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Abstract—The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic
field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were
several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the
spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron mat-
ter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic
moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and ampli-
fied by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on
the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators,
we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that
the suggested approach regains a recent finding of Akhiezer et al. [1] that the spin-polarized neutron matter can
transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional
magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense
electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic
field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of non-
radial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifes-
tation in currently monitored activity of pulsars and magnetars. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent years have seen a resurgence of interest in
the magnetic properties of neutron star matter [1–4] and
of the early advanced hypothesis that a considerable
contribution to the ultrastrong magnetic field of these
compact objects can be attributed to spin polarization
of stellar material [5–8]. This development calls into
question our understanding of the laws governing con-
tinuum mechanics and macroscopic electrodynamics of
magnetically ordered nuclear matter. To the best of our
knowledge, the first significant step in this direction
was made in [1], cited in the abstract and hereafter
referred to as the Akhiezer–Laskin–Peletminskii (ALP)
model, advocating ferromagnetism of neutron stars.
Using equations of the magnetohydrodynamic type
adopted from macroscopic electrodynamics of ferro-
magnetic dielectrics [9], it was shown that magnetically
ordered neutron matter can transmit perturbations by
low-frequency magnetoelastic waves along with the
well-known high-frequency spin waves typical of fer-
romagnetic solids [9–11]. The observation of these

¶This article was submitted by the authors in English.
1063-7761/02/9505- $22.00 © 20789
oscillatory motions in currently monitoring neutron
stars is crucial, in our opinion, for unambiguous identi-
fication of the permanent magnetism of stellar material.
This attitude motivates our present work, continuing
investigations begun in [1], aimed at searching charac-
teristic features of electromagnetic activity of neutron
stars owing its origin to nonradial magnetoelastic pul-
sations of paramagnetic neutron stars.

The fingerprints of the Pauli mechanism of the field-
induced (nonspontaneous) spin polarization of neutron
star matter can be traced in the existing scenario of the
pulsar birth in a supernova event [12, 13]. The cata-
strophic collapse of the massive main sequence star
exhausting its nuclear fuel implies that implosive con-
traction of a weakly magnetized massive star is accom-
panied by intensive neutronization of stellar material
due to the inverse β process

responsible for fast cooling of pulsars [12]. Because
this urca process is controlled by weak, parity-violating
interaction, it is expected that the magnetic anisotropy
caused by the presence of a seed magnetic field intro-
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duces in the final product of the collapse a tremendous
difference between the number of neutrons with spin
magnetic moments directed along the seed magnetic
field and those with oppositely directed spins, such that
the main body of the newly born neutron star mass
develops a permanent magnetization of the paramag-
netic type. The amplification of the magnetic field in
this process is attributed to implosive contraction that
proceeds with the preserved magnetic flux.

Following this line of argument, we consider the
homogeneous model of a paramagnetic neutron star
undergoing nonradial pulsations triggered either by the
implosive effect of a supernova event or by gamma-
bursting starquakes. In doing this, we utilize a some-
what different, as compared to the ALP model, form of
the macroscopic equations governing the motions of
magnetically polarized neutron matter, adopted from
the macroscopic electrodynamics of single-axis mag-
netoelastic insulators [14]. One of the purposes is to
show that the proposed approach is interesting in its
own right because the continuum mechanics of magnet-
ically polarized stellar matter is less studied in astro-
physics compared to magnetohydrodynamics underly-
ing our understanding of the motions of highly conduc-
tive stellar matter threaded by a magnetic field.
Different aspects of this project have been reported in
proceedings of several recent conferences [15–17], and
our goal here is to bring them together in an extended
fashion.

The paper is organized as follows. In Section 2, the
macroscopic equations of the magnetoelastic dynamics
of spin-polarized nuclear matter are introduced and the
dispersion equation for the wave transport of magneti-
zation is derived. Section 3 presents a variational calcu-
lation of the periods of nonradial torsional pulsations of
paramagnetic neutron stars with emphasis on the gen-
eration of the magnetospheric polarization charge
responsible for the radiation from the star; the obtained
analytic estimates are quantified using parameters that
are typical of radio pulsars and magnetars. The last sec-
tion provides a brief summary of the results obtained.

2. GOVERNING EQUATIONS
FOR MAGNETOELASTIC DYNAMICS

In what follows, we assume, as in most of the works
cited above, that permanently magnetized baryon mat-
ter of a neutron star possesses properties of a degener-
ate Fermi gas of neutrons condensed by self-gravity to
the normal nuclear density ρ = 2.8 × 1014 g cm–3. To
describe the equilibrium state of spin-polarized neutron
star matter, we use a linear constitutive equation in the
form given in [18],

(2.1)

Here, χ > 0 stands for the average paramagnetic suscep-
tibility of homogeneous neutron star matter, which is
estimated to be χ ≈ 2χF at the normal nuclear density

M χB.=
JOURNAL OF EXPERIMENTAL
[5–8], where χF is the Pauli paramagnetic susceptibility
of zero-temperature, degenerate, neutron Fermi gas
compressed to the nuclear density,

and B denotes the fossil magnetic field frozen in the
neutron star core. The macroscopic description of
motions of neutron star matter in terms of the theory of
continuous media implies that the space scale of mate-
rial displacements is much larger than the spacing
between baryons. The basic suggestion underlying con-
tinuum models of neutron star material is to identify the
behavior of many-component spin-polarized baryon
matter with that the spin-polarized neutron degenerate
Fermi gas of the equivalent density ρ subjected to the
standard continuity equation

(2.2)

Hereafter,

stands for the convective derivative. The second sug-
gestion of particular interest is to consider the magneti-
zation field m(r, t) (magnetic moment per unit volume)
as an independent dynamical variable of motion, on
equal footing with the bulk density ρ(r, t) and the elas-
tic displacement velocity v(r, t). According to [14], the
distinguishing feature of mechanical behavior of mag-
netoelastic insulators is that the dynamics of their
intrinsic deformations is controlled by a driving force
originating from antisymmetric magnetic stresses τij

(see also [19]). The dynamical equation of magne-
toelasticity is given by

(2.3)

Thus, the antisymmetric form of the magnetic stress
tensor τij exhibits a substantially non-Hookean charac-
ter1 of magnetoelasticity, which comes into play only
when the direction of the local magnetization m devi-
ates from the direction of the equilibrium magnetiza-

1 The linear elastodynamics of material displacements ui in an iso-
tropic solid under pure shear deformations that are not accompa-
nied by density fluctuations is described by the Lamé equation
[20]

(2.4)

where σik is the symmetric tensor of elastic stresses, µ is the shear
modulus, and uik is the strain tensor.

χF
3
2
---n

µn
2

eF

----- 1.3 10 4– ,×≈=

dρ
dt
------ ρ

∂v k
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---------+ 0.=

d/dt ∂/∂t v ∇⋅+=
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---------,     τ ik 1
2
--- m i B k m k B i – [ ] .= =
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tion M. The constitutive equation for the evolution of m
is given by

(2.5)

where ωik is interpreted as the antisymmetric rate-of-
deformation tensor [14].

The above equations of dissipation-free magne-
toelastic dynamics can be represented in the following
equivalent vector form:

(2.6)

(2.7)

(2.8)

This form accentuates the fact that the magnetoelastic
driving force

in Eq. (2.7) is inextricably related to the magnetic
torque density

we again see that magnetoelastic effects manifest them-
selves when the magnetization field m deviates from
the direction of the saturated magnetization M = χB.
Equation (2.8) describing differential rotation of the
magnetization about the magnetic anisotropy axis is the
standard equation of precession under which the direc-
tion of m changes but the magnitude does not. It is note-
worthy that similar equations have recently been used
in the study of the large-scale motions of a poorly con-
ducting interstellar medium possessing properties of
gas-based ferrocolloidal soft matter consisting of tiny
ferromagnetic solid grains suspended in a dense mag-
netically passive and electrically neutral fluid [22].

2.1. Wave Transport of Magnetization
in Paramagnetic Neutron Star Matter

Applying the standard linearization procedure to
Eqs. (2.6)–(2.8),

where

we obtain,

(2.9)

dmi

dt
--------- ωikmk, ωik

1
2
---

∂v k

∂xi

---------
∂v i

∂xk

--------– 
  ,= =

dρ r t,( )
dt

------------------- ρ r t,( )∇ v r t,( )⋅+ 0,=

ρdv r t,( )
dt

------------------ 1
2χ
------ ∇ m r t,( ) M×[ ]× , M χB,= =

dm r t,( )
dt

-------------------- w r t,( ) M×[ ] ,=

w r t,( ) 1
2
--- ∇ v r t,( )×[ ] .=

f r t,( ) ∇ t r t,( )×=

t r t,( ) 1
2
--- m r t,( ) B×[ ] ;=

v v0 δv r t,( ), m m0 δm r t,( ),+ +

v0 0, m0 M χB,= = =

∇ δ v r t,( )⋅ 0, ∇ δ m r t,( )⋅ 0,= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
     

(2.10)

(2.11)

This set of coupled equations describes transmission of
linear fluctuations in incompressible spin-polarized
baryon matter that are not accompanied by the appear-
ance of the density of magnetic poles (the right-hand
sides of Eqs. (2.9)). Substitution of the plane-wave
form of the fluctuating variables

(2.12)

into (2.11) leads to the transversality conditions

Inserting (2.12) into (2.10) yields

After substitution of (2.12) into (2.11), we obtain 

Taking the scalar product of the last equation with k ≠ 0
and considering the above transversality conditions, we
obtain

Given this, the link between the frequency and the wave
vector in the magnetoelastic wave is defined by the cou-
pled equations

(2.13)

Eliminating (k · M), we find that magnetoelastic oscil-
latory motions satisfy the energy equipartition principle

(2.14)

which states that, in the magnetoelastic wave, the
kinetic energy of fluctuating elastic displacements
equals the mean potential energy of fluctuating magne-
tization. The compatibility of Eqs. (2.13) leads to the
dispersion relation of the magnetoelastic wave,

(2.15)

ρ∂δv r t,( )
∂t

---------------------- 1
2χ
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∂t
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1
2
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1
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1
2
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ωρδv
1

2χ
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1
2
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where θ is the angle between k and M. It is remarkable
that the speed of the wave transport of magnetization

(2.16)

in paramagnetic neutron matter is proportional to the
intensity of the fossil magnetic field B; in ferromag-
netic neutron matter, this speed is proportional to the
intensity of the spontaneous magnetization M. This is
noteworthy because the magnetoelastic wave transport
of magnetization is characterized by a dispersion-free
law, ω ∝  k in contrast to spin waves that have quadratic
dispersion in k, ω ∝  k2. It is therefore expected that,
under the cooling of paramagnetic neutron star, the
temperature variation of the equilibrium magnetization
M(T) follows the Curie law

which is due to the dispersion-free nature of magne-
tophonons, instead of the Bloch law

for ferromagnetic dielectrics, which is due to quadratic
dispersion of magnons.

Deserving special comment is the case of the homo-
geneous spherical mass of paramagnetic matter, which
is obviously of particular relevance for neutron stars. In
the case of the homogeneous spherical mass of (nonfer-
romagnetic) magnetics, the internal magnetic field is
uniform and is expressed by the equations

and

which imply that

see, for instance, [21, §76, problem 2], where it is
emphasized that the latter equations hold for solely
nonferromagnetic materials. Substituting this latter
value of B into (2.16), we find

This form of the speed of the magnetoelastic wave is
very similar to that found in [1]. On this ground, we can
conclude that magnetoelastic waves is a feature generic
to the permanent magnetization of neutron star matter
of both ferromagnetic and paramagnetic types. For con-
densed media possessing a highly pronounced property
of magnetic polarizability, the considered magnetoelas-
tic dynamic wave has the same physical significance as
the Alfvén magnetohydrodynamic wave does for
incompressible magnetoactive plasma.

VM
MB
4ρ
---------=

M T( )
B

-------------- χ t( ) T 1– ,∝=

M 0( ) M T( )/M 0( ) T3/2∝–

B 2H+ 0=

B H 4πM,+=

B
8π
3

------M;=

VM
2π
3

------M2

ρ
-------.=
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Quantitatively, the speed of a magnetoelastic wave
in paramagnetic neutron matter compressed to the nor-
mal nuclear density with the magnetic field strength B ~
1012–1014 G, typical of pulsars and magnetars, falls into
the interval 105 < VM < 106 cm/s; for comparison, the
speed of the zero-temperature longitudinal sound
wave is

The transverse magnetoelastic wave is therefore a
slowly propagating exitation in spin-polarized neutron
star matter possessing properties of the degenerate
paramagnetic Fermi gas of neutrons.

3. NONRADIAL MAGNETOELASTIC 
PULSATIONS OF A PERMANENTLY 

MAGNETIZED NEUTRON STAR

The purpose of the remainder of this paper is to elu-
cidate the character of mechanical distortions of a neu-
tron star caused by strong coupling between fluctua-
tions of the local magnetization and material displace-
ment and their effect on electromagnetic activity of a
paramagnetic neutron star. In doing this, we focus on
nonradial magnetoelastic pulsations, which are of par-
ticular interest in pulsar astrophysics [23–25]. Circum-
stantial evidence for the neutron star pulsations is the
coherence of millisecond micropulses inferred in [26].

The eigenfrequencies of nonradial magnetoelastic
pulsations can be computed on the basis of the energy
variational principle. The starting point of this method
is the energy balance equation

(3.1)

which is obtained by taking the scalar product of (2.10)
with δv and integrating by parts over the star volume;
the surface integral is then dropped because the crustal
material of a neutron star possesses properties of a mag-
netoactive solid-state plasma in which the magnetic
ordering effects are heavily suppressed. The left-hand
side of (3.1) exhibits a substantially rotational character
of motions accompanying magnetoelastic pulsations of
a permanently magnetized neutron star. The next step is
to use the factorized representation of the velocity and
vorticity fields

(3.2)

where a(r) is the field of instantaneous displacements
and α(t) defines the temporal evolution of fluctuations.

cs

v F
2

3
------ 109 cm/s.≈=

∂
∂t
----- ρδv2

2
------------ Vd∫ δm B×[ ] δw⋅ V ,d∫=

δw 1
2
--- ∇ δ v r t,( )×[ ] ,=

δv r t,( ) a r( )α̇ t( ), δw r t,( ) f r( )α̇ t( ),= =

f r( ) 1
2
--- ∇ a r( )×[ ] ,=
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Inserting (3.2) into (2.11) and eliminating time
derivatives, we obtain

(3.3)

Substitution of (3.2) and (3.3) into (3.1) leads to

(3.4)

where the inertia M and the stiffness K of magnetoelas-
tic vibrations are given by

(3.5)

Thus, computing the frequency of the magnetoelastic
mode requires specifying the field a of instantaneous
displacements that have a differentially rotational char-
acter, as follows from the expression for the coefficient
K of the restoring force of magnetoelastic pulsations.

3.1. Comments on Nonradial Elastic Pulsations 
of a Solid Star

The eigenmodes of neutron stars associated with
deformation properties of incompressible baryon mate-
rial, highly robust to mechanical distortions, can be
specified, as was first suggested in [23], by spheroidal
and torsional modes of shear elastic vibrations of a
solid sphere. This terminology is due to Lamb [27],
who first tackled the latter problem and gave its solu-
tion for substantially radial spheroidal and torsional
elastic vibrations of a solid sphere (see, e.g., [28]). In
the meantime, the case of nonradial pulsations, which is
of particular interest in the astrophysics of compact
stars, has not been considered in the literature on elas-
ticity and therefore deserves a special analysis. Essen-
tially, the problem is as follows. From classical equa-
tion of elastodynamies (2.4), it follows that the field of
material displacements

corresponding to standing elastic waves of pure shear a
solution of the Helmholtz equation

Clearly, this equation holds for the solenoidal field of
instantaneous displacements,

δm r t,( ) m r( )α t( ),=

m r( ) f r( ) M×[ ] 1
2
--- ∇ a r( )×[ ] M×[ ] .= =

dH
dt
------- 0, H

Mα̇2

2
-----------

Kα2

2
---------- α̇̇ ω2α+ + 0,= = =

ω2 K
M
-----,=

M ρa2 V ,d∫=

K χ 1– m2 Vd∫ 1
4χ
------ ∇ a×[ ] M×[ ] 2 V .d∫= =

u r t,( ) a r( )α t( )=

∇ 2u k2u+ 0.=

∇ 2a k2a+ 0,=
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where

and

is the speed of elastic shear waves in solid bulk. The
poloidal solution

describes even-parity spheroidal modes. The toroidal
solution 

describes odd-parity torsional modes; hereafter, jL(kr)
is the spherical Bessel function and PL(z)(z = cosθ) is
the Legendre polynomial of the multipole degree L.
General properties of solenoidal vector fields, both the
toroidal and the poloidal ones, can be found in [29].
The arbitrary constants and the frequencies of these
modes are customarily found from the boundary condi-
tion of a stress-free surface,

(where ni are components of the unit vector normal to
the surface), which leads to a transcendental dispersion
equation whose roots are determined by the nodal
structure of Bessel functions. In the case of low-fre-
quency nonradial substantially long wavelengths,
λ  ∞, with

the Helmholtz equation of standing shear waves is
reduced to the vector Laplace equation for the solenoi-
dal field of elastic displacements,

(3.6)

The poloidal and toroidal solutions of (3.6) are given by
[24]

(3.7)

(3.8)

From the standpoint of Lamb’s solutions for the fields
of displacements, the spherical Bessel function jL(kr)
determining the radial dependence of a(r, θ) asymptot-
ically tends in the long-wavelength limit to the function
rL that has no nodes in the interval 0 < r < R; from this,
the term nonradial vibrations is derived. The frequen-
cies of nonradial shear modes can be computed from
the above-expanded energy variational principle. Tak-
ing the scalar product of Lamé equation (2.4) with

k2 ω2/ct
2=

ct
2 µ/ρ=

ap Ap L( )∇ ∇ r jL kr( )PL z( )[ ]××=

at At L( )∇ r jL kr( )PL z( )[ ]×=

nkσik r R=
0=

k ω/ct 2π/λ 0,= =

∇ 2a 0, ∇ a⋅ 0.= =

ap N p L( )∇ ∇ rrLPL z( )[ ]××=

=  N p L 1+( )∇ rLPL z( )

at Nt L( )∇ rrLPL z( )[ ] .×=

ui r t,( ) ai r( )α t( )=
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and integrating over the volume, we obtain

(3.9)

Substituting into (3.9) the poloidal and the toroidal dis-
placement fields in Eqs. (3.7) and (3.8), respectively,
allows us to analytically express the respective frequen-
cies of nonradial spheroidal and torsional shear modes
ωs(L) and ωt(L) of a spherical mass of an elastic solid
through the multipole degree L as

(3.10)

where ωE = [µ/(ρR2)]1/2 is the natural unit of frequency
of elastic shear vibrations. Equations (3.10) were
obtained in recent works [30] in a somewhat different
context. The goal of this short comment was to demon-
strate the efficiency of the energy variational principle
in the study of nonradial vibrations, which allows com-
puting the frequency of both the even-parity s mode and
the odd-parity t mode of the solid sphere on an equal
footing. It is also noteworthy that the problem of iner-
tia! waves in a uniformly rotating solid, which, in our
opinion, is of particular interest in the study of pulsa-
tions of rotating neutron stars, was only recently con-
sidered and solved in [31].

The fact that spin-polarized neutron matter can
transmit perturbations by transverse waves indicates
that the magnetic field penetrating into the body of the
star imparts to stellar material a supplementary portion
of elasticity generic to solids. In computing periods of
nonradial magnetoelastic pulsations of a permanently
magnetized neutron star, it therefore seems natural to
use the fields of instantaneous displacements corre-
sponding to nonradial spheroidal and torsional shear
vibrations of a solid sphere. In doing this, we note that
the poloidal vector field associated with spheroidal
nonradial pulsations is irrotational,

This implies that a paramagnetic neutron star does not
support nonradial spheroidal pulsations (because the
coefficient of the restoring force K in Eq. (3.5) van-
ishes), but solely supports nonradial torsional shear
pulsations coupled with fluctuations in magnetization.

3.2. Periods of Torsional Magnetoelastic Pulsations

Under the global nonradial differentially rotational
vibrations of a neutron star, the velocity field of tor-

M α̇̇ Kα+ 0, M ρaiai V ,d∫= =

K
µ
2
---

∂ai

∂x j

-------
∂a j

∂xi

--------+ 
  2

V .d∫=

ωs L( ) ωE 2 2L 1+( ) L 1–( )[ ] 1/2,=

ωt L( ) ωE 2L 3+( ) L 1–( )[ ] 1/2, ωE

ct

R
---,= =

∇ ap× 0.=
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sional material displacements is described by [24, 25]

(3.11)

The constant Nt is eliminated from the boundary condi-
tion

as

(3.12)

The dipole field, with L = 1, corresponds to the rigid-
body rotation of the star, because the angular velocity
becomes a homogeneous vector. The differentially
rotational deformations of the star corresponding to
quadrupole, L = 2, and octupole, L = 3, overtones of
nonradial torsional pulsations are illustrated in Fig. 1.
In spherical polar coordinates, the components of the
toroidal field of instantaneous displacements at(r) in
the star undergoing torsional nonradial pulsations about
the polar axis are given by

(3.13)

Computed with this field, the parameter of inertia as a
function of the multipole degree of vibration is given by

(3.14)

It is easy to see that at L = 1, this parameter equals the
moment of inertia of rigid sphere,

where

is the star mass.
In the general case, the direction of the equilibrium

magnetic anisotropy M can be tilted to the polar axis
about which the torsional pulsations of the star occur,

(3.15)

δv r t,( ) u̇ r t,( ) at r( )α̇ t( )= =

=  
1
2
--- δw r t,( ) r×[ ] ,

δw r t,( ) Nt∇ rLPL z( )α̇ t( ).=

δv
r R=

1
2
--- W t( ) R×[ ] , W t( ) α̇ t( )∇ PL z( ),= =

Nt
1

RL 1–
------------.=

ar 0, aθ 0,= =

aφ Ntr
L 1 z2–( )1/2dPL z( )

dµ
-----------------.=

M L( ) ρat
2 Vd∫ 4πρR5 L L 1+( )

2L 1+( ) 2L 3+( )
------------------------------------------.= =

M L = 1( ) 2
5
---}R2,=

}
4π
3

------ρR3=

Mr M 1 z2–( )1/2 φ β z βcos+sincos[ ] ,=

z θ,cos=

Mθ M z φ β 1 z2–( )1/2 βcos–sincos[ ] ,=

Mφ M φ β,sinsin–=
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Fig. 1. Geometrical illustration of torsional deformations of a neutron star undergoing quadrupole (left) and octupole (right) non-
radial pulsations.
where β is the inclination angle between the polar axis
z and the vector M. After a simple, but fairly tedious,
calculation of integrals, we obtain the following ana-
lytic form of the stiffness:

(3.16)

The frequency of a nonradial torsional magnetoelastic
mode is given by

(3.17)

K L( ) 1
4χ
------ ∇ at×[ ] M×[ ] 2 Vd∫=

=  πMBR3 L L2 1–( ) L 1+( )
4L2 1–

-----------------------------------------

× β 1
3L 1–

2 L 1–( )
-------------------- βtan+ .cos

ω2 L( ) ωM
2 L2 1–( )2L 3+

2L 1–
---------------- βcos=

× 1
3L 1–

2 L 1–( )
-------------------- βtan+ , ωM

2 VM
2

R2
-------,=
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where ωM is the natural unit of frequency and VM =
[MB/4ρ]1/2 is the speed of the magnetoelastic wave in
bulk. This mode can be considered as a magnetoelastic
counterpart of Walker’s mode for spherical homoge-
neous mass of a ferromagnetic solid [11]. For the
adopted constitutive equation of paramagnetic matter
B = χ–1M, this frequency is given by

(3.18)

For an ideal homogeneous magnetic sphere, with B =
(8π/3)M, this frequency is given by

(3.19)

The corresponding period is PM = (2πωM)–1. This mode,
which is said to be the magnetotorsional or m/t mode in
what follows, is unique to the permanent magnetization
of neutron star matter and is an axial or abnormal parity
mode. In the case where β = 0 (the model of the aligned

ωM
2 M2

4χρR2
----------------.=

ωM
2 2π

3
------ M2

ρR2
---------.=
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magnetic torsator), the frequency of the m/t mode is
given by

(see [16]). This equation implies that the asymptotic
shortening of the period P(L) = (2πω(L))–1 as L  ∞
is inversely proportional to the multipole degree of
vibrations, P(L) ∝  1/L. On the other hand, this indicates
the lengthening of periods as the multipole degree of
vibration L decreases. It seems quite plausible that,
under the implosive effect of a supernova event or star-
quake, the permanently magnetized core of the nascent
neutron star can show a highly restless oscillatory
behavior characterized by rather large values of L,
whereas a mature object becomes quieter and its transi-
tion to lower overtones of magnetoelastic pulsations is
accompanied by lengthening of periods.

3.3. Application to Pulsars and Magnetars

To estimate the timing of magnetoelastic pulsations,
we evaluate here periods of the m/t mode for a homoge-
neous model of a paramagnetic neutron star with the
standard parameters, the mass M = 1.4M( and the
radius R = 12 km, and with the magnetic susceptibility
taken from the model of the degenerate paramagnetic
Fermi gas of neutrons condensed to the normal nuclear
density, which corresponds to the homogeneous neu-
tron star model with the above parameters. In Fig. 2, we
plot the period P(L) as a function of the multipole
degree of vibration L, computed in the model of the
aligned magnetic torsator for the magnetic field inten-
sity typical of both radio pulsars, B ~ 1011–1013, and
supermagnetic anomalous X-ray pulsars and soft gamma

ω L( ) ωM L2 1–( ) 2L 3+( )/ 2L 1–( )[ ] 1/2
=

B = 1013 G

B = 1014 G

B = 1015 G

L

PM, s

100

10

1

2 4 6 8 10 12 14 16 18 20

Fig. 2. The period PM of nonradial torsional magnetoelastic
pulsations (in seconds) of a neutron star as a function of the
multipole degree L of vibration
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repeaters B ~ 1014–1015, dubbed magnetars [34]. For a
neutron star with the magnetic field of the Crab pulsar,
the expected period of the m/t mode is P ~ 3–5 min. It
is remarkable that the computed periods are close to
those for pulsed gamma emission of currently moni-
tored soft gamma repeaters (see, e.g., [35]). One of the
salient features of the soft gamma repeater radiation
activity is that they do not display radiation in the
radio region. The pulsed gamma emission of soft
gamma repeaters becomes well discernible just after
highly energetic gamma bursts [36], which are pre-
sumably associated with irregular starquakes [37]. In
Fig. 3, the period of torsional magnetoelastic pulsa-
tions of a paramagnetic neutron star is pictured in jux-
taposition with data on the periodic pulsed radiation
of soft gamma repeaters. Bearing in mind that the
computed periods fall into the realm of pulsed gamma
emission of magnetars, we conjecture that the
detected 5–10 s periodicity of their pulsed gamma
activity is powered by nonradial torsional magne-
toelastic vibrations exhibiting permanent magnetiza-
tion of this class of neutron stars.

3.4. Magnetosphere of a Permanently Magnetized 
Neutron Star

One more remarkable inference of the model under
consideration is that a paramagnetic neutron star under-
going nonradial torsional magnetoelastic pulsations is
capable of generating a periodically oscillating electric
field inducing the magnetospheric effect that has many
features in common with the Goldreich–Julian effect
[32, 33]. This can be readily seen from the Minkowski
equation describing the dielectric polarizability D in

B, G

2

1

3

*
* *SGR1900 + 14

SGR0526 – 66

SGR1806 – 20

PM, s

100

10

1

1013 1014 1015

Fig. 3. The period of nonradial torsional magnetoelastic
pulsations (in seconds) versus the magnetic field intensity B
and data on periods of pulsed gamma emission of soft
gamma repeaters taken from [38]; M = 1.4Msun, R = 12 km;
L = 2 (1), 3 (2), 20 (3).
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Fig. 4. Cross section of the paramagnetic neutron star structure according to expected electromagnetic properties of stellar matter.

B

c

moving permanently magnetized matter of nonferro-
magnetic type (see, e.g. [21]),

(3.20)

under the assumption that the dielectric permeability of
spin-polarized baryon matter is infinitely large, e 
∞, as in metallic solids. For a linear, small-amplitude,
differentially rotational fluctuations of such matter
around the equilibrium state with v0 = 0, Eq. (3.20) is
reduced to

(3.21)

D eE
4π 2e 1+( )

3c
--------------------------- v M×[ ] ,+=

δD eδE
4π 2e 1+( )

3c
--------------------------- δv M×[ ] ,+=
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and as e  ∞ the last equation becomes2

(3.22)

Identifying the angular velocity magnitude with the fre-
quency of magnetotorsional pulsations, we find the inten-

2 Equation (3.22) has the same physical meaning as the equation

in the Goldreich–Julian theory [32] of pulsar magnetosphere
resulting from the perfect conductivity condition σ  ∞ in
Ohm’s law:

.

δE
1
c
--- δv B×[ ] , u–

1
2
--- δw r×[ ] ,= =

j σ δE( 1
c
--- δv B×[ ] )+=

δE
8π
3c
------ δv M×[ ] , δv–

1
2
--- δw r×[ ] .= =
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sity of equatorial electric field E ~ 1010–1012 P–1 V/cm. This
field pulls off the charged particles from the star surface
and accelerates them along the open magnetic field
lines frozen into the neutron star; the electric force Fe ~
eE is much greater than the Newtonian force of gravita-
tional attraction Fg ~ mg: the ratio Fe/Fg ~108– 1010. The
density of the resultant magnetospheric polarization
charge is given by

(3.23)

Numerically, the particle density of the polarization

charge δnc = |δρ/e| is of the order 10–2B  cm–3. We
can expect that magnetoelastic pulsations causing peri-
odic fluctuations of the open magnetic field lines frozen
into the star core should affect the electromagnetic
(synchrotron and/or curvature [39]) radiation by peri-
odic deviations of the beam direction. For neutron stars
with a magnetic field intensity typical of radio pulsars,
the above periodicity manifests itself as a long periodic
modulation of the main pulse train. In searching for this
effect, satellite-based telescopes seem to be more
promising, because proper rotation of the Earth highly
limits the monitoring time of radio pulsars by stationary
Earth-based telescopes. Understandably, this discus-
sion is suggestive rather than conclusive.

4. SUMMARY AND CONCLUSION

While the magnetic flux conservation in the process
of contraction of the main sequence star, predicted in
[40], serves as a sufficiently reliable guide in estimating
the surface magnetic field for both pulsars and magne-
tars, the electrodynamics of neutron star matter respon-
sible for the long-term stability of such highly intense
fields remains one of the challenges in astrophysics of
compact stars (e.g., [41]). One of the plausible explana-
tions is that the fossil magnetic field of a collapsed mas-
sive star, amplified by processes of catastrophic implo-
sion, resides in the star interior by causing strong spin
polarization of baryon matter in the neutron star core
such that the main body of the neutron star mass comes
into gravitational equilibrium in the state of permanent
magnetization promoted by Pauli paramagnetism. The
resultant structure of the paramagnetic neutron star rel-
evant to this scenario, pictured in Fig. 4, is thought of as
a dense magnetic core (composed of spin-polarized
baryon matter) covered by a magnetoactive solid-state
plasma (composed of highly mobile electrons and the
crystallized structure of immobilized protons and
nuclei). It is noteworthy that the presence of a magnetic
core provides a natural justification of the magneto-
plasma processes in the neutron star crust like Alvfén
waves [42] and helicons [43].

To explore characteristic features of electromag-
netic activity of a neutron star owing its origin to the
permanent magnetization of stellar material, we have

δρ 1
4π
------ ∇ δ E⋅ 4

3c
------ δw M⋅( ).–= =

PM
1–
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considered a highly idealized model of a homogeneous
paramagnetic star undergoing global nonradial magne-
toelastic pulsations. Highlighted are magnetoelastic
dynamics equations adopted from the macroscopic the-
ory of poorly conducting magnetics; it was shown that
this theory can be efficiently utilized in the study of
motions of permanently magnetized stars associated
with large-scale transport of magnetization in an
incompressible magnetically ordered stellar matter.
What is newly disclosed here is that a permanently
magnetized neutron star can support torsional nonradial
magnetoelastic pulsations generating the electric field
responsible for the neutron star magnetosphere. The net
outcome of this paper is that the paramagnetic magne-
tization of neutron star matter is not inconsistent with
the available data on electromagnetic activity of both
pulsars and magnetars.
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Abstract—The dependence of the ultracold neutron capture cross section in targets with a thickness smaller
than the neutron wavelength is calculated in the time-dependent quantum theory. It is shown that, for low veloc-
ities of neutrons, their capture cross section σc ~ v, i.e., tends to zero as the neutron velocity v tends to zero.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This study was initiated by the experimental results
[1] on transmission of ultracold neutrons through sam-
ples containing natural gadolinium and enriched in the
Gd157 isotopes (see also [2]). Two isotopes, Gd155 and
Gd157, have resonances in the radiative capture cross
section, which lie in the vicinity of the thermal region.
For this reason, natural gadolinium is characterized by
a very large capture cross section in the thermal region.
If we assume that the dependence of the capture cross
section on the neutron velocity v  is determined by the
1/v  law [3], the value of the capture cross section for
ultracold neutrons becomes abnormally large (about
15 Mb). The measurement of the dependence of the
capture cross sections for neutrons on their velocity in
[1] proved that it is described by the 1/v  law down to
velocities equal approximately to 9 m/s, while consid-
erable deviations from this law are observed for lower
velocities, and the capture cross section starts decreas-
ing. Thus, the 1/v  law in this neutron velocity region
becomes inapplicable. Rauch et al. [1] explain this
effect by fluctuations of the number of scattering nuclei
in the interaction volume, which are associated with
specific samples. Such an explanation is possible in
principle, but gives rise to a number of other questions.
First, does the 1/v  law hold for perfectly fabricated tar-
gets? Second, do physical limitations on the magnitude
of the capture cross section exist when the neutron
velocity tends to zero? And third, the dependence of the
cross section of capture at nuclei constituting dense
matter may differ considerably from this law since the
1/v  law is valid only for the interaction of a neutron
with a free nucleus. We will consider the latter circum-
stance in greater detail. With decreasing velocity, the
neutron wavelength λ increases together with the vol-
ume of the substance with which the neutron interacts.
For ultracold neutrons, the number of nuclei in the
interaction volume is N ≈ nλ3 @ 1, where n is the num-
ber density of nuclei in the substance. Since the elastic
1063-7761/02/9505- $22.00 © 20800
scattering of a neutron from this ensemble occurs
coherently, the elastic scattering cross section is a non-
linear function of N, while the cross sections of inelas-
tic processes depend on N linearly in the first approxi-
mation. Consequently, the relations between elastic and
inelastic processes for an ensemble of nuclei and for an
individual nucleus, for which the conditions of coher-
ent scattering hold, differ significantly. This effect of
suppression of inelastic channels [4] for Bragg scatter-
ing of thermal neutrons by ideal crystal is well known.
A similar effect is also observed in the case of Bragg
scattering of X rays [5]. Coherent scattering is possible
for thermal neutrons and X rays whose wavelength is
comparable with the separation between scattering cen-
ters only if Bragg’s condition is satisfied. Coherent
scattering of ultracold neutrons, whose wavelength is
much larger than the separation between nuclei, by an
ensemble of target nuclei occurs irrespective of the ful-
fillment of Bragg’s conditions. Hence the suppression
of inelastic channels must be observed under certain
physical conditions. In order to simplify calculations,
we assume that the wavelength of ultracold neutrons
λ ≤ d, where d is the thickness of the target. We will use
the single-resonance approximation for considering the
neutron capture process. For isotopes Gd155 (the energy
of the first resonance is ε0 ≈ 0.0268 eV and the energy
of the second resonance is ε1 ≈ 2 eV) and Gd157 (ε0 ≈
0.0314 eV and ε1 ≈ 2.825 eV), the total width of the res-
onances is much smaller than the distance between
them; consequently, the condition for the single-reso-
nance approximation is satisfied.

2. QUANTUM-MECHANICAL DESCRIPTION
OF PASSAGE OF ULTRACOLD NEUTRONS 

THROUGH A SUBSTANCE

Time evolution of the quantum-mechanical system
neutrons + target nuclei is determined by the total
Hamiltonian. We divide the total Hamiltonian into two
components: H0, which determines the state of target
002 MAIK “Nauka/Interperiodica”
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nuclei and free motion of the incident neutron beam,
and the Hamiltonian V, which is responsible for the
interaction between projectile neutrons and target
nuclei. In the resonance approximation, we expand the
total wave function of the system neutrons + target
nuclei into a series in the eigenfunctions of operator H0:

(1)

Here, (t) is the amplitude of the state in which the
target nuclei are in the ground state and there exists an

initial distribution of the incident neutron flow; (t) is
the amplitude of the state in which a target nucleus at
point ri is excited and one neutron from the initial dis-
tribution with momentum p is absorbed; Bp, p'(t) is the
amplitude of the state in which target nuclei are in the
ground state, a neutron with momentum p is absorbed
from the initial state, and a neutron with momentum p'
is emitted; and Bp, k(t) is the amplitude of the state in
which a neutron with momentum p is absorbed from
the initial distribution and a γ quantum with momentum
k is emitted; one of target nuclei has increased its mass
number by unity.

Using the Heitler method [6], we can write the fol-
lowing system of equations for Fourier transforms of
amplitudes, which is required for the solution of the
time-dependent Schrödinger equation:

(2)

Here, Vp and Vp' are the matrix elements corresponding
to the absorption of a neutron with momenta p and p',
respectively, by a target nucleus; Vk is the matrix ele-
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ment corresponding to the absorption of a γ quantum by
a compound nucleus; ωk, εp, and εp' are the energies of
a γ quantum, a neutron with momentum p, and a neu-
tron with momentum p', respectively; ∆M = EA + 1 – EA

is the binding energy for a neutron in a compound
nucleus with A + 1 nucleons, and e is a quantity tending
to zero. While writing the system of equations (2), we
assumed, for simplicity of calculations, that a com-
pound nucleus emits only one γ quantum, and there is
no cascade emission of quantum. Substituting the
expressions for Bp, p'(ω) and Bp, k(ω) into the equation

for (ω) and using the equality

we obtain

(3)

where

and we have also taken into account the fact that |p| ≈
|p'| in the case of elastic scattering of neutrons. For
ultracold neutrons, the condition Γγp/Γnk ! 1 usually
holds (Γγ ~ 103Γn, p ~ 105 cm–1, k ~ 1010 cm–1 for an
energy of a quantum of the order of 1 MeV, and
Γγp/Γnk ~ 10–2). If we introduce the number density
n(r) of target nuclei in this approximation and denote
Γ = Γn + Γγ, we can write expression (3) in the form

(4)

For the sake of definiteness, we denote the incident neu-
tron flow along the normal to the target surface. In this
case, we have n(r) = n for all x, y for 0 ≤ z ≤ d and

Cp
i

ξ x( ) 1
x ie+
------------- P

1
x
--- 

  iπδ x( ),–= =
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2
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–
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2
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Γγ

2
-----+
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


×
ik ri r j–( )exp

k ri r j–
------------------------------------

i j≠

N

∑ 



Cp
j ω( ),

Γn 2π Vp'
2ξ ω εp' εp+–( ),

p'

∑=

Γγ 2π Vk
2ξ ω ωk εp ∆M+ +–( ),

k

∑=

ω ε0– εp i
Γ
2
---+ + 

  Cp r ω,( ) Vp ipr( )Anp
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–
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2
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p r r'–
-----------------------------------.d∫
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n(r) = 0 at all other points in the space. It is obvious
from symmetry considerations that Cp(r, ω) cannot
depend on coordinates x and y. Consequently, we can
integrate Eq. (4) with respect to these coordinates:

(5)

Differentiating Eq. (5) twice with respect to z, we
obtain the differential equation

(6)

where

(7)

The solution to Eq. (6) has the form

(8)

Coefficients A and B can be determined from the inte-
gral equation (5) by substituting solution (8) at points
z = 0 and z = d. The general form of coefficients A and
B is rather cumbersome; if, however, condition pd ! 1
holds, the expressions for coefficients A and B can be
simplified considerably and have the form

(9)

where

(10)

Substituting expression (9) into the expression for the
general solution (8), we obtain

(11)

Using this relation and the system of equations (2), we
can find all the amplitudes of states and calculate the
corresponding cross sections. In order to calculate the
capture cross section, we use the technique developed

ω ε0– εp i
Γ
2
---+ + 

  Cp z ω,( ) Vp ipz( )Anp
ω( )exp=

– i
πΓnn

p2
------------ z'Cp z' ω,( ) ip z z'–( )exp .d

0

d

∫

Cp'' z ω,( ) α2Cp z ω,( )+ 0,=

α2 p2 1
2πΓn

p3
------------–

1
ω ε0– εp iΓ /2+ +
------------------------------------------- 

  .=

Cp z ω,( ) Aeiα z Be iα z– .+=

A
VpAnp

ω( )
ω ε0– εp i Γ /2( ) f αd( )+ +
---------------------------------------------------------------- 1 e iαd––

eiαd e iαd––
-------------------------,=

B
VpAnp

ω( )
ω ε0– εp i Γ /2( ) f αd( )+ +
----------------------------------------------------------------–

1 eiαd–

eiαd e iαd––
-------------------------,=

f αd( ) 1 i
2πΓn

Γ
------------ n

p2α
---------2 e i– αd eiαd––

eiαd e i– αd–
----------------------------------+ .=

Cp z ω,( )
VpAnp
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ω ε0– εp i Γ /2( ) f αd( )+ +
----------------------------------------------------------------=

× eiα z 1 e i– αd–( ) e i– α z 1 eiαd–( )–

eiαd e i– αd–
------------------------------------------------------------------------.
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by Heitler [6]. We present amplitude Bp, k(ω) in the
form

(12)

According to [6], the capture cross section can be writ-
ten in the form

(13)

where jp is the current density of projectile neutrons,
and Ein and Efin are the initial and final energies of the
target + neutron system. The expression for Up, k(ω) has
the form

(14)

For subsequent calculations, we require an explicit
expression for coefficient α in terms of the resonance
parameters. For ω = 0, we obtain from Eq. (7)

(15)

where  is the neutron width of the nuclear zero level
p0 is the neutron momentum for the resonance energy
ε0, and ∆ = 2(εp – ε0)/Γ. The energy of projectile ultra-
cold neutrons satisfies the inequality

(16)

and the quantity α can be written in the form

(17)

Let us consider two limiting cases. Let us suppose that
αd ! 1; it can easily be demonstrated that the capture
cross section is defined as

(18)

If αd @ 1, the expression for the capture cross section
has the form
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(19)

Here,  is the capture cross section at exact reso-
nance, N is the number of nuclei in the target, and

It can be seen from the expressions (18) and (19) for
the capture cross section that, if the inequality

δ1  ! 1 is satisfied in the case (18) and the ine-

quality δ2  ! 1 is satisfied in the case (19), the
quantity

i.e., the 1/v  law holds in this neutron energy range. If,

however, δ1  @ 1 or δ2  @ 1, the capture
cross section

and the value of the capture cross section tends to zero
upon a further decrease in the neutron energy. At the
same time, it is shown in [7] that the value of the elastic
scattering cross section increases upon a decrease in the
neutron energy and attains its limiting value of the
order of the geometrical size of the target in the limit
when the neutron energy tends to zero.

3. DISCUSSION OF RESULTS

Let us compare the obtained results with experimen-
tal data on the dependence of the cross section of cap-
ture of ultracold neutrons on their velocity (energy) for
a metallic Gd157 film. For the Gd157 isotope, the reso-

nance parameters are g  ≈ 0.56 MeV, Γ ≈106 MeV,
and ε0 ≈ 0.03 eV. In the experiments [1], a target of
thickness d ≈ 114 Å was used. On the basis of these val-
ues, we calculate the neutron velocity for which the
capture cross section starts decreasing. It can easily be
shown that this value of Gd157 can be determined from
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ε0/εp ε0/εp
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0
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the inequality δ1  > 1, under which σc ∝  v. Sub-
stituting the resonance parameters into this expression,
we obtain v  < 4–5 m/s, which is in good agreement
with the results described in [4].

The expressions (18) and (19) derived above for the
capture cross section make it possible to determine the
maximum value of the cross section. We differentiate
expressions (18) and (19) with respect to neutron
energy and find the value of energy for which these
expressions attain their maximum values. For expres-
sion (18), we obtain

while the corresponding expression for Eq. (19) is

Accordingly, the maximum possible values of capture
cross sections are given by

(20)

for αd ! 1 and

(21)

for αd @ 1. It should be noted that, if the 1/v  law held,
the value of the neutron capture cross section for εp =
(εp)max under the condition αd @ 1 would be twice as
large as the value of the neutron capture cross section
given by relation (21).

It should be noted in conclusion that the expression
(18) derived above for the capture cross section pro-
vides an answer to the academic question concerning
the dependence of the neutron capture cross section for
an “isolated nucleus” for a neutron velocity tending to
zero. Indeed, it follows from relation (18) that, for any
nonzero value of parameter δ1, there exists a neutron

energy (or velocity) for which δ1(ε0/εp  > 1, and the
increase in the value of the capture cross section ceases
for energies εp < (εp)max; in the limit of still lower ener-
gies, the capture cross section vanishes. The value of
δ1 is determined by the resonance parameters of the
nucleus and by the value of the number density of
nuclei in the volume V ~ λ3 of interaction of a neu-
tron with nuclei. As the neutron velocity tends to
zero, the neutron wavelength tends to infinity, and
the interaction volume becomes infinitely large; con-
sequently, there always exist nuclei identical to the
target nucleus even in an ideal experiment on neutron

ε0/εp

εp( )max ε0

δ1
2

∆2 1+
---------------,=

εp( )max ε0δ2
2.=

σc( )max

Nσnγ
0

2δ1
------------ 1

∆2 1+ 1+
----------------------------=

σc( )max

Nσnγ
0

2δ2
------------ 1

∆2 1+
---------------=

)max
1/2
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scattering by a single isolated nucleus in an infinitely
large volume of interaction. Thus, the parameter δ1 in
this case becomes nonzero and, hence, the capture
cross section is bounded.
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Abstract—Based on the approximation of strong correlations between an atom and an intracavity field, which
implies the equal probabilities of finding the atom in the ground state and n photons in the field and of finding
the atom in an excited state and n – 1 photons in the field, it is shown that the conditional states of a field gen-
erated by a single-atom laser are described by the diagonal part of the generalized coherent Mittag–Leffler state.
The quasi-distributions P and Q of the intracavity-field probability amplitude are found, and the boundedness
of the Glauber function on a segment is shown. The possibility of inversionless lasing is demonstrated, and the
absence of a lasing threshold is found for some region of parameters. The regimes of generation of the ampli-
tude-squeezed states of the field are studied and the parameters of the system providing the maximum squeezing
are determined. It is shown that the atom–field states are entangled at weak pump intensities. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A single-atom laser attracts attention not only as a
limiting case of a device capable of generating coherent
radiation but also as a simplest quantum-optical system
that can be completely theoretically described and stud-
ied experimentally. The modern experimental methods
allow one to isolate an atom in an optical cavity whose
Q factor is so high that a single photon is capable of sat-
urating a resonance transition in the atom [1].

Historically, the study of the lasing properties of a
single-atom laser has been initiated by the analysis of
three- and four-level schemes [2–4], which are com-
monly used in macroscopic lasers. However, it was
found that a simplest two-level scheme provides the
observation of all the new effects that were predicted
for three- and four-level schemes. Among these effects
are the sub-Poisson statistics of light [2, 6], the multi-
peak fluorescence spectrum [3], and inversionless las-
ing [6]. It was shown that an incoherently pumped two-
level single-atom laser operates similarly to a usual
laser, featuring the subthreshold and superthreshold
regimes and self-quenching [4, 7].

However, a number of questions and even formula-
tions of the problems have remained outside the scope
of these studies, possibly, because of the cumbersome
equations used in them. One of them is the question
about a state of the field produced in the cavity upon
incoherent pumping of the atom. To which class of
states does this state belong? What is the reason for the
appearance of its nonclassical properties? What is the
reason for the inversionless oscillation in a single two-
level atom laser? Is the common state of the atom and
field entangled?
1063-7761/02/9505- $22.00 © 20805
In this paper, we found a stationary density matrix in
a comparatively simple form using the approximation
of strong correlations between the atom and field,
which corresponds to a large interaction constant
between the atom and field. We showed that conditional
density matrices of the generated field are described by
the diagonal part of the density matrix of the general-
ized Mittag–Leffler states. These states are the eigen-
functions of the generalized annihilation operator and
generalize naturally usual coherent states. We found the
quasi-distributions P and Q of the intracavity-field
probability amplitude for these states and demonstrated
the boundedness of the Glauber function on a segment.
This property is inherent in the Glauber function only.
Neither the Q nor the W function possesses this prop-
erty. Due to a strong atom–field correlation, a single-
atom laser is also capable of generating generalized
coherent states without inversion and even without a
threshold in some region of parameters. When the
decay rate of the excited state of the atom is lower than
the decay rate of the field in the cavity, the fluctuations
of the number of photons are lower than the shot noise
level. We found a maximum value of the amplitude
squeezing for a single-atom laser. The analysis of mix-
ing of the atomic and field subsystems showed that
quantum correlations in this system are possible only at
relatively weak pump intensities.

The content of the paper is presented in the follow-
ing way. In Section 2, we derive the master equation for
the density matrix of our model. Section 3, which is
devoted to the properties of the quasi-probability func-
tions P, Q, and W, is divided into two subsections. In
Section 3.1, we present the general and stationary equa-
tions for the Glauber P function and the corresponding
002 MAIK “Nauka/Interperiodica”
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equations for the distribution of the number of photons
and normally ordered field moments. In this section, we
also give the physical interpretation of stationary equa-
tions as the balance equations for the level populations
of the combined atom–field quantum system. In Sec-
tion 3.2, we formulate the basic approximation of the
paper and present analytic expressions for the P and Q
functions. We also discuss in this section the physical
reason for the boundedness of the Glauber function on
a segment for radiation from a single-atom laser. In
Section 4, we consider the distribution of photons and
show that a single-atom laser emits radiation corre-
sponding to the generalized coherent Mittag–Leffler
states (more exactly, to their diagonal part). In Section 5,
we describe the properties of inversionless oscillation
in a single-atom laser. Section 6 contains the descrip-
tion of the sub-Poisson statistics of this laser. The
classical and quantum correlation properties of the
atom and field are discussed in detail in Section 7. The
methods of regularization of P functions for the
phase-independent states of the field are considered in
the Appendix.

2. THE MODEL

A single-atom laser is considered within the frame-
work of a model system consisting of a two-level atom
with the ground state |1〉  and the excited state |2〉 , whose
interaction with a resonance mode of the field is
described by the Janes–Cummings Hamiltonian with
the interaction constant g. The atom is pumped incoher-
ently with the mean rate R12. In addition, the decay of
the resonance mode of the field with the rate k and the
decay of the atom with the rate R21 are taken into
account. The master equation for the density matrix,
reduced over the states of the surroundings, in the inter-
action representation has the form

(2.1)

Here, the transition operators (σ+, σ–) of the atom and
(a+, a) of the field satisfy the commutation relations
[σ+, σ–] = 2σz, [a, a+] = 1 for Fermi and Bose particles,
respectively, and relaxation is described by the Lind-
blood operator L:

We assume that the frequency of the atomic transition
coincides with the frequency of the fundamental mode
of the cavity. We consider only optical frequencies in
the model of a single-atom laser and neglect the contri-
bution from thermal photons.

ρ̇̂ g a+σ– aσ+– ρ̂,[ ] R12L σ+ σ–,( )ρ̂–=

– R21L σ– σ+,( )ρ̂ 2kL a a+,( )ρ̂.–

2L x y,( )ρ̂ x ρ̂y,[ ] xρ̂ y,[ ] .+=
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3. DISTRIBUTION FUNCTIONS 
OF THE INTRACAVITY-FIELD PROBABILITY 

AMPLITUDE
3.1 General Relations

To study the s-ordered quasi-probability functions
R(s)(α) of the field (see Appendix), it is convenient to
pass from the equation for the density matrix (2.1) to
the equation for the normally ordered characteristic
operator FN ≡ F:

(3.1)

This equation can be transformed with the help of
the integral transformation (A.1) to a system of linear
differential equations in partial derivatives for any of
the R(s) functions in the basis of atomic states. The equa-
tions are the simplest for the Glauber distribution func-

tion  ≡ Pij. Assuming that the initial state of the field
is phase-independent, i.e., the diagonal elements P11

and P22 depend only on the square of the modulus |α|2
of the field amplitude, while the nondiagonal elements
P12 and P21 are zero, the equations for the elements Pij

can be represented as the equation for the elements of
the column vector P: P1 = P11, P2 = P22, P3 = P12/α*,
and P4 = P21/α, which depend only on |α|2 ≡ p:

(3.2)

Here, matrices A and B are determined by the expres-
sions

(3.3)

and the decay rate of the nondiagonal elements is

By solving Eqs. (3.2) and using the relation between the
s-ordered functions (A.3), we can determine all the

∂F
∂t
------ –gλ∗ σ–F gλFσ+ g σ–

∂F
∂λ
------, g σ+

∂F
∂λ∗
---------,+ + +=

–
R21L σ+ σ–,( )F

2
----------------------------------

R12L σ– σ+,( )F
2

----------------------------------–

– k0 λ∗ ∂F
∂λ∗
--------- λ∂F

∂λ
------+ 

  .

Rij
0( )

∂P
∂t
------ AP

p∂
∂

BP( ).+=

A

R12– R21 gp gp

R12 R– 21 gp– gp–

g– g γ12– 0

g– g 0 γ21– 
 
 
 
 
 
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0 2kp 0 0
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three quasi-probability functions. Note that the system
of four linear equations in partial derivatives (3.2) is an
initial system for considering statistical properties of
the field. By using some approximations, for example,
the adiabatic approximation, we can exclude the func-
tions P12 and P21 from consideration by expressing
them explicitly in terms of P1 and P2. A system of two
equations in second-order partial derivatives obtained
by neglecting the terms responsible for spontaneous
emission can be reduced to one equation for the uncon-
ditional function of the field distribution P = P11 + P22,
which, in turn, using some additional assumptions, can
be reduced to the Fokker–Planck equation. In this
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
paper, we will not use the adiabatic approximation and
some other approximations which reduce system (3.2)
to the Fokker–Planck equation for the function P. In
addition, we will not consider here a nonstationary
solution of Eqs. (3.2) and will analyze only stationary
distribution functions Qi and Pi and the distributions of
the number of photons ρi(n) ≡  and of nor-
mally ordered moments mi(n) ≡ Spf(〈i |a+nan |i 〉),
which are related to Qi and Pi [see (A.4). (A.7), (A.10),
(A.15)]. According to (3.2), the continuous functions
P1 and P2 and these two sets of discrete values satisfy in
the stationary regime the following system of equations
and two recurrent sequences, respectively:

n〈 | i ρ̂ i〈 〉 n| 〉
ρ̂

                           

  

2ν p 1
p∂

∂– 
 + P2 pP1+ 2a2P1,=

p 1
p∂

∂– 
  P2 pP1–

2
η
--- µ p

p∂
∂

– 
  pP,=









3.3a( )

3.3b( )

2ν n 1+ +( )ρ2 n( ) n 1+( )ρ1 n 1+( )+ 2a2ρ1 n( ),=

ρ2 n( ) ρ1 n 1+( )– =  
2
η
--- µ n 1+ +( )ρ n 1+( ) n 2+( )ρ n 2+( )–{ } ,=





 3.4a( )

3.4b( )

2ν n 1+ +( )m2 n( ) m n 1+( )+ 2a2m1 n( ),=

n 1+( )m2 n( ) m2 n 1+( ) m1 n 1+( )–+
2
η
--- m n 1+ +( )m n 1+( ).=





 3.5a( )

3.5b( )
Here, P = P1 + P2; ρ = ρ1 + ρ2; m = m1 + m2; the param-
eter 2ν + 1 = R21/k is equal to the normalized decay rate

of the excited level |2〉; the parameter  = R12/k is
equal to the excitation rate of incoherently pumped
states |n〉; the quantity η = g2/k2 determines the normal-
ized rate of spontaneous decay to a resonance mode;

and the parameter µ =  + ν is equal to the total
dephasing rate caused by incoherent perturbations of
R12 and R21 after subtraction of the half decay rate k/2 of
the field.

Equations (3.4a) have a simple physical meaning.
They describe the balance of the transitions between
adjacent groups of states having the same number of
excitations (the number of photons if an atom is in the
ground state or the number of photons plus unity if an
atom is in the excited state). On the left-hand side of
Eq. (3.4a), an average number of transitions occurring
from the states |n + 1〉|1〉  and |n〉|2〉  to the states |n〉|1〉
and |n – 1〉|2〉  appears (see Fig. 1), while, on the right-
hand side of this equation, the number of reverse tran-
sitions appears. Equation (3.4b) can be interpreted as a
balance equation for the number of transitions between
the states having the same number of photons in the

2a2

a2
cavity. To do this, it is necessary to introduce the prob-
abilities of spontaneous (wn) and stimulated (nwn) tran-
sitions induced in an atom by the intracavity field.
Then, the number of transitions occurring from the
states |n + 1〉|2〉  and |n + 1〉|1〉  to the states |n〉|2〉  and
|n〉|1〉  (see Fig. 1) should be equal to the number of
reverse transitions:

(3.6)

By equating (3.6) and (3.4b), we find that the normal-
ized density of spontaneous transitions induced by the
intracavity field is

(3.7)

It follows from Eq. (3.7) that (i) the probability wn

depends on the pump , the value of wn decreasing

(self-quenching) with increasing  (in the general

case, when  exceeds a certain value), and (ii) wn

n 1+( )ρ2 n 1+( ) n 1+( )ρ1 n 1+( )+

+ n 1+( )wnρ1 n 1+( ) n 1+( )wnρ2 n( ).=

wn
η
2
--- µ n 1+( ) 1 n 2+( )ρ n 2+( )

n 1+( )ρ n 1+( )
--------------------------------------–+
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 
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.=
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depends on the number of photons in the cavity due to
a partial destruction of the interference between intrac-
avity photons, which become distinguishable because
of the interaction with the atom: photons “belonging”
to the atom in the ground state differ from photons cor-
responding to the excited atomic state. The dependence
of wn on the number of photons is not a priori,1 but can
be determined only after finding the distribution ρ(n) of
the number of photons. However, in the limiting case of
strong interactions, when the parameter η is so large
that the right-hand sides of Eqs. (3.3b) and (3.4b) can
be neglected, the dependence of wn on n is insignificant.

3.2. Strong Interactions (η @ 1). The Boundedness
of the Glauber Function on a Segment

In the case of strong interactions, a strong coupling
appears between population of the levels having the
same numbers of excitation. According to (3.4b), in this
case,

(3.8)

which reflects the leveling of populations of the states
|n〉|2〉  and |n + 1〉|1〉  before transitions from these states
to other states. Such a population leveling results, in

1 Note that the dominator in Eq. (3.7), which is proportional,
according to (3.4b), to the difference ρ2(n) – ρ1(n + 1), does not
vanish at any values of the parameters, i.e., the function wn is
always a positively defined quantity, which can be proved by the
contradiction method using Eq. (3.4a).

ρ2 n( ) ρ1 n 1+( ),=

 n + 1〉 2〉

n + 1

 n〉 2〉

 n – 1〉 2〉

 n – 1〉 1〉

 n〉 1〉

 n + 1〉 1〉
(n + 1)wn

(n + 1)wn

n + 1

n 

2v  + 1 2a2 n

Fig. 1. Energy level diagram and transitions of an atom in a
cavity. The splitting of levels having the same number of
excitations is not shown. The wavy arrows show transitions
involving photons escaping from the cavity (transition rates
normalized to the decay rate k are determined by the num-
ber of photons in the cavity). The double arrows indicate
transitions caused by the decay of the atom (rates are 2ν +
1); the arrows directed upward indicate transitions caused

by incoherent pumping (rates are 2 ). The arclike arrows
indicate spontaneous and stimulated transitions in the atom,
which are induced by the intracavity field (wn is the sponta-
neous transition rate in the presence of n photons in the cav-
ity).

a
2
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combination with the balance of the number of transi-
tions between adjacent groups of states with the same
number of excitations, in a simple algebraic relation
between the conditional densities of quasi-probabilities
P1 and P2:

(3.9)

This relation is obtained by subtracting Eq. (3.3b) from
(3.3a) under the condition η @ 1. Algebraic relation
(3.9), together with differential equation (3.3a), allows
us to find the functions P1 and P2 in the explicit form:

(3.10a)

(3.10b)

Here, θ(x) is the Heaviside step function, and the nor-
malization constant

(3.11)

is expressed in terms of the incomplete gamma function
γ(ν, x) or the Mittag–Leffler function [8]

as

(3.12)

According to (3.10), the Glauber functions P1 and
P2 are expressed in terms of the kernel of the convolu-
tion

which is called the fractional Riemann–Liouville inte-
gration of order β [9]. The order ν ≡ R21/2k – 1/2 corre-
sponds to the function P1(p), and the order ν + 1 corre-
sponds to the function P2(p). In the case of the negative
order of the fractional integration, this operation is
called the fractional differentiation because, when n is
an integer, we have

It is obvious that in this case the transformation kernel
is a generalized function. According to (3.10), the
Glauber function P2(p) is always a positively defined
distribution function, whereas the function P1(p) for

νP2 a2 p–( )P1.=

P1 p( ) cθ a2 p–( ) a2 p–( )ν 1–

Γ ν( )
---------------------------ep,=

P2 p( ) cθ a2 p–( ) a2 p–( )ν

Γ ν 1+( )
---------------------ep.=

c
1
π
---Γ ν 1+( )a 2ν– 1 2

a2

ν 1+
------------Nν 1+ a2( )+

1–

=

Eα β, x( ) xn

Γ α n β+( )
-------------------------

n

∑=

Nν x( ) νx ν– exγ ν x,( ) Γ 1 ν+( )E1 1 ν+, x( ).≡=

Iβ
 * f x( )

θ x( )
Γ β( )
----------xβ 1–

 * f x( )=

=  
1

Γ β( )
---------- x t–( )β 1– f t( ) t,d
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 
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SINGLE-ATOM LASER: COHERENT AND NONCLASSICAL EFFECTS 809
−0.5 ≤ ν ≤ 0 is no longer a distribution function and
becomes a generalized function. The nonclassical proper-
ties of light for such a state are considered in Section 6.

The characteristic feature of functions P1 and P2 is

their boundedness on the segment [0, ], which means
that the field amplitudes exceeding  cannot be
observed. The presence of the boundary value of the
field amplitude is explicitly manifested in the interval
0 ≤ ν ≤ 1, when 1 < R21/2k < 3 (see Fig. 2). To demon-
strate the fact that the boundedness of the P functions is
not related to the strong interaction approximation,
which we used in deriving expression (3.10), we calcu-
lated numerically the P function by solving exact alge-
braic Eqs. (3.4) and (3.5) and using regularized expan-
sions (A.10) and (A.14) of the P functions in the
Laguerre polynomials. One can see from Fig. 2 (curve 2)
that the maximum of the distribution probability also

corresponds to the boundary value of , but outside
the maximum the P function exhibits nonclassical
properties, oscillating near zero.

It is obvious that, because the features of the P func-
tion are smoothed when the field amplitude is described
in terms of the Q or W functions (A.3), the existence of
the upper bound for the field amplitude does not restrict
the Q and W functions on a segment. Thus, the Qi func-
tions are determined, in the limit under study, according
to (3.9), (3.10), and (A.3), by the expressions

(3.13a)

(3.13b)

where Iν(x) is the modified Bessel function of order ν.
It follows from these expressions that the functions
Q1(p) and Q2(p) do not vanish at any value of the field
amplitude (see Fig. 2).

The boundary value of the field amplitude |αb |2 =
 = R12/2k corresponds to the statistical equality of the

number R12∆t of excitations of the atom during the
interval ∆t upon incoherent pumping (i.e., the number
of the |1〉|n〉   |2〉|n〉  transitions followed by the
|2〉|n〉   |1〉|n + 1〉  transition, which increases the
number of intracavity photons by unity and occurs,
according to (3.8), with the probability 1/2) and the
number 2k|αb |2∆t of transitions from the states |1〉|n〉
(n ≈ |αb |2) to the states |1〉|n – 1〉  (i.e., transitions that
reduce the number of intracavity photons by unity).
Such a statistical equilibrium, along with the multipho-
ton interference corresponding to the representation of
the Glauber function in the form of superposition con-
tributions from different n-photon states [see (A.10)

a2

a

a2

Q1 p( ) cΓ ν 1+( )e p– a

p
------- 

  ν
Iν 2a p( ),=

Q2 p( ) e p–

p∂
∂

Q1ep( )=

=  cΓ ν 1+( )e p– a

p
------- 

  ν 1+

Iν 1+ 2a p( ),

a2
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and (A.14)], causes the boundedness of the functions P1
and P2 on a segment. Note that, along with the fact that
the functions Qi(p) and Wi(p) do not possess the bound-
edness on a segment, the distribution functions of the
number of photons ρ1(n) and ρ2(n) change only weakly

above the boundary value nb ≈ . Let us present, for
example, the expressions for the functions P1 and P2 for
the case when the decay rates of the atom (R21) and field
(k) (ν = 0) are the same:

(3.14)

Therefore, in this limit, the state of the field, when the
atom is in the ground state, is a coherent state averaged
over a random phase. The distribution of the number of
photons in this state is Poissonian, with the possible

detection of photons corresponding to the values of 
exceeding the boundary value. According to (3.8), the
distribution of photons for the field corresponding to
the atom in the excited state is a displaced Poissonian.

For this field, the numbers of photons exceeding  are
also accessible. Note that the Poisson distribution of
photons is not caused by intense pumping but appears
due to the coherent atom–field interaction. For the

a2

P1
δ a2 p–( )

π 2 a2–( )exp–[ ]
----------------------------------------,=

P2
a2 p–( )–[ ]exp θ a2 p–( )

π 2 a2–( )exp–[ ]
------------------------------------------------------------.=

a2

a2

P

2.5

1.5

0.5

–0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Q

2.5

1.5

0.5

–0.5

Fig. 2. (1, 2) P and (3) Q distribution functions calculated

for the parameters  = 200,  = 1/2, and ν = 1/2. Curve 1
corresponds to the strong correlation approximation;
curve 2 is calculated by solving numerically exact algebraic
equations (3.4) and (3.5) and using regularized expan-
sions (A.10) and (A.14) for the number of terms in the
series N = 3500.
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810 KILIN, KARLOVICH
three-level Λ scheme, this possibility was pointed out in
paper [4].

4. PHOTON DISTRIBUTION: THE GENERALIZED 
COHERENT MITTAG–LEFFLER STATES

It follows from Eqs. (3.4a) and (3.8) that, in the limit
of strong interactions, the stationary density matrices ρ1
and ρ2 can be found by solving the eigenvalue problem

(4.1)

The parameter β = ν for the density matrix ρ1 and β =
ν + 1 for the density matrix ρ2. Indeed, the calculation
of the diagonal elements in the Fock basis from Eq. (4.1)
taking into account the known equalities

yields Eqs. (3.4a). The problem (4.1) can be reformu-
lated as the eigenvalue problem

(4.2)

for the generalized annihilation operator

(4.3)

Then, the solution of (4.1) is described as the diagonal
part of the density matrix of the generalized coherent
state | , β〉:

(4.4a)

(4.4b)

Here, n1 and n2 are the populations of the ground and
excited states, respectively:

and the normalized generalized coherent states | , ν〉
are determined by the superposition of the Fock states:

(4.5)

The normalization constant Nβ( ) is expressed in

terms of the Mittag–Leffler function E1, 1 + β( ) (3.12).
The authors of paper [8] proposed to call this class of
generalized coherent states the coherent Mittag–Leffler
states because they are connected with these special
functions. It is obvious that, for β = 0, these states coin-
cide with usual coherent states. For β = 0, states (4.5)
generalize coherent states in the obvious way: in the
expansion of the coherent state | 〉 in Fock states, the
quantity n! ≡ Γ(1 + n) is replaced by Γ(1 + β + n), while

1 β
aa+
--------+ 

  aρia
+ a2ρi.=

a n| 〉 n n 1–| 〉 , a+ n| 〉 n 1+ n 1+| 〉= =

Aβ a β,| 〉 a aβ| 〉=

Aβ 1 β
aa+
--------+ a.=

a

ρ1 n1diag a ν,| 〉 a ν,〈 |{ } ,=

ρ2 n2diag a ν 1+,| 〉 a ν 1+,〈 |{ } .=

n2 1 n1–
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1 2b+
---------------, b
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a

a β,| 〉 Nβ
1/2– an Γ 1 β+( )

Γ 1 β n+ +( )
------------------------------ n| 〉 .

n 0=

∞

∑=

a2
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a
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the exponential normalization constant exp(|α|2) is

replaced by the function Γ(1 + β)E1, 1 + β( ). Taking
into account that the Fock state |n〉  is generated from

vacuum by the operator / ,

we obtain another representation for the states (4.5):

(4.6)

which is analogous to the generator of coherent states
from vacuum.

The generalized deformed annihilation Aβ and cre-

ation  operators satisfy the commutation relations

(4.7)

which determine the uncertainty relations for the oper-

ators Aβ and  and their combinations. For the states
(4.5) and (4.6), these relations represent equalities.
Relations (4.7) also show the noncanonical nature of
transformations (deformations) of the operators a, a+ to

the operators Aβ, .

The photon distribution for generalized coherent
Mittag–Leffler states and, hence, for the states
described by density matrices (4.4) is determined by
the expression

(4.8)

The properties of the photon distribution are usually
related to the lasing properties of the system (the pres-
ence of a maximum of the distribution function) and to
the stability of the radiation produced (the width of the
distribution function compared to that of the Poisson
light). Depending on the parameter β, the distribution
(4.8) can be both sub-Poissonian (β < 0) and super-
Poissonian β > 0, retaining its lasing properties.

Before discussing the generation possibilities of a
single-atom laser and the stability of the photon distri-
bution, we present another method for the description
of systems, which is related to the deformed operators

Aβ and  [10]. By using the relation

,

we form a set of basis states which differ from the Fock
states by the absence of normalization. It is obvious
that, in this deformed basis, the relations

are fulfilled for the operators Aβ and , which are sim-
ilar to relations for operators a and a+ in the usual Fock

a2
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+n Γ 1 β n+ +( )
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space, and hence, the commutation relations [Aβ, ] =
1 are fulfilled. By using this circumstance, we can
assume that the Hamiltonian operator of a deformed
oscillator is

In the Fock representation, the eigenvalues of this
Hamiltonian are

i.e., the structure of the spectrum of the deformed oscil-
lator coincides with that of a usual oscillator, the excep-
tion being the ground state, whose energy differs from
that of the n = 1 state by the value "(1 + β/2), which is
greater or smaller than a quantum "ω, depending on the
sign of the parameter β. In this approach, the state
(4.4a) is related to the deformed oscillator in which the
frequency of the |1〉–|0〉  transition can be lower than "ω
(ν < 0). For the (4.4b) state, the frequency of a similar
transition is always greater than "ω by "ω(1 + (ν +
1)/2).

5. INVERSIONLESS LASING

It follows from photon distributions (4.4) that the
population n2 of the upper laser level is always lower
than the population n1 of the lower level. The question
arises of how in this case such a device as a single atom
in a high-Q cavity, which is called a single-atom laser
[3, 4, 11], can generate emission that is close to coher-
ent emission and whether this emission is produced by
overcoming a certain threshold or it appears without a
threshold. The question of how to define the lasing
threshold in the case when a fraction of spontaneous
emission in the cavity mode relative to a total spontane-
ous emission (in the cavity and noncavity modes)
approaches unity (βc  1) has been discussed in
detail in the literature [11, 12]. It is obvious that the rea-
soning applied to a usual laser (βc  0), which is
based on the balance rate equations and on a compari-
son of the average rates of stimulated and spontaneous
transitions, as well as the values of the loss rates, gives
information on the average emission intensity (an aver-
age number of photons) and its increase with increasing
the incoherent pump power. However, the nature of
emission produced by such a source and its coherent
properties remain unclear. To answer this question, it is
necessary to study the distribution functions of this
emission. Based on the study of these functions, some
possible criteria were proposed for a passage from the
regime of incoherent emission, which is characterized
by an exponential photon distribution, to coherent
emission, which is characterized by a Poisson photon
distribution with a maximum located not at zero. One
of such obvious criteria is the appearance of a maxi-

Aβ
+

Hβ "ω
Aβ

+Aβ AβAβ
++

2
--------------------------------.=

Eβ n( ) "ω 1 δn0–( ) n β 1
2
---+ + 

  δn0
1 β+

2
------------+ ;=
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mum of the distribution function ρ(n), which can be
determined from the relation ρ(0) < ρ(1) [11, 13]. This
criterion is approximate because it cannot distinguish
coherent emission from incoherent emission in the
region of small amplitudes |α|2 < 1. The application of
this criterion for usual lasers coincides with the thresh-
old condition according to which the average rate of
stimulated emission – the average rate of absorption =
the average rate of the photon loss. However, in the
region βc  1 (and we consider namely this operation
regime of a single-atom laser), this usual threshold con-
dition, which was obtained from rate equations, is never
fulfilled, although, as shown above, emission of a sin-
gle-atom laser can be coherent. Indeed, it follows from
the balance equation (3.6) that

i.e., the difference of the average rates of stimulated
emission

and absorption

is always smaller than the loss rate

by the value of the rate

of spontaneous emission to a cavity mode of the field,
which should be expected for a two-level atom under
stationary conditions. This means that photons emitted
spontaneously to the cavity mode of the field do not dis-
tort completely the coherent properties of emission
being produced, and under certain conditions, the
device under study can generate highly coherent emis-
sion. This is explained by the fact that photons belong-
ing to the same cavity mode cannot be distinguished
from each other in principle: there is no difference
between photons that appeared in the cavity mode due
to stimulated or spontaneous emission processes. In
this connection, we should emphasize that, although
the role of stimulated processes in the production of
coherent emission in a single-atom laser decreases, no
coherent emission can be produced only due to sponta-
neous transitions. In addition, the term “laser” as
applied to a device producing coherent emission should
be perceived with stipulations as a historical term cor-
responding to a device that is obtained from a usual
laser as a passage to the limit.

k nwn〈 〉 2 k nwn〈 〉 1– k n〈 〉 k wn〈 〉 2,–=

k nwn〈 〉 2 k nwnρ2 n( )
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812 KILIN, KARLOVICH
Taking the above considerations into account, we
can show that, when the coherent pump exceeds the
value

(5.1)

the probability ρ(1) of the presence of one photon
exceeds the probability of the absence of photons, i.e.,
the maximum of the distribution ρ(n) is displaced from
zero, which can be treated as a lasing threshold (thresh-
old in the photon distribution). As the incoherent pump
is further increased, the maximum of the discrete distri-
bution ρ(n) shifts to the region of greater numbers of
photons, taking successively the increasing values of m
when the pump achieves the m-photon threshold

(5.2)

Conditions (5.1) for the appearance of lasing and the
dependence (5.2) of the amplitude maximum on the
pump can also be obtained by considering the condi-
tional Q functions (3.13). Thus, the maximum of the
distributions Q1 and Q2 appear when the relations

are satisfied, respectively. Here, x = 2 . The solu-
tion to these equations for p = 0 gives two lasing thresh-

olds for the conditional states of the field,  = ν + 1

a1
2 ν 1+( ) ν 2+( ),=
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Fig. 3. Dependence of the maximum |αm|2 of the uncondi-
tional (curve 0) and conditional Q1 and Q2 (curves 1 and 2)

functions on the pump intensity . The pump thresholds

 = ,  = ν + 1, and  = ν + 2

corresponding to the maxima of functions Q, Q1, and Q2 are
indicated by arrows; the curves are plotted for ν = –1/2.
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and  = ν + 2, while the consideration of the uncon-
ditional Q function leads to the threshold equal to (5.1)
(see Fig. 3). Note that the inversionless lasing studied
here differs from the types of inversionless lasing
described in [5] for three- and four-level schemes. The
authors of [5] assumed that the inversionless lasing
appeared due to a strong interference between adjacent
transitions. We assume that the inversionless lasing in
our system is caused by a strong atom–field correlation,
which is absent in the traditional consideration of spon-
taneous and stimulated transitions in two-level systems.
It is because of such a correlation that relation (3.8) is
satisfied, which obviously provides the absence of pop-
ulation inversion in the atomic subsystem: even a sig-

nificant excess of the pump 2  over losses 2ν + 1 is
eliminated by an instantaneous leveling of the popula-
tions of the states |n〉|2〉  and |n + 1〉|1〉 , which corre-
sponds to the reconstruction of the inversionless distri-
bution of populations over atomic states and the
increase in the number of photons by unity.

Therefore, in the case of a strong correlation of the
atom–field system, an incoherent pumping of the
atomic subsystem can excite the photon subsystem to
the highly intense states, which are close to coherent
states. In this sense, this excitation regime is close to
coherent excitation of a field oscillator by an ampli-
tude-stabilized classical current. The latter is especially
clearly manifested in the region 0 < ν < 1, where,
according (3.10), the state of the field is classical (func-
tions Pi are positively defined) and the unconditional
Glauber distribution function has a maximum for any
arbitrarily low pump intensities, demonstrating excita-
tion of the field states, which are similar to coherent
states, without any threshold [4, 7]. A field oscillator
excited by a classical current behaves similarly.

