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Abstract—A series of dynamical models of the Galaxy is constructed assuming that the entire disk is
near the gravitational-stability limit. This imposes constraints on the dynamical and kinematic parameters
of the main subsystems (the disk, bulge, and halo). The disk surface density in the solar neighborhood
should not exceed 58M�/ pc2. Further, we find that the observed local decrease in the rotational velocity at
6 kpc � r � 10 kpc is not associated with details of the radial distribution of matter in the Galaxy and
instead results from dynamical processes or some other factors responsible for noncircular motions. It
follows from the presence of a long-lived bar and the observed distribution of the stellar-velocity dispersion
that the central maximum in the rotation curve at radius r � 300 pc cannot be associated with a very
concentrated bulge core. The best agreement between the observational data and the parameters of the
dynamical models is achieved for a radial disk scale length of L � 3 kpc. The relative contribution of the
disk to the circular rotational velocity at r = 2.2L is 73%. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Our understanding of Galactic structure and of
physical processes in the Galaxy has evolved as pho-
tometric and kinematic observational data have im-
proved. One of the most important characteristics
of the Galaxy is its rotation curve. The radial de-
pendence of the rotational velocity of the dynami-
cally cold component has been determined in many
studies [1–6]. Various Galactic subsystems have dif-
ferent characteristic rotational velocities [7]. For ex-
ample, the stellar disk rotates more slowly than the
gaseous component: V∗ < Vgas, where Vgas(r) is the
rotational velocity of the gas and young stars and
V∗(r) characterizes the old stellar population. One
of the most important parameters used to constructs
models of the Galaxy is the circular rotational velocity
Vc(r), which determines the spatial distribution of
the gravitational potential and, consequently, of the
mass. Various Galactic models [8–12] have shown
that, along with the stellar and gaseous disks, the
spheroidal subsystem also plays an important role.
The disk and spheroidal subsystems have complex
structures and are comprised of separate components
with different physical properties. In particular, thin
and thick components can be identified in the stellar
disk [7], and a halo, bulge, and core, in the spheroidal
subsystem.

The same rotation curve can be constructed using
very different parameters for the disk and spheroidal
components. This ambiguity can be reduced using
data on the surface density of matter in the solar
neighborhood σ� and the radial L and vertical h
1063-7729/03/4706-0443$24.00 c©
scales of the disk. Stellar-velocity dispersion data
can impose additional constraints. This approach is
based on the natural assumption that the disk formed
by the old stellar population, which contains most
of the disk mass, is gravitationally stable. Conse-
quently, the condition cr � ccrit

r is satisfied for the
radial stellar-velocity dispersion. The quantity ccrit

r
specifies the minimum value of cr required for grav-
itational stability in the plane of the disk and has
been calculated, for example, in [13–15]. The critical
value of the radial-velocity dispersion depends on the
equilibrium parameters of the system in a complex
way, and there is no fully satisfactory theory that can
be applied to calculate ccrit

r for reasonably realistic
models of a three-dimensional, nonuniform disk with
differential rotation. Essentially the only way to es-
timate ccrit

r is to simulate the stellar disk using dy-
namical models based on numerical integration of the
N-body problem. This approach has made it possible
to distinguish the masses of the spheroidal and disk
components in a number of galaxies whose velocity
dispersions are known from observations [16]. An ad-
ditional constraint on the distribution of matter in the
Galaxy is provided by the requirement that the disk
be stable against bending perturbations, since this
imposes conditions on the vertical-velocity dispersion
cz and the vertical structure of the disk [17, 18].

As a rule, it is assumed that Vc = Vgas; i.e., if the
motions are purely circular, the pressure gradient can
be neglected when considering the radial force bal-
ance. One of the first Galactic models, constructed by
Schmidt [8], was developed and substantially refined
2003 MAIK “Nauka/Interperiodica”
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in [9–12, 19–22]. A number of these axially sym-
metrical models have very different masses for their
main components. The seven-component model pro-
posed in [23] demonstrated the important role of pres-
sure gradients in forming some parts of the Galactic
rotation curve. Non-axially-symmetrical models, in
particular, those taking into account the bar, can be
constructed only via dynamical modeling [24, 25].

In contrast to the situation for other galaxies,
where only the velocity dispersion along the line of
sight is known from observations, all three compo-
nents of the velocity dispersion in the Galaxy (cr , cϕ,
and cz) are known in the solar neighborhood [26].
This information leads to additional constraints on
models for the distribution of matter in the Galaxy.
The aim of the present study is to develop a model for
the Galaxy taking into account the latest data on the
distributions of the components of the stellar-velocity
dispersion. For each model satisfying the observed
rotation curve, we determined the radial distributions
of the velocity dispersion in the stellar disk via dynam-
ical modeling. As a result, we were able to obtain a
model that agrees well with the observational data for
a wide range of observational parameters, including
the distribution of the surface density of matter in
the disk, the disk’s thickness, the rotational velocities
of the gaseous and stellar components, the velocity
dispersions in the stellar disk, the presence of a bar,
and data on the bulge.

2. DYNAMICAL MODELING

Our dynamical model of the Galaxy is based on
numerical integration of the equations of motion for
N particles interacting via their mutual gravitational
attraction. We study the evolution of the disk subsys-
tem in the gravitational field of spherical components
with the volume density distribution

�s =
∑
m

�0m

(1 + (r2 + z2)/a2
m)n

, (1)

where the subscripts m = b, h refer to the bulge and
halo, respectively, n = 1 for a quasi-isothermal halo
and n = 3/2 for the bulge (a King law), �0m is the
central density of the corresponding component, and
the parameters am specify the radial scales of the
bulge and halo. One of the bulge subsystems is the
core, whose density is also given by law (1) with the
scale an. The density distribution (1) in the bulge
is limited to the radius r < (rb)max. The law (1) is
exponentially cut off at r > (rb)max, so that the mass
of the bulge Mb is finite, and the mass of the halo
Mh(r) increases with radius. If the surface-density
profile is exponential, σ = σ0 exp(−r/L), the disk
mass will be Md = 2πL2σ0, with about 95% of this
mass concentrated at r < 4L. The relative mass of
the halo inside a specified radius µ(r) = Mh(r)/Md

is considered.
The initial surface-density profile, σ(r), is taken

to be axially symmetric. The vertical volume density
distribution in the disk, �(r, z), is determined by the
condition that the system be in equilibrium.We obtain
the vertical density profile by solving the equation [27]

d2�

dz2
− 1
�

(
d�

dz

)2

+
1
c2z

dc2z
dz

d�

dz
(2)

+
4πG
c2z

� (�+ �s) −
�

rc2z

dV 2
c

dr
= 0

with the conditions d�(0)
dz = 0 and

∫∞
∞ �(r, z)dz =

σ(r) for the specified distributions of the matter sur-
face density σ(r), vertical stellar-velocity dispersion
cz(r, z), matter density in the spheroidal component
�s(r, z), and circular rotational velocity Vc(r), which
is determined by the gravitational potential Φ:

Vc =
√
r∂Φ/∂r.

When dcz/dz = 0, �s = 0, and Vc = const, the solu-
tion of (2) is

�(z) =
σ

2z0
ch−2(z/z0) (3)

with the characteristic vertical scale height z0 =√
c2z/2πG�(0) = c2z/πGσ.

The disk is taken to be initially in equilibrium in the
radial and vertical directions but weakly gravitation-
ally unstable: QT = cr/cT < 1 in the region L ≤ r ≤
2L (cT = 3.36Gσ/κ and κ = 2Ω

√
1 + rdΩ/(2Ωdr)

is the epicyclic frequency) [13]. The system is heated
as the instability develops, increasing the velocity dis-
persion. Specifying the initial state QT � 1, we can
refine the minimum radial-velocity dispersion neces-
sary for gravitational stability of the disk.

The gravitational forces of the disk particles
were calculated using the TREEcode method [28].
The number of particles in the models was N =
(60–300) × 103. The results for the models that
were in the best agreement with the observational
data were compared with those obtained using the
particle–particle algorithm with N = 40 × 103 (the
gravitational force is computed via direct summation
of the contributions of all the particles), and good
agreement was found.

3. THE BASIC ASSUMPTIONS

We shall make the following assumptions when
comparing the dynamical models with the observa-
tional data.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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(1) If noncircular motions are not taken into con-
sideration and the contribution of the pressure is not
included in the radial force balance, we can assume
that Vc(r) � Vgas(r) for the rotational velocity of the
youngest objects (i.e., the gaseous disk, young stars,
and planetary nebulae). The circular velocity Vc in
the z = 0 plane is determined by the distribution of
matter in the three main components, namely, the
disk, bulge, and halo. As a result, we obtain

Vc =
√

(V disk
c )2 + (V bulge

c )2 + (V halo
c )2, (4)

where V disk
c , V bulge

c , and V halo
c specify the corre-

sponding contributions of each of the separate com-
ponents to the circular velocity. We restrict our con-
sideration here to a stationary spheroidal subsystem.

(2) The observed old stellar disk of the Galaxy will
be assumed to be gravitationally stable: cr > ccrit

r .
As was shown in [16, 19], the ratio of the radial-
velocity dispersion to the circular velocity of the disk
at a specified radius cr/Vc decreases as the relative
mass of the halo µ = Mh/Md at the stability limit
increases. Therefore, varying the parameters of the
halo, bulge, and disk for a fixed circular velocity, we
can change the radial dependences of the velocity
dispersion cr required for gravitational stability of the
disk. Thus, we can determine the mass distributions
in the subsystems of the model Galaxy by finding the
parameters for which the model values cr(r) are equal
to the observed ones cobs

r (r). Note that this approach
yields a lower limit for the halo mass, since several
additional factors can result in further increase of the
velocity dispersion in the real stellar disk (for example,
the multicomponent composition of the disk and the
presence of the gaseous subsystem). We shall not
discuss various mechanisms for heating the disk here
[29]. It is important that the observed stellar velocity
dispersion in the Galaxy ceases to increase starting
from a certain stellar age (� 3 × 109 yr) [30].

(3) We shall assume that the observed old stel-
lar disk is stable against bending perturbations at
least within ∼10 kpc of the Galactic center. This
condition imposes constraints on the vertical-velocity
dispersion in the disk cz/cr ≥ Qz ≡ (cz/cr)crit [17,
18]. The ratio cz/cr can vary with radius [31], but the
inequality Qz � 0.4 is always satisfied [17]. We shall
assume that the observed vertical structure of the disk
(the vertical-velocity dispersion and vertical density
profile) corresponds to a stationary stable state.

The velocity dispersions and radial and vertical
scales of the disk component in the dynamical models
will be compared with observations for the old stellar
disk. The matter forming the disk surface density
will be taken to be composed of stars and interstellar
medium.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
To minimize the dependence of the results on the
fitting method used in the multidimensional param-
eter space, the determination of the structure of the
Galaxy was divided into several steps. Each will be
considered separately, beginning with those for which
the number of free parameters is smallest.

(a) The solar neighborhood. The presence of a
local minimum in the circular velocity Vc depends only
on the spatial distribution of matter in the disk at
6 kpc � r � 10 kpc, and the main variable parameter
is the vertical scale height of the disk.

(b) The central region of the Galaxy. The prop-
erties of the kinematics inside the central kiloparsec
do not depend on the model parameters in the region
r � 1 kpc, at least within the uncertainty allowed by
the data. On the other hand, the opposite is not true.
In particular, it is obvious that the bar affects the
outer regions. The parameter that admits the most
variation is the size of the central nucleus, while its
mass is uniquely defined for a specified dependence
Vc(r). All other quantities (the velocity dispersions,
structure of the bar, etc.) are not free parameters of
the dynamical models and are calculated in a self-
consistent way. Thus, we determine the parameters of
the central spheroidal subsystem in the second step.

(c) The problem of the dark halo. The problem
of the mass in the dark halo is directly related to the
disk surface density in the solar neighborhood, σ�.
We vary σ� to attain agreement of the model velocity-
dispersion components with the observations. The
accuracy of these kinematic parameters based on ob-
servations in the solar neighborhood is no worse than
3%, with the largest uncertainties in σ� being about
30%.

(d) The vertical structure. The last step is the de-
termination of the vertical scale height of the disk ∆,
based on the assumption that the stellar disk is stable
(or nearly stable) against bending perturbations. Ver-
tical heating of the disk due to bending instabilities is
much slower than relaxation processes in the plane of
the disk. Therefore, the vertical structure (with scale
height ∆) is formed against the background of the
other parameters having nearly become steady state,
but in a self-consistent model.

4. THE ROTATION CURVE

The rotation curve for the young Galactic popu-
lation has been found in many studies; the observa-
tional data of [1, 3–6, 32–36] are presented in Fig. 1.
The kinematic data for both the gaseous component
and for various types of objects (OB stars, plane-
tary nebulae, Cepheid variables, HI and HII regions,
and carbon stars) have been used to derive Galac-
tic rotation curves. We will denote all such curves
based on observations of young populations by Vgas.
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Fig. 1. Galactic rotation curves derived in various ways: from HI and CO data with R� = 8.5 kpc [1, 4] (solid thick curve);
fromCO andHα data withR� = 8.5 kpc [6] (dashed curve); from the radial velocities and propermotions of classical Cepheids
with R� = 7.1 kpc [33] (dotted curve) and with R� = 7.5 kpc and R� = 8.5 kpc [36] (solid thin curve); from the kinematic
parameters of OB associations with R� = 7.1 kpc [35] (dash–dot curve); from 21 cm (open circles), HI (squares), and CO
(crosses) data with R� = 8.2 kpc [37]; from HI (asterisks) and HII (solid circles) data with R� = 8.5 kpc [3]; and from the
kinematics of planetary nebulae and AGB stars withR� = 7.9 kpc [32] (triangles).
There are two characteristic features in the observed
Galactic rotation curve: (1) a local minimum in the
solar neighborhood (r � 6–11 kpc, Fig. 1) and (2)
a local inner maximum inside the central kilopar-
sec [1] (Fig. 1). Let us discuss the consequences
of these features when constructing the model for
the circular velocity assuming Vc = Vgas. We shall
consider the particular example of the rotation curves
presented by Sofue et al. [4, 6] (thick solid and dashed
curves in Fig. 1). Our conclusions do not depend
on various discrepancies between the rotation curves
constructed by various authors using different val-
ues of R� and observations of different objects. For
example, the rotational velocity of [3] changes only
slightly when R� is varied in the range 7.5–9.5 kpc.
When R� and Vgas� are varied, the absolute values
of the spatial scales for various components and their
masses in the dynamical models change, but their
relative values are nearly constant.

Let us discuss these features of the Galactic rota-
tion curve.

4.1. The Galactic Rotation Curve at r � 6 kpc

The local minimum in the circular rotational
velocity in the solar neighborhood could be due to
the density distribution in the disk [34, 37] or halo.
In the former case, we can assume that the radial
surface-density distribution is described, for example,
by a sum of two exponential laws with different radial
scales, Lσ1 and Lσ2. The disk with the shorter scale
must be sharply cut off at r � 6–7 kpc, and the
second disk, at r � 12–15 kpc. Figure 2a presents
the circular velocity for this type of model with a
fairly massive disk (total massMd = 7× 1010M�) for
the case of an infinitely thin disk (z0 = 0). To obtain
the minimum value ∆V = 15 km/s, the total surface
density must decrease by approximately a factor of
two in the narrow zone r = (6–6.4) kpc (Fig. 2b).
The gravitational contribution of the disk matter is
dominant at 3 kpc � r � 15 kpc (Fig. 2c). This is
the maximum-disk model,1 which, as we will show
in Section 5.1, does not yield agreement with the
observed stellar velocity dispersions.

Taking into account the finite thickness of the disk
decreases ∆V to 6 km/s for z0 = 500 pc
(Figs. 2d, 2e). The quantity ∆V decreases as the

1In this model, the contribution of the disk component to
the Galactic circular velocity is the maximum possible. As
a result, 85 ± 10% of the circular velocity (V disk

c /Vc =
0.75–0.95) is attained at the radius r = 2.2Lσ (where the
circular velocity of the exponential disk is maximum) [22].
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 2. (a) Circular velocityVc in a model with an infinitely thin disk (solid curve 6). The crosses represent the rotational velocity
according to [4, 6] (see Fig. 1). Shown are the contributions to the circular velocity from disk 1 (curve 1),Lσ1 = 3 kpc, with the
disk cut off at 6 kpc; disk 2 (curve 2), Lσ2 = 6 kpc, with the disk cut off at 14 kpc; the halo (curve 3); the bulge (curve 4); and
the sum of the two disks (curve 5). (b) Profiles of the surface density of the disk components for the model shown in Fig. 2a.
(c) Radial dependences of the masses of various components within a radius r. (d) Radial dependence of the circular velocity
Vc and the corresponding contributions of disk components 1 and 2, the bulge, and the halo for a disk of finite thickness with
a vertical scale height of z0 = 0.5 kpc. The relative halo mass inside a radius of 12 kpc is µ = 0.51. All notation is the same
as in Fig. 2a. (e) Radial distributions of the surface densities of the two disks and the sum of these distributions for the model
in Fig. 2d. (f) Circular velocity for the model with a massive halo µ = 1.9 (inside a radius of 12 kpc) and an infinitely thin disk.
(g) Radial profiles of the surface density for the model in Fig. 2f.
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halo mass increases (and the disk mass correspond-
ingly decreases), since the relative contribution of
the disk to the circular velocity becomes lower, in
accordance with (4). To obtain the minimum value
∆V = 9 km/s in a model with a more massive
halo µ = Mh(4L)/Md = 1.9 and infinitely thin disk
(Fig. 2f), the surface-density change must be σ(r =
5.8 kpc)/σ(r = 7 kpc) � 3 (Fig. 2g). The velocity
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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minimum decreases to ∆V = 3 km/s as the ver-
tical scale height increases to the observed value
z0 � 500 pc for a specified run of the surface density.

In other S galaxies, appreciable deviations from
exponential photometric profiles are observed either
at the edge [38, 39] or center of the galaxy, as a cen-
tral depression of the stellar disk [40]. One possible
explanation for the universal nature of the exponential
brightness distributions of the disk components may
be characteristic features of the evolution of a viscous
gas in the presence of star-formation processes [41].
Computations show that, acting over several billion
years, these factors do indeed form an exponential
stellar-disk profile for any initial gas distribution. The
sharp decrease in the surface density at r = 6–7 kpc
is not directly confirmed by observations.

The minimum in Vc(r) could, in principle, also be
due to specific features of the density distribution in
the halo, but this requires a sharper decrease in the
volume density near r � 6 kpc than in the disk case
(Fig. 2). If the diameter of the epicyclic motion in
the disk in the solar neighborhood is ∆r = 2cr/κ �
2 kpc (slightly less than the characteristic size of the
velocity minimum), the required jump in the density
distribution can, in principle, be reproduced. On the
other hand, a narrow radial dip in the distribution of
matter in the halo cannot be long-lived, since the
typical velocity dispersion in the halo is on the order
of 100 km/s.

Another argument against the existence of a
strong local minimum in the circular velocity Vc(r)
follows from kinematic data. The particles in a colli-
sionless system move in epicyclical orbits, resulting
in the condition

cr
cϕ

=
2Ω
κ

, (5)

where cϕ is the azimuthal-velocity dispersion. Re-
lation (5) was adopted in the dynamical models at
the initial time and then checked during the com-
putations. In all cases, this condition was satisfied
with very good accuracy, providing direct proof of
the collisionless nature of the constructed models.
We emphasize that condition (5) is satisfied in the
dynamical models for the angular stellar-rotation ve-
locity Ω = V∗/r.

