where V,, isthe complex amplitude of the total voltage
acrosstheterminalsaa, V,, = Vo, + Vaa, and V,,_isits
part corresponding to the reflected wave.

The voltage V,, induced by the source of the signal
causes the appearance of voltage across the piezoelec-
tric element (the bb terminals). Asa consequence, asta-
tionary wave of elastic strain with complex amplitudes
u,, and u,_is excited in the piezoel ectric. The waves of
acoustic stress and acoustic current appear. The latter
two have complex amplitudes T,(h,) and I,(h,) at the
sublayer boundary and are calculated according to
Egs. (9) and (10), if u,,, u,_, and D, areknown. Theval-
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(12)

ues found are the input values for the sublayer chain.
Using the transfer matrix (11) and applying it in turn
to al sublayers, fromm= M to m= 1, one can find the
acoustic stress and current at the output boundary of
the last sublayer. The resulting value T,; ., = T, iS
just the desired acoustic stress at the output of thetrans-
ducer (at the input of the acoustic duct). One has but to
find the transfer constant according to definition (1).

To put the above algorithm into effect, it is useful to
introduce the dimensionless displacements u;, =
u,./N,, where N, is a norm defined by the formula

Ny = eDy/Zpew.

Then, the continuity conditions for the acoustic imped-
ances at the piezoelectric boundaries take the form

U]_+ ]Blh:lEZM 1%_‘_ u]__ J|31 1|:ZM
1

0

+H=-j, 6

10

¥ DZ 0=
U gt + i ft -1 = (17)

Here, Zy and Z,, are the acoustic impedances in the
superlayer at n= N and in the sublayer at m= M at the
piezoel ectric boundaries. The first impedance is calcu-
lated by a successive application of formula (12), by
varying n from 1 to N. The second impedance is found
by the same formula, replacing n by m and varying m
fromm=1tom=Mwithtaking Z, ,,_;=Zyam=1
The solution of the system of Egs. (16), (17) gives the
complex dimensionless strain amplitudes u;, and uj_.

The electric radiation impedance of the piezoelec-
tric element can be found by dividing voltage (7) by
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current (8). Changing to the dimensionless quantities,
we obtain

Zoa i+ 'S 1
Xo (1+K%)(B;hy)
X [u;l-+(e_l Blhl _ 1) + U;L_(ej Blhl _ 1)] ,

where X, = 1/wC, is the capacitive resistance of the
piezoelectric element and C, = eg/h, isits static capaci-
tance.

The electric impedance Z,, across the terminals aa
and the reflection coefficient ' are determined by
Egs. (13) and (14), respectively. Taking that the electric
displacement D is predetermined and using the Kirch-
hoff rules for the electric circuit containing the piezo-
electric element with the impedance Z,,4, the shunt
capacitance C, the inductance L, and the resistance
R.s, ONe easily obtains

Vaa = ijOS(l + j(‘)Csthad)Zaa-

(13)

Substituting this formula into Eq. (15) and expressing
D, through the norm N,, we obtain the complex ampli-
tude of the voltage at the input of the transducer:

Vaar _ jw’s /(1+k2)505r210
No Vi

x (1+ jCyZ

(19)

Z,
Ty

Introducing the dimensionless strains in Egs. (9) and
(10) and taking z = h,, we find the complex amplitudes
of acoustic stress and current at the output of the piezo-
electric to the sublayer with the number M:

1(2 h,)
TN

1,(z = 1)
No

The values obtained are the input ones for the cas-
cade connection of the two-port networks represented
by the media between the piezoel ectric and the acoustic
duct. Using the transfer matrix (11), one can write the
equations that provide the output stress and current
amplitudes for each layer, if the input ones are given:

]B11+

= jZyw[-uy,e u_ ™™+ ], 20)

—jB.hy j[31h1)

—jws(uy.e +U; € 21)

Z .
T2m,out = (COSGZm)TZm,in_J%)(SnGZm)IZm,in: (22)
.SSiNB,,

I 2m, out =) T2m, in + (COSGZm) I 2m,in- (23)

Z2mO
Theoutput values, Ty, o, aNd |y, o, fOr the layer with the
number 2m are the input ones, Ty _1y,in @ Iym_1y in,
for the layer 2(m — 1). Performing the calculations by
Egs. (22) and (23) with m changing from M to 1, we
obtain the complex amplitude T,, of acoustic stress at
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the transducer output. Then the sought-for transfer con-
stant K, can be determined by Eq. (1). The transforma-
tion coefficient is

= K%, (24)

and the phase difference between the excited acoustic
wave and the direct EM wave supplied to the trans-
ducer is

Im(K.)
Re(K.)’

¢, = arctan (25)

INVERSE TRANSFORMATION

L et an acoustic wave be supplied through the acous-
tic duct to the transducer and let this wave have agiven
complex strain amplitude u,, at the boundary with the
first sublayer. Then, at this boundary, the acoustic stress
and current of the wave have the amplitudes

T2+ = _J ZzowuZ+, (26)

lor = —jwus,s. 27)
The reflected waves are combined with the incident
ones and give rise to the complex amplitudes of acous-
tic stress and current at the boundary:

T, = —]ZyWu, (1+T ), (28)

I, = —jwu,,s(1-T+), (29)
where I'; is the reflection coefficient of the eastic-
stress wave, which can be easily found, if the acoustic
impedance of the piezoelectric element Z, isknown. In
the case of the inverse transformation, this impedance
characterizes the load of the acoustic duct. A technique
for calculating Z, and then I will be shown below [see
Eq. (42)].

Suppose that we found T, and I,, which are the input
quantities T,, ;, and I, ;, for the series of sublayers.
Considering the system of sublayers as a cascade con-
nection of linear two-port networks characterized by
the transfer matrix (11), one can determine the corre-
sponding amplitudes Ty, . ad I,y o, & the output of
the entire system. The calculations are performed by
Egs. (22) and (23). After their M-fold application, we
obtain the acoustic stress and current amplitudes T, and
|, at the input of the piezoelectric at z= 0. In the piezo-
electric, we have the strain waves with the amplitudes
u,, and u,_and the current density J,, which are related
to the values of T, and |, determined above by the for-
mulas

/ K? Z1oV1
_J Zlo(.k)(ul+—u1 )+ J\] w 1+ k - Tl’ (30)

(31

—jws(uy, +uy ) = Iy.
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Knowing J, one can also easily calculate the voltage
amplitude V,,, a the output of the transducer (the ter-
minals aa).

Equations (30) and (31) involve three unknown
interrelated quantities u,,, u,_, and J.. To find the last
one, it is necessary to obtain one more equation. For
this purpose, one can use the condition for the existence
of stationary oscillations at the terminals bb:

ZyetZ =0, (32)

where Z,;., is the electric impedance of the piezoelec-
tric element in the case of inverse transformation, and
Z, isthe load impedance at the terminals bb. The first
guantity can be calculated by dividing voltage (7)
acrossthe piezoel ectric element by current (8). The sec-
ond quantity can be found by the formula

7 = ZO+RIos+j("~)L
- 1+ jwcsh(zo+ Rlos+ J(‘)L)
As aresult, we obtain from Eq. (32):

—iB.h
Ul+(1—e iBihy

34)

N R S (

+3.S(Z, — | Xo) |—— = 0.
(Z.—}Xo) 2 NZoVs

From Egs. (30), (31), and (34), one can easily deter-
mine numerically the complex amplitude of the density
J. of electric current flowing through the piezoelectric
element and, then, calculate the amplitude of the volt-
age across the terminals aa:

J.SZ,Zo
ZO+ Rlos+ ij.

(33)

)+ u (1-¢"")

Vaar = (35)

Turn now to the beginning of this section and dem-
onstrate how the reflection coefficient I isfound. Out-
linefirst theway of solving thisproblem. First, itisnec-
essary to calculate the dimensionless amplitudes of the
direct and inverse waves u;, and u;_ in the piezoelec-
tric. Then, we find the amplitudes of the normalized
acoustic stress T,/N, and current 1,/N, in the piezoel ec-
tric at the sublayer boundary z = h,. Further, using the
transfer matrix (11), these quantities should be recal cu-
lated to the acoustic duct output, i.e., T, ;,/N, and
151, /N, should be found, their ratio being the acoustic
impedance Z, in the output plane of the acoustic duct. It
is the latter quantity that determines the sought-for
reflection coefficient I'+.

The continuity condition for the impedance at the
boundary z = h, between the piezoel ectric and the adja-
cent superlayer, when written for the dimensionlessdis-
placement amplitudes, has the form

1 EE%N_ D—jB1h1+ [ B_Z_ZEN_{_ O jBlhl__'
ul+DZlO 1De ul_DZlo 1De = —j. (36)

Here, Z, is calculated by Eq. (12).
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At the other boundary, at z = 0, we cannot write a
similar condition, because, in this case, the acoustic
impedance at this boundary is the sought-for quantity
depending on the electric load of the piezoelectric ele-
ment. Therefore, as the second equation, we use the
condition of the existence of stationary oscillations
written for the terminals bb. Using the dimensionless
strain amplitudes, we abtain

—iBihy

up, (€M = 1) + Uy (P - 1)

_ (Bih)(A+K)[Z (37)
= - %Yo +15,

The normalized acoustic strain and current in the piezo-
electric at the boundary z= 0 (i.e., at the output of the
sublayer 2M) are

Tom o/ No = Zyow[ j(—u1, +u3 ) —1], (38)

lom, o/ No = =] w(u, +Up)S. (39)

Using the transfer matrix (11), we can write the equa-
tionsallowing oneto determinetheinput stress and cur-
rent amplitudesfor each sublayer, if the output onesare
known:

Z .
T2m,in = (COSGZm)TZm, out + J 2g]":)(s'neZm)IZm, outs (40)

.Ssin@
I2m, in = J—Z;——(Z)ETZm, ot T (COSGZm) I 2m, out*
m,
Taking the stress and the current at the 2M-sublayer
output to be equal to the values from Egs. (38) and (39)
and then applying successively Egs. (40) and (41) for m
varying from M to 1, one can calculate T, ;, and I,; i,
whose ratio gives the acoustic impedance Z,. Then, the
sought-for reflection coefficient will be
Zy—Zy

T Z,+Zy

ItisthisvaueTl ;that should be substituted into Egs. (28)
and (29).

The transfer constant K_ is calculated according to
definition (2). In this case, the amplitude of the output
voltage V,,, is determined by Eq. (33), and the ampli-
tude of the input elastic stress T,, isfound by Eq. (26).

The coefficient for the inverse (acoustoel ectric) trans-
formation is calculated by Eq. (24), and the phase differ-
ence between the output and input signals is calculated
by Eq. (25) with a change of indices from + to —.

(41)

(42)

COMPARISON OF THE DIRECT AND INVERSE
TRANSFER CONSTANTS

On the basis of the above agorithms, two indepen-
dent PC programs with the outer frequency loop were
developed.
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0.4
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S0 l0.®
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_25} n 1-0.3
1-04
=30

Fig. 2. Frequency dependences of the transformation coef-
ficient n(f) and the phase shift ¢ (f) between the output and
input signals. The piezoelectric is (Y + 36°)-cut lithium nio-
bate (32 um). The acoustic duct is fused quartz. The rear
load isepoxy resin. The sublayers (beginning from the piezo-
electric layer) are chromium (0.04 um), copper (0.2 pm),
indium (1 pm), copper (0.2 pm), and chromium (0.04 pm).
The superlayers are (in the same order) chromium (0.04 pum)
and copper (0.2pm).L=6nH, R,;=05Q,Cy,=0,Z,=
50 Q. The diameter of the transducer is5 mm.

f, GHz
0.2 0.4
0.4
=5 03
~10 8.%
B -15) o 0 E
+ -0.1&
= 20y 0.2
¢ 0.3
-2 04
~30 '

Fig. 3. Thesameasin Fig. 2 for the thickness of the indium
layer 6.5 pm.

For the case of the direct transformation, the pro-
gram successively executes the inner loops of calculat-
ing the values of Z,, and Z by Eq. (12); the simulta-
neous solution of Egs. (16) and (17); the calculations by
Egs. (18), (13), (14), and (19)—21); the inner loop of
calculation by Egs. (22) and (23); and, finally, the cal-
culation of K,, n,, and ¢, by Egs. (1), (24), and (25).

For the inverse transformation, the program suc-
cessively executes the inner loop of calculating Zy by
Eqg. (12); the simultaneous solution of Egs. (36) and
(37); calculations by Egs. (38) and (39); the inner loop
of calculation by Egs. (40) and (41); calculations by
Egs. (28), (29), and (42); the M-fold loop of calculation
by Egs. (22) and (23); calculations by Eq. (33); the
simultaneous solution of Egs. (30), (31), and (34); cal-
culations by Eq. (35); and, finally, the calculation of K _,
n., and ¢_by Egs. (2), (24), and (25) after changing the
indices + to —in Egs. (24) and (25).
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The model analyzed was the structure shown in
Fig. 1. The piezoelectric layer was taken to be con-
nected with the acoustic duct by five intermediate metal
sublayers, and the other side of the piezoelectric was
loaded with arear absorbing load with the help of two
metal superlayers. It was assumed that, depending on
the transformation direction, the line was either
matched with the generator or loaded by a matched
load. The transformation coefficient and the phase dif-
ference between the output and the input signals were
calculated by Egs. (24) and (25).

The anaysis included wide-range variations of the
layers thickness, the acoustic wave resistance of layers
and the sound velocity in them, the inductance and the
active resistance of the connecting wire, thewaveresis-
tance of the transmission line, the acoustic wave resis-
tances of the acoustic duct and the rear absorbing load,
the parasitic shunt capacitance, and the area and thick-
ness of the piezoelectric element.

In al cases, the direct and the inverse transfer con-
stants differed only in sign: K, = -K_, while tan¢ and,
consequently, the angle ¢ were the same. The fre-
guency dependences of the angles ¢, and ¢_ were
amost linear with negative derivatives d$/0f in the
vicinity of the maximal values of n, or n_. It is well
known that the linear frequency dependence of the out-
put—input phase shift takes place but in the case of the
transmission line section without dispersion.

Figures 2 and 3 illustrate the results of calculating

n. and ¢, as functions of frequency for two specific
transducers. Similar curves are obtained in the case of
the inverse transformation. The transducersin question
were structures consisting of a (Y + 36°)-cut lithium
niobate plate, an acoustic duct made of fused quartz, a
rear acoustic load of epoxy resin, five sublayers, and
two superlayers. The materials and the thicknesses of
the sublayers and superlayers, as well as the necessary
geometric and el ectric parameters of the transducers, are
indicated in the cutline of Fig. 2. Theresults presented in
Figs. 2 and 3 were obtained for the 10-450 MHz fre-
guency range. The dependence n(f) has two maximums
in the aforementioned range. Oneis near 100 MHz, and
the other is at about 320 MHz. The second maximum
relates to the excitation of the so-called third harmonic.
The caculation at higher frequencies reveals other
maximums at frequencies of ~560 MHz (the fifth har-
monic), ~790 MHz (the seventh harmonic), and so on.
The effectiveness of excitation decreases compared to
the previous maximum by ~10, ~5, ~3 dB, etc., respec-
tively. The nonsymmetric nature of the curvesis caused
by the influence of intermediate layers. Variations of
their thickness can lead to a considerable changein the
curves shapes. It can be seen that, for a thin indium
layer (1 um), the dependence n(f) (see Fig. 2) is nar-
rower, though higher, than for a thick layer (6.5 um)
(see Fig. 3). As for the phase shift ¢, its frequency
dependence obtained for the thin indium layer is less
steep and deviates more widely from alinear one. The
ACOUSTICAL PHYSICS Vol. 48
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observed jumps of the phase angle are exactly equal to
11, and the derivative 0¢/0f at the jump points remains
continuous.

It should be noted that, in the frequency interval
from ~0.18 to ~0.25 GHz, the phase angle exhibits a
smooth curve similar to an upturned letter N with a
region where the derivative is 0¢/0f > 0. This is
observed near the point, where the transformation coef-
ficient dropsto zero.

CONCLUSION

In this paper, on the basis of the wave approach, we
developed algorithms for calculating the direct and
inverse transfer constants of a piezoel ectric transducer
with an arbitrary number of intermediate layers and
with arear load. We also developed the programs for a
PC and applied them to diverse variants of transducers,
which alowed us to demonstrate that the direct and the
inverse transfer constants differ only in sign. The
amplitude—frequency and phase-frequency character-
istics obtained for the direct transformation and the
inverse one fully coincide. The algorithms developed
for calculating the transfer constants can be used in the
analysis of the pulse responses of complex multilayer
piezoel ectric transducers.
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Abstract—Reflection of zero-order normal acoustic waves excited in a thin piezoelectric plate from a set of
conducting strips of afinite thicknessis studied both theoretically and experimentally. The analysis shows that
the effects produced by the short-circuiting of the plate surface and by the elastic load on the impedance ratio
of adjacent plate segments are in opposition to each other. These effects can be commensurable, and, hence, for
each wave type, thereis a certain value of the strip thickness at which the reflection coefficient becomes equal
to zero. The experimental results obtained for a shear horizontal normal wave (an SHy wave) propagating in a
lithium niobate plate are in good agreement with the theory and justify the use of the equivalent-circuit model
in analyzing the properties of reflectors of the type under study. © 2002 MAIK “ Nauka/Interperiodica” .

A reflector for normal acoustic waves is a useful,
and often indispensable, component for many practical
applications [1, 2]. Such reflectors are used in resona-
tors, unilateral SAW transducers, delay lines with low-
level spurious signas, directional couplers, various
kinds of filters, etc. Several types of reflection gratings
based on the use of electric and mechanical loads, aswell
as etched grooves on a substrate surface, have been suc-
cessfully implemented in the design of SAW reflectors.

Recently, normal acoustic wavesin thin plates have
attracted considerable interest because of their unique
properties, which are promising for designing new sen-
sors and data processing devices and also for studying
the properties of materials[3]. Evidently, the aforemen-
tioned types of SAW reflectors can also be used for the
reflection of acoustic wavesin plates. The reflection of
a zero-order normal acoustic wave with the shear hori-
zontal polarization (an SH, wave) from a set of thin
conducting strips arranged on the Y—X surface of lith-
ium niobate was studied in [4]. The results of this study
showed that the reflection of normal acoustic wavesin
plates was more efficient than the reflection of SAW
propagating in the same materia. This result is
explained by the stronger electromechanical coupling
of wavesin plates, as compared to SAW. From physical
considerations, one would expect that gratings with a
periodic mechanical load must also be more effective
for waves in plates. In this paper, we present the first
results obtained by studying the reflection of zero-order
normal acoustic waves from a grating with a periodic
mechanical load.

To calculate the characteristics of such a reflector,
we used an equivalent circuit consisting of alternating
segments of sound channel swith different wave imped-
ances. The theoretical analysis showed that an efficient
reflection of zero-order normal acoustic waves can be
achieved by using agrating with arelatively small num-
ber of elements. The experimental study of an SH, wave
reflector that was made on the basis of silver strips
deposited on athin lithium niobate plate showed agood
agreement with the theoretical results. This fact justi-
fied the use of the equivalent-circuit model in analyzing
the reflection of acoustic waves in piezoelectric plates
under the effect of a purely mechanical load.

Let us consider the theoretical model of a reflector
with a mechanical load. The structure of such a reflec-
torisshownin Fig. 1. It consists of agrating formed by
finite-thickness strips deposited on the surface of a
plate. Adjacent plate segments have different acoustic
impedances, and, therefore, a propagating wave is
reflected from every strip and gives rise to a resulting
reflected wave. The operation of this reflector with
allowance for multiple internal reflections can be ana-
lyzed with the help of the equivalent circuit convention-
aly used for SAW [5]. The circuit was modified for
describing the reflection of acoustic waves in plates
from a set of thin conducting electrodes [4]. The modi-
fied circuit contains no electromechanical transducers,
because the aforementioned electrodes are not con-
nected with each other. The modified circuit used in our
study isshown in Fig. 2. Each grating element is repre-
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sented by aT-section, and the elements of the circuit are
characterized by the quantities

Z, = iZtan(kb/2), (1)

Z, = —iZ/sin(kb), )
Z, = iZ tan(k,a/2), 3)
Zom = —iZ,/SiN(K,Q). @)

Here, a and b are the lengths of the reflector seg-
ments with and without mechanical load, respectively
(seeFig. 1), and Z = vpSand k are the total mechanical
impedance and the wave number in the plate without
load, where p isthe density, v isthe wave velocity, and
Sisthe cross-sectional area of the acoustic waveguide.
The quantities Z,,, = VoS, and k;,, are the mechanical
impedances and the wave numbers for the mechani-
cally loaded segments, where p,,, and S, are the effec-
tive densities and cross-sectional areas of the two-layer
waveguide. The meaning of these two quantitieswill be
explained below. The total reflection coefficient R of
the whol e grating can be determined from the relation
R=(Z-Z,)/(Z+ Z), where Z;,isthetotal input imped-
ance of the whole reflector. The equivalent circuit
shown in Fig. 2 allows one to calculate the reflection
coefficient as a function of the frequency and the num-
ber of reflecting elements for different values of the
impedance ratio of adjacent segments Z,,/Z. Evidently,
the reflection of the acoustic wave is caused by ajump
in the wave parameters of the grating elements, namely,
when Z,/Z # 1. The wider the ratio Z,/Z differs from
unity, the greater the reflection coefficient is. Figure 3
shows the characteristic dependences of the reflection
coefficient on theratio Z,,/Z at the central frequency for
different numbers of stripsin the grating.

Now, let us estimate the impedance ratio Z,/Z for a
reflector with amechanical load. In the case of thin con-
ducting éectrodes whose mass is neglected, we have
Z./Z=v.,/v[4]. Inthe case of agrating with aperiodic
mechanica load, the situation becomes more compli-
cated, because the adjacent segments differ not only in
velocity, but aso in density and in cross-sectional area.
As the effective density for a mechanically loaded seg-
ment of the grating, we used the density value averaged
over the cross section of the waveguide; i.e., the den-
sSity ratio was determined by the formula p,,,/p = [ph +
p,d)1/p(h + d), where p, and d are the density and the
thickness of the layer, respectively. Theratio of the cross-
sectional areas was determined as S,/S= (h + d)/h.

To determine the velocities v and v,,,, we performed
arigorousanalysis of zero-order normal acoustic waves
propagating in single-layer and two-layer waveguides
based on lithium niobate. We assumed that the substrate
thickness was much smaller than thewavelength A, i.e.,
h/A < 1. In this case, only three types of waves can
propagate in the plate: two Lamb norma waves (the
antisymmetric A, wave and the symmetric §, wave) and
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Fig. 1. Structure of a reflector for waves in a plate. The
reflector contains N reflecting elements.
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Fig. 2. Equivalent circuit of a reflector with a mechanical
load.
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Fig. 3. Dependence of the reflection coefficient on the
impedance ratio Z,,/Z at the central frequency for different
numbers of stripsin the reflection grating: N= (1) 2, (2) 5,
(3) 8, and (4) 12.

one shear horizontal normal wave (the SH,, wave). For
each of these waves, the cut of the plate, the propaga-
tion direction, and the plate thickness were selected so
as to obtain the maximal coefficient of electromechan-
ical coupling K. For lithium niobate, the corresponding
parametersfor each of the aforementioned modesare as
follows [6]: for the A, wave, the Y + 128° cut, the X
direction of propagation, and h/A = 0.25; for the S,
wave, the Y cut, the X + 50° direction of propagation,
and h/A = 0.1; and for the SH, wave, the Y cut, the X
direction of propagation, and h/A = 0.1.
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Fig. 4. Dependence of the impedance ratio Z,,,/Z on d/h for
the (a) Ay, (b) S, and (c) SH waves. The layers are made
of (1) gold, (2) silver, (3) titanium, and (4) auminum. The
surface areas between the strips are electricaly free (the
solid lines) and short-circuited by a thin conducting film
(the dashed lines).

The mechanical loads were metal layers, which
were easy to deposit and allowed a choice of acoustic
impedance in awide range of values. At first, we deter-
mined the wave velocity v for a given plate thickness
h/A. For this purpose, we used the method described in
[7]. To determine the velocity v,, we anayzed the
propagation of acoustic waves in a two-layer structure
containing apiezoel ectric substrate and a perfectly con-
ducting elastic layer of finite thickness. We used the
standard equations of motion for both elastic media, the
Laplace equation for the piezoelectric plate and the
vacuum, and the corresponding equations of state. The
mechanical and electric boundary conditions were as
follows: (i) the stress and displacement continuity and
the zero value of the electric potential at the boundary
between the two eastic media; (i) the continuity of
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both the electric potential and the normal component of
the electric displacement and the zero stress value at the
piezoel ectric—vacuum boundary; and (iii) the zero stress
value at the layer—vacuum boundary. From the theo-
retical analysis, we determined the dependence of the
velocity on the normalized thickness h/A,, for agiven
ratio d/h. Then, to determine the velocity v,, and the
normalized plate thickness h/A,,, we used the condi-
tion

(WA Ve = (hi/Ay)v, &)

which meant that the frequency of the propagating
wave was the same within loaded and unloaded seg-
ments.

The calcul ated dependences of the impedanceratio
on d/h areshownin Figs. 4a—4cfor the A, S, and SH,,
waves, respectively. The mechanical load was made of
the following materials: gold, silver, titanium, and
aluminum with the densities 19.31, 10.5, 4.5, and
2.7 glcm?, respectively. The density of lithium niobate
was 4.628 g/cm?. Figure 4 presents the results for two
situations: the regions between the strips are electri-
cally free (the solid lines) and short-circuited by athin
conducting film (the dashed lines).

In thefirst case, two factors are present. a mechani-
cal load on the surface and the short-circuiting of the
surface. The latter factor reduces the acoustic imped-
ance, whereas the mechanical load causes an increase
in the acoustic impedance with increasing layer thick-
ness. Thus, the af orementioned factors“work” in oppo-
site directions; i.e., for certain values of d/h, the
acoustic impedance ratio becomes equal to unity. This
occurs when the electric and mechanical effects com-
pensate each other and the total reflection coefficient
is equal to zero.

When the regions between the strips are short-cir-
cuited, the jump in the electric boundary conditionsis
absent, and the reflection is caused by the mechanical
load only.

The aforementioned dependences allow oneto opti-
mize the situation when the impedance ratio is suffi-
cient to obtain an efficient reflector governed exclu-
sively by the mechanical load.

In line with the results presented above, we per-
formed an experimental study of the reflection of an
H, wavefrom agrating with a purely mechanical 1oad.
The acoustic waveguide was made on the basis of a
Y-cut lithium niobate plate with the direction of propa
gation along the X axis. To excite an acoustic wave at an
operating frequency of 3 MHz, we used an interdigital
transducer with a period of 1.2 mm and with two finger
pairs. To reducethereflection of the acoustic wavefrom
the transducer and to reduce the level of the multiple
reflection signal, the transducer was made on the basis
of split electrodes. The capacitance of the transducer
was compensated by a corresponding inductance, and
the transducer was matched with the transmission line
through a matching transformer. The reflector consisted
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of five silver strips 10 um thick, which were vacuum
deposited with a period of 0.6 mm on the plate surface.
To obtain a good adhesion of the reflecting strips, we
first deposited a thin chromium film. This film short-
circuited the tangential components of the electric field
accompanying the wave within the unloaded segments,
and, thus, the reflection occurred due to the mechanical
load only. The amplitudes of the incident and reflected
waves, A and A, were measured in a pulsed mode
using an electrostatic probe [4]. The latter was a piece
of a coaxial line whose central lead ended in a thin
tungsten needle 100 um in diameter. The opposite end
of the coaxial line was cable-connected with the mea-
suring oscilloscope. The tungsten needle of the probe
touched the surface of the piezoelectric and could be
moved smoothly from the transducer to the reflector by
a precision mechanism. With the propagation of an
acoustic wave pulse, an electric signal proportional to
the strength of the piezoel ectric field accompanying the
wave appeared at the probe output. By changing the
probe position, it was possible to separate in time the
pulses corresponding to the incident and reflected
waves on the screen of the oscilloscope. After the
amplitudes of these waves were measured, the reflec-
tion coefficient R was calculated as R= A/A,. To study
the reflection of acoustic waves at different values of
d/h, the plate thickness was decreased by polishing the
back side of the plate. For this purpose, we used a spe-
cia glass unit intended for fastening the plate, as
described in [8]. This method allowed us to reduce the
plate thickness from itsinitia value of 500 um to ater-
minal value of 100 um and to measure the characteris-
tics of the reflector for several intermediate values of
d/h. Figure 5 shows the reflection coefficient obtained
from the experiment as afunction of the plate thickness
along with the corresponding theoretical dependence
calculated with allowance for the short-circuiting of the
surface. One can see a good agreement between the
experimental data and the theoretical curve.

Thus, the theoretical analysis shows that, for a
reflector based on a set of conducting strips of finite
thickness, the effect of short-circuiting of the plate sur-
face and the effect of an elastic load on the impedance
ratio of adjacent plate segments are in opposition to
each other. For the efficiency of areflector of acoustic
wavesin plates, the effects of amechanical load and the
short-circuiting of the plate surface are commensura-
ble. Therefore, for each type of waves, there exists a
certain value of the strip thickness at which the reflec-
tion coefficient becomes zero. This conclusion is of
practical importance for the development of a reflector
with a controlled reflection coefficient. The experimen-
tal results presented above are in good agreement with
thetheory and testify that the use of the model based on
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Fig. 5. Dependence of the reflection coefficient on the plate
thickness for an SH, wave propagating in a Y-cut lithium
niobate plate along the X axis: the theoretical dependence
(the solid line) and the experimental data (the squares).

equivalent circuits is suitable for analyzing the reflec-
tors under discussion.
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Abstract—An approach based on the redistribution of acoustic energy between waveguide modes is used to
state the inverse problem of sound scattering from small compact inhomogeneities in a shallow-water
waveguide. Numerical results are presented. © 2002 MAIK “ Nauka/Interperiodica” .

Asshowninearlier publications[1, 2], three-dimen-
sional problems of sound scattering in a shallow-water
waveguide can be successfully approached from the
point of view of the energy redistribution between
waveguide modes. Weston and Fawcett [2] considered
the sound scattering by the bottom inhomogeneities
and derived simple formulas for the mode conversion
coefficients, S,,,, which determine the amount of the
acoustic energy scattered into the nth mode from the
mth mode of the incident field. Fawecett [3] applied
these formulas to reconstruct the form of axially sym-
metric inhomogeneities of the bottom by remote sens-
ing. Similar formulas were derived by Fawcett [4] for
acoustic scattering by three-dimensional axialy sym-
metric inhomogeneities of the density and sound veloc-
ity. The representation of the sound field as the super-
position of modes was used to state inverse problems of
scattering and minimization [5].

In the previous paper [6], we obtained new formulas
for the mode conversion coefficients, S,,,, from small
compact inhomogeneities of the density, the sound
velocity, and the internal boundaries of the sea bottom.
In these formulas, the inhomogeneities are represented
as the Fourier and Fourier—Bessdl seriesin angular and
radial coordinates, respectively. This leads to a more
detailed analytical description of acoustic scattering.

In this paper, on the basis of these formulas, we state
the problem of the reconstruction of an inhomogeneity
from the observation data obtained in the far field. The
problem is formulated as a linear operator equation of
thefirst kind, which can be solved by the method of sin-
gular value decomposition. Cutting off the seriesrepre-
senting inhomogeneities gives a regularizing effect,
which complements the mechanism of the regulariza-
tion on the basis of the selection of singular vectors
with small singular values. Such a statement, contrary
to that used in [5], alows one to solve problems of
higher dimension with a smaller amount of computa

tion. For simplicity, we consider only the case of a sur-
faceinhomogeneity of the seabottom. The efficiency of
the approach is illustrated by the results of model cal-
culations.

STATEMENT OF THE INVERSE PROBLEM

We consider a stationary sound field of circular fre-
guency w, which is described by the complex sound
pressure u in the region —-H < z< 0, where z is the ver-
tical coordinate. The horizontal coordinates are denoted
by x and y.

We assume that the density p and the sound velocity
¢ are piecewise continuous functions with discontinui-
ties at the surface z = h(x, y), at which the following
conditions are fulfilled

where the symbols + and — denote the limits of the
variables at a considered point z = z, from above, i.e,,
at z> z,, and from bel ow, respectively, and d/0n denotes
the derivative with respect to the normal.

Next, we assume that the sound velocity and the
density above and below the interface depend only on
z, and afunction describing this interface can be repre-
sented as h(x, y) = h, + h,(X, y), where h, is a constant
and h, is a small quantity, as compared to the typical
wavelength L = 211,/ (G, is the typical sound veloc-
ity), and is zero outside alimited region Q.

In the Born approximation, the acoustic pressure is
represented by u = U™ + U¥, where U™ is the incident
field and u** isthe principal term of the scattered field. As
theincident field, we consider thefield of averticaly dis-
tributed source (avertical array) located at the point with
the horizontal coordinatesx,, y,. Such afield can be rep-
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resented as a linear combination of modes: u™ =

Y aH (509 (@), where & = J(x—x0)" +(y=Yo)’
and @ and k; are determined by the eigenvalue problem

d-Ch d7 chl

psza dzD

=Ko, - =0,
d,
dz|,-_u

with the internal boundary conditions

Dld(pﬂ Dld(pJD

CpdzO, ~ Chdz

at z= hy and with the e|genfunct|on normalization

:0,

O+ = @,

J’¢Jz—1

The scattered fleld can also be represented as alin-
ear combination of the functions @ with range-depen-
dent coefficients. In particular, if theincident field con-
sistsof asingle mode U™ = HE,I) (k&)@ (2), the scattered
field can be represented as
u* = zsjn(xi Y; X0 Yo)@n(2),
where the coefficients S,,, which are called the mode
conversion coefficients, describe the scattering from the
jth mode of theincident field to the nth scattering mode.
In practice, these coefficients are easily obtained from
the analysis of the mode composition of the sound field
measured by vertical or horizontal arrays.