The region of applicability of the strong correlation
approximation (3.8) is determined by the boundedness
of the rate wn of spontaneous transitions (3.7) induced
by the intracavity field. The region of applicability can
be estimated from the inequality

which shows that, along with the inequalities g @ k,
R12, R21, ν, the inequality g @ kn should also be satis-
fied, which obviously cannot be valid for arbitrary n for
a fixed value of g. Therefore, an increase in the pump

, resulting in the population of excited states of the
field, will obviously limit the approximation used. Our
numerical calculations show that the strong correlation
approximation can be applied until the population of
the excited atomic state approaches 1/2, i.e., the param-
eter b determining saturation is limited [see (4.4)].
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6. SUB-POISSON STATISTICS OF LIGHT (ν < 0)

As mentioned above, the Glauber function (3.10a)
in the region ν < 0 becomes a generalized function of
higher order than the usual δ function, which is
reflected in the nonclassical properties of radiation
emitted by a single-mode laser. The distribution of the
number of photons becomes sub-Poissonian. Accord-
ing to (3.10) or (4.4) and (4.5), the normally ordered
moments m1(n) and m2(n) in the strong correlation
approximation are expressed in terms of the moments

(6.1)

of the generalized Mittag–Leffler states (4.5):

(6.2)

Figure 4 shows the values of the Fano factor

for the unconditional distribution of the number of
phonons in the cavity as a function of the incoherent

pump  for different parameters ν. One can see from
Fig. 4 that, for ν < 0, the Fano factor becomes smaller
than unity irrespective of other parameters of the sys-
tem, and as ν decreases down to the limiting value of
−1/2, the radiation squeezing increases and reaches
5.5%. The minimum value of the Fano factor is
achieved for the pump intensity approximately equal to
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Fig. 4. Fano factor of the intracavity field in the strong cor-
relation approximation as a function of the incoherent pump

intensity  for  = 200 and ν = 1/2 (1), –0.25 (2), and
−0.495 (3).
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1/2 and shifts to zero by the value ν + 1/2 with increas-
ing decay rate of the atom.

To study the possibility of achieving the maximum
amplitude squeezing in a single-atom laser, we calcu-
lated the dependences of the Fano factor on the pump
intensity for different interaction constants (Fig. 5). The
dependences were calculated using exact recurrent
relations (3.5) without using the strong correlation
approximation. It follows from Fig. 5 that the squeez-
ing increases with η, achieves the maximum value, and
then decreases down a certain constant value deter-
mined by expressions (6.1) and (6.2). The numerical
calculations of the Fano factor show that the maximum
squeezing reaches 15% when 2ν + 1 ! 1, η = (3/2)2,

and  = 1. This result gives a more exact region of
parameters at which the maximum squeezing is
achieved compared to [6].

7. CLASSICAL AND QUANTUM 
CORRELATIONS: THE ENTANGLED STATES

OF AN ATOM AND A FIELD

As mentioned above, the interaction between the
atom and field upon incoherent pumping of the atom
produces a correlated atom–field state. According to
(3.2) and (3.4), the combined stationary density matrix
corresponding to this state has the form

(7.1)

where ρi is the conditional field density matrices and
ρ = ρ1 + ρ2 is the unconditional density matrix of the
field.

a2

ρ̂st 1| 〉 1〈 |ρ1 2| 〉 2〈 |ρ2
1

η
------- σ+aρ ρa+σ–+( ),+ +=

F

0.90

1.0

1.05

0.95

0.85

3
1

2

a2_
0.5

0.80
0 1.5

1.00

4

Fig. 5. Fano factor of the intracavity field calculated numer-
ically from exact recurrent relations (3.5) as a function of

the incoherent pump intensity for ν = –0.495 and  =
0.6 (1), 1.5 (2), 20 (3), and 200 (4).

η
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In the strong interaction limit (η @ 1), which corre-
sponds to the neglect of the last term in (7.1), the pro-
duced mixed state exhibits strong atom–field correla-
tions: the ground state of the atom is coupled with the
generalized coherent Mittag–Leffler state with the
parameter ν (4.4a), while the excited state of the atom
is coupled with the same field state but with the param-
eter ν + 1(4.4b). However, this type of correlations has
a classical nature because the density matrix of a corre-
lated atom–field system in this case is a mixture of the
factorized states of the atom and field (|1〉|n〉  and |2〉|n〉)
with the corresponding probabilities ρ1(n) and ρ2(n).
This type of correlations does not require for its
description the use of a superposition of such factorized
atom–field states. This type of correlations can be
explained within the framework of the theory of corre-
lation of classical random quantities.

In this section, we consider the question about the
possibility of producing nonclassical correlations in the
system under study, i.e., correlations that manifest the
so-called entangled states. In our case, these are the
states that include the superpositions of factorized
atom-field states. Unfortunately, the general methods
for analyzing properties of entangled systems in mixed
states have not been developed so far. For this reason,
we consider here only particular cases for which such
methods have been developed.

One of these methods—an analytic calculation of
the degree of entanglement of the states, the entangle-
ment formation entropy EF—was proposed by Wout-
ters as applied to the mixed states of two two-level sys-
tems. According to this method,

(7.2)

Here, the quantity

is expressed in terms of the so-called concurrency
parameter

(7.3)

where λi are the eigenvalues of the matrix  arranged
in descending order. The adjoint matrix  is calculated
by the rule

where σy are spin Pauli operators for particles with the
spin 1/2.

The quantum system studied here can be repre-
sented as a system of two spins in the case when one
can consider the number of photons that does not
exceed unity. In this case, one of the two-level quantum

EF x x2 1 x–( ) 1 x–( )2 .log–log–=

x
1 1 C2–+

2
----------------------------=

C ρ( ) max 0 λ1 λ2– λ3– λ4–,{ } ,=

ρρ̃
ρ̃

ρ̃ σy σy⊗( )ρ∗ σy σy⊗( ),=
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systems is an atom and another system is an intracavity
field with the states |0〉  and |1〉 .

In the strong correlation approximation, retaining
the last term in (7.1) and using expression (4.4) for the
calculation of the density matrix (7.1), we obtain in the
one-photon limit (weak incoherent pumping) the eigen-
values of the  matrix:

(7.4)

where

The constants s1 and s2 are much smaller than the con-
stant s, so that the concurrency parameter is always
negative. Therefore, the quantity EF for this system is
zero, and the atom–field states are not entangled.

Not using the strong correlation approximation, in
the case of excitation of only one-photon state, we can
estimate the entanglement of the atomic and field sub-
systems from the expression

(7.5)

for the concurrency parameter, where the parameters

were calculated from recurrent expressions (3.7), tak-
ing into account (7.1). According to (7.5), the atomic
and field systems will be in an entangled state if

(7.6)

The dependence of C on the strength of the atom–field
interaction and the parameter ν within the framework
of this approximation is presented in Fig. 6, where con-
dition (7.6) is also shown. One can see from this figure
that the concurrency parameter increases with increas-
ing interaction η and achieves its maximum value at

 = 0.4 and ν = –1/2. Figure 7 shows the depen-
dences of the concurrency parameter C and the degree

ρρ̃

λ1

s s1+
1 2s+
--------------, λ2

s s1–
1 2s+
--------------,= =

λ3 λ4

s2

1 2s+
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s
a2

ν 1+
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s

η
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a2s
ν 2+
------------.= = =

C 2 z3 z4–( ) 1 z1 z2 z3 z4+ + + +( )=

z1
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ρ1 0( )
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ηa2
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---------------------------------------------------,= =
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η
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of entanglement EF of the atom–field states on the inco-
herent pump intensity for optimal values of the param-
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Fig. 7. Dependence of the concurrency parameter C (solid
curve) and the degree EF of entanglement (dashed curve) of
the atom–field states on the incoherent pump intensity.
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these dependences achieve the maximum simulta-

neously at  = 0.33.

8. CONCLUSIONS
We have studied in detail the state of a field pro-

duced by a single-atom laser in the case of a strong cou-
pling between the atom and field of both quantum
(related to the entangled atom–field states) and classi-
cal (in the absence of these states) nature. Unlike a
usual macroscopic laser, where such a coupling is
absent and the atomic and field states are independent,
the field states in the single-atom laser depend on the
level at which the atom is found. In the stationary state,
the probability of finding n photons and the atom in the
excited state is equal to the probability of finding n + 1
photons and the atom in the ground state. We have
shown that, in the stationary state, the field states
belonging to the ground or excited atomic levels are the
generalized Mittag–Leffler states averaged over phase
fluctuations and having loss balance indices ν differing
by unity. We have found that the conditional Glauber P
functions corresponding to these states are expressed in
terms of the kernel of the operation of fractional Rie-
mann–Liouville integration (differentiation) of the
order equal to the loss index or exceeding it by unity. In
the case when this index is zero (atomic losses are equal
to field losses), the generalized coherent states belong-

a2
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ing to the ground atomic state are transformed to a
usual coherent state averaged over phase fluctuations.
This demonstrates that emission produced by a single-
atom laser upon incoherent pumping of the atom is
close to emission produced by a classical current with a
stabilized amplitude and a random phase.

The presence of a rigid classical correlation between
the atomic and field states also results in inversionless
lasing, which differs from inversionless lasing in three-
level macroscopic systems. When the loss index is neg-
ative (the rate of field losses exceeds the rate of atomic
losses), the laser emission is described by a nonclassi-
cal sub-Poisson statistics. Another nonclassical feature
of the emission produced by a single-atom laser is a
boundedness of the P function on a segment.

Although the atom–field correlations are classical
for most values of the parameters, at low pump powers
the entangled atom–field states can be generated with
the maximum entanglement formation entropy of about
12%.

Note in conclusion that a strong correlation between
an atom and a cavity field mode considered in this paper
has been achieved in modern experiments with single
atoms in high-Q optical cavities [14, 15]. For example,
in experiments [15] with preliminarily cooled Cs atoms
(the resonance transition corresponds to one of the
components of the 852.4-nm D2 line; the dipole decay
rate constant of the 6S1/2, F = 4, mF = 4  6P3/2, F =
5, mF = 5 transition is γ⊥  = 2π × 2.6 MHz) captured by
a dipole trap tuned far away from the resonance with
the capture time τ = 28 ms in a cavity of length l =
44.6 × 10–6 m and the decay constant k = 2π × 4 MHz,
the interaction constant was g = 2π × 32 MHz, corre-
sponding to a strong correlation regime with the param-
eter η = 64. In this case, the frequency of the cavity field
mode almost exactly coincided with the atomic-transi-
tion frequency and the frequency of the probe low-
intensity laser radiation with the average number of
photons  ≈ 0.1.

APPENDIX

Properties of Phase-Independent Distribution 
Functions

The statistical properties of a single-mode field
averaged over the atomic states can be conveniently
studied using the s-ordered quasi-probability functions

(A.1)

which are defined as a two-dimensional Fourier trans-
form of the normally ordered field characteristic func-
tion [16]

n

R s( ) α( )
1

π2
----- λ2 FN λ( )d∫=

× –λα∗ λ∗ α s λ 2/2–+( ),exp

FN Sp f λa+( )exp λ∗ a–( )ρexp( ).=
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Here, the superscript s = 0 corresponds to the P function
of the Glauber distribution, s = 1 corresponds to the
Wigner function W, and s = 2 corresponds to the distri-
bution function Q. For an incoherently pumped single-
atom laser, both the characteristic function and the dis-
tribution function prove to be phase-independent
functions because of the invariance of the master
equation (2.1) with respect to the simultaneous phase
shift of the operators related to the atom and field:
a  aexp(iφ), σ–  σ–exp(iφ) [17]. In this case, the
distribution functions Rs(|α|2) are calculated as a one-
dimensional Bessel transformation of the characteristic
function:

(A.2)

In addition, the Wigner function and Q function are
related to the P function by the integral expression

(A.3)

where I0(x) is a modified Bessel function.

By using the expansion of the phase-independent
characteristic function into a power series over nor-
mally ordered moments

(A.4)

we can represent the Wigner and Q functions as a sum
of Laguerre polynomials:

(A.5)

where Laguerre polynomials are the known orthogonal
polynomials defined by the series [18]

(A.6)

For the P function (s = 0), expansion (A.5) is not
defined. The regularized expansion of the P function
in a series over the Laguerre polynomials was
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2
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Fig. 8. Approximate distributions of the P function for even and odd Fock states. The curves were calculated using Laguerre poly-
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obtained in [19]. For the phase-independent distribu-
tion, it has the form

(A.7)

where the regularization parameter ξ ≥ 1 and ρ(s) are
the diagonal elements of the density matrix in the Fock
basis.

Another method for regularization of the P function
also exists. Let us make a formal substitution 1 =
exp(−q|α|2)exp(q|α|2) in the integrand in expression
(A.2) for s = 0 and write the expansion

(A.8)
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Assuming that the series (A.8) converges and using the
relation

(A.9)

we obtain the required expansion of the P function in a
series over the Laguerre polynomials and normally
ordered moments 〈a+nan〉:

(A.10)

An example of a phase-independent nonclassical
state of the field is a purely Fock state ρ0 = |n0〉〈 n0|. The
normally ordered moments for this state are

λd λ 2n 1+ J0 2 λ α( ) q λ 2–( )exp
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(A.11)

where θ(x) is the Heaviside function. By substituting
(A.11) into expansion (A.10), we obtain the regularized
expression for the Glauber function of the Fock state:

(A.12)

Expression (A.12) for n0 = 0 gives, in particular, the
representation of the delta function for the positive
semiaxis of the argument values in the form of a series
over the Laguerre polynomials:

(A.13)

Figure 8 shows the plots of approximate distributions
for even and odd Fock states. For even states, the cen-
tral peak of the P function is located in the region of
positive values. As the order n of the Laguerre polyno-
mials appearing in expansion (A.12) increases, the
height of the central peak increases, as well as the
heights of other negative and positive minima of the
distribution function. As the number n0 of photons
increases, the distribution function becomes more sin-
gular, the number and intensity of oscillations increase
and their period decreases, and the central peak
becomes more intense than for n0 = 0. For odd Fock
states, the central peak of the distribution is located in
the region of negative values. Its intensity increases
with increasing number n0 of photons, remaining in the
region of negative values of the P function. In other
aspects, the behavior of the quasi-probability function
for an odd number of photons is similar to that for an
even number of photons.

Taking into account the expansion of the density
matrix in the Fock basis

and using expression (A.12), we obtain the relation
between the P function and the photon distribution
ρ(n):

(A.14)

By varying the parameter q in expression (A.14), we
can control the convergence of individual parts of the
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series. In addition, by summing the series (A.14) over
other variables, we can represent it in the form (A.7).

Comparison of (A.10) and (A.14) yields the known
relation between moments and the number of photons:

The inverse relation

can be obtained by representing the Q function for the
phase-independent states in the form (A.4) as

(A.15)

Comparison of the direct and inverse relations between
the moments and numbers of photons shows that a
series of coefficients ρ(k) always converges, whereas a
series of moments 〈a+mam〉  converges when a series of
terms k!ρ(k) converges.
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Self-Diffraction of Light Waves by a Nonlocal Photorefractive 
Grating in a Crystal with the 3m Symmetry
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Abstract—A frequency-degenerate steady-state two-wave interaction on a dynamic transmitting phase grating
formed in a cubic crystal of the 3m symmetry group with a nonlocal photorefractive response is considered
in the paraxial approximation. The conservation laws for the nonlinear system of equations of coupled waves,
derived for an arbitrary orientation of interaction relative to the crystallographic axes and the polarization of
incident light waves, indicate that the contribution to energy exchange between the interacting waves may come
from fluxes in different directions. The possibility of nonunidirectional energy pumping from one wave to the
other upon a change in their polarization state due to the interaction is demonstrated. For the transverse config-
uration of the interaction and linear polarization of incident waves, explicit analytic expressions for the scalar
amplitudes of the orthogonal components of the light field are derived in the linear approximation in the coef-
ficient of modulation of the interference pattern of light. The possibility of rotation of the polarization planes
of light waves without a change in their intensity is demonstrated. For three particular configurations, the depen-
dence of the efficiency of interaction of linearly polarized waves on the reduced length, orientation of the polar-
ization vectors of the incident light waves, and the ratio of their intensities are analyzed. © 2002 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Dynamic scattering of light by phase inhomogene-
ities formed due to local cubic nonlinearity for a high
power of radiation (of the order of a kilowatt per square
centimeter) is observed in many media [1–4]. For low
radiation powers (of the order of a milliwatt per square
centimeter), self-action of light in photorefractive non-
centrosymmetric crystals is clearly manifested. In the
general case, however, the photorefractive response in
such crystals cannot be described by a simple cubic
nonlinearity. Perturbations of dielectric properties of
the medium are induced in this case through the linear
electro-optical effect by the photoinduced field of the
space charge. The relation between this field and the
light intensity can be described by a system of nonlin-
ear constitutive equations whose structure is deter-
mined by the collection of processes leading to the spa-
tial separation of the electric charge [4–11]. In contrast
to media with local nonlinearity mechanisms, photore-
fractive crystals can exhibit a nonlocal response in the
case of strict frequency degeneracy of two light beams
exchanging energy in this case [4–6, 9–27].

The two-wave interaction on a dynamic phase grat-
ing was considered in [1, 2, 4–6, 9–11] in the approxi-
mation with a preset polarization of light waves. This
can be done for anisotropic photorefractive crystals if
the polarization of the waves incident on a crystal coin-
cides with the polarization of one of the intrinsic optical
modes of the medium. In this case, the distance ∆k
between the wave surfaces of these modes in the k
1063-7761/02/9505- $22.00 © 20820
space must be sufficient for disregarding the intermode
interaction. For example, in the ferroelectric crystals
LiNbO3, LiTaO3, and BaTiO3, the value of ∆k is on the
order of 104 cm–1, which is considerably larger than the
two-wave amplification coefficients Γ ~ 102 cm–1

attained in such crystal. Hence, the polarization of light
waves in a crystal does not change as a result of inter-
action if the incident waves are polarized along the
ordinary and extraordinary axes. The theory of fre-
quency-degenerate scalar two-wave interaction implies
that the steady-state energy exchange on a nonlocal
phase grating is unidirectional and that the steady-state
energy exchange on a local phase grating is prohibited;
this was also pointed out in an earlier publication [28].

An analysis of two-wave interaction in cubic photo-
refractive crystals Bi12GeO20, Bi12SiO20, and Bi12TiO20
proved that the change in the polarization state of light
waves due to gyrotropy and linear birefringence
induced by an external field influences considerably the
effectiveness of energy exchange [12–16, 18–20].
Moreover, the additional transformation of the polar-
ization structure of the light field directly due to self-
diffraction may change the direction of heat exchange
upon an increase in the interaction length or the depen-
dence of this direction on the intensity ratio of the inci-
dent waves [21–27]. Such a transformation removes the
prohibition on the energy exchange for two-wave inter-
action on a local photorefractive grating. The reasons of
change in the polarization of light waves directly due to
self-diffraction are the different efficiencies of two
002 MAIK “Nauka/Interperiodica”
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Components HEE , HEM = HME , and HMM of the coupling matrix; its eigenvalues py, z; and angle ϕ between the intrinsic y' axis

and the coordinate axis y for various configurations of the two-wave interaction in cubic crystals of symmetry groups 3m
and 23

Configuration HEE HEM = HME HMM Eigenvalues ϕ

longitudinal
xo ↑↑  [110], zo ↑↑  [001]

–1 0 0 py = –1, pz = 0 0

transverse

xo ↑↑  [110], zo ↑↑  [1 0]

0 –1 0 py, z = ±1 –45°

diagonal

xo ↑↑  [110], zo ↑↑  [ 11]
0 py = , pz = –2py 0

xo ↑↑  [110], zo ↑↑  [ 1 ] 0 py, z =  ± –62.6°

Note: Arrows indicate the orientation of the coordinate unit vector along the positive direction of the corresponding crystallographic axis.
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1
1

3
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3
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1

3
------- 2

3
---

1

6
------- 1

2
-------
intramode processes and the strong intermode interac-
tion. The latter is due to a small value of ∆k which does
not exceed 10 cm–1. The decrease in the effectiveness of
intermode interaction upon an increase in the interac-
tion length due to Bragg’s detuning equal to ∆k is com-
pensated by an increase in the coupling constant γ
attaining values of the order of ∆k and higher due to the
application of nonstationary mechanisms of formation
of photorefractive holograms [29, 30].

The natural circular birefringence and the linear
birefringence induced by an external electric field com-
plicate to a considerable extent the qualitative pattern of
the vectorial two-wave interaction in crystals of the
23 symmetry, especially for comparable intensities of
light waves, for which the approximation of a preset
field of a high-intensity wave is inapplicable. Self-dif-

fraction in nongyrotropic cubic crystals of the 3m
symmetry (such as GaAs, InP, or CdTe) in zero external
electric field is more obvious; in this case, the polariza-
tion state of light waves may change only due to the
interaction. In the particular case of the longitudinal
configuration of the interaction in crystals with such a
symmetry group (see table), the exact solution of the
problem of vectorial self-diffraction of plane mono-
chromatic light waves by a local photorefractive
grating with an amplitude proportional to the modu-
lation coefficient of the light interference pattern was
obtained in [22].

Here, we consider the steady-state vectorial inter-
action of two monochromatic light waves by a trans-
mitting nonlocal photorefractive grating in a cubic

crystal of the 3m symmetry of an arbitrary orienta-
tion. Main attention is paid to an analysis of the fea-
tures of energy exchange between the waves, which
are associated with their polarization due to self-dif-
fraction.

4

4
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2. MODEL

Figure 1 shows a schematic diagram of symmetric
interaction of two cocurrent light waves, viz., a signal
wave

and a reference wave

in a cubic nonmagnetic photorefractive crystal of sym-

metry group 3m. Permittivity perturbations ∆εij

responsible for the interaction are induced in the crystal
by the field Esc of the space charge through the linear
electro-optical effect. In the case under investigation,
field Esc is formed due to spatial separation of charge
carriers excited by the light field of intensity

.

This field exhibits a rapidly oscillating dependence on
the transverse coordinate z along the vector

and a slowly varying dependence on the longitudinal
coordinate x (interaction length) along the normal to the
input face of the crystal. This enables us to set Esc =
Esczo, where zo = K/K, and represent the permittivity
perturbations in the form

(1)

where n is the refractive index, r41 = r52 = r63 is the only
nonzero independent electro-optical coefficient for cubic
noncentrosymmetric crystals with symmetry groups

3m and 23, δijk is the Levi-Civita symbol, and  are
the components of the unit vector zo in the crystal-phys-
ics system of coordinates.

S̃ S i ωt kS r⋅–( )[ ]exp=

R̃ R i ωt kR r⋅–( )[ ] ,exp=

4

I I0 1
m
2
---- iKz( )exp c.c.++

 
 
 

S̃ R̃+
2

∝=

K kR kS K K=( )–=

∆εij n4r41Esc δijk zk
0 n4r41Escgij,= =

4 zk
o
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Fig. 1. Symmetric two-wave interaction in a photorefractive crystal.
In the framework of the band theory of solids, the
field Esc of a space charge is connected with the lumi-
nous intensity I through a system of nonlinear differen-
tial (constitutive) equations whose structure is deter-
mined by the type and amount of photoactive impurities
and traps in the crystal as well as by the mechanisms of
transfer of photoexcited charge carriers [4–11]. For
large modulation coefficients m ≈ 1, the contribution of
higher harmonics to the spatial dependence [17, 31–39]

becomes significant. However, the effect of higher dif-
fraction orders on the effectiveness of the interaction
between the main beams in thick crystals is weak [1,
34, 38]. In this case, the nonlinearity of processes lead-
ing to spatial separation of electric charges affects the
nonlinear dependence of the amplitude of the funda-
mental harmonic on the modulation coefficient, which
can be represented in the steady-state conditions in the
form

Here, the effective amplitude Eeff and function f(m) are
determined by the band model parameters of the crystal
and external conditions [17, 31, 32, 35, 39]. In the gen-

Esc

Es

2
----- isKz( )exp

s ∞–=

∞

∑=

E1 Eeff= anmn

n 1=

∞

∑ Eeff f m( ).=
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eral case, amplitude E1 =  – i  is a complex quan-
tity, and the photorefractive grating contains the local
(proportional to ) as well as a nonlocal ( ) compo-
nent. A local grating is formed during charge separation
due to the drift in a strong constant electric field or due
to the linear photogalvanic effect [4–11, 31–33]. A non-
local grating is formed due to the diffusion mechanism
of charge separation or due to the drift in an external
periodic electric field with period T satisfying the con-
dition τR ! T ! τdi, where τR and τdi are the recombina-
tion and dielectric relaxation times, respectively [7, 9,
29, 35–39]. A nonlocal photorefractive response can
also be realized due to the circular photogalvanic effect
[10]. The amplitudes of the local and nonlocal compo-
nents of the fundamental harmonic of the space-charge
field may attain several tens of kilovolts per centimeter
for large modulation coefficients m ≈ 1. In the case of a
nonlocal response of the crystal, the two-wave amplifi-
cation coefficient in the intensity of a weak light wave
has a value of the order of 10 cm–1 and higher [4, 9, 15–
25, 27, 29, 37, 38].

We confine our analysis to the steady-state two-
wave interaction in the case of a nonlocal photorefrac-
tive response of the crystal, when the effective ampli-
tude is an imaginary quantity, Eeff = –iE'', and function
f(m) has real values for a real-valued argument. In this
case, the permittivity perturbation tensor ∆e can be rep-
resented in the form

E1' E1''

E1' E1''
 AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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(2)

where the components of tensor g are defined by the

relation gij = |δijk|  (see formula (1)). We will use the
paraxial approximation, which is valid for small angles
between the wave vectors kS, R and the x axis, assuming
that the vector amplitudes of the light waves have only
the y and z components (TE and TM, respectively):

(see Fig. 1). In these approximations, the equations for
coupled waves describing slow variations of the TE and
TM components of the light field over the interaction
length can easily be derived from the wave equation for

the light field  =  +  in the form

(3)

(4)

(5)

(6)

Here,

(7)

is the modulation coefficient of the interference pattern,
which is expressed in terms of the amplitudes of the TE
and TM components of the light waves;

is the coupling constant; and

In Eqs. (3)–(6), we have omitted the terms propor-
tional to the linear absorption coefficient α, which does
not affect the polarization state of interacting waves.
The inclusion of absorption only leads to an identical
(equal to exp(–αx/2)) decrease in the TE and TM com-
ponents of the light field.

Equations (3)–(7) describe the variation of the
amplitudes of the TE and TM components of the light
field for a steady-state two-wave interaction in cubic

crystals of symmetry 3m with an arbitrary orientation

∆e –
in4r41E''

2
-------------------- f m( ) iKz( )exp c.c.+ g,=
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o

S SEyo SMzo, R+ REyo RMzo+= =
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---------
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4
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γ
4
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γ
4
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γ
4
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2πn
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I0 SE
2 SM
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2
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2
.+ + +=

4
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in zero external field. In the linear approximation in the
modulation coefficient (f(m) ≡ m), these equations coin-
cide with the equations for coupled waves used in [18,
19, 22, 24] in an analysis of the interaction in gyrotro-
pic crystals of symmetry 23, if we omit in the latter
equations the terms describing the natural circular bire-
fringence as well as the linear birefringence induced by
the external field.

3. FIRST INTEGRALS OF EQUATIONS 
FOR COUPLED WAVES

The system of equations (3)–(6) for coupled waves
obviously has the integral

corresponding to the energy conservation law for the
light field in the case of its redistribution between two
interacting waves in a nonabsorbing photorefractive
crystal.

We can derive a conservation law that makes it pos-
sible to find first integrals that will be used below for
constructing the general solution to the nonlinear sys-
tem of equations (3)–(7). This system can be used to
express the spatial derivative of the modulation coeffi-
cient in the form

(8)

The light interference pattern formed at the boundary
x = 0 by incident light waves with different elliptic
polarizations is displaced relative to the interference
pattern formed by linearly polarized incident waves
(SE0, M0 =  and RE0, M0 = ). In the case when
the origin on the z axis coincides with one of the max-
ima of the interference pattern formed in the case of lin-
ear polarization of incident waves, the magnitude of
this displacement is ∆z = – /K. Assuming that
the problem is unbounded along the transverse coordi-
nate z, we can consider that the origin on the z axis
always coincides with one of the maxima of the inter-
ference pattern at the boundary x = 0 and treat the quan-
tity m0 as real-valued (Im(m0) = 0) for an arbitrary
polarization of incident light waves. Then, in view of
real-valuedness of the function f(m0) and coefficients
HMM, HEE, and HEM, Eq. (8) leads to the conservation
law

(9)

indicating the absence of bending for the interference
fringes along the interaction length.

I0 SE
2 SM

2 RE
2

RM
2

+ + + const,= =

dm
dx
------- f m( )

γ
2I0
------- HEE RE

2 SE
2

–( )[=

+ HMM RM
2 SM

2–( ) 2HEMRe RE
*RM SE*SM–( )+ ] .

SE0 M0,* RE0 M0,*

m0( )arg

Imm Im SERE
* SMRM

*+( ) 0,= =
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For an arbitrary orientation of the interaction rela-
tive to the crystallophysical axes, all four elements of
the so-called coupling matrix [18, 19, 22]

(10)

may differ from zero. These elements are given in the
table for four particular cases. It follows from Eqs. (3)–
(6) that the orientation of the polarization vectors of
light waves in the crystal does not change in the case of
longitudinal configuration and the TE polarization of
incident waves (SE|x = 0 = SE0 ≠ 0, RE|x = 0 = RE0 ≠ 0, SM0 =
RM0 = 0). In the approximation linear in the modulation
coefficient (f(m) ≡ m), the energy exchange between
light waves in this configuration is described by the
well-known relations in the scalar theory [1, 6, 11]. The
solution to Eqs. (3) and (5) for the same configuration,
but for the linear polarization of incident waves, which
is oriented arbitrarily in the yz plane, was derived in the
same approximation in [22]. The solution to the com-
plete system of equations (3)–(7) for waves can also be
obtained in the case of an arbitrary orientation of the
interaction relative to crystallophysical axes. Taking
into account the conservation law (9), we can show that
the equations for four characteristics of the equation in
partial derivatives, which determines first integrals of
Eqs. (3)–(6), coincide in structure with these equations
if we omit the factor γf(m)/4 = γf(m)*/4. Relations for
these characteristics are linear functions of four arbi-
trary initial conditions and can be solved relative to any
three initial conditions. Inverse relations expressing the
initial conditions as functions of the characteristics can
be used as the first three independent integrals of the
dynamic system (3)–(7) (see, for example, [40]). The
general method of determining its independent inte-
grals is inconvenient in view of the cumbersome ana-
lytic calculations used. However, a preliminary analysis
based on this method predicts the integrability of such
a dynamic system in the general case.

In order to find a compact form of the first integrals,
we pass from the initially introduced coordinate axes y
and z to new axes; it is convenient to use for such axes
the intrinsic axes y' and z' of matrix H (see Fig. 1). The
angle ϕ between the axes y' and y is given in the table
for particular cases of the interaction. In the new system
of coordinates, the equations for the y and z compo-
nents of the vector amplitudes

of light waves interacting on a nonlocal photorefractive
grating form the following system of equations:

(11)

H
HMM HME

HME HEE 
 
 

=

S Syy
o' Szz

o', R+ Ryy
o' Rzz

o'+= =

dSy z,

dx
-----------

γ
4
--- f 2

SyRy* SzRz*+
I0

------------------------------
 
 
 

py z, Ry z, ,=
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(12)

Here, we have taken into account the fact that the mod-
ulation coefficient can be expressed in terms of the new
variables as

are the eigenvalues of matrix H whose values are given
in the table for particular cases of the interaction; and

Considering that the conservation law (9) in the new
system of coordinates assumes the form

we can derive from Eqs. (11) and (12) for the y and z
components the following integrals:

(13)

Here, the superscripts denote the real and imaginary
components of the complex amplitudes of the TE and
TM components:

Integrals ,  and ,  describe the conservation of
the overall energy of the light field,

 +  +  +  = I0,

during its redistribution between the light waves in the
course of self-diffraction, as well as the conservation of
parts of this energy,

concentrated in the orthogonal polarization compo-
nents whose orientation coincides with the orientation
of the eigenvectors of the coupling matrix. In addition,
in the case of interaction of elliptically polarized waves,
the energy of components turned through angle π/2 in
phase relative to each other is also conserved:

The existence of the laws of conservation of Iy and Iz as
well as I' and I" may modify significantly the qualitative
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γ
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 AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002



SELF-DIFFRACTION OF LIGHT WAVES BY A NONLOCAL PHOTOREFRACTIVE GRATING 825
pattern of energy exchange between waves in the case
of vectorial self-diffraction as compared to the case of
scalar self-diffraction with the conservation law

[1, 4–6, 9–11]. In the latter case, the interaction leads
only to unidirectional pumping of energy from one
wave to the other. On the other hand, in the case of vec-
torial self-diffraction, the contribution to energy
exchange may come from two fluxes in different direc-
tions. For example, the energy exchange between the z
components of the light field corresponding to integral
Iz may amplify the signal wave and suppress the refer-
ence wave, while the energy exchange between the y
components corresponding to integral Iy may suppress
the signal wave and amplify the reference wave. Such a
situation may be realized for the orientation of interac-
tion relative to the axes of the crystal, which corre-
sponds to the eigenvalues py and pz of the coupling
matrix with opposite signs (see table). This follows
(e.g., for the boundary condition Sy0 = Sz0 and Ry0 = Rz0)

from the additional integrals  and  that can be
obtained from Eqs. (11) and (12), respectively, in the
form

(14)

(15)

If we replace the prime in the last two expressions by a

double prime, we obtain expressions for integrals .

It should be noted that the latter integrals are directly
connected with transformation of the polarization state
of light waves upon self-diffraction. Another supple-
mentary set of integrals ℑ Sy, Sz and ℑ Ry, Rz, which is also
associated with such a transformation, can be obtained
in the form

(16)

(17)

If we carry out the simultaneous substitution S  R
and R  S in these expressions, we obtain expres-
sions for integrals ℑ Ry, Rz.

The real-valuedness of coefficients HMM, HEE, and
HEM indicates that the polarization of light waves in the
crystal remains linear (SE, M = , RE, M = ) in the

S 2 R
2

+ I0=

ℑ S R,' ℑ S R,''

ℑ S' pz Ry0'
Sy'

Iy'
-------- py Rz0'

Sz'

Iz'
--------arcsin ,sgn–arcsinsgn=

ℑ R' pz Sy0'
Ry'

Iy'
-------- py Sz0'
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--------arcsin .sgn–arcsinsgn=

ℑ S R,''

ℑ Sy Ry0'sgn
Sy'
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Sz'
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Sz''
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---------.arcsin–=

SE M,* RE M,*
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case of their linear polarization at the boundary x = 0,
changing only its orientation in the general case. This
feature is also characteristic of the two-wave interac-
tion in cubic gyrotropic crystals of the 23 symmetry in
zero external field [24, 26]. The transformation of the
linear polarization of incident light waves into the ellip-
tical polarization in photorefractive cubic crystals
becomes possible in the presence of an external electric
field, when linear birefringence is induced in a crystal
[18–21, 23, 25, 27].

It should be noted that the set of integrals (13)–(17)
is not independent, but any seven integrals from this set
are independent. This makes it possible to uncouple
Eqs. (11) and (12) and obtain a solution for the real and
imaginary parts of each scalar amplitude in quadra-
tures, which can be reduced, in some particular cases,
either to transcendental equations or to explicit ana-
lytic expressions for these components. For example,
the solutions in quadratures for the y and z compo-
nents of the amplitudes of light waves interacting in a
crystal in the approximation linear in the modulation
coefficient,

in the case of incidence of linearly polarized waves

(  =  = 0) can be obtained in the form

(18)

(19)

The solution to Eqs. (11) and (12) in this case can be
written in a different form if we introduce the auxiliary
functions φy, z [22] satisfying the expression ℑ φ = pyφz –
pzφy using the relations

.

f
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In some particular cases of two-wave interaction, we
can rationalize the integrands in formulas (18) and (19)
and obtain an explicit solution for the scalar amplitude.
The simplest of such cases is the linear configuration,
when pz = 0 and py = –1 [22]. We will derive below the

expressions for amplitudes , , , and  in the
transverse configuration. In view of relation pz = –2py,
the integrands can be rationalized in the diagonal con-
figuration also, and their integration in the case of an
arbitrary orientation of the polarization vectors of inci-
dent waves and an arbitrary relation between their
intensities leads to transcendental equations in ampli-

tudes , , , and . In the general case, including
the last configuration from the table, numerical integra-
tion must be used for obtaining the distributions of
these amplitudes over the interaction length or their
dependence at the output of the crystal on the parame-
ters of the waves incident on it (e.g., the orientation of
the polarization vectors or the ratio of their intensities).

4. SELF-DIFFRACTION IN THE CASE
OF TRANSVERSE CONFIGURATION AND 

LINEAR POLARIZATION OF INTERACTING 
WAVES

In this configuration, in view of relation py, z = ±1,

integral  (or ) can be transformed as

Another supplementary integral, which is convenient to

use instead of integral  or , has the form

Rationalization of the integrands in formulas (18) and
(19) makes it possible to obtain the amplitudes , ,

, and  in the form

(20)

Here, the functions βy(x) and βz(x) for I3I4 ≠ 0 are con-
nected through the relation
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-----------------------------,sgn=
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βy βz+
βyβz 1–
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and have the form

(21)

where

Formulas (20) and (21) imply that self-diffraction of
light waves by a photorefractive grating in the trans-
verse configuration attains saturation upon an increase
in the reduced length γx when the amplitudes , ,

, and  become independent of γx, in contrast to the
longitudinal configuration, for which distributions of
the TE and TM components oscillating in γx are also
possible [22]. In the general case, the distributions of

amplitudes , , and ,  and the intensities of

light waves IS =  +  and IR =  +  over γx are
nonmonotonic. The intensity and polarization of light
waves in saturation and the reduced length typical of
this regime are determined by the relation between the
intensities IR0 and IS0 of the incident waves and by the
orientation of their polarization vectors.

It follows from the arguments put forth in the previ-
ous section that the difference in the signs of the eigen-
values py, z = ±1 of the coupling matrix indicates the
possibility of the existence of two fluxes in different
directions in the total energy exchange between the
light waves. As for photorefractive crystals of the
23 symmetry, the existence of energy fluxes in different
directions for the two-wave interaction in a crystal of

symmetry 3m makes it possible to control the direc-
tion of energy pumping not only by rotating the polar-
ization plane of the waves incident on the crystal [4, 9,
10, 13–20], but also by changing the ratio of their inten-
sities [21–27].

The intensities of light waves do not change upon
self-diffraction if energy fluxes in different directions
compensate each other. This condition holds in the case
of incidence on a crystal of light waves with the TE or
TM polarization and with the same intensity, when the

equalities  =  = |I3| and I4 = 0 hold, and the func-
tions
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are ordinary exponential functions with exponents of
opposite signs. Consequently, the intensities of the
interacting light waves do not change (IS = IR = I0/2) for
any magnitude of the reduced length γx. However, their
polarization vectors rotate monotonically upon an
increase in γx, so that

for γx @ 1 ( /  = /  ≈ 0.08 for γx = 5).
Thus, under the saturation conditions, the polarization
vectors of interacting waves are oriented along different
intrinsic axes of matrix H (are mutually orthogonal),
and the amplitude of the photorefractive grating, which
is proportional to the coefficient of modulation of the
interference pattern, is equal to zero.

When light waves with the TE and TM polarization
incident on the crystal have different intensities, energy
fluxes between the interacting waves have different
directions and compensate each other only in the
regime of saturation, when IS = IR = I0/2 again. In this
case, the flux directed towards the light wave with a
lower intensity is larger than the opposite flux. Conse-
quently, the wave with a lower intensity is amplified
upon an increase in γx, while the wave with a higher
intensity attenuates. If we turn the sample crystal
through 180° about the x axis (see Fig. 1) or change the
initial ratio βfirst = IR0/IS0 of the intensities of incident

waves by the reverse ratio βsecond =  without rotat-
ing the crystal, the weak wave will be amplified all the
same. This is typical of a nonunidirectional energy
exchange in the two-wave interaction on a local or non-
local photorefractive grating in cubic gyrotropic crys-
tals [21, 23–27]. Figure 2 shows the dependences of the

amplitudes , , and ,  and the intensities IS and
IR of the light waves on γx for β = IR0/IS0 = 0.5. In con-
trast to the previous case, neither of the amplitudes is
equal to zero in saturation; i.e., the polarization vectors
of the light waves do not coincide with the intrinsic
axes of the coupling matrix. The polarization vector of
the signal wave, which rotates upon an increase in γx,
does not reach the position coinciding with the y axis
(the angle between this vector and the y axis is θS =
−35.2° for γx = 15). The polarization vector of the ref-
erence wave passes though the position of the z' axis
(θR = 54.7° for γx = 15). However, the angle between
the polarization vectors ∆θ  90° for γx @ 1 as in the

previous case. In saturation, we have  =  and  =

– . Typically, the intensities of the light waves
approach monotonically the value I0/2 upon an increase
in γx. Figure 3 shows the dependences of the ampli-

tudes ,  and ,  and the intensities IS and IR of
the light waves on γx for the ratio β = IR0/IS0 = 2, the
polarizations of the signal wave along the intrinsic axis

Sy' Rz' I0/2, Sz' Ry' 0= =

Sz' Sy' Ry' Rz'

βfirst
1–

Sy' Sz' Ry' Rz'

Sy' Rz' Sz'

Ry'

Sy' Sz' Ry' Rz'
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z' of the coupling matrix, and the TE polarizations of
the reference wave. In this case, as before, the angle
between the polarization vectors of the light waves
∆θ  90° for γx @ 1, but this saturation value is
attained upon an increase in γx slightly more slowly
(θS = –65.5° and θR = 23.9° for γx = 15). In contrast to
the previous case, the polarization vector of the signal
wave, which rotates upon an increase in γx, passes
through the position of the y' axis, while the polariza-
tion vector of the reference wave does not attain the
position of the z' axis. The intensity distribution for
light waves over the interaction length is not mono-
tonic. For γx < 3, the reference wave is amplified, while
the signal wave attenuates; for γx = 3, we have IR = 0.87
and IS = 0.13. For γx > 3, the intensity of the reference
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Fig. 2. Distribution of (a) scalar amplitudes and (b) intensi-
ties of light waves over the interaction length in the trans-
verse configuration for the TE (or TM) polarization of inci-
dent waves.
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wave decreases, while the intensity of the signal wave
increases to saturation values (IR∞ = 0.77 and IS∞ = 0.23).

If the waves incident on the crystal are polarized
along the y' axis, we have I3 = I4 =  = 0 and  = I0. If,
however, the waves are polarized along the z' axis, we
have I3 = I4 =  = 0 and  = I0. In both cases, the orienta-
tion of the polarization vectors does not change, and the
intensity distribution of light waves over γx is described by
the conventional relations from the scalar theory [1]:

Iz' Iy'
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1 β γx–( )exp+
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1 β 1– γx( )exp+
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Fig. 3. Distribution of (a) scalar amplitudes and (b) intensi-
ties of light waves over the interaction length in the trans-
verse configuration for the TE polarization of the incident
reference wave and for the polarization of the signal wave
along the intrinsic axis z' of the coupling matrix.
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5. ENERGY EXCHANGE FOR DIFFERENT 
CONFIGURATIONS OF INTERACTION 

AND FOR THE SAME LINEAR POLARIZATION 
OF INCIDENT WAVES

It is convenient to use the two-wave amplification
coefficient

as a quantity characterizing the effectiveness of the
overall energy exchange in the case of the two-wave
interaction on a photorefractive grating. In the case
under investigation, this coefficient can be represented
in the form

(22)

In the case of the scalar interaction, coefficient Γ is
independent of the ratio β = IR0/IS0 of the intensities of
incident waves and of the interaction length x [1, 4, 6,
9–11].

In the general case, the polarization of light waves
changes as a result of self-diffraction, leading to a
change in the direction of energy exchange upon an
increase in the reduced length γx for an invariable inten-
sity ratio β of the incident waves [21–27] or depen-
dence Γ(β) for γx ≡ const. If one of the inequalities
Γ(β) > 0 or Γ(β) < 0 is valid in the interval β ∈  (0, ∞),
the direction of the overall energy pumping does not
change, and the energy exchange is unidirectional. If,
however, the values of Γ(β) reverse sign upon a varia-
tion of β in the given interval, the energy exchange is
not unidirectional. In the same configuration and under
the condition γx @ 1, the form of the dependence Γ(β)
is determined to a considerable extent by the orienta-
tion of the polarization vectors of the light waves inci-
dent on the crystal. This is illustrated by the depen-
dences Γ(β) shown in Figs. 4a, 4c, and 4e for the trans-
verse and diagonal configurations of the interaction as
well as the last configuration from those given in the
table, respectively, for γx = 10 and various angles 
between the polarization vectors of the incident waves
and the intrinsic axis y' of matrix H. In turn, the form of
the dependence of the coefficient Γ on the orientation of
the polarization vectors is determined by the value of β.
The dependences of the coefficient Γ( ) for different
values of β in the cases listed above are shown in
Figs. 4b, 4d, and 4f. It should be noted that, in the trans-
verse configuration, the dependences Γ(β) for a certain
angle  and Γ(β) for the angle 90°–  are symmetric
about the origin of coordinates, while the dependences
Γ( ) for a certain intensity ratio βfirst of the incident

Γ 1
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Fig. 4. Dependences of the two-wave amplification coefficient on the intensity ratio β of incident waves and on their polarization

angle  for (a, b) transverse, (c, d) diagonal, and (e, f) the last configuration from the table.θ0
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waves and Γ(90° – ) for βsecond =  are symmetric
about the abscissa axis. This is due to the fact that the
coefficients HEE and HMM determining the effectiveness
of energy exchange between identical polarization

θ0' βfirst
1–
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components of the light waves are equal to zero: HEE =
HMM = 0 (HΣ = 0). For the other two configurations of
the interaction, HΣ ≠ 0, and hence the dependences Γ(β)
and Γ( ) do not possess the above symmetries.θ0'
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Coefficient Γ is independent of β if the polarization
vectors of the incident light waves are oriented either
along the intrinsic axis y' of matrix H, when Γ = γpy, or
along the intrinsic axis z', when Γ = γpz. Since the non-
unidirectional contribution in this case is equal to zero,
the effectiveness of the overall energy exchange has the
maximal value. For the longitudinal configuration,
py, z = ±1; consequently, the values of the amplification

coefficient for  = 0 and  = 90° differ only in sign:
Γ = γ and Γ = –γ. In the diagonal configuration, the
eigenvalues py, z differ in absolute value also; conse-
quently, the change in the angle of polarization of inci-

dent waves from  = 0, when Γ = γ/ , to  = 90°,

when Γ = –2γ/ , not only changes the direction of
overall energy pumping, but also doubles its effective-
ness. In the case of the latter configuration, the differ-
ence between the coefficient Γ ≈ 1.1γ for  = 0 and

Γ ≈ –0.3γ for  = 90° is even stronger. A typical fea-
ture of a scalar interaction is that the rotation of the
crystal through 180° about the x axis results in the coin-
cidence of the values of Γ for  = 0 and  = 90° with

the values of this coefficient for  = 90° and  = 0,
respectively, before this rotation.

When the polarization vectors deviate from the
direction of the intrinsic axes of the coupling matrix,
the coefficient Γ becomes a monotonic function of β
with two asymptotes parallel to the abscissa axis,
whose position on the plots strongly depends on angle

. The asymptotic values of this coefficient Γ(β 
0) = ΓR and Γ(β  ∞) = ΓS for identical linear polar-
izations of incident light waves can be obtained with
the help of relations (18) and (19), respectively, in the
form

(23)

It should be noted that the coefficient Γ obtained on the
basis of the solution to Eq. (11) in the approximation of
a given light field of an intense reference wave (Ry =
Ry0, Rz = Rz0) coincides with the coefficient ΓS =
ln(IS/IS0). In turn, the coefficient of two-wave amplifica-
tion obtained on the basis of the solution to Eq. (12) in
the approximation of a given light field of an intense
signal wave (Sy = Sy0, Sz = Sz0) is equal to coefficient ΓR
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with the opposite sign (ln(IR/IR0)/x = –ΓR). Under the
condition

which is satisfied in the cases corresponding to the
monotonic curves in Fig. 4, the asymptotic values sat-
isfy the following approximate relations:

It is worth noting that, if this condition is satisfied, the
coefficient ΓR is independent of the coupling constant γ.

The inequality ΓS ≠ ΓR indicates nonreciprocity of
the amplification of a weak signal wave for βfirst  ∞
and attenuation of a weak reference wave for βsecond =
(βfirst)–1  0. This is due to the fact that the contribu-
tion to the intensity of the weak light field, whose vec-
tor amplitude can be obtained in the form

(24)

in the approximation of a preset field of the strong
wave, comes not only from the component proportional
to the vector amplitude A0 of the incident wave (A0 · A0 =
IA0), but also from the orthogonal component propor-
tional to A⊥ (A⊥  · A⊥  = IA0, A0 · A⊥  = 0). The plus sign in
front of the coupling constant γ in formula (24) corre-
sponds to amplification of a weak signal wave (A ≡ S),
while the minus sign corresponds to attenuation of a
weak reference wave (A ≡ R). It should be noted that
relation (24) is similar in structure to the relations
derived in [21, 23–27] for the vector amplitude of a
weak wave interacting with a strong pumping wave in
a gyrotropic photorefractive crystal of symmetry 23.
The polarization vector of the strong wave is equal to
A0/|A0|; consequently, the orthogonal component of the
weak light field does not affect the interference pattern
with the modulation coefficient

Consequently, it does not produce a reverse effect on
the photorefractive grating whose amplitude is propor-
tional to m. This component appears as a result of dif-
fraction of a strong wave by this grating (formed by the
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light field components proportional to A0/|A0|), which is
accompanied by the transformation of the polarization
state to the orthogonal state. Such a diffraction always
amplifies a weak light wave. On the other hand, the
interaction between the light field components propor-
tional to A0/|A0| may either amplify or suppress this
component of the weak wave. In the case of amplifica-
tion, the energy fluxes associated with diffraction and
interaction have the same direction, while the direc-
tions of these fluxes in the case of attenuation are dif-
ferent. When the intensities of incident light waves are
leveled out (β  1), both waves acquire orthogonal
polarization components. In this case, the interference
pattern is formed both due to the interference of the
components with the initial polarization proportional to
A0 and due to the interference of the components pro-
portional to A⊥ , which also produce the reverse effect
on the photorefractive grating in this case.

For the polarization angle  ≠ 0 and  ≠ 90°, two
fluxes in different directions, which determine the over-
all effectiveness of energy exchange between the inter-
acting light waves, compensate each other (Γ = 0) for a
certain value of , which depends on the intensity
ratio β of incident waves, the reduced length γx, and the
orientation of interaction relative to the crystal axes (see
Figs. 4b, 4d, and 4f). For a small value of γx ! 1, the
dependences of the two-wave amplification coefficient on

 remain virtually unchanged upon the variation of β:

In this case, Γ = 0 for  = 45° and  = 135° in the

case of the transverse configuration,  = 35.3° and

 = 144.7° in the case of the diagonal configuration,

and  = 62.6° and  = 117.4° in the case of the last
configuration from the table. In the general case, an
increase in γx leads to an increase in one of the nonuni-
directional fluxes and a decrease in the other flux. These
fluxes are now compensated for a different angle of
polarization. The only exception is the case of trans-
verse configuration of interaction considered in the pre-
vious section for  = ±45° and β = 1, when Γ = 0 for
any value of γx.

The polarization dependences Γ( ) indicate that,
for β @ 1, the attenuation of a weak light wave as a
result of self-diffraction in all the above cases has a
strong selectivity in angles  in the vicinity of  = 0.
For the transverse and diagonal configurations, such a
selectivity also exists for β ! 1 in the vicinity of  =
90°. This effect is associated with the existence of a
nonunidirectional energy flux, which always amplifies
a weak wave and increases upon a deviation of the
polarization of incident waves from the directions of
intrinsic axes of matrix H. For β  1, this flux
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increases for the above deviation at a lower rate, and
selectivity is deteriorated. However, for β = 1, in con-
trast to the cases β ! 1 and β @ 1, the dependence of
the effectiveness of energy exchange on the angle 
may have two selective regions. For γx ! 1, when the
contribution of nonunidirectional energy exchange is
insignificant, there are no selective regions in the polar-
ization dependence of coefficient Γ.

6. CONCLUSIONS

Thus, we have analyzed the energy exchange and
variations of the polarization state of light waves inter-
acting on a transmitting nonlocal photorefractive grat-

ing in a crystal of symmetry 3m of an arbitrary orien-
tation. It is shown that contribution to energy exchange
may come from nonunidirectional fluxes emerging as a
result of transformation of the polarization state of light
waves. Exact analytic solutions and the results of
numerical analysis were obtained in the approximation
for the grating amplitude linear in the modulation coef-
ficient m for the case when linearly polarized light
waves are incident on the crystal. It should be noted that
the first integrals of the equations for coupled waves
obtained by us are independent of corrections nonlinear
in m. For this reason, the main qualitative features of
the interaction, which are associated with the mutual
effect of the energy exchange between the light waves
and the change in their polarization state, remain
unchanged after the inclusion of these corrections.

In particular cases of interaction when the polariza-
tion of incident waves coincides with intrinsic axes of
the coupling matrix, the polarization of light waves in
the crystal does not change, and the energy exchange
between waves is unidirectional. In the general case,
the light field in the crystal contains polarization com-
ponents orthogonal to the polarization of incident light
waves. These components make a nonunidirectional
contribution to the overall energy exchange, which
always amplifies a weak light wave. Typically, for a
large difference in the intensities of incident waves,
when the light field of a strong wave can be regarded as
preset, the orthogonal polarization component of a
weak wave appears due to anisotropic diffraction by an
inhomogeneous photorefractive grating and does not
produce a reciprocal effect on it.

Depending on the orientation of the polarization
vectors of incident light waves and on their intensity
ratio, a unidirectional energy exchange without a
change in the orientation of polarization vectors of the
interacting waves or a nonunidirectional energy
exchange with a rotation of polarization vectors can be
realized. In the particular case of transverse configura-
tion of the two-wave interaction with the same intensity
of the incident waves with the TE or TM polarization,
energy fluxes propagating in different directions com-
pensate each other completely, and the intensities of the
waves in the crystal remain unchanged. Nevertheless,

θ0'

4
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832 LITVINOV
their polarization vectors change their orientation upon
an increase in the reduced interaction length γx so that,
for γx @ 1, these vectors become orthogonal and ori-
ented along different intrinsic axes of the coupling
matrix. Under this condition, the polarization vectors
for all the configurations of interaction involving a
change in the polarization state of light waves are
orthogonal for an arbitrary intensity ratio of the waves
incident on the crystal. However, in the general case,
the orientation of polarization vectors for γx @ 1 does
not coincide with the orientation of the intrinsic axes of
the coupling matrix.
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Abstract—The method of stochastic recurrent relation is used for simulating a random sequence (trajectory)
of the counts of a detector of atomic states at the output of a single-atom micromaser. A random sequence of
the relative frequencies of counts of a detector during a fixed time interval is calculated. The frequencies of
counts vary randomly near the average time-independent level. It is assumed that these average levels are repro-
ducible observables for each random trajectory. A micromaser can jumpwise transfer from one average level of
the relative frequencies of counts to another. It is assumed that a certain subensemble of the states of a field
mode corresponds to each measured average level of the frequencies of counts. A method is proposed for cal-
culating possible average relative frequencies of counts and corresponding (mean) reduced density matrices of
the mode ρst. The matrix ρst characterizes a micromaser during its development along a specified periodic tra-
jectory. It is found by solving the eigenvalue problem for the evolution operator on the period. An analytic
method for solving this problem is developed. The matrix ρst is the solution to the inverse problem of the recon-
struction of the statistics of a field mode from the statistics of a random trajectory. The procedure of selecting
the parameters of the evolution operator on the period is discussed through a numerical example. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

At present, many fundamental concepts of quantum
mechanics can be directly verified and find practical
applications due to a high level of experimental meth-
ods in atomic physics and quantum optics. Thus, the
concept of entangled states of quantum-mechanical
systems is used in rapidly developing scientific fields
such as quantum data processing and quantum calcula-
tions and communication. The operation of quantum
information and communication systems is based on
quantum measurements in information elements during
which the reduction of the state occurs. Individual
atoms or ions captured in traps, as well as single pho-
tons, play the role of cubits. Experiments in which mea-
surements are performed in a specially prepared indi-
vidual quantum system solve the general theoretical
problems of the interpretation of fundamentals of quan-
tum mechanics [1].

In this respect, the so-called single-atom microma-
ser offers interesting possibilities [2]. In such a micro-
maser, an individual quantum system—a separated
mode of the microwave cavity—interacts during each
period (and, hence, becomes entangled) with the sec-
ond quantum system—a Rydberg atom, which is
excited to a maser energy level before entering the cav-
ity. At the instant the atom leaves the cavity (and the
systems no longer interact with each other but remain
in the entangled state), a quantum measurement of the
energy of the atom is performed. This measurement
yields indirect information on the state of a quantized
1063-7761/02/9505- $22.00 © 20833
mode at the measurement instant. The measurement
process is repeated during each flight of the atom,
resulting, due to the so-called reverse action of a mea-
suring instrument on an object being measured, in the
unusual dynamics of a field mode. In the literature
devoted to these problems, it is pointed out that such
indirect measurements serve as a main source of infor-
mation on the state of a quantized microwave mode of
the cavity.

The problem concerning the relation between the
statistical properties of a mode being generated with the
statistics of successive counts of detectors, which are
selective with respect to the states of escaping atoms,
has been considered in many papers. The authors of
paper [3] performed numerical simulation of the
dynamics of a field mode of a micromaser subjected to
quantum measurements of atomic states. They used the
recurrent Filipowicz relation [2] for calculating the
reduced density matrix (RDM) of the field after each
measurement event. Such a calculation yields the real-
ization of a random process, which represents a
sequence of detector counts and the related RDM
sequence. We will call this simulation technique the
method of stochastic recurrent relation (SRR). The
scheme of calculations was ultimately generalized, the
atoms were incident on a detector at equal time inter-
vals, and the detector had 100% efficiency. The only
random variable used in calculations simulated the
detector operation and showed in which state, the upper
or lower, the atom was detected. The authors of paper
002 MAIK “Nauka/Interperiodica”



 

834

        

MIROSHNICHENKO

                    
[3] have obtained important results, which were quali-
tatively confirmed in experimental paper [4]. It was
shown in these papers that, in the steady state at a cer-
tain relation between parameters in the sequence of
detector counts, several (in these papers, two) quasi-
stationary states, which transformed jumpwise to each
other at random moments, were observed. Such a
behavior of a micromaser is explained by a hypothesis
of quantum jumps performed by the micromaser from
one minimum of the effective Filipowicz potential [2]
to another, with close depth. More complicated SRR
calculations were carried out in papers [5, 6], where
random variables were introduced which take into
account the Poisson scatter of the expectation time
between the flights of subsequent atoms and the imper-
fect parameters of detectors. The authors of paper [5]
have obtained and verified experimentally the expres-
sion relating the Mandel parameter Q for the number of
photons of a field mode with a similar parameter for
atoms detected in the ground state. SRRs were used in
papers [6] for simulating measuring schemes including
a classical microwave field and allowing the study of
the dynamics of a phase of a quantum mode during
measurements of atomic subsystems.

In a series of papers [7–10], the theory of a micro-
maser taking into account the detection of the atomic
subsystem was developed based on the time “coarse-
grain” differential master equation obtained in paper
[7]. In paper [8], a nonlinear master equation was found
which describes the dynamics of a field mode in the
time interval between successive detector counts. In
paper [9], a linear master equation was obtained for a
not normalized conditional RDM, and in paper [10] a
propagator was derived for the corresponding suben-
semble. In papers [8–10], basic concepts of a new
field—the statistics of atomic counts—were formu-
lated, which allow one to relate the statistical properties
of the sequence of counts of a detector selective with
respect to atomic states with the statistical properties of
a field mode. In these papers, the expressions were
obtained for the joint probability of detecting k atoms in
the ground state and m atoms in the excited state during
a fixed observation interval. By using these expres-
sions, the authors found the Mandel parameter Q for
atoms in a certain energy state, expressions for correla-
tion and cross-correlation functions for detector counts
separated by a fixed time interval (irrespective of the
states of atoms detected during the chosen time inter-
val), and expressions for the probability density of the
expectation time between two successive counts. These
papers confirm the results obtained in paper [5] and
present general expressions describing the relation
between two-atomic correlation functions with two-
time correlation functions of the intensity of the micro-
maser field (for equal time intervals).

The concepts of papers [8–10] were generalized in
subsequent papers [11–15]. Thus, the authors of papers
[11, 12] studied the effect of the non-Poisson pumping
of a micromaser on the state-selective statistics of
JOURNAL OF EXPERIMENTAL
atoms leaving a detector. The consideration of the non-
Poisson statistics required the use of the theory of sto-
chastic point processes for the description of the statis-
tics of the arrival times of the pump atoms. The authors
of paper [13], where studies [6] were developed,
obtained expressions relating the statistics of atomic
counts with the temporal evolution of the intracavity
field phase. By using a linear master equation, the
authors of paper [14] obtained new expressions for the
statistical parameters of atomic counts (in particular,
they determined the probability of n detector counts for
a specified sequence of the counts). The validity of the
expressions was verified by solving numerically the
master equation. In paper [15], the first attempt was
made to determine the spectrum of a micromaser in the
state belonging to a subensemble, when the RDM was
developed between the subsequent detector counts. The
calculation was performed assuming that the detector
efficiency was low.

We developed in this paper an alternative method for
measuring statistical parameters of the micromaser
field using the statistical processing of the counts of a
detector of atomic states. The method is based on the
Von Neumann quantum theory of measurements [16].
A quantum measurement event results in the selection
of a certain quantum-mechanical subensemble of the
field-mode states. The separation into subensembles is
determined by a detector and depends on its parame-
ters. Information obtained in the measurement event
can be used for a more detailed study of a field-mode
state at different instants of time. Thus, according to
papers [3, 4], one can determine in which of the minima
of the Filipowicz potential [2] a quantum mode is
located at the observation moment and study the char-
acteristics of a quantum jump of the mode to a compet-
ing minimum. Our method is based on the fact that dur-
ing the residing time of the mode in a certain potential
minimum, the average statistical characteristics of the
sequence of detector counts have time to be established.
We can separate a subensemble of the field-mode states
and find the average stationary RDM of the subensem-
ble by measuring the average relative frequency of
counts of the selective detector. We assume that, to find
the average RDM of the subensemble, we can use,
instead of a random sequence of (trajectory) of detector
counts, a periodic trajectory providing the measured
average relative frequency of counts. Such a substitu-
tion, as shown in this paper, is possible because of a
weak dependence of the SRR solutions on the order of
the sequence of detector counts. In other words, ran-
dom successive counts can be interchanged within
some limits to replace a random trajectory by a periodic
trajectory. We developed in Section 4 an analytic
method for calculating a stationary RDM ρst for a peri-
odic sequence. In fact, the method solves an inverse
problem of reconstructing the RDM ρst of a subensem-
ble of field states from statistical characteristics of the
sequence of counts. By using ρst, we can calculate var-
ious average statistical characteristics of the field mode
 AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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and atomic beam acting during a specified time inter-
val. In the papers mentioned above, this problem was
solved with the help of a steady field RDM ρ(ss), which
was obtained without indirect measurements (ρ(ss) is
exactly defined in Section 3). However, the statistical
characteristics obtained with the help of ρ(ss) can be cor-
rect if they are observed during large time intervals,
when the micromaser has been in all its quasi-station-
ary states many times. The method we developed
allows us to study the statistical properties of a field
mode in more detail. If the micromaser has one station-
ary state, whereas other states are unlikely, then, as
shown in this paper, the calculations performed with the
help of these two matrices yield the same results.

2. MODEL OF A SINGLE-ATOM MICROMASER

The model of a single-atom micromaser is based on
the Jaynes–Cummings Hamiltonian H [17] and was
developed in paper [2]. The Hamiltonian has the form

Here, , , and  are the operators of the group
SU(2)

satisfying the common commutation relations;  and
 are the Bose operators of creation and annihilation of

the field-mode photons; ω is the frequency of the quan-
tum mode of the cavity; ω0 is the atomic transition fre-
quency; g is the parameter of the atom–field interac-
tion; |0〉  and |1〉  are the ground and excited atomic states
of the maser levels; and " = 1. Below, we consider the
case of ω = ω0.

According to the Filipowicz theory [2], a microma-
ser operates cyclically, its operation period consisting
of the time τ of interaction of an atom with a quantized
mode of the cavity and of the time T (T @ τ) of field
relaxation to the Planck distribution. Let us describe
analytically the development of the RDM of a quantum
mode during a period [2]. We assume that all the atoms
flying into a cavity are prepared in the excited state. Let
σat be the initial density matrix of an atom. Then, before
the escape of an atom from the cavity after the termina-
tion of the interaction of the mode, the RDM ρ(t) is
described by the expression

Here, Spat is the trace of the matrix over atomic states.
For the initial conditions chosen, as follows from paper
[18], each RDM diagonal develops independently.
Consider the dynamics of the principal diagonal of the
field RDM—the probability distribution law of the

H ωâ+â ω0Ŝ3 g â+Ŝ– âŜ++( ).+ +=

Ŝ+ Ŝ– Ŝ3

S3
1| 〉 1〈 | 0| 〉 0〈 |–

2
-------------------------------, S– 0| 〉 1〈 | , S+ 1| 〉 0〈 | ,= = =

â+

â

ρ τ( ) Spat iHτ–( )ρ 0( ) σat iHτ( )exp⊗exp[ ] .=
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number n of photons in the Fock basis. This relation has
the following matrix form:

After the escape of an atom from the cavity, the princi-
pal diagonal of the field RDM develops as

Here, γ is the relaxation rate of the field; nb is the aver-
age Planck number of photons in the cavity. We retain

the notation  and  for creation and annihilation
operators, respectively, which now act on the Fock pro-
jector |n〉〈 n| according to the rules

Then, the principal diagonal of the field RDM after the
termination of the cycle of duration T can be repre-
sented with the help of the evolution operator (by
neglecting the field relaxation during a short interval τ
of interaction) in the form

Here,

(1)

(2)

(3)

The above equation describes the principal diagonal of
the field RDM for a full ensemble of quantum states of
the mode, without performing an indirect quantum
measurement.

To simulate the process of measurements of the
states of escaping atoms, we divide the full ensemble
into three subensembles and introduce a random vari-
able ξ, which satisfies the condition ξ = 0 if the detector
found an atom in the lower state, ξ = 1 if an atom was
found in the upper state, and ξ = 2 if the detector did not
produce any count because its efficiency is less than
unity. Let us neglect the duration of the measuring pro-
cedure and assume that the measurement is performed
at the moment of the atom escape from the cavity. We

ρn τ( ) gτ n 1+( )cos
2 ρn 0( ) gτ n( )sin

2 ρn 1– 0( ),+=

ρ t( ) ρn t( ) n| 〉 n〈 | .
n

∑=

dρn t( )
dt

-------------- γ nb 1+( ) n 1+( )ρn 1+ t( ) nρn t( )–[ ]=

+ γnb nρn 1– t( ) n 1+( )ρn t( )–[ ] .

â+ â

a+ n| 〉 n〈 | n 1+ n 1+| 〉 n 1+〈 | ,=

a n| 〉 n〈 | n n 1–| 〉 n 1–〈 | .=

ρ T( ) W T( ) Q0 Q1+( )ρ 0( ).=

W T( ) TγL( ),exp=

L 2nb 1+( )â+â– nb–=

+ nb 1+( )â â+â nbâ+ ââ+,+

Q0 â+ gτ â+â 1+( )sin

â+â 1+
-----------------------------------------,=

Q1 gτ â+â 1+( )cos
2

.=
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denote by ρ(l) the vector of the principal diagonal of the
RDM at the beginning of the lth cycle, which satisfies
the normalization condition

(4)

Here, Sp is the trace over the field states. Let us denote
by S(ξ, T) the evolution operator of the principal diag-
onal of the RDM ρ(l) for a subensemble corresponding
to the value of the variable ξ found at the lth cycle an to
the cycle duration T. We have

(5)

Here, ε1 and ε0 are the efficiencies of detecting atoms in
the upper (lower) states, respectively. It is obvious that
S(ξ, T) satisfies the condition (division of the total
ensemble into three subensembles)

The vector of the principal RDM diagonal, found in the
previous cycle, is an initial vector for the subsequent
cycle. After each measurement event, this vector should
be renormalized. Taking the above considerations into
account, we obtain a nonlinear SRR describing the
dynamics of the principal diagonal of the RDM during
an indirect quantum measurement:

(6)

Here, the symbol ξl denotes the value of a random vari-
able ξ detected in the lth cycle. Below, we will call the
dependence of the random variable ξ on the number ξl

of the operating cycle of the micromaser a trajectory.
Let us denote the probability of finding atom in the
lower state in the lth cycle by a detector as

(7)

Spρ l( ) ρn l( )
n 0=

∑ 1.= =

S ξ T,( ) W T( )D ξ( ),=

D 0( ) ε0Q0, D 1( ) ε1Q1,= =

D 2( ) 1 ε0–( )Q0 1 ε1–( )Q1.+=

S 0 T,( ) S 1 T,( ) S 2 T,( )+ + W T( ) Q0 Q1+( ).=

ρ l 1+( )
S ξ l T,( )ρ l( )

SpS ξ l T,( )ρ l( )
---------------------------------.=

a0 SpD 0( )ρ l( )=
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Fig. 1. Experimental results from paper [4].
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and, similarly, for the upper state as

(8)

These probabilities are equal to the product of the cor-
responding efficiencies ε0 and ε1 of the detector and the
quantum-mechanical probabilities of finding an atom in
the upper or lower states, which are calculated from
SpQ0ρ(l) and SpQ1ρ(l), respectively. The probabilities
a0 and a1 are used to generate a random variable ξ in
each cycle.

3. BASIC PROPERTIES OF THE STOCHASTIC 
EVOLUTION OF THE FIELD RDM

DURING MEASUREMENT OF AN ATOMIC 
STATE AT THE MICROMASER OUTPUT

In experiments [4], a random sequence of detector
counts was measured which showed in which state an
atom was found. The randomness of this sequence is
caused by a number of reasons. An atomic beam has a
Poisson statistics of the expectation time T of atoms [2]:

(9)

Here, R is the injection rate of atoms and P(T) is the
probability density of the expectation time. A detector
which does not measure some atoms due to its low effi-
ciency also has random properties. The results of mea-
surements—atoms escaping from the cavity in the
upper or lower state—are distributed randomly. The
authors of paper [4] studied the statistics of counts
selective with respect to atomic states and presented the
plots of the relative frequencies of counts of a detector
finding the atom in the upper (p1) or lower (p0) states
during the observation interval ∆tav ≈ 0.1 s. Figure 1
shows the corresponding results obtained in paper [4].
These quantities are

(10)

(11)

Here, k is the number of atoms found in the lower state,
m is the number of atoms found in the upper state from
the total number ∆tavR of atoms that have flown during
the time interval ∆tav. The frequencies of counts were
determined by sampling approximately 300 flying
atoms by directly counting the number of favorable
events. The experiment was performed for gτ ≈ 0.92,
Nex = R/γ ≈ 200, and R ≈ 3300 s–1. The data were
obtained with a detector having the efficiency ε1 = ε0 ≈
0.35. The dependence was measured after the establish-
ment of a field in the cavity, and therefore it is typical
for a stationary state of a micromaser subjected to mea-
surements. A characteristic feature of a random realiza-
tion in a micromaser under stationary conditions is the
existence of several (two, as in paper [4]) average rela-
tive frequencies of counts of the detector finding atoms

a1 SpD 1( )ρ l( ).=

P T( ) R RT–( ).exp=

p0
k

∆tav R
--------------,=

p1
m

∆tav R
--------------.=
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in the upper ( ) and lower ( ) states. The average
relative frequencies of counts are retained during
noticeable time intervals (for tens of seconds, in Fig. 1).
For brevity, we will call each such interval the time tst

of residence in a certain stationary state. The relative
frequencies of counts p0 (10) and p1 (11) are random
functions, and they vary randomly near their average
values  and  during the residence time. Sharp
(quantum, according to the title of paper [4]) jumps can
occur between average levels. The average number of
photons in the mode drastically changes during the
jump (in paper [4], approximately from 70 to 149 and
vice versa). The moment of a jump itself is unpredict-
able, and its nature and dynamics have not been stud-
ied.

To simulate the RDM dynamics in the presence of
measurements during each operation cycle of a micro-
maser, it is necessary to generate random variables sim-
ulating the Poisson nature of an incoming beam (vari-
able T) and random results of the detector operation
(variable ξ). The vector ρ(l + 1) can be calculated from
expression (6), where T is the expectation time found
for the lth cycle. The results of simulation are presented
in Fig. 2, where on the abscissa the time tr = t/∆t is plot-
ted in relative units, scaled to the elementary time inter-
val ∆t. The number of intervals ∆t between adjacent
atoms is random and is generated with the help of the
distribution

, (12)

which is close to a Poisson distribution. Here,  is
the probability of expectation of s elementary intervals
between adjacent atoms or of time T = s∆t. The interval

p1 p0

p0 p1

P s( ) R∆t 1 R∆t–( )s 1– , s 1 2 …, ,= =

P s( )
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Fig. 2. The relative frequency of counts of a detector for
atoms found in the ground states. The expectation times are
random and are described by a Poisson distribution; (1) rel-
ative frequency of counts  for atoms in the ground state

obtained in the interval ∆tav  = 284∆t; (2) solid straight hor-

izontal line is the average level  of the frequency of

counts. On the abscissa, the time tr = t/∆t is plotted in units
of the elementary interval ∆t = 1/4R. The parameters of cal-
culation are presented in the text.

p0

p0
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∆t is a parameter of the distribution, its choice being
restricted, according to [9], by the condition

τ ! ∆t

providing single-atom processes.
The plots in Figs. 2 and 3 were calculated for ∆t =

1/4R. For the experiment [4] ∆t ≈ 10–4 s, therefore, the
plots presented in Figs. 2 and 3 correspond approximately
to micromaser operation for 5 s. It is obvious that

where P(T) is defined by expression (9). Curve 1 in
Fig. 2 represents the dependence of the relative fre-
quency of counts p0 (10), obtained during the time
intervals ∆tav = Nex/R = γ–1, on the time tr. The interval
∆tav , as in paper [4], is determined by the lifetime γ–1 of
the field mode. Solid straight line 2 in Fig. 2 shows the
average steady level of the frequency of counts 
obtained by averaging curve 1 in time. The following
parameters were used in calculations:

(13)

The plots presented in Fig. 2 were obtained using
expression (6), when the stochasticity was produced by
random variables T and ξ. Curve 1 is a theoretical
model [with parameters (13)] of an experimental curve.
Let us show that a random dependence with the same
statistical properties can be obtained by a simpler sim-
ulation. For this purpose, we average SRR (6) over the
ensemble of expectation times (12), using the method

P s( )
∆t

---------- P T( ),∆t → 0

p0

Nex 71, ∆tav 284∆t, nb 0.1,= = =

gτ 0.92, ε0 ε1
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-------.= = = =
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Fig. 3. The relative frequency of counts of a detector for
atoms found in the ground state. Simulation is performed
with the help of the evolution operator WF averaged over
the Poisson distribution of the expectation times. The
average time interval between adjacent atoms is chosen
to be 1/R = 4∆t. The notation and calculation parameters
are as in Fig. 2.
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proposed in paper [2]. The averaged expressions have
the form

(14)

(15)

(16)

Here, I is the unit operator. In the limit

, (17)

we obtain the result of Filipowicz [2] for the averaged
evolution operator WF in the relaxation process. Figure 3
shows the results of calculation performed with the
same parameters (13) but using expressions (14)–(16).
The SRR (16) describes the dynamics of a micromaser
under the action of a periodic atomic beam with the
time interval between the atoms equal to 1/R. Compar-
ison of Figs. 2 and 3 shows that the random depen-
dences of p0 on time (curves 1) are close in both these
figures, i.e., their average levels  coincide and the
average values of their dispersions are also close to
each other (which was verified by direct calculations).
This is explained by a sufficiently large averaging inter-
val ∆tav , resulting in the smoothing of curve 1 in Fig. 2.
This comparison allows one to study the model by
using expressions (14)–(16) without generation of the
Poisson variable T, which simplifies the analysis. The
steady RDM ρ(ss) mentioned in the Introduction, which
is obtained without quantum measurements, satisfies,
in our notation, the equation

(18)

4. PROPERTIES OF EVOLUTION OPERATORS 
S(ξ) AND THEIR PRODUCTS:

THE PERIODIC TRAJECTORIES

As follows from experiments and numerical simula-
tions, the average relative frequencies of counts  and

 of an atomic-state-selective detector are maintained
in a micromaser during the residence time tst. The val-
ues of these rates are determined by the law of alterna-
tion of the counting sequence. It is obvious that the
same average relative frequency of counts can be
obtained at many trajectories, the periodic trajectories
being the simplest among them. We denote by {ξj, 1 ≤
j ≤ L} a set of values taken by a random variable ξ over
the period L. Consider the features of the micromaser
dynamics by choosing the period operator

W
R∆t R∆tL/Nex( )exp

I 1 R∆t–( ) R∆tL/Nex( )exp–
----------------------------------------------------------------------,=

S ξ( ) W D ξ( ), ξ 0 1 2,, ,= =

ρ l 1+( )
S ξ l( )ρ l( )

SpS ξ l( )ρ l( )
---------------------------.=

W WF I
L

Nex

--------– 
  1–

=∆t → 0

p0

ρ ss( ) WF Q0 Q1+( )ρ ss( ).=

p1

p0

SL S ξ j( )
ξ j 1 j L≤ ≤,{ }
∏=
JOURNAL OF EXPERIMENTAL 
as an evolution operator. The vector of the principal
diagonal of the RDM is determined at the end of each
period. A nonlinear dynamic recurrent relation describ-
ing the evolution of the micromaser over a periodic tra-
jectory has, similarly to (16), the form

(19)

Here, p is the period number. Unlike (16), Eq. (19)
describes the evolution along a specified trajectory. All
the operators SL have eigenvalues that are smaller than
unity, so that the trace is not conserved [in contrast to
the operator in the recurrent relation (18)]. Neverthe-
less, due to its nonlinearity, relation (19) has a station-
ary solution. Let us obtain the general solution to (19)
by the Fourier method. For this purpose, we expand the
initial vector ρ(0) in the eigenvectors of the operator
SL:

(20)

Here, cλ are the expansion coefficients, and ρλ and λ are
the eigenvector and the eigenvalue of the operator SL:

(21)

Let us denote the maximum eigenvalue in expansion

(20) by  and obtain the solution of (19) on the period
p in the form

(22)

In the limit, we have

.