The radial dependences of NΩ ≡ 2Ω/κ and n ≡
−d ln Ω/d ln r for the rotation curve of Sofue et al. [6]
are shown in Fig. 3.We can see substantial variations
in the parameter 2Ω/κ � 1–2.1 at r = 8–10 kpc. In
the solar neighborhood, 2Ω/κ � 1.7, which yields, in
accordance with (5), cr/cϕ � 1.7. Let us now turn to
the observational data. For the old stellar population
in the solar neighborhood, cr/cϕ � 1.55 [26], which
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 3. Radial dependences of 2Ω/κ and
n = −d lnΩ/d ln r (right-hand axis) for the rotation
curve Vc = rΩ (left-hand axis), which coincides with
dashed curve 2 in Fig. 1.

gives n = 1.15. As a result, we obtain a very flat ro-
tation curve, V ∝ r−0.15. For the young stellar popu-
lation, cr/cϕ = 8.2/5.8 = 1.41 [35], which also yields
V � const. Analysis of the velocity distribution for
the nearest stars fromHipparcos data shows that the
angular speed of rotation in the solar neighborhood is
nearly independent of the radius: Ω ∝ r−1/9 [42].

The velocity dispersions of young stars (Cepheid
variables and stars in young clusters) found in [5]
were (cr, cϕ, cz) = (15.0, 10.3, 8.5) km/s. The mean
age of these objects is 107 yr. It is very interesting
that the parameter cr/cϕ = 1.46 is close to the ratio
2Ω/κ ifn = 1.06 (i.e.,V ∝ r−0.06). Consequently, the
characteristic time for the formation of the epicyclic
motion is substantially less than the Galactic rotation
period.

Therefore, there are arguments supporting the
possibility that the observed minimum in the rotation
curve of the gaseous and young stellar components
is not related to some specific features of the radial
distribution of the gravitational mass but instead
most likely represents a dynamical phenomenon that
could be associated, for example, with noncircular
motions due to the propagation of a spiral density
wave. We also cannot rule out the possibility that the
minimum in the rotation curve found in [4–6, 33, 37]
is due to systematic effects associated with the local
coordinate system.

Data on the kinematics of OB stars and classical
Cepheid variables at radii r = 6–12 kpc are consis-
tent with the rotational velocity of the Galaxy being
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Fig. 4. (a) Time dependence of the integrated amplitudes of the Fourier harmonics for azimuthal numbers m = 1, 2, . . . , 6
in a model with a massive, concentrated nucleus. A bar initially forms and is later disrupted, as follows from the decreasing
amplitude of the m = 2 harmonic. The time t = 30 corresponds to 2.8 × 109 yr. (b) Radial dependences of the radial stellar-
velocity dispersion cr . The observational data used are the results of [2, 26] (solid circles), the velocity dispersion of late-type
giants inside r = 0.3 kpc [45, 46] (open circles), the data of [47] (triangles), and the data of [48] (squares). The dynamical
modeling with various parameters of the halo and bulge (µ = Mh/Md is the relative mass of the halo inside 4L = 12 kpc)
yielded dependences for (1) µ = 0.95, (2) µ = 1.42, (3) µ = 1.5, and (4) µ = 1.6. The first three models include a concentrated
nucleus with scale an ≤ 100 pc, while there is no nucleus in the fourth model, with the bulge scale being ab = 200 pc. It is
clear that cr decreases with increasing halo mass. To decrease the radial-velocity dispersion to values of about 100–120 km/s
in the central region, r � 2 kpc, it is necessary to consider a bulge with a scale of ab � 200 pc.
constant in this region [43]. On the other hand, the

kinematics of planetary nebulae, dust-envelope stars,

and carbon stars show a rotational-velocity minimum

in the solar neighborhood at r = 8.5 kpc [32] (trian-

gles in Fig. 1). If the local minimum is associated with

the spiral structure, the amplitude of the correspond-

ing perturbations must be extremely large [32].
4.2. Kinematics of the Central Region (r � 1 kpc)
and the Bar

The results of several studies have shown [1, 4,
6] that the rotational velocity of the cold subsystem
in the central region r � 1 kpc possesses a well-
defined maximum at r � 0.3 kpc. Let us assume that
Vc = Vgas. Then, to explain the central maximum of
the circular velocity, we must take into consideration
a massive bulge with a concentrated nucleus, whose
King model parameters are an � 100 pc,Mb � 0.6 ×
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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1010M�, and (rb)max � 0.8 kpc. In this case, the
central density of the spheroidal subsystem exceeds
400 M�/pc3.

The concentrated, massive bulge prevents the for-
mation of a long-lived bar in the dynamical models.
The bar is disrupted via a mechanism similar to the
action of a massive, central black hole [44]. The de-
viation from axial symmetry of the distribution of disk
matter at each time can conveniently be characterized
by the amplitudes of the Fourier harmonics

A(p,m, t) =
1
N

N∑
j=1

exp
{
i
[
mϕj(t) + p ln(rj(t))

]}
,

(6)

where p and m specify the structure of the perturba-
tions in the radial and azimuthal directions, respec-
tively. Figure 4a shows the time dependence of the
integrated amplitudes

Â(m, t) =
√∑

p

|A(p,m)|2. (7)

The value of Â(2, t) describes the amplitude of the
two-arm mode and, in particular, the bar. This pa-
rameter decreases during the evolution of the dy-
namical model, indicating the disruption of the bar
and the formation of an initially axially-symmetric
distribution of matter in the disk. The models with
various bulge parameters show that the lifetime of the
bar increases when the mass of the central spher-
ical subsystem (bulge + nucleus) decreases and/or
the scale of the bulge nucleus an increases. This
imposes some constraints on the bulge parameters.
Thus, a concentrated, massive bulge (an � 100 pc,
�b0 � 400M�/ pc3) is incompatible with the presence
of a long-lived central bar (Fig. 4а).

Let us note another argument against the pres-
ence of a very concentrated mass distribution in the
bulge, based on the line-of-sight velocity dispersion
for late-type giants within 0.3 kpc of the Galac-
tic center, cobs(0) � 128 ± 14 km/s [45, 46]. Blum
et al. [45, 46] believe that this quantity character-
izes the stars in the bulge, so that the velocity dis-
persion for the disk component should be lower. A
sample of K giants within 500 pc of the center has
cobs
r � 104 ± 10 km/s [47]. Lewis and Freeman [2]
obtained the value cobs

r = 106 km/s for the central
velocity dispersion for disk stars. Figure 4b shows
the radial distributions of the velocity dispersion cr for
disk stars derived from observations together with the
results of the dynamical modeling for various relative
disk masses. The thin curves represent models with
massive, concentrated bulges (an � 100 pc), which
result in a central rotational velocity, in accordance
ASTRONOMY REPORTS Vol. 47 No. 6 2003
with Fig. 1. Although it is possible to obtain agree-
ment between the observed and model values of cr at
r � 3 kpc for some disk mass, the velocity dispersion
at the disk center obtained in the dynamical models
exceeds 130 km/s (curves 1 and 2 in Fig. 4b). Agree-
ment between the velocity dispersions at the disk
center can be achieved only in models with a large
bulge scale, an � 200 pc (thick curve in Fig. 4b).
In this case, the central volume density of the bulge
does not exceed 100M�/pc3, and the bulge mass is
� 1010M�.

As follows from various studies, the radius of the
bar is rbar = 2–4.5 kpc, the ratio of the bar semiaxes
in the plane of the disk is estimated to be 1.6–3,
and the angle between the bar major axis and the
solar direction is ϕbar = 15◦–35◦ [49–51]. To com-
pare the modeling results with the observations, we
shall adopt the values ϕbar = 20◦ and rbar = 3.2 kpc.
Therefore, the dynamical model should allow the ex-
istence of a long-lived bar with a semiaxis ratio of
� 1.6. From this point of view, themodels with amas-
sive, concentrated bulge (ab � 100 pc) cannot explain
the observed bar. Even if the bar begins to appear
during the early evolution of a cold disk, it is later
disrupted due to scattering on the central potential of
the bulge.

The sharp central maximum of the circular ve-
locity Vc cannot be explained in models with an �
200 pc and Mb � 1010M�; however, the observed
and model central velocity dispersions can be brought
into agreement, and the formation of a long-lived
bar is possible. Contours of equal surface density
and velocity dispersion in the presence of a central
bar are plotted in Figs. 5a–5c. Due to the specific
nature of the motion of matter in the vicinity of the
bar, the model central stellar rotational velocities are
substantially different along the major and minor axes
(Fig. 5d). The x component of the model stellar rota-
tional velocity V∗ displays a characteristic maximum
near the center (which is absent in the direction from
the Sun to the Galactic center, i.e., in the y direction).

Therefore, if we do not assume that Vc = Vgas near
the central peak in the rotation curve, we can (i)
obtain agreement with the observed central stellar-
velocity dispersion and (ii) explain the existence of
a long-lived bar. The local velocity maximum could
be due to motion in the asymmetric potential near
the bar or to the presence of an inner disk or ring
[53]. Note also that the King model for the matter
density in the bulge is in better agreement with the
infrared photometric profile (from COBE/DIRBE da-
ta) at 100 pc � r � 1 kpc [52] for ab � 0.2 kpc than
for ab � 0.1 kpc.
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Fig. 5.Properties of the disk with bar in theGalaxy. (a) Surface-density distribution in the plane of the disk σ(x, y). The asterisk
denotes the position of the Sun. The angle between the bar’s major axis and the line passing through the disk center and the
solar neighborhood is ϕbar = 20◦. (b) Contours of equal azimuthal-velocity dispersion in the disk cϕ(x, y). (c) Contours of
equal radial-velocity dispersion in the disk cr(x, y). (d) Rotational velocity of the disk matter V∗ as a function of distance from
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Fig. 5a. The rotational velocity averaged in azimuth is shown by the solid circles.
5. DISTRIBUTION OF MATTER IN THE DISK

In accordance with Section 4.1, we shall assume
that the circular velocity does not have any significant
local minima in the outer regions of the Galaxy.
Therefore, we shall consider exponential surface-
density profiles σ(r) = σ0 exp(−r/L) with L = const
in the region r < R�. Models showing deviations
from an exponential law beyond the solar orbit will be
considered separately. The observations do not enable
us to determine the radial scale L with certainty, and
estimates cover a broad interval L = 2–5 kpc (see

[51–58] and references therein). Infrared observations

provide relatively reliable estimates of the disk radial

scale (L = 2–3.5 kpc). Accordingly, we will adopt

L = 3 kpc for our basic model, with the bulge being

described by the King model (1) with ab = 0.2 kpc

and �b0 = 72M�/pc3.
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5.1. Limits on the Surface Density
The stellar-velocity dispersion is one of the most

accurately known disk parameters in the solar neigh-
borhood. In accordance with [26], we shall use the
values (cr, cϕ, cz) = (38, 24, 20) km/s for the oldest
stellar population.

Figure 6a shows the model dependence of the
stellar radial-velocity dispersion on the surface den-
sity in the solar neighborhood σ� when gravitational
stability of the disk is achieved for a specified halo
mass. The results for L = 3 kpc are marked by the
symbol ". The derived value of cr clearly exceeds
the observed value cr = 38 km/s when the surface
density is large, σ� � 70M�/pc2. On the other hand,
there is a considerable margin of stability if the surface
density is small, σ� � 40M�/pc2. The best agree-
ment between the model and observations is achieved
for σ� � 58M�/pc2. In this case, the halo scale is
approximately twice the radial disk scale: ah/L =
6.3 kpc/3 kpc (Fig. 6b), and the halo mass with-
in a radius R� = 8 kpc will be Mh = 3 × 1010M�,
i.e., about 87% of the disk mass (Fig. 6c). The total
mass of the disk in this model reaches 4.4 × 1010M�
(within 12 kpc), and the central surface density is
σ0 = 840M�/pc2. The contribution of the disk to the
circular velocity at r = 2.2L is (V disk

c /Vc)∣∣r=2.2L
=

0.73 (this is the radius where V disk
c is maximum for an

exponential surface-density profile). The contribution
of the bulge to the circular velocity at radius r =
2.2L is (V bulge

c /Vc)∣∣r=2.2L
= 0.43. Note that a similar

result, (V disk
c /Vc)∣∣r=2.2L

= 0.76, was obtained in the

dynamical model of Fux [24] for L = 3 kpc.
The relative halo mass within r = 4L = 12 kpc

was found to be µ = Mh/Md = 1.6, in agreement
with the analysis of the vertical structure of the disk
of [59] (µ = 1.8). Our Galaxy is a typical system, in
which the dark halo not only determines the kine-
matics of outer regions but also plays an appre-
ciable dynamical role in the stellar disk (r < 4L =
12 kpc). The estimate of the disk surface density σ� =
58M�/pc2 indicates the dominant contribution of the
disk to the vertical force balance. On the other hand,
the observational data show a considerable scatter for
the surface density in the solar neighborhood: σ� =
39–71M�/pc2, although themost trustworthy values
are in the range 50–60M�/pc2 [22].

The measured radial disk scale is L = 3 ± 1 kpc
[22] for models with both thin and thick disks. If the
disk scale L is varied in the dynamical models but
the ratio L/R� is fixed, all our conclusions for the
ratio µ = Mh/Md remain valid, although the absolute
masses of the components change.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
 

2

300

10

0

1

90
0

40 50 60 70 80 90

2

3

 

M

 

h

 

/

 

M

 

d

 

6030
 Surface density, 

 

M

 

�

 

/pc

 

2

 

r

 

 < 4

 

L

 

 = 12 kpc

 

r

 

 < 4

 

L

 

 = 8 kpc

 

r

 

 < 2

 

L

 

 = 6 kpc

 

4

6

8

10

 H
al

o 
m

as
s,

 1
0

 

10

 

 M

 

�

 

(c)

15

5

20

H
al

o 
sc

al
e,

 k
pc

(b)

30

20

40

60

 R
ad

ia
l-

ve
lo

ci
ty

 

(‡)

50

di
sp

er
si

on
, k

m
/s

 

L

 

 = 2 kpc

 

L

 

 = 3 kpc

 

L

 

 = 4 kpc

Fig. 6. Dependence of the model parameters on the
disk surface density at R� = 8 kpc. (a) Radial-velocity
dispersion for various radial disk scales L = 2, 3, and
4 kpc. The horizontal line shows the observed value
cr = 38 km/s. The vertical line corresponds to the surface
density of matter σ� = 71 ± 6M�/pc2 located within
|z| < 1.1 kpc [61]. (b) The halo scale ah in accordance
with (1) for a series of models with L = 3 kpc. (c) The
halo mass Mh and ratio of the halo mass to the disk
mass within various radii (r = 6 kpc= 2L, r = 8 kpc,
r = 12 kpc= 4L).

Let us consider models with a larger disk scale,
L = 4 kpc (Fig. 6a). The results show that the disk is
at the stability limit when the surface density σ� is �
80M�/pc2, in contradiction to the observations [51,
60, 61]. Agreement between the observed and model
surface densities can be achieved only if we sup-
pose that the disk possesses a considerable mar-
gin of gravitational stability: ∆cr = cobs

r − cr = (38 −
26) km/s= 12 km/s. If the entire disk is taken into
consideration (rather than only the solar neighbor-
hood), the agreement between the radial distributions
cr and cobs

r in the models with L = 4 kpc turns out
to be substantially worse than in the models with
L = 3 kpc.
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Using the short scaleL = 2 kpc and the fixed value
R� = 8 kpc, we obtain cr = 32 km/s at the stability
limit, even in the maximum-disk model, for which
(V disk

c /Vc)∣∣r=2.2L
= 0.89. Thus, the surface density

is low, σ� = 33M�/ pc2 (Fig. 6a). The mass of the
spheroidal subsystem within r < 4L = 8 kpc is only
63% of the disk mass. Consequently, there is a mar-
gin of stability, since it is possible to increase σ�
to 50M�/ pc2 (and the corresponding radial-velocity
dispersion to the observed value, cobs

r = 38 km/s) for
the given rotation curve. Therefore, the models with
L = 3 kpc are in better agreement with the entire set
of observational data than those having disks with
scales of L = 2 kpc or L = 4 kpc.

In the dynamical model that is in agreement with
the observed rotation curve for the cold component,
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dial dependences of the ratio cz/cr (diamonds) and the
parameterQc (crosses) [left-hand axis], and also the sur-
face density σ (solid and dotted curves, right-hand axis).

the stellar rotational velocity, and the velocity dis-
persions in the old disk, the total volume density at
radius R� = 8 kpc is �� = 0.068M�/pc3, with the
disk component comprising �disk

� = 0.058M�/pc3).
The difference �s

� = �� − �disk
� = 0.01M�/pc3 cor-

responds to the contribution of the spheroidal com-
ponent (the halo and thick disk). This volume den-
sity is consistent with the most recent observations,
��,obs = 0.076 ± 0.015M�/pc3 [62]. If the disk sur-
face density in the solar neighborhood is only σobs

� =
40M�/pc2 [63], we expect there to be a margin of
gravitational stability in the stellar disk and a larger
halo mass relative to the disk within r = 8 kpc.
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5.2. Rotational Velocity of the Old Disk

The dynamical models clearly demonstrate that
the difference between the circular velocity Vc and
the rotational velocity of the matter in the stellar disk
V∗ increases as the halo mass decreases, due to the
larger contribution of the thermal motion of the stars
to the radial force balance. Therefore, the difference
between the circular velocity and the rotational ve-
locity of the old population can be used to derive an
independent estimate of the disk mass. According to
the observations of [2], the rotational velocity of the
old stellar population at r > 5 kpc exceeds 200 km/s.
The stellar rotational velocity in the z = 0 plane in the
solar neighborhood was found in [7] to be 200 km/s.
Therefore, the difference between the rotational ve-
locities of the youngest and oldest stars is less than
20 km/s. This provides an additional argument in
favor of a stellar disk with a moderate mass (Fig. 7a).
If the disk contributes more than 70% of the mass in-
side the solar orbit, the difference between the circular
velocity Vc and the rotational velocity of the old stellar
disk V can be no smaller than 30 km/s (the model
with µ = 0.9 in Fig. 7a).

5.3. Vertical Scale Height of the Stellar Disk

The following exponential law is often used to
approximate the vertical profile of the volume disk
density:

�(z) = �0 exp(−z/hexp), (8)

where hexp is the vertical exponential scale height of
the disk. Estimates of (hexp)� for the old disk range
from 200 pc to 350 pc [64–66], and the gradient of
the vertical scale height in the radial direction may
be positive [55, 56]. For example, according to the
data of [52], hexp < 210 pc in the central region. The
vertical scale height of the old disk found in [7] after
subtracting the contribution of stars in the thick disk
is hexp � 330 pc. The vertical distribution ofM dwarfs
is better approximated by the combined law � ∝ 0.8×
ch−2(z/323 pc) + 0.2× exp(−|z|/656 pc) [63], which
roughly corresponds to z0 = 400 pc for the law (3) at
|z| < 1 kpc. However, the surface density of M dwarfs
does not exceed σ = 14M�/pc2 and represents a
smaller fraction of the total disk density [63].

Figure 7b presents the radial dependence of the
parameter

∆2 =

∫∞
−∞(z − 〈z〉)2�(z)dz∫∞

−∞ �(z)dz
(9)

derived in the dynamical model that provides a satis-
factory description of the distribution of the kinematic
parameters of the old disk (〈. . .〉 denotes averaging
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over z). The numerical value of ∆ determined using
(9) nearly coincides with the disk half-thickness z0 in
the vertical-density law � ∝ ch−2(z/z0) [27]. Since
both these z density distributions possess the same
asymptotics at large distances from the plane z = 0,
we can approximate z0 � 2hexp. The nonmonotonic
behavior of ∆ in the central region is due to the bar.
The increase in the vertical scale height with radius in
the outer regions is characteristic of many galaxies,
including our own [67].

5.4. Stellar-Velocity Ellipsoid (cr, cϕ, cz)

Figure 8a presents the radial dependences of the
parameters of the dynamical model that provides
the best agreement with the observed distribution
of the stellar-velocity dispersion in the solar neigh-
borhood, (cr, cϕ, cz) = (38, 24, 20) km/s [26] and,
consequently, cr/cϕ = 1.58, cz/cr = 0.53.

