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Abstract—The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic
field has been and till is among the most debatable issues in pulsar astrophysics. Over the years, there were
several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the
spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron mat-
ter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic
moments, promoted by a seed magnetic field inherited by the neutron star from amassive progenitor and ampli-
fied by itsimplosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on
the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators,
we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that
the suggested approach regains arecent finding of Akhiezer et al. [1] that the spin-polarized neutron matter can
transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional
magnetoel astic pul sations of a paramagnetic neutron star can serve as a powerful generator of a highly intense
electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic
field linesleadsto the synchrotron and curvature radiation. Analytic and numerical estimatesfor periods of hon-
radial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifes-

tation in currently monitored activity of pulsars and magnetars. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent years have seen a resurgence of interest in
the magnetic properties of neutron star matter [1-4] and
of the early advanced hypothesis that a considerable
contribution to the ultrastrong magnetic field of these
compact objects can be attributed to spin polarization
of stellar material [5-8]. This development calls into
question our understanding of the laws governing con-
tinuum mechani cs and macroscopic el ectrodynamics of
magnetically ordered nuclear matter. To the best of our
knowledge, the first significant step in this direction
was made in [1], cited in the abstract and hereafter
referred to asthe Akhiezer—L askin—Peletminskii (ALP)
model, advocating ferromagnetism of neutron stars.
Using equations of the magnetohydrodynamic type
adopted from macroscopic electrodynamics of ferro-
magnetic dielectrics[9], it was shown that magnetically
ordered neutron matter can transmit perturbations by
low-frequency magnetoelastic waves along with the
well-known high-frequency spin waves typical of fer-
romagnetic solids [9-11]. The observation of these

TThis article was submitted by the authors in English.

oscillatory motions in currently monitoring neutron
starsiscrucial, in our opinion, for unambiguous identi-
fication of the permanent magnetism of stellar material.
This attitude motivates our present work, continuing
investigations begun in [1], aimed at searching charac-
teristic features of electromagnetic activity of neutron
stars owing its origin to nonradial magnetoelastic pul-
sations of paramagnetic neutron stars.

Thefingerprints of the Pauli mechanism of thefield-
induced (nonspontaneous) spin polarization of neutron
star matter can be traced in the existing scenario of the
pulsar birth in a supernova event [12, 13]. The cata-
strophic collapse of the massive main sequence star
exhausting its nuclear fuel implies that implosive con-
traction of aweakly magnetized massive star is accom-
panied by intensive neutronization of stellar material
due to the inverse 3 process

e+p— Nn+v,

responsible for fast cooling of pulsars [12]. Because
thisurcaprocessis controlled by weak, parity-violating
interaction, it is expected that the magnetic anisotropy
caused by the presence of a seed magnetic field intro-
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ducesin the final product of the collapse atremendous
difference between the number of neutrons with spin
magnetic moments directed along the seed magnetic
field and those with oppositely directed spins, such that
the main body of the newly born neutron star mass
develops a permanent magnetization of the paramag-
netic type. The amplification of the magnetic field in
this process is attributed to implosive contraction that
proceeds with the preserved magnetic flux.

Following this line of argument, we consider the
homogeneous model of a paramagnetic neutron star
undergoing nonradial pulsations triggered either by the
implosive effect of a supernova event or by gamma-
bursting starquakes. In doing this, we utilize a some-
what different, as compared to the ALP model, form of
the macroscopic equations governing the motions of
magnetically polarized neutron matter, adopted from
the macroscopic electrodynamics of single-axis mag-
netoelastic insulators [14]. One of the purposes is to
show that the proposed approach is interesting in its
own right because the continuum mechani cs of magnet-
icaly polarized stellar matter is less studied in astro-
physics compared to magnetohydrodynamics underly-
ing our understanding of the motions of highly conduc-
tive stellar matter threaded by a magnetic field.
Different aspects of this project have been reported in
proceedings of several recent conferences [15-17], and
our goal here isto bring them together in an extended
fashion.

The paper is organized as follows. In Section 2, the
macroscopi ¢ equations of the magnetoel astic dynamics
of spin-polarized nuclear matter are introduced and the
dispersion equation for the wave transport of magneti-
zation isderived. Section 3 presents avariational calcu-
lation of the periods of nonradial torsional pul sations of
paramagnetic neutron stars with emphasis on the gen-
eration of the magnetospheric polarization charge
responsible for the radiation from the star; the obtained
analytic estimates are quantified using parameters that
aretypical of radio pulsars and magnetars. The last sec-
tion provides a brief summary of the results obtained.

2. GOVERNING EQUATIONS
FOR MAGNETOELASTIC DYNAMICS

In what follows, we assume, asin most of the works
cited above, that permanently magnetized baryon mat-
ter of a neutron star possesses properties of a degener-
ate Fermi gas of neutrons condensed by self-gravity to
the normal nuclear density p = 2.8 x 10 g cm=. To
describe the equilibrium state of spin-polarized neutron
star matter, we use a linear constitutive equation in the
form givenin [18],

M = xB. (2.1)

Here, x > 0 standsfor the average paramagnetic suscep-
tibility of homogeneous neutron star matter, which is
estimated to be x = 2% at the norma nuclear density
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[5-8], where X isthe Pauli paramagnetic susceptibility
of zero-temperature, degenerate, neutron Fermi gas
compressed to the nuclear density,

3 Iin~
Xk = 2nEF~13><10

and B denotes the fossil magnetic field frozen in the
neutron star core. The macroscopic description of
motions of neutron star matter in terms of the theory of
continuous media implies that the space scale of mate-
rial displacements is much larger than the spacing
between baryons. The basic suggestion underlying con-
tinuum models of neutron star material isto identify the
behavior of many-component spin-polarized baryon
matter with that the spin-polarized neutron degenerate
Fermi gas of the equivalent density p subjected to the
standard continuity equation

dp vy _
dt pdxk (22)

Heredfter,
d/dt = a/ot+v [

stands for the convective derivative. The second sug-
gestion of particular interest isto consider the magneti-
zation field m(r, t) (magnetic moment per unit volume)
as an independent dynamical variable of motion, on
equal footing with the bulk density p(r, t) and the elas-
tic displacement velocity v(r, t). According to [14], the
distinguishing feature of mechanical behavior of mag-
netoelastic insulators is that the dynamics of their
intrinsic deformations is controlled by a driving force
originating from antisymmetric magnetic stresses T;;
(see aso [19]). The dynamical equation of magne-
toelagticity is given by

dv;, 0t

1
Par = ax,’ é[min_

mB]l. (23

Thus, the antisymmetric form of the magnetic stress
tensor T;; exhibits a substantially non-Hookean charac-
ter! of magnetoel asticity, which comes into play only
when the direction of the local magnetization m devi-
ates from the direction of the equilibrium magnetiza-

1 The linear elastodynamics of material displacements u; in an iso-
tropic solid under pure shear deformations that are not accompa-
nied by density fluctuations is described by the Lamé equation
[20]

p(ﬂ = (ﬂ( % =0
o> OX 0% ’

1gﬁuk
ZEBX

where g is the symmetric tensor of elastic stresses, p isthe shear
modulus, and u; is the strain tensor.

(2.4

6u|D

Oix = 2HUy, Uy = axk
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tion M. The congtitutive equation for the evolution of m
isgiven by

dm w, = 10V 9V
dt T 20x  ox
where w, is interpreted as the antisymmetric rate-of-

deformation tensor [14].

The above equations of dissipation-free magne-
toelastic dynamics can be represented in the following
equivalent vector form;

= WMy, (2.5)

%+p(r,t)ﬂ v(r,t) = 0, (2.6)
dv(r,t) _ 1 < =
S ﬂm [m(r,t)xM], M = xB, (2.7)

dm(r,t) _
——— = [o(r,t) x M],
dt (2.8)

o(r,t) = %[D xv(r, 1)].

This form accentuates the fact that the magnetoelastic
driving force

f(r,t) = Oxz(r,t)

in Eg. (2.7) is inextricably related to the magnetic
torque density

(r,t) = %[m(r,t) x B

we again see that magnetoel astic effects manifest them-
selves when the magnetization field m deviates from
the direction of the saturated magnetization M = xB.
Equation (2.8) describing differential rotation of the
magneti zation about the magnetic anisotropy axisisthe
standard equation of precession under which the direc-
tion of m changes but the magnitude does not. It isnote-
worthy that similar equations have recently been used
in the study of the large-scale motions of a poorly con-
ducting interstellar medium possessing properties of
gas-based ferrocolloidal soft matter consisting of tiny
ferromagnetic solid grains suspended in a dense mag-
netically passive and electrically neutral fluid [22].

2.1. Wave Transport of Magnetization
in Paramagnetic Neutron Star Matter

Applying the standard linearization procedure to
Egs. (2.6)<2.8),

V— Vo +0V(r,t), m— mgy+dm(r,t),
where

Vo =0, my=M = xB,
we obtain,

OB v(r,t) =0, O&m(r,t) =0 (29
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odv(r,t) _ 1., 9
T ﬂm p m(r,t)xM],  (210)
oom(r,t) _ 1 X
—ar " = 5L08 v(r, 0] xM]. (2.11)

This set of coupled equations describes transmission of
linear fluctuations in incompressible spin-polarized
baryon matter that are not accompanied by the appear-
ance of the density of magnetic poles (the right-hand
sides of Egs. (2.9)). Substitution of the plane-wave
form of the fluctuating variables

ov O exp(iwt—ik [T),
om O exp(iwt—ik [T)
into (2.11) leads to the transversality conditions
kdv =0, kDd®m = 0.
Inserting (2.12) into (2.10) yields

(2.12)

-_1
wpdv = 2X(k M)om.
After substitution of (2.12) into (2.11), we obtain
wdm = —%[(k IM)8v —k (8v [M)].

Taking the scalar product of the last equation with k # 0
and considering the above transversality conditions, we
obtain

Oov[M = 0.

Giventhis, thelink between the frequency and the wave
vector in the magnetoel astic wave is defined by the cou-
pled equations

wpdy + Zi(k IM)3m = 0,
1X (2.13)
wom + E(k (M)dv = 0.

Eliminating (k - M), we find that magnetoel astic oscil-
latory motions satisfy the energy equipartition principle

pdv* _ dm’
2 2’
which states that, in the magnetoelastic wave, the
kinetic energy of fluctuating elastic displacements
equals the mean potential energy of fluctuating magne-
tization. The compatibility of Egs. (2.13) leads to the
dispersion relation of the magnetoel astic wave,

(2.14)

2 _ (KIM)? _
w = =
axp

}—p(k B)? = V2k2cos’®, (2.15)
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where 8 isthe angle between k and M. It isremarkable
that the speed of the wave transport of magnetization

MB

4p
in paramagnetic neutron matter is proportional to the
intensity of the fossil magnetic field B; in ferromag-
netic neutron matter, this speed is proportional to the
intensity of the spontaneous magnetization M. Thisis
noteworthy because the magnetoel astic wave transport
of magnetization is characterized by a dispersion-free
law, w O Kk in contrast to spin waves that have quadratic
dispersion in k, w O K2 It is therefore expected that,
under the cooling of paramagnetic neutron star, the
temperature variation of the equilibrium magnetization
M(T) followsthe Curie law

V, = (2.16)

M(T) _ 1
5 - X(MoT,

which is due to the dispersion-free nature of magne-
tophonons, instead of the Bloch law

M(0) —M(T)/M(0) O T*?

for ferromagnetic dielectrics, which is due to quadratic
dispersion of magnons.

Deserving special comment is the case of the homo-
geneous spherical mass of paramagnetic matter, which
isobviously of particular relevance for neutron stars. In
the case of the homogeneous spherical mass of (nonfer-
romagnetic) magnetics, the internal magnetic field is
uniform and is expressed by the equations

B+2H =0
and
B = H+4nM,
which imply that
_ 8m,.
B = 3M,

see, for instance, [21, 876, problem 2], where it is
emphasized that the latter equations hold for solely
nonferromagnetic materials. Substituting this latter
value of B into (2.16), wefind

/ZnM2
VM = —3—?'—

This form of the speed of the magnetoelastic wave is
very similar to that found in [1]. On thisground, we can
conclude that magnetoel astic wavesis afeature generic
to the permanent magnetization of neutron star matter
of both ferromagnetic and paramagnetic types. For con-
densed media possessing ahighly pronounced property
of magnetic polarizability, the considered magnetoel as-
tic dynamic wave has the same physical significance as
the Alfvén magnetohydrodynamic wave does for
incompressi ble magnetoactive plasma.
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Quantitatively, the speed of a magnetoelastic wave
in paramagnetic neutron matter compressed to the nor-
mal nuclear density with the magnetic field strength B ~
10%2-10% G, typical of pulsars and magnetars, fallsinto
theinterval 10° < V,, < 106 cm/s; for comparison, the
speed of the zero-temperature longitudinal sound

waveis
2
v
C, = I?F = 10° cm/s.

The transverse magnetoelastic wave is therefore a
slowly propagating exitation in spin-polarized neutron
star matter possessing properties of the degenerate
paramagnetic Fermi gas of neutrons.

3. NONRADIAL MAGNETOELASTIC
PULSATIONS OF A PERMANENTLY
MAGNETIZED NEUTRON STAR

The purpose of the remainder of this paper isto elu-
cidate the character of mechanical distortions of a neu-
tron star caused by strong coupling between fluctua-
tions of the local magnetization and material displace-
ment and their effect on electromagnetic activity of a
paramagnetic neutron star. In doing this, we focus on
nonradial magnetoelastic pulsations, which are of par-
ticular interest in pulsar astrophysics [23-25]. Circum-
stantial evidence for the neutron star pulsations is the
coherence of millisecond micropulsesinferred in [26].

The eigenfrequencies of nonradial magnetoelastic
pulsations can be computed on the basis of the energy
variational principle. The starting point of this method
isthe energy balance equation

0 pdV°
55

S = %[M v(r, )],

dv = [[5m x B] BV,
(3.1)

which is abtained by taking the scalar product of (2.10)
with dv and integrating by parts over the star volume;
the surface integral is then dropped because the crustal
material of aneutron star possesses properties of amag-
netoactive solid-state plasma in which the magnetic
ordering effects are heavily suppressed. The left-hand
side of (3.1) exhibitsasubstantially rotational character
of motions accompanying magnetoel astic pul sations of
apermanently magnetized neutron star. Thenext stepis
to use the factorized representation of the velocity and
vorticity fields

ov(r,t) = a(r)a(t), odw(r,t) = o(r)a(t),

a(r) = F10xa(r)],

where a(r) is the field of instantaneous displacements
and a(t) defines the temporal evolution of fluctuations.

(3.2)
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Inserting (3.2) into (2.11) and eliminating time
derivatives, we obtain

om(r,t) = u(r)a(t),

3.3
B(r) = [6()xM] = 0 xar)xmp. 2
Substitution of (3.2) and (3.3) into (3.1) leads to
dH Ma®  Ka® .
— =0, H= +— —>=a+wa =0,
dt 2 2 (3.4)
o = S
i

wheretheinertiaM and the stiffness K of magnetoel as-
tic vibrations are given by

M = J’pazdv,
A, 2 1 2 (35)
K =x Iu av = 4—XJ'[[D><a] xM]°dVv.

Thus, computing the frequency of the magnetoelastic
mode requires specifying the field a of instantaneous
displacements that have a differentially rotational char-
acter, as follows from the expression for the coefficient
K of the restoring force of magnetoelastic pulsations.

3.1. Comments on Nonradial Elastic Pulsations
of a Solid Star

The eigenmodes of neutron stars associated with
deformation properties of incompressible baryon mate-
rial, highly robust to mechanical distortions, can be
specified, as was first suggested in [23], by spheroidal
and torsional modes of shear elastic vibrations of a
solid sphere. This terminology is due to Lamb [27],
who first tackled the latter problem and gave its solu-
tion for substantially radial spheroidal and torsional
elastic vibrations of a solid sphere (see, eg., [28]). In
the meantime, the case of nonradial pulsations, whichis
of particular interest in the astrophysics of compact
stars, has not been considered in the literature on elas-
ticity and therefore deserves a special analysis. Essen-
tially, the problem is as follows. From classical equa-
tion of elastodynamies (2.4), it follows that the field of
material displacements

u(r,t) = a(r)a(t)

corresponding to standing elastic waves of pure shear a
solution of the Helmholtz equation

D%u+ku = 0.

Clearly, this equation holds for the solenoidal field of
instantaneous displacements,

D%a+k’a = 0,
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where
K = wlc
and

c = pip

is the speed of elastic shear waves in solid bulk. The
poloidal solution

a, = A(L)0>d x[rj (kr)P (2]

describes even-parity spheroidal modes. The toroidal
solution

a = A(L)Ox[rj (kr)P.(2)]

describes odd-parity torsional modes; hereafter, j, (kr)
is the spherical Bessel function and P (2)(z = cosB) is
the Legendre polynomial of the multipole degree L.
General properties of solenoidal vector fields, both the
toroidal and the poloidal ones, can be found in [29].
The arbitrary constants and the frequencies of these
modes are customarily found from the boundary condi-
tion of a stress-free surface,

MO, . = O

(where n; are components of the unit vector normal to
the surface), which leads to a transcendental dispersion
equation whose roots are determined by the nodal
structure of Bessel functions. In the case of low-fre-
quency nonradial substantially long wavelengths,
A — oo, with

k = w/lc, = 21N — 0O,

the Helmholtz equation of standing shear waves is
reduced to the vector Laplace eguation for the solenoi-
dal field of elastic displacements,

0°a =0, OCa=0. (3.6)

The poloidal and toroidal solutionsof (3.6) are given by
[24]

a, = Ny(L)O>J x[rr"P(2)]

(3.7)
= Ny(L+1)Tr'P (2)

a, = N(L)Ox[rr*P,(2)]. (3.8)

From the standpoint of Lamb’s solutions for the fields
of displacements, the spherical Bessal function j, (kr)
determining the radial dependence of a(r, 8) asymptot-
ically tendsin the long-wavelength limit to the function
rt that has no nodesin theinterval 0 <r < R; from this,
the term nonradial vibrations is derived. The frequen-
cies of nonradial shear modes can be computed from
the above-expanded energy variational principle. Tak-
ing the scalar product of Lamé equation (2.4) with

ui(r,t) = a(r)a(t)
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and integrating over the volume, we obtain

Ma+Ka =0, M= J'paiaidv,
3.9)
_ uefa, day (
K ZJ-Q?X,~+ av.

axU
Substituting into (3.9) the poloidal and the toroidal dis-
placement fields in Egs. (3.7) and (3.8), respectively,
allowsusto analytically expressthe respective frequen-
cies of nonradial spheroidal and torsional shear modes
wy(L) and wy(L) of a spherical mass of an elastic solid
through the multipole degree L as

wy(L) = weg[2(2L +1)(L-1)]"?,

¢ (310)

(L) = ol (2L+3) (L=, o = 2,
where we = [W/(pR?)]Y? is the natura unit of frequency
of elastic shear vibrations. Equations (3.10) were
obtained in recent works [30] in a somewhat different
context. The goal of this short comment was to demon-
strate the efficiency of the energy variational principle
in the study of nonradial vibrations, which allows com-
puting the frequency of both the even-parity smode and
the odd-parity t mode of the solid sphere on an equal
footing. It is also noteworthy that the problem of iner-
tial waves in a uniformly rotating solid, which, in our
opinion, is of particular interest in the study of pulsa-
tions of rotating neutron stars, was only recently con-
sidered and solved in [31].

The fact that spin-polarized neutron matter can
transmit perturbations by transverse waves indicates
that the magnetic field penetrating into the body of the
star imparts to stellar material a supplementary portion
of elasticity generic to solids. In computing periods of
nonradial magnetoelastic pulsations of a permanently
magnetized neutron star, it therefore seems natural to
use the fields of instantaneous displacements corre-
sponding to nonradial spheroidal and torsional shear
vibrations of a solid sphere. In doing this, we note that
the poloidal vector field associated with spheroidal
nonradial pulsationsisirrotational,

Dxapz 0.

Thisimplies that a paramagnetic neutron star does not
support nonradial spheroidal pulsations (because the
coefficient of the restoring force K in Eq. (3.5) van-
ishes), but solely supports nonradial torsional shear
pulsations coupled with fluctuations in magnetization.

3.2. Periods of Torsional Magnetoel astic Pulsations

Under the global nonradial differentialy rotational
vibrations of a neutron star, the velocity field of tor-
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sional material displacementsis described by [24, 25]

ov(r,t) = u(r,t) = a(r)a(t)
= %[ém(r,t) xr], (3.11)

S (r,t) = N,Or"P (2)a(t).

The constant N; is eliminated from the boundary condi-
tion

&V, = SIRMXR], Q1) = a()OP(2),

as

(3.12)

The dipole field, with L = 1, corresponds to the rigid-
body rotation of the star, because the angular velocity
becomes a homogeneous vector. The differentialy
rotational deformations of the star corresponding to
quadrupole, L = 2, and octupole, L = 3, overtones of
nonradial torsional pulsations are illustrated in Fig. 1.
In spherical polar coordinates, the components of the
toroidal field of instantaneous displacements a(r) in
the star undergoing torsional nonradial pul sations about
the polar axis are given by

a =0, a =0,

12dP (2)
du -

Computed with this field, the parameter of inertiaas a

function of the multipole degree of vibrationisgiven by
L(L+1)

(2L+1)(2L +3)°

It iseasy to seethat at L = 1, this parameter equals the
moment of inertia of rigid sphere,

o = N1 (3.13)

M(L) = Ipafdv = 4mpR’ (3.14)

M(L=1) = éJl/LRZ,
where
_ AT o3
M = 3 PR

is the star mass.

In the general case, the direction of the equilibrium
magnetic anisotropy M can be tilted to the polar axis
about which the torsional pulsations of the star occur,

M, = M[(1-2%)"cospsin B+ zcosp],
z = cos6,

12 (3.15)

Mg = M[zcos@sin B—(1-2°)""cosf],

M, = —Msingsinf3,
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Fig. 1. Geometrical illustration of torsional deformations of a neutron star undergoing quadrupole (left) and octupole (right) non-

radia pulsations.

where 3 is the inclination angle between the polar axis
z and the vector M. After a simple, but fairly tedious,
calculation of integrals, we obtain the following ana-
lytic form of the stiffness:

K(L) = 4ixﬂm><aa x M]%dV

L(L?=1)(L + 1)
41°-1

3L-1
2—(L_1)tan[3}.

= MBR® (3.16)

X cosB[l +

The frequency of a nonradial torsional magnetoelastic
modeis given by

2L +3

2 — 212
w (L) = wy(L 1)2L_1cos[3

3L-1
2(L—1)

2
X[1+ tanB}, W =
RZ
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where wy, is the natural unit of frequency and Vy =
[MB/4p]*¥2 is the speed of the magnetoelastic wave in
bulk. This mode can be considered as a magnetoel astic
counterpart of Walker's mode for spherical homoge-
neous mass of a ferromagnetic solid [11]. For the
adopted constitutive equation of paramagnetic matter
B = x~M, this frequency is given by

2 _ M?
Wy = >
4xpR

For an ideal homogeneous magnetic sphere, with B =
(81/3)M, this frequency is given by

(3.18)

2 _ 2nM?

M 3 pRZI (3.19)
The corresponding period is Py, = (21ey,) ™. Thismode,
which is said to be the magnetotorsional or m't modein
what follows, is unique to the permanent magnetization
of neutron star matter and isan axial or abnormal parity
mode. In the case where 3 = 0 (the model of the aligned
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Fig. 2. The period Py, of nonradial torsional magnetoelastic
pulsations (in seconds) of aneutron star as afunction of the
multipole degree L of vibration

magnetic torsator), the frequency of the m/t mode is
given by

W(L) = wy[(L2=1)(2L +3)/(2L 1)1

(see [16]). This equation implies that the asymptotic
shortening of the period P(L) = (2rtw(L))tasL —» o
is inversely proportiona to the multipole degree of
vibrations, P(L) O 1/L. Onthe other hand, thisindicates
the lengthening of periods as the multipole degree of
vibration L decreases. It seems quite plausible that,
under the implosive effect of a supernova event or star-
guake, the permanently magnetized core of the nascent
neutron star can show a highly restless oscillatory
behavior characterized by rather large values of L,
whereas a mature object becomes quieter and itstransi-
tion to lower overtones of magnetoel astic pulsations is
accompanied by lengthening of periods.

3.3. Application to Pulsars and Magnetars

To estimate the timing of magnetoel astic pul sations,
we eval uate here periods of the m/t mode for ahomoge-
neous model of a paramagnetic neutron star with the
standard parameters, the mass M = 1.4Mg and the
radius R = 12 km, and with the magnetic susceptibility
taken from the model of the degenerate paramagnetic
Fermi gas of neutrons condensed to the normal nuclear
density, which corresponds to the homogeneous neu-
tron star model with the above parameters. InFig. 2, we
plot the period P(L) as a function of the multipole
degree of vibration L, computed in the model of the
aligned magnetic torsator for the magnetic field inten-
sity typical of both radio pulsars, B ~ 10*-10*3, and
supermagnetic anomalous X-ray pulsars and soft gamma
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Fig. 3. The period of nonradial torsional magnetoelastic
pulsations (in seconds) versusthe magnetic field intensity B
and data on periods of pulsed gamma emission of soft
gammarepeaterstaken from [38]; M = 1.4Mg,,, R= 12 km;
L=2(2),3(2),20(3).

repeaters B ~ 10-10%5, dubbed magnetars [34]. For a
neutron star with the magnetic field of the Crab pulsar,
the expected period of the m/t mode is P ~ 3-5 min. It
is remarkable that the computed periods are close to
those for pulsed gamma emission of currently moni-
tored soft gammarepeaters (see, €.9., [35]). Oneof the
salient features of the soft gamma repeater radiation
activity is that they do not display radiation in the
radio region. The pulsed gamma emission of soft
gamma repeaters becomes well discernible just after
highly energetic gamma bursts [36], which are pre-
sumably associated with irregular starquakes [37]. In
Fig. 3, the period of torsional magnetoelastic pulsa-
tions of a paramagnetic neutron star is pictured in jux-
taposition with data on the periodic pulsed radiation
of soft gamma repeaters. Bearing in mind that the
computed periods fall into the realm of pulsed gamma
emission of magnetars, we conjecture that the
detected 5-10 s periodicity of their pulsed gamma
activity is powered by nonradial torsional magne-
toelastic vibrations exhibiting permanent magnetiza-
tion of this class of neutron stars.

3.4. Magnetosphere of a Permanently Magnetized
Neutron Star

One more remarkable inference of the model under
consideration isthat a paramagnetic neutron star under-
going nonradial torsional magnetoelastic pulsations is
capable of generating a periodically oscillating electric
field inducing the magnetospheric effect that has many
features in common with the Goldreich—Julian effect
[32, 33]. This can be readily seen from the Minkowski
equation describing the dielectric polarizability D in
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Fig. 4. Cross section of the paramagnetic neutron star structure according to expected electromagnetic properties of stellar matter.

moving permanently magnetized matter of nonferro-
magnetic type (see, e.g. [21]),

4m(2e + 1) 9
T[V M],

under the assumption that the dielectric permeability of
spin-polarized baryon matter is infinitely large, e —»
oo, as in metallic solids. For alinear, small-amplitude,
differentialy rotational fluctuations of such matter
around the equilibrium state with v, = 0, Eq. (3.20) is
reduced to

D = ¢E + (3.20)

5D = 3E + M2 gy oMy,

= (3.21)
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and ase — oo the last equation becomes?
SE = —2—1(;[[6v>< M], oV = %[Em)xr]. (3.22)

Identifying the angular velocity magnitude with the fre-
quency of magnetotorsiona pulsations, we find the inten-

2 Equation (3.22) has the same physical meaning as the equation
_ 1 _1
OE = —C[6v><B], u= 2[6(;)><r],
in the Goldreich-Julian theory [32] of pulsar magnetosphere
resulting from the perfect conductivity condition ¢ —  in
Ohm'slaw:
i = o(3E +%[5va]) .
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sity of equatorid dectricfiddld E~10-10 P1V/cm. This
field pulls off the charged particlesfrom the star surface
and accelerates them along the open magnetic field
linesfrozen into the neutron star; the electric force F, ~
eE ismuch greater than the Newtonian force of gravita-
tional attraction Fy~ mg: theratio F/F; ~10°-10%. The
density of the resultant magnetospheric polarization
charge is given by

5p = 4—1HD - -3—?6(60) ™). (3.23)

Numerically, the particle density of the polarization
charge dn, = |3/e] is of the order 102BP}; cm3. We
can expect that magnetoel astic pul sations causing peri-
odic fluctuations of the open magnetic field linesfrozen
into the star core should affect the electromagnetic
(synchrotron and/or curvature [39]) radiation by peri-
odic deviations of the beam direction. For neutron stars
with a magnetic field intensity typical of radio pulsars,
the above periodicity manifestsitself asalong periodic
modulation of the main pulsetrain. In searching for this
effect, satellite-based telescopes seem to be more
promising, because proper rotation of the Earth highly
[imitsthe monitoring time of radio pulsars by stationary
Earth-based telescopes. Understandably, this discus-
sion is suggestive rather than conclusive.

4. SUMMARY AND CONCLUSION

While the magnetic flux conservation in the process
of contraction of the main sequence star, predicted in
[40], serves as asufficiently reliable guidein estimating
the surface magnetic field for both pulsars and magne-
tars, the electrodynamics of neutron star matter respon-
sible for the long-term stability of such highly intense
fields remains one of the challenges in astrophysics of
compact stars (e.g., [41]). One of the plausible explana-
tionsisthat thefossil magnetic field of acollapsed mas-
sive star, amplified by processes of catastrophic implo-
sion, resides in the star interior by causing strong spin
polarization of baryon matter in the neutron star core
such that the main body of the neutron star mass comes
into gravitational equilibrium in the state of permanent
magnetization promoted by Pauli paramagnetism. The
resultant structure of the paramagnetic neutron star rel-
evant to thisscenario, pictured in Fig. 4, isthought of as
a dense magnetic core (composed of spin-polarized
baryon matter) covered by a magnetoactive solid-state
plasma (composed of highly mobile electrons and the
crystallized structure of immobilized protons and
nuclei). It is noteworthy that the presence of amagnetic
core provides a natura justification of the magneto-
plasma processes in the neutron star crust like Alvfén
waves [42] and helicons [43].

To explore characteristic features of electromag-
netic activity of a neutron star owing its origin to the
permanent magnetization of stellar material, we have
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considered a highly idealized model of a homogeneous
paramagnetic star undergoing global nonradial magne-
toelastic pulsations. Highlighted are magnetoelastic
dynamics equations adopted from the macroscopic the-
ory of poorly conducting magnetics; it was shown that
this theory can be efficiently utilized in the study of
motions of permanently magnetized stars associated
with large-scale transport of magnetization in an
incompressible magnetically ordered stellar matter.
What is newly disclosed here is that a permanently
magnetized neutron star can support torsional nonradial
magnetoelastic pulsations generating the electric field
responsiblefor the neutron star magnetosphere. The net
outcome of this paper is that the paramagnetic magne-
tization of neutron star matter is not inconsistent with
the available data on electromagnetic activity of both
pulsars and magnetars.
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Abstract—The dependence of the ultracold neutron capture cross section in targets with a thickness smaller
than the neutron wavelength is cal culated in the time-dependent quantum theory. It is shown that, for low veloc-
ities of neutrons, their capture cross section o, ~ v, i.e., tends to zero as the neutron velocity v tends to zero.
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1. INTRODUCTION

This study was initiated by the experimental results
[1] on transmission of ultracold neutrons through sam-
ples containing natural gadolinium and enriched in the
Gd'*’ isotopes (see aso [2]). Two isotopes, Gd'* and
Gd'*’, have resonances in the radiative capture cross
section, which lie in the vicinity of the thermal region.
For this reason, natural gadolinium is characterized by
avery large capture cross section in the thermal region.
If we assume that the dependence of the capture cross
section on the neutron velocity v is determined by the
1/v law [3], the value of the capture cross section for
ultracold neutrons becomes abnormally large (about
15 Mb). The measurement of the dependence of the
capture cross sections for neutrons on their velocity in
[1] proved that it is described by the /v law down to
velocities equal approximately to 9 m/s, while consid-
erable deviations from this law are observed for lower
velocities, and the capture cross section starts decreas-
ing. Thus, the /v law in this neutron velocity region
becomes inapplicable. Rauch et al. [1] explain this
effect by fluctuations of the number of scattering nuclel
in the interaction volume, which are associated with
specific samples. Such an explanation is possible in
principle, but givesrise to anumber of other questions.
First, doesthe 1/v law hold for perfectly fabricated tar-
gets? Second, do physical limitations on the magnitude
of the capture cross section exist when the neutron
velocity tendsto zero? And third, the dependence of the
cross section of capture at nuclei constituting dense
matter may differ considerably from this law since the
1/v law is valid only for the interaction of a neutron
with afree nucleus. We will consider the latter circum-
stance in greater detail. With decreasing velocity, the
neutron wavelength A increases together with the vol-
ume of the substance with which the neutron interacts.
For ultracold neutrons, the number of nuclei in the
interaction volumeis N = nA® > 1, where n is the num-
ber density of nuclel in the substance. Since the elastic

scattering of a neutron from this ensemble occurs
coherently, the elastic scattering cross section is a non-
linear function of N, while the cross sections of inelas-
tic processes depend on N linearly in the first approxi-
mation. Consequently, the relations between elastic and
inelastic processes for an ensembl e of nuclel and for an
individual nucleus, for which the conditions of coher-
ent scattering hold, differ significantly. This effect of
suppression of inglastic channels [4] for Bragg scatter-
ing of thermal neutrons by idea crystal iswell known.
A similar effect is also observed in the case of Bragg
scattering of X rays[5]. Coherent scattering is possible
for thermal neutrons and X rays whose wavelength is
comparable with the separation between scattering cen-
ters only if Bragg's condition is satisfied. Coherent
scattering of ultracold neutrons, whose wavelength is
much larger than the separation between nuclei, by an
ensemble of target nuclei occurs irrespective of the ful-
fillment of Bragg's conditions. Hence the suppression
of inelastic channels must be observed under certain
physical conditions. In order to simplify calculations,
we assume that the wavelength of ultracold neutrons
A <d, wheredisthethickness of thetarget. We will use
the single-resonance approximation for considering the
neutron capture process. For isotopes Gd**® (the energy
of the first resonanceis €, = 0.0268 eV and the energy

of the second resonance is €; = 2 eV) and Gd**’ (g, =
0.0314 eV and g, = 2.825 eV), the total width of theres-
onances is much smaller than the distance between
them; consequently, the condition for the single-reso-
nance approximation is satisfied.

2. QUANTUM-MECHANICAL DESCRIPTION
OF PASSAGE OF ULTRACOLD NEUTRONS
THROUGH A SUBSTANCE

Time evolution of the quantum-mechanical system
neutrons + target nuclei is determined by the total
Hamiltonian. We divide the total Hamiltonian into two
components: H,, which determines the state of target

1063-7761/02/9505-0800$22.00 © 2002 MAIK “Nauka/Interperiodica’
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nuclei and free motion of the incident neutron beam,
and the Hamiltonian V, which is responsible for the
interaction between projectile neutrons and target
nuclei. In the resonance approximation, we expand the
total wave function of the system neutrons + target
nuclel into aseriesin the eigenfunctions of operator Hy:

W(t) = A, ()9O + Y Cr(t) o
)
+ Z Bp, p'(t)(pp'cDN + Z Bpk(t)(DNllkEI
' k

Here, A, (t) is the amplitude of the state in which the
target nuclei are in the ground state and there exists an

initial distribution of the incident neutron flow; C'p t)is
the amplitude of the state in which atarget nucleus at
point r; is excited and one neutron from the initial dis-
tribution with momentum p is absorbed; B, () isthe
amplitude of the state in which target nuclei are in the
ground state, a neutron with momentum p is absorbed
from the initial state, and a neutron with momentum p'
is emitted; and B, ,(t) is the amplitude of the state in
which a neutron with momentum p is absorbed from
theinitia distribution and ay quantum with momentum
k is emitted; one of target nuclei hasincreased its mass
number by unity.

Using the Heitler method [6], we can write the fol-
lowing system of equations for Fourier transforms of
amplitudes, which is required for the solution of the
time-dependent Schrodinger equation:

(+ie)A, (w) = 1+ sz* e""Cl(w),

i=1p

(g +&,+i€)Cy(w) = Ve’ A, ()

.
+ ZVp.eIp
4

(w—gy+e,+ie)By (W) 2

k CF;
Bp,k(w)f

By, p (W) + kae'
k

N

= 3 vie " Cy(w),

i=1

(- +e,+AM +i€)B, (W)

N
—ik OF;
= ZV’k‘e ' Cp(w).
i=1
Here, V, and V,, are the matrix elements corresponding

to the absorption of a neutron with momenta p and p',
respectively, by a target nucleus; V, is the matrix ele-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

801

ment corresponding to the absorption of ay quantum by
a compound nucleus; w, €,, and €, are the energies of
ay guantum, a neutron with momentum p, and a neu-
tron with momentum p', respectively; AM = E,, ; —Ea
is the binding energy for a neutron in a compound
nucleuswith A + 1 nucleons, and e isaquantity tending
to zero. While writing the system of equations (2), we
assumed, for simplicity of calculations, that a com-
pound nucleus emits only one y quantum, and there is
no cascade emission of quantum. Substituting the
expressions for B, (w) and B, \(w) into the equation

for C, (w) and using the equality

_ 1 _ DID_-

&(x) = e PB(D iTtd(x),

we obtain

B» &+Ep +|—+|r Cp(co)

= VpepD‘Anp((o)
T e &P(iplri=ry) Ty @

_EE; plri—r|| 2

exp(|k|r EC'( ®),

Z Klri—r||
i#]

where

n = 2HZ|Vp.|2§((o_sp. tep),
S

r, = 2nz|Vk|ZE(w—(q<+£p+AM),
k

and we have also taken into account the fact that |p| =
[p’| in the case of elastic scattering of neutrons. For
ultracold neutrons, the condition ' p/I' k < 1 usualy
holds (I, ~ 10°T,, p ~ 10° cmr?, k ~ 10" cmr? for an
energy of a quantum of the order of 1 MeV, and
r,p/T .k~ 1072). If we introduce the number density
n(r) of target nuclei in this approximation and denote
r=r,+Tr,, wecanwrite expression (3) in the form

Ho— g+ £, 159C,(r, @) = V,exp(ipr)A, (o)
(4)
Cnpng o C oy EXpCplr =r')
—E‘[dr n(r )Cp(r s Q))W

For the sake of definiteness, we denote theincident neu-
tron flow along the normal to the target surface. In this
case, we have n(r) = nfor al x, yfor 0<z< d and
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n(r) =0 at al other points in the space. It is obvious
from symmetry considerations that C,(r, w) cannot
depend on coordinates x and y. Consequently, we can
integrate EqQ. (4) with respect to these coordinates:

Bn &*E, +| C p(Z W) = V, exp(ipz) A, ((.o)
©)

Differentiating Eq. (5) twice with respect to z, we
obtain the differential equation

Co(z ) +a°Cy(z, ) = 0, (6)

where

2nl, 1 M
P~ p® W—gte,+il/2dr )

The solution to Eq. (6) has the form
Cp(z w) = Ae“?+Be ™. (8)

Coefficients A and B can be determined from the inte-
gral equation (5) by substituting solution (8) at points
z=0and z=d. The general form of coefficients A and
B is rather cumbersome; if, however, condition pd < 1
holds, the expressions for coefficients A and B can be
simplified considerably and have the form

_ VoA, (w) 1—e"
- tE, +|(I'/2)f(0(d)e'<xd giad’
9
_ VoA, (w) 1-¢€ ©
C w-gtE, +|(r/2)f(om|)echd giad’
where
2nr, n 2- g jad
flad) = 1+im=ss e.ad e_.ad (10)

Substituting expression (9) into the expression for the
general solution (8), we obtain

e - VoA, ()
o(20) = T e, T i(F/2)T(ad)
g ad (11)
eI(XZ(l e I(X ) e—IUZ(l_eIU )
elord_e—lad

Using this relation and the system of equations (2), we
can find all the amplitudes of states and calculate the
corresponding cross sections. In order to calculate the
capture cross section, we use the technique devel oped
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by Heitler [6]. We present amplitude B, ,(w) in the
form

Bp,k(w) = Up,k(w)E(w_(’q(-l'€p+AM)Anp(w)-(12)

According to [6], the capture cross section can be writ-
tenintheform

E _E.
0. = 21y |Up (w0 = 0)|2M,
k

i (13)

where j, is the current density of projectile neutrons,
and E;, and E;, are the initial and final energies of the
target + neutron system. The expression for U,, (w) has
the form

_dxdydzV,V} exp(=ik [F)
Up(w) = n_[w—€0+€ +i(lr/2)f(ad)

y eiaz(l_e—iad) e—laz(l_eiud)
elord_e—lad

(14)

For subsequent calculations, we require an explicit
expression for coefficient o in terms of the resonance
parameters. For w = 0, we obtain from Eq. (7)

O 4nfiing, A—il
o = p’a- oo Al (15)
M piepn®+10
where I'ﬂ isthe neutron width of the nuclear zero level

Po is the neutron momentum for the resonance energy
€ and A = 2(g, — &o)/I". The energy of projectile ultra-
cold neutrons satisfies the inequality

amlon
Sp < r n_SSOl (16)
Po
and the quantity o can be written in the form
[ﬂ-T[ Fn n|:|
%L 5 A|D (17)

Let us consider two limiting cases. Let us suppose that
od < 1; it can easily be demonstrated that the capture
cross section is defined as

o [€o

NOny/\/;—

p
A2+%L+6 e—djz
1 SpD

If ad > 1, the expression for the capture cross section
has the form

o, = (18)
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o (€
NO'ny S_p
i sdjz EfDZ.
D %, z0 o+ 8ol ‘e

Here, oﬁy is the capture cross section at exact reso-
nance, N is the number of nuclei in the target, and

o, (19

nrind
I_po

non 1
62: —3 > .
Mpp A" +1

It can be seen from the expressions (18) and (19) for
the capture cross section that, if the inequality

O1./€l€, < 1lissatisfied in the case (18) and the ine-

quality 8,./g,/e, < 1is satisfied in the case (19), the
quantity

o, =

o. 0

FigT

i.e., the /v law holds in this neutron energy range. If,
however, 3, ./e)/e, > 1 or &,,/€4/€, > 1, the capture

Cross section
[
o0 =8 v
Ep

and the value of the capture cross section tends to zero
upon a further decrease in the neutron energy. At the
sametime, itisshownin [7] that the value of the elastic
scattering cross section increases upon adecreasein the
neutron energy and attains its limiting value of the
order of the geometrical size of the target in the limit
when the neutron energy tends to zero.

3. DISCUSSION OF RESULTS

L et us compare the obtained results with experimen-
tal data on the dependence of the cross section of cap-
ture of ultracold neutrons on their velocity (energy) for
ametalic Gd**’ film. For the Gd'*’ isotope, the reso-

nance parameters are grﬂ = 0.56 MeV, I =106 MeV,
and g, = 0.03 eV. In the experiments [1], a target of
thicknessd = 114 A was used. On the basis of these val-
ues, we calculate the neutron velocity for which the
capture cross section starts decreasing. It can easily be
shown that this value of Gd*’ can be determined from
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the inequality 9, ,/€o/€,, > 1, under which o, [J v. Sub-
stituting the resonance parameters into this expression,
we obtain v < 4-5 m/s, which is in good agreement
with the results described in [4].

The expressions (18) and (19) derived above for the
capture cross section make it possible to determine the
maximum value of the cross section. We differentiate
expressions (18) and (19) with respect to neutron
energy and find the value of energy for which these
expressions attain their maximum values. For expres-
sion (18), we obtain

(Sp)max = £0A2+1

while the corresponding expression for Eq. (19) is
(Ep)max = €002

Accordingly, the maximum possible values of capture
Cross sections are given by

Na® 1
(O)max = 55~ (20)
C/ max 251 AZ + 1 + 1
forad < 1and
_ Ncrgy 1
(cc)max - 262 A2+l (21)

for ad > 1. It should be noted that, if the 1/v law held,
the value of the neutron capture cross section for g, =
(€p)max Under the condition ad > 1 would be twice as
large as the value of the neutron capture cross section
given by relation (21).

It should be noted in conclusion that the expression
(18) derived above for the capture cross section pro-
vides an answer to the academic question concerning
the dependence of the neutron capture cross section for
an “isolated nucleus’ for a neutron velocity tending to
zero. Indeed, it follows from relation (18) that, for any
nonzero value of parameter d,, there exists a neutron

energy (or velocity) for which 61(80/ep)#’;( > 1, and the

increasein the value of the capture cross section ceases
for energies €, < (€,)max in the limit of till lower ener-
gies, the capture cross section vanishes. The value of
0, is determined by the resonance parameters of the
nucleus and by the value of the number density of
nuclei in the volume V ~ A3 of interaction of a neu-
tron with nuclei. As the neutron velocity tends to
zero, the neutron wavelength tends to infinity, and
the interaction volume becomes infinitely large; con-
sequently, there always exist nuclei identical to the
target nucleus even in an ideal experiment on neutron
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scattering by asingleisolated nucleusin aninfinitely
large volume of interaction. Thus, the parameter 9, in
this case becomes nonzero and, hence, the capture
cross section is bounded.
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Abstract—Based on the approximation of strong correlations between an atom and an intracavity field, which
implies the equal probabilities of finding the atom in the ground state and n photons in the field and of finding
the atom in an excited state and n — 1 photons in thefield, it is shown that the conditional states of afield gen-
erated by asingle-atom laser are described by the diagonal part of the generalized coherent Mittag—L effler state.
The quasi-distributions P and Q of the intracavity-field probability amplitude are found, and the boundedness
of the Glauber function on a segment is shown. The possibility of inversionlesslasing is demonstrated, and the
absence of alasing threshold isfound for some region of parameters. The regimes of generation of the ampli-
tude-squeezed states of thefield are studied and the parameters of the system providing the maximum squeezing
are determined. It is shown that the atom—field states are entangled at weak pump intensities. © 2002 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

A single-atom laser attracts attention not only as a
limiting case of adevice capable of generating coherent
radiation but also as asimplest quantum-optical system
that can be completely theoretically described and stud-
ied experimentally. The modern experimental methods
allow oneto isolate an atom in an optical cavity whose
Q factor is so high that asingle photon is capable of sat-
urating a resonance transition in the atom [1].

Historically, the study of the lasing properties of a
single-atom laser has been initiated by the analysis of
three- and four-level schemes [2—4], which are com-
monly used in macroscopic lasers. However, it was
found that a smplest two-level scheme provides the
observation of all the new effects that were predicted
for three- and four-level schemes. Among these effects
are the sub-Poisson statistics of light [2, 6], the multi-
peak fluorescence spectrum [3], and inversionless las-
ing [6]. It was shown that an incoherently pumped two-
level single-atom laser operates similarly to a usual
laser, featuring the subthreshold and superthreshold
regimes and self-quenching [4, 7].

However, a number of questions and even formula-
tions of the problems have remained outside the scope
of these studies, possibly, because of the cumbersome
equations used in them. One of them is the question
about a state of the field produced in the cavity upon
incoherent pumping of the atom. To which class of
states does this state belong? What is the reason for the
appearance of its nonclassical properties? What is the
reason for the inversionless oscillation in a single two-
level atom laser? Is the common state of the atom and
field entangled?

In this paper, wefound a stationary density matrix in
a comparatively simple form using the approximation
of strong correlations between the atom and field,
which corresponds to a large interaction constant
between the atom and field. We showed that conditional
density matrices of the generated field are described by
the diagonal part of the density matrix of the general-
ized Mittag—L effler states. These states are the eigen-
functions of the generalized annihilation operator and
generalize naturally usual coherent states. We found the
quasi-distributions P and Q of the intracavity-field
probability amplitude for these states and demonstrated
the boundedness of the Glauber function on a segment.
This property isinherent in the Glauber function only.
Neither the Q nor the W function possesses this prop-
erty. Due to a strong atom-field correlation, a single-
atom laser is aso capable of generating generalized
coherent states without inversion and even without a
threshold in some region of parameters. When the
decay rate of the excited state of the atom is lower than
the decay rate of the field in the cavity, the fluctuations
of the number of photons are lower than the shot noise
level. We found a maximum value of the amplitude
squeezing for asingle-atom laser. The analysis of mix-
ing of the atomic and field subsystems showed that
quantum correlationsin this system are possible only at
relatively weak pump intensities.

The content of the paper is presented in the follow-
ing way. In Section 2, we derive the master equation for
the density matrix of our model. Section 3, which is
devoted to the properties of the quasi-probability func-
tions P, Q, and W, is divided into two subsections. In
Section 3.1, we present the general and stationary equa-
tions for the Glauber P function and the corresponding
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equations for the distribution of the number of photons
and normally ordered field moments. In this section, we
also give the physical interpretation of stationary equa-
tions as the balance equations for the level populations
of the combined atom—field quantum system. In Sec-
tion 3.2, we formulate the basic approximation of the
paper and present analytic expressions for the P and Q
functions. We also discuss in this section the physical
reason for the boundedness of the Glauber function on
a segment for radiation from a single-atom laser. In
Section 4, we consider the distribution of photons and
show that a single-atom laser emits radiation corre-
sponding to the generalized coherent Mittag—L effler
states (more exactly, to their diagona part). In Section 5,
we describe the properties of inversionless oscillation
in asingle-atom laser. Section 6 contains the descrip-
tion of the sub-Poisson statistics of this laser. The
classica and quantum correlation properties of the
atom and field are discussed in detail in Section 7. The
methods of regularization of P functions for the
phase-independent states of the field are considered in
the Appendix.

2. THE MODEL

A single-atom laser is considered within the frame-
work of amodel system consisting of atwo-level atom
with the ground state |1Cand the excited state |2C]whose
interaction with a resonance mode of the field is
described by the Janes-Cummings Hamiltonian with
the interaction constant g. The atom is pumped incoher-
ently with the mean rate R;,. In addition, the decay of
the resonance mode of the field with the rate k and the
decay of the atom with the rate R,; are taken into
account. The master equation for the density matrix,
reduced over the states of the surroundings, in theinter-
action representation has the form

p = gla’o_—ao,, p] —Ry,L(0,,0.)p
—RyL(0_,0,)p—2kL(a a")p.

2.1)

Here, the transition operators (o,, 0_) of the atom and
(a*, a) of the field satisfy the commutation relations
[o., 0] =20, [a, a’] =1 for Fermi and Bose particles,
respectively, and relaxation is described by the Lind-
blood operator L:

2L(x, y)p = [x, Pyl +[xp, Y].

We assume that the frequency of the atomic transition
coincides with the frequency of the fundamental mode
of the cavity. We consider only optical frequencies in
the model of asingle-atom laser and neglect the contri-
bution from thermal photons.
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3. DISTRIBUTION FUNCTIONS
OF THE INTRACAVITY-FIELD PROBABILITY
AMPLITUDE

3.1 General Relations

To study the s-ordered quasi-probability functions
RE(a) of the field (see Appendix), it is convenient to
pass from the equation for the density matrix (2.1) to
the equation for the normally ordered characteristic
operator Fy =F:

OF _ oF oF
5t - Ab_F +gAFo, + g[c_, a)\} + g[m, GAD}
_ Ry L(0,, 0)F _ RplL(o,, 0,)F (3.1)
2 2
OF . . 0F
— = il
ko%\ 6)\D+ )\0)\5'

This equation can be transformed with the help of
the integral transformation (A.1) to a system of linear
differential equations in partial derivatives for any of
the R® functionsin the basis of atomic states. The equa-
tions are the simplest for the Glauber distribution func-

tion R} =P;. Assuming that theinitial state of thefield
is phase-independent, i.e., the diagonal elements Py;
and P,, depend only on the square of the modulus |af?
of the field amplitude, while the nondiagonal elements
P, and Py, are zero, the equations for the elements P;;
can be represented as the equation for the elements of
the column vector P: P, = Py, P, = P,,, P; = P /a*,
and P, = P,,/a, which depend only on |af? = p:
oP

_ 0

Here, matrices A and B are determined by the expres-
sions

(3.2)

%_Rlz R gp gp%

A = E Ry, —Ry —gp —gpg
0 — — 0 O
I

O Yo [ (3.3)
| —ap —gp U
g2kp 0 —gp—gp -
=00 2kp 0 00
Ho —g2kp 0
00 —-g 0 2kpOU
and the decay rate of the nondiagonal elementsis
R,; + R, —2k
Yiz2 = Y = —%1‘—‘2‘12_'

By solving Egs. (3.2) and using the rel ation between the
s-ordered functions (A.3), we can determine al the
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three quasi-probability functions. Note that the system
of four linear equations in partial derivatives (3.2) isan
initial system for considering statistical properties of
the field. By using some approximations, for example,
the adiabatic approximation, we can exclude the func-
tions P, and P, from consideration by expressing
them explicitly in terms of P, and P,. A system of two
equations in second-order partial derivatives obtained
by neglecting the terms responsible for spontaneous
emission can be reduced to one equation for the uncon-
ditional function of the field distribution P = P;; + Po,,
which, in turn, using some additional assumptions, can
be reduced to the Fokker—Planck equation. In this

ﬁzv + p%_aipg}ljz +pP, = 2§2P1,

U
0 o0 _2 o0
Ep%_mpz_ppl = ﬁai—p?]a pP,

H2v+n+1)p,(n) + (n+1)py(n+1) = 2a°py(n),

O
() —py(n+1) = = ﬁ{(u+n+1)p(n+1)—(n+2)p(n+2)},

d2v+n+ 1)my(n) + m(n+1) = 2a°my(n),

E(m 1)my(n) + my(n+ 1) —my(n+ 1) = r—Z](m+ n+1)m(n +1).

Here, P =P, + P,; p = p; + p,; m=m, + my,; the param-
eter 2v + 1 = Ry /kisequal to the normalized decay rate

of the excited level |20 the parameter 2a° = Ry,/k is
equal to the excitation rate of incoherently pumped

states |nCj the quantity n = g%k? determines the normal-
ized rate of spontaneous decay to a resonance mode;

and the parameter 1 = a° + v is equa to the total
dephasing rate caused by incoherent perturbations of
Ry, and Ry, after subtraction of the half decay rate k/2 of
thefield.

Equations (3.4a) have a simple physical meaning.
They describe the balance of the transitions between
adjacent groups of states having the same number of
excitations (the number of photons if an atom isin the
ground state or the number of photons plus unity if an
atom is in the excited state). On the left-hand side of
Eqg. (3.4a), an average number of transitions occurring
from the states |n + 1[JL0and [nRCto the states |n{iLC]
and [n — 120appears (see Fig. 1), while, on the right-
hand side of this equation, the number of reverse tran-
sitions appears. Equation (3.4b) can be interpreted as a
balance equation for the number of transitions between
the states having the same number of photons in the
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paper, we will not use the adiabatic approximation and
some other approximations which reduce system (3.2)
to the Fokker—Planck equation for the function P. In
addition, we will not consider here a nonstationary
solution of Egs. (3.2) and will analyze only stationary
distribution functions Q; and P, and the distributions of

the number of photons p;(n) = M| G|pliCjn0and of nor-
mally ordered moments my(n) = Sp(d|a™a"p|il),
which arerelated to Q, and P, [see (A.4). (A.7), (A.10),
(A.15)]. According to (3.2), the continuous functions
P, and P, and these two sets of discrete values satisfy in

the stationary regime the following system of equations
and two recurrent sequences, respectively:

(3.39)

(3.3b)

(3.4a)
(3.4b)

(3.59)
(3.5b)

cavity. To do this, it is necessary to introduce the prob-
abilities of spontaneous (w,,) and stimulated (nw,) tran-
sitions induced in an atom by the intracavity field.
Then, the number of transitions occurring from the
states |n + 1[R0Oand |n + 1[LOto the states |nR0and
[nL0(see Fig. 1) should be equa to the number of
reverse transitions:

(n+1)py(n+1) +(n+1)py(n+1) (36)

+(n+1)wyps(n+1) = (n+1)w,p,(n). '

By equating (3.6) and (3.4b), we find that the normal-
ized density of spontaneous transitions induced by the
intracavity field is

1-(n*2)p(n+2) 2)}%_1. 3.7)

_nd
w, = E%u+(n+1)[ (N Dp(n+1) 1

It follows from Eq. (3.7) that (i) the probability w;,
depends on the pump a’, the value of w,, decreasing
(self-quenching) with increasing a’ (in the general
case, when a° exceeds a certain value), and (i) w,
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,,,,, (n + 10020
n+1
(n+ Dw,
Onh+ 10010 C On20
(n+ Dw,
2v+1 242 n
CrlD1 C (h— 10120
n
- 1mo———---

Fig. 1. Energy level diagram and transitions of an atomin a
cavity. The splitting of levels having the same number of
excitations is not shown. The wavy arrows show transitions
involving photons escaping from the cavity (transition rates
normalized to the decay rate k are determined by the num-
ber of photons in the cavity). The double arrows indicate
transitions caused by the decay of the atom (rates are 2v +
1); the arrows directed upward indicate transitions caused
by incoherent pumping (rates are 2@2 ). The arclike arrows

indi cate spontaneous and stimulated transitionsin the atom,
which are induced by the intracavity field (wj, is the sponta-

neoustransition rate in the presence of n photonsin the cav-
ity).

depends on the number of photons in the cavity dueto
apartial destruction of the interference between intrac-
avity photons, which become distinguishable because
of the interaction with the atom: photons “belonging”
to the atom in the ground state differ from photons cor-
responding to the excited atomic state. The dependence

of w,, on the number of photons s not a priori,! but can
be determined only after finding the distribution p(n) of
the number of photons. However, in the limiting case of
strong interactions, when the parameter ) is so large
that the right-hand sides of Egs. (3.3b) and (3.4b) can
be neglected, the dependence of w,, on nisinsignificant.

3.2. Srong Interactions (n = 1). The Boundedness
of the Glauber Function on a Segment

In the case of strong interactions, a strong coupling
appears between population of the levels having the
same numbers of excitation. According to (3.4b), inthis
case,

P2(n) = pu(n+1), (3.8)

which reflects the leveling of populations of the states
[n0R2Cand |n + 1[LCbefore transitions from these states
to other states. Such a population leveling results, in

1 Note that the dominator in Eq. (3.7), which is proportional,
according to (3.4b), to the difference po(n) — p1(n + 1), does not
vanish at any values of the parameters, i.e., the function w,, is
always a positively defined quantity, which can be proved by the
contradiction method using Eq. (3.4a).
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combination with the balance of the number of transi-
tions between adjacent groups of states with the same
number of excitations, in a simple algebraic relation
between the conditional densities of quasi-probabilities
P, and P,:

vP, = (&= p)P,. (3.9

Thisrelation is abtained by subtracting Eq. (3.3b) from
(3.33) under the condition n > 1. Algebraic relation
(3.9), together with differential equation (3.3a), alows
usto find the functions P, and P, in the explicit form:

p.(p) = (e~ p)E=P) e,

rw) (3.10a)
2 v
Py(p) = ce(az—p)%e". (3.10b)

Here, 6(X) is the Heaviside step function, and the nor-
malization constant
2 -1

_1 -2v _a 2
c= STv+Da”[1v 255N @) | (1D

isexpressed in terms of theincomplete gammafunction
y(v, X) or the Mittag—L effler function [8]

_ X"
Eqp(X) = Zm

as
Ny(X) = VX €Y(V, ) =T (L+V)E; 1, ,(X). (3.12)

According to (3.10), the Glauber functions P, and
P, are expressed in terms of the kernel of the convolu-
tion

MXB_]‘

P 100 = )

* f(X)

_ix _ )81
= r(B)JO'(X )P (),

which is called the fractional Riemann-Liouville inte-
gration of order 3 [9]. The order v = R,,/2k — 1/2 corre-
sponds to the function P,(p), and the order v + 1 corre-
sponds to the function P,(p). In the case of the negative
order of the fractional integration, this operation is
called the fractional differentiation because, when nis
an integer, we have

%%nf(x).

It is obvious that in this case the transformation kernel
is a generalized function. According to (3.10), the
Glauber function P,(p) is always a positively defined
distribution function, whereas the function P;(p) for

1™ % f(x) =
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-0.5<v < 0isno longer a distribution function and
becomes a generdized function. The nonclassica proper-
tiesof light for such a state are considered in Section 6.

The characteristic feature of functions P, and P, is

their boundedness on the segment [0, i_iZ] , which means

that the field amplitudes exceeding a cannot be
observed. The presence of the boundary value of the
field amplitude is explicitly manifested in the interval
O<v<1, whenl<Ry/2k< 3 (seeFig. 2). To demon-
strate the fact that the boundedness of the P functionsis
not related to the strong interaction approximation,
which we used in deriving expression (3.10), we calcu-
lated numerically the P function by solving exact alge-
braic Egs. (3.4) and (3.5) and using regularized expan-
sions (A.10) and (A.14) of the P functions in the
Laguerre polynomids. One can see from Fig. 2 (curve 2)
that the maximum of the distribution probability also

corresponds to the boundary value of gz, but outside
the maximum the P function exhibits nonclassical
properties, oscillating near zero.

Itisobviousthat, because the features of the P func-
tion are smoothed when the field amplitude is described
in terms of the Q or W functions (A.3), the existence of
the upper bound for the field amplitude does not restrict
the Q and W functions on a segment. Thus, the Q, func-
tionsare determined, in thelimit under study, according
to (3.9), (3.10), and (A.3), by the expressions

_priary
Qu(p) = T (v +1)e "ETFE I,(2a/p), (3.133)

Q(p) = e“’aip(Qle")

b (3.13b)
= Cr(V + 1)e pDde |v+1(2§’\/5)l

where |,(x) is the modified Bessel function of order v.
It follows from these expressions that the functions
Q1(p) and Q,(p) do not vanish at any value of the field
amplitude (see Fig. 2).

The boundary value of the field amplitude |oy |> =

a’= R,/ 2k correspondsto the statistical equality of the
number R,At of excitations of the atom during the
interval At upon incoherent pumping (i.e., the number
of the |1hJ — |20hOtransitions followed by the
[20hC— |10h + 10transition, which increases the
number of intracavity photons by unity and occurs,
according to (3.8), with the probability 1/2) and the
number 2k|o[?At of transitions from the states |1h0]
(n= |o,P) to the states |10h — 100(i.e., transitions that
reduce the number of intracavity photons by unity).
Such a gtatistical equilibrium, along with the multipho-
ton interference corresponding to the representation of
the Glauber function in the form of superposition con-
tributions from different n-photon states [see (A.10)
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Fig. 2. (1, 2) P and (3) Q distribution functions calculated

for the parameters fr] =200, a2 =1/2,andv = 1/2. Curve 1l

corresponds to the strong correlation approximation;
curve 2 iscalculated by solving numerically exact algebraic
equations (3.4) and (3.5) and using regularized expan-
sions (A.10) and (A.14) for the number of terms in the
series N = 3500.

and (A.14)], causesthe boundedness of the functions P;
and P, on a segment. Note that, along with the fact that
the functions Q,(p) and W(p) do not possess the bound-
edness on a segment, the distribution functions of the
number of photons p,(n) and p,(n) change only weakly

above the boundary value n, = a’. Let us present, for
example, the expressionsfor the functions P, and P, for
the case when the decay rates of theatom (R,;) and field
(K) (v = 0) are the same:

_ & -p)
{2 - exp(-a’)]’

p, = &P - P18 ~p)
{2 - exp(-2")]

Therefore, in this limit, the state of the field, when the
atomisinthe ground state, is a coherent state averaged
over arandom phase. The distribution of the number of
photons in this state is Poissonian, with the possible

detection of photons corresponding to the values of a’

exceeding the boundary value. According to (3.8), the
distribution of photons for the field corresponding to
the atom in the excited state is a displaced Poissonian.

For thisfield, the numbers of photons exceeding a’ are

also accessible. Note that the Poisson distribution of
photons is not caused by intense pumping but appears
due to the coherent atom-field interaction. For the

(3.14)
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three-level A\ scheme, thispossibility was pointed out in
paper [4].

4. PHOTON DISTRIBUTION: THE GENERALIZED
COHERENT MITTAG-LEFFLER STATES

It followsfrom Egs. (3.44) and (3.8) that, in the limit
of strong interactions, the stationary density matricesp;
and p, can be found by solving the eigenvalue problem

BO.nat = a2
+—=apa = ap;. (4.1)
GabwcE
The parameter B = v for the density matrix p, and 3 =
v + 1 for the density matrix p,. Indeed, the calculation

of the diagonal elementsin the Fock basisfrom Eqg. (4.1)
taking into account the known equalities

ajnd= J/nn-10 a‘jnd= J/n+1jn+10

yields Egs. (3.4a). The problem (4.1) can be reformu-
lated as the eigenvalue problem

Agla, BO= alaBO (4.2)
for the generalized annihilation operator
Ag = 1+ £+a. 4.3
aa

Then, the solution of (4.1) is described as the diagonal
part of the density matrix of the generalized coherent

state |a, B

pl = r-]1di w{ Iaa VD@! Vl} ’ (44a)

(4.4b)

Here, n; and n, are the populations of the ground and
excited states, respectively:
_ _ b _ . a
N =1-m = on PR
and the normalized generalized coherent states |a, vOI
are determined by the superposition of the Fock states:

la. BO= N > PRt 49

The normalization constant Nﬁ(az) is expressed in

terms of the Mittag—L effler function E; ; . B(az) (3.12).
The authors of paper [8] proposed to call this class of
generalized coherent states the coherent Mittag—L effler
states because they are connected with these specia
functions. Itisobviousthat, for 3 = 0, these states coin-
cide with usual coherent states. For 3 = 0, states (4.5)
generalize coherent states in the obvious way: in the
expansion of the coherent state |a [in Fock states, the

guantity n! = (1 + n) isreplaced by I'(1 + 3 + n), while

P, = nydiag{|a, v+ 10a, v + 1} .

2

Nv + l(@z)a
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the exponential normalization constant exp(|af) is

replaced by the function ' (1 + B)E1,1+B(§2)- Taking
into account that the Fock state [nCis generated from

vacuum by the operator Ag"//F(1+B +n),
InO= Ag"/J/T (1+B+n)jo0]

we obtain another representation for the states (4.5):

la, BO= (Ey1.4(8%) “Eyr.p@A)OL  (46)

which is analogous to the generator of coherent states
from vacuum.

The generalized deformed annihilation Ag and cre-
ation Ag operators satisfy the commutation relations

[Ag Agl = 1+Bl00, (4.7)
which determine the uncertainty relations for the oper-

ators Ag and A and their combinations. For the states

(4.5) and (4.6), these relations represent equalities.
Relations (4.7) aso show the noncanonical nature of
transformations (deformations) of the operatorsa, a* to

the operators Ag, Ay .

The photon distribution for generalized coherent
Mittag—Leffler states and, hence, for the states
described by density matrices (4.4) is determined by
the expression

@-2”

thia. B = (Bv1p@) mry g

The properties of the photon distribution are usually
related to the lasing properties of the system (the pres-
ence of amaximum of the distribution function) and to
the stability of the radiation produced (the width of the
distribution function compared to that of the Poisson
light). Depending on the parameter 3, the distribution
(4.8) can be both sub-Poissonian ( < 0) and super-
Poissonian 3 > 0, retaining its lasing properties.
Before discussing the generation possibilities of a
single-atom laser and the stability of the photon distri-
bution, we present another method for the description
of systems, which is related to the deformed operators

Ag and A; [10]. By using the relation
+n
- D
n =
we form aset of basis states which differ from the Fock

states by the absence of normalization. It is obvious
that, in this deformed basis, the relations

AsIni = /n+1jnd, Agni = J/njn-13,

arefulfilled for the operators Ag and Ay, which are sim-
ilar to relations for operators a and a* in the usual Fock

(4.8)

[OL)
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space, and hence, the commutation relations [Ag, AE] =

1 are fulfilled. By using this circumstance, we can
assume that the Hamiltonian operator of a deformed
oscillator is

Hy = o EA T A

In the Fock representation, the eigenvalues of this
Hamiltonian are

o = sflt-afpe e BrodsE]

i.e., the structure of the spectrum of the deformed oscil-
lator coincideswith that of ausual oscillator, the excep-
tion being the ground state, whose energy differs from
that of the n = 1 state by the value (1 + [3/2), which is
greater or smaller than aquantum #.w, depending on the
sign of the parameter (. In this approach, the state
(4.44) isrelated to the deformed oscillator in which the
frequency of the |1(3{Otransition can be lower than 2w
(v <0). For the (4.4b) state, the frequency of a similar
transition is always greater than #w by Aw(l + (v +
1)/2).

5. INVERSIONLESS LASING

It follows from photon distributions (4.4) that the
population n, of the upper laser level is always lower
than the population n, of the lower level. The question
arises of how in this case such adevice asasingle atom
in a high-Q cavity, which is called a single-atom laser
[3, 4, 11], can generate emission that is close to coher-
ent emission and whether this emission is produced by
overcoming a certain threshold or it appears without a
threshold. The question of how to define the lasing
threshold in the case when a fraction of spontaneous
emission in the cavity mode relative to atotal spontane-
ous emission (in the cavity and noncavity modes)
approaches unity (B, — 1) has been discussed in
detail intheliterature[11, 12]. Itisobviousthat therea-
soning applied to a usua laser (B, — 0), which is
based on the balance rate equations and on a compari-
son of the average rates of stimulated and spontaneous
transitions, as well as the values of the loss rates, gives
information on the average emission intensity (an aver-
age number of photons) and itsincrease with increasing
the incoherent pump power. However, the nature of
emission produced by such a source and its coherent
properties remain unclear. To answer thisquestion, itis
necessary to study the distribution functions of this
emission. Based on the study of these functions, some
possible criteria were proposed for a passage from the
regime of incoherent emission, which is characterized
by an exponentia photon distribution, to coherent
emission, which is characterized by a Poisson photon
distribution with a maximum located not at zero. One
of such obvious criteria is the appearance of a maxi-
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mum of the distribution function p(n), which can be
determined from the relation p(0) < p(1) [11, 13]. This
criterion is approximate because it cannot distinguish
coherent emission from incoherent emission in the
region of small amplitudes |a? < 1. The application of
this criterion for usual lasers coincides with the thresh-
old condition according to which the average rate of
stimulated emission — the average rate of absorption =
the average rate of the photon loss. However, in the
region 3, — 1 (and we consider namely this operation
regime of asingle-atom laser), thisusual threshold con-
dition, which was obtained from rate equations, is never
fulfilled, although, as shown above, emission of a sin-
gle-atom laser can be coherent. Indeed, it follows from
the balance equation (3.6) that

k w3, — k Dhw,[} = k ChO—k w3,

i.e., the difference of the average rates of stimulated
emission

kCw =k S nw,p,(n)
and absorption

k Ij‘]WnDl = kz anpl(n)

is aways smaller than the loss rate

k=% n(pa(n) + po(n))

n

by the value of the rate

kmn@ = kzwnp2(n)

of spontaneous emission to a cavity mode of the field,
which should be expected for a two-level atom under
stationary conditions. This means that photons emitted
spontaneously to the cavity mode of thefield do not dis-
tort completely the coherent properties of emission
being produced, and under certain conditions, the
device under study can generate highly coherent emis-
sion. Thisis explained by the fact that photons belong-
ing to the same cavity mode cannot be distinguished
from each other in principle: there is no difference
between photons that appeared in the cavity mode due
to stimulated or spontaneous emission processes. In
this connection, we should emphasize that, although
the role of stimulated processes in the production of
coherent emission in a single-atom laser decreases, ho
coherent emission can be produced only due to sponta-
neous transitions. In addition, the term “laser” as
applied to adevice producing coherent emission should
be perceived with stipulations as a historical term cor-
responding to a device that is obtained from a usual
laser as a passage to the limit.
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Fig. 3. Dependence of the maximum |Gm|2 of the uncondi-
tional (curve 0) and conditional Q; and Q, (curves 1 and 2)

functions on the pump intensity az . The pump thresholds

aj = JU+1D)(v+2), ajy) =v+Landag, =v+2
corresponding to the maximaoof functions Q, Q,, and Q, are
indicated by arrows; the curves are plotted for v = -1/2.

Taking the above considerations into account, we
can show that, when the coherent pump exceeds the
value

a = Jv+1)(v+2), (5.1)

the probability p(1) of the presence of one photon
exceeds the probability of the absence of photons, i.e.,
the maximum of the distribution p(n) is displaced from
zero, which can be treated as alasing threshold (thresh-
old in the photon distribution). As the incoherent pump
isfurther increased, the maximum of the discrete distri-
bution p(n) shifts to the region of greater numbers of
photons, taking successively the increasing values of m
when the pump achieves the m-photon threshold

a2 = J(v+m)(v+m+1). (5.2)

Conditions (5.1) for the appearance of lasing and the
dependence (5.2) of the amplitude maximum on the
pump can also be obtained by considering the condi-
tional Q functions (3.13). Thus, the maximum of the
distributions Q, and Q, appear when the relations

2 _ IV(X) 2 _ I\)+1(X)
S P B

are satisfied, respectively. Here, x = 2./pa. The solu-
tion to these equationsfor p = 0 gives two lasing thresh-

oldsfor the conditional states of thefield, ai(l) =v+1
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and ai(z) =V + 2, while the consideration of the uncon-

ditional Q function leads to the threshold equal to (5.1)
(see Fig. 3). Note that the inversionless lasing studied
here differs from the types of inversionless lasing
described in [5] for three- and four-level schemes. The
authors of [5] assumed that the inversionless lasing
appeared due to a strong interference between adjacent
transitions. We assume that the inversionless lasing in
our system is caused by astrong atom-field correlation,
which isabsent in the traditional consideration of spon-
taneous and stimulated transitionsin two-level systems.
It is because of such a correlation that relation (3.8) is
satisfied, which obviously provides the absence of pop-
ulation inversion in the atomic subsystem: even a sig-

nificant excess of the pump 2a’ over losses 2v + 1is

eliminated by an instantaneous leveling of the popula-
tions of the states |n(J200and |n + 101LL] which corre-
sponds to the reconstruction of the inversionless distri-
bution of populations over atomic states and the
increase in the number of photons by unity.

Therefore, in the case of a strong correlation of the
atom-field system, an incoherent pumping of the
atomic subsystem can excite the photon subsystem to
the highly intense states, which are close to coherent
states. In this sense, this excitation regime is close to
coherent excitation of a field oscillator by an ampli-
tude-stabilized classical current. Thelatter is especially
clearly manifested in the region 0 < v < 1, where,
according (3.10), the state of thefield is classical (func-
tions P; are positively defined) and the unconditional
Glauber distribution function has a maximum for any
arbitrarily low pump intensities, demonstrating excita-
tion of the field states, which are similar to coherent
states, without any threshold [4, 7]. A field oscillator
excited by aclassical current behaves similarly.

The region of applicability of the strong correlation
approximation (3.8) is determined by the boundedness
of the rate w,, of spontaneous transitions (3.7) induced
by the intracavity field. The region of applicability can
be estimated from the inequality

ni2_
" p+n+1> '

which shows that, along with the inequalities g > Kk,
R, Ry, v, the inequality g > kn should aso be satis-
fied, which obviously cannot be valid for arbitrary n for
afixed value of g. Therefore, an increase in the pump

a’, resulting in the population of excited states of the
field, will obviously limit the approximation used. Our
numerical calculations show that the strong correlation
approximation can be applied until the population of
the excited atomic state approaches 1/2, i.e., the param-
eter b determining saturation is limited [see (4.4)].
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09 | | | | | | | | |
0

Fig. 4. Fano factor of the intracavity field in the strong cor-
relation approximation as afunction of theincoherent pump
intensity a> for J/q =200and v = 1/2 (1), —0.25 (2), and
-0.495 (3).