It follows from (22) that any eigenvector entering the
expansion on the initial state and having the largest
eigenvalue can be a stationary vector of Eq. (19). As a
rule, the initial vector (20) has a nonzero projection on
the eigenvector with the maximum possible eigenvalue
λmax of the operator SL. It is reasonable to treat this vec-
tor as the ground stationary state ρst for a periodic tra-
jectory (this state was mentioned in the Introduction)

(23)

Let us elucidate the meaning of the eigenvalue of the
period operator SL (21). For this purpose, we rewrite
Eq. (19) for any stationary vector ρ in the form

(24)

and compare it with (21). One can see that the eigen-
value of the eigenvector normalized according to (4) is

(25)

ρ p 1+( )
SLρ p( )

SpSLρ p( )
------------------------.=

ρ 0( ) cλρλ .
λ
∑=

SLρλ λρλ .=

λ̃

ρ p( ) ρλ̃

cλ

cλ̃

---- λ
λ̃
--- 

  p

ρλ

λ λ̃≠

∑+ 1
cλ

cλ̃

---- λ
λ̃
--- 

  p

λ λ̃≠

∑+
1–

.=

ρ p( ) ρλ̃p → ∞

ρst ρλmax
.=

ρ SLρ
SpSLρ
-----------------=

λ SpSLρ.=
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But the quantity SpSLρ is equal to the conditional
probability of finding L atoms by a detector in the states
where a random variable ξ takes values from the set {ξj,
1 ≤ j ≤ L} (under the condition that the initial state of
the field was ρ). Let us call for brevity the quantity λ =
SpSLρ the probability of a periodic trajectory of period
L. Therefore, the eigenvalue problem (21) for the product
of operators S(ξ) becomes especially important because its
solutions give discrete (quantized) probability levels
SpSLρ = λ and possible stationary states of the field ρ = ρλ
for a periodic trajectory. The stationary states ρst (23)
determine the probabilities of detecting an atom in the
lower (7) or upper (8) states at the end of each period

(26)

(27)

These probabilities satisfy the exact relation

(28)

The average relative frequencies of counts  and 
of a detector for a periodic trajectory can be calculated
by averaging over the trajectory period L = k + m + r:

(29)

(30)

Here, k is the number of atoms in the lower state and m
is the number of atoms in the upper state detected over
the period L. The detector did not find r atoms over the
period.

In paper [8], an important property of ergodicity of
a random sequence of detector counts was proved (for-
mula (2.36) in [8]). In our notation, this relation has the
form

(31)

Here,  is the average relative frequency of counts for
the lower state of atoms found for an infinite averaging
interval. This property is inherent in the steady RDM
ρ(ss) (18). Let us show that the ground stationary state ρst

(23), which is typical for a micromaser evolving along
a specified periodic trajectory, gives close values for the
probabilities (26), (27) and frequencies (29), (30). For

a0 SpD 0( )ρst,=

a1 SpD 1( )ρst.=

a0

ε0
-----

a1

ε1
-----+ 1.=

p1 p0

p1
m
L
----,=

p0
k
L
---.=

p0 SpD 0( )ρ ss( ).=

p0
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this purpose, the parameters k, m, r, ε1, and ε0 of the
problem should be related by the expression

(32)

which is similar to equality (28).
Let us solve the eigenvalue problem (21) for the

period operator

(33)

and find the eigenvectors ρλ and the ground stationary
state ρst (23). The operators S(ξ) are defined in (15);
analysis is performed for the limiting case ∆t  0
(17). To solve this problem, we will use the lineariza-
tion method. Let us perform the orthogonal transforma-

tion of displacement of operators  and  in expres-
sions (1)–(3), (15), and (17),

   + µ+,    + µ,

where µ+ and µ are numbers, and linearize the operator
SL (33), by retaining in it the terms that are linear and

quadratic in , . The region of applicability of the
linearization method is limited by the condition

gτ < 1; (34)

the Filipowicz parameter Θ = gτ  can be arbitrary,
but Nex > 1. As follows from numerical calculations, the
formulas of the linearization method can also be used at
larger values of gτ than (34). Therefore, the estimate
(34) is rather rough. Let us choose numbers µ+ and µ so

that the terms in SL that are linear over  and  van-
ish. Let us introduce the notation

and obtain the expressions

(35)

(36)

p0

ε0
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p1

ε1
-----+

k
k m r+ +
---------------------- 1

ε0
---- m

k m r+ +
---------------------- 1

ε1
----+ 1,= =

SL Sk 0( )Sm 1( )Sr 2( )=

â+ â

â+ â+ â â

â+ â

Nex

â+ â

ν µ+µ
Nex

---------=

χ
p0

ε0
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F ν( ) θ ν( )sin
2 χ–( )

2
ν ε0 ε1–( ) 1 ε1–+[ ]=
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2 χ–( ) ν χ ε0 ε1–( ) 1– ε1ε0+[ ]{

+ 1 ε1–( ) χ 2 ε0–( ) 1–[ ] }
+ 1 ε0–( ) 1 ε1–( ) 1 χ–( ) ν χ–( ),
(37)
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Expressions (36) and (37) have been obtained by per-
forming simple but cumbersome algebraic transforma-
tions, so that their derivation is not presented here. We
present simplified expressions for the functions F(ν)
and G(ν), which are valid for small nb ! 1 and large
Θ @ 1.

The zeroes of the function F(ν) determine the value
of the parameter ν at which the terms in SL that are lin-

ear over  and  vanish. The function F(ν) has a set
of zeroes. Each of the zeroes corresponds to a series of
almost equidistant eigenvalues, the distance between
them being dependent on the series number. Each of the
series has the ground-state eigenvector. This vector is
localized in the Fock state, the position of its maximum
is determined by the position of the corresponding zero
of the function F(ν), and the corresponding eigenvalue
is determined by the value of the function G(ν) at the
zero chosen. The functions F(ν) and G(ν) are character-
ized by an important relation: positions of the maxima
of the function G(ν) coincide with zeroes of the func-
tion F(ν). Analysis of quadratic terms shows that the
vectors located in the so-called capture zones [18]
prove to be stable. The positions of these zones on the
axis of numbers ν is specified by the double inequality

. (38)

Here, the integer q is the number of the capture zone.
Note that the functions F(ν) and G(ν) are independent
of the order of sequence of factors in the period opera-
tor SL (33) and determine the properties of a beam con-
sisting of (r + m + k)!/r!m!k! periodic trajectories of the
same period L. The coefficients of the quadratic form

over operators  and  depend on the interchange of
the factors. Of most interest is a stable state ρst (23) cor-
responding to the maximum eigenvalue. When the
parameters of the operator SL (33) are related by
expression (32), the ground state is localized in the cap-
ture zone (38) in the interval 0 ≤ ν ≤ 1. An important
property of capture zones is that their position (38) is
independent of the numbers k, m, and r and the detector
efficiency.

Consider a simplified case of coinciding efficiencies
of the detector:

Expressions (32), (35)–(37) are simplified and take the
form

(39)

(40)

â+ â

π
2
---1 2q+

Θ
--------------- 

 
2

ν π
2
---2 2q+

Θ
--------------- 

 
2

, q≤ ≤ 0 1 …, ,=

â+ â

ε1 ε0 ε.= =

ε k m+
k m r+ +
----------------------,=

χ
p0

ε
-----

k
k m+
-------------,= =
JOURNAL OF EXPERIMENTAL 
(41)

(42)

Let us derive the known result of Filipowicz from
expression (41). To do this, we set k = 0, m = 0, χ ≠ 0 in
(41). Then, we obtain from the condition F(ν) = 0 the
equation

(43)

which determines the positions of minima of the effec-
tive Filipowicz potential. This result becomes clear if
we note that, for k = 0, m = 0, and χ ≠ 0, the evolution
operator SL (33) becomes a multiple of the operator
WF(Q0 + Q1) (18). The vector ρ(ss) is the eigenvector of
this operator, with the eigenvalue equal to 1. It is for this
operator that the result (43) was obtained in paper [2].

To justify relation (32) chosen above, note that in
this case the equation F(ν) = 0 always has the root ν sat-
isfying two approximate conditions

(44)

It is the required root, which determines the stable state
ρst corresponding to the maximum eigenvalue of the
operator SL. The meaning of approximate equalities
(44) is as follows. Because the ground state represents
a strongly localized vector, then, according to expres-
sions (26), (2), and (5), we have in the linearization
approximation

(45)

Then, according to (40), we obtain the relation between
the probabilities  (26),  (27) of the detector count
(at the end of each period) and the average relative fre-
quencies of counts  (29),  (30) of the detector
[analogue of equality (31)]

(46)

The second approximate equality (44) determines the
position of the maximum probability of photon num-
bers for the ground state ρst as a function of the Fock
number n:

(47)
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2 χ , ν χ .≈≈

a0 SpD 0( )ρst= ε Θ ν( ).sin
2≈

a0 a1

p0 p1

p0 a0, p1 a1.≈≈

n νNex
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The ratio /ε is the quantum-mechanical probability
of finding an atom in the lower state at the end of each
period of a periodic trajectory.

Let us find the values of the parameter Θ for which
approximate equalities (44) are replaced by exact ones.
For this purpose, we rewrite the equation F(ν) = 0 in the
form that is similar to the Filipowicz equation (43):

By substituting SN(ν) into expression (42), we obtain
the equation for the envelope V(ν) of the maxima of the
function G(ν). We do not present here the expression
for the function V(ν) because it is too cumbersome. The
plot of this function is shown in Fig. 4. One can see
from Fig. 4 that the function V(ν) has one maximum at
the value of ν for which two exact equalities

(48)

are satisfied. For the values of the parameter

(49)

expressions (48) give an exact value of the argument ν
at which the maximum of the envelope coincides with
the main maximum of the function G(ν). By substitut-
ing (48) and (49) into G(ν) (42), we obtain the maxi-
mum value of the function G(ν)—the maximum eigen-
value of the period operator (33) or the maximum prob-
ability of a periodic trajectory with period L = k + m + r:

(50)

Here,  and  are determined by expressions (29)
and (30). By multiplying (50) by the statistical weight,
we obtain the expression for the total probability of the
beam of trajectories with period L:

(51)

which represents a two-dimensional binomial distribu-
tion. This expression generalizes [if approximate equal-
ity (46) is used] expression (3) from paper [5] to the
case of an imperfect detector. In paper [5], an expres-
sion similar to (51) was obtained under the condition
that the field mode is found in the state ρ(ss). Here,
expression (51) is obtained for a periodic trajectory
when the field mode is in the state ρst (23).

a0

Θ ν( )sin
2

SN ν( ),=

SN ν( )
1
2
--- ν ε 1+( ) 1 χε+ +{=

– ν ε 1+( ) 1 χε+ +[ ] 2 4 ν 1 ε– 2εχ+( ) εχ+[ ]– } .

ν χ , SN ν( ) χ= =

Θ χarcsin jπ+

χ
-----------------------------------, j– 1 2 …,, ,= =

λmax Gmax≈ p0
k p1

m 1 p0– p1–( )L k– m– .=

p0 p1

Prob k m L, ,( ) p0
k p1

m 1 p0– p1–( )L k– m–=

× L!
k!m! L k– m–( )!
-----------------------------------------,
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5. DISCUSSION

As follows from experiments [4], a sequence of
detector counts—the trajectory ξl—is a random func-
tion of the number l of the flown atom. By using statis-
tical processing, one can obtain the relative frequencies
of finding an atom in the upper (lower) state, as well as
the relative frequency of transmission of an atom by an
operating detector at a specified interval of time (count-
ing statistics). In the experimental paper [4], these
quantities were calculated in each interval ∆tav along a
random trajectory. It was found that random realiza-
tions had a characteristic property: under stationary
conditions, the frequencies of counts  and  of the
detector averaged over the residence time tst, which
indicate the detection of the upper or lower atomic
state, no longer depended on time.

The aim of this work was to solve the inverse prob-
lem, namely, using the average relative frequencies of
counts  and  measured in experiments in the spec-
ified time interval to derive and solve the dynamic
(rather than stochastic) equation for the field RDM. It is
obvious that this evolution equation will be dynamic if
the trajectory of detector counts is specified (fixed). For
this purpose, we used a periodic trajectory in this paper.
We showed in Section 3 how the randomness related to
the Poisson statistics of an atomic beam can be avoided.
To do this, we used the method proposed in paper [2]
and replaced SRR (6) by SRR (16) averaged over the
distribution (12) of expectation times. The recurrent
relation (16) corresponds to a periodic atomic beam
with the same time intervals between the atoms, which
are equal to 1/R. It was noted in Section 3 that, upon
passage from SRR (6) to SRR (16), the statistical prop-

p0 p1

p0 p1

0.25

0.20

0.15

0.10

0.05

0 0.2 0.4 0.6 0.8 1.0
ν

G, V

1

2

3

4

5

Fig. 4. Function G(ν) and the envelope V(ν) for parameters
k = 1, m = 1, χ = 0.5: (1) V(ν) for r = 0, ε = 1; (2) G(ν) for
r = 0, ε = 1; (3) G(ν) × 10 for r = 2, ε = 0.5; (4) G(ν) × 102

for r = 20, ε = 0.091; (5) cos2(Θ )/10 is plotted to show
capture zones. Other calculation parameters are as in Fig. 2.
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842 MIROSHNICHENKO
erties of random frequencies of counts  and  were
conserved. To derive the dynamic recurrent relation
(19) for determining the stationary vector of the princi-
pal diagonal of the RDM ρst, it is necessary to choose
an evolution matrix for a period. The parameters of the
period matrix SL (33)—the integers k, m, and L—are
chosen by using the experimental values of average rel-
ative frequencies of counts  and  and expressions
(29) and (30). Below, we present a numerical example
of application of this procedure. The statistical process-
ing of a random sequence, which was used to plot the
functions in Fig. 2, gives the results

This result agrees with expression (32):

To obtain the minimum period, we can choose the val-
ues

Then, the period is

The parameters of a periodic trajectory are

We should substitute these parameters into Eq. (33),
solve the eigenvalue problem (21), and find the vector
of the principal diagonal of the RDM ρst for the maxi-
mum eigenvalue λmax. The vector ρst (23) is the required
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Fig. 5. Eigenvectors for the maximum eigenvalue of the
period operator SL = Sk(0)Sm(1)Sr(2) as functions of the
number n of photons: (1) ρst for k = 1, m = 4, r = 0; (2) ρst
for k = 1, m = 1, r = 0; (3) ρst for k = 1, m = 1, r = 20;

(4) ρ(ss); (5) cos2(gτ )/8 is plotted to show capture zones.
Calculation parameters are as in Fig. 2.
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solution to the inverse problem. It can be used for cal-
culating the statistical characteristics of a field mode of
a micromaser subjected to quantum measurements of
the states of the atomic subsystem under stationary con-
ditions. Figure 5 shows the plots of the principal-diag-
onal vector of the RDM ρst for k = 1, m = 1, 4, and r =
0, 20. The curves are plotted for the value of Θ satisfy-
ing expression (49) for j = 2. The vector ρst represents a
single peak localized in the capture zone (38) with the
number q = 1.

The obtained vector ρst describes a subensemble of
the states of a field mode, which is determined by the
average relative frequency of counts  ( ) detected
during the residence time tst. The localization region of
this vector is the capture zone with the number q = 1.
The total ensemble of the field states under stationary
conditions is described by the vector ρ(ss) (18). The plot
of the vector ρ(ss) for the same value of Θ is also shown
in Fig. 5. According to the Filipowicz theory [2], in this
case, the vector ρ(ss) represents a single peak localized
in the zone with q = 1. In other words, the total ensem-
ble of the field states under these conditions is deter-
mined by one average value of the relative frequency of
counts  ( ). In this case, the plots of ρ(ss) and ρst

should virtually coincide, which is demonstrated in
Fig. 5. It follows from Fig. 4 that it does not matter
which of the detectors, with low or high efficiency, was
used for determining the parameters of a periodic tra-
jectory in experiments. Indeed, the position of the max-
ima of the function G(ν) in Fig. 4 weakly depends on
the detector efficiency. The same property is demon-
strated in Fig. 5, where the plots of ρst are shown for
several values of r [different values of ε (39)]. By using
a highly efficient detector, we can detect trajectories
with short residence times tst in the stationary state.

Note in conclusion that the results obtained in this
paper are valid in the linearization approximation. This
approximation can be used when capture zones (38)
can be considered separately from each other. The
eigenvectors (21) of the problem for the operator (33)
localized in different zones are weakly overlapped.
This is the case when the probability of the trajectory
segment weakly depends on the sequence of counts and
is determined by the number of counts. Small variations
in the sequence of the counts, conserving the statistical
characteristics of the realization ξj, only weakly affect
the principal-diagonal vector of the field RDM. In this
case, the use of the corresponding periodic trajectory
for solving the inverse problem is justified.

A more complicated dynamics of a micromaser dur-
ing quantum measurements is observed when the con-
ditions of applicability of the method are violated. In
this case, capture zones (especially, with smaller num-
bers) lose their individuality. Under stationary condi-
tions, two (or several) competing average relative fre-
quencies of counts of the detector can exist. The vector
ρ(ss) can have several peaks located in different capture

p0 p1

p0 p1
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zones (38). The trajectory becomes unstable, and sharp
jumps can occur between the average levels of the rela-
tive frequencies of counts. These jumps occur during a
time interval that is much shorter than the residence
time tst. This instability can be caused by an unlikely
event—a critical fluctuation, when a random variable
determining the dynamics of the micromaser (the Pois-
son variable T or a variable ξ simulating the order of the
detector operation) takes unlikely values in succession.
This case requires a separate study.
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Abstract—The ionization of atoms in a strong nonclassical unimodal electromagnetic field was considered. It
was shown that the probability of ionization could substantially change depending on the quantum state of the
field even at a constant mean number of quanta in the radiation mode. The difference of ionization rates was
especially large for multiphoton ionization processes. It was, in particular, shown that a nonclassical field could
be much more effective from the point of view of the ionization of atoms than a classical field of the same inten-
sity. The characteristics of the decay of a bound atomic system state in a strong nonclassical field were studied
without invoking perturbation theory. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The introduction of the theory of “squeezed” elec-
tromagnetic field states [1] followed by their experi-
mental observation [2, 3] actually opened a new chapter
in the physics of the interaction of high-power electro-
magnetic radiation with matter [4]. In practice, we deal
with a new macroscopic quantum effect, that is, a
purely quantum (nonclassical) electromagnetic field
state, nevertheless containing a large (huge) number of
quanta [5]. Although the degrees of laser radiation
squeezing currently attainable are not large, it is likely
that there are no physical limitations that can, in the
future, prevent the generation of high-intensity fields
whose properties are very far from those of classical
electromagnetic fields [5]. This means that the semi-
classical theory (quantum medium and classical elec-
tromagnetic field) that has earlier been successfully
used to describe interactions between high-power elec-
tromagnetic radiation and matter (for instance, in the
dynamics of laser generation [6, 7], in various nonlin-
ear optics problems [7, 8], and in studying elementary
events in intense light fields [9, 10]) should be replaced
by a consistent quantum theory, in which both the
atomic (molecular) subsystem and electromagnetic
field are described quantum mechanically. The new the-
ory should, as a particular case, include the old semi-
classical theory, when the state of an electromagnetic
field as a quantum object can be described in the classi-
cal limit. Such a consistent quantum approach can nat-
urally be expected to reveal new effects inexplicable in
terms of the traditional semiclassical approach.

In this work, we consider the dynamics of multipho-
ton ionization of an atom in a strong nonclassical uni-
modal electromagnetic field. Namely, we study the
action on an atom of an electromagnetic field in the
Fock and coherent states and in the squeezed vacuum
1063-7761/02/9505- $22.00 © 20844
state. Depending on the quantum state of the field, the
probabilities of ionization can be different even when
the number of quanta in the radiation mode remains
unchanged. The difference of ionization rates is espe-
cially large for multiphoton ionization. In particular, a
nonclassical field can be much more effective from the
point of view of the ionization of atoms than a classical
field of the same intensity. The special features of the
decay of a bound atomic system state in a strong non-
classical field were studied outside the framework of
perturbation theory.

2. QUANTUM ELECTROMAGNETIC FIELD

Further, we only consider one field mode with fre-
quency ω. This field can conveniently be described by a
pair of conjugate values, namely, a (the vector poten-
tial) and ε = –(da/dt)/c (the electric field strength). Both
these values satisfy the harmonic oscillator equation.

In quantum theory, Hamilton operator Hf (ε) can be
put in correspondence to a field mode. This is the
Hamiltonian of the one-dimensional harmonic oscilla-
tor. Clearly, the field mode is characterized by a set of
stationary states with the energies

(1)

where k has the meaning of the number of field quanta
(photons) in the stationary (Fock) state |k〉 . The ground
field state, or electromagnetic vacuum, is the state with
a zero number of quanta, k = 0. The probability density
distribution for observing field strength ε in measure-
ments is then given by the equation

(2)

Ek "ω k 1/2+( ),=

ρ0 ε( ) 1

ε0 π
------------ ε2

ε0
2

----–
 
 
 

,exp=
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where ε0 =  determines electric field
uncertainty in the vacuum state.1 The probability den-
sity distribution in an arbitrary stationary state |k〉  is
written as

(3)

(here, Hk is the Hermitian polynomial).
Note that an electromagnetic field in an arbitrary

stationary state is a purely quantum object. Although
field energy in a stationary state can be very high, the
mean field strength ε averaged over the quantum state
is zero. Therefore, the mean force acting on an electric
charge is also zero. From the point of view of quantum
theory, a classical electromagnetic field is the coherent
state of a field oscillator with a large mean number of
quanta [11]. This state can be written in the energy rep-
resentation as

(4)

where the amplitudes in the expansion over stationary
field states are given by

(5)

where z is a complex number. Clearly, the squares of the
moduli of the amplitudes |αk|2 are determined by the
Poisson distribution, and the Poisson distribution
parameter 〈k〉  = |z|2 has the meaning of the mean num-
ber of field quanta in state (4). It is easy to show that the
mean electric field strength in state (4) varies with time
by the harmonic law2

and the quantum field strength uncertainty is

(here, Dε is the electric field variance). If 〈k〉  @ 1, the
quantum uncertainty in ε can be ignored because ∆ε !
〈ε〉 , and we arrive at the conclusion that changes in the
electric field as a function of time are determined by the
solution to the classical equation of motion. The field
energy and radiation intensity are then proportional to
the mean number of quanta in the mode 〈k〉  and are
related to field strength 〈ε〉  by classical electrodynamics
equations.

Clearly, the classical field state is but a particular
case of a strong electromagnetic field (field with the
number of quanta 〈k〉  @ 1). The number of strong elec-
tromagnetic field realizations that cannot be described
classically is infinite. In recent years, so-called

1 We further use the dimensionless field coordinate ε/ε0.
2 This expression corresponds to a real parameter z value.

4"ω4/π2c3

ρk ε( ) 1

2kk! π
-----------------Hk

2 ε( ) ε– 2( )exp=

ψc ε( ) α k k| 〉 ,
k

∑=

α k
zk

k!
-------- z 2

2
-------– 

  ,exp=

ε〈 〉 2 k〈 〉 ω t( ),cos=

∆ε Dε 1/ 2= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
squeezed states have usually been considered. In the
coordinate representation, these states are described by
wave functions of the form [12]

(6)

which depend on two parameters, α and β. Clearly, if
α = 0 and β = 1, we have an electromagnetic vacuum,
and if a ≠ 0 and β = 1, the field is in the coherent state
[12]. The special feature of the state described by wave
function (6) is as follows: if β ! 1, electric field vari-
ance Dε = β2/2 is substantially smaller than in the vac-
uum and coherent states. Conversely, for the coordinate
conjugate to the electric field, we have

The uncertainty relation

is, of course, satisfied. During the time evolution of
state (6), the variances of the a and ε coordinates oscil-
late at a twice the electric field frequency. As a result,
the state with

is formed in half the optical cycle. In this sense,
squeezed states with the β and 1/β parameters are phys-
ically equivalent. Further, the K = β (if β > 1) or K = 1/β
(if β < 1) parameter will be called the squeezing param-
eter of electromagnetic field states.

Among the squeezed electromagnetic field states, of
special interest is the squeezed vacuum state. This state
is described by (6) with α = 0 and β ≠ 1; that is, it only
differs from the electromagnetic vacuum state in the
width of the distribution of ε. Although the mean field
strength in this state is also zero at an arbitrary instant
of time, the electromagnetic field energy in the
squeezed vacuum state proves to be high if β ! 1 or
β @ 1. The expansion of the squeezed vacuum state
ψsq(ε) in stationary field states gives

(7)

where the expansion coefficients α2k are determined by
the equation (see Appendix)

(8)

and all odd coefficients are zero.
Let us use wave function (6) to calculate the mean

field energy over a quantum state,

, (9)

ψ ε( ) 1

β π
--------------- iaε( ) ε2

2β2
--------– 

  ,expexp=

Da
1

2β2
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1
2
---.=
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and introduce the mean number of field quanta in an
arbitrary field state by the equation

(10)

Equations (9) and (10) determine the relation between
the squeezing parameter and the mean number of
quanta,

(11)

In particular, for the squeezed vacuum state, we have

(12)

at β ! 1.
In practice, precisely the squeezed vacuum state is

of the greatest interest, on the one hand, because the
variance of the number of quanta (at a given mean num-
ber of quanta) is then maximum. We will show later on
that this circumstance has an important influence on the
consequences of the action of such a field on an atomic
system. On the other hand, modern experiments on the
generation of nonclassical electromagnetic fields in
parametric amplification processes [13] are capable of
producing states close to precisely the squeezed vac-
uum state. Although the degree of squeezing currently
attainable in such experiments is comparatively small,
K = 1/β ≈ 10, we see no reason why squeezing cannot
be increased to K ~ 108–109.

Below, we consider the result of the action of an
electromagnetic field in the stationary, coherent, and
squeezed vacuum states on an atomic system under the
conditions when the mean numbers of quanta in the
field mode are equal in these states.

3. ATOM AND ITS INTERACTION 
WITH ELECTROMAGNETIC FIELDS

Let an atom be characterized by a set of stationary
states of a discrete spectrum (|n〉 , n = 1, 2, 3, …) and
continuum |E 〉 , and let these states satisfy the equations

where H0 is the atomic Hamiltonian. We assume that, at
the initial instant of time, the atom is in the ground state
|1〉  and has the ionization potential I = –E1.

The complete Hamiltonian of the “atom + electro-
magnetic field” system can be written as

(13)

where r is the set of atomic subsystem coordinates and
V(r, ε) is the interaction operator between the atomic
subsystem and the electromagnetic field. In the dipole
approximation and in the dε gauge, this operator is
written in the form

(14)

E〈 〉 "ω k〈 〉 1/2+( ).=

k〈 〉 1
4
--- β 1

β
---– 

  2 a2

2
-----.+=
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4
--- β 1

β
---– 

  2 1

4β2
--------=

H0 n| 〉 En n| 〉 , H0 E| 〉 E E| 〉 ,= =

H r ε,( ) H0 r( ) H f ε( ) V r ε,( ),+ +=

V ezε.–=
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Here, it is assumed that the z axis is directed along the
ε vector. It is important for the further analysis that the
interaction between an atom and an electromagnetic
field is weak. Precisely this circumstance allows us to
admit the independent existence of atomic and field
subsystems as a zeroth approximation and to take into
account their interaction by means of perturbation the-
ory. Physically, this means that the evolution of the
“atom + field” system should be interpreted in the basis
of stationary states that describe subsystems without
taking into account their interaction. We will therefore
seek the total wave function of the system Ψ(r, ε, t) in
the form

(15)

where Ek is given by (1), and the Cn, k and CE, k expan-
sion coefficients determine the amplitudes of the prob-
abilities of finding atoms in the |n〉(|E〉) state and the
electromagnetic field in the |k〉  state. Substituting
expansion (15) into the Schrödinger equation yields the
system of equations for the Cn, k and CE, k amplitudes

(16)

where dnn' = 〈n|ez|n'〉  and dnE' = 〈n|ez|E'〉  are the matrix
elements of the dipole operator, which acts in the space
of atomic states. The equation for the CE, k amplitude is
obtained from (16) by replacing state |n〉 with |E〉 . Equa-
tion (16) was derived taking into account that the
matrix element of the field operator is only nonzero if
k = k ± 1 and that

Clearly, the photoionization of an atom is the transition
from the initial Φi(r, ε) = |1〉|ψi 〉  state to the final Φf =
|E〉|ψf 〉  state under excitation V(z, ε). Here, |ψi 〉 and |ψf 〉
are the initial and final electromagnetic field states.

Ψ r ε t, ,( ) Cn k, t( ) n| 〉 k| 〉 i
"
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 exp
n k,
∑=

+ ECE k, t( ) E| 〉 k| 〉 i
"
--- E Ek+( )t– 

  ,expd∫
k

∑

i"
dCn k,

dt
-------------

ε0

2
------- dnn'

i
"
--- En En'–( )t 

 exp
n'

∑–=
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4. SINGLE-PHOTON IONIZATION OF AN ATOM 
IN A NONCLASSICAL ELECTROMAGNETIC 

FIELD

Let the initial atomic state |1〉  be related to the con-
tinuum by a single-photon transition. The probability of
the photoionization of the atom can then be calculated
in first-order perturbation theory. Solving (16) then
yields the equation for the probability of ionization in
unit time

(17)

where αk are the amplitudes of the expansion of the ini-
tial field state ψi in the basis of stationary states, ψi =

|k〉 , and the δ function determines the energy of
the final atomic state.

As

(18)

is the mean number of quanta in field state |ψi〉 , we find
from (17) that the probability of ionization is indepen-
dent of the specific form of the distribution of |αk|2 and
is only determined by the mean number of quanta in the
field mode. This means that the single-photon ioniza-
tion of an atomic system in a nonclassical electromag-
netic field has no special features within the limits of
first-order perturbation theory applicability.

5. MULTIPHOTON IONIZATION

If the ionization of an atom can occur as a multipho-
ton process, solving (16) at the level of Nth-order per-
turbation theory yields

(19)

where  is the multiphoton matrix element. In par-
ticular, for N = 2, we have

Equation (19) shows that the probability of photo-
ionization is determined by the specific electromag-
netic field quantum state. For instance, if the field is in
the coherent state, the summation in (19) yields

dẆi
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(20)

where 〈k〉  is the mean number of field quanta deter-

mined by (18). As radiation intensity P ~ 〈k〉 , (20)
can be obtained in the semiclassical approach by apply-
ing Nth-order perturbation theory.3

The situation is different for a non-Poisson distribu-
tion of |αk|2. For instance, we find from (19) for the sta-
tionary state of a field with k0 quanta that photoioniza-
tion is only possible if k0 ≥ N and that, at k0 = N, the ion-
ization leads to the vacuum field state. In practice, of
greatest interest is the situation with k0 @ N. Equa-
tion (19) then yields

(21)

that is, the probability of photoionization is then some-
what lower than for the coherent state with 〈k〉  = k0.

Of special interest is electromagnetic field in the
squeezed vacuum state. Indeed, number-of-quanta dis-
tribution (8) is then characterized by a large width (vari-
ance), which increases as the degree of squeezing K =
1/β grows. For this reason, the probability of observing
a number of quanta substantially larger than the mean
value 〈k〉  is many times larger in a strongly squeezed
than in the coherent state. In this situation, the probabil-
ity of nonlinear N-photon ionization in a nonclassical
squeezed field should be much higher than in a classical
field, and this difference should increase with increas-
ing multiphoton order of the process. For instance, for
N = 2, (19) gives

(22)

Here,

is the mean square of the number of field quanta. As

3 Note that an arbitrary field state characterized by the Poisson dis-
tribution of |αk|2 is not necessarily coherent. A certain phase rela-
tion between the αk amplitudes is also required. In calculating the
probability of N-photon ionization in the lowest order of pertur-
bation theory, this phase relation is, however, inessential; that is,
all field states with equal |αk|2 values are then equivalent.
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(Dk is the variance of the number-of-quanta distribu-
tion), we find from (22) that

As mentioned, in real laser beams with 〈k〉  @ 1, the dif-
ference of atom ionization rates observed in stationary
versus coherent electromagnetic fields is negligibly
small. A different situation arises if the electromagnetic
field is in the squeezed vacuum state. We then have

which gives

that is, if 〈k〉  @ 1, the probability of ionization is three
times higher than in semiclassical theory for equal
mean numbers of photons in the radiation mode.

Note once more that, among all squeezed electro-
magnetic field states described by (6) which have equal
mean numbers of quanta in the field mode, precisely the
squeezed vacuum state is characterized by the largest
variance of the number of quanta and is therefore most
effective in the multiphoton ionization of atoms.
Indeed, variance Dk calculations for state (6) with
1/β @ a @ 1 (that is, for a strongly squeezed state with
a certain degree of coherence) give

which is smaller than the Dk value in the squeezed vac-
uum state.

Generally, the d /dE value for nonlinear N-pho-
ton ionization is determined by the Nth moment

,

and we can expect a still larger difference in atomic ion-
ization rates at the same number of mode photons
depending on the quantum state of the field. For the
squeezed vacuum state with a large mean number of
quanta, we have [14, 15]

(23)

and, with N ≈ 10, which is characteristic of the ioniza-
tion of atoms by radiation in the optical frequency
range, the difference in the rates of ionization by
squeezed and classical fields can amount to several
orders of magnitude.

dẆi
2( )

dE
------------- 2π

"
------ dEI

2( ) 2 ε0
2

2
---- 

 
2

≈

× k〈 〉 2 Dk k〈 〉–+( )δ E I 2"ω–+( ).

Dk 2 k〈 〉 2 k〈 〉+( ),=

dẆi
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For squeezed field states described by (6), a similar
formula for 〈kN 〉  at 1/β @ a @ 1 has the form

(24)

This means that, among all field states of form (6) with
equal 〈k〉  values, precisely the squeezed vacuum state
most effectively acts on an atom.

To conclude this section, note that (19) is the general
expression for a transition with the absorption of N field
quanta. If the transition to the continuum can occur as
an M-photon process (M = [I/"ω] + 1) and M < N, (19)
describes above-threshold ionization with the absorp-
tion of N – M above-threshold quanta. It can therefore
be stated that the energy spectrum of photoelectrons
formed under the action of a squeezed electromagnetic
field on an atom should be substantially different from
the spectrum obtained in the interaction of an atom with
a classical field, namely, the intensity of peaks corre-
sponding to the absorption of a large number of above-
threshold quanta should be anomalously high in the
squeezed field.

6. GOING BEYOND THE SCOPE
OF PERTURBATION THEORY: 

ONE DISCRETE LEVEL AND CONTINUUM

In this section, we consider the ionization of an atom
having a single discrete level in more detail. We will
show, without invoking perturbation theory, that the
time evolution of an atomic state substantially depends
on the quantum electromagnetic field state even when
single-photon ionization occurs.

Ignoring free–free transitions in the equation for the
CE, k amplitude in the continuum allows system (16) to
be written in the form

(25)

Applying the method of adiabatic continuum elimina-
tion [9] makes it possible to easily obtain the following
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equation for the C1, k amplitude:

(26)

where E = "ω – I.
The integration of (26) yields the equation for the

probability of ionization of an atom in time t,

(27)

Here, the αk values determine the initial electromag-
netic field state. Expanding the exponent in Eq. (27)
into a series up to first-order terms yields Eq. (17),
which corresponds to first-order perturbation theory.
Generally, a nonexponential atomic state decay is
expected in a nonclassical field for all field states except
the stationary state. For a coherent state with a large
mean number of quanta (〈k〉  @ 1), the k value under the
summation sign in (27) can, however, be replaced by
〈k〉 , because the uncertainty in the number of quanta

∆k ~  ! 〈k〉 . This gives

which corresponds to the solution to the problem in the
semiclassical approximation [9].

In the squeezed vacuum state, the number-of-quanta
distribution is characterized by a large variance; that is,
the partial contributions of states with large (k @ 〈k〉)
and small (k ! 〈k〉) numbers of quanta are large. For
this reason, the decay rate of an atomic state in a field
that is in the squeezed vacuum state is initially substan-
tially higher than when the field oscillator is in a sta-
tionary or coherent state and then gradually decreases.
There is a nonzero residual probability of nonionization
determined by the probability that the field is in the vac-
uum state,

7. CONCLUSION

To summarize, we showed in this work that the
probability of ionization of an atomic system could
substantially change depending on the quantum elec-
tromagnetic field state even at a fixed mean number of
quanta in the radiation mode. The difference in ioniza-
tion rates was especially large for multiphoton ioniza-
tion processes. It was, in particular, shown that a non-
classical field could be much more effective from the
point of view of the ionization of atoms than an equally
intense classical field.
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We can naturally expect that the effectiveness of the
action of a nonclassical electromagnetic field on atom-
molecular systems (compared with the action of a clas-
sical electromagnetic field) should also manifest itself
in some other physical phenomena. It can, in particular,
be expected that nonlinear polarization in a medium
under the action of the squeezed electromagnetic field
state can be anomalously large; therefore, squeezed
fields can be very effective in the generation of optical
radiation harmonics [5]. We can also expect a substan-
tial increase in the probability of above-barrier absorp-
tion of electromagnetic field quanta in multiphoton ion-
ization, in the probability of multiquantum absorption
in scattering of electrons by atoms in the presence of
nonclassical electromagnetic fields, etc.

Note also that the most important difference in the
dynamics of interaction between an atomic system and
an electromagnetic field arises if the mean number of
quanta in the field mode is comparatively small, 〈k〉  ≥ N.
Such a situation is, for instance, characteristic of the
interaction of an atom in a microcavity with a field
mode containing few quanta [16].
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APPENDIX

Clearly, the amplitudes of the squeezed vacuum
state expansion in stationary field states are determined
by the equation

(A.1)

Let us express the Hermitian polynomial via the
degenerate hypergeometric function,

(A.2)

to rewrite (A.1) in the form

(A.3)

α2k
1

22k 2k( )!πβ
-------------------------------=

× H2k ξ( ) ξ2

2
----- 1 1

β2
-----+ 

 – 
 exp ξ .d
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∞

∫
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1
2
--- z, , 
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0

∞
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where

The integration in (A.3) gives (see [17])

(A.4)

Taking into account that

we can rewrite (A.4) as

(A.5)

This corresponds to Eq. (8) in the main body of the
paper.
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Abstract—The mode structure and spectral properties of supercontinuum emission generated by femtosecond
pulses of Ti:sapphire laser radiation in microstructure fibers are studied. The long-wavelength (720–900 nm)
and visible (400–600 nm) parts of supercontinuum emission are shown to be spatially separated in microstruc-
ture-fiber modes, which can be isolated with an appropriate spectral filtering. The spatial modes thus isolated
in spectrally sliced supercontinuum emission possess a spatial quality sufficient for further efficient frequency
conversion. The possibility of achieving a high spectral quality of supercontinuum emission is also demon-
strated. We explore the ways to control the spectrum of supercontinuum emission by matching parameters of
the pump pulse with the parameters of a microstructure fiber and by tuning the initial chirp of the pump pulse.
The results of our studies show that supercontinua produced in microstructure fibers offer new approaches to
designing a new generation of optical parametric amplifiers and broadband radiation sources for spectroscopic,
metrological, and biomedical applications. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Supercontinuum (SC) generation [1] is a nonlinear-
optical phenomenon involving spectral superbroaden-
ing of a light pulse resulting from the joint action of the
whole set of nonlinear-optical effects, such as self- and
cross-phase modulation, four-wave mixing (FWM),
and stimulated Raman scattering (SRS), often accom-
panied by soliton formation and propagation and mod-
ulation instabilities. As demonstrated recently, super-
continuum generation can be radically enhanced with
the use of fibers of a new type—microstructure (MS)
fibers [2–8]. Fibers of this type may provide a high
degree of light confinement in the fiber core [9, 10],
simultaneously offering broad opportunities for engi-
neering the dispersion of guided modes [11]. Due to
their remarkable properties, microstructure fibers make
nonlinear optics accessible even to unamplified femto-
second pulses [12]. Enhancement of the broad class of
nonlinear-optical phenomena [9, 10, 13], accompany-
ing the propagation of femtosecond pulses in micro-
structure fibers, makes it possible to generate a super-
continuum emission [6, 14–17] starting with nano- and
even subnanojoule energies of laser radiation.
1063-7761/02/9505- $22.00 © 20851
Investigations of supercontinuum generation in
microstructure fibers have revealed several interesting
physical phenomena related to the nonlinear-optical
interactions of ultrashort light pulses, providing a
deeper insight into the scenarios of spectral super-
broadening of such pulses in different regimes of
waveguiding in microstructure fibers [18–20]. The
range of applications of supercontinuum generation in
microstructure fibers is rapidly expanding, leading to
revolutionary changes in optical metrology [21–24],
opening new horizons in optical coherence tomography
[25], and suggesting new solutions for the creation of
compact and practical sources of broadband emission
based on supercontinuum generation in microstructure
fibers.

It would be very important now, in view of numer-
ous spectroscopic, metrological, and tomographic
applications of supercontinua generated in microstruc-
ture fibers, not only to improve the reproducibility and
stability of temporal characteristics and the spectral
content of supercontinuum emission, but also to ensure
a high spatial mode quality of this emission. In many
practically important cases, highly efficient supercon-
002 MAIK “Nauka/Interperiodica”
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tinuum generation in microstructure fibers involves
multimode-phase-matched four-wave mixing, which
leads to the spectral superbroadening. Supercontinua
are also emitted in the multimode regime under these
conditions.

In this paper, we propose and experimentally imple-
ment a method of spatial filtering and spectral slicing of
supercontinuum emission generated in a microstructure
fiber with a small core diameter, where multimode-

(‡)

(b)

Fig. 1. Microscope cross-sectional images of microstruc-
ture fibers: (a) a fiber with a single hexagonal cycle of air
holes around the fiber core with a diameter of 2 µm and
(b) a fiber with two hexagonal cycles of air holes around the
fiber core with a diameter of 2 µm.
JOURNAL OF EXPERIMENTAL 
phase-matched four-wave mixing results in a preferable
generation of new spectral components emitted as a
part of the supercontinuum in a certain (possibly high-
order) guided mode. Such fibers have been fabricated
and investigated as a part of the work presented in this
paper. The results of our experimental studies demon-
strate the possibility of separating isolated spatial
modes in supercontinuum emission produced in such
fibers within different spectral ranges. The proposed
method of spatial mode filtering provides a high spatial
quality of supercontinuum emission, which is sufficient
to allow efficient further frequency conversion of spec-
trally sliced supercontinuum emission. This frequency
convertibility of SC spatial modes was demonstrated by
our experiments where spectrally sliced supercontin-
uum emission was mixed with the fundamental radia-
tion of a Ti:sapphire laser in a nonlinear crystal to pro-
duce a sum-frequency signal. We will also demonstrate
the possibility of achieving a high spectral quality of
supercontinua produced in microstructure fibers and
explore the ways to control the spectrum of supercon-
tinuum emission by matching parameters of the pump
pulse with the parameters of a microstructure fiber and
by varying the initial chirp of the pump pulse. The
results of our studies show that supercontinua produced
in microstructure fibers offer new approaches to
designing a new generation of optical parametric
amplifiers and broadband radiation sources for spectro-
scopic, metrological, and biomedical applications.

2. EXPERIMENTAL

Experiments on supercontinuum generation were
performed with a family of microstructure optical fibers
where a cladding consists of one, two, or more hexago-
nal cycles of air holes. A system of smaller auxiliary air
holes in the cladding of these fibers improves the con-
finement of light field in the fiber core (Figs. 1a, 1b).
The technology employed to fabricate MS fibers used
in our experiments was similar to a standard procedure
described, e.g., in [2, 26]. However, instead of using a
preform consisting of a set of identical capillaries, we
started with a preform consisting of fused silica fibers
with different diameters. In particular, to fabricate the
basis fiber of the created family—a fiber with a single
hexagonal cycle of air holes around the fiber core
(Fig. 1a)—we employed a preform whose central part
included a fiber with the minimum diameter sur-
rounded by six capillaries. The fabrication of a such a
fiber with a minimally microstructured cladding was
reported earlier in [27, 28]. The possibility of changing
the spatial sizes of the structure was built in the process
of fiber fabrication. The minimum diameter of the core
in the created MS fibers was equal to 1 µm. The air-fill-
ing fraction of the microstructure part of the cladding in
the created fibers, as can be seen from Fig. 1, is very
high, providing a high refractive index step between the
core and the cladding in the fiber. A system of smaller
auxiliary air holes in the cladding of these fibers,
AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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increasing the refractive-index step between the fiber
core and the fiber cladding and preventing the guided
modes from leaking into the cladding, adds to the con-
finement of light field in the fiber core and reduces opti-
cal losses of fiber modes (as can be seen from Fig. 2,
which displays an image of a Ti:sapphire laser radiation

Fig. 2. Transverse intensity distribution of Ti:sapphire-laser
radiation at the output end of a microstructure fiber with a
single hexagonal cycle of air holes around the fiber core
with a diameter of 2 µm in the low-power-pump no-super-
continuum-emission regime.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
intensity distribution measured at the output end of the
fiber). The fiber with such a geometry is a basis fiber for
the created family of fibers since the cladding of this
fiber has a minimal number of holes (a single cycle of
holes, plus auxiliary holes, improving light-field con-
finement in the fiber core).

To fabricate fibers with a more complicated struc-
ture, we modified the preform. In a microstructure fiber
shown in Fig. 1b, the fused silica core is surrounded by
two hexagonal cycles of air holes and a system of
smaller auxiliary holes, improving light-field confine-
ment in the fiber core. The increase in the number of
cycles of air holes around the fiber core reduces the
magnitude of fiber losses. Optical losses have been
determined for microstructure fibers of this type from
the results of measurements [28] performed on ~100-m
MS-fiber segments. The magnitude of optical losses
was estimated to be 2–3 dB/m for fibers with a single
hexagonal cycle of air holes in the cladding and 0.4–
0.5 dB/m for fibers with two cycles of air holes.

Spectral broadening and supercontinuum genera-
tion in the created MS fibers were studied in our exper-
iments with the use of femtosecond pulses produced by
a Ti:sapphire laser system. This laser system included a
Ti:sapphire master oscillator and a regenerative ampli-
fier and was capable of generating 40-fs pulses of
800-nm radiation with an energy up to 0.2 mJ per pulse
and a repetition rate of 1 kHz. The energy of laser
pulses coupled into the fiber ranged from 0.1 up to
50 nJ. Experiments were performed with fiber samples
with a length of 4–200 cm. The laser beam was focused
onto the input end of a fiber sample, placed on a three-
dimensional translation stage, with a microobjective
(Fig. 3). Radiation coming out of the fiber was colli-
mated with an identical microobjective and was split
y
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Fig. 3. Diagram of the experimental setup for studying supercontinuum generation in microstructure fibers: SFG, the signal result-
ing from sum-frequency generation in the nonlinear crystal; SHG, the signal of second-harmonic generation in the nonlinear crystal;
PMT, photoelectric multiplier.
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into two beams. One of these beams was delivered to a
spectrograph, while the other one was used to visualize
the transverse intensity distribution in the emission
coming out of the MS fiber by imaging the output end
of the fiber onto a CCD camera.

3. THE MODE STRUCTURE 
OF SUPERCONTINUUM EMISSION

Propagation of femtosecond laser pulses through an
MS fiber was accompanied by a considerable spectral
broadening of these pulses. With only a few nanojoules
of Ti:sapphire laser radiation coupled into an MS fiber
sample with a length of several centimeters, we
observed the generation of SC emission with a spectral
bandwidth exceeding an octave. Figure 4 shows typical
spectra of an SC generated by 40-fs pulses with an
energy of 2 and 3 nJ in a 1.5-m MS fiber with a single
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Fig. 4. Spectra of SC emission generated by 40-fs pulses
with an energy of 2 nJ (dashed curve) and 3 nJ (solid curve)
in a 1.5-m MS fiber with a single ring of air holes around the
fiber core (Fig. 1a) and a core diameter of 3 µm.

Wavelength, nm
JOURNAL OF EXPERIMENTAL
ring of air holes around the fiber core and a core diam-
eter of 3 µm.

Figure 2 displays the transverse intensity distribu-
tion of pump radiation at the output end of the fiber in
the regime of low-power pump, when no SC is gener-
ated. The transverse structure of the guided mode of
pump radiation, as can be seen from this image, fea-
tures a sixfold rotational symmetry, which is also char-
acteristic of the fiber structure. Supercontinuum emis-
sion was generally produced in the multimode regime
in our experiments. However, we were able to filter iso-
lated spatial modes for different spectral ranges of
supercontinuum emission using a set of color-glass fil-
ters. Figures 5a–5c present typical results of such
experiments performed for an SC generated in a 1.5-m-
long MS fiber with a single ring of air holes around the
fiber core with a core diameter of 3 µm. The transverse
intensity distribution of SC emission measured with a
filter providing maximum transmission within the
range of 720–900 nm (Fig. 5a) has a bell-like shape,
displaying a single maximum on the beam axis. The
visible part of SC emission (400–600 nm), on the other
hand, has a doughnut-like spatial mode structure
(Fig. 5b) under the same experimental conditions.

With a slight variation in the initial conditions of
mode excitation at the input end of the MS fiber, the
doughnut mode of the visible part of SC emission
(Fig. 5b) was transformed into a more complicated,
two-lobe pattern shown in Fig. 5c. Both the doughnut-
like mode of Fig. 5b and the two-lobe mode of Fig. 5c
remained reproducible and stable and were observed
for MS fibers with lengths ranging from several centi-
meters up to 2 m. Apparently, because of the poorer
spatial overlapping between the pump beam and the
two-lobe mode, the short-wavelength part of SC emis-
sion in the case of the two-lobe mode (the dashed line
in Fig. 6) was much less intense than in the case of the
doughnut mode (the solid line in Fig. 6).
(a) (b) (c)

Fig. 5. Transverse intensity distributions of SC emission generated in a 1.5-m-long MS fiber with a single ring of air holes around
the fiber core with a core diameter of 3 µm measured within the spectral range of (a) 720–900 and (b, c) 400–600 nm. With a vari-
ation in the initial conditions at the input end of the fiber, a doughnut mode of the visible part of SC emission (b) tends to transform
into a two-lobe mode (c).
 AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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Physically, our idea of using microstructure fibers
with small fiber cores for the generation of supercontin-
uum emission that could be spectrally sliced in sepa-
rated spatial modes is based on the fact that the differ-
ence between propagation constants for adjacent fiber
modes supported by a fiber at a certain frequency
increases with a decrease in the fiber core radius.
Within the framework of the elementary theory of opti-
cal fibers [29], the relation between the difference of
propagation constants ∆β characterizing two adjacent
guided modes in a fiber and the fiber core radius a is
given by 

where c is the speed of light, ω is the radiation fre-
quency, fn is a function of the mode index, and nc is the
refractive index of the fiber core. This elementary rela-
tion is very instructive, however, as it explains in a very
simple way why MS fibers with small core diameters
may generate mode-separable supercontinuum emis-
sion in the regime when FWM processes are phase-
matched only for a certain spatial mode of the nonlinear
signal generated through FWM for each SC slice (or at
least for some of the SC slices).

Transformation of the spatial distribution of SC
emission observed in our experiments (Fig. 5) indicates
changes in multimode phase matching for FWM pro-
cesses contributing to spectral superbroadening within
different spectral ranges. Our measurements performed
on MS fibers with a core diameter of 3 µm also show
that phase matching is achieved only for a certain spa-
tial mode of the emitted signal within each of the stud-
ied spectral ranges. This circumstance allows isolated
spatial modes to be separated by spectrally slicing SC
emission.

4. NONLINEAR-OPTICAL FREQUENCY 
CONVERSION OF SPECTRALLY SLICED 

SUPERCONTINUUM EMISSION 
AND CROSS-CORRELATION MEASUREMENTS

Frequency convertibility of spectrally sliced super-
continuum is an important criterion of the quality of
spatial modes of SC emission. Based on this criterion,
we may also judge whether SC emission generated in
MS fibers and spectrally sliced with the use of the
above-described technique can be employed in practice
for spectroscopic studies and pump–supercontinuum
probe measurements.

With these circumstances in mind, we experimen-
tally assessed the efficiency of nonlinear-optical fre-
quency conversion for spectrally sliced spatial modes
of SC emission produced in an MS fiber. The sum-fre-
quency signal was produced in our experiments by mix-
ing different parts of SC emission with the fundamental
radiation of the above-described Ti:sapphire laser in a
100-µm-thick LBO crystal. Figure 7 presents the

∆β
π2c f n

4a2ωnc

------------------,≈
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results of these measurements performed with the use
of the long-wavelength part (~720–900 nm) of SC
emission (the spectrum of this radiation is shown by
curve 1 in panel (a) of Fig. 7) mixed with the fundamen-
tal radiation of the Ti:sapphire laser in the LBO crystal
in the noncollinear geometry of sum-frequency genera-
tion (SFG). The broadband sum-frequency signal was
produced within the spectral range from 370 up to
430 nm in the direction determined by phase-matching
conditions (see diagram 1 in Fig. 7). This geometry of
sum-frequency generation allowed the efficiency of fre-
quency conversion of about 0.1% to be achieved. We
also observed collinear second-harmonic generation
(SHG) using the long-wavelength part of SC emission
as a pump (see diagram 2 in Fig. 7). The efficiency of
this second-harmonic generation process under our
experimental conditions was more than an order of
magnitude lower than the efficiency of noncollinear

106

105

104

400 500 600 700 800 900 1000
Wavelength, nm

O
ut

pu
t i

nt
en

si
ty

, a
rb

. u
ni

ts (a)

103

102

10–1

10–2

10–3

400 500 600 700 800 900 1000
Wavelength, nm

O
ut

pu
t i

nt
en

si
ty

, a
rb

. u
ni

ts (b)

10–4

10–5

1

1.0

0.8

0.6

0.4

0.2

0
400 500 600 700 800 900 1000

Wavelength, nm
In

pu
t i

nt
en

si
ty

, a
rb

. u
ni

ts

Fig. 6. Spectra of supercontinuum emission generated by
40-fs 5-nJ pulses of 800-nm Ti:sapphire laser radiation in
(a) 7-cm and (b) 1-m MS fibers with a single ring of air
holes around the fiber core with a core diameter of 3 µm in
the regime of (solid line) doughnut-like and (dashed line)
two-lobe mode of the visible part of the supercontinuum.
The spectrum of the Ti:sapphire pulse coupled into the fiber
is shown in the inset in Fig. 6b.
SICS      Vol. 95      No. 5      2002



 

856

        

FEDOTOV 

 

et al

 

.

                             
(a)

(b)

900850800750700

0.2

0.4

0.6

0.8

1.0
SHG

LBO 1800 nm

WL

SHG

E
m

is
si

on
 in

te
ns

ity
, a

rb
. u

ni
ts

LBO800 nm
2

SFG

WL

SFG 1.51.00–0.5–1.0

Wavelength, nm

Delay time, ps
0.5

0

4

8

12

16

20

C
ro

ss
-c

or
re

la
tio

n 
tr

ac
e,

ar
b.

 u
ni

ts

0

2

4

6

8

10

12

14

16
E

ff
ic

ie
nc

y 
of

 f
re

qu
en

cy
 c

on
ve

rs
io

n,
 a

rb
. u

ni
ts

1

2

1

2

Fig. 7. Nonlinear-optical frequency conversion of spectrally sliced white light (WL) and cross-correlation measurements. (a) The
spectrum of supercontinuum emission produced within the range of wavelengths from 720 up to 900 nm in a microstructure fiber
with a single ring of holes around the fiber core, a core diameter of 3 µm, and the length of 1.5 m (curve 1) and the spectrum of low-
intensity Ti:sapphire laser pulses transmitted through the same microstructure fiber with virtually no or very weak spectral broad-
ening (curve 2). (b) Cross-correlation traces for a pulse of the 720–900 nm spectral slice of supercontinuum (curve 1) and weakly
broadened low-intensity Ti:sapphire laser pulses transmitted through the same microstructure fiber with virtually no or very weak
spectral broadening (curve 2). Beam diagrams of (1) noncollinear sum-frequency generation (SFG) and (2) collinear second-har-
monic generation (SHG) are also shown. The heights of the vertical bars represent the relative efficiencies of the SFG and SHG
processes.
sum-frequency generation (the relative efficiencies of
SFG and SHG processes are shown on the left-hand
side of Fig. 7). The results of these experiments show
that the efficiency of nonlinear-optical frequency con-
version of spectrally sliced SC emission can be made
high enough to allow nonlinear-optical spectroscopic
and time-resolved measurements and to use SC gener-
ated in MS fibers as seed radiation for optical paramet-
ric amplification.

Sum-frequency and second-harmonic generation
experiments performed with spectrally sliced SC emis-
sion also allow the characteristic pulse duration to be
estimated for different parts of SC emission. Panel (b)
of Fig. 7 presents the results of such cross-correlation
experiments, where the intensity of the sum-frequency
signal was measured as a function of the delay time
between the fundamental radiation pulse of the Ti:sap-
phire laser and the broadband emission pulse coming
out of the fiber and passing through a set of optical fil-
JOURNAL OF EXPERIMENTAL
ters. Cross-correlation traces measured with the use of
this approach were compared with the results of cross-
correlation measurements performed in the same
geometry for low-intensity Ti:sapphire laser pulses
transmitted through the MS fiber with virtually no or
very weak spectral broadening (the spectrum of this
signal is shown by line 2 in panel (a) of Fig. 7). The
cross-correlation trace measured for the broadband sig-
nal of spectrally sliced supercontinuum (curve 1 in
panel (b) of Fig. 7) was much broader than the cross-
correlation trace measured for the signal with virtually
no or very weak spectral broadening (curve 2 in panel (b)
of Fig. 7). This comparison shows that different spec-
tral components emitted as a part of the supercontin-
uum are characterized by different delay times. This
effect is associated with the dispersion properties of
MS-fiber-guided modes and can be employed to tempo-
rally and spatially resolve different frequency compo-
nents in pump–supercontinuum probe experiments
[30–32].
 AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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5. CHIRP CONTROL OF SUPERCONTINUUM 
GENERATION IN MICROSTRUCTURE FIBERS

In this section, we will present the results of experi-
mental studies demonstrating the possibility of control-
ling the process of supercontinuum generation in a
microstructure fiber by changing the initial chirp of the
pump pulse. Optimizing the initial chirp of the input
pulse, one can improve the efficiency of SC generation
in an MS fiber and increase the spectral width of SC
emission. The initial chirp of the pump pulse coupled
into an MS fiber has an influence on the efficiency of
SC generation and the shape of the SC spectrum
through several physical mechanisms. Dispersion
spreading of a short pump pulse propagating through an
MS fiber is one of the most important among these fac-
tors. With an appropriate choice of the initial chirp, one
can radically change the evolution of the waveform of
a light pulse propagating through the fiber. When non-
linear-optical processes and high-order dispersion
effects are negligible, the evolution of the duration of a
Gaussian pulse with a chirp parameter α and the initial
pulse duration τ0 as a function of the propagation coor-
dinate x is given by [33]

where k2 is the group-velocity dispersion and Ld =

/|k2| is the dispersion length. The minimum pulse
duration under these conditions is achieved at the dis-
tance

Thus, by choosing the sign and the absolute value of the
initial chirp, one can precompensate for a dispersion
spreading of the pump pulse within a certain section of
an MS fiber (with a length on the order of lc). An ini-
tially chirped pulse then first experiences compression
while propagating through an MS fiber. This phase of
compression is then, of course, followed by the normal
dispersion spreading of the pulse.

Group-delay effects [34] and the sensitivity of phase
matching to the temporal profile of the phase in the
pulse [35] also limit the generation of broadband emis-
sion in an MS fiber. In particular, the frequency depen-
dence of the group velocity of light pulses leads to the
spatial walk-off of the generated frequency components
with respect to the spectral components of the pump
pulse. The characteristic distance lg where the group
delay becomes comparable with the pump pulse dura-
tion τ can be estimated as

where up and us are the group velocities of the pump
pulse and the signal pulse corresponding to a certain
group of spectral components. In view of large spectral
widths characteristic of the SC generation process,

τ x( ) τ0 1 αk2x–( )2 x/Ld( )2+ ,=

τ0
2

lc ατ 0
2Ld 1 ατ 0

2( )2
+[ ]

1–
.=

lg
τ

up
1– us

1––
-----------------------,=
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group-delay effects may have a considerable influence
on the width and the structure of SC spectra.

The goal of optimization of the initial chirp of the
pump pulse coupled into the fiber is to reduce the dis-
persion of the pump pulse in the fiber, improve phase
matching with the inclusion of nonlinear phase shifts,
and increase the effective length of interaction between
the spectral components of the pump pulse and fre-
quency-separated components arising in the process of
SC generation. Figure 8 displays the results of experi-
ments on supercontinuum generation in a 10-cm MS
fiber with a single cycle of air holes around the fiber
core (Fig. 1a) and a core diameter of 3 µm. As can be
seen from the presented results, the variation in the ini-
tial chirp of the pump pulse noticeably changes the
spectra of SC emission. Unfortunately, a detailed quan-
titative analysis of the physical information encoded in
chirp-sensitive spectra of supercontinuum emission is
impeded by the fact that a variation in the initial chirp
of the pump pulse under conditions of our experiments
simultaneously slightly changes the duration of this
pulse, which, in turn, leads to a variation in the intensity
of pump radiation. It is important to mention, however,
that a negative chirping of the pump pulse improves the
efficiency of generation of high-frequency components
in SC emission (as can be seen from Fig. 8) even in
spite of a slight increase in the pulse duration, which is
equal to 62, 65, and 70 fs for the spectra shown by the
solid, dotted, and dashed lines in Fig. 8, respectively.

In view of the large number of physical factors
involved in SC generation by ultrashort laser pulses in
an MS fiber, a linear chirp is generally insufficient to
optimize this process. Methods of optimal phase con-
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Fig. 8. The influence of the initial chirp of pump pulses on
the spectrum of supercontinuum emission from a micro-
structure fiber with a single ring of holes around the fiber
core (Fig. 1a), a core diameter of 3 µm, and the length of
about 10 cm. The chirp parameter α and the initial pump
pulse duration τ0 are equal to (solid line) α = 0, τ0 = 62 fs;

(dotted line) α = –7 × 10–5 fs–2, τ0 = 65 fs; and (dashed

line) α = –10–4 fs–2, τ0 = 70 fs.
SICS      Vol. 95      No. 5      2002



858 FEDOTOV et al.
trol [36–39] with the use of spatial light modulators
[40–43], allowing light pulses with arbitrary amplitude
and phase profiles to be produced, seem to offer much
promise for optimizing the initial chirp of the input
pulse for the efficient generation of supercontinuum
emission with controllable spectral and temporal
parameters.

6. SPECTRAL PROPERTIES
OF SUPERCONTINUUM EMISSION

The spectral quality is the key property of supercon-
tinuum for numerous spectroscopic and metrological
applications, as well as for ultrashort-pulse synthesis
and for using supercontinuum emission to seed optical
parametric amplification. In this section, we will show
that MS fibers allow the generation of supercontinuum
with a high spectral quality using femtosecond pulses
of moderate powers.

The results of experimental studies presented in
Fig. 9 demonstrate that the parameters of input laser
pulses can be matched with the characteristics of an MS
fiber in such a way as to allow the generation of SC
emission with flat spectra spanning over nearly an
octave. Supercontinuum emission with such a spectrum
can be employed for spectroscopic purposes, as well as
seed radiation for optical parametric amplification.

The possibility of achieving highly efficient conver-
sion of pump pulse energy into the visible range is an
important property of SC emission generated in MS
fibers. This possibility is illustrated by Fig. 10, which
displays the spectra of SC emission generated by 60-fs
pulses of Ti:sapphire laser radiation with an energy on
the order of 10 nJ coupled into a 1-m MS fiber with a
single cycle of air holes around the fiber core. The
pump field is depleted under these conditions, resulting
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Fig. 9. Spectra of supercontinuum emission generated by a
50-fs Ti:sapphire laser pulse with an energy of (dash-dotted
line) 8, (dashed line) 12, and (solid line) 16 nJ in a 1-m
microstructure fiber with a single ring of holes around the
fiber core (Fig. 1a) and a core diameter of 4 µm.
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in a highly efficient generation of a broadband visible
light.

It should be emphasized that the spectral quality of
SC emission attainable with MS fibers (Fig. 9) is much
higher than the quality of white-light emission conven-
tionally employed for optical parametric amplification.
This circumstance, complemented by the tunability and
controllability of SC spectra (Figs. 4, 6, 9, 10) by
matching parameters of the pump pulse with the param-
eters of an MS fiber, including the possibility of achiev-
ing the pump-depletion regime (Fig. 10), suggests ways
of using MS fibers for creating a new generation of
optical parametric amplifiers and broadband sources
for spectroscopic studies.

7. CONCLUSION

Thus, based on the investigation of the mode struc-
ture and spectral properties of supercontinuum emis-
sion produced in microstructure fibers, we proposed
and experimentally implemented the method of spatial
filtering and spectral slicing of this supercontinuum
emission. The key physical effect behind our method of
spatial and spectral filtering of SC emission is associ-
ated with the increase in the separation between the
propagation constants corresponding to adjacent
guided modes with a decrease in the fiber core diame-
ter. Microstructure fibers provide sufficiently small
core diameters for the realization of this approach.
Supercontinua in such fibers can be generated in the
regime when multimode-phase-matched four-wave
mixing results in a preferable generation of new spec-
tral components emitted as a part of the supercontin-
uum in a certain (perhaps, high-order) guided mode.
The results of our experimental studies presented in this
paper demonstrate the possibility of separating isolated
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Fig. 10. Pump depletion in supercontinuum generation:
spectra of supercontinuum emission generated by a 60-fs
Ti:sapphire laser pulse with an energy of 8 nJ (dashed line)
and 12 nJ (solid line) in a 1-m microstructure fiber with a
single ring of holes around the fiber core (Fig. 1a) and a core
diameter of 2.5 µm.
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spatial modes in supercontinuum emission produced in
such fibers within different spectral ranges. The pro-
posed method of spatial mode filtering provides a high
spatial quality of supercontinuum emission, which is
sufficient to allow efficient further frequency conver-
sion of spectrally sliced supercontinuum emission. This
frequency convertibility of SC spatial modes was dem-
onstrated by our experiments where spectrally sliced
supercontinuum emission was mixed with the funda-
mental radiation of a Ti:sapphire laser in a nonlinear
crystal to produce a sum-frequency signal. The method
of spatial and spectral filtering of supercontinuum
emission from microstructure fibers developed in this
paper opens the way to conveniently and efficiently
employ MS-fiber-generated supercontinuum emission
for spectroscopic applications, time-resolved measure-
ments, optical metrology, and coherence tomography,
offering, at the same time, new solutions for synthesiz-
ing ultrashort light pulses.

Our studies have also demonstrated the possibility
of achieving a high spectral quality of supercontinua
produced in microstructure fibers. We have explored
the ways to control the spectrum of supercontinuum
emission by matching parameters of the pump pulse
with the parameters of a microstructure fiber and by
varying the initial chirp of the pump pulse. The results
of our investigations show that supercontinua produced
in microstructure fibers offer new approaches to
designing a new generation of optical parametric
amplifiers and broadband radiation sources for spectro-
scopic, metrological, and biomedical applications.
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Abstract—An external field determining the law of particle motion was shown to change the intensity of tran-
sient radiation in the ultrarelativistic case. The angular and frequency distribution of transient radiation in an
external field was obtained. The possibility of determining the energy of an ultrarelativistic particle from the
measured azimuthal asymmetry of particle transient radiation in an external field was discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The formation of transient radiation when a fast par-
ticle crosses the boundary surface between media [1–5]
occurs in a finite region of space at the interface. When
a photon of frequency ω is emitted by an ultrarelativis-
tic particle having the energy

,

the path length of the particle in the region of radiation
formation (the coherence length) is l ~ (c/ω)γ2, and the
cross section of this region is small compared with l.
Transient radiation arises without external field partici-
pation. However, if a particle deflected by a field
escapes the region of radiation formation, this disturbs
the radiation formation process, and its intensity
decreases. At high energies and low frequencies, coher-
ence length l can be large to the extent that an external
field can withdraw the particle from the formation
region, thereby decreasing the intensity of transient
radiation.

It would be interesting to estimate the external field
effect on transient radiation and find the region of fre-
quencies and energies in which this effect can be sub-
stantial.

2. TRANSIENT RADIATION OF A CHARGE 
MOVING WITH ACCELERATION

Let a particle with charge e fly out at a velocity v  ≈
c from a conductor (z < 0) into a vacuum (z > 0), where an
external field parallel to the interface z = 0 acts. We assume
that particle velocity v(t) changes insignificantly during
radiation formation time 1/(ω – k · v). This allows us to
write the law of particle motion as

E γmc2
 @ mc2≡

r t( ) vt ut wt2/2+ +=
1063-7761/02/9505- $22.00 © 20861
(v is the perpendicular and u is the normal velocity
component, v ⊥  w). If a constant uniform electric field
E acts on the particle and E ⊥  u, then

The boundary conditions at the surface of the conduc-
tor z = 0 can be satisfied by the introduction of a ficti-
tious charge-image –e moving by the law

 . 

The field outside the conductor then coincides with the
field of these two charges when they move in the vac-
uum. The angular and frequency distribution of radi-
ated energy has the form

(1)

The action of the field can be substantial if field-inde-
pendent terms in part cancel each other. For instance, in
the ultrarelativistic case, the difference

is small in the exponential functions exp{i(ω – k · v –
k · u)t – ik · wt2/2}. If the main terms do not cancel each
other, external field effects can always be ignored in a
first approximation. This allows (1) to be rewritten as

w
eE
mγ
-------.=

r1 t( ) = –vt ut wt2/2+ +

d2E
dωdΩ
---------------

e2ω2

π2c3
-----------=

× t i ω k u⋅–( )t ik wt2/2⋅–{ }expd

0

∞

∫
× n v×[ ] k vt⋅( )cos{ }

– it n u wt+( )⋅[ ] k vt⋅( )sin{ }
2

.

ω k v k u ω/γ2
 ! ω∼⋅–⋅–
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(2)

The integral in (2) does not reduce to elementary func-
tions and can be expressed via the Fresnel integrals

(3)

The integration gives

(4)

The angular and frequency distribution of transient
radiation has the form

(5)

At large x, the C(x) and S(x) Fresnel integrals oscil-
late about 1/2 with an amplitude slowly decreasing as x
increases,

(6)

d2E
dωdΩ
---------------

e2ω2

4π2c3
------------- n v u–( )⋅[ ] ∫=
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∫
2
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π
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C x( ) 2
π
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0
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∫

=  π
k w⋅
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2k w⋅
----------------------------------------------–

 
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 
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× 1
2
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2kw

-----------------------------------------------+
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At small x, the Fresnel integrals rapidly increase from
zero at x = 0 to values of the order of one at x ~ 1. In the
vicinity of zero, we have

(7)

Let us introduce auxiliary functions f(x) and g(x) deter-
mined by the equations

(8)

(9)

The distribution of radiated energy [Eq. (5)] for k · w < 0
takes the form

(10)

In the 0 ≤ x < ∞ region, the f(x) and g(x) auxiliary func-
tions can be approximated with an error smaller than
2 × 10–3 by the equations [6]

(11)

More accurate approximations can be found in [7].

3. AZIMUTHAL RADIATION ASYMMETRY 
AT NORMAL INCIDENCE

If a charged particle crosses the surface of a conduc-
tor along the normal to this surface, the distribution of
radiation has azimuthal symmetry in the absence of a
field. An external field breaks this symmetry. The direc-
tion of radiation emission will be specified by the ϑ  and
ϕ angles of the spherical coordinate system with the
axis along z. Let particle acceleration in the field be
directed along the x axis. The argument of the f(x) and
g(x) functions in (10) at normal particle incidence (u =
0) can then be written as

(12)

The limiting case in which the value of (12) tends to
infinity corresponds to transient radiation in the
absence of an external field. The angular and frequency

S x( ) 2
π
---

x3

3
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π
---x.= =

1
2
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ω k v⋅–

2kw
-------------------- ω 1 ϑ 1/2γ2+cos–
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distribution of radiation [Eq. (1)] then transforms into
the distribution typical of usual transient radiation,

(13)

It follows from (12) that this limiting situation corre-
sponds to ϕ = ±π/2 and to ϑ   0. The ϑ  ! 1/γ region,
however, makes a small contribution to the intensity of
radiation and can be ignored. It follows that radiation
emitted in the plane which is normal to the external
field and passes through particle velocity (that is, at ϕ =
±π/2) is fully independent of the external field strength.
The intensity of radiation propagating in the plane that
passes through particle velocity and field (that is, at ϕ = 0)
can, however, substantially decrease depending on
external field. The ratio between radiation intensities
corresponding to ϕ = 0 and ϕ = ±π/2 can be obtained in
the form

(14)

This ratio substantially decreases as particle energy
increases and the angle of radiation emission decreases.
For instance, when the argument of Fresnel integrals
(12) is close to one, g2 + f 2 ≈ 1/3, and (14) becomes

(15)

where it is taken into account that ultrarelativistic parti-
cle radiation is concentrated at ϑ  ! 1. It follows that
azimuthal asymmetry of the angular distribution of
transient radiation strongly depends on the energy of
the particle. The presence or absence of azimuthal
asymmetry shows whether or not field strength is suffi-
cient for influencing transient radiation.

4. DISCUSSION

Equation (15) shows that, at normal incidence, azi-
muthal radiation asymmetry is substantial when the
value of (12) is greater than unity. In a uniform external
electric field E at angles ϑ  ~ 1/γ, this condition is met if

(16)

Transient optical range radiation at γ ~ 104 substantially
changes in a field of about 500 V/cm. Transient radia-
tion azimuthal anisotropy in the centimeter radio fre-
quency band at γ ~ 103 appears in a field of the order of

d2E
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2k w⋅
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  f 2 ω k v⋅–

2k w⋅
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.

d2E ϕ  = 0( )
d2E ϕ  = π/2( )
--------------------------------- πωc

6 n w⋅
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γ2
-----+ 

  2
,≈

e E ω/γ2( )mc∼ mc2/λγ2.=
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or stronger than 1 V/cm. These field values correspond
to maximum azimuthal anisotropy of transient radia-
tion. In lower fields, the azimuthal anisotropy is small.

Azimuthal anisotropy of transient radiation in an
external field is fairly easy to measure, its dependence
on the Lorentz factor is quadratic, and increasing
energy therefore improves the conditions for measuring
anisotropy in a fairly strong field. The conclusion can
be drawn that measurements of azimuthal anisotropy of
the angular distribution of transient radiation in an
external field can conveniently be used to determine the
energy of ultrarelativistic particles.

As condition (16) of maximum azimuthal anisot-
ropy actually depends on the ratio between the external
field strength and radiation frequency (|E|/ω), conve-
nient external field conditions can be attained by vary-
ing the frequency of radiation.

Note that we only considered transient radiation
formed close to the surface of a conductor along parti-
cle path of the order of the coherence length. The action
of a field on a particle also causes radiation along fur-
ther particle trajectory. This radiation is, however, not
related to particle crossing of the interface; this is usual
radiation caused by particle movement in an external
field. Such radiation is determined by the specific char-
acter of further particle movement in an external field,
and its contributions can be various. In comparison
with experiment, this radiation should be taken into
account, but including it in a general consideration is
inexpedient. Indeed, such radiation depends on the
velocity of a particle rather than its energy, and its dis-
tribution strongly depends on the conditions of further
particle movement in the measuring device.
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Abstract—The solution of the Poisson–Boltzmann equation for a cloud of charges surrounding two charged
dust particles treated as Debye atoms forming a Debye molecule is investigated numerically using Cassini coor-
dinates. The electric force exerted on a dust particle by the other dust particle was determined by integrating the
electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the fol-
lowing two conditions are satisfied. First, the Debye radius (corresponding to the electron density at half the
mean distance between the dust particles) must be approximately equal to half the mean distance between the
dust particles. Attraction between the dust particles emerges at a distance equal approximately to half the mean
distance between the dust particles. Second, attraction takes place when like charges are concentrated predom-
inantly on the dust particles. If the particles carry a small fraction of charge of the same polarity, repulsion
between the particles takes place at all distances. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of a plasma in which charged particles of
micrometer size play a significant role (so-called dust
plasma) is interesting from the fundamental and
applied points of view (see [1, 2] and the literature cited
therein). It is especially interesting because of the col-
lective effects observed in a dust plasma due to its non-
ideality [3–6]. The properties of a nonideal plasma are
often considered in the so-called one-component
approximation. In this case, one of the charges is sort of
smeared uniformly over the space, and polarization
effects are taken into account in the form of corrections
in some cases.