The surface-density profile σ(r) and the param-
eters Qc ≡ crκ/2Ωcϕ and cz/cr for this model are
shown in Fig. 8b. An exponential profile with the scale
L = 2.8 kpc is plotted by the dotted curve. The disper-
sion ratio Qz = cz/cr decreases monotonically with
radius, where Qz(r = 0) � 0.8. In the outer regions
of the Galaxy, beyond the solar orbit, this parameter
can be as small asQz(r > 10 kpc) � 0.4.

There is reason to believe that the halo is a
flattened system with the density distribution �h ∝
1/(1 + (r/ah)2 + (z/qah)2), where q < 1 [12]. If the
halo is not spherical, then all the halo masses ob-
tained in the present work should be treated as lower
limits.

6. DISCUSSION AND CONCLUSIONS

Taking into account the stellar-velocity disper-
sions jointly with the Galactic rotation curve has
enabled us to narrow the range of admissible val-
ues for the disk mass. The assumption that the disk
component is close to the gravitational-stability limit
imposes constraints on the distributions of matter in
various subsystems and on the kinematic parameters
of the disk.We have constructed a series of dynamical
models of the Galaxy with various masses for the
disk, bulge, and halo and with a range of radial and
vertical disk scales. The fits of the parameters of the
dynamical models to the observational data leads us
to draw the following conclusions.

(1) To explain the local velocity minimum at
6 kpc � r � 12 kpc, we must assume that the surface
density changes by over a factor of two within a
narrow zone with width ∼0.5 kpc at a radius of
r � 6 kpc. The observed relation between the radial-
and azimuthal-velocity dispersions indicates that
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the rotational velocity in the solar neighborhood is
nearly independent of radius. Therefore, the observed
local minimum in the rotation curve formed by the
gaseous subsystem and young stars does not reflect
the behavior of the circular velocity.

(2) The presence of a well-defined maximum of the
circular velocity Vc in the central region (r � 1 kpc)
imposes constraints on the lifetime of the bar and
the stellar-velocity dispersion in the central region of
the disk. The constructed dynamical models limit the
scale of the bulge nucleus to an � 200 pc, with the
resulting total mass of the bulge being Mb � 1.2 ×
1010M�. Our results show that the central maximum
of the rotation curve at r � 200–300 pc is not due to
the distribution of matter in the bulge and is probably
associated with the presence of the bar. Therefore,
we cannot equate the rotational velocity Vgas to the
circular velocity Vc in order to estimate the masses of
the various subsystems in the central region of the
Galaxy. Another possible explanation for the sharp
maximum in the circular velocity in the central region
is that it is associated with an inner disk with a sharp
boundary [23, 53].

(3) The best agreement with the observed
distributions of the stellar-velocity dispersions is
achieved in models in which the surface density in
the solar neighborhood is σ� ≤ 58 M�/pc2, with
the corresponding total mass of the disk being
Md ≤ 4.4 × 1010M�. The relative mass of the ha-
lo at r ≤ 8 kpc is (Mh/Md)∣∣r<8 kpc

= 0.87. The

contribution of the disk component to the circular
velocity at r = 2.2L (where the circular velocity of
the exponential disk is maximum) is V disc

c /Vc = 0.73.
(4) The model with a radial exponential disk scale

of L = 3 kpc and a vertical scale height of z0 =
0.5 kpc can explain the entire set of observational
data better than models with either L = 2 kpc or
L = 4 kpc.
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Abstract—Optical identifications and an analysis of the radio spectra of eight radio sources from a flux-
density-complete sample at declinations 4◦–6◦ (B1950) are presented. The observations were carried out
at 4000–9000 Å on the 6-m telescope of the Special Astrophysical Observatory and at 0.97–21.7 GHz on
the RATAN-600 telescope. Five of the eight sources are quasars and three are emission-line radio galaxies.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This paper presents results of optical identifica-
tions of radio sources from a sample complete to a
specified flux density. This work is targeted at deriving
the radio luminosity function of the sample objects
and its cosmological dependences. This requires that
the redshifts of the majority of the sample objects be
known.

All the objects whose spectra are presented here
are optical counterparts of radio sources from a com-
plete sample derived from the Zelenchuk survey at
3.9 GHz. This sample, which we have studied since
1980, contains all sources with fluxes S3.9 > 200mJy,
declinations 4◦–6◦ (В1950), right ascensions 0–24 h,
and Galactic latitudes |b| > 10◦ [1–3]. Currently, ap-
proximately 75% of the flat-spectrum sources in the
sample have been optically classified. Previous results
on optical identifications of the sample objects are
published in [4–6].

2. RADIO AND OPTICAL OBSERVATIONS

Optical spectra of the objects were obtained in
June and November 2000 on the 6-m telescope of
the Special Astrophysical Observatory (SAO) of the
Russian Academy of Sciences. The observations of
1522+0400 and 1600+0412 were obtained using
a multipupil spectrograph (http://www.sao.ru/ga-
fan/devices/mpfs/mpfs_main.htm) with a TK1024
CCD detector, which has 1024 × 1024 channels and
a counting noise of three electrons. The wavelength
range observed was 4000–9000 Å, with a dispersion
of 5 Å/pixel. The effective instrumental resolution
was about 15 Å. The spectra of the remaining objects
1063-7729/03/4706-0458$24.00 c©
were obtained using the multipurpose SCORPIO in-
strument (http://www.sao.ru/moisav/scorpio/scor-
pio.html) in its long-slit mode together with the same
CCD detector; the wavelength range was 3800–
9200 Å, with a dispersion of about 6 Å/pixel. The
effective instrumental resolution was about 20 Å. The
spectra were reduced in the standard way using pro-
grams developed in the Laboratory of Spectroscopy
and Photometry of the SAO.

Radio observations of the sample sources were
carried out on the Southern sector of the RATAN-
600 plane-reflector radio telescope at 3.9 and 7.5GHz
in 1980–1991 and on the Northern sector at 0.97,
2.3, 3.9, 7.7, 11.1, and 21.7 GHz in 1996–1999. The
parameters of the receivers used on the Southern and
Northern sectors are described in [1, 7], respectively,
and the characteristics of the antenna beams for the
Northern and Southern sectors are presented in [2,
8]. In each series of observations, the sources were
observed daily for from 15 to 100 days.

The observations on the Northern sector of the
RATAN-600 were obtained in a fixed-focus regime
[9]. The position of the main mirror could be adjusted
within elevations of ±1◦ from the center of the ob-
servation zone. An equal number of panels was used
at all elevations, in order to reduce the influence of
variations in the radiation of the edge panels in the
presence of variations in the curvature of the circular
reflector. The effective area of the antenna was taken
to be constant at all elevations.

The source 2128+048 was used as a calibrator for
all observations at declinations 4◦–6◦. The size of this
radio source is much less than the horizontal section
of the antenna beam at all frequencies, right up to
21.7 GHz. The flux density of 2128+048 was taken
2003 MAIK “Nauka/Interperiodica”
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Table 1.Object coordinates

Source name Radio coordinates J2000.0 Optical–radio Ref
RA DEC ∆RA ∆DEC

0323+0446 03 23 14.72 +04 46 12.59 0.02s 0.01′′ JVAS

0323+0534 03 23 20.21 +05 34 11.20 0.05 1.10 NVSS

0354+0441 03 54 24.13 +04 41 07.27 −0.02 0.21 JVAS

0357+0542 03 57 46.13 +05 42 31.28 0 −0.04 JVAS

0427+0457 04 27 47.57 +04 57 08.34 0.02 −0.10 JVAS

1522+0400 15 22 32.76 +04 00 29.70 0.05 0.18 NVSS

1600+0412 16 00 02.54 +04 12 57.84 0 0.03 JVAS

2301+0609 23 01 53.46 +06 09 12.84 −0.02 0.03 JVAS
to be 4.25, 3.07, 2.35, 1.57, 1.24, and 0.75 Jy at 0.97,
2.3, 3.8, 7.7, 11.1, and 21.7 GHz, respectively.

The data were reduced using programs that en-
abled derivation of the flux density for an individual
scan of a source, as well as determination of the mean
flux density over the entire series of observations. The
basis of the data reduction was optimal filtration of the
input data using themethod described in detail in [10].
Before this filtration, nonlinear filters were used to
clean the input data of impulsive interference, jumps,
and trends with time scales longer than the scale of
the antenna beam in right ascension. When obtaining
the mean flux densities for the entire observation time,
we used only those recordings for which the noise
dispersion at the location of the source was consistent
with the noise properties of the total dataset; the
method used to identify such recordings is described
in [11].

We derived the mean flux density by applying op-
timal filtration to the average of the recordings, with
the ith point for the filtration being the median of all
the ith points for the cleaned input recordings. As a
check, we also determined the mean flux density

S̄ = (
n∑
i

Si)/n, (1)

where Si is the flux density of the ith observation
and n is the number of observations. There is no
reason to introduce a weighting function here, since
we are summing only those recordings that have al-
ready been determined to have noise characteristics
consistent with those for the total dataset.

It is clear that the flux densities obtained in these
two ways should be close and that substantial differ-
ences indicate the presence of a bad recording that
has not been removed by the preliminary filtering.
Our experience shows that significant differences are
encountered only rarely, testifying to the correctness
of the filtration algorithm applied. The few bad record-
ings that were still present are primarily those in
ASTRONOMY REPORTS Vol. 47 No. 6 2003
which the antenna setup was incorrect. When signif-
icant flux-density differences were observed, we in-
spected all the corresponding recordings visually and
removed any that appeared suspicious, then repeated
the entire reduction procedure.

The measurement errors were also determined in
two ways:

σΣ =
(
σ2/

∑
i

A2
i

) 1
2

,

where σ2 is the dispersion of the residual noise in the
mean recordings after removing the detected source
signal and Ai is the tabulated value of the antenna
beam, and

σs =
(( n∑

i

(Si − S̄)2
)/

n(n− 1)
) 1

2

,

where S̄ is the mean flux density derived using (1).
These two estimates should also be quite similar. If

they corresponded to different distributions according
to the Fisher criterion, we searched for bad record-
ings. In any case, we adopted the larger of the two
estimates as the uncertainty in the measured flux
density. In this approach, the resulting errors include
the rms error in the flux density due to variability of
the source during the series of observations.

3. RADIO AND OPTICAL COORDINATES

Table 1 presents the radio coordinates of the stud-
ied objects at epoch 2000.0 and the difference be-
tween the optical and radio coordinates for each ob-
ject. We took the radio coordinates from the JVAS1

catalog at 8.4 GHz [12] (rms coordinate error 0.014
′′
)

and the NVSS2 survey [13] at 1.4 GHz (average

1Jodrell Bank–VLA Astrometric Survey.
2NRAOVLA Sky Survey.
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Fig. 1. Optical spectra of 0323+0446, 0323+0534, 0454+0441, 0357+0542, and 0427+0457 obtained on the 6-m telescope
of the SAO.
rms errors about 0.11
′′
and 0.56

′′
in right ascension

and declination, respectively). The source names are
comprised of the hours andminutes of right ascension
and degrees andminutes of declination corresponding
to their coordinates. We obtained the optical coor-
dinates from the USNO astrometric survey [14] or
the Palomar Sky Survey APM database [15]. Taking
into account the errors in both coordinates, the radio
and optical coordinates for all the sources agree to
within 3σ.

4. RESULTS
Figures 1–4 show optical and radio spectra of the

objects.
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Fig. 2.Optical spectra of 1522+0400, 1600+0412, and 2301+0609 obtained on the 6-m telescope of the SAO.
Table 2 presents the optical data. The columns
give (1) the source name, (2) lines present in the spec-
trum, (3) the rest-frame and observed wavelengths
of these lines, (4) the corresponding redshift, (5) the
classification of the object, (6) the observed B mag-
nitude from [14, 15], (7) the observation date, and (8)
the exposure in minutes.

Table 3 presents the flux densities of all the sources
shown in Figs. 3 and 4. The columns give (1) the
source name, (2)–(7) the flux densities and corre-
sponding rms errors for 0.97, 2.3, 3.9, 7.7, 11.1, and
21.7 GHz in mJy, and (8) the observation epoch.

We present comments on individual sources be-
low.

4.1. 0323+0446

The radio spectrum of this source, obtained in
1998 (Fig. 3a), falls off and then flattens toward
ASTRONOMY REPORTS Vol. 47 No. 6 2003
higher frequencies. It can be approximated by the
logarithmic parabola log S = −0.652 − 0.512 log ν +
0.171 log2 ν (with the flux density in Jy and the
frequency in GHz). The source does not display
significant variability; over ten years of observations
at 7.7 GHz obtained roughly once per year, the
measured flux densities ranged from 135 ± 30 to
104 ± 4 mJy (covering a factor of 1.3 ± 0.3).

The optical spectrum had been obtained earlier
at 4500–9000 Å using the 2.1-m telescope of the
Guillermo Haro Observatory inMexico. Based on the
two lines CIV 1549 Å and CIII] 1909 Å, the object
was classified as a quasar with a redshift of 2.322 [6].
Six lines can be identified in the optical spectrum ob-
tained using the SAO 6-m telescope (Fig. 1a): a pow-
erful, broad Lyα 1216 Å line (FWHM≈ 130 Å), the
NV 1240 Å line, the blended SiIV 1394,1403 Å dou-
blet and OIV] 1406 Å line, and the CIV 1549 Å and
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Fig. 3. Radio spectra of 0323+0446, 0323+0534,
0354+0441, and 0357+0542.

CIII] 1909 Å lines. The redshift derived using all these
lines is z = 2.322 ± 0.001, confirming that the object
is a quasar.

4.2. 0323+0534

The flux densities at 0.97–21.7 GHz are
not variable, and the radio spectrum at 2.3–21.7 GHz
is approximated well by the power law
S = 3976 ν−0.968 mJy (Fig. 3b). The spectrum flat-
tens at lower frequencies. Based on the frequency of
the turnover due to self-absorption (νm ≈ 0.25 GHz)
and the flux density at this frequency (Sm ≈ 8 Jy),
we infer that the size of the radiating region exceeds
200 kpc (adopting the value H= 10−4 Oe for the
magnetic field in the jet).
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Fig. 4. Radio spectra of 0427+0457, 1522+0400,
1600+0412, and 2301+0609. The upper spectrum of
0427+0457 was obtained at epoch November 1997 and
the lower at epoch July 1999.

Two Balmer lines—strong Hα 6563 Å and weak
Hβ 4861 Å—can be identified in the optical spectrum
(Fig. 1b), as well as the [OII] 3727 Å and FeII 4924 Å
lines and the [SII] 6717, 6731 Å forbidden doublet.
The widths of the hydrogen lines are FWHM≈ 70 Å.
All these lines are visible in emission, and the redshift
is z = 0.186 ± 0.005; the object is an emission-line
radio galaxy.

4.3. 0354+0441

This source was observed in 1985 at 3.9 and
7.7 GHz. Figure 5a shows the flux-density variations
at 7.7 GHz. Beginning in 1980, the flux density
gradually decreased, reaching a minimum in 1995,
after which it began to grow. The characteristic time
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Table 2.Optical data

Source name Lines present Wavelength, Å z Spectral classification B Date T , min

0323+0446 Lyα 1216/4040 2.322 QSO 19.1 Nov. 5, 2000 8

SiIV/OIV] 1400/4650

CIV 1549/5145

CIII] 1909/6340

0323+0534 [OII] 3727/4400 0.184 EmG 19.6 Nov. 4, 2000 10

Hβ 4861/5820

FeII 4924/5890

Hα 6563/7760

[SII] 6724/7960

0354+0441 Lyγ 973/4150 3.263 QSO 19.9 Nov. 4, 2000 10

Lyβ 1026/4375

Lyα 1216/5185

NV 1240/5285

SiIV/OIV] 1400/5940

CIV 1549/6600

CIII] 1909/8135

0357+0542 Lyα 1216/3865 2.170 QSO 19.6 Nov. 5, 2000 10

NV 1240/3930

SiIV/OIV] 1400/4440

CIV 1549/4875

[NeV] 1575/4930

CIII] 1909/6056

0427+0457 MgII 2798/4245 0.517 EmG 19.3 Nov. 5, 2000 10

[OII] 3727/5654

Hγ 4340/6590

Hβ 4861/7375

[OIII] 4959/7522

1522+0400 [NeV] 3426/5255 0.534 EmG 20.9 June 6, 2000 40

[OII] 3727/5725

[NeIII] 3869/5930

[OIII] 4363/6655

Hβ 4861/7465

[OIII] 4959/7615

[OIII] 5007/7685

1600+0412 Lyα 1216/5000 3.11 QSO 21.1 June 6, 2000 40

CIV 1549/6320

CIII] 1909/7850

2301+0609 CIII] 1909/4000 1.089 QSO 19.1 Nov. 2, 2000 10

MgII 2798/5830

[NeV] 2973/6210

[OII] 3727/7780
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Table 3. Radio data

Source name
Flux densities and their errors, mJy

Epoch
0.97 GHz 2.3 GHz 3.9 GHz 7.7 GHz 11.1 GHz 21.7 GHz

0323+0446 230 21 149 06 132 05 105 06 97 05 95 06 01.1998

0323+0534 3568 52 1750 27 1070 10 556 06 380 07 190 12 07.1999

0354+0441 420 18 331 10 344 08 278 08 252 10 146 17 01.1998

0357+0542 80 15 182 11 232 09 220 07 181 06 112 15 07.1999

0427+0457 902 35 576 25 534 20 504 20 498 22 577 25 11.1997

712 30 475 20 460 15 412 10 418 12 442 22 07.1999

1522+0400 1010 33 450 15 284 08 147 07 104 05 58 08 07.1999

1600+0412 289 15 189 07 159 05 163 06 172 07 182 16 01.1998

2301+0609 177 16 295 12 322 10 336 12 324 12 235 18 08.1997
scale for the variability (from maximum to minimum)
is more than ten years. The 0.97–21.7 GHz spectrum
in Fig. 3c was obtained in 1998 (diamonds). The
spectrum is complex and cannot be approximated by
a simple logarithmic parabola.

Three Lyman lines—Lyγ 973 Å, Lyβ 1026 Å, and
powerful Lyα 1216 Å—can be identified in the optical
spectrum (Fig. 1c), as well as the NV 1240 Å line,
the blended SiIV 1394, 1403 Å doublet and OIV]
1406 Å line, and the CIV and CIII] 1549 and 1909 Å
lines. The redshift derived using all the lines is z =
3.263± 0.002, and we classified the object as a distant
quasar.

4.4. 0357+0542

The 0.97–21.7 GHz spectrum of the source at
epoch July 1999 can be well approximated with the
logarithmic parabola log S = −1.076 + 1.266 log ν −
0.902 log2 ν; the spectral maximum is at 5.0 GHz,
and the maximum flux density is 230 mJy (Fig. 3d).
The source shows modest long-term variability. Ob-
servations at 7.7 GHz over 11 years obtained roughly
once per year show flux-density variations from 275±
9 to 220 ± 5 mJy (covering a factor of 1.25 ± 0.05).

The optical spectrum (Fig. 1d) shows strong Lyα
1216 Å emission and the nearby NV line, the SiIV
1394, 1403 Å, doublet and the nearby OIV] 1406 Å
line, the blended CIV 1549 Å and NeV 1575 Å lines,
and the semiforbidden CIII] 1909 Å line at a redshift
of z = 2.17 ± 0.007. The object was classified as a
quasar.
4.5. 0427+0457

This source displays appreciable long-term
variability. Figure 5b shows the flux-density
variations at 7.7 GHz from 1980 to 1999. The
maximum 7.7-GHz flux-density variation has an
amplitude Smax/Smin = 2 ± 0.14. Figure 4a presents
spectra obtained in November 1997 (upper) and July
1999 (lower). Both spectra have a minimum and can
be approximated by the parabolas logS = −0.057 −
0.570 log ν + 0.327 log2 ν and log S = −0.165−
0.455 log ν + 0.236 log2 ν. Note the appreciable vari-
ability at low frequencies.