6. SUB-POISSON STATISTICS OF LIGHT (v < 0)

As mentioned above, the Glauber function (3.104)
in the region v < 0 becomes a generalized function of
higher order than the usual & function, which is
reflected in the nonclassical properties of radiation
emitted by a single-mode laser. The distribution of the
number of photons becomes sub-Poissonian. Accord-
ing to (3.10) or (4.4) and (4.5), the normally ordered
moments my(n) and my(n) in the strong correlation
approximation are expressed in terms of the moments

m, o(n) = (& Bla"a’la, pO
2n
_ & gdotyy (a2
= gl Ng(a")
NB(QZ) a ’

of the generalized Mittag—L effler states (4.5):

my(n) = nlma{v(n)’ my(n) = nzmQZ’Hl(n)-

(6.1)

(6.2
Figure 4 shows the values of the Fano factor
[h- T _

_ m(2)
F = —-D—]—D-— = 1—m(1)+-n’-\(:r)

for the unconditional distribution of the number of
phonons in the cavity as a function of the incoherent

pump a’ for different parameters v. One can see from
Fig. 4 that, for v < 0, the Fano factor becomes smaller
than unity irrespective of other parameters of the sys-
tem, and as v decreases down to the limiting value of
-1/2, the radiation sgqueezing increases and reaches
5.5%. The minimum value of the Fano factor is
achieved for the pump intensity approximately equal to
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Fig. 5. Fano factor of theintracavity field cal culated numer-
ically from exact recurrent relations (3.5) as a function of
the incoherent pump intensity for v = —0.495 and /i =
0.6 (1), 1.5 (2), 20 (3), and 200 (4).

1/2 and shiftsto zero by the valuev + 1/2 with increas-
ing decay rate of the atom.

To study the possibility of achieving the maximum
amplitude squeezing in a single-atom laser, we calcu-
lated the dependences of the Fano factor on the pump
intensity for different interaction constants (Fig. 5). The
dependences were calculated using exact recurrent
relations (3.5) without using the strong correlation
approximation. It follows from Fig. 5 that the squeez-
ing increases with ), achieves the maximum value, and
then decreases down a certain constant value deter-
mined by expressions (6.1) and (6.2). The numerical
calculations of the Fano factor show that the maximum
sgueezing reaches 15% when 2v + 1 < 1, n = (3/2)?,

and a° = 1. This result gives a more exact region of

parameters at which the maximum squeezing is
achieved compared to [6].

7. CLASSICAL AND QUANTUM
CORRELATIONS: THE ENTANGLED STATES
OF AN ATOM AND A FIELD

As mentioned above, the interaction between the
atom and field upon incoherent pumping of the atom
produces a correlated atom—field state. According to
(3.2) and (3.4), the combined stationary density matrix
corresponding to this state has the form

- 1 +
Py = |1Mp, + [2IAp, + —=(0.ap + pa o_), (7.1)
W
where p; is the conditional field density matrices and
p = p; *+ P, is the unconditional density matrix of the
field.
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In the strong interaction limit (n > 1), which corre-
sponds to the neglect of the last term in (7.1), the pro-
duced mixed state exhibits strong atom-field correla-
tions: the ground state of the atom is coupled with the
generalized coherent Mittag—Leffler state with the
parameter v (4.4a), while the excited state of the atom
is coupled with the same field state but with the param-
eter v + 1(4.4b). However, this type of correlations has
aclassical nature because the density matrix of acorre-
lated atom—field system in this case is a mixture of the
factorized states of the atom and field (J10hCand |20h0)
with the corresponding probabilities p,(n) and p,(n).
This type of correlations does not require for its
description the use of a superposition of such factorized
atom-field states. This type of correlations can be
explained within the framework of the theory of corre-
lation of classical random quantities.

In this section, we consider the question about the
possibility of producing nonclassical correlationsin the
system under study, i.e., correlations that manifest the
so-caled entangled states. In our case, these are the
states that include the superpositions of factorized
atom-field states. Unfortunately, the general methods
for analyzing properties of entangled systemsin mixed
states have not been developed so far. For this reason,
we consider here only particular cases for which such
methods have been devel oped.

One of these methods—an analytic calculation of
the degree of entanglement of the states, the entangle-
ment formation entropy E-—was proposed by Wout-
ters as applied to the mixed states of two two-level sys-
tems. According to this method,

Er = —xlog,x—(1—x)log,(1—X). (7.2)

Here, the quantity

(= Lt41-C°

2

is expressed in terms of the so-called concurrency
parameter

CP) = max{O,A\;—A,—A;—A4, (7.3)
where A, are the eigenval ues of the matrix pp arranged

in descending order. The adjoint matrix p is calculated
by the rule

[3 = (Oy U O'y)pEKO'y 0 0-y)v

where o, are spin Pauli operators for particles with the
spin /2.

The quantum system studied here can be repre-
sented as a system of two spins in the case when one
can consider the number of photons that does not
exceed unity. Inthis case, one of the two-level quantum
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systemsis an atom and another system is an intracavity
field with the states |0Cand |10

In the strong correlation approximation, retaining
the last term in (7.1) and using expression (4.4) for the
calculation of the density matrix (7.1), we obtain in the
one-photon limit (weak incoherent pumping) the eigen-
values of the pp matrix:

- _ S-—5;

A= 1+2s’ A2 = 1+ 2s’

[ (7.4)
_ _ A
As = As = 1+2s
where
a’ s a’s
S =

The constants s; and s, are much smaller than the con-
stant s, so that the concurrency parameter is always
negative. Therefore, the quantity Ex for this system is
zero, and the atom—field states are not entangled.

Not using the strong correlation approximation, in
the case of excitation of only one-photon state, we can
estimate the entanglement of the atomic and field sub-
systems from the expression

C=2z-Jz)(l+z+z,+2+2) (75
for the concurrency parameter, where the parameters

5 = p1(1) — naz
LT 00 T 2V FD(n+ v+ 1)’
S = P,(0) _ (Nn+2v+2)z
27 py(0) n ’
_ pAD) _ (n+2v +4)§2
%5700  2v+2)(n+2v+2)
z, = Sp(ap) = =

,\/ﬁ(21+22+23+z4)

were calculated from recurrent expressions (3.7), tak-
ing into account (7.1). According to (7.5), the atomic
and field systems will be in an entangled state if

Nz,

Z
The dependence of C on the strength of the atom—field
interaction and the parameter v within the framework
of thisapproximation is presented in Fig. 6, where con-
dition (7.6) is aso shown. One can see from this figure
that the concurrency parameter increases with increas-
ing interaction n and achieves its maximum value at

Jn =04 and v = —1/2. Figure 7 shows the depen-
dences of the concurrency parameter C and the degree

0. (7.6)
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of entanglement E of the atom—field states on the inco-
herent pump intensity for optimal values of the param-

eters ./n = 0.4 and v = —1/2. One can see that both

C Ep

0.3 T T T T T T T T T 0.3

Fig. 7. Dependence of the concurrency parameter C (solid
curve) and the degree Eg of entanglement (dashed curve) of

the atom—field states on the incoherent pump intensity.
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these dependences achieve the maximum simulta-
neously at a° = 0.33.

8. CONCLUSIONS

We have studied in detail the state of a field pro-
duced by asingle-atom laser in the case of astrong cou-
pling between the atom and field of both quantum
(related to the entangled atom-field states) and classi-
cal (in the absence of these states) nature. Unlike a
usual macroscopic laser, where such a coupling is
absent and the atomic and field states are independent,
the field states in the single-atom laser depend on the
level at which the atomisfound. In the stationary state,
the probability of finding n photons and the atom in the
excited state is equal to the probability of findingn + 1
photons and the atom in the ground state. We have
shown that, in the stationary state, the field states
bel onging to the ground or excited atomic levelsare the
generalized Mittag—L effler states averaged over phase
fluctuations and having loss balance indices v differing
by unity. We have found that the conditional Glauber P
functions corresponding to these states are expressed in
terms of the kernel of the operation of fractional Rie-
mann-Liouville integration (differentiation) of the
order egual to thelossindex or exceeding it by unity. In
the casewhen thisindex iszero (atomic losses are equal
to field losses), the generalized coherent states bel ong-
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ing to the ground atomic state are transformed to a
usual coherent state averaged over phase fluctuations.
This demonstrates that emission produced by a single-
atom laser upon incoherent pumping of the atom is
closeto emission produced by aclassical current with a
stabilized amplitude and a random phase.

The presence of arigid classical correlation between
the atomic and field states also results in inversionless
lasing, which differs from inversionless lasing in three-
level macroscopic systems. When thelossindex is neg-
ative (the rate of field losses exceeds the rate of atomic
losses), the laser emission is described by a nonclassi-
cal sub-Poisson statistics. Another nonclassical feature
of the emission produced by a single-atom laser is a
boundedness of the P function on a segment.

Although the atomfield correlations are classical
for most values of the parameters, at low pump powers
the entangled atom-field states can be generated with
the maximum entanglement formation entropy of about
12%.

Notein conclusion that a strong correlation between
an atom and a cavity field mode considered in this paper
has been achieved in modern experiments with single
atomsin high-Q optical cavities[14, 15]. For example,
in experiments[15] with preliminarily cooled Cs atoms
(the resonance transition corresponds to one of the
components of the 852.4-nm D, line; the dipole decay
rate constant of the 6S,, F =4, mge =4 — 6Py, F =
5, me = 5 transition is y, = 21t x 2.6 MHZ) captured by
a dipole trap tuned far away from the resonance with
the capture time T = 28 ms in a cavity of length | =
44.6 x 10° m and the decay constant k = 21t x 4 MHz,
the interaction constant was g = 21t x 32 MHz, corre-
sponding to astrong correl ation regime with the param-
eter n = 64. Inthiscase, thefrequency of the cavity field
mode almost exactly coincided with the atomic-transi-
tion frequency and the frequency of the probe low-
intensity laser radiation with the average number of

photons n = 0.1.

APPENDIX

Properties of Phase-Independent Distribution
Functions

The statistical properties of a single-mode field
averaged over the atomic states can be conveniently
studied using the s-ordered quasi-probability functions

R9(@) = S[dAF)
g (A1)
x exp(—Aa O+ Al —s|A|%/2),
which are defined as a two-dimensional Fourier trans-
form of the normally ordered field characteristic func-
tion [16]

Fy = Spi(exp(Aa’) exp(-ALa)p).
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Here, the superscript s= 0 correspondsto the P function
of the Glauber distribution, s = 1 corresponds to the
Wigner function W, and s = 2 corresponds to the distri-
bution function Q. For an incoherently pumped single-
atom laser, both the characteristic function and the dis-
tribution function prove to be phase-independent
functions because of the invariance of the master
equation (2.1) with respect to the simultaneous phase
shift of the operators related to the atom and field:
a— aexp(ip), o_ — o_exp(i) [17]. Inthiscase, the
distribution functions Ry(|aJ?) are calculated as a one-
dimensional Bessel transformation of the characteristic
function:

R(S)(|a|2)
= %TJ’dIAIIAIJo(ZIAIIGI)FN(MF) exp(-siA|’/2). (A.2)

In addition, the Wigner function and Q function are
related to the P function by the integral expression

RY(al) = 2epd-ZlalT

. (A3)

 [clBIIB P2 BTl BEP (BN,
0

where |4(X) is amodified Bessel function.

By using the expansion of the phase-independent
characteristic function into a power series over nor-
mally ordered moments

Fu(A?) = z( Sl R )

we can represent the Wigner and Q functions as a sum
of Laguerre polynomials:

00

n
R(S)(|a|2) - 1. (—1) |$+na|j
ML i
=0 (A.5)
dal’s
X exp- s DL”D SO

where Laguerre polynomials are the known orthogonal
polynomials defined by the series [18]

|
ed n—x

Z( )Il(n |)l|l (A-6)

For the P function (s = 0), expansion (A.5) is not
defined. The regularized expansion of the P function
in a series over the Laguerre polynomials was

La(¥) =
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Fig. 8. Approximate distributions of the P function for even and odd Fock states. The curves were calculated using Laguerre poly-
nomials Ly with N =25 (1) and 30 (2); ng = 0 (&), 2 (b), 3 (c), 5 (d).

obtained in [19]. For the phase-independent distribu-
tion, it has the form

P(al) = Zexp[~(€ - 1)laf7]

ZL (&lol )zs,( 009,

where the regularization parameter £ = 1 and p(s) are
the diagonal elements of the density matrix in the Fock
basis.

Another method for regularization of the P function
also exists. Let us make a formal substitution 1 =
exp(—glaP)exp(glaj’) in the integrand in expression
(A.2) for s= 0 and write the expansion

(A7)

( l) &fmamD n—my 2n
————q Al
I(n m)l

eQ\MZFN(l)\|2) — z z

n=0m=0

) (A.9)
0° r dA -

_ n)\2n.
z ”EbAa( ADF "Hql), T
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Assuming that the series (A.8) converges and using the
relation

00

Idw|A|2””J0(2|A||a|)exp(—q|xlz)
0 (A.9)

_ 0 oolaly dalf
= ——ex LA,
g PO g g0

we obtain the required expansion of the P functionin a
series over the Laguerre polynomials and normally
ordered moments [&™"a"[J

0lal, ol D

(A.10)

02 rdal] D
”Qm(—mﬂ "Og D

An example of a phase—lndependent nonclassical

state of thefield isa purely Fock state pg = |ngIlih,|. The
normally ordered moments for this state are
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k- _ B(ng—K)ny!
A e

where 6(x) is the Heaviside function. By substituting
(A.11) into expansion (A.10), we obtain the regul arized
expression for the Glauber function of the Fock state:

(A.11)

Expression (A.12) for ny = O gives, in particular, the
representation of the delta function for the positive
semiaxis of the argument values in the form of a series
over the Laguerre polynomials:

3(lal®) = Y exp(-al)La(lal).  (A13)

Figure 8 shows the plots of approximate distributions
for even and odd Fock states. For even states, the cen-
tral peak of the P function is located in the region of
positive values. As the order n of the Laguerre polyno-
mials appearing in expansion (A.12) increases, the
height of the central peak increases, as well as the
heights of other negative and positive minima of the
distribution function. As the number n, of photons
increases, the distribution function becomes more sin-
gular, the number and intensity of oscillations increase
and their period decreases, and the central peak
becomes more intense than for n, = 0. For odd Fock
states, the central peak of the distribution is located in
the region of negative values. Its intensity increases
with increasing number n, of photons, remaining in the
region of negative values of the P function. In other
aspects, the behavior of the quasi-probability function
for an odd number of photonsis similar to that for an
even number of photons.

Taking into account the expansion of the density
matrix in the Fock basis

P =5 p(nnm

and using expression (A.12), we obtain the relation
between the P function and the photon distribution

p(n):
I - lalt, ol
P(al’) = =3 o) Y e HAEL, M40,
n=o mm:° (A.14)
Sh =S (-9)‘CiCh
2,

By varying the parameter q in expression (A.14), we
can control the convergence of individual parts of the
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series. In addition, by summing the series (A.14) over
other variables, we can represent it in the form (A.7).

Comparison of (A.10) and (A.14) yields the known
relation between moments and the number of photons:

i PR
¥:) a”D-IZm(k_m)!.

Theinverserelation

_ n - m Ea+ma'TD
P) = (D" (D"
can be obtained by representing the Q function for the
phase-independent statesin the form (A.4) as

Q(lal’) = 3 alplal

. - (A.15)
= “exp(-al’) ZO%IGF”-

Comparison of the direct and inverse relations between
the moments and numbers of photons shows that a
series of coefficients p(k) always converges, whereas a
series of moments [a"Ma™Cconverges when a series of
terms k! p(k) converges.
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Abstract—A frequency-degenerate steady-state two-wave interaction on adynamic transmitting phase grating
formed in a cubic crystal of the 4 3m symmetry group with a nonlocal photorefractive response is considered
in the paraxial approximation. The conservation laws for the nonlinear system of equations of coupled waves,
derived for an arbitrary orientation of interaction relative to the crystallographic axes and the polarization of
incident light waves, indicate that the contribution to energy exchange between the interacting waves may come
from fluxes in different directions. The possibility of nonunidirectional energy pumping from one wave to the
other upon a change in their polarization state due to the interaction is demonstrated. For the transverse config-
uration of the interaction and linear polarization of incident waves, explicit analytic expressions for the scalar
amplitudes of the orthogonal components of the light field are derived in the linear approximation in the coef-
ficient of modulation of the interference pattern of light. The possibility of rotation of the polarization planes
of light waveswithout achangein their intensity is demonstrated. For three particular configurations, the depen-
dence of the efficiency of interaction of linearly polarized waves on the reduced length, orientation of the polar-
ization vectors of the incident light waves, and the ratio of their intensities are analyzed. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Dynamic scattering of light by phase inhomogene-
ities formed due to local cubic nonlinearity for a high
power of radiation (of the order of akilowatt per square
centimeter) is observed in many media [1-4]. For low
radiation powers (of the order of amilliwatt per square
centimeter), self-action of light in photorefractive non-
centrosymmetric crystals is clearly manifested. In the
general case, however, the photorefractive response in
such crystals cannot be described by a simple cubic
nonlinearity. Perturbations of dielectric properties of
the medium are induced in this case through the linear
electro-optical effect by the photoinduced field of the
space charge. The relation between this field and the
light intensity can be described by a system of nonlin-
ear congtitutive equations whose structure is deter-
mined by the collection of processes leading to the spa-
tial separation of the electric charge [4-11]. In contrast
to media with local nonlinearity mechanisms, photore-
fractive crystals can exhibit a nonlocal response in the
case of strict frequency degeneracy of two light beams
exchanging energy in this case [4-6, 9-27].

The two-wave interaction on a dynamic phase grat-
ing was considered in [1, 2, 4-6, 9-11] in the approxi-
mation with a preset polarization of light waves. This
can be done for anisotropic photorefractive crystals if
the polarization of the wavesincident on acrystal coin-
cideswith the polarization of one of theintrinsic optical
modes of the medium. In this case, the distance Ak
between the wave surfaces of these modes in the k

space must be sufficient for disregarding the intermode
interaction. For example, in the ferroelectric crystals
LiNbO;, LiTaO;, and BaTiOs, the value of Ak ison the
order of 10* cm™, whichis considerably larger than the
two-wave amplification coefficients ' ~ 10? cm?
attained in such crystal. Hence, the polarization of light
waves in a crystal does not change as a result of inter-
action if the incident waves are polarized along the
ordinary and extraordinary axes. The theory of fre-
guency-degenerate scalar two-wave interaction implies
that the steady-state energy exchange on a nonlocal
phase grating is unidirectional and that the steady-state
energy exchange on alocal phase grating is prohibited;
this was also pointed out in an earlier publication [28].

An analysis of two-wave interaction in cubic photo-
refractive crystals Bi,;,GeO,q, Bi,SiO0,, and Bi,TiO,
proved that the change in the polarization state of light
waves due to gyrotropy and linear birefringence
induced by an external field influences considerably the
effectiveness of energy exchange [12-16, 18-20].
Moreover, the additional transformation of the polar-
ization structure of the light field directly due to self-
diffraction may change the direction of heat exchange
upon an increase in the interaction length or the depen-
dence of this direction on the intensity ratio of the inci-
dent waves[21-27]. Such atransformation removesthe
prohibition on the energy exchange for two-wave inter-
action on alocal photorefractive grating. The reasons of
changein the polarization of light waves directly dueto
self-diffraction are the different efficiencies of two
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Components Hegg, Hey = Hye, and Hyy of the coupling matrix; its eigenvalues py, ,; and angle ¢ between theintrinsic y' axis
and the coordinate axis y for various configurations of the two-wave interaction in cubic crystals of symmetry groups 4 3m

and 23

Configuration Hee Hew = Hue Hum Eigenvalues (0]
longitudinal -1 0 0 py=-1,p,=0 0
x%11 [110], z° 11 [001]
transverse 0 -1 0 Py, =%1 —45°
x°11 [110], ° 11 [110]
diagona 1 2 _ 1 e
X011 [110], 2° 11 [111] 73 0 73 W= PR 0
x°11 [110], 2° 11 [112] 0 _1 /\/2 -1 i—-]:- —62.6°

73 3 PR |

Note: Arrowsindicate the orientation of the coordinate unit vector aong the positive direction of the corresponding crystallographic axis.

intramode processes and the strong intermode interac-
tion. Thelatter isdueto asmall value of Ak which does
not exceed 10 cm. The decreasein the effectiveness of
intermode interaction upon an increase in the interac-
tion length due to Bragg’s detuning equal to Ak is com-
pensated by an increase in the coupling constant y
attaining values of the order of Ak and higher dueto the
application of nonstationary mechanisms of formation
of photorefractive holograms [29, 30].

The natural circular birefringence and the linear
birefringence induced by an external electric field com-
plicate to aconsiderable extent the qualitative pattern of
the vectoria two-wave interaction in crystals of the
23 symmetry, especially for comparable intensities of
light waves, for which the approximation of a preset
field of a high-intensity wave is inapplicable. Self-dif-

fraction in nongyrotropic cubic crystals of the 43m
symmetry (such as GaAs, InP, or CdTe) in zero externa
electric field ismore obvious; in this case, the polariza-
tion state of light waves may change only due to the
interaction. In the particular case of the longitudinal
configuration of the interaction in crystals with such a
symmetry group (see table), the exact solution of the
problem of vectorial self-diffraction of plane mono-
chromatic light waves by a local photorefractive
grating with an amplitude proportional to the modu-
lation coefficient of the light interference pattern was
obtained in [22].

Here, we consider the steady-state vectorial inter-
action of two monochromatic light waves by atrans-
mitting nonlocal photorefractive grating in a cubic

crystal of the 4 3m symmetry of an arbitrary orienta-
tion. Main attention is paid to an analysis of the fea-
tures of energy exchange between the waves, which
are associated with their polarization due to self-dif-
fraction.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

2. MODEL

Figure 1 shows a schematic diagram of symmetric
interaction of two cocurrent light waves, viz., a signa
wave

S = Sexpli(wt —ks[T)]
and areference wave
R = Rexp[i(wt—kg )],
in a cubic nonmagnetic photorefractive crystal of sym-

metry group 43m. Permittivity perturbations Ag;
responsiblefor theinteraction areinduced in the crystal
by the field E. of the space charge through the linear
electro-optical effect. In the case under investigation,
field E. is formed due to spatial separation of charge
carriers excited by the light field of intensity

0 . 0~ ~2
| = Io[ﬂ.+[gexp(|Kz)+c.c.}DD|S+ R|".
0 0

This field exhibits a rapidly oscillating dependence on
the transverse coordinate z along the vector

K =kr—ks (IK[=K)

and a slowly varying dependence on the longitudinal
coordinate x (interaction length) along the normal to the
input face of the crystal. This enables us to set Eg. =

E..z°, where z° = K/K, and represent the permittivity
perturbations in the form

Ag;; r‘4r41 Escij 1)

wherenistherefractiveindex, r,, =rs, = rgzistheonly
nonzero independent electro-optical coefficient for cubic
noncentrosymmetric crystals with symmetry groups
43mand 23, &y is the Levi-Civita symbol, and z; are

the components of the unit vector z° in the crystal-phys-
ics system of coordinates.

= n4r41Esc|5ijk| Z(k) =
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Fig. 1. Symmetric two-wave interaction in a photorefractive crystal.

In the framework of the band theory of solids, the
field Eg. of a space charge is connected with the lumi-
nous intensity | through a system of nonlinear differen-
tial (constitutive) eguations whose structure is deter-
mined by the type and amount of photoactiveimpurities
and trapsin the crystal aswell as by the mechanisms of
transfer of photoexcited charge carriers [4-11]. For
large modul ation coefficients m= 1, the contribution of
higher harmonicsto the spatial dependence[17, 31-39]

m

S

Esc =

S

exp(isKz)

™M
N

becomes significant. However, the effect of higher dif-
fraction orders on the effectiveness of the interaction
between the main beams in thick crystals is weak [1,
34, 38]. In this case, the nonlinearity of processes lead-
ing to spatial separation of electric charges affects the
nonlinear dependence of the amplitude of the funda
mental harmonic on the modulation coefficient, which
can be represented in the steady-state conditions in the
form

00

E, = Eg Z a,m" = Egf(m).
n=1
Here, the effective amplitude E4 and function f(m) are

determined by the band model parameters of the crystal
and external conditions[17, 31, 32, 35, 39]. Inthe gen-
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eral case, amplitude E; = E; —iE; isacomplex quan-
tity, and the photorefractive grating contains the local
(proportional to E; ) aswell asanonlocal (E;') compo-

nent. A local grating isformed during charge separation
due to the drift in a strong constant electric field or due
to thelinear photogal vanic effect [4-11, 31-33]. A non-
local grating is formed due to the diffusion mechanism
of charge separation or due to the drift in an externa
periodic electric field with period T satisfying the con-
ditiontg < T < 14, where tgand 1 are the recombina-
tion and dielectric relaxation times, respectively [7, 9,
29, 35-39]. A nonloca photorefractive response can
also berealized due to the circular photogal vanic effect
[10]. The amplitudes of the local and nonlocal compo-
nents of the fundamental harmonic of the space-charge
field may attain several tens of kilovolts per centimeter
for large modulation coefficientsm= 1. In the case of a
nonlocal response of the crystal, the two-wave amplifi-
cation coefficient in the intensity of a weak light wave
has avalue of the order of 10 cnmr* and higher [4, 9, 15~
25, 27, 29, 37, 38].

We confine our analysis to the steady-state two-
wave interaction in the case of anonlocal photorefrac-
tive response of the crystal, when the effective ampli-
tude is an imaginary quantity, E4 = —E", and function
f(m) has real values for area-valued argument. In this
case, the permittivity perturbation tensor Ag can berep-
resented in the form
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Ae = [—L;E"f(m)exp(iKz)+c.c.}g, )

where the components of tensor g are defined by the

relation g = |9l Z, (see formula (1)). We will use the
paraxia approximation, which isvalid for small angles
between the wave vectors k5 g and the x axis, assuming
that the vector amplitudes of the light waves have only
the y and z components (TE and TM, respectively):

S=5y°+S42°, R =Rey +RyZ’

(see Fig. 1). In these approximations, the equations for
coupled waves describing slow variations of the TE and
TM components of the light field over the interaction
length can easily be derived from the wave equation for

thelight field E = S + R intheform
ds _y

dx Zf(m)(HEERE+ HewRu), ©)
ds, _y

O - 4 MHweRe+ HuwRu), (4)
dR: _ vy
dx _Zf[(m)(HEESE"' HemSu), ©)
dRy _ vy
o = 4T HM(HyeSe + HywSw)- ©6)

Here,

lo

isthe modul ation coefficient of theinterference pattern,
which isexpressed in terms of the amplitudes of the TE
and TM components of the light waves,

_ 2nn3r41E"
- A
is the coupling constant; and
Huw = 220 %°, Hee = YO~

Hem = Hye = yOEQQO;

lo = [Sel” +[Sul” + [Rel” + [Ru[".

In Egs. (3)—(6), we have omitted the terms propor-
tional to the linear absorption coefficient a, which does
not affect the polarization state of interacting waves.
The inclusion of absorption only leads to an identical
(equal to exp(—ax/2)) decreaseinthe TE and TM com-
ponents of the light field.

Equations (3)—7) describe the variation of the
amplitudes of the TE and TM components of the light
field for a steady-state two-wave interaction in cubic

crystals of symmetry 4 3mwith an arbitrary orientation
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in zero external field. Inthe linear approximation in the
modulation coefficient (f(m) =m), these equations coin-
cide with the equations for coupled waves used in [18,
19, 22, 24] in an analysis of the interaction in gyrotro-
pic crystals of symmetry 23, if we omit in the latter
equations the terms describing the natural circular bire-
fringence aswell asthelinear birefringence induced by
the external field.

3. FIRST INTEGRALS OF EQUATIONS
FOR COUPLED WAVES

The system of equations (3)—(6) for coupled waves
obviously hasthe integral

lo = |Scf” +|Sul” +|Rel” + |Ru|® = const,

corresponding to the energy conservation law for the
light field in the case of its redistribution between two
interacting waves in a nonabsorbing photorefractive
crystal.

We can derive a conservation law that makesit pos-
sible to find first integrals that will be used below for
constructing the general solution to the nonlinear sys-
tem of equations (3)—7). This system can be used to
express the spatial derivative of the modulation coeffi-
cient in the form

dm

dx

+ Hym(|Rul* = |Sul®) + 2HeuRe(RERy — SESu) -

The light interference pattern formed at the boundary
x= 0 by incident light waves with different elliptic
polarizations is displaced relative to the interference
pattern formed by linearly polarized incident waves

(Seo, M0 = SEo, mo @d Reg o = REq, mo)- INthe casewhen
the origin on the z axis coincides with one of the max-
imaof theinterference pattern formed in the case of lin-
ear polarization of incident waves, the magnitude of
this displacement is Az = —arg(m,) /K. Assuming that
the problem is unbounded aong the transverse coordi-
nate z, we can consider that the origin on the z axis
always coincides with one of the maxima of the inter-
ference pattern at the boundary x = 0 and treat the quan-
tity my as real-valued (Im(m,) = 0) for an arbitrary
polarization of incident light waves. Then, in view of
real-valuedness of the function f(my) and coefficients
Huwm: Hee, and Hgy, EQ. (8) leads to the conservation
law

f(m)—zl{—O[HEE(|RE|2—|sE|2) o
8

Imm = Im(ScRE + SyR%) = 0, (9)

indicating the absence of bending for the interference
fringes along the interaction length.
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For an arbitrary orientation of the interaction rela-
tive to the crystallophysical axes, all four elements of
the so-called coupling matrix [18, 19, 22]

H = %HMM HME%
UOHpye Hee O

(10)

may differ from zero. These elements are given in the
table for four particular cases. It follows from Egs. (3)—
(6) that the orientation of the polarization vectors of
light wavesin the crystal does not change in the case of
longitudinal configuration and the TE polarization of
incident waves (Sgly= 0= Sz # 0, Rel=0=Reo # 0, Syo =
Ruo = 0). In the approximation linear in the modulation
coefficient (f(m) = m), the energy exchange between
light waves in this configuration is described by the
well-known relationsin the scalar theory [1, 6, 11]. The
solution to Egs. (3) and (5) for the same configuration,
but for the linear polarization of incident waves, which
isoriented arbitrarily in the yz plane, was derived in the
same approximation in [22]. The solution to the com-
plete system of equations (3)—(7) for waves can aso be
obtained in the case of an arbitrary orientation of the
interaction relative to crystallophysical axes. Taking
into account the conservation law (9), we can show that
the equations for four characteristics of the equation in
partial derivatives, which determines first integrals of
Egs. (3)—6), coincide in structure with these equations
if we omit the factor yf(m)/4 = yf(m)*/4. Relations for
these characteristics are linear functions of four arbi-
trary initial conditions and can be solved relative to any
threeinitial conditions. Inverse relations expressing the
initial conditions as functions of the characteristics can
be used as the first three independent integrals of the
dynamic system (3)—(7) (see, for example, [40]). The
general method of determining its independent inte-
gras isinconvenient in view of the cumbersome ana-
Iytic calculations used. However, apreliminary analysis
based on this method predicts the integrability of such
adynamic system in the general case.

In order to find acompact form of thefirst integrals,
we pass from the initially introduced coordinate axesy
and z to new axes; it is convenient to use for such axes
theintrinsic axesy' and Z of matrix H (see Fig. 1). The
angle ¢ between the axesy' and y is given in the table
for particular cases of theinteraction. In the new system
of coordinates, the equations for the y and z compo-
nents of the vector amplitudes

S =8y”+Sz°,

of light wavesinteracting on anonlocal photorefractive
grating form the following system of equations:

R = Ry*"+Rz"

d;y{z _vBSR SR
0

T4 0 lo (11)

vaRY»Z’
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vmw 0,15,

Here, we have taken into account the fact that the mod-
ulation coefficient can be expressed in terms of the new
variables as

_ 2SR +SRY)

lo

are the eigenvalues of matrix H whose values are given
in the table for particular cases of the interaction; and

dX (12)

v Py = Hs+D

Hyw + H
Hy = =Mo—EE D = (Hy+Hie)”
HA — HMM_HEE.

2
Considering that the conservation law (9) in the new
system of coordinates assumes the form
Imm = Im(S,R} +S,R}) = 0,

we can derive from Egs. (11) and (12) for they and z
components the following integrals:

;=§+¥,u=§+@,

|;,I:S,'2+R”2 SZ +R..2

Here, the superscripts denote the real and imaginary
components of the complex amplitudes of the TE and
TM components:

§:=S:%18. R

Integrals |, |; and I/, I, describethe conservation of
the overall energy of thelight field,

I+ 1+ 1+ 10 =1,

(13)

= R)'/,z+iR)'/I,z-

during its redistribution between the light wavesin the
course of self-diffraction, aswell asthe conservation of
parts of this energy,

1 1h) 2
Iy = 1y+1) =[S
= 1+1) =[S +|R}?,

concentrated in the orthogona polarization compo-
nents whose orientation coincides with the orientation
of the eigenvectors of the coupling matrix. In addition,
inthe case of interaction of elliptically polarized waves,
the energy of components turned through angle 172 in
phase relative to each other is also conserved:

"=y,

The existence of the laws of conservation of I, and |, as
well asl'and I" may modify significantly the qualitative

IR/

= Iy -+
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pattern of energy exchange between waves in the case
of vectorial self-diffraction as compared to the case of
scalar self-diffraction with the conservation law

S2+IRZ = 1,

[1, 4-6, 9-11]. In the latter case, the interaction leads
only to unidirectional pumping of energy from one
wave to the other. On the other hand, in the case of vec-
torial sdlf-diffraction, the contribution to energy
exchange may come from two fluxesin different direc-
tions. For example, the energy exchange between the z
components of the light field corresponding to integral
I, may amplify the signal wave and suppress the refer-
ence wave, while the energy exchange between the y
components corresponding to integral |, may suppress
the signal wave and amplify the reference wave. Such a
situation may be realized for the orientation of interac-
tion relative to the axes of the crystal, which corre-
sponds to the eigenvalues p, and p, of the coupling
matrix with opposite signs (see table). This follows
(e.g., for the boundary condition §5 = Sgand Ry = Ry)

from the additional integrals Og g and Og g that can be

obtained from Egs. (11) and (12), respectively, in the
form

Os = p,sgn Ryoarcsm Sy — pysgnRZOarcsm > (14
T 0
RI 1

= pzsgnS'yoarcsm - pysgnSZOarcsm (a5

e T
If we replace the primein the last two expressions by a

double prime, we obtain expressionsfor integrals Ug .

It should be noted that thelatter integralsare directly
connected with transformation of the polarization state
of light waves upon self-diffraction. Another supple-
mentary set of integrals g, 5, and g g, Whichis also
associated with such a transformation, can be obtained
in the form

sgnR|parcsi ni —sgn R'y'oarcsini (16)

—sgnRarcsin—.

"
P

sy

Os,

sgnRgarcsin—= a7

z

If we carry out the simultaneous substitution S — R
and R — Sin these expressions, we obtain expres-
sionsfor integrals Uy g,.

The real-valuedness of coefficients Hyy, Hee, and
Hgy indicates that the polarization of light wavesin the

crystal remainslinear (S = St v, Re v = RE ) inthe
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case of their linear polarization at the boundary x = 0,
changing only its orientation in the general case. This
feature is also characteristic of the two-wave interac-
tion in cubic gyrotropic crystals of the 23 symmetry in
zero external field [24, 26]. The transformation of the
linear polarization of incident light wavesinto the ellip-
tica polarization in photorefractive cubic crystals
becomes possiblein the presence of an external electric
field, when linear birefringence is induced in a crystal
[18-21, 23, 25, 27].

It should be noted that the set of integrals (13)—(17)
is not independent, but any seven integrals from this set
are independent. This makes it possible to uncouple
Egs. (11) and (12) and obtain asolution for the real and
imaginary parts of each scalar amplitude in quadra-
tures, which can be reduced, in some particular cases,
either to transcendental equations or to explicit ana-
Iytic expressions for these components. For example,
the solutions in quadratures for the y and z compo-
nents of the amplitudes of light waves interacting in a
crystal in the approximation linear in the modulation
coefficient,

f[Z(S\,R’; + SZR;*)} _

lo

2(SRI +SR;)

lo

in the case of incidence of linearly polarized waves
(S, = Ry, = 0) can be obtained in the form

I%uyzaw Ly o8

S0, 20

. Py . &
ollzy S
xsm[ Eioy‘ZarcsmA/T’Z (18)
Oy 0 )
+Sgn(RyOZO) SD}E dE pé_lzx,
j%uyz e+ 2 i
RyOzO
xsn[ZEEiiarcsnA/%z (19)
OO
¢Sgn(%o,zo)B_RE}E d¢ = —%%‘X-
Y,z

The solution to Egs. (11) and (12) in this case can be
written in adifferent form if we introduce the auxiliary
functions @, , [22] satisfying the expression [, = py@, —
p.@, using the relations

SHEES (I;,Z)ﬂzcoscpy,Z, R, .= (I;,yz)ﬂzsin(pyyz.
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In some particular cases of two-waveinteraction, we
can rationalize the integrands in formulas (18) and (19)
and obtain an explicit solution for the scalar amplitude.
The simplest of such cases is the linear configuration,
when p, = 0 and p, = -1 [22]. We will derive below the

expressions for amplitudes S, S, Ry, and R; in the
transverse configuration. In view of relation p, = —2p,,
the integrands can be rationalized in the diagonal con-
figuration also, and their integration in the case of an
arbitrary orientation of the polarization vectors of inci-
dent waves and an arbitrary relation between their
intensities leads to transcendental equations in ampli-
tudes S, S;, R}, and R; . Inthe general case, including

thelast configuration from the table, numerical integra-
tion must be used for obtaining the distributions of
these amplitudes over the interaction length or their
dependence at the output of the crystal on the parame-
ters of the waves incident on it (e.g., the orientation of
the polarization vectors or the ratio of their intensities).

4. SELF-DIFFRACTION IN THE CASE
OF TRANSVERSE CONFIGURATION AND
LINEAR POLARIZATION OF INTERACTING
WAVES

In this configuration, in view of relation p, , = 1,
integral Og (or Og) can be transformed as

= §R;+SR,.
Another supplementary integral, whichis convenient to
use instead of integral 1 or |, hastheform
l, = RR;—SS,.
Rationalization of the integrands in formulas (18) and
(19) makesit possible to obtain the amplitudes S, S, ,

Ry, and R; inthe form

sgn(So, zO)’\/TZ

S,
N1+ By )

By.A¥)

J1+B;, )

Here, the functions 3,(x) and B,(x) for 151, # 0 are con-
nected through the relation

By+ Bz
BB, -1

(20)

R),; = son(S), zo)«/Tz

I

4

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

LITVINOV

and have the form

I b2
= h iy—x S 4 1+ %2
By,z(x) tan |: 2|0|'y’z )
: (21)
+ arctanhw} 1+ bL,Z_b%,z’
J1+b} /4 4
where
2 2 !
b = et B, = Rom
’ lsl4 g S0, 20

Formulas (20) and (21) imply that self-diffraction of
light waves by a photorefractive grating in the trans-
verse configuration attains saturation upon an increase

in the reduced length yx when the amplitudes S, S,

R}, and R; becomeindependent of yx, in contrast to the

longitudinal configuration, for which distributions of
the TE and TM components oscillating in yx are also
possible [22]. In the general case, the distributions of

amplitudes S, S,, and R), R; and the intensities of

light waves|g= S'y2 + Sf andlg= R;,z + Rf over yx are
nonmonotonic. The intensity and polarization of light
waves in saturation and the reduced length typical of
this regime are determined by the relation between the
intensities Iy and | g, of the incident waves and by the
orientation of their polarization vectors.

It follows from the arguments put forth in the previ-
ous section that the difference in the signs of the eigen-
values = +1 of the coupling matrix indicates the
possi blllty of the existence of two fluxes in different
directions in the total energy exchange between the
light waves. As for photorefractive crystals of the
23 symmetry, the existence of energy fluxesin different
directions for the two-wave interaction in a crystal of

symmetry 4 3m makes it possible to control the direc-
tion of energy pumping not only by rotating the polar-
ization plane of the waves incident on the crystal [4, 9,
10, 13-20], but also by changing theratio of their inten-
Sities [21-27].

The intensities of light waves do not change upon
self-diffraction if energy fluxes in different directions
compensate each other. This condition holdsin the case
of incidence on a crystal of light waves with the TE or
TM polarization and with the same intensity, when the

equalities I, = 1, =I5 and I, = O hold, and the func-
tions
YXJ 1 2N
By = eXp%_ED’ B, = B_ = eXpDED
y
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are ordinary exponential functions with exponents of
opposite signs. Consequently, the intensities of the
interacting light waves do not change (Is= I = 1/2) for
any magnitude of the reduced length yx. However, their
polarization vectors rotate monotonically upon an
increase in yx, so that

S| = R — 102, [s} = [R] —0

for yx > 1 (|S)/|S] = |R}|/|R] = 0.08 for yx = 5).
Thus, under the saturation conditions, the polarization
vectors of interacting waves are oriented along different
intrinsic axes of matrix H (are mutually orthogonal),
and the amplitude of the photorefractive grating, which
is proportional to the coefficient of modulation of the
interference pattern, is equal to zero.

When light waves with the TE and TM polarization
incident on the crystal have different intensities, energy
fluxes between the interacting waves have different
directions and compensate each other only in the
regime of saturation, when Ig = Iz = 1/2 again. In this
case, the flux directed towards the light wave with a
lower intensity is larger than the opposite flux. Conse-
quently, the wave with a lower intensity is amplified
upon an increase in yX, while the wave with a higher
intensity attenuates. If we turn the sample crysta
through 180° about the x axis (see Fig. 1) or change the
initia ratio By = Ird/lg Of the intensities of incident

waves by the reverse ratio Becong = Bgfa without rotat-
ing the crystal, the weak wave will be amplified all the
same. This is typical of a nonunidirectional energy
exchange in the two-wave interaction on alocal or non-
local photorefractive grating in cubic gyrotropic crys-
tals[21, 23-27]. Figure 2 shows the dependences of the
amplitudes S, S,, and R}, R; andtheintensities|sand
I of the light waves on yx for B = Iy/lg = 0.5. In con-
trast to the previous case, neither of the amplitudes is
equal to zero in saturation; i.e., the polarization vectors
of the light waves do not coincide with the intrinsic
axes of the coupling matrix. The polarization vector of
the signal wave, which rotates upon an increase in yx,
does not reach the position coinciding with the y axis
(the angle between this vector and the y axis is 65 =
—-35.2° for yx = 15). The polarization vector of the ref-
erence wave passes though the position of the Z axis
(6 = 54.7° for yx = 15). However, the angle between
the polarization vectors AB — 90° for yx > 1 asinthe

previous case. In saturation, wehave S, = R; and S, =
—R;. Typicaly, the intensities of the light waves

approach monotonically the value I /2 upon an increase
in yX. Figure 3 shows the dependences of the ampli-

tudes S, S, and Ry, R; and theintensitiesIsand I of
the light waves on yx for the ratio B = Igy/lg = 2, the
polarizations of the signal wave along theintrinsic axis
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Fig. 2. Distribution of (a) scalar amplitudes and (b) intensi-
ties of light waves over the interaction length in the trans-
verse configuration for the TE (or TM) polarization of inci-
dent waves.

Z of the coupling matrix, and the TE polarizations of
the reference wave. In this case, as before, the angle
between the polarization vectors of the light waves
AB — 90° for yx > 1, but this saturation value is
attained upon an increase in yx dightly more sowly
(65=-65.5° and B = 23.9° for yx = 15). In contrast to
the previous case, the polarization vector of the signal
wave, which rotates upon an increase in yx, passes
through the position of the y' axis, while the polariza-
tion vector of the reference wave does not attain the
position of the Z axis. The intensity distribution for
light waves over the interaction length is not mono-
tonic. For yx < 3, thereference waveis amplified, while
the signal wave attenuates; for yx = 3, we have |y = 0.87
and 5= 0.13. For yx > 3, the intensity of the reference
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Fig. 3. Distribution of (a) scalar amplitudes and (b) intensi-
ties of light waves over the interaction length in the trans-
verse configuration for the TE polarization of the incident
reference wave and for the polarization of the signal wave
adong theintrinsic axis Z of the coupling matrix.

wave decreases, while the intensity of the signa wave
increases to saturation values (I, = 0.77 and Ig,, = 0.23).

If the waves incident on the crystal are polarized
dongthey axis, wehavel;=1,=1, =0and I, =1,.If,
however, the waves are polarized along the Z axis, we
havel;=1,=1;, =0and |, =1,. Inboth cases, the orienta-
tion of the polarization vectors does not change, and the
intengity distribution of light waves over yx is described by
the conventiond relations from the scalar theory [1]:

lo lo
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5. ENERGY EXCHANGE FOR DIFFERENT
CONFIGURATIONS OF INTERACTION
AND FOR THE SAME LINEAR POLARIZATION
OF INCIDENT WAVES

It is convenient to use the two-wave amplification
coefficient

- = Lplde

X lglg

as a quantity characterizing the effectiveness of the
overall energy exchange in the case of the two-wave
interaction on a photorefractive grating. In the case
under investigation, this coefficient can be represented
in the form

S *

R, +

I ==In

1
” (22)

In the case of the scalar interaction, coefficient I is
independent of the ratio B = I/l g, Of the intensities of
incident waves and of the interaction length x [1, 4, 6,
9-11].

In the general case, the polarization of light waves
changes as a result of self-diffraction, leading to a
change in the direction of energy exchange upon an
increasein the reduced length yx for aninvariableinten-
sity ratio B of the incident waves [21-27] or depen-
dence ' (3) for yx = const. If one of the inequalities
FB)>0orr(B)<Oisvaidintheinterva B U (0, ),
the direction of the overall energy pumping does not
change, and the energy exchange is unidirectional. If,
however, the values of ' (3) reverse sign upon a varia
tion of B in the given interval, the energy exchange is
not unidirectional. In the same configuration and under
the condition yx > 1, the form of the dependence I' ([3)
is determined to a considerable extent by the orienta-
tion of the polarization vectors of the light waves inci-
dent on the crystal. This is illustrated by the depen-
dences I () shownin Figs. 4a, 4c, and 4e for the trans-
verse and diagonal configurations of the interaction as
well as the last configuration from those given in the

table, respectively, for yx = 10 and various angles 6

between the polarization vectors of the incident waves
and theintrinsic axisy' of matrix H. In turn, the form of
the dependence of the coefficient I on the orientation of
the polarization vectorsis determined by the value of 3.

The dependences of the coefficient I'(0;) for different

values of 3 in the cases listed above are shown in
Figs. 4b, 4d, and 4f. It should be noted that, in the trans-
verse configuration, the dependences I () for a certain

angle 6, and I () for the angle 90°-6;, are symmetric
about the origin of coordinates, while the dependences
I(6p) for a certain intensity ratio ;4 Of the incident
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Fig. 4. Dependences of the two-wave amplification coefficient on the intensity ratio 3 of incident waves and on their polarization
angle 8, for (a, b) transverse, (c, d) diagonal, and (e, f) the last configuration from the table.
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waves and I(90° — 0) for Becong = Bgfg are symmetric
about the abscissa axis. Thisis due to the fact that the
coefficients Hee and Hy,,, determining the effectiveness
of energy exchange between identical polarization
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components of the light waves are equal to zero: Hee =
Hywm = 0 (Hs = 0). For the other two configurations of
the interaction, Hs # 0, and hence the dependences ™ ()

and ' (6, ) do not possess the above symmetries.
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Coefficient I' isindependent of 3 if the polarization
vectors of the incident light waves are oriented either
aong theintrinsic axisy' of matrix H, when " = yp,, or
along theintrinsic axis Z, when I = yp,. Since the non-
unidirectional contribution in this caseisequal to zero,
the effectiveness of the overall energy exchange hasthe
maximal value. For the longitudinal configuration,
Py, . = +1; consequently, the values of the amplification
coefficient for 8, = 0 and 6, = 90° differ only in sign:
I =yand ' = —y. In the diagonal configuration, the
eigenvalues Py, 2 differ in absolute value also; conse-
guently, the change in the angle of polarization of inci-

dent waves from 8;, =0, when T = y/./3, to 8; = 90°,

when I = —2y/./3, not only changes the direction of
overall energy pumping, but also doubles its effective-
ness. In the case of the latter configuration, the differ-

ence between the coefficient ' = 1.1y for 8, = 0 and
I =-0.3yfor 6, = 90° is even stronger. A typical fea

ture of a scalar interaction is that the rotation of the
crystal through 180° about the x axis resultsin the coin-

cidence of thevaluesof " for 8, =0and 6, =90° with

the values of this coefficient for 8, = 90° and 6, =0,
respectively, before this rotation.

When the polarization vectors deviate from the
direction of the intrinsic axes of the coupling matrix,
the coefficient ' becomes a monotonic function of 3
with two asymptotes parallel to the abscissa axis,
whose position on the plots strongly depends on angle
0, . The asymptotic values of this coefficient F'( —
0)=Trand ([ — o) =T gfor identical linear polar-
izations of incident light waves can be obtained with
the help of relations (18) and (19), respectively, in the
form

Msr = Y[H; + cos(26,)D]

0 sin(26,)D
EHZ + c0s(26,)D

+

1, O
)—(Ingl+ (23)

2

X [1— exp[ﬁ—/z—x(Hz + cos(Zeg)D)ﬂ é E;

It should be noted that the coefficient I' obtained on the
basis of the solution to Eq. (11) in the approximation of
a given light field of an intense reference wave (R, =
Ro: R, = Ry) coincides with the coefficient I's =
In(l4lg). Inturn, the coefficient of two-wave amplifica-
tion obtained on the basis of the solution to Eq. (12) in
the approximation of a given light field of an intense
signal wave (S, = S, S, = Sp) isequal to coefficient 'y
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with the opposite sign (In(Ix/lgg)/X = —I'g). Under the
condition

YX[H; + cos(26,) D] > 1,
2
which is satisfied in the cases corresponding to the

monotonic curves in Fig. 4, the asymptotic values sat-
isfy the following approximate relations:

Ms=Y[H; + cos(26,)D],
H; + cos(26,)D|1
sin(26,)D  |X
It is worth noting that, if this condition is satisfied, the
coefficient 'z isindependent of the coupling constant y.
The inequality I's # Mg indicates nonreciprocity of
the amplification of aweak signal wave for B4 —>
and attenuation of a weak reference wave for Becong =
(Bsire)™ — 0. Thisis due to the fact that the contribu-

tion to the intensity of the weak light field, whose vec-
tor amplitude can be obtained in the form

Nk=2In

A = Aoexp[J_ryEX(Hz + cos(zeg)D)}

. __sn(28,)D
“H; + cos(26},) D (24)

- exp| £(H, + cos(265)D) ]
U ]

in the approximation of a preset field of the strong
wave, comes not only from the component proportional
to the vector amplitude A, of the incident wave (Ag - Ag =
[r0), but aso from the orthogonal component propor-
tiona toAL (A -Ap =10, Ag-Ap=0). Theplussignin
front of the coupling constant y in formula (24) corre-
sponds to amplification of aweak signal wave (A = S),
while the minus sign corresponds to attenuation of a
weak reference wave (A = R). It should be noted that
relation (24) is similar in structure to the relations
derived in [21, 23-27] for the vector amplitude of a
weak wave interacting with a strong pumping wave in
a gyrotropic photorefractive crystal of symmetry 23.
The polarization vector of the strong wave is equal to
Ad/|A|; consequently, the orthogonal component of the
weak light field does not affect the interference pattern
with the modulation coefficient

+ 1
m = moexp[inyz co;(zeo) D]
Consequently, it does not produce a reverse effect on
the photorefractive grating whose amplitude is propor-
tional to m. This component appears as aresult of dif-
fraction of astrong wave by this grating (formed by the
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light field components proportional to Ay/|Ag|), whichis
accompanied by the transformation of the polarization
state to the orthogonal state. Such a diffraction aways
amplifies a weak light wave. On the other hand, the
interaction between the light field components propor-
tiona to Ay/|A,| may either amplify or suppress this
component of the weak wave. In the case of amplifica-
tion, the energy fluxes associated with diffraction and
interaction have the same direction, while the direc-
tions of these fluxes in the case of attenuation are dif-
ferent. When the intensities of incident light waves are
leveled out (B — 1), both waves acquire orthogonal
polarization components. In this case, the interference
pattern is formed both due to the interference of the
componentswith theinitial polarization proportional to
A, and due to the interference of the components pro-
portional to A, which also produce the reverse effect
on the photorefractive grating in this case.

For the polarization angle 6, # 0 and 6, # 90°, two

fluxesin different directions, which determine the over-
all effectiveness of energy exchange between the inter-
acting light waves, compensate each other (I' = 0) for a

certain value of 6,, which depends on the intensity

ratio 3 of incident waves, the reduced length yx, and the
orientation of interaction relativeto the crystal axes (see
Figs. 4b, 4d, and 4f). For a smal vaue of yx < 1, the
dependences of the two-wave amplification coefficient on

8, remain virtually unchanged upon the variation of 3:
(0y) = y[H;s + cos(26,) D] .

Inthiscase, I = 0 for 6, = 45° and 6, = 135° in the
case of the transverse configuration, 6, = 35.3° and
0, =144.7° in the case of the diagonal configuration,

and 6, = 62.6° and 6, = 117.4° in the case of the last

configuration from the table. In the general case, an
increase in yx leads to an increase in one of the nonuni-
directional fluxesand adecreasein the other flux. These
fluxes are now compensated for a different angle of
polarization. The only exception is the case of trans-
verse configuration of interaction considered in the pre-

vious section for 8, =+45° and 3 =1, whenT =0 for
any value of yx.

The polarization dependences IM'(8;) indicate that,
for B > 1, the attenuation of a weak light wave as a
result of self-diffraction in al the above cases has a
strong selectivity in angles 6, inthevicinity of 8, = 0.
For the transverse and diagonal configurations, such a
selectivity also exists for B < 1in the vicinity of 6, =
90°. This effect is associated with the existence of a
nonunidirectional energy flux, which always amplifies
a weak wave and increases upon a deviation of the
polarization of incident waves from the directions of
intrinsic axes of matrix H. For B — 1, this flux
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increases for the above deviation at a lower rate, and
selectivity is deteriorated. However, for 3 = 1, in con-
trast to the cases 3 < 1 and 3 > 1, the dependence of

the effectiveness of energy exchange on the angle 6

may have two selective regions. For yx < 1, when the
contribution of nonunidirectional energy exchange is
insignificant, there are no selective regionsin the polar-
ization dependence of coefficient I'.

6. CONCLUSIONS

Thus, we have analyzed the energy exchange and
variations of the polarization state of light waves inter-
acting on a transmitting nonlocal photorefractive grat-

inginacrystal of symmetry 4 3m of an arbitrary orien-
tation. It is shown that contribution to energy exchange
may come from nonunidirectional fluxes emerging asa
result of transformation of the polarization state of light
waves. Exact analytic solutions and the results of
numerical analysis were obtained in the approximation
for the grating amplitude linear in the modulation coef-
ficient m for the case when linearly polarized light
wavesareincident onthecrystal. It should be noted that
the first integrals of the equations for coupled waves
obtained by us areindependent of corrections nonlinear
in m. For this reason, the main qualitative features of
the interaction, which are associated with the mutual
effect of the energy exchange between the light waves
and the change in their polarization state, remain
unchanged after the inclusion of these corrections.

In particular cases of interaction when the polariza-
tion of incident waves coincides with intrinsic axes of
the coupling matrix, the polarization of light wavesin
the crystal does not change, and the energy exchange
between waves is unidirectional. In the genera case,
the light field in the crystal contains polarization com-
ponents orthogonal to the polarization of incident light
waves. These components make a nonunidirectional
contribution to the overall energy exchange, which
aways amplifies a weak light wave. Typicaly, for a
large difference in the intensities of incident waves,
when the light field of a strong wave can be regarded as
preset, the orthogonal polarization component of a
weak wave appears due to anisotropic diffraction by an
inhomogeneous photorefractive grating and does not
produce areciprocal effect on it.

Depending on the orientation of the polarization
vectors of incident light waves and on their intensity
ratio, a unidirectional energy exchange without a
change in the orientation of polarization vectors of the
interacting waves or a nonunidirectional energy
exchange with arotation of polarization vectors can be
realized. In the particular case of transverse configura-
tion of the two-wave interaction with the sameintensity
of the incident waves with the TE or TM polarization,
energy fluxes propagating in different directions com-
pensate each other completely, and the intensities of the
waves in the crystal remain unchanged. Nevertheless,
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their polarization vectors change their orientation upon
an increase in the reduced interaction length yx so that,
for yx > 1, these vectors become orthogonal and ori-
ented along different intrinsic axes of the coupling
matrix. Under this condition, the polarization vectors
for all the configurations of interaction involving a
change in the polarization state of light waves are
orthogonal for an arbitrary intensity ratio of the waves
incident on the crystal. However, in the general case,
the orientation of polarization vectors for yx > 1 does
not coincide with the orientation of theintrinsic axes of
the coupling matrix.
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Abstract—The method of stochastic recurrent relation is used for simulating a random sequence (trajectory)
of the counts of a detector of atomic states at the output of a single-atom micromaser. A random sequence of
the relative frequencies of counts of a detector during a fixed time interval is calculated. The frequencies of
countsvary randomly near the average time-independent level. It is assumed that these average levels are repro-
ducible observables for each random trajectory. A micromaser can jumpwise transfer from one average level of
the relative frequencies of counts to another. It is assumed that a certain subensemble of the states of afield
mode corresponds to each measured average level of the frequencies of counts. A method is proposed for cal-
culating possible average relative frequencies of counts and corresponding (mean) reduced density matrices of
the mode pg. The matrix py characterizes amicromaser during its development along a specified periodic tra-
jectory. It is found by solving the eigenvalue problem for the evolution operator on the period. An analytic
method for solving this problem is developed. The matrix pg isthe solution to the inverse problem of the recon-
struction of the statistics of a field mode from the statistics of a random tragjectory. The procedure of selecting
the parameters of the evolution operator on the period is discussed through anumerical example. © 2002 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

At present, many fundamental concepts of quantum
mechanics can be directly verified and find practical
applications due to a high level of experimental meth-
ods in atomic physics and quantum optics. Thus, the
concept of entangled states of quantum-mechanical
systems is used in rapidly developing scientific fields
such as quantum data processing and quantum calcul a-
tions and communication. The operation of guantum
information and communication systems is based on
guantum measurements in information elementsduring
which the reduction of the state occurs. Individual
atoms or ions captured in traps, as well as single pho-
tons, play therole of cubits. Experimentsin which mea-
surements are performed in a specially prepared indi-
vidual quantum system solve the general theoretical
problems of theinterpretation of fundamental s of quan-
tum mechanics [1].

In this respect, the so-called single-atom microma-
ser offers interesting possibilities [2]. In such a micro-
maser, an individual quantum system—a separated
mode of the microwave cavity—interacts during each
period (and, hence, becomes entangled) with the sec-
ond quantum system—a Rydberg atom, which is
excited to amaser energy level before entering the cav-
ity. At the instant the atom leaves the cavity (and the
systems no longer interact with each other but remain
in the entangled state), a quantum measurement of the
energy of the atom is performed. This measurement
yields indirect information on the state of a quantized

mode at the measurement instant. The measurement
process is repeated during each flight of the atom,
resulting, due to the so-called reverse action of a mea-
suring instrument on an object being measured, in the
unusual dynamics of a field mode. In the literature
devoted to these problems, it is pointed out that such
indirect measurements serve as a main source of infor-
mation on the state of a quantized microwave mode of
the cavity.

The problem concerning the relation between the
statistical properties of amode being generated with the
statistics of successive counts of detectors, which are
selective with respect to the states of escaping atoms,
has been considered in many papers. The authors of
paper [3] performed numerical simulation of the
dynamics of afield mode of amicromaser subjected to
guantum measurements of atomic states. They used the
recurrent Filipowicz relation [2] for calculating the
reduced density matrix (RDM) of the field after each
measurement event. Such a calculation yields the real -
ization of a random process, which represents a
sequence of detector counts and the related RDM
sequence. We will call this simulation technique the
method of stochastic recurrent relation (SRR). The
scheme of calculations was ultimately generalized, the
atoms were incident on a detector at equal time inter-
vals, and the detector had 100% efficiency. The only
random variable used in calculations smulated the
detector operation and showed in which state, the upper
or lower, the atom was detected. The authors of paper
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[3] have obtained important results, which were quali-
tatively confirmed in experimental paper [4]. It was
shown in these papers that, in the steady state at a cer-
tain relation between parameters in the sequence of
detector counts, several (in these papers, two) quasi-
stationary states, which transformed jumpwise to each
other at random moments, were observed. Such a
behavior of a micromaser is explained by a hypothesis
of quantum jumps performed by the micromaser from
one minimum of the effective Filipowicz potential [2]
to another, with close depth. More complicated SRR
calculations were carried out in papers [5, 6], where
random variables were introduced which take into
account the Poisson scatter of the expectation time
between the flights of subsequent atoms and the imper-
fect parameters of detectors. The authors of paper [5]
have obtained and verified experimentally the expres-
sion relating the Mandel parameter Q for the number of
photons of a field mode with a similar parameter for
atoms detected in the ground state. SRRs were used in
papers[6] for simulating measuring schemesincluding
a classical microwave field and allowing the study of
the dynamics of a phase of a quantum mode during
measurements of atomic subsystems.

In a series of papers [7-10], the theory of a micro-
maser taking into account the detection of the atomic
subsystem was developed based on the time “coarse-
grain” differential master equation obtained in paper
[7]. In paper [8], anonlinear master equation was found
which describes the dynamics of a field mode in the
time interval between successive detector counts. In
paper [9], alinear master equation was obtained for a
not normalized conditional RDM, and in paper [10] a
propagator was derived for the corresponding suben-
semble. In papers [8-10], basic concepts of a new
field—the statistics of atomic counts—were formu-
lated, which allow oneto relate the statistical properties
of the sequence of counts of a detector selective with
respect to atomic states with the statistical properties of
a field mode. In these papers, the expressions were
obtained for the joint probability of detecting k atomsin
the ground state and m atoms in the excited state during
a fixed observation interval. By using these expres-
sions, the authors found the Mandel parameter Q for
atomsin acertain energy state, expressions for correla-
tion and cross-correlation functions for detector counts
separated by a fixed time interval (irrespective of the
states of atoms detected during the chosen time inter-
val), and expressions for the probability density of the
expectation time between two successive counts. These
papers confirm the results obtained in paper [5] and
present general expressions describing the relation
between two-atomic correlation functions with two-
time correlation functions of the intensity of the micro-
maser field (for equal time intervals).

The concepts of papers [8-10] were generalized in
subsequent papers[11-15]. Thus, the authors of papers
[11, 12] studied the effect of the non-Poisson pumping
of a micromaser on the state-selective statistics of
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atoms leaving a detector. The consideration of the non-
Poisson statistics required the use of the theory of sto-
chastic point processes for the description of the statis-
tics of the arrival times of the pump atoms. The authors
of paper [13], where studies [6] were developed,
obtained expressions relating the statistics of atomic
counts with the temporal evolution of the intracavity
field phase. By using a linear master equation, the
authors of paper [14] obtained new expressions for the
dtatistical parameters of atomic counts (in particular,
they determined the probability of n detector countsfor
a specified sequence of the counts). The validity of the
expressions was verified by solving numerically the
master equation. In paper [15], the first attempt was
made to determine the spectrum of a micromaser in the
state belonging to a subensemble, when the RDM was
devel oped between the subsequent detector counts. The
calculation was performed assuming that the detector
efficiency was low.

We devel oped in this paper an aternative method for
measuring statistical parameters of the micromaser
field using the statistical processing of the counts of a
detector of atomic states. The method is based on the
Von Neumann quantum theory of measurements [16].
A quantum measurement event results in the selection
of a certain quantum-mechanical subensemble of the
field-mode states. The separation into subensemblesis
determined by a detector and depends on its parame-
ters. Information obtained in the measurement event
can be used for a more detailed study of a field-mode
state at different instants of time. Thus, according to
papers|[3, 4], one can determine in which of the minima
of the Filipowicz potential [2] a quantum mode is
located at the observation moment and study the char-
acteristics of a quantum jump of the mode to a compet-
ing minimum. Our method is based on the fact that dur-
ing the residing time of the mode in a certain potential
minimum, the average statistical characteristics of the
sequence of detector counts havetimeto be established.
We can separate a subensembl e of the field-mode states
and find the average stationary RDM of the subensem-
ble by measuring the average relative frequency of
counts of the selective detector. We assume that, to find
the average RDM of the subensemble, we can use,
instead of arandom sequence of (trajectory) of detector
counts, a periodic trgjectory providing the measured
average relative frequency of counts. Such a substitu-
tion, as shown in this paper, is possible because of a
weak dependence of the SRR solutions on the order of
the sequence of detector counts. In other words, ran-
dom successive counts can be interchanged within
some limitsto replace arandom trajectory by aperiodic
trajectory. We developed in Section 4 an analytic
method for calculating a stationary RDM pg for a peri-
odic sequence. In fact, the method solves an inverse
problem of reconstructing the RDM pg of a subensem-
ble of field states from statistical characteristics of the
sequence of counts. By using pg, We can calculate var-
ious average statistical characteristics of the field mode
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and atomic beam acting during a specified time inter-
val. In the papers mentioned above, this problem was
solved with the help of asteady field RDM p, which
was obtained without indirect measurements (p® is
exactly defined in Section 3). However, the statistical
characteristics obtained with the hel p of p( can be cor-
rect if they are observed during large time intervals,
when the micromaser has been in al its quasi-station-
ary states many times. The method we developed
allows us to study the statistical properties of a field
mode in more detail. If the micromaser has one station-
ary state, whereas other states are unlikely, then, as
shown in this paper, the cal cul ations performed with the
help of these two matrices yield the same resullts.

2. MODEL OF A SINGLE-ATOM MICROMASER

The model of asingle-atom micromaser is based on
the Jaynes-Cummings Hamiltonian H [17] and was
developed in paper [2]. The Hamiltonian has the form

H= wa'a+w,S+g(a’S +aS.).

Here, S., S, and S are the operators of the group
SU@)

5, = BZOM s omy, s, = pm,

satisfying the common commutation relations; 4" and

a arethe Bose operators of creation and annihilation of
the field-mode photons; wisthe frequency of the quan-
tum mode of the cavity; wy, isthe atomic transition fre-
guency; g is the parameter of the atom-field interac-
tion; |0Cand |1Care the ground and excited atomic states
of the maser levels; and # = 1. Below, we consider the
case of W= wy.

According to the Filipowicz theory [2], a microma-
ser operates cyclically, its operation period consisting
of thetime 1 of interaction of an atom with a quantized
mode of the cavity and of thetime T (T > 1) of field
relaxation to the Planck distribution. Let us describe
analytically the development of the RDM of a quantum
mode during aperiod [2]. We assume that all the atoms
flying into a cavity are prepared in the excited state. Let
0, betheinitial density matrix of an atom. Then, before
the escape of an atom from the cavity after the termina-
tion of the interaction of the mode, the RDM p(t) is
described by the expression

P(1) = Spa[exp(—iHT)p(0) U o exp(iHT)].

Here, Sp,; is the trace of the matrix over atomic states.
For theinitial conditions chosen, asfollows from paper
[18], each RDM diagona develops independently.
Consider the dynamics of the principal diagonal of the
field RDM—the probability distribution law of the
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number n of photonsinthe Fock basis. Thisrelation has
the following matrix form:

Po(T) = cos’(gT./n + 1)p,(0) + sin*(gT+/N)p,_1(0),
p() = 3 po(t) N,

After the escape of an atom from the cavity, the princi-
pal diagonal of the field RDM develops as

dpa(H)

30 = y(nb+ 1)[(n+ 1)pn+l(t)_npn(t)]

+ynp[npn_y(t) — (n+ 1)py(0)] .-

Here, yisthe relaxation rate of the field; n, is the aver-
age Planck number of photons in the cavity. We retain

the notation 2" and & for creation and annihilation
operators, respectively, which now act on the Fock pro-

jector |nln| according to the rules
a'lnd = J/n+1jn+10R+1],

ajnm = /njn—10m-1.

Then, the principal diagonal of the field RDM after the
termination of the cycle of duration T can be repre-
sented with the help of the evolution operator (by
neglecting the field relaxation during a short interval T
of interaction) in the form

p(T) = W(T)(QO0+ Q1)p(0).
Here,
W(T) = exp(TyL),
L = —(2n,+1)a"a—n, (1)

+(ny + 1)&/ﬁ+ nbé+Jé_éF,
Jata+1)

QO = é+sin(gT
a

Q1 = cos’(gT4/a‘a+1). (3)

The above equation describes the principal diagonal of
the field RDM for afull ensemble of quantum states of
the mode, without performing an indirect quantum
measurement.

To simulate the process of measurements of the
states of escaping atoms, we divide the full ensemble
into three subensembles and introduce a random vari-
able &, which satisfiesthe condition & = 0 if the detector
found an atom in the lower state, & = 1 if an atom was
found inthe upper state, and & = 2 if the detector did not
produce any count because its efficiency is less than
unity. Let us neglect the duration of the measuring pro-
cedure and assume that the measurement is performed
at the moment of the atom escape from the cavity. We

)
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Fig. 1. Experimental results from paper [4].

denote by p(l) the vector of the principal diagonal of the
RDM at the beginning of the Ith cycle, which satisfies
the normalization condition

Spp() = 5 pill) = L. (4)
n=0

Here, Sp isthetrace over the field states. L et us denote
by S&, T) the evolution operator of the principal diag-
onal of the RDM p(I) for a subensemble corresponding
to the value of the variable € found at the Ith cyclean to
the cycle duration T. We have

SE T) = W(T)D(?),
D(0) = &Q0, D(1) = &,Q1, ©)
D(2) = (1-£,)Q0+ (1-¢,)QL.

Here, €, and g, are the efficiencies of detecting atomsin
the upper (lower) states, respectively. It is obvious that
S¢, T) satisfies the condition (division of the total
ensemble into three subensembles)

SO, T)+S(1, T) +52,T) = WT)(QO+Q1).

The vector of the principal RDM diagonal, found in the
previous cycle, is an initial vector for the subsequent
cycle. After each measurement event, thisvector should
be renormalized. Taking the above considerations into
account, we obtain a nonlinear SRR describing the
dynamics of the principal diagonal of the RDM during
an indirect quantum measurement:

&L Ned)
SpS(E Te(l)

Here, the symbol &, denotes the value of arandom vari-
able & detected in the Ith cycle. Below, we will call the
dependence of the random variable & on the number &,
of the operating cycle of the micromaser a tragjectory.
Let us denote the probability of finding atom in the
lower state in the Ith cycle by a detector as

a, = SpD(0)p(l) (7)

p(l+1) = (6)
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and, similarly, for the upper state as
a; = SpD(D)p(l). ()

These probabilities are equal to the product of the cor-
responding efficiencies g, and €, of the detector and the
guantum-mechanical probabilities of findinganatomin
the upper or lower states, which are calculated from
SpQOp(1) and SpQ1p(l), respectively. The probabilities
8, and a, are used to generate a random variable & in
each cycle.

3. BASIC PROPERTIES OF THE STOCHASTIC
EVOLUTION OF THE FIELD RDM
DURING MEASUREMENT OF AN ATOMIC
STATE AT THE MICROMASER OUTPUT

In experiments [4], a random sequence of detector
counts was measured which showed in which state an
atom was found. The randomness of this sequence is
caused by a number of reasons. An atomic beam has a
Poisson statistics of the expectationtime T of atoms|[2]:

P(T) = Rexp(-RT). 9)

Here, R is the injection rate of atoms and P(T) is the
probability density of the expectation time. A detector
which does not measure some atoms dueto its low effi-
ciency also has random properties. The results of mea-
surements—atoms escaping from the cavity in the
upper or lower state—are distributed randomly. The
authors of paper [4] studied the statistics of counts
selective with respect to atomic states and presented the
plots of the relative frequencies of counts of a detector
finding the atom in the upper (p,) or lower (py) states
during the observation interval At,, = 0.1 s. Figure 1
shows the corresponding results obtained in paper [4].
These quantities are

_ k

pO - Atav R’ (10)
_m

pl - Atav R (11)

Here, k isthe number of atoms found in the lower state,
mis the number of atoms found in the upper state from
the total number At,, R of atoms that have flown during
the time interval At,,. The frequencies of counts were
determined by sampling approximately 300 flying
atoms by directly counting the number of favorable
events. The experiment was performed for gt = 0.92,

o = Ry =200, and R = 3300 s™. The data were
obtained with a detector having the efficiency €, = 5 =
0.35. The dependence was measured after the establish-
ment of afield in the cavity, and therefore it is typical
for astationary state of a micromaser subjected to mea-
surements. A characteristic feature of arandom realiza-
tion in a micromaser under stationary conditionsis the
existence of several (two, asin paper [4]) averagerela
tive frequencies of counts of the detector finding atoms
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Fig. 2. The relative frequency of counts of a detector for
atoms found in the ground states. The expectation times are
random and are described by a Poisson distribution; (1) rel-

ative frequency of counts p, for atomsin the ground state
obtained in the interval At,, = 284At; (2) solid straight hor-
izontal line is the average level p, of the frequency of
counts. On the abscissa, the time t, = t/At is plotted in units

of the elementary interval At = 1/4R. The parameters of cal-
culation are presented in the text.

in the upper (p;) and lower (p,) States. The average

relative frequencies of counts are retained during
noticeabletimeintervals (for tens of seconds, inFig. 1).
For brevity, we will call each such interval the time ty
of residence in a certain stationary state. The relative
frequencies of counts p, (10) and p; (11) are random
functions, and they vary randomly near their average
values p, and p, during the residence time. Sharp

(quantum, according to thetitle of paper [4]) jumps can
occur between average levels. The average number of
photons in the mode drastically changes during the
jump (in paper [4], approximately from 70 to 149 and
vice versa). The moment of a jump itself is unpredict-
able, and its nature and dynamics have not been stud-
ied.

To simulate the RDM dynamics in the presence of
measurements during each operation cycle of a micro-
maser, it is necessary to generate random variables sim-
ulating the Poisson nature of an incoming beam (vari-
able T) and random results of the detector operation
(variable &). The vector p(l + 1) can be calculated from
expression (6), where T is the expectation time found
for thelth cycle. Theresults of simulation are presented
inFig. 2, where on the abscissathetimet, = t/At isplot-
ted in relative units, scaled to the elementary time inter-
val At. The number of intervals At between adjacent
atoms is random and is generated with the help of the
distribution

P(s) = RAt(1-RAt*™, s=1,2,..., (12
which is close to a Poisson distribution. Here, P(s) is
the probability of expectation of s elementary intervals
between adjacent atoms or of time T = sAt. Theinterval
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Fig. 3. The relative frequency of counts of a detector for
atoms found in the ground state. Simulation is performed
with the help of the evolution operator Wg averaged over

the Poisson distribution of the expectation times. The
average time interval between adjacent atoms is chosen
to be 1/R = 4At. The notation and cal culation parameters
areasin Fig. 2.