The expressions for the mode conversion coeffi-
cients S, derived in [6] are used to represent h, as a
double Fourier and Fourier—Bessel series (see, e.g.,[8])
in angular and radial coordinates, respectively, in the
cylindrical coordinate system (r, a, 2):

00 00

h,(r,a) = Z Z exp(ima)himpdin(ry,/L),
m=—cop=1

where L is such that the region Q iswithin the circle of
radius L with the center at the coordinate origin, y, are
the positive roots of the equation J,(r) = 0, and J,, are
the Bessel functions. Denoting the horizontal coordi-
nates of the receiver and the source by (r,, a,) and
(ro, Op), respectively, we write the expressions for §,
from [6] as the Fourier series

Jn(rr! r’ rO’ 0) - Z S]ns(rr, rO’ O)exp(lsar)
Rl ey
where the coefficients é,—ns are given by the formula

éjns = AJnshlmpn (2)
>3

m=-op=1
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where

~mp

— |A/E[exp(|knrr_|n/4) i(m-s)a,
Ajns = e .

4 /\/knrr

{2GHG (kiro) FIP + ik k,G,
x [HP (, o(kiro) + € HE (kiro)] FIP

L
v = IJmEyL" 23, (kn)d(knrdr, ()

gp p+)g1(Pr1] BN
©1= B2 Oaz0,0azl),

+ Q)Z Diz — i%(pn(p] ,
q)+c+ p_C_ .

In these formulas, it is assumed that r, is large enough

to replace the Hankel functions H\’ (k,r,) by the prin-
ciple terms of their asymptotics at r, — 0. We note
that no similar limitations are imposed on the source
coordinates.

Formulas (1) and (2) determine the linear transfor-
mations from the data specifying the inhomogeneity to
the scattering data:

A: {himg — {Sins(r1; To, Qo)

A: {himgt —{S;p(r,, a;; 1o, A},
where—co <m< o, | Sp<o,—c0<s<oo, and0<j,
n < M, where M isthe number of the modes under con-
sideration; (r,, a,) O E and (r,, 0,) O ES; E" and ES are
the sets of the horizontal coordinates of the points
where the sources and receivers are located. The matrix

elements of the operator A in the key case of asingle
source and a single receiver are given by Eqg. (3).

The inverse problem consists in the inversion of
these operators on the measured scattering data, i.e., in
solving the operator equations of thefirst kind. The use

of the scattering data { Sins(r,; 1y, 0y)} IS natural, if
measurements were carried out on the circles of suffi-
ciently large radius. The typical finite-dimension
approximation of this problem is obtained by limiting

the number of the reconstructed coefficients himp and
the number of the Fourier harmonics in the mode con-
version coefficients and by presetting the finite sets Ef
and ES. In this case, we do not require that the number
of the reconstructed coefficients coincide with the
dimension of the space of scattering data. In this Situa-
tion, we deal with a pseudoinversion of the operator A,
and in this paper, we suggest using the method of
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pseudoinversion based on the singular value decompo-
sition [7]. This method includes the regularization pro-
cedure, which consistsin projecting the solution on the
halfspace that is orthogonal to singular vectors with
singular values lying in the interval (—e, €), where e is
the regularization parameter.

NUMERICAL RESULTS

Calculations were carried out for a two-layered
medium (water/bottom) with a constant density and a
constant velocity for each layer. For the water layer
with a thickness of 200 m, the density and the sound
velocity were taken to be 1000 kg/m? and 1470 m/s,
respectively; for the bottom layer with a thickness of
500 m, these parameters were 1150 kg/m? and 2000 nm/s.
The sound frequency was 20 Hz. For these conditions,
there are four propagating modes, which persist when
the thickness of the bottom layer tendsto infinity. Only
these four modes were used in the calculations.

The test inhomogeneities of the sea bottom were
given by the functions

hy(r,a) = Ayr"cos(Ma)exp(-r’/c®),
M=01,23.

The parameter ¢ was taken equd to 30, A= 1, A, =8 x
102,A,=3x 1073, and A; =1 x 10*. Thus, each inho-
mogeneity was described by only one angular cosine
Fourier harmonic Rehyw (1) = AyurMexp(-r?/a?). Inthe
argument r, the functions (4) are well approximated by
the Fourier—Bessel series of eight terms. These data
were used for calculating the scattering coefficients §,,
where j, n =1, ..., 4, for the sources with the coordi-
natesr, = 500 m, o, = 0°, 90°, 180°, and 270°.
Inthiscase, for the values of r, that are large enough

to replace the Hankel function H{"” (kr,) by its asymp-
totics, the coefficients S, have closed expressions

s, = exp(i(k,r, + kjro))e—iMnlz

[Kal e Ko

x cos(M(W —a,)) Ay (G, + kik,G,cos(ap—a))

C))

KMg2M+1)

M+1
2

2 2
nk'oh
&P o

X

where

K = JIE+I + 2k k,cos(ap—ay,),
0 —Kjsn(ag—a,)
Ck,, + k;cos(ay—o,
These expressions were used for testing the accuracy of

the representations of the functions of inhomogeneities
by their Fourier—Bessel series.

P = arctan

ZAKHARENKO

The inverse problem was solved with the use of the

scattering data{ Sjns (r,; Iy, 0)} . The calculationswere
carried out in the MATLAB system. In this system, the
method of pseudoinversion on the basis of the singular
value decomposition was represented by the pinv pro-
cedure. For the calculations, the scattering data were

prepared in the following way: the exact values ASjns
were supplemented by a Gaussian white noise with a

normal deviation of 3% from the mean value of Sjns.
The calculations were carried out for severa realiza-
tions of noise, with two and four sources[in Figs. 1-3,
versions (a) and (b), respectively]. Because of symme-
try, we used only the mode conversion coefficients S,
that satisfy the condition n = j, so that their number
was equal to 10, and the number of angular harmonics
in each coefficient was 21. The number of the Fourier—
Bessel coefficients in the reconstructed function h,
was eight, the number of the angular Fourier harmon-
ics varied.

Figures 14 show the results of calculationsfor M =
2. In Figs. 1-3, the exact harmonic AyrMexp(-r?/a?) is

compared with the functions Rehiw (r) reconstructed
using eight terms in the Fourier—Bessel series whose
coefficients were obtained by the pseudoinversion of

the operator A for three different realizations of ran-
dom noise.

Figures 1 and 2 show the effect of the method of the
pseudoinversion based on the singular value decompo-
sition on the results of calculating the regularization
parameter. The regularizing effect of cutting off the
series representing the inhomogeneities is shown in
Fig. 3. Inall calculations, the mean square deviations of
the harmonics that are not shown in the figures from
zero in terms of the mean-sgquare norm are the same as
the deviations of the reconstructed fundamental har-
monic from the exact one. Thisisclearly seeninFig. 4,
which exhibits the form of the surface of the initial
function and the surface reconstructed by 17 Fourier
harmonics with the regularization parameter 5 x 106
for four sources (see Fig. 1b).

The calculations carried out for all remaining func-
tions of the form of Eq. (4) for M =0, 1, 3 provide, in
general, the same results.

Theamount of computation, which can be estimated
as amoderate one, ismainly related to constructing the

matrix of the operator A. Note that, in this case, the
basic properties of the sound waveguide are aso
encoded in the matrix. The amount of caculation
related to the solution of the operator equation (the
pseudoinversion) is relatively insignificant.

Thus, the model calculations show that the state-
ment of the inverse problem as a linear operator equa-
tion on the basis of the formulas for solving the direct
problem from the previous paper [6] provides the nec-
essary regularization and allows an efficient solution of
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(b)
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Fig. 1. Reconstruction of theinhomogeneity function (3) for M = 2 with allowancefor 17 angular Fourier harmonics: theinitia function

(the solid line) and the solutions to the inverse problem (the dashed lines) for three realizations of 3% noise. (a) Two sources at the
angles o, = 0° and 90°; (b) four sources at the angles a, = 0°, 90°, 180°, and 270°. The regularization parameter ise = 5 x 107,
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Fig. 2. Reconstruction of the inhomogeneity function (4) for M = 2 with allowance for 17 angular Fourier harmonics: the initial

function (the solid line) and the solutions to the inverse problem (the dashed lines) for three realizations of 3% noise. Versions (a)
and (b) are the same asin Fig. 1. The regul arization parameter ise = 1 x 107°.
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Fig. 3. Reconstruction of the inhomogeneity function (4) for M = 2 with allowance for seven angular Fourier harmonics: theinitial
function (the solid line) and the solutions to the inverse problem (the dashed lines) for three realizations of 3% noise. Versions (a)

and (b) are the same asin Fig. 1. The regul arization parameter ise = 5 x 107°.
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()

(b)

Fig. 4. Surface of the sea bottom inhomogeneities described by function (4) for M = 2: (a) the initial surface and (b) the surface
reconstructed on the basis of the data obtained from four sources (Fig. 1b).

the inverse problem by conventional means. This
makes the proposed approach suitable for use in prac-
ticefor field experiments.

The reviewer of this paper pointed to significant
coherent effects that accompany the backscattering of
sound [9]. These effects cannot be taken into account in
the Born approximation used in this paper. To include
them in the consideration, the formalism must be
extended, which will be the subject of the following
studies.
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Abstract—Rayleigh-type flexural waves localized near the edge of a thin anisotropic layered plate are investi-
gated. The following effects are revealed: awave attenuation with oscillations, a change of sign of the energy flux
for certain types of anisotropy, and the appearance of stationary waves. © 2002 MAIK “ Nauka/Interperiodica” .

To all appearance, flexural waves of the Rayleigh
type were first investigated in [1] for the case of aniso-
tropic media. Such waves must be taken into account at
the excitation of afree edge, of the edge contact of dif-
ferent materials, etc. [2-4]. However, unlike plane Ray-
leigh waves, which are basic in a number of technolo-
gies used for nondestructive testing, seismic monitor-
ing, and the like (the bibliography for the case of
anisotropic media is presented, e.g., in [5, 6]), flexural
waves are not so famous. The reason is the compara-
tively small damping coefficient of a flexural wave (of
the order of v*, where v is the Poisson ratio) in an iso-
tropic medium. The appearance and widespread use of
promising composite material sraisesthe following nat-
ural questions:

(i) do the Rayleigh flexural waves exist in media
with arather general type of anisotropy;

(ii) if so, what are their properties (the energy, the
damping factors, etc.);

(i) how are these properties affected by the stack-
ing asymmetry in layered media (the correlation
between flexure and the plane strained state).

In spite of the interest manifested by some authors
[4], no detailed investigations of this problem were
published. This paper gives the answersto thefirst two
guestions.

Consider a thin packet with a symmetric structure,
which consists of anisotropic elastic layers. Denote the
total thickness of the packet by 2h, use the dimension-
less orthogonal coordinates x;, X, normalized to h, and
take the internal stress-strained state of the layered
packet to be along-wave one, i.e., satisfying the classi-
cal relations of the theory of layered plates [7]. The
interlayer contact is supposed to be anideal one. All the
elastic constants below are taken to be normalized to
the maximal value (out of the packet layers) of the
Young modulus, and the densities are normalized simi-
larly.

Consider now harmonic oscillations of a semi-infi-
nite packet characterized by the flexural stiffness

matrix D = ||df‘,q|| and occupying the region Q: x, = 0,

—o0 < X; < 0. The packet edge x, = 0 istaken to be stress-
free. Then, the normal deflectionw = WX, X, )exp(iwt),

normalized to the haf-thickness h, satisfies the equation
{L3(04,02) —p(*)z} wy =0,
L4(04, 0,) = d3;05 + 4d55030, (1)
+2(d5, + 2d36) 0305 + 4d30,05 + 05,05,

and the free-edge boundary conditions

M(0,, 9,)W, = 0, F(04,0)wx = 0, ()

dizai + dgealaz + dgzag

M = —
M Ldieai +(d3, + 4d%) 970, + 4d30,05 + 5,05

where wisthe cyclic frequency, p is the dimensionless
integral density, and M and F are operators correspond-

ing to the normal moment M,, and the normal intersect-
ing Kirchhoff force P,, =20,M,, + 9,M,,.

1063-7710/02/4802-0171$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Let us analyze the possibilities for the existence of
wave solutions propagating along the edge and expo-
nentially decaying inside the packet, i.e., the Rayleigh-
type solutions

i(Ky Xy + KoX5)

» = Ae , A =const, Imk,<O0.
We use the designations
Mod dk’ k,

where d is some stiffness value chosen for the normal-
ization. Taking for definiteness k; > 0, we obtain from
Eqg. (1) a characteristic equation with constant coeffi-
cients for the parameter &:

L(1,&)—s"=dy, +4dyeE
+2(dp, + 2d66)E.2 + 4d2623 + dzzE.4 -s'=o0.

The following statements are evident.

Statement 1. In the absence of mixed stiffness con-
stants (d,, = d,, = 0), Eq. (3) can have purely imaginary

3)

ZAKHAROV

roots &: Re& = 0; otherwise, the roots are real or com-
plex ones.

Statement 2. All the complex roots of Eq. (3) are
conjugate; two pairs of complex conjugate roots (along
with the flexural wave of the Rayleigh type) can exist

. 4 .
only intheranges< s Sy = 2|rD1fRL(1,E).

Indeed, the fourth-order characteristic polynomial
L(1, &) is positive definite in the space of real numbers
¢ .Ats due to the polynomial smoothness, Eq. (3)
has at IeasP onereal root with atwofold multiplicity. For
s > s the number of real roots is no less than two.
Thus, Tor s= s there is no more than one pair of com-
plex conjugateroots, which isinsufficient to satisfy two
boundary conditions (2) with a simultaneous exponen-
tial decay along the x, axis.

Statement 3. The phase vel ocity Vi of the Rayleigh-
type flexural wave is bounded from above

VR<V,, V. = sik./d/p.

Denote the sought-for pair of complex rootsby &, ,
(Im¢&, , > 0). The edge conditions (2) take the form

detA(s) = 0,

A(s) = Ay + 20561 + Oy€ 7

A, Ay + 205681 + A€

= W (Xg, %) = { A€

Ay dpp+2d6&, + dzzzg,

i.e., the problem of the existence of the desired wavesis
reduced to analyzing the roots s of Eq. (4) on the
branches &,(s) and &,(9).

In the specific case of an orthotropic medium with
the main axes coinciding with x, and x,, the situation is
considerably simplified. The mixed stiffness constants
ared,, = d,, = 0, and the characteristic equation (3) has
purely imaginary branches of the roots &,(s) and &,(S).
Choosing the normalizing coefficient d = d,,, we obtain

t,=i{Cs/D+s}", D=cC —g—z
d., +2d 2d
C — 12d22 66, E - 36236,
(o - ExdDrsie-foas”
e M‘D DC+M4D
f(s) =1 = detA(s) = 0
When s* O [E? — D, C? — D], the function f(s) varies

from0to+e,i.e., therea root sof Eg. (6) awaysexists
and is expressed as

dp +2d6E, + dzzzg ] @

2016+ (Ao + 4deg) & + 462 + dpp€ T 216 + (dyp + 4dgs) €5 + Ad 685 + A&

i€1ky X,

+ AzeiE2k1X2} eiklxl, (5)

va
0 2
s= GD+CER-3a"+2 2 -2 +ﬁ
O

2 = -
a =G
where the positive definiteness of the radicals follows
from that of the elastic constantstensor. It iseasily seen
that the amplituderatio (5) isalsored. Itisthereal part
of the solution Re{w{X;, X,)e'“"} that has a physical
meaning, and the angular displacements of cross sec-
tions0,, 6, and thelongitudinal displacementsu,, u, are
given by the formulas

0, = O Re{wi (%1, X)€%} ,

U, =28, (a=12)

A oot ko]
u, = —zRe% klAl[ kl\El\xz Doy kl\iz\xﬂ |(wt leI)D,
0 Al 0

A, _
U, = ZRGH(1A1[|El|e 1\51\X2 |E | 2 kl\iz\xz:|el(mt+k xlg.
No. 2
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Hence, at thereal amplitude A,, the displacementsu,, u,
(and the angles 6,, 6,) follow the harmonic law with a
phase difference of —172. In one period of oscillations,
an arbitrary point (x;, X,) describesan ellipse by moving
in the positive direction, and the semi-axes of the
ellipse exponentially decrease with distance from the
free edge.

In the specific case of an isotropic (and transversely
isotropic) medium, Eq. (7) leads to the well-known
relation derived by Yu.K. Konenkov [1]:

s = {(1-v)(3v—1+2/1-2v +2V%)} ”

wherev is the Poisson ratio.

Itisalso of interest to analyze the qualitative behav-
ior of the phase velacity Vg, (itsratio to the velocity Vg
of acommon flexural wave with the wave vector k) and
the period-average value of the power flow 3

vz @ |:(A)2L3(COS¢,S'n¢)i|l/4
® [k p ’
2 43 _1/4
VR = 9 = S[w—dzz} ,
Ky p
Y% 0 d; 0"
R 22
= F = s——2=— ,
@) =3 SHCy(cost, snd)H
2

W ' A
J=—5 J' dt f{ Re6:ReM,; + RewReP,} dx,,
0 0

where the dot means the time derivative and M,, and
P,, = 20,M,, + 0,M,, are the norma moment and the
intersecting Kirchhoff force in the packet cross section
perpendicular to the x, axis.

With aview of anumerical illustration, we take two
types of an orthotropic material: the carbon-filled plas-
tic (CP) with the Young moduli E; = 12800 and E, =
840, the shear modulus G, = 460 kg/mm?, the Poisson
ratiov,, = 0.37, and the density p = 1.5 g/cm?; and the
organic plastic (OP) with the respective constants E, =
2600, E, = 1800, G,,=230,v,,=0.14,andp=1.4. The
main orthotropic axes either coincide with the reference
axes (CP/0) or are rotated through the right angle
(CP/90); the thicknessistakentobe2h=1mmand d =
max(d;;, dy,).

The typical values of s and the normalized val ues of
the radiation power of the wave under study are asfol-
lows:

s$=0.9998211 (for CP/0) and 0.5062257t (for CP/90),

min(Im¢,, Im¢&,) = 0.0362 (for CP/0) and 0.00949
(for CP/90),

J/od |k, A, = —61.0861 (for CP/0) and —15.38159
(for CP/90);
ACOUSTICAL PHYSICS  Vol. 48
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0
Fig. 1. Velocity ratio Vr/Vg in polar coordinates for the
materials (1) CP/O, (2) CP/90, (3) OP/0, and (4) OP/90.

s=0.9976911 (for OP/0) and 0.91085Tt (for OP/90),

min(Img,, Im&,) = 0.0444 (for OP/0) and 0.03616
(for OP/90),

J/d |k, A, > = -56.6055 (for OP/0) and —48.26285
(for OP/90).

The curves for the velocity ratio are presented in
Fig. 1.

Thus, for the case of orthotropic materialswith stan-
dard orientation, we can make the following conclu-
sions:

(i) theflexural wave of the Rayleigh type exists at al
times,

(i) the damping factor min(Im¢&,, Im¢&,) proves to
be higher than that for an isotropic medium, where the
corresponding value does not exceed 0.01;

(iii) the phase vel ocity of the Rayleigh flexural wave
is not minima among all possible flexural waves, asit
isin the case of an isotropic medium.

Inamore general case of anisotropy (d,, dys # 0), it
isimpossibleto find analytical expressionsfor theroots
&,(9), &,(9), and one hasto resort to numerical analysis.
The search procedure is as follows: the parameter s is
specified, and two solutions &,(s) and &,(s) are deter-
mined from Eq. (3), then Eq. (4) is checked (thereal and
imaginary parts of detA(s)). Let us model the situation
using the examples of the T material (p = 1.58 g/cn?’,
E, = 13000, E, = 975, G,, = 600 kg/mm?, and v,, =
0.27), and the E material (p =2, E, = 4500, E, = 1300,
G,, = 440, and v, = 0.29) whose principal axes X; , X,
are rotated through the angle 0 < < 192 with respect
to the axes x; and x,. The curves for the typical values
of (), the branches &,(), &,(P), and the amplitude
ratio (5) are presented in Figs. 2-5.

The behavior of the radiation power J({) is also of

interest (the curves for the normalized values of this
function are presented in Fig. 6). When k;, > 0, the
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0.5
yim

Fig. 2. Characteristic value curvesfor T and E.

Fig. 3. Roots & () and &, (W) for T.

power flux should seemingly be negative. For both
materials, however, one can find the critical value of the
orientation angle, Y= 0.076471(T) and 0.10492m (E),
when the sought-for wave turns into a stationary one,
and then (at Y > Y changes the direction of energy

Fig. 4. Roots &; () and &,(y) for E.
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transfer. Further more, at the next critical angle, W
0.228621t (T) and 0.298611t (E), the wave agaun
becomes stationary, and at > Yy the negative sign of
the power flux is restored. Thle% isnew and peculiar
exclusively to media with a sufficiently general anisot-
ropy (de, dy #0). Thisfact was not noted earlier for the
anisotropic media, and it is fundamentally absent in the
case of isotropic media or conventionaly oriented
orthotropic ones.

To clarify the effect, consider the behavior of the
generalized acoustic impedances

2
I* Mll I_m I* Plz kllp [ |+
m — . - ] - -
0, Ve P w Vr
0, = —ik,w, W = iww,
+o00
Ww’k;

¥ =

2
2VRIIWI Re(l,+ 1,)dx,.
0

Following the elementary analogy for the damped har-

monic oscillator
= Hnw— 8)

one can expect apositive vaueof Re(l,+1,) and apos-
sible change of sign of the imaginary part. Figures 7-9
demonstrate the curves for the real and imaginary parts
of the generalized impedances I, I, I, + I, for three
vaues of the angle Y: beyond the interval [W5 Wyl

(Figs. 7, 9) and within the interval (Fig. 8). It can be
seen that, beyond the interval [ Wyl the qualitative

analogy with Eq. (8) isvalid, while at the intermediate
value of ), an active edge zone with the opposite direc-
tion of the energy flow is present, which leads to the
change of sign of the integral . This situation takes
placeat any intermediate value of Y. In particular, if one

o= My +by +tey _

considers the value of Re(l, + 1) at one point x; = 0 as
A
\ P 0.5
N Y/
N \/: ’

Fig. 5. Amplitude ratio Ay/A; as afunction of Y for the (1)
T and (2) E materials.
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Fig. 6. Normalized radiation powers.

Re
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————— 1, 200

Fig. 8. Normalized impedances.

afunction of , this function will change its sign from
positive to negative and back, at certain values to the
left and to the right of the interval of critical angles,
respectively. Between these values, the width of the
opposite-energy-flow zone is finite, while between the
critical angles it is this zone that dominates the radia-
tion power integral.

Thus, we can state that the Rayleigh flexural waves
in anisotropic media essentially and qualitatively differ
from both Rayleigh compression-tension-shear waves
[5, 6] and flexural waves in isotropic media.
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Abstract—The interference immunity of a focused antennain the field of interference produced by dis-
crete wideband sourcesis considered. It is shown that the focused antenna that processes the signal by the
dark-field method provides a high interference immunity. Calculations show that this signal processing
technique can provide acoustic monitoring in the presence of intense interference produced by ships. ©

2002 MAIK “ Nauka/Interperiodica” .

Interest inissues concerned with signal extractionin
the presence of interferences persists (see, e.g., [1, 2]).
These issues are topical in acoustics, because, in many
applications, the interference isnot auniformly distrib-
uted noise, but exhibits a significant regularity. A clas-
sical example of such an interference is the noise pro-
duced by ships, which prevailsat low frequencies (from
10 to 200-300 Hz) [3]. Such interferences can be
rejected using long antennaswith signal processing that
is capable of eliminating or substantially suppressing
the effect of noise produced by discrete sources.
Among the methods that efficiently reject such interfer-
ences, adaptive methods [4] are most popular. How-
ever, in acoustic communications through a medium
with a complex irregular structure, the efficiency of
these methods diminishes[5, 6]. It should be noted that
the requirements of regularity of the medium that pro-
vide the efficiency of the adaptive methods become
much more stringent with an increase in the number of
the antenna array elements and in the antenna length.
Increasing the antenna aperture is useful and necessary
for suppressing interferences produced by scattering
from arough water surface typical of acoustics.

The proven method referred to as the shadow or the
dark-field method has long been known in optics [7].
This method is capable of reecting (darkening) the
interference sourcesin the presence of irregular aberra-
tions produced by optical elements. A distinctive fea-
ture of thismethod isthat, with anincreasein lens aper-
ture, it significantly relaxes the requirements imposed
on the regularity of the wave field. A similar method
can also beappliedin acoustics[8]. Asshownin [8], the
acoustic dark-field method used for processing signals
received by a sufficiently long (focused) antenna array
basically differs from the signal processing in adaptive
arrays. The dark-field method applied to the focused
antenna is conceptually close to the cepstral analysis
[9], which iswidely used in acoustics.

A focused antenna operating with a monochromatic
acoustic field has been considered in [8]. In this paper,

we extend the dark-field method used with the focused
antennato the case of awideband signal.

In solving this problem, we limit our consideration
to the minimal number of sources—to just two sources,
one of which is stronger than the other. We will show
that, in this case, the coordinates and the intensity of the
weaker source can be determined in the presence of the
strong source, the only limiting factor being the distrib-
uted noise rather than the intensity of the strong source.
The problem is solved by linear filtering. Therefore, if
it can be solved in this simplified form, one can expect
to succeed in the case of multiple sources. The supposi-
tion that there are only two sources does not present a
fundamental limitation. It alows us to focus on the
method and results, leaving the difficulties (mostly
mathematical) associated with multiple sources to
future analysis.

Let two sources (a strong source and a weak one)
with a continuous spectrum be present. L et the sources
be uncorrelated. This assumption is adopted only to
make the problem definite. The problem is solved iden-
tically for uncorrelated and for correlated (completely
or in part) sources. We emphasize that the adaptive
methods use uncorrelated signals. The antenna consists
of anumber of hydrophones uniformly spaced adistance
s apart in the horizontal direction. The antenna aperture
is sufficient to be focused at al operating frequencies.
These conditions are thoroughly studied in [8].

Let us determine the coordinates of the strong
source with the hel p of the focused antenna. We assume
that the signal produced by the strong source on the
receiver antennaexceedsthe signal produced by the weak
source enough (in the numerical example, by 40 dB) for
the radiation from the weak source to be neglected. The
frequency spectrum of the spherical wave field pro-
duced by the wideband source and incident on the
hydrophone number n of the linear antenna can be rep-
resented as

P(w,n) = G(w)exp[iwT(n)]. )

1063-7710/02/4802-0176%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Here, G(w) is the frequency spectrum of the field
produced by the source, w is the frequency, and T(n) is
the delay of the source signal incident on the hydro-
phone number n. If the waveis spherical and the source
resides on the perpendicular erected to the antennaat its
central element, we have

T(n) = SJR+ (n—-m)’, @)

where c is the light velocity, R is the distance to the
source normalized by s, and mistheindex of the central
hydrophone.

The source coordinates can be found from the maxi-
mal response of the antenna, which occurs when the
spherical wave front is compensated. Thisisamaximum
of the following expression in the variablesqand r:

U(g,r) = J’ ZP(w, n)exp[—iwM(q, r, n)]| dw. (3)

w! n

Here,
M(g,1) = ZVr*+(n-a)” )

Expression (3) reaches its maximum when the
spherical wave front is compensated completely. This
occurs when r = R and g = m in formula (4), which
yields the source coordinates.

The above search procedure was simulated using
the following parameters. The antenna consisted of
256 hydrophones. Both sources emitted uncorrelated
Gaussian random signals with realizations being 32 ele-
ments long. In accordance with results obtained in [10,
11], the spectrum of the emitted signals was supple-
mented with zeroes to extend the length of the realiza-
tion by afactor of eight. This operation was necessary,
because, in numerical calculations, the delay given by
Egs. (2) and (4) cantake only discretevalues. A.A. Pav-
lenko showed that the additional zeroesin the spectrum
significantly reduce the effect of delay quantization
errors. The distance was R = 128 (half-length of the
antenna), and m = 128.

The surface determined by Eq. (3) isillustrated in
Fig. 1 by afunction of r and g. This surface can be used
to find the curvature of the incident wave front. Unfor-
tunately, this processing procedure does not comply
with the dark-field method. The radiation from the
source can be screened in its most intense part, but this
action will not extract the field of the weaker source,
because Eq. (3) involvesanirreversible operation (sum-
mation over frequencies).

To apply the dark-field method, we should eliminate
the summation over frequencies, which makes Eq. (3)
irreversible.

We write the spectrum of the stronger signal [let this
be P1(w, n)] using Eq. (1) a R = 256 (the antenna
length). The spectrum of the second signal should be
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Fig. 1. Fragment of thefield of view of the focused antenna.
The axes represent the direction towards the source and the
distance to it. The vertical axis represents the sum of inten-
sities of the received signal over al frequencies of the
antenna frequency range.

written so as to take into account its shift by the angle
9 from the normal to the antenna:

P2(w,n) = G2(w)exp{iw[T2(n)+hn]}, (5)
where T2(n) is given by Eq. (2) at R2 = 64 and h =
gsin(S). The spectrum of the signal at the hydrophones

will be

PC(w, n) = P1(w, n)+10°P2(w, n). (6)

First of all, let us compensate the front curvature of
the stronger wave. The parameters of this wave are
obtained by the signal processing described above. To
compensate the front curvature of the stronger wave,
one should apply the following operation

W(w, n) = PC(w, n)exp[—iwT1(n)]. @)

Then we should obtain the spatial spectrum of the
signa at the antenna for each frequency w by applying
the Fourier transform to Eq. (7) with respect to n. Let us
denote the spatial frequency corresponding to the vari-
ablen asv. To visualize this spatia spectrum, we inte-
grate its squared magnitude with respect to the fre-
quency

S(v) = I|CI>n[W(oo, n)]|*dw. ®)

Here, ®,[Z(X)] means the Fourier transform of the
function Z(x) with respect to x.

The function Sv) defined by Eq. (8) isillustrated in
Fig. 2a. Both signals are seen in the figure: the strong
one as a discrete spectral line and the weak one as a
blurred curve, because the curvature of the weak sig-
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Fig. 2. The intensity integrated over al signal frequencies in decibels with respect to the maximum of the focused signa of the
strong source versus the angle of arrival of the incident wave normalized by the antenna resolution. The antenna is focused at the
strong source, and the source signal is (a) not darkened and (b) darkened. Figure 2c refersto the antennafocused at the weak source

with the strong source darkened.

nal’s front is greater, which considerably broadens its
spatia spectrum.

To implement the dark-field method, one must
block the domain (reducethesignal init to zero) occu-
pied by the spatial spectrum of the strong signal
shown in Fig. 2a. This should be done necessarily and

i{“'ll
X

LK OIO
% :':.ht’g" Y
]

Fig. 3. Fragment of thefield of view of the focused antenna
near the weak source with the strong source darkened. The
axesarelabeled asin Fig. 1.

exclusively for the function ®,[W(w, n)] rather than for
S(v). After that, we integrate the result with respect to
the frequency w as in EQ. (8) to obtain the function
shownin Fig. 2b.

Now, only the weak signa is present. To find its
parameters, it is necessary to compensate the curvature
of itswavefront. To this end, we go over from the spec-
trumto the signal by applying theinverse Fourier trans-
form with respect to frequency v and multiply the result
by the factor

E(w,n) = exp[iwTl(n)]exp[—iwM(q,r)]. ()

Thefirst exponential here is necessary for compen-
sating the factor in the weak signal that removes the
wave front curvature of the strong signal. The second
exponential serves for removing the curvature of the
wave front of theweak signal by choosing the appropri-
ate g and r. The result of this procedure is shown in
Fig. 2c. The process of fitting the parameters for
removing the curvature of the small-signal wave front
isillustrated in Fig. 3.

The effect of the dark-field method isclearly seenin
Fig. 4. The field of the strong source is not darkened
(the spatial spectrum in the corresponding domain is
multiplied by unity rather than by zero). Asaresult, the
field of the strong source covers the field of the weak
source completely, athough the antenna is focused at
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Fig. 4. Field of view of the antenna focused at the weak
source with the field produced by the strong source not
darkened (the upper curve) and darkened (the lower curve).
The axes are labeled asin Fig. 2.

the weak source rather than at the strong one. The lower
part of Fig. 4 shows the result when the field of the
strong source is darkened. The difference in the resid-
ual background levelsisalmost 70 dB, whichillustrates
theinterferenceimmunity of thefocused antennainthis
example.

Basically, such aprocessing is applicableto the case
of multiple sources. The number of sources that can
effectively be darkened is determined by the number of
array elements. The point is that the darkening of each
element reduces the number of antenna elements.

In the above calculations, it is important that the
antenna is ideal. Both the spread in the positions of
individual antenna elements and the random variations
of the amplitude and phase of thefield incident on them
are ignored. If the fact that the antennais not ideal is
taken into account, the result will change. The corre-
sponding study requires additional calculations and,
perhaps, experiments.

Here, we only note that the above method for pro-
cessing the signals received by a focused antenna can
give asimilar interference immunity in the presence of
multipath propagation and when the parameters of the
antenna and the fluctuating medium are spread ran-
domly. In the presence of multipath propagation, along
focused antenna may resolve or not resolve the virtual
sources that appear in this case. If the antenna does not
resolve such sources, itsinterference immunity remains
the same as in a homogeneous unbounded space. If the
antenna resolves these sources, they can be eliminated
exactly as the real sources. This possibility has been
demonstrated in [8], where it was shown that the effect
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of dispersion due to the propagation of sound in a
waveguide can be compensated by increasing the dark-
ened area of the focused antenna. The two most prom-
ising results were obtained in [11]. Thefirst consistsin
the consideration of the dark-field method that worksin
the presence of high phase distortions in the antenna.
The second consistsin that it was demonstrated how to
determine the phase distortions in the antenna from the
field of the strong source alone in order to compensate
them in the same way as the wave front curvature.
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Abstract—The time correlation function of a noise signal propagating in an arctic-type waveguide is consid-
ered. For acoherent signal, the time cross-correlation function is formed with the use of either the total signal,
or asingle selected mode, or areference signal at one of the correlator inputs. The use of narrow-band signals
is shown to be preferable, because the waveguide dispersion affects the waveguide response. It is demonstrated
that, for tomographic investigations in awaveguide irregular along the path, it is expedient to correlate the sig-
nals received at two different points that are selected on the path so as to enclose the waveguide part the vari-
ability of whose parametersis the object of interest. © 2002 MAIK “ Nauka/Interperiodica” .