Apparently, the physics of processes occurring in a
dust plasma is basically different. The major object of
investigation must be dust particles surrounded by
clouds of charged particles with masses much smaller
than the dust particle mass. A charged dust particle sur-
rounded by a cloud of charges of the opposite sign is an
analogue of an atom in gas kinetics. Generally speak-
ing, the charge shell of such a “dust atom” may not be
in thermodynamic equilibrium. However, we will con-
sider the situation when the charge distribution in the
shell is of the Boltzmann type. Such a dust atom can
naturally be referred to as a Debye atom [7] in contrast
to a Thomas–Fermi atom in which the charge shell is
formed by a degenerate electron gas. Similarly, we can
introduce the concept of a Debye molecule [8, 9] and a
Debye crystal. The properties of such Debye systems
are determined analytically by the Boltzmann distribu-
tion and the Poisson equation, i.e., by the Poisson–Boltz-
mann equation.
1063-7761/02/9505- $22.00 © 20864
According to the results of a number of experiments
(see, for example, [3–6]), dust particles of a micrometer
size in thermionic plasmas, gas-discharge plasmas, and
nuclear-excited plasmas may form 3D structures. Con-
sequently, it is natural to assume the presence of attrac-
tive forces emerging due to polarization of charge
shells of Debye atoms. However, convincing theoreti-
cal results demonstrating the attraction of Debye atoms
have not been obtained so far. The exact solution of the
Poisson–Boltzmann equation shows that charged
planes in an electron cloud as well as in a plasma
always exhibit repulsion rather than attraction [10, 11].
Numerical calculations of the forces of interaction
between Debye atoms [8, 9], like the results of approx-
imate analysis [12, 13], were not quite reliable until
recently.

The problem of interaction of particles in a dust
plasma is close to the problem of interaction of colloi-
dal particles in electrolytes. The very concept of Debye
radius for plasmas was borrowed from the theory of
electrolytes. However, in spite of the long history of
investigation into the physics of colloidal particles in
electrolytes [10], the origin of attractive forces in elec-
trolytes has not been clarified completely (at least, for
the case when the diameter of a colloidal particle is
smaller than the Debye radius; see, for example, [14–
18]).

Below, we make an attempt to demonstrate reliably
the existence of polarization forces of attraction
between Debye atoms and to determine the conditions
under which attraction appears. This work differs
methodically from other publications devoted to an
analysis of interaction of charged dust particles in plas-
mas and in electrolytes.
002 MAIK “Nauka/Interperiodica”
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First, in contrast to a number of publications (see,
for example, [10, 12–18]), we consider the situation
when the total charge of dust particles is not negligibly
small as compared to the total charge of the plasma par-
ticles (of the same polarity) surrounding dust particles.
Moreover, it will be shown (see [19] for preliminary
results) that attraction is most significant in the opposite
limiting case, i.e., when almost the entire charge of one
polarity is concentrated in dust particles and the clouds,
accordingly, contain charges of the same (opposite)
sign.

Second, in an analysis of the properties of a Debye
molecule, we rely mainly on the fact that a Debye atom
has a definite structure. In particular, the charge of a
dust particle cannot be considered approximately as a
delta function as a rule even if its radius is much smaller
than the Debye radius.

Third, we calculate directly the resultant force
exerted on a dust particle by another dust particle and
by the charge shell rather than the potential energy of
the system. The dependence of the energy of interaction
between dust particles on their separation is determined
by the integration of this force. The Poisson–Boltz-
mann equation is solved in our case in an infrequently
used system of coordinate based on Cassinian ovals
[20, 21]. This enables us to calculate the field strength
in the vicinity of the surface of a small dust particle to
a high degree of accuracy and to determine reliably the
force acting on the dust particle.

2. FORMULATION OF THE PROBLEM

2.1. Poisson–Boltzmann Equation

For the sake of definiteness, we will consider below
a thermal emission plasma and speak of positively
charged dust particles and of the electron shell of
charges. However, the main results are also valid for an
electric-discharge dust plasma as well as a plasma ion-
ized by an external source of hard radiation, when dust
particles bear a negative charge and charge shells con-
sist predominantly of positive ions.

Let the electron gas surrounding charged particles
be formed due to emission of electrons from dust parti-
cles having a rather high temperature T. In addition,
dust particles are in partly ionized gas. In order to find
the spatial distribution of potential φ, the field strength
−∇φ , and the charge density ρ = e(Ni – Ne), we must
solve the Poisson equation

In this equation, the densities Ni and Ne of ions and elec-
trons are determined by the Boltzmann distribution

where Ni0 and Ne0 are the densities of ions and electrons
at the points where the potential is equal to zero, and ∇
is the Hamilton vector operator.

∇ ∇φ–( ) 4πρ.=

Ni Ni0 eφ/T–( ), Neexp Ne0 eφ/T( ),exp= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Thus, the Poisson–Boltzmann equation has the form

(1)

where ∆ = ∇ 2 is the Laplace operator; the temperature
of particles and plasma is assumed to be the same.

2.2. Dimensionless Quantities

We will measure the length in units of the Debye
radius rD = (T/4πe2Ne0)1/2 corresponding to the electron
density at the points where the potential is equal to zero.
We introduce dimensionless quantities (potential ϕ,
electric field strength E, and the electron density ne)
with the help of relations

(2)

where nD = .

In our estimates below, we will proceed, as a rule,
from the experimental conditions [3], in which Ne0 =
2.5 × 1010 cm–3 and T = 0.146 eV = 1700 K; for the
characteristic quantities, we have rD = 18 µm, T/e =
0.146 V, and T/erD = 80 V/cm. For the mean radius of a
dust particle rp = 0.4 µm (r0 = rp/rD = 2.23 × 10–2) and
its charge Zpe = 500e, we have the field strength on the

particle surface Zpe/  = 4.5 × 104 V/cm (E0 = E(r0) =
550).

For the dimensionless quantities, Eq. (1) can be
reduced to the following equations for the dimension-
less potential ϕ:

(3)

Here, δ = Ni0/Ne0 is the parameter characterizing addi-
tional ionization of the gas. In view of the quasi-neu-
trality of the plasma, 0 ≤ δ ≤ 1.

2.3. Boundary Conditions

Following [7], we will use the term “Debye atom”
for a single charged dust particle surrounded by a cloud
of lighter charges in thermodynamic equilibrium; two
or more dust particles will be referred to as a Debye
molecule [8, 9]. Formally, the analyses of a Debye atom
and a Debye molecule differ only in the geometry of the
problem. While analyzing a Debye atom, we can get by
with the solution of the one-dimensional Poisson equa-
tion, assuming that the electron cloud is spherically
symmetric. In an analysis of a diatomic Debye mole-
cule, we can assume that the problem is symmetric
about the x axis connecting the nuclei (dust particles).
In this case, it is sufficient to consider the two-dimen-
sional equation (3) in the coordinate plane xy. As we go
over to an analysis of a Debye molecule, the problem is

∆φ 4πe Ne0 eφ/T( )exp Ni0 –eφ/T( )exp–( ),=

ϕ φe
T
------, E

∇φ erD

T
----------------,–= =

ne rD
3 Ne nD ϕ ,exp= =

rD
3 Ne0

r0
2

∆ϕ ϕ δ ϕ–( ),exp–exp=

∇ E ϕexp δ ϕ–( )exp–( ), E– ∇ϕ .–= =
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complicated considerably due to the choice of the
boundary conditions.

In the real physical problem, the charge Zpe of dust
particles and their radius rp are specified (the formation
of the dust particle charge is described in [22–24]).
Consequently, one of the boundary conditions is that
imposed on the field strength on the surface S of dust
particles:

(4)

The particle charge in this case is defined as

(5)

Here, zp is the dimensionless charge of a particle, which
is connected with the charge Zp of the particle in units
of electron charge through the relation

the area of the surface is measured in squares of the
Debye radius.

In the second boundary condition, we must define
the surface S' on which the field is equal to zero:

(6)

The zero value of the electric field at the boundary fol-
lows from the quasi-neutrality of the system of charges
under investigation. Surface S' determines the boundary
of the Debye system under investigation.

In an analysis of a Debye molecule, we mainly aim
at determining the resultant electrostatic force acting on
the dust particles as a function of the distance d
between them. In this case, it is more convenient to pro-
ceed from other boundary conditions [8, 9]. We specify
not the field, but the constant potential on the surface of
dust particles,

The field strength E0 on the surface of a dust particle is
determined from the solution of the Poisson–Boltz-
mann equation. The resultant force is determined with
the help of the integral of electrostatic pressure over the
surface of a dust particle. In order to obtain the required
value of charge zp (5), we must change appropriately
the value of potential ϕ0.

In the case under investigation, the force of interac-
tion between dust particles is directed along the z axis
and is defined as

(7)

E0 ∇ϕ S.–=

Z p

rD
2–

4πe
--------- ∇φ s, zpd

S

∫ 1
4π
------ E s.d

S

∫= =

Z p 4πzpnD;=

∇ϕ
S' 0.=

ϕ S ϕ0 const.= =

F
1

8π
------ ∇φ( )2

S sz, fd

S

∫ E0
2 sz.d

S

∫= =
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Here, dsz is the component of the surface area element
ds along the z axis, the force F is connected with the
dimensionless force f through the relation

and the electric pressure is directed along the outward
normal to the surface of dust particles.

3. SOME PROPERTIES OF DEBYE ATOMS

3.1. Debye Atom

3.1.1. Poisson–Boltzmann equation. The proper-
ties of a Debye molecule are mainly determined by the
properties of the Debye atoms constituting this mole-
cule. In particular, for a large distance between dust
particles, a Debye molecule must decay into two inde-
pendent Debye atoms. We will use this fact below. For
this reason, before calculating the force of interaction,
we consider some properties of Debye atoms (see also
[25]).

In the one-dimensional (i.e., in a planar, cylindri-
cally, or spherically symmetric) case, Eq. (3) assumes
the form

(8)

Here, k = 0, 1, 2 for the planar, cylindrically, and spher-
ically symmetric cases, respectively; depending on the
geometry, point r = 0 corresponds to the beginning of a
planar layer, the center of the cylinder, or the center of
the sphere. One of the boundary conditions specifies
the boundary r = a0 of the Debye atom, at which the
field is equal to zero.

We will consider below the spherically symmetric
case (when k = 2), which simulates a Debye atom, and
the planar case enabling us to consider the variation of
the potential near the dust particle surface [6–8]. In the
spherically symmetric case, a convenient characteristic
of a Debye atom is the dimensionless charge contained
in a sphere of radius r, which is defined as

3.1.2. Debye atom in a cloud of like charges. The
case δ = 0, when charge shells are formed by particles
with charges of the same polarity, corresponds, for
example, to a thermionic plasma [3] or a gas ionization
such that the charge of one polarity is completely con-
centrated on dust particles (see, for example, [24]). We
choose the value of a0 equal to half the mean distance
between dust particles:

F T2/8πe2( ) f ,=

1

rk
----

rd
d

rkdϕ
dr
------ 

  ϕ δ ϕ–( ),exp–exp=

ϕ r a0= 0,=

E r( ) r a0=
dϕ
dr
------–≡

r a0=
0.=

z r( ) r2E r( ).=

a0 ap N p
1/3– /2rD( ),≡=
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where Np is the dust particle density (see Fig. 1). The

value of /2 is smaller than the Wigner–Seitz radius
rWS ≡ (4πNp/3)–1/3 by 24%.

We will consider the most interesting situation when
the dust particle radius rp is much smaller than the sep-
aration r0 = rp/rD ! a0 between dust particles. In exper-
iments [3], Np = 5 × 107 cm–3; accordingly, ap = 0.755,
and the conditions of the smallness of the dust particle
radius are satisfied:

The results of analysis of Eq. (8) for the spherically
symmetric case (k = 2) show [25, 26] that, for a moder-
ate charge

of a small particle, r0 ! a0, the distributions of charge,
field, and potential around a dust particle are defined by
the relations

(9)

For a large charge zp > /3 far away from the dust
particle surface, for

expressions (9) are valid as before. A change in the
dependences is observed near the surface (r < r0 –

3 / ), where a sharp decrease in z(r), E(r), and ϕ(r)
is observed (see Fig. 2 and [25]). In other words, for a
large charge of a dust particle, the Debye radius of the
atom has a certain core formed by the charge shell in
the vicinity of the surface of the dust particle. The
charge of the particle together with the core is zcor ≡

/3. The screening of this “remaining” charge occurs
at a large distance r close to a0.

The condition of the large particle charge

can be written for the particle charge measured in units
of electron charge:

According to the results of measurements [3], the
charge of dust particles is quite large:

N p
1/3–

aprD/rp a0/r0 34.= =

zp Z pe2/rDT a0
3/3<≡

z r( )
a0

3

3
----- 1

r
a0
----- 

  3

– , E r( )
z r( )

r2
--------,= =

ϕ r( )
a0

3

3
-----

a0

r
----- 3

2
---–

r
2a0
-------- 

  2

+ .=

a0
3

r0 3r0
2/a0

3 r a0,> >–

r0
2 a0

3

a0
3

zp Z pe2/rDT zcor>≡

Z p Zcor

πNe0

6N p

------------.≡>

Z p 500 Zcor> 262, zp 0.273 zcor> 0.143.= = = =
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Calculations show, however (see Fig. 2), that for values
of electron density and temperature measured in [3],
the charge of dust particles of the given radius in the
thermal equilibrium state must be Zp = 286 (zp = 0.156),
which is smaller than the measured value Zp ≈ 500.
Consequently, either the measured values of plasma
parameters are considerably inaccurate, or the dust par-
ticle charge is nonequilibrium under the experimental
conditions [3] (see also [24]).

d ~ 2a0

Debye
 molecule

 Charge shell
of Debye atom

Dust particle Core
of Debye

 atom

a0

Fig. 1. Schematic diagram of an aggregate of Debye atoms
and a Debye molecule.
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0.01 r0 0.1 a0 1
r

z0

ϕ0

z, ϕ, E

Fig. 2. Charge z (solid curve), field strength E (dotted
curve), and potential ϕ (dashed curve) as a function of the
distance r to the particle center, measured in units of the
Debye radius (δ = 0). The radius of a Debye atom a0 = ap ≡

/2rD = 0.755 is chosen for the experimental conditions

[3]: T = 1700 K, Np = 5 × 107 cm–3, Ne0 = 2.5 × 1010 cm–3,

rD = 18 µm, rp = 0.4 µm, r0 = rp/rD = 2.23 × 10–2.

N p
1/3–
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z0e, z0i, z0 δ1, a0

Fig. 3. Relation between the parameters characterizing a dust plasma and the parameters of a Debye atom: (a) dependence of the
dimensionless charge z0e of the electron shell (solid curve) and z0i of the ion shell (dotted curve), as well as of the uncompensated
charge of the shell z0 = z0e – z0i (dashed curve) on parameter δ; (b) dependence of the parameter δ1 characterizing the ratio of the
total number of ions in a Debye atom to the number of electrons (solid curve) and of the radius a0 of a Debye atom (dotted curve)
on the parameter δ characterizing the ratio of the number of ions to the number of electrons at the boundary of a Debye atom. The
parameters of a dust particle are r0 = 0.1, ϕ(r0) = 2.4, z(r) = 0.28.
3.1.3. Debye atom in a plasma. In the case δ ≠ 0,
when charge clouds consist of particles of both polari-
ties, the radius of a Debye atom is defined, as before, as
the distance r = a0 at which the charge of a dust particle
is completely compensated by free charges of the
plasma (E(a0) = 0). As in the case δ = 0, the radius of a
Debye atom is equal to half the mean distance between
dust particles. For δ = 1, we can consider an isolated
dust particle in an infinitely large volume of the plasma.
For δ  1, the radius of a Debye atom tends to infinity
(a0  ∞). As a matter of fact, the finite charge z0 of a
particle may be compensated completely by a quasi-
neutral plasma only if the plasma size is infinitely large.
If δ < 1, the radius of a Debye atom is finite.

The dimensionless charges of electrons and ions
contained in the charge shell are defined as

(10)

The quantity δ1 ≡ z0i/z0e gives the ratio of the free
charge of ions in a Debye atom to the electron charge.
Generally speaking, the value of δ1 must be a complex
function of parameters δ, a0, and ϕ0. However, in the
cases when the main contribution to integration in
expressions (10) comes from the region of small values

z0e ϕ r( )( )r2exp r,d

r0

a0

∫=

z0i δ ϕ r( )–( )r2exp r, z0d

r0

a0

∫ z0e z0i.–= =
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of potential ϕ(r) ! 1, we can assume approximately
that δ1 ≈ δ.

Figure 3 illustrates the dependences of z0e, z0i, and δ1
on δ. In the results presented in Fig. 3, the value of a0
for different values of δ was chosen as large as possible
for the radius of a dust particle corresponding to the
experiments [3]:

This was carried out by “test firing”: when the value of
a0 was chosen greater than that in Fig. 3, the particle
charge becomes infinitely large (z(r0)  ∞). The
obtained dependences z(r) and ϕ(r) were used for deter-
mining z0 = z(r0) and ϕ0 = ϕ(r0) for r0 = 0.1 (see also
Fig. 4).

It can be seen that, as the value of δ increases, the
number of both positive and negative charges in the
shell of a Debye atom increases due to an increase in its
volume (see Fig. 3). At the same time, the number of
uncompensated charges z0 = z0e – z0i remains virtually
unchanged upon a change in δ. In the range of parame-
ters under investigation, δ1 ≈ δ.

As in the case of δ = 0, for a given value of r0, the
value of a0 cannot be infinitely large for an indefinitely
large value of the particle charge z0. For a large value of

E0 = z0/ , at a distance r – r0 ~ 1/E0 from the particle
surface, a sharp decrease in the dependences z(r), E(r),
and ϕ(r) is observed due to the screening by charges of
the opposite polarity (see Fig. 4). In this case, the value
of a0 is bounded by a certain limiting value a0max ≡ a0

r0 rp/rD 2.23 10 2– .×= =

r0
2
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(E0  ∞). This limiting value increases logarithmi-
cally for δ  1:

when 0.9 ≤ δ ≤ 0.999 (see [25]).

Since a Debye atom has a core screening the charge
of the dust particle, we cannot ascribe the unscreened
value of the charge to the dust particle while consider-
ing the interaction of Debye atoms.

3.2. On the Interaction of Dust Particles

3.2.1. Interaction of nonpolarized particles. If we
imagine a situation when the shells of Debye atoms
separated by distance d do not interact with one
another, attractive forces cannot emerge between dust
particles. Only repulsive forces will act between them.
Indeed, the force of interaction between nonpolarized
shells can be expressed in the form

Here, zeff(d) = E(d)d2 is the total charge within the
sphere of radius d surrounding a dust particle (uncom-
pensated part of the particle charge). In view of quasi-
neutrality of a Debye atom, zeff(r) ≥ 0 for r > r0. The
charges of the same sign repel one another:

For the emergence of attractive forces, a rearrange-
ment (polarization) of charge shells is required. In this
case, the number of charges attracting dust particles to
the center of a Debye molecule must increase on its
axis.

3.2.2. Interaction of charged planes. The Poisson–
Boltzmann equation (4) in the planar case (k = 0) has a
solution in quadratures. This enables us to consider the
force of interaction between planes and to determine
the requirements to the accuracy of the solution to this
equation in the vicinity of the surface of a dust particle.

An analysis shows that the electrostatic interaction
between the planes surrounded by a cloud of like
charges as well as between the planes located in a
plasma leads to the repulsion between the planes [10,
11]. By way of an illustration, we consider the case of
δ = 0, which allows us to obtain simple analytic expres-
sions required for estimating the requirements to the
accuracy of calculation of the field and potential near
the surface of a dust particle.

We consider the electrostatic pressure exerted on a
charged conducting plane located between two con-
ducting (left and right) planes with the same charge
density. If necessary, one of the planes can be removed
to an infinitely large distance.

a0max
1
2
--- 1

1 δ–
-----------ln 1

2
---+≈

f d( ) zeff d( )zp/d2.=

zeff d( )zp 0.≥
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Integration of the Poisson–Boltzmann equation for
the planar case gives [11]

The quantities E1 ≡ exp(ϕ1/2) and ϕ1 are connected with
a0 through the relation

Here, x is the distance to the plane under investigation,
which is assumed for simplicity to be infinitely thin,
and ϕ1 is the value of the potential at point a0, where the
field strength is equal to zero. For identical charge den-
sities on the planes, the value of a0 is equal to half the
distance between the planes.

Although the potential on the left and right of the
conducting plane is the same (ϕ(–0) = ϕ(0) = ϕ0), the
field strengths on the surface under investigation on the
left (E(–0) = E01) and right (E(0) = E02) sides are differ-
ent. This gives rise to the electrostatic pressure p on the
plane:

The quantity a0 is a monotonically decreasing function
of E1. Accordingly, E01 > E02 and p < 0 if, for example,
the distance to the left plane 2a01 is larger than the dis-
tance 2a02 to the right plane. In other words, the result-
ant force of pressure is directed towards the more
remote plane. In particular, if one of the planes is
removed to an infinitely large distance, the remaining
two planes repel each other.

ϕ x( ) E2 E1
2

+( ), E x( )ln E1 a0 x–( )E1/2[ ] .tan= =

a0
2
E1
-----

E0

E1
-----.arctan=

p E02
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Fig. 4. Dependence of charge z (solid curve), electric field
strength E (dotted curve), and potential ϕ (dashed curve) on
the distance r to the center of a particle, measured in units
of the Debye radius (δ = 0.999). The radius of a microscopic
particle r0 = 2.23 × 10–2 is chosen for the experimental con-
ditions [2].
SICS      Vol. 95      No. 5      2002



870 GUNDIENKOV, YAKOVLENKO
Thus, attraction between dust particles can emerge
only in a nonplanar geometry.

3.2.3. On the accuracy of computation of poten-
tial near the surface. In numerical integration of the
Poisson–Boltzmann equation, the value of the field
strength is determined at points of the mesh on which
the difference scheme is constructed. The value of E0
determined approximately corresponds to the value of
the field at a distance of the order of mesh spacing from
the dust particle surface. Let us find the error in the

40

20

0

–20
10–3 10–2

x

∆p/p%, (ϕ(–x) – ϕ(x)) × 104

10–110–4

Fig. 5. Dependence of the error in determining pressure (see
relation (11)) exerted on a conducting plane and of the dif-
ference in potentials on the left and right of the plane on the
distance x to the plane. The plane under investigation is
between two other charged planes; all the planes are under
the potential ϕ0 = 10. Half the distance to the left plane is
a0 = 6.27, and half the distance to the right plane is a0 =
2.08; p = 2 in this case.
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Fig. 6. Cassini coordinates for the distance d = 1 between
the foci, which corresponds approximately to the transition
from attraction to repulsion at a0 ≈ 1.
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pressure being determined resulting from inaccuracy in
determining the position corresponding to E0. The rela-
tive error in pressure determined from points separated
from the plane by distances x and –x in the planar
geometry is given by

(11)

It can be seen from Fig. 5 that, if the potential of the
plane is significant (ϕ0 @ 1), the value of ∆p/p amounts
to tens of percent even at small distances x ~ 0.01, while
the difference ϕ(–x) – ϕ(x) between potentials on the
left and right is virtually equal to zero. In other words,
numerical integration requires a very high accuracy in
determining the derivative of the potential near the par-
ticle surface, which dictates a very small mesh size in
the vicinity of the surface.

At the same time, in order to determine the magni-
tude of the force acting on a particle, the method of
solving the Poisson–Boltzmann equation must ensure
the maximum accuracy just in the region near the sur-
face of dust particles. We are mainly interested in dis-
tances between dust particles exceeding considerably
their diameter. In ordinary systems of coordinates, it is
difficult to attain a sufficient accuracy in calculation of
the force acting on small dust particles.

4. METHOD OF SOLUTION 
OF TWO-CENTER PROBLEM

4.1. Cassini Coordinates

We used orthogonal coordinates constructed on the
basis of the well-known Cassinian oval [20, 21] for a
certain particular case.

The relation between variables u and v defining a
point on the Cassinian oval with Cartesian coordinates
in the quadrant x > 0, y > 0 is determined by the follow-
ing expressions:

(12a)

(12b)

For the entire zy plane, the coordinate mesh is obtained
by the mirror reflection relative to the z and y axes (d is
the distance between the foci of the ovals located at
points (–d/2, 0) and (d/2, 0)). Variable ∞ > u > –∞ is a
certain analogue of the radial variable. For u < 0, the
curve has the shape of two independent ovals; for u = 0,
the coordinate line is a Bernoulli lemniscate, i.e., an
oval with an infinitely slim “waist.” For 0.65 > u > 0, we
have an oval with a waist, while for u > 0.65, the oval

∆p
p
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p E2 x–( ) E2 x( )–( )–

p
---------------------------------------------------.=

x u v,( )
d

2 2
----------=

× 2u 2 u v 1+cosexp+exp u vcosexp 1+ + ,
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has an ellipsoidal shape. Variable π > v  > 0 is analogous
to an angle in polar coordinates. For v  = 0, the point lies
on the ray (d/2, ∞) along the abscissa axis; for v  = π, the
locus approaches the angle formed by the segment (0,
d/2) on the abscissa axis and the ray (0, ∞) along the
ordinate axis. The shape of coordinate lines is illus-
trated in Fig. 6. The application of coordinates (12) pro-
vides the following important advantages. First, the
family of Cassinian ovals corresponds qualitatively to
the pattern of equipotential surfaces for two like-
charged particles located at the foci of the oval. Second,
the domain of the solution of the equation in these coor-
dinates becomes rectangular. Third, the density of ovals
increases exponentially towards the surface of dust par-
ticles. This allows us to use a homogeneous mesh even
for large distances between small particles.

4.2. On the Method of Solution

Without going into details, we describe the main
feature of the method of solution. It is convenient to use
Cassini coordinates in the situation when the radius r0
of dust particles is much smaller than both the Debye
radius (r0 ! 1) and the radius of a Debye atom (r0 ! a0).
Considering the range of large distances between parti-
cles (d > 5r0), we can treat small dust particles as
Cassinian ovals close to circles. On a small oval, it is
convenient to define the value of potential ϕ0. At the
same time, the cloud of charges enveloping dust parti-
cles can be described by an ellipsoidal oval for d < 5a0.
It is convenient to define the zero value of the field on
this oval.

The surface of a dust particle and the outer surface
corresponding to the boundary of the Debye molecule
(on which the field vanishes) are described in coordi-
nates (8) by the constants

(13)

The boundary conditions (2) in this case have the form

(14)

The Poisson–Boltzmann equation (3) with the
boundary conditions (13), (14) was solved by the
Gauss–Newton method of iterations using the program
packet MATLAB.

The variation of the potential in Cassini coordinates
and in Cartesian coordinates is illustrated in Fig. 7.

In order to calculate the charge and the force of
interaction of dust particles, we considered 3D coordi-
nates formed by rotating 2D coordinates (8) about the x
axis. In these coordinates, we calculated the force of
interaction between dust particles by formula (7). The

umin
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energy of interaction of dust particles was calculated by
the formula

(15)

The constant was usually chosen so that the energy
U(d) at the minimum was equal to zero,

5. RESULTS OF CALCULATIONS

5.1. Debye Molecule in a Cloud 
of Like Charges (δ = 0)

5.1.1. Choice of parameters for calculations. Cal-
culations were made for parameters ϕ0, r0, and a0,
which correspond to a single Debye atom for d ≥ a0. For
this purpose, we first solved the spherically symmetric
problem, in which the values of the field and potential
at point r = a0 were assumed to be equal to zero. The
solution to this problem was used to determine the
potential ϕ0 on a particle with the given radius r0. Then
we solved the two-center problem with these values of
ϕ0, r0, and a0 for d = 10a0. The results of the solutions
for the spherically symmetric and two-center problems
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Fig. 7. Potential surfaces (a) ϕ(x, y) in Cartesian coordinates
and (b) ϕ(u, v) in Cassini coordinates. The solution is
obtained for δ = 0, d = 1, r0 = 0.1, a0 = 0.755, and ϕ0 = 1.16.
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coincided to a high degree of accuracy. In the subse-
quent series of calculations, we passed to smaller val-
ues of d.

In the series of calculations with the results pre-
sented in Fig. 8, we used the plasma parameters from
[3] and set a0 = 0.755. Calculations showed that the
region of comparatively large distances d ~ 2a0 is most
interesting. Considering that the electron cloud near the
surface of dust particles for d ~ 2r0 is polarized weakly,
we assumed for convenience of calculations that the
particle radius r0 = 0.1 is five times as large as the exper-

f, z
3

2

1

0.156
0

–1
0 2r0 1.0 1.3 2.0 3.0 4.0

d

(a)

U
1.0

0.8

0.4

0.2

0 2r0 1.0 2a0 2.0 3.0 4.0
d

(b)

0.6

Fig. 8. Dependence of (a) the force component along the x
axis and (b) the potential energy of interaction between dust
particles on their separation d for δ = 0. A positive value of
the force corresponds to repulsion between dust particles,
while a negative value corresponds to their attraction. The
normalization of the potential energy is chosen so that the
energy U(d) at the minimum is equal to zero. Solid curves
correspond to a constant potential ϕ0 = 1.16 on the surface
of dust particles; dotted curves correspond to a constant
charge z0 = 0.156 of a dust particle, which is ensured by the
selection of ϕ0(d); and dashed curves correspond to a con-
stant charge ensured by the choice of a0(d) for ϕ0 = 1.16.
The dot-and-dash curve in (a) gives the dependence of the
dust particle charge on distance d for the case of constant
potential ϕ0 = 1.16.
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imental value. Accordingly, the potential ϕ0 = 1.16 bor-
rowed from the solution to the one-center problem for r0 =
0.1 has a value much smaller than the potential on the
surface of a small dust particle (ϕ0 = 6.5 for r0 =
0.0223). In other words, a small charged conducting
sphere was replaced by a larger sphere with a charge
partly compensated by the charges of the electron
cloud. According to calculations, deep electron shells
are indeed polarized only slightly, and such a replace-
ment is justified (see below).

5.1.2. Dependence of the force of interaction
between dust particles on their separation. In order
to determine the dependence of the force of interaction
between dust particles on the separation d, we carried
out a series of computations with given values of ϕ0, r0,
and a0. The particle charge z0 in this case is also a func-
tion of d. For this reason, we made additional computa-
tions with values of ϕ0 or a0 changed in such a way that
the particle charge z0 did not depend on d.

Calculations proved that, for small distances
between particles (d ~ r0), repulsion takes place. This does
not match the results of numerical calculations [8, 9], in
which attraction was observed for d ~ r0. Apparently, the
above-mentioned error in calculation of the derivative of
potential near the surface of a dust particle was large in the
computations [8, 9]. The resultant force is very sensitive to
this error. In actual practice, repulsion of particles at small
distances prevails over polarization-induced attraction due
to the fact that charge envelopes close to the surface of a
dust particle are polarized weakly.

The equilibrium distance d = d0 between dust parti-
cles, at which the force component reverses its sign, is
of considerable interest. In the calculations presented in
Fig. 8, we have d0 ≈ 1.3, which is slightly smaller than
the mean distance 2a0 = 1.5 between dust particles. The
position of point d0 weakly depends on the quantities
(ϕ0, a0 or z0, a0) preserved in calculations upon the vari-
ation of d. The variation of a0 (for constant z0 and ϕ0)
affects the value of d0 more strongly. Apparently, con-
finement of the constant charge z0 = const by varying
the particle potential ϕ0 = ϕ0(d) is more closely related
to the physics of interaction of charged dust particles.

Since the problem cannot be treated as a binary
problem for d @ a0, we describe the results of calcula-
tions only for comparatively small values of d < 4a0.
For the separation between particles d > 2a0, the repul-
sion from other particles surrounding the two particles
under consideration becomes significant (see Fig. 1).

Knowing the force of attraction F(2a0) between dust
particles separated by the mean interparticle spacing
2a0, we can estimate the electrostatic pressure com-
pressing the dust particle gas,

, (16)

and the surface tension of the “dust liquid,”

PE F 2a0( )N p
2/3≈ T2/8πe

2( )N p
2/3

f 2a0( )=

σE FN p
1/3≈ N p

1/3T2/8πe2( ) f 2a0( ).=
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Comparing the electrostatic pressure exerted on dust
particles with the gas-kinetic pressure of dust particles
and the gas-kinetic pressure of free electrons, we obtain

Under the conditions of experiments [3], we have

    

It should be noted, however, that a comparison of
the electrostatic pressure exerted on dust particles with
the gas-dynamic electron pressure does not allow us to
draw any important conclusions since electrons are not
free, but are in the electric field of dust particles. At the
same time, a gas of Debye atoms in the mixture with a
neutral gas must exhibit a tendency to compression
under the given experimental conditions [3]. Such a sit-
uation was considered in [27–29]. An analysis of the
effect of interaction between Debye atoms on gasdy-
namic properties of a dust plasma is beyond the scope
of this study.

5.1.3. Dependence on the size of the Debye atom.
We carried out a series of calculations for various val-
ues of a0 (see Fig. 9). The calculations show that attrac-
tion takes place only for a0 ≤ 1. Even for a0 > 1.12, the
sign-reversal point of the force is situated at a large dis-
tance d0 > 4a0.

The condition a0 = ap/rD < 1 can be written for
dimensional quantities in the form

(17)

Electrostatic compressive forces vanish when d0 = 2a0,
i.e., for a0 = 1. Accordingly, the condition a0 = 1 or Ne =
Necr is the equilibrium condition for a gas of Debye
atoms.

In this case, the condition of a large charge on a par-
ticle, zp > 1/3, can be written for the charge of the dust
particle in units of electron charge:

Under our experimental conditions, we have Necr =
4.4 × 1010 cm–3 and Zecr = 460. These quantities are of
the same order of magnitude as those measured in the
experiments [3]: Ne0 ≈ 2.5 × 1010 cm–3 and Zp ≈ 500.

In view of the fact that the depth of the potential well
cannot be determined from an analysis of two Debye
atoms without taking into account the action of other
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particles, we will characterize the force of interaction of
Debye atoms by the steepness at the point of intersec-
tion with the abscissa axis:

The frequency of oscillation of dust particles about
the equilibrium position can be expressed in terms of
the quantity ξ,

where  is the thermal
velocity of dust particles, and mp is their mass. Under
the experimental conditions [3], we have mp ≈ 2 × 10–12 g,
v T ~ 0.5 cm/s, and ap ≈ 1.4 × 10–3 cm. It follows
hence that the frequency of oscillations is ω0 = 357 s–1

and the period of oscillations is 2π/ω0 = 18 ms. It can
be seen from Fig. 9 that the strongest coupling takes
place for 0.5 < a0 < 1. Under these conditions, the gas
of Debye atoms must have a tendency to compression
(cf. [29]).

For small-radius dust particles, the size of the Debye
atom is also smaller. For example, the maximum value
of the radius of the Debye atom a0max ≡ a0(z0  ∞) as
a function of r0 can be approximated by the expression

a0max = 3  or r0 = (a0max/3)10/3 for r0 < 0.02 [25]. Con-
sequently, the radius of a dust particle must not be too
large or too small. For 0.5 < a0max < 1, we have the con-

ξ f ' d( ) d d0= U'' d( )= =
d d0=

.

ω ξ 1/2ω0,=

ω0 v T /ap, v T 2T /mp= =
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Fig. 9. Dependence of the coordinate d0 of the sign-reversal
point (bold curves) and of the steepness ξ of the force at
point d0 (fine curves with squares) on the size a0 of the
Debye atom. Solid curves correspond to a potential on the
surface of dust particles corresponding to a0 and indepen-
dent of d; dashed curves correspond to a constant charge of
a dust particle, ensured by the choice of ϕ0(d).
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dition 2.5 × 10–3 < r0 < 2.6 × 10–2. In the experiments
[3], r0 = 2.23 × 10–2, and this condition is satisfied.

5.1.4. On the effect of the dust particle size. It was
mentioned above that, in our calculations, we replaced
a small charged sphere by a conducting sphere of a
larger size with a charge partially compensated by free
charges in the shell of the Debye atom. A natural ques-
tion arises concerning the correctness of such a replace-
ment. In order to verify this, we carried out several
series of calculations with different values of r0 and,
accordingly, ϕ0. The difference in the results is insignif-
icant for dust particle radii smaller than the radius a0 of
the Debye atom. For instance, for a0 = 0.755 (see
Fig. 10), the difference in the position of the point d0 =
1.28 at which attraction is replaced by repulsion upon a
change in the dust particle radius in the range r0 =
0.1−0.2 (and for the choice of the values of ϕ0 corre-
sponding to the given value of r0) has a spread less than
2%, which is within the error limits of the calculations.

The effect of the dust particle size becomes signifi-
cant for r0 > 0.3a0. For r0 > 0.4, the polarization-
induced attraction decreases to such an extent that the
coordinate of the force sign-reversal point becomes
larger than the mean distance between particles (d0 >
2a0). Consequently, it can be concluded that a consider-
able contribution to the polarization forces comes not

1.6
2a0

1.4

1.2

1
0.10 0.15 0.20 0.25 0.30 0.35 0.40

r0/a0

d0

Fig. 10. Dependence of the coordinate d0 of the sign-rever-
sal point for the force on r0/a0. Here, r0 can be treated as the
radius of the domain in which the polarization of the charge
cloud is disregarded. Potential ϕ0 for r = r0 was determined
for a0 = 0.755.
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only from the periphery of the Debye atom (r ≈ a0), but
also from the charges separated by a distance r ≈ 0.3a0
from the center of a dust particle. In other words, the
force of attraction is formed due to polarization of the
majority of electrons in the charge shell. Consequently,
the attractive forces can hardly be calculated using
some approximate methods.

5.2. Debye Molecule in a Cloud 
of Unlike Charges (δ ≠ 0)

5.2.1. Dependence of the force of interaction
between dust particles on their separation. In the
case of two Debye atoms in a nearly quasi-neutral
plasma (1 – δ ! 1), the separation between these atoms
can be chosen as large as desired (see Fig. 1). However,
in order to assume that the interaction is binary, the con-

dition  @ 2a0rD must be satisfied. It should be
recalled that the radius of a Debye atom for 1 – δ ! 1
may considerably exceed the Debye radius, a0 > 1 (see
above and [25]).

As in the case when δ = 0, we carried out series of
calculations with preset values of ϕ0, r0, and a0 for a
Debye atom to determine the dependence of the force
of interaction between dust particles on distance d.
Additional computations were made with values of ϕ0
or a0 modified so that the particle charge z0 was inde-
pendent of d. As in the case of δ = 0, we chose the value
of r0 greater than the radius of the atomic core, thus
simulating a dust particle by a conducting sphere of a
larger size with a charge partially compensated by the
free charges from the shell of the Debye atom. Thus, the
polarization of the core was disregarded.

In the results presented in Fig. 11, the value of a0 for
different values of δ (see table) was chosen so that it
corresponds to the extremely large charge for the dust
particle radius corresponding to the experimental con-
ditions [3]:

This was done by test firing: when the value of a0 is
greater than that given in table, the particle charge
becomes infinitely large (z(r0)  ∞). The obtained

N p
1/3–

r0 rp/rD 2.23 10 2– .×= =
Parameters of calculations for various values of δ in Fig. 11

Type of curve and figure δ a0 ϕ0 z0

Dotted curves in (a) and (b) 0.999 4.1 2.455 0.282

Dashed curves in (a) and (b) 0.9 1.71 2.426 0.283

Dot-and-dash curves in (c) and (d) 0.7 1.288 2.413 0.272

Dotted curves in (c) and (d) 0.5 1.12 2.378 0.286

Dashed curves in (c) and (d) 0.3 1.018 2.364 0.286

Solid bold curves in (c) and (d) 0.1 0.94 2.292 0.279
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Fig. 11. Dependences (a, c) of the x component of force and (b, d) of the potential energy U of interaction between dust particles
on their separation d for different values of δ ≠ 0 (see table). In all cases, r0 = 0.1. Solid curves correspond to the analytic expressions

from [7]: f(d) = const(1/d)(1 + d – d2/2)exp(–d) and U(d) = const(1/d2)(1 – d/2)exp(–d).

1

dependences z(r) and ϕ(r) were used for determining
z0 = z(r0) and ϕ0 = ϕ(r0) for r0 = 0.1.

For 1 – δ ! 1, attraction of a particle could not be
detected in the range of parameters under investigation.
Attraction appears only when a noticeable fraction of
the positive charge of the plasma is carried by dust par-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ticles (for δ < 0.7; see Fig. 11). The smaller the fraction
of the plasma charge, the stronger the maximum force
of attraction and the larger the potential well depth.

The attenuation of attractive forces upon an increase
in δ has a simple explanation. The results of the above
calculations show that, for δ = 0, attractive forces
SICS      Vol. 95      No. 5      2002
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emerge due to the fact that electrons are accumulated
near the x axis between the centers of particles and
ensure the attraction to the center of the Debye mole-
cule. This attraction exceeds the repulsion of dust par-
ticle charges screened by inner layers of the electron
shells of Debye atoms. For 1 – δ ! 1, the effect of
screening of the dust particle charge by the inner layers
of electrons shells remains unchanged. However, the
attraction to the center of the molecule attenuates con-
siderably due to the fact that not only electrons but also
the positive charges repelling dust particles are concen-
trated in this region.

In the case of small values of plasma charge (δ ! 1),
the potential well depth is large enough (of the order of
several values of temperature). It should be borne in
mind, however, that the binary treatment is valid for
distances of the order of the diameter 2a0 of the Debye
atom.

5.2.2. On analytical approaches. The above con-
clusion concerning the absence of attraction for 1 – δ !
1 contradicts the results of recent approximate analyses
[12, 13] (see Fig. 11). It follows from the results of
these calculations that attraction between dust particles
takes place in an analysis of the linearized Poisson–
Boltzmann equation for δ = 1 in the region

.

This result is surprising. As a matter of fact, the
action of point charges (located at points r1 and r2) in a
plasma in the linear approximation [12, 13] is assumed
to be independent, so that the value of potential at point
r is determined by the sum of the screened potentials of
point charges:

In accordance with the simple considerations pre-
sented above in Subsection 3.2, attractive forces are
ruled out in the absence of rearrangement of the charge
shell of a dust particle under the action of another dust
particle for identically charged dust particles. In the lin-
ear approximation [12, 13], the following inequality
must hold:

(18)

this corresponds to repulsion.
Inaccuracy of the results [12, 13] is apparently asso-

ciated with the following circumstance. The force (18)
acting directly on a dust particle was supplemented in
[12, 13] by the attractive force exerted on the electron
shell of a dust particle by another dust particle. Such an
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approximation would be justified if the charge shells of
dust particles would be rigidly connected with the dust
particle charges through some other forces. However,
there are no extraneous rigid forces in the problem
under consideration. The presence of the force of
attraction of the electron shell of one charge to another
charge, which was calculated in [12, 13], only indicates
that the given configuration of the charge shell is not
equilibrium, and the force of attraction to another
charge must lead to polarization of the charge shell,
which was disregarded in [12, 13]. There are no
grounds to add this polarizing force to the force acting
directly on the dust particle.

In this case, we can draw an analogy with the polar-
ization-induced attractive forces between atoms, which
are considerable at large distances between the nuclei
(as compared to the size of electron shells). It is well
known that no polarization-induced interaction of
spherically symmetric atoms takes place in the first
order of perturbation theory. It appears only in the sec-
ond order of perturbation theory, when the polarization
of the electron shell of an atom by the charges of
another atom is taken into account. An ordinary atom
differs from a Debye atom only in that the electrons of
the shell move in it according to quantum-mechanical
and not classical laws. The origin of polarization-
induced forces is the same for an ordinary and a Debye
atom.

6. CONCLUSIONS

Let us summarize the results of the above analysis.

1. A Debye atom has the following structure: a core
surrounded by an electron shell. For large charges of
the dust particle, the high-density region (core) of the
electron cloud screens considerably the large charge of
the dust particle near its surface. In this connection,
while considering the interaction of Debye atoms, we
cannot ascribe the unscreened value of charge to a dust
particle. The dust particle charge screened by the core
has a universal value determined by the distance
between dust particles. It is screened by the electron
shell of the Debye atom.

2. Attractive forces are associated with polarization
of charge shells of Debye atoms. In the absence of
polarization, attraction is also absent. The force of
attraction is formed due to polarization of the majority
of electrons of the charge shell. The polarization of the
core is insignificant.

3. Forces of attraction between dust particles
emerge at a comparatively large distance approxi-
mately equal to the mean separation between dust par-
ticles. In this case, the Debye radius must be equal
approximately to half the mean distance between dust
particles.

4. Attraction takes place if like charges are concen-
trated predominantly at dust particles. If dust particles
AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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carry a small fraction of the charge of some polarity,
repulsion is observed at any distance.

5. For a certain relation between the electron density
and the density of dust particles, the Debye “liquid” is
in equilibrium: the electrostatic forces of interaction
between dust particles vanish.

Since attractive forces appear at large distances, the
problem of the formation of dust liquids and crystals
can be solved correctly only if many-particle interac-
tion is taken into account. However, we can draw the
following two conclusions concerning the criteria for
the emergence of collective phenomena on the basis of
the results presented by us here:

(a) In the case of a thermionic plasma, the electron
density must be such that the Debye radius is equal
approximately to half the mean value between dust par-
ticles.

(b) For a gas-discharge or a nuclear-excited plasma,
the properties of the ionization source and the density
of dust particles must be matched so that the main (usu-
ally negative) charge is carried by dust particles.
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Abstract—It is shown that the intensification of a stabilizing buoyancy flux directed from the surface to the
bulk of a binary mixture (e.g., salt water) may give rise to convective instability. © 2002 MAIK “Nauka/Inter-
periodica”.
Some physical mechanisms are known to lead to a
paradoxical (at first glance) result: contrary to intuitive
ideas, convective instability emerges in a liquid when it
is heated not from below, but from above, i.e., in situa-
tions when the density of the liquid increases with the
depth [1, 2]. Another possibility of this kind is consid-
ered in this communication.

We consider a semi-infinite layer of a liquid medium
stratified both in temperature and in the admixture con-
centration (see the figure below). For the sake of defi-
niteness, we can speak, for example, of salt water in
which the contribution to the density stratification
comes from the vertical distributions T(z) and s(z) of
temperature and salt concentration, respectively (the z
axis is directed vertically downwards from the horizon-
tal surface of the medium). We assume that the medium
is heated from above so that a constant vertical temper-
ature gradient

is formed in it. At the same time, the medium is also
characterized by the admixture stratification:

In the framework of the conventional approximation [1,
3, 4], we assume that the density ρ is a linear function
of temperature and admixture concentration:

(1)

Here, α is the thermal expansion coefficient of the
medium, and β > 0 is the corresponding coefficient for
the admixture concentration (in oceanology, this coeffi-
cient is referred to as the salinity contraction coeffi-
cient). The subscript “0” marks the constant (reference)
values of the corresponding quantities. For constant

values of the gradients  and , the density of the
medium is a linear function of the depth z:

γT
1( ) ∂T 1( )

∂z
------------ 0<=

γs
1( ) ∂s 1( )

∂z
---------- 0.<=

ρ ρ0 1 α T T0–( ) β s s0–( )+–[ ] .=

γT
1( ) γs

1( )
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(2)

(the superscript (1) corresponds to the initial “back-
ground” state).

The above-mentioned gradients  and  corre-
spond to certain heat and admixture fluxes on the hori-
zontal surface of the medium:

(3)

where cp is the heat capacity of the medium, and κ and
χ are the transfer coefficients.

Although the admixture flux directed to the bulk of
the medium makes a destabilizing contribution to the

density stratification (for  < 0, the corresponding
term in Eq. (2) decreases with increasing depth), heat-
ing from above is assumed to be strong enough so that
the density stratification is quite stable on the whole. It
should be recalled that the condition

which is equivalent to the condition

–

or

is insufficient for hydrodynamic stability of such a sys-
tem. If the values of the transfer coefficient κ and χ are
different (χ ! κ for salt water), the instability condition
may be much more stringent in view of the possible
specific instability mechanism associated with “double
diffusion” [1, 5]:

(4)

ρ 1( ) z( ) ρ0 1 –αγT
1( ) βγs

1( )+( )z+[ ]=

γT
1( ) γs

1( )

QT
1( )

cpρ0κγT
1( ) 0, Qs

1( )>– ρ0χγs
1( ) 0,>–= =

γs
1( )

∂ρ
∂z
------ 0,>

βγs αγT–<

γs
α
β
---γT ,>

γs
χ
κ
---α

β
---γT   or  γs

χ
κ
---α

β
---γT .>–<–
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We assume that, in the background state considered
above, this condition is satisfied. As applied to the
fluxes, this corresponds to the fulfillment of the ine-
quality

(5)

Let us suppose that the fluxes at the boundary z = 0
change at a certain instant t = 0. For simplicity, we
assume that the fluxes instantaneously assume new

constant values  and , these new values corre-
sponding to an increase in the downstream buoyancy
flux due to a decrease in the admixture flux:

The sign of the admixture flux may even change:  < 0
(downstream freshening instead of salinization). We
assume that heating of the medium from above contin-
ues, although it becomes weaker:

The jumpwise variation of the fluxes at the boundary
obviously leads to evolution of the temperature and
admixture concentration fields. The analysis of this
evolution is reduced to the solution of 1D thermal con-
ductivity and diffusion equations,

, (6)

with the initial conditions

and with the boundary conditions

The solution, which can easily be found using the
superposition method, has the form

where i erf is the symbol of the multiple error integral
[6]. The evolution of the fields is presented schemati-

QT
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κ
χ
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2 β
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cally in the figure. Perturbations penetrate the medium
from the surface according to diffusion laws (the pene-

tration depth is proportional to ). However, the pro-
portionality factors for temperature and admixture con-
centration may differ considerably. For example, for
salt water, κ @ χ, so that the rate of penetration of the
temperature perturbation into the medium is an order of
magnitude higher. The perturbation amplitude also

increases in proportion to . For the vertical gradient,
we obtain

The asymptotic forms of solutions for small,

,

and large,

,

depths are especially simple. At large depths, we have

In other words, the background state is preserved at
such depths: the perturbation associated with a change
in the fluxes at the surface has no time to spread to such
distances. In this region, the medium is stable, as would
also be the case for t < 0. At small depths, we have

in other words, the stratification in this region has time
to adjust to new values of the fluxes at the surface. Since
the downstream buoyancy flux has only increased for
t ≥ 0, it is natural to expect that the medium in the

t

t

∂T
∂z
------ γT

1( ) γT
1( ) γT

2( )–( )erfc
z

4κ t
------------,–=

∂s
∂z
----- γs

1( ) γs
1( ) γs

2( )–( )erfc
z

4χt
------------.–=

z ! min 4κ t 4χt,{ }

z @ max 4κ t 4χt,{ }

∂T
∂z
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1( ),
∂s
∂z
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1( ).≈≈

∂T
∂z
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2( ),
∂s
∂z
----- γs

2( );≈≈

0

z

T0 s0 T, s

sT

Schematic diagram of vertical profiles of temperature T and
admixture concentration s. Solid lines correspond to the ini-
tial state and dashed curves describe evolution after a
change of fluxes at the surface.
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region in which perturbations from the surface have
arrived has become even more stable to convection.
This is true if the new values of the fluxes satisfy the
following condition similar to relation (5):

(7)

The fulfillment of this condition is especially obvious
in the case when the medium is heated from above

(  > 0) as before, but the flux of admixture at the sur-
face vanishes or becomes negative.

However, apart from the asymptotic forms consid-
ered above, an intermediate region also exists. In partic-
ular, if the value of κ is greater than χ by two orders of
magnitude, there obviously exists (and continuously
expands) a region

(8)

in which

We are speaking of the region to which thermal pertur-
bations from the surface have time to penetrate, while
salinity perturbations have no time to penetrate into this
region. Here, condition (4) may be violated since the
value of γs remains unchanged (background), while the
value of γT has increased (manages to adjust itself to
new conditions at the boundary).

Thus, if

the stability conditions in the intermediate region (8)
are violated, and convection associated with double
(differential) diffusion must appear.

QT
2( ) cp

κ
χ
--- 

 
2 β
α
---Qs

2( ).>

QT
2( )

4χt ( z ! 4κ t

∂T
∂z
------ γT

2( ),
∂s
∂z
----- γs

1( ).≈≈

γT
2( ) κ

χ
--- β

α
---γs

1( )  or  QT
2( ) cp

κ
χ
--- 

 
2 β
α
---Qs

1( ),<>
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It should be emphasized that this result is nontrivial.
The buoyancy fluxes set at the boundary are of a stabi-
lizing nature: at any instant, the steady-state stratifica-
tion corresponding to them is stable, which rules out the
emergence of convective instability. However, owing to
the unsteady nature of these fluxes and the difference in
the velocities of propagation of temperature and con-
centration perturbations, a region in which the stability
conditions are violated may be formed in the bulk of the
medium.

It can easily be seen that the above assumption con-
cerning the semi-infiniteness of the medium is not of
fundamental importance. A similar effect is also possi-
ble when nonsteady stabilizing fluxes are set at the
lower boundary of the medium.
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Abstract—The attenuation of high-frequency sound in disordered quasi-one-dimensional semiconducting and
dielectric crystals, which is associated with three-phonon decay and elastic scattering by structure defects is
considered theoretically. It is shown that specific interference processes occurring in the regime of weak local-
ization of acoustic vibrational excitations considerably affect the propagation of sound. This mechanism of
sound attenuation can be observed experimentally from the anomalies in the frequency dependence of the recip-
rocal attenuation length of sound. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Attenuation of sound due to decay processes in stan-
dard weakly anisotropic three-dimensional defect-free
crystal lattices was considered for the first time in [1].
It was shown that anisotropy does not introduce any
considerable changes in the lattice attenuation coeffi-
cient of sound. The mechanism of propagation of high-
frequency acoustic excitations during combined action
of elastic scattering by defects and three-phonon decay
processes was analyzed analytically [2, 3] and investi-
gated experimentally [4–6]. It was found that, in the
helium temperature range, three-phonon decay pro-
cesses modify significantly the diffusion mode of prop-
agation of acoustic excitations when elastic scattering
plays a dominating role.

The vibrational spectrum of chain-type lattices
exhibits quasi-one-dimensional properties in the entire
range of the frequency spectrum except at singular
points and spectrum boundaries in contrast to standard
three-dimensional compounds due to a strong anisot-
ropy of interaction between atoms. As a result, localiza-
tion effects become significant in the propagation of
acoustic excitations in nonideal low-dimensional lat-
tices [7, 8]. It should be emphasized that well-defined
quasi-local modes do not appear in such lattices under
the conditions of diagonal disorder [9, 10]. Conse-
quently, the effect of weak localization of vibrational
modes can be analyzed without taking into account the
renormalization of the vibrational spectrum [11] and
the delay effect [12–14], which are found to be insignif-
icant in this case.

This study aims at an analysis of the weak localiza-
tion effect on the attenuation of high-frequency sound
in nonideal chain-type crystals in the situation in which
only decay is significant among all three-phonon pro-
cesses.
1063-7761/02/9505- $22.00 © 20881
We consider the localization of acoustic vibrational
modes with displacement vectors parallel and perpen-
dicular to weakly linked chains. Vibrational modes of
the first kind are longitudinally polarized excitations (l
modes). The modes of the second type are so-called
bending excitations (b modes) [15–17]. Such modes
were observed in experiments on inelastic neutron scat-
tering in the quasi-one-dimensional compound
(Ta1 − xNbxSe4)2I [18] and manifested indirectly in the
anomalous behavior of the low-temperature lattice heat
capacity of the recently discovered new phase of carbon
(carbolite) [19].

2. FORMULATION OF THE PROBLEM

We consider a crystal with isolated impurity atoms.
Its dynamic properties will be described by the standard
Hamiltonian taking into account cubic anharmonism,

where

(1)

H H0 H imp H int+ + H' H int,+= =

H0
1

2M0
---------- pn

α( )2 1
2
--- Φn n',

0( )αβun
αun'

β ,
n n',
α β,

∑+
n α,
∑=

H imp
1
2
--- 1

M
----- 1

M0
-------– 

  cn pn
α( )2

n α,
∑=

+
1
2
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αβun
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β ,
n n',
α β,

∑
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Here, H0 is the Hamiltonian of the unperturbed har-
monic atomic lattice; Himp is the perturbation associated
with impurities in this system; H' is the Hamiltonian of
the harmonic nonideal lattice; Hint describes the
dynamic anharmonic interaction between ions; the

quantities  and  are the Cartesian components of
the displacement and momentum operators of the nth
atom; M and M0 are the masses of an impurity atom and
an atom of an ideal lattice (we assume that the impurity

is heavy, i.e., M @ M0); and Φnn' and  are the
matrix elements of the second- and third-order force
parameters. The subscript “0” marks the parameters of
the regular system. Factor cn is equal to zero if a lattice
atom is at the nth site and to unity if a point defect occu-
pies this site. The configuration average 〈cn〉n is equal to
the impurity concentration c. For the sake of simplicity,
we will henceforth assume that the force parameter
matrices are diagonal in the Cartesian indices. In order
to simplify notation, we will denote by n the combina-
tion of the site (n) and Cartesian (α) indices. In carrying
out specific calculations, we assume that the disorder is
of the diagonal type; i.e., impurities are treated as iso-
topic defects. Here, we do not distinguish between

Φnn'n'' and . Thus, we consider only the matrix
anharmonism, which is assumed to be weak. The
obtained results can be generalized to the case of a non-
diagonal disorder, when ∆Φnn' ≠ 0.

3. MODEL OF A CHAIN CRYSTAL 

For the sake of definiteness, we assume that the lat-
tice of a quasi-one-dimensional crystal is tetragonal
with the unit cell parameters a and b. The effective
interaction between atoms in the basal plane xy (||) is
considered to be much weaker than the interaction
along the chain axis z (⊥ ). In this case, we have three
characteristic force parameters, which satisfy the ine-
quality

(2)

The reduced force parameters correspond to three char-

acteristic frequencies:  @  @ . The dispersion
relations for acoustic longitudinal and bending vibra-
tional modes are defined as

(3)

H int
1
6
--- Φn n' n'', ,

αβγ un
αun'

β un''
γ ,

n n' n'', ,
α β γ, ,

∑=

∆Φnn'
αβ Φnn'

αβ Φnn'
0( )αβ.–=

un
α pn

α

Φnn'n''
0

Φnn'n''
0( )

Φxx
0( )s⊥  @ Φxx

0( )s||  @ Φzz
0( )s|| .

ω3
2 ω2

2 ω1
2

ωl
2 k( )

ω⊥ bk ⊥( )2

2
----------------------- ω||

2 kxa
2

--------
kya
2

--------sin
2

+sin
2

 
  ,+=
JOURNAL OF EXPERIMENTAL
(4)

where ω3 ≈ ω⊥  and ω1 ≈ ω||. The frequencies ω⊥  and ω||

can be expressed in terms of parameters  and

 (| | @ | |) [7]. It is important that the
inequality ω⊥  @ ω|| holds.

We introduce a one-particle retarded Green’s func-
tion G+ [20] defined on the operators of dynamic atomic
displacements un:

(5)

The angle brackets indicate statistical averaging with
Hamiltonian H'. In the momentum representation, the
Green’s function of the jth polarization mode averaged
over impurity configurations is defined as

(6)

Here, (k, ω) is the configuration-averaged retarded
one-particle Green’s function corresponding to the
overall harmonic Hamiltonian H' and Πj(k, ω) is the
polarization operator. Here,

(7)

where the lifetime for elastic processes is given by

(8)

gj(ω) is the spectral partial function of the density of
states of vibrational modes, and e = (M – M0)/M0. We
assume that the temperature is comparatively low, and
the Rayleigh mechanism of quasiparticle decay prevails
over the anharmonic mechanism (see below). As
regards the polarization operator Πj, it has the follow-
ing form in the cubic anharmonism approximation:

. (9)

The graphical relation  describes the standard three-
phonon process of spontaneous decay of an acoustic

quantum in the presence of defects and  describes
the interaction between decay acoustic phonons and
phonon density fluctuations in the vicinity of defects
[21, 22]. The lines with arrows in relation (9) corre-

spond to Green’s function , and vertex U emerges
as a result of summation of fan diagrams and character-
izes the processes of coherent backward scattering of
phonons by defects. It is well known that they deter-
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mine the weak localization regime. The explicit expres-
sion for vertex Uj is given in [7]. In our calculations, we
assume that the contributions from the l and b modes to
the vertex Uj are independent. We specify the anhar-

monic interaction parameter  in the standard
approximation:

(10)

Here, γ||, γ⊥  (γ⊥  @ γ||), and γ3 are effective harmonic and
anharmonic force constants. It should be noted that
these constants satisfy the approximate relation (accu-
rate to within an order of magnitude)

(11)

where 〈u2〉  is the mean square of atomic displacements,
ωjmax ≈ ω3(⊥ ) is the maximum frequency in the acoustic
spectrum, a is the characteristic atomic spacing, δA is

the anharmonicity parameter,  is the partial Grü-
neisen factor for the jth vibrational mode, M is the mass
of an atom, and h is Planck’s constant. The value of δA

can be of the order of 10–2–10–1, and not 10–3 (see, for
example, [23]). The individual terms of the polarization
operator appearing in relation (9) in view of relations
(10) are defined as

(12)

(13)

The upper integration limit in these relations is deter-
mined by the energy conservation law.
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4. ATTENUATION 
OF HIGH-FREQUENCY SOUND

Let us now consider the attenuation of high-fre-
quency sound in a chain-type compound with a diago-
nal disorder. The propagation of sound depends on the
elasticity of the crystal lattice. Its attenuation Γj(ω) is
determined by the imaginary part of the polarization
operator of the one-particle lattice Green’s function:

(14)

We assume that ω ≈ ωj(k). In order to obtain the

required order-of-magnitude estimates of Im  and

Im , we confine ourselves to three-phonon processes
of a phonon decay into two phonons with close ener-
gies. In addition, we will consider the situation when
the standard anharmonic interaction of thermal phonons
can be disregarded in a nonideal crystal, i.e., when the con-

dition (ω) @ (ω) holds, where τN is the time of
relaxation due to normal anharmonic decay processes.
The latter inequality is equivalent to the condition

(15)

Here, ωjmax ≈ ω⊥  for j = l and ωjmax ≈ ω3 for j = b. Taking
into account what has been said above, we determine
the damping factor Γj in the high-frequency limit

ω (ω) @ 1 (ω > T). Substituting relation (7) into for-
mulas (12) and (13) and taking into account relation
(14), we obtain

(16)

(17)

For comparison, we write the attenuation of an acoustic
quantum of frequency ω due to spontaneous decay in
the absence of defects:

(18)

(19)

The mechanism of sound damping described by rela-
tions (16) and (17) is significant in the low-temperature
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region (T < ω), where the scattering of decay phonons

is sensitive to defects. The expression for  in the

form (17) is valid in the frequency range  > ω2 @

2  in which the dispersion relations (3) and (4)
exhibit a quasi-one-dimensional behavior. While deriv-
ing relation (17), we also assumed that the chain “lock-

ing” parameter (ω)/ω ! 1. In order to esti-
mate the relative contribution of the weak localization

effect to sound damping, we compare  and . Rela-
tions (16) and (17) lead to (see also [7])

(20)

It should be noted that a comparison of  (17) and 

(18), (19) for ω||(2) < ω shows that  > .

Let us consider relations (20). It was found that, if
the measure of crystal “defectiveness” ce2 ≤ 1 and the
values of ω||(2) characterizing the intensity of interaction
between the chains are smaller than ω, a situation when

 ≤  is possible in the low-temperature region (T <
ω), where the anharmonic decay of phonons is strong
and their fusion is insignificant. In other words, the
effect of backward coherent scattering on sound damp-
ing may be significant due to a large phase volume for
the quasi-one-dimensional dynamic behavior of a
chain-type crystal. It was noted above that ω3 ≈ ω⊥ ,
ω1 ≈ ω||, and ω1 ! ω2. Consequently, in accordance
with relations (20), the effect of the weak localization
on the longitudinal vibrational mode damping for a
fixed parameter ce2 is stronger than for the bending
vibrational mode. We will use the experimental results
obtained in [18] for the compound (Ta1 – xNbxSe4)2I:
ω⊥  ≈ 1 THz, ω|| ≈ 0.15 THz, and ω2 ≈ 0.5 THz. For
record-high frequencies ω ≈ 0.1 THz of sound waves
used in acoustic measurements and for a disorder
parameter ce2 ≈ 1, we obtain the following numerical esti-

mate of relations (20): /  ≈ 0.1 and /  ≈ 0.01.

The reciprocal sound attenuation length (the imagi-
nary part of the wave number) corresponding to the
contribution of the weak localization effect [21, 24] is
defined by the relation

(21)

where  are the mean group velocities of the jth
vibrational mode along and across the chains, respec-
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tively [7]. Using relations (17) and (2.17) and (2.18)
from [7], we obtain

(22)

(23)

Pay attention to the fact that all reciprocal values of
length defined by relations (22) and (23) exhibit differ-
ent frequency dependences. This allows us to identify
this mechanism of sound damping from the frequency
dependence. We obtain numerical estimates of the

quantities 1/  using the values of the unit cell
parameters a = 9.5 Å and c = 12.8 Å for the system
(Ta1 – xNbxSe4)2I [18]. If we assume that the value of
anharmonicity parameter δA is of the order of 10–2, we

obtain 1/  ≈ 50 cm–1, 1/  ≈ 400 cm–1, 1/  ≈ 60 cm–1,

and 1/  ≈ 2600 cm–1.

5. CONCLUSIONS

We have analyzed the effect of weak localization of
acoustic vibrational modes on the damping factor of
high-frequency sound in a nonideal strongly anisotro-
pic chain-type anharmonic crystal lattice. We consid-
ered longitudinally polarized excitations as well as
excitations resembling bending waves in noninteract-
ing chains. It is shown that, in the case when elastic
scattering by defects dominates over three-phonon
decay processes, specific interference scattering pro-
cesses lead to noticeable renormalizations of the sound
damping factor. The anharmonic interference mecha-
nism can in principle prevail over the Rayleigh and
standard anharmonic mechanisms. Unfortunately, we
are not aware of experimental data on the propagation
of acoustic excitations in substantially disordered
quasi-one-dimensional crystals. The renormalization of
the damping factor of high-frequency sound predicted
in this work can be observed experimentally in com-
pounds of the carbolite type [19] using the scheme of
thermal pulses [4] or acoustic measurements in the
microwave region.
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Abstract—The magnetic properties (ground state, magnetic phase diagram, and phase transitions in a magnetic
field) of two- and three-dimensional lattices of ferromagnetic grains with the intergrain dipole interaction are
studied. The main attention is paid to the lattices formed by nonspherical grains (prolate and oblate ellipsoids
of revolution) and their extreme forms (rodlike and disc-shaped grains). An analysis shows that the conclusions
of the theory are in good agreement with the results of experiments. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As a result of rapid development of technology,
magnetic nanostructures have been transformed from
the object of academic studies to the object of experi-
mental investigation and have become elements of real
microelectronic (nanoelectronic) devices. The term
“nanostructure” will be applied here only to a definite
type of such systems, namely, regular three- and two-
dimensional (3D and 2D) lattices formed by identical
one-domain ferromagnetic nanometer-size grains. We
assume that the exchange interaction only establishes a
ferromagnetic ordering of elementary magnetic
moments in grains, while the interaction between the
grains is of the pure dipole type (this means that the
separation between the grains is larger than the charac-
teristic range of the exchange interaction). In addition,
we confine our analysis to grains in the form of (prolate
and oblate) ellipsoids of revolution or their extreme
forms: pointlike (spherical), rodlike and disk-shaped
grains. In all cases (except for grains in the form of
oblate ellipsoids whose magnetic moment lies in the
equatorial plane), we assume that the magnetic moment
of a grain is directed along its easy-magnetization axis
(easy axis) determined either by the geometry (rods and
prolate ellipsoids) or by crystal anisotropy (pointlike or
spherical grains).

Real nanostructures interesting for practical appli-
cations are constructed so that the directions of easy
axes or planes of the grains are parallel. In the former
case, this makes unnecessary the analysis of different
types of magnetic vortex states typical of a system of
dipoles with a freely rotating moment [1]. The mag-
netic properties of some simple structures of this type
were studied in detail earlier (simple lattices of point-
like grains were mainly studied). For example, it was
1063-7761/02/9505- $22.00 © 20886
shown in [2, 3] that the ground state of 2D square and
3D cubic lattices formed by such grains with parallel
(antiparallel) magnetic moments is always antiferro-
magnetic. This conclusion also remains valid for sys-
tems consisting of uniformly magnetized (one-domain)
spherical grains since the field of such a grain coincides
with the field of an equivalent pointlike dipole placed at
the center of the grain, and the energy of dipole interac-
tion of such grains coincides with the energy of interac-
tion between two equivalent pointlike dipoles [4]. It
was found, however, that lowering of the symmetry of
any element of the system (lattice type or the shape of
grains) may facilitate its transition to a magnetic state
more advantageous from the energy point of view.

In particular, this is due to the fact that, when the
shape of a grain differs considerably from a sphere, its
field at small distances from the surface differs from the
field of an equivalent dipole placed at its center. For a
prolate ellipsoid, its field at points close to the equato-
rial plane of the grain is much weaker than the field of
an equivalent dipole; the opposite situation is observed
for a grain in the form of an oblate ellipsoid.1 Conse-
quently, a 2D lattice of nonspherical grains whose
major axes lie in the lattice plane has a larger tendency
to ferromagnetism (than for a spherical shape of grains)
in the first case and to antiferromagnetism in the second
case [5].

In view of various fundamental, technological, and
technical circumstances, real systems are virtually
never symmetric (in the above sense), and their asym-

1 The magnitude of the field in the equatorial (relative to the direc-
tion of the magnetic moment) plane constitutes 50% of the field
at its axis for a spherical grain, 30% for a grain in the form of a
strongly prolate ellipsoid of revolution, and 85% for a grain in the
form of a strongly oblate ellipsoid of revolution.
002 MAIK “Nauka/Interperiodica”
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metry is characterized by a variety of parameters. There
are numerous examples of such systems, including pla-
nar periodic structures of nonspherical magnetic grains,
which are being extensively investigated at present and
are treated as the media with considerable potential for
elevating the magnetic recording density [6]. Typical
structures of this kind have the form of 2D rectangular
lattices of one-domain extended magnetic grains with
uniaxial geometric anisotropy. The shape of such grains
resembles an ellipsoid of revolution with an axes ratio
of 3–5; the period of such lattices is comparable with
the grain size. Another example related to the problem
under investigation is magnetic dielectric nanocompos-
ites. The electrical conduction of such a (3D) system is
due to tunnel electron transitions between the grains
[7], whose probability is determined by the mutual ori-
entation of magnetic moments of adjacent grains. Con-
sequently, it is clear that the resistance of such a
medium depends directly on its magnetic state. The
same refers to the (giant) magnetoresistance of such a
system. Finally, it is appropriate to mention a slightly
unexpected object in the context of our discussion,
namely, ultrathin films of ferromagnetic metals on
monocrystalline substrates. It was found that, for a cer-
tain effective thickness of such films, a long-range fer-
romagnetic order is established in them [8]. It was
shown in a recent publication [9] that, under certain
conditions, such films grow through natural lithogra-
phy, i.e., via the formation of nuclei which are distrib-
uted more or less uniformly over the substrate area and
which are transformed, during their subsequent growth,
into ellipsoidal grains whose major axes are parallel to
one another.

Thus, systems of the type under investigation are
quite diverse. This work aims at an analysis of their
magnetic properties such as the ground state, the mag-
netic phase diagram, and magnetic phase transitions. In
contrast to known publications (see, for example, [1–
3]) in which similar systems were investigated, we con-
sider more general oblique lattices formed by non-
spherical (or, which is the same, non-pointlike) dipoles.
It is shown that the inclusion of these new circum-
stances modifies the properties of such systems consid-
erably.

In the final section of this paper, the obtained results
are used to describe the properties of a number of real
systems.

2. MAGNETIC STATE OF A SYSTEM
OF FERROMAGNETIC GRAINS 
WITH DIPOLE INTERACTION

Let us consider a system of identical one-domain
ferromagnetic grains whose centers are at the sites of a
3D tetragonal lattice with periods lx, ly, and lz, and
whose magnetic moments m are identical and parallel to
one another. Such a magnetic anisotropy may be due to
crystal anisotropy of grains or anisotropy in their shape,
or is manifested (in the absence of the former anisotro-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
pies) in a weak external magnetic field (and become
decisive at a low temperature). Further, we assume that
these moments form angle θ (latitude) with the x axis
and are turned through an angle ϕ (longitude) about the
x axis relative to the xz plane. On account of the long-
range dipole–dipole interaction, the magnetic state of
such a system is determined by the magnetic field Hd =

 created in the volume of an individual
grain (located, for definiteness, at the origin of coordi-
nates) by all the remaining grains. Here, Hmln is the field
component created at the origin by a grain with the cen-
ter at point (mlx, lly, nlz), where m, l, and n are integers,
and parallel to magnetic moments of the grains; the sum
does not contain the term with m = l = n = 0.

The energy of interaction between the chosen grain
and the magnetic field Hd is given by

(1)

where integration is carried out over the volume of the
central grain. The ground state of the system corre-
sponds to the configuration of the magnetic moments
mmln of the grains, for which the energy Wd attains its
minimum value. In our case, there exists only one fer-
romagnetic configuration (the magnetic moments of
grains are directed along their major axes and are par-
allel to one another); for the antiferromagnetic state of
the system, we confine the analysis to the situation
when the magnetic moments of grains form two identi-
cal magnetic sublattices of antiparallel magnetic
moments. In this case,

where phases φx, φy, φz may assume the values 0 or 1;
for the ferromagnetic state, φx = φy = φz = 0 or φx = φy =
φz = 1, while six different antiferromagnetic states cor-
respond to different combinations of these phases, in
which at least one phase is equal to zero and at least one
phase is equal to unity.2

Let i1 be the absolute value of magnetization of each
of the sublattices (the total magnetization of the system
is i = 2i in the ferromagnetic state and i = 0 in the anti-
ferromagnetic state). In accordance with the mean-field
theory, the energy of the dipole–dipole interaction is
proportional to magnetization i1: Wd = –λi1. From all
the states under investigation, the one that is most
advantageous from the energy point of view corre-
sponds to the highest value of the dipole interaction
parameter λ. Thus, in order to determine the type of the
ground state of the system under investigation, it is suf-
ficient to find and compare the values of these parame-
ter corresponding to the ferromagnetic and various anti-

2 Any other set of integral phases φx, φy, φz is identical to one of the
eight sets enumerated above.

Hmlnm l n, ,
'∑

Wd
µ
V
--- Hd r( ) V ,d

V

∫–=

mmln m iπ φxm φyl φzn+ +( )[ ] ,exp=
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ferromagnetic configurations of the magnetic moments
of the grains.

As regards the magnetization i1 of the sublattices, it
is defined by the self-consistent equation of the mean-
field theory,

(2)

where i0 = (1/2)µNg, Ng = 1/(lxlylz) being the grain con-
centration. This equation determines, as usual, the
Curie temperature TC = λi0/k of the system. It should be
noted, however, that it is applicable only in the case
when the difference in the energies Wd of the ferromag-
netic and antiferromagnetic states of the system is
larger than kT. Otherwise, we must take into account
thermal fluctuations of the magnetic order.

We will consider below the following three situa-
tions: (i) pointlike (zero-dimensional) but anisotropic
grains, (ii) rodlike (one-dimensional) grains magne-
tized along their axes, and (iii) three-dimensional
grains in the form of prolate and oblate ellipsoids of
revolution (including the extreme case of an oblate
ellipsoid, viz., two-dimensional disks). The first two
situations are interesting since, on the one hand, they
permit an exact solution and, on the other hand, are lim-
iting cases for the third, much more real, situation,
which can be described only numerically.

While calculating the dipole interaction energy, the
following circumstance should be borne in mind. It was
noted in [2] that the energy WF of the ferromagnetic
state strongly depends on the sample shape:

where N is the demagnetization factor in the direction
of the magnetic moment (the energy of any antiferro-
magnetic state is independent of N). With increasing N
(corresponding to the extension of the sample in this
direction), parameter λF increases, and the ferromag-
netic state could become advantageous. Calculations
show, however, that this does not take place even in
very extended samples with a simple cubic lattice of
pointlike dipoles, and their ground state remains anti-
ferromagnetic. Nevertheless, the sample shape must be
fixed in a certain way in calculations. All the results
described below correspond to spherical (actually,
cubic) samples for which N = 4π/3 irrespective of
parameters βy and βz of lattice extension along the y and
z axes.