At is a parameter of the distribution, its choice being
restricted, according to [9], by the condition

T<<At
providing single-atom processes.
The plotsin Figs. 2 and 3 were calculated for At =
1/4R. For the experiment [4] At = 10~ s, therefore, the

plots presented in Figs. 2 and 3 correspond approximately
to micromaser operation for 5 s. It is obvious that

P(s)

At A0-0
where P(T) is defined by expression (9). Curve 1 in
Fig. 2 represents the dependence of the relative fre-
guency of counts p, (10), obtained during the time

intervals At,, = No/R = y2, on thetimet,. The interval
At,,, asin paper [4], isdetermined by thelifetimey™ of
the field mode. Solid straight line 2 in Fig. 2 shows the
average steady level of the frequency of counts p,

obtained by averaging curve 1 in time. The following
parameters were used in calculations:

a—o P(T),

Ng = 71, At,, = 284At, n, = 0.1,
1 1 (13
gt = 092, g =¢ = 3 At = T=3

The plots presented in Fig. 2 were obtained using
expression (6), when the stochasticity was produced by
random variables T and €. Curve 1 is a theoretica
model [with parameters (13)] of an experimental curve.
Let us show that a random dependence with the same
statistical properties can be obtained by a simpler sim-
ulation. For this purpose, we average SRR (6) over the
ensemble of expectation times (12), using the method
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proposed in paper [2]. The averaged expressions have
theform

RAtexp(RAtL/N,)

W A raepraiLN,) 0
&) = WD), &€=01,2, (15)
_ SE)e()
P = ssiely (9
Here, | isthe unit operator. In the limit
Wy We = -2l (1)

ex

we obtain the result of Filipowicz [2] for the averaged
evolution operator W in the relaxation process. Figure 3
shows the results of calculation performed with the
same parameters (13) but using expressions (14)—(16).
The SRR (16) describes the dynamics of a micromaser
under the action of a periodic atomic beam with the
time interval between the atoms equal to /R. Compar-
ison of Figs. 2 and 3 shows that the random depen-
dences of p, on time (curves 1) are close in both these

figures, i.e, their average levels p, coincide and the
average values of their dispersions are also close to
each other (which was verified by direct calculations).
Thisisexplained by asufficiently large averaging inter-
val At,,, resulting in the smoothing of curve 1in Fig. 2.
This comparison allows one to study the model by
using expressions (14)—(16) without generation of the
Poisson variable T, which simplifies the analysis. The
steady RDM p mentioned in the Introduction, which
is obtained without quantum measurements, satisfies,
in our notation, the equation

P = We(Q0+Q1)p™. (18)

4. PROPERTIES OF EVOLUTION OPERATORS
S&) AND THEIR PRODUCTS:
THE PERIODIC TRAJECTORIES

Asfollowsfrom experiments and numerical simula-
tions, the average rel ative frequencies of counts p, and

p, of an atomic-state-sel ective detector are maintained
in amicromaser during the residence time tg. The val-
ues of these rates are determined by the law of alterna-
tion of the counting sequence. It is obvious that the
same average relative frequency of counts can be
obtained at many trajectories, the periodic trajectories
being the simplest among them. We denote by {§;, 1 <
j <L} aset of valuestaken by arandom variable & over
the period L. Consider the features of the micromaser
dynamics by choosing the period operator

SL = ()

{g.1<j<y
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as an evolution operator. The vector of the principa
diagonal of the RDM is determined at the end of each
period. A nonlinear dynamic recurrent relation describ-
ing the evolution of the micromaser over aperiodic tra-
jectory has, similarly to (16), the form

SLp(p)
SpSLp(p)

Here, p is the period number. Unlike (16), Eqg. (19)
describes the evolution along a specified trajectory. All
the operators S have eigenvalues that are smaller than
unity, so that the trace is not conserved [in contrast to
the operator in the recurrent relation (18)]. Neverthe-
less, due to its nonlinearity, relation (19) has a station-
ary solution. Let us obtain the general solution to (19)
by the Fourier method. For this purpose, we expand the
initial vector p(0) in the eigenvectors of the operator
S

p(p+1) = (19)

p(0) = zcxpx- (20)
)

Here, ¢, arethe expansion coefficients, and p, and A are
the eigenvector and the eigenval ue of the operator S:

SLp, = Ap,. (21)
Let us denote the maximum eigenvalue in expansion

(20) by A and obtain the solution of (19) on the period
p in the form

= |o- AR\ 1 ﬂd‘_ﬂp}_l_ 22
p(p) [pﬁ ZCXE}"\D DAM :ZXC;EXD (22

AZA

In the limit, we have
P(P) 5= P5-

It follows from (22) that any eigenvector entering the
expansion on the initial state and having the largest
eigenvalue can be a stationary vector of Eq. (19). Asa
rule, the initial vector (20) has a nonzero projection on
the eigenvector with the maximum possible eigenvalue
Amax Of the operator SL. It isreasonableto treat thisvec-
tor as the ground stationary state py for a periodic tra-
jectory (this state was mentioned in the Introduction)

Pst = p)\max' (23)

L et uselucidate the meaning of the eigenvalue of the
period operator S (21). For this purpose, we rewrite
Eq. (19) for any stationary vector p in the form

SLp
SpSLp
and compare it with (21). One can see that the eigen-
value of the eigenvector normalized according to (4) is

A = SpSLp. (25)

0= (24)
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But the quantity SpSLp is equa to the conditional
probability of finding L atoms by a detector in the states
where arandom variable & takesvaluesfromthe set { §;,
1< <L} (under the condition that the initial state of
the field was p). Let us call for brevity the quantity A =
SpSLp the probability of aperiodic trajectory of period
L. Therefore, the eigenvalue problem (21) for the product
of operators (&) becomes especially important becauseits
solutions give discrete (quantized) probability levels
SpS_p =A and possible sationary statesof thefieddp =p,
for a periodic trgjectory. The dationary states py (23)
determine the probabilities of detecting an atom in the
lower (7) or upper (8) states at the end of each period

3 = SpD(0)ps, (26)
a; = SpD(1)pg- (27)
These probabilities satisfy the exact relation
8 8 _ g 28)
€& &

The average relative frequencies of counts p, and p,

of adetector for a periodic trajectory can be calculated
by averaging over thetrgjectory periodL =k + m+r:
(29)

P, =

Po =

rix i3

(30)

Here, kisthe number of atomsin the lower state and m
is the number of atomsin the upper state detected over
the period L. The detector did not find r atoms over the
period.

In paper [8], an important property of ergodicity of
arandom sequence of detector counts was proved (for-
mula (2.36) in[8]). In our notation, thisrelation hasthe
form

Po = SpD(0)p™™.

Here, po isthe average relative frequency of counts for
the lower state of atoms found for an infinite averaging
interval. This property is inherent in the steady RDM
P (18). Let usshow that the ground stationary state py
(23), which istypical for amicromaser evolving along
aspecified periodic trgjectory, gives close valuesfor the
probabilities (26), (27) and frequencies (29), (30). For

(31)

839

this purpose, the parameters k, m, r, €, and g, of the
problem should be related by the expression

PoyPr_ Kk 1, m 1_,4 (32)
€& €& k+rm+regg k+m+treg,g

whichissimilar to equality (28).
Let us solve the eigenvalue problem (21) for the
period operator

SL = S(0)S"(1)S(2) (33)

and find the eigenvectors p, and the ground stationary
state py (23). The operators S&) are defined in (15);
analysis is performed for the limiting case At —= 0
(17). To solve this problem, we will use the lineariza-
tion method. L et us perform the orthogonal transforma-

tion of displacement of operators & and & in expres-

sions (1)—3), (15), and (17),
a’—a +pt, a—a+y,

where u* and 4 are numbers, and linearize the operator

9. (33), by retaining in it the terms that are linear and

quadratic in &", &. The region of applicability of the

linearization method is limited by the condition

gr<l; (34)

the Filipowicz parameter © = gt /N, can be arbitrary,
but N, > 1. Asfollows from numerical calculations, the
formulas of thelinearization method can also be used at
larger values of gt than (34). Therefore, the estimate
(34) israther rough. Let us choose numbers u* and 1 so

that the termsin SL that are linear over 3" and & van-
ish. Let usintroduce the notation

&) = Ek»(1+sinz(efv))28
0

(1+v)°

y gsinz(efv)[v(sl—eo) +g,—1] +v(2—g, —g) +1—g,

s
and obtain the expressions
X = E— (35)
F(v) = (Sn°(84V) —=X) [V(gp—£1) + 1—¢j]
+(SiN'(OMV) -X){VIXEo—E) ~ 1+ &8 (g5
+(1-&)[x(2~¢&) - 1]}
+(1-g)(1-£)(1-X)(V=X),
k m
O O1-sn*(@/) O
Bg  1+v s%
(37)

r

0 (1+v)?
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Expressions (36) and (37) have been obtained by per-
forming simple but cumbersome algebraic transforma-
tions, so that their derivation is not presented here. We
present simplified expressions for the functions F(v)
and G(v), which are valid for small n, < 1 and large
0> 1

The zeroes of the function F(v) determine the value
of the parameter v at which thetermsin SL that arelin-

ear over 4" and & vanish. The function F(v) has a set
of zeroes. Each of the zeroes corresponds to a series of
amost equidistant eigenvalues, the distance between
them being dependent on the series number. Each of the
series has the ground-state eigenvector. This vector is
localized in the Fock state, the paosition of its maximum
is determined by the position of the corresponding zero
of the function F(v), and the corresponding eigenvalue
is determined by the value of the function G(v) at the
zero chosen. ThefunctionsF(v) and G(v) are character-
ized by an important relation; positions of the maxima
of the function G(v) coincide with zeroes of the func-
tion F(v). Analysis of quadratic terms shows that the
vectors located in the so-called capture zones [18]
prove to be stable. The positions of these zones on the
axis of numbersv is specified by the double inequality

2 2
(Tl + 2q7 <V<g_'[2+2q]
b o O~

%o 0 q=01,....

(38)
Here, the integer q is the number of the capture zone.
Note that the functions F(v) and G(v) are independent
of the order of sequence of factorsin the period opera-
tor SL (33) and determine the properties of abeam con-
sisting of (r + m+ K)!/r!m!k! periodic trajectories of the
same period L. The coefficients of the quadratic form

over operators & and & depend on the interchange of
the factors. Of most interest isa stable state pg (23) cor-
responding to the maximum eigenvalue. When the
parameters of the operator SL (33) are related by
expression (32), the ground stateislocalized in the cap-
ture zone (38) in the interval 0 < v < 1. An important
property of capture zones is that their position (38) is
independent of the numbersk, m, and r and the detector
efficiency.

Consider asimplified case of coinciding efficiencies
of the detector:

€ = & = E.

Expressions (32), (35)—37) are simplified and take the
form

_ k+m

T k+m+r’ (39)
_Po_ Kk
X~ % T k+m (40)
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F(v) = (Sn°(04V) =X)"+ (Sn*(©V) =X) 49y
X [X(2-£) = 1=V + D] + (1-£)(1-X)(v =X);

v(1+ sinz(efv”z}k

G(V) = |: (1+V)2

5 [1— sin“(@ﬁ)}’“ (42)

1+v

2 (@) 4, sz@m}rem(l—e)’.
(1+v)

Let us derive the known result of Filipowicz from
expression (41). Todo this,wesetk=0,m=0,x Z0in
(41). Then, we obtain from the condition F(v) = O the
equation

SN’ (0.4v) = v, (43)

which determines the positions of minima of the effec-
tive Filipowicz potential. This result becomes clear if
we note that, for k=0, m=0, and X # 0, the evolution
operator SL (33) becomes a multiple of the operator
W-(QO + Q1) (18). The vector p™ isthe eigenvector of
thisoperator, with the eigenvalue equal to 1. Itisfor this
operator that the result (43) was obtained in paper [2].

To justify relation (32) chosen above, note that in

this casethe equation F(v) = 0 always hastheroot v sat-
isfying two approximate conditions

S (O/V)=x, v=X. (44)

It isthe required root, which determines the stable state
P4 corresponding to the maximum eigenvalue of the
operator SL.. The meaning of approximate equalities
(44) is as follows. Because the ground state represents
a strongly localized vector, then, according to expres-
sions (26), (2), and (5), we have in the linearization
approximation

8, = SpD(0)py = £SiN’(O/V).

Then, according to (40), we obtain the relation between
the probabilities a, (26), a, (27) of the detector count
(at the end of each period) and the average relative fre-
guencies of counts p, (29), p, (30) of the detector
[analogue of equality (31)]

Po=ay P1=ay. (46)

The second approximate equality (44) determines the
position of the maximum probability of photon num-
bers for the ground state py as a function of the Fock
number n:

(45)

(47)
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The ratio a,/¢ is the quantum-mechanical probability
of finding an atom in the lower state at the end of each
period of a periodic trajectory.

Let usfind the values of the parameter © for which
approximate equalities (44) are replaced by exact ones.
For this purpose, werewrite the equation F(v) = 0inthe
form that is similar to the Filipowicz egquation (43):

SN’ (©./v) = SN(v),

SN(v) = %{v(s +1D)+1+xe

V(e + 1) + 1+ xe]2—4[v(L—¢ + 2ex) +x] }.

By substituting SN(v) into expression (42), we obtain
the equation for the envel ope V(v) of the maxima of the
function G(v). We do not present here the expression
for the function V(v) becauseit istoo cumbersome. The
plot of this function is shown in Fig. 4. One can see
from Fig. 4 that the function V(v) has one maximum at
the value of v for which two exact equalities

vV =X, SN() =X (49)
are satisfied. For the values of the parameter
o= AENXHT i _ o, 4

JX

expressions (48) give an exact value of the argument v
at which the maximum of the envel ope coincides with
the main maximum of the function G(v). By substitut-
ing (48) and (49) into G(v) (42), we obtain the maxi-
mum value of the function G(v)—the maximum eigen-
value of the period operator (33) or the maximum prob-
ability of aperiodic trgjectory with periodL =k+m+r:
L-k-m

Amax = G = PoP1 (1= Po— P) (50)
Here, p, and p,; are determined by expressions (29)
and (30). By multiplying (50) by the statistical weight,
we obtain the expression for the total probability of the
beam of trajectories with period L:
Prob(k, m, L) = popy(1—Po—py) "
y LI (51)
Kml(L—k—-m)!’

which represents a two-dimensional binomial distribu-
tion. Thisexpression generalizes[if approximate equal-
ity (46) is used] expression (3) from paper [5] to the
case of an imperfect detector. In paper [5], an expres-
sion similar to (51) was obtained under the condition
that the field mode is found in the state p®. Here,
expression (51) is obtained for a periodic tragjectory
when the field mode isin the state py (23).
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Fig. 4. Function G(v) and the envelope V(v) for parameters
k=1, m=1,x=05: (1) V(v) forr=0,e=1; (2) G(v) for
r=0,e=1; (3) G(v) x10forr =2, £ =0.5; (4) G(v) x 10?
for r = 20, £ = 0.091; (5) cos?(® /v )/10 is plotted to show
capture zones. Other calculation parametersare asin Fig. 2.

5. DISCUSSION

As follows from experiments [4], a sequence of
detector counts—the tragjectory &—is a random func-
tion of the number | of the flown atom. By using statis-
tical processing, one can obtain the relative frequencies
of finding an atom in the upper (lower) state, aswell as
the relative frequency of transmission of an atom by an
operating detector at a specified interval of time (count-
ing statistics). In the experimental paper [4], these
quantities were calculated in each interval At,, aong a
random trgjectory. It was found that random realiza-
tions had a characteristic property: under stationary
conditions, the frequencies of counts p, and p, of the
detector averaged over the residence time ty, which
indicate the detection of the upper or lower atomic
state, no longer depended on time.

The aim of this work was to solve the inverse prob-
lem, namely, using the average relative frequencies of
counts p, and p, measured in experimentsin the spec-
ified time interval to derive and solve the dynamic
(rather than stochastic) equation for thefield RDM. Itis
obvious that this evolution equation will be dynamic if
thetrajectory of detector countsis specified (fixed). For
this purpose, we used a periodic trgjectory in this paper.
We showed in Section 3 how the randomness related to
the Poisson stati stics of an atomic beam can be avoided.
To do this, we used the method proposed in paper [2]
and replaced SRR (6) by SRR (16) averaged over the
distribution (12) of expectation times. The recurrent
relation (16) corresponds to a periodic atomic beam
with the same time interval s between the atoms, which
are equal to 1/R. It was noted in Section 3 that, upon
passage from SRR (6) to SRR (16), the statistical prop-
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Fig. 5. Eigenvectors for the maximum eigenvalue of the
period operator SL = S{0)S™(1)S(2) as functions of the
number n of photons: (1) pg for k=1, m=4,r =0; (2) pg
foork=1,m=1r=0; 3) pgfork=1 m=1,r =20
4 p(SS); (5) COSZ(gT A/n)/8isplotted to show capture zones.
Calculation parameters are asin Fig. 2.

erties of random frequencies of counts p, and p, were

conserved. To derive the dynamic recurrent relation
(29) for determining the stationary vector of the princi-
pal diagonal of the RDM py, it is necessary to choose
an evolution matrix for a period. The parameters of the
period matrix S (33)—the integers k, m, and L—are
chosen by using the experimental values of averagerel-
ative frequencies of counts p, and p, and expressions

(29) and (30). Below, we present a numerical example
of application of this procedure. The statistical process-
ing of a random sequence, which was used to plot the
functionsin Fig. 2, gives the results

o k o m
Po = ker+r~0.162, p. = k+m+r~0'163'
This result agrees with expression (32):
L 1
PotPL=€ = 3

To obtain the minimum period, we can choose the val-
ues

Then, the period is

K .

5; ~

The parameters of a periodic tragjectory are
k =1, r = 4.

We should substitute these parameters into Eq. (33),
solve the eigenvalue problem (21), and find the vector
of the principal diagonal of the RDM pg for the maxi-
mum eigenvalue A,.. Thevector pg (23) istherequired

L = 6.

m=1,
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solution to the inverse problem. It can be used for cal-
culating the statistical characteristics of afield mode of
a micromaser subjected to quantum measurements of
the states of the atomic subsystem under stationary con-
ditions. Figure 5 shows the plots of the principal-diag-
onal vector of the RDM pyfork=1, m=1,4,andr =
0, 20. The curves are plotted for the value of © satisfy-
ing expression (49) for j = 2. The vector py representsa
single peak localized in the capture zone (38) with the
number q = 1.

The obtained vector py describes a subensemble of
the states of a field mode, which is determined by the
average relative frequency of counts p, (p,) detected
during the residence time ty. The localization region of
this vector is the capture zone with the number g = 1.
The total ensemble of the field states under stationary
conditionsis described by the vector p® (18). The plot
of the vector p® for the same value of © is also shown
inFig. 5. According to the Filipowicz theory [2], in this
case, the vector p represents a single peak localized
in the zone with g = 1. In other words, the total ensem-
ble of the field states under these conditions is deter-
mined by one average value of therelative frequency of

counts p, (p;). In this case, the plots of p® and py

should virtualy coincide, which is demonstrated in
Fig. 5. It follows from Fig. 4 that it does not matter
which of the detectors, with low or high efficiency, was
used for determining the parameters of a periodic tra-
jectory in experiments. Indeed, the position of the max-
ima of the function G(v) in Fig. 4 weakly depends on
the detector efficiency. The same property is demon-
strated in Fig. 5, where the plots of py are shown for
several values of r [different values of € (39)]. By using
a highly efficient detector, we can detect trgectories
with short residence times tg in the stationary state.

Note in conclusion that the results obtained in this
paper are valid in the linearization approximation. This
approximation can be used when capture zones (38)
can be considered separately from each other. The
eigenvectors (21) of the problem for the operator (33)
localized in different zones are weakly overlapped.
This is the case when the probability of the trajectory
segment weakly depends on the sequence of countsand
isdetermined by the number of counts. Small variations
in the sequence of the counts, conserving the statistical
characteristics of the realization &;, only weakly affect
the principal-diagonal vector of the field RDM. In this
case, the use of the corresponding periodic trajectory
for solving the inverse problem isjustified.

A more complicated dynamics of amicromaser dur-
ing quantum measurements is observed when the con-
ditions of applicability of the method are violated. In
this case, capture zones (especially, with smaller num-
bers) lose their individuality. Under stationary condi-
tions, two (or several) competing average relative fre-
guencies of counts of the detector can exist. The vector
p® can have several peaks located in different capture
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zones (38). The trgectory becomes unstable, and sharp
jumps can occur between the average levels of therela
tive frequencies of counts. These jumps occur during a
time interval that is much shorter than the residence
time ty. This instability can be caused by an unlikely
event—a critical fluctuation, when a random variable
determining the dynamics of the micromaser (the Pois-
sonvariable T or avariable & simulating the order of the
detector operation) takes unlikely valuesin succession.
This case requires a separate study.
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Abstract—The ionization of atomsin a strong nonclassical unimodal electromagnetic field was considered. It
was shown that the probability of ionization could substantially change depending on the quantum state of the
field even at a constant mean number of quanta in the radiation mode. The difference of ionization rates was
especially large for multiphoton ionization processes. It was, in particular, shown that anonclassical field could
be much more effective from the point of view of theionization of atomsthan aclassical field of the sameinten-
sity. The characteristics of the decay of abound atomic system state in a strong nonclassical field were studied
without invoking perturbation theory. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The introduction of the theory of “squeezed” elec-
tromagnetic field states [1] followed by their experi-
mental observation [2, 3] actually opened anew chapter
in the physics of the interaction of high-power electro-
magnetic radiation with matter [4]. In practice, we deal
with a new macroscopic quantum effect, that is, a
purely quantum (nonclassical) electromagnetic field
state, nevertheless containing alarge (huge) number of
guanta [5]. Although the degrees of laser radiation
squeezing currently attainable are not large, it is likely
that there are no physical limitations that can, in the
future, prevent the generation of high-intensity fields
whose properties are very far from those of classical
electromagnetic fields [5]. This means that the semi-
classical theory (quantum medium and classical elec-
tromagnetic field) that has earlier been successfully
used to describe interactions between high-power elec-
tromagnetic radiation and matter (for instance, in the
dynamics of laser generation [6, 7], in various nonlin-
ear optics problems[7, 8], and in studying elementary
eventsinintenselight fields [9, 10]) should be replaced
by a consistent quantum theory, in which both the
atomic (molecular) subsystem and electromagnetic
field are described quantum mechanically. The new the-
ory should, as a particular case, include the old semi-
classical theory, when the state of an electromagnetic
field as a quantum object can be described in the classi-
cal limit. Such a consistent quantum approach can nat-
urally be expected to reveal new effectsinexplicablein
terms of the traditional semiclassical approach.

In thiswork, we consider the dynamics of multipho-
ton ionization of an atom in a strong nonclassical uni-
modal electromagnetic field. Namely, we study the
action on an atom of an electromagnetic field in the
Fock and coherent states and in the squeezed vacuum

state. Depending on the quantum state of the field, the
probabilities of ionization can be different even when
the number of quanta in the radiation mode remains
unchanged. The difference of ionization rates is espe-
cialy large for multiphoton ionization. In particular, a
nonclassical field can be much more effective from the
point of view of theionization of atomsthan aclassical
field of the same intensity. The specia features of the
decay of a bound atomic system state in a strong non-
classical field were studied outside the framework of
perturbation theory.

2. QUANTUM ELECTROMAGNETIC FIELD

Further, we only consider one field mode with fre-
guency w. Thisfield can conveniently be described by a
pair of conjugate values, namely, a (the vector poten-
tial) and € = —(da/dt)/c (the electric field strength). Both
these values satisfy the harmonic oscillator equation.

In quantum theory, Hamilton operator H;(€) can be
put in correspondence to a field mode. This is the
Hamiltonian of the one-dimensional harmonic oscilla
tor. Clearly, the field mode is characterized by a set of
stationary states with the energies

E, = fiw(k + 1/2), (1)

where k has the meaning of the number of field quanta
(photons) in the stationary (Fock) state |k The ground
field state, or electromagnetic vacuum, is the state with
azero number of quanta, k = 0. The probability density
distribution for observing field strength € in measure-
ments is then given by the equation

(&) = — epBin @
Po = SOA/;T pD s—%ﬂv
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where g5 = J4AW Yode determlnes eectric field
uncertainty in the vacuum state The probability den-
sity distribution in an arbitrary stationary state |kis
written as

pu(e) = Hk(e) exp(—€?) ©)

k.[

(here, H isthe Hermitian polynomial).

Note that an electromagnetic field in an arbitrary
stationary state is a purely quantum object. Although
field energy in a stationary state can be very high, the
mean field strength € averaged over the quantum state
is zero. Therefore, the mean force acting on an electric
chargeis also zero. From the point of view of quantum
theory, aclassical electromagnetic field is the coherent
state of afield oscillator with a large mean number of
quanta[11]. This state can be written in the energy rep-
resentation as

We(e) = 3 aydkd @
k

where the amplitudes in the expansion over stationary
field states are given by

k
Z 0ldh
where zisacomplex number. Clearly, the squares of the
moduli of the amplitudes |o,J? are determined by the
Poisson distribution, and the Poisson distribution
parameter (K= |z]> has the meaning of the mean num-
ber of field quantain state (4). It iseasy to show that the

mean electric field strength in state (4) varieswith time
by the harmonic law?

[e0 = /2K Icos(wt),

and the quantum field strength uncertainty is

Ae = /D, = 112

(here, D, is the electric field variance). If K> 1, the
guantum uncertainty in € can be ignored because A¢ <
(80) and we arrive at the conclusion that changes in the
electric field asafunction of time are determined by the
solution to the classical equation of motion. The field
energy and radiation intensity are then proportional to
the mean number of gquanta in the mode [KOand are
related to field strength [8Cby classical electrodynamics
equations.

Clearly, the classical field state is but a particular
case of a strong electromagnetic field (field with the
number of quanta (K[> 1). The number of strong elec-
tromagnetic field realizations that cannot be described
classicaly is infinite. In recent years, so-caled

L We further use the dimensionless field coordinate /¢
2This expression corresponds to area parameter z value.
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squeezed states have usually been considered. In the
coordinate representation, these states are described by
wave functions of the form [12]

w(e) = Lexp(iag)expg_ig, (6)

JB/m

which depend on two parameters, a and B. Clearly, if
o =0 and 3 =1, we have an electromagnetic vacuum,
andif a#z 0and 3 = 1, thefield isin the coherent state
[12]. The specia feature of the state described by wave
function (6) is as follows: if B < 1, electric field vari-
ance D, = %2 is substantially smaller than in the vac-
uum and coherent states. Conversely, for the coordinate
conjugate to the electric field, we have
1 1
D. 25 >3

The uncertainty relation
D.D, = 14

is, of course, satisfied. During the time evolution of
state (6), the variances of the a and € coordinates oscil-
late at a twice the electric field frequency. As a result,
the state with

D, = 1/2p% D, = B2

is formed in half the optica cycle. In this sense,
sgueezed states with the 3 and 1/3 parameters are phys-
ically equivalent. Further, theK =B (if B> 1) or K=1/
(if B < 1) parameter will be called the squeezing param-
eter of electromagnetic field states.

Among the squeezed electromagnetic field states, of
special interest is the squeezed vacuum state. This state
isdescribed by (6) witha =0and 3 # 1; that is, it only
differs from the electromagnetic vacuum state in the
width of the distribution of €. Although the mean field
strength in this state is also zero at an arbitrary instant
of time, the electromagnetic field energy in the
sgueezed vacuum state proves to be high if B < 1 or
B> 1. The expansion of the sgueezed vacuum state
Wg(€) in Stationary field states gives

Wagl€) = 3 ctayf2k() ™
k

where the expansion coefficients o, are determined by
the equation (see Appendix)

= (D) 2B J(Zk)'Dl B )
N1+p2 2% DL+ pd

and all odd coefficients are zero.

Let us use wave function (6) to calculate the mean
field energy over a quantum state,

ﬁ(o[B2 1 1]
2 2 2[32 ag ©)
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and introduce the mean number of field quanta in an
arbitrary field state by the equation

(B0 = Aoo( KO+ 1/2). (10)

Equations (9) and (10) determine the relation between
the squeezing parameter and the mean number of
quanta,

s 2
D@:%Bz_ég =3 (1)

In particular, for the squeezed vacuum state, we have

I T 5
k==P-1H7 — — 12
483 B ap? 12
ap<1.

In practice, precisely the squeezed vacuum state is
of the greatest interest, on the one hand, because the
variance of the number of quanta (at agiven mean num-
ber of quanta) isthen maximum. We will show later on
that this circumstance has an important influence on the
consequences of the action of such afield on an atomic
system. On the other hand, modern experiments on the
generation of nonclassical electromagnetic fields in
parametric amplification processes [13] are capable of
producing states close to precisely the squeezed vac-
uum state. Although the degree of squeezing currently
attainable in such experiments is comparatively small,
K =1/ = 10, we see no reason why sgueezing cannot
beincreased to K ~ 108-10°.

Below, we consider the result of the action of an
electromagnetic field in the stationary, coherent, and
squeezed vacuum states on an atomic system under the
conditions when the mean numbers of quanta in the
field mode are equal in these states.

3. ATOM AND ITS INTERACTION
WITH ELECTROMAGNETIC FIELDS

Let an atom be characterized by a set of stationary
states of a discrete spectrum (jnCjn=1, 2, 3, ...) and
continuum [E[Jand let these states satisfy the equations

HolnO= E, N0 Hy|EO= E|EL

where H, is the atomic Hamiltonian. We assume that, at
theinitial instant of time, the atomisin the ground state
|100and has the ionization potential | = —E;.

The complete Hamiltonian of the “atom + electro-
magnetic field” system can be written as

H(r,e) = Hy(r) + He(€) + V(r, €), (13)

wherer isthe set of atomic subsystem coordinates and
V(r, €) is the interaction operator between the atomic
subsystem and the electromagnetic field. In the dipole
approximation and in the de gauge, this operator is
written in the form

= —eze. (14
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Here, it is assumed that the z axis is directed along the
€ vector. It isimportant for the further analysis that the
interaction between an atom and an electromagnetic
field is weak. Precisely this circumstance allows us to
admit the independent existence of atomic and field
subsystems as a zeroth approximation and to take into
account their interaction by means of perturbation the-
ory. Physically, this means that the evolution of the
“atom + field” system should beinterpreted in the basis
of stationary states that describe subsystems without
taking into account their interaction. We will therefore
seek the total wave function of the system W(r, €, t) in
the form

W(r,e 1) = 3 Cy(OKepE(E, + B
n, k (15)

9] [UECe WD ETK@PH(E+ E)E,

where E, is given by (1), and the C,, , and C¢ , expan-
sion coefficients determine the amplitudes of the prob-
abilities of finding atoms in the |n[{|E0) state and the
electromagnetic field in the |k state. Substituting
expansion (15) into the Schrédinger equation yieldsthe
system of equations for the C, , and Cg , amplitudes

an,k _ & Dl
dt - _A/ézdnn'expDL(En_En')%

x { Cn', k+ 1N k + 1exp(—| Q)t) + Cn', k—1'\/l—<exp(i(0t)}

if

_EBo g OE _g
5 CE e P (En- ) (16)

x{Cg k+1/k+ lexp(—iwt)
+Cg _1/kexp(iwt)},

where d,y = [M|ezin'Uand d,z = [M|ez|E'Care the matrix
elements of the dipole operator, which actsin the space
of atomic states. The equation for the C¢  amplitudeis
obtained from (16) by replacing state |nCivith [ECIEqua-
tion (16) was derived taking into account that the
matrix element of the field operator is only nonzero if
k=Kk = 1 and that

1
k+ lekO= —./k+ 1.
Hel 2

Clearly, the photoionization of an atom isthe transition
from the initial @;(r, €) = |10; (state to the final ®; =
|E[ip; Cstate under excitation V(z, €). Here, [y Cand |yx O
aretheinitial and final electromagnetic field states.
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4. SINGLE-PHOTON IONIZATION OF AN ATOM
IN A NONCLASSICAL ELECTROMAGNETIC
FIELD

Let theinitial atomic state |10be related to the con-
tinuum by asingle-photon transition. The probability of
the photoionization of the atom can then be calculated
in first-order perturbation theory. Solving (16) then
yields the equation for the probability of ionization in
unit time

dw‘l’

2"Z| o, ?K|dg ] 6(E+I—ﬁco), (17)

where a, are the amplitudes of the expansion of theini-
tial field state ; in the basis of stationary states, {); =

gk oy kG and the & function determines the energy of
e final atomic state.

As

(18)

o’k = KD
Zk

isthe mean number of quantain field state |yx[Jwe find
from (17) that the probability of ionization is indepen-
dent of the specific form of the distribution of |a,|* and
isonly determined by the mean number of quantain the
field mode. This means that the single-photon ioniza-
tion of an atomic system in anonclassical electromag-
netic field has no specia features within the limits of
first-order perturbation theory applicability.

5. MULTIPHOTON IONIZATION

If theionization of an atom can occur as amultipho-
ton process, solving (16) at the level of Nth-order per-
turbation theory yields

dw™

2ﬂ|d(N) 2[?(1]
“dE

o0
- (19)
x z loy*k(k=1)...(k=N+ 1)3(E + | = Niw),

k=0

where d)? is the multiphoton matrix element. In par-
ticular, for N = 2, we have

(2) Z
E,

Equation (19) shows that the probability of photo-
ionization is determined by the specific electromag-
netic field quantum state. For instance, if thefieldisin
the coherent state, the summation in (19) yields

dEEdE'l
E,-fAw

dEn n'l

“E,—fo JEZ dE"
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dW|( _ 2T[|d(N)
“dE
2 N (20)

DzD O i 'S(E + 1 = NAw),

where [KUis the mean number of field quanta deter-
mined by (18). As radiation intensity P ~ &5 (K[} (20)
can be obtained in the semicl asscal approach by apply-
ing Nth-order perturbation theory.>

The situation is different for a non-Poisson distribu-
tion of |oy[?. For instance, we find from (19) for the sta-
tionary state of afield with k, quanta that photoioniza-
tionisonly possibleif k,= N and that, at k, = N, theion-
ization leads to the vacuum field state. In practice, of
greatest interest is the situation with k; > N. Equa-
tion (19) then yields

dw ™

“dE

N(N-1
nggl—%gé(E+ | —NAw);

2T[| d(N) Zg%
2
(21)

that is, the probability of photoionization isthen some-
what lower than for the coherent state with (K= k.

Of specid interest is electromagnetic field in the
sgueezed vacuum state. Indeed, number-of-quanta dis-
tribution (8) isthen characterized by alarge width (vari-
ance), which increases as the degree of squeezing K =
1/3 grows. For thisreason, the probability of observing
a number of quanta substantially larger than the mean
value [KOis many times larger in a strongly squeezed
than in the coherent state. In this situation, the probabil-
ity of nonlinear N-photon ionization in a nonclassical
squeezed field should be much higher thaninaclassica
field, and this difference should increase with increas-
ing multiphoton order of the process. For instance, for
N =2, (19) gives

dWi( 2 2[?(1] 2
T~ 2 g@) D Zo'ak' k-1
x 3(E + | — 2hw) O K- [k
Here,
K0 = Y k%o ?
is the mean square of the number of field quanta. As
(k0= KT+ D,

3 Note that an arbitrary field state characterized by the Poisson dis-
tribution of |oy|? is not necessarily coherent. A certain phase rela-
tion between the o, amplitudes is also required. In calculating the
probability of N-photon ionization in the lowest order of pertur-
bation theory, this phase relation is, however, inessential; that is,
all field states with equal |0(k|2 values are then equivalent.
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(Dy is the variance of the number-of-quanta distribu-
tion), we find from (22) that

M =~ 2_T[|d(2) 2|j_(21:|2
dE  # "E 20

x (KT + D, — K)S(E + | — 2hw).

Asmentioned, in real laser beamswith (K[> 1, the dif-
ference of atom ionization rates observed in stationary
versus coherent electromagnetic fields is negligibly
small. A different situation arisesif the electromagnetic
field isin the squeezed vacuum state. We then have

D, = 2(kT + k),

which gives

g_\/.yg =~ %-[[|d(2) 21(21:'2
dE 4 ' E'l [0

x (3IKT + KD S(E + | — 2Aw);

that is, if (R[> 1, the probability of ionization is three
times higher than in semiclassical theory for equal
mean numbers of photonsin the radiation mode.

Note once more that, among all squeezed electro-
magnetic field states described by (6) which have equal
mean numbers of quantain thefield mode, precisely the
squeezed vacuum state is characterized by the largest
variance of the number of quanta and is therefore most
effective in the multiphoton ionization of atoms.
Indeed, variance D, calculations for state (6) with
B> a> 1(thatis, for astrongly squeezed state with
a certain degree of coherence) give

Dkzzmdgl—%,

which is smaller than the D, value in the squeezed vac-
uum state.

Generaly, the dWi(N) /dE value for nonlinear N-pho-
ton ionization is determined by the Nth moment

D(ND = sz|ak|2!

and we can expect astill larger differencein atomicion-
ization rates at the same number of mode photons
depending on the quantum state of the field. For the
sgueezed vacuum state with a large mean number of
guanta, we have [14, 15]

kOO (2N = 1)1 ok, (23)

and, with N = 10, which is characteristic of the ioniza-
tion of atoms by radiation in the optical frequency
range, the difference in the rates of ionization by
squeezed and classical fields can amount to several
orders of magnitude.
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For squeezed field states described by (6), asimilar
formulafor (BNt 1/ > a > 1 hasthe form

w“mm(zN—l)!!Dd“%L—N%. (24)

This means that, among all field states of form (6) with
equal [k(values, precisely the squeezed vacuum state
most effectively acts on an atom.

To concludethis section, notethat (19) isthe general
expression for atransition with the absorption of N field
guanta. If the transition to the continuum can occur as
an M-photon process (M =[1/Aw] + 1) and M < N, (19)
describes above-threshold ionization with the absorp-
tion of N — M above-threshold quanta. It can therefore
be stated that the energy spectrum of photoelectrons
formed under the action of a squeezed electromagnetic
field on an atom should be substantially different from
the spectrum obtained in the interaction of an atom with
a classica field, namely, the intensity of peaks corre-
sponding to the absorption of alarge number of above-
threshold quanta should be anomalously high in the
squeezed field.

6. GOING BEYOND THE SCOPE
OF PERTURBATION THEORY:
ONE DISCRETE LEVEL AND CONTINUUM

In this section, we consider theionization of an atom
having a single discrete level in more detail. We will
show, without invoking perturbation theory, that the
time evolution of an atomic state substantially depends
on the quantum electromagnetic field state even when
single-photon ionization occurs.

Ignoring free—free transitions in the equation for the
Ce, « amplitude in the continuum allows system (16) to
be written in the form

dCy €

LTy Bz

 [dEd e explE(E, - )

x{Cg, k+1/K+ Lexp(—iot)

+Cg, k_1-/kexp(iot)},

dCE,k _ E D|_
ar —ﬁdEleXp[h(E—El)%

X{Cy k+1/K+ lexp(—iwt)
+Cy y_/kexp(iot)} .

Applying the method of adiabatic continuum elimina-
tion [9] makesit possible to easily obtain the following

(25)
i
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equation for the C, , amplitude:

dCyy
dt

whereE=Aw—1.

The integration of (26) yields the equation for the
probability of ionization of an atom in timet,

Wi(t) = 1=y [Cui(t)f*
k

Zﬁ o|dE1| kCl k=0, (26)

(27
T
=1-y |ak|2exp%—£e§|d5,|2k%.
k

Here, the o, values determine the initial electromag-
netic field state. Expanding the exponent in Eq. (27)
into a series up to first-order terms yields Eq. (17),
which corresponds to first-order perturbation theory.
Generaly, a nonexponential atomic state decay is
expected inanonclassical field for all field states except
the stationary state. For a coherent state with a large
mean humber of quanta (K> 1), the k value under the
summation sign in (27) can, however, be replaced by
[(K[] because the uncertainty in the number of quanta

Ak ~ /K] < KO This gives

Tt
Wi(t) = 1- 5 |Cd)]” = 1-expFeslde|* OCH,
k

which corresponds to the solution to the problem in the
semiclassical approximation [9].

In the squeezed vacuum state, the number-of-quanta
distribution is characterized by alarge variance; that is,
the partial contributions of states with large (k > kD)
and small (k < [K0) numbers of quanta are large. For
this reason, the decay rate of an atomic state in afield
that isin the squeezed vacuum stateisinitially substan-
tialy higher than when the field oscillator is in a sta-
tionary or coherent state and then gradually decreases.
Thereisanonzero residua probability of nonionization
determined by the probability that thefield isin the vac-
uum state,

1-Wi(t — ) = |O(k=0|2-

7. CONCLUSION

To summarize, we showed in this work that the
probability of ionization of an atomic system could
substantially change depending on the quantum elec-
tromagnetic field state even at a fixed mean number of
guantain the radiation mode. The difference in ioniza-
tion rates was especially large for multiphoton ioniza-
tion processes. It was, in particular, shown that a non-
classical field could be much more effective from the
point of view of theionization of atomsthan an equally
intense classical field.
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We can naturally expect that the effectiveness of the
action of anonclassical electromagnetic field on atom-
molecular systems (compared with the action of aclas-
sical electromagnetic field) should also manifest itself
in some other physical phenomena. It can, in particular,
be expected that nonlinear polarization in a medium
under the action of the squeezed electromagnetic field
state can be anomalously large; therefore, sgueezed
fields can be very effective in the generation of optical
radiation harmonics [5]. We can also expect a substan-
tial increase in the probability of above-barrier absorp-
tion of electromagnetic field quantain multiphoton ion-
ization, in the probability of multiquantum absorption
in scattering of electrons by atoms in the presence of
nonclassical electromagnetic fields, etc.

Note also that the most important difference in the
dynamics of interaction between an atomic system and
an electromagnetic field arises if the mean number of
quantain thefield modeiscomparatively small, (K[ N.
Such a situation is, for instance, characteristic of the
interaction of an atom in a microcavity with a field
mode containing few quanta[16].
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APPENDIX

Clearly, the amplitudes of the squeezed vacuum
state expansion in stationary field states are determined
by the equation

1

J22& KB

* 2
* [Haepf 5+ Bi%da.

Oy =

(A1)

Let us express the Hermitian polynomial via the
degenerate hypergeometric function,

Ha(®) = () ELED 2 e (a2)
to rewrite (A.1) in theform
o = D (2K
2k —
J*kymp K
- (A.3)
XIFE K, % %exp(—)\z)z_mdz,

0

No. 5 2002



850 POPOV, TIKHONOVA

where
_1 10
A= é%--i-ﬁ—ﬂ
Theintegration in (A.3) gives (see [17])

k
o= SRR, 11D (A.4)
«/)\_B XK1 g™22' \J
Taking into account that

1110 iIm
Fk 5.5 .

22" 07 A0
we can rewrite (A.4) as
_ (=D /2K)! ‘
Ay = TBW%[_% . (A5)

This corresponds to Eg. (8) in the main body of the
paper.
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Abstract—The mode structure and spectral properties of supercontinuum emission generated by femtosecond
pulses of Ti:sapphire laser radiation in microstructure fibers are studied. The long-wavelength (720900 nm)
and visible (400-600 nm) parts of supercontinuum emission are shown to be spatially separated in microstruc-
ture-fiber modes, which can be isolated with an appropriate spectral filtering. The spatial modes thus isolated
in spectrally sliced supercontinuum emission possess a spatial quality sufficient for further efficient frequency
conversion. The possibility of achieving a high spectral quality of supercontinuum emission is also demon-
strated. We explore the ways to control the spectrum of supercontinuum emission by matching parameters of
the pump pulse with the parameters of a microstructure fiber and by tuning the initial chirp of the pump pulse.
The results of our studies show that supercontinua produced in microstructure fibers offer new approaches to
designing a new generation of optical parametric amplifiers and broadband radiation sourcesfor spectroscopic,

metrological, and biomedical applications. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Supercontinuum (SC) generation [1] is anonlinear-
optical phenomenon involving spectral superbroaden-
ing of alight pulse resulting from the joint action of the
whole set of nonlinear-optical effects, such as self- and
cross-phase modulation, four-wave mixing (FWM),
and stimulated Raman scattering (SRS), often accom-
panied by soliton formation and propagation and mod-
ulation instabilities. As demonstrated recently, super-
continuum generation can be radically enhanced with
the use of fibers of a new type—microstructure (MS)
fibers [2-8]. Fibers of this type may provide a high
degree of light confinement in the fiber core [9, 10],
simultaneously offering broad opportunities for engi-
neering the dispersion of guided modes [11]. Due to
their remarkable properties, microstructure fibers make
nonlinear optics accessible even to unamplified femto-
second pulses [12]. Enhancement of the broad class of
nonlinear-optical phenomena [9, 10, 13], accompany-
ing the propagation of femtosecond pulses in micro-
structure fibers, makes it possible to generate a super-
continuum emission [6, 14-17] starting with nano- and
even subnanojoul e energies of laser radiation.

Investigations of supercontinuum generation in
microstructure fibers have revealed several interesting
physical phenomena related to the nonlinear-optical
interactions of ultrashort light pulses, providing a
deeper insight into the scenarios of spectral super-
broadening of such pulses in different regimes of
waveguiding in microstructure fibers [18-20]. The
range of applications of supercontinuum generation in
microstructure fibers is rapidly expanding, leading to
revolutionary changes in optical metrology [21-24],
opening new horizonsin optical coherence tomography
[25], and suggesting new solutions for the creation of
compact and practical sources of broadband emission
based on supercontinuum generation in microstructure
fibers.

It would be very important now, in view of numer-
ous spectroscopic, metrological, and tomographic
applications of supercontinua generated in microstruc-
ture fibers, not only to improve the reproducibility and
stability of tempora characteristics and the spectra
content of supercontinuum emission, but also to ensure
a high spatial mode quality of this emission. In many
practically important cases, highly efficient supercon-
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Fig. 1. Microscope cross-sectional images of microstruc-
ture fibers: (a) a fiber with a single hexagonal cycle of air
holes around the fiber core with a diameter of 2 um and
(b) afiber with two hexagonal cyclesof air holesaround the
fiber core with a diameter of 2 um.

tinuum generation in microstructure fibers involves
multimode-phase-matched four-wave mixing, which
leads to the spectral superbroadening. Supercontinua
are also emitted in the multimode regime under these
conditions.

In this paper, we propose and experimentally imple-
ment amethod of spatial filtering and spectral slicing of
supercontinuum emission generated in amicrostructure
fiber with a small core diameter, where multimode-
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phase-matched four-wave mixing resultsin apreferable
generation of new spectral components emitted as a
part of the supercontinuum in a certain (possibly high-
order) guided mode. Such fibers have been fabricated
and investigated as a part of the work presented in this
paper. The results of our experimental studies demon-
strate the possibility of separating isolated spatial
modes in supercontinuum emission produced in such
fibers within different spectral ranges. The proposed
method of spatial mode filtering provides ahigh spatial
quality of supercontinuum emission, which is sufficient
to allow efficient further frequency conversion of spec-
trally sliced supercontinuum emission. This frequency
convertibility of SC spatial modeswas demonstrated by
our experiments where spectrally sliced supercontin-
uum emission was mixed with the fundamental radia-
tion of aTi:sapphire laser in a nonlinear crystal to pro-
duce a sum-frequency signal. We will also demonstrate
the possibility of achieving a high spectral quality of
supercontinua produced in microstructure fibers and
explore the ways to control the spectrum of supercon-
tinuum emission by matching parameters of the pump
pulse with the parameters of a microstructure fiber and
by varying the initial chirp of the pump pulse. The
results of our studies show that supercontinua produced
in microstructure fibers offer new approaches to
designing a new generation of optical parametric
amplifiers and broadband radiation sourcesfor spectro-
scopic, metrological, and biomedical applications.

2. EXPERIMENTAL

Experiments on supercontinuum generation were
performed with afamily of microstructure optical fibers
where a cladding consists of one, two, or more hexago-
nal cyclesof air holes. A system of smaller auxiliary air
holes in the cladding of these fibers improves the con-
finement of light field in the fiber core (Figs. 1a, 1b).
The technology employed to fabricate M S fibers used
in our experiments was similar to a standard procedure
described, e.g., in [2, 26]. However, instead of using a
preform consisting of a set of identical capillaries, we
started with a preform consisting of fused silica fibers
with different diameters. In particular, to fabricate the
basis fiber of the created family—a fiber with a single
hexagonal cycle of air holes around the fiber core
(Fig. 1a—we employed a preform whose central part
included a fiber with the minimum diameter sur-
rounded by six capillaries. The fabrication of a such a
fiber with a minimally microstructured cladding was
reported earlier in [27, 28]. The possibility of changing
the spatial sizes of the structure was built in the process
of fiber fabrication. The minimum diameter of the core
inthe created M S fiberswas equal to 1 um. The air-fill-
ing fraction of the microstructure part of the cladding in
the created fibers, as can be seen from Fig. 1, is very
high, providing ahigh refractiveindex step between the
core and the cladding in the fiber. A system of smaller
auxiliary air holes in the cladding of these fibers,
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Fig. 2. Transverse intensity distribution of Ti:sapphire-laser
radiation at the output end of a microstructure fiber with a
single hexagonal cycle of air holes around the fiber core
with a diameter of 2 um in the low-power-pump no-super-
continuum-emission regime.

increasing the refractive-index step between the fiber
core and the fiber cladding and preventing the guided
modes from leaking into the cladding, adds to the con-
finement of light field in the fiber core and reduces opti-
cal losses of fiber modes (as can be seen from Fig. 2,
which displaysanimage of aTi:sapphirelaser radiation

853

intensity distribution measured at the output end of the
fiber). Thefiber with such ageometry isabasisfiber for
the created family of fibers since the cladding of this
fiber has a minimal number of holes (a single cycle of
holes, plus auxiliary holes, improving light-field con-
finement in the fiber core).

To fabricate fibers with a more complicated struc-
ture, we modified the preform. In amicrostructure fiber
shown in Fig. 1b, the fused silica core is surrounded by
two hexagonal cycles of air holes and a system of
smaller auxiliary holes, improving light-field confine-
ment in the fiber core. The increase in the number of
cycles of air holes around the fiber core reduces the
magnitude of fiber losses. Optical losses have been
determined for microstructure fibers of this type from
the results of measurements [28] performed on ~100-m
MS-fiber segments. The magnitude of optical losses
was estimated to be 2-3 dB/m for fibers with a single
hexagonal cycle of air holes in the cladding and 0.4—
0.5 dB/m for fibers with two cycles of air holes.

Spectral broadening and supercontinuum genera-
tion in the created M S fibers were studied in our exper-
iments with the use of femtosecond pul ses produced by
aTi:sapphirelaser system. Thislaser system included a
Ti:sapphire master oscillator and a regenerative ampli-
fier and was capable of generating 40-fs pulses of
800-nm radiation with an energy up to 0.2 mJ per pulse
and a repetition rate of 1 kHz. The energy of laser
pulses coupled into the fiber ranged from 0.1 up to
50 nJ. Experiments were performed with fiber samples
with alength of 4-200 cm. The laser beam was focused
onto the input end of afiber sample, placed on athree-
dimensional trandation stage, with a microobjective
(Fig. 3). Radiation coming out of the fiber was colli-
mated with an identical microobjective and was split

Ti: Sapphire, 1kHz

100 nJ

Delay line

E=

Filter

PMT, monochromator

Fig. 3. Diagram of the experimental setup for studying supercontinuum generation in microstructure fibers: SFG, the signal result-
ing from sum-frequency generation in the nonlinear crystal; SHG, the signal of second-harmonic generationin the nonlinear crystal;

PMT, photoelectric multiplier.
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Fig. 4. Spectra of SC emission generated by 40-fs pulses
with an energy of 2 nJ (dashed curve) and 3 nJ (solid curve)
inal.5-m MSfiber with asinglering of air holesaround the
fiber core (Fig. 1a) and a core diameter of 3 um.

into two beams. One of these beams was delivered to a
spectrograph, while the other one was used to visualize
the transverse intensity distribution in the emission
coming out of the MS fiber by imaging the output end
of the fiber onto a CCD camera.

3. THE MODE STRUCTURE
OF SUPERCONTINUUM EMISSION

Propagation of femtosecond laser pulses through an
MS fiber was accompanied by a considerable spectral
broadening of these pulses. With only afew nanojoules
of Ti:sapphire laser radiation coupled into an M S fiber
sample with a length of severa centimeters, we
observed the generation of SC emission with a spectral
bandwidth exceeding an octave. Figure 4 shows typical
spectra of an SC generated by 40-fs pulses with an
energy of 2 and 3 nJinal.5-m MS fiber with asingle

FEDOTOV et al.

ring of air holes around the fiber core and a core diam-
eter of 3 um.

Figure 2 displays the transverse intensity distribu-
tion of pump radiation at the output end of the fiber in
the regime of low-power pump, when no SC is gener-
ated. The transverse structure of the guided mode of
pump radiation, as can be seen from this image, fea
tures asixfold rotational symmetry, which is also char-
acteristic of the fiber structure. Supercontinuum emis-
sion was generally produced in the multimode regime
in our experiments. However, we were ableto filter iso-
lated spatiad modes for different spectral ranges of
supercontinuum emission using a set of color-glass fil-
ters. Figures 5a-5c present typical results of such
experiments performed for an SC generatedina 1.5-m-
long M Sfiber with asingle ring of air holes around the
fiber core with a core diameter of 3 um. The transverse
intensity distribution of SC emission measured with a
filter providing maximum transmission within the
range of 720-900 nm (Fig. 5a) has a bell-like shape,
displaying a single maximum on the beam axis. The
visible part of SC emission (400-600 nm), on the other
hand, has a doughnut-like spatial mode structure
(Fig. 5b) under the same experimental conditions.

With a dlight variation in the initial conditions of
mode excitation at the input end of the MS fiber, the
doughnut mode of the visible part of SC emission
(Fig. 5b) was transformed into a more complicated,
two-lobe pattern shown in Fig. 5¢. Both the doughnut-
like mode of Fig. 5b and the two-lobe mode of Fig. 5¢
remained reproducible and stable and were observed
for M S fibers with lengths ranging from several centi-
meters up to 2 m. Apparently, because of the poorer
spatial overlapping between the pump beam and the
two-lobe mode, the short-wavelength part of SC emis-
sion in the case of the two-lobe maode (the dashed line
in Fig. 6) was much less intense than in the case of the
doughnut mode (the solid linein Fig. 6).

(a) (b)

©

Fig. 5. Transverse intensity distributions of SC emission generated in a 1.5-m-long M S fiber with asingle ring of air holes around
the fiber core with a core diameter of 3 um measured within the spectral range of (a) 720-900 and (b, c) 400-600 nm. With a vari-
ation in theinitial conditions at the input end of the fiber, a doughnut mode of the visible part of SC emission (b) tendsto transform

into a two-lobe mode (c).
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Physically, our idea of using microstructure fibers
with small fiber coresfor the generation of supercontin-
uum emission that could be spectrally sliced in sepa-
rated spatial modes is based on the fact that the differ-
ence between propagation constants for adjacent fiber
modes supported by a fiber at a certain frequency
increases with a decrease in the fiber core radius.
Within the framework of the elementary theory of opti-
cal fibers [29], the relation between the difference of
propagation constants AP characterizing two adjacent
guided modes in a fiber and the fiber core radius a is
given by

_ 1lcf,

2 )
4a”wn,

AB

where ¢ is the speed of light, w is the radiation fre-
guency, f,, isafunction of the mode index, and n, isthe
refractive index of the fiber core. This elementary rela
tionisvery instructive, however, asit explainsin avery
simple way why MS fibers with small core diameters
may generate mode-separable supercontinuum emis-
sion in the regime when FWM processes are phase-
matched only for acertain spatial mode of the nonlinear
signal generated through FWM for each SC dlice (or at
least for some of the SC dlices).

Transformation of the spatial distribution of SC
emission observed in our experiments (Fig. 5) indicates
changes in multimode phase matching for FWM pro-
cesses contributing to spectral superbroadening within
different spectral ranges. Our measurements performed
on MS fibers with a core diameter of 3 um also show
that phase matching is achieved only for a certain spa
tial mode of the emitted signal within each of the stud-
ied spectral ranges. This circumstance allows isolated
spatial modes to be separated by spectrally slicing SC
emission.

4. NONLINEAR-OPTICAL FREQUENCY
CONVERSION OF SPECTRALLY SLICED
SUPERCONTINUUM EMISSION
AND CROSS-CORRELATION MEASUREMENTS

Frequency convertibility of spectrally sliced super-
continuum is an important criterion of the quality of
spatial modes of SC emission. Based on this criterion,
we may also judge whether SC emission generated in
MS fibers and spectrally dliced with the use of the
above-described technigue can be employed in practice
for spectroscopic studies and pump—supercontinuum
probe measurements.

With these circumstances in mind, we experimen-
tally assessed the efficiency of nonlinear-optical fre-
guency conversion for spectrally sliced spatial modes
of SC emission produced in an M S fiber. The sum-fre-
guency signal was produced in our experiments by mix-
ing different parts of SC emission with the fundamental
radiation of the above-described Ti:sapphire laser in a
100-um-thick LBO crystal. Figure 7 presents the
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Fig. 6. Spectra of supercontinuum emission generated by
40-fs 5-nJ pulses of 800-nm Ti:sapphire laser radiation in
(@ 7-cm and (b) 1-m MS fibers with a single ring of air
holes around the fiber core with a core diameter of 3 pmin
the regime of (solid line) doughnut-like and (dashed line)
two-lobe mode of the visible part of the supercontinuum.
The spectrum of the Ti:sapphire pulse coupled into the fiber
isshown in theinset in Fig. 6b.

results of these measurements performed with the use
of the long-wavelength part (~720-900 nm) of SC
emission (the spectrum of this radiation is shown by
curve linpanel (a) of Fig. 7) mixed with the fundamen-
tal radiation of the Ti:sapphire laser in the LBO crystal
in the noncollinear geometry of sum-frequency genera
tion (SFG). The broadband sum-frequency signal was
produced within the spectral range from 370 up to
430 nm in the direction determined by phase-matching
conditions (see diagram 1 in Fig. 7). This geometry of
sum-frequency generation allowed the efficiency of fre-
guency conversion of about 0.1% to be achieved. We
also observed collinear second-harmonic generation
(SHG) using the long-wavel ength part of SC emission
as a pump (see diagram 2 in Fig. 7). The efficiency of
this second-harmonic generation process under our
experimental conditions was more than an order of
magnitude lower than the efficiency of noncollinear
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Fig. 7. Nonlinear-optical frequency conversion of spectrally sliced white light (WL) and cross-correlation measurements. (a) The
spectrum of supercontinuum emission produced within the range of wavelengths from 720 up to 900 nm in a microstructure fiber
with asinglering of holes around the fiber core, acore diameter of 3 um, and the length of 1.5 m (curve 1) and the spectrum of low-
intensity Ti:sapphire laser pulses transmitted through the same microstructure fiber with virtually no or very weak spectral broad-
ening (curve 2). (b) Cross-correlation traces for a pulse of the 720-900 nm spectral slice of supercontinuum (curve 1) and weakly
broadened low-intensity Ti:sapphire laser pulses transmitted through the same microstructure fiber with virtually no or very weak
spectral broadening (curve 2). Beam diagrams of (1) noncollinear sum-frequency generation (SFG) and (2) collinear second-har-
monic generation (SHG) are also shown. The heights of the vertical bars represent the relative efficiencies of the SFG and SHG

processes.

sum-frequency generation (the relative efficiencies of
SFG and SHG processes are shown on the left-hand
side of Fig. 7). The results of these experiments show
that the efficiency of nonlinear-optical frequency con-
version of spectrally sliced SC emission can be made
high enough to alow nonlinear-optical spectroscopic
and time-resolved measurements and to use SC gener-
ated in M Sfibers as seed radiation for optical paramet-
ric amplification.

Sum-frequency and second-harmonic generation
experiments performed with spectrally sliced SC emis-
sion aso allow the characteristic pulse duration to be
estimated for different parts of SC emission. Panel (b)
of Fig. 7 presents the results of such cross-correlation
experiments, where the intensity of the sum-frequency
signal was measured as a function of the delay time
between the fundamental radiation pulse of the Ti:sap-
phire laser and the broadband emission pulse coming
out of the fiber and passing through a set of optical fil-

JOURNAL OF EXPERIMENTAL

ters. Cross-correlation traces measured with the use of
this approach were compared with the results of cross-
correlation measurements performed in the same
geometry for low-intensity Ti:sapphire laser pulses
transmitted through the MS fiber with virtually no or
very weak spectral broadening (the spectrum of this
signa is shown by line 2 in panel (a) of Fig. 7). The
cross-correlation trace measured for the broadband sig-
nal of spectrally dliced supercontinuum (curve 1 in
panel (b) of Fig. 7) was much broader than the cross-
correlation trace measured for the signal with virtually
no or very weak spectral broadening (curve 2 in pand (b)
of Fig. 7). This comparison shows that different spec-
tral components emitted as a part of the supercontin-
uum are characterized by different delay times. This
effect is associated with the dispersion properties of
M S-fiber-guided modes and can be employed to tempo-
rally and spatially resolve different frequency compo-
nents in pump-supercontinuum probe experiments
[30-32].
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5. CHIRP CONTROL OF SUPERCONTINUUM
GENERATION IN MICROSTRUCTURE FIBERS

In this section, we will present the results of experi-
mental studies demonstrating the possibility of control-
ling the process of supercontinuum generation in a
microstructure fiber by changing the initial chirp of the
pump pulse. Optimizing the initial chirp of the input
pulse, one can improve the efficiency of SC generation
in an MS fiber and increase the spectral width of SC
emission. The initial chirp of the pump pulse coupled
into an MS fiber has an influence on the efficiency of
SC generation and the shape of the SC spectrum
through several physical mechanisms. Dispersion
spreading of ashort pump pulse propagating through an
M S fiber is one of the most important among these fac-
tors. With an appropriate choice of theinitia chirp, one
can radically change the evolution of the waveform of
a light pulse propagating through the fiber. When non-
linear-optical processes and high-order dispersion
effects are negligible, the evolution of the duration of a
Gaussian pulse with a chirp parameter a and the initial
pulse duration T, as afunction of the propagation coor-
dinate x is given by [33]

T(X) = Tou(1-akX)” + (X/Ly)",
where k, is the group-velocity dispersion and Ly =

12/]ky| is the dispersion length. The minimum pulse
duration under these conditions is achieved at the dis-
tance

lo = at2Ly[1+ (atd)T .

Thus, by choosing the sign and the absolute value of the
initial chirp, one can precompensate for a dispersion
spreading of the pump pulse within a certain section of
an MS fiber (with a length on the order of I.). An ini-
tially chirped pulse then first experiences compression
while propagating through an MS fiber. This phase of
compression isthen, of course, followed by the normal
dispersion spreading of the pulse.

Group-delay effects[34] and the sensitivity of phase
matching to the tempora profile of the phase in the
pulse [35] aso limit the generation of broadband emis-
sion in an M Sfiber. In particular, the frequency depen-
dence of the group velocity of light pulses leads to the
spatial walk-off of the generated frequency components
with respect to the spectral components of the pump
pulse. The characteristic distance |, where the group
delay becomes comparable with the pump pulse dura-
tion T can be estimated as

T

9

where u, and u are the group velocities of the pump
pulse and the signal pulse corresponding to a certain
group of spectral components. In view of large spectral
widths characteristic of the SC generation process,
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Fig. 8. The influence of theinitial chirp of pump pulses on
the spectrum of supercontinuum emission from a micro-
structure fiber with a single ring of holes around the fiber
core (Fig. 1a), a core diameter of 3 um, and the length of
about 10 cm. The chirp parameter a and the initial pump
pulse duration T are equal to (solid line) a = 0, 15 = 62 s,
(dotted line) a = =7 x 107 fs™2, 15 = 65 fs; and (dashed

ling) a = -10*fs2 15=70fs.

group-delay effects may have a considerable influence
on the width and the structure of SC spectra.

The goa of optimization of the initial chirp of the
pump pulse coupled into the fiber is to reduce the dis-
persion of the pump pulse in the fiber, improve phase
matching with the inclusion of nonlinear phase shifts,
and increase the effective length of interaction between
the spectral components of the pump pulse and fre-
guency-separated components arising in the process of
SC generation. Figure 8 displays the results of experi-
ments on supercontinuum generation in a 10-cm MS
fiber with a single cycle of air holes around the fiber
core (Fig. 1a) and a core diameter of 3 um. As can be
seen from the presented results, the variation in the ini-
tial chirp of the pump pulse noticeably changes the
spectraof SC emission. Unfortunately, a detailed quan-
titative analysis of the physical information encoded in
chirp-sensitive spectra of supercontinuum emission is
impeded by the fact that a variation in the initial chirp
of the pump pulse under conditions of our experiments
simultaneoudly dlightly changes the duration of this
pulse, which, inturn, leadsto avariation in theintensity
of pump radiation. It isimportant to mention, however,
that a negative chirping of the pump pulseimprovesthe
efficiency of generation of high-frequency components
in SC emission (as can be seen from Fig. 8) even in
spite of adlight increase in the pulse duration, which is
equal to 62, 65, and 70 fs for the spectra shown by the
solid, dotted, and dashed linesin Fig. 8, respectively.

In view of the large number of physica factors
involved in SC generation by ultrashort laser pulsesin
an MS fiber, a linear chirp is generaly insufficient to
optimize this process. Methods of optimal phase con-

No. 5 2002



858

100

H]
105 ‘l'

Output intensity, arb. units

104

TTTTT
-
1l

| |
600 700 800
Wavelength, nm

900

| |
400 500 1000

Fig. 9. Spectra of supercontinuum emission generated by a
50-fs Ti:sapphire laser pulse with an energy of (dash-dotted
line) 8, (dashed line) 12, and (solid line) 16 nJin a 1-m
microstructure fiber with a single ring of holes around the
fiber core (Fig. 1a) and a core diameter of 4 um.

trol [36—39] with the use of spatial light modulators
[4043], alowing light pulses with arbitrary amplitude
and phase profiles to be produced, seem to offer much
promise for optimizing the initial chirp of the input
pulse for the efficient generation of supercontinuum
emission with controllable spectral and tempora
parameters.

6. SPECTRAL PROPERTIES
OF SUPERCONTINUUM EMISSION

The spectral quality isthe key property of supercon-
tinuum for numerous spectroscopic and metrological
applications, as well as for ultrashort-pulse synthesis
and for using supercontinuum emission to seed optical
parametric amplification. In this section, we will show
that M S fibers allow the generation of supercontinuum
with a high spectral quality using femtosecond pulses
of moderate powers.

The results of experimental studies presented in
Fig. 9 demonstrate that the parameters of input laser
pul ses can be matched with the characteristicsof anM S
fiber in such a way as to allow the generation of SC
emission with flat spectra spanning over nearly an
octave. Supercontinuum emission with such aspectrum
can be employed for spectroscopic purposes, aswell as
seed radiation for optical parametric amplification.

The possibility of achieving highly efficient conver-
sion of pump pulse energy into the visible range is an
important property of SC emission generated in MS
fibers. This possibility is illustrated by Fig. 10, which
displays the spectra of SC emission generated by 60-fs
pulses of Ti:sapphire laser radiation with an energy on
the order of 10 nJ coupled into a 1-m MS fiber with a
single cycle of ar holes around the fiber core. The
pump field is depleted under these conditions, resulting
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Fig. 10. Pump depletion in supercontinuum generation:
spectra of supercontinuum emission generated by a 60-fs
Ti:sapphire laser pulse with an energy of 8 nJ (dashed line)
and 12 nJ (solid line) in a 1-m microstructure fiber with a
singlering of holes around thefiber core (Fig. 1a) and acore
diameter of 2.5 um.

in a highly efficient generation of a broadband visible
light.

It should be emphasized that the spectral quality of
SC emission attainable with MSfibers (Fig. 9) is much
higher than the quality of white-light emission conven-
tionally employed for optical parametric amplification.
This circumstance, complemented by the tunability and
controllability of SC spectra (Figs. 4, 6, 9, 10) by
matching parameters of the pump pulse with the param-
eters of an MSfiber, including the possibility of achiev-
ing the pump-depl etion regime (Fig. 10), suggests ways
of using MS fibers for creating a new generation of
optical parametric amplifiers and broadband sources
for spectroscopic studies.

7. CONCLUSION

Thus, based on the investigation of the mode struc-
ture and spectral properties of supercontinuum emis-
sion produced in microstructure fibers, we proposed
and experimentally implemented the method of spatial
filtering and spectral dlicing of this supercontinuum
emission. The key physical effect behind our method of
spatial and spectral filtering of SC emission is associ-
ated with the increase in the separation between the
propagation constants corresponding to adjacent
guided modes with a decrease in the fiber core diame-
ter. Microstructure fibers provide sufficiently small
core diameters for the redlization of this approach.
Supercontinua in such fibers can be generated in the
regime when multimode-phase-matched four-wave
mixing results in a preferable generation of new spec-
tral components emitted as a part of the supercontin-
uum in a certain (perhaps, high-order) guided mode.
Theresults of our experimental studies presentedinthis
paper demonstrate the possibility of separating isolated
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spatial modes in supercontinuum emission produced in
such fibers within different spectral ranges. The pro-
posed method of spatial mode filtering provides a high
spatial quality of supercontinuum emission, which is
sufficient to alow efficient further frequency conver-
sion of spectrally sliced supercontinuum emission. This
frequency convertibility of SC spatial modes was dem-
onstrated by our experiments where spectraly dliced
supercontinuum emission was mixed with the funda-
mental radiation of a Ti:sapphire laser in a nonlinear
crystal to produce a sum-frequency signal. The method
of gpatial and spectral filtering of supercontinuum
emission from microstructure fibers developed in this
paper opens the way to conveniently and efficiently
employ M S-fiber-generated supercontinuum emission
for spectroscopic applications, time-resolved measure-
ments, optical metrology, and coherence tomography,
offering, at the same time, new solutions for synthesiz-
ing ultrashort light pulses.

Our studies have also demonstrated the possibility
of achieving a high spectral quality of supercontinua
produced in microstructure fibers. We have explored
the ways to control the spectrum of supercontinuum
emission by matching parameters of the pump pulse
with the parameters of a microstructure fiber and by
varying the initial chirp of the pump pulse. The results
of our investigations show that supercontinua produced
in microstructure fibers offer new approaches to
designing a new generation of optical parametric
amplifiers and broadband radiation sources for spectro-
scopic, metrological, and biomedical applications.
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ATOMS, SPECTRA,
RADIATION

The External Field Effect on Transient Radiation
of an Ultrarelativistic Particle
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Abstract—An external field determining the law of particle motion was shown to change the intensity of tran-
sient radiation in the ultrarelativistic case. The angular and frequency distribution of transient radiation in an
external field was obtained. The possibility of determining the energy of an ultrarelativistic particle from the
measured azimuthal asymmetry of particle transient radiation in an external field was discussed. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Theformation of transient radiation when afast par-
ticle crosses the boundary surface between media[1-5]
occursin afinite region of space at the interface. When
a photon of frequency wis emitted by an ultrarelativis-
tic particle having the energy

E=ymc® > mc?,

the path length of the particle in the region of radiation
formation (the coherence length) is| ~ (c/w)y?, and the
cross section of this region is small compared with |.
Transient radiation arises without external field partici-
pation. However, if a particle deflected by a field
escapes the region of radiation formation, this disturbs
the radiation formation process, and its intensity
decreases. At high energies and low frequencies, coher-
ence length | can be large to the extent that an external
field can withdraw the particle from the formation
region, thereby decreasing the intensity of transient
radiation.

It would be interesting to estimate the external field
effect on transient radiation and find the region of fre-
guencies and energies in which this effect can be sub-
stantial.

2. TRANSIENT RADIATION OF A CHARGE
MOVING WITH ACCELERATION

Let aparticle with charge e fly out at avelocity v =
¢ from aconductor (z< 0) into avacuum (z> 0), wherean
externd field paralld totheinterfacez= 0 acts. Weassume
that particle velocity v(t) changes insignificantly during
radiation formation time 1/(w—Kk - v). This allows us to
write the law of particle motion as

r(t) = vt+ut+wt’/2

(v is the perpendicular and u is the normal velocity
component, v O w). If aconstant uniform electric field
E actson the particle and E 0 u, then

_eE

my’

The boundary conditions at the surface of the conduc-
tor z= 0 can be satisfied by the introduction of aficti-
tious charge-image —e moving by the law

r(t) = —vt+ut+wt/2.

Thefield outside the conductor then coincides with the
field of these two charges when they move in the vac-
uum. The angular and frequency distribution of radi-
ated energy has the form

e _ da
dwdQ T[2C3

x J'dtexp{ i(w—k [)t—ik Cwt*/2 @

x{[n xv] cos(k Ort)}

2

—{it[n Qu +wt)] sin(k vt} | .

The action of the field can be substantia if field-inde-
pendent termsin part cancel each other. For instance, in
the ultrarelativistic case, the difference

w—k 7 —k [U Doly* < w

is small in the exponential functions exp{i(w—k - v —
k -u)t—ik -wt%/2}. If the main terms do not cancel each
other, externa field effects can always be ignored in a
first approximation. This allows (1) to be rewritten as
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d’E _ e’w’
J0d0 ~ 172

[n v —-u)]

)

00

><J'dtexp{i(oo—k OV —k [u)t—ik Cwt?/2}
0

2

Theintegral in (2) does not reduce to elementary func-
tions and can be expressed viathe Fresnel integrals

S(x) = ﬁj’s&ntzdt,
0

X (©)
2 2
C(x) = J: cost“dt.
gl
The integration gives
J’dtexp{(oo—k v —k CU)t—ik Cwt*/2}
0
_ [_m O i(—k O —k )
" ko PE kiw o
(4)
1 C(w—k [V —k [)
x ] =+ sgn(k Cw
ﬁz son(i ) =]
: 1 w—k OV —k g O
—isgn(k Ow)| = + sgn(k W) SE———-x—
son(k (w) 5 + sgn(k (W) SP— == | 5

The angular and frequency distribution of transient
radiation has the form

d’E _ o’lnxv]’
ddQ  cd |k O

C(w—k Or—k [U)T

NE ©

x aé + sgn(k [w)

_ _ 2
+ [% + sgn(k DN)SEPO——————————————k vk EUD} 3

O
5o Jzkel Y
At large x, the C(x) and S(x) Fresnel integrals oscil-

late about 1/2 with an amplitude slowly decreasing as x
increases,

(6)
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At small x, the Fresnel integrals rapidly increase from
zero at X = 0 to values of the order of oneat x ~ 1. Inthe
vicinity of zero, we have

3
s0= 2 co= B @

Let usintroduce auxiliary functions f(x) and g(x) deter-
mined by the equations

%—S(x) = g(x)sin(Tx’/2) + f(x) cos(Tx’/2), (8)

%—C(x) = g(x)cos(TE/2) — f(x)sin(T2). (9)

The distribution of radiated energy [Eq. (5)] fork -w <0
takesthe form

d’E _ €w’[nxv]’
J0d0 ~ 28 K W]

ngz[po—kD/—kEUD
0 0 Jektw U

N fz[po—k v —k [LIDEl
5ok Bp
Inthe 0 < x < o region, the f(x) and g(x) auxiliary func-

tions can be approximated with an error smaller than
2 x 1078 by the equations [6]

1+ 0.926x
2 +1.792x + 3.104%X"
1
2+ 4.142x + 3.492% + 6.670x"
More accurate approximations can be found in [7].

(10)

f(x) =
(11)

9(x) =

3. AZIMUTHAL RADIATION ASYMMETRY
AT NORMAL INCIDENCE

If acharged particle crosses the surface of aconduc-
tor along the normal to this surface, the distribution of
radiation has azimuthal symmetry in the absence of a
field. An external field breaksthis symmetry. The direc-
tion of radiation emission will be specified by the§ and
¢ angles of the spherical coordinate system with the
axis along z. Let particle acceleration in the field be
directed along the x axis. The argument of the f(x) and
g(x) functionsin (10) at normal particle incidence (u =
0) can then be written as

2
w-k IV _ w l—cosﬁfl/Zy _ (12)
12k w| 2w(w/c)sind cosp

The limiting case in which the value of (12) tends to
infinity corresponds to transient radiation in the
absence of an externa field. The angular and frequency
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distribution of radiation [Eq. (1)] then transforms into
the distribution typical of usual transient radiation,

d’E _ € [nxv]?®

dwdQ leC{l—(n B//C)Z} 2°

(13)

It follows from (12) that this limiting Situation corre-
spondsto ¢ =+1/2andtod — 0. Thed < 1yregion,
however, makes a small contribution to the intensity of
radiation and can be ignored. It follows that radiation
emitted in the plane which is normal to the external
field and passes through particle velocity (that is, at ¢ =
+102) isfully independent of the external field strength.
The intensity of radiation propagating in the plane that
passes through particle velocity and field (that is, a ¢ = 0)
can, however, substantialy decrease depending on
external field. The ratio between radiation intensities
corresponding to ¢ = 0 and ¢ = +7172 can be obtained in
the form

d’E(¢ = 0)
dZE(q) = 102)

Du) k O/ L 200K O kEv
DA/zk D U2k tw

This ratio substantially decreases as particle energy
increases and the angl e of radiation emission decreases.
For instance, when the argument of Fresnel integrals
(12) iscloseto one, g? + f2= 1/3, and (14) becomes

dE(¢p=0) _ S’
d’E(¢ = 102) 6|nBN|

whereit istaken into account that uItrareI ativistic parti-
cle radiation is concentrated at © < 1. It follows that
azimuthal asymmetry of the angular distribution of
transient radiation strongly depends on the energy of
the particle. The presence or absence of azimuthal
asymmetry shows whether or not field strength is suffi-
cient for influencing transient radiation.