Acoustic tomography is determined as the method
of reconstructing the local characteristics of an object
from aset of itsintegral characteristics (projections) by
subjecting them to special processing [1]. In a wider
sense, tomography can be interpreted as a method for
obtaining the information on the internal structure of
the object of interest from the characteristics of the
probing signal (see[1], p. 7). For example, in an inho-
mogeneous medium, one has to estimate the variation
of the sound vel ocity profilewithin apart of the path. In
this paper, the problem of determining the variations of
the waveguide parameters from the characteristics of
thereceived signa, i.e., theinverse problem, is not con-
sidered. This study is limited to a direct problem: we
show that these variations can be revealed by the time
correlation functions of anoise signal. In the cited pub-
lication [1], the authors consider deterministic signals
including harmonic and pulsed ones. Below, we con-
sider an acoustic signal formed by a noise source,
which, within the observed realization, possesses statis-
tically stationary and ergodic properties as afunction of
time.

The sound pressure produced by a narrow-band
point sourcein awaveguide can be represented interms
of amode expansion [2, 3]:

p(r, z, 1)

= WBT Y o) OnDF -t ep(-ict).

Here, the constant w is expressed in pPa and corre-
sponds to a frequency band of 1 Hz: 20 logw = W,
where W characterizes the source power in decibelsin
afrequency band of 1 Hz at adistance of 1 m from the
source; Af isthe frequency band of the signal. The sum-
mation over mis performed over all modes of the dis-

crete spectrum [4]. The waves of the continuous spec-
trum (the continuum) are taken into account in the
sound scattering from the bottom as a component
(along the horizontal coordinater) of the mode attenu-
ation (damping). These waves affect the imaginary part
of the longitudinal wave number ¢, (r) of amode when
the waveguide is irregular in r. We call a waveguide a
plane-layered one, if its deterministic parameters do not
depend onr. The function @, (2) isthe eigenfunction of
the waveguide [2-5]. The z axis is directed downward,
and the value z= 0 correspondsto the mean level of free
water. The eigenfunctions are orthonormalized by the
condition

1 for n=m

{(D)P(2)} = [ @)

0 for n#m.

The braces denote the orthonormalization operation
whose form depends on the parameters of the bound-
aries. In aliquid medium, this operation is reduced to
an integral of the product of eigenfunctions with the
weighting function p(2), which isthe density of thelig-
uid, with respect to z. Theintegration is performed over
the whole liquid column [4, 5].

In the narrow-band approximation, within the signal
frequency band, no considerable variations occur inthe
eigenfunctions of the waveguide and in the group
velocities v,,, of modes determined by the relationship

" 0w,

where w = 27, f is the frequency of sound, w, = 21tf,,
and f,, isthe central frequency of the signal in hertz.
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Thefunction p,(r) characterizes the spatial variabil-
ity (in the distancer) of the sound field. For a coherent
field in a plane-layered waveguide, we have

Pr(r) = ITD(Zo) HE (Gr), 3)

where z, isthe depth of the sound source. Similarly, the
quantity p,(r) is caculated for the central frequency in
the case of a narrow-band signal.

Thus, we calculate the quantities p(r), ®,(2), and
¢, by the program for calculating the harmonic sound
field at the frequency f,. Expression (1) describes a
coherent field, if a stochastic scattering occurs in the
waveguide along the sound propagation paths. If the
waveguide parameters wary regularly with r, i.e, the
variability can be described by deterministic functions
of r, the quantity p,(r) can be calculated either in the
adiabatic approximation [3, 4] neglecting the regular
scattering or in the approximation taking into account
the regular scattering (transformation) of modes [6-8].
The regular scattering is related to the variations of the
eigenfunctions with r, which results in the violation of
the orthogonality condition for different-number
modes calculated for different r:

{®n(D)], ., Pa(D, -, s} Z0 fOrnzm

In both approximations, the calculations are based
on the Pierce scheme known as the vertical-mode and
horizontal-ray approximation [1, 3, 4]. The sound field
of amode s calculated along the mode ray described in
the horizontal plane by an eikonal-type equation whose
right-hand side contains the longitudinal wave number
of the mode instead of the wave number in water. The
calculation of the mode rays can be performed by the
well proven programsfor atwo-dimensional waveguide.
The coefficients p,(r) are calculated along the mode
rays by using a transport equation or another scheme,
e.g., of thetype used in [6, 7]. In these calculations, at
each step along the distance, one has to take into
account the mutual transformations of modes of thedis-
crete spectrum.

In Eg. (1), tistime and t,, is the propagation time
of the mth mode between the transmission and recep-
tion points spaced at a distance r. In a plane-layered
waveguide, t,, = r/v,, Inthe adiabatic approximation,

t,= 0dr|/v(r]) . In the regular scattering approxima-

tion, the calculation is more complicated, because new
modes can be formed in the course of the propagation.
In addition, p,(r) can be affected by the contributions
made by other modes because of the scattering.

The noise character of the signal is determined by a
random homogeneous ergodic function of time F(t). We
assume that F(t)F(t—1) = B(1), where B(0) = 1 and
the overbar denotes averaging over time. Therefore, we
have p(r, z) = 0. The time correlation function of the
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sound pressure is nonzero. This deterministic quantity
corresponds to the second statistical moment [7].

The time cross-correlation function is determined
by the expression

Ke(ru 221,255 1) = p(ry, 2, 1) p*(ra 2, t—1).

Substituting Eq. (1) in this expression, we obtain
Ke(ri,r1,21,2:, 1) = wAf ; Z Pm(r 1) Pm(r2) @)

X cbm(zl) ch(ZZ) B(T _tm + tn) exp(—l ('-)OT)-

We assume that, at the point of observation, the sig-
nal isreceived by avertical array with the sensitivity of
its elements being determined according to the vertical
variability of the Nth eigenfunction. Then, the Nth
mode can be singled out of the sound field. For this pur-
pose, we multiply Eq. (4) by ®\(z,) and integrate the
result with respect to z,, at least over the layer of the
concentration of the Nth mode. Applying the condition
of orthogonality of modes, we obtain

Kn(rs 122 1) = WATBR(2) S Pt o

X cDm(Zl) B(T _tm + tn) exp(—l wOT)-

This expression is analogous in its structure to the
pulsed waveguide response in which the role of the
envelope of the transmitted signal is played by B(t) and
thetimetisreplaced by thedelay . A similar result can
be obtained when the Nth mode is separated in its
arrival timety, from the modeswith m# n. Manipulating
the delay at one of the correlator inputs, we can obtain
a pulsed-response-type expression.

A widely used method [9, 10] is based on the cor-
relation of the received signal with the reference one
F(t — Texpliwy(t — 1)]. Then, we obtain the expression

P.(r,z 1)
= w./Af Z Pm(1) ®m(2) B(T —ty) eXp(—i dT).

This formula is analogous to the expression for the
pulsed waveguide response in which the role of the
pressure pulse is played by P/(r, z, 1). The advantage
over the pulsed waveguide response caused by apulsed
signal isthat one can obtain an anal og of the pulse at the
point of observation when the signal has a low power
near the source. The required energy is accumulated
because of the use of a signal of long duration. This
way, one obtains a high signal-to-noise ratio due to the
effect of a quasi-coherent accumulation. The disadvan-
tage of this approach isits high sensitivity to the effects
related to the movements of the transmission and recep-
tion points and to the variations of the waveguide
parameterswith time. An exampleisthe Doppler effect,
which less strongly affects the correlation function of
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the type given by Eq. (5), if it produces approximately
equal effects on all modes forming the pulsed response.

Expressions (4)—6) correspond to a coherent field,
i.e., afield averaged over an ensemble of realizations of
stochastic scatterers. In calculating the variance of the
sound pressure of the total field, we use the transport
equation in the approximation of a multiple forward
scattering and a single backward scattering [11, 12]. If
the parameters of the waveguide vary regularly with r
while the scale of these variations is (as usual) much
greater than the horizontal correlation radii of stochas-
tic scatterers, the calculation of the mean intensity of
the total field is performed in the same way as the cal-
culation for a plane-layered (on the average over an
ensemble of scatterers) waveguide, but with allowance
for the regular variability. If, in aplane-layered (on the
average) waveguide, the mode transformation coeffi-
cients [7, 11-13] determined by the stochastic scatter-
ing are independent of r, then, in an irregular
waveguide, one has to solve the differential transport
equation with allowance for the variations of the aver-
age (over the ensemble of the scatterer realizations)
mode transformation coefficients.

The expressions presented above for the time corre-
lation functions describe these functionsin the complex
form. To adjust them to the real experiment, it is neces-
sary to separate their real part, which, as a function of
the delay 1, can be reduced to the form A(T)cos(w,T).
Theinformation is carried by the envelope of the corre-
lation function A(T). Its structure depends on the form
of the function B(1), and the latter depends on the
energy spectrum of the transmitted signal, aswell ason
the characteristics of the receiving filter and, especially
on the frequency band Af of the signa transmitted
through the filter. In particular, the time correlation
scale 1, of the function B(1) is proportional to 1/Af.
Hence, by increasing Af, we reduce 1, and, as a result,
obtain anarrower (in the delay) peak of the envel ope of
the time correlation function corresponding to a spe-
cific mode.

The peak of the envelope of the mth mode corre-
sponds to the point T = t,, on the delay axis. Sincet,, is
different for different modes, the received pulse is
spread. For the water modes propagating in an arctic
waveguide whose axis is adjacent to the ice cover, the
minimal group velocity is characteristic of the modes
that are captured by the near-ice layer lying between the
ice cover and the Atlantic water layer. The thickness of
the near-ice layer varies from 250 to 450 m with
increasing distance from the Fram strait toward the
coast of Canada. This is explained by the fact that the
warm Atlantic waters arriving from the northern Atlan-
tic become spread as they move further in the eastern
direction. Inthe Atlantic waters, the sound vel ocity gra-
dient is close to zero, whereas in the near-ice layer, the
gradient of c(2) is maximal, its average value being
equal to 5-6 hydrostatic gradients. Under the Atlantic
water layer, at depths greater than 750-10000 m, the
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arctic water layer is observed with the vertical sound
velocity gradient close to the hydrostatic one. The
waves refracted within this layer (the refraction is pos-
itive) have the maximal group velocities and, hence, the
minimal propagation times t,. These waves form the
leading edge of the acoustic pulse. The waves captured
by the near-ice channel are the last to arrive. Figure 1a
showsthe profile c(2) for the central region of theArctic
basin. At afrequency of 20.1 Hz, for the free water sur-
face, the group velocities of the first three modes are
equal to 1439.168, 1451.375, and 1455.384 m/s. Let us
consider an ice cover 65% of which is smooth ice and
the rest ishummocky ice. Thelongitudinal wave veloc-
ity ¢ inice is 3500(1 — i0.004) m/s, the shear wave
velocity isc, = 1800(1 —i0.04) m/s, and the ice density
is0.91 g/cm?. According to the histogram of the lower
surface of ice, the thickness of smoothiceish, =2.6 m,
the sgquare root of the variance of the ice draught is
0, = 1.8 m, and at the upper surface of the smoothice,

0, = 0.4 m. For hummocky ice, we have h, = 6.6 m and
0, = 3.3 m. The horizontal correlation scales of rough-
ness are 120 and 44 m for smooth and hummocky ice,
respectively.

The coefficients of sound reflection from the ice
cover were studied in [14, 15].

In the presence of the ice cover, the group velocities
of the first three water modes are 1439.112, 1450.51,
and 1455.211 m/s. From the comparison of these values
with the corresponding values for a free water surface,
one can see that the ice cover has almost no effect on
the group velocities of normal waves.

The ice cover affects the attenuation coefficients of
normal waves. For an acoustically soft boundary, at a
frequency of 21 Hz, the attenuation coefficients of the
first three water modes are equal to 0.000055 dB/km.
This value is determined by the sound absorption in
water. In the presence of the ice cover, we obtain
0.01801, 0.00735, and 0.00503 dB/km. The calcula
tions were performed as in the previous publications
[14, 15]. The maximal spatial attenuation is observed
for the lowest-order modes. The first mode is captured
by the near-ice channel and hasits maximum at a depth
of 160 m, although this mode partially penetrates the
Atlantic water layer.

Within the narrow-band approximation, a broaden-
ing of the signal bandwidth Af narrows the pulse peak
of a mode. One would expect that the greater Af, the
easier the identification of modes separated by a delay
time exceeding 1,. However, thistendency islimited by
the waveguide dispersion of modes, which leads to
changesint,, ®,(2), and p,(r). For example, if t, var-
ies by more than 1/Af, the mode peak is destroyed
becoming broader, and the form of the envelope of the
time correlation function changes. The waveguide dis-
persion depends on the waveguide parameters.

To switch to the broadband approximation, we use
the scheme described in [16]. We assume that, in the
ACOUSTICAL PHYSICS Vol. 48
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frequency band Af, the energy spectrum of the signal is
described by the function G(w) normalized so asto sat-
isfy the condition

Wy +Aw/2
G(w) = 1,
Wy —Aw/2

where Aw = 2TtAf. We divide the frequency band Af
into intervals Af;:

J
3 Af; = af.

j=1

We assume that, in the frequency band Af;, thesignal is
a narrow-band one with f; being the central frequency
of the jth component; wy; = 27tf,;. We calculate the par-
tial time correlation functions for each of the compo-
nentsin the frequency band Af; and combine them with
allowance for the phases and with the weighting factors
G(uy;). Asshownin[16], abroadband correlation func-
tion Is characterized by changes in both its envelope
and carrier, and the latter may not coincide with
cos(wyT).

Let us consider an example demonstrating the effect
of the waveguide dispersion on the signa form. We
assume that the sound vel ocity profile and the parameters
of the bottom and the ice cover do not vary along the
waveguide. The sound velocity profile is presented in
Fig. la. The waveguide depth (corresponding to the
water—ground boundary) is 3000 m. The bottom is mod-
eled by ahomogeneous el agtic halfspace characterized by
the longitudinal wave velocity ¢ = 1850(1 —i0.01) m/s,
the shear wave velocity ¢, = 350(1 —i0.01) m/s, and den-
sity equal to 2 g/lcm?. According to the histogram
obtained for the central Arctic region to the west of the
Lomonosov ridge, 65% of the ice cover is smooth ice
with an average thickness h; = 2.6 m, the average
drought (the square root of the roughness variance)
0, = 1.8 m, and the average height of roughness at the
upper boundary g,/4.5. For the hummaocky part of the
ice cover, the parametersareh, =6.6 mand g, = 3.3 m.
The ratio of the hummock height to its drought in
water is 1/4. The density of iceis 0.91 g/cm?, and the
wave velocities are ¢, = 3500(1 — i10.04) m/sand ¢, =
1800(1 —i0.04) m/s.

We consider the envelope of the pulsed response
of thewaveguide P (r, z, T) for z=2z,= 60 mand W =
100 dB/Hz. The distance between the transmission
and reception points is 900 km. The mean frequency
of sound is f, = 21 Hz, and the signal bandwidth
(resultant of the transmitted signal and the receiving
filter) is 7.5 Hz.

The result of the calculation in the narrow-band
approximation is shown in Fig. 2. Figure 3 presents
the result obtained in the broadband approximation. In
Fig. 2, one can notice the angular dispersion, i.e., the
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Fig. 1. Sound velocity profiles c(2).

mode dispersion. The higher-order water modes are the
first to arrive. The contribution of the bottom-reflected
waves is insignificant due to the high attenuation
caused by the bottom reflection. The first water mode
arrives last. In the narrow-band approximation, the
width of each pulse corresponding to an individual
modeis proportional to 1/Af. In the broadband approx-

|P|, WPa
1000

800

600

400 -

200 -

Fig. 2. Calculated envelope of the time correlation function
P(r, z 1) inthe narrow-band approximation for f,=21Hz,
Af=7.5Hz,r =900 km, z= Z; = 60 m, and W= 100 dB/Hz.
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Fig. 3. Calculation for the same waveguide parametersasin
Fig. 1 in the broadband approximation.

imation, the time of the mode propagation within the
signa bandwidth varies considerably. This effect is
most pronounced for the second water mode, which is
transformed from a narrow pulse to a pulse spread in
thearrival time. For the first water mode, the waveguide
dispersion proves to be much weaker, although this
mode exhibits a broadening of the peak of its envelope.
However, the position of thetop of this peak isthe same
in both approximations. When the signal bandwidth is
Af = 2 Hz, the signal remains narrow-band within the
whole 900-km-long propagation path. The correspond-
ing plot is shown in Fig. 4. It is similar to the plot pre-
sented in Fig. 2 with some deviationsin the amplitudes
and widths of the peaks.

InFig. 4, peak I correspondsto thearrival of thefirst
water mode at a distance of 900 km, and peak 2 corre-
sponds to the arrival of the same mode at a 1.5 km
shorter distance. The delay between these two peaksis
approximately equal to 1 s, which should be expected
taking into account the sound velocity in water. The
supplement to the plot of the envelope of the signal cor-
relation function is made for the following reasons. The
expressions presented above for the time correlation
functions imply the averaging over an infinite realiza-
tion. Inreality, thetimeinterval T, over which the aver-
aging is performed, is finite due to both technical fac-
tors and time variations of the waveguide parameters,
which lead to the violation of the statistical stationary
state and ergodicity of the noise signal. In addition, the
spatial positions of the transmitter and the receiver can
vary because of the drift of the ice fields to which the
transmitter and the receiver are attached. It is possible
that the transmitter and the receiver are objects inde-
pendently moving in water. The motion of the objects
leads to changesin the form of the correlation function,
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Fig. 4. (1) Same as in Fig. 2, but for Af = 2 Hz; (2) the
dashed curve corresponds to a 1.5 km shorter distance.

i.e., adeterministic quantity, which is used in solving
the problems of monitoring where even the roll of the
transmitting and receiving systems can deteriorate the
measurement results. The finiteness of the averaging
interval T leadsto the appearance of a fluctuation com-
ponent with a variance proportional to (AfT)!' at the
correlator output. The fluctuation component masks the
deterministic component and imposes a limitation on
the measurement accuracy and on the very possibility
of detecting the deterministic component. Hence, the
stability of the parameters of the experiment in timeis
of fundamental importance.

The above consideration may have another applica
tion. Let us assume that the transmitter—receiver dis-
tance is unknown, but the direction of the signa arrival
isknown. For example, the signal is received by a hor-
izontal array or a set of receivers, which can be used to
form a receiving system with spatial selectivity. By
placing atest hydrophone at a known distance from the
receiving system in the direction from which the signal
arrives, or introducing simple geometric corrections,
we determine the time delay between the signal arrivals
at thereceiver and at the test hydrophone. Knowing this
delay and the delays in the signal propagation timesto
the points of observation from the transmitter, through
simple cal culations we determine the distance between
the transmitting and receiving systems. In our case, the
distanceis about 900 km (which can be easily verified).
More precisely, the calculation yields approximately
930 km with allowance for the accuracy of the determi-
nation of the peak positions on the delay axis. The posi-
tion of a peak can be determined with higher accuracy,
if the peak is made sharper by using, e.g., receiving fil-
ters whose frequency characteristic provides sharper
peaks.

2002

ACOUSTICAL PHYSICS Vol. 48 No. 2



APPLICATION OF A NOISE SIGNAL IN ACOUSTIC TOMOGRAPHY OF THE ARCTIC BASIN

The problem of determining the distance becomes
more complicated when the waveguide parametersvary
along the sound propagation path, aswell asin the pres-
ence of an additive noise caused by the medium and a
multiplicative noise caused by the stochastic scattering
of sound. In the case under consideration, the latter can
be neglected, so that the signal is a coherent one.

As the second example, we consider a path that is
irregular in the distance r. The parameters of the path
are taken from the experiment carried out by research-
ers from the Acoustics Institute in the 1980s [17]. The
path contains a shallow-water part whose parameters
correspond to the Franz—Victoriatrough. The length of
the shallow-water part is 5 km. The slope of the bottom
extendsto a distance of 110 km where the depth reaches
a value of 3 km. At distances from 110 to 200 km, a
deep-water region was observed in the experiment. In
the calculations, we assume that this region extends to
a distance of 900 km in the direction of the genera
decline of the waveguide depth. In the deep-water
region, the sound velocity profile ¢(z) corresponds to
curve 2 in Fig. 1b. In the shallow-water region, the
sound velocity takes the values 1440, 1450.2, 1451.4,
and 1444.5 m/s at the depths 0, 50, 140, 170, and 400 m,
respectively. Recall that the initial, i.e., zero, depth in
the profiles ¢(2) corresponds to the free water level,
although the water layer begins below theice cover, and
this fact is taken into account in the calculations by
recal culating the sound vel ocity profile according to the
position of the ice-water boundary. To describe the
variation of the sound velocity profile from shallow-
water to deep-water one within the irregular region, we
use linear interpolation. The parameters of ice in the
deep-water region are the same as in the preceding
example. In the shallow-water region, the ice cover is
smooth everywhere. Its thickness is 1 m, the average
drought iso = 0.6 m, and the correlation scale of theice
roughnessis40 m. The ground is considered asan elas-
tic halfspace with ¢, = 1800(1 — i0.005) m/s and ¢, =
350(1 —i0.005) m/s. The ground density is 2 g/cn?.
These parameters approximately correspond to the
shallow-water region and the initial part of the slope at
low frequencies. We use the same parameters for the
ground in the deep-water region, because, at a distance
of 900 km, the contribution of the bottom reflectionsis
insignificant, if the waves reflected from the bottom in
the regular deep-water region of the waveguide are con-
sidered.

The source of sound generates a noise signal with
the central frequency f, = 21 Hz and is observed in the
frequency band Af = 2 Hz. The transmission depth is
40 m, and the reception depth is 50 m.

The study of the sound propagation along apath that
contains deep-water and shallow-water regions is not
only of scientific interest, but also of practical value.
Large and heavy transmitting and receiving systems
intended for long-term operation are rather installed in
shallow-water regions for technical reasons. In a
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coastal zone, such systems can be cable-connected with
stationary coastal stations.

As for the observations (e.g., climate monitoring),
they should be performed in the deep-water regions of
the arctic ocean, because these regions are character-
ized by arelative stability of the water column parame-
tersin depth. The coastal part of the slope and the shal-
low-water regions are characterized by unstable acous-
tic parameters of the water column because of such
phenomena as tides, seasonal variability, and currents.
The variations of the sound velocity profile that occur
in the deep-water regions due to the variations of the
salinity and temperature of the water layers are rela-
tively small. Hence, the variations caused by these phe-
nomena in the mode propagation times are also small.
Therefore, the perturbations introduced by the shallow-
water parts of the path can cause considerable varia-
tions of the pulse structure of the signal. For example,
we note the following factor. In shallow-water regions
at high frequencies, the group vel ocities of modes usu-
ally decrease with increasing mode number. In deep-
water regions, the situation is reversed. As aresult, the
differencesin the mode propagation timest,,, can vanish
[10]. Asthe zero time of the mode propagation over an
irregular path, it is convenient to take the instant of the
mode transition from a surface-bottom mode to the
stage of its separation from the bottom reflection, i.e.,
to awater mode. For example, on the path under study,
the first water mode, which is concentrated in a narrow
layer near the sound channel axis, at low frequencies
(20 Hz and higher) becomes separated from the bottom
and passes to the adiabatic stage (for the coherent com-
ponent of the sound pressure) starting approximately
from a distance of 10 km and beyond, when the sound
source is positioned in the shallow-water region. In the
experiment on the time monitoring of this mode, it is
expedient to construct the time correlation function by
formula (5), where N = 2 (the first mode at frequencies
of several tens of hertz is the flexura wave of the ice
cover, which rapidly attenuates with increasing dis-
tancer); thus, N = 2 correspondsto thefirst water mode.

Figure 5 presents the envelope of the time correla
tion function (5) as afunction of the delay for anirreg-
ular path on the condition that the total coherent noise
signal received at a distance of 900 km correlates with
the first water mode of the same signal received at adis-
tance of 10 km. The envelope is similar in its shape to
the pul se transmitted through a distance of 890 km. The
higher-order modes arrivefirst, forming akind of asin-
gle pulse. Then the pulse corresponding to the first
water mode arrives; this mode is the only one captured
by the near-ice water layer at afrequency of 21 Hz.

At the given transmitter and receiver depths, thefirst
water mode prevailsin the signal received at a distance
of 10 km. Therefore, if we construct atime correlation
function for the same conditions, but by formula(4), for
r, =10 km and r, = 900 km, the envelope of the cross-
correlation function K, will take the form shown in
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Eq. (5) for an irregular propagation path; r; = 900 km and
r, =10 km.

K], (Pa)?

62 -
56
49
42
35¢F
28 -
21+

14 -
7,
0 1

Fig. 6. Same asin Fig. 5, but for the sound velocity profile
corresponding to curve 1 from Fig. 1b.
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Fig. 5 with arather small difference between the enve-
lopes of the time cross-correlation functions. the peak
positions on the time delay axis are identical, but the
maximal values are somewhat smaller in the second
case, because the magnitude of the eigenfunction of the
first water mode is less than unity.

Figure 6 presentsaplot for the case similar to that of
Fig. 5. The only difference is that, for the deep-water
region, we used the sound velocity profile given by
curve 1 from Fig. 1b. The change in the sound velocity
profile caused a noticeable change in the time (delay)
structure of the envelope. The changes in the mode

KUDRYASHOV

propagation times are most pronounced for the modes
of the first numbers, which are concentrated in the
water layers where the changes in the sound velocity
profile are maximal.

Thus, with the above formulation of the problem, it
ispossible to reveal achangein the sound velocity pro-
file within a given part of the sound propagation path,
e.g., in the course of along-term experiment, on condi-
tion that the path geometry and the transmitted signal
areinvariable.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 01-02-16636.

REFERENCES

1. V. V. Goncharov, V. Yu. Zaitsev, V. M. Kurtepov,
A. G. Nechaev, and A. I. Khil’ ko, Acoustic Tomography
of the Ocean (IPF RAN, Nizhni Novgorod, 1997).

2. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed.
(Nauka, Moscow, 1973; Academic, New York, 1960).

3. L. M. Brekhovskikh and Yu. P. Lysanov, Fundamentals
of Ocean Acoustics (Gidrometeoizdat, Leningrad, 1982;
Springer, New York, 1991).

4. B. G. Katsnel’son and V. G. Petnikov, Acoustics of a
Shallow Sea (Nauka, Moscow, 1997).

5. V. D. Krupin, Akust. Zh. 46, 789 (2000) [Acoust. Phys.
46, 692 (2000)].

6. V. M. Kudryashov, Akust. Zh. 33, 55 (1987) [Sov. Phys.
Acoust. 33, 32 (1987)].

7. V.M. Kudryashov, Akust. Zh. 34, 117 (1988) [ Sov. Phys.
Acoust. 34, 63 (1988)].

8. E. C. Shang and Y. Y. Wang, J. Acoust. Soc. Am. 105,
1592 (1999).

9. P.N. Mikhalevsky, A. N. Gavrilov, and A. B. Baggeroer,
IEEE J. Ocean Eng. 24 (2), 183 (1999).

10. P. N. Mikhalevsky, A. B. Baggeroer, A. Gavrilov, and
M. Slavinsky, EOS Trans. Am. Geophys. Union 76 (27),
265, 268 (1995).

11. F G. Bassandl. M. Fuks, Wave Scattering from Statisti-
cally Rough Surfaces (Nauka, Moscow, 1972; Perga-
mon, Oxford, 1978).

12. V. M. Kudryashov, Matem. Probl. Geofiz. (Novosibirsk),
No. 4, 256 (1973).

13. V. M. Kudryashov, Akust. Zh. 42, 438 (1996) [Acoust.
Phys. 42, 386 (1996)].

14. V. M. Kudryashov, Akust. Zh. 42, 247 (1996) [Acoust.
Phys. 42, 215 (1996)].

15. V. M. Kudryashov, Akust. Zh. 45, 529 (1999) [Acoust.
Phys. 45, 472 (1999)].

16. V. M. Kudryashov, Akust. Zh. 34, 1081 (1988) [Sov.
Phys. Acoust. 34, 618 (1988)].

17. V. M. Kudryashov, in Proceedings of All-Union Acousti-
cal Conference (Moscow, 1991), Section D, p. 35.

Translated by E. Golyamina

ACOUSTICAL PHYSICS Vol. 48 No.2 2002



Acoustical Physics, \ol. 48, No. 2, 2002, pp. 187-200. Translated from Akusticheskir Zhurnal, Vol. 48, No. 2, 2002, pp. 224-238.

Original Russian Text Copyright © 2002 by Maximov, Merkulov.

Effect of a Mudcake on the Propagation
of Stoneley Wavesin a Borehole

G. A. Maximov and M. E. Merkulov
Moscow State Engineering Physics Institute (Technical University), Kashirskoe sh. 31, Moscow, 115409 Russia
e-mail: maximov@dpt39.mephi.ru
Received March 19, 2001

Abstract—The problem of detecting a permeable stratum blocked by a mudcake with the help of acoustic
measurements inside a borehole is considered. Different physical models of the mudcake are compared: in
the form of ahighly viscousliquid layer, in the form of a soft elastic shell, and in the form of an elastic shell
fixed in an arbitrary way to the borehole walls. Numerical calculations are presented for the wave field in a

borehole. © 2002 MAIK “ Nauka/Interperiodica” .

In view of the numerous predictions concerning the
exhaustion of basic ail reserves, the problems of both
prospecting for new deposits and efficient use of known
oil supplies become increasingly important. For years,
studies had been carried out to determine the relation
between the properties of low-frequency Stoneley
waves excited in aborehole and the permeability of the
surrounding medium.

Laboratory experiments[1] showed that the proper-
ties of Stoneley waves in a borehole surrounded by a
permeable medium are adequately described by the
Biot theory [2, 3]. However, in actua conditions, the
walls of the borehole can be covered with an almost
impermeable layer, which considerably reduces the
fluid flow from the reservoir to the well. The formation
of such alayer, namely, amudcake, can be caused, e.g.,
by the drilling mud that is deposited on the walls of the
borehole or penetrates under hydrostatic pressure into
the porous medium. On the other hand, experiments[4]
showed that in the course of drilling, solid particles of
rock can penetrate into the pores of the borehole walls
and form a thin (<0.5 mm) barrier, which is 100 to
20000 times less permeable than the surrounding
medium. It was shown that this process leads to a
decreasein the average permeability of rock by afactor
of 2-150. Thus, a mudcake considerably reduces the
production of an oil pool and can even hinder its detec-
tion by afluid flow.

Currently, none of the existing technologies is able
to determine the position of a permeable stratum in the
presence of a mudcake in a borehole. The first step in
the development of such technologies is a theoretical
study of the effect of a mudcake on the acoustic wave
field inside a borehole. For this purpose, it is necessary
to develop a model that adequately describes the mud-
cake. Active studies in this area of research are carried
out in the United States [5, 6]. For example, some
authors[5] represent amudcake as an impermeablethin

elastic membrane, and other authors [6] consider the
mudcake asalayer of rock with areduced permeability.
In both cited publications, acompl ete wave problem for
the Biot model was solved for an arbitrary frequency
range, which considerably complicates the description
and the physical interpretation of the results.

In this paper, we consider only the long-wave
approximation, because, in acoustic measurements, the
characteristic wavelengths observed in both the sur-
rounding medium and the borehole fluid are usually
much greater than the borehole diameter. Three differ-
ent physical models of the mudcake are developed. In
the first model, the mudcake is described as a highly
viscous liquid layer formed in a permeable porous
medium of the stratum. This representation can be eas-
ily reduced to the model of alow-permeability layer [6]
and, from this point of view, it is more general. In the
second model, the mudcakeis considered as afree elas-
tic shell situated near the wall of the borehole. Thethird
model differs from the second in that the shell is fixed
in an arbitrary way to the borehole walls. This model
includes an additional assumption that the shell thick-
ness is much smaller than the borehole diameter.

For each of the models, numerical calculations are
performed to determine the wavefield inside aborehole
intersecting a permeable stratum that is blocked by a
mudcake. The calculations make it possible to draw the
conclusions concerning the possibility of detecting a
permeable stratum in the case of awave and a mudcake
with characteristic parameters.

The frequency range used in vertical seismic profil-
ing as arule does not exceed several hundreds of hertz,
and the borehole diameter does not exceed 20 cm.
Hence, the characteristic wavelengths in both the bore-
hole fluid and the surrounding medium far exceed the
borehole diameter. Therefore, in deriving equations, we
use the long-wave approximation A > b (b is the bore-
hole radius).

1063-7710/02/4802-0187$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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The propagation of small-amplitude wavesin alig-
uid is described by the equations of mation, continuity,
and state:

[atpf(r ya t)+prV(f)(r zt) =0
0
H"?gtv(f) —0OP,(r, z,t) (1)

EPf(r,z, t) = cgpf.

Here, Py(r, 2. 1), pr(r, 2. t), and V(O = (V" (r, 2. 1), 0,

Vi (r,z t)} denote the deviations of thelocal pressure,
density, and mass velocity, respectively, from their
equilibrium values; p° and ¢, are the initial density of
the liquid and the sound velocity init.

In the long-wave approximation, it is natura to
characterize the sound field in the borehole by the

dynamical quantities averaged over the borehole cross
section [7, 8]:

b
21
P:(z,t) = —[P«(r, z,t)rdr,
f Tth{ f

b

2
pi(zt) = n—g‘z{pf(r,z, tyrdr, )

b

V(f)(z t) = V(f)(r z,t)rdr.
nb-(]:

Here, bistheradius of the borehole. In Egs. (1) and (2),
we took into account that, in the long-wave approxima-
tion, the distributions of the dynamical quantitiesin the
borehole are axially symmetric, so that averaging over
the angle yields the factor 21t

According to Egs. (2), after averaging the equation
of continuity and the equation of motion (its projection
on the borehole axis) over the borehole cross section,
we obtain the relationships

0

3V (21) = —poatpf( t)——V‘”(r =b,z1), (3)
OV (zt)  aP,
P ot 0z’ “)

Combining Egs. (3) and (4), we obtain an inhomo-
geneous wave equation for the pressure field in afluid-
filled borehole:

0°P;

10°P; _ 2p70V{(r =b, z1)
07 ’

CO at - b at

&)
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or, in terms of the frequency representation,

6 Pf (1«)2 %Vr

07 ¢ b

When transverse filtration flows in the borehole—
stratum system are absent, the fluid velocity near the
borehole boundary coincides with the velocity charac-
terizing the displacement of the borehole walls (or the
inner surface of the mudcake). The fluid filtration
through the mud is neglected in this case.