Five weak emission lines can be identified in the
optical spectrum (Fig. 1d): MgII 2798 Å, the OII]
3727 Å forbidden line, the two Balmer lines Hγ
4340 Å and Hβ 4861 Å, and the [OIII] 4959 Å line
at a redshift of z = 0.517 ± 0.008. The object is an
emission-line radio galaxy.

4.6. 1522+0400

The radio spectrum is power-law from 0.97–
11.1 GHz, S = 985ν−0.927 mJy (Fig. 4b), and the flux
density is not variable.

A strong [OIII] 5007 Å line, weaker OII] 3727 Å,
[OIII] 4363 Å, and [OIII] 4959 Å lines, and weak NeV
3426 Å, [NeIII] 3869 Å, and Hβ 4861 Å lines can
be identified in the optical spectrum (Fig. 2a). With
the exception of Hβ, all these lines are forbidden and
visible in emission. The redshift derived from all the
lines is z = 0.534± 0.001, and we classified the object
as an emission-line radio galaxy.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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on the Southern sector and those after 1995 on the
Northern sector of the RATAN-600 telescope.

4.7. 1600+0412

Observations made from 1989 through 1999
roughly once per year at 3.9 and 7.7 GHz did not
reveal any flux-density variations within the errors.
The ratio of themaximum andminimum flux densities
measured at 7.7 GHz is Smax/Smin = 1.1 ± 0.15. The
spectrum (Fig. 4c) has a minimum near 6 GHz
and can be approximated by the parabola logS =
−0.553 − 0.617 log ν + 0.384 log2 ν at epoch January
1998.

One broad line is clearly visible in the optical spec-
trum (Fig. 2b), which we have interpreted as a blend
of Lyα 1216 Å and the nearby NV line at a redshift
ASTRONOMY REPORTS Vol. 47 No. 6 2003
of z = 3.11 ± 0.01. There are also weak CIV 1549 Å
and HeII 1640 Å lines present near the noise level. We
classified the object as a quasar.

4.8. 2301+0609

This source was observed at 3.9 and 7.5 GHz
starting in 1980. Figure 5c presents the 7.7 GHz flux
densities for 1980–1997. The flux density reached
a minimum in 1987, after which it began to grow.
The characteristic variability time scale (from max-
imum to minimum) is more than ten years, and
the maximum flux-density variation at 7.7 GHz
is Smax/Smin = 2.7 ± 0.5. The spectrum (Fig. 4d)
for August 1997 is well approximated by the log-
arithmic parabola log S = −0.733 + 0.695 log ν −
0.456 log2 ν, and has a maximum at 5.8 GHz, with
the maximum flux density being 340 mJy.

Four emission lines can be identified in the optical
spectrum (Fig. 2c): CIII] 1909 Å, MgII 2798 Å, and
forbidden NeV 2973 Åand OII] 3727 Å. The redshift
derived from these lines is z = 1.089 ± 0.003, and the
object was classified as a quasar.

5. CONCLUSIONS

Of the eight objects studied, five proved to be
quasars (two with redshifts z > 3) and three to
be emission-line radio galaxies. The radio galax-
ies 0323+0534 and 1522+0400 have constant flux
densities and power-law spectra. The z = 0.517
emission-line radio galaxy 0427+0457 and z = 1.089
quasar 2301+0609 display appreciable radio vari-
ability. We did not detect any significant variability
of the distant (z = 3.11) quasar 1600+0412 at 3.9
and 7.7 GHz over the ten years covered by our
observations. As expected, long characteristic vari-
ability time scales are observed for all the objects
with high redshifts. Nearly all the optical spectra
show a rich selection of lines, enabling very accurate
determinations of the corresponding redshifts.
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Abstract—Twenty-eight CS molecular clouds toward HII regions with Galactocentric distances from∼4
to 20 kpc have been studied based on observations obtained in the J = 2 → 1 lines of CS and C34S on
the 20-meter radio telescope of the Onsala Space Observatory (Sweden) in March 2001. All 28 clouds
have been mapped with an angular resolution of ∼40

′′
. The peak intensity in the C34S line has been

measured for 20 objects. An LTE analysis has been performed and the parameters of the molecular cloud
cores derived. The core sizes are dA = 0.3–4.8 pc, with a median value of ∼1.6 pc. The mean hydrogen
densities in the cloud cores are nH2 = 3.5× 102–3.7× 104 cm−3, with a median value of∼7.2× 103 cm−3.
The value of nH2 tends to decrease with increasing Galactocentric distance of the cloud. The masses
of most clouds are 102–6 × 103 M�, with the most probable value being MCS ∼103 M�. The data

follow the dependenceMCS ∝ d
(2.4–3.2)
A . As a rule, the cloud masses are lower than the virial masses for

MCS < 103M�. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The distributions of diffuse and stellar material
in the Galactic disk must be known if we wish to
uncover their intrinsic connection. Though star for-
mation is considered to be a result of the gravitational
contraction of matter in gas–dust complexes, the
distributions of the stellar and diffuse components are
sometimes very different. For instance, the latitude
scale of the stellar component of the Galactic disk
can considerably exceed the thickness of the disk’s
molecular layer [1]. On the other hand, star-forming
regions in theGalaxy are traced byHII regions, which
are often also associated with molecular clouds. In
this connection, observations of molecular clouds be-
come a good test for the physical conditions in star-
forming regions. A number of papers have analyzed
the dependences of the physical parameters of molec-
ular clouds on their Galactocentric distances (which
we will call their Galactic radii R), which could shed
light on various stages of star formation (see, e.g., [2–
7]). The data presented in these studies, based on CO
observations, were supplemented with the results of
studies of clouds in the outer Galaxy (112 objects)
and analyzed by Brand and Wouterloot [8] (a total of
204 objects at R = 3–21 kpc). This is probably the
most comprehensive study of CO-cloud parameters
(temperature T ∗

R, equivalent radius RA, massMWCO,
and line width∆v) as functions ofR. However, inter-
1063-7729/03/4706-0467$24.00 c©
pretation of the CO data is hindered by the large line
optical depths and blending, which is especially im-
portant for objects in the inner Galaxy (at R < R�).
One consequence of blending and saturation can be
the empirical relationship MWCO ∝ R2

A. We expect
a cubic dependence for the case of homogeneous,
spherical cloud cores. There is also the problem of iso-
lating the cloud cores against the extended CO back-
ground emission, as well as possible uncertainties in
deriving∆v due to the presence of several clouds with
similar velocities lying in the line of sight. Finally,
the MWCO(R) dependence can be distorted by vari-
ations of the parameter X along the Galactic radius,
since the hydrogen column density is N(H2) = X ×
WCO (=

∫
T ∗
Rdv). Observations of lines of different

CO isotopes subject to an LTE analysis demonstrate
that, for objects in the inner Galaxy, the value X =
2.3 × 1020 cm−2 (K km/s)−1, derived taking into ac-
count the Galactic gradient of the H2/13CO ratio
[8], can be used. As shown in [8], using this value
of X for objects in the outer Galaxy shifts the re-
sulting estimates of the cloud masses at R > R�.
These circumstances compel us to seek other meth-
ods for determining the physical parameters of molec-
ular clouds as functions ofR. Kislyakov and Turner [9]
presented observations of a relatively small number of
CO clouds in the J = 1 → 0 and J = 2 → 1 lines of
2003 MAIK “Nauka/Interperiodica”
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the C18O isotope. That study, which made it possible
to avoid the effects of line saturation and blending,
showed that the cloud-core masses were described
by the relationMC18O ∝ r3A. There are also other dis-
crepancies between this work and [8], which will be
considered below. Zinchenko et al. [10] studied the
physical parameters of 55 molecular-cloud cores in
the J = 2 → 1 lines of CS and C34S. Their LTE anal-
ysis of the observational data yielded estimates of the
R dependences of the mean hydrogen number density
nH2

and the cloud-core masses MC34S. Zinchenko
et al. [10] obtained an unambiguous decrease in nH2

with increasing R in the interval 5 ≤ R ≤ 14 kpc,
whereas the data of [9] do not demonstrate this effect.
To elucidate the origins of these discrepancies and to
expand the interval of R covered by the observations
[9, 10], we carried out a new cycle of CS and C34S
observations.

2. SELECTION OF OBJECTS AND RESULTS
OF THE OBSERVATIONS

We selected objects for the study with the aim to
cover the fairly broad interval R ∼ 4–20 kpc. Fur-
thermore, we gave preference to molecular clouds
in the directions of compact HII regions (with opti-
cal radii ≤ 5

′
) that have relatively simple kinematic

structures (i.e., single, fairly symmetric CO lines).
This yielded a sample of about 50 objects, many of
which could not be observed due to limitations on the
observing time. Table 1 lists the observed HII regions,
and includes the majority of objects studied in [9].
We took the positions and optical sizes [D(opt) in
Table 1] from [11, 12]. The distances to the objects
(heliocentric r and Galactocentric R) were adopted
in accordance with [13–15] [labeled (hunt), (wb),
and (ave), respectively in Table 1]. We adopted the
effective temperatures of the clouds in the J = 1 → 0
CO line and their radial velocities (TCO and VCO in
Table 1) from [11, 12]. The diameters of the molecular
condensations D(CO) were measured in [9] using
C18O observations. The asterisks in Table 1 denote
objects observed in the J = 2 → 1 CS line [16], in
which case the velocities VCO in Table 1 are those
for this CS line. We observed the molecular clouds
associated with Galactic HII regions in March 2001
on the 20-m radio telescope of the Onsala Space
Observatory (Sweden), using a radiometer with a
SIS receiver at the front end and a 1600-channel cor-
relation spectrum analyzer. The frequency resolution
of the analyzer is 25 kHz, which corresponds to a
radial-velocity resolution of 0.076–0.078 km/s for the
C34S and CS lines. The system noise temperature
was 150–700 K, depending on the elevation and at-
mospheric conditions. When observing the J = 2 →
1 CS line (resonant frequency 97 981 MHz), we used
a frequency-switching regime. The weaker lines of
the C34S isotope (resonant frequency 96 913 MHz)
were observed using an on–on regime to achieve
better baseline stability. The telescope pointing accu-
racy was periodically checked using observations of
maser (SiO) sources, and errors were ≤ 5′′. Figure 1
presents selected spectra of some objects to illustrate
the quality of the data. An integration time of 120–
240 s was sufficient to measure the CS spectra. The
isotope line spectra were obtained using longer inte-
gration times, from 600 s (S 187) to 3120 s (S 266).
We mapped the CS-line intensity for all the ob-

jects listed in Table 1. The telescope beamwidth is
about 40′′, and we used a grid with this step for the
mapping. Exceptions are S90, which was mapped
with a step of 20′′, and the two CS34S maps for S 106
and S247. The maps of some objects are shown in
Fig. 2. The preliminary data reduction was done on-
line during the observations using the Xspec soft-
ware developed at the Onsala Space Observatory
(P. Bergman). The results of the observations are
summarized in Table 2. Figure 3 combines the data
for the emission temperatures Tmb in the CS and
C34S lines. These temperatures together with the
line widths and central radial velocities were deter-
mined via Gaussian approximation of the line profiles.
When deriving Tmb from the antenna temperatures,
we introduced a correction for the antenna efficiency.
Table 2 lists the observed maximum Tmb values for
the CS line for each object; the coordinates of this
point correspond to the offsets in α and δ given in
the second and third columns of Table 2 (offsets rel-
ative to the positions in Table 1). The temperature
Tmb(C34S) was measured primarily at the CS-line
peaks. If the source had two pronounced CS peaks,
the isotope line was observed at both of them. In
addition, we obtained two maps in the isotope line for
S 106 and S 247 (discussion of these data is beyond
the scope of this paper). The temperatures Tmb(CS)
and Tmb(C34S) in Fig. 3 display a fairly clear corre-
lation. The Pearson correlation coefficient ρp is 0.83.
The line in Fig. 3 was calculated via a regression
analysis and corresponds to the equation

log Tmb(C34S) = −1.06(±0.056) (1)

+ 1.15(±0.08) × log Tmb(CS).

Equation (1) yields Tmb(CS)/Tmb(C34S) ≈ 11.5.
The simple average of this ratio is ≈ 12.6 ± 1.6.
Points in Fig. 3 without error bars are those for which
we could not measure Tmb(C34S), and the y values
of these points were estimated using the average
Tmb(CS)/Tmb(C34S) (these points are marked with
asterisks in Table 2). Figure 4 shows the Tmb(CS)(r)
dependence for the data of Table 2. This plot shows
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Table 1.Observed objects

No. Name
α

(1950.0)
δ

(1950.0) TCO, K
VCO,
km/s

D(opt),
arcmin

D(CO),
arcmin

r, kpc R, kpc Reference

1 S 175 00:24:29.8 64:26:41 13 –49.8 2 1.6 1.7 9.5 hunt

2 S 201 02:58:59.4 60:14:46 18 –40.0 5 3.5 3.96 11.76 wb

3 BFS31 03:21:08.8 54:49:01 17 –31.7 2 2.1 3.4 11.43 wb

4 BFS32 03:47:54.4 51:21:00 17 –7.9 1.5 1.8 0.61 9.03 wb

5 S209 04:07:18.0: 51:02:00 6 –52.2 14 – 9.85 17.78 wb

6 S208 04:15:35.0 52:52:16 13 –30.3 1 2.5 4.0 12.16 wb

7 S217 04:54:49.4 47:53:59 25 –18.3 9 1.5 4.2 11.7 wb, ave

8 S 235 05:37:42.0 35:49:00 32 –18.8 10 – 1.6 11.59 wb, ave

9 S 270 06:07:24.0 12:49:00 16 25.6 1 2.0 5.96 14.3 wb

10 S266 06:16:00.0 15:18:00 10 32.2 1 – 9.42 17.76 wb

11 S273 06:38:00.0 09:57:00 20 7.0 250 – 0.87 9.31 wb

12 S286 06:52:03.8 –04:27:57 5 49.8 6 – 6.29 14.03 wb

13 BFS58 06:58:34.4 –03:47:00 7 50.1 3 2.4 5.98 13.74 bw

14 S302 07:29:24.0 –16:32:00 19 16.6 21 – 2.3 11.47 wb, ave

15 S 56 18:28:06.8 –10:00:00 10 69.9 7 3.4 5.57 3.91 ave

16 S 61 18:30:43.2 –04:59:35 15 44.0 2 4.0 2.5 6.4 hunt

17 S 65 18:44:06.1 –03:51:23 15 57.0 7 3.6 3.6 5.63 ave

18 S 82 19:28:01.6 18:13:11 20 24.9 9 – 1.5 7.7 ave

19 S 90 19:47:06.1 26:41:34 21 21.0 6 – 3.0 7.6 hunt

20 BFS2 20:02:49.2 29:04:32 20 11.6 5 2.4 1.22 8.10 ave

21 S 106 20:25:33.8 37:12:52 25 –1.0 3 2.7 0.6 8.38 ave

22 BFS11 21:41:41.3 65:51:50 21 –10.4 10 – 1.38 8.96 wb

23 S135∗ 22:13:24.0 58:34:00 – –18.3 15 – 1.4 9.3 wb, ave

24 S 158∗ 23:13:18.0 60:50:00 – –56.3 10 – 3.6 11.96 wb, ave

25 S 187∗ 01:20:12.0 61:33:00 – –13.9 10 – 1.08 10.65 wb

26 S247∗ 06:05:48.0 21:38:00 – 3.1 9 – 2.9 11.4 hunt

27 S 295∗ 07:07:42.0 –10:26:00 – 13.7 8 – 0.7 10.85 wb, ave

28 WB789 06:14:30.0 14:55:00 8.9 34.0 – – 11.88 20.19 wb
two characteristic regions where Tmb(CS) can be
considered constant, and an area where it decreases
steeply with increasing r, approximately as r−2. In
the next section, we show that the sizes of the cloud
cores do not decrease with increasing r, leaving the
possibility that the decrease in Tmb(CS) is due to
fragmentation of the clouds. The same conclusion
was reached in [9] based on a similar analysis of C18O
observations; the data from [9] are also presented in
ASTRONOMY REPORTS Vol. 47 No. 6 2003
Fig. 4 (circles and lower lines). The upper lines in
Fig. 4 intersect at r ≈ 3 kpc; thus, the fragments’ size
can be estimated as ∼0.6 pc. This coincides with the
scale size of a cloud fragment found in [9] from data
for the J = 1 → 0 C18O line.

3. PHYSICAL PARAMETERS
OF MOLECULAR CLOUD CORES

Our analysis of the observational data in Table 2
yielded the following parameter estimates: effective
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Table 2. Results of CS and C34S observations of HII regions

Name

Offsets
Int(CS),
K km/s

Int(C34S),
K km/s

TmbCS, K TmbC34S, K ∆V , km/sα,
arcsec

δ,
arcsec

BFS2 0 0 2.34(0.13) 0.204(0.047) 1.61(0.033) 0.15(0.016) 1.48(0.035)

BFS11 60 –160 6.03(0.14) 0.40(0.067) 2.56(0.070) 0.20(0.024) 2.22(0.07)

BFS31 0 0 1.02(0.08) 0.076(0.030) 1.02(0.055) 0.10(0.015) 1.0(0.062)

BFS32 0 –80 1.78(0.11) 0.054(0.065) 1.47(0.085) 0.05(0.06) 1.07(0.07)

BFS58 –40 0 1.45(0.29) 0.1∗ 0.52(0.07) 0.043∗ 2.4(0.38)

S 56 40 –40 0.62(0.17) 0.057∗ 0.36(0.08) 0.03∗ 1.9(0.5)

S 61 –40 –40 6.04(0.36) 0.150(0.066) 3.03(0.13) 0.074(0.007) 1.84(0.09)

120 –200 14.10(0.30) 1.60(0.10) 4.80(0.11) 0.49(0.03) 2.60(0.07)

S 65 0 –80 3.95(0.25) 0.37∗ 0.73(0.06) 0.06∗ 6.1(0.86)

S 82 –80 –80 2.54(0.06) 0.22(0.056) 2.47(0.09) 0.18(0.018) 1.85(0.08)

S 90 0 0 3.63(0.15) 0.74(0.08) 1.25(0.07) 0.08 2.60(0.16)

60 60 7.52(0.16) 0.31(0.06) 2.65(0.07) 0.13(0.014) 2.60(0.08)

S 106 40 0 14.10(0.23) 1.43(0.07) 4.75(0.06) 0.46(0.07) 2.45(0.04)

–100 0 10.40(0.15) 2.0(0.14) 5.18(0.07) 0.70(0.07) 1.89(0.03)

S 135a 0 0 9.12(0.05) 0.85(0.05) 2.84(0.09) 0.39(0.017) 3.0(0.11)

S 135b 0 0 10.30(0.23) 0.85(0.05) 3.12(0.08) 0.39(0.017) 3.1(0.09)

S 158 0 40 18.7(0.36) 1.18(0.05) 5.07(0.06) 0.40(0.012) 3.53(0.05)

S 175 –120 40 1.32(0.11) 0.11∗ 1.56(0.10) 0.13∗ 0.82(0.06)

S 187 80 40 14.9(0.22) 2.82(0.11) 7.47(0.108) 1.54(0.042) 1.81(0.03)

0 40 12.9(0.23) 2.82(0.11) 6.90(0.11) 1.54(0.042) 1.82(0.03)

S 201 0 0 1.13(0.05) ≤ 0.24 0.83(0.05) ≤ 0.27 0.90(0.07)

–40 0 0.75(0.05) 0.22(0.07) 0.51(0.04) 0.24(0.08) 1.36(0.13)

S 208 40 –80 3.30(0.13) 0.17(0.038) 1.75(0.048) 0.11(0.014) 1.76(0.056)

S 209 0 40 3.05(0.16) 0.46(0.05) 1.14(0.048) 0.19(0.015) 2.26(0.11)

S 217 –40 0 1.68(0.126) ≤ 0.11 0.94(0.05) ≤ 0.07 1.58(0.095)

S 235 40 –40 11.24(0.17) 0.51(0.08) 3.95(0.047) 0.25(0.02) 2.55(0.035)