2.1. 3D Lattice of Pointlike Grains

In this case (which is realized when the separation
between the grains is much larger than their size), the

i1 i0 λ i1/kT[ ] ,tanh=

WF– λF N 4π/3–( ),∝ ∝
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magnetic field component for each grain at the origin
under investigation is given by

(3)

where Rmln = (mlx, lly, nlz) is the radius vector of the
grain (m, l, n) and e0 = (cosθ, sinθsinϕ, sinθcosϕ) is
the unit vector parallel to the magnetic moments of the
grains. In this case, the magnetic interaction energy has
the form

(4)

Using this relation, we obtain

(5)

where βy = ly/lx and βz = lz/lx are the lattice extension
coefficients along the y and z axis, respectively. Taking
into account the fact that all the sums whose terms are
odd relative to the summation variables m, l, n are equal
to zero for a tetragonal lattice, we can represent relation
(5) in the form

(6)

where

(7)

(8)

Hmln µ –
1

Rmln
3

----------
3 e0 Rmln⋅( )2

Rmln
5

------------------------------+=

× iπ φxm φyl φzn+ +( )( ),exp

Wd µHd,–=

Hd Hmln

m l n, ,

'∑ µ –
1

Rmln
3

----------
3 e0 Rmln⋅( )2

Rmln
5

------------------------------+
m l n, ,

'∑= =

× iπ φxm φyl φzn+ +( )( ).exp

λ 2µβyβz

1

m
2 βyl

2 βz
2n2+ +( )

3/2
-------------------------------------------------–

m l n, ,

'∑=

+
3 m θ βyl ϕ βzn ϕcos+sin( ) θsin+cos[ ] 2

m2 βy
2l2 βz

2n2+ +( )5/2
------------------------------------------------------------------------------------------------

× iπ φxm φyl φzn+ +( )( ),exp

λ 2µβyβz=

× λ0 θcos
2 λπ/2 θsin

2
3λϕ θsin

2 ϕsin
2

+ +[ ] ,

λ0

2m2 βy
2l2– βz

2n
2

–( )

m2 βy
2l2 βz

2n
2

+ +( )
5/2

-------------------------------------------------
m l n, ,

'∑=

× iπ φxm φyl φzn+ +( )( ),exp

λπ/2

–m2 βy
2l2– 2βz

2n
2

+( )

m2 βy
2l2 βz

2n
2

+ +( )
5/2

--------------------------------------------------
m l n, ,

'∑=

× iπ φxm φyl φzn+ +( )( ),exp
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(9)

The transformation used in [10] considerably
improves the convergence of the dipole sums (7)–(9),
which can be represented in the form of the sums of
exponentially decreasing terms:

(10)

(11)

(12)

where

The evaluation and comparison of the values of the
dipole interaction parameter λ for different magnetic
configurations makes it possible to construct the mag-
netic phase diagram of the system. In the case under
investigation, when there exist six simple two-sublat-
tice antiferromagnetic configurations along with the
ferromagnetic configuration, such a diagram may be
quite complicated. Its form is determined by four
parameters corresponding to lattice extension (βy , βz)
and the direction of the magnetic moment of the dipoles
(θ, φ).

Figures 1a and 1b show, by way of an example, the
angular dependences of the dipole interaction parame-
ters for two different magnetic configurations, one of

λϕ
βy

2l2 βz
2n

2
–( )

m2 βy
2l2 βz

2n
2

+ +( )
5/2

-------------------------------------------------
m l n, ,

'∑=

× iπ φxm φyl φzn+ +( )( ).exp

λ0
4π

3βyβz

-------------- 
  2Xmn Ymn– Zmn–( ),

m n, ∞–=

∞

∑=

λπ/2
4π

3βyβz

-------------- 
  2Zmn Ymn– Xmn–( ),

m n, ∞–=

∞

∑=

λϕ
4π

3βyβz

-------------- 
  Ymn Zmn–( ),

m n, ∞–=

∞

∑=

Xmn
1
l
--- αmn

x( )+ 
  lπφx( )cos αmn

x( )l–( ),exp
l 1=

∞

∑=

αmn
x( ) 2π

m φy/2+
βy

-------------------- 
 

2 n φz/2+
βz

------------------- 
 

2

+
1/2

,=

Ymn
1
l
--- αmn

y( )+ 
  lπφy( )cos αmn

y( )l–( ),exp
l 1=

∞

∑=

αmn
y( ) 2π m

φx

2
-----+ 

 
2 n φz/2+

βz

------------------- 
 

2

+
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Zmn
1
l
--- αmn

z( )+ 
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z( ) l–( ),exp
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∞
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αmn
z( ) 2π m φx/2+( )2 n φy/2+
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------------------- 
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2

+

1/2

.=
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which corresponds to a cubic lattice of dipoles with
magnetic moments perpendicular to the y axis (φ = 0),
while the other corresponds to a tetragonal lattice with
dipoles oriented so that φ ≠ 0. It can be seen that the
ground state of the simple cubic lattice of pointlike
dipoles is antiferromagnetic, although the specific form
of the corresponding magnetic configuration is deter-
mined by the values of the above parameters. A more
detailed analysis confirms the general nature of this
conclusion for any tetragonal lattice of pointlike
dipoles.
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Fig. 1. Angular dependences λ(θ) of the dipole interaction
parameters for a (a) cubic and (b) tetragonal lattice of
pointlike dipoles. The domains of ferromagnetic (F) and
antiferromagnetic (AF) states are indicated. Subscript F
correspond to the ferromagnetic configuration, and sub-
scripts 100, 110, etc. correspond to the values of phases φx,
φy , and φz.
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2.2. 2D Lattice of Pointlike Grains

For obvious reasons, it is more convenient to ana-
lyze the properties of the system under investigation for
a 2D lattice of anisotropic pointlike magnetic dipoles.
In order to obtain the required relations, it is sufficient
to set l = 0 in all the above formulas. In this case, we
obtain the following expression for the dipole interac-
tion parameter:3

(13)

where β ≡ βz and

(14)

The transformation used in [10] considerably
improves the convergence of the dipole sums (14),
which can be represented after this in the form

(15)

(16)

where K2 is the Macdonald function. The latter rapidly
decreases exponentially upon an increase in the argu-
ment; consequently, it is sufficient to retain only those
terms in sums (15) and (16) which correspond to the
minimal (in absolute value) arguments of this function.
Simple approximate expressions for these sums, which
correspond to different magnetic configurations, have
the following form:

3 Relation (13) can be written in the symmetric form λ = λ0cos2θ +

λπ/2sin2θ, where λ0 = 2(µβ/lx)(2Σm – β2Σn) and λπ/2 =

2(µβ/lx)(2β2Σn – Σm) are the values of λ corresponding to angles
θ = 0 and θ = π/2, respectively.

λ 2
µβ
lx

------- 
 =

× 3 θcos
2

1–( )Σm β2 3 θsin
2

1–( )Σn+{ } ,

Σm
m2e

iπ φxm φzn+( )

m2 β2n2+( )5/2
---------------------------------,

m n,

'∑=

Σn
n2e

iπ φxm φzn+( )

m2 β2n2+( )5/2
---------------------------------.

m n,

'∑=

Σm
16π2

3β3
-----------= πmφx( ) k

φz

2
----+ 

 
2

cos
k ∞–=

∞

∑
m 1=

∞

∑

× K2 2πm/β( ) k
φz

2
----+ ,

Σn
16π2

3β2
-----------= πnφz( ) k

φx

2
-----+ 

 
2

cos
k ∞–=

∞

∑
n 1=

∞

∑

× K2 2πnβ k
φx

2
-----+ ,
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(17)

(18)

for the ferromagnetic configuration (φx = 0, φz = 0);

(19)

(20)

for the configuration S01 (φx = 0, φz = 1);

(21)

(22)

for the configuration S10 (φx = 1, φz = 0); and

(23)

(24)

for the configuration S11 (φx = 1, φz = 1).
The angular dependences λ(θ) of the dipole interac-

tion parameter calculated using formula (13) using the
exact formulas (14) and approximate relations (17)–
(24) (ferromagnetic and antiferromagnetic AF(10),
AF(01), AF(11) magnetic configurations, respectively)
are presented in Figs. 2a and 2b. For moderately
deformed rectangular lattices (0.5 < β < 2), relations
(17)–(24) provide a result that practically does not dif-
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fer from the exact result; however, the error increases
with the strain (the error becomes equal to 4% for β =
2.5 or β = 0.4).

The evaluation and comparison of the values of the
dipole interaction parameter λ for different magnetic
configurations makes it possible to construct the mag-
netic phase diagram of the system (see above). Figure 3
shows such a diagram for a rectangular lattice of point-
like (but anisotropic) dipoles. It can be seen that for a
slight deviation of the direction of such dipoles from
the sides of the lattice, its ground state is always antifer-
romagnetic (irrespective of the ratio of the lattice peri-
ods). On the contrary, for large angles of inclination of
the dipoles, the ground state of the lattice becomes fer-
romagnetic.

2.3. 3D Lattice of Rodlike Grains

An analysis of a lattice formed by rodlike grains
(linear dipoles of a finite length) is interesting since the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
parameters of the magnetic phase diagram of such a lat-
tice can be determined to a high degree of accuracy on
the basis of the well-known simple analytic expression
for the energy of interaction of such dipoles and can be
used for estimating the errors in a rough model of lat-
tices formed by 3D ellipsoidal grains (see below).

If the center of one of such dipoles is at the origin of
the coordinate system and the position of the center of
another dipole is determined by the radius vector Rmln,
and if such dipoles are parallel, the energy of their inter-
action can be written in the form [5]

(25)

where µ and 2a are the magnetic moment and the length
of each dipole, respectively. It follows hence that

wd
µ2

a
2

-----=

× 2
Rmln
------------- 1

Rmln 2ae0+
-------------------------------– 1

Rmln 2ae0–
-------------------------------– 

  ,
(26)

where γ = lx/a.

2.4. 2D Lattice of Rodlike Grains

In this case, the general formula (26) is simplified as follows:

(27)

λ 2µβyβzγ
2 iπ φxm φyl φzn+ +( )[ ] 2

m2 βy
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--------------------------------- 1

m 2γ 1– θcos+( )2 βn 2γ 1– θsin+( )2
+[ ]

1/2
--------------------------------------------------------------------------------------------------–
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+ 1
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--------------------------------- 1

m 2γ 1– θcos–( )2 βn 2γ 1– θsin–( )2
+[ ]

1/2
-------------------------------------------------------------------------------------------------–





.

2.5. Ellipsoidal Grains

The method of approximate calculation of the
energy Wd of intergrain dipole interaction for a lattice
of 3D ellipsoidal grains was proposed in [11]. This
method is applicable for strongly prolate or strongly
oblate uniformly magnetized ellipsoids of revolution
and makes it possible to represent the expression for the
energy wmln of their pair interaction in the form of a
series in the derivatives of potential ψ of the magnetic
field created by such a grain.
Let the center of one of the grains be at the origin and the
center of another grain be at the point with coordinates x0,
y0, z0. If the magnetic moments m of the grains are directed
along the x axis, wmln = –µ〈H〉mln, where

(28)

H〈 〉 mln
1
V
--- ∂ψ x y z, ,( )

∂x
------------------------- xd yd zd∫∫∫–=

=  
1
V
--- ∂ψ x' y' z', ,( )

∂x'
---------------------------- x'd y'd z',d∫∫∫–
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V is the grain volume, and integration is carried out over
the volume of the second grain. The coordinates x ' = x –
x0, y ' = y – y0, z ' = z – z0 correspond to the coordinate
system obtained by parallel translation of the initial
system with the origin at the center of the second grain
(x0 = mlx, y0 = lly ≡ βylx, z0 = nlz ≡ βnlx).

In view of the geometrical anisotropy, the magnetic
moments of the grains are always directed along their
major axis, which will be assumed to be parallel to the
x axis (it is the only major axis for a prolate ellipsoid of
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Fig. 2. Angular dependences λF(θ), λ10(θ), λ01(θ), and
λ11(θ) of the dipole interaction parameters for a (a) qua-
dratic and (b) rectangular lattice of pointlike dipoles. Solid
curves are calculated using exact formulas (14), and sym-
bols correspond to approximate relations (17)–(24). The
domains of ferromagnetic (F) and antiferromagnetic (AF)
states are indicated.
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revolution and any of the major axes for an oblate ellip-
soid). In this case, integral (28) can be written in the
form

(29)

where the integration domain Cr is a circle with the cen-
ter at the point (x', 0, 0) and radius r = r(x') = b(1 –
x'2/a2)1/2 for a prolate ellipsoid and r = r(x') = a(1 –
x'2/a2)1/2 for an oblate ellipsoid; a, b, and c are the ellip-
soid semiaxes (a > b = c for a prolate ellipsoid and a =
b > c for an oblate ellipsoid whose minor axis is
directed along the z axis).

Expanding potential ψ(x', y', z') into the Taylor
series

(30)
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Fig. 3. Magnetic phase diagram of a rectangular lattice of
pointlike dipoles parallel to one another. The ground state of
the system corresponds to the antiferromagnetic configura-
tion S01 for small values of the angle of inclination θ and to
the antiferromagnetic configuration S10 for large angles.
The hatched region corresponds to the ferromagnetic state.
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where 

 = ∂ψ/∂x'|x' = y' = z' = 0,  = ∂2ψ/∂x'2|x' = y' = z' = 0, 

and  = ∂3ψ/∂x'3|x' = y' = z' = 0 

(similar notation is used for the derivatives y' and z'),
and substituting this expansion into relation (29), we
can see that only those terms in expansion (28), which
do not contain terms with odd powers of x', y', z' sur-
vive after integration. For a prolate ellipsoid, taking

into account relation  +  = – , we finally
obtain

(31)

where O(ψV) is the sum of terms proportional to the
fifth-order derivatives of the magnetic potential.

Similarly, we find that the “central” oblate ellipsoid
with the equatorial plane xy creates in this plane a mag-
netic field 〈H〉mln whose components are defined by the
relations

(32)

(33)

Numerical calculations show that the contribution
of the term O(ψV) is negligibly small (less than 1%) in
all cases of practical importance. Thus, the application
of expressions (31)–(33) taking into account explicitly
written terms ensures an accuracy not worse than 1% in
the calculation of magnetic energy.

As regards the potential of the magnetic field cre-
ated by the central grain in the volume of the second
grain, the corresponding relations are well known [12]:
for a prolate ellipsoid, we have

(34)

ψ0x' ψ0xx''

ψ0xxx'''

ψ0yy'' ψ0zz'' ψ0xx''

Hx〈 〉 mln
3
2
---

ψ0 a 0 0, ,( ) ψ0 a 0 0, ,–( )–
2a

----------------------------------------------------------- 
  1

2
---ψ0x'––=

+
3
20
------a

2
1 2b2

3a2
--------+ 

  ψ0xxx''' b
a
--- 

 
4

O ψV( ),+

Hx〈 〉 mln
3
2
---

ψ0 a 0 0, ,( ) ψ0 a 0 0, ,–( )–
2a

----------------------------------------------------------- 
  1

2
---ψ0x'––=

+
3
20
------a

2 ψ0xxx''' 2
3
---ψ0xyy'''– 

  2c2

3a
2

-------- ψ0xxx''' ψ0xyy'''+( )+
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----------------------------------------------------------- 
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2
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+
3
20
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3
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3a
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ψ 3µx

e3a
3

---------- 
  tarctanh t–( ), t

e

1 ξ+
----------------,= =
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where e = (1 – b2/a2)1/2 is the eccentricity and ξ is the
larger root of the equation [(y2 + z2)/a2]/(1 – e2 + ξ) +
(x/a)2/(1 + ξ) = 1, while, for an oblate ellipsoid, we have

(35)

where e = [(a2/c2 – 1)1/2] and ξ is the larger root of the
equation [(x2 + y2)/c2]/(1 + e2 + ξ) + (z/c)2/(1 + ξ) = 1.

2.6. 3D Lattice of Ellipsoidal Grains

Relations (31)–(33), which determine the mean
magnetic field 〈H〉mln of the central grain, are written in
the coordinate system in which the x axis coincides
with the direction of magnetic moments (θ = 0). Using
a linear coordinate transformation, we can easily gener-
alize these equations to the case when the direction of
these moments is characterized by angles θ ≠ 0 and φ ≠
0. However, for a 3D lattice, we confine our analysis to
a simpler situation with θ = 0. For a tetragonal lattice of
ellipsoidal grains with magnetic moments parallel to
the lattice side directed along the x axis, parameter λ
determining the type of magnetic order is given by

(36)

2.7. 2D Lattice of Prolate Ellipsoidal Grains

For prolate ellipsoidal grains whose major axes lie
in the plane of a 2D rectangular lattice (xz plane), in the
general case (θ ≠ 0), we obtain

(37)

where the mean field  should be calculated using
formulas (31) in the coordinate system  = xcosθ +
zsinθ,  = zcosθ – xsinθ.

This expression for the dipole interaction parameter
λ was used for determining the limits of applicability of
our approximate model for prolate ellipsoidal grains. A
comparison of the results corresponding to a rectangu-
lar lattice and obtained on the basis of the exact formula
(27) for linear dipoles and the approximate relation (37)
for similar strongly prolate ellipsoids with the eccen-
tricity e = 0.9999 (the ratios of the axes a/b ≈ 70) is
illustrated in Fig. 4. It can be seen that the approximate
model correctly reflects all features of the complex
phase diagram of the system and leads to qualitatively
correct results in the entire range of parameters except
in the situation close to contact of grains occurring due
to their finite transverse dimensions.
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As before, the evaluation and comparison of the val-
ues of the dipole interaction parameter λ for different
magnetic configurations of magnetic moments of
grains makes it possible to construct the magnetic
phase diagram of the system. The dependences of these
parameters for a square lattice of ellipsoidal grains on
the angle of inclination of their magnetic moments are
presented in Fig. 5. Examples of magnetic phase dia-
grams for two lattices of ellipsoidal grains with differ-
ent scaling ratios lx/a are shown in Figs. 6a and 6b. For
a small value of this ratio, there exist lattices whose
ground state is ferromagnetic even for θ = 0 (e.g., all
lattices with β < 1 are of this type for lx/a = 2.5). In addi-
tion, a comparison of Figs. 6a and 6b shows that, upon
a decrease in this ratio, the antiferromagnetic phase
vanishes in the range of small angles θ, indicating the
possibility for a transition of the system from the anti-
ferromagnetic to the ferromagnetic state. It will be
shown below that magnetic phase transitions in thin
films of magnetic metals may be associated precisely
with this feature of the phase diagrams of lattices
formed by ellipsoidal grains.

Unfortunately, the approximate nature of the model
does not permit the exact determination of individual
boundaries on the phase diagrams in all cases. For
example, in the cases illustrated in Figs. 6a and 6b, the
difference in the energies WF and W01 of the corre-
sponding states in the range of parameters θ < 10° and
β > 1 amounts to less than 0.1%. Consequently, it is
impossible to determine the actual type of magnetic
ordering in this region in the framework of our model.
We can only state that the boundary between these
phases probably lies in the hatched rectangular regions.
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Fig. 4. Comparison of magnetic phase diagrams of a rectan-
gular lattice of linear dipoles (solid curves) and strongly
prolate (e = 0.9999) ellipsoids (points) of the same length
2a = (2/3)lx. The hatched region corresponds to contacting
ellipsoidal grains.
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2.8. 2D Lattice with Oblate Ellipsoidal Grains

Let us suppose that the equatorial planes of oblate
ellipsoidal grains coincide with a plane of a 2D rectangu-
lar lattice (xy plane). In the absence of crystal anisotropy,
their magnetic moments also lie in this plane, although
they are not “attached” to a certain direction. It would be
unjustified from the physical point of view to assume that
the ground magnetic state in this case corresponds to one
of the collinear antiferromagnetic configurations, say, of
the type S01 studied in the previous analysis, in which the
magnetic moments of the grains are parallel to one
another. Among candidates for the ground state, we can
consider, for example, the fan configuration of magnetic
moments, where the latter are turned through angles ±χ
relative to one of the lattice sides (see the inset to Fig. 7).

Such states for a 2D square lattice of pointlike magnetic
dipoles were studied in [1], where it was proved that the
energies of all fan configurations are identical irrespective
of angle χ. It was found, however, that such a degeneracy is
typical only of pointlike dipoles and is removed as we pass
to oblate ellipsoidal grains. In the latter case, the energy of a
fan configuration can be calculated by the formula

(38)

λ χ( ) 2
µβ
lx

------- 
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Fig. 5. Dependences of the dipole interaction parameters for
a square lattice of ellipsoidal grains on the angle of inclina-
tion of their magnetic moments (cf. Fig. 2a). Ellipsoidal
grains: e = 0.95, lx/a = 3.
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where χml = χeiπ(m + l); the fields 〈Hx〉ml and 〈Hy〉ml are
defined by relations (32) and (33) in the coordinate sys-
tem  = xcosχ + ysinχ,  = ycosχ – xsinχ; and the
potential of the field created by the central grain is
defined by relation (35), in which we must set ξ = (e2 +
1)[(x2 + y2)/a2 – 1].

Obviously, a noticeable difference from the lattice
of pointlike dipoles can be expected only in the case
when the shape of grains differs considerably from

x̃ ỹ
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Fig. 6. Magnetic phase diagrams of rectangular lattices of
ellipsoidal grains with eccentricity e = 0.95 and lx/a = 2.5 (a)
and 3 (b). The notation is the same as in Fig. 4. The bound-
aries of the upper hatched regions forbidden by the geome-
try of the problem correspond to contacting grains. Phase
boundaries for θ ! 10°, β > 1 lie within the lower hatched
regions.
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spherical and their size is comparable with the lattice
period (l ~ a). Figure 7 shows an example of the depen-
dence of the energy of a fanlike antiferromagnetic con-
figuration on angle χ, which is obtained in this way for
very flat (c/a = 10–4) and closely spaced grains (disks)
in a square lattice. It follows that any vortex configura-
tion in this case is inferior in energy relative to the col-
linear configuration S01, which represents the ground
state. Calculations show that this conclusion remains in
force for any rectangular lattice of disk-shaped grains.
Similarly, the wavy configurations for which χml = χeiπl

is also less advantageous from the energy point of view
(see Fig. 8).

2.9. 2D Lattice of Oblate Ellipsoidal Grains 
in a Magnetic Field

The energy disadvantage of the ferromagnetic con-
figuration of the ground state can be suppressed by
applying an external magnetic field, which inevitably
leads to a transition to the ferromagnetic state (if the
field is strong enough). Depending on whether this
magnetic field is directed along or across the magnetic
moments of the sublattices of the initial antiferromag-
netic state, such a transition follows different scenarios.
In one case, the phase transition occurs through the for-
mation, growth, and coalescence of nuclei of the other
(ferromagnetic) phase; this is the process that should be
considered in the general theory of kinetics of phase
transitions.

0
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Fig. 7. Dependences of the energy of fan antiferromagnetic
configurations for a square lattice of disk-shaped grains on
the angle χ of rotation of their magnetic moments (see inset)
for various distances between the grains. The inset repre-
sents a fan configuration in the form of wavy magnetic field
lines.
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In another case, the magnetic moment of grains
rotate freely and coherently in their plane (under the
assumption that there is no magnetic anisotropy in the
crystal, as, for example, in the case of grains of a soft
magnetic material). The moments of different sublat-
tices have a tendency to align themselves in the direc-
tion of the magnetic field by rotating in the opposite
directions. For the ground antiferromagnetic state S01,
such a transition occurs through a wavy configuration
(which is disadvantageous in zero field). When the
magnetic moments of the grains rotate through angle χ,
the energy of their dipole interaction increases by

where the dipole interaction parameter λ is calculated
by formula (38) for χml = χeiπl. This energy increase for
each grain is compensated by the decrease in its Zee-
man energy,

which gives
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Fig. 8. Field dependences of magnetization for various rect-
angular lattices of disk-shaped grains of diameter 2a. The
magnetic field is directed along the longer lattice period ly =
6a. The smaller lattice period lx is equal to 6a (curve 1), 4a
(2), 3.33a (3), and 3a (4). The left inset shows a wavy con-
figuration of the magnetic moments of grains in the field
parallel to the longer side of the lattice. The right inset pre-
sents the experimental field dependences of magnetization
of lattices of flat grains [14].
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where ∆Λ(χ) = Λ(0) – Λ(χ). At the same time, the lat-
tice magnetization is given by

The last two relations determine the parametric relation
between the magnetic field H and the equilibrium mag-
netization i in this field. Such a magnetization could be
observed upon an infinitely slow variation of the field in
the absence of magnetic anisotropy of any kind. A
series of such field dependences for 2D lattices of disk-
shaped grains is presented in Fig. 8. As the small lattice
period (along which the moments of the grains in the
initial antiferromagnetic state are directed) decreases,
the magnetization saturation field of the system
increases.

3. EXPERIMENTAL EXAMPLES
3.1. Magnetism of Ultrathin Films

Experiments with ultrathin films of iron, cobalt, and
nickel revealed that, for a certain effective thickness, a
long-range ferromagnetic order is established in such
films [8], but the origin and mechanisms of this phe-
nomenon remain not quite clear. The control of the
topology of such films and, in particular, an analysis of
the geometry and magnetic properties of islets consist-
ing of Co (Fe, Ni) atoms, the fraction of the substrate
covered by these atoms, the structure of the film itself,
and also the evolution of relevant parameters in the
course of the film growth are very important for the
development of physical ideas concerning the mecha-
nism of establishment of the magnetic order in such
films.

In this connection, we can mention a recent publica-
tion [9] in which it is shown that, for a high (room) tem-
perature of monocrystalline (110)-oriented Cu sub-
strate, the Co film deposited on it grows through natural
lithography, i.e., through the formation of nuclei (dis-
tributed more or less uniformly over the substrate area),
which are transformed into ellipsoidal grains with
major axes oriented (with a small spread of 5°−10°)
along the [001] axes of the substrate. It was found using
scanning tunnel microscopy (STM) that the size of
these grains increases in the course of film growth, but
the distance between their centers and the shape of the
grains (i.e., their eccentricity) remain unchanged.

Experiments show that such films become ferro-
magnetic only if their thickness is large enough. (The
effective thickness d of an inhomogeneous film consist-
ing of grains is equal to the thickness of a homogeneous
film containing the same number of atoms and is mea-
sured by the number of effective monatomic layers.) Gu
et al. [9] believe that the critical thickness dc of the film
is the thickness for which its hysteresis loop exhibits a
nonzero coercivity for the first time. According to their
measurements, dc ≈ 4.6 monolayers, although notice-
able nonlinearity of the magnetic-field dependence of
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the film magnetization, which is a consequence of
intergrain interaction, appears even for d ≈ 4 mono-
layers.

We assume that the described process of transition
to the ferromagnetic state can be attributed to the
change in the magnetic state of a 2D system of ellipsoi-
dal Co grains with the long-range dipole interaction in
accordance with the magnetic phase diagram whose
examples were given above. In the framework of this
model, the film growth is reduced only to a change in
the scaling factor whose role in the problem is played
by the size a of the semimajor axis of an ellipsoidal
grain.

In order to pass to a quantitative description of the
process, we must connect the parameters characterizing
the size and shape of the grains (the semiaxis length a
and eccentricity e) with the effective thickness d of the
film. For this purpose, we can use the experimentally
determined (for the same system) relation e = e(d)
between the fraction e of the open surface of the sub-
strate (which is not occupied by Co grains) and the
effective thickness of the film [13]. Obviously, the frac-
tion of the surface covered by grains is 1 – e = πab/(lxlz);
this leads to the required expression for the parameter
lx/a determining the nature of the magnetic phase dia-
gram:

where the parameters labeled by the superscript (0) cor-
respond to the thinnest film (in experiments [9], d(0) =
0.9 monolayers). Figure 9 shows such a dependence
plotted on the basis of the experimental data [13] for a
Co film on a (110) oriented Cu substrate.

According to Gu et al. [9], the grain shape is close
to ellipsoidal with the eccentricity e ≈ 0.95, and the
ratio of the average distances between the grains (lattice
periods) is β = lz/lx = 0.5–1. As regards the angles θ of
grain orientation, it follows from the STM images pre-
sented in [9] that these angles are distributed in a nar-
row interval near θ = 0. With increasing effective thick-
ness of the film, the grain size increases, while lattice
periods remain practically unchanged (right up to the
contact between the grains). In this case, the ratio lx/a,
which determines the magnetic state of the system in
accordance with Fig. 6, decreases monotonically,
which leads to the magnetic phase transition from the
initially antiferromagnetic state to the ferromagnetic
state. The critical thickness dc of the film at which this
transition occurs and subsequent dependence of the
Curie temperature TC of the emerging ferromagnetic
state are determined (see above) by the value of the
dipole interaction parameter λ for various magnetic
states of the system.

Proceeding from the STM images of Co films pre-
sented in [9], we assumed in our calculations that (i) the
axes of all grains are parallel to one another (θ = 0),

(ii) β ≡ lz/lx = 0.5, and (iii) /a(0) = 4. Figure 10 shows

lx/a lx
0( )/a 0( )[ ] 1 e d 0( )( )–( )/ 1 e d( )–( )[ ] ,=

lx
0( )
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the dependence TC(d) = λ(d)i0/k of the Curie tempera-
ture of the films on their thickness, determined for the
above values of the parameters. For the chosen set of
parameters, a transition of the system of grains from the
antiferromagnetic to the ferromagnetic state occurs at a
critical thickness dc ≈ 4.3 monolayers, which is close to
the value indicated in [9]. After the attainment of such
a thickness, the Curie temperature of the formed ferro-
magnetic state immediately assumes a finite value and
then increases with the film thickness. The scale of the
initial Curie temperature is determined by the value
of µi0 for µ = 300µB, i0 = 10–4 G cm (which corresponds
to the volume of grains of 40 nm3 and their concentra-
tion N = 10–14 cm–2) and amounts to TC ~ 300 K.

3.2. 2D Lattices of Disk-Shaped Grains
in a Magnetic Field

Modern electron lithography makes it possible to
create artificial periodic magnetic structures with a size
of individual elements (grains) up to tens of nanome-
ters. On the one hand, the sizes of such grains are large
enough for their ferromagnetic properties to be virtu-
ally identical to the properties of large objects made of
the same material, but on the other hand, these are so
small that the grains themselves are one-domain ferro-
magnets. These structures with the dipole interaction
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Fig. 9. Experimental dependence e = e(d) of the fraction of
open (not occupied by Co grains) (100)-oriented surface of
the Cu substrate on the effective thickness of the Co film
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between grains are just the objects studied by us here.
In order to analyze the experimental manifestation of
the rearrangement of the magnetic configuration for
this type of structures, we consider the results obtained
in [14], where 2D rectangular lattices of circular plane
grains made of a magnetically soft material (Supermal-
loy Ni80Fe14Mo5) were studied. The grain size was as
follows: diameter 2a = 60 nm and thickness h = 7 nm,
which corresponds to the grain magnetic moment µ =
(πa2h)Is = 1.6 × 10–14 G cm3, where Is = 800 ± 60 G is
the saturation magnetization of the grain material. One
of the lattice periods (ly = 180 nm) remained
unchanged, while the other (lx) varied in the range
90−180 nm. Since lx ≤ ly, the ground state of the system
corresponded to the magnetic configuration S01. The
magnetic field applied along the y axis must transform
the system to the ferromagnetic state via an intermedi-
ate wavy magnetic configuration (see above). The char-
acteristic scale of the field required for this purpose is

defined by the quantity µ/ , which is equal to 2.7 Oe
in our case. In accordance with the dependences pre-
sented in Fig. 8, the saturation magnetization of the sys-
tem must take place in the fields Hy = 5.5 and 35 Oe,
respectively, for lattices lx = 180 and 90 nm. The exper-
imentally measured values of these fields [14] Hy ≈ 6
and 40 Oe are in satisfactory agreement with the results
of computations (see the inset to Fig. 8).

3.3. Magnetic Recording Density

The principle of magnetic recording is that the mag-
netic state (magnitude and direction of magnetization)
of a small region of a magnetic medium deposited on
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Fig. 10. Dependence of the Curie temperature of the film on
its effective thickness. Major axes of grains are parallel to
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the surface of a disk (tape) is memorized. Usually, the
medium consists of small grains (of size 100−1000 Å)
of a magnetic material (e.g., Fe−Co alloy). A special
device known as the head can be positioned over any
region of the disk and change the magnetic state of this
region (information recording) or determine the state of
this region (information readout). The latest advance-
ment in this field was the demonstration of a disk with
the recording density of about 5 Gbit/cm2. A bit of
information on the disk is recorded on a region contain-
ing approximately 100 grains.

The extremely high density of information storage
can obviously be attained by recording one bit on a sin-
gle magnetic grain. For this purpose, it is necessary to
create a special magnetic carrier containing individual
periodically arranged magnetic nanoparticles of the
same size, shape, and orientation. The periodicity of the
arrangement is required for information record-
ing/readout, while the uniformity in the above geomet-
rical parameters is required for storing the recorded
information for a long time (of the order of 10 years).

The main mechanism leading to a reversal of the
magnetic moment (and, hence, to a loss of information)
in small grains is a thermal excitation of such a process.
The time of information storage is determined by the
characteristic time τ of rotation of the magnetic
moment, which is defined as

(39)

where τ0 = 10–10–10–9 s and ∆0 is the height of the
energy barrier separating two stable states of the grain
magnetization. The time τ of information storage
exhibits a very strong (exponential) dependence on ∆0,
and in order to obtain τ ≥ 10 years, it is necessary to sat-
isfy the condition

(40)

It is well known [15] that

(41)

where Na and Nb are the demagnetization coefficients
for a grain along the a and b axes, respectively; V0 is the
grain volume; and Is is the magnetization of its material.

In our subsequent estimates, we consider Fe grains
for which Is = 1700 G and assume that their temperature
is T = 300 K (room temperature). Substituting relations
(41) into (40), we obtain

(42)

Vmin being the minimal volume of Fe grains for which
the magnetic moment preserves its direction for
10 years. It should be emphasized that the obtained
estimate corresponds to isolated (noninteracting) mag-
netic grains. Relations (42) imply that, in order to
reduce Vmin, we must take grains with large values of
parameter ν, i.e., grains in the form of a strongly prolate

τ τ 0 ∆0/kT( ),exp=
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V0 Vmin, Vmin nm3[ ]≥ 1000/ν ,=
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ellipsoid (rodlike grains). It is sufficient to confine our
analysis to the ratio of the grain axes a/b = 4–10 ensur-
ing the value of ν = 5–6. A further increase in this ratio
(i.e., transition to rodlike grains) does not increase
parameter ν appreciably. Assuming that ν = 5.5, we
obtain the final estimate

(43)

The maximum attainable value of information stor-
age density corresponds to close packing of such
grains. For the grains of the shape under investigation
(ellipsoid of revolution with the axes ratio a/b = 6), the
recording density is about 1000 Gbit/cm2.

However, the magnetic interaction of closely spaced
grains, which reduces the information storage time like
thermal excitation, may obviously reduce the obtained
estimate significantly. In order to demonstrate the
strength of the latter effect, we use the relation [16]

(44)

which describes the lowering of the height ∆H of the
energy barrier separating two stable states of a grain
due to the magnetic field H created by all the remaining
grains in the region of its location. This relation is based
on the assumption that the magnetic moment of the
chosen grain and the external magnetic field are anti-
parallel.

Let the major axes of all grains be parallel to the x
axis (θ = 0). Then, in the approximation of rodlike
grains, the x component of the resultant field of all
grains at the origin (the site of the chosen grain) is
determined by a relation similar to (27):

(45)

where H0 = µ/a3, φmn = 1 if the direction of the magnetic
moment of the grain located at point (mlx, nlz) coincides
with the positive direction of the x axis; otherwise,
φmn = –1 (it should be recalled that γ = lx/a, and β = lz/lx).
It is clear from geometrical considerations that lx > 2a
and lz > 2b.

Obviously, the magnitude of the field H depends on
the sign distribution of magnetic moments of surround-
ing grains, i.e., on the information recorded in the vicin-
ity of the grain under investigation. While calculating
the information storage time, we must proceed from the
most unfavorable distribution of these moments (ensur-
ing the maximum possible magnetic field). Such (the
worst) configuration can easily be established: if the
magnetic moment of the chosen grain (located at the
origin) is negative (opposite to the positive direction of
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the x axis), the signs of the magnetic moments of sur-
rounding grains in such a configuration depend on
whether or not they fall into a cone with the angle

 and the axis parallel to the x axis. In
the former case, the magnetic moment is positive, and
in the latter case, it is negative. In particular, the mag-
netic moments of the grains located on the x and z axes
are positive and negative, respectively. The depen-
dences of field H on the geometrical parameters β and
γ of the lattice formed by the grains calculated for this
case are shown in Fig. 11.

In order to compensate the effect of magnetic inter-
action between grains, their volume must be increased
as compared to the minimum volume Vmin. It follows
from relations (40)–(42) that the required volume X =
V0/Vmin must satisfy the condition X ≥ 1/(1 – η)2, where
η = 0.125(H/H0) for a/b = 6 and ν = 5.5. Thus, the
admissible values of periods lx and lz of the lattice
formed by grains must satisfy the relation4

(46)

4 Condition (46) indicates, in particular, that H must be equal to
zero for V = Vmin (X = 1), which corresponds to grains separated
by infinitely long distances.
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Fig. 11. Dependences of “magnetization reversal” field H
on the geometrical parameters β = lz/lx and γ = lx/a of a lat-
tice of rodlike grains of length 2a with magnetic moment µ
(H0 = µ/a3). The inset shows the dependence of attainable
density ρ of magnetic recording on the volume V0 of Fe
grains in the form of ellipsoids of revolution with the axes
ratio a/b = 6 (Vmin = 180 nm3). The dashed line corresponds
to condition (46) for X = 4.
SICS      Vol. 95      No. 5      2002



900 MEŒLIKHOV, FARZETDINOVA
Among these values, we must select those correspond-
ing to the maximum surface density of grains, equal to
1/(lxlz). The horizontal straight line H/H0 = const drawn
in Fig. 11 corresponds to a certain value of X. It can be
seen that the optimum values of lattice periods are
always those corresponding to the point of intersection
of this line with the curve H(lx, lz) for the minimum ratio
of the periods β = lz/lx dictated by geometrical consid-
erations (in our case, β = b/a ≈ 0.2). The dependence of
the maximum attainable density of magnetic recording
determined in this way on the volume of grains is
shown in the inset to Fig. 11. It can be seen that,
although the dipole interaction between grains consid-
erably reduces this density (in our case, to half the rated
value), it can still be high enough and attain values of
approximately 500 Gbit/cm2, which is two orders of
magnitude higher than the density of recording in the
best modern magnetic disks.

The approximation of rodlike dipoles used in the
previous analysis is completely applicable only for
grains separated by large distances (as compared to the
grain size) from the origin (the site of the selected mol-
ecule). Obviously, the largest errors appear in this
approximation when we calculate the field created by
the nearest grains. However, special calculations made
by us proved that the resultant action of remote but
numerous grains exceeds the action of a few nearest
grains (this is a consequence of the long-range nature of
the field of a magnetic dipole). Thus, the approximation
of rodlike grains correctly describes the effect of mag-
netic interaction between the grains.

4. CONCLUSIONS

We have described the methods for analyzing the
magnetic properties of 2D and 3D lattices of nonspher-
ical ferromagnetic grains with the intergrain dipole
interaction: the ground state, the magnetic phase dia-
gram, and the change in the magnetic state under the
action of an external magnetic field. The obtained
results can be used for describing the properties of a
number of real systems, including 2D periodic struc-
tures of magnetic grains suitable for creating magnetic
memory systems with a high recording density,
ultrathin films of ferromagnetic metals on monocrystal-
line substrates, and rectangular lattices of disk-shaped
magnetically soft grains. The methods developed for
describing the properties of such systems are in good
agreement with the results of relevant experiments.
JOURNAL OF EXPERIMENTAL A
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Abstract—A model of noncollinear magnetic ordering in Fe/Cr-type multistructures was suggested. The model
was based on the idea of charge (and, as a consequence, spin) density redistribution near a metal–metal inter-
face. A peculiar state of the whole structure characterized by strong short-range antiferromagnetic ordering in
the interlayer and a pronounced dependence of magnetic characteristics on the properties of the boundary
between iron and chromium layers was shown to be formed in a certain temperature range. Inhomogeneous
antiferromagnetic structures with a vector order parameter were found, and the effective exchange coupling
between neighboring iron layer moments was calculated using the Ginzburg–Landau expansion of the thermo-
dynamic potential. The results were used to discuss the experimental data on Fe/Cr superlattices obtained in
neutron scattering and magnetization measurements. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in multilayers (sandwiches and superlat-
tices) of the FM/AFM type, where FM and AFM are
ferromagnetic and antiferromagnetic materials, respec-
tively, stems from increasing requirements on the
parameters of layered nanostructures used in modern
magnetic recording technologies. Such multilayers are
as a rule prepared by molecular-beam epitaxy with the
use of layer-by-layer deposition techniques. They are
unique objects of fundamental studies and have quite a
number of unusual transport and magnetic properties
(for instance, giant magnetoresistance).

Transition-metal-based multilayers, for instance,
multilayers containing iron and cobalt as ferromagnets
and chromium and manganese as antiferromagnets,
rank among the most popular FM/AFM nanostructures.
In particular, at least three recent reviews concentrate
on Fe/Cr-type structures, which will be the subject mat-
ter of our study [1–3]. Indeed, Fe/Cr multilayers were
the first example of magnetic structures with exchange
potential J1(L) between FM layers separated by an
AFM interlayer in which the sign of this potential oscil-
lated as a function of interlayer thickness L. The J1(L)
potential has a complex dependence on the geometry of
the structure (thickness and growth direction), the
topology of the Fermi surface in the chromium inter-
layer, and the quality of the Fe/Cr interface. The J1(L)
dependence contains “fast” and “slow” components
oscillating as functions of L. These components are
related to different types of electronic and hole regions
of the chromium Fermi surface; we also observe
exchange potential periodicity to experience distur-
bance (“phase slip”) caused by a peculiar magnetic
order type, namely, by a spin density wave in chro-
1063-7761/02/9505- $22.00 © 20901
mium. Along with parallel and antiparallel orientations
of the magnetic moments of neighboring iron layers,
orientations with ψ(L) angles (angles between iron
moments) that differed from 0 or π were observed in
various experiments in the thermodynamically equilib-
rium state and in the absence of an external magnetic
field. Further, we use the terms “collinear state” and
“noncollinear state” for orientations with ψ = (0, π) and
ψ ≠ (0, π), respectively; these terms have no deeper
meaning.

All the existing theoretical schemes (see [3]) give
more or less plausible descriptions of the dependence
of potential J1(L) on interlayer thickness in structures
with ideally smooth Fe/Cr interfaces and predict the
collinear state of such structures to be more favorable
than noncollinear. The appearance of noncollinear
states is usually related to defects of the Fe/Cr interface,
namely, to interface roughness [1, 2]. A consideration
of effective exchange in a system with a rough, that is,
not ideally smooth, Fe/Cr interface is, however, an
exceedingly complex task involving many unknown
parameters. The point is that, at the microscopic level,
roughness is related to the presence of monoatomic
steps, interdiffusion of the components, and other tech-
nological deviations from uniformity of real interfaces
formed during nanostructure growth. This in turn
causes frustrations of exchange coupling between Fe
and Cr and the formation of magnetic domain walls on
both sides of the Fe/Cr surface. These deviations from
ideal surface smoothness were found to initiate very
serious changes in the macroscopic magnetic properties
of multilayers; in particular, they could cause the for-
mation of noncollinear states [4–6].
002 MAIK “Nauka/Interperiodica”
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Several interesting phenomenological models have
been suggested to describe this effect. The most effec-
tive one is the biquadratic exchange scheme [7], which
is, so far as we know, closest to the correct interpreta-
tion of the experimental data on Fe/Cr multilayers. This
scheme directly relates the formation of noncollinear
ordering of iron moments to the presence of alternating
steps and terraces on Fe/Cr interfaces. On the one hand,
these steps and terraces substantially suppress the
short-wave component of usual (bilinear) exchange,
that is, the J1(L) potential, and, on the other, they form
a peculiar additional (biquadratic) exchange potential
J2(L) caused by partial disturbance of strong coupling
between Fe and Cr spins near monosteps (see the dis-
cussion in review [3]).

No microscopic theory underlying the biquadratic
exchange scheme has been suggested, first and fore-
most, because of the absence of a correct description of
the complex influence of the Fe/Cr interface on antifer-
romagnetic ordering with a spin density wave in the
chromium interlayer, through which iron layers interact
with each other. Non-self-consistent approaches of type
[8] are incapable of even qualitatively explaining the
magnetic phase diagram of Fe/Cr multilayers, not to
mention fine details of spin density distributions within
the interlayer. Using these approaches to solve the del-
icate problem of the influence of interface imperfec-
tions on favorableness or unfavorableness of collinear
compared with noncollinear ordering is therefore
meaningless.

Recently, we have suggested a model for self-con-
sistently describing spin density distributions in Fe/Cr
multilayers [9, 10]. This model has been used to ana-
lyze collinear states and has allowed us to explain the
key features of the phase diagram of Fe/Cr multilayers
in the temperature–interlayer thickness variables in
terms of short-range order and local phase transitions
into the state with a spin density wave. In this work, we
generalize this model to noncollinear states. The micro-
scopic reason why the noncollinear rather than col-
linear state is energetically favorable in the presence of
monosteps and terraces on the Fe/Cr interface will be
elucidated; this reason is related to the rearrangement
of the spin density wave in the chromium surface layer
and the formation of a peculiar domain wall (rotation of
the spin density wave phase) near a monostep on the
Fe/Cr interface. The biquadratic exchange model will
be substantiated at the microscopic level, and limita-
tions imposed on its applicability by interlayer thick-
ness, temperature, and interface roughness will be ana-
lyzed.

2. MODEL AND PROBLEM STATEMENT

As in [9, 10], we consider a model of a three-layer
nanostructure comprising two ferromagnetic plates
(Fe) separated by an antiferromagnetic layer (Cr). Let
the technological Fe/Cr interface lie in the (ny, nz)
JOURNAL OF EXPERIMENTAL 
plane, which is orthogonal to the direction of structure
growth nx along one of the [100] cubic axes (here and
throughout, nx, ny, and nz are basis unit vectors). Con-
sider the temperature T range corresponding to short-
range antiferromagnetic order in the chromium layer;
that is, TN < T ! TC, where TN is the Néel temperature
in the chromium layer and TC is the Curie temperature
in iron plates. Ferromagnetic layers are assumed to be
sufficiently thick for magnetization S within ferromag-
netic plates at T ! TC to be considered uniform and
independent of T. At the same time, antiferromagnetic
layer thickness L changes within fairly wide limits (L >
2ξ0, where ξ0 is the coherence length of the order of ten
chromium monolayers; in the temperature range that
we are considering, sublattice magnetization s within
the antiferromagnetic layer can be fairly nonuniform
and can strongly depend on T).

Layer dimensions in the ny and nz directions are
assumed to be much larger than thickness L. We can
then use the simplified one-dimensional model in
which s(x) depends on a single spatial coordinate for
ideally smooth interfaces. In the presence of interface
extensive defects (such as monosteps separating planar
terraces), s also depends on the y and z coordinates, and
the one-dimensional model can then be used to approx-
imately describe a nanostructure fragment situated far
from a monostep. A stricter criterion of the applicabil-
ity of the one-dimensional model and the role played by
s(x, y, z) distribution nonuniformity within the inter-
layer will be discussed in Section 5. For now, this
model will be used as a basis for the further analysis.
We restrict our consideration to transversely polarized
spin density waves, when s(x) ⊥  nx (precisely this situ-
ation is discussed most frequently, but a detailed analy-
sis of the reasons for that would lead us far beyond the
scope of this work).

Let us introduce order parameter D(x) = Us(x),
where U is the effective potential, whose explicit form
is not discussed here (e.g., see review [11]). This
parameter has the dimension of energy and describes
the envelope of the spin density wave. For a trans-
versely polarized one-dimensional spin density wave,
we have

(1)

where |x | ≤ l (l is the interlayer half-width, L = 2l). We
assume that D(x) is small (|D| ! πT) and slowly varies
in space (|∂D/∂x | ! πT/ξ0). On this assumption, let us
write the thermodynamic potential F[D] of the antifer-
romagnetic layer under consideration in the form of the
Ginzburg–Landau expansion in powers of D(x) and
∂D(x)/∂x. A detailed justification of this approach to the
problem can be found in [9, 10]. We therefore give the
expression for F[D] without much comment:

(2)

D x( ) ny∆y x( ) nz∆z x( ), D x( ) nx,⊥+=

F FV FS,+=
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(3)

(4)

(5)

The FV and FS values are the volume and surface con-
tributions to the total thermodynamic potential, respec-
tively. The c1, c2, ν, and A coefficients are given in [9,
10] (e.g., see [11] for their calculation); vF is the Fermi
velocity of the electrons of plane chromium Fermi sur-
face regions responsible for the formation of spin den-
sity waves; and N is the number of chromium monolay-
ers in the interlayer. Everywhere below, c1, c2 > 0, ν <
0, and the A(±l) vector is proportional to magnetization
S(±l) in the corresponding ferromagnetic plate.

Expansion (3), (4) is strictly valid almost in the
whole |x | < l region except antiferromagnetic layer
regions of size of about ξ0 near the interface, where
local approximation (2) to functional F is incorrect.
Fine details of charge and spin redistribution on such
scales are of no interest to us; they can be considered to
be taken into account by the ν and A coefficients. The
term in (5) linear in D (the exchange term) is directly
related to exchange interaction between ferromagnetic
plate and antiferromagnetic layer spins. The term in (5)
quadratic in D (the Coulomb term) is determined by
charge flow between layers of different metals and by
the resulting appearance of a contact potential drop
between ferromagnetic and antiferromagnetic layers.
According to [9, 10], the Coulomb term predominates
over the exchange term in a wide temperature range,
T > TN, and determines the characteristic temperature
T0 of the formation of short-range antiferromagnetic
order; a spin density wave is induced by an increase in
the electronic polarizability in the interlayer close to the
FM/AFM interface. At the same time, the exchange
term determines the details of the spatial dependence of
the spin density wave and its orientation with respect to
magnetization S(±l) in the ferromagnetic plates. The
role played by this term can become very important in
the immediate vicinity of the T0 point, when ∆x sharply
decreases and the spin density wave is largely induced
by spin density redistribution in the interlayer under the
influence of the exchange field of the ferromagnetic
plate. The critical temperatures in the Fe/Cr system are
T0 ≈ 550–600 K, TN ≈ 311 K, and TC ≈ 1040 K (TN <
T0 < TC). We assume that interlayer thickness L is larger
than 25–30 Å.

Formally, the problem can be formulated as follows.
In [9, 10], thermodynamically equilibrium states of
functional (2) were studied only under the condition

FV
1
2
--- f V x,d

l–

l

∫=

f V c1D2 c2v F
2 D'2 c2D4,+ +=

FS
ν
4
--- D2 l( ) D2 l–( )+( )=

+
1
2
--- A l( )D l( ) 1–( )N 1+ A l–( )D l–( )+( ).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
A(l) = ±A(–l), that is, for the collinear orientation of
iron moments. Only one D(x) vector function compo-
nent (∆y or ∆z) was assumed to be nonzero, and the
energetically optimal configuration of the spin density
wave at a given (parallel or antiparallel) mutual orien-
tation of A(±l) vectors and at a fixed number of mono-
layers N (even or odd) in the interlayer was calculated.
Below, we analyze a more general (and, as it turns out,
much more complex for calculations) situation when
the A(±l) vectors have mutual orientations character-
ized by arbitrary angles ψ (0 < ψ < π), that is, are non-
collinear. At the first stage, the ψ angle and the number
of monolayers N play the role of given external param-
eters, and the optimization of functional F[D] [Eq. (2)]
is performed by conditionally varying it with respect to
the two-component (∆y, ∆z ≠ 0) vector order parameter
[Eq. (1)]. At the second stage, the obtained D(x) solu-
tion is used to calculate F(ψ, N), and the most energet-
ically favorable configuration for magnetizations S(±l)
in iron layers is determined. Lastly, the limits of the
applicability of the developed approach are analyzed. It
turns out that this approach can conveniently be used to
fairly approximately model the influence of interface
roughness on the formation of spin density waves if
monosteps are spaced well apart, terraces are broad,
and the interlayer is not too thin.

3. THE STRUCTURE OF SHORT-RANGE 
ANTIFERROMAGNETIC ORDER 

WITH A NONCOLLINEAR SPIN DENSITY WAVE

Varying functional F[D] [Eq. (2)] with respect to
order parameter D(x) yields the self-consistency equa-
tion

(6)

with the boundary conditions

(7)

The D = 2c2 / |ν| parameter (the spatial scale related
to charge density redistribution near the interface
known as “interpolation length”) weakly depends on
temperature in the model under consideration. The
A(±l) vector is given in the form

(8)

where A > 0, which corresponds to antiferromagnetic
exchange at the Fe/Cr interface, and ψ is the angle
between the magnetization directions in the ferromag-
netic plates. Earlier, only the situations with ψ = 0, π
were considered, when only one D(x) vector component
(∆y or ∆z) was nonzero, and it proved possible to obtain
exact solutions to problem (6), (7) [9, 10]. These were
classified as one symmetrical ∆+(x) and two antisym-

v F
2 c2D'' c1D 2c2D3–– 0=

D' l±( ) 1
D
----D l±( ) 1±( )N A l±( )

2c2v F
2

---------------++− 0.=

v F
2

Ax l±( ) 0, Ay l±( ) A ψ/2( ),sin±= =

Az l+−( ) A ψ/2( ),cos=
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metric (x) solutions with respect to the replace-
ment x  –x. Each solution had its own definite exist-
ence region in the (T, L) phase diagram.

Consider vector solutions to problem (6), (7) given
in form (1). If the number of monolayers N is odd (if N
is even, it is easy to see from (5), (7), and (8) that all cal-
culations will be identical except for the substitutions
ψ  ψ – π, ∆z  ∆y, and ∆y  –∆z, D(x) will be
sought in the quasi-helicoidal form

(9)

where ∆(x) > 0 is the modulus and Θ(x) is the order
parameter phase; this phase takes on the values Θ(±l) =
π ± ϕ/2 at interlayer boundaries in the selected refer-
ence system for counting angles. The ϕ = Θ(+l) – Θ(–l)
angle characterizes antiferromagnetic structure sloping
in the interlayer (0 < ϕ < π). We therefore have Θ(±l) =
π ± ψ/2 at ϕ = ψ, which corresponds to the strictly anti-
parallel mutual orientation of the s and S vectors at the
corresponding Fe/Cr interfaces and to a minimum of
the FS surface contribution to thermodynamic potential
at a fixed ∆(±l) amplitude. The problem of the ratio
between the ϕ and ψ angles optimal from the point of
view of the total energy F of the system has no obvious
solution. The point is that changes in ∆(x) and Θ(x) are
stringently related to each other. This relation is deter-
mined by a system of two nonlinear equations obtained
by substituting (9) into (6),

(10)

(11)

where C and B are real constants of integration, which
determine the type of the solution. The equality B = 0
corresponds to a scalar antiferromagnetic structure with

Θ(x) = const, and the ∆+(x) and (x) functions
mentioned above then satisfy (11) (see [9, 10]). If B ≠
0, which corresponds to a vector antiferromagnetic
structure, (11) with c1 > 0 has two different solutions,
which are bounded in magnitude in the |x | ≤ l segment.
These solutions can be written in terms of the Jacobi
elliptic functions [12]. An analysis shows that, in the
temperature range of interest to us, only one solution
exists. This solution is characterized by the following
spatial amplitude and phase distributions:

(12)

∆–
1 2,( )

∆z x( ) ∆ x( ) Θ x( ),cos=

∆y x( ) ∆ x( ) Θ x( ),sin=

v F
dΘ
dx
------- B

∆2
-----,=

v F∆d∆
dx
------- 

 
2

∆6 c1

c2
----∆4 C∆2 B2,–+ +=

∆–
1 2,( )

∆ x( )
v Fk'

ξ
---------- λξ

l
------ 

 
2

nc2 λx
l

------ k, 
  β–

1/2

,=

λ 1
ξ
--- 1 3βk'2–

1 2k'2–
---------------------

1/2

,=
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(13)

Here, k is the modulus of the elliptic function and k' =

 is an additional modulus, 0 ≤ k ≤ 1. The region
of allowed parameter β values is limited by the condi-
tions β ≥ β+ for k2 ≤ 1/2 or β+ ≥ β ≥ 0 for k2 ≥ 1/2. These
conditions are related to the characteristic lengths of the
system and to the ψ – ϕ difference angle by boundary
conditions (7). It follows from (7) that B ∝  Asin[(ψ –
ϕ)/2]; that is, only the state with a linearly polarized
spin density wave is possible in the absence of
exchange coupling at the interface (A = 0). If A ≠ 0, the
formation of a state with a vector order parameter of
type (9) should necessarily be accompanied by the frus-
tration of exchange couplings at the interfaces; in other
words, ψ – ϕ ≠ 0.

Constraints (7) for solution (12), (13) can be written
in the form

(14)

(15)

where

(16)

These equations together with (13) determine the
parameters (k, β, and ϕ) of the D(x) vector structure at
x = ±l. Unfortunately, (14)–(16) can only be analyzed
numerically in the whole range of parameter values. In
several important limiting cases, such an analysis can,
however, be performed analytically. For instance, near
the T0(l) temperature, which determines the upper
boundary of the existence of short-range order with a
spin density wave induced by a charge flow, we have
k'2 ! 1 [9, 10].

Assuming k' to be small to the extent that
(k'exp(l/ξ))2 ! 1, we can approximate the elliptic func-

Θ x( ) B
v F

------ xd

∆2 x( )
------------- π,+

0

x

∫=

B2 v Fk'
ξ

---------- 
 

6 1 k2+( ) 2 k2–( )
2k2 1–( )2

--------------------------------------β β β+–( ) β β––( ),=

β+
1

2 k2–
-------------, β–

k2

k'2
----- 1

1 k2+
--------------.= =

1 k2–

P
B
v F

------ ψ ϕ–
2

------------- 
 cot ,=

P2 B
v F

------ 
  2

+
Aλk'

2c2v Fl
----------------- 

  2

nc2 λ k,( ) β 1
λξ
------ 

 
2

– ,=

P
v Fλk'

l
-------------- 

 
2 λ

l
---sn λ k,( )dn λ k,( )

cn3 λ k,( )
----------------------------------------

=

–
1
D
---- nc2 λ k,( ) β 1

λξ
------ 

 
2

– 
 .
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tions in (12) and (13) by hyperbolic ones [12]. This sub-
stantially simplifies (12)–(15), and we can write

(17)

(18)

Setting x = ±l in (18), we obtain the following relation
between β and angle ϕ:

(19)

∆ x( )
v Fk'

ξ
---------- x

ξ
-- 

 2 β–cosh
1/2

,=

Θ x( )tan β
1 β–
------------

x
ξ
-- 

  .tanh=

1
β
--- 1

1
ξ
--- 

  ϕ
2
--- 

  .cot
2

tanh
2

+=
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In the k'2 ! 1 limit, (14) determines the relation
between the ϕ and ψ angles,

(20)

Note that the condition ξ/D = tanh(l/ξ), which reduces
the right-hand side of (20) to zero, determines tem-
perature T0(l). Above this temperature, only a solu-
tion with a small ∆(x) amplitude induced by a weak
exchange field A(±l) at the interface exists. By sim-
plifying (15) at T > T0, we obtain the k' parameter in
the explicit form

ϕ
2
--- 

 tan
ψ
2
---- 

  l/ξ( )tanh ξ /D–
l/ξ( )coth ξ /D–

--------------------------------------.tan=
(21)k'2

Aξ2

2c2v F
3

---------------
 
 
  3

l
ξ
-- 

 cosh
2 β–

l
ξ
-- 

 tanh
l
ξ
-- 

 cosh
2 ξ

D
---- l

ξ
-- 

 cosh
2 β–– 

 
2

β 1 β–( )+

-----------------------------------------------------------------------------------------------------------------------------.=
It is interesting to trace the transition to collinear solu-
tions in (19)–(21). If ψ  0, then ϕ  0, β  0,
and ∆(x) ∝  cosh(x/ξ); if ψ  π, then ϕ  π, β  1,
and ∆(x) ∝  sinh(x/ξ). The ∆(l) amplitudes for ψ = 0 and
ψ = π coincide with exponential accuracy if l @ ξ,

(22)

and are strongly different if l ! ξ,

(23)

The region of the applicability of the small-amplitude
approximation to spin density waves in solving the
problem at temperatures above T0(l) can be estimated as

(24)

A closer approach to the T0(l) point requires including
terms of higher order in k'2 in (12)–(16). This leads to
very cumbersome calculations, which cannot be per-
formed within the scope of this work.

Consider the T < T0(l) temperature region, within
which there exists a solution with the ∆(x) spin density
wave amplitude induced by a charge flow at the inter-
face even in the absence of exchange coupling, that is,
at A = 0. The D0(x) = nz∆+(x) solution linearly polarized
along nz and symmetrical with respect to x, which is
most favorable energetically in the whole range of
model parameter values at A = 0 [9, 10], can naturally
be used as a zeroth approximation with respect to the
exchange potential. This solution is easy to obtain from

∆ l ψ = π,( )
∆ l ψ = 0,( )
---------------------------- 1 2l

ξ
-----– 

  ,exp∝–

∆ l ψ = π,( )
∆ l ψ = 0,( )
---------------------------- l

ξ
-- 

 
2

.∝

Aξ2

2c2v F
3

---------------
 
 
  2

 ! 
l
ξ
-- 

 tanh ξ
D
----– 

 
2

.

(12), (14), and (15) at A = β = ϕ = 0. The only unknown
parameter that remains, k', is determined by the nontriv-
ial solution to (16) at P = β = 0. Let us denote this
parameter by k' =  (k = k0) and find the first nonvan-
ishing correction to D0(x), which appears and increases
as A deviates from zero. According to (12)–(15), the ϕ
angle is related to the β parameter as follows:

(25)

(26)

where E(λ, k) is the incomplete elliptic integral of the
second kind and the argument λ0 = λ (β = 0, k = k0).
Changes in k are given by

(27)

These equations are noticeably simplified for a thin

interlayer (l ! D,  ! 1),

(28)

(29)

k0'

ϕ 2 β
k0

---------- l
ξ
--

E λ0 k0,( )
λ0

---------------------- k0
'2– 

  ,=

β Aξ2

2c2v F
3
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1 2k0

'2–

k0k0'
----------------------nc λ0 k0,( ) ψ

2
---- 

  ,sin=

d

d k2( )
------------- λsn λ k,( )dc λ k,( )( )

k k0 β, 0= = k2 k0
2–( )

=  
Aξ l

2c2v F
3
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1 2k0

2–

k0'
---------------------cn λ0 k0,( ) ψ

2
----.cos

λ0
2

ϕ 2k0l β/ξ ,=

β Aξ2

2c2v F
3

---------------
1 2k0

'2–

k0k0'
---------------------- ψ

2
---- 

  ,sin=
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(30)

where

Hence it follows that the region of the applicability of
our approach at T < T0(l) and l ! D is limited by the ine-
quality

(31)

The corresponding equations for a thick interlayer
are obtained by applying a more complex procedure
involving the expansion in the small parameter
exp(−2l/ξ). This yields

(32)

(33)

(34)

where

Equations (32)–(34) are valid as long as

To summarize, we showed how a weak deformation
d(x) = D(x) – D0(x) of the order parameter, which
appears because of interaction between a spin density
wave and plate moments at the interface, could be

described via several parameters (ϕ, , k2 – ) ~ A.

4. THE ENERGY OF ANTIFERROMAGNETIC 
ORDERING WITH A NONCOLLINEAR

SPIN DENSITY WAVE

Substituting the D(x) function that corresponds to a
thermodynamic potential extremum into (2)–(5) yields
the energy of noncollinear state (11)–(13) in the form

(35)
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2
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3
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Dk0
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2
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4D
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ξ
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D
ξ
---- 

 
2
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  1

4
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1 D/ξ( )2–
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1– ψ/2( )cos
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'2 16 2l

ξ
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  ξ D–
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ξ
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F ψ( ) FV ψ( ) FS ψ( ),+=
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(36)

(37)

These equations are valid for an odd number N of chro-
mium monolayers. The (k, β, ϕ) parameters are related
by (12) and (14)–(16) to the (l, D, ξ, A) nanostructure
characteristics and to the ψ angle. The F(ψ) depen-
dence, which is of primary interest to us, cannot be
written out explicitly at arbitrary (l, D, ψ, A) values. We
will therefore concentrate on several limiting situa-
tions.

At a high temperature T > T0(l), in the region where
the small-amplitude spin density wave approximation
(24) is applicable, we can expand (36) and (37) in pow-
ers of the small parameter (k'exp(l/ξ))2 ! 1 and use
relations (19)–(21). For odd N values, cumbersome cal-
culations give

(38)

Here, in the approximations of the lowest order in
parameter A, which we are interested in, we have (F0,
F1) ~ A2 and F2 ~ A4, where (F0, F1) < 0 and F2 > 0. The
necessity of retaining terms of the order of A4 will be
justified below. The F0, F1, and F2 coefficients are com-
plex functions of the lengths (l, D, ξ); these functions
will not be written in the general form. For thin inter-
layers with l ! ξ, we obtain

(39)

and, for thick layers with l @ ξ, we have

(40)
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It follows from (38)–(40) that the J(ψ) = F(ψ) – F0
effective potential of magnetic moment interactions at
T > T0(l) is a value of the second order in A [because
∆(x) ~ k' ~ A—see (17) and (21)], which rapidly
increases in the T  T0(l) limit. Note also that the

term containing  in (38), which is of funda-
mental importance, as will be made clear below, is
determined by the A4 value and is always positive.
Clearly, when using (39) and (40), we must bear in
mind the conditions of the applicability of the
approximations used to obtain these equations [see (24)],
that is,

(41)

for thin layers and

(42)

for thick ones. It follows that (38) has the form of the
effective energy in the biquadratic exchange model (see
Introduction), in which the ratio between the bilinear
and biquadratic components is much larger than one,
|F1/F2| @ 1.

Next, consider the temperature region below the
T0(l) point, where an explicit expression for F(ψ) can
also be obtained in certain instances. For instance, if
(31) is satisfied, Eqs. (28)–(30) can be used to obtain
F(ψ) for odd N in the form

(43)

in the approximation of the lowest order in A, which we
are interested in. We have (F0, F1/2) < 0, and F0 is inde-
pendent of A, whereas F1/2 ~ A. For a thin interlayer
(l ! ξ), we can write

(44)

whereas, for a thick layer (l @ ξ), we have

(45)
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Equation (43) does not contain terms of the order of A2

or of higher orders in A [note that these are, in particu-
lar, F1cosψ- and F2cos2ψ-type terms, such as are
present in Eq. (38) for the T > T0(l) region, where F1 ~
A2 and F2 ~ A4], because calculating them is a very labo-
rious task, and, below the T0(l) point, the expansion
(43) terms proportional to F0 and F1/2 predominate.
Equation (43) fundamentally differs from (38) by the
presence of the term linear in A (generally, by the pres-
ence of terms with odd powers of A). As a result, the
angular dependences F(ψ) in (38) and (43) have sub-
stantially different characters. What is more, unlike
(38), dependence (43) does not at all reduce to the for-
mula for the effective energy in the biquadratic
exchange model.

Consider the physical meaning of this difference. If
T > T0(l), short-range antiferromagnetic order in the
chromium layer only arises to the extent to which it is
induced by exchange interactions with ferromagnetic
iron moments, and the spin density wave amplitude
∆(x) ~ A. It follows that the exchange contribution to
energy begins with terms quadratic in A. If T < T0(l),
short-range antiferromagnetic order in the chromium
interlayer is induced by charge density redistribution
close to the Fe/Cr interface even in the zero order with
respect to A, and the spin density wave formed in such
a way is oriented in the exchange field created by the
ferromagnetic moments of iron plates. The exchange
contribution to the energy F(ψ) therefore begins with
terms first-order in A. Equations (38) and (43) therefore
correspond to different aspects of exchange interaction
at the Fe/Cr interface, namely, the induction and the ori-
entation of spin density waves above and below the
T0(l) temperature of short-range antiferromagnetic
order formation, respectively.

Note in conclusion that, for an even number N of
monolayers in the chromium interlayer, the ψ  ψ –
π substitution should be made in (38) and (43). Clearly,
we then have cosψ  –cosψ in (38) and
cos(ψ/2)  sin(ψ/2) in (43). It follows that energy
F(ψ) sharply changes as a result of a small (by one
monolayer) change in the thickness of the chromium
interlayer, which is an important property of the system
under consideration.

Equations (38) and (43) allow us to draw the unam-
biguous conclusion that the absolute minimum of F(ψ)
corresponds to ψ = 0 for odd N and ψ = π for even N. If
the ψ angle is determined self-consistently rather than
by some external factor such as the action of a magnetic
field, only collinear states corresponding to either fer-
romagnetic or antiferromagnetic orientations of Fe
moments in the neighboring plates exist under thermo-
dynamic equilibrium conditions at ideally smooth
interfaces, when all interlayer cross sections contain
equal numbers of monolayers N. The situation with
nonideal interfaces, however, is unlikely to be equally
simple.
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5. THE INFLUENCE OF INTERLAYER 
THICKNESS FLUCTUATIONS 

ON THE FORMATION 
OF NONCOLLINEAR STATES

As mentioned in the Introduction, the problem of
the interaction of a spin density wave with a nonideal
(rough) interface in Fe/Cr-type multilayers is exceed-
ingly complex because of the necessity of taking into
account many factors that influence this interaction. On
the one hand, fluctuations (both large- and small-scale)
of charge and exchange interaction potentials between
Fe and Cr are observed close to the interface. These
fluctuations are related to interdiffusion, frustration of
interatomic bonds, and other defects formed during
structure growth. On the other hand, spin density waves
experience deformations both in the direction of struc-
ture growth (nx) and in the plane of the interface (ny ,
nz). It follows that, formally, initial model (2)–(5)
should be complicated at least in two respects: first, the
ν(r) and A(r) parameters should be considered random
functions of the r = (x, y, z) spatial coordinate, and, sec-
ondly, we must abandon the one-dimensional approxi-
mation in calculating D(r). Solving a three-dimensional
self-consistency equation for order parameter D(r) at a
given configuration of sources (ν, A) followed by aver-
aging over these configurations is exceedingly complex
if not impossible. Averaging over small-scale (of the
order of interatomic distances) configurations can in
principle be performed within the framework of the
standard model of the interaction of spin density waves
with point impurities [11], but the influence of large-
scale fluctuations poses a much more serious problem,
which we will not discuss in this work. In addition to
the two factors specified above, there is a “geometric”
factor that influences the interaction of spin density
waves with a nonideally smooth interface. This factor is
related to changes (fluctuations) of interlayer thickness
in the presence of inhomogeneities of various types on
the surface that separates chromium and iron layers.
Indeed, the surface contribution FS to the total energy of
the structure sharply changes when the thickness of the
interlayer changes by as little as one monolayer, which
gives us a hint that the role played by the geometric fac-
tor under consideration may be fairly important. The
strong dependence of energy F(ψ, N) on the number
(odd or even) of monolayers in the interlayer leads us to
the idea that this effect can qualitatively be taken into
account by a comparatively simple model in analyzing
the formation of noncollinear spin density waves in
structures with almost ideally smooth interfaces. 

Consider a surface with monosteps spaced far apart,
that is, with linear defects which jumpwise change the
number of chromium monolayers in the interlayer by
one. These monosteps separate vast ideally smooth ter-
races, where the number of monolayers in the interlayer
does not change. Let us divide the whole structure into
fragments containing either an odd or an even number
of monolayers in the interlayer in the cross section nor-
JOURNAL OF EXPERIMENTAL 
mal to the interface. Let Λ be the fraction of fragments
with odd N and (1 – Λ) be the fraction of fragments with
even N. We assume that all fragments are characterized
by the same ψ angle between iron moments in the iron
plates. We can then, in a very crude approximation,
write the total energy of the system as the partial sum of
the energies of separate fragments,

(46)
where F(ψ) is given by (38) or (43). Clearly, (46) com-
pletely ignores the contribution of spin density wave
deformations in interlayer regions adjoining the inter-
face in the vicinity of monosteps. Indeed, it is natural to
suggest that the value and form of the D(r) order param-
eter at a large distance from monosteps should insignif-
icantly differ from the corresponding characteristic in
an interlayer with ideally smooth boundaries and with
the same N and ψ values. Of course, spin density waves
experience rearrangements close to monosteps (for
instance, domain walls are formed), and these distur-
bances extend over the ξ⊥  characteristic length over the
interface in the (ny, nz) direction. The simplest esti-
mates show that ξ⊥  ! ξ in the linear defect model in a
system with a spin density wave (e.g., see [11]), and the
domain wall energy is small compared with the contri-
bution of terraces included in (46) if ξ⊥  ! l⊥ , where l⊥
is the characteristic terrace length in the ny or nz direc-
tion. Generally, calculations of the spin density wave
deformation energy go beyond the one-dimensional
approximation and require a special study, which is out-
side the scope of this work.

Let us use (46) to estimate the influence of interlayer
thickness fluctuations on the formation of a thermody-
namically equilibrium noncollinear state. At T > T0(l),
(46) becomes

(47)

where J1 = (2Λ – 1)F1, J2 = F2 > 0, and F(π/2) = F0 < 0,
in agreement with (38)–(40). The effective interaction
energy between the ferromagnetic plates E = 〈F(ψ)〉  –
F(π/2) has the form characteristic of the biquadratic
exchange model (see Introduction), and the J1 bilinear
potential is large compared with the J2 biquadratic
potential (|J1| > 2J2) at almost all Λ in the 0 ≤ Λ ≤ 1
interval except a narrow |Λ – 1/2| ! 1 region, where the
relation J1 ≤ 2J2 may hold. We obtained these estimates
using the |F1| @ F2 inequality, which follows from
(38)–(40). If |J1| > 2J2, the 〈F(ψ)〉  function given by
(47) reaches a minimum either at ψ = 0 or at ψ = π.
However, if the condition |J1| ≤ 2J2 is met, the ψ0 =
arccos(–J1/2J2) angle corresponds to the minimum of
〈F(ψ)〉; that is, a noncollinear state is formed. At Λ =
1/2, we have ψ0 = π/2; that is, iron moments are ori-
ented mutually orthogonally in the neighboring plates.

In the T < T0(l) temperature region, (46) becomes

(48)

F ψ( )〈 〉 Λ F ψ( ) 1 Λ–( )F π ψ–( ),+=

F ψ( )〈 〉 F π/2( ) J1 ψ J2 ψ,cos
2

+cos+=

F ψ( )〈 〉 F
π
2
--- 

  J+
ψ
2
---- 

 cos J–
ψ
2
---- 

  ,sin+ +=
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where J+ = ΛF1/2, J– = (1 – Λ)F1/2, F(π/2) = F0 < 0, and
F1/2 < 0, in agreement with (43)–(45). Note that, like
(43) above, (48) does not contain J1cosψ- and
J2cos2ψ-type terms, which are always small in the
approach that we use. The angular dependence of the
E = 〈F(ψ)〉  – F(π/2) effective exchange energy is funda-
mentally different from its analogue in the biquadratic
exchange model. A minimum is attained at the ψ0 =

2arccos(Λ/ ) angle; that is, ψ0 ≠ (0, π) at
all Λ different from 0 and 1. If Λ  1/2, ψ0 tends to
π/2, as in the biquadratic exchange model. Note that ψ0
only depends on the Λ parameter, which characterizes
geometric perfection of the Fe/Cr interface, but is inde-
pendent of the set of (l, ξ, D, A) values. In this respect,
model (48) at temperatures T < T0(l) obviously differs
from model (47) at T > T0(l).

To summarize, even qualitative estimates by (47)
and (48) show that interlayer thickness fluctuations
caused by Fe/Cr interface nonideality play an important
role in the formation of noncollinear states. The region
of Λ parameters where such states exist is narrow at T >
T0(l), when spin density waves are induced by exchange
interactions at the Fe/Cr interface, and sharply broad-
ens at T < T0(l), when spin density waves are formed as
a result of charge density redistribution near the inter-
face. Such a difference in the behavior of the system
above and below T0(l) is caused by strong short-range
antiferromagnetic ordering in the interlayer at T < T0(l),
which results in an “orientation” mechanism of interac-
tions between spin density waves and magnetic
moments in the ferromagnetic plates. This mechanism
is in principle absent when interlayers are paramagnetic
or when they are antiferromagnetic at temperatures
above T0(l); it cannot be reproduced within the frame-
work of the standard indirect exchange scheme of the
RKKY type.

6. CONCLUSION

The mechanism of formation and the conditions of
the existence of noncollinear states in the three-level
model described by (2)–(5) were considered in the pre-
ceding sections in much detail. The problem of using
these results to interpret the experimental data on
Fe/Cr-type multilayers, however, requires some refine-
ments to be made, primarily concerning the limits of
the applicability of model (2)–(5) itself.