In the long-wave approximation, to obtain a closed
equation for the pressurein the borehol e, we can usethe
quasistatic relation between the applied pressure and
the displacement of the borehole walls (the inner sur-
face of the mudcake), which can be determined from
the static equations of the theory of easticity [7-9].
Since we limit our consideration to the linear approxi-
mation, this relation will also be linear:

V2(r =b,z,w) = AP, +B. 7)

Then, the closed equation for the pressure will have the
form

(r=b, zw). (6)

9° 0Py Pf
o7 +K (oo)Pf = iw b B, ®)

where the wave number is determined by the expres-
sion
1

2
K(w) = Eﬂ—uw%m | ©)
2 0

Thisexpression can also berepresented intheform[5, 6]

K(w) = wS(m)[l + (10)

ZQ}
where Sw) = ¢c'(w) isthe owness, i.e., the reciprocal
of the phase velocity of the tube wave, and Q is the
Q-factor.

The coefficients A and B in Eq. (7) depend on the
parameters of the borehole wall, the mud, and the
fluid. For simple cases, these coefficients are well
known. If the borehole is surrounded by a homoge-
neous elastic medium, these coefficients are A =
iwb/2u and B = P, A, where 1 is the shear modulus
of the elastic medium and P, is the effective external
stress. Then, the wave number will be determined by
the expression

K2(0) _m[+—+p(f)D

0

(11)

If the elastic medium under consideration is charac-
terized by a nonzero permeability, the expression for
the velocity will have an additional term associated
with the transverse filtration flows in the borehol e—stra-
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tum system. In this case, the wave number will have the
form [8]:

p omy1K; (2

K (w) = [+— +2p) 2= 12
where the argument z = I?K b is determined by
0™ f

both the frequency and the combination of the parame-
ters characterizing the porosity m,, the permeability k,,
and the dynamic viscosity of the fluid n; K, and K, are
the Macdonald functions.

In this paper, we determine the coefficients of the
quasistatic relation between the applied pressure and
the displacement of the inner surface of the mudcake.
For this purpose, we consider the following system: a
borehole in a permeable homogeneous elastic medium

lo(Y1R1) +
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blocked by a mudcake. The main problem is that the
mudcake may exhibit different properties in different
conditions. Therefore, we developed several models of
the mudcake [10]. In fact, only two fundamentally dif-
ferent ways are possible in describing this object: the
mudcake can be considered either as a highly viscous
liquid or as a solid shell.

MODEL OF A MUDCAKE AS A HIGHLY
VISCOUS LIQUID

This model represents the mudcake as a highly vis-
cousliquid layer formed in the porous medium of a per-
meable stratum. In the framework of this model, the
coefficients characterizing the relation between the
velocity of the inner mud surface and the pressure have
the form (see Appendix A):

. FR)[;
A = mo«/iTk)F(VlRo) F(Y1Ro)

11(Y1Ro)

o(lel)} 2 [ 1,(Y:Ry) Kl(lel):|
Ki(YiRo) ]  Kiill1(Y1Ry)  Ki(Y1Ro)

13
Ki(y;Ry)7’ (19

o(YiR1)  Ko(Y:1Ry) 1(Y1Ry)
PR ER) R TRy

B, = —P*A,,

lo(Y1Ro)  Ko(Y1Ro)

(14)

where R, istheinner radius of the mud layer (in thismodel, it coincides with the boreholeradiusb); R, isthe outer

radius of the mud layer; & = kK/nmy; y; = ioo/a,—2

;1 =1, 2, where 1 corresponds to the mud and 2 to the fluid;

Ko 1o, Ky, and |, are zero-order and first-order modified Bessel functions;

a, Ky(YiR) : ~ 11(2)
F(yR) = ———""Z-and i = 1,2; F(2) = .
ViR = KRR SN
Taking into account the elastic motion of the borehole 0 0
walls, we obtain an expression for the wave number K2z LyPr 2P 1 (16)
describing the wave propagation in the borehol e: cg o b Wi(w)+Wy(w) |
0
K2 = o 12_'_ Pr 2pfA1 (15) where
B bw
| o wmw~mml%m
When the thickness of the mudcakeis zero, i.e,, R, = imp.
R, this expression is reduced to Eq. (12). H(l)(Z) oM
. . = _ N
In [6], the authors described the mudcake in the Wy(w) = b Z= |—=—Db,
framework of the Biot model as athin layer of the sur- mO HY () koK

rounding elastic medium with a reduced permeability
Kimp- Since permeability isinvolved in Eq. (13) only in
combination with the viscosity, k/n, our model can be
easily reduced to the model described in [6]. For this
purposs, it is sufficient to assume that the compression
modulus of the mud is equal to that of the fluid: K¢, =
Ks,. Then, by varying the viscosity of the mud, we
effectively vary the permeability of rock. The cited
publication [6] presents the low-frequency approxima-
tion of the total result (see Eg. (13) in [6]):
ACOUSTICAL PHYSICS Vol. 48
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HL" and H{" arethe zero-order and first-order Hankel

functions of the first kind, and K is a fairly complex
combination of the porosity and the elastic moduli that
characterize the skeleton of the porous medium and the
fluid (detailed formulas can be found in [5]). Perform-
ing the numerical comparison, we took into account the
difference between K and K; by introducing a correc-
tion factor close to unity.
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Table 1. Parameters used in the calculations

MAXIMOV, MERKULOV

Fluid-filled borehole Fluid density p?, kg/m3 1000
Sound velocity in the fluid Co, M/S 1500
Fluid viscosity n, Pas 0.001
Borehole radius b, cm 145

Porous medium Longitudinal wave velocity Cpy M/ 3735
Transverse wave velocity Cs, M/s 2080
Density of rock Pp, kg/m® 2337
Porosity my 0.2
Permesbility ko, D 0.1

Mudcake Sound velocity in the mud Cct, M/s 1500
Mud viscosity NecLs Pas [0.001-0.1]
Mud density PcL, kg/m® 1000
Mudcake thickness R; — Ry, mm 1

When the thickness of the mudcake is zero, Eq. (16)
is reduced to an expression equivalent to Eq. (12):

0
Le,
c, H

K2 = (.02[ omolH(ll)(E)}_ (17)

PRI

It should be noted that, to change to the frequency rep-
resentation, we used the Fourier transform with the core

€, whereas in the aforementioned publications [5, 6],
the core e was used. Therefore, to compare resullts, it

is necessary to perform the substitution «w» —= —w. Tak-
ing into account the relation between the Hankel and

Macdonald functions, K,(2) = gi"“ Hﬁl) (iz) [11], one
can easily verify that Egs. (12) and (17) are structurally
identical.

To compare our model of a highly viscous liquid
with the model of alow-permeability layer, we used Eq.
(16) and the parameters from [6] (Table 1). The results
of this comparison are presented in Fig. 1.
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Fig. 1. Comparison of the frequency dependences of the phase velocity c(w)/c (I&ft) and the damping factor 1/Q (right) calculated
using the mode! of a highly viscous liquid (the solid curves) for the parameters ky/nc = 1 and 15 D/Pa s with the corresponding
dependences obtained for the model of alow-permeability layer [5]. The dashed curves correspond to the calculations for an open
borehole.
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MODEL OF THE MUDCAKE AS AN ELASTIC
CYLINDRICAL SHELL

Inthismodel, themudcakeisrepresented asan elastic
cylindrical shell, which has the inner radius R, and the
outer radius R, and is situated near the inner surface of
the borehole (see Appendix B). The coefficients charac-
terizing the quasistatic relation between the velocity of
the inner mud surface and the pressure have the form

R, [1+dy +H- %zg[”’(z) 1]
L dutapd - mmm*q’(z)%“dlt&jzmlg)
- ioozRo —Poi[1+d] |

- v - afH 00
where

W) = uﬁ o) = i

and the parameter d is determined by the following
expressions depending on the type of the stressed state:

= 3A + 21 when the shell ends are free (o, = 0)
A+2u
and
d=2FH \hen the shell ends are fixed (u,, = 0).

Index 1 corresponds to the mudcake, and index 2 to
the porous elastic medium.

We note that, in this model, the coefficient B is not
related to A by Eq. (14), so that the velocity character-
izing the displacement of the inner mud surface is not
proportional to the difference between the pressures
inside the borehole and at infinity. This is a conse-
guence of the fact that, under pressure, the mudcake is
not only displaced as a whole, but it is also deformed,
i.e., its thickness changes.

In[5], the mudcake was considered as an €l astic mem-
brane. The result obtained in this case in the low-fre-
guency approximation is as follows (Eg. (58) from [5]):

K*(w)

0 Py, Py 2(1- fc)u% (20)
2" My [Wmc+Wp(w)] H?

Ho[Ag + 2] + Fo(ly — o) (A + 1) |
AL+ 20 + fo(Hp—Hy)

Mf=

M)Ay + )/ (A + 21y);

2002
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t=1-EF o

D;H=UZ_
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and W,,c is the membrane stiffness, this parameter
being artificially introduced in the boundary condi-
tion between the porous medium and the mudcake:
Oyr1(b) = Py(b) + Wyyc[Upx(b) — ux(b)]. Here, o, is the
radial component of the stress tensor at the surface of
the mudcake; P, is the fluid pressure in the pores; and
U,, and u,, are the displacements of the fluid and the
skeleton of the porous medium, respectively. Inthe case
W,,c = o, this condition is reduced to the zero differ-
ence between the displacements: U,,(b) — u,,(b) = 0. In
the case Wy,c = 0, we obtain the equality of pressures:
0-rrl(b) = Pz(b)

In developing our model, we used the latter condi-
tion, i.e., the condition of equal pressures (see Appen-
dix B). Therefore, to perform the comparison, we must
set Wy =0in Eq. (20).

Substituting A, into Eq. (9), we obtain the wave
number of the tube wave in our model. If we separate

the term pf/Mf and use the formulad, = (A; + K)/H,
corresponding to the case of fixed ends (u, = 0), the
wave number can be written in the form

0 2
K2(0) = o Bl LPr 2 (A-fguy O o1
() = E{g M, " o X+ Wyw)HAT 2V

+
where X = 2pu,f. Ayt i is the term that distin-

A+ 21,
guishes our result from Eqg. (20) at Wy = 0.
When the membrane thicknessis equal to zero, i.e.,
-R,=0, wehave f.=0, whichyields X =0, and the
results coincide. In the other limiting case k, — 0, we
have W, — 0, and both Egs. (20) and (21) are reduced
to the expression

K2(0) _wm—+91|j
|:C

0

(22)

Figure 2 showstheresultsof calculationsby Egs. (20)
and (21) for the parameters presented in Table 2 (the
values of the parameters are taken from [5]).

STATISTICAL MODEL

To compare the model of a highly viscous liquid
with the cylindrical shell model, it is necessary to cal-
culate the wave field inside the borehole. In the follow-
ing section, we will show that the results obtained with
these two models differ considerably. The calculations
using the cylindrical shell model with the characteristic
parameters show that the mudcake practically does not
affect the wave field (this conclusion was also made in
[5]), whereas the calculations performed in the frame-
work of the model of ahighly viscous liquid show con-
siderable changes in the wave field structure due to the
mudcake.
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Fig. 2. Comparison of the frequency dependences of the Stoneley wave slowness S(w) (Ieft) and the damping factor 1/Q (right) cal-
culated using the model of an elastic membrane for the parameters h = 3 mm (the solid curves) and 6 mm (the dot-and-dash curves)
with the corresponding dependences obtained for the membrane model [5]. The triangles refer to h = 3 mm and the diamonds refer
to h =6 mm. The dashed curves represent the calculations for an open borehole.

This discrepancy between the results called for the
development of a more realistic model in which the

mudcake is considered as athin cylindrical elastic shell
fixed to the borehole walls in an arbitrary way (see
Appendix C). This model contains a random parame-
ter—the distance between the fixing points. Varying its

3 =

_iwb
20 Wy + K zKo(2)/(mgbK,(2))’

)

the case under consideration, the coefficientsin Eq. (7)
have the form

. - (23)
average value, one can obtain the results similar to
those derived from the two models considered above. In B; = —PetAs,
Table 2. Parameters used in the calculations
Fluid-filled borehole Fluid density p? , kg/m3 1000
Sound velocity in the fluid Co, M/s 1500
Fluid viscosity n, Pas 0.001
Borehole radius b, cm 105
Porous medium Longitudinal wave velocity Cpy M/S 3360
Transverse wave velocity Cy, M/S 1675
Density of rock P, kg/m3 2670
Porosity my 0.2
Permeability ko, D 0.1
Mudcake Longitudina wave velocity in the mud ch, mis 1500
Transverse wave velocity in the mud CoL, Pas 320
Mud density PcL, kg/m® 1100
Mudcake thickness R; — Ry, mm [0-6]
ACOUSTICAL PHYSICS Vol. 48 No.2 2002
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Fig. 3. Comparison of the frequency dependences of the phase vel ocity c(w)/c (left) and the damping factor 1/Q (right) for different
models of the mudcake: (1) the highly viscous liquid model, (2) the elastic shell model, and (3) the statistical model. The dashed

curves correspond to an open borehole.

where

2 b 25 Bk
~ Eh 1+sO4a0  1+4sDyE0
+e

- _Eh sle
T (1=

isthe shell stiffness; h isthe shell thickness, E and o are

the Young modulus and the Poisson ratio, respectively;
=2

1= %; S= LB —1; L isthe average distance between

the fixing points; and D isits variance. The wave num-

ber is expressed by the formula

K? (24)
f
= o2k + Pr g 2o 1 0.
5 K b Wie+ K zKo(2)/(mpbK,(2) )0

We note that, in this model, the velocity of the inner
surface of the mudcake is proportional to the pressure
difference P; — P,,, despite the fact that, asin the previ-
ous case, the mudcake is described asa solid body. This
is a consequence of the thin shell approximation.

Figure 3 presents the comparison of the frequency
dependences of the phase vel ocity and the damping fac-
tor of atube wave for the model of ahighly viscouslig-
uid, the eastic shell model, and the statistical model.
The calculations were performed using the parameters
from Table 2. The mud viscosity wasng = 0.1 Pas; the
mudcake thickness was h = 5 mm; the average length
and itsvariance in the statistical model were taken to be

ACOUSTICAL PHYSICS Vol. 48
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L =4 mm and D = 13 mm2 These parameters were
selected so as to demonstrate most clearly the interme-
diate position of the statistical model.

Below, we present examples of calculated seismo-
grams that illustrate the effect of the mudcake on the
acoustic wave field generated in a borehole by a pulsed
source positioned inside the borehole. To obtain the
seismograms, we used the TUBEWAVE software [7,
8], which allowed us to calculate the wave field in a
borehole embedded in a stratified elastic medium.

Figure 4a shows the simplest case of aboreholein a
homogeneous elastic medium. In this case, a wave
propagates in the borehole without reflections. If aper-
meable stratum with the same elastic parameters as
those of the surrounding medium is introduced in the
system, a difference will appear in the fluid velocities
near the borehole walls. Then, the wave numbers given
by Egs. (11) and (12) will differ by only the second term
in Eq. (12), i.e., the term associated with the permeabil-
ity. Thismay give rise to areflected wave (Fig. 4b).

In our calculations, we used the following parame-
ters: theinitial fluid density p$ = 1000 kg/m?; theinitial
fluid velocity ¢; = 1500 m/s; the fluid viscosity n =
0.001 Pas; the borehole radius b = 10 cm; the density
of the surrounding elastic medium p = 2000 kg/m?; the
longitudinal and transverse velocities of sound in this
medium ¢, = 4500 m/s and ¢, = 2500 m/s, respectively;
the thickness of the permeable stratum (for the case cor-
responding to Fig. 4b) d = 4 m; the porosity of the
medium m, = 15%; and the permeability of the medium
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Fig. 4. Synthetic seismogramsillustrating the propagation of Stoneley wavesin aborehole (a) in the absence and (b) in the presence

of apermeable stratum.

k, = 10 D. The permeability was chosen to be high to
make the effect under investigation more pronounced.

Now, let us assume that the permeable stratum is
blocked by mud. Depending on the mudcake and stra-
tum parameters, three situations are possible:

(8 mud is amenable to varying pressure; then, the
seismogram hastheform showninFig. 44, i.e., thestra-
tumisclearly “visible’;

(b) mud is resistant to varying pressure; then, the
seismogram hastheform showninFig. 4b, i.e., the stra-
tumis“invisible’

(c) the intermediate situation.

Thus, the effect of the mudcake on the wave field
should manifest itself asachangeinthe amplituderatio
of the reflected and transmitted waves. The stronger the
mudcake blocks the permeable stratum, the smaller the
amplitude of the reflected wave.

For each model of the mudcake and for afixed mud-
cake thickness h = 1 cm and with fixed parameters for
the borehole, we chose mud parameters that correspond
to each of the three aforementioned situations (Fig. 5).

In the model of a highly viscous liquid, the perme-

L. /K
able stratum is visible at Ne /e _ =1 and invisible
I']f/Kf
/K ) ) : .
when nr(]:LTKCL > 1, and the intermediate situation is
f f

Ne/Ke
r]f/Kf
the stratum is visible when p,/p, < 1 and invisible
when ,/l, > 1, and the situation is intermediate when
K,/W, = 1. Inthe framework of the statistical model, the

Ul«/_b

realized when —=——<t >= 1. Intheelastic shell model,

stratum isvisiblewhen — < 1 andinvisiblewhen

Ul«/_b
Ho

to “_@ -1

Ha L

Calculations performed for the characteristic param-
eters of both borehole and mud showed that, for the
highly viscousliquid model, case (b) isrealized (the stra-
tumisinvisible), and for the dastic shell model, case ()
takes place (the stratumisclearly visible). Thisisthedis-
crepancy of the results that was mentioned above. In the
calculations, we used the following characteristic param-
eters of mud: the density p, = 2000 kg/m?, the longitu-

dinal sound velocity ¢f, = 1000 m/s, the transverse sound
velocity (for the dastic shell model) ¢z, =500 m/s, and
the viscosity ng = 1-100 Pas. A similar calculation for

the statistical model showed that case (a) is most likely
to berealized.

> 1, and theintermediate situation corresponds

ACOUSTICAL PHYSICS Vol. 48 No.2 2002
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Fig. 5. Synthetic seismograms illustrating the effect of the mudcake on the reflection of Stoneley waves and their transmission
through a blocked permeable interval for the cases of (a) awesak, (b) intermediate, and (c) strong blockage. The parameters corre-
sponding to these cases for (1) the model of ahighly viscous liquid, (2) the elastic shell model, and (3) the statistical model are as
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Thus, in this paper, we discussed the problem of
detecting a blocked permeable stratum by means of
acoustic measurements in a borehole. In this context,
we studied the response of such an object asamudcake
to the effect of an acoustic wave field. Several ways of
describing the mudcake were proposed, and it was
found that its response to the effect of acoustic waves
strongly depends on the mudcake model. The calcula
tion performed in the framework of the model repre-
senting the mudcake as a highly viscous liquid layer
showed that, in the case of a viscosity characteristic of
a mud solution, a mudcake several millimeters thick
completely blocks the permeable interval. A similar
calculation using the elastic shell model yields the
opposite result even for a one-centimeter-thick mud-
cake. A more realistic model representing the mudcake
as an elastic membrane fixed in an arbitrary way to the
borehole surface allowed us to combine the two previ-
ous results by averaging them with different weights.
Formally, this procedure resulted in the introduction of

the effective stiffness of the membrane Wic . In [5], the
membrane stiffness was introduced as a parameter,
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whereas, in this paper, we proposed a new method for
its calculation. We showed that, in the low-frequency
limit, the results obtained in [5, 6] in the framework of
the Biot theory agree well with the results obtained by
us. However, the results obtained in this paper are
derived in amuch simpler way and have aclearer phys-
ical interpretation.

In closing, we conclude that, currently, there exists
atheoretical basis for the determination of mud-cake-
blocked permeable intervals in a borehole from the
character of the propagation of Stoneley waves. How-
ever, the choice of the most adequate model of a mud-
cake is hampered by the lack of experimental data.

APPENDIX A
(THE HIGHLY VISCOUS LIQUID MODEL)

In the framework of this model, a mudcake is con-
sidered as a highly viscous liquid layer formed in the
porous medium of a permeable stratum and character-
ized by the inner radius R, and the outer radius R,.
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A laminar fluid flow in a porous medium is
described by the continuity equation and the Darcy law:

o(m pf)+dlv(mpf My = o,
_mgn

Ko
where mand m, are the current and initial porosities of

the medium, respectively; p; and p; arethe current and
initial densities of the fluid; V(¥ isthe mass velocity of
the fluid (the skel eton of the porous medium is assumed
to be stationary); k, is the permeability of the medium;
and n isthe dynamic viscosity of the fluid.

Setting m = m, = const (i.e., neglecting in this way
the contact compressibility) and taking into account the
compressibility of the fluid according to the relation-

ship p; = p?%[ + Poot] , we linearize Egs. (A.1):
Ky

(A.1)

gradP,, = ——V ",

0P

. f
5t +de|vV( ) = 0,

(A2)

v,

_ _Mon
gradP,, = _—EO_

0

Here, K; is the bulk modulus of the fluid. From
Egs. (A.2), we easily obtain the filtration equation
oP
e a’AP,, = 0,
where a’> = k)K;/nm, and A is the Laplacian. We seek
the solutionintheform P, = P, + P(r, t).

por

In terms of the frequency representation with allow-
ancefor the cylindrical symmetry, the problem of filtra-
tion can be formulated as follows:

(A.3)

[ArP(r (D)——P(I' w) = 0 for Ry<r <R,
al

MAXIMOV, MERKULOV

The genera solution for R, < r < R, hasthe form

0 o0 0 o0
P(r, @) = C;Ko0 "o+ C,lo0 /210
a; [ a; [

for Ry<r <R; and

0 fiw D 0 oD
P(r, @) = C3KoO "1+ Cylo0 /210
a, [ a, [

for Ry <r <oo,

(A.5)

where K, 1y, K;, and |, are the zero-order and first-
order modified Bessel functions [11]. The constants C;
are determined from the following boundary condi-
tions: at long distances from the borehole, the deviation
of the pressure from the equilibrium value should tend
to zero, i.e., P(r — o, w) — 0. At the mud-fluid
boundary in the porous medium, the conditions of
equal pressures and equal velocities must be satisfied,
and at the borehole boundary, the mud pressure should
be equal to the fluid pressure in the borehole:

P(R;—0,w) = P(R; +0, w)

O (f)

v (R -0, w) = vI"(R, +0, w)
0

[P(Ry w) = Py(w).

(A.6)

Here, P; represents the deviation of the pressure in
the borehole from the equilibrium pressure.

Thus, substituting the general solutions (A.5) into
Egs. (A.6), we obtain a set of equationsfor the determi-
nation of the constants C;. Using the solution of the fil-
tration problem for Ry < r < R, and Egs. (A.2) relating

- (A9 & and P, we obtain (through cumb of
Oy p ——P(r ) = 0 for Ry<r<co "and P, we obtain (through cumbersome transfor-
B P(r, ) 2 1 : mations, which are omitted here) an expression for the
O 2 filtration velocity at the inner boundary of the borehole:
FoeR[ Ry °§§1§3}+K [im o)
(f) - d 1\Y1 1 1 1\Y1 1\Y1
v ,®) = P.myJiwF F , (A7)
(Ro, @) ro (¥1Ro) (leO)F(y R )[ lo(Y1Ry) Ko(Y1R1)} s 2 [ 1(V1R1) Ki(yiRy)7’
2 lo(Y1Ro) Ko(Y1R0) K¢ o(VlRo) Ko(Y1Ro)

wherey; = %),j =12
a;

8 Ky(YiR)
K Ko(YiR)’

1,(2)
lo(2)

F(ViR) = =12 F(@ =

Onecan easily verify that, at R, = R,, i.e., when the mud
layer thicknessis equal to zero, Eq. (A.7) isreduced to
the expression, which coincides with the result
obtained in [5] by solving a simple filtration problem
without the mud layer:

2002
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D=p mo«/E)F(VzRo)

K1(Y2Ro)
=P momezKo(Vz Ro)’

One can a'so show that Eg. (A.7) transformsto Eqg. (A.8)
when the parameters of the fluid and the mud are equal,
i.e., wheny, =v..

(A.8)

APPENDIX B
(THE CYLINDRICAL ELASTIC SHELL MODEL)

Inthismodel, the mudcake isrepresented asan elas-
tic shell characterized by the inner radius R, and the
outer radius R, and situated near theinner surface of the
borehole with the radius R, (Fig. 6). We assume that
only radial displacements take place. Then, from the
conditions of equal pressures and displacements at the
layer boundaries, we obtain an expression for the dis-
placement velocity of the mudcake with allowance for
the transverse flows in the borehole-stratum system.

The equilibrium equation for a solid under a surface
force hasthe form [12]

2(1-o)grad(divu) —(1—20)curlcurlu = 0,

where o is the Poisson reatio.

The deformation caused by a pressure that is uni-
form aong the tube has the form of aradial displace-
ment u, = u(r). In this case, we obtain

grad(divu) = 0,
1o(ru) _

divu = ar

onst, (B.1)

b
u=ar+-.
r

Using the Hooke law, we derive an expression for the
radial component of the stress tensor:

0,(r) = 2apd-2u2, (B2)
r

3\ + 21
A+2u

(0,,=0)andd= A% when the ends are fixed (U, = 0).

whered = when the ends of the shell are free

We will first consider the fluid in layer 111 as a solid
by formally introducing its shear modulus ;, and, in
the final formula, wewill set i; = 0. Then, according to
Egs. (B.1), the displacement of the fluid has the form

u. (r) = afr+bT (B.3)
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Fig. 6. Geometry of the praoblem for a borehole blocked by a
mudcake: (1) the borehale fluid, (I1) the mudcake, (I11) the
intermediate fluid layer, and (1V) the surrounding perme-
able porous medium.

Using Egs. (A.1)—(A.5) from Appendix A, we obtain
the expressions for the pressure and the fluid displace-
ment in the porous medium:

por(r) = Pext+CK0(A/ w/a’ r), (B.4)
Upor (1) = K ——Ky(Jiwa’r).  BS)

w/a’

Now, we formulate the conditions of the equality of
pressures and displacements at the layer boundaries:

o (Ry) = =Py,
o (Ry) = 0y (Ry),
u'(Ry) = uy (Ry).

The displacement at the fluid—porous medium bound-
ary (r = R,) is determined by the filtration of the fluid
and the el astic displacement of the porous medium:

(B.6)

U (RZ) - U (R2)+rnourpor( 2)

1 v p'V (B.7)
c)-rr(RZ) = C)-rr(Rz) = - por(RZ)'
The conditions at infinity have the form
O (o0) = ,
rr( ) @(t (B8)
Ppor(oo) = Pext-

Substituting Egs. (B.1) and (B.2) into the boundary
conditions (B.6)—(B.8), we obtain a set of linear equa-
tionsin the unknowns a,, b,, b, b,, and C:
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b, _
Szalllldl—zlll% = —P;

] b, _ by
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1

O ; b
gPM—CKO(Juw/aZRZ) = 2af(uf+Af>—2ufE;
2

g

EﬁlRl"'b _ale"'&
O Rl I:zl
g b
ékpm—mzé = -
0 b;

R+t =Leyme L
Daf 2t R R My

Solving this set of equations and setting s =

R

ERDD[ LP(Z)%‘

(B.9)

Po— CKo(Niw/a’Ry)

Ky(vio, w/a’ Ry).

K iw/a’

0, we derive an equation for the displacement of the mudcake:

W(Re) = aiRy+ 2 =

R, 2
My ER 0 D|: LP(Z) %‘-

K1zKo(2). — nm
my Ky(2) '

®(2) =

The corresponding velocity in the frequency repre-
sentation is related to displacement (B.10) by the factor
i v (w) = iwu(w). We limit our consideration to the
cae R, = R,, i.e, to the case of a mud layer immedi-
ately adjacent to the borehole wall. Then, we have

Ver(Ry w) = i
(B.11)
Y
[Rc%%[ (2) 1}

- B0+ w(z)%udlg’%‘l‘azg

For a shell of zero thickness (R, = R,), Eq. (B.11)
takes the form

(Py—Pe)[1+d)] + P HL-

. P —Pq
Ve (Ro, ) = '(*)Ro—sz(““z‘)‘t
(B.12)
1, MKy (Z)]
2“2 K zKo(2)
Expression (B.12) coincides with Eq. (A.8) correct

to the term iwR,AP/21,, which represents the velocity
determined by the elastic motion of the borehole walls.

= |(oRoAP[

R, (R Y@
RE0) R e B ERDﬂ Pac(du* 1)
gﬁ%}+q)(2)m;l |:1+d1%i| (B.10)
1o s %@
IwkoKf Ry, W(2) u22u2 " &)(Z).

APPENDIX C
(THE STATISTICAL MODEL)

In the two preceding appendixes, we considered the
model of a highly viscous liquid and the elastic shell
model. These models yielded entirely different results.
Inthe case of ahighly viscousliquid, thefiltration flows
can be neglected. On the other hand, in the elastic shell
model, a one-centimeter-thick mudcake practically
does not affect the velocity of the fluid near the bore-
hole walls.

This discrepancy between the results required the
development of a more realistic model. In such a
model, the mudcake is considered as a thin elastic
cylindrical shell fixed in an arbitrary way to the bore-
holewalls. For simplicity, we assume that the positions
of thefixing points obey cylindrical symmetry. Thedis-
tance between the neighboring fixing points L isaran-
dom value whose distribution is described by some
probability density. The probability density function is
unknown, but we can assume that its behavior issimilar
to the Gaussian distribution, because L depends on
many parameters. Then, the probability density func-
tion should have a dome-like shape characterized by a
mean value and a variance of L; it should be defined
within the interval 0 < L < c and normalized to unity.
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In this paper, for simplicity and convenience, we use
the probability density function in the form

G(L) = L°exp(~L/1), (C.1)

TS+ lS!
where sis a positive integer.

Averaging of the Mudcake Displacement
within a Sngle Céll

The equilibrium equation for athin cylindrical plate
in the absence of the dependence on the azimuth angle
has the form [12]

12 E = A_P
R’h®’ D’

Eh®
12(1-0%)’
where § isthe radial displacement of the plate, E isthe
Young modulus, o is the Poisson ratio, h is the plate
thickness, Risthe borehole radius, and AP isthe differ-

ence between the pressures on the two sides of the
plate: AP =P; — P,,.

4
L.
(C.2)
D

F(b) = 1
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The boundary conditions have the form
&(x) =0and (%(E(x) =0atx=0,L.

These boundary conditions allow usto consider the
platefixed at many different pointsasaset of individual
cells, which are fixed at their ends and have different
lengths. We introduce the notation

12
k4 = F]E‘R—z .

Evidently, a particular solution to inhomogeneous
equation (C.2) is &, = AP/Dk*, and the general solution
to the homogeneous equation can be easily determined
by applying the substitution & = exp(Ax). From the con-
dition that the displacements be real and from the
boundary conditions, we obtain the expression for the
displacement & of a cylindrical shell fixed at the edges.
Averaging this expression for & over x, we obtain

(C.3)

L
:_1 _ AP
§ = [{E(X)dx = %F(b), (C4)

where

andb=KkL/./2.

The function F(b) has the following asymptotics:
b-0 b o

F(b) — b*%180 and F(b) —— 1 — 2/b. Since the
function F(b) has a fairly complex form, we select an
approximating function of a simpler form for the sub-
sequent calculations:

f(b) = b*(b+3)". (C.6)

When b is small, the function f(b) behaves as (b/d)*
and, when b is large, f(b) = 1 — 4&/b. By varying the
parameter 9, it is possible to obtain a coincidence of the
functions F(b) and f(b) for different values of b.

Averaging of the Mudcake Displacement
over All Cells

Let the distribution of the cell length L be described
by the probahility density G(L). Then, the procedure of
averaging over L has the form

— _ 00_ _ ﬁw
[E0 = JOE(L)G(L)dL = Dk4JO'G(L)F(b(L))dL.(C‘7)

Performing the integration in (C.7), we replace the
function F(b) in theintegrand by the function f(b) given
by Eqg. (C.6). The parameter o is chosen so as to make
the functions F(b) and f(b) as close as possible to each
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_ 2sinh(2b) + sin(2b) —2[ sin(b) cosh(b) + sinh(b) cos(b)]
b cosh(2b) + cos(2b) —2

(C.5)

other near the maximum of the function G(b(L)) given
by Eq. (C.1). In this case, we obtain

_ AP b
[E0 = " e ‘dL
Dkt 13!{ (b+3)*
. (C.8)
s+1 s+4
DK's! 4 (b+ )
where
a = J2/tk. (C.9)

Thisintegral can be calculated. Then, the average dis-
placement will have the form

= _ AP
EO= —d(a),s).
Dk* (ad.s)
Here,
d(ad, s)

aS+4 0 (06)3

_ (a6)3+1
a(ad)”*H 6

sl

(-1)°

eEi(ad),

—xt
where Ei(x) = [ eT dt.