_nef{1-(nW/c)3’
- |k Cw|

(14)

; (15

4. DISCUSSION

Equation (15) shows that, at normal incidence, azi-
muthal radiation asymmetry is substantial when the
value of (12) isgreater than unity. In auniform external
electricfield E at anglesd ~ 1/y, thiscondition ismet if

(16)

Transient optical rangeradiation at y ~ 10* substantially
changes in afield of about 500 V/cm. Transient radia-
tion azimuthal anisotropy in the centimeter radio fre-
quency band at y ~ 102 appearsin afield of the order of

elE| O(w/y*)mec = mc?/Ay>.
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or stronger than 1 V/cm. These field values correspond
to maximum azimuthal anisotropy of transient radia-
tion. In lower fields, the azimuthal anisotropy issmall.

Azimuthal anisotropy of transient radiation in an
external field isfairly easy to measure, its dependence
on the Lorentz factor is quadratic, and increasing
energy thereforeimprovesthe conditionsfor measuring
anisotropy in afairly strong field. The conclusion can
be drawn that measurements of azimuthal anisotropy of
the angular distribution of transient radiation in an
external field can conveniently be used to determinethe
energy of ultrarelativistic particles.

As condition (16) of maximum azimuthal anisot-
ropy actually depends on the ratio between the external
field strength and radiation frequency (|EJ/w), conve-
nient external field conditions can be attained by vary-
ing the frequency of radiation.

Note that we only considered transient radiation
formed close to the surface of a conductor aong parti-
clepath of the order of the coherence length. The action
of afield on a particle also causes radiation along fur-
ther particle trajectory. This radiation is, however, not
related to particle crossing of theinterface; thisis usual
radiation caused by particle movement in an external
field. Such radiation is determined by the specific char-
acter of further particle movement in an external field,
and its contributions can be various. In comparison
with experiment, this radiation should be taken into
account, but including it in a general consideration is
inexpedient. Indeed, such radiation depends on the
velocity of a particle rather than its energy, and its dis-
tribution strongly depends on the conditions of further
particle movement in the measuring device.
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I nteraction of Charged Dust Particlesin Clouds
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Abstract—The solution of the Poisson—Boltzmann equation for a cloud of charges surrounding two charged
dust particlestreated as Debye atoms forming a Debye molecul e isinvestigated numerically using Cassini coor-
dinates. The electric force exerted on adust particle by the other dust particle was determined by integrating the
electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the fol-
lowing two conditions are satisfied. First, the Debye radius (corresponding to the electron density at half the
mean distance between the dust particles) must be approximately equal to half the mean distance between the
dust particles. Attraction between the dust particles emerges at a distance equal approximately to half the mean
distance between the dust particles. Second, attraction takes place when like charges are concentrated predom-
inantly on the dust particles. If the particles carry a small fraction of charge of the same polarity, repulsion
between the particles takes place at all distances. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The study of aplasmain which charged particles of
micrometer size play a significant role (so-called dust
plasma) is interesting from the fundamental and
applied pointsof view (see[1, 2] and theliterature cited
therein). It is especialy interesting because of the col-
lective effects observed in adust plasma dueto its non-
ideality [3-6]. The properties of a nonidea plasma are
often considered in the so-called one-component
approximation. In this case, one of the chargesis sort of
smeared uniformly over the space, and polarization
effects are taken into account in the form of corrections
in some cases.

Apparently, the physics of processes occurring in a
dust plasma is basicaly different. The major object of
investigation must be dust particles surrounded by
clouds of charged particles with masses much smaller
than the dust particle mass. A charged dust particle sur-
rounded by acloud of charges of the opposite signisan
analogue of an atom in gas kinetics. Generally speak-
ing, the charge shell of such a*“dust atom” may not be
in thermodynamic equilibrium. However, we will con-
sider the situation when the charge distribution in the
shell is of the Boltzmann type. Such a dust atom can
naturally be referred to as a Debye atom [7] in contrast
to a Thomas—-Fermi atom in which the charge shell is
formed by a degenerate electron gas. Similarly, we can
introduce the concept of a Debye molecule [8, 9] and a
Debye crystal. The properties of such Debye systems
are determined analytically by the Boltzmann distribu-
tion and the Poisson equation, i.e., by the Poisson-Boltz-
mann equation.

According to the results of anumber of experiments
(see, for example, [3-6]), dust particles of amicrometer
size in thermionic plasmas, gas-discharge plasmas, and
nuclear-excited plasmas may form 3D structures. Con-
sequently, it is natural to assume the presence of attrac-
tive forces emerging due to polarization of charge
shells of Debye atoms. However, convincing theoreti-
cal results demonstrating the attraction of Debye atoms
have not been obtained so far. The exact solution of the
Poisson-Boltzmann equation shows that charged
planes in an electron cloud as well as in a plasma
always exhibit repulsion rather than attraction [10, 11].
Numerical calculations of the forces of interaction
between Debye atoms|[8, 9], like the results of approx-
imate analysis [12, 13], were not quite reliable until
recently.

The problem of interaction of particles in a dust
plasmais close to the problem of interaction of colloi-
dal particlesin electrolytes. The very concept of Debye
radius for plasmas was borrowed from the theory of
electrolytes. However, in spite of the long history of
investigation into the physics of colloidal particles in
electrolytes[10], the origin of attractive forcesin elec-
trolytes has not been clarified completely (at least, for
the case when the diameter of a colloidal particle is
smaller than the Debye radius; see, for example, [14—
18]).

Below, we make an attempt to demonstrate reliably
the existence of polarization forces of attraction
between Debye atoms and to determine the conditions
under which attraction appears. This work differs
methodically from other publications devoted to an
analysis of interaction of charged dust particlesin plas-
mas and in el ectrolytes.

1063-7761/02/9505-0864%$22.00 © 2002 MAIK “Nauka/Interperiodica’



INTERACTION OF CHARGED DUST PARTICLES IN CLOUDS

First, in contrast to a number of publications (see,
for example, [10, 12-18]), we consider the situation
when the total charge of dust particlesis not negligibly
small as compared to thetotal charge of the plasma par-
ticles (of the same polarity) surrounding dust particles.
Moreover, it will be shown (see [19] for preliminary
results) that attractionismost significant in the opposite
limiting case, i.e., when almost the entire charge of one
polarity isconcentrated in dust particles and the clouds,
accordingly, contain charges of the same (opposite)
sign.

Second, in an analysis of the properties of a Debye
molecule, werely mainly on the fact that a Debye atom
has a definite structure. In particular, the charge of a
dust particle cannot be considered approximately as a
deltafunction asaruleevenif itsradiusismuch smaller
than the Debye radius.

Third, we calculate directly the resultant force
exerted on a dust particle by another dust particle and
by the charge shell rather than the potential energy of
the system. The dependence of the energy of interaction
between dust particles on their separation is determined
by the integration of this force. The Poisson-Boltz-
mann equation is solved in our case in an infrequently
used system of coordinate based on Cassinian ovals
[20, 21]. This enables us to calculate the field strength
in the vicinity of the surface of a small dust particle to
ahigh degree of accuracy and to determine reliably the
force acting on the dust particle.

2. FORMULATION OF THE PROBLEM
2.1. Poisson—Boltzmann Equation

For the sake of definiteness, we will consider bel ow
a therma emission plasma and speak of positively
charged dust particles and of the electron shell of
charges. However, the main results are also valid for an
electric-discharge dust plasma as well as a plasmaion-
ized by an external source of hard radiation, when dust
particles bear a negative charge and charge shells con-
sist predominantly of positiveions.

Let the electron gas surrounding charged particles
be formed due to emission of electrons from dust parti-
cles having a rather high temperature T. In addition,
dust particles are in partly ionized gas. In order to find
the spatial distribution of potential ¢, the field strength
—[@ , and the charge density p = e(N; — Ng), we must
solve the Poisson equation

Op ) = 4mp.

Inthisequation, thedensitiesN; and N, of ionsand el ec-
trons are determined by the Boltzmann distribution

N; = Njpexp(-eq/T),

where N,; and Ny, are the densities of ions and electrons
at the points where the potential is equal to zero, and [
is the Hamilton vector operator.

Ne = NeOeXp(e(p/T)a
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Thus, the Poi sson-Boltzmann equation hastheform
A = 4Ame(Ngoexp(e@/T) — Njoexp(—e@/T)), (1)

where A = 12 is the Laplace operator; the temperature
of particles and plasmais assumed to be the same.

2.2. Dimensionless Quantities

We will measure the length in units of the Debye
radiusrp = (T/41e?Ny)Y? corresponding to the electron
density at the pointswherethe potential isequal to zero.
We introduce dimensionless quantities (potential ¢,
electric field strength E, and the electron density n,)
with the help of relations

_ e _ [ erp

== E=- ,
0 T T (2)
ne = r%Ne = nDequ)’

wherenp = 12Ny, .

In our estimates below, we will proceed, as arule,
from the experimental conditions [3], in which Ny =
25 x 10 cm= and T = 0.146 eV = 1700 K; for the
characteristic quantities, we have rp = 18 um, T/e =
0.146V, and T/erp = 80 V/cm. For the mean radius of a
dust particler, = 0.4 pm (ry = r/rp = 2.23 x 107?) and
its charge Z,e = 500e, we have the field strength on the

particle surface Z,e/rg = 4.5 x 104 V/em (E, = E(ro) =
550).

For the dimensionless quantities, Eq. (1) can be
reduced to the following equations for the dimension-
less potentia ¢:

A¢ = expd —dexp(—9), 3
OE = (exp¢ —dexp(-9)), E = -[¢ .

Here, & = N,o/N is the parameter characterizing addi-
tional ionization of the gas. In view of the quasi-neu-
trality of theplasma, 0<d < 1.

2.3. Boundary Conditions

Following [7], we will use the term “Debye atom”
for asingle charged dust particle surrounded by acloud
of lighter charges in thermodynamic equilibrium; two
or more dust particles will be referred to as a Debye
molecule[8, 9]. Formally, the analyses of a Debye atom
and aDebye molecule differ only in the geometry of the
problem. While analyzing a Debye atom, we can get by
with the solution of the one-dimensional Poisson equa-
tion, assuming that the electron cloud is sphericaly
symmetric. In an analysis of a diatomic Debye mole-
cule, we can assume that the problem is symmetric
about the x axis connecting the nuclei (dust particles).
In this case, it is sufficient to consider the two-dimen-
sional equation (3) in the coordinate plane xy. Aswe go
over to an analysis of a Debye molecule, the problemis
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complicated considerably due to the choice of the
boundary conditions.

In the real physical problem, the charge Ze of dust
particles and their radiusr, are specified (the formation
of the dust particle charge is described in [22-24]).
Consequently, one of the boundary conditions is that
imposed on the field strength on the surface S of dust
particles:

Eo = -0 |s (4)

The particle charge in this case is defined as
2
7 = IPrgds 7z = —(Eds ©)
P 4TreI P 4TJ '
S S

Here, z, isthe dimensionless charge of aparticle, which
is connected with the charge Z, of the particle in units
of electron charge through the relation

Z, = 4mz,np;

the area of the surface is measured in sguares of the
Debyeradius.

In the second boundary condition, we must define
the surface S on which thefield is equal to zero:

@ | =0 (6)

The zero value of the electric field at the boundary fol-
lows from the quasi-neutrality of the system of charges
under investigation. Surface S determinesthe boundary
of the Debye system under investigation.

In an analysis of a Debye molecule, we mainly aim
at determining the resultant el ectrostatic force acting on
the dust particles as a function of the distance d
between them. In this case, it ismore convenient to pro-
ceed from other boundary conditions[8, 9]. We specify
not thefield, but the constant potential on the surface of
dust particles,

b|s = ¢ = const.

Thefield strength E, on the surface of adust particleis
determined from the solution of the Poisson—Boltz-
mann equation. The resultant force is determined with
the help of theintegral of electrostatic pressure over the
surface of adust particle. In order to obtain the required
value of charge z, (5), we must change appropriately
the value of potential ¢

In the case under investigation, the force of interac-
tion between dust particles is directed along the z axis
and is defined as

F=gef(®)]sds, = [Eds. ()
S S
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Here, ds, is the component of the surface area element
ds aong the z axis, the force F is connected with the
dimensionless force f through the relation

F = (T?/8ned)f,

and the electric pressure is directed along the outward
normal to the surface of dust particles.

3. SOME PROPERTIES OF DEBYE ATOMS
3.1. Debye Atom

3.1.1. Poisson—Boltzmann equation. The proper-
ties of a Debye molecule are mainly determined by the
properties of the Debye atoms constituting this mole-
cule. In particular, for a large distance between dust
particles, a Debye molecule must decay into two inde-
pendent Debye atoms. We will use this fact below. For
this reason, before calculating the force of interaction,
we consider some properties of Debye atoms (see also
[25]).

In the one-dimensional (i.e., in a planar, cylindri-
cally, or spherically symmetric) case, Eq. (3) assumes
the form

Sl G = e -sem(-0),
Oli—e, = O, ®
E(r)|r=a05_% f=a =0

Here, k=0, 1, 2 for the planar, cylindrically, and spher-
icaly symmetric cases, respectively; depending on the
geometry, point r = 0 corresponds to the beginning of a
planar layer, the center of the cylinder, or the center of
the sphere. One of the boundary conditions specifies
the boundary r = a, of the Debye atom, at which the
field isegual to zero.

We will consider below the spherically symmetric
case (when k = 2), which simulates a Debye atom, and
the planar case enabling us to consider the variation of
the potential near the dust particle surface [6-8]. In the
spherically symmetric case, a convenient characteristic
of aDebye atom is the dimensionless charge contained
in a sphere of radiusr, which is defined as

2(r) = r’E(r).

3.1.2. Debye atom in a cloud of like charges. The
case 0 = 0, when charge shells are formed by particles
with charges of the same polarity, corresponds, for
example, to athermionic plasma[3] or agasionization
such that the charge of one polarity is completely con-
centrated on dust particles (see, for example, [24]). We
choose the value of a, equal to half the mean distance
between dust particles:

8 = a,= (N, /2rp),
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INTERACTION OF CHARGED DUST PARTICLES IN CLOUDS

where N, is the dust particle density (see Fig. 1). The

value of N,j”3 /2 issmaller than the Wigner—Seitz radius
Fws = (4TN,/3)~23 by 24%.

Wewill consider the most interesting situation when
the dust particle radiusr, is much smaller than the sep-
aration ro = r,/rp < a, between dust particles. In exper-
iments [3], N, = 5 x 10" cmr™3; accordingly, a, = 0.755,
and the conditions of the smallness of the dust particle
radius are satisfied:

arplr, = aglrg = 34.

The results of analysis of Eq. (8) for the spherically
symmetric case (k = 2) show [25, 26] that, for amoder-
ate charge

2,2 Z,€r,T<ay/3

of asmall particle, ry << a,, the distributions of charge,
field, and potential around adust particle are defined by
the relations
Zr)
2

2r) = %g[l-%ogj, e = 22

For alarge charge z, > a§/3 far away from the dust
particle surface, for

(9)

ro—3rifal>r >ay,

expressions (9) are valid as before. A change in the
dependences is observed near the surface (r < ry —
3ré/a3), where a sharp decrease in z(r), E(r), and ¢(r)
is observed (see Fig. 2 and [25]). In other words, for a
large charge of a dust particle, the Debye radius of the
atom has a certain core formed by the charge shell in
the vicinity of the surface of the dust particle. The
charge of the particle together with the core is z,, =
a§/3. The screening of this “remaining” charge occurs
at alarge distancer closeto a,.

The condition of the large particle charge
2,2 Z, €T > 2

can be written for the particle charge measured in units
of electron charge:

TN
z.>72.=—2
P Ccor 6Np

According to the results of measurements [3], the
charge of dust particlesis quite large:

Z, = 500> Z,, = 262, z, = 0.273>27, = 0.143.
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Fig. 1. Schematic diagram of an aggregate of Debye atoms
and a Debye molecule.
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Fig. 2. Charge z (solid curve), field strength E (dotted
curve), and potential ¢ (dashed curve) as a function of the
distance r to the particle center, measured in units of the
Debyeradius (5 = 0). The radius of a Debye atom ag = a, =

N;m [2rp = 0.755 is chosen for the experimental conditions
[3]: T= 1700 K, N, = 5 x 10" cm™3, Ny = 255 x 1010 cm™,
rp=18pum, r,=0.4pum, rg=ry/rp=2.23x 102

Calculations show, however (see Fig. 2), that for values
of electron density and temperature measured in [3],
the charge of dust particles of the given radius in the
thermal equilibrium state must be Z, = 286 (z, = 0.156),
which is smaller than the measured value Z, = 500.
Consequently, either the measured values of plasma
parameters are considerably inaccurate, or the dust par-
ticle charge is nonequilibrium under the experimental
conditions [3] (see also [24]).
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Fig. 3. Relation between the parameters characterizing a dust plasma and the parameters of a Debye atom: (a) dependence of the
dimensionless charge zy, of the electron shell (solid curve) and zy; of theion shell (dotted curve), as well as of the uncompensated

charge of the shell zy = zy, — Zg; (dashed curve) on parameter d; (b) dependence of the parameter &, characterizing the ratio of the
total number of ions in a Debye atom to the number of electrons (solid curve) and of the radius ag of a Debye atom (dotted curve)
on the parameter & characterizing the ratio of the number of ions to the number of electrons at the boundary of a Debye atom. The

parameters of adust particlearerg = 0.1, ¢(rg) = 2.4, z(r) = 0.28.

3.1.3. Debye atom in a plasma. In the case & # 0,
when charge clouds consist of particles of both polari-
ties, the radius of a Debye atom is defined, as before, as
the distancer = a, at which the charge of adust particle
is completely compensated by free charges of the
plasma (E(ay) = 0). Asinthe case = 0, theradius of a
Debye atom is equal to half the mean distance between
dust particles. For d = 1, we can consider an isolated
dust particlein aninfinitely large volume of the plasma.
For d — 1, theradius of a Debye atom tendsto infinity
(ap — ). Asamatter of fact, the finite charge 7, of a
particle may be compensated completely by a quasi-
neutral plasmaonly if the plasmasizeisinfinitely large.
If d <1, theradius of a Debye atom isfinite.

The dimensionless charges of electrons and ions
contained in the charge shell are defined as

a,
Zge = Iexp(q)(r))rzdr,

N (10)

Zg = 6Iexp(—¢(r))r2dr, Zy = Zoo—Z;-

o

The quantity &, = z;/7,. gives the ratio of the free
charge of ionsin a Debye atom to the electron charge.
Generally speaking, the value of o, must be a complex
function of parameters o, a,, and ¢,. However, in the
cases when the main contribution to integration in
expressions (10) comes from the region of small values
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of potential ¢(r) < 1, we can assume approximately
that &, = d.

Figure 3illustrates the dependences of z., Z;, and ;
on 3. In the results presented in Fig. 3, the value of g,
for different values of d was chosen aslarge as possible
for the radius of a dust particle corresponding to the
experiments [3]:

fo = rplfp = 2.23x 107,

Thiswas carried out by “test firing”: when the value of
a, was chosen greater than that in Fig. 3, the particle
charge becomes infinitely large (z(ry)) — ). The
obtained dependences z(r) and ¢(r) were used for deter-
mining z, = z(ry) and ¢y = ¢(ry) for ro = 0.1 (see dso
Fig. 4).

It can be seen that, as the value of & increases, the
number of both positive and negative charges in the
shell of aDebye atom increases dueto anincreasein its
volume (see Fig. 3). At the same time, the number of
uncompensated charges z, = z,. — Z; remains virtually
unchanged upon achangein &. In the range of parame-
ters under investigation, &, = d.

Asin the case of & = 0, for agiven value of rg, the
value of a, cannot be infinitely large for an indefinitely
large value of the particle charge z,. For alarge value of

Ey= zolré, at adistancer —ry ~ 1/E, from the particle
surface, a sharp decrease in the dependences z(r), E(r),
and ¢(r) is observed due to the screening by charges of
the opposite polarity (see Fig. 4). In this case, the value
of ay is bounded by a certain limiting value ag = @y
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(Ey — o). This limiting value increases logarithmi-
caly ford — 1.

:1‘|ni+1‘
Boma = 577575
when 0.9 < 5 < 0.999 (see [25]).

Since a Debye atom has a core screening the charge
of the dust particle, we cannot ascribe the unscreened
value of the charge to the dust particle while consider-
ing the interaction of Debye atoms.

3.2. On the Interaction of Dust Particles

3.2.1. Interaction of nonpolarized particles. If we
imagine a situation when the shells of Debye atoms
separated by distance d do not interact with one
another, attractive forces cannot emerge between dust
particles. Only repulsive forces will act between them.
Indeed, the force of interaction between nonpolarized
shells can be expressed in the form

f(d) = zg(d)z,/d’.

Here, z4(d) = E(d)d? is the total charge within the
sphere of radius d surrounding a dust particle (uncom-
pensated part of the particle charge). In view of quasi-
neutrality of a Debye atom, zg(r) = 0 for r > r,. The
charges of the same sign repel one another:

Za(d)Z, 2 0.

For the emergence of attractive forces, a rearrange-
ment (polarization) of charge shellsisrequired. In this
case, the number of charges attracting dust particles to
the center of a Debye molecule must increase on its
axis.

3.2.2. Interaction of charged planes. The Poisson—
Boltzmann equation (4) in the planar case (k= 0) hasa
solution in quadratures. This enables us to consider the
force of interaction between planes and to determine
the requirements to the accuracy of the solution to this
equation in the vicinity of the surface of adust particle.

An analysis shows that the electrostatic interaction
between the planes surrounded by a cloud of like
charges as well as between the planes located in a
plasma leads to the repulsion between the planes [10,
11]. By way of an illustration, we consider the case of
0 =0, which allows usto obtain simple analytic expres-
sions required for estimating the requirements to the
accuracy of calculation of the field and potential near
the surface of adust particle.

We consider the electrostatic pressure exerted on a
charged conducting plane located between two con-
ducting (left and right) planes with the same charge
density. If necessary, one of the planes can be removed
to aninfinitely large distance.
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Fig. 4. Dependence of charge z (solid curve), electric field
strength E (dotted curve), and potential ¢ (dashed curve) on
the distance r to the center of a particle, measured in units
of the Debyeradius (6 = 0.999). Theradius of amicroscopic

particlerg=2.23 x 1072 is chosen for the experimental con-
ditions[2].

Integration of the Poisson-Boltzmann equation for
the planar case gives[11]

6() = In(E*+E3), E(x) = Eytan[(a,—X)Ey/2].

The quantities E; = exp(¢,/2) and ¢, are connected with
a, through the relation

2 Eo
E arctan £

ay =
Here, x isthe distance to the plane under investigation,
which is assumed for simplicity to be infinitely thin,
and ¢, isthe value of the potential at point a,, wherethe
field strength is equal to zero. For identical charge den-
sities on the planes, the value of a, is equal to half the
distance between the planes.

Although the potential on the left and right of the
conducting plane is the same (¢(-0) = ¢(0) = ¢,), the
field strengths on the surface under investigation on the
left (E(-0) = Ey,) and right (E(0) = Ey,) sides are differ-
ent. This givesriseto the electrostatic pressure p on the
plane:

p = E;,—Ejy.

The quantity a, is amonotonically decreasing function
of E;. Accordingly, Ey > Eg, and p < Oif, for example,
the distance to the left plane 2a,, islarger than the dis-
tance 2a,, to the right plane. In other words, the result-
ant force of pressure is directed towards the more
remote plane. In particular, if one of the planes is
removed to an infinitely large distance, the remaining
two planes repel each other.
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Fig. 5. Dependence of the error in determining pressure (see
relation (11)) exerted on a conducting plane and of the dif-
ference in potentials on the left and right of the plane on the
distance x to the plane. The plane under investigation is
between two other charged planes; all the planes are under
the potential ¢ = 10. Half the distance to the left plane is
ap = 6.27, and half the distance to the right plane is ag =

2.08; p=2inthiscase.

Fig. 6. Cassini coordinates for the distance d = 1 between
the foci, which corresponds approximately to the transition
from attraction to repulsion at ag = 1.

Thus, attraction between dust particles can emerge
only in anonplanar geometry.

3.2.3. On the accuracy of computation of poten-
tial near the surface. In numerical integration of the
Poisson-Boltzmann equation, the value of the field
strength is determined at points of the mesh on which
the difference scheme is constructed. The value of E,
determined approximately corresponds to the value of
thefield at adistance of the order of mesh spacing from
the dust particle surface. Let us find the error in the
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pressure being determined resulting from inaccuracy in
determining the position corresponding to E,. Therela-
tive error in pressure determined from points separated
from the plane by distances x and —x in the planar
geometry is given by

Ap _ [p- (B0 -E’)
p p

It can be seen from Fig. 5 that, if the potential of the
planeissignificant (¢, > 1), the value of Ap/p amounts
to tensof percent even at small distancesx~0.01, while
the difference ¢(—x) — ¢(X) between potentials on the
left and right is virtually equal to zero. In other words,
numerical integration requires a very high accuracy in
determining the derivative of the potential near the par-
ticle surface, which dictates a very small mesh sizein
the vicinity of the surface.

At the same time, in order to determine the magni-
tude of the force acting on a particle, the method of
solving the Poisson-Boltzmann equation must ensure
the maximum accuracy just in the region near the sur-
face of dust particles. We are mainly interested in dis-
tances between dust particles exceeding considerably
their diameter. In ordinary systems of coordinates, it is
difficult to attain a sufficient accuracy in calculation of
the force acting on small dust particles.

(11)

4. METHOD OF SOLUTION
OF TWO-CENTER PROBLEM

4.1. Cassini Coordinates

We used orthogonal coordinates constructed on the
basis of the well-known Cassinian oval [20, 21] for a
certain particular case.

The relation between variables u and v defining a
point on the Cassinian oval with Cartesian coordinates
inthe quadrant x> 0, y > 0 is determined by the follow-
ing expressions.

X(U V) = i
2.2 (12a)
X JJepou + 2expucosy + 1+ expucosy +1,
d
yu,v) = —
2.2 (12b)

X JA/epoU + 2expucosv + 1 —expucosv — 1.

For the entire zy plane, the coordinate mesh is obtained
by the mirror reflection relativeto thezand y axes (d is
the distance between the foci of the ovals located at
points (—d/2, 0) and (d/2, 0)). Variable o > u> —w0 isa
certain analogue of the radial variable. For u < 0, the
curve has the shape of two independent ovals; for u=0,
the coordinate line is a Bernoulli lemniscate, i.e., an
ova withaninfinitely slim“waist.” For 0.65>u >0, we
have an oval with awaist, while for u > 0.65, the ova
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hasan ellipsoidal shape. Variable 1> v > 0 isanaogous
toananglein polar coordinates. For v =0, the point lies
ontheray (d/2, «) along the abscissaaxis; for v =1, the
locus approaches the angle formed by the segment (0,
d/2) on the abscissa axis and the ray (0, o) along the
ordinate axis. The shape of coordinate lines is illus-
trated in Fig. 6. The application of coordinates (12) pro-
vides the following important advantages. First, the
family of Cassinian ovals corresponds qualitatively to
the pattern of equipotential surfaces for two like-
charged particleslocated at thefoci of the oval. Second,
the domain of the solution of the equation in these coor-
dinates becomes rectangular. Third, the density of ovals
increases exponentially towards the surface of dust par-
ticles. This allows us to use a homogeneous mesh even
for large distances between small particles.

4.2. On the Method of Solution

Without going into details, we describe the main
feature of the method of solution. It isconvenient to use
Cassini coordinates in the situation when the radius r,
of dust particles is much smaller than both the Debye
radius (ro < 1) and theradius of aDebyeatom (ry < a).
Considering the range of large distances between parti-
cles (d > 5ry), we can treat small dust particles as
Cassinian ovals close to circles. On a small oval, it is
convenient to define the value of potential ¢,. At the
same time, the cloud of charges enveloping dust parti-
cles can be described by an ellipsoidal oval for d < 5a,,.
It is convenient to define the zero value of the field on
thisoval.

The surface of a dust particle and the outer surface
corresponding to the boundary of the Debye molecule
(on which the field vanishes) are described in coordi-
nates (8) by the constants

r
U = InfE22(a+ rof]

4 (13)

_ )

Upe = InD?(d+a0)E.

The boundary conditions (2) in this case have the form
_ 09 -

q)lu:um.n - ¢0’ ou U= = 0. (14)

The Poisson—Boltzmann equation (3) with the
boundary conditions (13), (14) was solved by the
Gauss-Newton method of iterations using the program
packet MATLAB.

The variation of the potential in Cassini coordinates
and in Cartesian coordinatesisillustrated in Fig. 7.

In order to calculate the charge and the force of
interaction of dust particles, we considered 3D coordi-
nates formed by rotating 2D coordinates (8) about the x
axis. In these coordinates, we calculated the force of
interaction between dust particles by formula (7). The
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Fig. 7. Potential surfaces(a) ¢(x, y) in Cartesian coordinates
and (b) ¢(u, v) in Cassini coordinates. The solution is
obtainedfor=0,d=1,rg=0.1, a5 =0.755, and ¢ = 1.16.

energy of interaction of dust particleswas calculated by
the formula

0

u() = I f(x)dx + const. (a5)
d

The constant was usually chosen so that the energy
U(d) at the minimum was equal to zero,

min(U(d)) = 0.

5. RESULTS OF CALCULATIONS

5.1. Debye Moleculein a Cloud
of Like Charges (6= 0)

5.1.1. Choice of parametersfor calculations. Cal-
culations were made for parameters ¢,, ro, and ag,
which correspond to asingle Debye atom for d > a,. For
this purpose, we first solved the spherically symmetric
problem, in which the values of the field and potential
a point r = a5 were assumed to be equal to zero. The
solution to this problem was used to determine the
potentia ¢, on a particle with the given radius r,. Then
we solved the two-center problem with these values of
o ro, and a, for d = 10a,. The results of the solutions
for the spherically symmetric and two-center problems
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Fig. 8. Dependence of (a) the force component along the x
axisand (b) the potential energy of interaction between dust
particles on their separation d for & = 0. A positive value of
the force corresponds to repulsion between dust particles,
while a negative value corresponds to their attraction. The
normalization of the potential energy is chosen so that the
energy U(d) at the minimum is equal to zero. Solid curves
correspond to a constant potential ¢ = 1.16 on the surface

of dust particles; dotted curves correspond to a constant
charge z; = 0.156 of adust particle, which is ensured by the

selection of ¢(d); and dashed curves correspond to a con-
stant charge ensured by the choice of ag(d) for ¢q = 1.16.

The dot-and-dash curve in (a) gives the dependence of the
dust particle charge on distance d for the case of constant
potential ¢q=1.16.

coincided to a high degree of accuracy. In the subse-
guent series of calculations, we passed to smaller val-
ues of d.

In the series of calculations with the results pre-
sented in Fig. 8, we used the plasma parameters from
[3] and set a; = 0.755. Calculations showed that the
region of comparatively large distancesd ~ 2a, is most
interesting. Considering that the electron cloud near the
surface of dust particlesfor d ~ 2r, is polarized weakly,
we assumed for convenience of calculations that the
particleradiusry,= 0.1 isfivetimesaslarge asthe exper-
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imental value. Accordingly, the potentia ¢, = 1.16 bor-
rowed from the sol ution to the one-center problem for ry =
0.1 has a value much smaller than the potential on the
surface of a small dust particle (¢, = 6.5 for ry =
0.0223). In other words, a small charged conducting
sphere was replaced by a larger sphere with a charge
partly compensated by the charges of the electron
cloud. According to calculations, deep electron shells
are indeed polarized only dlightly, and such a replace-
ment is justified (see below).

5.1.2. Dependence of the force of interaction
between dust particles on their separation. In order
to determine the dependence of the force of interaction
between dust particles on the separation d, we carried
out a series of computations with given values of ¢, ro,
and a,. The particle charge z, in this caseisa so afunc-
tion of d. For thisreason, we made additional computa-
tionswith values of ¢, or a, changed in such away that
the particle charge z, did not depend on d.

Cdculations proved that, for small distances
between particles (d ~ry), repulsion takes place. Thisdoes
not match the results of numerica calculations [8, 9], in
which attraction was observed for d ~ r,. Apparently, the
above-mentioned error in caculation of the derivative of
potential near the surface of adust particlewaslargein the
computations[8, 9]. Theresultant forceisvery sensitiveto
thiserror. In actua practice, repulsion of particlesat small
distances prevails over polarization-induced attraction due
to the fact that charge envel opes close to the surface of a
dust particle are polarized weakly.

The equilibrium distance d = d, between dust parti-
cles, at which the force component reversesits sign, is
of considerableinterest. Inthe calculations presentedin
Fig. 8, we have d, = 1.3, which is slightly smaller than
the mean distance 2a, = 1.5 between dust particles. The
position of point d, weakly depends on the quantities
(do, ag Or 75, @y) preserved in calcul ations upon the vari-
ation of d. The variation of a, (for constant z, and ¢)
affects the value of d, more strongly. Apparently, con-
finement of the constant charge z, = const by varying
the particle potentia ¢, = ¢y(d) is more closely related
to the physics of interaction of charged dust particles.

Since the problem cannot be treated as a binary
problem for d > a;, we describe the results of calcula-
tions only for comparatively small values of d < 4a,,.
For the separation between particlesd > 2a,, the repul-
sion from other particles surrounding the two particles
under consideration becomes significant (see Fig. 1).

Knowing theforce of attraction F(2a,) between dust
particles separated by the mean interparticle spacing
2a,, we can estimate the electrostatic pressure com-
pressing the dust particle gas,

Pe= F(2a,)N2® = (TY8me’)N:°f(2a,),  (16)
and the surface tension of the “dust liquid,”
oe=FN3° = (N2°T?/8me’) f (2ay).
No. 5 2002
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Comparing the electrostatic pressure exerted on dust
particles with the gas-kinetic pressure of dust particles
and the gas-kinetic pressure of free electrons, we obtain

Pe/N,T = (T/8me’Ny°) f(2ay),
Pe/N,T = (T/81e’N)NZ*f(2ay).
Under the conditions of experiments [3], we have
|f(2a,)| = 0.2,

Pe = 9.7x107|f(2ay)| torr=2 x 107 torr,

o = 35x107°|f(2a))| N/m=7x 107 N/m,
Pe/N,T=20,  Pg/N.T=0.04.

It should be noted, however, that a comparison of
the electrostatic pressure exerted on dust particles with
the gas-dynamic electron pressure does not alow usto
draw any important conclusions since electrons are not
free, but arein the electric field of dust particles. At the
same time, a gas of Debye atoms in the mixture with a
neutral gas must exhibit a tendency to compression
under the given experimental conditions[3]. Such asit-
uation was considered in [27-29]. An analysis of the
effect of interaction between Debye atoms on gasdy-
namic properties of a dust plasma is beyond the scope
of this study.

5.1.3. Dependence on the size of the Debye atom.
We carried out a series of calculations for various val-
ues of a, (see Fig. 9). The calculations show that attrac-
tion takes place only for a; < 1. Even for a; > 1.12, the
sign-reversal point of theforceissituated at alarge dis-
tance d, > 4a,.

The condition a, = a,/rp < 1 can be written for
dimensional quantitiesin the form

Neo > N = —5N22. 17
e
Electrostatic compressive forces vanish when d, = 2a,,
i.e., for a;=1. Accordingly, the conditionay=10r N, =
Ner 1S the equilibrium condition for a gas of Debye
atoms.

In this case, the condition of alarge charge on apar-
ticle, z, > 1/3, can be written for the charge of the dust

particle in units of electron charge:

— T[Necr
Zp>zecr=é Np .

Under our experimental conditions, we have Ny, =
4.4 x 10'° cm~2 and Z,, = 460. These quantities are of
the same order of magnitude as those measured in the
experiments [3]: Ny = 2.5 x 10'° cm= and Z,, = 500.

Inview of thefact that the depth of the potential well
cannot be determined from an analysis of two Debye
atoms without taking into account the action of other
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Fig. 9. Dependence of the coordinate dy of the sign-reversal

point (bold curves) and of the steepness § of the force at
point dq (fine curves with squares) on the size ag of the

Debye atom. Solid curves correspond to a potential on the
surface of dust particles corresponding to ag and indepen-

dent of d; dashed curves correspond to a constant charge of
adust particle, ensured by the choice of ¢(d).

particles, wewill characterize theforce of interaction of
Debye atoms by the steepness at the point of intersec-
tion with the abscissa axis:

§=1(d)]g=q, = U"(d)|d:do'

The frequency of oscillation of dust particles about
the equilibrium position can be expressed in terms of
the quantity &,

172
w = |E| mOv

where w, = v+/a,, vy = ,2T/m, is the thermal
velocity of dust particles, and m, is their mass. Under
the experimental conditions[3], wehavem,=2x 102,
vi ~ 0.5 cm/s, and a, = 1.4 x 10~ cm. It follows
hence that the frequency of oscillationsis v, = 357 s
and the period of oscillationsis 21w, = 18 ms. It can
be seen from Fig. 9 that the strongest coupling takes
placefor 0.5 < a, < 1. Under these conditions, the gas
of Debye atoms must have atendency to compression
(cf. [29)]).

For small-radius dust particles, the size of the Debye
atom is also smaller. For example, the maximum value
of the radius of the Debye atom ag,,, = ag(zp — ») as
afunction of ry can be approximated by the expression

Bomex = 375" OF Iy = (Bomae3)12% for 1y < 0.02 [25]. Con-

sequently, the radius of a dust particle must not be too
large or too small. For 0.5 < ay,, < 1, we have the con-
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Fig. 10. Dependence of the coordinate dy of the sign-rever-
sal point for theforce onry/ag. Here, rg can be treated asthe
radius of the domain in which the polarization of the charge
cloud isdisregarded. Potential ¢ for r = rg was determined
for ag = 0.755.

dition 2.5 x 103 < r, < 2.6 x 1072, In the experiments
[3], ro =2.23 x 1072, and this condition is satisfied.
5.1.4. On the effect of thedust particlesize. It was
mentioned above that, in our calculations, we replaced
a small charged sphere by a conducting sphere of a
larger size with a charge partially compensated by free
chargesin the shell of the Debye atom. A natural ques-
tion arises concerning the correctness of such areplace-
ment. In order to verify this, we carried out several
series of calculations with different values of r, and,
accordingly, ¢,. Thedifferenceintheresultsisinsignif-
icant for dust particle radii smaller than the radius a, of
the Debye atom. For instance, for a;, = 0.755 (see
Fig. 10), the difference in the position of the point d, =
1.28 at which attraction is replaced by repulsion upon a
change in the dust particle radius in the range ry =
0.1-0.2 (and for the choice of the values of ¢, corre-
sponding to the given value of ry) has a spread less than
2%, which iswithin the error limits of the calculations.
The effect of the dust particle size becomes signifi-
cant for ry, > 0.3a, For r, > 0.4, the polarization-
induced attraction decreases to such an extent that the
coordinate of the force sign-reversal point becomes
larger than the mean distance between particles (d, >
2a,). Consequently, it can be concluded that a consider-
able contribution to the polarization forces comes not

Parameters of calculations for various values of din Fig. 11
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only from the periphery of the Debye atom (r = a), but
also from the charges separated by adistance r = 0.3a,
from the center of a dust particle. In other words, the
force of attraction is formed due to polarization of the
majority of electronsin the charge shell. Consequently,
the attractive forces can hardly be calculated using
some approximate methods.

5.2. Debye Molecule in a Cloud
of Unlike Charges (0 # 0)

5.2.1. Dependence of the force of interaction
between dust particles on their separation. In the
case of two Debye atoms in a nearly quasi-neutral
plasma (1 -0 < 1), the separation between these atoms
can be chosen aslarge as desired (see Fig. 1). However,
in order to assumethat theinteraction isbinary, the con-

dition N3;** > 2agr, must be satisfied. It should be
recalled that the radius of a Debye atomfor 1 -0 <1
may considerably exceed the Debye radius, a, > 1 (see
above and [25]).

Asin the case when 6 = 0, we carried out series of
calculations with preset values of ¢, r,, and g, for a
Debye atom to determine the dependence of the force
of interaction between dust particles on distance d.
Additional computations were made with values of ¢,
or a, modified so that the particle charge z, was inde-
pendent of d. Asin the case of & = 0, we chosethe value
of r, greater than the radius of the atomic core, thus
simulating a dust particle by a conducting sphere of a
larger size with a charge partially compensated by the
free chargesfrom the shell of the Debye atom. Thus, the
polarization of the core was disregarded.

Intheresults presented in Fig. 11, the value of a, for
different values of & (see table) was chosen so that it
corresponds to the extremely large charge for the dust
particle radius corresponding to the experimental con-
ditions[3]:

fo = rplfp = 2.23x 107,
This was done by test firing: when the value of a, is

greater than that given in table, the particle charge
becomes infinitely large (z(r,)) — ). The obtained

Type of curve and figure 0 ag 0o 7
Dotted curvesin (a) and (b) 0.999 41 2455 0.282
Dashed curvesin (&) and (b) 09 171 2.426 0.283
Dot-and-dash curvesin (c) and (d) 0.7 1.288 2413 0.272
Dotted curvesin (c) and (d) 0.5 112 2.378 0.286
Dashed curvesin (c) and (d) 0.3 1.018 2.364 0.286
Solid bold curvesin (c) and (d) 0.1 0.94 2.292 0.279
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from [7]: f(d) = const(1/d)(1 + d — d2/2)exp(—d) and U(d) = const(l/dz)(l —di2)exp(-d).

dependences z(r) and ¢(r) were used for determining
Zy=2(ro) and ¢ = d(ry) forrp=0.1.

ticles (for 8 <0.7; seeFig. 11). The smaller the fraction
of the plasma charge, the stronger the maximum force
i i of attraction and the larger the potential well depth.
For 1 — & < 1, attraction of a particle could not be
detected in the range of parameters under investigation. The attenuation of attractive forces upon an increase
Attraction appears only when a noticeable fraction of
the positive charge of the plasmais carried by dust par-

in & has a simple explanation. The results of the above
calculations show that, for & = 0, attractive forces
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95
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emerge due to the fact that electrons are accumulated
near the x axis between the centers of particles and
ensure the attraction to the center of the Debye mole-
cule. This attraction exceeds the repulsion of dust par-
ticle charges screened by inner layers of the electron
shells of Debye atoms. For 1 — & < 1, the effect of
screening of the dust particle charge by the inner layers
of electrons shells remains unchanged. However, the
attraction to the center of the molecule attenuates con-
siderably dueto the fact that not only electrons but also
the positive charges repelling dust particles are concen-
trated in thisregion.

In the case of small values of plasmacharge (5 < 1),
the potential well depth islarge enough (of the order of
severa values of temperature). It should be borne in
mind, however, that the binary treatment is valid for
distances of the order of the diameter 2a, of the Debye
atom.

5.2.2. On analytical approaches. The above con-
clusion concerning the absence of attractionfor 1 — & <
1 contradictsthe results of recent approximate analyses
[12, 13] (see Fig. 11). It follows from the results of
these calculations that attraction between dust particles
takes place in an analysis of the linearized Poisson—
Boltzmann equation for d = 1 in the region

Bl g3
J2

This result is surprising. As a matter of fact, the
action of point charges (located at pointsr, andr,) ina
plasmain the linear approximation [12, 13] is assumed
to be independent, so that the value of potential at point
r isdetermined by the sum of the screened potentials of
point charges:

O(r) = B(|r —ryf) + B(r —r)),

D(X) = (z/2/X)exp(=X/~/2), |r,—r4 = d.

In accordance with the simple considerations pre-
sented above in Subsection 3.2, attractive forces are
ruled out in the absence of rearrangement of the charge
shell of adust particle under the action of another dust
particlefor identically charged dust particles. Inthelin-
ear approximation [12, 13], the following inequality
must hold:

r>

__,09(x)
f(d) = -z, X |-
18
L a+d (18)
- ZP d2
this corresponds to repulsion.

Inaccuracy of theresults[12, 13] is apparently asso-
ciated with the following circumstance. The force (18)
acting directly on a dust particle was supplemented in
[12, 13] by the attractive force exerted on the electron
shell of adust particle by another dust particle. Such an

0do.o.

exp N
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approximation would be justified if the charge shells of
dust particles would be rigidly connected with the dust
particle charges through some other forces. However,
there are no extraneous rigid forces in the problem
under consideration. The presence of the force of
attraction of the electron shell of one charge to another
charge, whichwas calculated in[12, 13], only indicates
that the given configuration of the charge shell is not
equilibrium, and the force of attraction to another
charge must lead to polarization of the charge shell,
which was disregarded in [12, 13]. There are no
grounds to add this polarizing force to the force acting
directly on the dust particle.

In this case, we can draw an analogy with the polar-
ization-induced attractive forces between atoms, which
are considerable at large distances between the nuclel
(as compared to the size of electron shells). It is well
known that no polarization-induced interaction of
sphericaly symmetric atoms takes place in the first
order of perturbation theory. It appears only in the sec-
ond order of perturbation theory, when the polarization
of the electron shell of an atom by the charges of
another atom is taken into account. An ordinary atom
differs from a Debye atom only in that the electrons of
the shell move in it according to quantum-mechanical
and not classical laws. The origin of polarization-
induced forcesis the same for an ordinary and a Debye
atom.

6. CONCLUSIONS

Let us summarize the results of the above analysis.

1. A Debye atom has the following structure: a core
surrounded by an electron shell. For large charges of
the dust particle, the high-density region (core) of the
electron cloud screens considerably the large charge of
the dust particle near its surface. In this connection,
while considering the interaction of Debye atoms, we
cannot ascribe the unscreened value of charge to a dust
particle. The dust particle charge screened by the core
has a universa value determined by the distance
between dust particles. It is screened by the electron
shell of the Debye atom.

2. Attractive forces are associated with polarization
of charge shells of Debye atoms. In the absence of
polarization, attraction is also absent. The force of
attraction is formed due to polarization of the majority
of electrons of the charge shell. The polarization of the
core isinsignificant.

3. Forces of attraction between dust particles
emerge at a comparatively large distance approxi-
mately equal to the mean separation between dust par-
ticles. In this case, the Debye radius must be equal
approximately to half the mean distance between dust
particles.

4., Attraction takes place if like charges are concen-
trated predominantly at dust particles. If dust particles
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carry a small fraction of the charge of some polarity,
repulsion is observed at any distance.

5. For acertain relation between the electron density
and the density of dust particles, the Debye “liquid” is
in equilibrium: the electrostatic forces of interaction
between dust particles vanish.

Since attractive forces appear at large distances, the
problem of the formation of dust liquids and crystals
can be solved correctly only if many-particle interac-
tion is taken into account. However, we can draw the
following two conclusions concerning the criteria for
the emergence of collective phenomena on the basis of
the results presented by us here:

(&) In the case of athermionic plasma, the electron
density must be such that the Debye radius is equa
approximately to half the mean value between dust par-
ticles.

(b) For agas-discharge or a nuclear-excited plasma,
the properties of the ionization source and the density
of dust particles must be matched so that the main (usu-
aly negative) charge is carried by dust particles.
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Abstract—It is shown that the intensification of a stabilizing buoyancy flux directed from the surface to the
bulk of abinary mixture (e.g., salt water) may give rise to convective instability. © 2002 MAIK “ Nauka/l nter-

periodica” .

Some physical mechanisms are known to lead to a
paradoxical (at first glance) result: contrary to intuitive
ideas, convective instability emergesin aliquid when it
is heated not from below, but from above, i.e., in situa-
tions when the density of the liquid increases with the
depth [1, 2]. Another possibility of thiskind is consid-
ered in this communication.

We consider asemi-infinitelayer of aliquid medium
stratified both in temperature and in the admixture con-
centration (see the figure below). For the sake of defi-
niteness, we can speak, for example, of salt water in
which the contribution to the density stratification
comes from the vertical distributions T(Z) and s(2) of
temperature and salt concentration, respectively (the z
axisisdirected vertically downwards from the horizon-
tal surface of the medium). We assume that the medium
is heated from above so that a constant vertical temper-
ature gradient

o T
T 0z

is formed in it. At the same time, the medium is also
characterized by the admixture stratification:

<0

(1)
- s <
s ¥ 0.
In the framework of the conventional approximation [1,

3, 4], we assume that the density p is alinear function
of temperature and admixture concentration:

P = Po[1-0a(T-To) +B(s—)]- (D)

Here, a is the thermal expansion coefficient of the
medium, and B > 0 is the corresponding coefficient for
the admixture concentration (in oceanol ogy, this coeffi-
cient is referred to as the salinity contraction coeffi-
cient). The subscript “0” marksthe constant (reference)

values of the corresponding quantities. For constant
values of the gradients y and y'", the density of the

medium is alinear function of the depth z

p(2) = pol1+ (~ay + By 7 )

(the superscript (1) corresponds to the initial “back-
ground” state).
1) @)

The above-mentioned gradients yy~ and y~ corre-
spond to certain heat and admixture fluxes on the hori-

zontal surface of the medium:

W = oy >0, QY = —pexy’ >0, (3)

where ¢, is the heat capacity of the medium, and k and
X are the transfer coefficients.

Although the admixture flux directed to the bulk of
the medium makes a destabilizing contribution to the

density stratification (for yS) < 0, the corresponding
term in Eq. (2) decreases with increasing depth), heat-
ing from above is assumed to be strong enough so that
the density stratification is quite stable on the whole. It

should be recalled that the condition

9p
0z >0,
which is equivalent to the condition
_Bys < _GVT
or
a
Ys> ByTi

isinsufficient for hydrodynamic stability of such asys-
tem. If the values of the transfer coefficient k and X are
different (x < k for salt water), the instability condition
may be much more stringent in view of the possible
specific instability mechanism associated with “double
diffusion” [1, 5]:

_y,<-X% Xd
Ve BYr O Vo> Y (4)
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CONVECTIVE INSTABILITY MECHANISM

We assume that, in the background state considered
above, this condition is satisfied. As applied to the
fluxes, this corresponds to the fulfillment of the ine-
quality

@5 ¢ 04 ‘B <
> G g (5)
L et us suppose that the fluxes at the boundary z=0
change at a certain instant t = 0. For simplicity, we
assume that the fluxes instantaneously assume new
constant values Q% and Q1 these new values corre-

sponding to an increase in the downstream buoyancy
flux due to a decrease in the admixture flux:

@ ¢ QW
S <QS "

Thesign of the admixture flux may even change: Q% <0
(downstream freshening instead of salinization). We
assume that heating of the medium from above contin-
ues, although it becomes weaker:

(2) (1)
0<Q7 <Q7".

The jumpwise variation of the fluxes at the boundary
obviously leads to evolution of the temperature and
admixture concentration fields. The analysis of this
evolution is reduced to the solution of 1D thermal con-
ductivity and diffusion equations,

0T _ 9°T ds _ _d%
ot o7 ot Xz ©
with theinitial conditions

T =T = 7, +y¥z

(

s=sP =g+yPzat=0

and with the boundary conditions

T— T(l), s—»sY for z—» 00,
2
oT _ o QY
oz T CpPoK’
@)
0S - @ = 35 for 5= 0.
0z ~ PoX

The solution, which can easily be found using the
superposition method, has the form

(1) (2)
T = ot (l) M /Ktierfi,
yre CpPoK JAKt
(1) )
_ W, 2(Qs " =Q57) —. z
S=5+VY. s s 7 ti erff ——,
>y X Jaxt

PoX

where i erf is the symbol of the multiple error integral
[6]. The evolution of the fields is presented schemati-
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z

Schematic diagram of vertical profiles of temperature T and
admixture concentration s. Solid lines correspond to theini-
tial state and dashed curves describe evolution after a
change of fluxes at the surface.

caly in the figure. Perturbations penetrate the medium
from the surface according to diffusion laws (the pene-

tration depth is proportional to ./t). However, the pro-
portionality factors for temperature and admixture con-
centration may differ considerably. For example, for
salt water, K > X, so that the rate of penetration of the
temperature perturbation into the medium is an order of
magnitude higher. The perturbation amplitude aso

increases in proportion to ./t . For the vertical gradient,
we obtain

oT (1)

_ @ _ <2) z
erfc ,
gz = VT TV
0s _ () _ 0 _ Vo
N erfc——
2 = WO ate 72

The asymptotic forms of solutions for small,

z < min{ J/4xt, J4x# ,

and large,

z > max{ J/4Kt, J4xt ,
depths are especialy simple. At large depths, we have

oT _ . 0ds_ @
az yT ’ az ys .

In other words, the background state is preserved at
such depths: the perturbation associated with a change
in the fluxes at the surface has no time to spread to such
distances. Inthisregion, the medium is stable, aswould
also be the casefor t < 0. At small depths, we have

oT_ @ 0s_ .
oz T 5z Yoo

in other words, the stratification in this region has time
to adjust to new values of the fluxes at the surface. Since
the downstream buoyancy flux has only increased for
t= 0, it is natural to expect that the medium in the
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region in which perturbations from the surface have
arrived has become even more stable to convection.
Thisis true if the new values of the fluxes satisfy the
following condition similar to relation (5):

?>e (i Bop. G

The fulfillment of this condition is especially obvious
in the case when the medium is heated from above

(Q(Tz) > Q) asbefore, but the flux of admixture at the sur-
face vanishes or becomes negative.

However, apart from the asymptotic forms consid-
ered above, an intermediate region also exists. In partic-
ular, if the value of k is greater than x by two orders of
magnitude, there obviously exists (and continuously
expands) aregion

JAxt < z < JAKt (8)

inwhich

oT _ @ 0s_ @
az yT ’ az yS .

We are speaking of the region to which thermal pertur-
bations from the surface have time to penetrate, while
salinity perturbations have no timeto penetrate into this
region. Here, condition (4) may be violated since the
value of y, remains unchanged (background), while the
value of y; has increased (manages to adjust itself to
new conditions at the boundary).

Thus, if

K
v > XBvé” or QP <5 ¢ B,

the stability conditions in the intermediate region (8)
are violated, and convection associated with double
(differential) diffusion must appear.
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It should be emphasized that thisresult is nontrivial.
The buoyancy fluxes set at the boundary are of a stabi-
lizing nature: at any instant, the steady-state stratifica-
tion corresponding to them is stable, which rules out the
emergence of convective instability. However, owing to
the unsteady nature of these fluxes and the differencein
the velocities of propagation of temperature and con-
centration perturbations, aregion in which the stability
conditions are violated may beformed in the bulk of the
medium.

It can easily be seen that the above assumption con-
cerning the semi-infiniteness of the medium is not of
fundamental importance. A similar effect is also possi-
ble when nonsteady stabilizing fluxes are set at the
lower boundary of the medium.
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Abstract—The attenuation of high-frequency sound in disordered quasi-one-dimensional semiconducting and
dielectric crystals, which is associated with three-phonon decay and elastic scattering by structure defects is
considered theoretically. It is shown that specific interference processes occurring in the regime of weak local-
ization of acoustic vibrational excitations considerably affect the propagation of sound. This mechanism of
sound attenuation can be observed experimentally from the anomaliesin the frequency dependence of the recip-
rocal attenuation length of sound. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Attenuation of sound dueto decay processesin stan-
dard weakly anisotropic three-dimensional defect-free
crystal lattices was considered for the first timein [1].
It was shown that anisotropy does not introduce any
considerable changes in the lattice attenuation coeffi-
cient of sound. The mechanism of propagation of high-
frequency acoustic excitations during combined action
of elastic scattering by defects and three-phonon decay
processes was analyzed analyticaly [2, 3] and investi-
gated experimentally [4-6]. It was found that, in the
helium temperature range, three-phonon decay pro-
cesses modify significantly the diffusion mode of prop-
agation of acoustic excitations when elastic scattering
plays a dominating role.

The vibrational spectrum of chain-type lattices
exhibits quasi-one-dimensional propertiesin the entire
range of the frequency spectrum except at singular
points and spectrum boundaries in contrast to standard
three-dimensional compounds due to a strong anisot-
ropy of interaction between atoms. Asaresult, localiza-
tion effects become significant in the propagation of
acoustic excitations in nonideal low-dimensional lat-
tices[7, §]. It should be emphasized that well-defined
guasi-local modes do not appear in such lattices under
the conditions of diagonal disorder [9, 10]. Conse-
guently, the effect of weak localization of vibrational
modes can be analyzed without taking into account the
renormalization of the vibrational spectrum [11] and
thededlay effect [12—14], which arefound to beinsignif-
icant in this case.

This study aims at an analysis of the weak localiza-
tion effect on the attenuation of high-frequency sound
in nonideal chain-type crystalsin the situation in which
only decay is significant among all three-phonon pro-
Cesses.

We consider the localization of acoustic vibrational
modes with displacement vectors paralel and perpen-
dicular to weakly linked chains. Vibrational modes of
the first kind are longitudinally polarized excitations (l
modes). The modes of the second type are so-called
bending excitations (b modes) [15-17]. Such modes
were observed in experiments on inelastic neutron scat-
tering in the quasi-one-dimensional compound
(Ta, - ,Nb,Se,),l [18] and manifested indirectly in the
anomalous behavior of the low-temperature lattice heat
capacity of therecently discovered new phase of carbon
(carbalite) [19].

2. FORMULATION OF THE PROBLEM

We consider a crystal with isolated impurity atoms.
Itsdynamic propertieswill be described by the standard
Hamiltonian taking into account cubic anharmonism,

H = HO+ Himp+ Hint = H'+ Hint’

where

Ho 2M z(pn) +3 z¢<°>°ﬁ upuy,

+3 5 AdRuLuy, (1)
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|nt - é Z (r:Bnyn u '1

ap _ 4B (0)ap
ACDnn' - cDnn'_q)nn' .

Here, H, is the Hamiltonian of the unperturbed har-
monic atomic lattice; H;n,, isthe perturbation associated
with impuritiesin this system; H' is the Hamiltonian of
the harmonic nonideal lattice; H,, describes the
dynamic anharmonic interaction between ions; the

quantities u; and p; are the Cartesian components of

the displacement and momentum operators of the nth
atom; M and M, are the masses of an impurity atom and
an atom of anideal lattice (we assume that the impurity

is heavy, i.e, M > M); and ®,, and @), are the
matrix elements of the second- and third-order force
parameters. The subscript “0” marks the parameters of
the regular system. Factor ¢, is equal to zero if alattice
atomisat the nth siteand to unity if apoint defect occu-
piesthissite. The configuration average [¢,[] isequal to
the impurity concentration c. For the sake of simplicity,
we will henceforth assume that the force parameter
matrices are diagonal in the Cartesian indices. In order
to simplify notation, we will denote by n the combina-
tion of the site (n) and Cartesian (a) indices. In carrying
out specific calculations, we assume that the disorder is
of the diagonal type; i.e., impurities are treated as iso-
topic defects. Here, we do not distinguish between

®pye and O Thus, we consider only the matrix

anharmonism, which is assumed to be weak. The
obtai ned results can be generalized to the case of anon-
diagonal disorder, when A, # 0.

3. MODEL OF A CHAIN CRYSTAL

For the sake of definiteness, we assume that the | at-
tice of a quasi-one-dimensional crystal is tetragonal
with the unit cell parameters a and b. The effective
interaction between atoms in the basal plane xy (|]) is
considered to be much weaker than the interaction
along the chain axis z (0). In this case, we have three
characteristic force parameters, which satisfy the ine-
quality

(0)sy (O)sy

(0)5\|| _

0] > 00 > |o ©)

The reduced force parameters correspond to three char-
acteristic frequencies: ws > w; > ;. Thedispersion

relations for acoustic longitudinal and bending vibra-
tional modes are defined as

(wDka) IIE? zk a, 5 ZLD’ 3)

w(k) =
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21,22
W) = (wyakoy + 2
‘ (4)
+ wz%n e T ;E
where w; = wy and w; = Wy The frequencies wy, and w,
can be expressed in terms of parameters GJ(O) >

O (| 00% | > 1009 [7]. 1t isimportant that the
mequallty w5 > ) holds.
We introduce a one-particle retarded Green's func-

tion G* [20] defined on the operators of dynamic atomic
displacements u,;:

Guu(t=t) = =8(t=t) Quy(1), ux ()T (5)

The angle brackets indicate statistical averaging with
Hamiltonian H'. In the momentum representation, the
Green's function of the jth polarization mode averaged
over impurity configurations is defined as

and

—+.—1

(G) (k) = (G) " (k,w)-M'(k,@).  (6)

Here, G| i (k, w) is the configuration-averaged retarded
one-particle Green’s function corresponding to the
overall harmonic Hamiltonian H' and Mi(k, w) is the
polarization operator. Here,

Gk, 0) = [oo _ (k)—|%}_l @)

where the lifetime for elastic processesis given by
' T, 2 2 -
t() = | Jefw’g(@)] | (®)

gi(w) is the spectral partial function of the density of
states of vibrational modes, and € = (M — M)/M,. We
assume that the temperature is comparatively low, and
the Rayl eigh mechanism of quasiparticle decay prevails
over the anharmonic mechanism (see below). As
regards the polarization operator N, it has the follow-
ing form in the cubic anharmonism approximation:

i — i i — { ) E@
n _n1+r|2_V3 V3+V3 78N

Thegraphical relation M describesthe standard three-
phonon process of spontaneous decay of an acoustic

guantum in the presence of defects and I'Ié describes

the interaction between decay acoustic phonons and
phonon density fluctuations in the vicinity of defects
[21, 22]. The lines with arrows in relation (9) corre-

spond to Green'sfunction G, and vertex U emerges
asaresult of summation of fan diagrams and character-
izes the processes of coherent backward scattering of
phonons by defects. It is well known that they deter-
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mine the weak localization regime. The explicit expres-
sion for vertex Ul isgivenin[7]. In our calcul ations, we
assume that the contributions from the | and b modesto

the vertex Ul are independent. We specify the anhar-

monic interaction parameter ®° in the standard
approximation:

D7k, kg, kp) = =30 (K)w;(kp)wj(Ky),

~ Y3
¥s = —L1i
(Vivo)'

Here, v, Yo (Yo > Y)), and y; are effective harmonic and
anharmonic force constants. It should be noted that
these constants satisfy the approximate relation (accu-
rate to within an order of magnitude)

(10)

2
; - WD
V; S = iy = 10=
(o
- (12)
= 108}, = 10V
VIR

where [WPLIs the mean sguare of atomic displacements,
W max = Wy 1S the maximum frequency in the acoustic
spectrum, a is the characteristic atomic spacing, d, is

the anharmonicity parameter, yg is the partia Gri-

neisen factor for the jth vibrational mode, M isthe mass
of an atom, and h is Planck’s constant. The value of &,
can be of the order of 10°-107, and not 1073 (see, for
example, [23]). Theindividual terms of the polarization
operator appearing in relation (9) in view of relations
(10) are defined as

- o “ dw
Mk, @) = 130 (k) [ Y @i(k)w](k—ky)
0 Ky
%G (ky, 01) G (k k3, = 0y)
1

x [1— expgul_l__ QET ,

(12)

dwl

Mi(k, ) = iy5w(k) j =S wi(k)wj(k —ky)
ki d

x Gj (ky, wy)Gj(k —ky, 00— wl)uj(q; W, o)

[1 exp 2L ‘*D} &

o 71T 0O

x Gj(ky—q, ;) Gj(k + q—ky, 00— 03).

The upper integration limit in these relations is deter-
mined by the energy conservation law.
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4. ATTENUATION
OF HIGH-FREQUENCY SOUND

Let us now consider the attenuation of high-fre-
guency sound in a chain-type compound with a diago-
nal disorder. The propagation of sound depends on the
elagticity of the crystal lattice. Its attenuation MN(w) is
determined by the imaginary part of the polarization
operator of the one-particle lattice Green's function:

M (w) = Fi(w)+y(w)
ImI‘I (w(k))+|m|‘| ((o(k))
2w;(k)
We assume that w = wy(k). In order to obtain the
required order-of-magnitude estimates of ImI'I"1 and

(14)

ImnJ, we confine ourselvesto three-phonon processes

of a phonon decay into two phonons with close ener-
gies. In addition, we will consider the situation when
the standard anharmonic interaction of thermal phonons
can bedisregarded inanonidedl crystd, i.e., whenthe con-

dition T;" (w) > Ty (w) holds, where Ty is the time of

relaxation due to norma anharmonic decay processes.
The latter inequality is equivalent to the condition

2> i W]
ce > o JmaxFEQTD (15)
Owr _ 0 o™
FEQTD [l—expD—Z—TD} , T<w.

Here, W =y forj = 1 and oy = 0 for j =b. Taking
into account what has been said above, we determine
the damping factor I in the high-frequency limit
wT! (w) > 1 (w> T). Substituting relation (7) into for-
mulas (12) and (13) and taking into account relation
(14), we obtain

J

ri(w) = ’; o (F 525 (16)
]m
( ) @ wi(k) ] w D FD(*)D (17)
? 17 (W) wy Wi 2T

For comparison, we write the attenuation of an acoustic
quantum of frequency w due to spontaneous decay in
the absence of defects:

Mo(w) = -5Awgg’£ FEE, (18)
Me(w) = 6Aw%:°5 FEQ‘?E. (19)

The mechanism of sound damping described by rela
tions (16) and (17) is significant in the low-temperature
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region (T < w), where the scattering of decay phonons
is sengitive to defects. The expression for '} in the

form (17) isvalid in the frequency range wé(a) > o >

Zooﬁ(z) in which the dispersion relations (3) and (4)
exhibit a quasi-one-dimensional behavior. While deriv-
ing relation (17), we al so assumed that the chain “lock-

ing” parameter Wi, T (w)/e < 1. In order to esti-
mate the relative contribution of the weak localization

effect to sound damping, we compare Fjl and I ’2 .Rela
tions (16) and (17) lead to (see also [7])

r 2
L2 = o200
r w; Lo
: (20)
T _ 20wn’ e

o Lo Lo

It should be noted that a comparison of I} (17) and '}
(18), (19) for wy, < wshowsthat [} > ).

Let us consider relations (20). It was found that, if
the measure of crystal “defectiveness’ ce? < 1 and the
valuesof wy,) characterizing theintensity of interaction
between the chains are smaller than w, asituation when
I, < I} ispossiblein the low-temperature region (T <
w), where the anharmonic decay of phononsis strong
and their fusion is insignificant. In other words, the
effect of backward coherent scattering on sound damp-
ing may be significant due to a large phase volume for
the quasi-one-dimensional dynamic behavior of a
chain-type crystal. It was noted above that w; = Wy,
w; = Wy, and w; < wy,. Consequently, in accordance
with relations (20), the effect of the weak localization
on the longitudinal vibrational mode damping for a
fixed parameter ce? is stronger than for the bending
vibrational mode. We will use the experimental results
obtained in [18] for the compound (Ta, _,Nb,Se,),l:
Wy =1 THz, o = 0.15 THz, and w, = 0.5 THz. For
record-high frequencies w = 0.1 THz of sound waves
used in acoustic measurements and for a disorder
parameter ce? = 1, we obtain thefollowing numerical esti-

mate of relations (20): I, /I, =0.1and M5/ =0.0L

The reciprocal sound attenuation length (the imagi-
nary part of the wave number) corresponding to the
contribution of the weak localization effect [21, 24] is
defined by the relation

1 Ty
Ihpy(@)  vip (@)

(21)

where ij(|) are the mean group velocities of the jth
vibrational mode along and across the chains, respec-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

CHULKIN

tively [7]. Using relations (17) and (2.17) and (2.18)
from [7], we obtain

1 _ 5ot
e Crseryateral
| (22)
1 _ o gorfoer
i %2l p
1 _ Jidrwrprwr?
B2 b o) Mo
X (23)
1 ~ %DQDMDQDL‘
10 aledd Hod”

Pay attention to the fact that all reciprocal values of
length defined by relations (22) and (23) exhibit differ-
ent frequency dependences. This allows us to identify
this mechanism of sound damping from the frequency
dependence. We obtain numerical estimates of the

quantities 1}, using the values of the unit cell

parameters a = 9.5 A and ¢ = 12.8 A for the system
(Tey _,Nb,Se,),l [18]. If we assume that the value of

anharmonicity parameter 8, is of the order of 102, we
obtain /15 =50 cm, U1} =400 cmr?, 112 = 60 e,
and 1/1; = 2600 cm .

5. CONCLUSIONS

We have analyzed the effect of weak localization of
acoustic vibrational modes on the damping factor of
high-frequency sound in a nonideal strongly anisotro-
pic chain-type anharmonic crystal lattice. We consid-
ered longitudinally polarized excitations as well as
excitations resembling bending waves in noninteract-
ing chains. It is shown that, in the case when elastic
scattering by defects dominates over three-phonon
decay processes, specific interference scattering pro-
cesses |ead to noticeable renormalizations of the sound
damping factor. The anharmonic interference mecha-
nism can in principle prevail over the Rayleigh and
standard anharmonic mechanisms. Unfortunately, we
are not aware of experimental data on the propagation
of acoustic excitations in substantially disordered
guasi-one-dimensional crystals. The renormalization of
the damping factor of high-frequency sound predicted
in this work can be observed experimentally in com-
pounds of the carbolite type [19] using the scheme of
thermal pulses [4] or acoustic measurements in the
microwave region.
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Abstract—The magnetic properties (ground state, magnetic phase diagram, and phase transitionsin amagnetic
field) of two- and three-dimensional lattices of ferromagnetic grains with the intergrain dipole interaction are
studied. The main attention is paid to the lattices formed by nonspherical grains (prolate and oblate ellipsoids
of revolution) and their extreme forms (rodlike and disc-shaped grains). An analysis shows that the conclusions
of the theory are in good agreement with the results of experiments. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

As a result of rapid development of technology,
magnetic nanostructures have been transformed from
the object of academic studies to the object of experi-
mental investigation and have become elements of real
microelectronic (nanoelectronic) devices. The term
“nanostructure” will be applied here only to a definite
type of such systems, namely, regular three- and two-
dimensional (3D and 2D) lattices formed by identical
one-domain ferromagnetic nanometer-size grains. We
assume that the exchange interaction only establishes a
ferromagnetic ordering of elementary magnetic
moments in grains, while the interaction between the
grains is of the pure dipole type (this means that the
separation between the grainsis larger than the charac-
teristic range of the exchange interaction). In addition,
we confine our analysisto grainsin the form of (prolate
and oblate) ellipsoids of revolution or their extreme
forms: pointlike (spherical), rodlike and disk-shaped
grains. In al cases (except for grains in the form of
oblate ellipsoids whose magnetic moment lies in the
equatorial plane), we assume that the magnetic moment
of agrainisdirected along its easy-magnetization axis
(easy axis) determined either by the geometry (rodsand
prolate ellipsoids) or by crystal anisotropy (pointlike or
spherical grains).

Real nanostructures interesting for practical appli-
cations are constructed so that the directions of easy
axes or planes of the grains are paralel. In the former
case, this makes unnecessary the analysis of different
types of magnetic vortex states typical of a system of
dipoles with a freely rotating moment [1]. The mag-
netic properties of some simple structures of this type
were studied in detail earlier (smple lattices of point-
like grains were mainly studied). For example, it was

shown in [2, 3] that the ground state of 2D square and
3D cubic lattices formed by such grains with parallel
(antiparallel) magnetic moments is always antiferro-
magnetic. This conclusion also remains valid for sys-
tems consisting of uniformly magnetized (one-domain)
spherical grainssincethefield of such agrain coincides
with thefield of an equivalent pointlike dipole placed at
the center of the grain, and the energy of dipole interac-
tion of such grains coincides with the energy of interac-
tion between two equivalent pointlike dipoles [4]. It
was found, however, that lowering of the symmetry of
any element of the system (lattice type or the shape of
grains) may facilitate its transition to a magnetic state
more advantageous from the energy point of view.

In particular, this is due to the fact that, when the
shape of a grain differs considerably from a sphere, its
field at small distancesfrom the surface differsfromthe
field of an equivalent dipole placed at its center. For a
prolate ellipsoid, itsfield at points close to the equato-
rial plane of the grain is much weaker than the field of
an equivaent dipole; the opposite situation is observed
for agrain in the form of an oblate eIIipsoid.1 Conse-
guently, a 2D lattice of nonspherical grains whose
major axes lie in the lattice plane has a larger tendency
to ferromagnetism (than for a spherical shape of grains)
inthefirst case and to antiferromagnetism in the second
case[5].

In view of various fundamental, technological, and
technical circumstances, real systems are virtualy
never symmetric (in the above sense), and their asym-

1 The magnitude of the field in the equatorial (relative to the direc-
tion of the magnetic moment) plane constitutes 50% of the field
at its axis for a spherical grain, 30% for a grain in the form of a
strongly prolate ellipsoid of revolution, and 85% for agraininthe
form of astrongly oblate ellipsoid of revolution.
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metry is characterized by avariety of parameters. There
are numerous examples of such systems, including pla-
nar periodic structures of nonspherical magnetic grains,
which are being extensively investigated at present and
are treated as the media with considerable potential for
elevating the magnetic recording density [6]. Typica
structures of this kind have the form of 2D rectangular
lattices of one-domain extended magnetic grains with
uniaxial geometric anisotropy. The shape of such grains
resembles an elipsoid of revolution with an axes ratio
of 3-5; the period of such lattices is comparable with
the grain size. Another example related to the problem
under investigation is magnetic dielectric nanocompos-
ites. The electrical conduction of such a (3D) systemis
due to tunnel electron transitions between the grains
[7], whose probability is determined by the mutual ori-
entation of magnetic moments of adjacent grains. Con-
sequently, it is clear that the resistance of such a
medium depends directly on its magnetic state. The
same refers to the (giant) magnetoresistance of such a
system. Findly, it is appropriate to mention a dightly
unexpected object in the context of our discussion,
namely, ultrathin films of ferromagnetic metals on
monocrystalline substrates. It was found that, for a cer-
tain effective thickness of such films, along-range fer-
romagnetic order is established in them [8]. It was
shown in a recent publication [9] that, under certain
conditions, such films grow through natural lithogra-
phy, i.e., viathe formation of nuclei which are distrib-
uted more or less uniformly over the substrate area and
which aretransformed, during their subsequent growth,
into ellipsoidal grains whose major axes are parallé to
one another.

Thus, systems of the type under investigation are
guite diverse. This work aims at an analysis of their
magnetic properties such as the ground state, the mag-
netic phase diagram, and magnetic phasetransitions. In
contrast to known publications (see, for example, [1—
3]) inwhich similar systems were investigated, we con-
sider more general ablique lattices formed by non-
spherical (or, which isthe same, non-pointlike) dipoles.
It is shown that the inclusion of these new circum-
stances modifies the properties of such systems consid-
erably.

In the final section of this paper, the obtained results
are used to describe the properties of a number of rea
systems.

2. MAGNETIC STATE OF A SYSTEM
OF FERROMAGNETIC GRAINS
WITH DIPOLE INTERACTION

Let us consider a system of identica one-domain
ferromagnetic grains whose centers are at the sites of a
3D tetragonal lattice with periods |y, I, and I,, and
whose magnetic momentsu areidentical and parallel to
one another. Such a magnetic anisotropy may be dueto
crystal anisotropy of grainsor anisotropy intheir shape,
or is manifested (in the absence of the former anisotro-
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pies) in a weak external magnetic field (and become
decisive at alow temperature). Further, we assume that
these moments form angle 8 (latitude) with the x axis
and are turned through an angle ¢ (longitude) about the
X axis relative to the xz plane. On account of the long-
range dipole—dipole interaction, the magnetic state of
such a system is determined by the magnetic field Hy =

m,|,nHmIn created in the volume of an individual

grain (located, for definiteness, at the origin of coordi-
nates) by al theremaining grains. Here, H,,, isthefield
component created at the origin by agrain with the cen-
ter at point (ml,, Il,, nl,), wherem, |, and n are integers,
and parallel to magnetic moments of the grains; the sum
does not contain thetermwithm=1=n=0.