S 247 80 60 30.50(0.30) 1.85(0.08) 8.40(0.09) 0.58(0.023) 3.38(0.04)

S 266 40 80 7.82(0.24) 0.48(0.056) 2.47(0.05) 0.27(0.007) 2.86(0.07)

S 270 0 40 3.30(0.16) 0.31(0.047) 1.57(0.05) 0.18(0.016) 1.68(0.057)

S 273 0 0 0.38(0.092) 0.018∗ 0.2(0.07) 0.017∗ 1.06(0.4)

S 286 40 –40 8.78(0.38) 0.45(0.096) 1.64(0.08) 0.075(0.015) 5.13(0.29)

S 295 40 –40 11.47(0.37) 1.73(0.072) 6.51(0.12) 0.79(0.157) 1.73(0.038)

S 302 0 0 1.3(0.5) – – – –

WB789 40 40 2.43(0.20) 0.17∗ 0.81(0.04) 0.067∗ 2.6(0.15)
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 1. Sample J = 2 → 1 CS line spectra toward HII regions. The radial velocity range is∼62.4 km/s.
diameter of the core dA = 0.582 r
√
sef/π pc (sef is

the equivalent area of the object, computed from
its CS map), mean hydrogen density in the core
nH2

, cloud mass MCS, and virial mass MVIR =
105 dA ∆v2. We corrected the derived cloud sizes
for broadening by the telescope beam. The cloud-
core sizes dA are 0.3–4.8 pc, with the average value
being dA = 1.6 ± 0.2 pc. The method used to derive
the mean density of the molecular-cloud cores from
the CS and C34S observations is described in detail
in [17], and we will restrict our discussion here to
explanations concerning a few points. It was shown
in [17] that estimates of the C34S column density
N�34 based on the LVG model with the cloud kinetic
ASTRONOMY REPORTS Vol. 47 No. 6 2003
temperature derived from the temperature of its J =
1 → 0 CO emission were similar to estimates of N�34
obtained in an LTE approximation for the transition
excitation temperature Tex ≈ 10 K. In both cases,
the inhomogeneity of the cloud must be taken into
account. Here, we derived the C34S column density
from LTE calculations, as was done in [10]. We took
the [CS]/[C34S] abundance ratio to be equal to the
terrestrial value, 22.5, and determined the hydrogen
abundance assuming that [CS]/[H2]= 4 × 10−9. The
translation to the number density nH2

was done
assuming the core was spherically symmetrical.
The derived physical parameters for the molecular-
cloud cores are listed in Table 3. Figure 5 shows
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Fig. 1. (Contd.)
these parameters as functions of their heliocentric
distances: nH2

(r), MCS(r), and dA(r). The first two
plots do not display any clear tendency for systematic
changes in nH2

and MCS with increasing r, while
dA(r) shows a clear growth of the cloud diameter with
increasing r; this is probably a selection effect. On
the one hand, we have chosen compact HII regions;
on the other hand, the minimum angular size of the
objects is limited by the finite antenna beamwidth. In
reality, the sizes of almost all the objects lie above the
straight line 2 × 10−4r corresponding to the angular
resolution of the radio telescope (Fig. 5). Thus,
essentially all the objects considered were resolved
by the antenna beam. The relationship between the
cloud size and widths of the molecular lines describes
the dynamics of the object. Figure 6 presents the
relationship ∆v(dA). The scatter of the data is fairly
large, and a regression analysis does not yield a clear-
cut result. The correlation coefficients for the∆v(dA)
dependences are low: ρp = 0.24 and ρp = 0.45 for CS
(crosses) and C18O (open circles in Fig. 6 according
to [9]), respectively. It is obvious that the C18O lines
are appreciably narrower than the CS lines and lie
close to the line∆v = d0.25

A (thin line in Fig. 6), which
closely matches a Kolmogorov subsonic turbulence
law. It is possible that the CS lines are broadened by
saturation, since, as a rule, the corresponding C34S
lines are somewhat narrower. For comparison, Fig. 6
shows the line ∆v = 2

√
dA (bold line), a relation

that has been observed in multiple studies (see, e.g.,
[1, 8]). The mean hydrogen volume densities in the
cloud cores are 3.5 × 102–3.7 × 104 cm −3, with the
average value being (7.2 ± 1.8) × 103 cm−3. There
is a tendency for nH2

to decrease with increasing
core size. This tendency is traced most clearly in the
densest objects, for which nH2

has been measured
relatively accurately (Fig. 7). The H2 volume density
in these objects follows the relationship nH2

� 1.5 ×
104d−1

A (thin line in Fig. 7). The cloud masses are
1–6 × 103 M� (Table 3). The most probable value of
MCS, found by averaging after eliminating extreme
values, is ∼(1 ± 0.3) × 103 M�. The cloud mass–
diameter dependence is clearly visible in Fig. 8; the
correlation coefficient ρp is 0.8 for the CS data and
increases slightly to ρp = 0.83 when the masses
MC18O from [9] are included (open circles in Fig. 8).
The regression analysis applied (a combination of
several regression methods) also yields somewhat
different equations:

logMCS = 2.24(±0.10) + 2.68(±0.29) × log dA,
(2)
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 2. CS J = 2 → 1 line maps for some of the observed objects.
logMCS,C
18O = 2.1(±0.11) + 3.0(±0.25) × log dA.

Thus, the mass–size dependence for molecular cloud
cores is close to a cubic function. As noted above, we
ASTRONOMY REPORTS Vol. 47 No. 6 2003
also obtained a cubic relationship in [9], MC18O(dA).

This implies that a model in which the clouds are,

on average, uniform but fragmented is adequate to
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describe the observations. The regression line cor-
responding to the latter equation of (2) is drawn in
Fig. 8. It is clear that the scatter of points about
this line considerably exceeds the accuracy of the
estimated masses and probably reflects differences in
the structure of the clouds. It is of interest to compare
the cloud-core masses with their virial masses, as
in Fig. 9, which plots MCS as a function of MVIR
(also listed in Table 3). We can see that, for MVIR ≤
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102M�, the MCS values lie much lower than the
line MCS = MVIR. At sufficiently large core masses,
the derived masses reach, and in many objects even
exceed, the virial masses. Similar effects have been
noted in other papers (see, e.g., [8, 9]).
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Table 3. Physical parameters of the molecular clouds

Object (∆α,∆δ) r, kpc R, kpc dA, pc nH2 , cm
−3 MCS,M�

MVIR,
M�

BFS2 (0, 0) 1.22 8.1 0.37 7800 (1800) 20 (5) 80

BFS11 (60, –160) 1.38 8.96 1.17 3200 (550) 270 (50) 600

BFS31 (0, 0) 3.4 11.43 1.66 490 (190) 120 (45) 175

BFS32 (0, –80) 0.61 9.03 0.39 1350 (1100) 4 (3) 50

BFS58 (–40, 0) 5.98 13.74 2.97 360∗ (180) 500∗ (240) 1800

S 61 (–40, –40) 2.5 6.4 1.88 760 (300) 270 (300) 670

S 61 (120, –200) 2.5 6.4 – 8100 (490) 2800 (170) 1300

S 65 (0, -80) 3.6 5.63 1.16 4300∗ (2100) 350∗ (170) 4500

S 82 (–80, –80) 1.5 7.7 0.95 2300 (570) 100 (25) 340

S 90 (0, 0) 3.0 7.6 1.05 8900 (900) 500 (60) 740

S 90 (60, 60) 3.0 7.6 – 3700 (410) 220 (40) 740

S 106 (40, 0) 0.6 8.38 0.51 26000 (1300) 180 (10) 320

S 106 (–100, 0) 0.6 8.38 – 37000 (2600) 250 (20) 190

S 135 (0, 0) 1.4 9.3 0.73 12300 (740) 247 (15) 690

S 158 (0, 40) 3.6 11.96 1.21 13000 (500) 1200 (50) 1600

S 175 (–120, 40) 1.7 9.5 1.02 1100∗ (550) 60∗ (30) 70

S 187 (80, 40) 1.08 10.65 0.84 32000 (1300) 1000 (40) 300

S 201 (0, 0) 3.96 11.76 3.17 ≤720 ≤1200 270

S 201 (–40, 0) 3.96 11.76 – 660 (200) 1100 (350) 620

S 208 (40, –80) 4.0 12.16 2.04 900 (200) 390 (85) 660

S 209 (0, 40) 9.85 17.78 1.62 7600 (800) 1700 (180) 870

S 217 (–40, 0) 4.2 11.7 0.78 ≤3000 ≤80 200

S 235 (40, –40) 1.6 11.6 1.51 3200 (500) 560 (90) 1000

S 247 (80, 60) 2.9 11.4 2.59 6800 (300) 6000 (240) 3100

S 266 (40, 80) 9.42 17.76 4.76 1100 (130) 6000 (700) 4100

S 270 (0, 40) 5.96 14.3 3.53 900 (130) 2000 (300) 1000

S 273 (0, 0) 0.87 9.31 0.29 800∗ (400) 1∗ (0.5) 30

S 286 (40, –40) 6.29 14.03 2.41 2200 (470) 1600 (660) 6650

S 295 (40, –40) 0.7 10.85 0.68 24000 (1000) 380 (15) 200

WB789 (40, 40) 11.88 20.2 2.47 1350∗ (870) 1100∗ (530) 1750
4. CLOUD-CORE PARAMETERS
AS A FUNCTION OF GALACTIC RADIUS
Let us first consider the dA(R) dependence, shown

in Fig. 10. This plot also demonstrates the selection
effect discussed above (Fig. 5c). We can see that the
minimum core sizes are observed for R ≈ R� (the
position of the Sun is shown by the vertical line). An
ASTRONOMY REPORTS Vol. 47 No. 6 2003
increase of dA is observed to the right and to the left
of this line due to the limited possible minimum size
of the object due to the effect of dilution. Of course,
these properties of the dA(R) distribution can distort
the observed dependences of the physical parameters
of the cores on Galactic radius to some extent. In
this connection, we will be concerned primarily with
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the large-scale characteristics of these relationships.
Figure 11 presents two important parameters of the
molecular-cloud cores (nH2

andMCS) as functions of
Galactic radius. These same core parameters derived
from the C18O observations of [9] are also plotted
(open circles) and are in good agreement with the re-
sults of the present paper. Let us consider in more de-
tail the nH2

(R) dependence. Due to the large scatter
of the data, we cannot expect regression methods to
be very efficient in this case. However, the calculated
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correlation coefficients indicate a definite tendency for
the mean hydrogen density in the molecular cloud
cores to decrease with increasing Galactic radius.
Our analysis of the CS line observations yields ρp �
−0.28. The results obtained for the most frequently
used regression analysis, based on minimizing the
rms deviation of the points from the linear relation-
ship, are

log nH2
= 4.73(±0.63) − 1.2(±0.6) × logR. (3)

log nH2
= 4.0(±0.27) − 0.047(±0.023) ×R.

Due to the large scatter of the molecular-cloud
parameters, the first regression line of (3) (bold
line in Fig. 11) indicates only a tendency for the
mean density of the cloud cores to decrease to-
ward the periphery of the Galaxy. This effect could
partly be a consequence of the above-mentioned
decrease of nH2

with increasing dA. Zinchenko et al.
[10] found the exponential relationship nH2

(R) =
n0 exp(−R/Rn), with a least-squares fit yielding
the parameters n0 = (3.7 ± 0.5) × 105 cm−3 and
RN = (2.7 ± 0.6) kpc. For comparison with this
result, we obtained the second regression equa-
tion in (3) by analyzing the log nH2

(R) dependence
using the data considered here (in this case, the
correlation coefficient ρP is also � −0.28). The sec-
ond equation in (3) presents the exponential de-
pendence nH2

(R) = n01 exp(−R/Rn1), with n01 =
1.26

(
+0.66
−0.72

)
× 104 cm−3 andRn1 = 9.2

(
+9
−3

)
kpc. The

curve corresponding to this equation is also shown
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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in Fig. 11 (thin curve) and nearly coincides with the
line drawn for the first equation in (3). Thus, Eqs. (3)
indicate a weaker log nH2

(R) dependence than that
found in [10] (note that a more representative pop-
ulation of clouds was analyzed in [10]). We can see
that the regression analysis of thenH2

(R) dependence
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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using the data considered here yields excessively
large errors. In this connection, let us compare the
mean values of nH2

for the inner (R < R�) and
outer (R > R�) Galaxy. We obtain for the hydrogen
number density nH2

(I) = (1.08 ± 0.48) × 104 cm−3

for R < R� and nH2
(O) = (5.5 ± 1.8) × 103 cm−3

for R > R�, which also indicates a tendency for de-
creasing hydrogen number density in the molecular-
cloud cores with increasing Galactic radius. How-
ever, the uncertainties in the obtained nH2

values
are so large that a constant hydrogen density also
gives an acceptable fit. The result becomes more
certain if we take into account the C18O data. In
this case, we obtain nH2

(I) = (8.5 ± 3) × 103 cm−3

for R < R� and nH2
(O) = (5.1 ± 1.4) × 103 cm−3

for R > R�. In a similar way, we can estimate the
mean masses of the cloud cores for the inner and
outer Galaxy. As a result, we obtain for the CS data
MCS(I) = 530 ± 290 M� for R < R� and MCS(O) =
1200 ± 370M� forR > R�, indicating an increase of
the core masses toward the periphery of the Galaxy.
Including the C18O data makes the estimate more
certain in this case as well: M I = 790 ± 440 M�
for R < R� andMO = 1550 ± 390 M� for R > R�.
These estimates can be improved slightly by standard
statistical “cleaning” (rejection of extreme values).
However, we should also bear in mind the above-
mentioned selection effects. A comparison of Figs. 10
and 11 demonstrates the influence of selection effects
on the MCS(R) dependence. At the same time, it
seems likely that the nH2

(R) dependence is less sub-
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ject to distortion by selection effects. Finally, Fig. 12
presents q = MCS,C18O/MVIR as a function of Galac-
tic radius. This plot displays a still larger scatter of the
data, and regression analyses yield no correlations in
this case. Let us resort to the method used above,
i.e., estimating the average value of q for inner and
outer regions of the Galaxy, adoptingR = 10 kpc as a
boundary between them. Based on the data of Table 3
and the results of [9], we obtain qI = 0.54 ± 0.2 for
R < 10 kpc and qO = 2.1 ± 0.5 for R > 10 kpc. If we
reject obvious underestimates q < 0.2 at R ≈ R�, qI
will increase to 0.74 ± 0.2, while qO will remain the
same. Obviously, this result is a consequence of the
fact that the masses of objects observed in the outer
Galaxy exceed somewhat the masses of objects at
R < 10 kpc; this probably reflects selection effects
associated with observing distant objects (Fig. 5,
10), although the most massive cores were detected
approximately at the boundary between the inner and
outer Galaxy (Table 3). The ensemble average qT is
1.3 ± 0.3 (this is the error of the average, while the
variance is about 1.5).

5. DISCUSSION

We have used our observations to derive infor-
mation about the physical parameters of ∼30 cores
of CS molecular clouds and have traced the radial
dependences of these parameters in the interval 4–
20 kpc. Let us compare our results with those of other
studies of molecular clouds. Analyses of the radial
dependences of molecular-cloud parameters are hin-
dered by a number of circumstances: selection effects,
inaccuracies in the distances r and R, and uncertain-
ties in the structures and general configurations of
molecular clouds. It is especially difficult to interpret
CO observations due to the effects of line satura-
tion and blending. In our view, precisely these effects
lead to the strongMWCO(R) dependence noted in [8].
For 3 < R < 5 kpc, MWCO = 3 × 104–5 × 106 M�,
whereas MWCO = 5 × 102–5 × 104 M� in the inter-
val 15 < R < 20 kpc. In fact, the data of [8] refer to
large molecular complexes, tens of parsecs in size.
Owing to the high density of molecular clouds in the
inner Galaxy, the effects of line saturation and blend-
ing are especially pronounced. This results in a loss of
small clouds and problems with distinguishing cloud
cores—a kind of selection effect. In the outer Galaxy,
the density of the clouds is lower, making it possible to
distinguish individual objects in molecular complexes
and observe lower-mass clouds. The effects of line
saturation and overlap are also reduced. Excitation
of the C18O (J = 2 → 1) lines (and especially the
CS lines) requires a much higher hydrogen density
than excitation of the CO J = 1 → 0 line; therefore,
the effects of line saturation and overlap are minor,
and only the densest condensations in the clouds—
their cores—are observed. As we have shown here
and in other similar studies, the sizes of these cores
are on the order of 1 pc, and their masses are in
the range ∼3 × 102–3 × 104 M�. Such cores are
detectable in both the inner and outer Galaxy. The
above-mentioned trend for increasing core masses
with increasingR is probably due to another selection
effect—the limited resolutions of radio telescopes. In
[10], supplemented with the data of [18], it is shown
that the masses of molecular-cloud cores are virtually
independent ofR in the interval 4 < R < 14 kpc (note
that these data are also not free of selection effects
due to limited resolution). Wouterloot et al. [19], also
based on CO data, found a steep Galactic gradient
in the mean density of molecular clouds, which is
probably also a consequence of the decrease in the
cloud density in the outer Galaxy and reduction of the
effects of line saturation and overlap. The nH2

(R) de-
pendence is probably less subject to selection effects.
Our data demonstrate some tendency for a decrease
in the average density of the CS molecular-cloud
cores toward the periphery of the Galaxy, but it is not
as strong as that for the data of [10], supplemented
with the data of [18]. We took into account only the
CS data when discussing the nH2

(R) dependence,
since C18Omeasurements [9] yield themaximum, not
average, cloud density, which could have a different
R dependence (as was already pointed out in [10]).
Given the differences in the procedures used to select
the corresponding samples, the mean parameters of
CS cloud cores found in [10] and in the present work
are in satisfactory agreement. There is a considerable
discrepancy between the nearly cubic MCS(dA) de-
pendence we have found and theMWCO ∝ r2A depen-
dence of [8]. As noted above, the latter relationship
could also be a consequence of line saturation and
blending (see, e.g., [1]). Furthermore, errors in cloud
distances can lead to the same result [8]. These pos-
sibilities were also put forward in [20], where the re-
lationshipMCO ∝ r3A was obtained based on CO line
observations (this paper was criticized in [8]). Finally,
let us briefly consider further the M/MVIR ratio as
a function of R. This is also a difficult problem due
to the considerable scatter in the observational data.
Brand and Wouterloot [8], who also used the data of
[2–7], showed that the data for the CO J = 1 → 0
line provide evidence for a decrease in q toward the pe-
riphery of theGalaxy, from qI = 1.2–1.7 atR < R� to
qO =∼ 0.5 at R > R�. In this case, too, the standard
deviations are close to the average values of q. This
conclusion is opposite to that drawn above, that q
increases toward the periphery of the Galaxy; this re-
flects the discrepancy between the estimated average
cloud masses in the inner and outer Galaxy discussed
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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above. As already noted, these estimates are not free
of selection effects. At the same time, we arrived at
a qualitatively similar conclusion as that of [8], that
q grows with increasing core mass (see Section 3).
Though the value of q averaged over the entire sample
of [8] (204 objects) is 0.7 ± 0.65(1σ), in contrast to
the result qT = 1.3 ± 0.3 (1σ/

√
N − 1) found above,

given the large scatter in q, we cannot be sure that
there is a discrepancy in the q(R) dependences es-
timated from the CO and CS lines. However, it is
appropriate to note that, owing to the unavoidable
broadening of the optically thick CO lines and their
overlap, considerable reassessments of the virial cloud
masses may be required.
The derived molecular-cloud parameters are de-

termined by the relative CS (more exactly, C34S)
abundance, which we assumed to be constant. At
the same time, it is known that the relative (with re-
spect to H2) abundances of many elements (including
sulfur and, possibly, carbon) vary with radius in the
Galaxy (see, e.g., [21, 22]). However, this does not
necessarily lead to changes in the relative number
density of CS, whose abundance is determined by
a rather complicated chain of reactions. There are
no convincing data favoring the presence of gradi-
ents in the abundances of either CS or C34S in the
Galaxy. Our data provide evidence against an appre-
ciable gradient of this kind. This conclusion is based
mainly on a comparison of the estimated masses of
CS clouds with their virial masses. The virial mass
is completely independent of the composition of the
molecules. Therefore, the fact that M(CS)/Mvir is
virtually independent of Galactocentric distance most
likely testifies to a constant C34S abundance. More-
over,M(CS)/Mvir may even increase with increasing
R; this could indicate an increase of the CS content,
although the sulfur abundance decreases.
The results of our study demonstrate the effec-

tiveness of the method applied to analyze the data
for the molecular-cloud cores. At the same time,
the value of obtaining similar CS observations with
higher angular resolution is obvious; this will allow
us to reduce the influence of selection effects on the
radial dependences of the derived physical parameters
of the molecular-cloud cores.
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Abstract—A model for the dust envelope of the protoplanetary nebula LSIV–12◦111 is computed using
measured fluxes of the object from the UV to the far-IR. It is assumed that the spherically symmetrical
envelope is comprised of silicate particles with a standard MRN size distribution, whose number density
varies inversely proportional to the square of the distance. The optical depth of the envelope, whose inner
boundary is 5.6 × 1016 cm from the central star, is 0.072 at 0.55 µm. The temperature of the dust grains
at the inner boundary of the envelope is 124 K. The estimated distance to LSIV–12◦111 is 3.8 kpc. The
current mass-loss rate of the object derived from a self-consistent solution for the radiative transport and
motion of the dust in the envelope is 1.0 × 10−5 M�/yr. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The studies carried out in [1, 2] showed that
the object LSIV–12◦111 (=BD–13◦5550 = IRAS
19590–1249) is associated with a star in the evo-
lutionary stage following its stay on the asymptotic
giant branch (a post-AGB star) and preceding the
formation of a planetary nebula. Such objects have
received the name “protoplanetary nebulae” [3]. The
duration of this stage is so short that evolutionary
variations in the effective temperature of the star could
become appreciable in the lifetime of one generation
of observers. Investigations of these objects can po-
tentially elucidate the mechanism for the generation
of the powerful stellar wind that leads to the ejection of
the star’s envelope, which is very important for studies
of the final stages in the evolution of moderate-mass
stars.