Theanalytical form of the function ®(ad, s) israther
complicated. Since our aim isto obtain the most simple
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function that is convenient for calculations and ade-
quately describes the main features of the behavior of
the physical quantity, we again use an approximating
function. It has the form

d'(ao, s)

1 0O Al 0 A2 (C.10)
= = = + -

z[eXpD 1+ sta% SPITT sta%},
where the parameters A,, A,, B,, and B, are chosen so
as to obtain the closest approximation of the initial
function. In the calculations, we used the values A, = 2,
A2=25, Bl= l,and82=4

Substituting the initial parameters of the problem,
we obtain

AP(1-0%) ol
Eh 2
25 6J_R]
D 1+4s4/3t 5] Wyc

In this formula, the displacement is expressed
through the pressure difference between the two sides
of the shell. Now, we introduce in our consideration the
permeable stratum and the filtration flows from it (asin
the previous model). Sincewe already averaged thedis-
placement along the borehole, we now consider the
mudcake asan ordinary (not fixed) shell. Then, by anal-
ogy with (B.1)—(B.8), we obtain the set of equations

(0=

2 8./hRy,
[ pml+sy—m

(C.11)

EEEDEU = (P; = Poy)/Wiic
%Pout = Pext+CK (Z) (Clz)
[l
u = moC 1(2)
0
Solving this set, we obtain
-P
u= (P~ Pec) (C.13)

Wie + K zKo(2)/(meRK,(2))”

The corresponding velocity in the frequency represen-
tation isrelated to displacement (C.13) by thefactor ic:
v (W) = iu(w). Itisaso necessary to take into account
the elastic motion of the borehole walls. Thisis accom-

MAXIMOV, MERKULOV

plished by introducing an additional term in the expres-
sion for the velocity. The final result has the form
v
ﬁ; = (Pf - Pext)
(C.14)

[ ; J
20 RWuc + K ZKo(2)/ (MoK 1(2))
When the thickness of the mudcaketendsto zero, we have
Wic — 0, and Eq. (C.14) isreduced to Eq. (B.12).
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Abstract—When fish strength is estimated indirectly from the sounder echo amplitudes, the inverse techniques
of solving the so-called “single-beam integral equation” are quite satisfactorily used. This approach needs prior
knowledge of the beam pattern PDF, asit representsthe kerndl of the integral equation to be solved and is usualy
calculated under the assumption of a uniform spatia distribution of fish. However, it may be shown that in some
cases this assumption is not necessarily justified. For instance, when the density of fish increases, one receives
multiple echoes from the same single fish in successive transmissions, which results in observing so-called fish
echo traces. Typically used fish counting methods are either simple direct echo counting statistics or fish traces
statistics [1]. Increased fish concentration is not only the reason of multiple echo formation resulting in the fish
traces in consecutive pings. Asit is easily seen from the geometry of the phenomenon, even arelatively low-den-
sity fish aggregation forms multiple echoes and, hence, fish traces if the vessel (or fish) relative speed is low
enough and the beam pattern angular width (sampling volume) is large enough. In some situations, the uniform
assumption works properly only for the cases of large numbers of samples. Taking into account this phenomenon,
the accuracy of the solution can beimproved by including the fish traces counting statisticsin cal cul ating the beam
pattern PDF. In this paper, two different models of fish traces statistics are investigated: one assuming the vessel
movement with stationary fish and the other with a stationary vessal and moving fish. Both approaches are mod-
eled numerically and verified experimentally using the data obtained from a dual-beam system. The comparison
of both approaches, i.e., for single echo traces and multiple echoes, is carried out using Windowed Singular Value
Decomposition (WSV D) and Expectation Maximization and Smoothing (EMS) inverse techniques of fish target
strength estimation in both the absolute domain (backscattering length estimation) and the logarithmic domain

(target strength estimation). © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Indirect methods of fish target strength estimation
using single beam echosounder systems fall into the
category of inverse problems in which the probability
density function (PDF) of target strength is estimated
from fish echoes. Due to hydroacoustics system charac-
teristics, the reconstruction of the fish target strength
PDF isbased onincomplete data[2]. Thiskind of prob-
lem is an example of the statistical linear inverse prob-
lem, which is typically ill-conditioned and can be
solved using direct inverse techniques, based on regu-
larization or iterative techniques in which additional
congtraints are specified. In most cases, the observed
data are restricted to the certain echo amplitude dynamic
range limited by the side-lobe level. This approach
allows omission of the problem of ambiguity of the beam
pattern function [2]. However, to caculate this function,
an additional assumption on the spatial distribution of
fish in the beam pattern volume is to be made.

The statistics of the so-called fish traces, which are
represented by multiple echoes received from the same
fish in consecutive echosounder transmissions, and
beam pattern probability density function (PDF) seem
to be two absolutely separate and unrelated issues. The

L This article was submitted by the author in English.

first one is used in the analysis of fish counts estimates
[1], whereas the second one playsacrucial rolein indi-
rect fish target strength estimation [2]. However, it
appearsthat these two seemingly separate problems are
closely related when one considersthe PDF of the beam
pattern in the context of multiple echoes from individ-
ual fish.

The widely used assumption of a uniform spatial
distribution of fish in the water column leadsto asine-
law distribution of the angular position of thefish. This
assumption is valid only for the case of single or non-
multiple echoes received from individual fish in con-
secutive pings. However, when acquiring actual data
from acoustic surveys, the multiple or correlated ech-
oes may be collected from the same fish forming the
fish traces.

In this paper, the analysis of two models of fish
tracesis presented and the PDF's of the number of mul-
tiple echoes occurring in fish traces and the angular
position of the fish are also derived. Later on, the beam
pattern PDF is calculated based on the same assump-
tions as in the case of the fish traces statistics. Finally,
the beam pattern PDF is used as the kernel of the “sin-
gle beam integral equation” for reconstructing the fish
target strength estimate from the echo data.

1063-7710/02/4802-0201$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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(2) Model 1—p,:U(0, r)

MOSZYNSKI

(b) Model 2—a:U(0, 172)

Fig. 1. Geometry of two models for the number of echoesin fish traces analysis.

FORMULATION OF THE PROBLEM

Two modés of the fish traces statistics, the geometry
of whichisillustrated in Fig. 1, have been considered:

(1) amoving vessel model with stationary fish,
(2) amoving fish model with a stationary vessel.

In the first model, the uniform vessel movement
with stationary fish is assumed as detailed in Fig. 1a.
The second model assumes a fish movement along an
arbitrary path in the transducer beam pattern cross-sec-
tion, as shownin Fig. 1b.

Let us further assume that the distribution of the
variable z representing the depth at which fish appears
in the conical area defined by observation angle 8., is
uniform, i.e.,

p.(2) = . (1)

max

where z_,. represents the maximum depth. Due to the
linear relation between depth and radius of a circular
dicez=rtan8,,,, the distribution of the random vari-
able r also becomes uniform, i.e.,

pi(r) = —, e

rmax

where r.« = Zn./tanb,, is the maximum possible
radius of the circular cross-section of the beam pattern.

MOVING VESSEL
AND STATIONARY FISH MODEL

In the first model, al fish traces represent parallel
lines crossing every circular slice of the observation
cone. Thus, the fish position in consecutive pings can be
represented by equidistant points on paralle chords.

The unknown statistics of the number of fish N, can be
derived from the geometrical equation:

2
Ny = /r’=ps, 3)

where Ad represents the sampling distance between
consecutive points. The random variable r represents
theradius of acircle, and the random variable p, repre-
sents the distance between the center of that circle and
the trace of the fish. In this model, one assumes that a
fish may appear in the circle in such away that the dis-
tance from the centre to the trace of the fish is equally
probable, so that, in other words, the distribution of p,
is uniform in arange interval (O, r). This allows us to
treat the random variable p, asa product of two random
variablesp, =r u, wherethevariable uisrepresented by
a normalized uniform distribution. Substituting this
relation into Eq. (3), we obtain:

2,
Ad
Now we can treat again the number N of fish traces as

a product of two random variables x = 2r/Ad and y =
(1 —u?»)'”2 and calcul ate the probability distribution func-

tion as an integra equation p,(2) = J'px (X)Py(Z/X)/xdX,
which gives the PDF of N as

N, = 1-u” 4)

1
Ad 'y du
pn,(N) = — ®)
1 2
AJ\ll Fmax 1_y2y
21 e
which, initsturn, yields
_ Ad . AdNQ
Pu(N) = S—(p-acing—= (©)

The expression Ad/(2r,,,,) in EQ. (6) may be treated as
the parameter of the data measurement system and can
ACOUSTICAL PHYSICS Vol. 48
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be calculated from therel ation for the mean value of the
random variable:

Ad T
2r max 8

The probability density function of the number of
echoesin fish tracesfor thismodel is presented in Fig. 2.

E{N} = (M

MOVING FISH
AND STATIONARY VESSEL MODEL

In the second model, one assumes that the fish
crossesan arbitrary circular cross-section of the conical
sampled volume with an equally probable angle a.
From geometrical relations, the number of fish traces
can be expressed as

2 .

N, Ad rsina, (8)
where the random variable a represents the crossing
angle. The unknown distribution of the number of fish
echoesin thefish trace N, can be derived again from the
equation determining the PDF of the product of two
random variables x = 2r/Ad and y = sina. Assuming a
uniform distribution of the angle a, we obtain:

1
Ad 2 1 dy

pi(N) = [ o-2—=—%,
AJ;\IZZrmaXH /1_y2 y

2r

®

max

which eventually leads to:

Ad /_DAd 7
mmaxarctanh 1 EQrmaxNZD' (10)

The mean value of the random variable N, with a PDF
in the form of Eg. (10) is given by:

P, (N) =

Ad 1
2r o T

E{N} = (11)

The probability density function of the number of
echoesin fish tracesfor thismodel is presented in Fig. 3.

STATISTICS OF THE ANGULAR POSITION
OF FISH FOR MULTIPLE ECHO TRACES

Let us now consider the distribution of the angular
position of fish 6 in the transducer beam that is neces-
sary for calculating the beam pattern PDF. The random
variable 6 can be expressed as (see Fig. 4):

z 1
0 = arccos—= = arccos

R J1+(pr2)"

ACOUSTICAL PHYSICS Vol. 48
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Moving vessel stationary fish py(INV)

020
- I 4esnND
pn(N) = 3 arcsmaD
0.15F
E{N} = %’T a=20
0.10+
0.05+
| | |
0 5 10 15 20

N

Fig. 2. Theoretical probability density function (PDF) of the
number N of echoesin fish tracesfor moving vessel and sta-
tionary fish model.

Moving fish stationary vessel py(INV)

_ 2 [, N
pn(N) = T[aarctanh 1—;

0.20

0.15

0.10

0.05

! ! !
0 5 10 15 20
N

Fig. 3. Theoretical PDF of the number N of echoesin fish
traces for moving fish and stationary vessel model.

where the random variable z represents the fish depth
and the random variables R and p represent the fish
position coordinates related by the equation R?> = p? +
Z. Let usaso consider the random variablet called the
trace distance, which represents the distance of the fish
from the crossing point of the circular slice. Assuming
that the fish swims on the chord and is “sampled” uni-
formly in the consecutive pings, we can treat its PDF as
uniforminarange (0, 2rsina). Thus, the trace distance
random variable can be expressed as t = 2rsina u,
where u again has a normalized uniform distribution.
Taking into account the cosine law in the nonright-
angled triangle (Fig. 4) we obtain:

2

p =
= r’(1-(2sina)’(u-u?).

r?+t?—2rtsina
(13)
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Fig. 4. Geometry of multiple echo traces of thefish.

Substituting z = r tan®,,,,, , which removes the z depen-

dence from Eq. (5) and ther dependencein Eg. (6), we
receive the equation for the angular position 6:

1
J2—(2sna) (u-ud)

Equation (7) shows that the distribution of the angular
position 6 depends only on the distribution of the cross-
ing angle a as random variable u represents uniform
distribution resulting in the PDF of variable u — u?
expressedas p,_ .(x) = (1/4—x)""2. Thedistribution of

thevariable o depends on the angular relations between
fish and vessel movement [2] and can change from
sine-law, when the stationary fish model is used, to uni-
form distribution when the stationary vessel model is
used. Both models give the distribution of the variable
4sin’a as p g X = (4% — X221t for the sine-law

06 = arccos (14)

model or p,_ . (X)=(4- X)~1/2/4 for the uniform distri-

bution one. Finally, using the formulae for the PDF of
the product of random variables and transforming
accordingto Eq. (7), wereceivefor thefirst and the sec-
ond model, respectively:

1 kOl tanB 7 sinB
an2emax |:tanemf"Xl:lCOSSG,

Pe1(0) = t (15)

1 1 sin®

an” 0 [ tan® Pcos’®’
[tan@,,,J

Pe2(B) = (16)

where K(k) = J'o12 (1 — K*sin?¢)~>d¢ represents a com-
plete elliptic integral of thefirst kind.

Bothdistributionsareillustrated in Fig. 5. It isworth
to note that, as one could expect, there are more echoes
received from larger angles, which results in an
increase in the distribution as compared to the sinelike
distribution known for the case of nhonmultiple echoes
received from a single fish.

BEAM PATTERN PDF BASICS

To derive the beam pattern PDF, let us first con-
sider an ideal circular piston transducer in an infinite
baffle, for which the one-way beam pattern function b
is given by

2J34(x)
—

b(6) = (17)

where x is defined by x = kasin 6, k isthe wave number,
aisthe transducer radius, and J, is the Bessel function
of thefirst kind of order n. The logarithmic form of the
two-way pattern in decibels is derived by the simple

transform B(6) = 10logb (6)? = 20 logb ().

The beam pattern PDF pg(B) represents the kernel
function of the inverse problem for atwo-way system
and can be obtained from its absolute variable form

ACOUSTICAL PHYSICS Vol. 48

No. 2 2002



FISH TARGET STRENGTH ESTIMATION USING MULTIPLE ECHO STATISTICS
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Fig. 5. Theoretical distribution of the angular position 8 for the two analysed models.

Py, Which can be expressed as a parametric function
pp(b) = (b%(6), p,(6)) with the angle 6 as a parameter:

U 4

_ 27 _pe(B)tand [

%D x 0 831()()\]2()()%’
X

Py(b) (18)

where pg isaprobability density function of the random
angular position of fish. Then, using a logarithmic
transform of variables B(b) = 20 logb, its PDF relation
can be written as

Py %lo%a-

A typical approach in the PDF calculation of the
angular fish position py is based on the assumption of a
uniform distribution of fishin the water column (further
called nonmultiple echoes statistics), which gives the
sine-law distribution of the angular position 0 [1]:

1

Pe(6) 1 — oS8,
where 6, is the maximum angle of the beam pattern
involved in the calculation. However, as will be shown
in the next section, for datasets obtained during a sur-
vey where several echoes from one fish are present in
consecutive pings, a more accurate assumption should
be made.

B
~ |n10‘ »

sind, (20)

BEAM PATTERN PDF FOR AN ACTUAL SYSTEM

The way of calculating the beam pattern PDF for a
Biosonics's dual-beam ESP (i.e., Echosounder Signal
Processor) system is presented. The ESP system uses a
dual-beam (6°/15°) digital echosounder of 420 kHz

ACOUSTICAL PHYSICS Vol. 48
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operating frequency and 0.4 ms pulse length. The cal-
culation of the beam pattern is performed only for a
narrow beam channel, as echo from this channel can be
used for inverting the target strength of the fish. The
beam pattern was fitted using the following approxima-
tion proposed in [1]:

1
(1—cos8) [y

b(0) = %1_(1—2”)1_(;086%&],

21)

where the exponentia coefficient y = 0.1 was fitted
numerically to the actual pattern. The logarithmic
transform and the inclusion of nonmultiple echo statis-
tics, Eg. (20), leads to the equation

IN10 y 1-c0S6345

yB
20
20 1 _271-c0S6, 107,

pe(B) = (22)

and the inclusion of multiple echo statistics, Eq. (15),
leads to the equation

_1n10 vy
pB(b) - 20 1_2—V
B (23)
>(1—c0363dBKDtan6 01 10\5_0'

[an®,.-cos’e

where 6 can be calculated as the inverse of b(0) from
Eq. (20):

tan29max

0 = arccos(1 — (1 —10°%"®)(1 - cosB445)/ (1= 27)).

Figure 6 illustrates the approximation of the actual
beam pattern of a narrow beam channel and two PDF
functions, one with honmultiple echo assumption and
the other with multiple echo assumption.
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Fig. 6. (3) Beam pattern approximation, (b) beam pattern PDF for the nonmultiple echoes assumption, and (c) beam pattern PDF

for the multiple echoes assumption.

SURVEY RESULTS

To justify the correctness of the presented analysis and
validateitsresults, actud fish echo datawasused. Thedata
was acquired from an acoustic survey on pelagic fish pop-

pnv(N)
700

600
500
400
300
200

100

L 1

20 25

I
30
N

10 15

Fig. 7. Sample distribution of the number of multiple
echoes in fish traces from survey.

ulations (mostly salmon and trout) in Coeur d’ AleneLake,
Idaho (provided by J.B. Hedgepeth, Biosonics Inc., Seat-
tleand E. Parkinson, University of Vancouver, Canada)
using a dual-beam digita echosounder of 420 kHz
operating frequency and 0.4 ms pulse length. There
were processed records of over 6500 pings from which
over 10000 fish echoes were extracted for analysis and,
using software algorithms, 2009 fish were counted. The
distribution of the number N of multiple echoes in fish
tracesisshownin Fig. 7 inthe form of ahistogram. The
results match Model 2 of distribution presented in Fig. 5.
However, it isalso possible that it matches Model 1 due
to the border effect in obtaining the PDF estimate by the
histogram technique (the range betweenN=0and N =1
cumulates asonly N = 1 has physical sense).

Numerical experiments conducted on survey data
show good agreement with the presented model s of fish
statistical behavior during measurements. The mean
value of the distribution is equal to 5.3. It isworth not-
ing that in practice it is possible that the complicated
fish behavior can be modeled by a mixture of Model
1 and Model 2 dueto the relative movement of the fish
and the vessel. Model 2 with a uniform distribution of
the crossing angle represents a more “random” case

ACOUSTICAL PHYSICS Vol. 48
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Fig. 8. Results of the fish target strength TS estimation and the backscettering length Lgg estimation using nonmultiple echo statistics.
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Fig. 9. Results of the fish target strength TS estimation and the backscattering length Lgg estimation using multiple echo statistics.

than Model 1 with its sine-law distribution of the cross-
ing angle.

Two different inverse techniques were used to
observe the difference in the results obtained by using
both assumptions concerning multiple echoes cases.
The first technique, Windowed Singular Value Decom-

ACOUSTICAL PHYSICS  Vol. 48
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position with nonnegative constraint, as adirect method
of calculation representsthe classical approach to solv-
ing ill-conditioned integrals. The second technique is
more sophisticated: Expectation, Maximization, and
Smoothing based on an iterative algorithm with statis-
tical constraints, which also seems to be the more
robust inversetechnique[3]. Theresults of thetypically
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used assumption of nonmultiple echoes statistics are
presented in Fig. 8, and the results of using multiple
echoes statistics are shown in Fig. 9.

CONCLUSION

Two different approaches to the statistics of fish
echo traces in the calculation of the beam pattern PDF
were analysed in this paper. When the data acquired
during surveys contain multiple echoes from single
fish, it appears that the typically used approach is not
adequate. The presence of amultiple number of echoes
inthefish traces can beverified numerically during data
postprocessing, which may show that the more ade-
guate approach needs to use the statistics of the number
of multiple echoes in fish traces. The results presented
in the paper allow use of multiple echo statistics for the
beam pattern PDF calculation.

The results of using two different assumptions on
the statistics of fish echo traces in the process of recon-
structing the target strength and backscattering length
of the fish population from single beam data are pre-
sented in the paper. When the data acquired during
measurements contain multiple echoes from onefish, a
more adequate approach is suggested. The presence of
a multiple number of fish echo traces was verified
numerically during data postprocessing resulting in a
distribution of the number of multiple echoes in fish

MOSZYNSKI

traces. Theresults alow oneto use multiple echo statis-
tics for the beam pattern calculation [4].

Figures 8 and 9 shows that both inverse techniques
perform better when proper assumptions are made. Itis
worth noting that, when the kernel of the single-beam
integral is properly chosen, the large artefacts in esti-
mates disappear. It is especially observed in the case of
reconstructing the backscattering length, which repre-
sents numerically a more ill-posed situation. The esti-
mates presented in Fig. 8 suggested the existence of a
large number of very small fishes, which after verifica-
tion using the dual-beam data appeared to be incorrect.
By contrast, the results presented in Fig. 9 clearly show
the existence of one group of large fish with the other
smaller group of smaller fish (using the WSVD
method). Note also that the EMS method may over-
smooth the PDF and create an impression of the exist-
ence of only one group of fish.
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Abstract—Mechanisms of the self-action of sound in quasi-stationary gases with nonequilibrium-excited
vibrational states of molecules are considered. It is demonstrated that the observation of a self-focusing of
sound is possible in such media. Two mechanisms of the self-action of sound are responsible for the self-focus-
ing in an acoustically active medium: the cooling of gas by sound and the excitation of acoustic streamingsin
opposite directions. © 2002 MAIK “ Nauka/Interperiodica” .

Various mechanisms of the self-action of sound that
lead to its defocusing or self-focusing in heat-conduct-
ing viscous media are considered in [1-11]. According
tothe estimates[4], it was demonstrated that the contri-
bution to the self-action of a beam observed before the
shock formation can be made only by the mechanisms
related to the heating of the liquid because of the sound
absorption and to the excitation of alongitudinal acous-
tic streaming. In liquids and gases in thermodynamic
equilibrium the second mechanism always leads to the
defocusing of sound, because the direction of the
acoustic streaming coincides with the propagation
direction of a sound beam. As for the thermal mecha-
nism, it leads to a self-focusing in the case of the sound
propagation in liquids (except for water) and to defo-
cusing in the case of the sound propagation in agaseous
medium, because in the latter case, the sound velocity
increases with temperature. Therefore, the sound prop-
agates faster in the central, hotter, part of a beam than
in the less heated peripheral region, and a diverging
thermal lensisformed in the medium.

It was demonstrated in [12] that the situation
changes in thermodynamically nonequilibrium media,
e.g., in a vibrationally excited molecular gas. The
dynamic properties of such a medium are determined
by the second viscosity whose sign depends on the
degree of nonequilibrium [13, 14]. In mediawith aneg-
ative second viscosity, the dissipated energy flux is
directed from the medium to the wave, and such a
medium acquires focusing properties. However, the
strong inhomogeneity of nonequilibrium media pre-
vents the observation of the self-focusing of sound.
From this point of view, nonstationary nonequilibrium
mediaare of interest. On the one hand, these media stay
acoustically active, aswas demonstrated in[15-17]. On
the other hand, thereis no need to provide for a special
heat sink in them, and such a medium can be fairly

homogeneous within thetime At < 11 = a@%/x, whereais
the characteristic dimension of the system and x isthe
thermal diffusivity.

This paper considers both mechanisms of the self-
action of sound propagating in a quasi-stationary,
vibrationally excited gas.

Theinitial set of equations of gas dynamics has the
form

dp , odivy =
at + pdivV = 0,
dv _ N
pgr = “OP+nAv+ o+ vy,
dT, dE, Tdp _
My, Mz Vg, o
p 0x.[Bx, 3 "‘axD
dE, E.-E, _pT
i T ¥ PE

Here, d/dt=0/0t + VI; V, p, P, and T arethe veloc-
ity in the gas, its density, pressure, and temperature; n
is the shear-viscosity coefficient; m is the molecular
mass; E, and E, are the vibrational energy per molecule
and its equilibrium value; 1, is the vibrational relax-
ation time; and Q is the power of the energy source that
maintains the excitation of vibrational states. For sim-
plicity, we assume that Q, X, and n are independent of
T and p; Cy.. and Cp,, arethe heat capacities of tranda-
tional and rotational degrees of freedom (and also of
equilibrium vibrational modes) at constant volume and
pressure. The equations are written in terms of energy
units. In the case of cylindrically symmetric beams, the
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vector V has two components: the longitudinal compo-
nent U and the transverse component W. The transverse
velocity component W, which results from the diver-

MOLEVICH

gence, is the quantity of a higher degree of smallness
than U.

We try a solution to Egs. (1) in the form

U = U, xt)

€

+ UT(V, X, 1) eXp[—iJ’oodt +ikx] +c.c,

@)

P = Py(t) + POr, x, 1)

(€]

P . .
+ 7(r, X, t) exp[—lj'wdt +ikx] +c.c.,

and analogously, for other components, where w and k
are the frequency and the wave vector of an acoustic
wave. In aquasi-stationary approximation, the parame-
tersof anonequilibrium medium must changeslowly in
comparison with w, i.e.,

10P, 10T, _ S
POt T,ot TG @
19p, _

Py Ot '

where S= (EJ — E2)/T, is the degree of nonequilibrium

in the medium and E. and E? are the unperturbed val-
ues of the vibrational energy and its equilibrium value.
In addition, the length of an acoustic pulse must lie in
therange w! <t < 7.

The acoustic streaming U caused by an acoustic
wave of frequency w is assumed to be incompressible.
We use the geometric-acoustics approximation, in
which U@, U® PO PO and other complex ampli-
tudes are assumed to be functions slowly varying with
t, X, and r, which satisfy the condition

0 0

2,2
wt D@(D (DD) k™ O,

where € isthe smallness parameter.

The geometric-acoustics approximation is applicable
when the beam width is a > 21/k. The complex ampli-
tudes for a high-frequency acoustic wave (wt, > 1) are
linearly related:

T = yPu,m/Cp,, PV = UPU,p,,

3)
p™ = uWpyu,, WP = U, 0,UY i,
where [ is the transverse gradient, U, = /Y., To/M is
the velocity of high-frequency sound, andy., = Cp.../Cy...
Substituting Egs. (2) with the relations between
the components given by Egs. (3) into the set of equa-
tions (1), we obtain asystem of three reduced equations
describing the self-action of sound.

The equation that determines the sound amplitude
variation has the form

09
Lox

1o 1 )
U.at 2k g-u
) 4)

+
ik oy, T%

Ou, T,

U o0

1K
2

This equation ignores the cubic terms ~U®D|UDP,
which correspond to an inertialess change of state[7, 8]
and, according to [4], make no significant contribution
to the self-action of sound at distancesL < L, whereL,
is the distance of shock formation. If the characteristic
length of self-focusing is Lg > L, self-focusing is also
possible[5, 18, 19] but difficult to describe analytically,
and this case is beyond our consideration. Thetermson
the right-hand side of Eq. (4) correspond to two mech-
anisms of self-action: the excitation of acoustic stream-
ing and the heating of the medium by sound. The dissi-
pation coefficientisg = d + g, where

_ o, X0
ZUi@pO CVooD

isthe coefficient of sound absorption in a heat-conduct-
ing viscous medium,

+ (yoo _2)8

O = %e*2c .,

is the coefficient of the velocity perturbation growth in
aquasi-stationary medium [15-17], and

_ 0 (w)
2Uf;po

is the absorption (or amplification at & < 0) coefficient
related to the presence of relaxation processes in the
medium and to the second viscosity & formed by them.
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The second-viscosity coefficient at wt, > 1 hasthe
form [14]

_ (U5 -Ug)Cipy _

- 2
wT,Cyo

Here, U, = ,/C2T,/Cum is the velocity of low-fre-
quency sound (wT, < 1); C2 = Cp.. + C, + STyr+ 1)

[CV+S(TvT Cvoo)]U po
W't +CpoCui

and CY = C,.. + C, + St are the low-frequency heat
capacities at constant pressure and at constant volume,
T,r = 0InT,/0InT,, and C, is the equilibrium vibra-
tional heat capacity.

The second viscosity (and a,,) are negative when
C, + S1,7-Cy.) <0. Thiscondition correspondsto the
presence of a positive feedback between the acoustic
perturbation and the heat release from the nonequilib-
rium degrees of freedom and, hence, to a sound ampli-
fication.

It should be noted that, in stationary media with
& <0, the perturbations of the velocity, pressure, and
density in an acoustic wave increase with the same
increment a,, whereas in quasi-stationary media, the
increments of these perturbations have different forms
[15-17]. For example, the pressure perturbation
increases with the increment

1 0T, __(2*V.)
1T,U,, ot “"4Cp, U, T,

The second equation of the set describes the devel-
opment of alongitudinal acoustic streaming:

6U(o) r]A U(0)+10P(0)
ot py Py 0X

In this equation, we ignore the diffraction changes
of theamplitude U®). Moreover, in the following calcu-
lations, we ignore in Eq. (5) the value of the longitudi-
nal pressure gradient, which is insignificant when
U <u,[3,4].

Theright-hand side of Eq. (5) represents the driving
force caused by the acoustic radiation pressure and
determined by the change of the amplitude of an acous-
tic wave in a dissipative medium. Equation (5) coin-
cides with the equation describing, e.g., an Eckart flow
correct to the form of the absorption coefficient [20].
However, one should note that, for g > 0, this flow is
always directed in the direction of the sound propaga-
tion, whereas in an amplifying medium with g < 0O, the
sign of the driving force changes and the acoustic
streaming becomes opposite.

The third equation of the set describes the tempera-
ture change in a medium under the effect of intense
sound:

Op = Ov—

= glu®?. )

T

S~ XoBo T

Umgm (1|2

= —==[u®f", (6)
Cp
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where X, = XCpo/C2.

In Eq. (6), we ignore the term responsible for the
adiabatic mechanism of heating and the value of
0P©/ot, which is admissible for t; > (4U,g)"! and
a/U., [4].

According to Eq. (6), an acoustically active medium
in the field of an intense sound wave is not heated but,
on the contrary, cooled.

We can further simplify the set of equations (4)—6)
with the help of the known methods of nonlinear geo-
metric optics (acoustics) [21]. For this purpose, we rep-
resent the complex amplitude U™ in the form

u® = AL, r, t)expliky(g,r, 1],

where A is the real wave amplitude, | is the eikonal,
and { = x— U,tisthe“traveling” wave coordinate, and
substitute it into Eqg. (4). Ignoring the diffraction term,
we finally obtain

al

57 *00al +10,8+2g1 =0, )

0,7

0

506
aZ

where | = A? and 6 = O isthe inclination angle of a
ray with respect tothe x axis. Inthe case of abeam char-
acterized by a radius a,, an initia parabolic profile of
intensity, and a plane wave front, the solutionsto Egs. (7)
and (8) can betried in the form

+29DDG+[U2 0,U©@ + 22 } -0, @

4
—2 (gt
0 = BLY)r, I_IODD% ZrD I ,

wherel, = AS, A, istheinitial amplitude of the beam at
4

itsaxis, and a((, t) = aoeprBdZ is the beam width.

Then, in the case of a dimensionless beam width
f = a/a,, Eq. (8) can be reduced to the form

°f _ 1[ 2 0 L0 DDT(O)}
of _ . _

OZZ 2r U, T, ©)

We assume the dependences of T® and U® onr to
also be parabolic, which is a good approximation of an
exact solution to Egs. (5) and (6) for t; < 1+, p,a®/n [6]:

Fl + r2F2!
B, +°B,.

TO _

4O (10)
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Substituting Egs. (10) into Egs. (5), (6), and (9), we

obtain
10°f _ 12 F,
fOZZ - _[UmBz"'T(J, (11)
OF, _ 2U.gl,me I a2
ot coaZtt
B,  2gl,e %"
ot 214 (13)
a,f

If the background values of temperature change
insignificantly within the characteristic time of the
sound beam focusing 1 (t0Ty/0t < T), the set of
equations (11)—(13) can be reduced to asingle equation
after differentiating Eq. (11) with respect to time:

drLd°fq _ aN -2«
BtCF gg2d = "2 © P 14

whereN = naﬁpouoo I,/ 2 isthetotal power of the sound
beam and

4 5,Yn
T[agUi,po CgD

The exponential factor on the right-hand side of
Eq. (14) enhances the nonlinear refraction in an ampli-
fying medium (g < 0) and reduces it in an absorbing
medium (g > 0). We can ignore this factor in the
approximation of athick lens (Jg|Lg < 1). In this case,
Eqg. (14) coincides with the corresponding equation
from [6], correct to the form of the quantity a.

According to [6], when a > O, one can observe the
self-focusing of sound with the characteristic focusing
length Lg = (4.7/aE)'?, where E = J'; Ndt isthe energy
of the sound beam.

The quantity o is always positive, e.qg., in liquids
(apart from water), when thermal self-action prevails
over the streaming one. In equilibrium gaseous media,
both mechanisms of the self-action always lead to a
defocusing of sound (o < 0). On the contrary, in an
acoustically active nonequilibrium medium, both
mechanisms make a positive contribution to the coeffi-
cient a. Exceptions are strongly nonequilibrium media,

inwhich c‘; <0.

Now, we present the estimates of the characteristic
guantities for a typical laser medium CO, : N, : He =
1:2:3withPy,=1am, T,=300K, 1,= 107 s, and
1,7 =-3.4[14].

In the case of a specific energy contribution to the
vibrational degrees of freedom W = 50 mJcm’, the
value of Sis S=0.5. Then, for a sound beam with the
radius a, = 1 cm and the frequency w =5 x 10° Hz, the

a =

MOLEVICH

absorption coefficient is ® = 10~} cmr! and the amplifi-
cation coefficient isg, = 0.5 cm!. We obtain the value
of the critical energy E, necessary for the observation
of the self-focusing from the condition L = L4, where

Ly= kaf) /2 isthe characteristic diffraction length:

18.8
Kaga

The condition Ly < Ly must be satisfied for the
observation of self-focusing. For example, at E = 9E,

andt =1s,wehavel=Lgy/3 <2 cm. Inthiscase, the
distance at which a shock isformed, is equal to [20]

E,= = 12 mJ.

Ly = 2Uf°/u)(yoo+1)AO:22 cm > L.

Such apulse also satisfies the conditiont; < 1= 1.5 s.

Thus, this paper demonstrates the fundamental pos-
sibility to observe the self-focusing of sound in aquasi-
stationary, vibrationally excited gas. Two mechanisms
of self-action cause the self-focusing of sound in an
acoustically active medium: the cooling of gas by
sound and the excitation of acoustic streamings in
opposite directions.
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Abstract—Experimental results and theoretical estimates are presented to demonstrate the prospects of
using the acoustic nonlinearity of a gel-like medium for increasing the efficiency of the shear wave genera-
tioninit by a pulsed ultrasonic beam. The experiment is based on the propagation of afocused beam of lon-
gitudinal acoustic waves at a frequency of 1.1 MHz in a gelatin sample and on the detection of shear waves
by the optical method [1]. It is demonstrated that the amplitude of the shear wave excited by a nonlinear
acoustic pulse can be increased by an order of magnitude owing to the formation of shock frontsin the profile

of this pulse. © 2002 MAIK “ Nauka/lnterperiodica” .

An ultrasonic wave that experiences both absorption
and scattering in the course of its propagation transfers
part of its momentum to the medium. As a conse-
guence, an amplitude-modulated wave produces |ow-
frequency (medium) elastic stressesin the medium, i.e.,
the radiation pressure [2]. In the case of the ultrasound
localization in the form of a beam, the corresponding
shear stresses produce atransverse wave propagating in
the direction perpendicular to the beam axis (Fig. 1). In
common solids, this effect is minor; however, it can
become noticeable in gel-like media, where the shear
modulus is small and the corresponding shear strain is
relatively large. Such media are rubbers, gels, and soft
biological tissues. The detection of the amplitude or the
propagation velocity of the transverse disturbances pro-
vides an opportunity to measure the shear modulus of
the medium [1]. This method can be promising for
medical applications, e.g., for an early detection of can-
cer, since the values of the shear moduli for healthy and
cancer-affected tissues differ by orders of magnitude
[3]. If afocused acoustic beam isused, an efficient gen-
eration of shear waves occurs only in the focal region.
Thus, it is possible to obtain alocal excitation of shear
waves in amedium at a large distance from the source
of radiation.