The energy of interaction between the chosen grain
and the magnetic field Hy is given by

W, = —\E/J‘Hd(r)dv, (1)

where integration is carried out over the volume of the
central grain. The ground state of the system corre-
sponds to the configuration of the magnetic moments
K, Of the grains, for which the energy W; attains its
minimum value. In our case, there exists only one fer-
romagnetic configuration (the magnetic moments of
grains are directed along their major axes and are par-
allel to one another); for the antiferromagnetic state of
the system, we confine the analysis to the situation
when the magnetic moments of grains form two identi-
ca magnetic sublattices of antiparallel magnetic
moments. In this case,

Hmn = pexplin(@m+ @l +@n)],

where phases @,, @, ¢, may assume the values O or 1,
for the ferromagnetic state, @ = @, =@, =0or ¢ =@, =
@, = 1, while six different antiferromagnetic states cor-
respond to different combinations of these phases, in
which at |east one phaseisegual to zero and at least one
phaseis equal to unity.?

Let i, bethe absolute value of magnetization of each
of the sublattices (the total magnetization of the system
isi = 2i inthe ferromagnetic stateand i = 0 in the anti-
ferromagnetic state). In accordance with the mean-field
theory, the energy of the dipole-dipole interaction is
proportional to magnetization i,: Wy = —Ai;. From all
the states under investigation, the one that is most
advantageous from the energy point of view corre-
sponds to the highest value of the dipole interaction
parameter A. Thus, in order to determine the type of the
ground state of the system under investigation, it is suf-
ficient to find and compare the values of these parame-
ter corresponding to the ferromagnetic and various anti-

2 Any other set of integral phases @ @ @, isidentical to one of the
eight sets enumerated above.
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ferromagnetic configurations of the magnetic moments
of the grains.

As regards the magnetization i, of the sublattices, it
is defined by the self-consistent equation of the mean-
field theory,

i, = iptanh[Ai /KT], @)

where iy = (U/2)UNg, Ny = 1/(1,l,1,) being the grain con-
centration. This equation determines, as usua, the
Curietemperature T = Aig/k of the system. It should be
noted, however, that it is applicable only in the case
when the differencein the energies W, of the ferromag-
netic and antiferromagnetic states of the system is
larger than KT. Otherwise, we must take into account
thermal fluctuations of the magnetic order.

We will consider below the following three situa-
tions: (i) pointlike (zero-dimensional) but anisotropic
grains, (ii) rodlike (one-dimensional) grains magne-
tized aong their axes, and (iii) three-dimensional
grains in the form of prolate and oblate elipsoids of
revolution (including the extreme case of an oblate
ellipsoid, viz., two-dimensional disks). The first two
situations are interesting since, on the one hand, they
permit an exact solution and, on the other hand, arelim-
iting cases for the third, much more real, situation,
which can be described only numerically.

While calculating the dipole interaction energy, the
following circumstance should be bornein mind. It was
noted in [2] that the energy Wi of the ferromagnetic
state strongly depends on the sample shape:

W OAD (N—-4103),

where N is the demagnetization factor in the direction
of the magnetic moment (the energy of any antiferro-
magnetic state is independent of N). With increasing N
(corresponding to the extension of the sample in this
direction), parameter Ag increases, and the ferromag-
netic state could become advantageous. Calculations
show, however, that this does not take place even in
very extended samples with a simple cubic lattice of
pointlike dipoles, and their ground state remains anti-
ferromagnetic. Neverthel ess, the sample shape must be
fixed in a certain way in calculations. All the results
described below correspond to spherical (actualy,
cubic) samples for which N = 4173 irrespective of
parameters 3, and 3, of lattice extension along they and
Z axes.

2.1. 3D Lattice of Pointlike Grains

In this case (which is realized when the separation
between the grains is much larger than their size), the
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magnetic field component for each grain at the origin
under investigation is given by

1 3(e,[Ryy)°
HmIn = U|: 3 + ( 2 5 I )i|
len len (3)

x exp(im( gm+ @l + @,n)),

where Ry, = (ml,, 11y, nl,) is the radius vector of the
grain (m, I, n) and e, = (cosB, sinBsing, sinBcosg) is
the unit vector parallel to the magnetic moments of the
grains. In this case, the magnetic interaction energy has
the form

Wy = —uHyg,

Hy = Z'Hmln = U Z'|: Rg' +3(eo ESRmIn)i| (4)

m,1,n m,l,n min len
x exp(im( gm+ @l +@n)).

Using this relation, we obtain

N = 2uBg, Z'[ : s

2 2 2.2
m,l,n m +By| +an)

2 22 2 2,572
(m™+By17+B;n%)

x exp(im( @m+ @l + @.n)),

.\ 3[mcos6 + (B,Ising +B,ncosd)sing] 2} ®)

where B, = I/l, and B, = I /I, are the lattice extension
coefficients along the y and z axis, respectively. Taking
into account the fact that all the sums whose terms are
odd relative to the summation variablesm, |, n are equal
to zero for atetragonal lattice, we can represent relation
(5) intheform

A= 2uByB,

x [AoC0S°8 + Ay, S0 + 3, sin’Bsin 9] ,

(6)
where

. (2m2—[32I2—Bfn2)
Ao = :
i m;n(m% Bj1 +p2n")™ )
x exp(im( @m+ @l +@,n)),

. (_mz_ lez + 2[3’3”2)
A = y
" m;n (M’ +Bil% + B%n?)> (8)
x exp(im(@m+ @l + @,n)),
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(B —Bin%)
Ay = y
¢n%m+w+ﬁ6” (9

x exp(it(gm+ @l + @,n)).

The transformation used in [10] considerably
improves the convergence of the dipole sums (7)—(9),
which can be represented in the form of the sums of
exponentially decreasing terms:

00

)\O = %ET[B% z (2an_Ymn_Zmn)1 (10)
Y m,n=—c
)\TIIZ %STEE Z (szn_Ymn_an)f (11)
T mn= o
=gt Y Om-Zw. (2
where
X = z%l (X%cos(lmg()exp(—u(x)l)
=1
) _ Q27 D@2
O‘mn‘z[m 5, 0 "0 B, D} !
Yo = Z%} (yDcos(In(p/)exp(—(x(y)I)
=1
a¥ = L F @2
: ‘2”[%“25 0B, D} :

Z +0((Z)Dcos(ln(g)exp(—0((z)l)

/252 12
@ _ 2, (TG
On = 2n[(m+ 0/2)" + DB—yD }

The evaluation and comparison of the values of the
dipole interaction parameter A for different magnetic
configurations makes it possible to construct the mag-
netic phase diagram of the system. In the case under
investigation, when there exist six simple two-sublat-
tice antiferromagnetic configurations along with the
ferromagnetic configuration, such a diagram may be
quite complicated. Its form is determined by four
parameters corresponding to lattice extension (3, 3,)
and the direction of the magnetic moment of the dipoles
®, 9.

Figures 1a and 1b show, by way of an example, the
angular dependences of the dipole interaction parame-
ters for two different magnetic configurations, one of
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A/2uB,B,
6ra 011

Ao1o Ao

4t
-6 (a)
8t _
101 M 100 B, f@zz ooy
12+ : :
AF(011) ! AF(010) * AF(110)
0 15 30° 45° 60° 75 90° 8
A/20B,B,
AF(001) AF(010) AF(100)
30+ —

20 A 001
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0
-10 (b)
SN M
20 M o=o5 ] S
I B,=15 ot
=30 FA100 B,=0.5
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0 15 30° 45° 60° 75° 90° O

Fig. 1. Angular dependences A(8) of the dipole interaction
parameters for a (a) cubic and (b) tetragonal lattice of
pointlike dipoles. The domains of ferromagnetic (F) and
antiferromagnetic (AF) states are indicated. Subscript F
correspond to the ferromagnetic configuration, and sub-
scripts 100, 110, etc. correspond to the values of phases ¢,

@, and @,.

which corresponds to a cubic lattice of dipoles with
magnetic moments perpendicular to the y axis (¢ = 0),
while the other corresponds to atetragonal lattice with
dipoles oriented so that @ # 0. It can be seen that the
ground state of the simple cubic lattice of pointlike
dipolesisantiferromagnetic, although the specific form
of the corresponding magnetic configuration is deter-
mined by the values of the above parameters. A more
detailed analysis confirms the general nature of this
conclusion for any tetragona lattice of pointlike
dipoles.
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2.2. 2D Lattice of Pointlike Grains

For obvious reasons, it is more convenient to ana-
lyze the properties of the system under investigation for
a 2D lattice of anisotropic pointlike magnetic dipoles.
In order to obtain the required relations, it is sufficient
toset| = 0in al the above formulas. In this case, we
obtain the following expression for the dipole interac-
tion parameter:3

A = olHBD
o1, O 13

x{(3cos’0—1)%, +BA(3sn"6-1)%},

where3 = 3,and
s - Zmzeiﬂ(q&meq)ZH)
m = 2 2.5/2'
m +3°n
('’ + ) a
2e| mi(gm+ @,n)

s —¢he "~
n Z(m +an2)5/2

mn

The transformation used in [10] considerably
improves the convergence of the dipole sums (14),
which can be represented after thisin the form

16T[2 z Z cos(nm(px)Bﬁ

m=1k=—-o (15)
x Kz[(2nm/|3) K+ ‘%}
5 _ 16T
3B n=1K = —o (16)
X KZ[ZTmB k + %H

where K, is the Macdonald function. The latter rapidly
decreases exponentially upon an increase in the argu-
ment; consequently, it is sufficient to retain only those
terms in sums (15) and (16) which correspond to the
minimal (in absolute value) arguments of this function.
Simple approximate expressions for these sums, which
correspond to different magnetic configurations, have
the following form:

3 Relation (13) can be written in the symmetric form A = )\ocosze +
AypSin?0, where Ay = 2(uBl)(2Z, — B%,) and Ay, =
2(pp/ X)(ZBZZn -2, arethe values of A corresponding to angles
6 =0and 6 = 1v2, respectively.
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AP, 24
Zm —9-[3—%&4'55
(17)
[K%ZBTH + 5K2%F'BD+ 10K2558TE} E;
47
s = M40
optt L2 (18)

x [Ky(2mp) + 5K, (41p) + 10K (6T P)]}
for the ferromagnetic configuration (@, = 0, @, = 0);

* (19
[K2m]+ KZBZL;TE+ 10K2%Bg%},
21°
s = -S—{1+48
= ot R 20
x [Ky(2mP) + 3K (4T [) + 10K,(6T1B)]}
for the configuration S; (¢, =0, @, = 1);
_ 2’0 48
= o B
(21)
0
[KZEZBTE 3K2%F1[3T% 10K2556TE}%
2, = gg[Kz(ﬂB) + Ka(2mP + 10K,(3nP]  (22)
for the configuration S;p (@, = 1, @, = 0); and
3‘3 23
x [Kz% E%”L 1OKZE%TE},
_8rr (24

2, = 32 —[Ko(TB) — Ky(2Tf) + 10K, (31 P)]

for the configuration S;; (@, = 1, @, = 1).

The angular dependences A(8) of the dipoleinterac-
tion parameter calculated using formula (13) using the
exact formulas (14) and approximate relations (17)—
(24) (ferromagnetic and antiferromagnetic AF(10),
AF(01), AF(11) magnetic configurations, respectively)
are presented in Figs. 2a and 2b. For moderately
deformed rectangular lattices (0.5 < 3 < 2), relations
(17)—24) provide aresult that practically does not dif-
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fer from the exact result; however, the error increases
with the strain (the error becomes equal to 4% for 3 =
250r 3=04).

The evaluation and comparison of the values of the
dipole interaction parameter A for different magnetic
configurations makes it possible to construct the mag-
netic phase diagram of the system (see above). Figure 3
shows such adiagram for arectangular lattice of point-
like (but anisotropic) dipoles. It can be seen that for a
slight deviation of the direction of such dipoles from
the sides of thelattice, itsground state is always antifer-
romagnetic (irrespective of the ratio of the lattice peri-
ods). On the contrary, for large angles of inclination of
the dipoles, the ground state of the | attice becomes fer-
romagnetic.

2.3. 3D Lattice of Rodlike Grains

An anaysis of a lattice formed by rodlike grains
(linear dipoles of afinitelength) isinteresting since the

891

parameters of the magnetic phase diagram of such alat-
tice can be determined to a high degree of accuracy on
the basis of the well-known simple analytic expression
for the energy of interaction of such dipolesand can be
used for estimating the errors in a rough model of lat-
tices formed by 3D ellipsoidal grains (see below).

If the center of one of such dipolesisat the origin of
the coordinate system and the position of the center of
another dipoleis determined by the radius vector Ry,
andif such dipolesare parallel, the energy of their inter-
action can be written in the form [5]

w =

(25)
o O 2 1 _ 1 0
|JRmIn| |len+2aeo| |len_2ae0||:|’

where 1 and 2a are the magnetic moment and the length
of each dipole, respectively. It follows hence that

wherey=1,/a.

] . 2
N = 2uBBy° Y explin(gm+ gl + o)
' ngn # (m’ + B21? + 2"
- 1 (26)
1 2 -1 . . 2 1 . 12
[(m+2y “cosB) + (B, +2y sinBsing) +(B,n+2y smecosq)ﬁ
1 ]
1 2 1 . . 2 1 . 2.2 |’
[(m—2y "cosB) + (B,I -2y "sinBsing) + (B,n—2y "sinBcosd) ]
2.4. 2D Lattice of Rodlike Grains
In this case, the genera formula (26) is simplified as follows:
1
A= ZDJI‘?DZ exp(ln((&m+¢zn))§ — - — 1/2}
m +B n) [(m+ 2y "cosB) + (Bn+ 2y smeﬁ )

+[1-
(m’+ p?n%) ™

2.5. Ellipsoidal Grains

The method of approximate calculation of the
energy W, of intergrain dipole interaction for alattice
of 3D ellipsoidal grains was proposed in [11]. This
method is applicable for strongly prolate or strongly
oblate uniformly magnetized ellipsoids of revolution
and makesit possibleto represent the expression for the
energy W,,, of their pair interaction in the form of a
series in the derivatives of potential Y of the magnetic
field created by such agrain.
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1 } O
0
[(m—2ytcos8)’ + (Bn—2y'sing) 1" O

Let the center of one of thegrainsbea theoriginandthe
center of another grain be at the point with coordinates x,
Yo» Z- If the magnetic moments u of the grains are directed
aong thex axis, Wy, = ML), where

HO,,, = —%J’J’J’[M%—Z)}dxdydz

(X, Y, 2) ya %)
X 1
- ‘VJ'U[ }dXdydz'
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Fig. 2. Angular dependences Ar(8), Aqg(6), Ag1(), and
A11(0) of the dipole interaction parameters for a (a) qua-

dratic and (b) rectangular lattice of pointlike dipoles. Solid
curves are calculated using exact formulas (14), and sym-
bols correspond to approximate relations (17)—24). The
domains of ferromagnetic (F) and antiferromagnetic (AF)
states are indicated.

Visthegrain volume, andintegrationis carried out over
the volume of the second grain. The coordinatesx' = X —
X0 Y =Y —VYo Z' = Z2—Z, correspond to the coordinate
system obtained by parallel trandation of the initia
system with the origin at the center of the second grain

(XO = mlx’ yO = IIy = By|x1 zO = nle Bnlx)

In view of the geometrical anisotropy, the magnetic
moments of the grains are always directed along their
major axis, which will be assumed to be parallel to the
x axis (it isthe only major axisfor aprolate ellipsoid of
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Fig. 3. Magnetic phase diagram of a rectangular lattice of
pointlike dipoles parallel to one another. The ground state of
the system corresponds to the antiferromagnetic configura-
tion Sy; for small values of the angle of inclination 8 and to

the antiferromagnetic configuration S,y for large angles.
The hatched region corresponds to the ferromagnetic state.

revolution and any of the major axesfor an oblate ellip-
soid). In this case, integral (28) can be written in the
form

QWY 2) | torety = fcpun
J‘J‘J‘[);T}dxdydz =[S,
= (29)
S(X) = q["’—"’(f,’x?”z)}dy'dz,

wheretheintegration domain C, isacirclewith the cen-
ter at the point (X, 0, 0) and radius r = r(x) = b(1 —
X?/a?)V? for a prolate ellipsoid and r = r(x) = a(1 —
x?/a?)¥2 for an oblate ellipsoid; a, b, and c arethe ellip-
soid semiaxes (a> b = c for aprolate ellipsoid and a =
b > c for an oblate elipsoid whose minor axis is
directed along the z axis).

Expanding potential Q(X, Yy, Z) into the Taylor
series

w = P+ [WhoX + WhY' + WonsZ]

1 mni 1 mni mni
+ é[qJOxxxX 2 + '~|JO><yyy'2 + LIJOxzzzz] (30)
+ [l-|-’;)'>l<xyxlyI + l-p;)';(yzylz + Lp;)l;(xlez] ...,
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where

Wox = OY/OX|y =y = 7=0 Woxx = azlIJ/6X'2|x'=y=z=o1

and lIJOxxx - a l-I-,/a)('Slx y=2=0

(similar notation is used for the derivatives y' and 2),
and substituting this expansion into relation (29), we
can seethat only those termsin expansion (28), which
do not contain terms with odd powers of X, y', Z sur-
vive after integration. For a prolate ellipsoid, taking

into account relation Yo, + Wo,, = —Woy» We finally
obtain

0,0 0,0
Han = [SHDO(a )2{?0( = )D ;

+ ——a %- + 2b DlIJE;)'(xx

where O(yV) is the sum of terms proportional to the
fifth-order derivatives of the magnetic potential.

Similarly, we find that the “ central” oblate ellipsoid
with the equatorial plane Xy createsin this plane amag-
netic field (HL},,, whose components are defined by the
relations

qJOxi|
. (31)
ow",

3lo(@ 0,0) —Yo(-a, 0,0)7 1 .
xQnIn - |:2|:| 2a O 2LD0X:|
32
+%a2|:%l"0xxx_ l‘IJOXy)E-'- 2C (qJOxxx lJJOxyy)i| ( )
+0(u"),
30Po(0. , 0) —Wo(0, -, O)D 1
Hyhin = [ >a Zmoy}

3 w0, 26w, (] (33
+§6a2[8-|"oyyy_ wOXXE-'- C(qJOyyy lIJnyx)i|( )

+O(L|J ).

Numerical calculations show that the contribution
of the term O(y") is negligibly small (less than 1%) in
all cases of practical importance. Thus, the application
of expressions (31)—(33) taking into account explicitly
written terms ensures an accuracy not worsethan 1%in
the calculation of magnetic energy.

As regards the potential of the magnetic field cre-
ated by the central grain in the volume of the second
grain, the corresponding relations are well known [12]:
for aprolate ellipsoid, we have

W= %%—Xg(arctanht—t), t = JleTE’ (34)
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where e = (1 — b¥a?)? is the eccentricity and & is the
larger root of the equation [(y? + Z2)/a?]/(1 — € + &) +
(x/a)?/(1+ &) = 1, while, for an oblate ellipsoid, we have

B arctant — — = — 35
v=H —) e @
where e = [(a%/c? — 1)Y?] and & isthe larger root of the

equation [(x% + y?)/c? /(1 + €+ &) + (Zc)d(1+ &) = 1.

2.6. 3D Lattice of Ellipsoidal Grains

Relations (31)—(33), which determine the mean
magnetic field HL],, of the central grain, arewrittenin
the coordinate system in which the x axis coincides
with the direction of magnetic moments (8 = 0). Using
alinear coordinate transformation, we can easily gener-
alize these equations to the case when the direction of
these moments is characterized by angles6 # 0 and @ #
0. However, for a3D lattice, we confine our analysis to
asimpler situation with 6 = 0. For atetragonal lattice of
ellipsoidal grains with magnetic moments parallel to
the lattice side directed along the x axis, parameter A
determining the type of magnetic order is given by

N = 2B, Y[R expi(om ol + o),
(3)

m, |, n
Ho = k.
¥

2.7. 2D Lattice of Prolate Ellipsoidal Grains
For prolate ellipsoidal grains whose major axes lie

inthe plane of a 2D rectangular lattice (xz plane), in the
general case (0 # 0), we obtain

A = ZETH%Z'[D:E“”}eXp(i((pXm+(pZn)), (37)

wherethemean field [(HOy» should be calculated using
formulas (31) in the coordinate system X = xcos8 +
zsinB, Z = zcosO — xsin®.

This expression for the dipole interaction parameter
A was used for determining the limits of applicability of
our approximate model for prolate ellipsoidal grains. A
comparison of the results corresponding to a rectangu-
lar | attice and obtained on the basis of the exact formula
(27) for linear dipoles and the approximate relation (37)
for similar strongly prolate ellipsoids with the eccen-
tricity e = 0.9999 (the ratios of the axes a/b = 70) is
illustrated in Fig. 4. It can be seen that the approximate
model correctly reflects all features of the complex
phase diagram of the system and leads to qualitatively
correct results in the entire range of parameters except
in the situation close to contact of grains occurring due
to their finite transverse dimensions.
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Fig. 4. Comparison of magnetic phase diagrams of arectan-
gular lattice of linear dipoles (solid curves) and strongly
prolate (e = 0.9999) ellipsoids (points) of the same length
2a = (2/3)ly. The hatched region corresponds to contacting
elipsoida grains.
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Asbefore, the evaluation and comparison of the val-
ues of the dipole interaction parameter A for different
magnetic configurations of magnetic moments of
grains makes it possible to construct the magnetic
phase diagram of the system. The dependences of these
parameters for a square lattice of ellipsoidal grains on
the angle of inclination of their magnetic moments are
presented in Fig. 5. Examples of magnetic phase dia-
grams for two lattices of ellipsoidal grains with differ-
ent scaling ratios I,/a are shown in Figs. 6a and 6b. For
a small value of this ratio, there exist lattices whose
ground state is ferromagnetic even for 6 = 0 (e.g., al
latticeswith 3 < 1areof thistypefor |,/a=2.5). Inaddi-
tion, a comparison of Figs. 6aand 6b shows that, upon
a decrease in this ratio, the antiferromagnetic phase
vanishes in the range of small angles 6, indicating the
possibility for atransition of the system from the anti-
ferromagnetic to the ferromagnetic state. It will be
shown below that magnetic phase transitions in thin
films of magnetic metals may be associated precisely
with this feature of the phase diagrams of lattices
formed by ellipsoidal grains.

Unfortunately, the approximate nature of the model
does not permit the exact determination of individual
boundaries on the phase diagrams in all cases. For
example, in the casesillustrated in Figs. 6a and 6b, the
difference in the energies W and Wy, of the corre-
sponding states in the range of parameters 6 < 10° and
B > 1 amounts to less than 0.1%. Consequently, it is
Impossible to determine the actual type of magnetic
ordering in this region in the framework of our model.
We can only state that the boundary between these
phases prabably liesin the hatched rectangul ar regions.
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Fig. 5. Dependences of the dipol einteraction parametersfor
asquare lattice of ellipsoidal grains on the angle of inclina-
tion of their magnetic moments (cf. Fig. 2a). Ellipsoidal
grains: e=0.95, l,/a = 3.

2.8. 2D Lattice with Oblate Ellipsoidal Grains

Let us suppose that the equatorial planes of oblate
ellipsoidal grains coincide with a plane of a 2D rectangu-
lar lattice (xy plane). In the absence of crystal anisotropy,
their magnetic moments aso lie in this plane, athough
they are not “attached” to a certain direction. It would be
unjustified from the physical point of view to assume that
the ground magnetic state in this case corresponds to one
of the collinear antiferromagnetic configurations, say, of
the type §;; studied in the previous analysis, in which the
magnetic moments of the grains are pardlel to one
another. Among candidates for the ground state, we can
congder, for example, the fan configuration of magnetic
moments, where the latter are turned through angles +x
relative to one of the lattice Sides (seetheinset to Fig. 7).

Such statesfor a2D squarelattice of pointlike magnetic
dipoles were studied in [1], where it was proved that the
energies of al fan configurations are identical irrespective
of anglex. It wasfound, however, that such adegeneracy is
typical only of pointlike dipoles and is removed as we pass
to oblatedlipsoidd grains. Inthelatter case, theenergy of a
fan configuration can be calculated by the formula

AK) = 2D‘BDA<x)

i

AX) = ze'”'[ cos(X~Xm) (39
[qun _
———g;—'S'n(X—er)},
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Fig. 6. Magnetic phase diagrams of rectangular lattices of
ellipsoidal grains with eccentricity e = 0.95 and |,/Ja = 2.5 (a)
and 3 (b). The notation isthe same asin Fig. 4. The bound-
aries of the upper hatched regions forbidden by the geome-
try of the problem correspond to contacting grains. Phase
boundaries for 6 < 10°, B > 1 lie within the lower hatched
regions.

where Xy = x€™™*D; the fields (H,L}; and H,[}; are
defined by relations (32) and (33) in the coordinate sys-
tem X = xcosy + ysiny, y = ycosy — xsinx; and the
potential of the field created by the central grain is
defined by relation (35), in which we must set & = (€? +
DIOE +y?)/a? - 1].

Obviously, a noticeable difference from the lattice
of pointlike dipoles can be expected only in the case
when the shape of grains differs considerably from
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Fig. 7. Dependences of the energy of fan antiferromagnetic
configurations for a square lattice of disk-shaped grains on
theanglex of rotation of their magnetic moments (seeinset)
for various distances between the grains. The inset repre-
sents afan configuration in the form of wavy magnetic field
lines.

spherical and their size is comparable with the lattice
period (I ~ a). Figure 7 shows an example of the depen-
dence of the energy of afanlike antiferromagnetic con-
figuration on angle x, which is obtained in thisway for
very flat (c/a = 10) and closely spaced grains (disks)
in asguare lattice. It follows that any vortex configura-
tion in this caseisinferior in energy relative to the col-
linear configuration S, which represents the ground
state. Calculations show that this conclusion remainsin
force for any rectangular lattice of disk-shaped grains.
Similarly, the wavy configurations for which x,; = x€™
is also less advantageous from the energy point of view
(seeFig. 8).

2.9. 2D Lattice of Oblate Ellipsoidal Grains
in a Magnetic Field

The energy disadvantage of the ferromagnetic con-
figuration of the ground state can be suppressed by
applying an external magnetic field, which inevitably
leads to a transition to the ferromagnetic state (if the
field is strong enough). Depending on whether this
magnetic field is directed along or across the magnetic
moments of the sublattices of the initial antiferromag-
netic state, such atransition follows different scenarios.
In one case, the phase transition occurs through the for-
mation, growth, and coalescence of nuclel of the other
(ferromagnetic) phase; thisisthe processthat should be
considered in the genera theory of kinetics of phase
trangitions.
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Fig. 8. Field dependences of magnetization for various rect-
angular lattices of disk-shaped grains of diameter 2a. The
magnetic field is directed along the longer lattice period I, =

6a. The smaller lattice period I, is equal to 6a (curve 1), 4a

(2), 3.33a(3), and 3a (4). The left inset shows a wavy con-
figuration of the magnetic moments of grains in the field
parallel to the longer side of the lattice. The right inset pre-
sents the experimental field dependences of magnetization
of lattices of flat grains[14].

In another case, the magnetic moment of grains
rotate freely and coherently in their plane (under the
assumption that there is no magnetic anisotropy in the
crystal, as, for example, in the case of grains of a soft
magnetic material). The moments of different sublat-
tices have a tendency to align themselves in the direc-
tion of the magnetic field by rotating in the opposite
directions. For the ground antiferromagnetic state S;;,
such a transition occurs through a wavy configuration
(which is disadvantageous in zero field). When the
magnetic moments of the grainsrotate through angley,
the energy of their dipole interaction increases by

AW(X) = —BAX)io =[M0) —AX)]io,

where the dipole interaction parameter A is calculated
by formula (38) for X,y = X€™. Thisenergy increase for
each grain is compensated by the decrease in its Zee-
man energy,

AW,(X) = HHsiny,
which gives

H:EA/\_(X)
MELS
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where AA(X) = A(0) — A(X). At the same time, the lat-
tice magnetization is given by

i = 2igsin = Ellgsinx.

X
Thelast two relations determine the parametric relation
between the magnetic field H and the equilibrium mag-
netization i in thisfield. Such a magnetization could be
observed upon aninfinitely slow variation of thefieldin
the absence of magnetic anisotropy of any kind. A
series of such field dependencesfor 2D lattices of disk-
shaped grainsis presented in Fig. 8. Asthe small lattice
period (along which the moments of the grains in the
initial antiferromagnetic state are directed) decreases,
the magnetization saturation field of the system
increases.

3. EXPERIMENTAL EXAMPLES
3.1. Magnetism of Ultrathin Films

Experiments with ultrathin films of iron, cobalt, and
nickel reveaed that, for a certain effective thickness, a
long-range ferromagnetic order is established in such
films [8], but the origin and mechanisms of this phe-
nomenon remain not quite clear. The control of the
topology of such filmsand, in particular, an analysis of
the geometry and magnetic properties of islets consist-
ing of Co (Fe, Ni) atoms, the fraction of the substrate
covered by these atoms, the structure of the film itself,
and aso the evolution of relevant parameters in the
course of the film growth are very important for the
development of physical ideas concerning the mecha-
nism of establishment of the magnetic order in such
films.

In this connection, we can mention arecent publica-
tion[9] inwhichitisshown that, for ahigh (room) tem-
perature of monocrystaline (110)-oriented Cu sub-
strate, the Co film deposited on it grows through natural
lithography, i.e., through the formation of nuclei (dis-
tributed more or less uniformly over the substrate areaq),
which are transformed into ellipsoidal grains with
major axes oriented (with a small spread of 5°-10°)
along the[001] axes of the substrate. It wasfound using
scanning tunnel microscopy (STM) that the size of
these grains increases in the course of film growth, but
the distance between their centers and the shape of the
grains (i.e., their eccentricity) remain unchanged.

Experiments show that such films become ferro-
magnetic only if their thickness is large enough. (The
effective thickness d of an inhomogeneousfilm consist-
ing of grainsis equal to the thickness of ahomogeneous
film containing the same number of atoms and is mea-
sured by the number of effective monatomic layers.) Gu
et al. [9] believe that the critical thickness d. of the film
is the thickness for which its hysteresis loop exhibits a
nonzero coercivity for thefirst time. According to their
measurements, d. = 4.6 monolayers, although notice-
able nonlinearity of the magnetic-field dependence of
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the film magnetization, which is a consequence of
intergrain interaction, appears even for d = 4 mono-
layers.

We assume that the described process of transition
to the ferromagnetic state can be attributed to the
change in the magnetic state of a2D system of ellipsoi-
dal Co grains with the long-range dipole interaction in
accordance with the magnetic phase diagram whose
examples were given above. In the framework of this
model, the film growth is reduced only to a change in
the scaling factor whose role in the problem is played
by the size a of the semimajor axis of an ellipsoidal
grain.

In order to pass to a quantitative description of the
process, we must connect the parameters characterizing
the size and shape of the grains (the semiaxis length a
and eccentricity e) with the effective thickness d of the
film. For this purpose, we can use the experimentally
determined (for the same system) relation € = ¢(d)
between the fraction e of the open surface of the sub-
strate (which is not occupied by Co grains) and the
effective thickness of the film[13]. Obvioudly, the frac-
tion of the surface covered by grainsis1—e =ab/(l,l,);
this leads to the required expression for the parameter
l,/a determining the nature of the magnetic phase dia-
gram:

I /a = [127a9] [(1-e(d®))/(1-e(d))],

where the parameters labeled by the superscript (O) cor-
respond to the thinnest film (in experiments [9], d© =
0.9 monolayers). Figure 9 shows such a dependence
plotted on the basis of the experimental data [13] for a
Co film on a(110) oriented Cu substrate.

According to Gu et al. [9], the grain shape is close
to elipsoida with the eccentricity e = 0.95, and the
ratio of the average distances between the grains (lattice
periods) is B = I/, = 0.5-1. As regards the angles 0 of
grain orientation, it follows from the STM images pre-
sented in [9] that these angles are distributed in a nar-
row interval near 8 = 0. With increasing effective thick-
ness of the film, the grain size increases, while lattice
periods remain practically unchanged (right up to the
contact between the grains). In this case, the ratio |,/a,
which determines the magnetic state of the system in
accordance with Fig. 6, decreases monotonically,
which leads to the magnetic phase transition from the
initially antiferromagnetic state to the ferromagnetic
state. The critical thickness d, of the film at which this
transition occurs and subsequent dependence of the
Curie temperature T of the emerging ferromagnetic
state are determined (see above) by the value of the
dipole interaction parameter A for various magnetic
states of the system.

Proceeding from the STM images of Co films pre-
sented in[9], we assumed in our calculationsthat (i) the
axes of al grains are paralé to one another (6 = 0),

(i) B =1/, = 0.5, and (iii) I'Y /a©® = 4. Figure 10 shows
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Fig. 9. Experimental dependence e = (d) of the fraction of
open (not occupied by Co grains) (100)-oriented surface of
the Cu substrate on the effective thickness of the Co film
[13] (circles) and corresponding theoretical values of
parameter |,/a (squares). The parameters marked by the
superscript (0) correspond to the thinnest film of thickness
dp = 0.9 monolayers. The experimental results are approxi-

mated by the exponential dependence e = exp(—d/2.56)
(lower dashed curve), while the results of calculations are
approximated by the hyperbolic  dependence

(/a1 a0 = [1 - @M1 - e(d)] = 0.971/d%28°
(upper dashed curve).

the dependence T(d) = A(d)iy/k of the Curie tempera-
ture of the films on their thickness, determined for the
above values of the parameters. For the chosen set of
parameters, atransition of the system of grainsfrom the
antiferromagnetic to the ferromagnetic state occursat a
critical thickness d, = 4.3 monolayers, which is close to
the value indicated in [9]. After the attainment of such
athickness, the Curie temperature of the formed ferro-
magnetic state immediately assumes a finite value and
then increases with the film thickness. The scale of the
initial Curie temperature is determined by the value
of Hiyfor p=300yg, io=10*G cm (which corresponds
to the volume of grains of 40 nm? and their concentra-
tion N = 104 cm=) and amountsto T ~ 300 K.

3.2. 2D Lattices of Disk-Shaped Grains
in a Magnetic Field

Modern electron lithography makes it possible to
create artificial periodic magnetic structureswith asize
of individual elements (grains) up to tens of nanome-
ters. On the one hand, the sizes of such grains are large
enough for their ferromagnetic properties to be virtu-
ally identical to the properties of large objects made of
the same material, but on the other hand, these are so
small that the grains themselves are one-domain ferro-
magnets. These structures with the dipole interaction
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Fig. 10. Dependence of the Curie temperature of thefilmon
its effective thickness. Mgjor axes of grains are parallel to
one ancther (6 = 0), eccentricity e = 0.95; grain lattice

parameters:. 3 = 0.5, IS(O) 1a® = 4,

between grains are just the objects studied by us here.
In order to analyze the experimental manifestation of
the rearrangement of the magnetic configuration for
this type of structures, we consider the results obtained
in [14], where 2D rectangular lattices of circular plane
grains made of a magnetically soft material (Supermal-
loy NigyFe;;,M0s) were studied. The grain size was as
follows: diameter 2a = 60 nm and thickness h = 7 nm,
which corresponds to the grain magnetic moment p =
(ra?h)lg = 1.6 x 107 G cm?®, where I,=800+ 60 G is
the saturation magnetization of the grain material. One
of the lattice periods (I, = 180 nm) remained
unchanged, while the other (I,) varied in the range
90-180 nm. Since |, < |, the ground state of the system
corresponded to the magnetic configuration S;;. The
magnetic field applied along the y axis must transform
the system to the ferromagnetic state via an intermedi-
ate wavy magnetic configuration (see above). The char-
acteristic scale of the field required for this purpose is

defined by the quantity u/li, which is equal to 2.7 Oe
in our case. In accordance with the dependences pre-
sented in Fig. 8, the saturati on magneti zation of the sys-
tem must take place in the fields H, = 5.5 and 35 Oe,
respectively, for lattices |, = 180 and 90 nm. The exper-
imentally measured values of these fields [14] H, = 6
and 40 Oe arein satisfactory agreement with the results
of computations (see theinset to Fig. 8).

3.3. Magnetic Recording Density

The principle of magnetic recording is that the mag-
netic state (magnitude and direction of magnetization)
of a small region of a magnetic medium deposited on
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the surface of a disk (tape) is memorized. Usually, the
medium consists of small grains (of size 1001000 A)
of a magnetic materia (e.g., Fe—Co alloy). A specid
device known as the head can be positioned over any
region of the disk and change the magnetic state of this
region (information recording) or determine the state of
this region (information readout). The latest advance-
ment in this field was the demonstration of a disk with
the recording density of about 5 Ghit/cm?. A bit of
information on the disk is recorded on aregion contain-
ing approximately 100 grains.

The extremely high density of information storage
can obviously be attained by recording one bit on asin-
gle magnetic grain. For this purpose, it is necessary to
create a special magnetic carrier containing individual
periodically arranged magnetic nanoparticles of the
same size, shape, and orientation. The periodicity of the
arrangement is required for information record-
ing/readout, while the uniformity in the above geomet-
rical parameters is required for storing the recorded
information for along time (of the order of 10 years).

The main mechanism leading to a reversal of the
magnetic moment (and, hence, to aloss of information)
insmall grainsisathermal excitation of such aprocess.
The time of information storage is determined by the
characteristic time 1 of rotation of the magnetic
moment, which is defined as

T = Toexp(Q/KkT), (39)

where 1, = 101°-10° s and 4, is the height of the
energy barrier separating two stable states of the grain
magnetization. The time T of information storage
exhibits avery strong (exponential) dependence on A,
andinorder toabtain T = 10 years, it is necessary to sat-
isfy the condition

AG/KT = 40. (40)
It iswell known [15] that
A, = %vvolﬁ, v = N,—N,, (41)

where N, and N, are the demagnetization coefficients
for agrain along the a and b axes, respectively; V,isthe
grainvolume; and I isthe magnetization of itsmaterial.

In our subsequent estimates, we consider Fe grains
for which Ig= 1700 G and assumethat their temperature
isT = 300K (room temperature). Substituting relations
(41) into (40), we obtain

Vo=V Vimia[NM’] = 1000/v, (42)

Vin beiNg the minimal volume of Fe grains for which
the magnetic moment preserves its direction for
10 years. It should be emphasized that the obtained
estimate corresponds to isolated (noninteracting) mag-
netic grains. Relations (42) imply that, in order to
reduce V,,;,, we must take grains with large values of
parameter v, i.e., grainsin theform of astrongly prolate
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ellipsoid (rodlike grains). It is sufficient to confine our
analysisto the ratio of the grain axes a/b = 4-10 ensur-
ing the value of v = 5-6. A further increasein thisratio
(i.e., trangition to rodlike grains) does not increase
parameter v appreciably. Assuming that v = 5.5, we
obtain the final estimate

Vo=V Viin = 180 nm®. (43)

The maximum attainable value of information stor-
age density corresponds to close packing of such
grains. For the grains of the shape under investigation
(ellipsoid of revolution with the axesratio a/b = 6), the
recording density is about 1000 Ghit/cm?.

However, the magnetic interaction of closely spaced
grains, which reduces the information storagetime like
thermal excitation, may obviously reduce the obtained
estimate significantly. In order to demonstrate the
strength of the latter effect, we use the relation [16]

_H HVO

vl vl (44)

which describes the lowering of the height A, of the
energy barrier separating two stable states of a grain
dueto the magnetic field H created by all the remaining
grainsintheregion of itslocation. Thisrelation is based
on the assumption that the magnetic moment of the
chosen grain and the external magnetic field are anti-
paralel.

Let the magjor axes of al grains be paralléel to the x
axis (8 = 0). Then, in the approximation of rodlike
grains, the x component of the resultant field of all
grains at the origin (the site of the chosen grain) is
determined by arelation similar to (27):

1« ing, 2
HiH, = =5 e [—
2" g (45)

1 1 }
[(m+2y™)’+ B [(m-2y™) + B "

whereH, = /a3, @,,, = 1if the direction of the magnetic
moment of the grain located at point (ml,, nl,) coincides
with the positive direction of the x axis; otherwise,

=-1 (it should berecalledthaty=1,/a, and 3 =11,).
It is clear from geometrical considerations that |, > 2a
and |, > 2b.

Obviously, the magnitude of the field H depends on
the sign distribution of magnetic moments of surround-
ing grains, i.e., ontheinformation recorded in thevicin-
ity of the grain under investigation. While calculating
theinformation storage time, we must proceed from the
most unfavorable distribution of these moments (ensur-
ing the maximum possible magnetic field). Such (the
worst) configuration can easily be established: if the
magnetic moment of the chosen grain (located at the
origin) is negative (opposite to the positive direction of
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Fig. 11. Dependences of “magnetization reversal” field H
on the geometrical parameters = 1,/l, andy = I /a of alat-
tice of rodlike grains of length 2a with magnetic moment pt
(Hg = u/a3). The inset shows the dependence of attainable
density p of magnetic recording on the volume V of Fe
grains in the form of ellipsoids of revolution with the axes
ratio a/b = 6 (Vi = 180 nm?3). The dashed line corresponds
to condition (46) for X = 4.

the x axis), the signs of the magnetic moments of sur-
rounding grains in such a configuration depend on
whether or not they fall into a cone with the angle

2arccos(1/./3) and the axis paralld to the x axis. In
the former case, the magnetic moment is positive, and
in the latter case, it is negative. In particular, the mag-
netic moments of the grains located on the x and z axes
are positive and negative, respectively. The depen-
dences of field H on the geometrical parameters 3 and
y of the lattice formed by the grains calculated for this
case are shown in Fig. 11.

In order to compensate the effect of magnetic inter-
action between grains, their volume must be increased
as compared to the minimum volume V.. It follows
from relations (40)—(42) that the required volume X =
Vof Vi, must satisfy the condition X = /(1 —n)?, where
n = 0.125(H/Hy) for a/b = 6 and v = 5.5. Thus, the
admissible values of periods I, and I, of the lattice
formed by grains must satisfy the relation®

(1o 1)/Ho < %l (46)

4 Condition (46) indicates, in particular, that H must be equal to
zero for V = Vi, (X = 1), which corresponds to grains separated
by infinitely long distances.
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Among these values, we must select those correspond-
ing to the maximum surface density of grains, equal to
1/(1,1). The horizontal straight line H/H, = const drawn
in Fig. 11 corresponds to a certain value of X. It can be
seen that the optimum values of lattice periods are
always those corresponding to the point of intersection
of thislinewith the curve H(l,, |,) for theminimumratio
of the periods 3 = /1, dictated by geometrical consid-
erations (in our case, 3 = b/a= 0.2). The dependence of
the maximum attainable density of magnetic recording
determined in this way on the volume of grains is
shown in the inset to Fig. 11. It can be seen that,
athough the dipole interaction between grains consid-
erably reducesthisdensity (in our case, to half therated
value), it can still be high enough and attain values of
approximately 500 Ghit/cm?, which is two orders of
magnitude higher than the density of recording in the
best modern magnetic disks.

The approximation of rodlike dipoles used in the
previous analysis is completely applicable only for
grains separated by large distances (as compared to the
grain size) from the origin (the site of the selected mol-
ecule). Obvioudly, the largest errors appear in this
approximation when we calculate the field created by
the nearest grains. However, special calculations made
by us proved that the resultant action of remote but
numerous grains exceeds the action of a few nearest
grains (thisisaconsequence of thelong-range nature of
thefield of amagnetic dipole). Thus, the approximation
of rodlike grains correctly describes the effect of mag-
netic interaction between the grains.

4. CONCLUSIONS

We have described the methods for analyzing the
magnetic properties of 2D and 3D lattices of nonspher-
ical ferromagnetic grains with the intergrain dipole
interaction: the ground state, the magnetic phase dia
gram, and the change in the magnetic state under the
action of an externa magnetic field. The obtained
results can be used for describing the properties of a
number of real systems, including 2D periodic struc-
tures of magnetic grains suitable for creating magnetic
memory systems with a high recording density,
ultrathin films of ferromagnetic metals on monocrystal-
line substrates, and rectangular lattices of disk-shaped
magnetically soft grains. The methods developed for
describing the properties of such systems are in good
agreement with the results of relevant experiments.
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Abstract—A model of noncollinear magnetic ordering in Fe/Cr-type multistructures was suggested. The model
was based on the idea of charge (and, as a consequence, spin) density redistribution near a metal-metal inter-
face. A peculiar state of the whole structure characterized by strong short-range antiferromagnetic ordering in
the interlayer and a pronounced dependence of magnetic characteristics on the properties of the boundary
between iron and chromium layers was shown to be formed in a certain temperature range. Inhomogeneous
antiferromagnetic structures with a vector order parameter were found, and the effective exchange coupling
between neighboring iron layer moments was cal cul ated using the Ginzburg—L andau expansion of the thermo-
dynamic potential. The results were used to discuss the experimental data on Fe/Cr superlattices obtained in
neutron scattering and magnetization measurements. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Interest in multilayers (sandwiches and superlat-
tices) of the FM/AFM type, where FM and AFM are
ferromagnetic and antiferromagnetic materials, respec-
tively, stems from increasing requirements on the
parameters of layered nanostructures used in modern
magnetic recording technologies. Such multilayers are
as arule prepared by molecular-beam epitaxy with the
use of layer-by-layer deposition techniques. They are
unique abjects of fundamental studies and have quite a
number of unusua transport and magnetic properties
(for instance, giant magnetoresistance).

Transition-metal-based multilayers, for instance,
multilayers containing iron and cobalt as ferromagnets
and chromium and manganese as antiferromagnets,
rank among the most popular FM/AFM nanostructures.
In particular, at least three recent reviews concentrate
on Fe/Cr-type structures, which will be the subject mat-
ter of our study [1-3]. Indeed, Fe/Cr multilayers were
the first example of magnetic structures with exchange
potential J;(L) between FM layers separated by an
AFM interlayer in which the sign of this potential oscil-
lated as a function of interlayer thickness L. The J,(L)
potential has acomplex dependence on the geometry of
the structure (thickness and growth direction), the
topology of the Fermi surface in the chromium inter-
layer, and the quality of the Fe/Cr interface. The J;(L)
dependence contains “fast” and “slow” components
oscillating as functions of L. These components are
related to different types of electronic and hole regions
of the chromium Fermi surface; we also observe
exchange potential periodicity to experience distur-
bance (“phase dip”) caused by a peculiar magnetic
order type, namely, by a spin density wave in chro-

mium. Along with parallel and antiparallel orientations
of the magnetic moments of neighboring iron layers,
orientations with Y(L) angles (angles between iron
moments) that differed from O or 11 were observed in
various experiments in the thermodynamically equilib-
rium state and in the absence of an external magnetic
field. Further, we use the terms “collinear state” and
“noncollinear state” for orientationswith Y = (0, 1) and
P £ (0, 1), respectively; these terms have no deeper
meaning.

All the existing theoretical schemes (see [3]) give
more or less plausible descriptions of the dependence
of potential J;(L) on interlayer thickness in structures
with ideally smooth Fe/Cr interfaces and predict the
collinear state of such structures to be more favorable
than noncollinear. The appearance of noncollinear
statesisusually related to defects of the Fe/Cr interface,
namely, to interface roughness [1, 2]. A consideration
of effective exchange in a system with arough, that is,
not ideally smooth, Fe/Cr interface is, however, an
exceedingly complex task involving many unknown
parameters. The point is that, at the microscopic level,
roughness is related to the presence of monoatomic
steps, interdiffusion of the components, and other tech-
nological deviations from uniformity of real interfaces
formed during nanostructure growth. This in turn
causes frustrations of exchange coupling between Fe
and Cr and the formation of magnetic domain walls on
both sides of the Fe/Cr surface. These deviations from
ideal surface smoothness were found to initiate very
serious changesin the macroscopic magnetic properties
of multilayers; in particular, they could cause the for-
mation of noncollinear states [4-6].
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Several interesting phenomenological models have
been suggested to describe this effect. The most effec-
tive one is the biquadratic exchange scheme [7], which
is, so far as we know, closest to the correct interpreta-
tion of the experimental dataon Fe/Cr multilayers. This
scheme directly relates the formation of noncollinear
ordering of iron moments to the presence of alternating
steps and terraces on Fe/Cr interfaces. On the one hand,
these steps and terraces substantially suppress the
short-wave component of usual (bilinear) exchange,
that is, the J;(L) potential, and, on the other, they form
a peculiar additional (biquadratic) exchange potential
J,(L) caused by partial disturbance of strong coupling
between Fe and Cr spins near monosteps (see the dis-
cussion in review [3]).

No microscopic theory underlying the biquadratic
exchange scheme has been suggested, first and fore-
most, because of the absence of a correct description of
the complex influence of the Fe/Cr interface on antifer-
romagnetic ordering with a spin density wave in the
chromium interlayer, through which iron layersinteract
with each other. Non-self-consistent approaches of type
[8] are incapable of even qualitatively explaining the
magnetic phase diagram of Fe/Cr multilayers, not to
mention fine details of spin density distributionswithin
the interlayer. Using these approaches to solve the del-
icate problem of the influence of interface imperfec-
tions on favorableness or unfavorableness of collinear
compared with noncollinear ordering is therefore
meaningless.

Recently, we have suggested a model for self-con-
sistently describing spin density distributions in Fe/Cr
multilayers [9, 10]. This model has been used to ana-
lyze collinear states and has alowed us to explain the
key features of the phase diagram of Fe/Cr multilayers
in the temperature-interlayer thickness variables in
terms of short-range order and local phase transitions
into the state with a spin density wave. In thiswork, we
generalize thismodel to noncollinear states. The micro-
scopic reason why the noncollinear rather than col-
linear state is energetically favorable in the presence of
monosteps and terraces on the Fe/Cr interface will be
elucidated; this reason is related to the rearrangement
of the spin density wave in the chromium surface layer
and the formation of apeculiar domain wall (rotation of
the spin density wave phase) near a monostep on the
Fe/Cr interface. The biquadratic exchange model will
be substantiated at the microscopic level, and limita
tions imposed on its applicability by interlayer thick-
ness, temperature, and interface roughness will be ana-
lyzed.

2. MODEL AND PROBLEM STATEMENT

Asin[9, 10], we consider amodel of athree-layer
nanostructure comprising two ferromagnetic plates
(Fe) separated by an antiferromagnetic layer (Cr). Let
the technological Fe/Cr interface lie in the (ny, n)
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plane, which is orthogonal to the direction of structure
growth n, along one of the [100] cubic axes (here and
throughout, ny, ny, and n, are basis unit vectors). Con-
sider the temperature T range corresponding to short-
range antiferromagnetic order in the chromium layer;
that is, Ty < T < T, where Ty is the Néel temperature
in the chromium layer and T is the Curie temperature
in iron plates. Ferromagnetic layers are assumed to be
sufficiently thick for magnetization S within ferromag-
netic plates at T < T to be considered uniform and
independent of T. At the same time, antiferromagnetic
layer thickness L changes within fairly wide limits (L >
28, where &, isthe coherence length of the order of ten
chromium monolayers; in the temperature range that
we are considering, sublattice magnetization o within
the antiferromagnetic layer can be fairly nonuniform
and can strongly depend on T).

Layer dimensions in the n, and n, directions are
assumed to be much larger than thickness L. We can
then use the simplified one-dimensional model in
which o(x) depends on a single spatia coordinate for
ideally smooth interfaces. In the presence of interface
extensive defects (such as monosteps separating planar
terraces), o aso dependson they and z coordinates, and
the one-dimensional model can then be used to approx-
imately describe a nanostructure fragment situated far
from amonostep. A stricter criterion of the applicabil-
ity of the one-dimensional model and therole played by
o(X, Y, 2) distribution nonuniformity within the inter-
layer will be discussed in Section 5. For now, this
model will be used as a basis for the further analysis.
We restrict our consideration to transversely polarized
spin density waves, when o(X) [ n, (precisely this situ-
ation is discussed most frequently, but adetailed analy-
sis of the reasons for that would lead us far beyond the
scope of thiswork).

Let us introduce order parameter A(X) = Uo(X),
where U is the effective potential, whose explicit form
is not discussed here (e.g., see review [11]). This
parameter has the dimension of energy and describes
the envelope of the spin density wave. For a trans-
versely polarized one-dimensional spin density wave,
we have

A(X) = nAy(X) +nA,(x), A(X)On,, (D)
where [X| < | (I isthe interlayer half-width, L = 21). We
assume that A(X) is small (JA| < TT) and slowly varies
in space (J0A/0x| < TIT/€p). On this assumption, let us
write the thermodynamic potential F[A] of the antifer-
romagnetic layer under consideration in the form of the
Ginzburg—Landau expansion in powers of A(x) and
0A(X)/0x. A detailed justification of this approach to the
problem can be found in [9, 10]. We therefore give the
expression for F[A] without much comment:

F=Fy+Fs )
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1
FV - = fvdX, (3)
2
-_[|

fy = A%+ v 2A % + cA”, 4

Fs = Z(A%() +A%()

1 N+1 (5)
+S(AMAM) + (D) AAD).

The F, and Fg values are the volume and surface con-
tributions to the total thermodynamic potential, respec-
tively. The ¢, ¢,, v, and A coefficients are given in [9,
10] (e.g., see[11] for their calculation); v isthe Fermi
velacity of the electrons of plane chromium Fermi sur-
face regions responsible for the formation of spin den-
sity waves; and N isthe number of chromium monolay-
ersin the interlayer. Everywhere below, ¢;, ¢, > 0, v <
0, and the A(zl) vector is proportional to magnetization
S(l) in the corresponding ferromagnetic plate.

Expansion (3), (4) is strictly valid amost in the
whole |x] < | region except antiferromagnetic layer
regions of size of about {, near the interface, where
local approximation (2) to functional F is incorrect.
Fine details of charge and spin redistribution on such
scales are of no interest to us; they can be considered to
be taken into account by the v and A coefficients. The
term in (5) linear in A (the exchange term) is directly
related to exchange interaction between ferromagnetic
plate and antiferromagnetic layer spins. Thetermin (5)
guadratic in A (the Coulomb term) is determined by
charge flow between layers of different metals and by
the resulting appearance of a contact potential drop
between ferromagnetic and antiferromagnetic layers.
According to [9, 10], the Coulomb term predominates
over the exchange term in a wide temperature range,
T > Ty, and determines the characteristic temperature
T, of the formation of short-range antiferromagnetic
order; a spin density wave isinduced by anincreasein
the electronic polarizability intheinterlayer closeto the
FM/AFM interface. At the same time, the exchange
term determinesthe detail s of the spatial dependence of
the spin density wave and its orientation with respect to
magnetization S(zl) in the ferromagnetic plates. The
role played by this term can become very important in
the immediate vicinity of the T, point, when Ax sharply
decreases and the spin density wave is largely induced
by spin density redistribution in theinterlayer under the
influence of the exchange field of the ferromagnetic
plate. The critical temperatures in the Fe/Cr system are
T, = 550600 K, Ty = 311 K, and T = 1040 K (Ty <
To < Tc). We assumethat interlayer thicknessL islarger
than 25-30 A.

Formally, the problem can be formulated asfollows.

In [9, 10], thermodynamically equilibrium states of
functional (2) were studied only under the condition
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A(l) = £A(H), that is, for the collinear orientation of
iron moments. Only one A(X) vector function compo-
nent (A, or A, was assumed to be nonzero, and the
energetically optimal configuration of the spin density
wave at a given (parallel or antiparallel) mutual orien-
tation of A(zl) vectors and at a fixed number of mono-
layers N (even or odd) in the interlayer was calculated.
Below, we analyze amore general (and, asit turns out,
much more complex for calculations) situation when
the A(zl) vectors have mutual orientations character-
ized by arbitrary angles Y (0 < ) < 1), that is, are non-
collinear. At the first stage, the s angle and the number
of monolayers N play therole of given external param-
eters, and the optimization of functional F[A] [Eq. (2)]
is performed by conditionally varying it with respect to
the two-component (4, A, # 0) vector order parameter
[Eg. (1)]. At the second stage, the obtained A(X) solu-
tion is used to calculate F(y, N), and the most energet-
ically favorable configuration for magnetizations S(1)
in iron layers is determined. Lastly, the limits of the
applicability of the developed approach are analyzed. It
turns out that this approach can conveniently be used to
fairly approximately model the influence of interface
roughness on the formation of spin density waves if
monosteps are spaced well apart, terraces are broad,
and the interlayer is not too thin.

3. THE STRUCTURE OF SHORT-RANGE
ANTIFERROMAGNETIC ORDER
WITH A NONCOLLINEAR SPIN DENSITY WAVE

Varying functional F[A] [Eq. (2)] with respect to
order parameter A(X) yields the self-consistency equa-
tion

ViC,A"—c,A—2C,A° = 0 (6)
with the boundary conditions
NA (2l

2
C,VE

N—

A=) F %A(il) +(£1) =0. (@

The D = 2c,v2/|v| parameter (the spatial scale related
to charge density redistribution near the interface
known as “interpolation length”) weakly depends on
temperature in the model under consideration. The
A(zl) vector is given in the form

A(xl) =0, A (xl) = £Asin(y/2),
A,(Fl) = Acos(W/2),

where A > 0, which corresponds to antiferromagnetic
exchange at the Fe/Cr interface, and Y is the angle
between the magnetization directions in the ferromag-
netic plates. Earlier, only the situations with ¢y = 0, 1
were considered, when only one A(X) vector component
(&y or A, was nonzero, and it proved possible to obtain
exact solutions to problem (6), (7) [9, 10]. These were
classified as one symmetrical A,(x) and two antisym-

(8)
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metric A™? (X) solutions with respect to the replace-

ment X — —X. Each solution had its own definite exist-
ence region in the (T, L) phase diagram.

Consider vector solutions to problem (6), (7) given
inform (1). If the number of monolayers N isodd (if N
iseven, itiseasy to seefrom (5), (7), and (8) that all cal-
culations will be identical except for the substitutions
Y—¢-1,4 —A,and D, — -4, AX) will be
sought in the quasi-helicoidal form

A (X) = A(x)cosO(x),

_ . )
Ay(x) = A(X)SinO(x),

where A(x) > 0 is the modulus and ©(x) is the order
parameter phase; this phase takes on the values O(xl) =
T + ¢/2 at interlayer boundaries in the selected refer-
ence system for counting angles. The ¢ = O(H) — ©H)
angle characterizes antiferromagnetic structure sloping
intheinterlayer (0 < ¢ < 11). We therefore have O(l) =
T+ /2 at ¢ =, which correspondsto the strictly anti-
parallel mutual orientation of the o and S vectors at the
corresponding Fe/Cr interfaces and to a minimum of
the F surface contribution to thermodynamic potential
at a fixed A(xl) amplitude. The problem of the ratio
between the ¢ and Y angles optimal from the point of
view of thetotal energy F of the system has no obvious
solution. The point is that changes in A(X) and @(X) are
stringently related to each other. This relation is deter-
mined by a system of two nonlinear equations obtained
by substituting (9) into (6),

do _ B
VEax A_Z’ (10)
dA[J 6,Ci,4 2 52
a—D A+ (—:—ZA + CA"-B", (11)

where C and B are real constants of integration, which
determine the type of the solution. The equality B =0
correspondsto ascalar antiferromagnetic structure with
O(X) = congt, and the A,(x) and A™? (x) functions
mentioned above then satisfy (11) (see[9, 10]). If B #
0, which corresponds to a vector antiferromagnetic
structure, (11) with ¢; > 0 has two different solutions,
which are bounded in magnitude in the |x| < | segment.
These solutions can be written in terms of the Jacobi
elliptic functions [12]. An analysis shows that, in the
temperature range of interest to us, only one solution
exists. This solution is characterized by the following
spatial amplitude and phase distributions:

A = ng[%égznczg\%(,%_B}l/z’

_ l|:1—3Bk'2i|l/2
El1-2k?] '

(12)
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_ B X
09 = VFIAZ(x)+n’

(13)
2 _ VekP(1+ KD (2 - k)
B® =
TE 0 i1y B(B-B)(B-B),
1 _K_ 1
B0t BT e

Here, k is the modulus of the elliptic function and k' =

J1-Kk* isan additional modulus, 0< k< 1. Theregion
of allowed parameter 3 values is limited by the condi-
tionsB =, fork?<1/2or B, =B =0for k= 1/2. These
conditions arerelated to the characteristic lengths of the
system and to the Y — ¢ difference angle by boundary
conditions (7). It follows from (7) that B [J Asin[(y —
$)/2]; that is, only the state with a linearly polarized
spin density wave is possible in the absence of
exchange coupling at the interface (A = 0). If A# 0, the
formation of a state with a vector order parameter of
type (9) should necessarily be accompanied by the frus-
tration of exchange couplings at the interfaces; in other
words, P —¢ #0.

Constraints (7) for solution (12), (13) can be written
in the form

P = Zoa=0 (14)
P2 4+ EVBE — DA}\k E[nCZO\, k)—B%\_]éEZ} 15)
where
p = [ 5%} (A, K)dn(A, k)
cn’(A, k) )

1 17
_B[ncz()\, k)—B%\—EE E

These equations together with (13) determine the
parameters (k, B, and ¢) of the A(X) vector structure at
x = #l. Unfortunately, (14)—(16) can only be analyzed
numerically in the whole range of parameter values. In
several important limiting cases, such an analysis can,
however, be performed analytically. For instance, near
the Ty(l) temperature, which determines the upper
boundary of the existence of short-range order with a
spin density wave induced by a charge flow, we have
k2 <19, 10].

Assuming k' to be smal to the extent that
(Kexp(1/€))? < 1, we can approximate the elliptic func-
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tionsin (12) and (13) by hyperbolic ones[12]. Thissub-
stantialy simplifies (12)—(15), and we can write

Fkl 5 1/2
A(X) = VT[cosh EE?% } , 17)
tan@(x) = / BtanhD‘D (18)

Setting x = £l in (18), we obtain the following relation
between 3 and angle ¢:

B =1+ tanhzggcot2 BI)D (19
Oas2
AE _ [

2 [(2c,v

905

In the k? < 1 limit, (14) determines the relation
between the ¢ and | angles,

0 _ ., (Wotanh(l/€) —&/D
@NEpa = BN T coth(178) —¢/D- (20)
Note that the condition &/D = tanh(l/¢), which reduces
the right-hand side of (20) to zero, determines tem-
perature Ty(l). Above this temperature, only a solu-
tion with a small A(x) amplitude induced by a weak
exchange field A(xl) at the interface exists. By sim-
plifying (15) at T > T, we obtain the k' parameter in
the explicit form

cosh’ in

san]

%anhdmcosh 200 E[coshzdD BE+[3(1 [3).

0D

It isinteresting to trace the transition to collinear solu-
tionsin (19)—21). If § — O, then¢p — 0,3 — O,
and A(X) O cosh(x/¢); if y — 1 thend — 1, B — 1,
and A(x) O sinh(x/€). The A(l) amplitudesfor ¢ =0 and
) = Ttcoincide with exponentia accuracy if | > €,

A(l,g =m) 02ig
AL U=0) lDexpD HiL (22
and are strongly different if | < €,
AlLW=m - g’
AL Y=0) & @)

The region of the applicability of the small-amplitude
approximation to spin density waves in solving the
problem at temperatur% above Ty(l) can be estimated as

DAE

< Jann3- &5 ting
DZch,ﬂ

(24)

A closer approach to the Ty(I) point requires including
terms of higher order in k2 in (12)—(16). This leads to
very cumbersome calculations, which cannot be per-
formed within the scope of this work.

Consider the T < Ty(l) temperature region, within
which there exists a solution with the A(x) spin density
wave amplitude induced by a charge flow at the inter-
face even in the absence of exchange coupling, that is,
at A=0. The Ay(X) = nA,(X) solution linearly polarized
along n, and symmetrical with respect to x, which is
most favorable energetically in the whole range of
model parameter values at A = 0 [9, 10], can naturally
be used as a zeroth approximation with respect to the
exchange potential. This solution is easy to obtain from
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(21)

(12), (14), and (15) at A= = ¢ = 0. The only unknown
parameter that remains, K, is determined by the nontriv-
ial solution to (16) a P = 3 = 0. Let us denote this
parameter by k' = k;, (k = kg) and find the first nonvan-
ishing correction to Ay(x), which appears and increases
as A deviates from zero. According to (12)—15), the ¢
angleisrelated to the 3 parameter as follows:

_ 2./BI EAo ko)

¢ - ko ED )\0 _kOD! (25)
A/[_3 = A_Ez—‘fl_ZkO nc(A,, ko)gnD'IJ (26)

2c,ve  koko LRt

where E(A, K) is the incomplete elliptic integral of the

second kind and the argument A, = A (B = 0, k = k).
Changesin k are given by
2 2
-k
a(k 0)
(27)

J1-2K3
A& 2 fen(hg ko) cos®.

2c2vF Ko 2

These equations are noticeably simplified for athin
interlayer (I < D, A5 < 1),

¢ = 2kl JRIE, (29)
AE? A/1 2k (29)
2C2VF koko DZD’
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2 AID? J1-2Ky
-k, = co

4c,viE ko

RN
SEED’ (30)

where

2 1 ID]
ko = z%‘gm

Hence it follows that the region of the applicability of
our approachat T<Ty(l) and | < D islimited by theine-
quality

Oas2[F
D%D < 1—”—2 (31)
[C"vdl] &

The corresponding equations for a thick interlayer
are obtained by applying a more complex procedure

involving the expansion in the small parameter
exp(=2l/¢). Thisyields
= 2JB, (32)
Jp= A D0y 39
2c2vF Dko DZ
2
K2_K2= ADT T, &,
O 2c2v,3:[ G (34
y %L_ Do 11+ (D/E)Tl cos(Y/2)
“eHU 41 (prg)’ ) 17 (D)
where
2 EZIDE D
ko = 16 P t0E+D
Equations (32)—(34) arevalid aslong as
AE? 120
< &X
Vi POe0

To summarize, we showed how a weak deformation
0(X) = A(X) — Ay(X) of the order parameter, which
appears because of interaction between a spin density
wave and plate moments at the interface, could be

described via several parameters (¢, /B, k2—k5) ~A.

4. THE ENERGY OF ANTIFERROMAGNETIC
ORDERING WITH A NONCOLLINEAR
SPIN DENSITY WAVE

Substituting the A(X) function that corresponds to a
thermodynamic potential extremum into (2)—(5) yields
the energy of noncollinear state (11)—(13) in the form

F(B) = Fu(w) + Fs(W), (35
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Fv() = —/——— Vel - Z[k'2(1—3k'2)+3[3k'4
384(1-2k?)
x (2K% = B(L—K2+K™) + 2—(1—)\35‘(2)
O\, K)dn(A, K) (36)
w Qo2 _ _sn(A, K)dn(A, k)
H2k?—1)FE(, K) oo 0
207 a2y SIA, KN\, K) O
+K3(1—3BK?) o D},
, )\ 22
o) =~ B, -
(37

ANV K L T
= Ewcz()\,k) BEin sH 50

These equations are valid for an odd number N of chro-
mium monolayers. The (k, 3, §) parameters are related
by (12) and (14)—(16) to the (I, D, &, A) nanostructure
characteristics and to the Y angle. The F() depen-
dence, which is of primary interest to us, cannot be
written out explicitly at arbitrary (I, D, U, A) values. We
will therefore concentrate on severa limiting situa-
tions.

At ahigh temperature T > T(l), in the region where
the small-amplitude spin density wave approximation
(24) is applicable, we can expand (36) and (37) in pow-
ers of the small parameter (K'exp(1/€))? < 1 and use
relations (19)—(21). For odd N values, cumbersome cal-
culations give

F(Q) = Fy+ F,cosy + F2C082lIJ. (38)

Here, in the approximations of the lowest order in
parameter A, which we are interested in, we have (F,
F.) ~A2and F, ~ A% where (Fy, F;) <0and F,>0.The
necessity of retaining terms of the order of A* will be
justified below. The F,, F;, and F, coefficients are com-
plex functions of the lengths (I, D, &); these functions
will not be written in the general form. For thin inter-
layerswith | < &, we obtain

A’EE 1
Fo=F, = ‘52 e
8c,v211-£/1D
i (39)
_ A'E
Fp = 3.3, 8
641°cve(1-£1D)"
and, for thick layerswith | > &, we have
__ A1
Fo= = 2T %D’
4c,v e
_ 2Fexp(=2l/§)
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_ A"’ (1+&/D)(5-3%/D)
16cove  (1-¢/D)°

It follows from (38)—(40) that the J(W) = F(J) —

effective potential of magnetic moment interactions at
T > Ty(l) is avalue of the second order in A [because
AX) ~ K ~ A—see (17) and (21)], which rapidly
increases in the T — Ty(l) limit. Note also that the

04l
nlFin)

term containing COSleJ in (38), which is of funda-
mental importance, as will be made clear below, is
determined by the A* value and is always positive.
Clearly, when using (39) and (40), we must bear in
mind the conditions of the applicability of the
approximations used to obtain these equations[see (24)],
that is,

AE’® &
LS <1-% (41)
2¢,v 3l ID
for thin layers and
2¢,v? I D

for thick ones. It follows that (38) has the form of the
effective energy in the biquadratic exchange model (see
Introduction), in which the ratio between the bilinear
and biquadratic components is much larger than one,
|Fi/F,| > 1.

Next, consider the temperature region below the
To(l) point, where an explicit expression for F({) can
also be obtained in certain instances. For instance, if
(31) is satisfied, Egs. (28)—30) can be used to obtain
F(y) for odd N in the form

F(y) = Fo"'Fl/zcos%JD,

in the approximation of the lowest order in A, which we
are interested in. We have (F,, Fy,) <0, and Fyisinde-
pendent of A, whereas F,,, ~ A. For a thin interlayer
(I < &), we can write

_ czvl
= -

(43)

2 1/2 (44)
E _Av L -ID/ET
1/2 — FD 2|D D ’
wheress, for athick layer (I > §), we have
GV _Avg p?
Fo=—5 Fu = —pfd-rggog - 49
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Equation (43) does not contain terms of the order of A?
or of higher ordersin A [note that these are, in particu-
lar, Fycosy- and F,cos?-type terms, such as are
present in Eq. (38) for the T > Ty(1I) region, where F; ~
A? and F, ~ A¥], because cal cul ating them isavery labo-
rious task, and, below the Ty(l) point, the expansion
(43) terms proportional to F, and F;,, predominate.
Equation (43) fundamentally differs from (38) by the
presence of the term linear in A (generally, by the pres-
ence of terms with odd powers of A). As a result, the
angular dependences F(y) in (38) and (43) have sub-
stantially different characters. What is more, unlike
(38), dependence (43) does not at all reduce to the for-
mula for the effective energy in the biquadratic
exchange model.

Consider the physical meaning of this difference. If
T > Ty(l), short-range antiferromagnetic order in the
chromium layer only arises to the extent to which it is
induced by exchange interactions with ferromagnetic
iron moments, and the spin density wave amplitude
A(X) ~ A. It follows that the exchange contribution to
energy begins with terms quadratic in A. If T < T(l),
short-range antiferromagnetic order in the chromium
interlayer is induced by charge density redistribution
close to the Fe/Cr interface even in the zero order with
respect to A, and the spin density wave formed in such
away is oriented in the exchange field created by the
ferromagnetic moments of iron plates. The exchange
contribution to the energy F()) therefore begins with
termsfirst-order in A. Equations (38) and (43) therefore
correspond to different aspects of exchange interaction
at the Fe/Cr interface, namely, theinduction and the ori-
entation of spin density waves above and below the
To(l) temperature of short-range antiferromagnetic
order formation, respectively.

Note in conclusion that, for an even number N of
monolayers in the chromium interlayer, the g —= ) —
Ttsubstitution should be made in (38) and (43). Clearly,
we then have cosyy — —cos in (38) and
cos(P/2) — sin(W/2) in (43). It follows that energy
F(y) sharply changes as a result of a small (by one
monolayer) change in the thickness of the chromium
interlayer, which is an important property of the system
under consideration.

Equations (38) and (43) allow usto draw the unam-
biguous conclusion that the absolute minimum of F()
correspondsto Y = 0for odd N and ) = tfor even N. If
the Y angle is determined self-consistently rather than
by some external factor such asthe action of amagnetic
field, only collinear states corresponding to either fer-
romagnetic or antiferromagnetic orientations of Fe
moments in the neighboring plates exist under thermo-
dynamic equilibrium conditions at ideally smooth
interfaces, when all interlayer cross sections contain
equal numbers of monolayers N. The situation with
nonideal interfaces, however, is unlikely to be equally
simple.
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5. THE INFLUENCE OF INTERLAYER
THICKNESS FLUCTUATIONS
ON THE FORMATION
OF NONCOLLINEAR STATES

As mentioned in the Introduction, the problem of
the interaction of a spin density wave with a nonideal
(rough) interface in Fe/Cr-type multilayers is exceed-
ingly complex because of the necessity of taking into
account many factors that influence thisinteraction. On
the one hand, fluctuations (both large- and small-scale)
of charge and exchange interaction potentials between
Fe and Cr are observed close to the interface. These
fluctuations are related to interdiffusion, frustration of
interatomic bonds, and other defects formed during
structure growth. On the other hand, spin density waves
experience deformations both in the direction of struc-
ture growth (n,) and in the plane of the interface (n,,
ny). It follows that, formaly, initiad model (2)—5)
should be complicated at least in two respects. first, the
v(r) and A(r) parameters should be considered random
functionsof ther = (X, y, Z) spatial coordinate, and, sec-
ondly, we must abandon the one-dimensional approxi-
mation in calculating A(r). Solving athree-dimensional
self-consistency equation for order parameter A(r) at a
given configuration of sources (v, A) followed by aver-
aging over these configurationsis exceedingly complex
if not impossible. Averaging over small-scale (of the
order of interatomic distances) configurations can in
principle be performed within the framework of the
standard model of the interaction of spin density waves
with point impurities [11], but the influence of large-
scal e fluctuations poses a much more serious problem,
which we will not discuss in this work. In addition to
the two factors specified above, there is a “ geometric”
factor that influences the interaction of spin density
waveswith anonideally smooth interface. Thisfactor is
related to changes (fluctuations) of interlayer thickness
in the presence of inhomogeneities of various types on
the surface that separates chromium and iron layers.
Indeed, the surface contribution Fgto thetotal energy of
the structure sharply changes when the thickness of the
interlayer changes by as little as one monolayer, which
givesusahint that the role played by the geometric fac-
tor under consideration may be fairly important. The
strong dependence of energy F(y, N) on the number
(odd or even) of monolayersintheinterlayer leadsusto
the idea that this effect can qualitatively be taken into
account by a comparatively simple model in analyzing
the formation of noncollinear spin density waves in
structures with almost ideally smooth interfaces.

Consider a surface with monosteps spaced far apart,
that is, with linear defects which jumpwise change the
number of chromium monolayers in the interlayer by
one. These monosteps separate vast ideally smooth ter-
races, where the number of monolayersin theinterlayer
does not change. Let us divide the whole structure into
fragments containing either an odd or an even number
of monolayersin the interlayer in the cross section nor-
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mal to the interface. Let A be the fraction of fragments
with odd N and (1 —A\) bethefraction of fragmentswith
even N. We assume that all fragments are characterized
by the same  angle between iron momentsin the iron
plates. We can then, in a very crude approximation,
writethetotal energy of the system asthe partial sum of
the energies of separate fragments,

(F(W)O=AF() +(1-A)F(- ), (46)
where F()) is given by (38) or (43). Clearly, (46) com-
pletely ignores the contribution of spin density wave
deformations in interlayer regions adjoining the inter-
facein thevicinity of monosteps. Indeed, it isnatural to
suggest that the value and form of the A(r) order param-
eter at alarge distance from monosteps should insignif-
icantly differ from the corresponding characteristic in
an interlayer with ideally smooth boundaries and with
the same N and Y values. Of course, spin density waves
experience rearrangements close to monosteps (for
instance, domain walls are formed), and these distur-
bances extend over the &, characteristic length over the
interface in the (n,, n,) direction. The simplest esti-
mates show that & < ¢ in the linear defect model in a
system with aspin density wave (e.g., see[11]), and the
domain wall energy is small compared with the contri-
bution of terraces included in (46) if {5 < |5, wherel
is the characteristic terrace length in the n, or n, direc-
tion. Generally, calculations of the spin density wave
deformation energy go beyond the one-dimensional
approximation and require aspecial study, whichisout-
side the scope of this work.