A natural limitation on interlayer thickness L from
below is the inequality L > 2ξ0, which allows the “sur-
face” and “volume” contributions to thermodynamic
potential (2) to be separated. Equally obvious is the
lower temperature limit T > TN, where TN is the temper-
ature of long-range ordering in the antiferromagnetic
interlayer. The last inequality is, however, only a neces-
sary but not sufficient condition of the applicability of
our model. In reality, temperatures are limited by the

Λ2 1 Λ2–( )+
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condition T > T2 ≥ TN, where T2 is the temperature
below which the use of the density of the volume con-
tribution to the thermodynamic potential in form (4) is
inadmissible, and taking into account terms of higher
order in D(x) and D'(x) in the Ginzburg–Landau expan-
sion is necessary (more details can be found in [11]). It
can be stated with much confidence that both applica-
bility conditions specified above are fulfilled at T >
300–350 K and L > 30–40 Å.

One more restriction is related to the requirement of
uniform ferromagnetic layer magnetization; this
requirement is not explicitly present in (47) and (48)
but is implied and corresponds to the absence of ferro-
magnetic layer separation into magnetic domains. In all
probability, this condition is satisfied in fairly thick
(40–50 Å or more) ferromagnetic layers, but can be
violated in thinner layers, especially if the Fe/Cr inter-
face contains monosteps. In the presence of monosteps,
the formation of domain walls in Fe plates in the imme-
diate vicinity of monosteps, which then separate
regions with opposite magnetization polarizations in
the ferromagnetic layer, can be more favorable energet-
ically than the formation of domain walls in the Cr
interlayer, contrary to what has been suggested above.
A scalar spin density wave with a ∆+(x) amplitude then
forms in both antiferromagnetic interlayer fragments,
one with odd and the other with even N, separated by a
monostep. It is likely that precisely this situation arises
in three-layer Fe/Cr/Fe structures with a wedge-shaped
interlayer grown on a thick whisker and coated by a thin
(about 20 Å) iron film. The domain structure of a thin
iron plate observed by scanning electron microscopy
with polarization analysis [1] is direct evidence of
oscillations of interlayer exchange coupling caused by
monolayer changes in the thickness of the chromium
interlayer, whereas the “noncollinear state” proper is
only formed in a narrow domain wall region near a
monostep at the Fe/Cr interface. This situation, which
corresponds to a magnetic structure geometry other
than that considered in this work, requires a special
study.

Taking into account the restrictions specified above
(thick ferromagnetic and antiferromagnetic layers and
high temperatures), consider some experimental data
which provide direct or indirect evidence of the exist-
ence of noncollinear states in Fe/Cr-type multilayers
and which can be interpreted in terms of the model that
we use. Neutron diffraction, transport, and magnetoop-
tical data have made it possible to roughly construct the
magnetic phase diagram (T, L) of the system under con-
sideration [1–3]. This diagram contains the high-tem-
perature (T > T0), intermediate (TN < T < T0), and low-
temperature (T < TN) regions, which have sharply dif-
ferent properties. In the T > T0 region, the state of the
interlayer is paramagnetic, the effective coupling
between neighboring plate moments is very weak [2],
and the structure virtually breaks up into independent
ferromagnetic layers separated by a nonmagnetic inter-
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layer. Below the T0 temperature (which substantially
depends on thickness L, especially when the interlayer
is comparatively thin: T0 ≈ 500 K at L ≥ 55 Å, and T0 ≈
600 K at L ≈ 15 Å), the effective coupling between
neighboring plate moments sharply increases [2], and,
in the intermediate temperature range TN < T < T0, a
quite peculiar magnetic state of the structure as a whole
is formed. According to [4, 5], this state is characterized
by strong short-range antiferromagnetic order, a non-
uniform spin density distribution across the interlayer,
and a substantial dependence of magnetic characteris-
tics on the properties of the interface between the mag-
netic and antiferromagnetic layers. Lastly, at T < TN, the
effective magnetic coupling between neighboring plate
moments again sharply decreases [2]; long-range anti-
ferromagnetic order of the type of an incommensurate
spin density wave, similar to that existing in bulk chro-
mium, arises in the interlayer; and the system repre-
sents a set of alternating ferromagnetic and antiferro-
magnetic layers with very weak interlayer interactions.

It follows that the TN < T < T0 temperature range is
the most interesting to study, but information about the
magnetic structure of the system at such temperatures is
very contradictory. In already mentioned work [5] on
the diffraction of neutrons on epitaxial Fe/Cr multilay-
ers, the transition between the intermediate and low-
temperature regions was smeared to a large extent
(almost over 100 K). This transition was interpreted by
the authors as a smooth change of phases with com-
mensurate and incommensurate spin density waves in
the chromium interlayer. On the other hand, Fe/Cr mul-
tilayers grown differently than in [5] were studied by
similar methods in [13]. In [13], no noticeable differ-
ence in the magnetic structure of the interlayer was
observed between the low-temperature and intermedi-
ate regions. According to the authors, the structure
experienced only the transition at TN from a phase with
an incommensurate spin density wave directly into the
paramagnetic state. Such discrepancies are usually
related to the strong influence of the quality of the inter-
face on the formation of spin density waves in chro-
mium interlayers; in our view, this influence is largely
a consequence of electron scattering by small-scale sur-
face potential fluctuations. From the point of view of
the possibility of formation of noncollinear states, pre-
cisely the TN < T < T0 intermediate region with short-
range antiferromagnetic order in the chromium inter-
layer is most promising, because strong magnetic cou-
pling between neighboring ferromagnetic Fe layers is
observed precisely at these temperatures. The results of
our analysis (see Section 5) predict a substantial
increase in interlayer coupling at TN < T < T0 compared
with the T > T0 temperature region. These results are in
a sense substantiated by experiments [5] on large-angle
neutron scattering in Fe/Cr superlattices with interlay-
ers L = 42 Å thick. Such experiments are very important
for directly determining the type of magnetic structure
in the temperature range of interest to us, and their
JOURNAL OF EXPERIMENTAL 
results clearly indicate the noncollinear character of
ordering of ferromagnetic layer magnetic moments and
the presence of helicoidal spin density wave compo-
nents in antiferromagnetic interlayers. The neutron dif-
fraction pattern with a multicomponent intensity
obtained in [5] could not be used to unambiguously
reproduce the shape of the spin density wave. The
authors therefore resorted to the so-called torsional
phenomenological model [7] for the purpose of data
processing in the spirit of helicoidal magnetic order
with a spin density wave. A preliminary analysis
showed that the microscopic noncollinear state model
suggested above is also in satisfactory agreement with
the results obtained in [5] and explains the observed
“three-peak” dependence of the intensity of neutron
scattering on wave vector k in the direction of structure
growth.

Indirect evidence of the existence of a noncollinear
state at TN < T < T0 can be found in works on Brillouin
scattering and magnetometry [1–4, 14] and on magne-
tization and magnetoresistance [1–3, 15]. Residual
magnetization M(H  0) in external field H mea-
sured in these works was close to half the saturation
magnetization. This result was interpreted by the
authors as a consequence of an almost orthogonal
mutual orientation of neighboring ferromagnetic lay-
ers, and rapid saturation of the M(H) dependence was
in conformity with the biquadratic exchange scheme.
We have not studied our model in an external magnetic
field yet because this problem is not so trivial as may
seem at first sight. The type of spin density waves can
change from symmetrical to antisymmetric in compar-
atively thick interlayers and a fairly strong field H, and
the corresponding ∆–(x) solution to the self-consistency
equation (see [10]) can be more energetically favorable
than the ∆+(x) solution obtained in this work in the
absence of an external magnetic field. As a result, a
structure with an amplitude domain wall of the spin
density wave within the interlayer or even at the inter-
face can form. Clearly, calculations of all these variants
are far beyond the scope of this work. Such calculations
are, nevertheless, necessary in prospect.

Work [6] holds a special position among other
works on the problem of the existence of noncollinear
states that we are considering. This work substantially
broadens the class of layered structures with antiferro-
magnetic ordering of the type of spin density waves in
interlayers between ferromagnetic plates. In [6], the
magnetic and transport characteristics of Fe/Cr1 – xFex

superlattices with x = 0.06 were studied. We cannot go
into details of this interesting investigation and will
only mention the main points. It was found that com-
paratively thick (L > 36 Å) interlayers were character-
ized by two antiferromagnetic ordering temperatures,
TN and T0. The low-temperature (T < TN) antiferromag-
netic phase unambiguously corresponded to the state
with a commensurate spin density wave, which was
observed in bulk Cr1 – xFex alloys with x > 0.024. The
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high-temperature (T > T0) phase was paramagnetic,
and, in the intermediate TN < T < T0 temperature range
approximately 150 K wide, a complex nonuniform
antiferromagnetic state with an unclear structure was
formed. As in Fe/Cr superlattices, effective coupling
between neighboring iron layers through the interlayer
was exceedingly weak at T > T0 and T < TN but sharply
increased in the TN < T < T0 temperature range. The TN

and T0 temperatures were interpreted in [6] as transition
points between two antiferromagnetic states and
between antiferromagnetic and paramagnetic states,
respectively. What is more, the special features of the
hysteresis of magnetization and magnetoresistance led
the authors of [6] to suggest that the magnetic state in
the TN < T < T0 temperature range was noncollinear, and
they made at attempt at describing it in terms of the
biquadratic exchange scheme. In our view, a thorough
study of the results obtained in [6] sheds light on sev-
eral interesting issues. Incidentally, one of these is quite
obvious: the TN temperature is not at all the transition
point between antiferromagnetic states with commen-
surate and incommensurate spin density waves, as is
claimed in the overwhelming majority of works
(including reviews [1–3]). Rather, this is, in agreement
with our model, the transition point between antiferro-
magnetic short- and long-range order states, which
have origins of different natures and different spin den-
sity wave structures.

Lastly, we would like to mention work [16] on fer-
romagnetic resonance in Fe/Cr superlattices. The
results obtained in that work are evidence of the forma-
tion of a noncollinear state and are interpreted in terms
of the phenomenological biquadratic exchange scheme.
Unfortunately, small antiferromagnetic layer thick-
nesses (from 7.6 to 10 Å) used in the systems studied in
[16] interfere with directly applying our model to ana-
lyze these experimental results. We, nevertheless, hope
that, basically, we reached a correct understanding of
the mechanism of formation of noncollinear states, and
the consistent theoretical approach suggested above
gives a qualitatively correct description of the experi-
mental situation in Fe/Cr-type multilayers even outside
the limits of its formal applicability.
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Abstract—A tunnel current through a heterostructure whose barrier contains quantum rings is calculated. The
plane of the rings is parallel to the barrier interface. In a magnetic field perpendicular to this plane, a tunnel
current at a fixed bias experiences Aharonov–Bohm oscillations under the variation of magnetic flux through a
ring; however, these oscillations are not strictly periodic. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of resonant tunneling of electrons has
a long history that actually dates back to the Ramsauer–
Tausend phenomenon (an abnormally small scattering
cross section of electrons by atoms at certain energies
of an impinging particle). The effect of impurities in the
barrier on the tunnel current was repeatedly discussed
as applied to solid state physics. In Schmidlin’s work
[1], the role of impurities was reduced to increasing the
tunneling transparency due to the local reduction of the
barrier height caused by the fluctuation potential of the
impurities. Kane [2] analyzed a doped p–n junction and
showed that a tunnel current can be increased (as com-
pared with a “pure” structure) due to transitions
between the “tails” of the density of states near the band
edges.

As far as we are concerned, Parker and Mead [3]
were the first who showed (by an example of the Schot-
tky barrier) that the presence of impurity levels in the
barrier makes the tunneling a two-step process, thus
considerably increasing the partial tunnel current at a
resonance energy as compared with a direct tunnel cur-
rent. The authors of [3] applied a kinetic method; i.e., it
was required that the balance condition had to be satis-
fied for particles arriving at the impurity level from the
semiconductor and outgoing from the impurity to the
metal electrode. Such an approach is classical and can
be applied under ordinary classical conditions that
allow one to neglect interference phenomena when cal-
culating the probability of a two-step transfer.

In [4], Chaplik and Entin developed a quantum the-
ory of resonant tunneling through a short-range impu-
rity center in a barrier (1D barrier + 3D impurity) and
showed that, in addition to the energy resonance, there
also is a geometric resonance in the tunnel current: the
peak current attains its maximum for a certain definite
position of the impurity in the barrier. Naturally, this is
the symmetry plane for a symmetric barrier; however,
1063-7761/02/9505- $22.00 © 0912
when a voltage is applied to the tunnel structure (which
is always the case in the experiment), the point of geo-
metric maximum is displaced, and the impurity centers
situated in the barrier successively “enter” or “leave”
the resonance. This results in a rather complicated
shape of the current–voltage characteristic, which has a
negative-slope region under certain conditions.

Larkin and Matveev [5] generalized the Bardeen
method of tunnel Hamiltonian to the case of resonant
tunneling through one or two short-range impurities
and determined the conductivity and the correlation
function of conductivity fluctuations in mesoscopic
semiconductor contacts.

All the aforementioned studies involved the impu-
rity centers with a single discrete energy level. For a
short-range impurity center, the resonance component
of the partial tunnel current is described by the Breit–
Wigner-type formula

(1)

where E0 is the particle energy on the impurity center,
E is the energy of the impinging particle, and Γ is the
tunneling width of the level.

If a barrier contains an impurity with several bound
states, or a quantum point, the problem can easily be
solved in the limit Γ ! ∆E, where ∆E is on the order of
the distance between the impurity levels (quantum-
point levels). In this case, the net current is a sum of res-
onance contributions and, represented as a function of
applied voltage V (i.e., difference between the Fermi
levels at the contacts), it has a staircase form.1 When a
magnetic field B is applied to the system perpendicular
to the heteroboundary, the tunnel current (for fixed V)

1 Until (under very large biases) the bottom of the conduction band
of the emitter becomes higher than the highest impurity level in
the barrier.

jres E( )
Γ2

Γ2 E E0–( )2+
----------------------------------,∝
2002 MAIK “Nauka/Interperiodica”



        

TUNNEL MAGNETOTRANSPORT IN HETEROSTRUCTURES WITH QUANTUM RINGS 913

                                                                                                                        
becomes a steplike and monotonic function of the field
because the number of resonance levels below the
Fermi level varies monotonically with the field.

All the aforesaid applies to the situation when the
tunneling occurs from a 3D emitter and, under an
applied magnetic field, the spectrum of the particles
impinging on the barrier remains continuous. In the
case of a 2D emitter, the electron spectrum becomes
discrete both in and “before” the barrier, and the cur-
rent–voltage characteristic represents a series of spikes
corresponding to resonance transitions between two
systems of discrete levels.

The aim of the present study is to consider the tunnel
transport through a heterostructure containing quantum
rings in its plane. From general considerations, one
should expect that the tunnel current will exhibit the
Aharonov–Bohm effect under the application of a per-
pendicular magnetic field to the system. Indeed, we will
show below that the tunnel current oscillates under the
variation of the magnetic field (flux), although, gener-
ally, these oscillations are neither monochromatic nor
strictly periodic. Recall that progress in technology has
led to the development of ensembles of quantum rings
with the radius on the order of the Bohr radius in a rel-
evant material [6]. Experiments on tunnel magne-
totransport may prove to be a useful means for investi-
gating such structures.

2. SPECTRUM AND WAVE FUNCTIONS 
OF A QUANTUM RING

We assume (according to the results of [6]) that a
ring consists of a narrowband material (for example,
InAs) and is immersed into a barrier, which is a wide-
band semiconductor (GaAs). The energy diagram of
the system, corresponding to the distance from the ring
center equal to its radius, is shown in Fig. 1; the coordi-
nate z is measured along a normal to the heterostructure
(the tunnel current flows in this direction). Thus, the
interior and exterior regions of the ring are occupied
with the barrier material, and the resonant tunneling
corresponds to the particle trajectories that pass
through the points on the ring.

Obviously, the model of one-dimensional ring
|Ψ|2 ∝ δ (r – a)δ(z – z0) is insufficient for solving the
problem posed because the resonant tunneling is deter-
mined by the overlap of the wave function of a particle
impinging on the barrier and that of a particle bound in
the ring. We will represent the potential of the ring in
cylindrical coordinates by the expression

(2)

where U0 > 0, a is the Bohr radius, z0 is the position of
the ring in the barrier plane, and u(z) is a dimensionless
function that is everywhere positive and has a sharp
maximum at z = z0 (see Fig. 1). Assume that the poten-
tial well is sufficiently narrow along z so that the wave

U R( ) U0δ r a–( )u z z0–( ),–=
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function of the bound state cannot appreciably change
over a distance on the order of the width of the function
u(z). Let u(q) be the Fourier transform of u(z). Then,
after separating the variable ϕ, the Schrödinger equa-
tion in the q representation in z is expressed as

(3)

Here, E = –"2k2/2M; M is the electron mass in the bar-
rier, where the electron mainly resides according to
model (2); m = 0, ±1, ±2, … is the azimuthal quantum
number; and

(4)

Applying a conventional method to solving the
radial equation (3) with the potential in the form of a δ
function and determining ψ(r, z0) in a self-consistent
manner, we obtain from (4) the following equation for
the energy eigenvalues in the ring:

(5)

where I|m| and K|m| are Bessel functions of imaginary
argument of the first and third kind, respectively. As is
clear from (5), one cannot replace u(z) by a δ function
because all the energy levels Em in the ring will tend to
minus infinity in this case. However, as will be clear
from the analysis below, the main, resonant, part of the
rotational spectrum and the tunneling conductivity
depends on the form of the potential through a single
parameter E0. Hence, the ring model (2) provides a
fairly reasonable approximation. For moderately small
radii of the ring, the rotational quantum "2/2Ma2 is
much less than the depth of the ground state |E0 |; i.e.,
ka @ 1. In this limit, one can easily derive the following

∇ r
2ψ r q,( ) k2 q2 m2

r2
------+ + 

  ψ r q,( )–

+
2MU0

"
2

---------------δ r a–( )ψ r z0,( )u q( ) 0.=

ψ r z0,( )
1

2π
------ ψ r q,( )e

iqz0 q.d∫=

1 λa K m a k2 q2+( )
∞–

∞

∫=

× I m a k2 q2+( )u q( )dq,

0 W zz0

Vb

E0

r = a

Fig. 1. The energy diagram of the structure with quantum
rings.
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asymptotic expression from (5) (the argument of the
Bessel functions is greater than their index):

(6)

Here, the second term corresponds to the spectrum of a
one-dimensional ring (a plane rotator), while the third
term represents a correction due to the finite width of
the electron wave function spread out near the circle
r = a.

In what follows, we need the wave functions of the
bound states corresponding to energy Em. These states
are solutions to Eq. (3) that are finite at zero and
decrease as r  ∞; they are represented as follows:

(7)

where cm is a normalizing factor.
One can see that the wave functions depend on the

form of u(z) only through km, i.e., ultimately through
the parameter E0.

3. TUNNEL CURRENT IN THE MODEL
OF A δ-SHAPED SOLENOID

Suppose that an infinitely thin solenoid with mag-
netic flux Φ passes through a quantum ring situated
inside the barrier of a tunnel structure. The flow of tun-
neling electrons is parallel to the solenoid. The energy
levels in the one-dimensional ring are classified accord-
ing to the momentum m = 0, ±1, ±2. Accordingly, a
plane wave incident to the system is expanded in terms
of cylindrical harmonics:

where Ω is a normalizing volume, J is a Bessel func-
tion, v  = |m + Φ/Φ0|, r and ϕ are cylindrical coordinates
in the plane of the structure, and k|| is the projection of
the wave vector of the incident wave onto this plane; the
number m is preserved during tunneling.

The wave functions of the bound states in the ring
and the spectrum of appropriate energies are given by
formulas (5)–(7) in which the index m of the Bessel
functions should be replaced by v.

To determine the tunnel current, we apply the
Bardeen method and calculate the tunnel width Γ of the

Em E0
"

2m2

2Ma2
--------------

"
2m2 m2 5/2+( )
2Ma2 k0a( )2

-------------------------------------.+ +=

ψm r a z,<( ) cm K m a km
2

q2+( )
∞–

∞

∫=

× I m r km
2 q2+( ) q z z0–( )[ ] dq,exp

ψm r a z,>( ) cm I m a km
2

q2+( )
∞–

∞

∫=

× K m r km
2 q2+( ) q z z0–( )[ ] dq,exp

Ψ r( )
1

2πΩ
--------------- Jv k ||r( ) imϕ( ),exp∑=
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bound state and the transition amplitudes Tp and Tp'
from the state in the ring to the left and right contacts,
respectively. As a result, we obtain

(8)

where Ep and Ep' are, respectively, the energies of the
electrons impinging on and transmitted through the
barrier and Tp(p') = Em〈Ψp(p')|Ψm〉  are the overlapping
integrals of the functions of the bound and free states,
respectively. The tunneling probability from state p (on
the left) to state p' (on the right of the barrier) through
the level Em is given by

(9)

For the tunnel current, we have

where f is the Fermi–Dirac distribution function, µ is
the chemical potential, and V is the voltage applied to
the barrier.

For the conductivity of the system at T = 0 K, we
have

(10)

where

Vb is the barrier height, W is its width, and kb =

.

Recall that, here, the energies Em are functions of the
combination |m + Φ/Φ0|; therefore, the tunneling con-
ductivity g(Φ), being a sum over m from –∞ to +∞, is a
periodic function of the magnetic flux with period Φ0.
The numerically calculated values of g(Φ) are shown in
Fig. 2. Because the model with a δ-shaped solenoid has
a purely illustrative character, we performed the calcu-
lation for the case when electrons inside and outside the
barrier have identical effective masses.

Γ Γ l Γ r,+=

Γ l r( ) π T p p'( ) Ep p'( )( ) 2δ Ep p'( ) Em–( ),
p p'( )

∑=

ωp p'
2π
"

------
T p

2 T p'
2

Γ2 Ep Em–( )2+
-------------------------------------δ Ep Ep'–( ).=

I e ωp p' f Ep µ–( ) f Ep' µ– eV+( )–{ } ,
p p',
∑=

g Φ( ) g0 Em
2

m

∑=

×
I m Φ+ km

2 a2θ1
2/2( )I m Φ+ km

2 a2θ2
2
/2( )

1
π
6
---

m Φ/Φ0+( )2 1/4–
kma

--------------------------------------------+ 
  Γ2 µ Em–( )2+( )
--------------------------------------------------------------------------------------------------------,

θ1
2 Vb 1 Em/Vb–

kbz0Em

----------------------------------, θ2
2 Vb 1 Em/Vb–

kb W z0–( )Em

----------------------------------,= =

2MVb/"2
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4. UNIFORM MAGNETIC FIELD

We consider the tunneling from a 3D emitter to a
3D collector. Outside the barrier, tunneling electrons
are described by the Fock–Darwin wave functions
(when the moment with respect to the normal to the
system and the momentum along the field are speci-
fied). The general case involves very laborious calcula-
tions; therefore, we restrict the analysis to the limit case
B < "ωc, where "ωc is the Landau quantum. Obviously,
the above inequality is equivalent to the condition
4Φ @ Φ0 (the number of flux quanta passing through
the ring is large). Suppose that the Fermi level lies
between the lowest and the first Landau levels of the
impinging electron; i.e., let us restrict ourselves to the
range of δΦ that contains several quanta Φ0 but is sig-
nificantly less than the value of Φ such that "ωc ~ µ.
Then, the functions Ψ0, m(r), which correspond to the
lowest Landau level and m ∈  (–∞, 0), serve as the wave
functions of the initial state (on the left of the barrier).
Hence, one can see that the tunneling conductivity is
not a periodic function of the magnetic flux since it is
expressed in terms of a sum over a semi-infinite interval
of m.

The tunneling widths are determined by the expres-
sions

(11)

Here, one should make the substitution z0  W – z0;
M1 and M2 are the electron effective masses outside and
inside the barrier, respectively.

In Eq. (11),

(12)

is the Fourier–Bessel transform of the wave functions
of the state outside the barrier for the lowest Landau
level with a moment m ≤ 0.

Γ l
4
3
---

M1

2"
2

-------- 
  1/2km

2 a2

a
-----------

Em
2 G2 v( )

1
π
6
---v 2 1/4–

ka
-------------------+

---------------------------------=

×
Em "ωc/2–

1
M1

M2
-------– 

  Em

"ωc

2
---------– 

  M1

M2
-------Vb+

----------------------------------------------------------------------

× 2kbz0 1
Em "ωc/2–

Vb

---------------------------–– 
  .exp

G v( )
Jv sa( )

s2 k2+
---------------Rv s( )s s,d

0

∞

∫=

Rv s( )
21 m /2+

m !
-----------------aH

1 v+

Γ 1 v m+
2

-----------------+ 
 

Γ 1 v+( )
------------------------------------=

× sv F 1
v m+

2
-----------------; 1 v ; aH

2 s2–+ + 
 
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The conductivity (T = 0) is given by

(13)

The numerical calculation was performed for the
following parameters: µ = 1.03|E0|, M1 = 0.025m0
(InAs), M2 = 0.07m0 (GaAs), a = 300 Å, Vb = 0.55 eV,
W = 100 Å, and z0 = W/2.

The results of calculations (Fig. 3) show that the
oscillating character of g(Φ) is preserved. The charac-
teristic interval between the spikes is equal to Φ0, the
modulation depth of conductivity is about 15%, and Γ ~
0.002–0.01 eV for a magnetic field strength of H ~
4.04–4.4 T.

A decrease in the conductivity as the magnetic field
increases is attributed to the fact that, for a fixed total
energy of a tunneling electron, its “longitudinal”
energy (the continuous part of the spectrum) decreases
with the field. Therefore, the interval between this
energy and the barrier ridge increases, and the decay
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length of the wave function along z decreases. As a
result, the overlapping integral Tp decreases.

Thus, we have shown that a tunnel current through a
heterostructure with quantum rings exhibits a specific
Aharonov–Bohm effect. The tunnel current as a func-
tion of magnetic field for a given voltage across the
structure has the form of modulated oscillations with a
characteristic period Φ0 in the flux. In the magnetic
field scale, this interval is much less than the scale
related to the Landau quantization for rings with radii
on the order of 10–100 nm in fields on the order of
1−10 T.
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Abstract—Manganites of the Sm1 – xSrxMnO3 system (x = 0.33, 0.4, and 0.45) possess giant negative values of
the magnetoresistance ∆ρ/ρ and the volume magnetostriction ω near the Curie temperature TC. In the com-
pound with x = 0.33, the isotherms of ∆ρ/ρ, ω, and magnetization σ exhibit smooth variation and do not reach
saturation up to maximum magnetic field strengths (120 kOe) studied (according to the neutron diffraction data,
this substance comprises a ferromagnetic (FM) matrix with distributed clusters of a layered antiferromagnetic
(AFM) structure of the A type). In the compounds with x = 0.4 and 0.45 containing, besides the FM matrix and
A-type AFM phase, a charge-ordered AFM phase of the CE type (thermally stable to higher temperatures as
compared to the A-type AFM and the FM phases), the same isotherms measured at T ≥ TC show a jumplike
increase in the interval of field strengths between Hc1 and Hc2 and then reach saturation. In the interval
Hc1 < H < Hc2, the σ, ω, and ∆ρ/ρ values exhibit a metastable behavior. At temperatures above TC, the aniso-
tropic magnetostriction changes sign, which is indicative of rearrangements in the crystal structure. The giant
values of ω and ∆ρ/ρ observed at T ≥ TC for all compounds, together with excess (relative to the linear) thermal
expansion and a maximum on the ρ(T) curve, are explained by the phenomenon of electron phase separation
caused by a strong s–d exchange. The giant values of magnetoresistance and volume magnetostriction (with ω
reaching ~10–3) are attributed to an increase in the volume of the FM phase induced by the applied magnetic
field. In the compound with x = 0.33, this increase proceeds smoothly as the FM phase grows through the FM
layers in the A-type AFM phase. In the compounds with x = 0.4 and 0.45, the FM phase volume increases at the
expense of the charge-ordered CE-type AFM structure (in which spins of the neighboring manganese ions possess
an AFM order). The jumps observed on the σ(H) curves, whereby the magnetization σ reaches ~70% of the value at
T = 1.5 K, are indicative of a threshold character of the charge-ordered phase transition to the FM state. Thus,
the giant values of ω and ∆ρ/ρ are inherent in the FM state, appearing as a result of the magnetic-field-induced
transition of the charge-ordered phase to the FM state, rather than being caused by melting of this phase. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest in manganites is related primarily to the
phenomenon of colossal magnetoresistance observed
in some compounds at room temperature, which can be
employed in various sensor devices. Various properties
of manganites were extensively studied and the results
of numerous investigations have been summarized in
reviews [1–12]. The colossal magnetoresistance is usu-
ally observed in the region of temperatures correspond-
ing to breakage of a magnetically ordered state charac-
terized by nonzero spontaneous magnetization.

Previously [13–18], we established that the colossal
magnetoresistance in La1 – xSrxMnO3 (0.1 ≤ x ≤ 0.3) and
Sm0.55Sr0.45MnO3 compounds is accompanied by a
large negative volume magnetostriction (on the order of
10–4–10–3), which makes possible the application of
these manganites in various magnetomechanical
devices. In the former system, we observed a correla-
1063-7761/02/9505- $22.00 © 20917
tion between magnetoresistance and volume magneto-
striction, which was manifested by a decrease in both
values with increasing x and by the absence of satura-
tion in their isotherms up to maximum magnetic field
strengths (~120 kOe) studied, while the isotherms of
magnetization already exhibited saturation in fields H <
10 kOe. This behavior was explained in terms of the
coexistence of ferromagnetic (FM) and antiferromag-
netic (AFM) phases in the crystalline compounds, with
the charge carriers (in this case, holes) concentrated in
the FM phase. This type of two-phase magnetic state
related to a strong s–d exchange was described in [19]
and reviewed in [1, 2]. It should be noted that a notion
about the Curie temperature of a sample occurring in
such a state is rather conditional.

A compound of the Sm1 – xSrxMnO3 system with x =
0.5 exhibits a charge-ordered state. Investigations of the
neutron diffraction at 1.5 K ≤ T ≤ 300 K showed that the
002 MAIK “Nauka/Interperiodica”
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compound 154Sm0.6Sr0.4MnO3 contains the clusters of
three types—FM, A-type AFM, and charge-ordered
(CE-type) AFM [20]—and that an AFM order of the A
type disappears above 120 K, while the charge-ordered
CE state still exists at 150 K but is absent at 180 K. A spon-
taneous magnetic moment appears at TC ≈ 110 K; at the
same temperature, the resistivity ρ exhibits a maxi-
mum. At T < TC, the compound possesses conductivity
of the metallic type. The temperature dependence of the
conductivity activation energy exhibits a jump at
180 K; in compounds possessing a charge-ordered
state, this is usually interpreted as a thermal breakage of
this order. The above values of TC, TN, and the temper-
ature of the charge order breakage (TCO) are close to
those determined [21] from the electron and neutron
diffraction data and the temperature dependence of
magnetization. Runov et al. [20, 22, 23] showed that
the samples of Sm1 – xSrxMnO3 compounds with x = 0.25
and 0.4 at low temperatures contain FM clusters with
180–250 Å dimensions coexisting with large clusters
up to several thousand angstroms in size. At the same
time, no charge-ordered phase clusters were observed
in the compound with x = 0.25 [20]. Luzyanin et al.
[24] studied the second harmonic of the magnetic sus-
ceptibility and suggested that the paramagnetic phase
features AFM correlations with a weak FM component
coexisting with charge-ordered AFM domains up to
several hundred angstroms in size. The latter clusters
exhibit thermal breakage at temperatures significantly
above the Curie temperature.

Thus, the magnetic structure of Sm1 – xSrxMnO3
compounds is more complicated as compared to that of
the La1 – xSrxMnO3 system. Compounds of the former
system with x close to 0.5, in contrast to La1 – xSrxMnO3
compounds, contain charge-ordered clusters. This
order exhibits thermal breakage at higher temperatures
than does the magnetic order in the FM and A-type
AFM phases of the sample. On the other hand, the com-
pounds of both systems showed the colossal magnetore-
sistance and large volume magnetostriction near TC. First,
we studied magnetostriction in the Sm1 – xSrxMnO3 sys-
tem only for a compound with x = 0.45 [16–18]. Previ-
ously [13–18], we suggested that the colossal magne-
toresistance and large volume magnetostriction are
explained by the same reason: a growth of the FM part
of a crystal, in which the charger carriers are concen-
trated. However, the mechanism of this growth
remained unclear. As will be shown in Section 3 below,
compounds of the Sm1 − xSrxMnO3 system with x = 0.4
and 0.45 exhibit the colossal magnetoresistance and
large volume magnetostriction even in a high-tempera-
ture range, where the magnetic order in both FM and A-
type AFM parts is broken but a charge-ordered state is
still retained in a certain part of the sample.

The aim of this paper is as follows. Based on the
results of a complex study of the behavior of magneti-
zation, paramagnetic susceptibility, thermal expansion,
JOURNAL OF EXPERIMENTAL 
magnetostriction, electric resistance, and magnetore-
sistance in the Sm1 – xSrxMnO3 compounds with x =
0.33, 0.4 and 0.45, we will elucidate some peculiarities
in these characteristics related to the presence of
charge-ordered phase clusters. It should be noted that
the Sm1 − xSrxMnO3 system offers a convenient object
for such investigation, since the compounds with x =
0.4 and 0.45 contain charge-ordered clusters. More-
over, only these clusters still retain a magnetic order at
T ≥ TN, while that in the FM and A-type AFM parts is
broken as a result of heating. The compound with x =
0.33 differs from those with x = 0.4 and 0.45 in that the
former does not contain charge-ordered clusters [20].
For all the three compounds, TC < TN. Thus, we will elu-
cidate the character (jumplike versus smooth) of the
FM phase growth at the expense of the charge-ordered
and A-type AFM phases considered separately. The
results are treated based on the recent theoretical works
of Nagaev [2] and Dagotto et al. [3].

2. EXPERIMENTAL METHODS

The samples of compounds of the Sm1 – xSrxMnO3
system were synthesized and analyzed by O.Yu. Gor-
benko and A.R. Kaul’. The synthesis was conducted
according to a standard ceramic technology. The phase
composition and crystal lattice parameters were moni-
tored by X-ray diffraction measured on a Siemens
D5000 diffractometer. According to these data, the
samples represent single-phase perovskites with an
orthorhombic structure (Pnma space group) and the lat-
tice parameters (T = 300 K) a = 5.424(1) Å, b =
7.678(2) Å, c = 5.434(2) Å for x = 0.45 and a = 5.436(2) Å,
b = 7.679(4) Å, c = 5.459(2) Å for x = 0.33. The ortho-
rhombicity parameter of 0.2% (calculated using the lat-
tice parameters) indicates that the structure is close to
cubic. A single-phase state of the synthesized sam-
ples was confirmed by the Raman spectroscopy mea-
surements performed on a Jobin–Yvon T64000 spec-
trometer with triple monochromator. The Raman
spectra showed the presence of the phonon modes
characteristic of the orthorhombic manganites with
Pnma symmetry.

The magnetization was studied using a vibrating-
sample magnetometer in a range of temperatures from
1.5 to 300 K and magnetic field strengths up to 130 kOe.
The initial magnetic susceptibility in an alternating
magnetic field with the frequency varied from 0.8 to
8 kHz was measured on an F-5063 ferrometer, while
the paramagnetic susceptibility was studied by a
weighing technique with electromagnetic compensa-
tion. The electric resistance was determined by the
four-point-probe technique. The magnetostriction and
thermal expansion in the temperature range from 4.2 to
300 K were measured using strain gauges with a resis-
tance of 92.30 ± 0.01 Ω and a tension sensitivity coef-
ficient of 2.26. One strain gauge was glued to a sample,
and another, to a quartz crystal, with the same orienta-
AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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tion relative to the applied magnetic field. The mag-
netostriction parallel (λ||) and perpendicular (λ⊥ ) to the
applied magnetic field were measured, after which the
volume (ω = λ|| + 2λ⊥ ) and anisotropic (λt = λ|| – λ⊥ )
magnetostriction were calculated. The measurements
of thermal expansion and magnetostriction in strong
pulsed magnetic fields were performed in the labora-
tory of R. Ibarra (Saragossa University, Spain).

3. EXPERIMENTAL RESULTS

3.1. Magnetic Properties

For all compounds of the system studied, the tem-
perature dependence of the initial magnetic susceptibil-
ity χ(T) measured in an alternating magnetic field with
a frequency of 8 kHz exhibited a maximum in the low-
temperature region (T < 50 K) and a sharp drop at
higher temperatures (Fig. 1a). In the compounds stud-
ied, the Curie point was determined as the temperature
of a minimum in the (dχ/dT)(T) curve. For the
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Fig. 1. Temperature dependences of (a) the initial magnetic
susceptibility χ measured in an alternating magnetic field of
1 Oe with a frequency of 8 kHz for Sm1 – xSrxMnO3 com-
pounds with x = 0.33 (1), 0.4 (2), and 0.45 (3) and (b) the
paramagnetic susceptibility of the compounds with x = 0.33
(1) and 0.45 (2).
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Sm1 − xSrxMnO3 compounds with x = 0.33, 0.4, and
0.45, this yields 79, 112, and 126 K, respectively. These
values are close to the published data (see [20, 21] and
references therein). It should be noted that the low-tem-
perature peak position is virtually independent of x; this
maximum is probably related to an increase in the mag-
netic anisotropy of FM and AFM clusters in the two-
phase magnetic state. The paramagnetic susceptibility
of all compositions obeys the Curie–Weiss law at tem-
peratures above ~2TC (Fig. 1b), with the paramagnetic
Curie points at θ = 175, 194, and 250 K for x = 0.33,
0.4, and 0.45, respectively. In the temperature interval
TC < T < 2TC, the experimental curves deviate from the
Curie–Weiss law.

Figures 2a and 3a show the isotherms of the magne-
tization σ(H) for the compounds with x = 0.33 and 0.45,
respectively (the curves for x = 0.4 are much like those
in Fig. 3a). As can be seen, the σ(H) curves display no
peculiarities below TC and reach saturation at H ≤ 30 kOe.
The spontaneous magnetic moment, determined by
extrapolating σ(H) curves to a zero field at 1.5 K, is
close to the values expected in the case of complete FM
ordering of the magnetic moments of Mn3+ and Mn4+

ions in the compositions studied. The magnetization
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Fig. 2. The isotherms of (a) magnetization σ and (b) volume
magnetostriction ω for Sm1 – xSrxMnO3 with x = 0.33 mea-
sured with increasing and decreasing the applied field
strength as indicated by arrows.
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isotherms of various compositions are significantly dif-
ferent at T ≥ TC. Indeed, the samples with x = 0.4 and
0.45 exhibit a jumplike increase in the magnetization in
a certain interval of field strength Hc1 < H < Hc2

(Fig. 3a). Figure 4 shows the temperature variation of
the Hc1 and Hc2 values. As can be seen, both character-
istic fields increase with the temperature by a linear law.
In the region of a jump, the σ(H) curves exhibit a hys-
teresis whose width decreases with an increase in the
temperature. As can be seen from Fig. 2a, no such
jump is observed on the σ(H) curves of a sample with
x = 0.33.

Figures 5a and 5c show the temperature variation of
magnetization of the same compositions in various
magnetic fields. For a compound with x = 0.45, a
decrease in the temperature leads to a sharp increase in
the magnetization in the vicinity of TC for the samples
measured in magnetic fields below 20 kOe. In stronger
fields, the transition exhibits smearing. The σ(T) curves
for the compound with x = 0.4 are very much like those
presented in Fig. 5a. For the sample with x = 0.33, the
transition at TC is smeared in the entire range of mag-
netic fields studied (Fig. 5c).
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Fig. 3. The isotherms of (a) magnetization σ and (b) volume
magnetostriction ω for Sm1 – xSrxMnO3 with x = 0.45 mea-
sured with increasing and decreasing the applied field
strength as indicated by arrows.
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3.2. Elastic and Magnetoelastic Properties

Figure 6a shows the temperature variation of the lin-
ear thermal expansion ∆L/L(T) for all three composi-
tions studied. As can be seen the ∆L/L(T) exhibits a
sharp change in the vicinity of TC for the compounds
with x = 0.4 and 0.45, and a smoother variation for the
sample with x = 0.33. For the first two compositions, a
relative change in the sample volume is very large:
∆V/V = 3∆L/L ≈ 0.1%. The application of a magnetic
field leads to suppression of the jump in ∆L/L(T) and in
the negative magnetostriction. The samples of all com-
positions exhibit a considerable temperature hysteresis
of ∆L/L(T) in the region of TC. 

Figures 2b and 3b show the isotherms of the vol-
ume magnetostriction ω(H) for the compounds with
x = 0.33 and 0.45, respectively. Figures 5b, 5d and
6b, 6c present the temperature dependences of the vol-
ume (ω(T)) and anisotropic (λt(T)) magnetostriction of
the same compositions. The curves of ω(H), ω(T), and
λt(T) for the compound with x = 0.4 are very much like
those depicted in Figs. 3b, 5b, and 6c for x = 0.45. As
can be seen from Fig. 3b, the sample with x = 0.45
exhibits a change in the behavior of ω(H) in the vicinity
of TC, whereby a jump appears in the curves. These
jumps are observed at approximately the same values of
the magnetic field strength (for close temperature) as
the jumps in the curves of σ(H) (Fig. 3a). As can be seen
from Fig. 4, showing the temperature dependence of the
critical fields Hc1 and Hc2 determined from the magnetiza-
tion and magnetostriction measurements, the experimen-
tal points are satisfactorily fitted to straight lines. In the
region of T = TC, the ω(H) curves exhibit saturation at
a field about 40 kOe, while an increase and decrease in
the magnetic field strength reveals a hysteresis in the
volume magnetostriction. 
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Fig. 4. Plots of the critical field strengths Hc1 and Hc2 versus
temperature for Sm1 – xSrxMnO3 with x = 0.45. Symbols
shows the experimental data obtained from (h, j) magneti-
zation, (s, d) magnetostriction, and (m, +) magnetoresis-
tance measurements ((+) data from [27, Fig. 4]).
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For the compounds with x = 0.4 and 0.45, the vol-
ume magnetostriction is negative in the entire tempera-
ture range studied and possesses a very small absolute
value everywhere, except for a very narrow interval in
the vicinity of TC where the ω(T) curve passes through
a minimum (Fig. 5b). At this minimum, |ω| acquires
giant values: 5 × 10–4 in a field of H = 8.4 kOe and 10−3

in a field of H = 50 kOe for x = 0.45 (and approximately
the same values for x = 0.4). 

As can be seen from Fig. 6c, the anisotropic magne-
tostriction λt for the compounds with x = 0.4 and 0.45
acquires small absolute values, being almost constant
in the entire temperature range studied, except within a
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narrow interval in the vicinity of TC. In this interval, the
λt value increases severalfold and changes sign in the
interval of field strengths 0 < H < 2 kOe, being positive
below TC and negative above this temperature. For the
fields H > 20 kOe, the λt(T) exhibits a maximum at T =
TC. A different behavior of ω(H), ω(T), and λt(T) is
observed for the compound with x = 0.33 (Figs. 2b, 5d,
and 6b). Indeed, the isotherms of volume magnetostric-
tion are far from saturation in the entire temperature
range studied, while the magnetization isotherms
already exhibit saturation at H ≤ 30 kOe. Negative vol-
ume magnetostriction in this compound is observed in
the entire temperature range below TC. The curves of
ω(T) pass through a minimum somewhat below TC,
while a maximum absolute value of |ω| (on the order of
7 × 10–4) is attained at a field strength of 120 kOe
(Fig. 5d). The λt value is positive in the entire tempera-
ture range studied, exhibiting a maximum in the vicin-
ity of TC and then quite rapidly decreasing to zero
(Fig. 6b).
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tively) and (b, c) the anisotropic magnetostriction of the
compounds with x = 0.33 and 0.45 measured in various
magnetic fields.
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3.3. Electrical and Galvanomagnetic Properties

In the vicinity of TC, all the compounds studied are
characterized by a ρ(T) curves with a maximum, with
the ρ values at the peak increased by several orders of
magnitude as compared to those at low temperatures. In
the low-temperature region, the ρ(T) curve has a shape
characteristic of metals. The magnetoresistance ∆ρ/ρ =
[ρ(H) – ρ(H = 0)]/ρ(H = 0) is negative for all compound
in the entire temperature range studied (from T = 4.2 K
to T > TC), with the absolute value reaching a maximum
near TC.

Figure 7 presents the plots of ∆ρ/ρ versus H for the
compounds with x = 0.33 and 0.4. As can be seen from
Fig. 7b, the latter compound exhibits a sharp growth of
|∆ρ/ρ| when the field strength reaches Hc1 (the same
behavior was observed for the compound with x =
0.45). Figure 7a shows that the ∆ρ/ρ value in the com-
pound with x = 0.33 smoothly increases with the field
strength and the curves exhibit no saturation. It should
be noted that the magnetoresistance of samarium-con-
taining manganites reaches giant values in relatively
weak magnetic fields as compared to those for the man-
ganites of other rare-earth metals (e.g., lanthanum,
praseodimium). Indeed, we observed the magnetoresis-
tance reaching 83, 72, and 44% in the samples of
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Fig. 7. The isotherms of magnetoresistance for
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Sm1 − xSrxMnO3 with x = 0.33, 0.4, and 0.45, respec-
tively, in a magnetic field of 8.4 kOe.

3.4. Instability of Magnetoelastic Properties

The compounds with x = 0.4 and 0.45 exhibit insta-
bility in their magnetic properties in the interval of
magnetic field strengths Hc1 < H < Hc2 at temperatures
in the vicinity of TC. This is manifested by an increase
in magnetization, magnetostriction, and magnetoresis-
tance of the samples exposed to the magnetic field with
the strength increased from Hc1 to Hc2. If the applied
magnetic field is decreased in the same interval, the
characteristics vary in the reverse direction. It was
found that the time variation of magnetostriction fol-
lows an exponential law.

The experimental results for H = const (fast field
buildup to H = 8.4 kOe at various temperatures in the
region of TC) are well described by the activation rela-
tionship τ = τ0exp(E0/kT) with τ0 = 1.4 × 10–7 s and
E0/k = 0.17 eV. The experiments at T = const in the
same range of field strengths are described by the acti-
vation law

while the results involving both temperature and field
variations are well described by the equation

,

where m = 230µB and E0 = 0.17 eV.

4. DISCUSSION OF RESULTS

The results of investigation of the magnetic, galva-
nomagnetic, elastic, and magnetoelastic properties of
Sm1 – xSrxMnO3 manganites (with x = 0.33, 0.4, and
0.45) in a range of temperatures from 1.5 to 300 K and
magnetic field strength up to 130 kOe revealed the fol-
lowing features in behavior of the system under consid-
eration. In the vicinity of TC, the samples exhibit excess
(relative to the linear) thermal expansion reaching up to
0.03% (Fig. 6a), giant negative magnetoresistance
(Fig. 7), and large negative volume magnetostriction
(Figs. 2b, 3b, 5b, and 5d). The latter two temperature
dependences exhibit maxima. The absolute value of
magnetoresistance in the compounds with x = 0.33, 0.4,
and 0.45 in a magnetic field of 8.4 kOe reaches 83, 72,
and 44%, respectively. Record values were observed
for the volume magnetostriction of compounds: for the
compounds with x = 0.4 and 0.45, we observed |ω| ~
5 × 10–4 in a field of 8.4 kOe and ~10–3 in a field of
H = 50 kOe. The measurements of paramagnetic sus-
ceptibility showed (Fig. 1b) that all compositions obeys
the Curie–Weiss law at temperatures significantly
above TC, typically beginning at T ≈ 2TC, which is indic-
ative of the presence of magnetic clusters in the system
above TC.

τ τ 0 µ0mH/kT( )[ ] ,exp=

τ τ 0 µ0mH E0+( )/kT[ ]exp=
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The behavior of magnetization, thermal expansion,
volume magnetostriction, and magnetoresistance of the
compound with x = 0.33 is very much like that previ-
ously observed by some of the authors in the
La1 − xSrxMnO3 system [13–15]: the ∆ρ/ρ(H) and ω(H)
curves do not exhibit saturation up to maximum field
strengths studied (H = 130 kOe), while the magnetiza-
tion σ(H) already saturates at H ~ 20 kOe (Figs. 2a and
7a). The above features can be explained in terms of the
electron phase separation caused by a strong s–d
exchange. The compound with x = 0.33 comprises a
conducting FM matrix with distributed insulating clus-
ters of the A-type AFM phase. This structure features a
conducting two-phase magnetic state caused by a
strong s–d exchange as described in reviews [1, 2].

The two-phase magnetic state is characterized by a
sharp increase in resistivity in the vicinity of the Curie
point. There are two mechanisms through which the
magnetic-impurity interaction influences the resistiv-
ity: (i) the scattering of charge carriers, leading to a
decrease in their mobility, and (ii) the formation of a tail
of localized states in the conduction band. In the vicin-
ity of the Curie point, there is a sharp decrease in the
mobility of charge carriers and they are partly localized
in the band tail, which explains the appearance of a
maximum at TC in the ρ(T) curve. The applied magnetic
field produces delocalization of the charge carriers
localized in the band tail, which gives rise to the colos-
sal magnetoresistance. Yanase and Kasuya [19] showed
that the FM part of a sample occurring in a two-phase
magnetic state is characterized by reduced lattice
parameters. On heating above TC, the sample exhibits
anomalous expansion. Application of a magnetic field
at T ≥ TC increases the FM order near the magnetic
impurity (in this case, Sr ions) to an extent greater than
average over the crystal because the effect is enhanced
by the s–d exchange (magnetic field restores the FM
phase broken by heating, after which the sample exhib-
its a lattice contraction corresponding to this phase). It
should be noted that, for a sample occurring in a two-
phase magnetic state, the Curie point is essentially the
temperature of thermal breakage of the FM phase. 

It should be emphasized that the above explanation
of the phenomenon of giant negative magnetoresis-
tance, large negative volume magnetostriction, maxi-
mum in the resistivity ρ, and an excess thermal expan-
sion near TC is related to a change in the FM phase vol-
ume under the action of an applied magnetic field
and/or the temperature. In Sm1 – xSrxMnO3 with x =
0.33, this change proceeds smoothly, probably, because
the FM phase volume increases at the expense of AFM
clusters of the A type. These clusters possess a layered
AFM structure comprising FM ordered sublattices with
AFM-ordered magnetic moments. The sample FM part
volume increases as the FM phase grows through the
FM layers in the A-type AFM phase.

Behavior of the isotherms of magnetization, volume
magnetostriction, and magnetoresistance in the sam-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ples of Sm1 – xSrxMnO3 with x = 0.4 and 0.45 is different
from that observed for the compound with x = 0.33. As
was pointed out in the Introduction, the former two
compositions contain, in contrast to that with x = 0.33,
charge-ordered clusters which exhibit thermal breakage
at higher temperatures than does the conducting FM
phase and the A-type AFM clusters deprived of charge
carriers. As can be seen from Figs. 3 and 7b, these sam-
ples exhibit a jumplike increase in the magnetization,
volume magnetostriction, and magnetoresistance at
T ≥ TC in the region of critical fields Hc1 < H < Hc2,
where the Hc1 and Hc2 values linearly increase with the
temperature (Fig. 4). Within the critical field interval,
the above magnetic characteristics exhibit temporal
relaxation. In the region of a jump, the σ(H) curve
exhibits a hysteresis whose width decreases with
increasing temperature. At H ≥ Hc2, the aforementioned
isotherms exhibit saturation.

If the Curie temperature is determined by extrapo-
lating the steepest part of the σ(T) curve to intersection
with the temperature axis, the  values obtained in
this way depend on the magnetic field strength at which
the measurements of σ(T) were performed. For the
compounds with x = 0.4 and 0.45, the  values vary
in a nonuniform manner, slowly in the region of weak
fields and much faster in stronger fields, so that eventu-
ally the  value exhibits a twofold increase at 70 kOe

as compared to  determined from the temperature
dependence of the initial magnetic susceptibility (Fig. 5a).
For the compound with x = 0.33, the increase in 
with the field strength is still more pronounced and pro-
ceeds more uniformly, which makes determination of
the  values in strong fields impossible (Fig. 5c).

Such a strong dependence of  on the field H is not

typical of ferromagnets. For example, the  values
determined by the same method for Gd and CdCr2Se4
in the same interval of field strengths increase by only
a few Kelvins [25]. All this suggests that the concept of
Curie temperature in magnetically heterogeneous (non-
single-phase) materials is rather conditional.

The results of numerical modeling performed by
Dagotto et al. [3] showed that the concentration transi-
tion at x = 0.5 from FM to charge-ordered state in man-
ganites is a first-order phase transition and that the com-
positions close to x = 0.5 contain magnetic clusters of
various types, representing FM, A-type AFM, and
charge-ordered states. Also considered in [3] was the
possibility that there exists a conducting FM phase con-
taining both the A-type AFM and charge-ordered clus-
ters. Apparently, this possibility is realized in the
Sm1 − xSrxMnO3 compositions with x = 0.4 and 0.45, as
evidenced by the metallic type of conductivity at T < TC
in combination with a high level of Jahn–Teller distor-
tions of the manganese–oxygen octahedra. According
to the data reported in [20], a high level of these distor-
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tions in the compound with x = 0.4 is untypical of a
strongly diluted system of Jahn–Teller ions (60%
Mn3+): this level is approximately as high as in LaMnO3

(100% Mn3+) [26]. Such distortions must lead to the
localization of charge carriers, but Sm0.6Sr0.4MnO3
exhibited conductivity of the metallic type below TC.
This is possible only provided that the conductivity
possesses a percolation character and is mediated by tie
links surrounding the insulating clusters (these links
occupy a much smaller part of the sample as compared
to that occupied by the insulating clusters). Then, the
jumplike growth of σ(H), |ω|(H), and |∆ρ/ρ|(H), as well
as the nonuniform variation of (H) in the com-
pounds with x = 0.4 and 0.45, can be related to a tran-
sition of the charge-ordered clusters to the FM state
under the action of an applied magnetic field.

Thus, the large volume magnetostriction and the
colossal magnetoresistance in the compounds with x =
0.4 and 0.45 (as well as in that with x = 0.33) are related
to the FM phase appearing as a result of the magnetic-
field-induced transition of the charge-ordered clusters
to the FM state. In the charge-ordered phase, spins of
the neighboring Mn ions are oriented in the opposite
directions. Therefore, conversion of this phase into the
FM state requires a considerably greater amount of
energy than the analogous conversion of the A-type
AFM phase. As can be seen from Figs. 3, 5a, 5b, and
7b, this transition proceeds in a jumplike manner when
the applied magnetic field strength reaches the first
threshold value Hc1. The magnetic-field-induced transi-
tion of the charge-ordered clusters to the FM state must
be accompanied by modification of the crystal structure
and, hence, manifested by a change in the anisotropic
magnetostriction. Indeed, the data in Fig. 6c show a
change in the sign of λt in this temperature region,
which is accompanied by the appearance of certain fea-
tures in the λt(T) curve: a maximum in the region of
positive λt values and a minimum in the region of neg-
ative λt values.

A strong field dependence of the  values deter-
mined as described above can be explained as follows.
In the compounds with x = 0.4 and 0.45,  in weak
fields exhibits a smooth increase related to the mag-
netic-field-induced restoration of the FM phase (broken
by heating) and, probably, to an increase in the volume
of this phase at the expense of the A-type AFM clusters.
When the applied field strength reaches the Hc1 thresh-
old, the charge-ordered phase exhibits a jumplike tran-
sition to the FM state. This conversion is analogous to
a first-order phase transition, which is confirmed by the
fact that the system exhibits instability of the magnetic,
elastic, magnetoelastic, electrical, and galvanomag-
netic properties in the interval of field strengths
between Hc1 and Hc2 (see Sections 3.1–3.4). Above this
interval, thermal breakage of the FM phase slows down
because the energy is gained in the s–d exchange. This
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explains a smooth increase in  with H in the range of
H > Hc2. In the compound with x = 0.33, the smooth
growth of  with H is related both to the magnetic-
field-induced restoration of the FM phase and to the FM
phase growth through the FM sublattices of the A-type
AFM clusters.

Thus, the colossal magnetoresistance, large negative
volume magnetostriction, and the excess thermal
expansion near TC observed in samples of the
Sm1 − xSrxMnO3 system with x = 0.33, 0.4, and 0.45 are
explained by the phenomenon of electron phase separa-
tion caused by a strong s–d exchange, whereby the
charge carriers are concentrated in the FM phase. The
presence of charge-ordered clusters in the compounds
with x = 0.4 and 0.45 brings certain special features in
behavior of the magnetoresistance and volume magne-
tostriction, which is manifested by jumps in the corre-
sponding isotherms related to the magnetic-field-
induced transition of the charge-ordered clusters to the
FM state.

5. CONCLUSION

We have studied a model Sm1 – xSrxMnO3 system
(with x = 0.33, 0.4, and 0.45) to elucidate how the
charge ordering can influence the magnetic, elastic,
magnetoelastic, and galvanomagnetic properties of
manganites. This system is a convenient object for such
investigation, since the compounds with x = 0.4 and
0.45 comprise a ferromagnetic phase with distributed
A-type AFM clusters and charge-ordered clusters such
that TC < TN < TCO. The latter relation implies that the
behavior observed at T > TN is related to the magnetic-
field-induced modification of only the charge-ordered
clusters. The compound with x = 0.33, in contrast to
those with x = 0.4 and 0.45, contains only the FM and
A-type AFM phases.

For these reasons, a comparison of the properties of
compounds with x = 0.4 and 0.45 to those of the com-
pound with x = 0.33 allowed us to establish the nature
of the colossal magnetoresistance and large volume
magnetostriction observed in the system under consid-
eration and to reveal the peculiarities of these effects
related to the charge ordering. In the compounds with
x = 0.4 and 0.45, the isotherms of magnetization, vol-
ume magnetostriction, and magnetoresistance mea-
sured at T immediately above TC exhibit a slow initial
growth with the field strength, followed by a significant
jumplike increase in the interval between the critical
fields Hc1 and Hc2, the values of which linearly increase
with the temperature (Figs. 3, 4, and 7b). As the field
grows further (above Hc2), the aforementioned iso-
therms exhibit saturation. In contrast, the same iso-
therms of the composition with x = 0.33 exhibit a
smooth character and show no evidence of saturation
up to maximum field strengths studied (Figs. 2 and 7a).
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TC'
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In the compounds with x = 0.4 and 0.45, the magne-
tization exhibits a jump and acquires a large value. For
example (see Fig. 3a) a sample of the composition with
x = 0.45 at T = 200 K (TC = 126 K) has σ = 2µB/form.
unit, while the magnetization at T = 1.5 K amounts to
3.5µB/form. unit (which corresponds to a complete FM
ordering of the moments of Mn3+ and Mn4+ ions at T =
1.5 K ). From this, we conclude that the compounds
with x = 0.4 and 0.45 feature the transformation of
charge-ordered clusters into the FM state at the thresh-
old field strength Hc1. This conversion is analogous to a
first-order phase transition, since the process has a jum-
plike character and the system exhibits instability of the
magnetization, magnetostriction, and magnetoresis-
tance, as manifested by the temporal variation of their
isotherms and by a difference of the isotherms mea-
sured with increasing and decreasing the field strength
(Figs. 3 and 7b).

In the compound with x = 0.33, the structure of
which contains no charge-ordered clusters, the values
of magnetization, magnetostriction, and magnetoresis-
tance at TC increase with the field in a smooth manner.
In this material, the FM phase volume increases at the
expense of a decreasing fraction of the A-type AFM
phase. The AFM ordering of the A-type corresponds to
a layered structure in which moments of the neighbor-
ing FM layers are oriented in the opposite directions. In
the compound with x = 0.33, the FM part increases with
the field smoothly, as the FM phase grows through the
FM layers in the A-type AFM phase.

In the charge-ordered phase, spins of the neighbor-
ing Mn ions are oriented in the opposite directions. The
results of our experiments showed that conversion of
the charge-ordered clusters into the FM state requires
applying threshold fields. As the threshold field
strength is reached, such clusters completely transform
into the FM state. This transition must be accompanied
by modification of the crystal structure and, hence,
manifested by a change in the anisotropic magneto-
striction. Indeed, the data in Fig. 6c show a change in
the sign of t in this temperature region, which is accom-
panied by the appearance of certain features in the λt(T)
curve: a maximum in the region of positive λt values
and a minimum in the region of negative λt values. In
contrast, the λt value in the compound with x = 0.33 is
positive in the entire temperature range studied, includ-
ing the region of TC, and rapidly drops to zero for fields
above TC (Fig. 6b).

As was shown by Nagaev [1, 2] and by Yanase and
Kasuya [19], the colossal magnetoresistance and large
volume magnetostriction are explained by the mag-
netic-field-induced increase in volume of the FM phase
(in which the charge carriers are concentrated) in a
magnetically inhomogeneous sample and the resulting
gain in the s–d exchange energy. According to this, the
colossal magnetoresistance, large negative volume
magnetostriction, and the excess thermal expansion
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
near TC observed in samples of the Sm1 – xSrxMnO3 sys-
tem with x = 0.33, 0.4, and 0.45 are explained by the
phenomenon of electron phase separation caused by a
strong s–d exchange, whereby the charge carriers are
concentrated in the FM phase. The presence of charge-
ordered clusters in the compounds with x = 0.4 and 0.45
brings certain special features in behavior of the mag-
netoresistance and volume magnetostriction, which is
manifested by jumps in the corresponding isotherms
related to the magnetic-field-induced transition of the
charge-ordered clusters to the FM state.

It was experimentally established that the samples
of Sm1 – xSrxMnO3 with x = 0.33, 0.4, and 0.45 at T > TC
exhibit, besides a colossal magnetoresistance of 83, 72,
and 42%, respectively, a record level of volume magne-
tostriction reaching ω ~ 5 × 10–4 in a field of 8.4 kOe
and 10–3 in a field of H = 50 kOe. This is the second sys-
tem of manganites after La1 – xSrxMnO3 in which we
observed a large volume magnetostriction accompa-
nied by the colossal magnetoresistance in the same
temperature region. These results open new possibili-
ties for the application of manganites in magnetome-
chanical devices and sensors.
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Abstract—The spectrum of collective excitations in a quasi-two-dimensional electron system was studied by
the method of Raman scattering spectroscopy. In an applied magnetic field, such systems exhibit collective
excitations related to the electron transitions between dimensionally quantized subbands with a change in the
Landau level index (intersubband Bernstein modes). It is shown that these modes interact with the fundamental
intersubband excitations of the charge and spin densities, the interaction energy being determined by the exci-
tation quasimomentum. Interaction of the intersubband Bernstein modes and the fundamental intersubband
excitations with quasi-two-dimensional LO phonons was studied. Behavior of the new branches of collective
excitations in a quasi-two-dimensional electron system possessing more than one occupied Landau level was
studied and the nature of these branches was determined. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Neutral excitations in low-dimensional electron sys-
tems have been extensively studied in the past decades
by both theoretical and experimental methods [1, 2].
Special attention was devoted to quasi-two-dimen-
sional electron systems (2DES), in which new basic
phenomena were discovered including integer and frac-
tional quantum Hall effects. Combining the properties
of 2D and 3D systems, 2DESs possess complicated
spectra of neutral excitations. Since the electron motion
in 2DESs is confined (quantized) in one of the spatial
directions, the excitation spectrum consists of intra-
and intersubband branches. The intrasubband branches
represent the usual 2D excitations related to the elec-
tron transitions within the same quantum confinement
subband. We will concentrate on the intersubband exci-
tations related to the electron transitions between dif-
ferent quantum confinement subbands.

The intersubband excitations have direct analogs in
neither 2D nor 3D electron systems. The number of
quantum confinement subbands and, hence, of various
intersubband excitations in real 2DESs is large. For this
reason, we will restrict our consideration to the funda-
mental branches of intersubband excitations related to
the electron transitions from the ground to the first
quantum confinement subband. Description of the
other branches of intersubband excitations can be con-
structed by an analogous scheme. It will be assumed
that the quantum electrical limit is realized, whereby
1063-7761/02/9505- $22.00 © 20927
the Fermi level of electrons measured from the ground
subband energy level lies below the first excitation band
bottom. In this case, the spectrum of neutral intersub-
band excitations comprises two collective modes,
including the fundamental collective excitations of
charge and spin densities, and the continuum of single-
particle excitations (SPEs) [3–6]. The charge density
excitations (CDEs) are related to the electron transi-
tions with spin conservation, while the spin density
excitations (SDEs) involve changes in the spin of an
excited electron.

The fundamental CDEs and SDEs can be consid-
ered as the singlet and triplet states of the exciton
formed by an electron in the excited subband and a hole
under the Fermi level of electrons of the ground sub-
band (Fig. 1). In contrast to the Mott exciton, the CDE
and SDE energies are nondegenerate because the CDE
energy includes the energy of macroscopic polarization
of the electron system (depolarization shift). Since the
polarization vector oscillates in the direction perpen-
dicular to that of the CDE quasimomentum, the CDEs
can be considered as an electron analog of TA phonons.
Via the electric field of the macroscopic polarization,
the fundamental CDEs can interact with quasi-two-
dimensional LO phonons to form the bound CDE–LO
modes [4].

In an external magnetic field perpendicular to the
2DES plane, the energy spectrum of electrons is com-
pletely quantized (to become quasi-zero-dimensional),
which leads to a basic rearrangement of the spectrum of
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Raman scattering in 2DES: (a) schematic diagram of the experimental geometry. The energy difference hνi – hνs and the
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to a 2DES excitation; (b) typical Raman spectrum of intersubband excitations in a 250-Å-wide QW with an electron density of
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band excitations, including the charge density (CDE), spin density (SDE), and single-particle (SPE) excitations.
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neutral excitations. All electron excitations in the mag-
netic field possess a collective character. As a result, a
spectrum of collective excitations—intersubband Bern-
stein modes (ISBMs)—is formed instead of the contin-
uum of single-particle excitations. Besides ISBM, the
spectrum retains the fundamental excitations of charge
and spin densities, now related to the intersubband tran-
sitions with conservation of the Landau level index.

The fundamental CDEs and SDEs in a magnetic
field were observed by methods of IR absorption and
Raman scattering spectroscopy [1]. However, direct
observation of the ISBMs encountered experimental
problems for a long time because the optical transitions
related to ISBM excitation are dipole-forbidden both in
the IR absorption and in the Raman scattering process
(the Landau level index is not retained). Ando [7]
showed that the problem of conservation of the Landau
level index can be solved by applying an external mag-
netic field parallel to the quantum well plane, thus mix-
ing the transverse (perpendicular to the 2DES plane)
and longitudinal (parallel to the 2DES plane) motions
of electrons [8–10]. It should be noted that such mixing
significantly modifies the spectrum of intersubband
magnetic excitations. Only ISBMs with a zero quasi-
momentum q in a tilted magnetic field admit a rather
simple description [7], while nonzero quasimomenta
make the description quite difficult [11].
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This paper presents the results of a presently most
complete experimental investigation of the energy
spectrum and dispersion of intersubband excitations in
a perpendicular magnetic field, summarizing the results
obtained by the authors within the last five-year period.
The presentation proceeds as follows. Section 2 gives a
description of the original experimental approach
developed by the authors for measuring the Raman
spectra. This method allows the Raman spectra to be
measured under conditions of extremely low tempera-
tures and superstrong magnetic fields and ensures long-
term stability of the informative signal in the magnetic
field, not achievable with the other techniques. Section 3
considers the spectrum of intersubband excitations in
the region of small quasimomenta (q  0) and pre-
sents experimental evidence of the basic energy rela-
tions between ISBMs (intersubband analog of the Kohn
theorem) [1, 12]. Section 4 addresses the interaction of
ISBMs with the fundamental intersubband CDEs and
SDEs [12]. Section 5 is devoted to the interaction of the
intersubband excitations of a 2DES with the phonon
subsystem of a semiconductor on which the 2DES is
based. It will be shown that the fundamental CDEs in
polar semiconductors interact with LO phonons, while
ISBMs interact with the CDE–LO hybrid modes [13].
Section 6 discusses the new branches of intersubband
 AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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collective excitations considered as antiphase oscilla-
tions of the electron subsystems of 2DES on various
Landau levels [14].

2. EXPERIMENTAL METHOD

The experiments were performed with a series of
high-quality MBE-grown heterostructures representing
asymmetric, selectively doped separate 250-Å-wide
AlxGa1 – xAs/GaAs quantum wells (QWs). The electron
density ns in the samples varied within (0.5–6.8) ×
1011 cm–2 and the electron mobility µ, within (1–7) ×
106 cm2/(V s). The Raman spectral line width was
0.15 meV.

The measurements were conducted at 1.5 K in a cry-
ostat with superconducting solenoid, with the magnetic
field strengths varied from 0 to 11 T in the Faraday
geometry. The optical excitation of the electron system
was effected by radiation of a tunable titanium–sap-
phire laser at a photon energy exceeding the GaAs
band gap width (E0) and an excitation power density of
0.1–1 W/cm2. Experiments employed an original dou-
ble-fiber technique free of significant disadvantages
inherent in the standard setups with optical windows,
such as contamination of the optical tract and detuning
of the optical system by a magnetic field sweep. The
new technique ensured long-term stability of the signal
of Raman scattering measured in the presence of a mag-
netic field. The first optic fiber was used to excite the
electron system, and the second fiber detected the
Raman scattering signal (Fig. 1a). The detecting optic
fiber served as an effective in situ premonochromator,
filtering off a large fraction of the laser radiation
reflected from the sample surface and all of the signal
of the intrinsic inelastic scattering in the exciting fiber.
The quasimomentum transfer to 2DES in the course of
the Raman scattering was determined by the arrange-
ment of fibers relative to the sample surface, the maxi-
mum momentum transfer reaching 1.2 × 105 cm–1.

In order to distinguish between the resonances
related to CDEs and SDEs, the light scattering spectra
were measured for both parallel and perpendicular con-
figurations of the linear polarization vectors of the
exciting and scattered photons. In the parallel configu-
ration, the incident and scattered photons had the same
polarization vectors and, hence, the spectrum displayed
the lines due to excitations without spin rotation. In the
perpendicular configuration, the polarization vectors of
the incident and scattered photons were perpendicular
and, hence, the spectrum contained the lines of excita-
tions with spin rotation [15]. The polarization was ana-
lyzed by means of linear polarizers placed in liquid
helium between the sample and fiber edges. The Raman
signal passed through a U-1000 double monochromator
and was detected by a CCD camera. The spectral reso-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lution of the measuring system was 0.03 meV. Simulta-
neous measurement of the Raman and luminescence
spectra allowed the electron density to be monitored
under quasi-continuous photoexcitation conditions
[16].

3. INTERSUBBAND BERNSTEIN MODES

Figure 1b presents a typical Raman spectrum scat-
tering in a zero magnetic field for a QW with an elec-
tron density of ns = 6.8 × 1011 cm–2, measured for q =
0.4 × 105 cm–1 and EL = 1.587 eV. The spectrum con-
sists of two narrow lines denoted by SDE and CDE,
peaked at the energies of 25.7 and 30.7 meV, and a
broad band (denoted SPE) situated in between the
former two. The CDE and SDE lines are observed only
in the parallel and perpendicular polarization configu-
rations of the exciting and scattered photons, respec-
tively. Thus, the CDE line corresponds to the funda-
mental excitation of the charge density, while the SDE
line corresponds to that of the spin density. The broad
SPE band is related to the continuum of single-particle
excitations [4]. This band is present in the spectra
obtained in both parallel and perpendicular polarization
configurations (single-particle excitations can either
involve or not the spin rotation). In the long-wave limit,
the SPE band shifts away from the SDE peak to higher
energies by a value equal to the intersubband exciton
energy, while the CDE peak binding energy increases
by an amount equal to the depolarization shift.

In a magnetic field perpendicular to the QW plane,
the SPE band exhibits splitting into individual compo-
nents. These spectra are presented in Fig. 2, where the
SPE band components are denoted by ISBM+1,
ISBM−1, ISBM–2, ISBM–3, and L0. As the magnetic
field strength is increased, the ISBM+n (ISBM–n) com-
ponents shift upward (downward) relative to the SPE
band maximum. The energy resonance of the ISBM+1
(ISBM–1) and CDE (SDE) lines is manifested by the
interaction (anticrossing) of levels (Fig. 2). In a strong
magnetic field, the lines of the fundamental intersub-
band excitations (SDE and CDE) and the intermediate
line L0 become dominating in the Raman spectrum.

Using the experimental spectra, we determined
dependences of the line energies on the applied mag-
netic field strength (Fig. 3). As can be seen, the CDE
and SDE energies are independent of the magnetic field
because these excitations are related to the intersub-
band electron transitions between the Landau levels
with the same indices. With neglect of the nonparabolic
shape of the conduction band of GaAs in the energy
interval of the intersubband level splitting, the energies
of all such transitions are equal and independent of the
magnetic field strength. On the contrary, the energies of
ISBM±n lines form the negative and positive “fans” of
the Landau levels, originating from the energy of inter-
subband quantization. The mass determined from the
slopes of these Landau levels is 0.071m0, where m0 is
SICS      Vol. 95      No. 5      2002
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the free electron mass. This estimate virtually coincides
with the effective electron mass for GaAs (m* =
0.067m0). Thus, we may conclude that the ISBM+1 and
ISBM–1 lines are related to the intersubband Bernstein
modes (i.e., the intersubband electron transitions
between the Landau levels with different numbers).
The experimental energies of the intersubband Bern-
stein modes for q  0 are well described by the rela-
tion

(1)

where Ω10 and ωc = eB/m*c are the electron intersub-
band and cyclotron frequencies, respectively. Formula
(1) for 2DES is an analog of the Kohn theorem for the
intersubband excitations, according to which the ener-
gies of the intersubband Bernstein modes for zero
quasimomentum transfer are independent of the elec-
tron–electron interaction [1]. A remarkable fact is that
expression (1) contains no terms reflecting the features
(shape, height, and width) of a potential bounding the
2DES, the intersubband energy "Ω10 being the only
quantity characterizing the transverse motion of elec-
trons.

EB n± "Ω10 n"ωc± , n 0,≠=

CDE
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Fig. 2. Raman spectra of a 250-Å-wide QW with an elec-
tron density of 6.8 × 1011 cm–2, measured for q = 0.4 ×
105 cm–1 and EL = 1.587 eV in a range of magnetic fields
from 0.7 to 2.4 T with an 0.1-T step, in comparison to the
spectrum measured in a zero magnetic field.
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4. INTERACTION OF INTERSUBBAND 
BERNSTEIN MODES WITH FUNDAMENTAL 

CDE AND SDE MODES

Equation (1) describes the experimental results cor-
responding to small quasimomentum transfer (q 
0). However, as the quasimomentum increases, the
ISBM+n (ISBM–n) and CDE (SDE) mode energies devi-
ate from linear relations in the region of mode reso-
nances and formula (1) becomes inapplicable to
description of the ISBM energies (Fig. 4). This situa-
tion is analogous to that with the intersubband excita-
tions: while the energies of intersubband excitations
and intersubband Bernstein modes for q = 0 are deter-
mined only by the effective mass of free electrons
(Kohn theorem and the intersubband analog), the dis-
persion relations are determined by the many-body
Coulomb interactions. Therefore, in order to describe
the ISBMs in the case of nonzero quasimomenta, it is
necessary to modify Eq. (1) so as to take into account
the interparticle Coulomb interactions.

Theoretical calculations of the intersubband excita-
tions with an allowance for the electron–electron inter-
action were performed within the framework of a local
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Fig. 3. The energies of intersubband magnetic excitations in a
250-Å-wide QW with an electron density of 6.8 × 1011 cm–2.
Points represent the experimental data; dashed curves show the
results of calculations. For the sake of clarity, only the theoret-
ical curves for CDEs are shown above the "Ω10 level and only
the curves for SDEs are depicted below this level. The SPE
continuum is indicated by a large open circle.
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30
density approximation (TDLDA model) [3, 7, 17].
According to this approximation, the energies of col-
lective excitations correspond to the poles of a total
polarization function (below, the indices refer to excita-
tions of the charge (CD) and spin (SD) densities). For a
perpendicular magnetic field, it is possible to neglect
the interactions between intra- and intersubband excita-
tions [18]. In this case, the energies of collective inter-
subband excitations correspond to the poles of the
intersubband part of the total polarization function

(2)

where χ10(q, ω) is the intersubband polarization function
of the 2DES in the magnetic field without interaction [18]:

(3)

χ̃ i
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and  = πns"/m*ωc – 1 is the index of the highest occu-
pied Landau level. The square of the matrix element is
expressed as

where N1 = max(N, N'), N2 = min(N, N'), (x) are the

associated Laguerre polynomials, and lB =  is
the magnetic length. The parameter γi is determined by
the depolarization shift and the exchange correlation
energy βi:
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The matrix element of the Coulomb interaction enter-
ing into an expression for the depolarization shift is

(4)

while the dynamic screening of the Coulomb interac-
tion by the optical LO phonons is included in the fre-
quency-dependent dielectric function

(5)

where ωLO and ωTO are the corresponding phonon fre-
quencies and e∞ ≈ 12.86 is the permittivity of GaAs.