The main difficulty in the utilization of thiseffect is
connected with the fact that the excited shear waves are
usually very weak, and, therefore, difficult to detect.
Hence, it isimportant to find ways to increase the effi-
ciency of the generation of shear stresses. Here we sug-
gest one such method namely, to use large-amplitude
focused ultrasonic pulses whose profiles are nonlin-
early distorted in the course of their propagation for
increasing the efficiency of the generation of shear-

wave signals. Experiments on samples made of gelatin
with different concentration (i.e., with different values
of the shear modulus) are described. It is demonstrated
that, in the case of a constant total energy of the acous-
tic pulse, it is possible to obtain an amplification of the
shear wave by reducing the duration of the excitation
pulse and by simultaneously increasing its amplitude to
the values at which shock fronts are formed in the wave
profile. A theoretical calculation is conducted to com-
pare the efficiencies of the shear wave excitation with
and without allowance for the medium nonlinearity and
to evaluate the gain.

Shear
wave
ﬁ Pulsed
- ultrasonic
~ L~ beam
~ - ~

\

Fig. 1. Excitation of a shear wave due to the absorption of a
focused ultrasonic pulse. The dashed lines indicate the
boundaries of the ultrasonic beam. The solid linesillustrate
the deformation of the medium: in the initial unperturbed
state, they formed a family of equidistant vertical straight
lines. The absorbed ultrasonic pul se exerts aradiation pres-
sure on the medium, and the shear stress arising in this case
produces a quasi-cylindrical shear wave traveling away
from the beam axis.

1063-7710/02/4802-0214%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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The setup used in the experiments is schematically
represented in Fig. 2. An ultrasonic beam was produced
by afocusing piezoceramic transducer 10 cm in diam-
eter with a 20-cm curvature radius. The transducer
operated at a resonance frequency of 1.1 MHz [4]. The
longitudinal and transverse dimensions of the focal
region, which were measured according to the zeros of
the amplitude distribution of the pressurefield, were 87
and 7 mm, respectively. The transducer was excited by
an electric signal from an HP33120A generator using
an ENI AP400B power amplifier. We used a pulsed
regime of excitation with rectangular envelopes of
pulses. The pulse duration varied from 40 to 700 us.
The source was submerged into a water basin with the
dimensions 20 x 20 x 60 cm? and could be moved with
the help of a positioning system (Velmex VP9000,
USA) inthree mutually perpendicular directions. A gel-
atin sample shaped as a cylinder with a diameter of
80 mm and a generatrix of 65 mm was placed into the
focal region of the ultrasonic beam. Figure 3 shows a
photograph of the ultrasonic transducer (on theleft) and
one of the samples (on the right). The sample was posi-
tioned in such a way that the cylinder axis coincided
with the acoustic axis and the central section of the cyl-
inder lay in the focal plane of the source. An optical
system described in [1] was selected to detect the shear
waves. The beam of a helium-neon laser was focused at
the edge of an opague particle 60-300 pm in size,
which was placed in the medium. On the shear wave
arrival, the particle moved and modul ated the transmit-
ted energy of the laser beam. The light signal detected
further by a photodiode was proportional to the shear
displacement. To incorporate such modulator particles
into the medium, gelatin samples were manufactured in
two stages, which provided an opportunity to put the
particles into the central section perpendicular to the
cylinder axis.

The purpose of our measurements was to demon-
strate that the use of an acoustic wave with shocksin its
profile makes the excitation of shear-wave signas
much more efficient. Ultrasonic pulses with different
amplitudes, but with the same energy (which was
attained by the corresponding choice of the pulse dura-
tion) were used. If the ultrasonic propagation in the
medium were linear, the amplitude of the shear waves
excited by acoustic pulses with the same energy would
be the same [1]. However, in the presence of nonlinear-
ity, the profile of an ultrasonic wave in the focal region
of the beam becomes distorted, and in the case of a
rather large amplitude, shock fronts arise, i.e., a saw-
tooth profile is formed. As a consequence, the wave is
absorbed more efficiently and transfers a greater part of
its momentum to the medium, as compared to the case
of linear propagation. Thusin the nonlinear regime, one
can expect a considerable increase in the amplitude of
the shear disturbance generated by the ultrasonic wave.

Theregime calibration according to the total energy
of acoustic pulses was performed by measuring the
average radiation force exerted by a periodic sequence
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Fig. 2. Experimental setup: (1) a water basin, (2) an ultra-
sonic transducer, (3) an electric power amplifier, (4) a gen-
erator, (5) a gelatin sample, (6) a micropositioning sys-
tem, (7) a shutter particle, (8) a beam of a He-Ne laser,
(9) aphotodiode, and (10) a digital oscilloscope.

Fig. 3. Photograph of the piezoceramic transducer (on the
left) and the gelatin sample (on the right).

of pulses on a wide-aperture target absorber [5]. The
target was shaped as a cylinder 12 cm in diameter and
5 cm in height and was made of rubber of the type of an
RTV-2 two-component silicon elastomer, which had a
large absorption coefficient and an acoustic impedance
close to the impedance of water. To measure the radia-
tion force, an acoustic beam was directed to the
absorber from below and the absorber was weighted
both under the ultrasonic irradiation and immediately
after switching off the source of ultrasound [6]. In such
measurements, the change in the absorber weight AP
and the average ultrasonic power W are related as
AP/W = 67 mg/W [5]. On the basis of these measure-
ments, several regimes of operation with different
lengths and amplitudes of pulses were selected for a
preset acoustic energy.
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Fig. 4. Shape of an ultrasonic pulse at the focal point in the (a, b) broad and (c, d) narrow time windows: (g, ¢) a nonlinear regime

and (b, d) a quasi-linear regime.

Fig. 5. Time profiles of a shear pulse (the photodiode sig-
nal u) measured in the focal plane at three different dis-
tances from the acoustic axis r: (&) a nonlinear regime and
(b) aquasi-linear regime. The values of the displacement u
(for @l curves) are normalized to its maximal value in the
nonlinear regime Uy,

To verify that, in the selected regimes, the acoustic
signals were really subjected to nonlinear distortions,
the measurements of the wave form in the focal region
of the beam were aso conducted using a self-made
broadband PV DF membrane hydrophone with a sensi-
tivearea0.5 mmin diameter. Therear side of the PVDF
film was acoustically loaded by a thick layer of trans-
former oil, which provided an opportunity to eliminate
the stray capacitance and enhance the locality of recep-
tion [7]. Figure 4 showsthe wave profiles of the shortest
and longest pulsesin the focal region of the source. Fig-
ures 4a and 4b show the whole pulses, and Figs. 4c and
4d, three periods from their central parts. It should be
noted that the electric signal at the piezoelectric trans-
ducer and, therefore, the ultrasonic wave emitted by it
were sinusoidal in both cases. As one can see from
Fig. 4, inthefocus, thewaveisstrongly distorted, espe-
cialy, inthe case of alarge amplitude: shock fronts are
clearly visible in the profile of the first pulse, whereas
the second profile is distorted to a lesser extent. Thus,
the effect of the acoustic nonlinearity of the medium
must manifest itself in the comparison of the efficien-
cies of the shear wave generation in the two indicated
regimes.

Figure 5 demonstrates the experimentally measured
profiles of a shear pulse in the focal plane at different
distances from the acoustic axis of the beam (5, 6, and
7 mm, respectively). Figure 5a corresponds to the shear
wave excitation by ashort high-amplitude pulse (anon-
linear regime) and Fig. 5b corresponds to the excitation
by along pulse with amuch smaller amplitude (aquasi-
linear regime) and with the sametotal energy E=4.2 mJ.

ACOUSTICAL PHYSICS Vol. 48 No.2 2002
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Fig. 6. Transverse distribution of the shear wave amplitude
measured in the focal plane of the source in the nonlinear
regime (the solid line) and the transverse profile of intensity
(the dashed line). The curves are normalized to the corre-
sponding maximal values.

All curves are normalized to the maximal displacement
at the beam axisin the nonlinear excitation regime. It is
necessary to note that the vertical scalesin Figs. 5aand
5b differ by a factor of ten. Thus, although the signal
profiles in the nonlinear and quasi-linear regimes look
amost the same at the corresponding distances, the
amplitudes of shear waves differ essentialy. In the
guasi-linear regime, the signals were weak and their
amplitude was comparable to the noise amplitude.
Therefore, the curves were obtained by averaging over
300400 redlizations. Thus, the assumption that the
efficiency of the shear wave generation grows when the
acoustic nonlinearity of the medium comes into play
was confirmed. Similar results were obtained for other
regimes of excitation with different pulse energies and
for samples with different gelatin concentrations.

It is of interest to know how far from the point of
excitation it is possible to detect the shear waves. Fig-
ure 6 demonstrates the transverse distribution of the
peak displacement in the shear wave excited in the non-
linear regime (with the ultrasonic pulse duration equal
to 55 psand the total energy of asingle pulse equal to
4.2 mJ) in a sample with a gelatin concentration of
4.5%. The dashed line in the same figure shows the
experimentally measured transverse distribution of the
intensity of an acoustic wave in the focal plane, which
corresponds to the distribution of the sources of shear
waves. Both curves are normalized to the correspond-
ing maximal values. One can see clearly that, although
ashear wave decaysrapidly, it still propagatesto a con-
siderable distance from the acoustic beam. This pro-
vides an opportunity to measure the velocity of shear
waves ¢, with asufficiently high accuracy and, hence, to

determine the shear modulus i = pcf.
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Fig. 7. Delay time of the peak of the shear wave versus the
transverse coordinate r. The measurements were performed
inthe nonlinear regimefor two gelatin concentrations: 4.5%
(the dashed line) and 6.7% (the solid line).

Figure 7 presents the detection time of the peak of a
shear pulse versus the distance r between the detection
point and the axis of the ultrasonic beam. The two
curves correspond to two different concentrations of
gelatin (4.5 and 6.7%) and are obtained using nonlinear
acoustic pulses. The slope of these curves is inversely
proportional to the propagation velocity of shear waves
in the corresponding material. The experimental results
shown in Fig. 7 for the gelatin concentrations 4.5 and
6.7% give the values of the velocity ¢, = 0.8 and 1.2 m/s
and the shear modulus p = 690 and 1450 Pa, respec-
tively. These values coincide with the shear modulus
measured by the indentation method using a rigid
sphere[8, 9]. Thus, the remote excitation and detection
of shear waves provide an opportunity to determine the
shear modulus.

Let us proceed to the theoretical description of the
observed effects. The shear disturbances can be
described in the framework of the linear theory because
of their smallness. The displacement u of the particles
of the elastic medium in the force field F can be
described by the equation

0%t

where p is the density of the medium; K and 1 are the
bulk modulus and the shear modulus, respectively; F is
the volume density of forces acting from the side of the
ultrasonic beam; and t istime. Let aweakly divergent
beam of acoustic waves, which hasacircular cross sec-
tion, propagate in the medium. We denote the longitu-
dinal and the transverse coordinates by z and r, respec-
tively. Then, we can ignore the transverse component F,
of the force F because of its smallness in comparison
with the longitudinal component F,.

0 a<+%%graddivu+uAU+pF, (D
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We note that, if the transverse dimension of the
beam is much smaller than the absorption length, the
force F, varies mainly in the transverse direction by
decreasing with the distance from the axis, whereas its
dependence on the longitudinal coordinate is weak. In
the indicated conditions, we can ignore the dependence
of the deformation of the medium on the longitudinal
coordinate and assume that the displacement of parti-
cles occurs only aong the z axis. In this case, Eq. (1)
takes the form of an inhomogeneous wave equation for
ashear cylindrical wave:

o U —ctADu = F,(r, 1), 2)
t?
where ¢, = ./u/p is the velocity of shear waves and
10 9 . _
D= T + v is the transverse Laplacian. The form

of the solution to the wave equation (2) is determined
by the dependence of the volume force F, on the coor-
dinate and time. If the dependence of the force on time
a all space points is described by the same function
(1), the expression F,= ®(r)¢(t), where ®(r) describes
the transverse profile of the acoustic beam, is true. As
we demonstrated in our previous paper [1], in the case
of a short pulse ¢ = d(t) with the transverse profile of
the beam in the form ®(r) = Fy(1 + r?/a®)~, the solu-
tion to Eq. (2), i.e, the pulsed response, is expressed
analytically as

h(r,t) = az_l(::toe(t)/\/(«/ﬁ\‘i'«/é) A—B4(1+r /a) 3)

where A= 1+ (r + ¢t)?/a2, B=1+ (r — git)’/a%, aisthe
radius of the sound beam, and 6(t) isthe Heaviside step
function. According to Eqg. (3), the characteristic dura-
tion of the pulsed response coincides with the traveling
time of the shear wave through the excitation region
t, = a/c. In the case of an arbitrary function ¢(t), the
solution has the form of aconvolution u, = h O¢. If the
action duration is t, << t, the profile of the shear wave
coincides with the profile of the pulsed response: u, =
toh(r, t). Asone can see from Eg. (3), the displacement
of the medium manifests itself most strongly at the
beam axis (r = 0), where it depends on time as u, =
Fot/(1+(c;t/a)?). Hence, the maximal displacement of
the medium under the effect of a pulsed radiation
forceis

_ atgky

umax - th . (4)
Theresult given by Eq. (4) correspondsto thefollowing
time dependence of the volume force at the beam axis:
F0,t)=F,intheinterval 0 <t <t, and F,= 0 outside

thisinterval.
To compare the linear and nonlinear regimes of
excitation, it is necessary to calculate the volume force.

PISHCHALNIKOV et al.

The force of radiation pressure in a viscous heat-con-
ducting medium can be written in the form [10]

_ b @pf
E‘Cgmﬂ’ &)

where ¢, is the velocity of longitudinal waves; p is the

acoustic pressure in the ultrasonic beam; b= + gn +

Ecl Clg is the dissipation coefficient; { and n are

p

the volume and shear viscosities,; K is the coefficient of
heat conductivity; C, and C, are the specific heats at
constant pressure and at constant volume, respectively;
and the overbar means averaging over the period of the
ultrasonic wave. When small-amplitude ultrasound is
used, the wave form within a pulse is sinusoidal: p =
posinwit. In this case, we obtain from Eq. (5):

Fo" = apy/p’c, (6)

where a = bw?/2pc’ is the ultrasonic absorption coef-

ficient and the superscript “lin” indicates the linear
case.

Taking into account the fact that | = pg /2p¢; isthe
wave intensity, from Egs. (4) and (6) we obtain

lin _ da

in = 384, 7
0c,C. (7

As one can see from this expression, the medium dis-
placement under the effect of the radiation forceis pro-
portional to the quantity t,l, i.e., it is determined by the
energy of the ultrasonic pulse rather than by its inten-
sity. Therefore, in the linear regime, ultrasonic pulses
with different amplitudes p, but with the same total
energy produce identical shear-wave signals.

Now let us consider the case of the shear wave exci-
tation by an acoustic pulse of the same duration t, but
with a saw-tooth carrier instead of the sinusoidal one.
An ultrasonic wave acquires such a shape as aresult of
itsnonlinear evolution (see Fig. 4¢). The wave propaga:
tion in anonlinear dissipative medium is described by
the Burgers equation

b _0°p

op_¢e Op_ _b
2pcot®’

32 po’ ot ®)
where T =t — /¢ istime in the moving coordinate sys-
tem and € is the acoustic nonlinearity parameter of the
medium. The profile of a saw-tooth wave within asin-
gle period is described by the Khokhlov solution [11]
ps ﬁ)s ]
p = > [ + tanh DZbD}
where p; is the value of the pressure jump at the shock
front. It depends on the distance as p, = 211p,/(1 + 0),

MW O
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where 0 = ewp,z/p c,3 is the distance from the source

divided by the length of the shock formation and p,isa
certain characteristic value of the wave amplitude.
However, the specific form of the function py2) is
unimportant for our calculations. We are interested in
the case of waves with large amplitudes, p/bw > 1.
Formally, the consideration of large-amplitude waves
corresponds to the transition b — 0 in Eq. (9). In this
case, ashock isformedinthe profile. Substituting Eg. (9)
into expression (5) for the force of radiation pressure,
performing the averaging, and passing to the limit
b — 0, we obtain

Fo = ——<Ppe. (10)

6p°c
Here, f = w/2mis the wave frequency. The superscript
“nl” indicates that the estimate given by Eq. (10)
belongsto the case of the nonlinear ultrasonic propaga:
tion. Let us indicate two important features of the non-
linear case (Eq. (10)) that makeit different from thelin-
ear case (Eqg. (6)). First, the radiation force does not
depend on the linear absorption coefficient of the
medium. Second, the radiation force in the case of a
saw-tooth profile is proportional to the third power of
the wave amplitude rather than to the second power.
The latter fact is fundamental and testifies to the possi-
bility of increasing the efficiency of the shear wave gen-
eration in the nonlinear regime. We note that the inten-

sity of a saw-tooth wave is expressed as | = pi /12pc,.
From Egs. (4) and (10), we obtain

(11)

As one can seg, in the case of afixed wave energy (t,l =
const), the generation efficiency is directly proportional
to the value of the pressure jump p; at the shock fronts of
the saw-tooth wave. Remember that there is no depen-
dence on the amplitude in the linear case (see Eq. (7)).
Comparing Egs. (7) and (11) in the case of the same
intensities of the sinusoidal and saw-tooth waves, we
obtain the following amplitude ratio of the shear-wave
signds:
U
K= gin -
max

ef pq
apc’

(12)

Thus, we obtain that the factor K is proportional to
the amplitude of the acoustic wave p,, i.e, it can be
much greater than unity for ahigh-intensity ultrasound.
The parametersin gelatin have the following character-
isticvalues. a =1m', e=4, p=10° kg/m’, and ¢, =
1.5 x 10* m/s. For ultrasonic waves with the amplitude
ps = 107 Pa and the frequency f = 10° Hz used in the
experiment, we obtain that, at a given pulse energy, the
maximal displacement value observed in a medium
with a pronounced nonlinearity is approximately ten
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timesgreater than in the case of linear propagation. This
estimate is confirmed by the experiment (see Fig. 5).

Therefore, the efficiency of the shear wave genera-
tion can be considerably increased by using pulses
whose wave profiles contain shock fronts. Certainly,
when using saw-tooth signals for medical purposes, it
isnecessary to be sure that they cause no tissue damage,
i.e., there is no cavitation and no overheating of the
medium. Such conditions are obtained by using rarely
repeated short pul ses of the megahertz frequency range.
For example, saw-tooth profiles are observed in the
course of the operation of some diagnostic ultrasonic
devices intended for cardiological applications[12].
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Abstract—The results of an experimental investigation of acoustic vibrations (their frequency, amplitude, and
attenuation coefficient) generated in a gas mixture as aresult of the injection of a high-current pulsed electron
beam into a closed reactor are presented. It is shown that the change in the phase composition of theinitial mix-
ture under the action of the electron beam leads to a change in the frequency of the sound waves and to an
increase in the attenuation coefficient. By measuring the changein frequency, it is possible to evaluate with suf-
ficient accuracy (about 2%) the degree of conversion of the initial products in the plasmochemical process.
Relations describing the dependence of the sound energy attenuation coefficient on the size of the reactor and
on the thermal and physical properties of the gases under study are derived. It is shown that a simple experi-
mental setup measuring the parameters of acoustic waves can be used for monitoring the plasmochemical pro-
cesses initiated by a pulsed excitation of a gas mixture. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The plasmochemical processes that accompany the
injection of an electron beam in a gas or the volume
gaseous discharges are currently considered as an alter-
native to thermodynamical-equilibrium chemical pro-
cesses. Unlike these, in plasmochemical reactions the
main part of energy of the source of excitation (up to
80-90%) isdelivered to the vibrational degrees of free-
dom of molecules, which provides a high efficiency of
chemical processes [1, 2]. The plasmochemical meth-
ods of film deposition from ionized vapor make it possi-
ble to fabricate high-quality multilayer structures [3, 4].
In volume gaseous discharges and under an electron
beam injection, an efficient dissociation of NO, and
SO, moleculesis observed [5-7]. Plasmochemical pro-
cesses find applications in dry etching of Ni, Fe, and
other thin films[8] and in sterilization [9]. For monitor-
ing the plasmochemical processes, optical methods
(emission and absorption spectroscopy, Rayleigh scat-
tering, and so on) and mass spectrometry methods are
used [10]. These methods require complicated equip-
ment and optical access to the reaction zone.

When the energy of a pulsed source of excitation (a
pulsed microwave discharge, a pulsed high-current
electron beam, a gaseous discharge, and so on) dissi-
patesin aclosed plasmochemical reactor, the radiation-
acoustic effect [11] leads to the generation of acoustic
vibrations, which are determined by the nonuniformity
of excitation (and, accordingly, of heating) of the
reagent gases. The measurement of the parameters of
sound waves does not require complicated equipment
but provides ample data on the processes that occur in
the plasmochemical reactor.

EXPERIMENTAL SETUP

This paper presentsthe results of investigation of the
sound waves generated in one-, two-, and three-compo-
nent gas mixtures as a result of the dissipation of the
energy of a pulsed high-current electron beam in a
closed plasmochemical reactor (PCR). A Temp acceler-
ator [12] operating in an electron mode was used as a
source of a high-current electron beam (HCEB) with
the following parameters: the maximal electron energy
300 keV, the current of the beam at the maximum 12 kA,
and the pulse width at the half-amplitude level 60 ns.
The PCR had the form of a tube. Electrons were
injected in the tube at its end through atitanium fail.

Two reactorswith different dimensionswereused in
the experiments: one with a diameter of 6 cm and a
length of 11.5 cm and the other with adiameter of 9 cm
and alength of 30 cm. The sound waves were detected
by adifferential pressure transducer capabl e of measur-
ing pressure variations in the reactor with frequencies
up to 3.5 kHz. The gases studied in the experiment were
as follows: argon, nitrogen, oxygen, methane, silicon
tetrachl oride, tungsten hexafluoride, and their mixtures.

INVESTIGATION OF THE SOUND WAVE
FREQUENCY

In aclosed reactor with rigid walls, after the dissipa-
tion of a pulsed el ectron beam, standing waves are gen-
erated whose frequency in an ideal gasis[13]

- n [yRT
fn_2| ul (1)

1063-7710/02/4802-0220$22.00 © 2002 MAIK “Nauka/Interperiodica’



SOUND WAVES GENERATED DUE TO THE ABSORPTION OF A PULSED ELECTRON BEAM

where nisthe serial number of harmonic (n=1, 2, ...),
| isthe length of the reactor, yisthe adiabatic exponent,
Risthe universal gas constant, and T and 1 are the tem-
perature and molar mass of gasin the reactor.

In the experiments, we recorded the sound vibra-
tions corresponding to the generation of standing waves
along and across the reactor. For our investigations, we
chose the lowest component of the sound waves with
the fundamental frequency of waves propagating along
thereactor (n=1in Eq. (2)).

The dependences of the frequency of sound vibra-
tions in the PCR on the parameter (y/u)*> for the one-
component gases in the reactors 11.5 and 30 cm long
are shown in Fig. 1. The dots correspond to experimen-
tal data and the lines correspond to calculations by
Eq. (1) for I =(1) 11.5and (2) 30 cm. Asseen from this
figure, in the investigated frequency range, the sound
vibrations are adequately described by the relation for
ideal gases.

The measurement of the frequency of sound vibra-
tions generated due to the dissipation of energy of the
pulsed source of excitation makesit possibleto monitor
the plasmochemical reactionsresulting in the formation
of solid products, eg., CO, — C+ O,, WF, — W +
3F,, etc. Theminimal degree of conversion of theinitial
gas that can be detected by the change in frequency
does not exceed 2% for the attained accuracy of the fre-
guency measurement. The low attenuation of sound
waves makes it possible to measure the vibration fre-
quency accurate to 0.5%.

In actual plasmochemical reactions, multicompo-
nent gas mixtures are used, and the products of reac-
tions are also gas mixtures. In calculating the frequency
of sound vibrations, one has to take into account the
weight coefficient of every component of the gas mix-
ture and perform the calculation by the formula [14]

JRT Yim;
f = _, 2
™ ol e 2 @

where m, is the total mass of al components of the gas
mixture and m, y;, and |; are the mass, the adiabatic
exponent, and the molar mass of the ith component,
respectively. Taking into account that the mass of theith
component is

2V,
m= 1.66 x 10_27Ui Ni = KHIPI_O ,

where N; is the number of molecules of the ith compo-
nent, P, is its partial pressure, V is the volume of the
PCR, P, = 760 torr, and K is a constant, Eq. (2) can be
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Fig. 1. Frequency of sound vibrationsin the PCRs (1) 11.5
and (2) 30 cm long as afunction of the ratio of the adiabatic
exponent to the molar mass for single-component gases.

written in the form that is more convenient for data pro-

cessing
JRT /ZViPi
f —_ |

w T T 3)
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The measurements of the frequency of sound vibra-
tions excited in the PCR due to the injection of an
HCEB in two- and three-component mixtures showed
that the discrepancy between the values calculated by
Eg. (3) and the experimental values did not exceed
10%, and at the frequencies lower than 400 Hz the dis-
crepancy was less than 5%. The dependence of the fre-
guency of sound vibrations generated in the PCR dueto
the injection of an electron beam in two- and three-
component mixtures on the parameter ¢,

- [P

is shown in Fig. 2. The dots correspond to experimenta
dataand theline correspondsto the calculation by Eq. (3).

By simple calculations, it is possible to show that,
for a chemical reaction in which the initial mixture of
reagents and the final mixture obtained in the reaction,
are gases, the frequency of sound vibrations measured
after the reaction is equal to the vibration frequency in
the initial mixture. However, if solid or liquid products
are obtained in the reaction, the frequency of the sound
waves will change.

The proposed technigue for monitoring the plasmo-
chemical reaction by the change in frequency of sound
vibrations was used in studying the direct reduction of
tungsten from tungsten hexafluoride under the action of
an HCEB [15]. The results were in good agreement
with the data obtained by weighing the substrate placed
in the reactor.
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Fig. 2. Frequency of sound vibrations in the 30-cm-long
PCR as afunction of the parameter ¢ for a gas mixture.
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Fig. 3. Energy of sound vibrationsin the PCR as afunction
of the energy of the electron beam absorbed in a gas.

INVESTIGATION OF THE SOUND WAVE
ENERGY

In aclosed volume of the PCR, with the injection of
an electron beam, standing waves are generated, the
form of which isin our case nearly sinusoidal. Then,
the energy of the sound vibrations is described by the
expression [13]

E = 0.25BAP2,V,

where 3 is the compressibility of the medium, AP, is
the amplitude of the sound waves, and V is the volume
of the reactor. When the degree of compression is low
(AP, < 1) and the law of momentum conservation is
valid (a low attenuation), the compressibility of the
medium can be calculated by the formula [13]

B = (pcd) ™,

where p isthe gas density and c,, is the sound velocity
ingas.
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The dependence of the energy of sound vibrationsin
the reactor on the energy of the electron beam absorbed
in gas is shown in Fig. 3. The energy of the HCEB
absorbed by the gas was measured by the change in
pressure in the reactor after the injection of the HCEB
(asin [16]). The pressure was measured by the same
differential pressure transducer that was used for
detecting the sound waves.

For nitrogen and argon, a good correlation between
the energy of sound vibrations and the energy contribu-
tion of the electron beam to gas was observed in awide
range of pressures (and, accordingly, in awide range of
energy contributions of the beam to gas), which makes
it possible to evaluate the energy contribution of the
€l ectron beam to gas by the sound wave amplitude. The
energy of sound waveswas about 0.2% of the energy of
the electron beam absorbed in the gas.

INVESTIGATION OF THE SOUND WAVE
ATTENUATION

Since the form of sound vibrations generated in the
reactor due to the injection of the HCEB is nearly sinu-
soidal, the change in the energy of sound waves due to
the absorption is described by the relation [13]

E(t) = E,e ™,

where a isthe absorption coefficient.

When a sound wave propagates in a tube closed at
both ends, the absorption coefficient equals

O =d;+0,+0;5+0y,

where a, is the sound absorption coefficient for the
propagation in an unbounded gas, a, is the absorption
coefficient due to the reflection from the side walls of
the tube for the propagation along the tube, a; is the
absorption coefficient due to the reflection from the
tube ends, and o, isthe absorption coefficient dueto the
friction at the tube walls.

The absorption coefficient of the sound wave energy
in gas dueto the heat conduction and the shear viscosity
of gas can be determined by the Stokes—Kirchhoff for-
mula[13]

_@nfy)ra g1 ap

where n is the coefficient of shear viscosity of gas
(g/lem s), X is the coefficient of heat conduction
(cal/cm sdeg), and C, and C, are the heat capacities of
gasat constant volume and at constant pressure, respec-
tively.

For alow-frequency sound wave propagating along
acircular tube, when the condition A > 1.7d (where A is
the wavelength and d is the tube diameter) is satisfied,
the wave front is plane and the sound energy attenua-
tion coefficient for the propagation along a tube with
No. 2
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ideally heat-conducting walls can be calculated by the
Kirchhoff formula[17]

_1 Tif g, X
a, = r /—‘p—[(y—l) y—é;’f«/ﬁ} (5)

wherer, isthe tube radius.

Taking into account that p = p,P/P,, where P isthe
pressure of gas in the reactor, p, is the gas density at
normal conditions, and P, = 760 torr, we obtain from

Eqg. (5):
— Kl fsw
a2 = roN P’

ol 1y [X_
Jjo [(v 1) ycp+fn] ©)

It can be shown that the temporal absorption coeffi-
cient for the sound wave energy in aclosed reactor with
multiple reflection from its endsis equal to

where

O; = CTS“’In(l—é), @

where | is the length of the reactor and o is the energy
absorption coefficient of a sound wave at a single
reflection.

For normal incidence of a plane sound wave on a
metal wall, which is a good heat conductor, the energy
absorption coefficient equals [17]

Ttf s X

yC,P’

However, if we consider only normal incidence of a
sound wave on the ends of the reactor, we should
neglect the absorption of the sound wave energy at
reflection from the side walls of the reactor (i.e., o, =
0). In this case, the sound absorption will be deter-
mined only by the heat conduction and the gas viscos-
ity (Eg. (4)) and by the absorption at reflection from the
reactor ends (Egs. (7) and (8)). Aswill be shown below,
the experimentally measured sound energy absorption
coefficientsin the reactor are several times greater than
the values calculated by formulas (4), (7), and (8). Con-
sequently, in the reflection from the ends of the reactor,
it is necessary to take into account the dependence of
the absorption coefficient on the angle of incidence and
perform calculations by the formula [17]

A _p) X
5 = J;[o.ag(y 1) J; +0.37Jﬁ] ©)

Taking into account that, for < 1, In(1— &) = §, from
Egs. (9) and (7) we derive

0 = 4(y-1) ®)

= Ko T

DB =Tp"
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where

K, = CSW[O.39(y—1) /\% +o.37[3}. (10)
p

The inclusion of the sound wave energy loss due to
the friction at the walls is important when the diameter
of thetubeis comparable with the mean free path of gas
molecules, i.e., for capillary tubes. In our case, we can
assumethat a, = 0.

Numerical estimates of the contributions of various
mechanisms of sound absorption in the reactor show
that the influence of volume absorption (due to the heat
conduction and gas viscosity) is insignificant. For
example, for sound waves generated in a 30-cm PCR
filled with nitrogen at a pressure of 500 torr, we have
a,=18x103s!, a,=59s!, ando;=7.7s".

The summary absorption coefficient taking into
account only the normal incidence of sound waves (i.e.,
a, =0, a; = 1.2 s!) is much smaller than the experi-
mentally measured coefficient of sound absorption for
these conditions (14.7 s!). Then, the expression for the
summary absorption coefficient of the sound wave
energy in aclosed reactor can be written as

_ o K fs
a 1Oy P

Or,
where K, and K, are calculated by Egs. (6) and (10), r,
and | aretheradiusand length of the reactor in centime-
ters, f,,, ismeasured in hertz, and P isin torrs.

The values of the coefficients K, and K, for the
investigated gases are given in the table.

It is important to note that, for the propagation of
sound waves in a closed reactor, the main contribution
(60-80%) to the absorption is made by the gas viscos-
ity. The magnitude of the second term in Egs. (5) and
(9) is 3-9 times greater (for various gases) than the
magnitude of the first term. The contributions of the
side walls and ends of the reactor to the absorption of
the sound wave energy are approximately equal for a
large reactor.

The dependence of the sound energy absorption
coefficient in the reactor on the pressure for various
gases is shown in Fig. 4. For the comparison of the
attenuation coefficients observed in different plasmo-
chemical reactors (with thelengths 11.5 and 30 cm) and
in various gases, the value of the attenuation coefficient

(11)

Table
Gas Ky Ky
N, 25 218
0, 27 189
Ar 32 254
WFg 6.5 52
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Fig. 4. Normalized coefficient of sound absorption in the
reactor as afunction of pressure.

was normalized to the coefficient K calculated by the
formula

— /_|j<1 Kzlj

The dotsin Fig. 4 correspond to experimental mea-
surements, and curve / is calculated by Eq. (11). For
nitrogen, argon, and oxygen, the discrepancy between
the calculated and experimental values of the absorp-
tion coefficient does not exceed 30%.

For sound waves generated due to the dissipation of
a pulsed electron beam in the WF, vapor (curve 2 in
Fig. 4), the experimentally obtained values of the
absorption coefficient far exceed (by afactor of 14-15)
the values calculated by Eq. (11). This may be caused
by the formation of clusters in the reactor with the
injection of the electron beam. The presence of large
particlesin the volume of gasleadsto anincreasein the
absorption of sound waves. At the injection of the
HCEB in WF, the direct reduction of tungsten in the
form of nano-sized particles take place, which results
not only in an increasein the frequency of sound waves
[15], but dso in a considerable growth of the sound
energy absorption.