L et ususe (46) to estimate the influence of interlayer
thickness fluctuations on the formation of a thermody-
namically equilibrium noncollinear state. At T > T(l),
(46) becomes

[F(W)O = F(T02) + J cosy + J,cos'W,  (47)
where J, = (2A -1)F,, J, = F, >0, and F(172) = F, <0,
in agreement with (38)—(40). The effective interaction
energy between the ferromagnetic plates E = [F(Q) -
F(1v2) has the form characteristic of the biquadratic
exchange model (see Introduction), and the J; bilinear
potential is large compared with the J, biquadratic
potentia (|J;] > 2J,) at dmost all Ainthe0<sA <1
interval except anarrow |\ —1/2| < 1region, wherethe
relation J; < 2J, may hold. We obtained these estimates
using the |F,| > F, inequality, which follows from
(38)—(40). If |3,] > 2J,, the OF(Y)Ofunction given by
(47) reaches a minimum either at Y =0 or at Y = TL
However, if the condition |J,| < 2J, is met, the Y, =
arccos(—J,/2J,) angle corresponds to the minimum of
[(F(Y)C that is, a noncollinear state is formed. At A =
1/2, we have Y, = 172; that is, iron moments are ori-
ented mutually orthogonally in the neighboring plates.

Inthe T < Ty(l) temperature region, (46) becomes

I o .0
F(Y)O = F[QD+‘] cosD2D+J stED’ (48)
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where J, = AFy, J_= (1 = A)Fy,, F(1T72) = F;< 0, and
Fi» < 0, in agreement with (43)—(45). Note that, like
(43) above, (48) does not contain J;cosy- and
J,cos?P-type terms, which are aways small in the
approach that we use. The angular dependence of the
E = [F(Y) - F(172) effective exchange energy isfunda
mentally different from its analogue in the biquadratic
exchange model. A minimum is attained at the Y, =

2arccos(\/A/A” + (1 —A?)) angle; that is, Y, # (0, T0) at
al A different from O and 1. If A — 1/2, ), tends to
172, asin the biquadratic exchange model. Note that i,
only depends on the A parameter, which characterizes
geometric perfection of the Fe/Cr interface, but isinde-
pendent of the set of (I, &, D, A) values. In this respect,
model (48) at temperatures T < Ty(l) obvioudly differs
from model (47) at T > T(l).

To summarize, even qualitative estimates by (47)
and (48) show that interlayer thickness fluctuations
caused by Fe/Cr interface nonideality play animportant
role in the formation of noncollinear states. The region
of A\ parameterswhere such statesexist isnarrow at T >
To(l), when spin density waves areinduced by exchange
interactions at the Fe/Cr interface, and sharply broad-
ensat T < Ty(l), when spin density waves are formed as
aresult of charge density redistribution near the inter-
face. Such a difference in the behavior of the system
above and below T(l) is caused by strong short-range
antiferromagnetic ordering intheinterlayer at T < Ty(1),
which resultsin an “orientation” mechanism of interac-
tions between spin density waves and magnetic
moments in the ferromagnetic plates. This mechanism
isin principle absent when interlayers are paramagnetic
or when they are antiferromagnetic at temperatures
above Ty(l); it cannot be reproduced within the frame-
work of the standard indirect exchange scheme of the
RKKY type.

6. CONCLUSION

The mechanism of formation and the conditions of
the existence of noncollinear states in the three-level
model described by (2)—(5) were considered in the pre-
ceding sections in much detail. The problem of using
these results to interpret the experimental data on
Fe/Cr-type multilayers, however, requires some refine-
ments to be made, primarily concerning the limits of
the applicability of model (2)—(5) itsealf.

A natural limitation on interlayer thickness L from
below isthe inequality L > 2¢,, which allows the “sur-
face” and “volume’ contributions to thermodynamic
potential (2) to be separated. Equally obvious is the
lower temperature limit T > Ty, where T isthe temper-
ature of long-range ordering in the antiferromagnetic
interlayer. Thelast inequality is, however, only aneces-
sary but not sufficient condition of the applicability of
our model. In reality, temperatures are limited by the
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condition T > T, = T, where T, is the temperature
below which the use of the density of the volume con-
tribution to the thermodynamic potential in form (4) is
inadmissible, and taking into account terms of higher
order in A(x) and A'(X) in the Ginzburg—Landau expan-
sion is necessary (more details can be found in [11]). It
can be stated with much confidence that both applica-
bility conditions specified above are fulfilled at T >
300-350 K and L > 3040 A.

One morerestriction isrelated to the requirement of
uniform ferromagnetic layer magnetization; this
requirement is not explicitly present in (47) and (48)
but isimplied and corresponds to the absence of ferro-
magnetic layer separation into magnetic domains. In al
probability, this condition is satisfied in fairly thick
(4050 A" or more) ferromagnetic layers, but can be
violated in thinner layers, especialy if the Fe/Cr inter-
face contains monosteps. In the presence of monosteps,
the formation of domain wallsin Fe platesin theimme-
diate vicinity of monosteps, which then separate
regions with opposite magnetization polarizations in
the ferromagnetic layer, can be more favorabl e energet-
icaly than the formation of domain walls in the Cr
interlayer, contrary to what has been suggested above.
A scalar spin density wave with aA,(X) amplitude then
forms in both antiferromagnetic interlayer fragments,
one with odd and the other with even N, separated by a
monostep. It islikely that precisely this situation arises
in three-layer Fe/Cr/Fe structures with a wedge-shaped
interlayer %rown on athick whisker and coated by athin
(about 20 A) iron film. The domain structure of athin
iron plate observed by scanning electron microscopy
with polarization analysis [1] is direct evidence of
oscillations of interlayer exchange coupling caused by
monolayer changes in the thickness of the chromium
interlayer, whereas the “noncollinear state” proper is
only formed in a narrow domain wall region near a
monostep at the Fe/Cr interface. This situation, which
corresponds to a magnetic structure geometry other
than that considered in this work, requires a special

study.

Taking into account the restrictions specified above
(thick ferromagnetic and antiferromagnetic layers and
high temperatures), consider some experimental data
which provide direct or indirect evidence of the exist-
ence of noncollinear states in Fe/Cr-type multilayers
and which can beinterpreted in terms of the model that
we use. Neutron diffraction, transport, and magnetoop-
tical datahave madeit possibleto roughly construct the
magnetic phase diagram (T, L) of the system under con-
sideration [1-3]. This diagram contains the high-tem-
perature (T > Typ), intermediate (Ty, < T < T,), and low-
temperature (T < Ty) regions, which have sharply dif-
ferent properties. In the T > T, region, the state of the
interlayer is paramagnetic, the effective coupling
between neighboring plate moments is very weak [2],
and the structure virtually breaks up into independent
ferromagnetic layers separated by a nonmagnetic inter-
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layer. Below the T, temperature (which substantially
depends on thickness L, especially when the interlayer
is comparatively thin: T,=500K at L >55A, and T, =
600 K at L = 15 A), the effective coupling between
neighboring plate moments sharply increases [2], and,
in the intermediate temperature range Ty < T < T, a
quite peculiar magnetic state of the structure asawhole
isformed. Accordingto[4, 5], thisstateis characterized
by strong short-range antiferromagnetic order, a non-
uniform spin density distribution across the interlayer,
and a substantial dependence of magnetic characteris-
tics on the properties of the interface between the mag-
netic and antiferromagnetic layers. Lastly, at T < T, the
effective magnetic coupling between neighboring plate
moments again sharply decreases [2]; long-range anti-
ferromagnetic order of the type of an incommensurate
spin density wave, similar to that existing in bulk chro-
mium, arises in the interlayer; and the system repre-
sents a set of alternating ferromagnetic and antiferro-
magnetic layers with very weak interlayer interactions.

It follows that the Ty < T < T, temperature range is
the most interesting to study, but information about the
magnetic structure of the system at such temperaturesis
very contradictory. In aready mentioned work [5] on
the diffraction of neutrons on epitaxial Fe/Cr multilay-
ers, the transition between the intermediate and |low-
temperature regions was smeared to a large extent
(almost over 100 K). This transition was interpreted by
the authors as a smooth change of phases with com-
mensurate and incommensurate spin density waves in
the chromium interlayer. On the other hand, Fe/Cr mul-
tilayers grown differently than in [5] were studied by
similar methods in [13]. In [13], no noticeable differ-
ence in the magnetic structure of the interlayer was
observed between the low-temperature and intermedi-
ate regions. According to the authors, the structure
experienced only the transition at Ty, from a phase with
an incommensurate spin density wave directly into the
paramagnetic state. Such discrepancies are usually
related to the strong influence of the quality of theinter-
face on the formation of spin density waves in chro-
mium interlayers; in our view, thisinfluence is largely
aconsequence of electron scattering by small-scale sur-
face potentia fluctuations. From the point of view of
the possibility of formation of noncollinear states, pre-
cisely the Ty < T < T, intermediate region with short-
range antiferromagnetic order in the chromium inter-
layer is most promising, because strong magnetic cou-
pling between neighboring ferromagnetic Fe layersis
observed precisely at these temperatures. The results of
our analysis (see Section 5) predict a substantia
increase in interlayer coupling at Ty < T < T, compared
with the T > T, temperature region. Theseresultsarein
a sense substantiated by experiments[5] on large-angle
neutron scattering in Fe/Cr superlattices with interlay-
ersL =42 A thick. Such experiments are very important
for directly determining the type of magnetic structure
in the temperature range of interest to us, and their
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results clearly indicate the noncollinear character of
ordering of ferromagnetic layer magnetic moments and
the presence of helicoidal spin density wave compo-
nentsin antiferromagnetic interlayers. The neutron dif-
fraction pattern with a multicomponent intensity
obtained in [5] could not be used to unambiguously
reproduce the shape of the spin density wave. The
authors therefore resorted to the so-caled torsional
phenomenological model [7] for the purpose of data
processing in the spirit of helicoidal magnetic order
with a spin density wave. A preliminary analysis
showed that the microscopic noncollinear state model
suggested above is also in satisfactory agreement with
the results obtained in [5] and explains the observed
“three-peak” dependence of the intensity of neutron
scattering on wave vector K in the direction of structure
growth.

Indirect evidence of the existence of a noncollinear
stateat Ty < T < T, can be found in works on Brillouin
scattering and magnetometry [1-4, 14] and on magne-
tization and magnetoresistance [1-3, 15]. Residua
magnetization M(H — 0) in externa field H mea
sured in these works was close to half the saturation
magnetization. This result was interpreted by the
authors as a consequence of an almost orthogonal
mutual orientation of neighboring ferromagnetic lay-
ers, and rapid saturation of the M (H) dependence was
in conformity with the biquadratic exchange scheme.
We have not studied our model in an external magnetic
field yet because this problem is not so trivial as may
seem at first sight. The type of spin density waves can
change from symmetrical to antisymmetric in compar-
atively thick interlayers and afairly strong field H, and
the corresponding A_(X) solution to the self-consistency
equation (see[10]) can be more energetically favorable
than the A.(X) solution obtained in this work in the
absence of an external magnetic field. As a result, a
structure with an amplitude domain wall of the spin
density wave within the interlayer or even at the inter-
face can form. Clearly, calculations of all these variants
arefar beyond the scope of thiswork. Such calculations
are, nevertheless, necessary in prospect.

Work [6] holds a special position among other
works on the problem of the existence of noncollinear
states that we are considering. This work substantially
broadens the class of layered structures with antiferro-
magnetic ordering of the type of spin density wavesin
interlayers between ferromagnetic plates. In [6], the
magnetic and transport characteristics of Fe/Cr, _,Fe,
superlattices with x = 0.06 were studied. We cannot go
into details of this interesting investigation and will
only mention the main points. It was found that com-
paratively thick (L > 36 A) interlayers were character-
ized by two antiferromagnetic ordering temperatures,
Ty and T,. The low-temperature (T < T,) antiferromag-
netic phase unambiguously corresponded to the state
with a commensurate spin density wave, which was
observed in bulk Cr,_,Fe aloys with x > 0.024. The
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high-temperature (T > T,) phase was paramagnetic,
and, in the intermediate Ty < T < T, temperature range
approximately 150 K wide, a complex nonuniform
antiferromagnetic state with an unclear structure was
formed. As in Fe/Cr superlattices, effective coupling
between neighboring iron layers through the interlayer
was exceedingly weak at T > Ty and T < Ty but sharply
increased inthe T < T < T, temperature range. The Ty
and T, temperatureswereinterpreted in [6] astransition
points between two antiferromagnetic states and
between antiferromagnetic and paramagnetic states,
respectively. What is more, the special features of the
hysteresis of magnetization and magnetoresistance led
the authors of [6] to suggest that the magnetic state in
the Ty < T < T, temperature range was noncollinear, and
they made at attempt at describing it in terms of the
biquadratic exchange scheme. In our view, a thorough
study of the results abtained in [6] sheds light on sev-
eral interesting issues. Incidentally, one of theseisquite
obvious: the Ty temperature is not at all the transition
point between antiferromagnetic states with commen-
surate and incommensurate spin density waves, as is
clamed in the overwhelming majority of works
(including reviews [1-3]). Rather, thisis, in agreement
with our model, the transition point between antiferro-
magnetic short- and long-range order states, which
have origins of different natures and different spin den-
sity wave structures.

Lastly, we would like to mention work [16] on fer-
romagnetic resonance in Fe/Cr superlattices. The
results obtained in that work are evidence of the forma-
tion of anoncollinear state and are interpreted in terms
of the phenomenological biquadratic exchange scheme.
Unfortunately, small antiferromagnetic layer thick-
nesses (from 7.6 to 10 A) used in the systems studied in
[16] interfere with directly applying our model to ana-
lyze these experimental results. We, neverthel ess, hope
that, basically, we reached a correct understanding of
the mechanism of formation of noncollinear states, and
the consistent theoretical approach suggested above
gives a qualitatively correct description of the experi-
mental situation in Fe/Cr-type multilayers even outside
the limits of its formal applicability.
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Abstract—A tunnel current through a heterostructure whose barrier contains quantum ringsis calculated. The
plane of the rings is parallel to the barrier interface. In a magnetic field perpendicular to this plane, a tunnel
current at afixed bias experiences Aharonov—Bohm oscillations under the variation of magnetic flux through a
ring; however, these oscillations are not strictly periodic. © 2002 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

The problem of resonant tunneling of electrons has
along history that actually dates back to the Ramsauer—
Tausend phenomenon (an abnormally small scattering
cross section of electrons by atoms at certain energies
of animpinging particle). The effect of impuritiesinthe
barrier on the tunnel current was repeatedly discussed
as applied to solid state physics. In Schmidlin’s work
[1], the role of impurities was reduced to increasing the
tunneling transparency dueto the local reduction of the
barrier height caused by the fluctuation potential of the
impurities. Kane[2] analyzed adoped p— junction and
showed that atunnel current can be increased (as com-
pared with a “pure’” structure) due to transitions
between the“tails’ of the density of states near the band
edges.

As far as we are concerned, Parker and Mead [3]
were thefirst who showed (by an example of the Schot-
tky barrier) that the presence of impurity levelsin the
barrier makes the tunneling a two-step process, thus
considerably increasing the partial tunnel current at a
resonance energy as compared with adirect tunnel cur-
rent. The authors of [3] applied akinetic method; i.e., it
was required that the balance condition had to be satis-
fied for particles arriving at the impurity level from the
semiconductor and outgoing from the impurity to the
metal electrode. Such an approach is classical and can
be applied under ordinary classical conditions that
allow one to neglect interference phenomenawhen cal-
culating the probability of atwo-step transfer.

In [4], Chaplik and Entin developed a quantum the-
ory of resonant tunneling through a short-range impu-
rity center in a barrier (1D barrier + 3D impurity) and
showed that, in addition to the energy resonance, there
also is a geometric resonance in the tunnel current: the
peak current attains its maximum for a certain definite
position of the impurity in the barrier. Naturaly, thisis
the symmetry plane for a symmetric barrier; however,

when avoltageis applied to the tunnel structure (which
is always the case in the experiment), the point of geo-
metric maximum is displaced, and the impurity centers
situated in the barrier successively “enter” or “leave”
the resonance. This results in a rather complicated
shape of the current—voltage characteristic, which hasa
negative-slope region under certain conditions.

Larkin and Matveev [5] generalized the Bardeen
method of tunnel Hamiltonian to the case of resonant
tunneling through one or two short-range impurities
and determined the conductivity and the correlation
function of conductivity fluctuations in mesoscopic
semiconductor contacts.

All the aforementioned studies involved the impu-
rity centers with a single discrete energy level. For a
short-range impurity center, the resonance component
of the partia tunnel current is described by the Breit—
Wigner-type formula

|—2
M+ (E-Ep)?

where E is the particle energy on the impurity center,
E is the energy of the impinging particle, and I' is the
tunneling width of the level.

If abarrier contains an impurity with several bound
states, or a guantum point, the problem can easily be
solved inthelimit ' < AE, where AE is on the order of
the distance between the impurity levels (quantum-
point levels). Inthis case, the net current isasum of res-
onance contributions and, represented as a function of
applied voltage V (i.e., difference between the Fermi
levels at the contacts), it has a staircase form.I When a
magnetic field B is applied to the system perpendicular
to the heteroboundary, the tunnel current (for fixed V)

Jre(E) O D

L Until (under very large biases) the bottom of the conduction band
of the emitter becomes higher than the highest impurity level in
the barrier.
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becomes a steplike and monotonic function of the field
because the number of resonance levels below the
Fermi level varies monotonically with the field.

All the aforesaid applies to the situation when the
tunneling occurs from a 3D emitter and, under an
applied magnetic field, the spectrum of the particles
impinging on the barrier remains continuous. In the
case of a 2D emitter, the electron spectrum becomes
discrete both in and “before’ the barrier, and the cur-
rent—voltage characteristic represents a series of spikes
corresponding to resonance transitions between two
systems of discrete levels.

Theaim of the present study isto consider the tunnel
transport through a heterostructure containing quantum
rings in its plane. From general considerations, one
should expect that the tunnel current will exhibit the
Aharonov—-Bohm effect under the application of a per-
pendicular magnetic field to the system. Indeed, wewill
show below that the tunnel current oscillates under the
variation of the magnetic field (flux), although, gener-
ally, these oscillations are neither monochromatic nor
strictly periodic. Recall that progress in technology has
led to the devel opment of ensembles of quantum rings
with the radius on the order of the Bohr radiusin arel-
evant material [6]. Experiments on tunnel magne-
totransport may prove to be a useful means for investi-
gating such structures.

2. SPECTRUM AND WAVE FUNCTIONS
OF A QUANTUM RING

We assume (according to the results of [6]) that a
ring consists of a narrowband materia (for example,
InAs) and is immersed into a barrier, which is a wide-
band semiconductor (GaAs). The energy diagram of
the system, corresponding to the distance from the ring
center equal toitsradius, isshown in Fig. 1; the coordi-
nate zis measured along anormal to the heterostructure
(the tunnel current flows in this direction). Thus, the
interior and exterior regions of the ring are occupied
with the barrier material, and the resonant tunneling
corresponds to the particle trajectories that pass
through the points on the ring.

Obviously, the model of one-dimensional ring
|WP Od (r — a)d(z — zy) is insufficient for solving the
problem posed because the resonant tunneling is deter-
mined by the overlap of the wave function of a particle
impinging on the barrier and that of a particle bound in
the ring. We will represent the potential of the ring in
cylindrical coordinates by the expression

U(R) = -Uod(r —a)u(z-12), )

where U, > 0, aisthe Bohr radius, z,is the position of
the ring in the barrier plane, and u(z) isadimensionless
function that is everywhere positive and has a sharp
maximum at z = z, (see Fig. 1). Assume that the poten-
tial well is sufficiently narrow along z so that the wave
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Fig. 1. The energy diagram of the structure with quantum
rings.

function of the bound state cannot appreciably change
over adistance on the order of the width of the function
u(z). Let u(g) be the Fourier transform of u(z). Then,
after separating the variable ¢, the Schrodinger equa-
tion in the g representation in zis expressed as

2
02, o) -+ o7 + %Bw(r, o)

2M

U 3)
23 =) U@ = 0.

+

Here, E = —/%k2/2M; M is the electron mass in the bar-
rier, where the electron mainly resides according to
model (2); m=0, £1, £2, ... isthe azimuthal quantum
number; and

W79 = 5= [Wir, e o, *

Applying a conventional method to solving the
radial equation (3) with the potential in the form of ad
function and determining Y(r, z,) in a self-consistent
manner, we obtain from (4) the following equation for
the energy eigenvaluesin the ring:

1= )\aJ'K‘m‘(aA/k2+q2)
x I, (aWk? + g°)u(g)da,

where Iy and K, are Bessel functions of imaginary
argument of the first and third kind, respectively. Asis
clear from (5), one cannot replace u(z) by a 6 function
because all the energy levels E,, in the ring will tend to
minus infinity in this case. However, as will be clear
from the analysis below, the main, resonant, part of the
rotational spectrum and the tunneling conductivity
depends on the form of the potential through a single
parameter E,. Hence, the ring model (2) provides a
fairly reasonable approximation. For moderately small
radii of the ring, the rotational quantum %%2Ma? is
much less than the depth of the ground state |Ey|; i.e.,
ka > 1. Inthislimit, one can easily derivethefollowing

©)

No. 5 2002



914

asymptotic expression from (5) (the argument of the
Bessdl functionsis greater than their index):

A’m’ | A°mi(m’ +5/2)
2Ma®  2Ma’(kea)®

Here, the second term corresponds to the spectrum of a
one-dimensional ring (a plane rotator), while the third
term represents a correction due to the finite width of
the electron wave function spread out near the circle
r=a.

In what follows, we need the wave functions of the
bound states corresponding to energy E,,. These states
are solutions to Eq. (3) that are finite at zero and
decrease asr — oo; they are represented as follows:

Em = Eot (6)

Unir <a,2) = cn K i (@K + o)

X1y (/Ko + ) xpl Az - 2)] dg, @

Walr >2,2) = o[ I (alks + )

X K (1 ke + o) expla(z—2)]
where ¢, isanormalizing factor.

One can see that the wave functions depend on the
form of u(2) only through k,, i.e., ultimately through
the parameter E,.

3. TUNNEL CURRENT IN THE MODEL
OF A 8-SHAPED SOLENOID

Suppose that an infinitely thin solenoid with mag-
netic flux ® passes through a quantum ring situated
inside the barrier of atunnel structure. The flow of tun-
neling electrons is parallel to the solenoid. The energy
levelsin the one-dimensional ring are classified accord-
ing to the momentum m = 0, £1, +2. Accordingly, a
plane wave incident to the system is expanded in terms
of cylindrical harmonics:

1 .
W) = mz J, (kr)exp(imo),

where Q is a normalizing volume, J is a Bessel func-
tion, v =|m+ @/, r and ¢ are cylindrical coordinates
in the plane of the structure, and k; is the projection of
the wave vector of theincident wave onto thisplane; the
number mis preserved during tunneling.

The wave functions of the bound states in the ring
and the spectrum of appropriate energies are given by
formulas (5)—(7) in which the index m of the Bessel
functions should be replaced by v.

To determine the tunnel current, we apply the
Bardeen method and cal cul ate the tunnel width I of the
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bound state and the transition amplitudes T, and T,
from the state in the ring to the left and right contacts,
respectively. As aresult, we obtain

M =r,+r,

_ 2 (8)
Miy = T [Toe (Eoe)l "3(Epepy = En),

p(p)

where E, and E,, are, respectively, the energies of the
electrons impinging on and transmitted through the
barrier and Ty = Eq[Wyp|Wnbare the overlapping
integrals of the functions of the bound and free states,
respectively. The tunneling probability from state p (on
the left) to state p' (on the right of the barrier) through
the level E,,, is given by

T 2 T ' 2
o, = 20T g o)

h 12+ (E,~Eyp)’ ©

For the tunnel current, we have

| = ezwpp.{ f(E,—p) — f(Ey—u+eV)},
p, p'

where f is the Fermi—Dirac distribution function, p is
the chemical potential, and V is the voltage applied to
the barrier.

For the conductivity of the systemat T = 0 K, we
have

o(®) = 6 En

| 01(Ka83/2) L. o (KE2%032)  (10)

MDD 2D T (u-E))

6 k,a
where
92 = Vo /1-E/Vy 92 = Vp/1—E/V,
! kaOEm , 2 kb(W_ZO) Em ’

V, is the barrier height, W is its width, and k, =

J2MV,/H?

Recall that, here, the energies E,,, are functions of the
combination |m + ®/d|; therefore, the tunneling con-
ductivity g(®), being a sum over mfrom —o to +o, isa
periodic function of the magnetic flux with period @,
The numerically calculated values of g(®) are shownin
Fig. 2. Because the model with a d-shaped solenoid has
apurely illustrative character, we performed the calcu-
lation for the case when electronsinside and outside the
barrier have identical effective masses.
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4. UNIFORM MAGNETIC FIELD L N B S

We consider the tunneling from a 3D emitter to a 16
3D caollector. Outside the barrier, tunneling electrons - -
are described by the Fock—Darwin wave functions nt |
(when the moment with respect to the normal to the
system and the momentum along the field are speci- I ]
fied). The general case involves very laborious calcula- 12
tions; therefore, werestrict the analysisto thelimit case
B < A, where fiw, is the Landau quantum. Obviously,
the above inequality is equivalent to the condition
40 > @, (the number of flux quanta passing through
the ring is large). Suppose that the Fermi level lies
between the lowest and the first Landau levels of the
impinging electron; i.e., let us restrict ourselves to the
range of d® that contains several quanta ®, but is sig- 6k 4
nificantly less than the value of ® such that A, ~ .
Then, the functions W, (r), which correspond to the
lowest Landau level and m [ (-, 0), serve asthe wave 4r 7
functions of the initial state (on the left of the barrier). = .
Hence, one can see that the tunneling conductivity is
not a periodic function of the magnetic flux sinceit is

ressed in terms of m ov i-infiniteinterv ! L L I I L L
i S orasimover asem einterval 92 93 94 95 96 97 98 99 100

Conductivity, arb. units

of m.
~ Thetunneling widths are determined by the expres- /Py
sions
5 5 5 Fig. 2. Tunneling conductivity versus magnetic flux (thin
r = gmﬂmﬂzkma E..G(v) solenoid).
e
3T a nv’—1/4
1+
6 ka
A’ E hw /2 (11) ].6 T T T T T T T
%- EE h(A)d:l Ml
+ -
20 M2
1.4 -
/ En—fiw/2 '
x exp=-2K,z, [1— En <
p 2o YA v 0 i
Here, one should make the substitution z, — W — 7, 2 12 |
M, and M,, are the electron effective masses outside and =
inside the barrier, respectively. S i
In Eq. (12), g
2 1.0 .
J,(s2) 2
G(v) = J’ R,(S)sds, 2 T
0s +K 3
m 0.8 .
v +|m
UL . r%l + > O (12) i
Rv(s) = aH+V
i r(1+v) 06l |
v v + |m| 2 I
xS F +—;1+V;_as ] ] ] ] ] ] ]
s 2 "0 92 94 96 98 100
D/,
is the Fourier—Bessel transform of the wave functions 0
of the state outside the barrier for the lowest Landau Fig. 3. Tunneling conductivity versus magnetic flux (uni-
level withamoment m< 0. form field).
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The conductivity (T = 0) isgiven by

0 4 _4
16_¢e° M, k,a
g(®) = =
5" 2 i
N H—Aw/2
B8 e
20 |\/|2 Vi

(13)

0 u—th/ZD
x exp D—Zka [1- V—bD

ErGY(v)
L (m+ O/D,)’ -
6 Kna

2 -k, 7y

The numerical calculation was performed for the
following parameters: u = 1.03|Ey|, M; = 0.025m,
(InAS), M, = 0.07m, (GaAs), a= 300 A, V, =055 eV,
W=100A, and z, = W/2.

The results of calculations (Fig. 3) show that the
oscillating character of g(®) is preserved. The charac-
teristic interval between the spikes is equal to ®,, the
modul ation depth of conductivity isabout 15%, and " ~
0.002-0.01 eV for a magnetic field strength of H ~
4.044A4T.

A decrease in the conductivity as the magnetic field
increases is attributed to the fact that, for a fixed total
energy of a tunneling electron, its “longitudinal”
energy (the continuous part of the spectrum) decreases
with the field. Therefore, the interval between this
energy and the barrier ridge increases, and the decay
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length of the wave function along z decreases. As a
result, the overlapping integral T, decreases.

Thus, we have shown that atunnel current through a
heterostructure with quantum rings exhibits a specific
Aharonov—-Bohm effect. The tunnel current as a func-
tion of magnetic field for a given voltage across the
structure has the form of modulated oscillations with a
characteristic period @, in the flux. In the magnetic
field scale, this interval is much less than the scale
related to the Landau quantization for rings with radii
on the order of 10-100 nm in fields on the order of
1-10T.
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Abstract—Manganites of the Sm; _,Sr,MnO; system (x = 0.33, 0.4, and 0.45) possess giant negative val ues of
the magnetoresistance Ap/p and the volume magnetostriction w near the Curie temperature Tc. In the com-
pound with x = 0.33, the isotherms of Ap/p, w, and magnetization o exhibit smooth variation and do not reach
saturation up to maximum magnetic field strengths (120 kOe) studied (according to the neutron diffraction data,
this substance comprises a ferromagnetic (FM) matrix with distributed clusters of alayered antiferromagnetic
(AFM) structure of the A type). In the compounds with x = 0.4 and 0.45 containing, besides the FM matrix and
A-type AFM phase, a charge-ordered AFM phase of the CE type (thermally stable to higher temperatures as
compared to the A-type AFM and the FM phases), the same isotherms measured at T = T show a jumplike
increase in the interval of field strengths between H,; and H., and then reach saturation. In the interval
H¢ < H < Hg, the o, w, and Ap/p values exhibit a metastable behavior. At temperatures above T, the aniso-
tropic magnetostriction changes sign, which isindicative of rearrangementsin the crystal structure. The giant
values of wand Ap/p observed at T = T for all compounds, together with excess (relative to the linear) thermal
expansion and a maximum on the p(T) curve, are explained by the phenomenon of electron phase separation
caused by a strong s—d exchange. The giant values of magnetoresistance and volume magnetostriction (with w
reaching ~10~2) are attributed to an increase in the volume of the FM phase induced by the applied magnetic
field. In the compound with x = 0.33, this increase proceeds smoothly as the FM phase grows through the FM
layers in the A-type AFM phase. In the compounds with x = 0.4 and 0.45, the FM phase volume incresses at the
expense of the charge-ordered CE-type AFM structure (in which spins of the neighboring manganese ions possess
an AFM order). The jumps observed on the o(H) curves, whereby the magnetization o reaches ~70% of the value at
T=15K, areindicative of athreshold character of the charge-ordered phase transition to the FM state. Thus,
the giant values of w and Ap/p areinherent inthe FM state, appearing as aresult of the magnetic-field-induced
transition of the charge-ordered phase to the FM state, rather than being caused by melting of this phase. © 2002

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Theinterest in manganitesisrelated primarily to the
phenomenon of colossal magnetoresistance observed
in some compounds at room temperature, which can be
employed in various sensor devices. Various properties
of manganites were extensively studied and the results
of numerous investigations have been summarized in
reviews[1-12]. The colossal magnetoresistance is usu-
ally observed in the region of temperatures correspond-
ing to breakage of a magnetically ordered state charac-
terized by nonzero spontaneous magneti zation.

Previously [13-18], we established that the colossal
magnetoresistanceinLa; _,Sr,MnO; (0.1<x<0.3) and
SMg 555r0 4sMNO; compounds is accompanied by a
large negative volume magnetostriction (on the order of
10-107%), which makes possible the application of
these manganites in various magnetomechanical
devices. In the former system, we observed a correla-

tion between magnetoresistance and volume magneto-
striction, which was manifested by a decrease in both
values with increasing x and by the absence of satura-
tion in their isotherms up to maximum magnetic field
strengths (~120 kOe) studied, while the isotherms of
magneti zation already exhibited saturationinfieldsH <
10 kOe. This behavior was explained in terms of the
coexistence of ferromagnetic (FM) and antiferromag-
netic (AFM) phasesin the crystalline compounds, with
the charge carriers (in this case, holes) concentrated in
the FM phase. This type of two-phase magnetic state
related to a strong s—d exchange was described in [19]
and reviewed in [1, 2]. It should be noted that a notion
about the Curie temperature of a sample occurring in
such a stateis rather conditional.

A compound of the Sm, _,Sr,MnO; system with x =
0.5 exhibitsacharge-ordered state. Investigations of the
neutron diffractionat 1.5 K < T< 300 K showed that the

1063-7761/02/9505-0917$22.00 © 2002 MAIK “Nauka/Interperiodica’
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compound >Sm, Sr, ,MNnO; contains the clusters of
three types—FM, A-type AFM, and charge-ordered
(CE-type) AFM [20]—and that an AFM order of the A
type disappears above 120 K, while the charge-ordered
CE gatetill existsat 150K but isabsent &t 180 K. A spon-
taneous magnetic moment appears a T = 110 K; at the
same temperature, the resistivity p exhibits a maxi-
mum. At T < T, the compound possesses conductivity
of themetallic type. The temperature dependence of the
conductivity activation energy exhibits a jump at
180 K; in compounds possessing a charge-ordered
state, thisisusually interpreted as athermal breakage of
this order. The above values of T, Ty, and the temper-
ature of the charge order breakage (T¢) are close to
those determined [21] from the electron and neutron
diffraction data and the temperature dependence of
magnetization. Runov et al. [20, 22, 23] showed that
the samples of Sm, _,Sr,MnO; compounds with x = 0.25
and 0.4 at low temperatures contain FM clusters with
180250 A dimensions coexisting with large clusters
up to several thousand angstroms in size. At the same
time, no charge-ordered phase clusters were observed
in the compound with x = 0.25 [20]. Luzyanin et al.
[24] studied the second harmonic of the magnetic sus-
ceptibility and suggested that the paramagnetic phase
features AFM correlations with aweak FM component
coexisting with charge-ordered AFM domains up to
several hundred angstroms in size. The latter clusters
exhibit thermal breakage at temperatures significantly
above the Curie temperature.

Thus, the magnetic structure of Sm;_,Sr,MnO,
compounds is more complicated as compared to that of
the La, _,Sr,MnO; system. Compounds of the former
system with x closeto 0.5, in contrast to La; _,Sr,MnO,
compounds, contain charge-ordered clusters. This
order exhibits thermal breakage at higher temperatures
than does the magnetic order in the FM and A-type
AFM phases of the sample. On the other hand, the com-
pounds of both systems showed the colossal magnetore-
sistance and large volume magnetostriction near Te.. First,
we studied magnetodtriction in the Sm; _,Sr,MnO; sys-
tem only for acompound with x = 0.45 [16-18]. Previ-
ously [13-18], we suggested that the colossal magne-
toresistance and large volume magnetostriction are
explained by the same reason: a growth of the FM part
of acrystal, in which the charger carriers are concen-
trated. However, the mechanism of this growth
remained unclear. Aswill be shown in Section 3 below,
compounds of the Sm, _,Sr,MnO; system with x = 0.4
and 0.45 exhibit the colossal magnetoresistance and
large volume magnetostriction even in a high-tempera-
ture range, where the magnetic order in both FM and A-
type AFM partsis broken but a charge-ordered state is
till retained in acertain part of the sample.

The aim of this paper is as follows. Based on the
results of a complex study of the behavior of magneti-
zation, paramagnetic susceptibility, thermal expansion,
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magnetostriction, electric resistance, and magnetore-
sistance in the Sm; _,Sr,MnO; compounds with x =
0.33, 0.4 and 0.45, we will elucidate some peculiarities
in these characteristics related to the presence of
charge-ordered phase clusters. It should be noted that
the Sm, _,Sr,MnO; system offers a convenient object
for such investigation, since the compounds with x =
0.4 and 0.45 contain charge-ordered clusters. More-
over, only these clusters still retain a magnetic order at
T = Ty, while that in the FM and A-type AFM partsis
broken as a result of heating. The compound with x =
0.33 differsfrom those with x = 0.4 and 0.45 in that the
former does not contain charge-ordered clusters [20].
For al thethree compounds, T < Ty. Thus, wewill elu-
cidate the character (jumplike versus smooth) of the
FM phase growth at the expense of the charge-ordered
and A-type AFM phases considered separately. The
results are treated based on the recent theoretical works
of Nagaev [2] and Dagotto et al. [3].

2. EXPERIMENTAL METHODS

The samples of compounds of the Sm; _,Sr,MnO,
system were synthesized and analyzed by O.Yu. Gor-
benko and A.R. Kaul’. The synthesis was conducted
according to a standard ceramic technology. The phase
composition and crystal lattice parameters were moni-
tored by X-ray diffraction measured on a Siemens
D5000 diffractometer. According to these data, the
samples represent single-phase perovskites with an
orthorhombic structure (Pnma space group) and the | at-
tice parameters (T = 300 K) a = 5.424(1) A, b =
7.678(2) A, c=5.434(2) A for x=0.45and a=5.436(2) A,
b=7.679(4) A, c=5.459(2) A for x = 0.33. The ortho-
rhombicity parameter of 0.2% (calculated using the lat-
tice parameters) indicates that the structure is close to
cubic. A single-phase state of the synthesized sam-
ples was confirmed by the Raman spectroscopy mea-
surements performed on a Jobin—Y von T64000 spec-
trometer with triple monochromator. The Raman
spectra showed the presence of the phonon modes
characteristic of the orthorhombic manganites with
Pnma symmetry.

The magnetization was studied using a vibrating-
sample magnetometer in a range of temperatures from
1.5t0 300 K and magnetic field strengths up to 130 kOe.
The initial magnetic susceptibility in an alternating
magnetic field with the frequency varied from 0.8 to
8 kHz was measured on an F-5063 ferrometer, while
the paramagnetic susceptibility was studied by a
weighing technique with electromagnetic compensa-
tion. The electric resistance was determined by the
four-point-probe technique. The magnetostriction and
thermal expansion in the temperature range from 4.2 to
300 K were measured using strain gauges with aresis-
tance of 92.30 + 0.01 Q and atension sensitivity coef-
ficient of 2.26. One strain gauge was glued to a sample,
and another, to a quartz crystal, with the same orienta-

No. 5 2002



PECULIARITIES OF THE MAGNETIC, GALVANOMAGNETIC, ELASTIC...

X, rel. units
- o
(9} (9}
T T

e
h
T

80

60

40

1/X, mol cm™3

20

1 1 1 1
0 100 200 300 400 500
T,K

Fig. 1. Temperature dependences of (a) the initial magnetic
susceptibility x measured in an alternating magnetic field of
1 Oe with a frequency of 8 kHz for Sm; _,Sr,MnO3 com-
pounds with x = 0.33 (1), 0.4 (2), and 0.45 (3) and (b) the
paramagnetic susceptibility of the compoundswith x = 0.33
(1) and 0.45 (2).

tion relative to the applied magnetic field. The mag-
netostriction parallel (A) and perpendicular (Ap) to the
applied magnetic field were measured, after which the
volume (w = A+ 2\p) and anisotropic (A, = A — Ap)
magnetostriction were calculated. The measurements
of thermal expansion and magnetostriction in strong
pulsed magnetic fields were performed in the labora
tory of R. Ibarra (Saragossa University, Spain).

3. EXPERIMENTAL RESULTS
3.1. Magnetic Properties

For al compounds of the system studied, the tem-
perature dependence of theinitial magnetic susceptibil-
ity X(T) measured in an alternating magnetic field with
afrequency of 8 kHz exhibited a maximum in the low-
temperature region (T < 50 K) and a sharp drop at
higher temperatures (Fig. 1a). In the compounds stud-
ied, the Curie point was determined as the temperature
of a minimum in the (dx/dT)(T) curve. For the
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Fig. 2. Theisothermsof (a) magnetization ¢ and (b) volume
magnetostriction w for Sm; _,Sr,MnOz with x = 0.33 mea-

sured with increasing and decreasing the applied field
strength as indicated by arrows.

Sm,; _,Sr,MnO; compounds with x = 0.33, 0.4, and
0.45, thisyidlds 79, 112, and 126 K, respectively. These
values are close to the published data (see [20, 21] and
referencestherein). It should be noted that the low-tem-
perature peak positionisvirtually independent of x; this
maximum is probably related to an increase in the mag-
netic anisotropy of FM and AFM clusters in the two-
phase magnetic state. The paramagnetic susceptibility
of all compositions obeys the Curie-Weiss law at tem-
peratures above ~2T. (Fig. 1b), with the paramagnetic
Curie points at 6 = 175, 194, and 250 K for x = 0.33,
0.4, and 0.45, respectively. In the temperature interval
Te < T < 2T, the experimental curves deviate from the
Curie-Weiss law.

Figures 2a and 3a show the isotherms of the magne-
tization a(H) for the compoundswith x = 0.33 and 0.45,
respectively (the curvesfor x = 0.4 are much like those
in Fig. 3a). As can be seen, the a(H) curves display no
peculiaritiesbelow T and reach saturation at H < 30 kOe.
The spontaneous magnetic moment, determined by
extrapolating o(H) curves to a zero field at 1.5 K, is
closeto the values expected in the case of complete FM
ordering of the magnetic moments of Mn3* and Mn*
ions in the compositions studied. The magnetization
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Fig. 3. Theisotherms of (a) magnetization ¢ and (b) volume
magnetostriction w for Sm; _,Sr,MnOz with x = 0.45 mea-

sured with increasing and decreasing the applied field
strength as indicated by arrows.

isotherms of various compositions are significantly dif-
ferent a T = T.. Indeed, the samples with x = 0.4 and
0.45 exhibit ajumplike increase in the magnetization in
a certain interval of field strength Hy, < H < H,
(Fig. 3a). Figure 4 shows the temperature variation of
the H,; and H, values. As can be seen, both character-
istic fieldsincrease with thetemperature by alinear law.
Intheregion of ajump, the a(H) curves exhibit ahys-
teresis whose width decreases with an increasein the
temperature. As can be seen from Fig. 2a, no such
jump is observed on the a(H) curves of a sample with
x=0.33.

Figures 5a and 5c show the temperature variation of
magnetization of the same compositions in various
magnetic fields. For a compound with x = 045, a
decrease in the temperature leads to asharp increasein
the magnetization in the vicinity of T for the samples
measured in magnetic fields below 20 kOe. In stronger
fields, thetransition exhibits smearing. The o(T) curves
for the compound with x = 0.4 are very much like those
presented in Fig. 5a. For the sample with x = 0.33, the
transition at T is smeared in the entire range of mag-
netic fields studied (Fig. 5c).
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Fig. 4. Plotsof thecritical field strengthsH¢, and He, versus
temperature for Sm; _,Sr,MnO3 with x = 0.45. Symbols

shows the experimental data obtained from (1, m) magneti-
zation, (O, ®) magnetostriction, and (A, +) magnetoresis-
tance measurements ((+) datafrom [27, Fig. 4]).

3.2. Elastic and Magnetoelastic Properties

Figure 6a showsthe temperature variation of thelin-
ear thermal expansion AL/L(T) for all three composi-
tions studied. As can be seen the AL/L(T) exhibits a
sharp change in the vicinity of T for the compounds
with x = 0.4 and 0.45, and a smoother variation for the
sample with x = 0.33. For the first two compositions, a
relative change in the sample volume is very large:
AV/IV = 3AL/L = 0.1%. The application of a magnetic
field leads to suppression of thejump in AL/L(T) and in
the negative magnetostriction. The samples of all com-
positions exhibit a considerable temperature hysteresis
of AL/L(T) intheregion of Te.

Figures 2b and 3b show the isotherms of the vol-
ume magnetostriction w(H) for the compounds with
x = 0.33 and 0.45, respectively. Figures 5b, 5d and
6b, 6¢ present the temperature dependences of the vol-
ume («(T)) and anisotropic (A(T)) magnetostriction of
the same compositions. The curves of w(H), w(T), and
A(T) for the compound with x = 0.4 are very much like
those depicted in Figs. 3b, 5b, and 6¢ for x = 0.45. As
can be seen from Fig. 3b, the sample with x = 0.45
exhibits achangein the behavior of w(H) inthevicinity
of T, whereby a jump appears in the curves. These
jumpsare observed at approximately the same val ues of
the magnetic field strength (for close temperature) as
thejumpsin the curvesof o(H) (Fig. 3a). Ascan be seen
from Fig. 4, showing the temperature dependence of the
critical fieldsH,, and H, determined from the magnetiza-
tion and magnetostriction measurements, the experimen-
tal points are satisfactorily fitted to straight lines. In the
region of T =T, the w(H) curves exhibit saturation at
afield about 40 kOe, while an increase and decreasein
the magnetic field strength reveals a hysteresis in the
volume magnetostriction.
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Fig. 5. Temperature dependences of (a, ¢) the magnetization
o and (b, d) the volume magnetostriction w for
Smy _,Sr,MnO53 compounds with x = 0.33 and 0.45 mesa-
sured in various magnetic fields.

For the compounds with x = 0.4 and 0.45, the vol-
ume magnetostriction is negative in the entire tempera-
ture range studied and possesses a very small absolute
value everywhere, except for a very narrow interval in
the vicinity of T where the «)T) curve passes through
a minimum (Fig. 5b). At this minimum, |w| acquires
giant values: 5 x 10*in afield of H = 8.4 kOe and 1073
inafield of H=50kOefor x = 0.45 (and approximately
the same valuesfor x = 0.4).

As can be seen from Fig. 6¢, the anisotropic magne-
tostriction A, for the compounds with x = 0.4 and 0.45
acquires small absolute values, being almost constant
in the entire temperature range studied, except within a
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Fig. 6. Temperature dependences of (a) the linear thermal
expansion AL/L(T) (in unitsof 1 x 107°) for Smy _,Sr,MnO;
with x = 0.33 (1), 0.4 (2), and 0.45 (3) (solid and dashed
curves measured in the heating and cooling modes, respec-
tively) and (b, ¢) the anisotropic magnetostriction of the
compounds with x = 0.33 and 0.45 measured in various
magnetic fields.

narrow interval in thevicinity of Te. Inthisinterval, the
A; value increases severalfold and changes sign in the
interval of field strengths 0 < H < 2 kOe, being positive
below T and negative above thistemperature. For the
fieldsH > 20 kQe, the A(T) exhibitsamaximumat T =
Te. A different behavior of w(H), w(T), and A(T) is
observed for the compound with x = 0.33 (Figs. 2b, 5d,
and 6b). Indeed, the isotherms of volume magnetostric-
tion are far from saturation in the entire temperature
range studied, while the magnetization isotherms
aready exhibit saturation at H < 30 kOe. Negative vol-
ume magnetostriction in this compound is observed in
the entire temperature range below T.. The curves of
w(T) pass through a minimum somewhat below T,
while a maximum absol ute value of |w]|(on the order of
7 x 10 is attained at a field strength of 120 kOe
(Fig. 5d). The A; value is positive in the entire tempera-
ture range studied, exhibiting a maximum in the vicin-
ity of T and then quite rapidly decreasing to zero
(Fig. 6b).

No. 5 2002



922

T
T=136-213K
s +

Fig. 7. The isotherms of
Sm; _,Sr,MnO35 with x = 0.33 (&) and 0.4 (b).
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3.3. Electrical and Galvanomagnetic Properties

In the vicinity of T, all the compounds studied are
characterized by a p(T) curves with a maximum, with
the p values at the peak increased by several orders of
magnitude as compared to those at |ow temperatures. In
the low-temperature region, the p(T) curve has a shape
characteristic of metals. The magnetoresistance Ap/p =
[p(H) —p(H =0)]/p(H = 0) isnegativefor all compound
in the entire temperature range studied (fromT=4.2 K
to T>T,), with the absol ute val ue reaching a maximum
near Te.

Figure 7 presents the plots of Ap/p versus H for the
compounds with x = 0.33 and 0.4. As can be seen from
Fig. 7b, the latter compound exhibits a sharp growth of
|Ap/p| when the field strength reaches H,, (the same
behavior was observed for the compound with x =
0.45). Figure 7a shows that the Ap/p value in the com-
pound with x = 0.33 smoothly increases with the field
strength and the curves exhibit no saturation. It should
be noted that the magnetoresistance of samarium-con-
taining manganites reaches giant values in relatively
weak magnetic fields as compared to those for the man-
ganites of other rare-earth metals (e.g., lanthanum,
praseodimium). Indeed, we observed the magnetoresis-
tance reaching 83, 72, and 44% in the samples of
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Sm; _,SrMnO; with x = 0.33, 0.4, and 0.45, respec-
tively, in amagnetic field of 8.4 kOe.

3.4. Instability of Magnetoel astic Properties

The compounds with x = 0.4 and 0.45 exhibit insta-
bility in their magnetic properties in the interval of
magnetic field strengths H,; < H < H, at temperatures
in the vicinity of T.. Thisis manifested by an increase
in magnetization, magnetostriction, and magnetoresis-
tance of the samples exposed to the magnetic field with
the strength increased from H, to He,. If the applied
magnetic field is decreased in the same interval, the
characteristics vary in the reverse direction. It was
found that the time variation of magnetostriction fol-
lows an exponential law.

The experimental results for H = const (fast field
buildup to H = 8.4 kOe at various temperatures in the
region of T.) are well described by the activation rela-
tionship T = 1oexp(Ey/KT) with 1, = 1.4 x 10”7 s and
Ey/k = 0.17 eV. The experiments at T = const in the
same range of field strengths are described by the acti-
vation law

T = Toexp[(MomH/KT)],

while the results involving both temperature and field
variations are well described by the equation

T = Toexp[(HomH + Eo)/KT],
where m = 230pg and E; = 0.17 eV.

4. DISCUSSION OF RESULTS

The results of investigation of the magnetic, galva-
nomagnetic, elastic, and magnetoelastic properties of
Sm, _,Sr,MnO; manganites (with x = 0.33, 0.4, and
0.45) in arange of temperatures from 1.5 to 300 K and
magnetic field strength up to 130 kOe revealed the fol-
lowing featuresin behavior of the system under consid-
eration. Inthevicinity of T, the samples exhibit excess
(relativeto the linear) thermal expansion reaching up to
0.03% (Fig. 6a), giant negative magnetoresistance
(Fig. 7), and large negative volume magnetostriction
(Figs. 2b, 3b, 5b, and 5d). The latter two temperature
dependences exhibit maxima. The absolute value of
magnetoresistance in the compoundswith x = 0.33, 0.4,
and 0.45 in amagnetic field of 8.4 kOe reaches 83, 72,
and 44%, respectively. Record values were observed
for the volume magnetostriction of compounds: for the
compounds with x = 0.4 and 0.45, we observed |w|~
5x 10 in afield of 8.4 kOe and ~1072 in a field of
H =50 kOe. The measurements of paramagnetic sus-
ceptibility showed (Fig. 1b) that all compositions obeys
the Curie-Weiss law at temperatures significantly
above T, typically beginning at T= 2T, whichisindic-
ative of the presence of magnetic clustersin the system
above Tc.
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The behavior of magnetization, thermal expansion,
volume magnetostriction, and magnetoresi stance of the
compound with x = 0.33 is very much like that previ-
ously observed by some of the authors in the
La _,Sr,MnO; system [13-15]: the Ap/p(H) and w(H)
curves do not exhibit saturation up to maximum field
strengths studied (H = 130 kOe), while the magnetiza-
tion o(H) aready saturates at H ~ 20 kOe (Figs. 2aand
7a). The above features can be explained in terms of the
electron phase separation caused by a strong s—d
exchange. The compound with x = 0.33 comprises a
conducting FM matrix with distributed insulating clus-
ters of the A-type AFM phase. This structure features a
conducting two-phase magnetic state caused by a
strong s—d exchange as described in reviews[1, 2].

The two-phase magnetic state is characterized by a
sharp increase in resistivity in the vicinity of the Curie
point. There are two mechanisms through which the
magnetic-impurity interaction influences the resistiv-
ity: (i) the scattering of charge carriers, leading to a
decreasein their mobility, and (ii) the formation of atail
of localized states in the conduction band. In the vicin-
ity of the Curie point, there is a sharp decrease in the
mobility of charge carriersand they are partly localized
in the band tail, which explains the appearance of a
maximum at T inthe p(T) curve. The applied magnetic
field produces delocalization of the charge carriers
localized in the band tail, which givesrise to the colos-
sal magnetoresistance. Yanase and Kasuya[19] showed
that the FM part of a sample occurring in a two-phase
magnetic state is characterized by reduced lattice
parameters. On heating above T, the sample exhibits
anomalous expansion. Application of a magnetic field
a T = T increases the FM order near the magnetic
impurity (in this case, Sr ions) to an extent greater than
average over the crystal because the effect is enhanced
by the s—d exchange (magnetic field restores the FM
phase broken by heating, after which the sample exhib-
its a lattice contraction corresponding to this phase). It
should be noted that, for a sample occurring in a two-
phase magnetic state, the Curie point is essentially the
temperature of thermal breakage of the FM phase.

It should be emphasized that the above explanation
of the phenomenon of giant negative magnetoresis-
tance, large negative volume magnetostriction, maxi-
mum in the resistivity p, and an excess thermal expan-
sion near T isrelated to achangein the FM phase vol-
ume under the action of an applied magnetic field
and/or the temperature. In Sm;_,Sr,MnO; with x =
0.33, this change proceeds smoothly, probably, because
the FM phase volume increases at the expense of AFM
clusters of the A type. These clusters possess a layered
AFM structure comprising FM ordered subl atticeswith
AFM-ordered magnetic moments. The sample FM part
volume increases as the FM phase grows through the
FM layersin the A-type AFM phase.

Behavior of the isotherms of magnetization, volume
magnetostriction, and magnetoresistance in the sam-
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plesof Sm; _,Sr,MnO;withx=0.4and 0.45isdifferent
from that observed for the compound with x = 0.33. As
was pointed out in the Introduction, the former two
compositions contain, in contrast to that with x = 0.33,
charge-ordered clusterswhich exhibit thermal breakage
at higher temperatures than does the conducting FM
phase and the A-type AFM clusters deprived of charge
carriers. As can be seen from Figs. 3 and 7b, these sam-
ples exhibit a jumplike increase in the magnetization,
volume magnetostriction, and magnetoresistance at
T= T, in the region of critical fields H,y; < H < H,,
where the H.; and H, values linearly increase with the
temperature (Fig. 4). Within the critical field interval,
the above magnetic characteristics exhibit temporal
relaxation. In the region of a jump, the o(H) curve
exhibits a hysteresis whose width decreases with
increasing temperature. At H = H,,, the aforementioned
isotherms exhibit saturation.

If the Curie temperature is determined by extrapo-
lating the steepest part of the o(T) curveto intersection

with the temperature axis, the T values obtained in
thisway depend on the magnetic field strength at which
the measurements of o(T) were performed. For the
compounds with x = 0.4 and 0.45, the T values vary
in a nonuniform manner, slowly in the region of weak
fields and much faster in stronger fields, so that eventu-
aly the T¢ value exhibits atwofold increase at 70 kOe

as compared to T determined from the temperature
dependence of theinitial magnetic susceptibility (Fig. 5a).
For the compound with x = 0.33, the increase in T¢

with thefield strength is still more pronounced and pro-
ceeds more uniformly, which makes determination of

the T¢ values in strong fields impossible (Fig. 5c).
Such a strong dependence of T on the field H is not

typical of ferromagnets. For example, the T values
determined by the same method for Gd and CdCr,Se,
in the same interval of field strengths increase by only
afew Kelvins[25]. All this suggests that the concept of
Curietemperature in magnetically heterogeneous (non-
single-phase) materialsis rather conditional.

The results of numerical modeling performed by
Dagotto et al. [3] showed that the concentration transi-
tion at x=0.5 from FM to charge-ordered state in man-
ganitesisafirst-order phasetransition and that the com-
positions close to x = 0.5 contain magnetic clusters of
various types, representing FM, A-type AFM, and
charge-ordered states. Also considered in [3] was the
possibility that there exists aconducting FM phase con-
taining both the A-type AFM and charge-ordered clus-
ters. Apparently, this possibility is realized in the
Sm, _,Sr,MnO; compositions with x = 0.4 and 0.45, as
evidenced by the metallic type of conductivity at T< T
in combination with a high level of Jahn-Teller distor-
tions of the manganese-oxygen octahedra. According
to the datareported in [20], ahigh level of these distor-
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tions in the compound with x = 0.4 is untypical of a
strongly diluted system of Jahn-Teller ions (60%
Mn3*): thislevel isapproximately ashigh asin LaMnO,
(100% Mn3*) [26]. Such distortions must lead to the
localization of charge carriers, but SmgySry,MnO;
exhibited conductivity of the metallic type below Tc.
This is possible only provided that the conductivity
possesses a percolation character and is mediated by tie
links surrounding the insulating clusters (these links
occupy amuch smaller part of the sample as compared
to that occupied by the insulating clusters). Then, the
jumplike growth of a(H), |w[H), and |Ap/p|(H), aswell
as the nonuniform variation of T¢(H) in the com-

pounds with x = 0.4 and 0.45, can be related to a tran-
sition of the charge-ordered clusters to the FM state
under the action of an applied magnetic field.

Thus, the large volume magnetostriction and the
colossal magnetoresistance in the compounds with x =
0.4 and 0.45 (aswell asinthat with x = 0.33) arerelated
to the FM phase appearing as a result of the magnetic-
field-induced transition of the charge-ordered clusters
to the FM state. In the charge-ordered phase, spins of
the neighboring Mn ions are oriented in the opposite
directions. Therefore, conversion of this phase into the
FM state requires a considerably greater amount of
energy than the analogous conversion of the A-type
AFM phase. As can be seen from Figs. 3, 5a, 5b, and
7b, thistransition proceedsin ajumplike manner when
the applied magnetic field strength reaches the first
threshold value H,,. The magnetic-field-induced transi-
tion of the charge-ordered clustersto the FM state must
be accompanied by modification of the crystal structure
and, hence, manifested by a change in the anisotropic
magnetostriction. Indeed, the data in Fig. 6¢c show a
change in the sign of A, in this temperature region,
which isaccompanied by the appearance of certain fea-
tures in the A(T) curve: a maximum in the region of
positive A, values and a minimum in the region of neg-
ative A; values.

A strong field dependence of the T values deter-
mined as described above can be explained as follows.
In the compounds with x = 0.4 and 0.45, T¢ in weak

fields exhibits a smooth increase related to the mag-
netic-field-induced restoration of the FM phase (broken
by heating) and, probably, to an increase in the volume
of this phase at the expense of the A-type AFM clusters.
When the applied field strength reaches the H; thresh-
old, the charge-ordered phase exhibits a jumplike tran-
sition to the FM state. This conversion is analogous to
afirst-order phase transition, which is confirmed by the
fact that the system exhibits instability of the magnetic,
elastic, magnetoelastic, eectrical, and galvanomag-
netic properties in the interval of field strengths
between H, and H, (see Sections 3.1-3.4). Above this
interval, thermal breakage of the FM phase slows down
because the energy is gained in the s—d exchange. This
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explainsasmoothincreasein T with H intherange of
H > Hg,. In the compound with x = 0.33, the smooth
growth of T with H is related both to the magnetic-

field-induced restoration of the FM phase and to the FM
phase growth through the FM sublattices of the A-type
AFM clusters.

Thus, the colossal magnetoresi stance, large negative
volume magnetostriction, and the excess thermal
expansion near T. observed in samples of the
Sm; _,Sr,MnO; system with x = 0.33, 0.4, and 0.45 are
explained by the phenomenon of el ectron phase separa-
tion caused by a strong s-d exchange, whereby the
charge carriers are concentrated in the FM phase. The
presence of charge-ordered clusters in the compounds
with x = 0.4 and 0.45 brings certain specia featuresin
behavior of the magnetoresistance and volume magne-
tostriction, which is manifested by jumps in the corre-
sponding isotherms related to the magnetic-field-
induced transition of the charge-ordered clusters to the
FM state.

5. CONCLUSION

We have studied a model Sm; _,Sr,MnO; system
(with x = 0.33, 0.4, and 0.45) to elucidate how the
charge ordering can influence the magnetic, eastic,
magnetoelastic, and galvanomagnetic properties of
manganites. This systemisaconvenient object for such
investigation, since the compounds with x = 0.4 and
0.45 comprise a ferromagnetic phase with distributed
A-type AFM clusters and charge-ordered clusters such
that Te < Ty < Teo. The latter relation implies that the
behavior observed at T > Ty, isrelated to the magnetic-
field-induced modification of only the charge-ordered
clusters. The compound with x = 0.33, in contrast to
those with x = 0.4 and 0.45, contains only the FM and
A-type AFM phases.

For these reasons, a comparison of the properties of
compounds with x = 0.4 and 0.45 to those of the com-
pound with x = 0.33 allowed us to establish the nature
of the colossal magnetoresistance and large volume
magnetostriction observed in the system under consid-
eration and to revea the peculiarities of these effects
related to the charge ordering. In the compounds with
x = 0.4 and 0.45, the isotherms of magnetization, vol-
ume magnetostriction, and magnetoresistance mea-
sured at T immediately above T exhibit a slow initial
growth with thefield strength, followed by a significant
jumplike increase in the interval between the critical
fieldsH, and H,, the values of which linearly increase
with the temperature (Figs. 3, 4, and 7b). As the field
grows further (above H.,), the aforementioned iso-
therms exhibit saturation. In contrast, the same iso-
therms of the composition with x = 0.33 exhibit a
smooth character and show no evidence of saturation
up to maximum field strengths studied (Figs. 2 and 7a).
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In the compounds with x = 0.4 and 0.45, the magne-
tization exhibits a jump and acquires alarge value. For
example (see Fig. 3a) a sample of the composition with
x=045a T=200K (T = 126 K) has o = 2ug/form.
unit, while the magnetization at T = 1.5 K amounts to
3.5ug/form. unit (which corresponds to a complete FM

ordering of the moments of Mn3* and Mn** ionsat T =
1.5 K ). From this, we conclude that the compounds
with x = 0.4 and 0.45 feature the transformation of
charge-ordered clustersinto the FM state at the thresh-
old field strength H.,. This conversion is analogousto a
first-order phase transition, since the processhasajum-
plike character and the system exhibitsinstability of the
magnetization, magnetostriction, and magnetoresis-
tance, as manifested by the temporal variation of their
isotherms and by a difference of the isotherms mea-
sured with increasing and decreasing the field strength
(Figs. 3 and 7b).

In the compound with x = 0.33, the structure of
which contains no charge-ordered clusters, the values
of magnetization, magnetostriction, and magnetoresis-
tance at T increase with the field in a smooth manner.
In this material, the FM phase volume increases at the
expense of a decreasing fraction of the A-type AFM
phase. The AFM ordering of the A-type corresponds to
alayered structure in which moments of the neighbor-
ing FM layers are oriented in the opposite directions. In
the compound with x = 0.33, the FM part increaseswith
the field smoothly, as the FM phase grows through the
FM layersin the A-type AFM phase.

In the charge-ordered phase, spins of the neighbor-
ing Mnionsare oriented in the opposite directions. The
results of our experiments showed that conversion of
the charge-ordered clusters into the FM state requires
applying threshold fields. As the threshold field
strength is reached, such clusters completely transform
into the FM state. This transition must be accompanied
by modification of the crystal structure and, hence,
manifested by a change in the anisotropic magneto-
striction. Indeed, the datain Fig. 6¢ show a change in
the sign of tin thistemperature region, which isaccom-
panied by the appearance of certain featuresin the A (T)
curve: a maximum in the region of positive A, values
and a minimum in the region of negative A, values. In
contrast, the A; value in the compound with x = 0.33 is
positive in the entire temperature range studied, includ-
ing theregion of T, and rapidly dropsto zero for fields
above T (Fig. 6b).

Aswas shown by Nagaev [1, 2] and by Yanase and
Kasuya [19], the colossal magnetoresistance and large
volume magnetostriction are explained by the mag-
netic-field-induced increase in volume of the FM phase
(in which the charge carriers are concentrated) in a
magnetically inhomogeneous sample and the resulting
gain in the s—d exchange energy. According to this, the
colossal magnetoresistance, large negative volume
magnetostriction, and the excess thermal expansion
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near T, observed in samples of the Sm; _,Sr,MnO; sys-
tem with x = 0.33, 0.4, and 0.45 are explained by the
phenomenon of electron phase separation caused by a
strong s—d exchange, whereby the charge carriers are
concentrated in the FM phase. The presence of charge-
ordered clustersin the compoundswith x = 0.4 and 0.45
brings certain special features in behavior of the mag-
netoresistance and volume magnetostriction, which is
manifested by jumps in the corresponding isotherms
related to the magnetic-field-induced transition of the
charge-ordered clusters to the FM state.

It was experimentally established that the samples
of Sm; _,Sr,MnO;withx=0.33,0.4,and0.45at T> T,
exhibit, besides a colossal magnetoresistance of 83, 72,
and 42%, respectively, arecord level of volume magne-
tostriction reaching w ~ 5 x 10 in afield of 8.4 kOe
and 10%inafield of H =50 kOe. Thisisthe second sys-
tem of manganites after La, _,Sr,MnO; in which we
observed a large volume magnetostriction accompa-
nied by the colossal magnetoresistance in the same
temperature region. These results open new possibili-
ties for the application of manganites in magnetome-
chanical devices and sensors.
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Abstract—The spectrum of collective excitations in a quasi-two-dimensional electron system was studied by
the method of Raman scattering spectroscopy. In an applied magnetic field, such systems exhibit collective
excitations related to the electron transitions between dimensionally quantized subbands with a change in the
Landau level index (intersubband Bernstein modes). It is shown that these modes interact with the fundamental
intersubband excitations of the charge and spin densities, the interaction energy being determined by the exci-
tation quasimomentum. Interaction of the intersubband Bernstein modes and the fundamental intersubband
excitations with quasi-two-dimensional L O phonons was studied. Behavior of the new branches of collective
excitationsin a quasi-two-dimensional electron system possessing more than one occupied Landau level was
studied and the nature of these branches was determined. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Neutral excitationsin low-dimensional electron sys-
tems have been extensively studied in the past decades
by both theoretical and experimental methods [1, 2].
Special attention was devoted to quasi-two-dimen-
siona electron systems (2DES), in which new basic
phenomenawere discovered including integer and frac-
tional quantum Hall effects. Combining the properties
of 2D and 3D systems, 2DESs possess complicated
spectraof neutral excitations. Since the electron motion
in 2DESs is confined (quantized) in one of the spatial
directions, the excitation spectrum consists of intra-
and intersubband branches. The intrasubband branches
represent the usual 2D excitations related to the elec-
tron transitions within the same quantum confinement
subband. We will concentrate on the intersubband exci-
tations related to the electron transitions between dif-
ferent quantum confinement subbands.

The intersubband excitations have direct analogsin
neither 2D nor 3D eectron systems. The number of
guantum confinement subbands and, hence, of various
intersubband excitationsin real 2DESsislarge. For this
reason, we will restrict our consideration to the funda-
mental branches of intersubband excitations related to
the electron transitions from the ground to the first
guantum confinement subband. Description of the
other branches of intersubband excitations can be con-
structed by an analogous scheme. It will be assumed
that the quantum electrical limit is realized, whereby

the Fermi level of electrons measured from the ground
subband energy level liesbelow thefirst excitation band
bottom. In this case, the spectrum of neutral intersub-
band excitations comprises two collective modes,
including the fundamental collective excitations of
charge and spin densities, and the continuum of single-
particle excitations (SPEs) [3-6]. The charge density
excitations (CDEs) are related to the electron transi-
tions with spin conservation, while the spin density
excitations (SDES) involve changes in the spin of an
excited electron.

The fundamental CDEs and SDEs can be consid-
ered as the singlet and triplet states of the exciton
formed by an electron in the excited subband and ahole
under the Fermi level of electrons of the ground sub-
band (Fig. 1). In contrast to the Mott exciton, the CDE
and SDE energies are nondegenerate because the CDE
energy includes the energy of macroscopic polarization
of the electron system (depolarization shift). Since the
polarization vector oscillates in the direction perpen-
dicular to that of the CDE quasimomentum, the CDEs
can be considered as an electron analog of TA phonons.
Via the éectric field of the macroscopic polarization,
the fundamental CDEs can interact with quasi-two-
dimensional LO phonons to form the bound CDE-LO
modes [4].

In an external magnetic field perpendicular to the
2DES plane, the energy spectrum of electrons is com-
pletely quantized (to become quasi-zero-dimensional),
which leadsto abasic rearrangement of the spectrum of
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Fig. 1. Raman scattering in 2DES: (a) schematic diagram of the experimental geometry. The energy difference hv; — hvg and the

difference of projections of the incident (excitation) and scattered photon momenta onto the 2DES plane, q!' - q! , aretransferred
to a 2DES excitation; (b) typical Raman spectrum of intersubband excitations in a 250-A-wide QW with an electron density of

6.8 x 10! cm2, measured in azero magnetic field for q = 0.4 x 10° cm . Diagram at the top shows the possible types of intersub-
band excitations, including the charge density (CDE), spin density (SDE), and single-particle (SPE) excitations.

neutral excitations. All electron excitations in the mag-
netic field possess a collective character. As aresult, a
spectrum of collective excitations—intersubband Bern-
stein modes (ISBMs)—is formed instead of the contin-
uum of single-particle excitations. Besides ISBM, the
spectrum retains the fundamental excitations of charge
and spin densities, now related to the intersubband tran-
sitions with conservation of the Landau level index.

The fundamental CDEs and SDESs in a magnetic
field were observed by methods of IR absorption and
Raman scattering spectroscopy [1]. However, direct
observation of the ISBMs encountered experimental
problemsfor along time because the optical transitions
related to ISBM excitation are dipole-forbidden both in
the IR absorption and in the Raman scattering process
(the Landau level index is not retained). Ando [7]
showed that the problem of conservation of the Landau
level index can be solved by applying an external mag-
netic field parallel to the quantum well plane, thus mix-
ing the transverse (perpendicular to the 2DES plane)
and longitudinal (parallel to the 2DES plane) motions
of electrons[8-10]. It should be noted that such mixing
significantly modifies the spectrum of intersubband
magnetic excitations. Only ISBMs with a zero quasi-
momentum ¢ in atilted magnetic field admit a rather
simple description [7], while nonzero quasimomenta
make the description quite difficult [11].

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

This paper presents the results of a presently most
complete experimental investigation of the energy
spectrum and dispersion of intersubband excitationsin
aperpendicular magnetic field, summarizing the results
obtained by the authors within the last five-year period.
The presentation proceeds as follows. Section 2 givesa
description of the origina experimental approach
developed by the authors for measuring the Raman
spectra. This method allows the Raman spectra to be
measured under conditions of extremely low tempera
tures and superstrong magnetic fields and ensures|ong-
term stability of the informative signal in the magnetic
field, not achievable with the other techniques. Section 3
considers the spectrum of intersubband excitations in
the region of small quasimomenta (q — 0) and pre-
sents experimental evidence of the basic energy rela-
tions between | SBM s (intersubband anal og of the Kohn
theorem) [1, 12]. Section 4 addresses the interaction of
ISBMs with the fundamental intersubband CDEs and
SDEs[12]. Section 5isdevoted to theinteraction of the
intersubband excitations of a 2DES with the phonon
subsystem of a semiconductor on which the 2DES is
based. It will be shown that the fundamental CDES in
polar semiconductors interact with LO phonons, while
ISBMs interact with the CDE-L O hybrid modes [13].
Section 6 discusses the new branches of intersubband
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collective excitations considered as antiphase oscilla-
tions of the electron subsystems of 2DES on various
Landau levels[14].

2. EXPERIMENTAL METHOD

The experiments were performed with a series of
high-quality MBE-grown heterostructures representing
asymmetric, selectively doped separate 250-A-wide
AlL,Ga, _ , AdGaAs quantum wells (QWS). The electron
density ng in the samples varied within (0.5-6.8) x
10 cm and the electron mobility , within (1-7) x
106 cm?/(V s). The Raman spectral line width was
0.15 meV.

The measurementswere conducted at 1.5K inacry-
ostat with superconducting solenoid, with the magnetic
field strengths varied from 0 to 11 T in the Faraday
geometry. The optical excitation of the electron system
was effected by radiation of a tunable titanium-sap-
phire laser at a photon energy exceeding the GaAs
band gap width (Ey) and an excitation power density of
0.1-1 W/cm?. Experiments employed an original dou-
ble-fiber technique free of significant disadvantages
inherent in the standard setups with optical windows,
such as contamination of the optical tract and detuning
of the optical system by a magnetic field sweep. The
new technique ensured long-term stability of the signal
of Raman scattering measured in the presence of amag-
netic field. The first optic fiber was used to excite the
electron system, and the second fiber detected the
Raman scattering signal (Fig. 1a). The detecting optic
fiber served as an effective in situ premonochromator,
filtering off a large fraction of the laser radiation
reflected from the sample surface and al of the signal
of the intrinsic inelastic scattering in the exciting fiber.
The quasimomentum transfer to 2DES in the course of
the Raman scattering was determined by the arrange-
ment of fibers relative to the sample surface, the maxi-
mum momentum transfer reaching 1.2 x 10° cm,

In order to distinguish between the resonances
related to CDEs and SDEs, the light scattering spectra
were measured for both parallel and perpendicular con-
figurations of the linear polarization vectors of the
exciting and scattered photons. In the parallel configu-
ration, the incident and scattered photons had the same
polarization vectors and, hence, the spectrum displayed
the lines due to excitations without spin rotation. In the
perpendicular configuration, the polarization vectors of
the incident and scattered photons were perpendicular
and, hence, the spectrum contained the lines of excita-
tions with spin rotation [15]. The polarization was ana-
lyzed by means of linear polarizers placed in liquid
helium between the sample and fiber edges. The Raman
signal passed through a U-1000 double monochromator
and was detected by a CCD camera. The spectral reso-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

929

[ution of the measuring system was 0.03 meV. Simulta-
neous measurement of the Raman and luminescence
spectra allowed the electron density to be monitored
under quasi-continuous photoexcitation conditions
[16].

3. INTERSUBBAND BERNSTEIN MODES

Figure 1b presents a typical Raman spectrum scat-
tering in a zero magnetic field for a QW with an elec-
tron density of n, = 6.8 x 10'* cm, measured for q =
0.4 x 10° cm™ and E, = 1.587 eV. The spectrum con-
sists of two narrow lines denoted by SDE and CDE,
peaked at the energies of 25.7 and 30.7 meV, and a
broad band (denoted SPE) situated in between the
former two. The CDE and SDE lines are observed only
in the parallel and perpendicular polarization configu-
rations of the exciting and scattered photons, respec-
tively. Thus, the CDE line corresponds to the funda-
mental excitation of the charge density, while the SDE
line corresponds to that of the spin density. The broad
SPE band isrelated to the continuum of single-particle
excitations [4]. This band is present in the spectra
obtained in both parallel and perpendicular polarization
configurations (single-particle excitations can either
involve or not the spin rotation). In the long-wave limit,
the SPE band shifts away from the SDE peak to higher
energies by a value equal to the intersubband exciton
energy, while the CDE peak binding energy increases
by an amount equal to the depolarization shift.