The exchange correlation energy in the local density
approximation is

(6)

where Vi is the exchange correlation potential and ρi is
either the 3D electron density ρCD = ρ↑ + ρ↓ or the spin
density ρSD = ρ↑ – ρ↓ (ρ↑ and ρ↓ are the densities of the
spin subsystems of the 2DES). Assuming that the tem-
perature is much higher than the Zeeman energy and

V q( ) 2πe2

e∞q
----------- z1 z2ψ0 z1( )ψ1 z1( )d∫d∫=

× q z1 z2––( )ψ0 z2( )ψ1 z2( ),exp
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ω2 ωLO
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ω2 ωTO
2–

---------------------,=

βi zψ0
2 z( )Ui z( )ψ1

2 z( ),d∫=

Ui z( )
∂Vi

∂ρi

--------
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Fig. 5. The plot of energy gap ∆1 versus electron density ns
in a 250-Å-wide QW, measured for a fixed quasimomentum
of 1.1 × 105 cm–1. The CDE and ISBM+1 modes do not

intersect at ns ≤ 5 × 1010 cm–2. Points represent the experi-
mental data; the dashed line shows the results of theoretical
calculations.
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both spin subsystems are equally occupied, and select-
ing Vi as in [19], we arrive at the following expressions:

(7)

where

 is the Bohr electron radius for GaAs, and
RyGaAs ≈ 5.71 meV. The first like terms in the expres-
sions for Ui(z) reflect the exchange interaction, while
the other terms describe the electron correlations.

The electron wave functions in the fundamental and
excited quantum confinement subbands, ψ0(z) and
ψ1(z), which are necessary for determining the depolar-
ization shift and the exchange correlation energy, were
obtained as self-consistent solutions to the system of
one-dimensional Kohn–Sham and Poisson equations
[20]. Restricting the calculation to terms on the order
of (qlB)6 (that is, ignoring the electron transitions with
|∆n | > 3), we obtain the curves plotted in Fig. 3. The
experimental differences of the ISBM+n (ISBM–n) and
CDE (SDE) energies in the region of mode resonances
are in a reasonable agreement with the results of numer-
ical calculations (Fig. 3). Thus, we may conclude that
the observed anticrossing of ISBM+n (ISBM–n) and
CDE (SDE) modes are manifestations of the many-
body Coulomb interaction, which mixes the collective
excitations of the 2DES related to the intersubband
electron transitions with and without a change of the
Landau level index.

By varying the excitation quasimomentum and the
electron density, we studied dependence of the energies
of hybrid modes on the magnitude of the Coulomb
interaction (both Coulomb terms, representing the
depolarization shift and the exchange correlation
energy, are monotonic functions of q and ns) [6]. Fig-
ure 4 shows plots of the Raman shift of the hybrid
modes versus magnetic field strength in the region of
mode resonances for a fixed electron density ns = 6.8 ×
1011 cm–2 and two values of the quasimomentum. As
can be seen, the energy gap ∆1 (∆2) between the hybrid
modes increases when q doubles from 0.4 × 105 to
0.8 × 105 cm–1; the ∆1 (∆2) energy is a linear function of
q in the range of experimentally accessible quasimo-
menta (qlB ! 1—see Fig. 4).

Figure 5 shows dependence of the ∆1 value on the
electron density for a fixed quasimomentum q = 1.1 ×
105 cm–1. In the region of small ns (<2 × 1011 cm–2), the
gap ∆1 is described by a linear function of the electron
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Fig. 6. Raman spectra of a 250-Å-wide QW with an electron density of 6.8 × 1011 cm–2, measured in the region of energy resonances
of (a) ISBM+1 and I– and (b) ISBM+1 and I+ modes for q = 1.1 × 105 cm–1, EL = 1.59 eV, and various magnetic field strengths
(indicated at the curves). LO is the line of a bulk LO phonon in GaAs.
density intersecting the abscissa axis at a certain finite

critical value  ≈ 4 × 1010 cm–2, rather than at ns  0.
The critical electron density is determined by equality
of the depolarization shift and the exchange correlation
energy (these quantities depend differently on the elec-
tron density [6]). At an electron density below the crit-
ical value, the energy of the CDE mode is lower than
the intersubband quantization energy "Ω10; that is, the
energy balance between ISBM+1 and CDE modes
becomes impossible. It should be also noted that the ∆1

value exhibits saturation at ns ≥ 2 × 1011 cm–2, which is
related to a mixing of the ISBM+1 mode with the CDE–
LO mode. This effect is considered in detail in the fol-
lowing section. If the interaction with the LO phonons
is ignored, dependence of the ∆1 value on the electron
density must be close to linear.

Thus, we have studied the interaction between inter-
subband Bernstein modes, involving a change in the
Landau level index by unity, and the fundamental CDEs
and SDEs, but did not consider the behavior of ISBMs
with large indices. The energies of such modes are
described by Eq. (1), and their interaction with the fun-
damental modes in the long-wave limit is small (see Fig. 3).
For example, the interaction of CDE and ISBM+2

modes becomes detectable only at q = 1.2 × 105 cm–1,
which is close to the upper limit of the experimentally
accessible interval of quasimomenta. The calculation
shows that the energy of the interaction between CDE

ns
c
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(SDE) and ISBM+n (ISBM–n) is proportional to (qlB)n

(for qlB ! 1).

5. INTERACTION OF FUNDAMENTAL
AND BERNSTEIN MODES WITH LO PHONONS

The effect of LO phonons on the spectrum of inter-
subband electron excitations was studied using a series
of samples in which the intersubband quantization
energy "Ω10 was close to the energy of LO phonons in
GaAs. Figure 6 shows the Raman spectra for a single
QW with ns = 6.8 × 1011 cm–2, measured for q = 1.1 ×
105 cm–1 in two spectral intervals: below (a) and above (b)
the bulk LO phonon energy in GaAs. The QW width
and the electron density were selected so as to ensure
that the CDE energy almost coincided with LO phonon
energy in GaAs. In this case, the macroscopic polariza-
tion field of CDE, oscillating at the LO phonon fre-
quency, mixes the CDE mode with the LO phonon
mode and the spectrum displays two CDE–LO hybrid
modes denoted by I– and I+.

Application of a perpendicular magnetic field leads
to the appearance of ISBMs in the Raman spectrum.
Figure 7b shows plots of the Raman shifts for the
ISBM+1, two hybrid CDE–LO, and the bulk LO phonon
(reference) modes versus magnetic field strength for
GaAs. For the sake of clarity, the other spectral features
(ISBM modes with n ≠ +1 and SDE modes) are omit-
ted. In the region of energy resonances of the ISBM+1
SICS      Vol. 95      No. 5      2002



934 KULIK et al.
∆1
+

(b)

ISBM+1

∆1
–

I–

LObulk

I+

I+

LObulk
∆1

+

ISBM+1

∆1
–

I–

(a)

H, T

"ΩLO

"Ω10

44

42

40

38

36

34

32

0 2 4 6 8 10

30

R
am

an
 s

hi
ft

, m
eV

H, T
0 2 4 6 8 10

24

38

36

34

32

30

28

26

Fig. 7. The energies of intersubband magnetic excitations in a 250-Å-wide QW with an electron density of (a) 6.8 × 1011 and (b) 3.8 ×
1011 cm–2. Open circles represent the experimental data; dashed curves show the results of theoretical calculations; black circles
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mode with the I– and I+ modes, the spectrum displays
anticrossing, which is evidence of the interaction
between the ISBM+1 mode with each of the hybrid
CDE–LO modes. Thus, we may conclude that the
2DES under consideration features the formation of tri-
ple ISBM–CDE–LO modes. However, it is possible to
show that, in the region of accessible quasimomenta
(qlB ! 1), the ISBM+1 mode interacts only with the
CDE component of the CDE–LO hybrid mode, rather
than with the LO phonons.

We have studied the energy of interaction between
the ISBM+1 mode and the I– and I+ modes by varying
the degree of the CDE mode mixing with the LO
phonon mode (Fig. 7). This was achieved by decreasing
the electron density in the QW (and, hence, the inter-
subband energy "Ω10) and by driving the CDE mode
out of the resonance with the LO phonon. Figure 7
shows plots of the Raman shift versus the magnetic
field strength for two samples with the same QW
widths but different electron densities (6.8 × 1011 cm–2

versus 3.8 × 1011 cm–2). As can be seen from these data,

the gap  between ISBM+1 and LO-like modes (I+)
decreases with the electron density (i.e., with the LO-
like mode energy approaching the bulk LO phonon
energy in GaAs). After the further decrease in the
charge carrier density (from 3.8 × 1011 to 2.7 × 1011 cm–2),

the  value becomes zero. At the same time, the

∆1
+

∆1
+
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energy gap  between the ISBM+1 and CDE-like
mode (I–) remains almost unchanged. This behavior of

 and  indicates that the ISBM+1 mode interacts
only with the CDE component of the CDE–LO hybrid
mode, while interaction with the LO phonon compo-
nent in the accessible interval of quasimomenta is neg-
ligibly small.

The experimental spectra were compared to the
results of numerical calculations performed within the
framework of the local density approximation (see
above) in the long-wave limit (χ10(q,ω) ~ (qlB)2) with
neglect of the transitions with |n| > 1. As can be seen
from Fig. 7, the theoretical spectrum is in quite good
agreement with experiment in the entire range of mag-
netic fields.

As was demonstrated in Section 4, the energy gap
between the CDE–ISBM+1 hybrid modes is a linear
function of the quasimomentum for qlB ! 1. We have

also measured the dispersion curves for  and 

(Fig. 8). The plots of (q) and (q) are close to lin-
ear, which is consistent with the theoretical calculation
using the local density approximation. An important

result is that both energy gaps,  and , vanish when
q  0, which implies that the ISBM energy at q = 0
is independent of the degree of the electron–electron
interaction screening by LO phonons. This experimen-
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tal observation indicates that the basic relation (1)
remains valid in polar semiconductors.

6. ANTIPHASE INTERSUBBAND MODES

As was shown above, the Raman spectra exhibit,
besides resonances related to the ISBM modes and fun-
damental intersubband excitations, an additional reso-
nance manifested by the L0 line (see Fig. 3). When
B  0, the L0 line merges with the SPE band reflect-
ing continuum of the single-particle excitations. Based
on this experimental observation, Brozak et al. [10]
suggested that the L0 resonance is also related to the
single-particle excitations. Another argument in favor
of the single-particle nature of this line was that no col-
lective modes occurring between the fundamental
intersubband excitations (CDE and SDE) can take
place according to the local density approximation.

However, we presented arguments against assign-
ment of the L0 line to the single-particle excitations
[12]. Strictly speaking, no single-particle excitations
can exist in a translation-invariant 2DES occurring in a
perpendicular magnetic field: an excited electron and a
hole under the Fermi level always form a bound state
(magnetoexciton) [21, 22]. For large quasimomenta,
the binding energies of magnetoexcitons are small and
they can be destroyed by any small perturbation. Mag-
netoexcitons with large quasimomenta can be consid-
ered as analogous to single-particle excitations. How-
ever, in order to detect such excitations at small quasi-
momenta such as those accessible in the standard
experiments on the Raman scattering (qlB ! 1), it is
required that the excitations be strongly scattered from
impurities and roughnesses of the 2DES heterobound-
aries. This implies that the Raman scattering cross sec-
tion for the “single-particle” excitations must depend
on the sample quality. However, no such dependence
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
was observed [12]. The absence of collective modes
corresponding to the L0 resonance in the local density
approximation can be explained by the fact that this
model only roughly takes into account the exchange
interaction (the exchange energy is assumed to depend
only on the total local electron density in the QW). In
order to elucidate the nature of the L0 peak, we studied
the Raman spectra of a series of high-quality hetero-
structures with single QWs. The results of these mea-
surements showed that the L0 resonance is related to the
collective intersubband excitations in the 2DES, repre-
senting the antiphase or optical branches of CDEs and
SDEs [14].

Figure 9 shows the Raman spectra of three QWs
possessing different electron configurations. As can be
seen, all spectra display three dominating lines: L0 and
two others corresponding to the fundamental intersub-
band (SDE and CDE) modes. In weak magnetic fields,
the L0 mode energy is close to the intersubband energy
"Ω10; as the magnetic field strength grows, the L0 mode
energy drops. Under the mode resonance conditions,
the L0 and SDE lines exhibit repulsion (Fig. 10). This
behavior of lines is indicative of the interaction
between the SDE mode and the excitation related to the
L0 resonance. Since modes of different symmetries
cannot interact, we may conclude that the L0 line is due
to a collective 2DES excitation possessing the same
quasimomentum as that of SDE. Therefore, the L0 line
cannot be related to a process in which the quasimo-
mentum is not conserved.

Interpretation of the L0 line in terms of the single-
particle excitations is also inconsistent with the depen-
dence of the mode energy on the magnetic field
strength. As can be seen from Fig. 10, the L0 mode
energy significantly decreases when the field strength
grows. However, it is known that the intersubband
SICS      Vol. 95      No. 5      2002
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Fig. 9. Raman spectra of a 250-Å-wide QW with different electron densities, measured using various laser excitation energies (indi-
cated at the top) in various magnetic fields (indicated at the curves).
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energy and, hence, the single-particle excitation energy
are independent of the field. Nor can we relate a shift of
the L0 mode energy in the magnetic field to the cyclo-
tron energy, since the tangent slope α of the relation
between the L0 mode energy and the magnetic field
strength depends on the electron density of the 2DES
(Fig. 11): the value of α decreases by more than half
when the electron density grows from 1.37 × 1011 to
6.8 × 1011 cm–2. Nevertheless, there exists an invariant
quantity related to the L0 line shift that is insensitive to
parameters of the sample studied. Such a quantity, invari-
ant with respect to the electron density, is the critical elec-
tron occupancy factor νcr for which the L0 mode energy
becomes equal to the SDE mode energy (Fig. 11).
JOURNAL OF EXPERIMENTAL
A theoretical description of the collective excitation
modes corresponding to the L0 line was developed
within the framework of the Hartree–Fock approxima-
tion in which the exchange interaction depends not only
on the total electron density in the QW (as in the local
density approximation), but on the distribution of elec-
trons over the Landau levels as well [23]. Calculations
performed with neglect of the electron transitions
changing the Landau level index predict that there are
2N collective intersubband modes (N is the index of the
highest occupied Landau level) combined into pairs,
each pair including excitations of the charge and spin
densities. The energy of a pair of modes is independent
of the magnetic field strength. These are the equiphase
or acoustic modes corresponding to the fundamental
 AND THEORETICAL PHYSICS      Vol. 95      No. 5      2002
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gies in a linear approximation. Dashed lines represent the calculation in the local density approximation (χ10(q, ω) ~ (qlB)2). The
inset illustrates repulsion between the L0 and SDE lines.
CDEs and SDEs. The energies of all other (antiphase or
optical) modes are close to the intersubband energy at
B  0 and decrease with increasing magnetic field
strength. The acoustic CDE and SDE modes are split by
a value equal to the depolarization shift, while the ener-
gies of optical excitations coincide in each pair and dif-
fer but little between pairs [23].

The above excitations are, in a certain sense, analo-
gous to the phonons in crystals. In the case when a crys-
tal unit cell contains a single atom, the phonon spec-
trum of the crystal represents an acoustic branch. Each
extra atom introduced into the cell adds an optical
phonon branch. In our case, such a unit cell is the mag-
netic flux quantum (see the bottom diagram in Fig. 12).
An analog of the acoustic phonon branch is offered by
the fundamental CDEs and SDEs, the energies of which
are determined by the total electron density of the
2DES and are independent of the magnetic field
strength. All the other antiphase modes are analogs of
the optical branches. The number of such modes corre-
sponding to the excitation of each particular type (CDE
and SDE) is N – 1. Naturally, the above analogy
between phonons and the collective magnetic excita-
tions in the 2DES is rather conditional. For example,
the electron occupancy factor is a continuous function
of the magnetic field strength (the number of electrons
per magnetic flux quantum varies continuously),
whereas the number of atoms changes discretely.
Accordingly, the energies of optical modes also contin-
uously vary with the electron occupancy factor.

Obviously, optical excitations cannot be observed
for electron occupancy factors ν < 2, that is, when only
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
one (the lowest) Landau level is occupied (one electron
with each spin per magnetic flux quantum). Indeed,
only the acoustic CDE and SDE modes are present in
the Raman spectra for ν < 2 (Fig. 10). An assumption
that the L0 resonance must probably have a multicom-
ponent structure for occupancy factors ν > 4, when
more than one optical branch is present in the spectra of
magnetic excitations, is also confirmed by experiment.
For still greater occupancies (ν @ 4), the L0-resonance
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Fig. 11. Plots of the tangent slope α of the relation between
the L0 mode energy and the magnetic field strength and the
critical electron occupancy factor νcr for QWs with various
electron densities ns. Dash-and-dot lines are drawn for con-
venience.
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half-width becomes large, which indicates that the L0

line is multicomponent. As the occupancy factor
decreases, the resonance narrows and (for 2 < ν < 4) the
L0 line half-width becomes equal to that of the SDE
line. On the other hand, the half-widths of the acoustic
intersubband SDE and CDE modes are independent of
the magnetic field strength (Fig. 10).

In order to demonstrate that the L0 resonance corre-
sponds to the excitation of both charge and spin densi-
ties, we measured the Raman spectra using two differ-
ent polarization configurations. Figure 12 shows the
degree of polarization γ = (I– – I+)/(I– + I+) of the
observed lines (I– and I+ are the Raman signal intensi-
ties in the parallel and perpendicular polarization con-
figurations). As can be seen, the fundamental CDE and
SDE modes are observed only in the co- and cross-
polarized configurations of the incident and scattered
photons, respectively, while the L0 resonance is
observed with equal intensity in both configurations.

SDE

CDE

SPE

L0

1

0

–1

0 1 2 3 4 5

γ

H, í

"Ω01

"ωc

ν < 2 2 < ν < 4

1  2

Fig. 12. The degree of polarization γ of the main peaks in
the Raman spectrum of a 250-Å-wide QW with an electron
density of 6.8 × 1011 cm–2. The bottom diagram illustrates
the appearance of an additional degree of freedom in the
case of antiphase excitations: for 2 < ν < 4, two different
CDEs (SDEs) can be constructed for the two electron tran-
sitions. For ν < 2, there is a single electron transition and
one excitation of each type.
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Thus, the L0 resonance consists of two components,
CDE and SDE, in agreement with the theory [23].

It should be noted that the above antiphase excita-
tions exist not only in the case of fundamental intersub-
band CDEs and SDEs, but are present in all other inter-
subband excitations as well. Recently, the antiphase
ISBMs were theoretically studied in [24]. In experi-
ment, it is rather difficult to separate the Raman signal
from the equiphase and antiphase Bernstein modes,
since the energies of the former and latter signals in
large magnetic fields almost coincide [24].

7. CONCLUSION

We have considered the spectrum of intersubband
collective excitations in a perpendicular magnetic field.
The intersubband excitations of a quasi-two-dimen-
sional electron system in a magnetic field were studied
by both experimental and theoretical methods. It was
demonstrated that, at a quasimomentum close to zero,
the energies of the intersubband Bernstein modes are
well described by the basic equation (1). At a nonzero
quasimomentum, the intersubband Bernstein modes
interact with the fundamental charge and spin density
excitations, with the interaction energy depending on
the quasimomentum and the electron density. The inter-
subband Bernstein modes do not interact with the LO
phonons at small quasimomenta (qlB ! 1). However, in
the case when the LO phonon mode is mixed with the
fundamental charge density excitation (CDE), the inter-
subband Bernstein modes interact with the CDE–LO
hybrid modes. New branches of charge and spin density
excitations were considered, which are related to the
antiphase oscillations of the electron subsystems on
different Landau levels.
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Abstract—Under the assumption of a strong spin–orbital interaction, two forms of the order parameter are
obtained for two superconducting phases of the ferromagnetic UGe2 that are allowed by the crystal symmetry.
For each of the two phases, symmetry nodes in the gap of Fermi excitations are found, and the consequences
of the existence of nodes, which can be used for experimental phase identification, are discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The UGe2 band ferromagnet becomes a supercon-
ductor in the interval of pressures 11 < Pc < 16 kbar and
temperatures Ts < 0.8 K [1, 2]. This temperature is small
compared with the Curie temperature TC at the same
pressure. The separation of Fermi surfaces for electrons
with opposite spin projections, which is known from
experiments, is 2 or 3 orders of magnitude greater than
the superconducting gap. Such a wide separation makes
the singlet Cooper pairing impossible; however, it does
not inhibit the formation of Cooper pairs with parallel
spins, i.e., pairs in the triplet state. Under the triplet
Cooper pairing, the order parameter is a complex vector
function d(k). In magnets, the symmetry with respect to
time reversal is broken. As a result, the superconducting
phases of a ferromagnetic metal are, generally, nonuni-
tary; i.e., d and d* are not proportional to each other, or,
in other words, d × d* ≠ 0. If the symmetry group of the
normal phase is known, one can classify the supercon-
ducting phases that can arise from a given normal phase
[3]. An attempt at such a classification for UGe2 was
made in [4]. In particular, it was shown that the symme-
try of the normal phase is described by the D2(C2)
group, which is isomorphic to D2. Four possible forms
of the order parameter were obtained, which are trans-
formed according to the four representations of D2: A,
B1, B2, and B3. In [5], it was shown that, if the compo-
sition rules for antiunitary symmetry elements are
taken into account, then the basis functions correspond-
ing to the representations A and B1 are equivalent to
each other; i.e., they are transformed to the same corep-
resentation of the magnetic group. Two other functions
are also equivalent to each other. Thus, in this case, we
have only two different symmetry types of the super-
conducting order parameter. The necessity to use
corepresentations for the classification of supercon-
1063-7761/02/9505- $22.00 © 20940
ducting ferromagnetic phases was first noted in [6] in
relation to the investigation of ZrZn2.

In order to experimentally identify the type of the
order parameter that is realized in UGe2, it is important
to investigate the existence and arrangement of nodes in
the gap of the Fermi excitation spectrum for each of the
possible forms of the order parameter. This investiga-
tion is the purpose of the present paper. The symmetry
related part of the discussion could also be applied to
the URhGe superconducting ferromagnet [7].

2. BASIS FUNCTIONS

First, we obtain the general form of the functions YA

and YB, which are transformed by two different corep-
resentations A and B of the magnetic group D2(C2). This
group consists of four operators. Two of them—the
identity (E) and the rotation by π about the axis z

( )—are unitary. The other two—R  and R —
include the operation R of time reversal and, therefore,
are antiunitary. The corepresentations are formed by
the matrices G1 and Gz corresponding to the unitary
operators, and Fx and Fy, which correspond to the anti-
unitary operators. For one-dimensional corepresenta-
tions, they are complex numbers. According to the gen-
eral rules for multiplying matrices that form corepre-
sentations (see [8]), they satisfy the following

equations:  = G1, Fx ·  = G1, Fy ·  = G1, and Fx

·  = Gz. These equations have two solutions, which
generate two different corepresentations. One of them
(say, A) has the form

(1)

The other one, B, is

(2)

C2
z C2

x C2
y

Gz
2 Fx* Fy*

Fy*

G1 1; Gz 1; Fx e2iφ; Fy e2iφ.= = = =

G1 1; Gz 1– ; Fx e2iφ; Fy e– 2iφ,= = = =
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where φ is a real scalar. The factor 2 in the exponents is
introduced to make the form of the basis functions more
convenient.

Now, we write YA in the form

(3)

where x, y, and z are the unit vectors along the second-
order axes b, c, and a, respectively. The axis a is the
direction of easy magnetization in the ferromagnetic
phase. All functions fx, y, z(k) are odd; i.e., fx(–k) =

−fx(k), and so on. When the operators E, , R , and

R  act on YA, this function must be multiplied by
numbers defined by Eqs. (1). This yields conditions for
the functions fx(k), fy(k), and fz(k). Since the operators
under considerations are linear (antilinear), the condi-
tions are imposed on each function fx, fy , and fz individ-
ually. For example, for fx(k), we have

Conditions for fy(k) are obtained from the above ones
by replacing all subscripts x with y and conversely. For
fz(k), we have

The function

(4)

satisfies all the conditions above. Here, φA, a11, … are

real functions of , , and . The function YA deter-
mined from Eq. (4) differs from that proposed in [4] by

the factor . Setting φA = π/2 and using the aforemen-
tioned result in [5], we can redefine arbitrary functions so
as to reduce Eq. (4) to the form  obtained in [4].

For the corepresentation B, a similar reasoning
yields the conditions

for fx(k) and the conditions

YA x f x k( ) y f y k( ) z f z k( ),+ +=

C2
z C2

x

C2
y

f x kx ky kz,–,–( ) f x kx ky kz, ,( );–=

f x* kx ky k– z,–,( ) e2iφ f x kx ky kz, ,( );=

f x* k– x ky k– z,,( ) e2iφ f x kx ky kz, ,( ).=

f z kx ky kz,–,–( ) f z kx ky kz, ,( );=

f z* kx ky k– z,–,( ) e– 2iφ f z kx ky kz, ,( );=

f z* k– x ky k– z,,( ) e– 2iφ f z kx ky kz, ,( ).=

YA e
iφA–

x̂kx a11 ikxkya10+( ){=

+ ŷky a22 ikxkya20+( ) ẑkz a33 ikxkya30+( )+ }

kx
2 ky

2 kz
2

e
iφA–

YB1

f x kx ky kz,–,–( ) f x kx ky kz, ,( ),–=

f x* kx ky k– z,–,( ) e2iφ f x kx ky kz, ,( ),=

f x* k– x ky k– z,,( ) e2iφ f x kx ky kz, ,( )=

f z kx ky kz,–,–( ) f z kx ky kz, ,( ),=
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for fz(k). The general form of the basis function for B is

(5)

Under an appropriate choice of the phase factor , it
goes to the function  or  (see [4]).

3. NODES
Under the triplet Cooper pairing, the gap in the spec-

trum of Fermi excitations is determined (see [9]) by the
eigenvalues of the matrix

(6)

For nonunitary phases, this matrix has two different
eigenvalues. Each of them equals the square of the gap
magnitude for one of the spin orientations. Separating
the real and imaginary parts of the vector d(k) by set-
ting d(k) = d1(k) + id2(k), we obtain, for the eigenval-

ues (∆k )αβ,

The gap vanishes under the following conditions:
(1) d1(k) = 0 and d2(k) = 0; then, the gap vanishes

for both spin orientations.
(2) |d1(k)| = |d2(k)| and |d1(k)| ⊥  |d2(k)|; then, only

one of the gaps vanishes.
A direct verification shows that if no special

assumptions are made about the unknown functions
a11, a10, …, b13, b10, …, which appear in Eqs. (4) and
(5), then, for both types of the order parameter YA and
YB, there are no nodes in the gap. This assertion is
based solely on the properties of the order parameter
symmetry. The fact that the magnetic polarization in
UGe2 and in URhGe is strong was not used.

It is known that the separation of Fermi surfaces
with different spin projections suppresses the pairing
amplitude for quasiparticles with opposite spins. For
singlet pairing, the superconducting state is already

broken at the separation 2I > ∆0, where ∆0 is the gap
magnitude at zero temperature in the absence of polar-
ization [10]; moreover, the state changes very rapidly as
the polarization increases.

The formal cause of the pairing suppression is the
fact that, under the polarization, the singularity of the
scattering amplitude of quasiparticles with opposite
momenta changes. Without the polarization, the scat-
tering amplitude has the singularity ln(ωD/∆0) in the

f z* kx ky k– z,–,( ) e– 2iφ f z kx ky kz, ,( ),=

f z* k– x ky k– z,,( ) e– 2iφ f z kx ky kz, ,( )=

YB e
iφB–

x̂kz b13 ikxkyb10+( ){=

+ ŷkz ib23 kxkyb20+( ) ẑkx b31 ikxkyb30+( )+ } .

e
iφB–

YB3
YB4

∆k∆k
†( )αβ

=  d k( ) d* k( )δαβ i d k( ) d* k( )×[ ]σ αβ.+⋅

∆k
†

∆1 2,
2 d1

2 k( ) d2
2 k( ) 2 d k( ) d* k( )× .±+=

2
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second order in the interaction. When the Fermi sur-
faces for two spin projections are separated by 2I, the
singularity becomes ln(ωD/I). At I @ ∆0, this contribu-
tion can be included in the regular part of the scattering
amplitude. The transition from the state ∆↑↓  ≠ 0 to the
state ∆↑↓  = 0 must occur at I ~ ∆0 ~ Ts. Taking into
account that the condition I @ Ts is certainly true for
UGe2 and URhGe, we will assume that ∆↑↓  = 0. In vec-
tor notation, this is equivalent to the condition dz(k) = 0.
Under this condition, we obtain, for the two types of the
order parameter,

(7)

(8)

The order parameter YA, as well as the gap on both
Fermi surfaces, vanishes at the points kx = 0 and ky = 0.
These are symmetry nodes. To verify this fact, consider

the function YA(0, 0, kz) and apply the operator  to

it. By Eqs. (1), we have YA(0, 0, kz) = YA(0, 0, kz).

On the other hand, the definition of  yields

(9)

Therefore, YA(0, 0, kz) = 0.
Similarly, Eq. (8) shows that YB vanishes at the line

kz = 0. These are also symmetry nodes, since

(10)

On the other hand, it follows from Eqs. (2) that

YB(kx, ky, 0) = –YB(kx, ky, 0); 

therefore, YB(kx, ky, 0) = 0.

4. DISCUSSION OF THE RESULTS
We see that two feasible superconducting phases of

UGe2 differ in the type and arrangement of nodes in the
gap of the excitation spectrum. For the A-type phase
(see formula (7)), the nodes are isolated and are at the
intersection points of the Fermi surfaces with the direc-
tion of the easy magnetization axis. For the B-type
phase (8), they form lines on the equators of the Fermi
surfaces that are perpendicular to this axis. The exist-
ence of nodes leads to a power law for thermodynamic
quantities as functions of the temperature at T ! Ts,
where the exponent depends on the type of nodes. The

YA e
iφA–

x̂kx a11 ikxkya10+( ){=

+ ŷky a22 ikxkya20+( ) } ,

YB e
iφB–

x̂kz b13 ikxkyb10+( ){=

+ ŷkz ib23 kxkyb20+( ) } .

C2
z

C2
z

C2
z

C2
z YA 0 0 kz, ,( ) x f x 0 0 kz, ,( )–=

– y f y 0 0 kz, ,( ) YA 0 0 kz, ,( ).–=

C2
z YB kx ky 0, ,( ) x f x kx ky 0,–,–( )–=

– y f y kx ky 0,–,–( ) YB kx ky 0, ,( ).=

C2
z
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analysis of power laws for thermodynamic quantities is
a conventional method for the identification of uncon-
ventional superconducting phases (see, e.g., [11]).
Here, we discuss only the specific features of the low-
temperature behavior caused by the magnetic polariza-
tion of UGe2. The width of the gap generally depends
on the spin projection. For example, it may be that
∆↓ ! ∆↑ if the separation of Fermi surfaces is large.
Then, there exists an interval of temperatures ∆↓ ! T <
Ts for which the lesser gap has almost no effect on the
temperature dependences of thermodynamic quantities
and the contribution of Fermi particles with the spin
“down” direction to these quantities is the same as for
the normal phase. Another specific feature of supercon-
ducting ferromagnets is the existence of the magnetiza-
tion field HM = 4πM. For UGe2, we have HM ~ 1 kOe.
This is significantly greater than the field HC1 estimated
on the basis of the temperature; i.e., the superconduct-
ing UGe2 is in a mixed state. The combination of vorti-
ces with the line of nodes in the gap oriented perpendic-
ularly to the vortex axes leads, according to the predic-
tion in [12], to the appearance of a finite state density
on the Fermi level, which, in turn, results in a linear (in
temperature) contribution to the heat capacity cs; more-

over, cs ~ cn . Because of the square root
dependence on the field, this contribution to the heat
capacity is greater than the contribution of electrons
localized on vortices if the field is small compared to
Hc2. The contribution to the heat capacity discussed
here is expected to appear in the B-type phase and
should be absent in the A-type phase. Thus, the
expected difference of low-temperature properties of A
and B phases presumably will make it possible to iden-
tify the superconducting phases observed in UGe2 and
URhGe.
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Abstract—Solutions of the equations v x + v 3 – tv  + x = 0 and v xx = v 3 – tv  + x, which describe the nucleation
of domain walls occurring in the neighborhood of cusps of slowly varying equilibriums, are analyzed. Exam-
ples related to the diffusion in smoothly inhomogeneous media are considered. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

1.1. Partial differential equations (PDEs)

(1.1)

describe various phenomena in inhomogeneous media.
Generally, their solutions defy analytical analysis.

Even the simplest first-order equation

(1.2)

for the local parameter of a time-independent plane
medium in a given velocity field (p, q) [1, pp. 150, 158]
cannot be solved explicitly.

The investigation of solutions of second-order equa-
tions, such as the time-independent part

(1.3)

of the two-dimensional nonlinear diffusion equation

(1.4)

is even more complicated. Here, in addition to the ran-
dom walk of particles, their drift with a constant veloc-
ity is taken into account [2, p. 44] (in the absence of the
drift, the time-independent diffusion equation

(1.5)

L S DS,( )u S( ) Aij S( )
∂i j+ u

∂s1
i ∂s2

j
---------------G S u,( )

i j+ 1=

2

∑=

S s1 s2,( )=( )

p
∂u
∂s1
------- q

∂u
∂s2
-------+ G S u,( )=

p 0 q 0 are constants>,>( )

p1
∂u
∂s1
------- ∂2u

∂s1
2

--------– ∂2u

∂s2
2

--------– G S u,( )=

p1 is a constant( )

∂u
∂ζ
------ p1

∂u
∂s1
------- ∂2u

∂s1
2

--------– ∂2u

∂s2
2

--------–+ G S u,( ),=

–∂2u

∂s1
2

-------- ∂2u

∂s2
2

--------– G S u,( )=
1063-7761/02/9505- $22.00 © 20944
does not contain the first derivatives of u(S)). Another
example is provided by the time-dependent one-dimen-
sional diffusion equation

(1.6)

However, for smooth [3, 4] inhomogeneities

(1.7)

considered in this paper, the situation is different: effec-
tive methods for the description of solutions to
Eq. (1.1), (1.7) and equivalent PDEs

(1.8)

are available (see [4–15] and references therein).
1.2. Often, solutions to Eq. (1.8) have asymptotic

expansions

(1.9)

in which u = u0(X) is a slowly varying equilibrium of
Eq. (1.1), (1.7):

(1.10)

As an example, we cite some initial value problems
solved with the help of such asymptotic expansions.

(1) Let the local medium parameter, which is a solu-
tion to Eq. (1.2), (1.7), be given, at s1 = 0, by a slowly
varying function g(εs2). Then, the dilatations x1 = εs1
and x2 = εs2 reduce the description of the medium to
solving the problem

(1.11)

If, on the interval 0 ≤ x1 ≤ K, the solution u = u0(X) to
the limit equation (1.10) to Eq. (1.11) is unique and sat-
isfies the stability condition

(1.12)

∂u
∂s1
------- ∂2u

∂s2
2

--------– G S u,( ).=

Aij S( ) hij εS( ), G S u,( ) f εS u,( ),   ε ! 1,= =

L X εDX,( )u X( ) f X u,( ), X εS,= =

u u0 X( ) εu1 X( ) ε2u2 X( ) …,+ + +=

f X u0,( ) 0, X x1 x2,( ).= =

ε p
∂u
∂x1
-------- q

∂u
∂x2
--------+ 

  f x1 x2 u, ,( ),=

u x1 0= g x2( ).=

f u x1 x2 u0 x1 x2,( ), ,( ) 0,<
002 MAIK “Nauka/Interperiodica”
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then the solution to the initial value problem (1.11) has
an asymptotic expansion (1.9) on this interval outside
an infinitely small (as ε  0) neighborhood of the line
x1 = 0 (see [10]).

(2) Under similar restrictions on the functions u(0,
s2) and G(S, u), the solution to the initial value problem
for Eq. (1.6), (1.7) is expanded into series (1.9) at an
infinitely small distance from the line x1 = 0 (as ε 
0) (see Section 2.3).

(3) If the sink function has form (1.7) and the initial
value is u|ζ = 0 = g(εS), the initial value problem for the
diffusion equation (1.4) is reduced to the problem

(1.13)

by the change of variables X = εS. Under the same
assumptions on f(X, u), the solution to this problem at
ζ @ 1 is represented by the asymptotic solution (1.9) to
the equation

(1.14)

The asymptotic expansion of the solution of the ini-
tial value problem (1.13) is a sum of the right-hand side
of (1.9) and the series

consisting of exponentially small (at ζ @ 1) terms (see
the beginning of Section 4.2).

Note that the solution to (1.13) obviously tends to
the root u0(X) as ζ  ∞ and ε  0. Indeed, accord-
ing to (1.12), this is an asymptotically stable equilib-
rium of the limiting ordinary differential equation ODE
(1.13)

which differs from other solutions by exponentially
small quantities as ζ  ∞ (see [16, p. 289]). By the
same reason, solutions to problem (1.11) and to the ini-
tial value problem considered in Section 4 tend to u0(X).

Generally, the fact that solutions to PDEs (1.8) can
often be represented by series (1.9) depends on how
often roots to Eq. (1.10) satisfy conditions (1.12): since,
for the majority of smooth functions f(X, u), fu(X,
u0(X)) can vanish only on isolated curves of the plane X
[17, 18], about half of all smooth functions f(X, u) sat-
isfy condition (1.12) in domains that contain no such
lines.

We give one more example of a boundary value
problem that shows that, if this condition is satisfied,
then asymptotic expansions (1.9) are characteristic of
boundary value problems as well. Assume that, in a

∂u
∂ζ
------ εp1

∂u
∂x1
-------- ε2 ∂2u

∂x1
2

-------- ∂2u

∂x2
2

--------+
 
 
 

–+ f x1 x2 u, ,( ),=

u ζ 0= g X( )=

εp1
∂u
∂x1
-------- ε2 ∂2u

∂x1
2

-------- ∂2u

∂x2
2

--------+
 
 
 

– f x1 x2 u, ,( ).=

Π0 ζ X,( ) εΠ1 ζ X,( ) ε2Π2 ζ X,( ) …+ + +

uζ f X u,( ),=
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closed domain G with a smooth boundary dG,

Eq. (1.10) has three roots, and the minimal  and

maximal  of them satisfy condition (1.12). We
also assume that, in the domain G, u(X, ε) satisfies the
equation

(1.15)

which is equivalent to Eq. (1.5), (1.7). Furthermore, we
assume that it satisfies one of the two boundary condi-
tions

(1.16)

where n is the normal to dG. Under certain additional
conditions, solutions to problems (1.15), (1.16) have
two different asymptotic expansions of the form (1.9)
on different sides of the shock curve defined by the
equation

. (1.17)

In one of them, the principal term is ; and in the

other one, it is  [11–13].1

1.3. In studies devoted to physical problems (e.g.,
[3–5]), simple states described by series (1.9) are men-
tioned only in passing, and the typical nature of zero
curves of fu(X, u0(X)) on the plane X is ignored (see [17,
18]) (these curves consist of smooth parts formed by
fold points and joined at cusps). Therefore, the fact that
asymptotic expansions (1.9) become inappropriate at
singular points u0(X) is also ignored.

However, for ODE (1.8), the case of a fold in the
solution to the limit equation (1.10) has been thoroughly
analyzed in [19–23]. It is clear that a similar scheme can
be used for the analysis of this type of singularities in
PDEs (an investigation of this sort can be found in Sec-
tion 4). In particular, it is obvious that the behavior of the
corresponding solutions to PDE (1.8) in the neighborhood
of the fold points of the roots to Eq. (1.10) is also
described by solutions of the Riccati equation

(1.18)

or, when Eq. (1.8) does not include the first derivatives,
by the Painlevé equation

1 A smooth change from one asymptotic expansion to the other
occurs in the neighborhood of curve (1.17), which has a finite
extent in terms of the variables S. In terms of these variables, such
asymptotic solutions to Eq. (1.8) (of the type of smooth shock
waves) are interpreted as domain walls [3].

u0
1 X( )

u0
3 X( )

ε2 ∂2u

∂x1
2

-------- ∂2u

∂x2
2

--------+
 
 
 

– f x1 x2 u, ,( ),=

u dG a X( ) or ∂u
∂n
------

dG

b X( ),= =

f x1 x2 u, ,( ) ud

u0
1

x1 x2,( )

u0
3

x1 x2,( )

∫ 0=

u0
1 X( )

u0
3 X( )

Γξ ξ Γ 2–=

Γξξ ξ Γ 2.–=
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946 SULEŒMANOV
The case of a cusp, which is specific to PDEs, has
not yet been considered. However, this analysis is
essential for understanding the behavior of asymptotic
solutions (1.9) “beyond” the cusp. Indeed, even if
“before” this point the solution to Eq. (1.10) was
unique, it is three-valued “beyond” this point, i.e., in the
domain where the roots of (1.10) overlap (see Sec-
tion 2.2). For example, the assumption that in this case
a domain wall is formed with a front localized in the
vicinity of a curve, which is determined from the con-
dition of equality of areas (1.17), is most often false.
Indeed, an analysis of neighborhoods of root cusps
(1.10) (see Sections 2, 3, and 5) shows that the forma-
tion of such a domain wall is characteristic only of solu-
tions to the PDE (1.8) that do not include the first-order
derivatives of u(X). The main conclusion of this analy-
sis is that the formation of domain walls with fronts
localized in a vanishingly narrow (as ε  0) neigh-
borhood of one of the boundaries of the domain where
the roots of (1.10) overlap is typical for the majority of
PDEs (1.8).

In Section 4 of this study, an example is analyzed
that explains how the terms of (1.8) with second-order
derivatives affect structures formed beyond the cusp.2

However, a great part of the reasoning used in that sec-
tion and that employed earlier is identical, and Section 4
can be omitted on first reading.

2. REFERENCE EQUATIONS

2.1. In this section, we show that solutions to the
PDE (1.8) that have asymptotic expansions (1.9) are
described, in the neighborhood of the cusps for u0(X),
by solutions of the Abel ODE

(2.1)

or, if h10(X) = h01(X) = 0 in Eq. (1.8), by solutions to one
of the equations

(2.2)

Moreover, the leading term g(x, t) of the asymptotic
expansions (at x2 + t2  ∞) of solutions to Eqs. (2.1)
or (2.2) in the matching domains with the asymptotic
expansions (1.9) (see [15]) is a root of the equation

(2.3)

2.2. We begin with the presentation of certain con-
clusions drawn in [18].

2 The relationship of domain walls, which are solutions to the time-
independent PDE (1.14), to solutions of the time-dependent dif-
fusion equation (1.4), (1.7) is discussed in the Conclusions.

P v x,( ) v x v 3 tv x+–+ 0= =

v xx v 3 tv x, v xx v 3 tv x+–++– 0.= =

g3 tg– x+ 0.=
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(1) On the plane X, cusps X* are typical for which
the first three coefficients of the Taylor series of the
smooth functions f(X*, u)

at the points u*—the roots to the equations f(X*, u) =
0—are zero. Due to  and , no more than two con-
straints can be imposed on the expansions of f(X, u) at
the points (X = X*, u = u*). Therefore, in the corre-
sponding Taylor series at these points

(2.4)

,

the constants a, b, c, and d, along with the constant e,
are nonzero.

(2) There exist constants  [18, pp. 45, 46, 52] such
that the change of variables

(2.5)

take Eq. (1.10), which is determined by series (2.4), to
the equation

(2.6)

(2.7)

1
j!
----∂ j f

∂u j
-------- X∗ u∗,( ) u u∗–( ) j

j 0=

∞

∑

x1* x2*

f X u,( ) a x1 x1*–( ) b x2 x2*–( )+=

+ u u∗–( ) c x1 x1*–( ) d x2 x2*–( )+[ ] e u u∗–( )
3

+

+ cij0 x1 x1*–( )
i

x2 x2*–( ) j

i j+ 1>
∑

+ u u∗–( ) cij1 x1 x1*–( )
i

x2 x2*–( ) j
c00k u u∗–( )

k

k 3>
∑+

i j 1>+

∑

+ u u∗–( )k
cijk x1 x1*–( )

i
x2 x2*–( ) j

i j 0>+

∑
k 1>
∑

cij
k

u u∗– cij
0 YiZ j U 1 cij

1 YiZ j

i j+ 1=

∞

∑++
i j+ 1=

∞

∑=

+ Uk cij
k YiZ j,

i j+ 0=

∞

∑
k 2=

∞

∑
Y a x1 x1*–( ) b x2 x2*–( ),+=

Z c x1 x1*–( ) d x2 x2*–( )+=

δ Y Z,( ) σ Y Z,( )U eU3+ + 0,=

δ Y Z,( ) Z δijY
iZ j,

i j 1>+

∑+=

σ Y Z,( ) Y σijY
iZ j.

i j 1>=

∑+=
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CUSP CATASTROPHE IN SLOWLY VARYING EQUILIBRIUMS 947
(3) At eσ ≥ 0, Eq. (2.6) has a unique root, and, for
eσ < 0, it is unique only outside the overlapping domain

inside this domain, the solution to (2.6) is three-valued.
Series (2.5) is also three-valued in this case.

2.3. In the neighborhood of the cusp, we pass to
dilated variables. Since the leading term of series (2.5),
being a solution to Eq. (2.6), depends both on δ and on
σ, all three terms on the left-hand side of this equation
should be balanced: if the order of smallness of U in the
new variables is εk, then δ(Y, Z) and σ(Y, Z) must be of
order ε3k and ε2k, respectively. Due to this consideration
and the form of series (2.5) and (2.7), it is clear that the
dilatations should be as follows:

(2.8)

where k > 0 is a constant. These dilatations reduce
series (2.4) to the form

(2.9)

Therefore, according to the general idea of matching
asymptotic expansions [15], k must be chosen so as to
make the left-hand side of Eq. (1.8) of order ε3k in vari-
ables (2.8).

In the new variables, the operations of differentia-
tion with respect to x1 and x2 in the principal order with
respect to the parameter ε are actually the differentia-
tions with respect to z:

Therefore, the change of variables (2.8) in the principal
order reduces the operator L(X, εDX) (see (1.1) and
(1.7)) on the left-hand side of Eq. (1.8) to the differen-
tiation with respect to z:

. (2.10)

(In the case of the general position, the constants

and 

are nonzero: see Subsection 2.2.) Thus, k is found from
the equation

δ 4σ3–( )1/2

27e( )1/2
----------------------;<

Z ε3kz, Y ε2ky, u u∗– εkV ,= = =

f X u,( )

=  ε3k z yV eV3 ε jkP j z y V, ,( )
j 1>
∑+ + +

 
 
 

.

x1∂
∂ a

ε3k
------

z∂
∂ c

ε2k
------

y∂
∂

,
x2∂
∂

+
b

ε3k
------

z∂
∂ d

ε2k
------

y∂
∂

.+= =

L X εDX,( ) ε M

ε3k
------

z∂
∂ ε2 N

ε6k
------

z2

2

∂
∂ …+ +=

M ah10 X∗( ) bh01 X∗( )+=

N a2h20 X∗( ) abh11 X∗( ) b2h02 X∗( )+ +=

min 1 2k– 2 5k–,( ) 3k.=
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It yields k = 1/5, and change (2.8) reduces Eq. (1.8) to
the equation

the limit equation to this one is a first-order ODE. This
is also true for N = 0; it is only important that the con-
stant M is nonzero (for the PDEs (1.2), (1.3), and (1.6),
it is equal to pa + qb, p1a, and a, respectively).

However, for the PDE (1.8) that does not include the
first-order derivatives, M is equal to zero. In this case, it
follows from the right-hand sides of Eqs. (2.9) and
(2.10) that k = 1/4 and the change of variables (2.8)
reduces this PDE (1.8) to the equation

(for the time-independent diffusion equation (1.15),
N = –a2 – b2).

2.4. If the constant k is chosen as specified above,
the substitution of the series

(2.11)

into the equations obtained from the PDE (1.8) by the
change of variables (2.8) and then by equating the coef-
ficients of equal powers of ε yields ODEs for the coef-
ficients of series (2.11). For their leading terms, the
ODEs have the form

(2.12)

if Eq. (1.8) includes the first derivatives of u(X); other-
wise, if no first derivatives appear in this equation, the
ODE has the form

(2.13)

The ODE (2.12) is transformed into Eq. (2.1) by the
change of variables

(2.14)

M
∂V
∂z
------- z– yV– eV3– O ε1/5( );=

N
∂2V

∂z2
--------- z– yV– eV2– O ε1/4( )=

V V0 z y,( ) εnkVn z y,( )
n 1=

∞

∑+=

M
∂V0

∂z
--------- z– yV0– eV0

3– 0=

N
∂2V0

∂z2
----------- z– yV0 eV0

3–– 0.=

z
M3

e
------- 

 
1/5

x, y– M2e( )1/5
t,–= =

V0
M

e2
----- 

  1/5

v ,–=
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948 SULEŒMANOV
and the ODE (2.13) is transformed into Eq. (2.2) by the
change of variables

(2.15)

The requirement that the behavior of the asymptotic
expansions (1.9) at X  X* is matched with the
behavior of series (2.11) at y2 + z2  ∞ imposes cer-
tain conditions on the asymptotics Vn(z, y). In particu-
lar, it is seen from the right-hand side of expansion (2.9)
that the leading term of the asymptotics V0(z, y) at y2 +
z2  ∞ in the matching domain of expansions (1.9)
and (2.11) is a root of the equation obtained from
Eqs. (2.12), (2.13) by replacing the terms containing the
derivatives with zero. Each change of variables (2.14) and
(2.15) transforms this root into the root of Eq. (2.3).

3. A SPECIAL SOLUTION TO EQUATION (2.1)

3.1. For the analysis of solutions of the PDE (1.8)
such that the leading terms u0(X) of their asymptotic
expansions (1.9) have singularities of cusp, it is of prime
importance to find out the asymptotics U(X, ε) “beyond”
those points. For this reason, the most interesting thing
concerning the corresponding solution to Eq. (2.1) is its
behavior at t  ∞.

The change of variables

(3.1)

z e( ) N3

e
------ 

 
1/8

x,sgn=

y e( ) Ne( )1/4t,sgn–=

V0
N

e3
---- 

  1/8

v .–=

s
x

t 3/2
---------, v x t,( ) t 1/2r s t,( )= =

1

2

3

p
1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–0.75 –0.50 –0.25 0 0.25 0.50 0.75
z

Fig. 1. Directions of the phase velocity of system (3.3)
(arrows); the limit of the solution to system (3.3) at t = ∞
(solid curve); and branches 1, 2, and 3 of the curve z = p –
p3 (dashed curves in the places where they differ from the
solid curve).
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reduces the solutions to the reference equation (2.1) to
the solutions

(3.2)

of the slow–fast autonomous system

(3.3)

This allows us to use the following reasoning to analyze
the behavior of solutions.3

An analysis of Fig. 1, where the directions of the
phase velocity of system (3.3) (t5/2(p – p3 – z), 1) are
depicted, shows the following (note that, in contrast to
branch 2 of the curve z(p) = p – p3, the stability condi-
tion (p – p3 – z  = 1 – 3p2 < 0 is satisfied on its
branches 1 and 3). As s increases from –∞ to the value
corresponding to the instance

(3.4)

when branch 1 vanishes, the corresponding solution
(3.2) to system (3.3) moves in the vicinity of this branch
and then, having jumped into a small neighborhood of
the point (p = –2/31/2, z = s0) of branch 3, remains in the
vicinity of this branch as s continues to increase.

A similar reasoning suggests that the unique root of
Eq. (2.3) is the leading term of the asymptotics v (x, t)
for all x as t  –∞. Indeed, the change of variables
(3.1) reduces Eq. (2.1) to the equation

(3.5)

which turns into the cubic equation

(3.6)

when t  –∞. The latter equation has the unique root
r = r0(s) for t < 0. Since

(3.7)

it is evident that as s increases from –∞ to ∞, the dis-
cussed solution to Eq. (3.5) moves along this root of
Eq. (3.6).

3.2. The reasoning above suggests two conclusions.
(1) The leading term of the asymptotics v (x, t) at

x2 + t2  ∞ outside the curve where the roots of
Eq. (2.3) x = s0t3/2 merge coincides with the smoothly
varying root of Eq. (2.3).

(2) The neighborhood of this merge curve is a shock
layer; when this layer is crossed from left to right along
the axis x, the values of v(x, t) sharply decrease from

(1 + o(1)) down to –2 (1 + o(1)).
The validity of these conclusions was verified by

numerical simulation of the behavior of the solution to

3 It is reduced to the application of the standard qualitative analysis
technique [24, pp. 20–22] developed for general-type slow–fast
systems.

p s t,( ) r s t,( ), z s= =

t 5/2– ps t( )p z– p3, zs–sgn 1.= =

)p'

s s0
2

33/2
--------,= =

t 5/2– rs t( )r r3– s,–sgn=

t( )r r3– s–sgn 0=

t( )r r3– s–sgn( )r' r r0 s( )= t( ) 3r0 s( )2 0,<–sgn=

t/3 t/3
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Eq. (2.1), which was assumed to approach the root of
Eq. (2.3) at any t both when x  ∞ and x  –∞. The
simulation, which was performed on large intervals
−L < x < L, used the simple iterative procedure

In this procedure, the differential operator P(v, x) on
the left-hand side of (2.1) was approximated by the
finite-difference operator

the function g(kh, t) determined by the maximal root of
Eq. (2.3) for negative x (and by its minimal root for
nonnegative x) was used as the zero approximation
v st(k) for k > 0 (k ≤ 0).

The results of calculations by this rapidly converg-
ing procedure are partially presented in Fig. 2; they
completely confirm both conclusions above.

3.3. It follows from the above reasoning and the
results obtained in [24] that the following series give
complete asymptotic expansions v(x, t) (at t  ±∞)
on both sides of the curve x = s0t3/2:

Here, r0(s) are the roots of the cubic equation (3.6) sat-
isfying condition (3.7) (at t > 0, they are different for s >
s0 and s < s0), and rj(s) are recurrently expressed in
terms of r0(s) upon substituting the series

(3.8)

into Eq. (3.5) and equating the coefficients of equal
powers of |t|.

Asymptotic expansions at |x |  ∞ that are suitable
in the neighborhood of the line t = 0 are given by the
series

(3.9)

where g0(ρ) is the unique root of the equation

This series is obtained from the asymptotic expansions
v (x, t) at t  ±∞ by passing from the variable t to x
and from s to ρ. Indeed, the coefficients rn(s) of expan-
sion (3.8) have the asymptotic expansions

v new k( ) v old k( ) 0.05hP v old k( ) k,[ ] ,+=

k N– 1 … 1 0 1 … N 1.–, , , ,–, ,+=

P v k,[ ]
v k 1+ v k–

h
----------------------- v k

3 tv k– kh, h+ +
L
N
----;= =

r j s( ) t 1 5 j–( )/2.
j 0=

∞

∑

r j s( ) t 5 j /2–

j 0=

∞

∑

v x t,( ) x1/3 gk ρ( )x 5k /3– , ρ
k 0=

∞

∑ t/x2/3,= =

1 ρg0– g0
3+ 0.=

rn s( ) rnks
1 5k– 2n–( )/3

k 0=

∞

∑=
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when s  ±∞. Multiplying series (3.8) by |t |1/2 and
substituting the above expressions for the coefficients
into these products, we obtain

Substituting sgn(t)ρ for s–2/3 in this series, we obtain (3.9).
3.4. For t @ 1, the system of ODEs (3.3) is similar

to the system

(3.10)

t 1/2 5k /2– s1/3 5k /3– rnks
2n/3–

n 0=

∞

∑
k 0=

∞

∑

=  x1/3 5k /3– rnks
2n/3– .

n 0=

∞

∑
k 0=

∞

∑

µ ps p p3– z, zs– p, µ ! 1.= =

(a)

(c)

(b)

v

2

1

0

–1

–2

3

2

1

0

–2

–1

–3

4

2

0

–2

–4

–30 –20 –10 0 10 20 30
x

Fig. 2. The solution v  to Eq. (2.1) as a function of x at vari-
ous t (solid curves) and the plots of the roots of the cubic
equation (2.3) where they differ from the plots of v  (dashed
curve) at the instances of time t = –11 (a), 0 (b), and 11 (c).
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The latter system describes the Van der Pol oscillator
[14, 24, 25]. Both systems belong to the class of slow–
fast systems of ODEs; therefore, the solution to
Eq. (2.1) can be completely described in the neighbor-
hood of the curve x = s0t3/2 using the technique pre-
sented, e.g., in [24]. Unfortunately, the computations
are very tedious, and we only describe the shock layer
of the solution to Eq. (2.1) approximately as was done
for Eq. (3.10) in [14].

In the first approximation, the jump of the corre-
sponding solution r(s, t) to Eq. (3.5) when s goes
beyond the point (3.4) is given by the separatrix solu-
tion of the ODE

(3.11)

which exponentially decreases down to the value −2 ×
3–1/2 when σ  ∞. At σ  –∞, the following asymp-
totic expression is true:

(3.12)

Asymptotics (3.11) and (3.12) determine R(σ) up to
the function T(t). Its asymptotics as t  ∞ can be
found only when higher order approximations of r(s, t)
are constructed. Moreover, it turns out that the com-
plete asymptotic expansion

in which the separatrix solution of Eq. (3.11) is the
leading term, is compatible only with the part of expan-
sion (3.8) that is valid on the right of the point s0 (the
corresponding matching is performed for s  s0 + 0
and σ  ∞). At σ  −∞ and s  s0 − 0, the
asymptotic expansion rint(σ, t) and the part of expansion
(3.8) that approximates r(s, t) on the left of s0 are
matched with the help of the intermediate expansion

(3.13)

which depends on the scaling variable

Its coefficients wj(ν) are uniquely found from the recur-
rent sequence of ODEs

(3.14)

(3.15)

…

Rσ R
1

31/2
--------– 

  2
R

2

31/2
--------+ 

 + 0,=

σ t5/2 s
2

33/2
--------– 

  T t( ),–=

R
1

31/2
-------- 1

31/2σ
------------ σln

33/2σ2
--------------– O

σln
2

σ3
-------------- 

  .+ +=

rint σ t,( ) R σ( ) …,+=

rinm ν t,( ) 1

31/2
--------

w1 ν( )

t5/6
-------------

w2 ν( )

t5/3
------------- …,+ + +=

ν t5/3 s s0–( ).=

dw1

dν
--------- –ν 3w1

2,–=

dw2

dν
--------- 2 3w1w2– w1

3,–=
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and the conditions imposed on the behavior of wj(ν)
when ν  ∞. These conditions are obtained by
matching expansion (3.13) with the part of series (3.8)
that approximates r(s, t) at s < s0. The dilatations

(3.16)

reduce Eq. (3.14) to Eq. (1.18) with the independent
variable q. Its general solution

(3.17)

is the logarithmic derivative of a combination of the
Airy functions Ai(q) and Bi(q). It follows (see [20])
from the well-known asymptotics of Ai(q) and Bi(q) at
q  ∞ (see [26]) and the matching conditions for the
asymptotic expansions (3.8) and (3.13) that c2 = 0 in
solution (3.17). Therefore,

(3.18)

This solution is smooth on the interval (ξ0, ∞), where ξ0
is the root of Ai(q) that is nearest to q = 0. When q 
ξ0, we have

(3.19)

Relations (3.18), (3.19), and the power growth of the
asymptotics for w2(ν) at ν  ∞, which follows from
the matching condition for (3.18) and (3.13), uniquely
determine the desired solution to Eq. (3.15):

When ν  –3–1/6ξ0, we have

(3.20)

ν q

31/6
--------, w1 ν( )– Γ q( )

31/3
----------–= =

c1Ai q( ) c2Bi q( )+( )ln( )q'

w1 ν( )
1

31/3
--------Ai' q( )

Ai q( )
--------------.–=

w1 ν( )
1 O q ξ0–( )2( )+( )

31/3 q ξ0–( )
--------------------------------------------–=

=  
1 O ν 3 1/6– ξ0+( )2( )+( )

31/2 ν 3 1/6– ξ0+( )
-------------------------------------------------------.

w2 ν( )
1

37/6Ai q( )2
----------------------- Ai' k( )3

Ai k( )
--------------- kd

0

∞

∫=

– Ai' k( )3

Ai k( )
---------------

Ai' ξ0( )2

k ξ0–
------------------– 

  kd

0

q

∫ Ai' ξ0( )2 q ξ0–
ξ0

--------------ln– .

w2 ν( )
1

33/2 ν 3 1/6– ξ0+( )
2

---------------------------------------=

× ν 3 1/6– ξ0+

3 1/6– ξ0

-------------------------ln
Ai' k( )3

Ai' ξ0( )2Ai k( )
------------------------------- kd

0

∞

∫+–

+ Ai' k( )3

Ai' ξ0( )2Ai k( )
------------------------------- 1

k ξ0–
-------------–

 
 
 

kd

ξ0

0

∫

× 1 O ν 3 1/6– ξ0+( )2( )+( ).
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Now, we derive from estimates (3.19) and (3.20)
that the asymptotics

(3.21)

satisfies the matching condition of the behavior of
asymptotic expansion (3.13) at ν  –3–1/6ξ0 with that
of the expansion rint(σ, t) at σ  –∞ in the leading
order with respect to t.

Indeed, the expansions rint(σ, t) and rinm(ν, t) are
matched for the values of σ of an order greater than
O(lnt). Hence, the form of the variable σ defined in
(3.11) and estimate (3.21) suggest that, in the process of
matching, at σ  –∞, the quantity

also tends to –∞; therefore, (3.19) and (3.20) yield the
expansion

In this series, we substitute the right-hand side of (3.21)
for T(t) to obtain the following representation of the
intermediate asymptotic expansion rinm(ν, t):

Up to the terms that are not written out explicitly, this
representation coincides with the sum of the first three
terms of asymptotics (3.12) for the leading term of the
internal asymptotic expansion rint(σ, t).

T t( )
ξ0

31/6
--------t5/6 5

18
------ tln+–=

+
1
3
--- ξ0

31/6
--------ln

Ai' k( )3

Ai' ξ0( )2Ai k( )
------------------------------- kd

0

∞

∫+

+ Ai' k( )3

Ai' ξ0( )2Ai k( )
------------------------------- 1

k ξ0–
-------------–

 
 
 

kd

ξ0

0

∫ o 1( )+

σ T t( )
t5/6ξ0

31/6
------------+ + t5/2 s

2

31/2
--------– 

 =

+
t5/6ξ0

31/6
------------ t5/6 ν

ξ0

31/6
--------+ 

 =

rinm ν t,( ) 1

31/2
-------- 1

31/2σ
------------ σln

33/2σ2
--------------–+=

+
1

33/2σ2
-------------- 3 T t( )

t5/6ξ0

31/6
------------+

 
 
 

–
5
6
--- tln+

+ 3 1/6– ξ0ln
Ai' k( )3

Ai' ξ0( )2Ai k( )
------------------------------- kd

0

∞

∫+

+ Ai' k( )3

Ai' ξ0( )2Ai k( )
------------------------------- 1

k ξ0–
-------------–

 
 
 

kd

ξ0

0

∫ … .+

rinm ν t,( ) 1

31/2
-------- 1

31/2σ
------------ σln

33/2σ2
-------------- ….+–+=
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Asymptotics (3.21) completes the description of the
behavior of the solution to Eq. (3.5) in the shock layer
in the principal order with respect to t. This gives a
description of the behavior of the universal special
solution of Eq. (2.1) accurate to the leading term of its
asymptotic expansion at x2 + t2  ∞.

4. AN EXAMPLE: THE FORMATION 
OF A DOMAIN WALL FROM THE SOLUTION 
TO THE DIFFUSION EQUATIONS (1.6), (1.7)

4.1. Consider the solution to the PDE equivalent to
Eq. (1.6), (1.7)4

, (4.1)

with the initial value

(4.2)

Assume that (τ = τ* > 0, χ = χ*) is the general position
cusp for the roots of the equation

(4.3)

and that this equation has a unique root u = u0(τ, χ) for
τ ≤ τ* for which the conventional stability condition

(4.4)

is fulfilled. Then, within any interval δ < τ < τ* – δ with
the boundaries determined by a constant δ (0 < δ <
τ*/2) independent of ε, the solution to the boundary
value problem under consideration is expanded in a
series of type (1.9):

. (4.5)

4.2. Series (4.5) does not satisfy the initial condition
(4.2). However, if the stability condition (4.4) is ful-
filled, the residual can be corrected in a standard way
(see [27, Chapter 3]) by adding the series

to the right-hand side of (4.5); this series consists of
exponentially small (at ζ  ∞) terms.

The reference to [27], which is devoted to slow–fast
systems of ODEs rather than to PDEs, is correct.
Indeed, as in the situation considered in [27, Chapter 3],
the coefficients Πk(ζ, χ) of the correction series Πu are
solutions to the sequence of initial value problems for
the ODEs

4 It is quite natural to consider the inhomogeneity such that its rates
of change in time and in the spatial variable have the same order
of smallness (see [4] and the end of [5], where Eq. (4.1) is men-
tioned in connection with a problem in combustion theory).

εur ε2uχχ f τ χ u, ,( ), ε ! 1+=

u τ 0= a χ( ).=

f τ χ u, ,( ) 0=

f u τ χ u0 τ χ,( ), ,( ) 0<

u u0 τ χ,( ) εu1 τ χ,( ) ε2u2 τ χ,( ) …+ + +=

Πu Π0 ζ χ,( ) εΠ1 ζ χ,( ) ε2Π2 ζ χ,( ) …,+ + +=

ζ τ
ε
--,=

∂Π0 ζ χ,( )
∂ζ

----------------------- f 0 χ u0 0 χ,( ), ,( Π0 ζ χ,( ) ),+=
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where Gk(ζ, χ) depend on the functions Πj(ζ, χ) (j = 0,
1, …, k – 1). The reasoning in [27] proves that the solu-
tions to this sequence of problems are exponentially
small when ζ  ∞. The fact that Gk(ζ, χ) includes the

term  does not change this property at
ζ  ∞, since all derivatives of Π are exponentially
small when ζ  ∞; indeed, they are solutions to the
Cauchy problem for the ODE

with exponentially small (at ζ  ∞) right-hand sides
(see [27, p. 63]).

4.3. The behavior of solutions to the initial value
problem (4.1), (4.2) in the neighborhood of the cusp
(τ*, χ*) has been analyzed in Sections 2 and 3.
“Beyond” this neighborhood, it forms a domain wall.
Its asymptotics at ε  0 is much like the asymptotics
(at t  ∞) of the special solution to Eq. (2.1)
described in Section 3. This is for the following rea-
sons:

(1) The front of the domain wall is localized in the
vanishingly small neighborhood of one of the two fold
lines originating at (τ*, χ*) (the fold lines are the
boundaries of the domain where the roots of Eq. (4.3)
overlap and in which Eq. (4.3) has three solutions).

(2) “Plateaus” of the domain wall on different sides
of the small neighborhood of the shock fold line χ =
ϕ(τ) are described by two asymptotic expansions (4.5);

their leading terms are the minimal, (τ, χ), and the

maximal, (τ, χ), of the three roots of Eq. (4.3). Being
smooth extensions of the unique (at τ < τ*) root of this
equation through the rays (τ = τ*, χ > χ*) and (τ = τ*,
χ < χ*), both these roots satisfy the stability condition
(4.4) within their smoothness domains.

(3) The asymptotics of the domain wall with respect
to the parameter ε in the neighborhood of the shock fold
line χ = ϕ(τ) is also very similar to the asymptotics (at
t  ∞) of the solution to Eq. (2.1) in the neighbor-
hood of the curve x = s0t3/2.

4.4. It should be noted that the structures of these
asymptotics have a quite substantial difference.
Namely, instead of the solution of Eq. (3.11), which is
integrable by quadratures, the behavior of the formed
domain wall in the neighborhood of its front in the prin-
cipal order in ε is described by a monotonic solution to

Π0u 0 χ,( ) a χ( ) u0 0 χ,( ),–=

∂Πk ζ χ,( )
∂ζ

-----------------------

=  f u 0 χ u0 0 χ,( ) Π0 ξ χ,( )+, ,( )Πk ζ χ,( ) Gk ζ χ,( ),+

Πk 0 χ,( ) uk 0 χ,( ), k 1,≥–=

Πk 2– ζ χ,( )χχ''

∂g
∂ζ
------ f u 0 χ u0 0 χ,( ), , Π0 ζ χ,( )+( )g– H ζ χ,( )=

u0
1

u0
3
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the boundary value problem for a nonintegrable sec-
ond-order differential equation.

This problem appears upon the change of variable

(4.6)

which is similar to (3.11). Changing the variable in
Eq. (4.1), we see that the leading term U(η, τ) of the
internal asymptotic expansion

of the solution to Eq. (4.1) satisfies the second-order
ODE

(4.7)

which has exactly two equilibriums

They are the multiple and, respectively, simple roots of
the equation

(4.8)

However, the difference described above is not so large,
since the monotonic solution U(η, τ) to Eq. (4.7) we are
interested in is an analog and some kind of “extension”
of the monotonic separatrix solution R(σ) to Eq. (3.11);
therefore, it is clear that its convergence to the limit
value U1(τ) is exponential:

(4.9)

Moreover, the asymptotics

(4.10)

describes its convergence to the limit value U0(τ). Here,
f2(τ) and f3(τ) are the constants appearing in the Taylor
series

for the right-hand side of Eq. (4.7) at the point U =
U0(τ), and ∆(τ) is an arbitrary function which can be set
to zero without loss of generality due to the choice of
the yet undetermined function µ(τ, ε) in (4.6).

4.5. Relations (4.9) and (4.10) determine the desired
solution to Eq. (4.7) only up to the phase shift µ(τ, ε).
Its asymptotics at ε  0 is constructed in the same

η χ ϕ τ( )–
ε

------------------- µ τ ε,( ),–=

uint η τ ε, ,( ) U0 η τ,( ) …+=

–ϕτUη Uηη– f τ ϕ τ( ) U, ,( ),=

U U0 τ( ), U U1 τ( ).= =

f τ ϕ τ( ) U, ,( ) 0,=

f U τ ϕ τ( ) U0 τ( ), ,( ) 0,=

f U τ ϕ τ( ) U1 τ( ), ,( ) 0.<

U U1 τ( )– O c τ( ) η–( )exp( ), c τ( ) 0.<=

U U0 τ( ) 2ϕ' τ( )
f 2 τ( )η
----------------

4
f 2 τ( )
------------ 1

f 3 τ( )ϕ' τ( )2

3 f 2
2 τ( )

-------------------------+
 
 
 

–+=

× ηln

η2
------------ ∆ τ( )

η2
---------- O

ηln
2

η 3
-------------- 

 + +

f τ ϕ τ( ) U, ,( )
f 2 τ( )

2
------------ U U0 τ( )–( )2=

+
f 3 τ( )

6
------------ U U0 τ( )–( )3 …+
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way as asymptotics (3.21). It is based on the existence
of the intermediate asymptotic expansion

(4.11)

which depends on the scaling variable

(4.12)

Here, U0(τ) is the multiple root of Eq. (4.8), and the
other coefficients are recurrently determined from the
sequence of ODEs that is obtained from Eq. (4.1) by the
change of variables (4.12), the substitution of series
(4.11) into the resulting equation, and the subsequent
equating of the coefficients of equal powers of ε:

(4.13)

(4.14)

….

Here, fχ, fχu, fuu, and fuuu are the derivatives of f(τ, χ, u)
at χ = ϕ(τ), u = U0(τ).

Using the dilatations

(4.15)

we reduce Eq. (4.13) to Eq. (1.18), which has the solu-
tion

(4.16)

This solution is smooth on the interval (ξ0, ∞), where
the left boundary is the first zero of the function Ai(ξ).
According to (4.15) and (4.16), we have, at λ 
r(τ)ξ0,

(4.17)

The desired solution to Eq. (4.14) can now be
obtained by a procedure similar to that used for solving
Eq. (3.15):

uinm τ λ,( ) U0 τ( ) ε1/3ϒ1 τ λ,( )+=

+ ε2/3ϒ2 τ λ,( ) …,+

λ χ ϕ τ( )–

ε2/3
-------------------.=

ϕτ
∂ϒ1

∂λ
---------–

f uu

2
-------ϒ1

2 f χλ ,+=

–ϕτ
∂ϒ2

∂λ
--------- f uuϒ1ϒ2 f χuλϒ1+=

+
∂2ϒ1

∂λ2
-----------

f uuu

6
---------ϒ1

3 U0' τ( ),–+

ϒ1 λ( )
4 f χϕτ

f uu
2

-------------- 
  1/3

Γ ξ( ),–=

λ r τ( )ξ
2ϕτ

2

f χ f uu

------------- 
 

1/3

ξ ,–= =

Γ ξ( ) Ai ξ( )ln( )ξ' .=

ϒ1 ξ( )
2ϕτ

f uu λ r τ( )ξ0–( )
------------------------------------ 1 O λ r τ( )ξ0–( )2( )+( ).=
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(4.18)

Here,

and Ω(τ) is the residue of the function Ai(ξ)2H(τ, ξ) at
the point ξ0:

Using representation (4.18) for ϒ2, we see that, at λ 
r(τ)ξ0,

(4.19)

where

The terms of the intermediate asymptotic expansion
(4.11) have an increasing singularity at r(τ)ξ0, where
this expansion is invalid: in the neighborhood of λ =
r(τ)ξ0, the expansion uint(ν, τ, ε) is the correct approxi-
mation. The matching requirement for expansions
uint(ν, τ, ε) and uinm(λ, τ, ε) and relations (4.10), (4.17),
and (4.19) allows us to find the following asymptotics
of µ(τ, ε) at ε  0:
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∫– .
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2ϕτ
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Thus, we have obtained a description of the formed
domain wall in the principal order.

5. SPECIAL SOLUTIONS TO THE ODE (2.2)

5.1. Figure 3 presents a part of the numerical com-
putation results which were performed by an iterative
procedure similar to that described in Subsection 3.2.

µ τ ε,( )
r τ( )ξ0

ε1/3
--------------=

–
2

3ϕτ
-------- 1

ϕτ
2 f uuu

3 f uu
2

----------------+
 
 
 

εln
f uuh τ( )

2ϕτ
----------------- o 1( ).+ +

(a)

(c)

(b)
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Fig. 3. The solution v  to the first equation in (2.2) as a func-
tion of x at various t (solid curves) and the plots of the roots
of the cubic equation (2.3) where they differ from the plots
of v  (dashed curve) at the instances of time t = –11 (a), 0 (b),
and 11 (c).
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These computations simulate the behavior of the spe-
cial solution to the first ODE in (2.2) at various t. It is
seen from these computations that, in addition to the
monotonicity and oddness of this solution, its asymp-
totics at x2 + t2  ∞ outside the unique jump curve is
also specified by the smoothly changing root of
Eq. (2.3). However, in the case under consideration, the
jump in the asymptotics v(x, t) at t  ∞ occurs in the
neighborhood of the ray (x = 0, t ≥ 0), which forms the
so-called Maxwell set [17, p. 306] for the cusp catastro-
phe described by Eq. (2.3). Hence,5 if the PDE (1.1)
does not include the first-order derivatives of u(S), one
can expect that the corresponding solutions to Eq. (1.8)
behind the condensation point of the roots of Eq. (1.10)
take the form of domain walls with fronts localized near
the curves defined by the condition of equality of areas
(1.17).

The change of variables (3.1) reduces the first equa-
tion in (2.2) to the ODE

(5.1)

The leading terms of the asymptotic expansions of the
corresponding solutions to this equation at t  ∞,

(5.2)

coincide with the maximal, rmax(s) (for s < 0), and the
minimal, rmin(s) (for s > 0), roots of the cubic equa-
tion (3.7). The standard reasoning used in the matching
method makes it is easy to show that, in the small
neighborhood of s = 0, these two parts of expansion
(5.2) are joined by the internal expansion

(5.3)

Its coefficients satisfy the recurrent sequence of ODEs
obtained by the substitution of (5.3) into (5.1) and
equating the coefficients of equal powers of the small
parameter t–2. These equations are supplemented by the
matching conditions of the behavior of their solutions
at y  ±∞ with the behavior of the external asymp-
totic expansions (5.2) at s  0. In particular, for the
odd (in y) leading term of expansion (5.3), the ODE

is complemented by the condition

5 The Maxwell set is distinguished by the fact that the integral

 with the limits defined by two different

roots of Eq. (2.3), vanishes at this set.

x tg– g
3

+( ) g,d
g1 x t,( )

g3 x t,( )

∫

t 4– rss r3 t( )r s.+sgn–=

rout s t,( ) r0 s( ) t 4 j– r j s( ),
j 1=

∞

∑+=

rint y t,( ) p0 y( ) t 2 j– p j y( ), y
j 1=

∞

∑+ st2.= =

p0( )yy'' p0
3 p0–=

p0 y( )
y ∞→
lim 1.–=
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Hence, we derive that

When t  –∞, the solution to Eq. (2.2) also has an
asymptotic expansion defined by the change of vari-
ables (3.1) and series (5.2). However, in this case, the
leading term r0(s) of series (5.2), for all s, is given by
the unique (at t < 0) root of Eq. (2.7). The following
series give its asymptotic expansions at |x|  ∞,
which are suitable in the neighborhood of the line t = 0:

(5.4)

Here, g0(ρ) is the unique root of the equation

The function v (x, t) is an analog of the Il’in solution
to the Burgers equation [15, p. 287], which describes
the influence of small dissipation on the nucleation of
shock waves [15, 28]. Our solution to Eq. (2.2) gives a
similar description of the nucleation of domain walls
formed by solutions to the boundary value problems
(1.15), (1.16).

5.2. We can formulate no general position boundary
value problems that lead to the corresponding special
solutions to the second equation in (2.2). Also, no
description of their uniform asymptotics at x2 + t2 
∞ is available. Numerical simulation suggests that solu-
tions to the second equation in (2.2) at t @ 1 are char-
acterized by high-frequency oscillation domains, which
can be analyzed using the Kuzmak–Whitham averaging
[29, 30].