The analysis of the spectrum of LSIV–12◦111
carried out in [1] demonstrated that the chemical
composition of this object differs substantially from
that for a main-sequence B star, testifying to its post-
AGN nature. The spectral energy distribution (SED)
obtained in [2] using IUE and IRAS data together
with middle-IR photometric data shows an infrared
excess associated with a cool dust envelope, which
was presumably ejected by the star when it left the
asymptotic giant branch. The IRAS Low Resolution
Spectrometer data (7–24 µm) for LSIV–12◦111 have
large errors. However, a spectrum obtained by aver-
aging three scans shows a characteristic peak near
10 µm [2], testifying to the presence of silicates in
the dust of the stellar envelope. The presence of a
silicate feature in the IR spectrum of LSIV–12◦111
was confirmed by later ISO observations, although
1063-7729/03/4706-0480$24.00 c©
the uncertainties in the fluxes for this object registered
by the spectrometer of this space observatory are also
rather large.

Arkhipova et al. [4] recently studied the variabil-
ity of LSIV–12◦111 using UBV photometry. As for
other protoplanetary nebulae, the amplitude of the
rapid, chaotic brightness variability, which is probably
due to fluctuations of the stellar wind, proved to be
small, about 0m. 3 in all three filters.

The aim of our current study is to compute a model
for the dust envelope of LSIV–12◦111 and estimate
the object’s mass-loss rate.

2. OBSERVATIONAL DATA

We selected the mean UBV magnitudes obtained
by Arkhipova et al. [4] for comparison with the SED
of the model envelope, as well as the JHKLM pho-
tometry of [2] and the 12, 25, 60, and 100 µm IRAS
fluxes. As is noted above, the IRAS and ISO spec-
trometer measurements have large uncertainties, and
we will not consider those data further.

The region near LSIV–12◦111 is characterized by
appreciable interstellar extinction. Conlon et al. [2]
estimated the color excess to be E(B–V ) = 0m. 37
based on a comparison of the observed color indices
and model-atmosphere data. However, Arkhipova
et al. [4] have suggested that an appreciable role
is also played by absorption in the circumstellar
envelope. This conclusion is consistent with the upper
limit E(B–V ) ≤ 0m. 2 derived from an analysis of the
intensity of the λ 2200 Å interstellar band [2]. In
addition, LSIV–12◦111 lies between the 0m. 12 and
0m. 15 contours in maps of the distribution of the color
2003 MAIK “Nauka/Interperiodica”
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excess E(B–V ) constructed using data on the den-
sity of neutral hydrogen and galaxy source counts [5].
We corrected for the interstellar extinction using the
color excessE(B–V ) = 0m. 16, which is a mean value
for 20 stars in the neighborhood of LSIV–12◦111 [4].
When estimating the total absorption in the V band,
AV = RE(B–V ), we used the value R = 3.3 [6].
After accounting for interstellar extinction, the fluxes
F (λ) were derived from the observed magnitudes
using data on the zero-air-mass fluxes presented by
Straı̆zhis [7]. Measurements of the logarithmic fluxes
F (λ) (in erg s−1 cm−2 cm−1) are shown by circles in
the figure.

According to the data of [1, 2], the effective
temperature and mass of the central star are Teff =
23750 K and M ≈ 0.67 M�. The rate at which the
cores of planetary nebulae evolve depends strongly
on their mass, and for the above mass, it is possible
that the variations in the effective temperature would
already have become observable. The absence of
evolutionary effects noted in [4] argues for a some-
what lower mass for the central star. If we adopt
M ≈ 0.60 M� and use the evolutionary tracks of
planetary-nebula cores computed by Blocker [8], the
luminosity of the star for the above value of Teff is
L = 6300 L�.

3. COMPUTATION OF THE MODEL DUST
ENVELOPE

We applied the usual assumptions when comput-
ing the envelope models for LSIV–12◦111. We as-
sumed that the spherically symmetric dust envelope
has a sharp inner boundary at a distance r1 from
the center, and that the concentration of dust de-
creases inversely proportional to the distance out to
the outer boundary of the envelope at r2 = 1000r1.
The optical properties of the material making up the
dust grains were chosen to coincide with those of
“warm” silicates [9], and their size distribution n(a)
is described by an MRN model [10] (n(a) ∝ a−q for
radii of spherical dust grains amin ≤ a ≤ amax) with
q = 3.5, amin = 0.005 µm, and amax = 0.25 µm. The
SED of the central source was taken to be a Planck
spectrum whose temperature corresponds to the ef-
fective temperature of the star, Teff = 23750 K , and
with the luminosity L = 6300 L�.

The radiative-transport equation in the dust enve-
lope was solved using the DUSTY code (version 2.0)
for grids with 30 points in radius and 99 wavelengths
in the interval from 0.01 µm to 3.6 cm. The algorithm
forming the basis of this code is described in [11,
12]. The input parameters for the models were the
dust temperature at the inner boundary, T1, and the
optical depth of the envelope at 0.55 µm, τV . After
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Observed fluxes from the protoplanetary nebula LSIV–
12◦111 (circles) as a function of the logarithm of the
wavelength. The solid curve shows the SED for the com-
puted model of the star and dust envelope.

computing the model SED, we searched for the dis-
tance d providing the minimum sum of squared dif-
ferences between the observed and model fluxes. The
overall best-fit values of the model parameters were
T1 = 124 K, r1 = 5.6× 1016 cm, τV = 0.072, and d =
3.8 kpc. The solid curve in the figure shows the model
SED, while the circles show the observed flux values.
We can see that the model fits the observations well.
The derived distance is in good agreement with the
earlier estimate of 4 kpc [2]. The values of r1 and d
yield 2′′

.0 for the angular diameter of the inner cavity of
the dust envelope, which also agrees with the angular
half-width of the line-emitting region found in [2],
1′′
.2 ± 0′′

.2.

We used the gas–dynamical mode of the DUSTY
code with the derived optical dust of the envelope
τV = 0.072 to estimate the parameters of the stellar
wind of LSIV–12◦111 arising due to the action of
radiation pressure on the dust and the subsequent
transfer of momentum to the gaseous medium. In
this case, a self-consistent procedure for solving for
the radiative transport and the motion of the dust in
the stellar envelope is realized [13]. It was assumed
that the density of the dust grains ρd was 3 g/cm3

and that the ratio of the gas and dust masses in the
envelope rgd was 200. Using these data, the DUSTY
code computed the total mass-loss rate to be Ṁ =
1.0 × 10−5 M�/yr. When required, Ṁ can easily be
recalculated for other values of ρd and rgd, using the
fact that Ṁ ∝ (ρdrgd)1/2 [13]. Note that this result
was obtained for modern values of the parameters of
the star and dust envelope. In addition, we have not
taken into account the radiation pressure on the neu-
tral gas and ionized matter in the nebula. Therefore,
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the derived value of Ṁ should be treated as a lower
limit to the mass-loss rate.

4. CONCLUSIONS

In spite of the comparatively small amount of ob-
servational data available, the good coincidence be-
tween the observed fluxes and the model spectral
energy distribution suggests that the derived param-
eters of the dust envelope of LSIV–12◦111 are fairly
close to their real values. This envelope was probably
ejected by the star when it was leaving the asymp-
totic giant branch. If we take the mass of the star
to beM ≈ 0.60 M�, then the evolutionary computa-
tions of Blocker [8] indicate that a time ∆t of about
1500 yrs should have elapsed since then. A rough
estimate of the mean velocity V = r1/∆t yields the
value 12 km/s, consistent with the observed expan-
sion velocities of planetary nebulae.

It is of interest to compare the parameters for the
envelope of LSIV–12◦111 with the values determined
by us earlier for the similar objects V886 Her [14] and
V1853 Cyg [15]. In the case of V886 Her, we found
T1 = 410 K, r1 = 4.3 × 1015 cm, and τV = 0.48. The
dust envelope is located appreciably closer to the star,
and is both denser and hotter. This provides evidence
that the envelope was ejected comparatively recently.
The mass of the central star of V886 Her is M ≈
0.70 M�, and it displays rapid evolutionary varia-
tions in its effective temperature [16]. The evolution-
ary tracks of Blocker [8] indicate that ∆t ≈ 100 yrs
and the expansion velocity of the envelope is V =
12 km/s. In spite of the substantially higher optical
depth of its envelope, the mass-loss rate of V886 Her
is lower than that of LSIV–12◦111 and is equal to
Ṁ = 4.5 × 10−6 M�/yr. The model parameters for
V1853 Cyg are closer to the values for LSIV–12◦111:
T1 = 110 K, r1 = 7.6× 1016 cm, τV = 0.18, and Ṁ =
2.2 × 10−5 M�/yr. If the mass of the central star is
M ≈ 0.60 M�, the evolutionary computations of [8]
yield a time ∆t of about 1300 yrs and an estimated
mean expansion velocity of V = 19 km/s.
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Abstract—Relaxation times in the spaces of several stellar-motion parameters are obtained for a number
of open-cluster models. The differences between the relaxation times in these spaces increase with the
degree of nonstationarity of the cluster models. In the course of the cluster’s evolution, the relaxation times
increase in all the spaces considered. During violent relaxation, the stars occupy all domains accessible
to them, first in absolute velocity and then in clustercentric distance. The dependence of the coarse-
grained phase-space density of the cluster on small initial perturbations of the phase-space coordinates
of its constituent stars tends to decrease at times exceeding the time scales for violent and “collisional”
relaxation. c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

During violent relaxation in models of open star
clusters [1–3], the equilibrium distribution of stars
is conserved in the space corresponding to the three
parameters of the stellar motion ε, l, and εζ (the
energy, angular momentum, and energy of the star’s
motion perpendicular to the Galactic plane per unit
mass of the star). According to [1], this equilibrium
exists in open-cluster (OC) models from the very
beginning of their evolution until the end of the com-
putations performed. In the OC models of [1–3],
neither virial nor thermodynamical equilibrium are
attained as t increases, and the virial coefficient for
the cluster models at t > τvr continues to oscillate
with nearly constant amplitude and the period Pr .
The distributions of ε, εζ , and l for the motions of
individual stars remain well preserved over time in-
tervals ∆t on the order of Pr (where τvr is the initial
time scale for violent relaxation for the cluster model).
Danilov [2] determined the equilibrium phase-space
density function of the number of stars correspond-
ing to the equilibrium of the OC models in ε. This
equilibrium is incomplete, because the coordinate and
velocity distributions of the stars and the potential
of the regular forces vary with the period Pr, and
the phase-space density function in such models re-
mains well preserved on time scales of the order of
Pr . Violent relaxation proceeds under the conditions
of this equilibrium in phase space, and leads to the
development of an “equilibrium” oscillatory process
whose parameters vary little with time. In his analysis
of stellar fluxes in phase space, spaces of ε, l, and εζ ,
and a number of other spaces of the cluster models,
Danilov [1] found that there was an energy flux toward
1063-7729/03/4706-0483$24.00 c©
the cluster center, and a transfer of energy from large-
scale to small-scale motions within the clusters. The
dispersions of the increments of the stellar parameters
ε, l, and εζ over a time ∆t obtained in [1] using the
distributions of the stellar fluxes in ε, l, and εζ can
be used to estimate the relaxation times of the OC
models in these spaces.

According to El-Zant [4], various dynamical
quantities (including the particle energies) in N-
body gravitating systems with exponentially unstable
orbits may relax toward equilibrium at different rates.
Indeed, small and slow variations of the particle
energies in such systems can result in appreciable and
rapid changes in the particle trajectories. Moreover,
the phase space of such systems may contain barriers
that slow the diffusion across them [4, 5, p. 155].
Therefore, the system’s relaxation time in energy
space may differ from the time scale for the devel-
opment of trajectory instabilities in phase space [4].

Estimates of the local violent-relaxation time tr
based on the instability of the cluster phase-space
density function relative to small initial perturba-
tions of the phase-space coordinates of the stars have
been obtained for only two OC models [3, 6]. The
cluster models of [3, 6] were computed by integrat-
ing the stellar equations of motion using sixth- and
seventh-order difference schemes over a time interval
t ∈ [0, t0], where t0/τvr � 1.7–2.2 and t0 is the time
interval for the dynamical evolution of the OC model
over which the statistical criterion for computational
accuracy of [7] is satisfied (in this case, the accuracy
of the computed cluster phase-space density function
can be considered sufficient to yield meaningful con-
clusions about its statistical properties). It is of inter-
2003 MAIK “Nauka/Interperiodica”



484 DANILOV, DOROGAVTSEVA
Table 1. Parameters of open-cluster models

Model
number

R1/R2 N1/N2 N1 R2/Rt 〈R〉/Rt 〈δα/α〉

1 0.24 0.25 100 0.9 0.57 0.53 ± 0.09

2 0.24 0.25 100 0.8 0.51 0.28 ± 0.03

3 0.34 0.67 200 0.8 0.44 0.15 ± 0.02

4 0.24 0.25 100 0.7 0.45 0.14 ± 0.02

5 0.45 1.50 300 0.8 0.40 0.07 ± 0.03

6 0.63 4.00 400 0.8 0.42 0.06 ± 0.03

est to construct OC models and analyze the charac-
teristic features of the instability of their phase-space
density functions at large t0 due to the instability of
the stellar trajectories relative to small variations in
the initial phase-space coordinates of the stars. This
requires that we increase the accuracy of the differ-
ence schemes used in the computations (which will
enable the computations tomore completely cover the
ranges of the observed densities of open clusters and
of the parameters of their core–halo structure [8]).

Estimates of the relaxation times for OC models
based on the stellar fluxes in ε, l, and εζ have been
obtained for only five models [1]. It is of interest to
increase both the number of models with such esti-
mates and the number of stellar-motion parameters
used to derive the relaxation times. Such estimates
are of considerable interest for studies of the charac-
teristic features of the diffusion of stars in the cluster-
model phase space.

The aim of the current paper is to analyze the
characteristics of the development of equilibrium in
OC models that are nonstationary in the regular field
and to estimate the relaxation times in such systems.
One of our goals is to increase the accuracy of the
difference schemes used to compute the stellar tra-
jectories in the OC models.

DESCRIPTION OF THE MODELS

Following [1–3], we will consider a cluster con-
taining N = 500 stars that moves in the Galactic
plane in a circular orbit of radius 8200 pc about the
Galactic center. At the initial time t = 0, the cluster
is modeled as a system of two gravitating spheres
with coincident centers of mass, imitating the halo
and core. We analyzed six such OC models, whose
parameters are summarized in Table 1. The first col-
umn of Table 1 (and Table 2 below) gives a sequence
of numbers identifying the OC models. The initial
parameters R1/R2 and N1/N2 (columns 2 and 3 of
Table 1) for all the OC models satisfy the observed
relation R1/R2 � 0.39 × (N1/N2)0.35 [8]. Here, R1

and R2 are the radii of the cluster core and halo,
respectively, and N1 and N2 are the numbers of stars
in the core and halo, respectively (the initial N1 is
given in column 4 of Table 1). The masses of the stars
in the models are equal to 1M�. As in [1–3], we will
analyze the motion of the cluster stars in a rotating
coordinate system (ξ, η, ζ) fixed to the cluster center
of mass. The ξ, η, and ζ axes are directed from the
cluster center of mass toward the Galactic anticenter,
along the motion of the cluster in the Galactic plane,
and perpendicular to the Galactic plane, respectively.
We computed our OC models using the stellar equa-
tions of motion (5.517)–(5.519) adopted from [9] and
written in terms of (ξ, η, ζ). We adopted the Galactic
potential in the form suggested by Kutuzov and Osip-
kov [10] and specified the initial positions and veloc-
ities of the stars using a random-number generator,
so that the cluster does not rotate relative to external
galaxies at t = 0, and the initial stellar number den-
sities at various points in the subsystems (halo and
core) are approximately constant. The magnitudes of
the velocities of the stars of subsystem i are computed
using the formula

vi =
√
CiU(r), i = 1, 2, (1)

where r = |r|, r = (ξ, η, ζ) is the radius vector of the
star in the cluster, U(r) is the gravitational poten-
tial of the cluster, and the subscripts i = 1, 2 corre-
spond to the cluster core and halo, respectively. The
constants Ci are chosen so that the cluster and its
subsystems obey the conditions of virial equilibrium
at t = 0, neglecting the effect of the gravitational field
of the Galaxy [11]. We specified r and the directions of
the vectors r and v using a random-number genera-
tor, in accordance with the technique described in [3]
for cluster model 2. In our computations, we used pc,
Myr, and M� as units and smoothed the force func-
tions on the right-hand sides of the stellar equations
of motion (see [12] for a description of the smoothing
technique and smoothing parameter used).

Columns 5 and 6 of Table 1 give the initial values
of R2/Rt and 〈R〉/Rt for the cluster models. Here,
Rt is the tidal radius for the stability of the cluster
in the gravitational field of the Galaxy obtained using
the criterion of King [13] and 〈R〉 is the mean cluster-
centric distance of the stars.