In amagnetic field perpendicular to the QW plane,
the SPE band exhibits splitting into individual compo-
nents. These spectra are presented in Fig. 2, where the
SPE band components are denoted by I1SBM,4,
ISBM_;, ISBM_,, ISBM_;, and L,. As the magnetic
field strength is increased, the ISBM,,, (ISBM_,) com-
ponents shift upward (downward) relative to the SPE
band maximum. The energy resonance of the ISBM,;
(ISBM_;) and CDE (SDE) lines is manifested by the
interaction (anticrossing) of levels (Fig. 2). In astrong
magnetic field, the lines of the fundamental intersub-
band excitations (SDE and CDE) and the intermediate
line L, become dominating in the Raman spectrum.

Using the experimental spectra, we determined
dependences of the line energies on the applied mag-
netic field strength (Fig. 3). As can be seen, the CDE
and SDE energies are independent of the magnetic field
because these excitations are related to the intersub-
band electron transitions between the Landau levels
with the sameindices. With neglect of the nonparabolic
shape of the conduction band of GaAs in the energy
interval of the intersubband level splitting, the energies
of al such transitions are equal and independent of the
magnetic field strength. On the contrary, the energies of
ISBM,,, lines form the negative and positive “fans’ of
the Landau levels, originating from the energy of inter-
subband quantization. The mass determined from the
slopes of these Landau levels is 0.071my,, where my is
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Fig. 2. Raman spectra of a 250-A-wide QW with an elec-
tron density of 6.8 x 101! cm™, measured for q = 0.4 x
10°cm ™ and E, = 1.587 eV in arange of magnetic fields

from 0.7 to 2.4 T with an 0.1-T step, in comparison to the
spectrum measured in a zero magnetic field.

the free electron mass. Thisestimate virtually coincides
with the effective electron mass for GaAs (m* =
0.067m). Thus, we may conclude that the ISBM,; and
ISBM_; lines are related to the intersubband Bernstein
modes (i.e., the intersubband electron transitions
between the Landau levels with different numbers).
The experimental energies of the intersubband Bern-
stein modes for g — 0 are well described by therela-
tion

Eg:n = [RQypENhw], nZ0, (@)
where Q4 and w, = eB/m*c are the electron intersub-
band and cyclotron frequencies, respectively. Formula
(2) for 2DES is an analog of the Kohn theorem for the
intersubband excitations, according to which the ener-
gies of the intersubband Bernstein modes for zero
guasimomentum transfer are independent of the elec-
tron—electron interaction [1]. A remarkable fact is that
expression (1) contains no terms reflecting the features
(shape, height, and width) of a potential bounding the
2DES, the intersubband energy #Q,, being the only
guantity characterizing the transverse motion of elec-
trons.
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Fig. 3. The energies of intersubband magnetic excitationsin a

250-A-wide QW with an electron density of 6.8 x 10 cm™.
Pointsrepresent the experimental data; dashed curves show the
results of caculations. For the sake of clarity, only the theoret-
ical curvesfor CDEs are shown above the Qg level and only

the curves for SDEs are depicted below this level. The SPE
continuum isindicated by alarge open circle.

4. INTERACTION OF INTERSUBBAND
BERNSTEIN MODES WITH FUNDAMENTAL
CDE AND SDE MODES

Equation (1) describes the experimental results cor-
responding to small quasimomentum transfer (q —
0). However, as the quasimomentum increases, the
ISBM,, (ISBM_,) and CDE (SDE) mode energies devi-
ate from linear relations in the region of mode reso-
nances and formula (1) becomes inapplicable to
description of the ISBM energies (Fig. 4). This situa-
tion is analogous to that with the intersubband excita-
tions: while the energies of intersubband excitations
and intersubband Bernstein modes for g = 0 are deter-
mined only by the effective mass of free electrons
(Kohn theorem and the intersubband analog), the dis-
persion relations are determined by the many-body
Coulomb interactions. Therefore, in order to describe
the ISBMs in the case of nonzero quasimomenta, it is
necessary to modify EqQ. (1) so as to take into account
the interparticle Coulomb interactions.

Theoretical calculations of the intersubband excita-
tions with an allowance for the el ectron—electron inter-
action were performed within the framework of alocal
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persion of the energy gaps A; and A,.

density approximation (TDLDA model) [3, 7, 17].
According to this approximation, the energies of col-
lective excitations correspond to the poles of a total
polarization function (below, the indicesrefer to excita-
tions of the charge (CD) and spin (SD) densities). For a
perpendicular magnetic field, it is possible to neglect
theinteractions between intra- and intersubband excita-
tions [18]. In this case, the energies of collective inter-
subband excitations correspond to the poles of the
intersubband part of the total polarization function

) = Xaw
1-vi(@)x (g, w)

where x29(q, w) is the intersubband polarization function
of the 2DESin the magnetic field without interaction [ 18]:

X (a, w )

00

hf[l Z Dz nFl‘]N+S, N(Q)|

N

x(q, w) =

Q10 + S(*)c
(0+i8)% = (Qqo+ Sw;)’

X

©)
Q10 — S(")c O

L]
(0+i8)"—(Qq0—Sw,)* 0

+ z nE+S|JN+s. N(Q)l2
s=1
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v [, N<N,
Ne = [ ~
[0, N>N,

and N = Tdi/m* w, — 1 istheindex of the highest occu-
pied Landau level. The square of the matrix element is
expressed as

N;—N,

e

« oxp| e

where N, = max(N, N), N, = min(N, N), Ly (x) are the

associated Laguerre polynomials, and Iz = JAc/eB is
the magnetic length. The parameter v, is determined by
the depolarization shift and the exchange correlation
energy {:

[t

DQD}’

Yeo(Q) = V(0)/e(w) —Bcp,
Yso(d) = —Bsp-
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The matrix element of the Coulomb interaction enter-
ing into an expression for the depolarization shift is

V(q) = 2ne

Idzquo(Zl)qJ1(Z1)
X eXp(—Q|21 - )Wo(2)W1(2),

(4)

while the dynamic screening of the Coulomb interac-
tion by the optical LO phonons is included in the fre-
guency-dependent dielectric function

2 2
(A) - wL O
2 )

- O

e(w) =

where wy o and wyq are the corresponding phonon fre-
guencies and €,, = 12.86 is the permittivity of GaAs.

The exchange correlation energy in the local density
approximation is

- Idzwé(z)ui(z)wi(z),

aV;

6
0@ - 2 (©)

Pco = ”sUJg(Z)y Psp =0

where V; is the exchange correlation potential and p; is
either the 3D electron density pcp = p; + p, or the spin
density psp = p; —p, (p; and p, arethe densities of the
spin subsystems of the 2DES). Assuming that the tem-
perature is much higher than the Zeeman energy and

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

KULIK et al.

both spin subsystems are equally occupied, and select-
ing V; asin[19], we arrive at the following expressions:

0.6213r
Uco(2) = 17062315 + T HRY ™™,
Ugp(2) = —1.706a3r2 7
136I’SD
x HL—0.036r , + 1o Ry,

where

n(2) = nWo(2),

ag =100 A is the Bohr electron radius for GaAs, and
Ry©®#s = 571 meV. The first like terms in the expres-
sions for U;(2) reflect the exchange interaction, while
the other terms describe the electron correlations.

The electron wave functionsin the fundamenta and
excited quantum confinement subbands, (2 and
W4(2), which are necessary for determining the depolar-
ization shift and the exchange correlation energy, were
obtained as self-consistent solutions to the system of
one-dimensional Kohn-Sham and Poisson equations
[20]. Restricting the calculation to terms on the order
of (glg)® (that is, ignoring the electron transitions with
|An| > 3), we obtain the curves plotted in Fig. 3. The
experimental differences of the ISBM,,, (ISBM_,,) and
CDE (SDE) energies in the region of mode resonances
arein areasonabl e agreement with the results of numer-
ical calculations (Fig. 3). Thus, we may conclude that
the observed anticrossing of 1SBM,, (ISBM_,) and
CDE (SDE) modes are manifestations of the many-
body Coulomb interaction, which mixes the collective
excitations of the 2DES related to the intersubband
electron transitions with and without a change of the
Landau level index.

By varying the excitation quasimomentum and the
el ectron density, we studied dependence of the energies
of hybrid modes on the magnitude of the Coulomb
interaction (both Coulomb terms, representing the
depolarization shift and the exchange correlation
energy, are monotonic functions of g and ny) [6]. Fig-
ure 4 shows plots of the Raman shift of the hybrid
modes versus magnetic field strength in the region of
mode resonances for afixed electron density n, = 6.8 x
10 cm and two values of the quasimomentum. As
can be seen, the energy gap A, (4,) between the hybrid
modes increases when g doubles from 0.4 x 10° to
0.8 x 10° cm?; the A, (A,) energy isalinear function of
g in the range of experimentally accessible quasimo-
menta (glg < 1—seeFig. 4).

Figure 5 shows dependence of the A; value on the
electron density for a fixed quasimomentum g = 1.1 x
10° cm™. In the region of small ng (<2 x 10 cm?), the
gap A, is described by alinear function of the electron

r(2) = (4main(2)/3)™",
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density intersecting the abscissa axis at a certain finite

critical value ng = 4 x 10 cm?, rather than at n, — 0.

The critical electron density is determined by equality
of the depolarization shift and the exchange correlation
energy (these quantities depend differently on the elec-
tron density [6]). At an electron density below the crit-
ica value, the energy of the CDE mode is lower than
the intersubband quantization energy #Q,,; that is, the
energy balance between ISBM,; and CDE modes
becomesimpossible. It should be also noted that the A;
value exhibits saturation at ng> 2 x 10" cm, which is
related to amixing of the ISBM,; mode with the CDE—
LO mode. This effect is considered in detail in the fol-
lowing section. If the interaction with the LO phonons
is ignored, dependence of the A, value on the electron
density must be close to linear.

Thus, we have studied the interaction between inter-
subband Bernstein modes, involving a change in the
Landau level index by unity, and the fundamental CDESs
and SDEs, but did not consider the behavior of ISBMs
with large indices. The energies of such modes are
described by Eq. (1), and their interaction with the fun-
damenta modesin thelong-wavelimitissmal (seeFig. 3).
For example, the interaction of CDE and ISBM,,
modes becomes detectable only at q = 1.2 x 10° cm™,
which is close to the upper limit of the experimentally
accessible interval of quasimomenta. The calculation
shows that the energy of the interaction between CDE
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(SDE) and ISBM_, (ISBM_,) is proportional to (qglg)"
(forglg < 1).

5. INTERACTION OF FUNDAMENTAL
AND BERNSTEIN MODES WITH LO PHONONS

The effect of LO phonons on the spectrum of inter-
subband el ectron excitations was studied using a series
of samples in which the intersubband quantization
energy 7.Q,, was close to the energy of LO phononsin
GaAs. Figure 6 shows the Raman spectra for a single
QW with ng= 6.8 x 10 cm™, measured for q = 1.1 x
10° et intwo spectrd intervals: below (a) and above (b)
the bulk LO phonon energy in GaAs. The QW width
and the electron density were selected so as to ensure
that the CDE energy almost coincided with LO phonon
energy in GaAs. In this case, the macroscopic polariza-
tion field of CDE, oscillating at the LO phonon fre-
guency, mixes the CDE mode with the LO phonon
mode and the spectrum displays two CDE-LO hybrid
modes denoted by I=and I*.

Application of a perpendicular magnetic field leads
to the appearance of ISBMs in the Raman spectrum.
Figure 7b shows plots of the Raman shifts for the
ISBM., two hybrid CDE-L O, and the bulk L O phonon
(reference) modes versus magnetic field strength for
GaAs. For the sake of clarity, the other spectral features
(ISBM modes with n # +1 and SDE modes) are omit-
ted. In the region of energy resonances of the ISBM,,
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show the reference energy level corresponding to a bulk LO phonon.

mode with the I~ and I* modes, the spectrum displays
anticrossing, which is evidence of the interaction
between the 1ISBM,; mode with each of the hybrid
CDE-LO modes. Thus, we may conclude that the
2DES under consideration features the formation of tri-
ple ISBM—CDE-LO modes. However, it is possible to
show that, in the region of accessible quasimomenta
(glg < 1), the ISBM,; mode interacts only with the
CDE component of the CDE-LO hybrid mode, rather
than with the LO phonons.

We have studied the energy of interaction between
the ISBM,; mode and the I~ and I* modes by varying
the degree of the CDE mode mixing with the LO
phonon mode (Fig. 7). Thiswas achieved by decreasing
the electron density in the QW (and, hence, the inter-
subband energy %Q,;,) and by driving the CDE mode
out of the resonance with the LO phonon. Figure 7
shows plots of the Raman shift versus the magnetic
field strength for two samples with the same QW
widths but different electron densities (6.8 x 10'* cm™
versus 3.8 x 10 cm). As can be seen from these data,

the gap A; between 1SBM,; and LO-like modes (1)

decreases with the electron density (i.e., with the LO-
like mode energy approaching the bulk LO phonon
energy in GaAs). After the further decrease in the
charge carrier density (from 3.8 x 10" to 2.7 x 10! cm?),

the AI value becomes zero. At the same time, the
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energy gap A, between the ISBM,,; and CDE-like
mode (1) remains almost unchanged. This behavior of

A} and A; indicates that the ISBM,; mode interacts
only with the CDE component of the CDE-L O hybrid
mode, while interaction with the LO phonon compo-
nent in the accessible interval of quasimomentais neg-
ligibly small.

The experimental spectra were compared to the
results of numerical calculations performed within the
framework of the local density approximation (see
above) in the long-wave limit (x2°(q,w) ~ (glg)?) with
neglect of the transitions with |n| > 1. As can be seen
from Fig. 7, the theoretical spectrum is in quite good
agreement with experiment in the entire range of mag-
netic fields.

As was demonstrated in Section 4, the energy gap
between the CDE-ISBM,; hybrid modes is a linear
function of the quasimomentum for gl < 1. We have

aso measured the dispersion curves for A; and A;

(Fig. 8). The plots of A7 (q) and A; (q) are closeto lin-
ear, which is consistent with the theoretical calculation
using the local density approximation. An important
result isthat both energy gaps, A; and A; , vanish when
g — 0, which implies that the ISBM energy at q=0
is independent of the degree of the electron—electron
interaction screening by LO phonons. This experimen-
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tal observation indicates that the basic relation (1)
remains valid in polar semiconductors.

6. ANTIPHASE INTERSUBBAND MODES

As was shown above, the Raman spectra exhibit,
besides resonances related to the ISBM modes and fun-
damental intersubband excitations, an additional reso-
nance manifested by the L, line (see Fig. 3). When
B — 0, the L, line merges with the SPE band reflect-
ing continuum of the single-particle excitations. Based
on this experimental observation, Brozak et al. [10]
suggested that the L, resonance is also related to the
single-particle excitations. Another argument in favor
of the single-particle nature of thisline was that no col-
lective modes occurring between the fundamental
intersubband excitations (CDE and SDE) can take
place according to the local density approximation.

However, we presented arguments against assign-
ment of the L, line to the single-particle excitations
[12]. Strictly speaking, no single-particle excitations
can exist in atranglation-invariant 2DES occurring in a
perpendicular magnetic field: an excited electron and a
hole under the Fermi level always form a bound state
(magnetoexciton) [21, 22]. For large quasimomenta,
the binding energies of magnetoexcitons are small and
they can be destroyed by any small perturbation. Mag-
netoexcitons with large quasimomenta can be consid-
ered as analogous to single-particle excitations. How-
ever, in order to detect such excitations at small quasi-
momenta such as those accessible in the standard
experiments on the Raman scattering (glg < 1), it is
required that the excitations be strongly scattered from
impurities and roughnesses of the 2DES heterobound-
aries. Thisimplies that the Raman scattering cross sec-
tion for the “single-particle” excitations must depend
on the sample quality. However, no such dependence
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was observed [12]. The absence of collective modes
corresponding to the L, resonance in the local density
approximation can be explained by the fact that this
model only roughly takes into account the exchange
interaction (the exchange energy is assumed to depend
only on the total local electron density in the QW). In
order to elucidate the nature of the L, peak, we studied
the Raman spectra of a series of high-quality hetero-
structures with single QWSs. The results of these mea-
surements showed that the L, resonanceisrelated to the
collective intersubband excitations in the 2DES, repre-
senting the antiphase or optical branches of CDEs and
SDEs[14].

Figure 9 shows the Raman spectra of three QWs
possessing different electron configurations. As can be
seen, all spectra display three dominating lines: L, and
two others corresponding to the fundamental intersub-
band (SDE and CDE) modes. In weak magnetic fields,
the L, mode energy is close to the intersubband energy
hQ,,; asthe magnetic field strength grows, the L, mode
energy drops. Under the mode resonance conditions,
the L, and SDE lines exhibit repulsion (Fig. 10). This
behavior of lines is indicative of the interaction
between the SDE mode and the excitation related to the
L, resonance. Since modes of different symmetries
cannot interact, we may concludethat the L, lineisdue
to a collective 2DES excitation possessing the same
guasimomentum as that of SDE. Therefore, the L, line
cannot be related to a process in which the quasimo-
mentum is not conserved.

Interpretation of the L, line in terms of the single-
particle excitations is also inconsistent with the depen-
dence of the mode energy on the magnetic field
strength. As can be seen from Fig. 10, the L, mode
energy significantly decreases when the field strength
grows. However, it is known that the intersubband
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energy and, hence, the single-particle excitation energy
areindependent of thefield. Nor can werelate a shift of
the L, mode energy in the magnetic field to the cyclo-
tron energy, since the tangent slope a of the relation
between the L, mode energy and the magnetic field
strength depends on the electron density of the 2DES
(Fig. 11): the value of a decreases by more than half
when the electron density grows from 1.37 x 10 to
6.8 x 101 cm2. Nevertheless, there exists an invariant
quantity related to the L, line shift that is insengtive to
parameters of the sample studied. Such a quarntity, invari-
ant with respect to the eectron density, isthe critical eec-
tron occupancy factor v, for which the L, mode energy
becomes equa to the SDE mode energy (Fig. 11).
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A theoretical description of the collective excitation
modes corresponding to the L, line was developed
within the framework of the Hartree—Fock approxima-
tion in which the exchangeinteraction depends not only
on the total electron density in the QW (asin the local
density approximation), but on the distribution of elec-
trons over the Landau levels as well [23]. Calculations
performed with neglect of the electron transitions
changing the Landau level index predict that there are
2N collective intersubband modes (N is theindex of the
highest occupied Landau level) combined into pairs,
each pair including excitations of the charge and spin
densities. The energy of apair of modesisindependent
of the magnetic field strength. These are the equiphase
or acoustic modes corresponding to the fundamental
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inset illustrates repulsion between the Ly and SDE lines.

CDEsand SDEs. The energies of al other (antiphase or
optical) modes are close to the intersubband energy at
B — 0 and decrease with increasing magnetic field
strength. The acoustic CDE and SDE modes are split by
avalue equal to the depolarization shift, while the ener-
giesof optical excitations coincide in each pair and dif-
fer but little between pairs [23].

The above excitations are, in a certain sense, analo-
gousto the phononsin crystals. Inthe casewhen acrys-
tal unit cell contains a single atom, the phonon spec-
trum of the crystal represents an acoustic branch. Each
extra atom introduced into the cell adds an optica
phonon branch. In our case, such aunit cell isthe mag-
netic flux quantum (see the bottom diagram in Fig. 12).
An analog of the acoustic phonon branch is offered by
thefundamental CDEs and SDEs, the energies of which
are determined by the total electron density of the
2DES and are independent of the magnetic field
strength. All the other antiphase modes are anal ogs of
the optical branches. The number of such modes corre-
sponding to the excitation of each particular type (CDE
and SDE) is N—1. Naturaly, the above anaogy
between phonons and the collective magnetic excita-
tions in the 2DES is rather conditional. For example,
the electron occupancy factor is a continuous function
of the magnetic field strength (the number of electrons
per magnetic flux quantum varies continuously),
whereas the number of atoms changes discretely.
Accordingly, the energies of optical modes also contin-
uously vary with the electron occupancy factor.

Obvioudly, optical excitations cannot be observed
for electron occupancy factorsv < 2, that is, when only
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one (the lowest) Landau level is occupied (one electron
with each spin per magnetic flux quantum). Indeed,
only the acoustic CDE and SDE modes are present in
the Raman spectra for v < 2 (Fig. 10). An assumption
that the L, resonance must probably have a multicom-
ponent structure for occupancy factors v > 4, when
more than one optical branch is present in the spectra of
magnetic excitations, is also confirmed by experiment.
For till greater occupancies (v > 4), the L-resonance

a, meV/T Ver
05 T T T T T T 4
B . —m
0.4} ~ IR
S m
0.3F AN

—‘— —' —Cr —‘- —\—‘ —2

0.2+ -
1 1 1 1 1 1 1

1 2 3 4 5 7

ng, 10" cm™2

Fig. 11. Plots of the tangent slope a of the relation between
the Lo mode energy and the magnetic field strength and the

critical electron occupancy factor v, for QWs with various
electron densities ng, Dash-and-dot lines are drawn for con-
venience.
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density of 6.8 x 101! cm2. The bottom diagram illustrates
the appearance of an additiona degree of freedom in the
case of antiphase excitations: for 2 < v < 4, two different
CDEs (SDEs) can be constructed for the two electron tran-
sitions. For v < 2, there is a single electron transition and
one excitation of each type.

half-width becomes large, which indicates that the L,
line is multicomponent. As the occupancy factor
decreases, the resonance narrows and (for 2 <v < 4) the
L, line half-width becomes equal to that of the SDE
line. On the other hand, the half-widths of the acoustic
intersubband SDE and CDE modes are independent of
the magnetic field strength (Fig. 10).

In order to demonstrate that the L , resonance corre-
sponds to the excitation of both charge and spin densi-
ties, we measured the Raman spectra using two differ-
ent polarization configurations. Figure 12 shows the
degree of polarization y = (I_ — 1)/(I_ + 1,) of the
observed lines (I_and |, are the Raman signal intensi-
tiesin the parallel and perpendicular polarization con-
figurations). As can be seen, the fundamental CDE and
SDE modes are observed only in the co- and cross-
polarized configurations of the incident and scattered
photons, respectively, while the L, resonance is
observed with equal intensity in both configurations.
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Thus, the L, resonance consists of two components,
CDE and SDE, in agreement with the theory [23].

It should be noted that the above antiphase excita-
tionsexist not only in the case of fundamental intersub-
band CDEs and SDEs, but are present in all other inter-
subband excitations as well. Recently, the antiphase
ISBMs were theoreticaly studied in [24]. In experi-
ment, it is rather difficult to separate the Raman signal
from the equiphase and antiphase Bernstein modes,
since the energies of the former and latter signals in
large magnetic fields almost coincide [24].

7. CONCLUSION

We have considered the spectrum of intersubband
collective excitations in a perpendicular magnetic field.
The intersubband excitations of a quasi-two-dimen-
sional electron system in a magnetic field were studied
by both experimental and theoretical methods. It was
demonstrated that, at a quasimomentum close to zero,
the energies of the intersubband Bernstein modes are
well described by the basic equation (1). At a nonzero
guasimomentum, the intersubband Bernstein modes
interact with the fundamental charge and spin density
excitations, with the interaction energy depending on
the quasimomentum and the el ectron density. Theinter-
subband Bernstein modes do not interact with the LO
phonons at small quasimomenta (glg << 1). However, in
the case when the LO phonon mode is mixed with the
fundamental charge density excitation (CDE), theinter-
subband Bernstein modes interact with the CDE-LO
hybrid modes. New branches of charge and spin density
excitations were considered, which are related to the
antiphase oscillations of the electron subsystems on
different Landau levels.
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Abstract—Under the assumption of a strong spin—orbital interaction, two forms of the order parameter are
obtained for two superconducting phases of the ferromagnetic UGe, that are allowed by the crystal symmetry.
For each of the two phases, symmetry nodes in the gap of Fermi excitations are found, and the consequences
of the existence of nodes, which can be used for experimental phase identification, are discussed. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The UGe, band ferromagnet becomes a supercon-
ductor intheinterval of pressures11 < P, < 16 kbar and
temperatures T, < 0.8 K [1, 2]. Thistemperatureis small
compared with the Curie temperature T at the same
pressure. The separation of Fermi surfacesfor electrons
with opposite spin projections, which is known from
experiments, is 2 or 3 orders of magnitude greater than
the superconducting gap. Such awide separation makes
the singlet Cooper pairing impossible; however, it does
not inhibit the formation of Cooper pairs with parallel
spins, i.e., pairs in the triplet state. Under the triplet
Cooper pairing, the order parameter isacomplex vector
function d(k). In magnets, the symmetry with respect to
timereversal isbroken. Asaresult, the superconducting
phases of aferromagnetic metal are, generally, nonuni-
tary; i.e., d and d* arenot proportional to each other, or,
in other words, d x d* £ 0. If the symmetry group of the
normal phase is known, one can classify the supercon-
ducting phasesthat can arise from agiven normal phase
[3]. An attempt at such a classification for UGe, was
madein [4]. In particular, it was shown that the symme-
try of the normal phase is described by the D,(C,)
group, which isisomorphic to D,. Four possible forms
of the order parameter were obtained, which are trans-
formed according to the four representations of D,: A,
B,, B,, and Bs. In [5], it was shown that, if the compo-
sition rules for antiunitary symmetry elements are
taken into account, then the basi s functions correspond-
ing to the representations A and B, are equivalent to
each other; i.e., they are transformed to the same corep-
resentation of the magnetic group. Two other functions
are also equivalent to each other. Thus, in this case, we
have only two different symmetry types of the super-
conducting order parameter. The necessity to use
corepresentations for the classification of supercon-

ducting ferromagnetic phases was first noted in [6] in
relation to the investigation of ZrzZn,.

In order to experimentally identify the type of the
order parameter that isrealized in UGe,, it isimportant
toinvestigate the existence and arrangement of nodesin
the gap of the Fermi excitation spectrum for each of the
possible forms of the order parameter. This investiga:
tion is the purpose of the present paper. The symmetry
related part of the discussion could aso be applied to
the URhGe superconducting ferromagnet [7].

2. BASIS FUNCTIONS

First, we obtain the general form of thefunctions¥,
and W, which are transformed by two different corep-
resentations A and B of the magnetic group D,(C,). This
group consists of four operators. Two of them—the
identity (E) and the rotation by 11 about the axis z

(C5)—are unitary. The other two—RC; and RC,—
include the operation R of time reversal and, therefore,
are antiunitary. The corepresentations are formed by
the matrices G; and G, corresponding to the unitary
operators, and F, and F,,, which correspond to the anti-
unitary operators. For one-dimensional corepresenta
tions, they are complex numbers. According to the gen-
eral rules for multiplying matrices that form corepre-
sentations (see [8]), they satisfy the following

equations: G =Gy, F,- F} =Gy, F, - F} =G, and F,
- F} = G,. These equations have two solutions, which

generate two different corepresentations. One of them
(say, A) hastheform

G =1 G,=1; F,=€"% F, =€ (1
The other ong, B, is
G =1 G,=-1 F,=¢€% F,=-"° (2

1063-7761/02/9505-0940$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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where @isarea scalar. Thefactor 2 in the exponentsis
introduced to make the form of the basisfunctions more
convenient.

Now, we write ¥, in the form
W = xf (k) +yfy(k)+zf,(k), ©)

wherex, y, and z are the unit vectors along the second-
order axes b, c, and a, respectively. The axis a is the
direction of easy magnetization in the ferromagnetic
phase. All functions f, , (k) are odd; i.e., f(—k) =

—f(K), and so on. When the operators E, C5, RC5, and

RC) act on W,, this function must be multiplied by

numbers defined by Egs. (1). Thisyields conditions for
the functions fy(k), f,(k), and f(k). Since the operators
under considerations are linear (antilinear), the condi-
tions are imposed on each functionf,, f,, and f, individ-
ually. For example, for f,(k), we have

fx(_kx’ _ky1 kz) = _fX(kX’ kyi kz);
£ (Ky =Ky —K;) = € (K Ky ko)
£ (K kyy —k;) = €®F (Ky Ky, k).

Conditions for f (k) are obtained from the above ones
by replacing all subscripts x with y and conversely. For
f(k), we have

1Ez(_kxi _ky’ kz) = fZ(kX’ kyi kz);
£ (ky =Ky —K,) = —€7F(Ky Ky k)
£% (ko kyy —k;) = —€7F (ks Ky, Ky)-
The function
W, = € M{RK (B + ik a0
+Yky(ay +ikkjay) + ZK,(ag; + ik,k,az) }

(4)

satisfies al the conditions above. Here, @, a4, ... are

real functionsof k%, k;, and k; . Thefunction P, deter-
mined from Eq. (4) differsfrom that proposed in [4] by

the factor & ™. Setting @, = 172 and using the aforemen-

tioned result in [5], we can redefine arbitrary functions so
asto reduce Eq. (4) totheform Wy obtainedin[4].

For the corepresentation B, a similar reasoning
yields the conditions

fx(_kx1 _kyi kz) = _fx(kx1 ky! kz)i

£ (Ky =Ky —K;) = € (K Ky, Ky),

yl
£ (ko Ky —k;) = €1, (Ky, Ky, k)
for f,(k) and the conditions
fz(_kxv _kyv kz) = fz(kxv kyv kz)!
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F¥ (K =Ky —k;) = —67F (K, Ky, Ky),

£ (Ko Ky k) = =€ 7F (K Ky ko)
for f (k). The general form of the basisfunctionfor Bis

Wo = e P Rky(bys +ikk,byo)

)
+ YK, (ibg3 + KK by) + ZK, (gy + iKeK D30) } .

Under an appropriate choice of the phase factor g% (it
goesto the function Wy or Wy (see[4]).

3. NODES

Under thetriplet Cooper pairing, the gap in the spec-
trum of Fermi excitationsis determined (see[9]) by the
eigenvalues of the matrix

(A ap
= d(k) [d*(k)dup +i[d(k) x d* (K)]O op.
For nonunitary phases, this matrix has two different
eigenvalues. Each of them equals the square of the gap
magnitude for one of the spin orientations. Separating

the real and imaginary parts of the vector d(k) by set-
ting d(k) = dy(k) + idy(k), we obtain, for the eigenval-

ues (AAL )ogs

(6)

Ay 5 = di(k) +da(k) £ 2d(k) x d* (k).

The gap vanishes under the following conditions:

(1) dy(k) = 0 and dy(k) = O; then, the gap vanishes
for both spin orientations.

(2) |dy(k)| = |do(k)| and |dy(k)] U |d(k)[; then, only
one of the gaps vanishes.

A direct verification shows that if no specia
assumptions are made about the unknown functions
41, &40, ---, i3, Dyg, ..., Which appear in Egs. (4) and
(5), then, for both types of the order parameter ¥, and
¥, there are no nodes in the gap. This assertion is
based solely on the properties of the order parameter
symmetry. The fact that the magnetic polarization in
UGe, and in URhGe is strong was not used.

It is known that the separation of Fermi surfaces
with different spin projections suppresses the pairing
amplitude for quasiparticles with opposite spins. For
singlet pairing, the superconducting state is aready

broken at the separation 21 > /2 A, where A\yisthe gap
magnitude at zero temperature in the absence of polar-
ization [10]; moreover, the state changes very rapidly as
the polarization increases.

The formal cause of the pairing suppression is the
fact that, under the polarization, the singularity of the
scattering amplitude of quasiparticles with opposite
momenta changes. Without the polarization, the scat-
tering amplitude has the singularity In(wp/4g) in the
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second order in the interaction. When the Fermi sur-
faces for two spin projections are separated by 2I, the
singularity becomes In(wp/l). At 1 > Ay, this contribu-
tion can be included in the regular part of the scattering
amplitude. The transition from the state A,, # 0 to the
state A,, = 0 must occur at | ~ Ay ~ T, Taking into
account that the condition | > T is certainly true for
UGe, and URhGe, we will assumethat A,, =0. In vec-
tor notation, thisis equivalent to the condition d,(k) = O.
Under this condition, we obtain, for the two types of the
order parameter,

W, = € MRk (A +ikKk,a50)

+ YK (axn +ikkjay)},

(7)

W, = € ®{RK, (b + ikk,bro)
+ YK, (iby3 + Kekyby) } .

(8)

The order parameter W,, as well as the gap on both
Fermi surfaces, vanishes at the pointsk, = 0 and k, = 0.
These are symmetry nodes. To verify thisfact, consider

the function WA(0, 0, k,) and apply the operator C; to
it. By Egs. (1), we have C5W4(0, 0, k,) = WA(0, 0, k).
On the other hand, the definition of C; yields

CoWA(0,0,k,) = —xf,(0,0,k,)
-yf,(0,0,k,) = —FA(0,0,k,).
Therefore, W,(0, 0, k) = 0.

Similarly, Eg. (8) shows that W vanishes at the line
k, = 0. These are a'so symmetry nodes, since

9)

Co¥s(Ky Ky, 0) = —xf,(—k,, —k,, 0)
~y (K Ky, 0) = Wg(Ky k. 0).
On the other hand, it follows from Egs. (2) that
C3 Wa(ko Ky, 0) = —Wp(k, ky, 0);
therefore, Wy(k,, K, 0) = 0.

(10)

4. DISCUSSION OF THE RESULTS

We see that two feasible superconducting phases of
UGe, differ in the type and arrangement of nodesin the
gap of the excitation spectrum. For the A-type phase
(see formula (7)), the nodes are isolated and are at the
intersection points of the Fermi surfaces with the direc-
tion of the easy magnetization axis. For the B-type
phase (8), they form lines on the equators of the Fermi
surfaces that are perpendicular to this axis. The exist-
ence of nodes leads to a power law for thermodynamic
quantities as functions of the temperature at T < T,
where the exponent depends on the type of nodes. The
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analysis of power laws for thermodynamic quantitiesis
a conventional method for the identification of uncon-
ventional superconducting phases (see, eg., [11]).
Here, we discuss only the specific features of the low-
temperature behavior caused by the magnetic polariza-
tion of UGe,. The width of the gap generally depends
on the spin projection. For example, it may be that
A, <A, if the separation of Fermi surfaces is large.
Then, there exists an interval of temperaturesA, < T <
T, for which the lesser gap has almost no effect on the
temperature dependences of thermodynamic quantities
and the contribution of Fermi particles with the spin
“down” direction to these quantities is the same as for
the normal phase. Another specific feature of supercon-
ducting ferromagnetsis the existence of the magnetiza-
tion field Hy, = 41iM. For UGe,, we have H,, ~ 1 kOe.
Thisissignificantly greater than thefield H,; estimated
on the basis of the temperature; i.e., the superconduct-
ing UGe, isin amixed state. The combination of vorti-
ceswith theline of nodesin the gap oriented perpendic-
ularly to the vortex axes leads, according to the predic-
tion in [12], to the appearance of a finite state density
on the Fermi level, which, in turn, resultsin alinear (in
temperature) contribution to the heat capacity c,; more-

over, ¢, ~ ¢,./Hu/H.,. Because of the sguare root

dependence on the field, this contribution to the heat
capacity is greater than the contribution of electrons
localized on vortices if the field is small compared to
H,. The contribution to the heat capacity discussed
here is expected to appear in the B-type phase and
should be absent in the A-type phase. Thus, the
expected difference of low-temperature properties of A
and B phases presumably will make it possible to iden-
tify the superconducting phases observed in UGe, and
URNhGe.
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Abstract—Solutions of the equations v, + V3 —tv + X =0and v,, = v3—tVv + X, which describe the nucl eation

of domain walls occurring in the neighborhood of cusps of slowly varying equilibriums, are analyzed. Exam-
ples related to the diffusion in smoothly inhomogeneous media are considered. © 2002 MAIK “ Nauka/| nter-

periodica” .

1. INTRODUCTION
1.1. Partial differential equations (PDES)

2 |+]

L(S Du(S = Z A.,(S)a 39 G(S u)
i+j=1

(S=(s1 %))

describe various phenomenain inhomogeneous media.
Generally, their solutions defy analytical analysis.

Even the simplest first-order equation

ou ou
pas qasz
(p>0, g>0 areconstants)

(1.1)

= G(Su) 12)

for the local parameter of a time-independent plane
medium in agiven velocity field (p, g) [1, pp. 150, 158]
cannot be solved explicitly.

Theinvestigation of solutions of second-order equa-
tions, such as the time-independent part

(1.3)
(p, isaconstant)

of the two-dimensional nonlinear diffusion equation

du, ou_d%u 02u

——-——-—— =G(Su 1.4
is even more complicated. Here, in addition to the ran-
dom walk of particles, their drift with a constant veloc-
ity istaken into account [2, p. 44] (in the absence of the
drift, the time-independent diffusion egquation

Gu_du_ gy

(1.5
Js 1 082

does not contain the first derivatives of u(S)). Another
exampleis provided by the time-dependent one-dimen-
sional diffusion equation

ou d°u

E—E = G(§ u). (1.6)
However, for smooth [3, 4] inhomogeneities
Ai(S = hyeS, G(Su) = f(eSu), e<1, (L7

considered in this paper, the situation is different: effec-
tive methods for the description of solutions to
Eqg. (1.1), (1.7) and equivalent PDEs

L(X, eDYu(X) = f(X,u), X = €S,

are available (see [4—-15] and references therein).

1.2. Often, solutions to Eq. (1.8) have asymptotic
expansions

U = Up(X) + guy(X) + €Uy (X) + ..., (1.9)
in which u = uy(X) is a slowly varying equilibrium of
Eqg. (1.2), (1.7):

f(X,ug) = 0, X = (Xg, Xp). (1.10)
As an example, we cite some initia value problems

solved with the help of such asymptotic expansions.

(2) Let the local medium parameter, which isasolu-
tion to Eq. (1.2), (1.7), be given, at s, = 0, by a dlowly
varying function g(€s,). Then, the dilatations x;, = €s;
and x, = €s, reduce the description of the medium to
solving the problem

ou
sgoa

(1.8)

oury _

qaxg f(Xq, Xp, U),

(1.12)
Ul =0 = 9(Xa).

If, on the interval 0 < x; < K, the solution u = uy(X) to

the limit equation (1.10) to Eq. (1.11) is unique and sat-

isfies the stability condition

f4(X1, X2, Ug(Xq, X5)) <O, (112

1063-7761/02/9505-0944%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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then the solution to theinitial value problem (1.11) has
an asymptotic expansion (1.9) on this interval outside
aninfinitely small (ase — 0) neighborhood of theline
X1 = 0 (see [10]).

(2) Under similar restrictions on the functions u(0,
s,) and G(S, u), the solution to theinitial value problem
for Eq. (1.6), (1.7) is expanded into series (1.9) at an
infinitely small distance from thelinex; =0 (as€ —
0) (see Section 2.3).

(3) If the sink function has form (1.7) and the initial
valueisul, - = g(€9), theinitial value problem for the
diffusion equation (1.4) is reduced to the problem

du ou _2p’u azgg
— tep,z——¢€ + = f(Xq, X, U),
a¢ "0x Bx. 0x . (1.13)

Ulz-o = 9(X)

by the change of variables X = €S. Under the same
assumptions on f(X, u), the solution to this problem at
( > lisrepresented by the asymptotic solution (1.9) to

the equation
U= _
ig = f(xy Xy U).  (L.14)
0X

u
ep QU gD,
plaxl EBXl
The asymptotic expansion of the solution of the ini-
tial value problem (1.13) isasum of theright-hand side
of (1.9) and the series

Mo(C, X) + €My(T, X) + M5, X) + ...

consisting of exponentially small (at { > 1) terms (see
the beginning of Section 4.2).

Note that the solution to (1.13) obviously tends to
the root uy(X) as{ — o and € — 0. Indeed, accord-
ing to (1.12), this is an asymptotically stable equilib-
rium of the limiting ordinary differential equation ODE
(1.13)

u; = f(X u),

which differs from other solutions by exponentialy
small quantities as { — o (see [16, p. 289]). By the
same reason, solutionsto problem (1.11) and to the ini-
tial value problem considered in Section 4 tend to uy(X).

Generally, the fact that solutions to PDEs (1.8) can
often be represented by series (1.9) depends on how
often rootsto Eq. (1.10) satisfy conditions (1.12): since,
for the maority of smooth functions (X, u), f,(X,
Ug(X)) can vanish only onisolated curves of the plane X
[17, 18], about half of all smooth functions f(X, u) sat-
isfy condition (1.12) in domains that contain no such
lines.

We give one more example of a boundary value
problem that shows that, if this condition is satisfied,
then asymptotic expansions (1.9) are characteristic of
boundary value problems as well. Assume that, in a
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closed domain G with a smooth boundary dG,
Eq. (1.10) has three roots, and the minimal ué(X) and

maximal ug(X) of them satisfy condition (1.12). We
also assume that, in the domain G, u(X, €) satisfies the

equation
‘L“g = f(x0 %, U),
0X

ey,
EBXl

which isequivalent to Eq. (1.5), (1.7). Furthermore, we

assume that it satisfies one of the two boundary condi-

tions

(1.15)

Ulge = a(X) or ou

on = B,

(1.16)

dG

where n is the normal to dG. Under certain additional
conditions, solutions to problems (1.15), (1.16) have
two different asymptotic expansions of the form (1.9)
on different sides of the shock curve defined by the
equation

Ug(xlv Xp)
I f(Xq, Xp, U)du = 0.

1
Up(Xy, Xp)

(1.17)

In one of them, the principal termis ué(X) ; andin the
other one, it is uy(X) [11-13].1

1.3. In studies devoted to physical problems (e.g.,
[3-5]), simple states described by series (1.9) are men-
tioned only in passing, and the typical nature of zero
curvesof f,(X, uy(X)) onthe plane X isignored (see[17,
18]) (these curves consist of smooth parts formed by
fold points and joined at cusps). Therefore, the fact that
asymptotic expansions (1.9) become inappropriate at
singular points uy(X) is also ignored.

However, for ODE (1.8), the case of a fold in the
solution to the limit equation (1.10) has been thoroughly
analyzed in [19-23]. It is clear that a Smilar scheme can
be used for the analysis of this type of singularities in
PDEs (an investigation of this sort can be found in Sec-
tion 4). In particular, it is obvious that the behavior of the
corresponding solutionsto PDE (1.8) in the neighborhood
of the fold points of the roots to Eq.(1.10) is aso
described by solutions of the Riccati equation

=&-r? (1.18)

or, when Eq. (1.8) does not include thefirst derivatives,
by the Painlevé equation

_ 2
Mge = T

LA smooth change from one asymptotic expansion to the other
occurs in the neighborhood of curve (1.17), which has a finite
extent in terms of the variables S In terms of these variables, such
asymptotic solutions to Eq. (1.8) (of the type of smooth shock
waves) are interpreted as domain walls [3].
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The case of a cusp, which is specific to PDES, has
not yet been considered. However, this anaysis is
essential for understanding the behavior of asymptotic
solutions (1.9) “beyond” the cusp. Indeed, even if
“before” this point the solution to Eqg. (1.10) was
unique, it isthree-valued “beyond” thispoint, i.e., inthe
domain where the roots of (1.10) overlap (see Sec-
tion 2.2). For example, the assumption that in this case
a domain wall is formed with a front localized in the
vicinity of a curve, which is determined from the con-
dition of equality of areas (1.17), is most often false.
Indeed, an analysis of neighborhoods of root cusps
(1.10) (see Sections 2, 3, and 5) shows that the forma-
tion of such adomainwall ischaracteristic only of solu-
tionsto the PDE (1.8) that do not include the first-order
derivatives of u(X). The main conclusion of this analy-
sis is that the formation of domain walls with fronts
localized in a vanishingly narrow (as € — 0) neigh-
borhood of one of the boundaries of the domain where
the roots of (1.10) overlap istypical for the majority of
PDEs (1.8).

In Section 4 of this study, an example is analyzed
that explains how the terms of (1.8) with second- order
derivatives affect structures formed beyond the cusp
However, agreat part of the reasoning used in that sec-
tion and that employed earlier isidentical, and Section 4
can be omitted on first reading.

2. REFERENCE EQUATIONS

2.1. In this section, we show that solutions to the
PDE (1.8) that have asymptotic expansions (1.9) are
described, in the neighborhood of the cusps for uy(X),
by solutions of the Abel ODE

P(v,X) = v, +V —tv+x =0 (2.1)
or, if hyg(X) = hy(X) =0in Eq. (1.8), by solutionsto one
of the equations

Vi = vi—tv +x, Vi + vi-tv +x = 0. (2.2
Moreover, the leading term g(x, t) of the asymptotic
expansions (at x? + t> — o) of solutionsto Egs. (2.1)
or (2.2) in the matching domains with the asymptotic

expansions (1.9) (see[15]) isaroot of the equation
g°—tg+x = 0. (2.3)

2.2. We begin with the presentation of certain con-
clusonsdrawnin [18].

2 The relationshi p of domain walls, which are solutions to the time-
independent PDE (1.14), to solutions of the time-dependent dif-
fusion equation (1.4), (1.7) is discussed in the Conclusions.
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(1) On the plane X, cusps X* are typical for which
the first three coefficients of the Taylor series of the
smooth functions f(X*, u)

- 19'f
Ja'

2 (x0u)(u-ud

at the points u*—the roots to the equations f(X*, u) =

O—are zero. Dueto x7 and x5 , no more than two con-

straints can be imposed on the expansions of f(X, u) at
the points (X = X*, u = u*). Therefore, in the corre-
sponding Taylor series at these points

f(X, u) = a(x —X7) +b(x; —x3)

+ (U=uD)[c(x; —x¥) + d(x, — x3)] + e(u—ub)’
+ 3 Ciolu—x) (=) (24)
i+j>1

HU-uD S jalx =X (X =x5) + 3 Conilu—uD)’

i+j>1 k>3

} . .
+ Z(U—U[b Z Cijk(xl_xi)l(xz_xéc)]v

k>1 i+j>0
the constants a, b, ¢, and d, along with the constant e,
are nonzero.

(2) Thereexist constantsc [18, pp. 45, 46, 52] such
that the change of variables

> cﬂYiZj+U{l+ > cﬁYiZi}

i+j=1 i+j=1

+Zu z cy'Z,

k= i+j=0
= a(x,—X1) + b(x;— Xx3),

(2.5)

Z = c(X;—Xx7) +d(X; —%3)

take Eq. (1.10), which is determined by series (2.4), to
the equation

3(Y, Z) + o(Y, Z)U +eU® = 0, (2.6)
&Y,2) =2+ Y §,YZ,
i+jz>1
2.7)
ofY,Z) = Y+ o,Y'Z.
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(3) At ec = 0, Eq. (2.6) has a unique root, and, for
eo <0, itisunique only outside the overlapping domain

(—40%)"™
(27e)"%’

inside thisdomain, the solution to (2.6) isthree-valued.
Series (2.5) isalso three-valued in this case.

2.3. In the neighborhood of the cusp, we pass to
dilated variables. Since the leading term of series (2.5),
being a solution to Eq. (2.6), depends both on & and on
o, all three terms on the left-hand side of this equation
should be balanced: if the order of smallness of U inthe
new variablesis €, then 3(Y, Z) and a(Y, Z) must be of
order €3<and €%, respectively. Dueto this consideration
and the form of series (2.5) and (2.7), it is clear that the
dilatations should be as follows:

18 <

Z=¢% Y=¢*y u-ud=¢v, (29

where k > 0 is a constant. These dilatations reduce
series (2.4) to the form

f(X, u)
0 , 0 29
= T+yv+ev+ Ze“‘Pj(z, y, V)O. (29)
0 et O

Therefore, according to the general idea of matching
asymptotic expansions [15], k must be chosen so as to
make the left-hand side of Eq. (1.8) of order €3in vari-
ables (2.8).

In the new variables, the operations of differentia-
tion with respect to x, and x, in the principal order with

respect to the parameter € are actualy the differentia
tions with respect to z

0 ~,a20,c0 0 _bd,do
0X; ¢330z oy 0%, ¢*0z oy’

Therefore, the change of variables (2.8) in the principal
order reduces the operator L(X, €Dy) (see (1.1) and
(1.7)) on the left-hand side of Eg. (1.8) to the differen-
tiation with respect to z

L(X,eDy) = sMa +€

9, 2N &
¢3kaz

o7 (2.10)
(In the case of the general position, the constants
M = ah,(XD + bhy, (XD
and
N = a’hy(XD + abh,, (XD + b*hg,(XD

are nonzero: see Subsection 2.2.) Thus, kisfound from
the equation

min(1—2k, 2—5k) = 3k.
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It yields k = 1/5, and change (2.8) reduces Eq. (1.8) to
the equation

ov 3 _ Usy.
M ' —-z—-yV—-eV’ = O(e™);
the limit equation to this oneis afirst-order ODE. This
isalso truefor N = 0; it is only important that the con-
stant M is nonzero (for the PDEs (1.2), (1.3), and (1.6),
itisequal to pa + gb, p;a, and a, respectively).

However, for the PDE (1.8) that does not include the
first-order derivatives, M is equal to zero. Inthiscase, it
follows from the right-hand sides of Egs. (2.9) and
(2.10) that k = 1/4 and the change of variables (2.8)
reduces this PDE (1.8) to the equation

2
N%—\E/—z—yV—eV2 = O(e™)
z

(for the time-independent diffusion equation (1.15),
N =—-a?-b?).

2.4. If the constant k is chosen as specified above,
the substitution of the series

V= Vezy) + Y eV zy) (2.12)

into the equations obtained from the PDE (1.8) by the
change of variables (2.8) and then by equating the coef-
ficients of equal powers of € yields ODEs for the coef-
ficients of series (2.11). For their leading terms, the
ODEs have the form

Ve

37 —z—yVO—eVS =0

(2.12)
if Eg. (1.8) includes the first derivatives of u(X); other-
wise, if no first derivatives appear in this equation, the
ODE hasthe form

2

R
N—a——zi’-z-yvo-evg = 0. (2.13)
Z

The ODE (2.12) is transformed into Eqg. (2.1) by the
change of variables

3 15
1/5
z= —EM?E X, y=—M%)"t,
- (2.14)
VO = — _[l V,
EEZD
No.5 2002



EW

0.5+

0 e
0.5 i
\\\\\\l
1.0+ ? = T i3
15} ]

0.25 0.50 0.7

| | |
-0.75 -0.50 -0.25 0
4

Fig. 1. Directions of the phase velocity of system (3.3)
(arrows); the limit of the solution to system (3.3) at t = «
(solid curve); and branches 1, 2, and 3 of thecurvez=p —

p3 (dashed curves in the places where they differ from the
solid curve).

and the ODE (2.13) istransformed into Eq. (2.2) by the
change of variables

3 18
2= @ x
y = —sgn(e)(Ne)"t, (2.15)
Vo = —%ggjsv

The requirement that the behavior of the asymptotic
expansions (1.9) a X — X* is matched with the
behavior of series (2.11) at y? + 22 — oo imposes cer-
tain conditions on the asymptotics V,(z, y). In particu-
lar, itisseen from theright-hand side of expansion (2.9)
that the leading term of the asymptotics Vy(z, y) at y? +
Z> — oo in the matching domain of expansions (1.9)
and (2.11) is a root of the equation obtained from
Egs. (2.12), (2.13) by replacing the terms containing the
derivativeswith zero. Each change of variables (2.14) and
(2.15) transforms thisroot into the root of Eq. (2.3).

3. A SPECIAL SOLUTION TO EQUATION (2.1)

3.1. For the analysis of solutions of the PDE (1.8)
such that the leading terms uy(X) of their asymptotic
expansons (1.9) have singularities of cusp, it is of prime
importance to find out the asymptotics U(X, €) “beyond”
those points. For this reason, the most interesting thing
concerning the corresponding solutionto Eq. (2.1) isits
behavior at t — oo,

The change of variables

s = v(xt) = [t|?r(s t) (3.1)

X
t|3/2’
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reduces the solutions to the reference equation (2.1) to
the solutions

pst) =r(st), z=s (3.2
of the slow—fast autonomous system
1™%ps = son()p-z-p°, z=1. (39

Thisallowsusto usethefollowing reasoning to analyze
the behavior of solutions.®

An analysis of Fig. 1, where the directions of the
phase velocity of system (3.3) (t%3(p — p® — 2), 1) are
depicted, shows the following (note that, in contrast to
branch 2 of the curve z(p) = p — p°, the stability condi-
tion (p — p* —2), = 1 —3p? < 0 is satisfied on its
branches 1 and 3). As sincreases from —o to the value
corresponding to the instance

S=5 = %,2 (3.4
3

when branch 1 vanishes, the corresponding solution

(3.2) to system (3.3) movesin thevicinity of thisbranch

and then, having jumped into a small neighborhood of

the point (p = —2/3Y2, z='s,) of branch 3, remainsin the

vicinity of this branch as s continues to increase.

A similar reasoning suggests that the unique root of
Eqg. (2.3) is the leading term of the asymptotics v(x, t)
for al x ast — —oo. Indeed, the change of variables
(3.1) reduces Eq. (2.1) to the equation

1%, = sgn(t)r—r3—s, (3.5)
which turns into the cubic equation
sgn(t)yr—r’=s = 0 (3.6)

whent — —oo, The latter equation has the unique root
r =ry(s) for t <0. Since

(son(t)r —r°=s)|r=ry9 = sON(t) =3r(9*< 0, (3.7)

it is evident that as s increases from —oo to o, the dis-
cussed solution to Eg. (3.5) moves aong this root of
Eqg. (3.6).

3.2. The reasoning above suggests two conclusions.

(1) The leading term of the asymptotics v(x, t) at
X2 +t2 —» oo outside the curve where the roots of
Eq. (2.3) x = st%? merge coincides with the smoothly
varying root of Eq. (2.3).

(2) The neighborhood of this merge curve isashock
layer; when thislayer is crossed from left to right along
the axis x, the values of v(x, t) sharply decrease from

Jt3 (1 + 0(1)) down to —2./t/3 (1 + o(1)).

The validity of these conclusions was verified by
numerical simulation of the behavior of the solution to

3t is reduced to the application of the standard qualitative analysis
technique [24, pp. 20-22] developed for general-type slow—fast
systems.
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Eqg. (2.1), which was assumed to approach the root of
Eq. (2.3) at any t bothwhen X —= co and X —= —c0. The
simulation, which was performed on large intervals
-L <x <L, used the simple iterative procedure

Vien(K) = VoK) +0.05hP[v g(k), K,
k=-N+1,..,-1,01,...,N-1.

In this procedure, the differential operator P(v, X) on
the left-hand side of (2.1) was approximated by the
finite-difference operator

"4 -V
k*lTM vi—tv,+kh, h=<;

the function g(kh, t) determined by the maximal root of
Eqg. (2.3) for negative x (and by its minimal root for
nonnegative X) was used as the zero approximation
vg(K) for k>0 (k< 0).

The results of calculations by this rapidly converg-
ing procedure are partially presented in Fig. 2; they
completely confirm both conclusions above.

3.3. It follows from the above reasoning and the
results obtained in [24] that the following series give
complete asymptotic expansions v(x, t) (at t — o)
on both sides of the curve x = st¥%

Plv,k =

1-5j)12
S it
j=0

Here, ry(s) are the roots of the cubic equation (3.6) sat-
isfying condition (3.7) (at t > 0, they are different for s >
S and s < ), and ri(s) are recurrently expressed in
terms of ry(S) upon substituting the series

5j2
z rj(S)ltl .
/=0

into Eqg. (3.5) and equating the coefficients of equal
powers of |t].

Asymptotic expansions at [x| — oo that are suitable
in the neighborhood of the line t = 0 are given by the
series

(3.8)

vmo=x“zmmwwip=uﬂi (3.9)
k=0

where gy(p) isthe unique root of the equation

1-pgy+3s = 0.
This seriesis obtained from the asymptotic expansions
v(x, t) at t — oo by passing from the variable t to x
and from sto p. Indeed, the coefficientsr,(s) of expan-
sion (3.8) have the asymptotic expansions

00

1-5k-2n)/3
z rnks( ”

k=0

(s =
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Fig. 2. The solution v to Eq. (2.1) asafunction of x at vari-
ous t (solid curves) and the plots of the roots of the cubic
equation (2.3) where they differ from the plots of v (dashed
curve) at the instances of timet =-11 (a), 0 (b), and 11 (c).

when s — *oo. Multiplying series (3.8) by [t|Y2 and
substituting the above expressions for the coefficients
into these products, we abtain

00

oo

1/2-5k/2 _1/3-5k/3 —2n/3
G s
k=0

n=0

1/3-5k/3 —2n/3

= X raS .

kZO nZO

Substituting sgn(t)p for s22in this series, we obtain (3.9).
3.4. For t > 1, the system of ODEs (3.3) is similar

to the system
ups = p—p’-z, z=p, u<l (310
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The latter system describes the Van der Pol oscillator
[14, 24, 25]. Both systems belong to the class of slow—
fast systems of ODEs, therefore, the solution to
Eq. (2.1) can be completely described in the neighbor-
hood of the curve x = s;t¥? using the technique pre-
sented, e.g., in [24]. Unfortunately, the computations
are very tedious, and we only describe the shock layer
of the solution to Eq. (2.1) approximately as was done
for Eqg. (3.10) in[14].

In the first approximation, the jump of the corre-
sponding solution r(s, t) to Eq. (3.5 when s goes
beyond the point (3.4) is given by the separatrix solu-
tion of the ODE

- e Ef o

o= ts’%— 3@ ~T(),

which exponentially decreases down to the value -2 x

312wheno —» . At 0 — —o0, thefollowing asymp-

totic expression istrue:
_ 1 1
=T 325

(3.11)

Inja] , ol

33/202 O] o g (312

31/2
Asymptotics (3.11) and (3.12) determine R(o) up to
the function T(t). Its asymptotics ast — o can be
found only when higher order approximations of r(s, t)
are constructed. Moreover, it turns out that the com-
plete asymptotic expansion

r«(o,t) = Ro)+...,

in which the separatrix solution of Eq. (3.11) is the
leading term, is compatible only with the part of expan-
sion (3.8) that is valid on the right of the point s, (the
corresponding matching is performed for s — s, + 0
and 0 — ). At — —oand s — § — 0, the
asymptotic expansion (0, t) and the part of expansion
(3.8) that approximates r(s, t) on the left of s, are
matched with the help of the intermediate expansion

1, Wy(v) | wWy(v)
Finm(V, ) = 3_112+ t15/6 té/s to

which depends on the scaling variable

(3.13)

5/3

vV =17(s-%).

Its coefficients w;(v) are uniquely found from the recur-
rent sequence of ODEs

dw
=y B, (3.14)
dw, _ —2./3wW,W, — W3, (3.15)

dv
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and the conditions imposed on the behavior of wi(v)
when v —» co. These conditions are obtained by
matching expansion (3.13) with the part of series (3.8)
that approximatesr(s, t) a s< s,. The dilatations

-
= W) = G

(3.16)
reduce Eq. (3.14) to Eq. (1.18) with the independent
variable g. Its general solution

(In(c,Ai(0) + ¢,Bi(a))), (3.17)

is the logarithmic derivative of a combination of the
Airy functions Ai(qg) and Bi(q). It follows (see [20])
from the well-known asymptotics of Ai(q) and Bi(q) at
g — o (see[26]) and the matching conditions for the
asymptotic expansions (3.8) and (3.13) that ¢, = 0 in
solution (3.17). Therefore,

1 Ai'(Q)

wy(V) = —=—=.

3PAIQ) (3.18)

Thissolution issmooth ontheinterval (&, ), where &,
istheroot of Ai(q) that isnearesttoq=0. Whenq —
&0, We have
(1+0((9-80)"))
3%(a-&)
_ (1+0((v +37%))%)
3(v+37%)

Relations (3.18), (3.19), and the power growth of the
asymptotics for w,(v) at v — oo, which follows from
the matching condition for (3.18) and (3.13), uniquely
determine the desired solution to Eq. (3.15):

wy(v) =
(3.19)

- A
wolv) = 37/6 A [_[ AIQ

_AIG) T
k=& U

Whenv — -3Y6¢,, we have

L

(AIR*
-

. 2
&P dk — Ai'(Eo)%In

-2
g

0

}

niv_* 3_1/650

3—1/650

°0 Ai'(k)® 1 de
+Inm&aAmm K=&

L (AR’
IAI '(€0) AI(k)

(3.20)

x (1+0((v +37%)").
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Now, we derive from estimates (3.19) and (3.20)
that the asymptotics

-‘ilnt

_ &o 506
T = 5

[m

Ai'(k)® 1
Ef [AI(E)PAIK) K—&d

Ai'(K)°

:
C I e

(3.21)

dk} +0(1)

satisfies the matching condition of the behavior of
asymptotic expansion (3.13) at v —» —3~Y6¢ , with that
of the expansion r;(0, t) at 0 — —oo in the leading
order with respect to t.

Indeed, the expansions r;(o, t) and r;,,(v, t) are
matched for the values of ¢ of an order greater than
O(Int). Hence, the form of the variable o defined in
(3.11) and estimate (3.21) suggest that, in the process of
matching, at ¢ — —oo, the quantity

t%°¢ 512 21
0 _
o+T(t) + 7 - t %—é—u—ﬂ

5/6
t Eo - t5/6H)+ EoD

also tends to —oo; therefore, (3.19) and (3.20) yield the
expansion

_ 1 1 In|a]
Finm(V, 1) = 3_1/2 + 31120_33/202
1 0 - t%%d 5
+33/202{ 3CI(L) + 3 D+é|m
[ee] . 3
sinfg g [ A
2 AI'(€0)"Ai(K)
. 3 D
+ 2Lk [+ ...
J [AI'(50)°Ai(K) k=&

In this series, we substitute the right-hand side of (3.21)
for T(t) to obtain the following representation of the
intermediate asymptotic expansion r;,(V, t):

_ 11 In|o]
Finm(V, 1) = 3112 + 325 - 33242
Up to the terms that are not written out explicitly, this
representation coincides with the sum of the first three
terms of asymptotics (3.12) for the leading term of the
internal asymptotic expansion r;(o, t).
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Asymptotics (3.21) completes the description of the
behavior of the solution to Eg. (3.5) in the shock layer
in the principal order with respect to t. This gives a
description of the behavior of the universal specia
solution of Eq. (2.1) accurate to the leading term of its
asymptotic expansion at x> + t> — oo,

4. AN EXAMPLE: THE FORMATION
OF A DOMAIN WALL FROM THE SOLUTION
TO THE DIFFUSION EQUATIONS (1.6), (1.7)

4.1. Consder the solution to the PDE equivalent to
Eq. (1.6), (L.7)*

€U, = g U, + f(T,x,u), e<1, 4.2
with theinitial value
Ul o = a(x)- (4.2)

Assumethat (T =1* >0, X = X*) isthe general position
cusp for the roots of the equation

f(t,x,u) =0 (4.3)

and that this equation has a unique root u = uy(T, X) for
T < 1* for which the conventional stability condition

fu(T! X! uO(T’ X)) <0 (44)

isfulfilled. Then, within any interval d <1 <T1* —d with
the boundaries determined by a constant & (0 < d <
T*/2) independent of €, the solution to the boundary
value problem under consideration is expanded in a
series of type (1.9):

U = Ug(T, X) + €Uy(T, X) + €°Ux(T,X) + .... (45)

4.2. Series (4.5) does not satisfy theinitial condition
(4.2). However, if the stability condition (4.4) is ful-
filled, the residual can be corrected in a standard way
(see[27, Chapter 3]) by adding the series

Mu = Mo@, X) + €M@ X) +EMAL X) + ...,
¢ =

to the right-hand side of (4.5); this series consists of
exponentially small (at { — o) terms.

Thereference to [27], which is devoted to dow—fast
systems of ODEs rather than to PDESs, is correct.
Indeed, asinthe situation considered in [27, Chapter 3],
the coefficients M, (, X) of the correction seriesMu are
solutions to the sequence of initial value problems for
the ODEs

oMe(G, x) _

ot f(0, X, Ug(0, X) +Mo(¢, X)),

4tisquite natural to consider the inhomogeneity such that its rates
of change in time and in the spatia variable have the same order
of smallness (see [4] and the end of [5], where Eq. (4.1) is men-
tioned in connection with a problem in combustion theory).
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I-IOU(O! X) = a(X) - UO(O, X)’

oM<, x)
0¢
= F4(0, X, Uo(0, X) + M€, X)) MG, X) + G(d, X)),

M0, x) = —u(0,x), k=1,

where G(¢, X) depend on the functions I;(¢, x) ( =0,
1, ...,k—=1). Thereasoningin [27] provesthat the solu-
tions to this sequence of problems are exponentialy
small when { —» oo, Thefact that G,(C, x) includesthe

term My _5(, X)4, does not change this property at

{ — o, since al derivatives of N are exponentially
small when { — oo; indeed, they are solutions to the

Cauchy problem for the ODE
0
50~ (0., U(0, ) + M@ X))g = HE,X)

with exponentially small (at { — ) right-hand sides
(see[27, p. 63)]).

4.3. The behavior of solutions to the initial value
problem (4.1), (4.2) in the neighborhood of the cusp
(t*, X*) has been anadyzed in Sections 2 and 3.
“Beyond” this neighborhood, it forms a domain wall.
Its asymptotics at € — 0 is much like the asymptotics
(a t — o) of the special solution to Eqg. (2.1)
described in Section 3. This is for the following rea
sons:

(1) The front of the domain wall is localized in the
vanishingly small neighborhood of one of the two fold
lines originating at (t*, x*) (the fold lines are the
boundaries of the domain where the roots of Eqg. (4.3)
overlap and in which Eq. (4.3) has three solutions).

(2) “Plateaus’ of the domain wall on different sides
of the small neighborhood of the shock fold line x =
¢ (1) are described by two asymptotic expansions (4.5);

their leading terms are the minimal, u(l) (T, X), and the

maximal, U3 (1, x), of the three roots of Eq. (4.3). Being

smooth extensions of the unique (at T < T*) root of this
equation through the rays (1t = t, x > x*) and (1 = *,
X < X*), both these roots satisfy the stability condition
(4.4) within their smoothness domains.

(3) The asymptotics of the domain wall with respect
to the parameter € in the neighborhood of the shock fold
linex = ¢(1) isalso very similar to the asymptotics (at
t —= o0) of the solution to Eq. (2.1) in the neighbor-
hood of the curve x = st32.

4.4. 1t should be noted that the structures of these
asymptotics have a quite substantial difference.
Namely, instead of the solution of Eq. (3.11), which is
integrable by quadratures, the behavior of the formed
domainwall in the neighborhood of itsfront in the prin-
cipal order in € is described by a monotonic solution to
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the boundary value problem for a nonintegrable sec-
ond-order differential equation.

This problem appears upon the change of variable

n =200 e, (46)

which is similar to (3.11). Changing the variable in
Eqg. (4.1), we see that the leading term U(n, 1) of the
internal asymptotic expansion

Ui(N, T,€) = Uo(n, T) + ...

of the solution to Eq. (4.1) satisfies the second-order
ODE

_¢rUn_Unn = f(T,(I)(T),U),
which has exactly two equilibriums
U = Uy(1), U = Uy1).

They are the multiple and, respectively, simple roots of
the equation

4.7

f(t,¢(@),U) =0, (4.8)

fu(T, (1), Ue(r)) = O,
fu(T, §(t), Uy(1) <0.

However, the difference described aboveisnot so large,
since the monotonic solution U(n, 1) to EQ. (4.7) we are
interested in isan analog and some kind of “extension”
of the monotonic separatrix solution R(o) to Eq. (3.11);
therefore, it is clear that its convergence to the limit
value U,(1) is exponential:

U —-Uy(1) = O(exp(—c(r)Inl)),
Moreover, the asymptotics

c(1)<0. (4.9

EOLIO)E

2
300 0 410

_ 2¢'y 4 O
U= U on R

2
il A | 5on’ing

n> n? Hprd

describesits convergenceto thelimit value Uy(T). Here,
f5(1) and f5(T) are the constants appearing in the Taylor
series

f2 2
(000, V) = AU -Ug)
+I-3§—)(U —Uy(1))*+...

for the right-hand side of Eq. (4.7) at the point U =
Uy(T), and A(1) isan arbitrary function which can be set
to zero without loss of generality due to the choice of
the yet undetermined function u(t, €) in (4.6).

4.5. Relations (4.9) and (4.10) determine the desired
solution to Eq. (4.7) only up to the phase shift u(t, €).
Its asymptotics at € — 0 is constructed in the same
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way as asymptotics (3.21). It is based on the existence
of the intermediate asymptotic expansion

Unn(T, A) = Ug(r) + £°Y5(T, A)

" (4.11)
+7YL(T,A) + ...,
which depends on the scaling variable
A= X2 SS(T). (4.12)
€

Here, Uy(T) is the multiple root of Eq. (4.8), and the
other coefficients are recurrently determined from the
sequence of ODEsthat isabtained from Eq. (4.1) by the
change of variables (4.12), the substitution of series
(4.11) into the resulting equation, and the subsequent
equating of the coefficients of equal powers of €:

ayY. f
b5y = 7““Yf+ f A (4.13)
aY.
¢T 67\2 = fuquYZ + 1:)(u)\Yl
414
a Y‘l fuuuYS ' ( )
a)\ 6 1_UO(T)’

Here, f,, f,,, f,, and f,,, are the derivatives of f(t, x, u)
at X = (1), u=Uq(T).
Using the dilatations

i) = [ﬂixq’ﬂ re),
o o2 2 (4.15)
242

A= T8 = - &

we reduce Eq. (4.13) to Eq. (1.18), which has the solu-
tion

FE) = (InlAi@€)))s.

This solution is smooth on the interval (&, «), where
the left boundary is the first zero of the function Ai(§).
According to (4.15) and (4.16), we have, at A —~
r(t)&o,

(4.16)

2,

f r(t)€o)

oo r(1%0)"))- (4.17)

Yi(€) = (1+0O((A -

The desired solution to Eq. (4.14) can now be
obtained by a procedure similar to that used for solving
Eq. (3.15):
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&
__1 N2 _ Q(T)D
Y5(€) Ai(E)ZDOHAI(K) H(T, K) E(J]dK
i (4.18)
+Q(1)In Eg_fo —'!'Ai(K)ZH(T, K)dK}.
Here,
_ 200 T2 ANK) T AR
0 = BR[| T2 it
_2f fuuuD“\' ()7’
3f2, HAi(k)0 _UO(T)}’

and Q(1) isthe residue of the function Ai(&)2H(t, &) at
the point &,

02} 0°0  ¢2
Q1) = —2Ai'(Ey)° B————{] DL+%.
BI)T ULD U ‘?’fqu|
Using representation (4.18) for Y, weseethat, at A —
r(t)€o,

— ¢TfuuLE|n|A_r(T)EO|
Y.(5) =
%) [ ful 33, O(A—r(1)&)>
19)

h(1) A— 2

+————————(A_r(T)EO)2}(1+O« r0E)),

where
— 4In|r(T)EO| (pffuuu 1 |:|2¢T2 |:|23
) fuu [“ 312, }, AE )2 H T ul

€o
y )2 _ Q(T)D
L[%M(K) H(t, K) Edjd

00

—J'Ai(K)ZH(T, K)dK}.
0

Theterms of the intermediate asymptotic expansion
(4.11) have an increasing singularity at r(t)¢,, where
this expansion is invalid: in the neighborhood of A =
r(t)&,, the expansion u;(v, T, €) isthe correct approxi-
mation. The matching requirement for expansions
Un(V, T, €) and u,,m(A, T, €) and relations (4.10), (4.17),
and (4.19) allows us to find the following asymptotics
of u(t,e) ate — 0:
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(b)

Fig. 3. The solution v to thefirst equationin (2.2) asafunc-
tion of x at varioust (solid curves) and the plots of the roots
of the cubic eguation (2.3) where they differ from the plots
of v (dashed curve) at theinstancesof timet=-11(a), 0 (b),
and 11 ().

W(T,€) = (T)Eo
8

¢TfUU UU ()
_3T>TEIL+ 3fou§I TR

Thus, we have obtained a description of the formed
domain wall in the principal order.

5. SPECIAL SOLUTIONS TO THE ODE (2.2)

5.1. Figure 3 presents a part of the numerical com-
putation results which were performed by an iterative
procedure similar to that described in Subsection 3.2.
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These computations simulate the behavior of the spe-
cial solution to the first ODE in (2.2) at varioust. It is
seen from these computations that, in addition to the
monotonicity and oddness of this solution, its asymp-
totics at X2 + t2 — oo outside the unique jump curveis
also specified by the smoothly changing root of
Eqg. (2.3). However, in the case under consideration, the
jump in the asymptotics v(x, t) at t — o occursin the
neighborhood of theray (x =0, t = 0), which forms the
so-called Maxwell set [17, p. 306] for the cusp catastro-
phe described by Eqg. (2.3). Hence,® if the PDE (1.1
does not include the first-order derivatives of u(S), one
can expect that the corresponding solutionsto Eqg. (1.8)
behind the condensation point of the roots of Eq. (1.10)
taketheform of domain wallswith frontslocalized near
the curves defined by the condition of equality of areas
(2.27).

The change of variables (3.1) reducesthefirst equa-
tionin (2.2) to the ODE

tJ'rSS =r’- sgn(t)r +s. (5.1

The leading terms of the asymptotic expansions of the
corresponding solutions to this equation at t —» oo,

fou(8 ) = 1o(8) + 3 t7r(9), (52)
j=1

coincide with the maximal, r, () (for s < 0), and the
minimal, r,;,(s) (for s> 0), roots of the cubic equa-
tion (3.7). The standard reasoning used in the matching
method makes it is easy to show that, in the small
neighborhood of s = 0, these two parts of expansion
(5.2) arejoined by the internal expansion

) = p) + Y CUp), y = st (53

j=1

Its coefficients satisfy the recurrent sequence of ODES
obtained by the substitution of (5.3) into (5.1) and
equating the coefficients of equal powers of the small
parameter t2. These equations are supplemented by the
matching conditions of the behavior of their solutions
at y — +oo with the behavior of the external asymp-
totic expansions (5.2) at s — 0. In particular, for the
odd (iny) leading term of expansion (5.3), the ODE

(Po)}y, = Po—Po
is complemented by the condition
lim po(y) = 1.

y > o

5The Maxwell set is disti nguished by the fact that the integral
gs(x, 1)
(x—tg+ gs)dg, with the limits defined by two different

gy(x. 1)
roots of Eq. (2.3), vanishes at this set.
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Hence, we derive that

Poly) = —tan%z.

Whent — —oo, the solution to Eq. (2.2) aso hasan
asymptotic expansion defined by the change of vari-
ables (3.1) and series (5.2). However, in this case, the
leading term r(s) of series (5.2), for all s, is given by
the unique (at t < 0) root of Eq. (2.7). The following
series give its asymptotic expansions at x| —» oo,
which are suitable in the neighborhood of thelinet = 0:

v(xt) = x”gz x®gi(p), p = XL% (5.4)

j=0
Here, gyo(p) isthe unique root of the equation

1-pg+g’ = 0.

Thefunction v(x, t) isan analog of the Il’in solution
to the Burgers equation [15, p. 287], which describes
the influence of small dissipation on the nucleation of
shock waves [15, 28]. Our solution to Eq. (2.2) givesa
similar description of the nucleation of domain walls
formed by solutions to the boundary value problems
(1.15), (1.16).

5.2. We can formulate no general position boundary
value problems that lead to the corresponding special
solutions to the second equation in (2.2). Also, no
description of their uniform asymptotics at x> + t> —
oo jsavailable. Numerical simulation suggeststhat solu-
tions to the second equation in (2.2) at t > 1 are char-
acterized by high-frequency oscillation domains, which
can be analyzed using the Kuzmak—\Whitham averaging
[29, 30].

6. CONCLUSIONS

The main conclusion formulated at the end of the
Introduction is as yet purely theoretical. However, the
fact that our considerations are rather general givesrea-
son to expect that corresponding experimental phenom-
enawill be discovered. Indeed, the formation of struc-
tures predicted in this paper is as natural as, for exam-
ple, the spontaneous formation of shock waves in gas
dynamics.