6. CONCLUSIONS
The main conclusion formulated at the end of the

Introduction is as yet purely theoretical. However, the
fact that our considerations are rather general gives rea-
son to expect that corresponding experimental phenom-
ena will be discovered. Indeed, the formation of struc-
tures predicted in this paper is as natural as, for exam-
ple, the spontaneous formation of shock waves in gas
dynamics.

In this connection, the most interesting equation of
form (1.8) discussed in this paper is the PDE (1.14). As
has already been noted, it is equivalent to the time-inde-
pendent part of the diffusion equation (1.4), (1.7). True
enough, it is difficult to completely analyze the rela-
tionship of the main conclusion of this paper about the
solutions to Eq. (1.14) to solutions to the time-depen-
dent Eq. (1.4), (1.7) (see the related paper [13]). How-
ever, certain sufficient conditions that ensure that solu-
tions to, say, initial value time-dependent problem
(1.13) approach the corresponding asymptotic solu-
tions to the time-independent Eq. (1.14) can be easily
formulated just now.

p0 y( )
y

2
-------.tan–=

v x t,( ) x1/3 x 8 j /3– g j ρ( ), ρ
j 0=

∞

∑ t

x2/3
-------.= =

1 ρg– g3+ 0.=
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Assume that there is a unique cusp of solutions to
Eq. (1.10) on the plane X. Moreover, we assume that
there exists a unique root of Eq. (1.10) outside the over-
lapping domain and it satisfies the stability condition
(1.12). It is clear that this root is the attractor for all
solutions to the ODE

which is the limit equation to Eq. (1.14). Assume that,
within the overlapping domain (1.10), the initial func-
tion g(X) in problem (1.13) is such that the solution to
the limit initial value problem

is attracted, within this domain, to the root of Eq. (1.10)
that determines one of the “plateaus” of the domain
wall (the solution to Eq. (1.14)). It is clear that, for cer-
tain (sufficiently large) ζ, this solution in the form of
series (1.9) is an asymptotics at ε  0 for the solution
to problem (1.13). In order for the corresponding
asymptotic solution to Eq. (1.14) at such ζ to be a solu-
tion to the time-dependent problem (1.13) at every X, it
is sufficient to take a smooth initial function g(X) that is
either less or greater (depending on the situation) than
any root of Eq. (1.10).
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Abstract—The first (Born) approximation commonly used to calculate the diffusion coefficient DT of a passive
scalar in acoustic turbulence is shown to be insufficient. Even for a small main parameter—the Mach number,
M ! 1—the next approximation gives a larger contribution to DT than does the first approximation, but negative
in sign. We present a procedure for correctly calculating DT based on the solution of a nonlinear DIA (direct
interaction approximation) equation for the mean Green’s function of the problem. We include an additional
term in the general formula for DT that directly describes the compressibility of acoustic turbulence. This term
has not been known previously and has been disregarded even in the Born approximation. A positive value was
obtained for DT = CM3u0/p0. The spectrum E(x) was assumed to be smooth at distances ∆x ~ M2 ! 1. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The diffusion of passive scalar particles and fields in
a turbulent medium is a major problem in the theory of
turbulence, which is important in practical terms. For
the model of turbulence in an unbounded medium,
there are exact formulas for the turbulent diffusion
coefficient DT in the Lagrangian [1, 2] and Eulerian [3,
4] representations. From a practical point of view, of
particular importance are calculations in the Eulerian
representation, which is used below. In this representa-
tion, an exact calculation of DT involves determining
the stochastic Green’s function of the problem, G(r, t;
r', t '), and its subsequent statistical averaging with the
components of velocity field u(r, t) (see [4] for more
details).

By acoustic turbulence, we mean a medium with
chaotically propagating acoustic waves. The parame-
ters of such a medium—the gas-velocity correlators

(1)

—are determined by the stochastic boundary condi-
tions and by the sources that maintain continuous wave
formation. Such turbulence is rarely encountered in
pure form (e.g., in the solar corona). However, it is
commonly used in theoretical works on magnetic
dynamo (see [5–7] and references therein) as an exam-
ple of simple turbulence in which analytic calculations
can be performed to completion with a small main

parameter—the Mach number, M = u0/c (here,  =
Bii(0, 0) is the mean square of the oscillation velocity
amplitude and c is the speed of sound).

ui r t,( )u j r' t',( )〈 〉 Bij R τ,( ),≡
R r r', τ– t t'–= =

u0
2

1063-7761/02/9505- $22.00 © 20957
The first (Born) approximation is used in all these
works to calculate the turbulent diffusion coefficient
DT, because the next approximation contains an addi-
tional small factor, M2 ! 1. The standard Green’s func-
tion

which describes molecular diffusion with coefficient
Dm in a gas at rest, is used as the Green’s function G(R,
τ). Since Dm is small, the limiting form Gm(R, τ) 
δ(R) is considered.

In addition, the authors used an incomplete formula
to calculate DT that contained no contribution from the
compressibility proper (the correlator 〈uidivu〉). In [4],
we showed that including this additional term signifi-
cantly increases DT even in the Born approximation (if
the damping coefficient k(p) of an acoustic wave is of
the order of Dm or DT).

In this paper, we pointed out that, to assess whether
it is correct to use the Born approximation in calculat-
ing DT, it is necessary to determine the Green’s function
more accurately and to estimate the contribution from
the next approximation containing the fourth-order
velocity correlators to DT. Here, we carry out this pro-
gram.

First, we show that the contribution from the fourth-

order correlators to DT, which we denote by  (see
formula (19) in [4]), is slightly larger than the contribu-

tion  from the pair correlator (1). Moreover, 
is negative and, hence, the total turbulent diffusion

Gm R τ,( ) 4πDmτ( ) 3/2– R2

4Dmτ
-------------– 

  ,exp=

DT
1( )

DT
0( ) DT

1( )
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coefficient  +  is negative. We emphasize that
this remains valid even if the function Gm(R, τ) with the
diffusion coefficient DT is used. It is only important that
the damping coefficient k be much larger than DT,
which probably always holds. Thus, if purely diffusion
functions are used as the Green’s functions, then the
total turbulent diffusion coefficient is negative. In this
case, allowance for compressibility is unimportant if

k @ DT. Note that the estimate  ≈ M2  ! 
from [6] is incorrect, because it disregards the resonant
nature of the contribution from acoustic harmonics in

the expression for .

Why is the derived turbulent diffusion coefficient
negative in the first place? It is negative apparently
because the Green’s function was chosen wrongly.
When acoustic turbulence is considered, the Green’s
function must reflect the main property of passive sca-
lar transport—the mainly oscillatory motion of passive
scalar particles. Even the form of the velocity correlator
(1) in the space of wave numbers (see [7]),

(2)

(3)

which contains the oscillating factor cos(cpτ), shows
that the Fourier transform of the mean Green’s function

(p, τ) must also contain oscillating terms. Here, k(p)
is the damping coefficient of the p wave and E(p) is the
acoustic turbulence spectrum determined from the
expression

(4)

Recall that the Fourier transform of the diffusion

Green’s function (p, τ) = exp(–Dp2τ) contains no
oscillating terms.

The damping of an isolated acoustic wave is attrib-
utable to viscosity in the medium and k(p) is small, of
the order of the molecular diffusion coefficient Dm (see
[8]). In an ensemble of interacting waves, the situation
is different. Zakharov and Sagdeev [9] developed a
model of acoustic turbulence with nonlinear wave inter-
action. They derived the following expression for k(p):

k(p) = E(p)/c, where E(p) ≈ const p–3/2 for p > p0

and λ0 = 1/p0 is the characteristic wavelength. When
p  0, E(p) tends to zero. Using the dimensionless
wave number x = p/p0, we introduce a dimensionless
turbulence spectrum by means of the relation E(p) ≡

DT
0( ) DT

1( )

DT
1( ) DT

0( ) DT
0( )

DT
1( )

Bnm R τ,( ) 1

2π( )3
------------- p ip R⋅( )B̃nm p τ,( ),expd∫=

B̃nm p τ,( ) 2π2 pn pm
E p( )

p4
------------ cpτ( )cos=

× k p( )p2τ–[ ] ,exp

G̃

u0
2 u2 r t,( )〈 〉≡ pE p( ).d

0

∞

∫=

G̃

u0
2 p0
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/p0E(x). In this notation, the result of [9] can be writ-
ten as

The damping k(p) for a small Mach number, M = u0/c !
1, is weak, being smaller than u0λ0. However, as we will
see below, the turbulent diffusion coefficient is even
smaller, of the order of M3u0λ0.

Expression (3) is the pair gas-velocity correlator for
a homogeneous, isotropic, and stationary ensemble of
acoustic harmonic waves. Substituting (3) into (2)
yields an expression for the scalar product of the veloc-
ities at the same place but at different times:

(5)

Here, τ = t – t '. We see from (5) that such a statistical
ensemble describes a nonperiodic, chaotic gas motion
even if wave damping is ignored (k = 0); i.e., the turbu-
lent diffusion of matter takes place simply because of
the superposition of chaotic, incoherent acoustic har-
monic waves. It is only important that the wave spec-
trum be continuous.

If damping is ignored, an ensemble of waves of the

same wavelength (E(p) = δ(p – p0)) produces a peri-
odic overall motion, which may be very intricate in
space. In this case, the diffusion mixing of particles is
weak and attributable to viscous (dynamical) damping:
here, there is no kinematic diffusion similar to a macro-
scopic random walk. Below, we consider the diffusion
of passive scalar particles only in a turbulent medium
with a continuous wave spectrum, which is clearly most
natural.

The fact that DT ~ M3u0λ0 ! u0λ0 reflects an impor-
tant property of acoustic turbulence: the motion of a
passive scalar particle is mainly oscillatory and does
not lead to diffusion. If the particle passed to a different
trajectory corresponding to a different wave during
each oscillation period, then, clearly, the diffusion coef-
ficient would be much larger, of the order of u0λ0. Thus,

the actual Green’s function (p, τ) must describe these

oscillations, and the diffusion functions (p, τ) =
exp(−Dp2τ) are unsuitable for calculating DT. For non-
acoustic turbulence, the so-called self-consistent
method [10] is efficient in calculating DT. In this
method, the diffusion function

with the unknown diffusion coefficient Ds is substituted
for the unknown Green’s function in the exact formula
for DT. Solving the resulting algebraic equation yields
Ds that closely matches the DT values calculated by

u0
2

E x( ) const x 3/2– , k p( ) ME x( )u0λ0.= =

u r t,( ) u r t',( )⋅〈 〉

=  pE p( ) cpτ( ) k p( )p2τ–[ ] .expcosd

0

∞

∫

u0
2

G̃

G̃

G̃ p τ,( ) Ds p2τ–( )exp=
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more accurate methods. The success of the self-consis-
tent method stems from the fact that the diffusion
Green’s function is close to the exact Green’s function.
For acoustic turbulence, the self-consistent method
yields large negative DT, which is clearly contrary to
fact. This also suggests that the actual Green’s function
for the time scales that determine the transport mecha-
nism of passive scalar particles is far from being a
purely diffusion one.

Below, we use the solution to a nonlinear integral
equation for the Green’s function to calculate DT. This
equation actually has oscillating terms.

2. BASIC EQUATIONS

We take the number density of passive scalar parti-
cles, n(r, t), as the passive scalar field. The continuity
equation for n(r, t) in the random velocity field u(r, t)
of the main gas is a stochastic equation to determine
n(r, t):

(6)

Assume that the statistical ensemble of the field u(r, t)
is homogeneous, isotropic, and stationary and that it is
described by correlator (3). The mean 〈u〉  = 0.

The Green’s function G(1; 2) ≡ G(r, t; r', t ') of Eq.
(6) satisfies the linear equation

(7)

Below, we use the following convenient notation:
f(1) = f(r1, t1), f(1 – 2) = f(r1 – r2, t1 – t2) ≡ f(R, τ), dn =
drndtn, etc.

For large times and scales, averaging of Eq. (6) is
known (see [3, 4]) to result in the diffusion equation
[the left-hand side of (6)] for the mean number density
〈n(r, t)〉  with the diffusion coefficient Dm + DT. The
exact formula for the stationary turbulent diffusion
coefficient is

(8)

For incompressible turbulence (divu = 0), the sec-
ond term in (8) vanishes. It is this significant term that
was disregarded in [6, 7] for compressible acoustic tur-
bulence. The authors of these papers restricted them-
selves to substituting the free term Gm(1 – 2) of Eq. (7)
for G(1; 2) into the first term of expression (8). As we
show below, substituting several iterations of Eq. (7)

into (8) yields the relation  +  < 0, i.e., a defi-
nitely absurd result. The reason why substituting the

∂
∂t
----- Dm∇ 2– 

  n r t,( ) div u r t,( )n r t,( )[ ] .–=

G 1; 2( ) Gm 1 2–( )=

– 3Gm 1 3–( )∇ i
3( ) ui 3( )G 3; 2( )[ ] .d∫

DT
1
3
--- R τ ui 1( )G 1; 2( )ui 2( )〈 〉[d

0

∞

∫d∫=

– R u 1( )G 1; 2( )divu 2( )〈 〉⋅ ] .

DT
0( ) DT

1( )
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iterations of Eq. (7) when calculating DT is inefficient
was explained in detail in the Introduction.

In [3, 11], we derived a new, renormalized equation
for the Green’s function G(1; 2) instead of Eq. (7),
which includes the mean Green’s function 〈G(1; 2)〉  ≡
G(1 – 2) as a free term. Clearly, G(1 – 2) correctly
describes the convective-oscillatory transport of pas-
sive scalar particles in acoustic turbulence; it is hoped
that substituting iterations of the renormalized equation
into (8) will yield the correct value for DT. Thus, the
problem reduces to writing and solving the equation for
the mean Green’s function G(1 – 2).

It follows from Eq. (7) that G(1 – 2) depends on the
fluctuational part G'(1; 2) of the Green’s function and
vice versa. Therefore, an attempt to write a separate
equation only for G(1 – 2) leads to an hierarchy of non-
linear equations for G(1 – 2) (the situation is similar to
the closure problem in the theory of turbulence). The
simplest equation of this hierarchy, with a quadratic
nonlinearity, is called the DIA (direct interaction
approximation) equation. It was first written and ana-
lyzed in [12]:

(9)

Subsequently, it emerged that this equation was effi-
cient in calculating the turbulent diffusion coefficients
DT for various models of incompressible turbulence
(see [10]). Our results confirm that it is also efficient for
acoustic turbulence.

In calculations, it is convenient to use the function
(p, s)—the Fourier transform in R and the Laplace

transform in τ of G(R, τ). In addition, we make use of
the dimensionless variables x = p/p0 and t = cp0τ. In
these variables, the DIA equation for (x, s) takes the
form

(10)

Here, we introduced the dimensionless quantities γ =
c/p0Dm and η(y) = k(y)p0/c; µ is the cosine of the angle
between vectors x and y. Recall the definition of the

dimensionless turbulence spectrum: E(p) = E(x)/p0.
Since the molecular diffusion is weak, γ ≈ λ0/l @ 1 (l is
the mean free path of the gas molecules; Dm ~ cl). This
is the largest parameter of the problem. Even the gas-

G 1 2–( ) Gm 1 2–( ) 3 4Gm 1 3–( )d∫d∫+=

× ∇ i
3( )G 3 4–( )∇ j

4( )Bij 3 4–( )G 4 2–( ).

g̃

g̃

g̃ x s,( ) s
x2

γ
-----

M2

2
------- yE y( )d

0

∞

∫+ +=

× µµx µx y–( )d

1–

1

∫

× te s η y
2+( )t– yt( )G̃ x y– t,( )cosd

0

∞

∫
1–

.

u0
2
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dynamical equations themselves suggest that λ0 @ l. If
we use the damping coefficient k(p) from [9], then
η(y) = M2E(y); i.e., this is a small quantity but much
larger than 1/γ if, of course, the Mach number is mod-
erately large, which we assume below. The case of a
small Mach number, γM2 ! 1, describes a fluid that is
virtually at rest. In this limit, the integral term in (10)
can be discarded to give

i.e., the Green’s function actually matches Gm.
It is easy to see that for x ! 1 and s ! 1, the integral

term in (10) transforms into the diffusion expression

( /Dm)(x2/γ) with the turbulent diffusion coefficient

(11)

Recall that (x, t) is the Fourier transform of the
Green’s function G(R, τ) in R in dimensionless vari-
ables x and t. Expression (11) can also be derived from
the general formula (8) if we take the DIA expression
for G(R, τ) as G(1; 2) and pass to the Fourier represen-
tation.

The condition s ! 1 implies that τ @ 1/cp0 = T0,
where T0 is the characteristic oscillation period of
acoustic waves. In this case, the diffusion propagation
of a passive scalar is established after many gas oscilla-
tions rather than after the characteristic velocity-corre-

lation damping time, τdamp ~ 1/k(p0) , which is much
longer than T0(τdamp ~ T0/M2) and tends to infinity as
M2  0. As we mentioned above, the diffusion is
mainly produced by a nonperiodic gas motion, which
results from the superposition of chaotic harmonic
acoustic waves with a broad turbulence spectrum E(p).
Therefore, the time it takes for diffusion to be estab-
lished is unrelated to the velocity-correlation damping
time.

3. CALCULATING THE DIFFUSION 
COEFFICIENT

To calculate  and the contribution of the fourth-

order correlators  (see formula (19) from [4]), it is
convenient to introduce the following auxiliary func-
tions:

g̃ x s,( ) 1

s x2/γ+
------------------;≈

DT
0( )

DT
0( ) u0M

3 p0
---------- xE x( ) t yt( )e η x( )x

2
t–cosd

0

∞

∫d

0

∞

∫=

× G̃ x t,( ) x
∂G̃ x t,( )

∂x
--------------------+ .

G̃

p0
2

DT
0( )

DT
1( )

g̃c x p q, ,( ) t pt–( ) qt( )G̃ x t,( )cosexpd

0

∞

∫=
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Expression (11) for  can then be written as

(13)

Assuming that s = p – iq in (10) and separating out the
real and imaginary parts yields

(14)

(15)

The system of equations (14) and (15) is equivalent
to the DIA equation (10). Its advantage is that it allows

the diffusion coefficients  and  to be calculated

directly, without calculating the Green’s function (x,
t) itself. In this case, we need not know the functions

(x, p, q) and (x, p, q) for all possible values of the
variable p—expression (13) includes only

It is easy to verify that α(x, p, q) is small, of the order
of M2 ! 1, for small p. In contrast, β(x, p, q) ~ q con-
tains no small parameter in the first approximation. For

≡ Reg̃ x p iq–,( ),

g̃c x p q, ,( ) t pt–( ) qt( )G̃ x t,( )sinexpd

0

∞

∫=

≡ Img̃ x p iq–,( ).

DT
0( )

DT
0( ) u0M

3 p0
---------- xE x( )d

0

∞

∫=

× g̃c x p q, ,( ) x
∂g̃c x p q, ,( )

∂x
----------------------------+

p η x( )x
2

q, x= =
.

g̃c x p q, ,( ) α x p q, ,( )
α2 x p q, ,( ) β2 x p q, ,( )+
----------------------------------------------------------,=

g̃s x p q, ,( ) β x p q, ,( )
α2 x p q, ,( ) β2 x p q, ,( )+
----------------------------------------------------------,=

α x p q, ,( ) p=

+
x2

γ
----- M2

4
------- yE y( ) µµx µx y–( )d

1–

1

∫d

0

∞

∫+

× g̃c x y– p η y( )y2 q y+,+,( )[

+ g̃c x y– p η y( )y2 q y–,+,( ) ] ,

β x p q, ,( ) q=

–
M2

4
------- yE y( ) µµx µx y–( )d

1–

1

∫d

0

∞

∫

× g̃s x y– p η y( )y2 q y+,+,( )[

+ g̃s x y– p η y( )y2 q y–,+,( ) ] .

DT
0( ) DT

1( )

G̃

g̃c g̃s

p η x( )x2 M2E x( )x2
 ! 1.= =
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small p, the asymptotic solution of system (14) and (15)
is

(16)

Here, we discarded the extremely small term x2/γ. Since
α is small compared to β, we can assume that (x, p,
q) ≈ πδ(q) in our intermediate calculations for suffi-
ciently smooth spectra E(x). However,  is no longer
a δ-shaped function in the main formula (13), where
α ~ x2 and β ~ x. The spiky form of  suggests that the
diffusion in acoustic turbulence is resonant in nature—
waves close in frequency give the largest contribution
to the diffusion. Therefore, we find from (15) that α is
proportional to E(q) and that the diffusion coefficient
itself [see (18)] is proportional to the square of the spec-
trum.

The first terms in (16), i.e., α = p and β = q, corre-
spond to the Born approximation used in [6, 7]. Substi-
tuting these values into (13) yields

(17)

The expression after the arrow corresponds to the
model from [9], in which k(p) = E(p)/c. Note that
retaining the discarded term x2/γ gives an addition
M2Dm, with 2/3 of this addition arising from the com-
pressibility of acoustic turbulence.

Using the DIA expression (16), we obtain

(18)

Comparison of (17) and (18) indicates that  is

approximately a factor of 2.5 larger than , with

2/3 of the additional contribution to  (the term
with π/2) being attributable to compressibility. If we
assume that η ! M2, then all of the diffusion is defined
by the remaining expression. This expression describes
the walk of a passive scalar particle in the field of a mix-
ture of incoherent acoustic harmonic waves in the
absence of any damping. Previously, we pointed out the

α x p q, ,( ) p
π
6
---M2x2E q( ) O M4( ),+ +=

β x p q, ,( ) q
M2

6
-------x2 y

E y( )
q y+
------------ O M4( ).+d

0

∞

∫–=

g̃c

g̃c

g̃c

DT
Born( ) u0M

3 p0
---------- xE x( )η x( )d

0

∞

∫=

u0M3

3 p0
------------ xE2 x( ).d

0

∞

∫

DT
0( ) u0M

3 p0
---------- xE x( ) η x( ) π

2
---M2E x( )+d

0

∞

∫=

u0M3

3 p0
------------ 1 π

2
---+ 

  xE2 x( ).d

0

∞

∫

DT
0( )

DT
Born( )

DT
Born( )
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resonant nature of this diffusion mechanism [DT ~
E2(x)]. Now, we see that this diffusion mechanism is
more efficient than the diffusion due to damping. In the
absence of damping, p = 0 and (x, 0, q) is simply the

cosine transformation of the Green’s function (x, t) in
time t and it determines the diffusion coefficient. If we

take (x, t) ≡ 1, as in [6, 7], then we obtain (x, 0, q) =

δ(q). According to (13), this leads to the relation  ~
E(0) ≡ 0, i.e., to the absence of diffusion. The actual

Green’s function (x, t) is close to the solution of the
DIA equation (10). This function significantly depends
on time and not only in the form of the diffusion expo-
nential exp(–DT p2τ); it also contains harmonically
varying terms like cos(ω(x)t) and sin(ω(x)t). These
oscillating terms describe the diffusion of a passive sca-
lar particle due to the passage from one wave to another
and due to a gradual recession from the initial position
when a continuous wave spectrum exists. Let us now show

that these oscillating terms in (x, t) actually exist.
The asymptotic solutions (16) hold even after the

first iteration of system (15). This implies that, to calcu-
late DT, it will suffice to use a linearized DIA equation
when we substitute the corresponding molecular

Green’s function or unity for (|x – y|, t) in the kernel
of Eq. (10) by ignoring small (of the order of 1/γ ! 1)
damping. Thus, when analyzing diffusion, it will suf-
fice to consider the following explicit expression for

(x, s):

(19)

The sufficiency of using the linearized DIA equation
for small Struchal numbers, u0τ0/R0 ≤ 1, for incom-
pressible turbulence was shown in [3] (here, τ0 and R0
are the characteristic lifetime and velocity correlation
scale, respectively). In our case of acoustic turbulence,
the Mach number, M ! 1, acts as the Struchal number.
The inverse Laplace transform of expression (19) can
be determined in analytic form only for the spectrum
E(x) = δ(x – 1), although we do not consider this spec-
trum:

(20)

g̃c

G̃

G̃ g̃c

DT
Born( )

G̃

G̃

G̃

g̃

g̃ x s,( )

=  s
M2x2

3
------------ yE y( ) s η y( )y2+

s η y( )y2+[ ] 2
y2+

-------------------------------------------d

0

∞

∫+

1–

.

G̃ x t,( ) ηδt/ 1 δ+( )–( )exp
1 δ+

----------------------------------------------=

× 1 δ ω x( )t( ) η 4 δ+( )
2ω3 x( )

--------------------- ω x( )t( )sin+cos+




× η 2 δ–( )
2 1 δ+( )
--------------------t– 

 exp




O η2( ).+
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Here,

In the limit η = 0, the Green’s function (20) takes the
form

(21)

We see from formulas (20) and (21) that the contri-
bution of the oscillating terms is large. Interestingly, the
dispersion law ω2(x) = 1 + M2x2/3 differs from the dis-
persion law for acoustic waves [ω(x) = x)], and ω(x)
does not depend on the damping parameter η(x). The

frequency ω(x) ≈ Mx/  for large x. This limiting rela-
tion holds for an arbitrary spectrum, as is easy to see
from Eq. (19) by assuming that s @ y and s @ η. Note
also that the group velocity corresponding to ω(x) is
much lower than the speed of sound c:

(22)

Although, for times much longer than the time it takes
for diffusion to be established, the spot of passive scalar
particles increases its size R(τ) as R2(τ) ≈ 6DTτ, the
group velocity appears to qualitatively characterize the
smearing of this spot during the initial diffusion period.

Determining the frequencies ω(x) by ignoring the
correlation damping, η = 0, reduces to finding purely
imaginary [s = ±iω(x)] roots of the equation

(23)

A simple example of the spectrum E(x) = 1/(b – 1)
for x inside the interval (1, b) and E(x) = 0 outside this
interval shows that such roots exist. In this case, even
two frequencies exist: one lies inside the interval (1, b)
and the other lies outside this interval, ω > b.

The DIA equation describes the contribution from
all the pair velocity correlators, including some of the
fourth-order correlators, to the passive scalar transport.
The contribution from the so-called irreducible fourth-
order correlators (see [13] for more details), when the
velocities at four space-time points are averaged cross-
wise, 〈ui(1)uj(3)〉〈 un(2)um(4)〉  for t1 ≥ t2 ≥ t3 ≥ t4, is not
included in this equation. When considering the fourth
or higher order correlators, we assume, as is usually
done, that the velocity-field ensemble is Gaussian; i.e.,
these correlators can be expressed as the product of all
possible pair correlators. This assumption appears to be
justified for estimates of the contribution from high-

η η x( )≡
p0k p( )

c
-----------------, δ M2x2

3
------------, ω2 x( ) 1 δ.+= = =

G̃ x t,( ) 1

1 M2x2/3+
---------------------------=

× 1
M2x2

3
------------ 1 M2x2

3
------------+ t 

 cos+ .

3

Vgroup c
∂ω x( )

∂x
--------------- 2M2x

3 1 M2x2/3+
----------------------------------c ! c.= =

1
M2x2

3
------------ y

E y( )
y2 ω2–
-----------------d

0

∞

∫+ 0.=
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order correlators. An explicit formula for the contribu-

tion of the irreducible fourth-order correlators  is
given in [4] [see formula (19)]. After simple trigono-
metric transformations and after discarding terms of the
order of M2 ! 1 in the integrand, we obtain

(24)

Here, µ is the cosine of the angle between vectors x and
y. At x ≈ y,  is a δ-shaped function with a peak width
of the order of M2 ! 1. Assuming the spectrum E(x) to
be smooth in the interval ∆x ~ M2 ! 1 and discarding
terms of the order of M2 ! 1 in the integrand finally
yields

(25)

Note that the contribution  is attributable precisely
to the damping η(x). If the free terms in (16) are dis-
carded, then the integrand in (24) becomes of the order

of M2 and the expression for  transforms into a
minor addition of the order of u0M5/p0. Of course, this
is a purely mental operation; damping always exists, if
only because of viscosity, and the contribution (25) is
real. This contribution was overlooked in [6], which

resulted in an incorrect estimate,  ~ M2  !

. In [7], the contribution  was not estimated at
all.

If we retain only the free terms in expressions (16),
which corresponds to the Born approximation used in
[6, 7], then we will obtain a negative total turbulent dif-
fusion coefficient:

(26)
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1( )
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3 p0
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3
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Allowance for compressibility does not change this
result, because the diffusion coefficient Dm (or even
DT ~ u0M3/p0) is much smaller than the damping coeffi-
cient k ~ u0M/p0. The expression after the arrow corre-
sponds to the model from [9], for which η(x) = M2E(x).

Only using an oscillating Green’s function (x, t)
like (21), i.e., including the second term in expression
(16) for α(x, p, q), and allowing for compressibility
lead to the correct positive total turbulent diffusion

coefficient DT =  + :

(27)

The sixth-order correlators give a contribution of the
order of u0M5/p0 to DT , i.e., much smaller than the main
expression (27). Since (26), owing to velocity-correla-
tion damping, accounts for about 3% of (27), we con-
clude that random walks in the field of an incoherent
superposition of harmonic acoustic waves with a con-
tinuous spectrum are the main diffusion mechanism for
passive scalar particles in acoustic turbulence.

4. CONCLUSION

Below, we present our main results. We have shown
for the first time that it is incorrect to use only the first
(Born) approximation to calculate the turbulent diffu-
sion coefficient DT in acoustic turbulence, because the
contribution from the next approximation is negative
and slightly exceeds in magnitude the contribution
from the first approximation even for very small Mach
numbers, M ! 1. We presented a procedure for cor-
rectly calculating DT based on the asymptotic solution
of a nonlinear DIA equation for the mean Green’s func-

tion (p, τ) in the form of damped (with time) oscilla-
tions. The correspondence of this Green’s function to
the transport physics of passive scalar particles was
shown to be a crucial factor.

The diffusion of a passive scalar particle in acoustic
turbulence takes place for the following two reasons.
First, the damping of correlated gas motions due to vis-
cosity and, more importantly, due to nonlinear wave
interaction prevents the return of the passive scalar par-
ticle to its original position. Second, as we showed here
for the first time, an incoherent superposition of waves
results in a random walk of the particle in the medium
even if this damping is ignored. Our calculations indi-
cate that the second mechanism is much stronger than
the first mechanism and that it leads to the final formula
(27) for the diffusion coefficient DT. As a result, it
emerged that an efficient method of calculating DT

G̃

DT
0( ) DT

1( )

DT

u0M
3 p0
---------- xE x( ) η x( ) π

6
---M2E x( )+d

0

∞

∫=

6 π+( )u0M3

18 p0
------------------------------ xE2 x( ) O

u0M5

p0
------------ 

  .+d

0

∞

∫

G̃
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involves using the formula of the first approximation
with the velocity-correlator damping ignored and using
solution (19) to the linearized DIA equation as the
Green’s function. In this method of calculating DT,
damping must be disregarded in order not to calculate
the large negative correction from the second approxi-
mation. This correction results from the contribution of
damping and the fourth-order velocity correlators and
almost completely offsets the contribution of damping
to DT from the first approximation. In general, the pos-
itive contribution to DT from the damping mechanism
in the first approximation is equal in order of magnitude
to the contribution from the second mechanism. The
contribution of incompressibility [see the second term
in (8)], which was previously disregarded, accounts for
about 2/3 of the total diffusion coefficient. This addi-
tional term in the general formula (8) for DT was first
obtained in [3].

Our results apply to acoustic turbulence with a con-
tinuous wave spectrum. For single-mode turbulence
[E(p) = δ(p – p0)], the diffusion is governed only by the
first mechanism, i.e., by damping. This is immediately
seen from expression (20) for the Green’s function for
this case.

We gave a purely mathematical solution to the prob-
lem of correctly calculating the diffusion coefficient for
passive scalar particles in acoustic turbulence with a
continuous wave spectrum. For a more complete phys-
ical understanding of the diffusion of passive scalar
particles in acoustic turbulence, it would undoubtedly
be useful to derive our formula for DT purely qualita-
tively. The dependence DT ∝  u0λ0M3 can apparently be
justified from dimension considerations as follows.
Disregarding the small contribution from the first diffu-
sion mechanism, we can assume that DT depends on c,
u0, and λ0 ≈ 1/p0. An elementary diffusion event, the
jump of a particle from one wave to another, in a statis-
tically isotropic medium can depend on the velocity of
the first wave squared and on the velocity of the second

wave squared, i.e., DT ∝   ∝ M4. The dimensional pro-
portionality coefficient can be only cλ0. As a result, we
obtain

which matches formula (27).
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Abstract—The nonlinear dynamics of systems with a spatially periodic ground state was studied. The dynam-
ics of kinks against the background of a periodic soliton structure was considered for the example of the sine-
Klein–Gordon model that described a fluxon lattice in a long Josephson contact in an external magnetic field
and an incommensurate structure of a surface atomic layer or adatom chains on the surface of a crystal. The
velocity of moving kinks was shown to be bounded from above and from below if the ground state was spatially
periodic. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, interest of researchers working on
the theory of nonlinear waves and solitons has shifted
to studying the nonlinear dynamics of real physical sys-
tems with their discrete character, internal structure,
and spatial nonuniformity. Of special interest are lay-
ered substances in which material parameters are peri-
odically modulated in space (“modulated systems”).
Examples of such media are layered crystals with poly-
atomic unit cells (in particular, high-Tc superconduc-
tors), multilayer magnets (which offer much promise
for technological applications), corrugated optical fiber
waveguides, etc. In all these media, spatial periodicity
results in a band structure of the spectrum of linear
waves and the formation of gaps (“forbidden bands”) in
this spectrum. The existence of peculiar localized exci-
tations, so-called “gap solitons,” in forbidden spectrum
regions becomes possible if medium nonlinearity is
taken into account [1–3]. Unfortunately, gap solitons
can only be studied by approximate methods in the
small-amplitude limit within the framework of simpli-
fied models.

In this work, we call attention to the possibility of
the existence of gap solitons of a different origin, which
can be studied by exact analytic methods with the use
of so-called integrable models. Consider systems in
which all material medium parameters are spatially
uniform, but the ground state is spatially periodic.
Examples of such systems are numerous and well
known. The ground state of a long Josephson contact in
a magnetic field higher than critical is a periodic fluxon
lattice [4, 5]. Another example is an incommensurate
periodic structure that can be formed by surface atoms
1063-7761/02/9505- $22.00 © 0965
as, for instance, on the [111] surface of gold [6, 7],
because of different electronic states and, therefore, dif-
ferent elastic properties in the bulk and in the surface
layer.

Similar but one-dimensional incommensurate struc-
tures can be formed by adsorbed atom chains on stri-
ated [110] surfaces of crystals [8]. Examples of such
systems (hereafter called “self-modulated”) are antifer-
romagnets with nonuniform exchange-relativistic Dzy-
aloshinski interaction and with the ground state in the
form of a periodic helicoidal structure [9, 10] and the
domain structure of ferromagnets with magnetic dipole
interaction taken into account. In these examples, the
spectrum of linear excitations also contains gaps, but
soliton excitations whose frequencies lie within these
spectral gaps are in many respects different from those
in usual modulated media.

As a first step, we studied the dynamics of the sim-
plest one-parameter topological solitons of the “kink”
type [11], which propagate in a self-modulated
medium, that is, through a periodic lattice of similar
kinks.

2. FORMULATION OF THE MODEL: A PERIODIC 
GROUND STATE AND THE SPECTRUM
OF LINEAR EXCITATIONS ABOVE IT

Consider a simple example of a self-modulated sys-
tem, namely, an incommensurate structure of a surface
atomic layer or of a chain of adsorbed atoms on the sur-
face of a crystal. Interaction between surface atoms will
be taken into account in the harmonic approximation. It
is assumed that the equilibrium interatomic distance in
2002 MAIK “Nauka/Interperiodica”
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the absence of a surface field is b and is different from
the interatomic distance in the bulk, which equals a.
The effect of bulk (substrate) on the adatoms can be
modeled by a periodic potential relief with the period a.
For simplicity, this relief is selected in the form of a
trigonometric function. (The influence of adsorbed
atoms on the substrate is ignored; that is, the substrate
is considered absolutely rigid.) The potential energy of
this system has the form

(1)

where yn is the coordinate of the nth atom and α is the
elastic interaction constant along the chain. The
dynamic equation for atomic displacements

in this model (the Frenkel–Kontorova model [12]) has
the form

(2)

Using the long-wave approximation and the dimen-
sionless variables

,

we obtain the well-known sine-Gordon equation [11]

(3)

In the same approximation and in the same vari-
ables, total energy (1) takes the form

(4)

where

.

The incommensurability of the chain of adatoms and
the substrate is characterized by the dimensionless
parameter

For a long Josephson contact, field u(x) describes
the phase difference of the wave functions of supercon-
ductors at the contact, and the ξ parameter is propor-
tional to the external magnetic field applied in the con-
tact plane [13].

The last term ξux in Eq. (4) for the energy has a
divergent form and does not influence dynamic equa-
tion (3). Changes in the ξ parameter, however, change
the potential energy of the system and can alter its

U U0 1
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a
-----------cos–
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--- yn yn 1– b––( )2,
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a
-------------
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2
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2

2
----- 1 ucos–( ) ξux+ + +

 
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 

,d∫=

E0
a

2π
------ U0α=

ξ αa2

U0
---------

a b–
a

-----------.=
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ground state. At b = a, the ground state corresponds to
the trivial solution of (3) with u ≡ 0 and energy E = 0.
At b ≠ a, the situation is more complex.

For definiteness, set b > a (ξ < 0). In addition to the
u ≡ 0 solution, (3) then has a nontrivial static solution
[4, 5]

(5)

where am(z, k) is the elliptic amplitude and k is the
modulus of this elliptic function. Solution (5) describes
a “stretched” system with a periodic chain of 2π kinks
(a chain of “one-dimensional” dislocations in the sur-
face layer or a fluxon lattice in a Josephson contact)
with the distance L = 2kK(k) between them, where K(k)
is the complete elliptic integral of the first kind. The
natural kink width is a value of the order of one. In the
initial dimensional variables, this width is given by the
equation

The energy density of such a periodic structure (per
period) is

(6)

Here, E(k) is the complete elliptic integral of the second
kind. Energy density ε depends on the ξ parameter of
incommensurability of interatomic distances in the
chain and in the substrate. At small ξ parameter values,
the ground state of the system is uniform, and periodic
solution (5) with a high energy can only exist if pres-
sure is applied to the chain at infinity. However, if
parameter ξ exceeds the critical value ξc = –4/π, at
which

(7)

the energy minimum corresponds to periodic state (5)
with the modulus of the elliptic function determined by
the equation

Small-amplitude excitations against the background
of the nontrivial ground state with w = u – u0 ! 1 are
described by the linear equation

(8)

Periodic solutions of this Lamé equation for linear
waves above the ground state were discussed in [14]

u0 x( ) π 2am
x
k
-- k,

 
 
 

,+=
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2π
------ αa2
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---------.=

ε U
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2
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kK k( )
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 
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4
π
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----.=
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k
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 – 
  w+– 0.=
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ω2
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ω = s0q

II
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(b)

I

s0 Vgr0 1

∼

Fig. 1. (a) Dispersion law for linear waves in a self-modulated system with a periodic ground state and (b) the same dispersion law
in the frame of reference moving at the group velocity of linear waves.
(also see [15]). They are expressed via elliptic eta and
theta functions,

(9)

and the dispersion law of linear waves ω = ω(q), where
q is the wave number, is implicitly written as

(10)

where the Z(η, k) zeta function is purely imaginary in
the problem under consideration. As distinguished
from the dispersion law for linear waves above a uni-
form ground state ω2 = 1 + q2, the spectrum of linear
waves above periodic ground state (5) consists of two
branches separated by a gap at q = q0 = π/L (see
Fig. 1a). The first Goldstone branch (I) describes natu-
ral oscillations of the kink lattice, which is treated as an
effective chain of anharmonically coupled quasi-parti-
cles. In the long-wave limit (ω, q  0), the dispersion
law has the “sound” form ω = s0q, and “the velocity of
sound” in the kink lattice is

where k' = . If the density of kinks in the incom-
mensurate structure is low and L @ 1 (k' ! 1), it is easy
to find the dependence of s0 on L,

In the initial dimensional variables, this dependence
takes the form

w
H x/k η–( )
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--------------------------- i qx ωt–( )[ ] ,exp=

ω 1
k
---dn η k,( ), q

i
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-------–

 
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.exp=
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In the opposite limit, when q  q0 = π/L and
ω  ω1 = k'/k, the linear wave represents antiphase
kink oscillations and is described by the function

The second (activation) spectrum branch (II) is
bounded from below by the frequency ω2 = 1/k (at q =
q0), and the corresponding solution

describes antiphase oscillations of regions between
kinks at fixed positions of solitons themselves. At large
wave numbers q @ q0, the spectrum again assumes the
sound form, but the velocity of sound is then larger than
s0 (in our variables, larger than one). This velocity cor-
responds to the limiting velocity of linear waves in a
uniform medium without solitons. In the L  ∞
(k  1) limit, the lower branch of linear waves disap-
pears, and the upper branch takes the form

It is expedient to rewrite the dispersion law in terms
of the group velocity of linear waves

and to write wave frequencies in the frame of reference
that moves at the group velocity,

The resulting dispersion law is shown in Fig. 1b, where
curves I and II correspond to the lower and upper spec-
trum branches in Fig. 1a. The hatched region between
them refers to two-parameter dynamic solitons of the

w cn
x
k
-- k, 

  ω1t( ).sin=

w sn
x
k
-- k, 

  ω2t( )sin=

ω 1 q2+ , ω2 1.=

Vgr ∂ω/∂q=

ω̃ ω qVgr.–=
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envelope, which will not be considered. Below, we
restrict our analysis to studying the dynamics of kinks
(one-parameter topological solitons) in an incommen-
surate structure (a periodic lattice of kinks of the same
sign). Such soliton solutions correspond to the s0 <
Vgr < 1 region of the velocity axis in Fig. 1b and to the
hatched sector of velocities in Fig. 1a.

3. MOTION OF A KINK 
THROUGH A SOLITON LATTICE

Consider the propagation of a one-parameter soliton
(additional kink) when the ground state is given by
periodic function (5), that is, the propagation through a
periodic lattice of kinks of the same sign. The exact
solution to this problem is simplest to find using the
Darbu transformation, which allows more complex
solutions to be obtained if a “seed” solution is known
[here, solution (5) for the ground state]. The Darbu
transformation is especially simple to use if the seed
solution depends on a single variable, as in the problem
under consideration. Indeed, we have u = u0(x), and u is
independent of time. (More complex solutions against
the background of a moving periodic structure are eas-
ily obtained using the Lorentz transformation.) A prob-
lem similar to ours was considered in [16, 17] for soli-
tons of the sine-Gordon equation that propagated
against the background of the standing monochromatic
wave u0 = u0(ωt) and in [18] for solitons of the hyper-
bolic sine-Gordon equation against the background of a
monochromatic wave.

The Darbu transformation for sine-Gordon equa-
tion (3) that we are using is well known [19]. To write
this transformation in a compact form, it is convenient
to pass from the initial field variable u(x, t) to new vari-
ables V and W related to the initial field u as

(11)

For these variables, (3) is written in the Lax form,

(12)

(13)

There is an auxiliary linear problem for two com-
plex-valued functions ψ1(x, t) and ψ2(x, t) that corre-
sponds to system (12), (13). Let us introduce the col-
umn function

V i ux ut+( ), W iu( ).exp= =

V x Vt–
1
2
--- W

1
W
-----– 

  ,=

Wx Wt+ VW .=
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ψ2 
 
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.=
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An arbitrary solution u(x, t) [therefore, also V(x, t) and
W(x, t)] can then be put in correspondence with the
overdetermined system of equations [19]

(14)

(15)

Generally, the complex parameter λ in (14) and (15) is
the Darbu transformation parameter. The initial sine-
Gordon equation [Eq. (3)] is the condition of system
(14), (15) consistency. Solving (14), (15) with a given
seed solution u0(x, t) (consequently, with given V0(x, t)
and W0(x, t) functions) and an arbitrary λ parameter
allows a new u(x, t) [or V(x, t) and W(x, t)] solution to
be constructed. Naturally, the λ parameter should be
selected such that the new u(x, t) solution will be real.
Let us introduce the notation

(16)

The relation between the new and seed solutions is then
given by the formulas

(17)

Using (11), we can easily find the final form of the
equation that relates the new and old solutions in the
initial field variables,

(18)

It follows that the central problem is to solve system
(14), (15) of linear equations with variable coefficients.
In our case, the problem is simplified, because the ini-
tial solution for the ground state u = u0(x) is indepen-
dent of time. Therefore, (15) becomes a differential
equation with constant coefficients and includes coor-
dinate x as a parameter. For the periodic ground state
under consideration [Eq. (5)], the V0 and W0 functions
are written as

(19)

and system (15) of linear equations is easily solved. The
key problem is to correctly select the λ transformation
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parameter at which the new u(x, t) solution is real. We
will see below that selecting arbitrary real numbers for
λ leads to real u(x, t) solutions, and the λ parameter
itself characterizes the velocity of soliton propagation.

The solution to (15) has the form

(20)

where

Substituting (20) into the first pair of equations (14)
and equating the coefficients of exp(±µt) to zero yields
equations for a(x) and b(x) solvable in quadratures. The
corresponding expressions have the form

(21)

It follows from (16), (17) and the unimodular char-
acter of the W function [see (11)] that the ψ2/ψ1 func-
tion is unimodular. It is easy to check that this require-
ment is met if the C1 and C2 constants of integration sat-
isfy the condition

Let us separate out the real and imaginary parts in the
first integral in (21) and use the relation

The equation for the ψ2/ψ1 ratio, which determines new
solution (18) for u(x, t), then becomes

(22)
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where ϑ  = 2µ(t + f(x)) and

(23)

(24)

The differentiation of the (ϕ ± ρ) function with
respect to the coordinate followed by simple transfor-
mations involving elliptic Jacobi functions and by inte-
gration transforms these equations into

(25)

where the ∆ phase shift of the solution implicitly
depends on the k and λ parameters as follows:

(26)

Note that all the formulas given above are based on
the assumption that λ > 1. This corresponds to positive
f values; that is, the soliton moves in the negative direc-
tion.

The f(x) function in (22) can be represented by the
sum of two terms,

where the mean value of the χ(x) periodic function is
zero. Of key importance is the f(x) function component
that linearly grows as the coordinate increases. This
function determines the mean velocity of soliton prop-
agation through the incommensurate structure,

(27)

It follows that, in (22), the phase

describes soliton movement in the negative direction at
mean velocity v. This movement is accompanied by
periodic oscillations when the soliton passes through
the points at which soliton lattice kinks are situated.
Substituting (22) and (25) into (18) yields the final
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solution for the motion of the additional soliton through
the soliton lattice,

(28)

Here, the notation

(29)

is used for convenience.
In spite of the awkwardness of solution (26)–(29), it

has a simple physical interpretation, and an analysis of
its asymptotic behaviors poses no difficulty.

4. DISCUSSION

First, consider the asymptotic behaviors of the solu-
tion. If x  ±∞ (ϑ   ±∞), it follows from (28) that

(30)

The 2π term in (30) in the expression for u(x 
+∞) corresponds to the appearance of an additional 2π
kink in the initial lattice of solitons. Because of the
presence of this additional soliton, the initial lattice is
as a whole stretched by 2∆. The ∆ value depends on the
velocity at which this soliton moves.

The described dynamics is schematically shown in
Fig. 2. The dashed line corresponds to field distribution
u0(x) in the initial periodic incommensurate structure.
The additional kink, which moves through the lattice,
has a steeper front in the figure (which corresponds to
velocities close to one). This kink displaces the whole
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Fig. 2. Movement of an additional kink through a lattice of
solitons. The dashed line corresponds to the field distribu-
tion u0(x) in the initial periodic incommensurate structure.
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structure behind it by 2∆(v ). Consider the limiting
cases of this movement.

In the λ  ∞ limit (then µ  ∞), the kink veloc-
ity tends to its limiting value v   1 [the limiting
velocity in Lorentz-invariant model (3)]. The width of
the kink l = v /2µ then tends to zero, and the kink trans-
forms into a singular Heaviside theta function. The 2∆
phase shift of the solution vanishes at infinity: the sin-
gular kink moves through an undeformed initial peri-
odic structure at the limiting velocity, and

The dynamics of the kink moving in a periodic struc-
ture at minimum velocity s0 is of interest. In this limit,
µ  0, and λ tends to its minimum value

The width of the moving kink then tends to infinity, and
the kink “spreads.” Its limiting velocity s0 coincides
with the sound velocity of long-wave oscillations of the
initial lattice of kinks, and the 2∆ phase shift tends to
2∆ = L, that is, to the period of the initial periodic struc-
ture. Regular alternation of kinks in the self-modulated
structure is then restored, and the u(+∞) – u0(+∞) shift
vanishes.

The limiting case of additional soliton movement at
velocities close to s0 can be given a clear physical inter-
pretation if the incommensurate structure has a large
period, L @ 1 (when k' ! 1). In this limit, separate kinks
can be treated as weakly interacting quasi-particles that
form a one-dimensional chain. The solution to (3) for
an isolated kink is well known [11, 12],

(31)

Substituting this solution into expression (4) for the
total energy yields the energy of the isolated kink in the
form

(32)

Obviously, velocity v  in dimensionless variables is
related to velocity Vk in the initial variables as

It follows from (32) that, for v  ! 1, the kinetic

energy of the kink is E = M /2 and its effective
mass is

(33)
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Further, it follows from (32) that the energy of the iso-
lated static soliton becomes negative at ξ < –4/π.
Above, we obtained this critical incommensurability
parameter from the exact periodic solution given by (5).
At large incommensurability parameter values |ξ| > |ξc |,
the formation of kinks becomes energetically favor-
able. Their density, however, remains finite because of
mutual repulsion. The repulsion energy between two
kinks of the same sign was calculated in [20] for the
sine-Gordon equation. At a distance between kinks far
exceeding their size, this energy has the form

(34)

where ∆ is the distance between solitons and Λ is the
characteristic kink width introduced above.

The coordinate of the Nth kink in the soliton lattice
can be written in the form

where L is the distance between kinks in the ground
state and ζN is small kink displacements. The total
energy of the system (above the ground-state energy) is
then written as

(35)

This corresponds to the well-known and completely
integrable Toda model [21, 22]. We will only consider
the long-wave approximation, when relative displace-
ments of neighboring kinks are substantially smaller
than their width,

Passing to the continuous coordinate of kink centers
NL  z, we then easily obtain the well-known Bouss-
inesq equation [11]

(36)

in the main nonlinear approximation, that is, only tak-
ing into account terms quadratic in ζ(z, τ).

It is easy to see that, if the dispersion (~ζzzzz) and
nonlinear (~ζzζzz) terms are ignored, the obtained wave
equation describes kink lattice oscillation waves propa-
gating at the velocity
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yN LN ζ N ,+=

E
1
2
---M

dζ N

dτ
--------- 

 
2

32E0
L
Λ
----– 

 exp+




N

∑=

×
ζ N ζ N 1––

Λ
-----------------------– 

 exp




.

ζ N ζ N 1–  ! Λ .–

Mζττ
32E0L2

Λ2
------------------ L

Λ
----– 

 exp–

× ζzz
L2

12
------ζ zzzz

L
Λ
----ζ zζ zz–+

 
 
 

0=
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Above, we obtained the same expression for s0 from the
exact solution for linear waves in an incommensurate
structure.

The soliton solution to (36), which describes a
“superkink” against the background of a lattice of
kinks, has the form [11]

(37)

In Fig. 1b, a Vk > s0 velocity axis region in the vicinity
of the Vk = s0 point corresponds to this solution. In the
Vk  s0 limit, we have

Above, this result was obtained from the exact solution.

5. CONCLUSION

In this work, we considered the dynamics of a kink
moving through an incommensurate structure, through
a lattice of kinks (the dynamics of a fluxon moving
through a fluxon lattice in a long Josephson contact).
The exact analytic solution was found and studied to
describe this dynamics in terms of the sine-Gordon
equation. In the limit of a large lattice period and a low
velocity of the additional soliton, a qualitative physical
description of the dynamics of the soliton was sug-
gested. The results can be used to theoretically describe
changes in the density of fluxons in a long Josephson
contact under applied magnetic field variations.
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Abstract—Approximate and numerical methods are used to study the behavior of autowaves for parameters
close to the propagation threshold. Under these conditions, the variations in wave velocity and amplitude are
slow. A quasi-steady-state equation is derived for the velocity. This equation describes the relaxation to a steady
state (uniform motion) in the above-threshold region and the initial damping stage that determines the time
scale of this process in the below-threshold region. As the threshold is approached, the time scales indefinitely
increase in the above- and below-threshold regions of parameters. Small random inhomogeneities of the active
medium and other “noise” sources produce intense velocity pulsations. These pulsations are comparable in
scale to the mean velocity (as in the case of strong turbulence) and resemble the critical fluctuations in order
parameter near the point of a continuous phase transition in their statistical properties. The pulsation spectrum
exhibits a sharp peak at zero frequency. In contrast to flicker noise, this peak disappears as one recedes from
the threshold. The solutions to the quasi-steady-state equation and the results of numerical simulations agree as
long as the fluctuations are small—as in the theory of continuous transitions, beyond the fluctuation
region. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Traveling pulses are a variety of autowaves [1]. The
pulse structure can be clearly imagined by considering
a reaction wave moving along a tube with porous walls.
Because the reaction products behind the wave filter
through the walls, they are gradually replaced with the
original material from the space surrounding the tube.
Since the mixture composition that was before the wave
passage is restored, a new pulse can travel in the wake
of the first pulse. Thus, a periodic autowave is a
sequence of pulses. In a two-dimensional reactor (e.g.,
a Petri dish), a traveling pulse can turn into a rotating
spiral. Indeed, if the tube is closed into a ring, then the
pulse will rotate with a period that, of course, must
exceed the restoration time of the original mixture com-
position (this requires that the ring radius be large
enough). A flat layer of the active medium can be rep-
resented as a set of such concentric rings. Since the
pulse velocity, clearly, does not depend on the ring
radius, the pulses in the outer rings will lag behind to
form a spiral bent in the direction of rotation. The cir-
cular waves and other complex structure diverging
from the leading center can be “constructed” from trav-
eling pulses.

The reaction wave that forms the leading edge of the
pulse propagates due to the diffusion of active particles
into the original mixture. In order of magnitude, its
velocity u and width b are

(1.1)u χ/τR, b χτ R,∼∼
1063-7761/02/9505- $22.00 © 0973
where χ is the activator diffusion coefficient and τR is
the reaction time scale. Estimate (1.1) suggests that this
time is short compared to the restoration time. In this
case, the restoration stage does not affect appreciably
the pulse itself (its velocity and amplitude). It is impor-
tant only for the formation of periodic waves, spirals,
etc. At the same time, activator losses (e.g., through the
tube walls) slow down the reaction. The velocity u
decreases and b increases, which contributes to the
losses. The existence of a propagation threshold, which
was detected in various autowaves (see the review [2]),
is the result of such a feedback. From a mathematical
point of view, the problem of wave propagation with
losses has two solutions; the fast wave is stable, while
the slow wave is unstable. At the bifurcation point, the
two solutions merge and disappear, so this point deter-
mines the threshold value for a control parameter (e.g.,
the ratio of loss time to τR). The propagation threshold
was first found in [3] for combustion waves. In this
case, heat acts as the activator. Because of the activation
dependence of the reaction rate on temperature, the
region where the reaction takes place is narrow com-
pared to the wavelength. This allowed Zel’dovich [3] to
derive approximate formulas for the velocity of steady-
state (uniformly moving) waves and a condition for
their coalescence.

We consider unsteady-state waves propagating
under near-threshold conditions. Under these condi-
tions, the relaxation to uniform motion (for above-
threshold parameters) or the wave damping (in the
2002 MAIK “Nauka/Interperiodica”
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below-threshold region) is slow, which makes it possi-
ble to derive a quasi-steady-state equation that
describes the variations in wave velocity with time.
Although a model of an activated exothermic reaction
is used to derive the equation, its form near the thresh-
old does not depend on the specific model and is valid
for any reaction waves. It thus follows that this conclu-
sion can be extended to traveling pulses and, eventually,
to all of the autowaves constructed from them. The dif-
ference between the stable and unstable solutions is
small near the threshold. This gives rise to a situation of
an almost indifferent equilibrium similar to that arising
near the point of a continuous phase transition. Devia-
tions from a steady state (a uniformly moving wave)
arise easily and relax slowly. These deviations (critical
fluctuations) are thermal for continuous phase transi-
tions, while, in our case, they are attributable to inho-
mogeneities of the active medium and to other sources
of “noise.” In general, the latter significantly exceeds
the thermal pumping. As regards the statistical proper-
ties of the velocity fluctuations (the frequency spec-
trum, etc.), they do not depend on noise and are inher-
ent in the wave itself. Indeed, the correlation time of the
fluctuations increases indefinitely as the threshold is
approached, whereas, for noise, this time clearly
remains finite. Therefore, any noise near the threshold
can be treated as δ-correlated (white) noise.

The formula for the velocity correlator derived from
the quasi-steady-state equation in the linear approxima-
tion is invalid in the near-threshold region, where the
pulsations cease to be small. The boundaries of this
“fluctuation” region can be determined by comparing,
by analogy with phase transitions, the rms deviation of
the velocity and the deviation of the mean velocity from
its threshold value. For continuous phase transitions,
the extent of the fluctuation region is a parameter of the
material that undergoes a transition. In an active sys-
tem, this extent together with the fluctuation intensity
depends on the noise level. In particular, this allows the
fluctuation region to be extended to facilitate its study
by introducing controllable noise.

2. THE QUASI-STEADY-STATE EQUATION

According to (1.1), the velocity of a traveling pulse
does not depend on the restoration stage. If the restora-
tion time is large compared the activator loss time τc,
then the threshold effect does not depend on this stage
either. Therefore, we disregard the filtering through the
tube walls and consider the wave of activated transfor-
mation of the original material into a product instead of
the traveling pulse. For an exothermic reaction, heat
acts as the activator. The wave moves because of heat
transport to the original material, heating causes an
intense reaction, heat is released, etc. In this case, ther-
mal diffusivity is the transport coefficient in (1.1). If the
activation energy E is high enough, the heat release is
concentrated near the thermal peak—in the reaction
zone. Ahead, in the heating zone, the reaction can be
JOURNAL OF EXPERIMENTAL 
ignored, because the temperature is low; behind, in the
cooling zone, the reaction does not proceed, because all
of the material was used up. The three-zone wave struc-
ture is characterized by three parameters: the Lewis
number L, the ratio of diffusion coefficient to thermal
diffusivity; the Semenov number S, the ratio of cooling
time τc to reaction time τR(Tb),

(2.1)

where T0 is the initial temperature, Q is the reaction
heat, and c is the heat capacity; and the Zel’dovich
number

(2.2)

For Z @ 1, the reaction-zone width b is small compared
to the wave width. Therefore, we can roughly consider
this zone as a surface on which the heat and diffusion
fluxes change abruptly [3]. Thus, we have the equations
for the wave

(2.3)

(2.4)

written in a coordinate system in which the reaction
zone is at rest at x = 0. The boundary conditions are

(2.5)

We use τR(Tb) as the time scale and choose the length
and velocity scales according to (1.1). Here, n is the
concentration of the original material, T is the temper-
ature measured from T0 on the scale Tb – T0, u(t) is the
instantaneous wave velocity,

(2.6)

u0 is the velocity of uniform wave motion for S  ∞,
and Tm = T(x = 0). Problem (2.3)–(2.6) for

has two steady-state solutions [3]

with the lower branch being unstable. For S < Sth, there
are no solutions in the form of steady-state waves. At
the threshold S = Sth, the difference 1 – Tm ≈ Z–1 ! 1,
which justifies the approximate representation of the
activation law (2.6).

Consider the unsteady-state solutions to this prob-
lem that describe the relaxation to a uniformly moving
wave for S > Sth and its damping for S < Sth. These pro-

Tb T0
Q
c
----,+=

Z
E

Tb
2

----- Tb T0–( ).=

∂n
∂t
------ u t( )∂n

∂x
------ L

∂2n

∂x2
--------–+ ϕδ x( ),–=

∂T
∂t
------ u t( )∂T

∂x
------ ∂2T

∂x2
---------–+ ϕδ x( ) T

S
---,–=

x ∞, n– 1, T 0;= =

x ∞, n 0, T 0.= =

ϕ2 u0
2 Z 1 Tm–( )–[ ] ,exp=

S Sth> 2eZu0
2–≈

u1 S( ) uth u0/ e, u2 S( ) uth,<≈>
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cesses are slow near Sth, which, as we will see below,
allows an approximate equation to be derived for the

velocity u(t). For t @ , the effect of the initial condi-
tions must vanish. According to (2.3)–(2.5), we can
then write for the point x = 0

(2.7)

(2.8)

where

(2.9)

For (2.7), the total transformation of the material is
assumed, so n = 0 behind the reaction zone. The inte-
grands in (2.7) and (2.8) are nonzero only in a time

interval of the order of  near the upper limit.

Equalities (2.6)–(2.8) allow ϕ, u, and Tm to be deter-
mined. When the wave moves uniformly, u = ϕ. Near
the threshold, the velocity changes slowly and u differs
from ϕ only slightly. In the integrands of (2.7) and
(2.8), we use the following expansions everywhere
except the exponentials:

(2.10)

where 〈u〉  is defined by the equality

If the condition

(2.11)

is satisfied, then expansions (2.10) are valid as long as

the difference (t – t') ≤ . As we said above, only this
t' interval gives a significant contribution when inte-
grals (2.7) and (2.8) are calculated. For their calcula-
tions, we introduce a new integration variable in (2.7),
which is related to t' by

The integration over ξ1 should be carried out in the

interval from 0 to l(0, t)/(2 ) Since the integral rap-

uth
2–

1

2 πL
-------------- ϕ t'( )

t t'–
-------------- l2 t' t,( )

4L t t'–( )
----------------------–exp t' 1,≈d

0

t

∫

1

2 π
---------- ϕ t'( )

t t'–
-------------- –

l2 t' t,( )
4 t t'–( )
------------------ t t'–

S
----------–exp t' Tm t( ),≈d

0

t

∫

l t' t,( ) u t''( ) t''.d

t'

t

∫=

u0
2–

ϕ t'( ) ϕ t( ) t t'–( )du
dt
------,–≈

u t'( ) u t( ) t t'–( )du
dt
------,–≈

u〈 〉 u t( ) 1
2
--- 

  t t'–( )du
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------,–≈

l t' t,( ) u〈 〉 t t'–( ).=
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------  ! uth

3
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2 l2 t' t,( ) 4L t t'–( )[ ] 1– .=

t
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idly converges, the upper limit may be set to infinity.
The left-hand side of (2.7) then takes the form

(2.12)

Let us simplify the factor at the exponential in (2.12) by
retaining the terms with the derivative du/dt to a power
not higher than the first power:

(2.13)

The instantaneous and mean velocities in (2.13) were
substituted with the threshold value uth everywhere
except the small difference ϕ – u. Substituting (2.12)
and (2.13) into (2.7) yields

(2.14)

Let us perform similar transformations for the inte-
grand in (2.8). After changing the integration variable
t'  ξ2,

(2.15)

using expansions (2.10); and linearizing in du/dt, we
obtain

(2.16)

A zero K would imply that we cannot restrict ourselves
to the first order in the expansion in du/dt used. There-
fore, (2.16) is valid as long as K is not too small. Curi-
ously, the K = 0 line for large Z is close to the boundary
of oscillatory instability for the wave under consider-
ation [4]. Having eliminated the temperature Tm from
(2.6) and (2.16), we substitute u for ϕ in the derived
equality. Indeed, according to (2.14), the difference ϕ – u
is proportional to du/dt. However, the above substitu-
tion results in corrections ~(du/dt)(u – uth), which may
be disregarded near the threshold. Introducing the
quantities

(2.17)

and retaining the highest terms in s and v, we obtain the
equation

(2.18)

For S > Sth, Eq. (2.18) has two solutions that correspond
to a constant velocity, with the slow branch u(S) being
unstable. For S < Sth, the velocity decreases with time
and the wave is damped. For |s| ! 1, the slowdown

2

π
------- e
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ϕ ξ 1( ) 2u ξ1( ) u〈 〉–[ ] 1– ξ1.d
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∞

∫

1 uth
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2uth
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becomes small when the velocity approaches uth.This
stage of slow variations is typical of the growth of
explosive instability near the limit (see [5]) and of cha-
otic regimes with intermittency [6]. If two above-
threshold regions are separated by a below-threshold
segment about utht∗ |s|–1/2 in length, then the damped
wave can traverse this segment, whereupon its velocity
and amplitude are restored in the above-threshold
region [7]. This “tunneling” significantly affects the
behavior of autowaves under near-threshold conditions.
Since any actual medium is inhomogeneous, it consists
of randomly arranged above- and below-threshold seg-
ments when its mean parameters are close to their
threshold values. In this case, the wave percolation con-
dition does not require the existence of an above-
threshold cluster threading the entire medium. The
appearance of small but closely spaced clusters will
suffice.

3. VELOCITY FLUCTUATIONS

Consider a stable wave that uniformly moves at con-
stant S > Sth with velocity ust, with the temperature in
the reaction zone being

(3.1)

Now, let the parameter S include a small addition that is
a random function of time:

(3.2)

The following term will then be added to the left-hand
side of (2.8):

(3.3)

where

T x = 0( ) T st 1 2 Sust
2( ) 1–

.–≈=

S 1– S0
1– 1 y t( )+[ ] ,=
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2S0 π
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t t'–
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0

t
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0
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
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0

∞
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


,

k±
ust

2
------

ust
2

4
------ S0

1–+ 
 

1/2

,±=

A t t' ξ, ,( ) t t'–
S0

----------
ust t t'–( ) ξ–[ ] 2

4 t t'–( )
-------------------------------------.+=
JOURNAL OF EXPERIMENTAL
Accordingly, Eq. (2.18) linearized near ust takes the
form

(3.4)

where

(3.5)

Given (3.2) and in the asymptotic limit of large t and
t', the correlation function

(3.6)

reduces to

(3.7)

In writing the coefficients on the right-hand side of
(3.7), we substituted ust  uth and S0  Sth. For ther-
mal fluctuations, the “pumping” 〈y2〉  is chosen to pro-
vide an equilibrium value for the mean square of the
deviations for the fluctuating quantity (see [8]). In this
case, 〈y2〉  ∝ γ . For the autowave under consideration,
〈y2〉  is determined by inhomogeneities of the medium
and by other noise sources; clearly, it does not depend
on γ. The growth of fluctuations near the threshold
(γ  0) results from a low stability of the steady state
(a uniformly moving wave) under these conditions.
This effect is similar to the critical behavior near the
point of a continuous phase transition. According to
(3.7), the velocity fluctuations have a Lorentz spectrum
with a peak at ω = 0; the peak width is ∆ω = γ. Signifi-
cantly, the properties of the fluctuations (except their
intensity) do not depend on noise. The correlation time
increases as the threshold is approached, whereas, for
noise, this time clearly remains limited. Therefore, any
noise near the threshold can be assumed to be a δ-cor-
related one. Note also that, in contrast to flicker noise
[9], the low-frequency peak disappears as one recedes
from the threshold. We took into account the pattern
obtained by using the quasi-steady-state equation when
analyzing the results of our numerical simulations of
autowaves.

dw
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4. NUMERICAL SIMULATIONS

We studied a wave with a narrow (but finite) reac-
tion zone. We chose L = 1 to avoid complications
related to diffusion instability. Such a wave can be sim-
ulated by using the equations

(4.1)

(4.2)

with the boundary conditions

(4.3)

In (4.1)–(4.3), the concentration of the reaction product
is η = 1 – n and the dimensionless temperature θ is mea-

sured from Tb on the scale E–1, so θ = –Z corresponds
to T0; β = Tb/E. Since, in contrast to (2.5), we have to
take a finite interval, 0 < x < x0, for our numerical sim-
ulations, the boundary conditions must soften the effect
of the ends, if possible. At a sufficiently large x0, we can
restrict ourselves to substituting the condition T(x 
∞) = 0 for ∂θ/∂x = 0 at x = x0, as in (4.3). The following
simplified form of a steady-state wave was used as the
initial conditions:

This choice allows us to speed up the attainment of a
steady (for S > Sth) or quasi-steady (for S < Sth) state.
The instantaneous wave velocity was determined from
the motion of the maximum of the function Φ. In the
above-threshold region S > Sth, the “trail” velocity utr
was chosen to reduce the displacement of maxΦ from
the point x0/2, if possible. In this case, the effect of the
end points x = 0 and x = x0 on the wave parameters was
negligible (for x0 = 2000). Thus, we found the depen-
dence ust(S) and the characteristic relaxation time to a
steady state tr (this time was determined from the time
at which the difference between the instantaneous
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velocity and ust decreased to 0.01ust). Subsequently, we
introduced noise in the form (3.2) at utr= ust; the product
of 0.1 and random numbers from the interval (–1, +1),
which changed at each step, was used as the function
y(t). A built-in subroutine of the GNU Fortran-77 com-
piler served as the random number generator.

In all cases, we used Z = 10 and β = 0.09. For our
system of parabolic equations, we employed an implicit
scheme that ensured stability and convergence of the
computational procedure [10]; the steps in space and in
time were 0.1 and 0.2, respectively. We also computed
two cases with a spatial step of 0.01 for 104/S equal to
2.3 and 2.4. Decreasing the step did not cause signifi-
cant changes in the computational results: the mean
source power Φ in a steady state was conserved with a
relative error <10–4. For the above parameters, the
width of the reaction zone in the waves under consider-
ation is b ≈ 1 and the width of the heating zone is
Zb ≈ 10; the corresponding (Michelson) time scale is
τ ≈ 100 (because the velocity scale is about 0.1). The
procedure described above yielded uth ≈ 0.073 ± 0.001
and Sth ≈ 4057 ± 1. Figure 1 shows u(t) for several val-
ues of S (<Sth). We see how the wave damping slows
down as the threshold is approached. This slowdown
and the curve shape are in agreement with the solution
to the quasi-steady-state equation (2.18) for s < 0:

(4.4)

v t( ) s
2
---–

t
t∗
----- 2s– α i+ 

  ,cot=

α i v i
2
s
---– 
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Fig. 1. Damped-autowave velocity versus time. (a) Numer-
ical simulations: 104S = 2.469 (1), 2.470 (2), 2.475 (3),
2.480 (4), 2.485 (5), 2.490 (6), 2.495 (7), and 2.500 (8).
(b) The same curves after scaling the axes.
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where v i = v(t = 0). According to (4.4), the damping
time scale tq ∝  (–s)1/2. As was noted in Section 2, this
behavior is typical of the growth of explosive instability
and of regimes with intermittency. After scaling, the
curves approached but did not coalesce because of the
small inaccuracies in determining Sth and uth. (When a
value of S close to Sth is specified in computations, the
relative error in the difference between these values,
i.e., s, increases. A similar remark is true for u – uth.) In
general, the agreement between the simulation results
and (4.4) is satisfactory.

The time scale is plotted against S in Fig. 2. The plot
resembles the temperature dependence of susceptibil-
ity, scattering cross sections, etc., near the point of a
continuous phase transition. However, the singularity at
S = Sth is different in nature from that for continuous
transitions. In the latter case, a new phase can be
obtained from the old phase by means of a small defor-
mation. The wave solution disappears at the threshold
(explosive instability); the difference between the old
and new regimes is finite. The left and right parts of the
plot in Fig. 2 have a different meaning. This is the relax-
ation time to a steady state (uniform wave motion) for
S > Sth and the time of transition to a new regime (in our
case, the wave damping time) for S < Sth. If we continue
our comparison with phase transitions, then a finite
phase difference (e.g., in density) corresponds to a first-
order phase transition. A phase equilibrium is possible
in such a transition. The position of the phase boundary
is stable, for example, for fixed system temperature and
volume. When the volume is varied, the boundary is
displaced and one of the phases grows at the expense of
the other. Without allowance for the boundary energy,
the transition appears smooth until the complete disap-

10–4tr
40

30

20

10

0
2.2 2.3 2.4 2.5 2.6 2.7 2.8

10–4tq

104/S

40

30

10

0

20

Fig. 2. Time scale for autowaves versus distance from the
threshold. The time tr is determined from the time when u –
ust decreases to 0.01ust and tq is determined from the posi-
tion of the point of inflection in the curves of Fig. 1a (and
similar curves for other S).
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pearance of this phase. Actually, for a sufficiently small
amount of phase, it is unstable and disappears
abruptly—there is a threshold in this case as well. Let,
for example, a liquid drop be in equilibrium with vapor.
During an isothermal expansion, its radius decreases
because of its evaporation. When the critical radius cor-
responding to unstable (Gibbs) equilibrium is reached,
the drop abruptly disappears and the pressure increases.
For first-order phase transitions, the near-threshold
region is more difficult to observe than that for auto-
waves.

For the cases with the inclusion of noise in the form
(3.2), the steady state (u = ust) found without any noise
addition played the role of initial conditions. The value
of 〈y2〉  calculated for checking purposes is close to its
theoretical value (1/300). At such a noise level and for
L and Z given above, s ≤ 10–6 must correspond to the
fluctuation region. This estimate is obtained if the fluc-

tuation region is specified by the condition 〈w2〉  ≥ ,
by analogy with the theory of continuous transitions.
The variance for the velocity pulsations and its increase
as the threshold is approached obtained during our
computational experiments agree with (3.7). It should
be noted that, without noise, pulsations related to
rounding-off in our computations are observed. These
pulsations also grow as S  Sth, remaining much
smaller than the pulsations due to the introduced noise
for all S (the variance ratio is no less than 10). A typical
pulsation spectrum is shown in Fig. 3. The “line” fre-
quencies are ωn = 2πn/t0, where n is an integer and t0 is
the computational time. The line intensity distribution
corresponds to a continuous spectrum. No resonances
were observed at ω ≠ 0. The peak at zero frequency nar-

v st
2

(∆ω)2

104/S

1500

1000

500

0
2.25 2.30 2.35 2.40 2.45

0 20 40 60 80 100
ω

p

Fig. 3. A typical spectrum of the u(t) – ust velocity pulsa-
tions triggered by white noise. The frequency ω is in units
of 2π/t0; the computational time is t0 = 60 000. The spectral-
peak width ∆ω is plotted against distance from the threshold
in the inset.
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rows as the threshold is approached; this narrowing is
shown in the insert to Fig. 3. The time t0 near the thresh-
old was increased to 120 000 to satisfy the condition
t0∆ω @ 1. Since the line intensity is a random function
of frequency, we used the following procedure to deter-
mine the peak width ∆ω. The sum of intensities was
computed for the first N lines. The number N was
increased until this sum ceased to increase (with a rela-
tive error <10–6). Let the maximum sum computed in
this way be equal to I. Then, ∆ω is the frequency of the
line with number N1 at which the sum of intensities for
the first N1 lines is equal to I/2. There is no saturation

for white noise, N1 ≈ N/2; ∆ω = γ ∝   for a Lorentz
spectrum. As we see from Fig. 3, the dependence of
(∆ω)2 on s is actually almost linear: near the threshold,
S–1 ≈ (1 – s)/Sth.

For each S > Sth, the velocity variance determined in
our computation with noise can be correlated with the
relaxation time shown in Fig. 2 (the latter was, of
course, determined from our computations without
noise). In approximation (3.7), these two quantities are
proportional to 1/γ. If we show the plot on a log–log
scale, as in Fig. 4, then the data points must lie near the
straight line with a slope angle of π/4. Using the least-
squares method, we obtained a slope that can be called
a critical index equal to 0.764.

5. CONCLUSION

A detailed analysis of our numerical simulations
indicates that the behavior of the wave velocity and its

s

〈(u – ust)
2〉

3 × 10–3

10–3

5 × 103  104 3 × 104 tr

Fig. 4. Relation between the dispersion of velocity pulsa-
tions, 〈(u – ust)

2〉 , and the relaxation time to a uniformly
moving wave (u = ust). The data points correspond to S =
4444, 4348, 4255, 4167, 4149, 4132, 4115, 4098, 4082,
4065, and 4057. For convenience, a straight line with a
slope angle of π/4 is drawn in the figure.
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fluctuations can be qualitatively described by a quasi-
steady-state equation in the range of parameters where
the fluctuations are small.

Based on the equality 2v 2 = s, which defines the
velocity of steady-state waves near the threshold [3],
we can assume that the small deviations of v from v st
obey the quasi-steady-state equation (2.18). In this
case, however, the parameter t∗  remains indefinite. The
derivation of Eq. (2.18) in terms of the problem (2.3)–
(2.6) allows t∗  to be determined, with condition (2.11)
being satisfied. The “parabolic” form of the right-hand
side of Eq. (2.18) corresponds to any case of explosive
instability (coalescence of the two branches of the solu-
tion). The steady state (e.g., an autowave) near the point
of coalescence is formally stable against infinitely small
perturbations. At the same time, the basin of attraction of
this regime in state space is small, which, as we see, leads
to an increase in the intensity of low-frequency fluctua-
tions (soft modes) and in their correlation time. In this
respect, the hard transition made by the system because of
the growth of explosive instability does not differ from its
soft transition. The parameters of the new pattern formed
by the hard transition cannot be determined using the
quasi-steady-state equation. However, near the bifurcation
point, the transition includes a slow stage, which allows its
time scale to be estimated.
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