The degree of nonstationarity of the OC models
in the regular field is determined by the amplitude
of the oscillations of the virial coefficient δα, where
α = 2Ec/W , Ec = T +W , and T and W are the
kinetic and potential energy of the cluster, respec-
tively, neglecting the effect of the gravitational field
of the Galaxy (as in [1–3]). Using different initial
values of R1/R2, N1/N2, and R2/Rt in models 1–6
results in different degrees of nonstationarity of the
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Table 2. Relaxation times for the open-cluster models

Model
number

t
(1)
r,c t

(2)
r,c tr,h τst τε τl τεζ

τr τv

1 0.5 1.0–1.1 1.2–1.3 2.6 5.2 ± 0.8 2.2 ± 0.3 1.2 ± 0.1 1.9 ± 0.5 0.8 ± 0.1

(1.3–3.0) (0.6–1.0)

2 0.5 1.2–1.4 1.5–1.6 2.6 4.7 ± 0.5 3.1 ± 0.3 1.1 ± 0.1 1.8 ± 0.2 0.7 ± 0.1

(1.2–2.1) (0.6–0.8)

3 0.5 1.1–1.2 1.1–1.4 2.1 4.2 ± 0.5 2.8 ± 0.4 0.8 ± 0.1 1.3 ± 0.2 0.60 ± 0.04

(1.0–1.6) (0.5–0.7)

4 0.5 1.0–1.2 1.2–1.3 2.6 4.4 ± 0.4 3.2 ± 0.5 0.9 ± 0.1 1.6 ± 0.2 0.7 ± 0.1

(1.2–2.0) (0.6–0.9)

5 0.5 1.2–1.4 1.4 1.8 3.5 ± 0.5 2.9 ± 0.4 0.80 ± 0.05 1.0 ± 0.1 0.60 ± 0.05

(0.6–1.2) (0.5–0.8)

6 0.6–0.7 1.4–1.5 1.9–2.0 1.9 2.7 ± 0.5 3.2 ± 0.3 1.1 ± 0.1 0.9 ± 0.1 0.7 ± 0.1

(0.6–1.2) (0.6–0.8)
models. The mean ratio of the amplitudes δα of the
oscillations of the virial coefficient α to its mean value
α = αv averaged over the period Pr of the oscillations
of the regular field are listed in column 7 of Table 1.
Models 1–6 in Table 1 are listed in order of decreasing
degree of nonstationarity.

Columns 2–4 of Table 2 give estimates of the local
relaxation times t(1)r,c and t

(2)
r,c for the cluster core and

tr,h for the cluster halo in units of τvr = 2.6tcr [3],
based on the instability of the model phase-space
density functions relative to small perturbations of the
stellar phase-space coordinates. Here, tcr is the mean
initial cluster crossing time for a star. Column 5 of
Table 2 gives estimates of the collisional relaxation
times τst for the models in units of τvr . We estimated
τst using formula (2.379) of Chandrasekhar [9] for
the time t = 0 (using the OC parameters at t = 0).
Columns 6–10 of Table 2 give estimates of the re-
laxation times in ε, l, εζ , r, and v in units of τvr ;
here, v = |v| is the magnitude of the velocity of a
cluster star. These estimates are based on the fluxes
of the stars in ε, l, εζ , r, and v, in accordance with the
technique described in [1].

At t = 0, model 1 of the current paper coincides
with model 2 of [3] and model 1 of [1]. Here, we refine
our estimates of tr (columns 2–4 of Table 2) and esti-
mate the times τr and τv (the cluster relaxation times
in r and v). Cluster models 4 and 6 here coincide with
models 2 and 3 of [1] (here, we obtained estimates of
tr, τr , and τv for these models). Table 2 gives the
times τε, τl, and τεζ

for models 1, 4, and 6 adopted
from [1].
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PRINCIPAL FORMULAS
AND COMPUTATIONAL TECHNIQUES

The stellar equations of motion were integrated
using eighth- and ninth-order Runge–Kutta schemes,
specifying five and six grids in the interval for integra-
tion over t. The step in t for each grid was determined
by the formula

hk = h1/2k−1, k = 1, ..., n, (2)

where n = 5 and n = 6 for the cases of five and six
grids. The grid points with different k coincide at the
time intervals ∆t = h1 = 2h2 = 4h3 = 8h4 = 16h5
and ∆t = h1 = 2h2 = 4h3 = 8h4 = 16h5 = 32h6 for
five and six grids, respectively. If u = (ξ, η, ζ, ξ̇, η̇, and
ζ̇) are the phase-space coordinates of a cluster star
and ϕ(k) is the grid function approximating u(t) and
computed on grid number k using a fourth-order
Runge–Kutta method, an approximate solution to
u(t) at the coincident grid points is given by a linear
combination of the ϕ(k):

ϕ̃ =
n∑

k=1

akϕ
(k), (3)

where ak are constant coefficients for the grid func-
tions (3) in the following form, obtained in accordance
with [14]. We have for the five-grid function

a1 =
63
∆1

, a2 =
−15120

∆1
, a3 =

1128960
∆1

, (4)

a4 =
−30965760

∆1
, a5 =

264241152
∆1

,
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where ∆1 = 234389295. We have for the six-grid
function

a1 =
−3
∆2

, a2 =
1488
∆2

, a3 =
−238080

∆2
, (5)

a4 =
15237120

∆2
, a5 =

−390070272
∆2

,

a6 =
3221225472

∆2
,

where∆2 = 2846155725.
Our computations had a precision of 15–16

decimal digits. The maximum relative errors in the
computed “energy” E (see (5.522) in [9]) over the
time interval t0 did not exceed 2.8 × 10−13, 1.6 ×
10−13, 1.1 × 10−13, 9.0 × 10−14, 9.0 × 10−14, and
1.0 × 10−13 in cluster models 1, 2, 3, 4, 5, and
6, respectively. The statistical criterion [7] for the
accuracy of the computations of the phase-space
density functions remained satisfied for evolutionary
time intervals of t0/τvr = 2.7, 2.8, 2.7, 2.9, 2.8, and
3.5 for cluster models 1, 2, 3, 4, 5, and 6, respectively.
The use of the grid functions (3) made it possible
to increase the accuracy of the computations over
that attained in [3] using sixth- and seventh-order
Runge–Kutta methods and also to increase the time
interval t0 during which the computed evolution of
model 1 satisfies the statistical accuracy criterion
from 2.2τvr [3] to 2.7τvr . Here, as in [1, 2], we set the
initial violent-relaxation time equal to τvr = 2.6tcr,
where tcr is themean initial crossing time for a cluster
star. The violent-relaxation time in millions of years is
τvr � 50, 42, 42, 34, 42, and 42 in cluster models 1,
2, 3, 4, 5, and 6, respectively.

As in [6], the estimates of the relaxation times
tr in columns 2–5 of Table 2 were obtained by
comparing two versions of each cluster model, a
and b. We computed these versions over the time
interval t0 using a ninth-order difference scheme
[formulas (3) and (5)]. The initial phase-space coor-
dinates of the stars in model versions a and b differ
slightly, by amounts specified as described in [7].
For version a of each OC model, we partitioned
the phase-space domain occupied by the cluster
stars into cells. At time t, the 500 cluster stars
were subdivided into groups of 50 stars in order of
increasing r. Each such group occupies an inter-
val r ∈ Li(t) ≡ (r50×(i−1)+1, r50×(i−1)+1 + ∆ri] for
i = 2, ..., 10, where the r are numbered in increas-
ing order. For i = 1, we have Li ≡ [r50×(i−1)+1,

r50×(i−1)+1 + ∆ri]. The indices of the stars whose
phase-space coordinates are used to compute r do
not coincide with the indices of the r values. In the
notation adopted here, we have r50×i = r50×(i−1)+1 +
∆ri. The domain occupied by the cluster stars in
velocity space (ξ̇, η̇, ζ̇) is partitioned into m equal
cells [6] (ξ̇ = dξ

dt , with η̇ and ζ̇ defined analogously).
Let lξ, lη, and lζ be the dimensions of such a cell in
the ξ̇, η̇, and ζ̇ directions. The phase-space volume
of the cell containing stars from the interval Lj is
Q(j) = q × 4

3π(r3j − r3j−1), where q = lξlηlζ is the
volume of the cell in velocity space; the number m of
such cells in velocity space was 1000, j = 1, ..., 10,
and r0 = 0.

Let n(a)
ij be the number of stars from the ith cell in

velocity space and Lj be the radius interval in version
a of the OCmodel. The phase-space density function
of this model version is f (a)

ij = n
(a)
ij /Q(j), where fij

is the coarse-grained phase-space density. The mean
relative difference between the phase-space density
functions of model versions a and b in the radius
interval r ∈ Lj is

ψj =

m∑
i=1

|n(a)
ij − n

(b)
ij |

1
2

m∑
i=1

(n(a)
ij + n

(b)
ij )

, j = 1, ..., 10. (6)

In (6), the common factor Q(j) in the numerator and
denominator has been canceled out.

To study the fluxes of stars in the space of the ener-
gies ε, we subdivided all the cluster stars at time t into
groups of 50 stars in order of increasing ε (analogous
to partitioning the r space intoLi intervals). The stars
of the ith group then occupy an interval of size ∆εi
in ε space, with j = 1, ..., 10. Let n(ε)(i, j) denote the
number of stars moving from the ith to the jth interval
in ε space during the time ∆t. According to [1], the
mean number of transitions by j intervals in ε space
during a time∆t is

ν(ε)(j) =




1
10+j

10∑
i=1−j

n(ε)(i, i+ j), j = −9, ...,−1

1
10−j

10−j∑
i=1

n(ε)(i, i + j), j = 0, 1, ..., 9.

(7)

Formulas (7) average the numbers of all possible
transitions of stars by j intervals in ε space. Values
j > 0 (< 0) correspond to an increase (decrease) of
the star’s energy ε as a result of such a transition.
The value j = 0 corresponds to transitions of stars
in ε space from the ith into the ith interval. Thus,
ν(ε) = ν(ε)(j) is the j distribution of the mean num-
bers of stellar transitions in ε during the time ∆t.
If this distribution is symmetric about j = 0, there
is a balance of stellar transitions in ε space. The
dispersion σ2

ε of j obtained using this distribution
carries information about the characteristic rate of
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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change of the stellar energies and the relaxation time
in ε space [1]. The number of intervals ∆ε through
which a star moves in the direction of increasing
(decreasing) ε is, on average, vε = 0.5σε/∆t. The
greater vε, the faster the motion of the stars and the
relaxation of the system in ε. Because the cluster
occupies ten intervals ∆ε in ε space [see discussion
of (7)], the relaxation time of the cluster in ε space
is τε = 10/vε = 2τvr/σε (here, we have used the fact
that∆t = 0.1τvr). Thus, τε is the mean time it takes a
star to change its energy ε by an amount of the order
of the size of the cluster in ε space under the action
of all forces and mechanisms operating in the clus-
ter. We can similarly determine the cluster relaxation
times τl and τεζ

in l and εζ .

COMPUTATION RESULTS
AND DISCUSSION

By the time t � (0.30–0.38)τvr , the contraction
of the OC models (primarily perpendicular to the
Galactic plane) ceases, and, at t > 0.3τvr , oscillations
in the regular field are established, with periods of
Pr/τvr � 0.59, 0.65, 0.67, 0.74, and 0.64 in models 1,
2, 3, 4, and 5, respectively. Inmodel 6, the period of the
oscillations in ζ is Pζ � 0.6τvr , and the periods of the
oscillations in ξ and η are Pξ,η � Pξ � Pη � 1.2τvr

(in this model, the phases of the cluster oscillations
are approximately the same in ξ and η, and the period
of the oscillations in the (ξ, η) plane is twice the period
in ζ , as described in [1]). All the OC models exhibit a
weak decrease of the amplitude of the oscillations of
the virial coefficient α with time.

We computed ψi for models 1–6 over time in-
tervals of (3–4)τvr . In all the OC models, ψi varies
appreciably in a random and jumplike fashion as t
increases (for small variations of t), and we therefore
smoothed these variations using a moving average
over three ψi values for adjacent times t. On all the
smoothed plots, there are intervals of approximately
linear time variations of ψi = ψi(t) (see the depen-
dences ψi = ψi(t) for cluster models 2, 4, and 6 in
Fig. 1). All the OC models pass through a stage of
rapid growth of ψi with t at the beginning of their
evolution (the stage of violent relaxation). This is due
to the exponential divergence of the stellar trajectories
in versions a and b of each cluster model, and the
instability of the phase-space density function rela-
tive to small perturbations of the stellar phase-space
coordinates. The stage of rapid growth of ψi ends at

times t = t
(1)
r,c and t = tr,h in the cluster core and halo,

respectively. Columns 2 and 4 of Table 2 present t(1)r,c

and tr,h for models 1–6.

For the cores of cluster models 1–5, t(1)r,c � 0.5τvr ,
and only in the densest model (model 6), we find
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t
(1)
r,c � (0.6–0.7)τvr . The ratios tr,h/τvr for the halos of
models 1–6 lie in the interval 1.1—2.0. For all the OC
models, we determined the tidal cluster radius R−

t for
stars moving in retrograde orbits at time t = tr,h (us-
ing the method described in [12]). The tidal radii R−

t
vary only slightly with time when t > τvr. To estimate
tr,h, we used the functions ψi(t) obtained from the
stellar phase-space coordinates for the radius interval
r ∈ Li containing r = R−

t and the interval Li−1. The
Figure shows plots of the corresponding dependences
ψi(t) for the halos of cluster models 2, 4, and 6. When
t > tr,h, the functions ψi in the halo slowly decrease
(or remain nearly constant in cluster models 3 and 4).

When t � t
(1)
r,c , the rate of growth of ψi with time t

changes in the cores of the OC models. When t(1)r,c <

t < t
(2)
r,c , the cores of models 1–6 are characterized by

a slow and approximately linear increase in ψi. This

stage of the core evolution ends by t = t
(2)
r,c . Column 3

of Table 2 lists t(2)r,c for each cluster model. When

t > t
(2)
r,c , the functions ψi in the cores of models 1–6

decrease with time until the end of the computations
(in the core of model 6, this decrease is most evident
for i = 3, 4).

The changes in the rates of change of ψi in the

cluster core and halo at t � t
(1,2)
r,c and t � tr,h are

indicative of changes in the instability of the phase-
space density function relative to small initial pertur-
bations of the stellar phase-space coordinates. The

decrease in the rate of growth of ψi at t
(1)
r,c < t < t

(2)
r,c

in the cores of cluster models 1–6 reflects a further
divergence of the phase-space density functions in
model versions a and b, which is slower than at t <
t
(1)
r,c . Note that t

(1)
r,c agrees well with the first τv value in

parentheses in column 10 of Table 2, which is reached

at time t � t
(1)
r,c .

During violent relaxation, stars with energies ε
tend to occupy all domains in (r, v) space accessi-
ble to them, first in v and then in r. This behavior
results in a decrease in the rates of growth of ψi.
The violent relaxation in phase space proceeds in the
same sequence: it is faster in velocity space (ξ̇, η̇, ζ̇)
and slower in coordinate space (ξ, η, ζ). At t � τv, the
change in the growth rates of ψi also becomes appre-
ciable in the halo (especially in model 6), although the
ψ values of models 1–5 remain small and are distorted
by random fluctuations, making the rates of growth of
ψi difficult to estimate.

According to Table 2, the values of t(2)r,c � tr,h for
OC models 1–5 agree well with the lower estimates
τr derived from the stellar fluxes in r for models 1–4
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Fig. 1. Time dependences of ψi(t) in cluster models (a) 2, (b) 4, and (c) 6. The numbers i are indicated alongside the
corresponding dependencesψi(t).
at t < tr,h (see the first τr value in parentheses in col-
umn 9). By times t � tr,h � τr, violent relaxation has
ended throughout the cluster (in both the core and
halo), and the equilibrium oscillatory process in the
cluster can be considered to be established [1]. The
derived tr,h and τr values can probably be viewed as
independent estimates of the violent relaxation time
for the cluster as a whole. During the subsequent evo-
lution, ψi in the cluster halos usually decreases with
time. This behavior indicates a convergence of the
equilibrium phase-space density functions in model
versions a and b (because ψi in the cores of all the

OC models also decreases when t > t
(2)
r,c � tr,h; see

above). Theψi increase when t > tr,h at the periphery
of the least dense cluster, since stars at radii r ∈ Li

have r > R−
t and move away from the cluster with

various velocities and accelerations in the gravita-
tional field of the Galaxy. Note that, in this case, the
distances between the stars in the interval Li in r and
v space increase with the difference between the ve-
locities in model versions a and b (since the running
and total numbers of stars in Li are not the same in
these models). As a result, ψi increases slowly at the
peripheries of such clusters.

According to Table 2, tr,h < τst for cluster mod-
els 1–5 and tr,h � τst for model 6. Note that model 6
is closer to virial equilibrium than the other models.
Model 6 satisfies to a greater degree the assumptions
made when deriving formula (2.379) in [9]. There-
fore, the quantity τst from Table 2 more accurately
characterizes the efficiency of stellar encounters for
model 6 than for the other models. Stellar encounters
at t > τst play a very important role in the evolution
of the clusters. On the one hand, stellar encounters
give rise to small density oscillations in the cluster,
which are easily amplified to the level of large-scale
oscillations (since the OC models are close to grav-
itational instability [1, 2]). On the other hand, the
variations of the regular field of the cluster over the
oscillation period lead to the development of a flux of
stellar energy toward the cluster center (due to “heat-
ing” of the cluster by its variable regular field), and
the energy ε is transferred from large-scale to small-
scale stellar motions [1]. The energy coming into a
phase-space element of the cluster due to this flux is
probably redistributed in the cluster via the diffusion
of stars in phase space due to stellar encounters.
This redistribution of the stellar energies should result
in a gradual decay of the large-scale oscillations in
the cluster (as we can see in the time dependences
of the virial coefficient α = α(t) for the models; see
Fig. 1 in [1]) and a slow evolution of the equilibrium
phase-space density functions of versions a and b
of the models [3]. The relative importance of stellar
encounters and “collisional” relaxation in the evolu-
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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tion of the models should increase with decreasing
nonstationarity of the models.

If the ψi decrease to zero with increasing t at t >
t0, the above mechanisms should lead to a conver-
gence of the phase-space density functions in model
versions a and b, and to the development of identical
(in a statistical sense) phase-space density functions
in these two versions. In this case, a coarse-grained
phase-space density function that is independent of
small initial perturbations of the stellar phase-space
coordinates should develop at large t as a result of
stellar encounters. However, the only way to verify
this is to increase the accuracy with which the stellar
equations of motion are integrated. If the ψi do not
decrease to zero at large t, the statistical differences
between the phase-space density functions in the two
model versions will be preserved.

Thus, the diversity of the conditions for the for-
mation of a cluster brings about an even greater di-
versity in the forms and structures of OCs during the
evolutionary stage when there are substantial periodic
variations of the regular field of the cluster. Examples
of such forms and structures observed in OCs are
discussed in [8, 15]. If the ψi tend to zero at large t
as a result of stellar encounters, the corresponding
distribution of stellar radii r should no longer de-
pend on small initial variations of the stellar phase-
space coordinates. We note in this connection that
fairly old open clusters develop the often observed
simple “core–halo” structure (see the conclusion of
Kholopov about the universality of the structure of
stellar clusters [16, p. 329]).

The mass density and importance of stellar en-
counters are higher and the “collisional” relaxation
times shorter in the cluster cores than in the halos.
This may explain why the ψi in the cores of cluster

models 1–5 decrease faster at t(2)r,c < t < t0 than they
do at the periphery at t > tr,h, so that ψi in the cores
and halos of these OC models approach each other
(panels a and b of the Fig. 1). In model 6, the mass of
the halo is small compared to that of the core, and the
evolution of the entire system over the time t ∈ [0, t0]
is determined by the evolution of the core. This may
explain why the ψi(t) dependences in the core and
halo of model 6 resemble each other.

As in [1], all the OC models are characterized by
a balance of the stellar fluxes in ε, l, εζ , and r from
the start of the OC evolution until the end of the
computations (the properties of the flux balance in r
are described in [1], and there is no balance of the
stellar fluxes in v). The distributions ν(j) of the num-
bers of transitions of stars in ε, l, εζ , and r are sym-
metric with respect to j = 0 and have approximately
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the same form for each such space (for model 1, see
Fig. 2 in [1]). The equilibrium distributions of the
stars in ε, l, and εζ persist throughout the dynamical
evolution of these models, and the equilibrium phase-
space density function corresponding to the balance
of fluxes in ε determines the structure of these cluster
models from the very beginning of their evolution.