In this connection, the most interesting equation of
form (1.8) discussed in this paper isthe PDE (1.14). As
has already been noted, it isequivalent to thetime-inde-
pendent part of the diffusion equation (1.4), (1.7). True
enough, it is difficult to completely analyze the rela-
tionship of the main conclusion of this paper about the
solutions to Eq. (1.14) to solutions to the time-depen-
dent Eq. (1.4), (1.7) (see the related paper [13]). How-
ever, certain sufficient conditions that ensure that solu-
tions to, say, initia value time-dependent problem
(1.13) approach the corresponding asymptotic solu-
tions to the time-independent Eq. (1.14) can be easily
formulated just now.
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Assume that there is a unique cusp of solutions to
Eg. (1.10) on the plane X. Moreover, we assume that
there existsauniqueroot of Eqg. (1.10) outside the over-
lapping domain and it satisfies the stability condition
(1.12). It is clear that this root is the attractor for all
solutions to the ODE

U, = £(X u).

which is the limit equation to Eq. (1.14). Assume that,
within the overlapping domain (1.10), the initial func-
tion g(X) in problem (1.13) is such that the solution to
the limit initial value problem

u, = f(X,u), ul;-o = 9(X),

isattracted, within thisdomain, to the root of Eq. (1.10)
that determines one of the “plateaus’ of the domain
wall (the solution to Eq. (1.14)). It isclear that, for cer-
tain (sufficiently large) , this solution in the form of
series (1.9) isan asymptoticsat € — O for the solution
to problem (1.13). In order for the corresponding
asymptotic solution to Eq. (1.14) at such  to be asolu-
tion to the time-dependent problem (1.13) at every X, it
issufficient to take asmooth initial function g(X) that is
either less or greater (depending on the situation) than
any root of Eq. (1.10).
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Abstract—Thefirst (Born) approximation commonly used to calcul ate the diffusion coefficient D+ of apassive
scalar in acoustic turbulence is shown to be insufficient. Even for a small main parameter—the Mach number,
M < 1—the next approximation gives alarger contribution to D than does the first approximation, but negative
in sign. We present a procedure for correctly calculating D based on the solution of a nonlinear DIA (direct
interaction approximation) equation for the mean Green’s function of the problem. We include an additional
term in the general formulafor D+ that directly describes the compressibility of acoustic turbulence. Thisterm
has not been known previously and has been disregarded even in the Born approximation. A positive value was
obtained for D1 = CM3uy/p,. The spectrum E(x) was assumed to be smooth at distances Ax ~ M? < 1. © 2002

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Thediffusion of passive scalar particlesand fieldsin
aturbulent medium isamajor problem in the theory of
turbulence, which is important in practical terms. For
the model of turbulence in an unbounded medium,
there are exact formulas for the turbulent diffusion
coefficient Dy in the Lagrangian [1, 2] and Eulerian [3,
4] representations. From a practical point of view, of
particular importance are calculations in the Eulerian
representation, which is used below. In this representa-
tion, an exact calculation of D+ involves determining
the stochastic Green's function of the problem, G(r, t;
r', t"), and its subsequent statistical averaging with the
components of velocity field u(r, t) (see [4] for more
details).

By acoustic turbulence, we mean a medium with
chaotically propagating acoustic waves. The parame-
ters of such a medium—the gas-velocity correlators

i (r, t)u(r', t)0= B;;(R, 1),
R=r-r, 1T=t-t

—are determined by the stochastic boundary condi-
tions and by the sources that maintain continuous wave
formation. Such turbulence is rarely encountered in
pure form (e.g., in the solar corona). However, it is
commonly used in theoretical works on magnetic
dynamo (see [5—7] and references therein) as an exam-
ple of simple turbulence in which analytic calculations
can be performed to completion with a small main

parameter—the Mach number, M = uyc (here, U5 =
B;(0, 0) is the mean square of the oscillation velocity
amplitude and c is the speed of sound).

)

The first (Born) approximation is used in all these
works to calculate the turbulent diffusion coefficient
D+, because the next approximation contains an addi-
tional small factor, M? < 1. The standard Green's func-
tion

G.(R 1) = (47D, 1) expd R
e " 02D,
which describes molecular diffusion with coefficient
D,,inagasat rest, is used as the Green's function G(R,
T). Since D,,, is small, the limiting form G (R, 1) —
O(R) is considered.

In addition, the authors used an incomplete formula
to calculate Dy that contained no contribution from the
compressibility proper (the correlator [ divul). In [4],
we showed that including this additional term signifi-
cantly increases Dy even in the Born approximation (if
the damping coefficient k(p) of an acoustic wave is of
the order of D, or Dy).

In this paper, we pointed out that, to assess whether
it is correct to use the Born approximation in calculat-
ing Dy, itisnecessary to determinethe Green’sfunction
more accurately and to estimate the contribution from
the next approximation containing the fourth-order
velocity correlators to D;. Here, we carry out this pro-
gram.

First, we show that the contribution from the fourth-

order correlators to Dy, which we denote by DYV (see
formula (19) in [4]), isdlightly larger than the contribu-
tion D{” from the pair correlator (1). Moreover, D$"
is negative and, hence, the total turbulent diffusion
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coefficient D + D is negative. We emphasize that
thisremainsvalid even if the function G(R, T) withthe
diffusion coefficient Dy isused. It isonly important that
the damping coefficient k be much larger than D,
which probably always holds. Thus, if purely diffusion
functions are used as the Green's functions, then the
total turbulent diffusion coefficient is negative. In this
case, allowance for compressibility is unimportant if

k> D;. Note that the estimate D{¥ = M2D{” < p{?

from [6] isincorrect, because it disregards the resonant
nature of the contribution from acoustic harmonics in

the expression for D" .

Why is the derived turbulent diffusion coefficient
negative in the first place? It is negative apparently
because the Green's function was chosen wrongly.
When acoustic turbulence is considered, the Green's
function must reflect the main property of passive sca-
lar transport—the mainly oscillatory motion of passive
scalar particles. Even theform of the velocity correlator
(2) in the space of wave numbers (see[7]),

1 . -
(zmgjdpexp(lp [(R)Bm(p. 1), (2

Bim(R, T) =

4

Bon(p, T) = 212, pmtP cos(cpr)
p (3

x exp[—k(p) p°1],

which contains the oscillating factor cos(cpt), shows
that the Fourier transform of the mean Green’s function

G (p, T) must also contain oscillating terms. Here, k(p)
is the damping coefficient of the p wave and E(p) isthe
acoustic turbulence spectrum determined from the
expression

00

ui= [W(r, )0 = J'dpE(p). (%)
0

Recall that the Fourier transform of the diffusion

Green’s function é(p, 1) = exp(-Dp?t) contains no
oscillating terms.

The damping of an isolated acoustic wave is attrib-
utable to viscosity in the medium and k(p) is small, of
the order of the molecular diffusion coefficient D, (see
[8]). In an ensemble of interacting waves, the situation
is different. Zakharov and Sagdeev [9] developed a
model of acoustic turbulence with nonlinear waveinter-
action. They derived the following expression for k(p):

k(p) = E(p)/c, where E(p) = const uSJﬁO p¥2forp>p,
and Ay = 1/p, is the characteristic wavelength. When
p — 0, E(p) tends to zero. Using the dimensionless
wave number x = p/p,, we introduce a dimensionless
turbulence spectrum by means of the relation E(p) =
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uS/pOE(x). In this notation, the result of [9] can be writ-
ten as

E(x) = constX 22, Kk(p) = ME(X)Ugh,.

Thedamping k(p) for asmall Mach number, M = uy/c <
1, isweak, being smaller than ugh,. However, aswewill
see below, the turbulent diffusion coefficient is even
smaller, of the order of M3ugh,,.

Expression (3) isthe pair gas-velocity correlator for
a homogeneous, isotropic, and stationary ensemble of
acoustic harmonic waves. Substituting (3) into (2)
yields an expression for the scalar product of the veloc-
ities at the same place but at different times:

Cu(r, t) Cu(r, t)0

[

_ 2 (5)
= J’ dpE(p)cos(cpt)exp[—k(p)p°T].

Here, T =t —1t'. We see from (5) that such a statistical
ensemble describes a nonperiodic, chaotic gas motion
even if wave damping isignored (k= 0); i.e., the turbu-
lent diffusion of matter takes place ssimply because of
the superposition of chaotic, incoherent acoustic har-
monic waves. It is only important that the wave spec-
trum be continuous.

If damping isignored, an ensemble of waves of the

same wavelength (E(p) = ug O(p — pg)) produces a peri-

odic overall motion, which may be very intricate in
space. In this case, the diffusion mixing of particlesis
weak and attributable to viscous (dynamical) damping:
here, thereisno kinematic diffusion similar to amacro-
scopic random walk. Below, we consider the diffusion
of passive scalar particles only in a turbulent medium
with acontinuous wave spectrum, whichisclearly most
natural.

The fact that Dt ~ M3Ug\, << Ug), reflects an impor-
tant property of acoustic turbulence: the motion of a
passive scalar particle is mainly oscillatory and does
not lead to diffusion. If the particle passed to adifferent
trajectory corresponding to a different wave during
each oscillation period, then, clearly, the diffusion coef-
ficient would be much larger, of the order of ugh,. Thus,

the actual Green’sfunction G (p, T) must describe these

oscillations, and the diffusion functions G(p, 1) =
exp(-Dp?1) are unsuitable for calculating D+. For non-
acoustic turbulence, the so-called self-consistent
method [10] is efficient in calculating Dy. In this
method, the diffusion function

G(p, 1) = exp(-Dp°1)
with the unknown diffusion coefficient D is substituted
for the unknown Green's function in the exact formula
for Dy. Solving the resulting algebraic equation yields
D, that closely matches the D values calculated by
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more accurate methods. The success of the self-consis-
tent method stems from the fact that the diffusion
Green'sfunction is close to the exact Green’s function.
For acoustic turbulence, the self-consistent method
yields large negative D+, which is clearly contrary to
fact. This also suggests that the actual Green’s function
for the time scales that determine the transport mecha-
nism of passive scalar particles is far from being a
purely diffusion one.

Below, we use the solution to a nonlinear integral
equation for the Green’s function to calculate Dy. This
equation actually has oscillating terms.

2. BASIC EQUATIONS

We take the number density of passive scalar parti-
cles, n(r, t), as the passive scalar field. The continuity
equation for n(r, t) in the random velocity field u(r, t)
of the main gas is a stochastic equation to determine
n(r, t):

[0 _ 1] —
ot D0 Dn(r,t) divfu(r,t)n(r,t)]. (6)
Assume that the statistical ensemble of the field u(r, t)
is homogeneous, isotropic, and stationary and that it is
described by correlator (3). The mean W= O.

The Green’s function G(1; 2) = G(r, t; r', t") of Eq.
(6) satisfies the linear equation

G(1;2) = G, (1-2)

- [43Gn(1-3) 0/ [u(3)G(3; 2)]. )

Below, we use the following convenient notation:
f() =f(ry, t), f(1=2) =f(ry —ry t; —ty) =f(R, 1), dn =
drdt,, etc.

For large times and scales, averaging of Eq. (6) is
known (see [3, 4]) to result in the diffusion equation
[the left-hand side of (6)] for the mean number density
(m(r, t)Owith the diffusion coefficient D, + Dy The
exact formula for the stationary turbulent diffusion
coefficient is

00

D, = %J’dRJ’dT[ LICECTRTICSR.

—R OL(1)G(1; 2)divu(2)].

For incompressible turbulence (divu = 0), the sec-
ond term in (8) vanishes. It is this significant term that
was disregarded in [6, 7] for compressible acoustic tur-
bulence. The authors of these papers restricted them-
selves to substituting the free term G,(1 — 2) of Eq. (7)
for G(1; 2) into the first term of expression (8). As we
show below, substituting several iterations of Eq. (7)

into (8) yields the relation D + D <0, i.e., a defi-
nitely absurd result. The reason why substituting the
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iterations of Eq. (7) when calculating D+ is inefficient
was explained in detail in the Introduction.

In[3, 11], we derived a new, renormalized equation
for the Green's function G(1; 2) instead of Eq. (7),
which includes the mean Green’s function [G(1; 2)[1=
G(1 - 2) as a free term. Clearly, G(1 — 2) correctly
describes the convective-oscillatory transport of pas-
sive scalar particles in acoustic turbulence; it is hoped
that substituting iterations of the renormalized equation
into (8) will yield the correct value for Dy. Thus, the
problem reduces to writing and solving the equation for
the mean Green's function G(1 — 2).

It follows from Eq. (7) that G(1 — 2) depends on the
fluctuationa part G'(1; 2) of the Green's function and
vice versa. Therefore, an attempt to write a separate
equation only for G(1 — 2) leadsto an hierarchy of non-
linear equations for G(1 — 2) (the situation is similar to
the closure problem in the theory of turbulence). The
simplest equation of this hierarchy, with a quadratic
nonlinearity, is called the DIA (direct interaction
approximation) equation. It was first written and ana-
lyzedin[12]:

G(1-2) = Gy(1-2) + [d3[d4G,,(1-3)
(9
x 09G(3-4)0("B;(3-4)G(4~-2).

Subsequently, it emerged that this equation was effi-
cient in calculating the turbulent diffusion coefficients
D, for various models of incompressible turbulence
(see[10]). Our results confirm that it isalso efficient for
acoustic turbulence.

In calculations, it is convenient to use the function
g (p, s—the Fourier transform in R and the Laplace
transform in T of G(R, T1). In addition, we make use of
the dimensionless variables x = p/py and t = cpgt. In
these variables, the DIA equation for g (X, s) takes the
form

2 2%
§(%,9) = [s+ S HEW)
0

1

x IdMMX(MX— y) (10)

00 -1
xJ'dte_(S+”yz)tcos(yt)é(lx -yl t)} .
0

Here, we introduced the dimensionless quantities y =
c/poDrm @and n(y) = k(y)po/C; M isthe cosine of the angle
between vectors x and y. Recall the definition of the

dimensionless turbulence spectrum: E(p) = ug E(X)/py.
Since the molecular diffusionisweak, y=Ay/l > 1 (I is

the mean free path of the gas molecules; D,,, ~ cl). This
is the largest parameter of the problem. Even the gas-
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dynamical equations themselves suggest that Ay > |. If
we use the damping coefficient k(p) from [9], then
n(y) = M?E(y); i.e., this is a small quantity but much
larger than 1/y if, of course, the Mach number is mod-
erately large, which we assume below. The case of a
small Mach number, yM? < 1, describes a fluid that is
virtually at rest. In this limit, the integral term in (10)
can be discarded to give

q(x, s) = :
a(x s) sty

i.e., the Green's function actually matches G,,.

Itiseasy to seethat for x < 1 and s < 1, theintegral
term in (10) transforms into the diffusion expression

(D /D, )(x?ly) with the turbulent diffusion coefficient

D{ = Ide(x)Idtcos(yt) g N100x

(11)

[G(x t) + xaG(X t)}

Recall that G(x, t) is the Fourier transform of the
Green's function G(R, 1) in R in dimensionless vari-
ables x and t. Expression (11) can also be derived from
the general formula (8) if we take the DIA expression
for G(R, 1) as G(1; 2) and passto the Fourier represen-
tation.

The condition s < 1 implies that T > Llcpy = T,
where T, is the characteristic oscillation period of
acoustic waves. In this case, the diffusion propagation
of apassive scalar is established after many gas oscilla-
tions rather than after the characteristic velocity-corre-
|ation damping time, Tgamp ~ 1/K(Po) P, Which is much
longer than To(Tgamp ~ TJ/M?) and tends to infinity as
M2 —= 0. As we mentioned above, the diffusion is
mainly produced by a nonperiodic gas motion, which
results from the superposition of chaotic harmonic
acoustic waves with a broad turbulence spectrum E(p).
Therefore, the time it takes for diffusion to be estab-
lished is unrelated to the vel ocity-correlation damping
time.

3. CALCULATING THE DIFFUSION
COEFFICIENT

To calculate D(o) and the contribution of the fourth-

order correlators DT) (seeformula (19) from [4]), itis

convenient to introduce the following auxiliary func-
tions:

[

6e(x p,q) = [ctexp(-pt) cos(qt) G(x, t)
0
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=Reg(x, p-iq),
i - s (12)
9e(x, P, @) = [dtexp(-pt)sin(at)G(x, 1)
0
=Img(x, p—iq).
Expression (11) for D{” can then be written as
p© = UM [AER)
3po
0 (13)

. 0G:(%, P, 9)
1 9(x, p, Q) + x—} :

[ 0x P=n00x,q=x
Assuming that s= p —iqin (10) and separating out the
real and imaginary partsyields

ge(x p,q) = a(x p.9) ,
PO FFxP
~ _ B(x p, Q)
0s(x, P, Q) = = > 7
a“(x, p,q) +B(x p,q)
a(x, p,q) = p
+X—+M—IdyE(y)Iduu><(ux y)
x[Go(Ix=Yyl, p+n(y)Y. a+y)
+8u(x=yl, P+ (Y’ a-y)], (15)
B(x, p,@) =

2

—MT I dyE(y) j dUpX(UX =)
0 1

x[Gs(Ix=yl, p+n(Y)Y’ q+Y)
+ 83X =YL p+NY, a-y)].

The system of equations (14) and (15) is equivaent
to the DIA equation (10). Its advantageisthat it allows
the diffusion coefficients D!{” and D" to becalculated
directly, without calculating the Green's function G (x,
t) itself. In this case, we need not know the functions

g. (X, p, 9) and g (X, p, q) for al possible values of the
variable p—expression (13) includes only

p = r](x)x2 = MZE(x)x2 < 1.

It is easy to verify that a(x, p, q) is small, of the order
of M2 < 1, for small p. In contrast, B(x, p, ) ~ q con-
tains no small parameter in the first approximation. For
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small p, the asymptotic solution of system (14) and (15)
is

alx p.a) = p+ gMXE(q) + O(M?),

M2 ° E (16)
Bx p.o) = q- " faycd + oMY
0

Here, we discarded the extremely small term x?/y. Since
a is small compared to 3, we can assume that g. (X, p,
g) = Q) in our intermediate calculations for suffi-
ciently smooth spectra E(x). However, g, is no longer
a &-shaped function in the main formula (13), where
a ~x2and 3 ~ x. The spiky form of g, suggeststhat the
diffusion in acoustic turbulence is resonant in nature—
waves close in frequency give the largest contribution
to the diffusion. Therefore, we find from (15) that a is
proportional to E(q) and that the diffusion coefficient
itself [see (18)] isproportional to the square of the spec-
trum.

Thefirst termsin (16), i.e.,, a = p and 3 = g, corre-
spond to the Born approximation used in [6, 7]. Substi-
tuting these values into (13) yields

MOO
pem = YoM e E 0N (x
T 3p0J; (x)n(x)

(17)

The expression after the arrow corresponds to the
model from [9], in which k(p) = E(p)/c. Note that
retaining the discarded term x?/y gives an addition
M?D,,,, with 2/3 of this addition arising from the com-
pressibility of acoustic turbulence.

Using the DIA expression (16), we obtain

D = Ide(x)[ (9+3 LY E(x)}

(18)

+ EDJ’oleZ(x).
0

Comparison of (17) and (18) indicates that D(O)
approximately a factor of 2.5 larger than D*™™ | with

2/3 of the additional contribution to D®™™ (the term

with 172) being attributable to compressibility. If we
assume that n < M?, then all of the diffusion is defined
by the remaining expression. This expression describes
thewalk of apassive scalar particlein thefield of amix-
ture of incoherent acoustic harmonic waves in the
absence of any damping. Previously, we pointed out the
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resonant nature of this diffusion mechanism [D; ~
E?(x)]. Now, we see that this diffusion mechanism is
more efficient than the diffusion due to damping. In the
absence of damping, p=0and g, (x, 0, q) issimply the

cosinetransformation of the Green’sfunction G (x,t)in
timet and it determines the diffusion coefficient. If we

teke G (x, t) = 1, asin [6, 7], then we obtain g, (x, 0, §) =

3(q). According to (13), thisleadsto therelation D™ ~
E(0) = 0, i.e, to the absence of diffusion. The actual

Green's function G (x, t) is close to the solution of the
DIA equation (10). This function significantly depends
on time and not only in the form of the diffusion expo-
nential exp(-D;p?1); it also contains harmonically
varying terms like cos(w(xX)t) and sin(w(x)t). These
oscillating terms describe the diffusion of apassive sca-
lar particle due to the passage from one wave to another
and due to a gradud recession from the initial position
when aconti nuous wave spectrum exists. L et usnow show

that these oscillating termsin G (%, t) actudly exist.

The asymptotic solutions (16) hold even after the
first iteration of system (15). Thisimpliesthat, to calcu-
late D+, it will suffice to use alinearized DIA equation
when we substitute the corresponding molecular

Green's function or unity for G (|x —y|, t) in the kernel
of Eq. (10) by ignoring small (of the order of 1/y < 1)
damping. Thus, when analyzing diffusion, it will suf-
fice to consider the following explicit expression for
g(x, 9):

g(x, s)

s+n(y)y
[s+n)Y]°+Y

The sufficiency of using the linearized DIA equation
for small Struchal numbers, usty/R, < 1, for incom-
pressible turbulence was shown in [3] (here, T, and R,
are the characteristic lifetime and velocity correlation
scale, respectively). In our case of acoustic turbulence,
the Mach number, M < 1, acts as the Struchal number.
The inverse Laplace transform of expression (19) can
be determined in analytic form only for the spectrum
E(x) = o(x — 1), although we do not consider this spec-
trum:

T (19)

exp(—not/(1+9d))

G(x t) = s

X [a " é[cos(w(x)t) MGk 6)S|n(m(x)t)} (20)
2w (x)

2-3)U
< PR g TaE0r o).
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Here,

_ _ Pok(p) 5 _ MK
n=n(x) ==—c-— 0==—"%,

w(x) = 1+38.

In the limit n = 0, the Green’s function (20) takes the
form

;
1+ M3

DD/1+ i Z%

We see from formulas (20) and (21) that the contri-
bution of the oscillating termsislarge. Interestingly, the
dispersion law w?(x) = 1 + M2x%/3 differs from the dis-
persion law for acoustic waves [«XX) = X)], and w(X)
does not depend on the damping parameter n(x). The

frequency wX(X) = Mx/ /3 for largex. Thislimiting rela-
tion holds for an arbitrary spectrum, as is easy to see
from Eq. (19) by assuming that s> y and s > n. Note
also that the group velocity corresponding to w(X) is
much lower than the speed of sound c:

0w(X) _
group — oX -

G(x t) =
(21)

2M?x
3.1+ M?X%/3

Although, for times much longer than the time it takes
for diffusion to be established, the spot of passive scalar
particles increases its size R(1) as R*(1) = 6D+, the
group velocity appearsto qualitatively characterize the
smearing of this spot during theinitial diffusion period.

Determining the frequencies w(x) by ignoring the
correlation damping, n = 0, reduces to finding purely
imaginary [s= i co(x)] roots of the equation

Vv

c<c (22

E(y) _
3 Id = 0. (23)

A simple example of the spectrum E(x) = 1/(b - 1)
for x inside the interval (1, b) and E(X) = 0 outside this
interval shows that such roots exist. In this case, even
two frequencies exist: one liesinside the interval (1, b)
and the other lies outside thisinterval, w > b.

The DIA equation describes the contribution from
all the pair velocity correlators, including some of the
fourth-order correlators, to the passive scalar transport.
The contribution from the so-called irreducible fourth-
order correlators (see [13] for more details), when the
velocities at four space-time points are averaged cross-
wise, [ (1)u; (3) [y (2)uy(4)for ty > t, > t; > t,, iS ot
included in this equation. When considering the fourth
or higher order correlators, we assume, as is usualy
done, that the velocity-field ensemble is Gaussian; i.e.,
these correlators can be expressed as the product of all
possible pair correlators. This assumption appearsto be
justified for estimates of the contribution from high-
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order correlators. An explicit formula for the contribu-

tion of the irreducible fourth-order correlators D{” is
given in [4] [see formula (19)]. After simple trigono-
metric transformations and after discarding terms of the
order of M? < 1 in the integrand, we obtain

o 1
D = _ “O IdedyIdqu(x)E(y)
~>< [2xy + (>2<2 + f)u + qu22] (20
xgs(Y, N(Y)Y", ¥)9s(X, n (X)X, X)
oM

X GelX+ YL OOX + (Y)Y, x=y) + O~ =1
Here, pisthe cosine of the angle between vectorsx and
y.Atx=Yy, g. isad-shaped function with a peak width
of the order of M? < 1. Assuming the spectrum E(X) to
be smooth in the interval Ax ~ M? < 1 and discarding

terms of the order of M? < 1 in the integrand finally
yields

T M3m M3
p® = MMy F2(x) + 00O 25
P e[ rofy s e

Note that the contribution D(Tl) is attributable precisely

to the damping n(x). If the free terms in (16) are dis-
carded, then the integrand in (24) becomes of the order

of M? and the expression for DT) transforms into a
minor addition of the order of uyM%p,. Of course, this
isapurely mental operation; damping always exists, if
only because of viscosity, and the contribution (25) is
real. This contribution was overlooked in [6], which

resulted in an incorrect estimate, DY ~ M2D{” <
D In[7], the contribution D{” was not estimated at
al.

If we retain only the free terms in expressions (16),
which corresponds to the Born approximation used in
[6, 7], then we will obtain anegative total turbulent dif-
fusion coefficient:

MOO
D™ + DY = 20 (g (x
3, €00
T .2
x| ZMPECO -n(x) | (26)
. wj’de (X)
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Allowance for compressibility does not change this
result, because the diffusion coefficient D, (or even
D+ ~ uyM3/p,) ismuch smaller than the damping coeffi-
cient k ~ uyM/p,. The expression after the arrow corre-
sponds to the model from [9], for which n(x) = M?E(X).

Only using an oscillating Green's function G (X, t)
like (21), i.e., including the second term in expression
(16) for a(x, p, g), and alowing for compressibility
lead to the correct positive total turbulent diffusion

coefficient Dy = D{” + D

- ww T p2
Dy = 3 Ide(x)[n(x)+ EM E(x)}
’ (27)

(6+muM*. ., oM
_— dXE X +O .
18p, f (x)+0g po U

0

Thesixth-order correlators give acontribution of the
order of uM®p,to D+, i.e., much smaller thanthemain
expression (27). Since (26), owing to velocity-correla-
tion damping, accounts for about 3% of (27), we con-
clude that random walks in the field of an incoherent
superposition of harmonic acoustic waves with a con-
tinuous spectrum are the main diffusion mechanism for
passive scalar particles in acoustic turbulence.

4. CONCLUSION

Below, we present our main results. We have shown
for the first time that it is incorrect to use only the first
(Born) approximation to calculate the turbulent diffu-
sion coefficient Dy in acoustic turbulence, because the
contribution from the next approximation is negative
and dlightly exceeds in magnitude the contribution
from the first approximation even for very small Mach
numbers, M < 1. We presented a procedure for cor-
rectly calculating D+ based on the asymptotic solution
of anonlinear DIA equation for the mean Green’sfunc-

tion G (p, 1) in the form of damped (with time) oscilla-
tions. The correspondence of this Green's function to
the transport physics of passive scalar particles was
shown to be a crucia factor.

The diffusion of a passive scalar particle in acoustic
turbulence takes place for the following two reasons.
First, the damping of correlated gas motions dueto vis-
cosity and, more importantly, due to nonlinear wave
interaction prevents the return of the passive scalar par-
ticletoitsorigina position. Second, aswe showed here
for the first time, an incoherent superposition of waves
results in arandom walk of the particle in the medium
even if this damping is ignored. Our calculations indi-
cate that the second mechanism is much stronger than
the first mechanism and that it leadsto thefinal formula
(27) for the diffusion coefficient D;. As a result, it
emerged that an efficient method of calculating D+

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

963

involves using the formula of the first approximation
with the vel ocity-correlator damping ignored and using
solution (19) to the linearized DIA equation as the
Green's function. In this method of calculating D,
damping must be disregarded in order not to calculate
the large negative correction from the second approxi-
mation. This correction results from the contribution of
damping and the fourth-order velocity correlators and
amost completely offsets the contribution of damping
to D+ from the first approximation. In general, the pos-
itive contribution to D from the damping mechanism
inthefirst approximation isequal in order of magnitude
to the contribution from the second mechanism. The
contribution of incompressihility [see the second term
in (8)], which was previously disregarded, accounts for
about 2/3 of the total diffusion coefficient. This addi-
tional term in the general formula (8) for Dy was first
obtained in [3].

Our results apply to acoustic turbulence with a con-
tinuous wave spectrum. For single-mode turbulence
[E(p) = &(p— py)], the diffusion is governed only by the
first mechanism, i.e., by damping. Thisis immediately
seen from expression (20) for the Green's function for
this case.

We gave a purely mathematical solution to the prob-
lem of correctly calculating the diffusion coefficient for
passive scalar particles in acoustic turbulence with a
continuous wave spectrum. For a more complete phys-
ica understanding of the diffusion of passive scalar
particles in acoustic turbulence, it would undoubtedly
be useful to derive our formula for Dy purely qualita-
tively. The dependence D+ [ ugh,M?2 can apparently be
justified from dimension considerations as follows.
Disregarding the small contribution from the first diffu-
sion mechanism, we can assume that Dy depends on c,
Uy, and Ay = 1/py. An elementary diffusion event, the
jump of aparticle from one wave to another, in astatis-
tically isotropic medium can depend on the vel ocity of
thefirst wave squared and on the velocity of the second

wave squared, i.e., Dy [ ué [OM#. The dimensional pro-

portionality coefficient can be only cA,. Asaresult, we
obtain

D; = constcA,M” = const ugh,M>,

which matches formula (27).
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Abstract—The nonlinear dynamics of systemswith aspatially periodic ground state was studied. The dynam-
ics of kinks against the background of a periodic soliton structure was considered for the example of the sine-
Klein-Gordon model that described a fluxon lattice in along Josephson contact in an external magnetic field
and an incommensurate structure of a surface atomic layer or adatom chains on the surface of a crystal. The
vel ocity of moving kinkswas shown to be bounded from above and from below if the ground state was spatially

periodic. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, interest of researchers working on
the theory of nonlinear waves and solitons has shifted
to studying the nonlinear dynamicsof real physical sys-
tems with their discrete character, internal structure,
and spatial nonuniformity. Of special interest are lay-
ered substances in which material parameters are peri-
odically modulated in space (“modulated systems’).
Examples of such mediaare layered crystals with poly-
atomic unit cells (in particular, high-T, superconduc-
tors), multilayer magnets (which offer much promise
for technological applications), corrugated optical fiber
waveguides, etc. In al these media, spatial periodicity
results in a band structure of the spectrum of linear
waves and the formation of gaps (“forbidden bands’) in
this spectrum. The existence of peculiar localized exci-
tations, so-called “gap solitons,” in forbidden spectrum
regions becomes possible if medium nonlinearity is
taken into account [1-3]. Unfortunately, gap solitons
can only be studied by approximate methods in the
small-amplitude limit within the framework of simpli-
fied models.

In this work, we call attention to the possibility of
the existence of gap solitons of adifferent origin, which
can be studied by exact analytic methods with the use
of so-caled integrable models. Consider systems in
which all materia medium parameters are spatialy
uniform, but the ground state is spatially periodic.
Examples of such systems are numerous and well
known. The ground state of along Josephson contact in
amagnetic field higher than critical isaperiodic fluxon
lattice [4, 5]. Another example is an incommensurate
periodic structure that can be formed by surface atoms

as, for instance, on the [111] surface of gold [6, 7],
because of different € ectronic states and, therefore, dif-
ferent elastic properties in the bulk and in the surface
layer.

Similar but one-dimensional incommensurate struc-
tures can be formed by adsorbed atom chains on stri-
ated [110] surfaces of crystals [8]. Examples of such
systems (hereafter called “ self-modulated™) are antifer-
romagnets with nonuniform exchange-relativistic Dzy-
aloshinski interaction and with the ground state in the
form of a periodic helicoidal structure [9, 10] and the
domain structure of ferromagnets with magnetic dipole
interaction taken into account. In these examples, the
spectrum of linear excitations also contains gaps, but
soliton excitations whose frequencies lie within these
spectral gaps are in many respects different from those
in usual modulated media.

As afirgt step, we studied the dynamics of the sim-
plest one-parameter topological solitons of the “kink”
type [11], which propagate in a self-modulated
medium, that is, through a periodic lattice of similar
Kinks.

2. FORMULATION OF THE MODEL: A PERIODIC
GROUND STATE AND THE SPECTRUM
OF LINEAR EXCITATIONS ABOVE IT

Consider asimple example of a self-modulated sys-
tem, namely, an incommensurate structure of a surface
atomic layer or of achain of adsorbed atoms on the sur-
face of acrystal. Interaction between surface atomswill
be taken into account in the harmonic approximation. It
is assumed that the equilibrium interatomic distancein
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the absence of a surface field isb and is different from
the interatomic distance in the bulk, which equals a.
The effect of bulk (substrate) on the adatoms can be
modeled by a periodic potential relief with the period a.
For simplicity, this relief is selected in the form of a
trigonometric function. (The influence of adsorbed
atoms on the substrate is ignored; that is, the substrate
is considered absolutely rigid.) The potentia energy of
this system has the form

U= Y Ul eos e 5 S —yoa b )

wherey, is the coordinate of the nth atom and a is the
elastic interaction constant along the chain. The
dynamic equation for atomic displacements

vV, = y,—an
in this model (the Frenkel—-Kontorova model [12]) has
the form

2nU, . 21y,

sin——g—”+0((2vn—vn+l—vn_1) = 0.(2)

mv, +

Using the long-wave approximation and the dimen-
sionless variables

U U
uzw, X = 20T [—%, t = 2t [—%,
a oa ma

we obtain the well-known sine-Gordon eguation [11]
Uy — Uy + Sinu = 0. (©)]

In the same approximation and in the same vari-
ables, total energy (1) takesthe form

2 2

O
U= EoIdxélJE‘+u—2’(+(l—cosu)+Eu%, 4

where

a
E0=§_F[ an

The incommensurability of the chain of adatoms and
the substrate is characterized by the dimensionless
parameter

_ [aa’a=b
U, a

§

For a long Josephson contact, field u(x) describes
the phase difference of the wave functions of supercon-
ductors at the contact, and the & parameter is propor-
tional to the external magnetic field applied in the con-
tact plane [13].

The last term &u, in Eqg. (4) for the energy has a
divergent form and does not influence dynamic equa-
tion (3). Changes in the & parameter, however, change
the potential energy of the system and can dlter its
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ground state. At b = a, the ground state corresponds to
the trivial solution of (3) with u =0 and energy E = 0.
At b # a, the situation is more complex.

For definiteness, set b > a (€ < 0). In addition to the
u = 0 solution, (3) then has a nontrivial static solution
[4,5]

Up(X) = TT+ 2amE|—>k(, Iq% 5)
™ O

where am(z, k) is the elliptic amplitude and k is the
modulus of thiselliptic function. Solution (5) describes
a“stretched” system with a periodic chain of 2mmkinks
(achain of “one-dimensional” didocations in the sur-
face layer or a fluxon lattice in a Josephson contact)
with the distance L = 2kK (k) between them, where K(k)
is the complete dliptic integral of the first kind. The
natural kink width is avalue of the order of one. In the
initial dimensional variables, thiswidth is given by the
equation

_ a (a2’
2m\ U,
The energy density of such a periodic structure (per
period) is

g=3 = EODZ[%E—(—k—)—l}

L~ Hel KK

En_ Mo
TR + aa (6)

Here, E(K) isthe complete eliptic integral of the second
kind. Energy density € depends on the & parameter of
incommensurability of interatomic distances in the
chain and in the substrate. At small & parameter values,
the ground state of the system is uniform, and periodic
solution (5) with a high energy can only exist if pres-
sure is applied to the chain at infinity. However, if
parameter & exceeds the critica value &, = —4/m, at

which
_asd Y
b, = a+n 5 @)

the energy minimum corresponds to periodic state (5)
with the modulus of the lliptic function determined by
the equation

E(k) _ &

k&

Small-amplitude excitations against the background
of the nontrivial ground state withw = u—u, < 1 are
described by the linear equation

Wy — W, + %L—chz%, %w = 0. (8)

Periodic solutions of this Lamé equation for linear
waves above the ground state were discussed in [14]
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Fig. 1. (a) Dispersion law for linear waves in a self-modulated system with a periodic ground state and (b) the same dispersion law
in the frame of reference moving at the group velocity of linear waves.

(also see [15]). They are expressed via elliptic eta and
theta functions,

_ H(x/k—=n)
W= "ok

and the dispersion law of linear waves w = w(q), where
g isthe wave number, isimplicitly written as

exp[i(gx—wt)], 9)

1 [

@ = 2dn(n, k), g = ;Z(nK), (10)
where the Z(n, k) zeta function is purely imaginary in
the problem under consideration. As distinguished
from the dispersion law for linear waves above a uni-
form ground state w? = 1 + ¢, the spectrum of linear
waves above periodic ground state (5) consists of two
branches separated by a gap a q = q, = TU/L (see
Fig. 1a). The first Goldstone branch (I) describes natu-
ral oscillations of the kink lattice, which istreated asan
effective chain of anharmonically coupled quasi-parti-
cles. Inthelong-wave limit (w, g — 0), the dispersion
law has the “sound” form w = s,q, and “the velocity of
sound” inthe kink lattice is

_ KK(k)
= Bk

wherek' = J/1-K*. If the density of kinksin theincom-
mensurate structureislow and L > 1 (k' < 1), itiseasy
to find the dependence of s, on L,

Sy = 2Lexp(-L/2).

In the initia dimensional variables, this dependence
takesthe form

2
_ Jaa™2L O O
%= m A P
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In the opposite limit, when q — ¢, = T/L and
w— w, = K/k, the linear wave represents antiphase
kink oscillations and is described by the function

w = cn%((, l%sin(wlt).

The second (activation) spectrum branch (I1) is
bounded from below by the frequency w, = 1/k (at g =
o), and the corresponding solution

w = sn%, KEsin(w,t)

describes antiphase oscillations of regions between
kinks at fixed positions of solitons themselves. At large
wave numbers q > qg, the spectrum again assumes the
sound form, but the vel ocity of sound isthen larger than
S (inour variables, larger than one). This velocity cor-
responds to the limiting velocity of linear waves in a
uniform medium without solitons. In the L — o
(k — 1) limit, the lower branch of linear waves disap-
pears, and the upper branch takes the form

w=J1+q", w,— 1.

It is expedient to rewrite the dispersion law in terms
of the group velocity of linear waves

Vy = dwldq

and to write wave frequenciesin the frame of reference
that moves at the group velocity,

W= w—qVy.
Theresulting dispersion law is shown in Fig. 1b, where
curves| and Il correspond to the lower and upper spec-
trum branches in Fig. 1a. The hatched region between
them refers to two-parameter dynamic solitons of the
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envelope, which will not be considered. Below, we
restrict our analysis to studying the dynamics of kinks
(one-parameter topological solitons) in an incommen-
surate structure (a periodic lattice of kinks of the same
sign). Such soliton solutions correspond to the s, <
Vg < 1region of the velocity axisin Fig. 1b and to the
hatched sector of velocitiesin Fig. la

3. MOTION OF A KINK
THROUGH A SOLITON LATTICE

Consider the propagation of aone-parameter soliton
(additional kink) when the ground state is given by
periodic function (5), that is, the propagation through a
periodic lattice of kinks of the same sign. The exact
solution to this problem is simplest to find using the
Darbu transformation, which allows more complex
solutions to be obtained if a“seed” solution is known
[here, solution (5) for the ground state]. The Darbu
transformation is especially simple to use if the seed
solution depends on asingle variable, asin the problem
under consideration. Indeed, we have u = uy(x), anduis
independent of time. (More complex solutions against
the background of a moving periodic structure are eas-
ily obtained using the L orentz transformation.) A prob-
lem similar to ours was considered in [16, 17] for soli-
tons of the sine-Gordon equation that propagated
against the background of the standing monochromatic
wave Ug = Ug(wt) and in [18] for solitons of the hyper-
bolic sine-Gordon equation against the background of a
monochromatic wave.

The Darbu transformation for sine-Gordon equa-
tion (3) that we are using is well known [19]. To write
this transformation in a compact form, it is convenient
to pass from theinitial field variable u(x, t) to new vari-
ables V and Wrelated to theinitial field u as

V = i(u +u),

W = exp(iu). (11)

For these variables, (3) iswrittenin the Lax form,

-1 10
ViV = 5 -

= VW.

(12)

W+ W, (13)

There is an auxiliary linear problem for two com-
plex-valued functions (X, t) and ,(x, t) that corre-
sponds to system (12), (13). Let us introduce the col-
umn function

1

W
W,

<
oo™
OO
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An arbitrary solution u(x, t) [therefore, also V(x, t) and
W(x, t)] can then be put in correspondence with the
overdetermined system of equations [19]

V. A+—=

4y, = L v, (14)
)\+\7V-X -V
Vv )\—VXV

4y, = L g. (15)
)\—m _V

Generally, the complex parameter A in (14) and (15) is
the Darbu transformation parameter. The initial sine-
Gordon equation [Eg. (3)] is the condition of system
(14), (15) consistency. Solving (14), (15) with a given
seed solution ug(x, t) (consequently, with given Vy(x, t)
and Wy(x, t) functions) and an arbitrary A parameter
allows a new u(x, t) [or V(x, t) and W(x, t)] solution to
be constructed. Naturally, the A parameter should be
selected such that the new u(x, t) solution will be real.
L et usintroduce the notation

T
b 027N,

Therelation between the new and seed solutionsisthen
given by the formulas

Using (11), we can easily find the final form of the
equation that relates the new and old solutions in the
initial field variables,

0, = A= (16)

oy,

P,(Ug, A)
Wi(Ug A)

It followsthat the central problem isto solve system
(14), (15) of linear equations with variable coefficients.
In our case, the problem is simplified, because the ini-
tial solution for the ground state u = uy(X) is indepen-
dent of time. Therefore, (15) becomes a differential
equation with constant coefficients and includes coor-
dinate x as a parameter. For the periodic ground state
under consideration [Eg. (5)], the V, and W, functions

are written as
—an( l%

2
_ Hox -m,%
W, = (P&, ks—icne-, ,
0 DEk% Ck

and system (15) of linear equationsiseasily solved. The
key problem isto correctly select the A transformation

(18)

u(x,t) = ug(x, t)—2iln

(19)
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parameter at which the new u(x, t) solution is real. We
will see below that selecting arbitrary real numbers for
A leads to rea u(x, t) solutions, and the A parameter
itself characterizes the velocity of soliton propagation.

The solution to (15) has the form
Y, = a(x)exp(ut) +b(x)exp(-pt),
( u Vo)
-W,

0

a(X)—5—— (20)

exp(ut)
( u Vo)
-W,

A
—b(x) exp(-ut),

0

where

- %J(A NS

Substituting (20) into thefirst pair of equations (14)
and equating the coefficients of exp(xpt) to zero yields
equationsfor a(x) and b(x) solvablein quadratures. The
corresponding expressions have the form

Wod

a(x) = exp[uI

0

VW [l
)\ WO 0

+ W,
%dx
- 0

(21)

O A2
b(x) = exp+
(x) |oDu'([AZ

V, W,
1 0 Od"'CzEI
2)\ —W, O

It follows from (16), (17) and the unimodular char-
acter of the W function [see (11)] that the ,/\; func-
tion isunimodular. It is easy to check that this require-
ment ismet if the C, and C, constants of integration sat-
isfy the condition

Cl_CZ = |T[/2

Let us separate out the real and imaginary parts in the
first integral in (21) and use the relation

Wo—Wg = 2V,

The equation for the Y,/ ratio, which determines new
solution (18) for u(x, t), then becomes

Wo - i &R00) ~iexp(9)
v - P00 T (i +9)

(22)
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where 9 = 2u(t + f(x)) and

k dx
f(X) = =_\"—= , 23
) 4%\ )\ﬂ-([dnz(x/k, k) + (2kp)? @)

_ dn(x/Kk, k)
¢ = arctan——-———-——Zku , o0

b = arctan an(x/k k)cn(x/k, k)

2sn?(x/k, K) — (1 + A%’

The differentiation of the (¢ + p) function with
respect to the coordinate followed by simple transfor-
mationsinvolving elliptic Jacobi functions and by inte-
gration transforms these equations into

e and e

where the A phase shift of the solution implicitly
depends on the k and A parameters as follows:

(25

B0
&' (1+A)K 29

Note that all the formulas given above are based on
the assumption that A > 1. This corresponds to positive
f values; that is, the soliton movesin the negative direc-
tion.

The f(x) function in (22) can be represented by the
sum of two terms,

f(x) = 2 +x(),

where the mean value of the x(x) periodic function is
zero. Of key importance is the f(x) function component
that linearly grows as the coordinate increases. This
function determines the mean velocity of soliton prop-
agation through the incommensurate structure,

-1

_ 4K(k))\ 0 dz
(A —1)k? DI dn(z, k)+(2ku)%

(27)

It followsthat, in (22), the phase
_ 2y
= =, (x+ Vi) +2ux(x)

describes soliton movement in the negative direction at
mean velocity v. This movement is accompanied by
periodic oscillations when the soliton passes through
the points at which soliton lattice kinks are situated.
Substituting (22) and (25) into (18) yields the fina
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Fig. 2. Movement of an additional kink through alattice of
solitons. The dashed line corresponds to the field distribu-
tion ug(X) in the initial periodic incommensurate structure.

solution for the motion of the additional soliton through
the soliton lattice,

u(x,t) = mt+ 2am8¥<(, l%

. . (28)
Dexp(|K+) iexp(d +ik)0O
—2iln 0.
Dexp( —iK,) +iexp(d —ik)g
Here, the notation
lD Q(+A
Ky = l% ames L% (29)

is used for convenience.

In spite of the awkwardness of solution (26)—(29), it
has a simple physical interpretation, and an analysis of
its asymptotic behaviors poses no difficulty.

4. DISCUSSION

First, consider the asymptotic behaviors of the solu-
tion. If X — £oo (§ — £0), it follows from (28) that

U(X —» —oo, t) =TT+ 2amngA, %
(30)

- x-A
U(X —= +oo, t) =TT+ 2amDT, l% + 2T

The 2t term in (30) in the expression for u(x —
+00) corresponds to the appearance of an additional 21t
kink in the initial lattice of solitons. Because of the
presence of this additional soliton, the initial lattice is
asawhole stretched by 2A. The A value depends on the
velocity at which this soliton moves.

The described dynamics is schematically shown in
Fig. 2. The dashed line corresponds to field distribution
Ug(X) in the initial periodic incommensurate structure.
The additional kink, which moves through the lattice,
has a steeper front in the figure (which corresponds to
velocities close to one). This kink displaces the whole
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structure behind it by 2A(v). Consider the limiting
cases of this movement.

Inthe A — oo limit (then u — ), the kink veloc-
ity tends to its limiting value v — 1 [the limiting
velocity in Lorentz-invariant model (3)]. The width of
the kink | = v/2u then tends to zero, and the kink trans-
formsinto a singular Heaviside theta function. The 2A
phase shift of the solution vanishes at infinity: the sin-
gular kink moves through an undeformed initia peri-
odic structure at the limiting velocity, and

U(+0) —Ug(+%0) = 27T

The dynamics of the kink moving in a periodic struc-
ture a minimum velocity , is of interest. In this limit,
p — 0, and A tendsto its minimum value

1+K
"

The width of the moving kink then tendsto infinity, and
the kink “spreads” Its limiting velocity s, coincides
with the sound vel ocity of long-wave oscillations of the
initial lattice of kinks, and the 2A phase shift tends to
2A =L, that is, to the period of theinitial periodic struc-
ture. Regular alternation of kinksin the self-modulated
structure is then restored, and the u(+o) — ug(+o0) shift
vanishes.

The limiting case of additional soliton movement at
velocities close to s, can be given aclear physical inter-
pretation if the incommensurate structure has a large
period, L > 1 (whenk' < 1). Inthislimit, separate kinks
can be treated as weakly interacting quasi-particles that
form a one-dimensional chain. The solution to (3) for
an isolated kink iswell known [11, 12],

)\min =

u= 4arctan[expDX 43N } (31)

DA/l vﬂ

Substituting this solution into expression (4) for the
total energy yieldsthe energy of theisolated kink inthe
form

E = EOEL v ong. (32)

0J1—v? [l

Obviously, velocity v in dimensionless variablesis
related to velocity V, in theinitial variables as

_ Vi/m
Jaa’
It follows from (32) that, for v < 1, the kinetic

energy of the kink is E = MV;/2 and its effective
mass is

U
M= 2 —Zm (33)
T aa
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Further, it follows from (32) that the energy of the iso-
lated static soliton becomes negative at & < —4/TT
Above, we obtained this critical incommensurability
parameter from the exact periodic solution given by (5).
At largeincommensurability parameter values|&| > |&,|,
the formation of kinks becomes energetically favor-
able. Their density, however, remains finite because of
mutual repulsion. The repulsion energy between two
kinks of the same sign was calculated in [20] for the
sine-Gordon equation. At a distance between kinks far
exceeding their size, this energy has the form
U(A) = 32E,exp(-A/AN), (34
where A is the distance between solitons and A is the
characteristic kink width introduced above.

The coordinate of the Nth kink in the soliton lattice
can be written in the form
yN = LN + ZN!

where L is the distance between kinks in the ground
state and ¢, is small kink displacements. The total
energy of the system (above the ground-state energy) is
then written as

_ < 0L, (f 0 Lo
E = ZS_ZM 2 +32E0€XpD_KD

4 Ogtd
(35
0 ZN_ZN—]EID
“EPOTTA T OF

This corresponds to the well-known and compl etely
integrable Toda model [21, 22]. We will only consider
the long-wave approximation, when relative displace-
ments of neighboring kinks are substantially smaller
than their width,

n—Cn-r <A

Passing to the continuous coordinate of kink centers
NL — z, wethen easily obtain the well-known Bouss-
inesq equation [11]

32E,L°
2 oPOAD

MZTT -
(36)
O L2 L, O
X %Zzz"' 1_2ZZZZZ_/_\ZZZZ% =0

in the main nonlinear approximation, that is, only tak-
ing into account terms quadratic in {(z, 1).

It is easy to see that, if the dispersion (~{,,,) and
nonlinear (~{,(,,) terms are ignored, the obtained wave
equation describes kink lattice oscillation waves propa-
gating at the velocity
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o = (@82l 0 LD

Above, we obtained the same expression for s, fromthe
exact solution for linear waves in an incommensurate
structure.

The soliton solution to (36), which describes a
“superkink” against the background of a lattice of
kinks, has the form [11]

{ = —J3N \%—1
S
37
xD1+tanh[J§ Ve 42 VKT}H
0 S5 L B

InFig. 1b, aV, > s, velocity axis region in the vicinity
of the V, = s, point corresponds to this solution. In the
V, — S limit, we have

((+2) —{(-=) = 0.

Above, this result was obtained from the exact solution.

5. CONCLUSION

In this work, we considered the dynamics of a kink
moving through an incommensurate structure, through
a lattice of kinks (the dynamics of a fluxon moving
through a fluxon lattice in a long Josephson contact).
The exact analytic solution was found and studied to
describe this dynamics in terms of the sine-Gordon
equation. In the limit of alarge lattice period and alow
velocity of the additional soliton, a qualitative physical
description of the dynamics of the soliton was sug-
gested. Theresults can be used to theoretically describe
changes in the density of fluxons in a long Josephson
contact under applied magnetic field variations.
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Abstract—Approximate and humerical methods are used to study the behavior of autowaves for parameters
close to the propagation threshold. Under these conditions, the variations in wave velocity and amplitude are
slow. A quasi-steady-state equation is derived for the vel ocity. This equation describesthe relaxation to a steady
state (uniform motion) in the above-threshold region and the initial damping stage that determines the time
scale of this process in the below-threshold region. As the threshold is approached, the time scales indefinitely
increase in the above- and bel ow-threshold regions of parameters. Small random inhomogeneities of the active
medium and other “noise” sources produce intense velocity pulsations. These pulsations are comparable in
scale to the mean velocity (as in the case of strong turbulence) and resemble the critical fluctuations in order
parameter near the point of a continuous phase transition in their statistical properties. The pulsation spectrum
exhibits a sharp peak at zero frequency. In contrast to flicker noise, this peak disappears as one recedes from
the threshold. The solutions to the quasi-steady-state equation and the results of numerical simulations agree as
long as the fluctuations are small—as in the theory of continuous transitions, beyond the fluctuation

region. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Traveling pulses are avariety of autowaves[1]. The
pulse structure can be clearly imagined by considering
areaction wave moving along atube with porouswalls.
Because the reaction products behind the wave filter
through the walls, they are gradually replaced with the
original material from the space surrounding the tube.
Since the mixture composition that was before the wave
passage is restored, a new pulse can travel in the wake
of the first pulse. Thus, a periodic autowave is a
sequence of pulses. In atwo-dimensional reactor (e.g.,
a Petri dish), atraveling pulse can turn into a rotating
spiral. Indeed, if the tube is closed into aring, then the
pulse will rotate with a period that, of course, must
exceed the restoration time of the original mixture com-
position (this requires that the ring radius be large
enough). A flat layer of the active medium can be rep-
resented as a set of such concentric rings. Since the
pulse velocity, clearly, does not depend on the ring
radius, the pulses in the outer rings will lag behind to
form a spiral bent in the direction of rotation. The cir-
cular waves and other complex structure diverging
from the leading center can be “constructed” from trav-
eling pulses.

Thereaction wave that formsthe leading edge of the
pul se propagates due to the diffusion of active particles
into the original mixture. In order of magnitude, its
velocity u and width b are

u . /x/tg,

b0, /XTg, a.D

where ¥ is the activator diffusion coefficient and 1y is
thereaction time scale. Estimate (1.1) suggeststhat this
time is short compared to the restoration time. In this
case, the restoration stage does not affect appreciably
the pulseitsalf (its velocity and amplitude). It isimpor-
tant only for the formation of periodic waves, spirals,
etc. At the sametime, activator losses (e.g., through the
tube walls) sow down the reaction. The velacity u
decreases and b increases, which contributes to the
losses. The existence of a propagation threshold, which
was detected in various autowaves (see the review [2]),
is the result of such a feedback. From a mathematical
point of view, the problem of wave propagation with
losses has two solutions; the fast wave is stable, while
the slow wave is unstable. At the bifurcation point, the
two solutions merge and disappear, so this point deter-
mines the threshold value for a control parameter (e.g.,
the ratio of loss time to tg). The propagation threshold
was first found in [3] for combustion waves. In this
case, heat actsasthe activator. Because of the activation
dependence of the reaction rate on temperature, the
region where the reaction takes place is narrow com-
pared to the wavelength. Thisallowed Zel’dovich [3] to
derive approximate formulas for the velacity of steady-
state (uniformly moving) waves and a condition for
their coalescence.

We consider unsteady-state waves propagating
under near-threshold conditions. Under these condi-
tions, the relaxation to uniform motion (for above-
threshold parameters) or the wave damping (in the

1063-7761/02/9505-0973%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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bel ow-threshold region) is slow, which makes it possi-
ble to derive a quasi-steady-state equation that
describes the variations in wave velocity with time.
Although a model of an activated exothermic reaction
is used to derive the equation, its form near the thresh-
old does not depend on the specific model and is valid
for any reaction waves. It thus follows that this conclu-
sion can be extended to traveling pulsesand, eventually,
to all of the autowaves constructed from them. The dif-
ference between the stable and unstable solutions is
small near the threshold. This givesriseto asituation of
an almost indifferent equilibrium similar to that arising
near the point of a continuous phase transition. Devia-
tions from a steady state (a uniformly moving wave)
arise easily and relax slowly. These deviations (critical
fluctuations) are thermal for continuous phase transi-
tions, while, in our case, they are attributable to inho-
mogeneities of the active medium and to other sources
of “noise”” In genera, the latter significantly exceeds
the thermal pumping. As regards the statistical proper-
ties of the velocity fluctuations (the frequency spec-
trum, etc.), they do not depend on noise and are inher-
entinthewaveitself. Indeed, the correlation time of the
fluctuations increases indefinitely as the threshold is
approached, whereas, for noise, this time clearly
remains finite. Therefore, any noise near the threshold
can be treated as 6-correlated (white) noise.

Theformulafor the velocity correlator derived from
the quasi-steady-state equation in the linear approxima-
tion is invalid in the near-threshold region, where the
pulsations cease to be small. The boundaries of this
“fluctuation” region can be determined by comparing,
by analogy with phase transitions, the rms deviation of
thevelocity and the deviation of the mean vel ocity from
its threshold value. For continuous phase transitions,
the extent of the fluctuation region is a parameter of the
material that undergoes a transition. In an active sys-
tem, this extent together with the fluctuation intensity
depends on the noise level. In particular, this allows the
fluctuation region to be extended to facilitate its study
by introducing controllable noise.

2. THE QUASI-STEADY-STATE EQUATION

According to (1.1), the velocity of atraveling pulse
does not depend on the restoration stage. If the restora-
tion time is large compared the activator loss time 1,
then the threshold effect does not depend on this stage
either. Therefore, we disregard the filtering through the
tube walls and consider the wave of activated transfor-
mation of the original material into a product instead of
the traveling pulse. For an exothermic reaction, heat
acts as the activator. The wave moves because of heat
transport to the original material, heating causes an
intense reaction, heat is released, etc. In this case, ther-
mal diffusivity isthetransport coefficient in (1.1). If the
activation energy E is high enough, the heat release is
concentrated near the thermal peak—in the reaction
zone. Ahead, in the heating zone, the reaction can be
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ignored, because the temperature is low; behind, in the
cooling zone, the reaction does not proceed, because al
of the material was used up. The three-zone wave struc-
ture is characterized by three parameters. the Lewis
number L, the ratio of diffusion coefficient to thermal
diffusivity; the Semenov number S theratio of cooling
time 1, to reaction time Tx(T,),
T, = To+ S, 2.1)
where T is the initial temperature, Q is the reaction

heat, and c is the heat capacity; and the Zel’dovich
number

= E _
Z = 5(T=To). (2.2)

b

For Z > 1, thereaction-zone width b is small compared
to the wave width. Therefore, we can roughly consider
this zone as a surface on which the heat and diffusion
fluxes change abruptly [3]. Thus, we have the equations
for the wave

on on ,d°n _

35t +u (t)——La— = —$0(x), (2.3)
oT . oT 9°T

5 tuc X ol = $3(x )—— (2.4)

written in a coordinate system in which the reaction
zoneisat rest at x = 0. The boundary conditions are
n=1 T =0;

n=0, T=0.

We use tx(T,) as the time scale and choose the length
and velocity scales according to (1.1). Here, n is the
concentration of the original materia, T is the temper-

ature measured from T, on the scale T, — Ty, u(t) isthe
instantaneous wave velocity,

0° = upexp[-Z(1-T,)I, (2.6)

Uy isthe velocity of uniform wave motion for S— oo,
and T,,= T(x=0). Prablem (2.3)«2.6) for

X 2.5)

X —> 00,

S> S, = 2eZuy
has two steady-state solutions [3]

Uy (S) > Uy, = Ug/ e,

with the lower branch being unstable. For S< S, there
are no solutions in the form of steady-state waves. At
the threshold S= S, the difference 1 - T, = Z < 1,
which justifies the approximate representation of the
activation law (2.6).

Consider the unsteady-state solutions to this prob-
lem that describe the relaxation to a uniformly moving
wave for S> S§;, and its damping for S< S;,. These pro-

Uy(S) < Uy,
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cesses are slow near Sy, which, as we will see below,
allows an approximate equation to be derived for the
velocity u(t). Fort > u;f , the effect of theinitial condi-

tions must vanish. According to (2.3)—<2.5), we can
then write for the point x =0

¢(t) I°(t', 1)
zﬁf [4L(t t)}t =l @D
¢(t) 1(t,1) t=t
N]_J [4(t_t,) = }dt T.(1), (2.8)
where
(€)= fu(t)de (2.9)

For (2.7), the tota transformation of the material is
assumed, so n = 0 behind the reaction zone. The inte-
grands in (2.7) and (2.8) are nonzero only in a time

interval of the order of u52 near the upper limit.

Equalities (2.6)—<2.8) alow ¢, u, and T, to be deter-
mined. When the wave moves uniformly, u = ¢. Near
the threshold, the vel ocity changes dowly and u differs
from ¢ only dlightly. In the integrands of (2.7) and
(2.8), we use the following expansions everywhere
except the exponentials:

O() =) - (t-)5

u(t) = u(t) —(t—t')gditj, (2.10)

(¢ _ gy QU
where [0 s defined by the equality
I(t',t) = t-t).

If the condition

(U= u(t) —

3
< Uy

‘d_u (2.12)

is satisfied, then expansions (2.10) are valid as long as
the difference (t—t') < u;f .Aswe said above, only this
t' interval gives a significant contribution when inte-
gras (2.7) and (2.8) are calculated. For their calcula-
tions, we introduce a new integration variable in (2.7),
whichisrelated tot' by
&= 13, H[aL(t-t)

The integration over &, should be carried out in the
interval from 0 to 1(0, t)/(2./t) Since the integral rap-
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idly converges, the upper limit may be set to infinity.
The left-hand side of (2.7) then takes the form

% nje‘%(&)[zu(zl) _antd,. (212)

Let ussimplify thefactor at the exponentia in (2.12) by
retaining the terms with the derivative du/dt to a power
not higher than the first power:

1w 60 -u® + 2L |

(2.13)
The instantaneous and mean velocities in (2.13) were
substituted with the threshold value u,, everywhere
except the small difference ¢ — u. Substituting (2.12)
and (2.13) into (2.7) yields

- du

Let us perform similar transformations for the inte-
grand in (2.8). After changing the integration variable

t" 23

(2.14)

= 1Pt )[4t -t)] T+ (t-t)ST; (2.15)

using expansions (2.10); and linearizing in du/dt, we
obtain

du
T (1) —& = 2k
Jotvas A

(2.16)
K = L—1+§(L+2).

A zero K would imply that we cannot restrict ourselves
to thefirst order in the expansion in du/dt used. There-
fore, (2.16) isvalid aslong as K is not too small. Curi-
ously, the K =0 linefor large Z is close to the boundary
of oscillatory instability for the wave under consider-
ation [4]. Having eliminated the temperature T,, from
(2.6) and (2.16), we substitute u for ¢ in the derived
equality. Indeed, according to (2.14), the difference ¢ —u
is proportional to du/dt. However, the above substitu-
tion results in corrections ~(du/dt)(u — uy,), which may
be disregarded near the threshold. Introducing the
guantities

s =SSy -1, (2.17)

and retaining the highest termsin sand v, we obtain the
equation

-1
Vv = uuy -1

dv _ s—2v° _KZ

i to = - (2.18)
For S> S, Eq. (2.18) hastwo solutionsthat correspond
to a constant velocity, with the slow branch u(S) being
unstable. For S< S, the velocity decreases with time
and the wave is damped. For || < 1, the dowdown
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becomes small when the velocity approaches uy, This
stage of dow variations is typical of the growth of
explosive instability near the limit (see [5]) and of cha-
otic regimes with intermittency [6]. If two above-
threshold regions are separated by a below-threshold
segment about utrsi? in length, then the damped

wave can traverse this segment, whereupon its vel ocity
and amplitude are restored in the above-threshold
region [7]. This “tunneling” significantly affects the
behavior of autowaves under near-threshold conditions.
Since any actual medium isinhomogeneous, it consists
of randomly arranged above- and bel ow-threshold seg-
ments when its mean parameters are close to their
threshold values. In this case, the wave percolation con-
dition does not require the existence of an above-
threshold cluster threading the entire medium. The
appearance of small but closely spaced clusters will
suffice.

3. VELOCITY FLUCTUATIONS

Consider astable wave that uniformly moves at con-
stant S> S, with velocity ug, with the temperature in
the reaction zone being

T(x=0) = Ty=1-2(Su3)" (3.1)

Now, let the parameter Sinclude asmall additionthatis
arandom function of time;

S = STL+y()],

I(t)y(t)0 = BB (4 -1,),

The following term will then be added to the left-hand
side of (2.8):

3.2
o< 1. 52

y(t )dt

250[11[

0
x E-[ dE explk.& — A(t, ', E)] (33)

+J‘dE exp[k & —A(t, t', )] El
! O

where
2 1/2
_ Us IjJs 1]
ke = S +Sg
oyttt [ug(t-t)—&°
A(t1t1€) - SO + 4(t_t|) .
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Accordingly, Eg. (2.18) linearized near uy takes the
form

dw
qr T = —f(1), (34)
where
W= V-V Vg= f y = 2./25%,
2 tg
(ug/2)
8 2 2
f(t) = —— dgy(t —42%u2)2T
(t) s/ J' y( 0)
0 (3.5)

x [expl—(v +2)]dv.
0
Given (3.2) and in the asymptotic limit of larget and
t', the correlation function

Cw(t)w(t)d = exp[-y (t+1)]

tt

(36)
[ (1) F (0Pl (1 + )] oty
reduces to
wown= 0% 0 o0 -1, @7

2Lks,H vy

In writing the coefficients on the right-hand side of
(3.7), wesubstituted ug —» Uy, and §, — S, For ther-

mal fluctuations, the “pumping” [y°Clis chosen to pro-
vide an equilibrium value for the mean square of the
deviations for the fluctuating quantity (see [8]). In this
case, [y?00y . For the autowave under consideration,
[y’Uis determined by inhomogeneities of the medium
and by other noise sources; clearly, it does not depend
on y. The growth of fluctuations near the threshold
(y — 0) resultsfrom alow stability of the steady state
(a uniformly moving wave) under these conditions.
This effect is similar to the critical behavior near the
point of a continuous phase transition. According to
(3.7), the vel ocity fluctuations have a L orentz spectrum
with apeak at w = O; the peak width is Aw =y. Signifi-
cantly, the properties of the fluctuations (except their
intensity) do not depend on noise. The correlation time
increases as the threshold is approached, whereas, for
noise, thistime clearly remains limited. Therefore, any
noise near the threshold can be assumed to be a &-cor-
related one. Note also that, in contrast to flicker noise
[9], the low-frequency peak disappears as one recedes
from the threshold. We took into account the pattern
obtained by using the quasi-steady-state equation when
analyzing the results of our numerical simulations of
autowaves.
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4. NUMERICAL SIMULATIONS

We studied a wave with a narrow (but finite) reac-
tion zone. We chose L = 1 to avoid complications
related to diffusion instability. Such awave can be sim-

ulated by using the equations
on,, on_o o1 -
at utl’ax (r]l e)v (4 1)
_ 08 [ .
00 06 6 9 +Z
T Uy 5> = Zd(n, 6 4.2
with the boundary conditions
x=0, n=0 06=-Z
_ _ 00 _ (4.3)
X=X, N =1, Ix - 0.

In (4.1)—(4.3), the concentration of the reaction product
isn =1-nand thedimensionlesstemperature 0 ismea-

sured from T,onthe scale Tﬁ E, so 0 =-Z corresponds
to Ty, B = T,/E. Since, in contrast to (2.5), we have to
take afiniteinterval, 0 < x < X,, for our numerical sim-
ulations, the boundary conditions must soften the effect
of theends, if possible. At asufficiently large x,, wecan
restrict ourselves to substituting the condition T(Xx —
o) =0 for 08/dx =0 at x = Xy, asin (4.3). Thefollowing
simplified form of a steady-state wave was used as the
initial conditions:

O<x<—=,

XO _ Xd:l
5 N = exp[utr%—gm}

0+7 = Zexp[k+%<—%da},

X X
§°<x<x0, n=1 6+zZ-= Zexp[k_%—aqﬂ,
_ i, <t
k, = 2 [DzD +S }

This choice alows us to speed up the attainment of a
steady (for S> S;) or quasi-steady (for S< §;) state.
The instantaneous wave velocity was determined from
the motion of the maximum of the function ®. In the
above-threshold region S > S, the “trail” velocity u,
was chosen to reduce the displacement of max® from
the point x,/2, if possible. In this case, the effect of the
end points x = 0 and X = X, on the wave parameters was
negligible (for x, = 2000). Thus, we found the depen-
dence uy(S) and the characteristic relaxation time to a
steady state t, (this time was determined from the time
at which the difference between the instantaneous
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Fig. 1. Damped-autowave velocity versustime. (a) Numer-

ica simulations; 10%S = 2.469 (1), 2.470 (2), 2.475 (3),
2.480 (4), 2.485 (5), 2.490 (6), 2.495 (7), and 2.500 (8).
(b) The same curves after scaling the axes.

velocity and ug decreased to 0.01uy). Subsequently, we
introduced noiseintheform (3.2) at u,= ug; the product
of 0.1 and random numbers from the interval (-1, +1),
which changed at each step, was used as the function
y(1). A built-in subroutine of the GNU Fortran-77 com-
piler served as the random number generator.

In all cases, we used Z = 10 and 3 = 0.09. For our
system of parabolic equations, we employed animplicit
scheme that ensured stability and convergence of the
computational procedure [10]; the stepsin spaceand in
time were 0.1 and 0.2, respectively. We also computed
two cases with a spatial step of 0.01 for 10%/S equal to
2.3 and 2.4. Decreasing the step did not cause signifi-
cant changes in the computational results: the mean
source power @ in a steady state was conserved with a
relative error <10, For the above parameters, the
width of the reaction zonein the waves under consider-
ation is b = 1 and the width of the heating zone is
Zb = 10; the corresponding (Michelson) time scale is
T = 100 (because the velocity scale is about 0.1). The
procedure described above yielded uy, = 0.073 £ 0.001
and S;, = 4057 £ 1. Figure 1 shows u(t) for several val-
ues of S (<S;). We see how the wave damping slows
down as the threshold is approached. This slowdown
and the curve shape are in agreement with the solution
to the quasi-steady-state equation (2.18) for s < O:

v(t) = ECOtEt'LD —25+0(H

a;, = arccotg/i —%E,

(4.4)
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Fig. 2. Time scale for autowaves versus distance from the
threshold. Thetimet, is determined from the time when u—

Ug decreases to 0.01ug and t, is determined from the posi-

tion of the point of inflection in the curves of Fig. 1a (and
similar curvesfor other S).

where v; = v(t = 0). According to (4.4), the damping
time scale t; O (—s)¥2. As was noted in Section 2, this
behavior istypical of the growth of explosive instability
and of regimes with intermittency. After scaling, the
curves approached but did not coalesce because of the
small inaccuracies in determining S, and uy,. (When a
value of Scloseto S, is specified in computations, the
relative error in the difference between these values,
i.e, s, increases. A similar remark istruefor u—uy,.) In
general, the agreement between the simulation results
and (4.4) is satisfactory.

Thetime scaleisplotted against SinFig. 2. The plot
resembles the temperature dependence of susceptibil-
ity, scattering cross sections, etc., near the point of a
continuous phase transition. However, the singularity at
S= G, is different in nature from that for continuous
transitions. In the latter case, a new phase can be
obtained from the old phase by means of a small defor-
mation. The wave solution disappears at the threshold
(explosive instability); the difference between the old
and new regimesisfinite. Theleft and right parts of the
plotin Fig. 2 have adifferent meaning. Thisistherelax-
ation time to a steady state (uniform wave motion) for
S> §,;, and thetime of transition to anew regime (in our
case, the wave damping time) for S< S, If we continue
our comparison with phase transitions, then a finite
phase difference (e.g., in density) correspondsto afirst-
order phase transition. A phase equilibrium is possible
in such atransition. The position of the phase boundary
isstable, for example, for fixed system temperature and
volume. When the volume is varied, the boundary is
displaced and one of the phases grows at the expense of
the other. Without allowance for the boundary energy,
the transition appears smooth until the complete disap-
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Fig. 3. A typical spectrum of the u(t) — ug velocity pulsa-
tions triggered by white noise. The frequency wisin units
of 217t; the computational timeistg = 60 000. The spectral-

peak width Awis plotted against distance from the threshold
intheinset.

pearance of this phase. Actually, for a sufficiently small
amount of phase, it is unstable and disappears
abruptly—there is athreshold in this case as well. L€,
for example, aliquid drop bein equilibrium with vapor.
During an isothermal expansion, its radius decreases
because of its evaporation. When the critical radius cor-
responding to unstable (Gibbs) equilibrium is reached,
the drop abruptly disappears and the pressureincreases.
For first-order phase transitions, the near-threshold
region is more difficult to observe than that for auto-
waves.

For the cases with the inclusion of noisein the form
(3.2), the steady state (u = ug) found without any noise
addition played the role of initial conditions. The value
of y?[calculated for checking purposes is close to its
theoretical value (1/300). At such a noise level and for
L and Z given above, s < 10 must correspond to the
fluctuation region. This estimate is obtained if the fluc-

tuation region is specified by the condition O[> vﬁt,
by analogy with the theory of continuous transitions.
Thevariance for the velocity pulsations and itsincrease
as the threshold is approached obtained during our
computational experiments agree with (3.7). It should
be noted that, without noise, pulsations related to
rounding-off in our computations are observed. These
pulsations also grow as S — §;,, remaining much
smaller than the pulsations due to the introduced noise
for all S(thevarianceratio isno lessthan 10). A typical
pulsation spectrum is shown in Fig. 3. The “line” fre-
guencies are wy, = 2m/t, wherenisaninteger andtyis
the computational time. The line intensity distribution
corresponds to a continuous spectrum. No resonances
were observed at w# 0. The peak at zero frequency nar-
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Fig. 4. Relation between the dispersion of velocity pulsa
tions, [u — uQ)ZD and the relaxation time to a uniformly
moving wave (u = ug). The data points correspond to S =

4444, 4348, 4255, 4167, 4149, 4132, 4115, 4098, 4082,
4065, and 4057. For convenience, a straight line with a
slope angle of 174 isdrawn in the figure.

rows as the threshold is approached; this narrowing is
shownintheinsert to Fig. 3. Thetimet, near thethresh-
old was increased to 120000 to satisfy the condition
toAw > 1. Since the line intensity is arandom function
of frequency, we used the following procedure to deter-
mine the peak width Aw. The sum of intensities was
computed for the first N lines. The number N was
increased until this sum ceased to increase (with arela
tive error <107). Let the maximum sum computed in
thisway be equal to I. Then, Aw isthe frequency of the
line with number N, at which the sum of intensities for
the first N, lines is equal to 1/2. There is no saturation

for white noise, N; = N/2; Aw=vy O fs for a Lorentz
spectrum. As we see from Fig. 3, the dependence of
(Aw)? on sis actualy almost linear: near the threshold,
St=(1-9)/S;.

For each S> S, the velocity variance determined in
our computation with noise can be correlated with the
relaxation time shown in Fig. 2 (the latter was, of
course, determined from our computations without
noise). In approximation (3.7), these two quantities are
proportional to 1/y. If we show the plot on alog-og
scale, asin Fig. 4, then the data points must lie near the
straight line with a slope angle of 174. Using the least-
squares method, we obtained a slope that can be called
acritical index equal to 0.764.

5. CONCLUSION

A detailed analysis of our numerical simulations
indicates that the behavior of the wave velocity and its
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fluctuations can be qualitatively described by a quasi-
steady-state equation in the range of parameters where
the fluctuations are small.

Based on the equality 2v? = s, which defines the
velocity of steady-state waves near the threshold [3],
we can assume that the small deviations of v from vg
obey the quasi-steady-state equation (2.18). In this
case, however, the parameter tjremains indefinite. The
derivation of Eq. (2.18) in terms of the problem (2.3)—
(2.6) alows tjto be determined, with condition (2.11)

being satisfied. The “parabolic” form of the right-hand
side of Eq. (2.18) corresponds to any case of explosive
instability (coalescence of the two branches of the solu-
tion). The steady state (e.g., an autowave) near the point
of coalescence is formally stable againg infinitely small
perturbations. At the same time, the basin of attraction of
thisregimein state spaceis small, which, aswe see, leads
to an increase in the intengity of low-frequency fluctua
tions (soft modes) and in their corrdation time. In this
respect, the hard trangition made by the system because of
the growth of explosive instability does not differ from its
soft transition. The parameters of the new pattern formed
by the hard transition cannot be determined using the
quasi-steady-state equation. However, near the bifurcation
point, thetransition includesad ow stage, which alowsits
time scale to be estimated.
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