CONCLUSION

The described investigations of the sound waves
generated in a closed reactor due to the dissipation of
the energy of a pulsed electron beam show that asimple
experimental setup detecting acoustic vibrations makes

PUSHKAREYV ¢t al.

it possible to monitor with a high accuracy the plasmo-
chemical process that is accompanied by a change in
the phase composition of the initial reagent mixture.
The formation of clustersin the volume of the reactor
leads to a change in the frequency of sound waves and
to a considerable increase in the attenuation of the
vibration amplitude. Thus, the sound-wave diagnostics
can be used for monitoring plasmochemical processes.
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Abstract—Diffraction of an acoustic wave by an elastic cylinder near the surface of an elastic halfspaceis con-
sidered. The solution relies on aHelmholtz-typeintegral equation and usesthe Green function of an elastic half-
space. The latter function isrepresented in the form of an integral over the Sommerfeld contour on the plane of
acomplex variable that has the meaning of the angle of the wave incidence on the halfspace boundary. Aninte-
gral equation for the sound pressure distribution over the cylinder surface is derived. This equation is reduced
to an infinite system of equations for the Fourier-series expansion coefficients of this distribution. The results
obtained are valid for the diffraction of a cylindrical wave and a plane wave. They also describe the diffraction
of aspherical wavewhen thetransmitter and receiver arefar from the cylinder and liein one planethat is orthog-
onal to the cylinder axis. © 2002 MAIK “ Nauka/Interperiodica” .

If abody islocated near a sound-reflecting bound-
ary, an emitted or diffracted sound experiences multiple
reflections between the body and the boundary, which
can significantly change the pattern of the acoustic
field. The sound diffraction by bodies located near a
planar boundary has been extensively studied. The
T-matrix method combined with the summation of
multiply reflected waves was used to study the scatter-
ing from particular bodies located near a liquid halfs-
pace[1, 2]. A cylinder with rounded ends and an elastic
spherical shell were considered. In [3-5], the problem
was solved by replacing the reflecting boundary with
the object image symmetric about this boundary. Such
areplacement leads to a problem of diffraction by two
bodies, which is solved using the summation theorem
for the specia functions involved in the sound field
expansions and is reduced to an infinite system of equa-
tions. The methods for solving such problems can be
found in[6-8]. However, the replacement of the bound-
ary with a symmetric object image is only valid for a
perfect (acoustically hard or soft) boundary. In the case
of an éastic or impedance boundary, this method is
inapplicable. The situation is the same as in the classi-
cal problem of the spherical wave reflection from an
impedance plane, whose solution is described in [9].

This paper addresses the diffraction by an elastic
cylinder located near an el astic or impedance halfspace.
The halfspace may be stratified or covered with an elas-
tic plate. The dependence of the reflection coefficient or
the input impedance of the halfspace surface on the
incidence angle is assumed to be known.

T Deceased.

The solution presented below is a rigorous solution
to the two-dimensional problem, i.e., to the problem of
diffraction of a cylindrical acoustic wave by an elastic
cylinder when the cylinder axis and the axes of the
cylindrical source and the receiver are parallel to each
other and to the surface of the halfspace. However, as
shown in the appendix, the results obtained are valid for
the diffraction of the cylindrical wave and for the dif-
fraction of the spherical wave when the receive and
transmit pointsliein one plane that is orthogonal to the
cylinder axis and the distance from one of these points
to the cylinder is large in terms of the wavelength. In
this case, the only difference in the solutions for the
incident cylindrical and spherical wavesisthat, for the
cylindrical wave, the amplitude of the wave scattered
from the cylinder (and, therefore, the radius of the equiv-

alent sphere) isby afactor of ./2 greater than that for the
spherical wave. This fact was noted earlier in [10].

Let us derive a system of equations for the coeffi-
cients of the Fourier series expansion of thetotal acous-
tic field on the cylinder surface.

The coordinate system isillustrated in Fig. 1. Let a
line source M, oriented normally to the plane of the
drawing emit the cylindrical wave

Pi(ry) = —ikpcQGy(ro, r4), (D

where k= wyc isthewave number; p and c arethe density
of the upper halfspace and the acoustic velocity in it,
respectively; Q is the source strength; and Gy(r, r,) =

i HY (Kr, — r,|)/4 is the Green function for afree space.

1063-7710/02/4802-0225%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Coordinate system.

In the upper halfspace, the total acoustic field satis-
fies the Helmholtz-type integral equation

p(ry) = —ikpcQG(ry, ro)

[ (Z)aG(rl, 2) ap( 2)

() |as

+
S=S+ Sy

Here, the surface of integration, S, consists of the sur-
face of the cylinder and the surface of the halfspace.
The derivation of Eg. (2) can be found in [11] (appen-
dix). The subscript 2 indicates that the derivative is
taken along the normal at the point r,, which lies at the
surface of the cylinder in the integral over the surface
Sy and at the surface of the halfspace in the integral
over the halfspace surface S, As the Green function
G(r,, r,), any Green function of the Helmholtz differen-
tial equation can be used. To eliminate the integration
over the infinite surface, we choose the Green function
for the upper halfspace so as to satisfy the boundary
conditions at the surface (see [11]):

00

G(ry,12) = 77 [ @XP(iku(x; ~x,))

(3)
x [exp(iky|y; —Yo|) + Ahexp(iky(y; + ¥,))] %J,

wherey = J/1-U%, A, = exp(i2kby)A,, A,(U) = (Wyy —
D/(wpy + 1), w,, = Z,/(pc), and Z, is the input imped-
ance of the elastic halfspace. The change of variables
u = sinB transforms the expression for A,(u) into the
formula

wy,cosf —1

An(®) = w;,cos6 + 1’

“)
which givesthe reflection coefficient for the plane wave
incident on the boundary of the elastic halfspace at the
angle 6. Notethat, for alocally responding surface(i.e.,
a surface whose properties are described by the normal
impedance), the impedance w;, is independent of the

SHENDEROV

incidence angle, whereas, for an eastic surface, the
impedance depends on this angle. The following
expression for thisimpedance is presented in [9]:
sin’26,

2
cos 26,
W, :
cosb,

cos6,

Wp = W, &)
Here, w; = (p,¢)/(pc) and w, = (p,C)/(pC) are the wave
impedances of the lower halfspace normalized by pc.
The subscripts | and t refer to longitudinal and shear
waves, respectively; ¢, and ¢, are the velocities of these
waves; and p, isthe density of the medium. The angles
of refraction 6, and 6, satisfy the Snell law: sin6, =
sinB(c,/c) and sin B, = sinB(c,/C).

Let us write the distributions of the sound pressure
and of the normal component of the particle velocity
over the surface of the halfspace asthe Fourier integrals
representing the expansions in the wave numbers:

[

p(Xxz) = _[P(U)exp(ikuxz)du, (6)
_ 19p_
V(X)) = ipan, J’V(u)exp(|kux2)du 7

In these expressions, x, denotes a point on the surface
of the halfspace. For each plane wave, the complex
amplitudes of the sound pressure and particle velocity
are related as P(u) = —Z,(uW)V(u). These expressions
yield the formulafor the normal derivative of the sound
pressure at the surface of the halfspace, which enters
into Eq. (2):

ap(rs) _
an2

_ik I Vf/’((“)) exp(ikux,)du. ®)

Substituting Egs. (3), (6), and (8) into Eq. (2), weobtain
that the integral over the halfspace surface S, is zero
and only the integral over the cylinder surface S, is
left. Thus, the use of the Green function given by
expression (3) eliminates the integration over the infi-
nite surface.

Expression (3) can be represented as G = G, + G,
where G, is the Green function for afree space and the
term G, determines the field reflected from the bound-
ary of the halfspace, i.e.,

i
Go(r1,12) = ZHo (KIri=r))

(9)
Wk ) HP (ke )0

O
n(krz)H“)(krl)

Gy(ry,rp)

gexp(in(¢, - ¢2))

4>I|I—-
M 8

ry>ry,

00

IAhexphk(u(xl—x»+v<y1+y2)>]d—“ 10
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Expression (9) represents the summation theorem for
the cylindrical functions. Using the change of variables
u = sinB and y = cos 8 and switching to the cylindrical
coordinates X, = rysin¢,, y, = r,cosd,, X, = r,sin@,,
andy, = r,cos®,, we obtain

Gi(riur2) = Z=[A(®)

(11)
x exp[ikr,cos(d, —0)] exp[ikr,cos(d, + 6)] d6.

Here, I isthe Sommerfeld contour: —Ty2 + i, TY2 — ico.
Using the expansion of a plane wave in cylindrical
functions

exp(ikrcosa) = Z i"J.(kr)exp(ima), (12)
we obtain

GulrsTa) = 3 5 ()", (kr)exp(ing,)

n=-ow

. (13)
xS () In(kro)exp(—im,) f .,

m=—oo

wheref,, . , are the coefficients defined as

f, = (_Iir) IAh(cose)exp[iZkbcose+ise] do. (14)
4

For an acoustically hard or acoustically soft surface of
the halfspace, A, = 1 or —1, respectively. Then, expres-
sion (14) takesthe form of an integral representation of
the Hankel function, which yields f, = +H'" (2kb),
where the plus and minus signs refer to the acoustically
hard and acoustically soft surfaces, respectively.
Applying the summation theorem twice, one can show
that, in these particular cases, the term G, is expressed
by the formula G, = i HE,l) (kR')/4, which describes the
field of the image line source; in this case, R =

«/(Xl—xz)z +(y, + Y2)2-

Let us represent the unknown distribution of the
total sound pressure on the surface of the cylinder asthe
expansion

P(r )l .o = > Peexp(iag), (15)
gq=-—

where p, are the unknown coefficients. The normal
component of the particle velocity in the medium at the
surface of the cylinder is equal to the radial component
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of the particle velocity of the cylinder and can be repre-
sented as the expansion

1 0p
iwpon

r=a

v(9) = 3 veexp(iad) =
q=-

The coefficients p, and v, are related as v, = —py/Z,,
where Z, are the mode impedances of the elastic cylin-
der oscillations, which are given by Eq. (A.3) of the
appendix. Therefore, we obtain

ap

an (16)

=-iky V%;exp(iqq)).

q=-0

r=a

Here, w, = Z,/(pc) are the mode impedances normal-
ized by the wave impedance of the medium.

Let us place the observation point at the surface of
the cylinder, substitute the above expressionsinto inte-
gral relationship (2), and take into account that, with the
Green function chosen above, the integration can be
performed only over the cylinder surface. The follow-
ing transformations are simple, but cumbersome.
Therefore, we only describe their main stages:

(8) Substitute expansion (15) at ¢ = ¢, in Eq. (2) on
its left-hand side.

(b) Substitute the Green function with Egs. (9) and
(13) it involvesinto thefirst term on the right-hand side
by replacing r, and ¢, with a and ¢,

(c) Substitute expansions (15) and (16) of the distri-
butions of the sound pressure and its normal derivative
over the surface of the cylinder into the integrand.

(d) Substitute the Green function into the integrand
by performing the differentiation along the normal with
respect to the variabler,. After completing the differen-
tiation, set r,; = r, = a. When calculating the derivative
in Eg. (9), one should first let the point r, tend to the
surface, i.e., assume that r, > r, and use the lower line
of formula (9); take the derivative with respect to r,;
andthensetr,=r,=a.

(e) Integrate with respect to ¢, with alowance for
the orthogonality relationships for the exponential fac-
tors. As aresult, the sums over mand ninvolved in the
integrand and containing ¢, vanish except for the terms
withn=qgorm=aq.

(f) Change the order of the summation in the double
sums, i.e., usethe change of variablesn~— ¢, to obtain
thefactorsexp(iqd,) inall their terms. Since dl the sums
over q are Fourier series, the equation obtained must be
satisfied for each term of the sum over g.

(g) Using the well-known identity J.,(kayH " (ka) =
Jy(ka) Hfll)' (ka) — 2i/(1ka), obtain the system of equa-
tions for the coefficients py;:

pq+ Z pnzqn = bqf q=—®.. , (17)

n=—oo
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where
_ Vﬁ(_ a+n_ Jn(ka) —iw,Jy(ka) f (18)
Zn = W HO L@ arn
n I(ka) —iwgHy ' (ka)
_ pcQ Wq

T 2map®ia) —iwH (ka)

0. :
xg-lq (kro)exp(=iado) (19)

o . . O
5 T qu(kro)eXp(—|m¢o)fm+q%

m= —co

Note that the coefficients z,, of the matrix depend on
neither the source position nor the position of the obser-
vation point. The free terms b, depend on the source
position but are independent of the position of the
observation point.

To find the sound pressure p at the observation point
M,, we again resort to Eq. (2) and represent it, using
Egs. (9) and (13), as a sum of the incident cylindrical
wave p;, the wave p, reflected from the hafspace
boundary, and the wave p, scattered by the cylinder
(with allowance for the multiple scattering between the
cylinder and the halfspace):

p = pi + pr + ps1 (20)
where
P = kpcQHS (KIry —r4|)/4, 1)
= XeeQ z (=)"3,(kr ) exp(ing,)
(22)

X Z ()" Im(kro) exp(=imdy) f s,

m=—oo

b= [[pr)=5

Scyl

First, consider Eq. (22). Substitute representation
(14) into it and, in each sum, expand the plane wave in
cylindrical functions. Asaresult, we obtain theintegral
representation for the reflected wave:

p, = kpc IAh(e)exp[lk(Zbcose

aG(rl, 2) ag(rZ)G(rl,rz)}dS. (23)
2

(24)
+r,cos(¢p, +0) +rycos(dp,—6)]d6.

This expression differs from Eq. (11) in the constant
factor and in the subscripts that indicate the positions of
the source and the observation point with the coordi-
nates (ro, ¢o) and (ry, ¢,), respectively. Expression (24)
isan expansion of thereflected cylindrical wave similar
to the Weyl-Brekhovskikh integral [9] in the classical

SHENDEROV

problem of the spherical wavereflection from an elastic
halfspace.

To find the scattered field, substitute expansion (15)
and the Green function, written as the sum of expres-
sions (9) and (13), into formula (23). Assume that the
point r, resides on the cylinder surface, i.e., r, = a.
Since, in thiscase, r, > r,, we should use the lower line
in formula (9). Then, we obtain

Tika

pS 2

w (25)
[z PysqH (kr ) exp(iqg,) + z Pasq uq},

q——DO

where

> (=1)""*Jp(kry)exp(ingy) f,.q,

n=—-o

(26)

Sq = (Jg(ka) —iw,Jy(ka))/wy. (27)

System of equations (17) and expression (25) deter-
mine the scattering field in terms of the coefficients of
the Fourier series expansion of thetotal field on the cyl-
inder surface. Therefore, when the radius of the cylin-
der decreases, these coefficients tend to the expansion
coefficients of the sum of the incident and scattered
fields rather than to zero. Hence, it is reasonable to
transform these coefficients so as to extract the coeffi-
cients of expansion of the scattered field, which tend to
zero astheradius of the cylinder decreases. To thisend,
we introduce new expansion coefficients a,, which are
related to the coefficients p, as

Py = ~Bgas e (28)
nkaJ,(ka) —iw,Jy(ka)’

Then, the system of equations (17)—19) will have the
form

ag + z a,D,q = E,,

q= - .. o, (29)
n=—o
Dpg = —ag (1) e, (30)
kpc .
(31)
+ 3 ()™ (ko) exp(=imo) f g |,
m= —o0
ACOUSTICAL PHYSICS Vol. 48 No.2 2002



DIFFRACTION OF SOUND BY AN ELASTIC CYLINDER

and the scattered field (25) will take the form

00

=y aq[Hg”(krl)expaqw
q=-o

) (32)
+ Z (1) 93, (kry) exp(ind,) fn+q}‘

n=-ow

In Egs. (30) and (31), the coefficients a” are deter-
mined by formulas (A.2).

To obtain an asymptotic expression for the case
when the receiver and transmitter are far from the cyl-
inder, we first consider the field reflected from the
plane. If at least one of the wave distances, kr, or kr, is
much greater than unity, the integral in Eq. (24) can be
calculated by the saddle-point method. Poles of the
function A,(8) that may be crossed in the course of the
deformation of the integration path can be neglected,
because the residues at these poles produce surface
waves, which decay exponentially with distance from
the surface. In the exponent, we can single out the term
ik(hy + h;)cosB, where hy = b + rocos® and h; = b +
r,cos@ are the distances from the transmitter and the
observation point to the surface, respectively. There-
fore, the calculation of the residues givesriseto the fac-
tor exp(—k(h, + h,)Re(cosB)). The amplitude of the
surface wave thus depends on the sum h, + h, rather
than on each distance individually. Hence, if the dis-
tance from at least one of these pointsto the surfaceis
longer than the wavelength, the contribution of the
residue can be neglected. This fact has been noted in
relation to the problem of the spherical wave reflec-
tion from a halfspace [9].

The value of the variable of integration correspond-
ing to the saddle point is determined as

roSindgy—r,sind,
2b +rycos, +rcosd;’

tanf, = (33)

Asfollowsfrom Fig. 2, 8, is equal to the angle of inci-
dence of sound at the point corresponding to the specu-
lar reflection. After calculating the integral, we obtain

k 2 . .
p, = An(6,) p:Q ,ﬁ-k—l exp(ikl —it/4),

k(ho+h,) > 1,

(34)
kr, > 1,

wherel =r,cos(§, + dy) + 2bcosB, + rocos(d, — ) is
thetotal distance M,SM, (Fig. 2). Thefirst, second, and
third terms of the expression for | are the lengths of the
segments M A, AB, and BM,, respectively. Thus, inthe
far-field region, the reflected field is expectedly formed
asaresult of the emission of acylindrical image source
with the amplitude that is proportional to the reflection
coefficient of sound at the angle of incidence corre-
sponding to the geometrical optics reflection.
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Fig. 2. To the derivation of Egs. (33) and (34).

If the sourceis at along distance from the cylinder,
i.e, kr, > 1, EQ. (31) can be simplified. To thisend, we
represent the sum that appearsin this expression as

S =LA

m= —co r

x exp(ik(2bcosb + rycos(6 —¢,)) +iq6)ds.

(35)

When kr, > 1, this integral can be calculated by the
saddle-point method. If r, > b and kr, > q, the saddle
point is6, = ¢,. When transforming the integration path
into the steepest descent path, it can cross the poles of
the function A,(6). The residues at these poles deter-
mine the surface waves near the halfspace boundary.
However, since the contributions of these poles
decrease exponentially with the distance from the
boundary, they can be ignored when calculating the
field produced by a distant source. Note that all contri-
butions of the poles and the corresponding surface
waves produced by the interaction between the closely
spaced cylinder and boundary are taken into account
rigorously, because they are described by the coeffi-
cientsf,, m which enter into the matrix coefficients z,,.

After calculating the integral, we obtain the system
of equations

ag+ Z a,Dgn = Fg, g = —0 ... o, (36)

n=-—ow

where the coefficients of the matrix coincide with the
coefficients given by Eq. (30) and the right-hand sides
are written as

0) (O .
Fo=pi 2y (<)

x [exp(=iddo) + (=1)"AL($o) exp(iad)] -

(37)
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(0) .
Here, p; "’ representsthe sound pressure in afree space
at apoint lying on the cylinder axis, i.e.,

©_kpcQ |2 Lo
pi I T[kroexp(lkro iTv4).

For the diffraction of a unit-amplitude plane wave,

one should set pi(o) = 1 and replace the sign of approx-

imate equality with the sign of exact equality.

Let us calculate the sound pressure in the scattered
wave at the observation point located far from the cyl-
inder when kr, > 1. The sum over nin Eq. (32) can be
represented as

(38)

S =LA@
|

x exp[ik(2bcosB + r,cos(¢, +8)) +ig6] dbé.

In the far-field region, i.e, under the constraints
imposed when calculating integral (35), integral (38)
can aso be calculated by the saddle point method. The
saddle point is determined as 8, = —¢,. Then, we obtain
the scattered field as

_ 2 . .
Pe = [ @PUIkr W@, (39)
where
~ i\d
(Ds(q) 1) = Z aq(_l) (40)

q=-

x [exp(iady) + (-1) exp(-iad.) Ai($)] -

The system of equations (36) and expressions (39)
and (40) completely determine the scattered field
formed in the far zone as aresult of the diffraction of a
plane wave and also of a cylindrical wave by an elastic
cylinder located near a boundary of an elastic halfs-
pace.

In system of equations (36), the indices assume pos-
itive and negative values, whereas the existing pro-
grams for solving systems of linear equations handle
only positive indices. If the variables are renumbered
through shifting their indices by a constant value, the
most significant terms (for example, a, and a,) will
occur in the middle of the system, which is inconve-
nient when an infinite system of equationsis solved by
the reduction method. It istherefore reasonable to rear-
range the system so as to make all indices positive and
place the most significant terms at the beginning of the
system. It is also useful to separate the solution into the
symmetric and antisymmetric parts about ¢, = 0. The
system of equations can thus be split into two systems,
each of them being twice as small as the original sys-
tem, which reduces the computation time when the
dimension of the system is large. The manipulations
and final formulas are omitted here for brevity.

SHENDEROV

Consider the calculation of coefficientsf, , , defined
by integral (14). Let us split thisintegral into integrals
over the segments (-172 + i, —T72), (-TY2, T¥2), and
(T¥2, Y2 — io0). In thefirst and third of these integrals,
we change the variables 8 = —17/2 + ia and 172 — iq,
respectively. Denoting An(8) at 6 = (172 - ia) as

AY (), we obtain f, = (<)%, — il,)/T, where
2

I, = J’Ah(e)exp(i2kbcose)cos(n6)de, 41)
0

00

I, = J’Aff)(a)exp(—Zkbsinha)

J (42)
x[exp(itn/2 + na) + exp(—(iTn/2 + na))] da,
(1) _ iWhSinhO( -1
An(0) = iw,sinha + 1’ 43)

and the refraction angles 6, and 6,, which enter into
Eq. (5), are written as

sinB, = (¢/c)cosha, snB, = (c/c)cosha. (44)

The function A, (8) does not have any poles on the
real axis of the complex plane of 6. Therefore, theinte-
gra |, is calculated in a straightforward manner. When

the medium is losdess, the function Aﬁl)(a) can

increase without limit at certain points of the integra-
tion path, which corresponds to the condition of the
generation of surface waves. In this case, a residue at
the pole should be added. The poleis however found as
a solution to an intricate transcendental equation. It is
therefore ssimpler to assume that the reflecting halfs-
pace is awayslossy and that the vel ocities of the longi-
tudinal and transverse waves are complex-valued.

Integral (42) convergesfast, theintegrand starting to
decreaserapidly when sinha > na(2kb). Notethat, due
to the sharp maxima in the integrand, in order to
decrease the computation time, it is reasonable to split
the integration interval into a number of shorter inter-
vals and caculate each of these integrals using a
quadrature formularather than integrate over the entire
interval at once. In this study, we used the Gaussian
guadrature formula with the automatic selection of the
number of nodes.

The system of equations was solved by reduction.
To obtain the result with at least three true decimal dig-
its, it was sufficient to retain 1.2ka + 3 terms in the
series and, accordingly, the same number of equations
in the system. The convergence of the system depends
on the distance between the cylinder and the surface of
the halfspace and persists until the cylinder touches the
boundary.

When caculating the bistatic scattering patterns
produced by the elastic cylinder (Fig. 3), we took into
ACOUSTICAL PHYSICS Vol. 48
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Fig. 3. Bistatic scattering patterns for an elastic cylinder located near the surface of aliquid halfspace (the solid lines) and in afree
space (the dotted lines): kb = (&) 7.0 and (b) 3.0, p,, = 2000 kg/m?, ka = 3.0, cfcyl) = 2000 m/s, cfcy') =300 m/s, efcyl) =0.1,

e =02, p, = 1800 kg/m?, ¢, = 2000 MV, & = 0.01, and ¢ = 80° (0tg = 10°).

3.0r

2.5+

2.0

1.5

1.0

0.5

0 2 4 6 8

0 2 4 6 8

Fig. 4. Relative amplitude of the backscattered field for a cylinder located near the boundary of a halfspace (the solid lines) and in
afree space (the dotted line) versus the wave radius for different distances between the cylinder and the surface: p,, = 2000 kg/m?,

ka=3.0, cfcy') = 2000 m/s, cﬁcy') =300 m/s, sfcyl) =0.1, egcyl) =0.2, p; = 1800 kg/m’, ¢ = 2000 m/s, g = 0.01, and ¢ = 45°.

account the active loss in the cylinder material. The
coefficients that characterize the sound attenuation for
the transverse waves were assumed to be twice aslarge
as those for the longitudinal waves, which istypical of
elastic media (rubber-like materials). In Fig. 3 and the
subsequent figures, the plots are constructed versus the
angular coordinate a; = 90° — ¢,.

As compared to the scattering patterns in a free
space, the patterns produced by a cylinder located near
a boundary are more nonuniform. The additional max-
ima and minima in the patterns occur due to the multi-
ply reflected waves and the interference between them.
The longer the distance between the cylinder and the

ACOUSTICAL PHYSICS Vol. 48

No. 2 2002

boundary is, the smaller the angular spacing between
the extrema of the plots. At certain directions, the
amplitude of the wave scattered by the cylinder located
near the halfspace boundary was found to be 2—3 times
greater than the amplitude of the wave scattered by the
cylinder located in afree space.

The dependence of the scattering amplitude on the
waveradius of the cylinder exhibits an oscillatory behav-
ior (Fig. 4). Oscillations of two types are observed here.
One of them is associated with the resonance oscilla-
tions of the cylinder, and the other is produced by the
interference of the waves multiply scattered between
the cylinder and the plane. The frequency of the oscil-
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Fig. 5. Backscattering patterns for a cylinder located near the surface of an elastic halfspace (the solid lines) and in afree space (the
dotted lines): kb = () 7.0 and (b) 3.0, prm = 2000 kg/m?, ka = 3.0, ™" = 1800 mvs, ") =300 mvs, £ = 0.1, ¥V =022,
p; = 2700 kg/m3, ¢ = 6100 m/s, ¢; = 3050 m/s, g; = 0.001, and & = 0.002.

lations increases with the distance between the cylinder
and the halfspace surface.

The above results refer to a cylinder located near a
liquid halfspace. Figure 5 shows the backscatter
(monostatic) pattern for the elastic halfspace. The back-
scatter patterns exhibit sharp maxima due to the excita-
tion of the longitudinal and transverse waves. The
angles at which these maxima occur satisfy the condi-
tionssing, = c/c,andsing, = c/c,. InFig. 5, these angles
correspond to o, = /2 — ¢, of 57° and 123° for the
shear waves and 76° and 104° for the longitudinal
waves.
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APPENDIX

RELATION BETWEEN THE SOLUTIONS
TO THE PROBLEMS OF THE DIFFRACTION
OF CYLINDRICAL AND SPHERICAL WAVES

BY A CYLINDER

Paper [12] wasthefirst to consider the diffraction of
aplane wave by an elastic cylinder. Later, similar prob-
lems in various formulations were solved in a number
of works (see, e.g., [13, 14]). The diffraction of aspher-
ical acoustic wave by an elastic cylinder was first con-
sidered in [15]. However, as it is indicated above, the
solution is expressed in terms of rather intricate com-
plex integrals of cylindrical functions of a complex
argument, which are very difficult to calculate. There-
fore, in this paper, we use an exact solution to the two-

dimensional problem, while asolution for the spherical
incident wave is obtained for the asymptotic case when
the transmitter and receiver are far from the cylinder.

Let acylinder of radiusa be centered at the origin of
coordinates and r,, ¢, and r, ¢, be the coordinates of
the observation point and of aline source of acylindri-
cal wave, respectively. The diffracted field is given by
the well-known expansion (see, e.g., [10])

o — kpcQ
s 4
w (A.1)
x5 ay Hy (ko) Hy” (kry) exp(in(91 —9o)),
where
a(ka) = Jn(ka) —iw,J,(ka) (A2)

HY (ka) —iw H" (ka)

Here, w, = Z,/pc arethe mode impedances of the elastic

cylinder normalized by pc. Expressions for the imped-
ances Z, can befound in [7]:

; (cyh)
_ ipmCi

k.a
. Fika)F(ka) —2F;(ka)Fa(ka)
nJa(k@)Fi(ka) -k Jy(ka)F,(ka)’

Zy
(A.3)

where k = ay/c®” and k = ayc!®" are the wave num-

bers of the longitudinal and shear waves in the material
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of the cylinder, p,, is the density of the material of the
cylinder, and

Fi(x) = 2n(xJ5(x) = In(X));

Fa(x) = X2In(x) = xJp(x) +n°3,(x);  (A4)

Fa(x) = X300 + (1= (c"1e™”)12) 3,(3)].

In expression (A.3), a misprint present in [7] is cor-
rected.

When kr, > 1 and kr; > 1, we use asymptotic
expressions for the Hankel functions and normalize the
scattered field by the sound pressure of the incident
wave at the cylinder axis, i.e., by

(Cyl)

kpCQH(l)(k 0)

kch / eXp(IkI’O—IT[/4)

to obtain the ratio of the sound pressure amplitude of
the scattered wave to the amplitude of theincident wave

at theorigin
I exp(lkrl—lrr/4)CDs(ka) (A.5)

n=o

dyka) = 5 (=1)"ay’ (ka)exp(in(9o—91)). (A.6)

(Cyl)

(Cyl)

where

Assume that the sound is radiated by a spherical
source and the distance between the source and the cyl-
inder axisisr,. Then, the sound pressure in afree space
at apoint located at this distance will be

exp(ikrg)
4mry

(sph) _

Po —ikpcQ—— (A.7)

To derive an expression for the scattered field in the

three-dimensiona caseg, i.e., for a sphericd wave, we use
thefollowing familiar technique[ 10, 16]: wereplacek with

JKC =& everywhere, multiply by expli/k*—&%(z, —
2,)1/(21), where z; and z, are the coordinates of the
observation point and the source along the cylinder axis
(Fig. A); and integrate with respect to & between the
infinite limits. As aresult, we obtain

_—ipcQ

(sph) _

s 41'[2 ol

x [l g+ +igz-z) A
x O (JK* —E?a)dE.
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Fig. A. Coordinate system for the three-dimensional
problem.

Since we consider the case when kry > 1 and kr, > 1,
the integral can be calculated by the stationary phase
method. For simplicity, assume that the source and the
receiver are located in one plane that is orthogonal to
the axis, i.e., z; = z,. Then, we obtain

pcQ

| k
(2m)* 2N Tor 1 (ry + o)

x ®(ka)exp(ik(r, +ro)).

We normalize this quantity by the sound pressure at the
axisin afree space (i.e., in the absence of the cylinder),
whichisgiven by Eq. (A.7). Asaresult, we arrive at the
expression

(sph) _

ps -

(A.9)

S T

(sph) —

Po
The comparison of expressions (A.5) and (A.10) yields
that the function d((ka), which depends on the radius of
the cylinder and its elastic characteristics and on the
scattering angles, is the same for the cylindrical and
spherical sources, whereas the distance dependence of
the scattering amplitudes are different. In a particular
case when the source and the receiver are at the same
point, i.e., r, =r, we have

/ exp(l kr)® (ka).

Contrasting this expression with formula (A.6), we
obtain that, for the spherical source, the scattering

amplitude is J2 times smaller than that for the line
source. Aswas noted in [10], this fact can be explained
as follows. When the spherical wave is diffracted by a
cylinder, the Fresnel zones, i.e., antiphase regions
whose contributions partly compensate for each other,
occur on the surface of the cylinder along its axis. The

exp(ikry)dg(ka). (A.10)

TKr,(r; +1o)

(Sph)

(Sph)

(A.11)
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radius of the equivalent sphere for the diffraction of the
spherical wave by an infinite cylinder can be obtained
through the comparison of expression (A.11) with a
similar expression for the acoustically hard or acousti-
cally soft sphere of radius a,,,, that islargein terms of
the wavelength. In this case, the following well-known
expression isvalid:

p(SSph) — Qequiv

o (A.12)

P

Equating expressions (A.11) and (A.12), we obtain
the radius of the equivaent sphere for the spherical
wave incident on the cylinder:

_ M
aequiv - ZA/;(lq)s(ka)l .

To obtain the radius of the equivalent sphere for the
backscattered field, we should set ¢, = ¢, in the expres-
sions for @, Note that, in [7], the positive angular
direction is opposite to that accepted in this paper;
therefore, in the tables given there in the appendix, the
values associated with the backscatter are denoted as
D).

Theradius of the equivalent spherefor theincidence
of a cylindrical or plane wave on a cylinder can be
found by equating expressions (A.5) and (A.12), which

yields
_ /2r1
aequiv =2 ﬁ | (Ds(ka)l .

Thus, the radius of the equivalent sphere for a plane or
cylindrical wave incident on an infinite cylinder is

found to be /2 times greater than that for a spherical
incident wave.

Asfollows from Egs. (A.13) and (A.14), the radius
of the equivalent spherefor an infinite cylinder depends
on the distance between the source and the cylinder.
This property is also associated with the Fresnel zones
that occur along the cylinder axis (see, e.g., [10]). The
size of the first zone, which makes the greatest contri-
bution to the scattered field, increases with the distance.

(A.13)

(A.14)

SHENDEROV

Since the radius of the equivalent sphereincreases with

the distance between the cylinder and the source and

receiver position as ri’?, the amplitude of the scattered

field decreases by the cylindrical law r[“z rather than

by the spherical law r7".
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In practice, avibration insulation for flexural waves
in beams and plates is obtained with the use of resona-
tors[1-7]. The simplest resonator isa spring—mass sys-
tem [8-10]. When such a resonator is positioned nor-
mally to a plate and attached to it by a spring, it pro-
vides effective scattering of flexural waves propagating
in the plate. The vibration insulation occurs because of
the scattering (reflection) of flexural waves from the
resonators [3, 4, 6]. A dissipative loss in a resonator
reduces the efficiency of its operation as a scatterer for
flexural waves. Earlier [11], it was shown that, at a cer-
tain value of the dissipation factor, the power absorbed
by aresonator reachesits maximum and becomes equal
to the power scattered by thisresonator. Thelatter prop-
erty of resonators with dissipation can be used for
designing efficient absorbers of flexural waves propagat-
ing in beams and plates. Wide-band absorbers consisting
of several resonant elementswere studied in [12].

Consider a thin semi-infinite cantilever beam coin-
cident with the semiaxis x > 0 so that itsfixed end is at
x = 0. A harmonic flexural wave propagating along the
beam is characterized by the displacement

W(i)(X, t) = exp[—i(kx+ wt)],

where k and w are the wave number and the circular fre-
quency, respectively. The reflection from the fixed end
gives rise to two waves one of which is homogeneous
and the other inhomogeneous. The reflected field has
the form

wO(x, 1) = {ie"*—(1+i)e™ e,
Thetotal field in the beam is expressed as
wOx 1) = wh(x 1) +w(x, t)
= (1+i){ cos(kx) — sin(kx) —e™} ",
In this standing field, the antinodes occur at the points

_(4n-1)m
T

where n represents any arbitrary positive integer. At
some of the antinodes of the field W (e.g., a x =X, =
H), we attach a resonator to the beam and assume that
the resonator has a mass m and an elastic coefficient
K(1 — i€), where ¢ is the dissipation factor. Under the

)]

effect of the field WO(x, t), the resonator is excited and
generates afield w(V(x, t). Thetotal field w in the beam
with the resonator is equal to the sum w® + w\. Let us
show that, at the resonance frequency, at acertain value
of the dissipation factor €, the travelling flexural wave
exp[i(kx — wt)] propagating in the total field w(x, t) in
theregion x > H is absent.

Denote the displacement of the resonator mass by
w(t). The equation of mation of this mass has the form

d’w'
dW — _F), 2
mdt2 (t) (2)

where the force F is determined by the formula
F(t) = k(1—ig)[w'(t)—w(H,1)]. 3)

The equation of motion of the beam connected with
the resonator can be written as
d’w . _d'w
— +G— = F(t)d(x—H), 4)
Pz G (t)o( )
where p and G are the linear density and flexural rigid-
ity of the beam, respectively, and &(x) is the delta func-

tion. The wave number of the flexural wave is equal to
1

4 .
%wﬁ . Since w and w" are free waves, we can
replace w by w() on the left-hand side of Eq. (4). The
displacement wt!) satisfies the boundary condition

W = dw™®
dx

The scattered field in the beam can be derived asfol-
lows. We calculate the displacement produced in a
semi-infinite beam by a harmonic point force F(t) =
Foexp(-iwt), where F, is a complex amplitude. In an
infinite beam, this point force causes the displacement

=0at x=0. 5)

@ _ iR ,
w(x,t) = —={exp[ik|lx—H
(% t) 4Gkg{ plik| I

+iexp[—k|x—H]|] } exp(—iwt).
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Taking into account the waves reflected from the fixed
end x = 0, we obtain the following expressions for WiV

0<x<H, wPxt) =

e (60

+iexp[—k(H-x)] +[ie"" = (1 +i)e* "€
ikH

+[e‘ —(1+|)e ]e “} exp(—iwt),

x>H, wP(xt)
_ iFg
4GK®

+[ie" + ™"

{[e—ikH+iei _(1+I)e—kH] i kx (7)

—(1+1)€*" €™} exp(—it).

We select the force amplitude F, so as to satisfy
Eqg. (3). According to Eq. (2), the displacement of the
mass will have the form

w(t) = F—ozexp(—i wt). (8)
mw

Substituting Egs. (1), (6), and (8) in Eq. (3), we obtain
the desired force amplitude

E. = O (H Q:R Y +
0 |(A)W0 ( ) e K(1+€ )i|
. )
[lmv+i— = }% :
mw k(1 +¢?)
where
WO (H) = wOH, t)exp(iot),
_ —iowP(H, 1)
L Ol

isthe compliance of the semi-infinite beam with respect
to the point force. Neglecting small quantities of the

order of exp(—kH) = exp [ —-(4q9-1) g] , we obtain the

approximate expressions

WS’ (H) = 2exp(-ikH), Y =

4GK®

The scattered field w(V is calculated by substituting
F,in Egs. (6) and (7).

The resonance scattering occurs at the frequency w,
determined from the equation

Imy+ +— @

MW k(1+¢e?)

= 0.

(10)

LAPIN

At the resonance frequency, the force amplitudeis

-1
Fo = |ww(°)(H)[ReY+ €W : }
K(1+¢€%)
2eGK T
K(1+¢€)
Let us separate the wave travelling along the x axis
fromthetotal field w=w® +w. According to Egs. (1)
and (7), the amplitude of thiswave is expressed as

~ 4Gk e [1 +

—ikH

iE : .
Az i+ (1 +i)e ™.

4GK®
At the frequency w = wy,, we approximately obtain

3
= i%1—2[1+ _2eGK_ } il
O K(1+¢€%)d O

When the dissipation factor € is approximately equal to
K/(2GK?), the amplitude A becomes zero. This means
that the resonator completely absorbs the incident
wave.

A similar consideration is possible for aplate. Let a
semibounded plate lie in the upper xy half-plane and be
rigidly clamped along the boundary y = 0. A harmonic
flexural waveincident on thisboundary is characterized
by the displacement

w(x, y,1) = exp[i(Kex—kjy —wt)],
where k3 and —k; are the projections of the wave vec-
tor of the incident wave on the x and y axes, respec-

tively. Thetotal field w® inthe plateis equal to the sum
of the incident and reflected waves.

w(x, y,t) = <i2{sn(Ky-¢°)

+sing exp(-a°y) } exp[i (kKyx— 6° — wt)],
where

(11)

0

a® = JE—(K)° and sinp® = %(

In this field, the antinodes occur on the lines y, =
n(2n—1) + 2¢°
2k,
identical resonators with masses m and elastic coeffi-
cients K(1 — i€) to the plate along one of these lines
(eg., y=Yy,=H) at the pointsx = X, = sL, where s= 0,
+1, +2, .... The resonators are excited by the field w©®
and generate the field w". The total field in the plate

with the resonatorsisw = W + w,

Let us denote the displacement of the mass of the
sth resonator [which is attached to the plate at the

, Where n is any integer. We attach
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point (xs, H)] by w; (t). The equation of motion of this
mass has the form

2 .

W,
F = Ry,
dt?

where the force F, is determined by the formula
Fo(t) = k(1—-ig)[wy(t) —w(xs H, 1)].  (13)

The equation describing the motion of the plate con-
nected with the resonators can be written in the form

(12)

S=

> Fu()8(x=x)3(y—H),

S=—»

pd—W +GA*W =

dt

where p and G are the surface density and the flexural
rigidity of the plate, respectively, and A is the Lapla-
cian. On the left-hand side of this equation, the quantity
w can be replaced by w,

The structure of the scattered field is determined by
the period of the scattering array (chain) of resonators,

and the quantity W((x, y, tlexp(-ik.x) is a periodic
function of x with a period L. Then, in the presence of
the exciting field given by Eqg. (11), the force F(t) can
be represented in the form

Fo(t) = Fexp[(kpxs— wt)],

where F is the force amplitude at s = 0. The scattered
fieldinthe plateis obtained in the same way asthe scat-
tered field in a beam. In an unbounded plate, the chain
of point forces F(t) generates the field

n=o

W(Z)(X, y,t) =

' n O
+ L exp(—a"|H - y1) Cexpli (Kix— wt)]
a 0
where

K. = K+ 2,

K = JKC=(K)®, and a" = K+ (k).
Taking into account the waves reflected from the

clamped boundary y = 0, we obtain the following
expression for WV at y = H:

wh(x, y, t)

z LGk g[l exp(i2kyH —i2¢")]

expli (Kex — ot) +ikj(y —H)]

(14)
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+ i[in—%sinq)”exp(ik;H —ip-a"H)]
a’  ky

x exp[i (K'x - wt) —a"(y — H)] Ex

n

Y In Eq. (14), the first term in the

J2k

braces represents a homogeneous plane wave for |k§| <

where sin¢" =

k and an inhomogeneous plane wave for |k| > k, and

the second term in the braces always represents an
inhomogeneous wave.

We select the force amplitude F so as to satisfy
Eqg. (13). The displacement of the plate at the point of
the resonator attachment is understood as the displace-
ment averaged over the contact area between the plate
and the resonator. According to Eq. (12), the displace-

Rt ) . Substituting w®, w", and
0

ment wy (t) isequal to
w; in Eq. (13), we derive the desired force amplitude
-1
_ (0) 1 w [
F = iowwy (0, H)@H [wm ——_K(l—ls):|D ,
where

w?(0, H) = w(0, H, t)exp(it) = 2exp(-ikSH),

—i oow(l)(xs, H,1)
Fy(t)

k'O
2(kjH - i,
= 2 ok kﬁ Xpli2(H -] i

n=—o

Y =

n=oo

_ sin(ka) exp(ikja) — 1
(k)  (ikja)
Averaging is performed over asguare areawhose side2a
is small compared to the flexural wavelength; €, = 1
when kja < 1.
The scattered field is obtained from Eq. (14) by sub-

gtituting F into it. The resonance scattering occurs at
the frequencies determined from the equation

my+-—4+ __—® _g

mw k(1 +¢?)

Thisdispersion equationisidentical informto Eq. (10).
However, because of the complex dependence of Y on
frequency, it may have severa solutions. At the reso-
nance frequency, the amplitude of the nth scattered
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homogeneous spectrum (i.e., scattered homogeneous
plane wave) has the form

-1
cew U
2 nD l+ ZD
2LGKKk)O ~ K(1+¢€%)T

A, =
(15)

x exp[—i (ky + k)Y H]{ 1 — exp[i2(K)H — ")} ,
where

! w s s
Yi=ReY= 32— {1 cos[2(KGH - _
1o e S4|_Gk2k§{ cosl 201 =9Il (16)

Here, the prime denotes the summation over al s at
which k; isreal.

When the period of the chain is smaller than A(1 +

0
=X

sin0)~!, where 0 = arcsin ”

is the angle of the wave

incidence and A = 2?11 only the “zeroth” spectrum is

homogeneous in the scattered field given by Eq. (14).
Then, from Egs. (15) and (16), we derive the expres-
sions
S C

2LGKk;

2eLGKAC]

K(l+€) |
Combining the homogeneous reflected wave with the

zeroth scattered spectrum, we obtain atravelling homo-
geneous wave with the amplitude A equal to

[—exp(-i29°) + Aj]

1

Ay = 2exp(—i2¢°){1+

-1

2£LGk2k(y’} 0

=—exp(—i2¢°)%1—2{1+ 8.
0 K(1+€%) | O

LAPIN

When the dissipation factor € is approximately equal to

K
2LGKk;
that the chain of resonators compl etely absorbstheinci-
dent wave.

the amplitude A becomes zero. This means
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An advantage of a parametric transmitting antenna  where

(PTA) is that it has lower sidelobes than traditional
antennas [1], which provides a low level of interfer-
ences created by the surface and volume reverberation
and also enhances hiding of the transmission. The
angular pressure dependence P(8, B) at the difference
frequency can be written as

P(6,B) = P1(6, B)P+2(6, B)W, M

where (6, ) are the angular coordinates; Py, ,(6, B) is
the pressure produced by the source at the partial pump-
ing frequenciesf, and f,, respectively; and W isafunc-
tion independent of angles (B, B), which isdifferent for
different PTA models[1-5].

Since the directional pattern determines only the
angular antenna characteristics, the PTA factor [6], or
the nonnormalized directional pattern, can bewritten as

R(6, B) = R:1(6, B)R¢2(8, B), 2

where Ry, (6, B) arethe partial patterns at the frequen-
ciesf, and f,.

Asfor real sources, the parameters of their elements
are spread; therefore, Rq (8, B), R»(0, B), and, hence,
R(8, B) are random variables. The statistical character-
istics of R(B, B) are determined by the statistical char-
acteristics of R,(8, B) and Ri,(6, ). The only known
work on the statistical characteristics of PTA [7] studies
only the pressure at the difference frequency at the
maximum of the directional pattern versusthe spread in
the partial pumping frequencies. Therefore, it is of
interest to study the statistic of PTA's sidelobes.

Consider the statistical characteristics of a random
PTA's pattern in the general case, as this is customary
in the statistical theory of antennas [6, 8]; i.e., with
allowance for errors in the excitation amplitude and
phase, for errors in element settings, and for element
failures. We will normalize function (2) by its mean
value; then the magnitude of the normalized patternis

IR(6, B)l = AJRy1(6, B)R2(8, B)], (€)

1/A = |R1(8, B)||Rs2(a, B)|- 4)

For simplicity sake, we denote |R;;(6, B)|=R,i =1, 2

The pumping signal can be applied to the antennain
a two-channel or one-channel excitation mode [1]. In
the first mode, the source array is divided into two
equal, though statistically independent, overlapping
subarrays. In the one-channel excitation mode, the beat
signal between the pumping frequencies is applied to
each element of the source.

First, consider the two-channel excitation mode.
Since the subarrays that constitute the PTA pumping
source are statistically independent, the mean value and
variance of the pattern at the difference frequency are
expressed in terms of the mean values and variances of
the partial directional patterns:

R ——— — —>
R = RR;, Dg = DgiDgry+ Ry Dgo+ R; Dg;.

As shown in [8], the functions R, and R, are
described by the Rician distribution:

R _OR+QU RQO
f(R) = —exp——=0lom——, &)
o> 0 20> 0 Hg?D

where Q; and o; (i = 1, 2) are the distribution parame-
ters.

For a traditional antenna representing the source,
i.e.,, when Q/o > 34, the Rician distribution (5) goes
over into the Gaussian distribution; when Q/o < 0.5, it
changes to the Rayleigh distribution [9]

R 0 RZD
f(R) = —exp—npr, (0)
o’ 202]

whose mean value and variance are

M[R] = o ./n/2,

Since our primary interest isin low sidelobe levels,
we assume that the magnitude of the directional pattern

D[R] = 6’(2-12). (7)

1063-7710/02/4802-0239%$22.00 © 2002 MAIK “Nauka/ Interperiodica’



240

is characterized by distribution (6). In this case, the par-
tial patterns are independent and, therefore, the magni-
tude of the normalized pattern at the difference fre-
guency is characterized by the two-dimensional Ray-
leigh distribution

X +yh
20,0,

_ Xy
f(x, =
(x,y) o%0?

exp3 ()

where the parameters o, , of the distribution corre-
spond to therandomvariablesXand Y, i.e, to R, and R..

Let usexpress o interms of the statistical character-
istics of fluctuations of the antenna elements. The array
factor R(6, B) is

No

R(6,B) = Z AmoBm@XPLi(k —Ko)r o], (9)

where A, is the nominal excitation coefficient of the
mth element, N, is the nominal number of elements, k
is the wave vector, and r,,, is the nominal position vec-
tor of the array element.

Summarizing the data presented in [6, 8, 10], we
represent the scatter coefficient A, for the parameters of
the mth element as

A = ay(1+0y)exp(idm)expli(k —ko)ory], (10)

where a,, is the failure parameter, which equals unity
with a probability p when the element is operable and
zero with probability 1-pwhenitfails; &,,istherelative
amplitude error; and dr,, is the fluctuation in the ele-
ment position.

Let us assume for definiteness sake that the fluctua-
tions possess the following properties:

(i) elements and fluctuations of different types are
statistically independent;

(i) fluctuations are uniformly distributed over the
antenna aperture;

(iii) elements are statistically indistinguishable;

(iv) phase errors and adjustment errors have the
Gaussian distribution with zero mean values; standard
deviations of the amplitude, phase, and adjustment
errors are ,, Oy, and o, respectively.

Asfollows from [8], the parameter o of distribution
(6) subject to these assumptions has the form

o2 = L+ 03— pexp(-0, —k'ag)

2pexp(—o;, — ko)
2 (11)

v ol O
xR3(6, B 1) S Ano/OY Andl,
m=1 |q‘nzl u

where Ry is the directional pattern of one element (in
the case of a planar antenna and complete compensa-

OSTROVSKII

tion [6]); M is the number of elements (for the two-
channel mode, M = N,/2); N, isthe nominal number of
elements in the source; and k; = 27tf; /c.

As follows from Eq. (11), the quantities dependent
on the frequency f; are the element pattern Ry and the
wave number k. Since the condition f,/F = 10 (F isthe
difference frequency) isusually met and, therefore, f, =
f, =f, = (f, + f,)/2, we can assume that 0, = 0, = o(f)).
Replacing o, , in Eq. (8) with o, we obtain the distribu-
tion density of PTA’s pattern in the form of the product
of independent random variables [11]:

f(R) = RKy(R/g%)/c*, (12)
where Ky(2) is the Macdonald function, whose mean
value and variance are

M[R] = o®/2, D[R] = c*(4-1¢/4). (13)

Figure 1a showsthe histogram and distribution (12),
which approximates it. We performed simulations for
an antenna with the average pumping frequency f, =
50 kHz, difference frequency F =5 kHz, and total num-
ber of elementsN, = 18 x 18. Thelevelsof partial direc-
tiona patterns were 0.0266 and 0.0264. The numerical
characteristics of the fluctuations obtained from n =
1000 realizations were as follows: p = 0.9, o, = 0.7,
0y = 0.3, and o4 = 2 mm. The solid curve refers to the
parameter o obtained from formula (13); the dashed
curve, from formula (11). The two curves virtualy
coincide and approximate with statistical confidence
the directional pattern distribution of the parametric
radiator excited in the two-channel mode.

Consider the one-channel excitation mode. As fol-
lows from the expressions that describe the models of
the parametric radiator, in the one-channel excitation
mode, the pressures P;, and P;, are created by the
whole antenna aperture. Accordingly, the partial direc-
tiona patterns R, and R, are formed by all elements of
the source. The PTA patternis calculated by formula (3),
but, in this case, the partial patterns R, and R, are not
independent.

Each of the partial patternsis arandom (in general,
nonstationary) process in frequency. At the same time,
a f/F > 1, inthetheory of the parametric radiator [4, 5],
the product of pressures at the frequencies f, and f, in
formula (1) is replaced by the squared pressure at the

frequency f,: P;,P;, 0 P7,. Then, PTA pattern (3) goes
over into

IR(8, B)l = AlRyo(6, B)>, L/A = [Ro(6, B,

i.e., becomes equal to a squared directional pattern of
the source at the frequency f.

The original directional pattern of the source has
Rician distribution (5). The square of thisrandom vari-
ACOUSTICAL PHYSICS Vol. 48
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Table
Mean value Variance
Mode

formula v formula (O
Linear o.J/TU2 1 0%(2-12) 1
Two-channel P o./2m 40%(4 - TP/4) 2024+ )
One-channel 202 20./2m 4g* 802/ (4 -1
X(2)/X(1) - w2>1 - 4-1P/4>1

able, i.e, the directional pattern of the parametric
antenna, will have the distribution

OR R
f(R) = - expD +QE D/_zQa (14)
wherethe parameter Q = |Ry( f,)| isthe nominal pattern

of the source and o is determined by formula (11) at
M = No.

If Q/o > 3, the directional pattern of the PTA isdis-
tributed as a squared Gaussian variable

1 (/R-Q)°
Zomexp[ 20° }

When Q/o < 0.5, the directional pattern of the PTA
operating in the one-channel mode has the distribution

f(R) =

_ 0RO
f(R — &
R = 2 Pt U6

The results of simulations shown in Fig. 1b refer to
the same source antennaasin the two-channel mode. In
this case, we consider the direction, in which Q/o = 1;
therefore, the approximating curveis calculated by for-
mula (14).

L et us compare the parametric radiator operating in
different excitation modes and the traditional (linear
acoustic) antenna in terms of their stability to fluctua-
tions of the statistical characteristics at the same num-
ber of elements N, and at the same fluctuation parame-
terso,, Gy, Og, and p. We consider small directional pat-
tern levels satisfying the condition Q/o < 0.5. Thetable
summarizes the formulas for the mean value and vari-
ance and for theratios of the PTA's statistical character-
isticsto similar characteristics of the linear antenna. In
the table, ¢y, isthe ratio of the mean value of the PTA
pattern in the two-channel (one-channel) excitation
modeto that of thelinear antenna, and {, isthe variance
ratio. As the parameter o, we use the parameter of the
linear antenna, which is taken into account in the
respective formulas for the two-channel mode. The bot-
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tom row of thetable compares the two excitation modes
of the parametric radiator, X(2) and X(1).

The parameter o is on the order of 1/N,; therefore,
the sidelobe level of the PIA directional patternismore
stable to random fluctuations both in mean value and in
variance, i.e., it has alower average level and asmaller

n
300-
2504 .-,
200
150
100+

50+

200+
180+
160+

/_\ (b)
140+
120+

100+
80

60+
40+

20+

T 1
8 9
R, 107
Fig. 1. Distribution histograms and the approximating func-

tions: (@) the two-channel mode and (b) the one-channel
mode.
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spread. The one-channel excitation modeis more stable
to element parameter fluctuations than the two-channel
mode.
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CHRONICLE

Yurii Mikhailovich Sukharevskii (On His 95th Birthday)

Professor Yurii Mikhailovich Sukharevskii—a doc-
tor of engineering, alaureate of the USSR State Award,
and a prominent scientist whose activity has been
closely connected with the development of Russian
hydroacoustics—turned ninety-five.

Sukharevskii was born in Moscow on September 8,
1906. In 1930, he graduated from the Moscow Power
Institute, where he specialized in el ectrical engineering.
Simultaneously, he studied music at the Piano Faculty
of the Moscow Conservatory. After receiving his mas-
ter'sdegree in music in 1931, he became a post-gradu-
ate student and continued his studies at the conserva-
tory until 1935.

Sukharevskii's first research project dates back to
1929, when he was still a student. His first publication
appeared in 1930. At that time, he was already working
at the Moscow Electrical Plant. Later that sameyear, he
became a researcher at the Acoustic Laboratory of the
Central Research Ingtitute of the People’s Commissar-
iat of Communication. There, his attention was directed
toward the problems of using electroacoustic equip-

ment for reception and high-fidelity reproduction of
speech and music produced in broadcasting studios and
concert halls. The change in the scientific interests of
Sukharevskii was explained by his natural desire to
combine his two professions—engineering and music.
In 19311935, he published a humber of papers on
electroacoustics and architectural acoustics and, in
1936, he published a monograph entitled Modern Elec-
troacoustics and Wire Broadcasting. Another book
written in collaboration with A.V. Rabinovich entitled
Broadcasting Sudios and Microphones appeared in
1938.

Sukharevskii was aso involved in the problems of
electroacoustic metrology. In 1934, at the Centra
Research Institute of the People’s Commissariat of
Communication, he developed and designed Russia's
first test bench for the absolute calibration of micro-
phones and for testing loudspeaker characteristics,
including nonlinearity. In 1936, he completed Russia's
first acoustic test site for powerful sound sources,
where he performed extensive studies of the directional
characteristics of acoustic horns. The results of these
studieswere published in 1938 in Elektrosvyaz . At that
time, Sukharevskii was working on the development of
acoustical systems for the All-Union agricultural exhi-
bitionin Izmailovo Park, Moscow. There, he supervised
the installation of the first outdoor anechoic distributed
system of loudspeakers, which simulated the effect of
large concert hall reverberation.

In 1938, Sukharevskii became a senior researcher at
the Physical Institute of the Academy of Sciences of the
USSR. In 1939-1940, he performed theoretical and
experimental studies of acoustic feedback that
restricted the possibilities of sound amplification in
sound-amplifying systems. The results of these studies
were published in Doklady Akademii Nauk SSSR.

In 1939, Sukharevskii received his candidate
degree, and, in 1940, he became a doctor of engineer-
ing. His doctoral dissertation was entitled Methods for
Calculating Sound-Amplification Systems. One of his
official reviewers was N.N. Andreev.

Upon the German invasion of the USSR in World
War 1, Sukharevskii began working on military acous-
tical problems. The research and development projects
carried out by Sukharevskii and his colleagues during
the war were described in his paper in Acoustical Phys-
ics in 1996. Specifically, Sukharevskii described his
work in collaboration with D.I. Blokhintsev on the
improvement of sound-detecting horns used in anti-air-
craft artillery in 1942 and the full-scale experiments

1063-7710/02/4802-0243%22.00 © 2002 MAIK “Nauka/Interperiodica’



244

performed in collaboration with V.S. Grigor'ev in the
Pacific Ocean in 1944. These experiments dealt with
the characteristics of sonars used on Russian and for-
eign naval vessels and submarines. Simultaneously,
Sukharevskii studied sound reflection from the hulls of
ships and the acoustic parameters of the ocean that
determine the operating range of sonars.

For his contribution to the defense potentia of the
USSR, Sukharevskii was awarded an Order of the Red
Banner of Labor.

The experience gained by Sukharevskii during his
work in the Pacific determined his continued career in
hydroacoustics. The program proposed by Sukha
revskii for extensive studiesin thisareawastheimpetus
for organizing an experimental hydroacoustic base for
the Physical Institute of the Academy of Sciences of the
USSR, namely, a marine research station with a coastal
laboratory, stationary transmitting—receiving antennas,
and research ships. The idea of organizing such a sta-
tion was approved by S.I. Vavilov, director of the Phys-
ical Institute. During the next fifteen years, Sukha-
revskii worked on the realization of thisidea.

In 1945-1948, using the ships of the Black Sea
Fleet, Sukharevskii continued his studies (including
those of sea reverberation) that were started during his
work in the Pacific. The results of these studies were
published in Doklady Akademii Nauk SSSR (1948).
Sukharevskii was authorized to select the optimal loca-
tion for the marine station. The main criterion was that
the station should be near a deep-water region. The
Caucasian coastal region of the Black Sea satisfied this
requirement. In addition, the warm climate allowed full-
scaleinvestigationsyear-round in any weather condition.
Theregion could also beconsideredasal: 2-1: 3scale
model of the northwestern Pacific. Thefinal choicewas
Cape Sukhumi, with a bottom slope of 35°. This place
was most convenient because of the nearby port facili-
tiesfor research ships.

In 1948, Sukharevskii organized an expedition to
the Black Sea. With a small group of researchers and
the support of the Black Sea Fleet, he established atem-
porary marine station at Cape Sukhumi equipped with
hydroacoustic antennas, which he designed, and mock-
ups of the electronic and recording systemsinstalled at
the Sukhumi lighthouse. Using this equipment, he con-
ducted investigations of sound reflection from ships
and submarines. The newly devel oped stationary equip-
ment was also used for studying the acoustic parame-
ters of the marine environment: the sound absorptionin
seawater and the sound scattering from the sea bottom
and surface.

In 1953, studies of the sound propagation through
the sea began and, specifically, the studies of sound
fields in the regions of geometric shadow. In 1954,
these studies resulted in the discovery of the far zones
of underwater insonification, or the so-called conver-
gence zones. Describing this effect in 1956, Sukha
revskii suggested that it could open up possibilities for
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long-range underwater detection and ranging in the
audio frequency range. He proposed the 3/2 power law
to describe the frequency dependence of sound absorp-
tion in the sea.

In 1954, the Acoustical Laboratory of the Physical
Institute of the Academy of Sciences of the USSR was
reorganized into the Acoustics I nstitute of the Academy
of Sciences of the USSR. Simultaneously, the Sukhumi
expedition received the title of the Sukhumi Marine
Research Station of the Acoustics Institute. At that
time, the capital construction of the marine research
station was in progress and new equipment was
installed. The program of studying the far zones of
insonification was extended, and other hydroacoustic
investigations were carried out. They included the
sound reflection from wakes of ships, the sound fluctu-
ations caused by the inhomogeneity and dynamics of
the marine environment (in relation to underwater com-
muni cation and target indication), and the static charac-
teristics of seareverberation.

In 1959, Sukharevskii proposed a method to
increase the operating range of existing hydroacoustic
equipment by more than an order of magnitude using
the effect of far zones of insonification. He calculated
the parameters of the corresponding shipborne hydroa-
coustic systems that allowed such long-range opera-
tion. Heinitiated and supervised the devel opment of the
first Russian long-range hydroacoustic system for mass
production. For this work, Sukharevskii received a
USSR State Award.

Sukharevskii combined his scientific work with the
education of two research groups in Moscow and
Sukhumi. His friend and colleague, theoretical physi-
cist G.D. Malyuzhinets, assisted him in his work.
Together, they contributed largely to the development
of the theoretical studies of sound scattering from thin-
walled éastic shells, hydrodynamic cavitation, and
sound scattering from the sea surface.

In 1959, Sukharevskii supervised the Soviet—-China
marine expedition on hydroacoustics.

In 1961-1966, Sukharevskii held the office of Dep-
uty Director of the Acoustics Institute. While perform-
ing his administrative duties, he continued his collabo-
ration with industrial ingtitutes, design offices, and
naval ingtitutions in developing new hydroacoustic
equipment. Using his experience in studying different
aspects of hydroacoustic problems, Sukharevskii
undertook the complex investigation of the triad repre-
sented by ahydroacoustic system, the environment, and
aship with the aim to optimize the operating frequency.
In contrast to the conventional deterministic represen-
tation of marine environment parameters, he consid-
ered the statistics of the main parameters for a global
set of various acoustic conditionsin the ocean and stud-
ied the operating range of a hydroacoustic system as a
probabilistic quantity.

The probabilistic approach developed by Sukha
revskii for describing the operating range of hydroa

ACOUSTICAL PHYSICS Vol. 48

No. 2 2002



YURIT MIKHAILOVICH SUKHAREVSKIT (ON HIS 95th BIRTHDAY)

coustic systems and the new technique he proposed for
range estimation offered the possibility of making the
operation of hydroacoustic systems morereliable. This
possihility is based on the fact that the parameter indi-
cating the efficiency of ahydroacoustic system, i.e., the
operating range, is guaranteed with a given integrated
probability. The approach proved to be of dramatic sig-
nificance for this area of research. The main results of
these studies were published by Sukharevskii in Acous-
tical Physics in 1995. Throughout the years, Sukha-
revskii investigated the prospects of hydroacoustic sci-
ence and engineering. During aten-year period, he gave
lectures on hydroacoustics at the Ingtitute of the
Improvement of Professional Skillsfor the leading spe-
cialistsof the shipbuilding industry. At the present time,
Sukharevskii is a principle researcher at the Acoustics
Institute.

Sukharevskii's achievements in various fields of
acoustics, aswell as his entire career in science, testify
to his outstanding abilities. Sukharevskii isaprominent
and far-seeing scientist. He made a significant contribu-
tion to the introduction of scientific resultsinto modern
engineering.

Sukharevskii is the author of more than 150 scien-
tific publications. He is not only a talented researcher
but also an excellent teacher of young scientists. His
scientific school is well known as the one of top-level
acousticians. The ability to select and educate students
isone of the most remarkable skills of Sukharevskii. He
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educated more than 30 doctors and candidates of sci-
ence, including some members and corresponding
members of the Academy of Sciences, honored scien-
tists and engineers, and honored inventors. Some of his
students hold leading posts at various research insti-
tutes and design offices.

Sukharevskii carries authority with broad circles of
acoustical physicists, designersof hydroacoustic equip-
ment, and Navy specialists. For his services to the
country, Sukharevskii was awarded two Orders of the
Red Banner of Labor, an Order of the October Revolu-
tion, a Badge of Honor, a Valiant Labor during the
Patriotic War Medal, and other medals.

Sukharevskii is a man of duty, responsibility, and
exceptional, enduring capabilities. In 1996, he became
a laureate of the competition among the best publica-
tions of 1995 appearing in the journals of the Russian
Academy of Sciences. Sukharevskii was awarded a
specia grant from the President of the Russian Federa-
tion as a prominent scientist of Russia.

The interests of Sukharevskii reach far beyond his
professional occupation in science. Hisfriends and col-
leagues enjoy his musical performances at parties held
at the Acoustics Ingtitute.

We wish Yurii Mikhailovich Sukharevskii good
health and many happy years to come.

Trandlated by E. Golyamina



Acoustical Physics, Vol. 48, No. 2, 2002, p. 246. Translated from Akusticheskii Zhurnal, Vol. 48, No. 2, 2002, p. 288.

Original Russian Text Copyright © 2002 by the 246Editorial Board.

CHRONICLE

In Memory of Evgenii L’vovich Shenderov
(June 1, 1935-September 1, 2001)

Evgenii L'vovich Shenderov—Honored Scientist
and Engineer of the Russian Federation, Doctor of
Engineering, Professor, and Head of the Research Sec-
tor of the Morfizpribor Centra Research Institute—
passed away after abrief illness.

Shenderov started working at the Morfizpribor Cen-
tral Research Institute immediately after his graduation
from the Leningrad Elecrotechnical Institute in 1957.
For more than 44 years, hiswork was related to the for-
mation and development of one of the most important
areas of modern underwater acoustics: the study of the
effect of sonar domes on the parameters of hydroacous-
tic arrays. He devel oped techniques for calculating the
acoustic permeability of sonar domes and proposed
new designs of sound-transparent parts of domes,
which have found practical application in the design of
naval ships and submarines. Shenderov was a talented

scientist and outstanding engineer. He founded a scien-
tific school, the work of which made a critical contribu-
tion to the development of underwater acoustics. The
scope of Shenderov’s scientific interests was rather
wide. He published a number of fundamental works
devoted to the diffraction of sound waves by elastic
plates and shells, the optical visualization of sound
fields diffracted by complex-shaped bodies, and the
theoretical methods of analyzing the sound fields and
sound wave diffraction by ship hulls. Shenderov is the
author of more than 100 scientific publications and
50 inventions. Many of his papers were published in
Acoustical Physics and in the Journal of the Acoustical
Society of America (JASA). Shenderov wrote two fun-
damental monographs on theoretical acoustics:. Wave
Problems of Underwater Acoustics (1972) and Radia-
tion and Scattering of Sound (1989). He was aso
involved in tutorial activities and was known as an
excellent lecturer. In different higher educational insti-
tutes of St. Petersburg, he gave lectures on sound radi-
ation, wave propagation, and oscillation of mechanical
systems. Shenderov presented his papers at many sci-
entific conferences. Thelast paper he prepared was pre-
sented by his colleagues at the 17th International Con-
gress on Acoustics in Rome, two days after his death.

Shenderov was a member of the Scientific Council
on Acoustics of the Russian Academy of Sciences and
amember of the Editorial Council of Acoustical Phys-
ics. For years, he was a co-chairman of the Leningrad
(now, St. Petersburg) seminar of the Scientific Council
on Acoustics of the Russian Academy of Sciences.

Shenderov was a charming and benevolent person.
Being atrue intellectual, he was fairly democratic and
friendly toward other people. He carried indisputable
authority with al who knew him not only in his profes-
sion but also in other areas. Shenderov had awide vari-
ety of haobbies: he was a yachtsman, tourist, downhill
skier, free diver, underwater photographer, cabinet-
maker, gardener, and oven maker.

This outstanding scientist, talented engineer, and
good friend has passed away. The shining memory of
Evgenii L'vovich Shenderov will forever remain in the
hearts of those who were lucky enough to have known
this wonderful person.

Trandated by E. Golyamina
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