Thus, some equilibriumphase-space density func-
tion exists at any stage of the dynamical evolution of a
gas- and dust-free OC, and this equilibrium function
can always be derived from the coordinates and ve-
locities of the stars (in accordance with the technique
described in [2]). If no data on the stellar velocities
are available, this phase-space density function can
be computed using the distribution f(ε, l, εζ); see
formula (4) in [2]. Integration of f(ε, l, εζ) over
the stellar velocities v yields the distribution of the
coordinates r of the cluster stars. Comparison with
the observed distribution of the radii r of stars in
real clusters enables the determination of the param-
eters of the equilibrium phase-space density func-
tion. Once these parameters are known, the stellar-
velocity distributions in the observed clusters can
be determined by integrating f(ε, l, εζ) over r. The
parameters of the equilibrium phase-space density
function can also be used to estimate the total masses
and other parameters of an OC using the coordinates
and velocities of some of the cluster stars.

Let us now consider the estimates of τxi obtained
using the distributions ν(xi)(j), where xi are the co-
ordinates of the vector x = (ε, l, εζ , r, v), i = 1, ..., 5.
The errors in the τxi values for i = 1, ..., 5 due to
the dispersions of the corresponding means ν(xi)(j)
from (7) are 1.5–4% (the dispersions of ν(xi)(j) are
usually three to four orders of magnitude lower than
the dispersions j computed using the distributions
ν(xi)(j)). The estimates of τxi were obtained over the
interval∆t = 0.1τvr and increase slowly with time (by
factors of 1.5–1.7 over the time intervals considered).
Table 2 lists the means of τxi over the time intervals
considered for the evolution of the OC models.

The standard deviations of τxi about these mean
values are usually ∼8–15% of the mean, and are
listed in Table 2. For τr and τv, Table 2 also gives
the minimum and maximum τr and τv over the time
interval considered (in parentheses in columns 9 and
10).

Thus, the rates of evolution and relaxation, 1/τxi ,
i = 1, ..., 5, gradually decrease with time. Cluster
models 1–5 satisfy the inequalities τε > τl > τεζ

and
τr > τv (in model 6, τε and τl are indistinguishable
within their errors). Star clusters with parameters
for their core–halo structure that are close to the



490 DANILOV, DOROGAVTSEVA
corresponding initial parameters of model 6 are
encountered fairly rarely among observed OCs (see
the (ξ, µ) diagram for 103 OCs in [8]). In view of
the results obtained here and in [1], the relations
τε > τl > τεζ

and τr > τv can be considered to be
most characteristic of observed OCs.

The relaxation in the OC models proceeds most
violently in εζ and v. According to [1], the small values
of τεζ

may be due to the fact that the initial com-
pression in these cluster models is primarily along the
ζ axis, and the frequency of the subsequent cluster
oscillations is higher in the ζ direction than along the
ξ and η directions. The small τv values are due to the
broad wings of the ν(v)(j) distribution.

Table 2 shows that τε − τεζ
and τr − τv decrease

with the degree of nonstationarity of the OC. It is
possible that the OC models develop barriers in their
phase spaces [4, 5] that slow the diffusion of stars and
that this has different effects on the rates of change
of ε, l, εζ , r, and v for these stars. It is likely that
the number and impact of stochastic trajectories of
the stellar motions increase in denser OC models
with lower degrees of nonstationarity in their regular
fields, decreasing the role of barriers in the phase
spaces of such systems and ultimately leading to their
disappearance [5]. In this case, the increase of τε − τεζ

and τr − τv with the degree of nonstationarity of the
cluster models can be considered a manifestation of
self-organization in such systems.

CONCLUSIONS

(1)Using a larger set of models, we have confirmed
the conclusions of [1] that there is a balance of stellar
fluxes in the spaces of ε, l, εζ , and r and that there
exist equilibrium distributions of the stars in ε, l, and
εζ throughout the dynamical evolution of the clusters.
The equilibrium phase-space density function corre-
sponding to the balance of stellar fluxes in ε deter-
mines the structure of an open cluster during both
violent relaxation and the subsequent “equilibrium”
oscillations of the density. The parameters of the equi-
librium phase-space density function of a gas- and
dust-free cluster can be determined at any stage of
its dynamical evolution. These parameters can be
used to analyze the stellar-velocity distributions in
such clusters and estimate the total masses and other
dynamical parameters of open clusters.

(2) The stellar fluxes were used to estimate the
relaxation times of the OC models in ε, l, εζ , r, and
v. The estimated relaxation times usually satisfy the
inequalities τε > τl > τεζ

> τv and τr > τv. The re-
laxation times increase during the evolution of the
clusters in all the parameter spaces considered. This
behavior reflects a decrease in the rates of evolution
in the ε, l, εζ , r, and v spaces after violent relaxation.
The values of τε − τεζ

and τr − τv increase with the
degree of nonstationarity of the models in the regular
cluster field.

(3) We have estimated the local violent-relaxation
times based on the instability of the phase-space
density functions relative to small initial perturbations
of the stellar phase-space coordinates and have found
a relation between variations of the instability of the
phase-space density function and differences between
the relaxation rates of the cluster models in v and
r. Our estimates of the violent-relaxation times t(1)r,c

for the cluster cores agree well with estimates of τv
derived from the stellar fluxes in the cluster models.
During violent relaxation, stars with energies ε oc-
cupy all domains of the cluster accessible to them,
first in v and then in r.

(4) The OC models show a tendency for the ψi to
decrease and the dependence of the coarse-grained
phase-space density function on small initial per-
turbations of the stellar phase-space coordinates to

weaken at t > t
(2)
r,c . We also found a similar trend in

the halos of cluster models 1, 2, 5, and 6 at t > tr,h.

(5) We have computed the coefficients of the grid
functions (3) enabling integration of the stellar equa-
tions of motions using eighth- and ninth-order meth-
ods when using a fourth-order Runge–Kutta method
in five- and six-grid computations.
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Abstract—We have acquired three-color observations of BE UMa, a precataclysmic eclipsing variable
with a strong reflection effect. Using new photoelectric UBV data and archival photographic observations,
we have refined the orbital period and demonstrated that the eclipse depth changes with wavelength.
The photometric data are used to compute a model for the system. Computations show that the nuclear
evolution time for the secondary is only slightly less than the time for the separation of the components to
change due to the loss of orbital angular momentum. Therefore, the red dwarf in the BE UMa system will
later fill its Roche lobe because of (1) the decrease in component separation due to the loss of energy and
angular momentum via gravitational-wave radiation or the outflow of a magnetic stellar wind and (2) the
increase in the red dwarf’s radius due to its nuclear evolution. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Detached close binaries consisting of a white
dwarf or its precursor and a low-mass, late-type
main-sequence star are usually considered to be the
immediate progenitors of cataclysmic variables. They
are called precataclysmic binaries, and are believed
to originate from very wide pairs with orbital periods
of several years that have lost most of their initial
angular momentum during the first mass transfer
and a considerable part of their mass [1] during the
common-envelope stage.

BEUMa is a star of this subtype. Since this object
had not yet been studied in detail, we initiated new
photometric observations of the star.

The variability of BE UMa was discovered by
Kurochkin [2] in 1964 in photographic observations,
which showed [3] sinusoidal brightness variations be-
tween 14m. 1 and 15m. 6 with a period of ∼2d.29. Ini-
tially, Kurochkin considered BEUMa to be a Cepheid
variable. However, Green et al. [4] found that the star
possessed a considerable ultraviolet excess and thus
could not be a Cepheid.

Later studies demonstrated that BE UMa was a
detached binary that had comparatively recently un-
dergone a common-envelope stage. This is supported
by the presence of a planetary nebula in the system,
whose discovery is discussed in [5]. The primary is a
very hot O subdwarf with a surface temperature of
∼100 000 K, whereas the secondary is a low-mass
star of late spectral type (M or K).
1063-7729/03/4706-0492$24.00 c©
Since the primary is extremely hot, its ultraviolet
flux heats one side of the secondary, creating a hot
spot on its surface [6]. This can give rise to a strong
reflection effect in the system. It is the changing con-
ditions for visibility of the spot that causes the sinu-
soidal brightness variations discovered by Kurochkin.
In addition to the features of BE UMa described
above, Ando et al. [6] observed a deep minimum with
a duration of 72 min.

Since BE UMa is an eclipsing binary, its orbital
plane is close to the observer’s line of sight, enabling
accurate determination of the component masses, as
well as of other principal characteristics of the system,
from the radial-velocity curve. Ando et al. [6] suggest
a model for the system in which the very hot O subd-
warf is eclipsed in the primary minimum by the cool
M (or K) companion. Kurochkin and Shugarov [7]
reduced all available photographic observations ob-
tained in 1949–1982 and derived the refined orbital
period Porb = 2d.291168.

The common-envelope stage of this system was
over ∼104 years ago, so the secondary has not had
time to return to thermal equilibrium. The recent re-
sults of Ferguson et al. [8] are of particular interest:
they show that the radius of the secondary is 0.72R�,
almost twice the radius of a main-sequence star with
similar mass, 0.36M�. This means that, during the
common-envelope stage, the lower-mass component
was taken out of thermal equilibrium, significantly
increasing its radius. The orbital period and semi-
major axis of the BE UMa binary system are large
2003 MAIK “Nauka/Interperiodica”
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enough that the secondary does not fill its Roche lobe,
and its shape can be taken to be spherical.
We acquired new three-color photoelectric obser-

vations of BE UMa and also reduced photographic
observations obtained by us and at the Harvard Ob-
servatory [9] in order to
(1) refine the orbital period;
(2) perform an independent determination of the

components’ parameters.

2. REDUCTION OF OBSERVATIONS
We measured the star’s brightness on 544 plates

taken at the Crimean Laboratory of the Sternberg
Astronomical Institute (SAI) with the 40 cm astro-
graph and the 50 cm Maksutov telescope. In addi-
tion, we carried out 121 measurements of the UBV
brightness of ВЕ UMa using the photoelectric pho-
tometer designed by I.M. Volkov, installed at the
Cassegrain focus of the 60 cm or 125 cm reflector
of the SAI Crimean Laboratory. The comparison star
was star No. 1 (GSC 3454.00668; 11h58m13.960s,
+48◦54′40′′.03, J2000; V = 11m. 93, B − V = 0m. 49,
U −B = −0m. 01 [7]). All our photoelectric measure-
ments are presented in the table.
We added our B-band observations to the new

photoelectric data, the SAI photographic observa-
tions, and the Harvard photographic data of [9], which
we reduced together with our observations. This
yielded a series of observations spanning 100 years,
enabling significant refinement of the orbital period.
Our analysis gave the following light-curve elements:

HJDmin = 47628.5381 + 2d.2911667E.

Our frequency analysis of the available data revealed
no significant variations of the orbital period. The
mean light curves plotted with our new elements are
presented in Fig. 1.
The total amplitude of the light curve depends on

the photometric band. For example, the total am-
plitude in the V and B bands is ∼3m, whereas the
amplitude in the U band exceeds 4m, as would be ex-
pected for eclipses of the very hot component, whose
spectral maximum is in the far UV. This dependence
proved to be helpful for improving estimates of the
temperatures of the two components of the binary.

3. MODEL LIGHT CURVES
BE UMa displays a classic case of the reflection

effect is an eclipsing binary. The super-hot star, which
is the nucleus of the planetary nebula, heats the sur-
face of the cool component facing it. The compact ob-
ject, with a temperature of 1–2 × 105 K and its spec-
tral maximum in the far ultraviolet, contributes in-
significantly to the system’s optical brightness. How-
ever, the spot it heats on the surface of the cool
ASTRONOMY REPORTS Vol. 47 No. 6 2003
component has a central temperature of the order of
1.5 × 104 K, so that its maximum radiation is emit-
ted at near ultraviolet and visible wavelengths. As is
noted above, the changing visible area of the spot
during the orbital motion of the normal star gives rise
to the sinusoidal brightness variations observed for
the system as a whole.

Since the system is detached, we neglected ellip-
soidality effects and took both stars to be spherical.
This enabled us to compute the mutual eclipses of the
components analytically.

We synthesized the theoretical light curve using
the following scheme.

(1) The surfaces of both stars were subdivided
into n× n area elements, each radiating a Planck
blackbody spectrum. The positions of the area ele-
ments on the stellar surface were described using the
spherical coordinates of their centers ηj , ϑj relative
to the star’s center, which undergoes orbital motion
with the period Porb. We assume that the centers of
the stars move in circular orbits about their common
center of mass.

(2) Let γj be the angle between the normal to a
selected (jth) area and the line of sight. The area
radiates the flux

Fj = Bλ(Tj) [1 − x(λ, Tj) (1 − cos γj)] cos γjdSj,
(1)

in the direction of the observer at the wavelength λ,
where x(λ, Tj) is the linear darkening coefficient, Tj

the area’s temperature, and Bλ(Tj) − 1 the Planck
function. We adopted the limb darkening coefficient
for the optical component in accordance with [10].

(3) We take into account the reflection effect in the
standard way [11]. Since the hot star’s radius Ru is
considerably smaller than the distance between the
components, we can assume that the hard UV light
is produced by a point source radiating isotropically.
The temperatures of the areas on the normal star
perturbed by the UV light from the hot companion are
described by the formula

T (ηj , ϑj) =

[
T 4

o + T 4
uκ cos γu

(
Ru

ρu

)2
]1/4

, (2)

where γu is the angle between the normal to the area
element with coordinates ηj , ϑj and the direction to
the source, ρu is the distance from the area to the
source (the center of the planetary nebula’s nucleus),
κ is the coefficient for reprocessing of the hard UV
radiation by the optical star, To is the temperature of
the normal star, and Tu is the temperature of the hot
subdwarf.
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Photoelectric observations of BE UMa

JD 2400000.0+ V B U JD 2400000.0+ V B U

44989.622 15.66 15.45 14.20 47628.5381 17.30 17.94
44989.648 15.45 15.44 14.21 47628.5385 17.21 17.71 16.04
44995.613 15.82 15.69 14.58 47628.5388 17.27 17.72 17.00
44995.629 15.91 15.72 14.50 47628.5398 17.06 17.51
44995.649 16.09 15.71 14.70 47628.5402 17.43 17.77 16.82
45489.346 14.92 15.12 14.49 47628.5413 17.57 17.86
45489.356 14.92 15.12 13.93 47628.5417 17.46 17.74
45494.295 14.67 14.88 13.67 47628.5421 17.86 17.62 17.46
45494.304 14.66 14.82 13.62 47628.5429 17.18 17.34 18.10
45494.318 14.67 14.83 13.71 47628.5433 17.51 17.45 17.42
45494.326 14.67 14.82 13.68 47628.5437 17.59 17.62 18.27
45494.334 14.67 14.87 13.74 47628.5448 17.19 17.34 17.29
45494.344 14.65 14.85 13.83 47628.5466 17.33 17.17 16.71
45494.353 14.62 14.88 13.75 47628.5469 17.17 17.10 16.63
45494.362 14.67 14.85 13.65 47628.5473 16.62 17.50 16.16
45494.37 14.66 14.80 13.67 47628.5477 16.94 16.99 16.34
45494.377 14.65 14.79 13.69 47628.5483 17.03 17.38 16.29
45844.318 15.34 15.35 14.25 47628.5487 16.69 17.01 17.18
45847.331 14.65 14.93 13.70 47628.5492 16.96 16.96 16.35
45852.338 15.20 15.37 14.23 47628.5496 16.59 17.34 15.91
45854.313 14.87 14.90 13.74 47628.5508 16.65 16.84 15.57
45854.347 14.66 14.98 13.81 47628.5512 16.80 16.92 15.44
47628.5094 15.99 15.90 14.68 47628.5516 16.99 16.97 15.63
47628.5163 15.89 47628.552 16.89 16.65 15.71
47628.5165 15.87 47628.5524 16.72 16.80 15.79
47628.5166 16.10 47628.5527 16.62 16.59 15.56
47628.5168 15.96 47628.5531 16.57 16.43 15.71
47628.517 16.02 15.93 14.64 47628.5544 16.50 16.67 15.36
47628.5174 15.98 16.07 14.79 47628.5547 16.34 16.30 15.55
47628.5178 16.01 16.06 14.69 47628.5551 16.24 16.33 15.49
47628.5184 16.48 16.05 15.03 47628.5555 16.35 16.41 15.07
47628.5188 16.20 16.18 14.90 47628.5559 16.46 16.32 15.25
47628.519 16.09 16.09 14.75 47628.5563 16.18 16.29 15.22
47628.5201 16.23 16.16 14.97 47628.5565 16.26 16.15 15.12
47628.5209 16.07 16.26 15.25 47628.5569 16.16 16.06 15.12
47628.5213 16.16 16.29 14.97 47628.5573 16.15 16.24 15.03
47628.5228 16.22 47628.5577 16.19 16.05 14.85
47628.5237 16.33 16.58 15.39 47628.5584 16.04 16.04 15.15
47628.5241 16.31 16.70 15.48 47628.5588 16.14 16.08 14.87
47628.5245 16.12 16.82 15.83 47628.5592 15.96 16.01 14.84
47628.5249 16.33 16.92 15.24 47628.5596 15.98 15.94 14.99
47628.5256 16.37 16.88 15.48 47628.5603 16.13 15.91 14.90
47628.5261 16.41 16.93 15.74 47628.562 16.01
47628.5265 16.51 16.91 15.52 47628.5623 15.99 15.92 14.72
47628.5269 16.65 17.22 16.00 47628.5627 15.89 15.80 14.71
47628.5273 16.49 17.03 16.30 47628.5631 16.04 15.98 14.81
47628.5279 16.65 17.12 16.29 47628.5638 16.08 15.96 14.97
47628.5286 16.54 17.24 15.75 49393.335 15.28 15.32 13.88
47628.529 16.69 17.44 15.72 49393.355 15.26 15.35 14.04
47628.5294 16.75 17.57 16.80 49393.428 15.02 15.16 13.96
47628.5298 16.73 17.37 15.97 49393.442 15.09 15.11 13.97
47628.5302 16.99 17.48 16.34 49393.468 14.97 15.07 13.94
47628.5306 16.90 17.45 16.19 49394.411 15.21 15.28 14.12
47628.5314 17.00 17.46 17.64 49394.424 15.20 15.30 14.15
47628.5318 17.06 17.56 16.34 49394.574 15.49 15.52 14.39
47628.5322 16.86 17.74 17.00 49394.586 15.52 15.54 14.37
47628.5331 16.96 17.80 16.34 49399.432 15.95 15.75 14.64
47628.5334 17.26 17.61 16.17 49400.451 14.87 14.95 13.77
47628.5352 17.13 17.87 17.32 49401.546 15.66 15.63 14.49
47628.5356 17.16 17.88 49403.573 15.22 15.28 14.19
47628.536 16.99 17.77 18.26
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 1. UBV phase light curves of BE UMa plotted using the refined orbital period (2d.2911667) and our photoelectric
observations.
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Fig. 2. Phase light curves of BEUMa plotted using theB photoelectric and photographic observations (a) for the entire orbital
period and (b) data near the primary minimum. The solid curve is the light curve computed using the algorithm described in
the text (cf. Section 3). The agreement between the observed and computed light curves is good.
(4) We use the sum of the fluxes emitted by all
visible area elements on both stars to obtain their
contribution to the total brightness:

Fsum =
2∑

i=1

nm∑
j=1

visj=true

(Fj)i, (3)

m = −2.5 log
(
Fsum

F0

)
, (4)

where F0 is the adopted normalization for the sys-
tem’s total light.
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We used the χ2 criterion

χ2 =
Nobs∑
i=1

(
msynt

i −mobs
i

σi

)2

(5)

to estimate a model’s significance, where msynt and
mobs are the theoretical and observed magnitudes.
When light curves were modeled simultaneously in
several spectral bands, we summed the individual χ2

values.
The minimization of χ2 was carried out over five

free parameters: i (orbital inclination), Ro, To, Ru,
and Tu.
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This yielded the following parameters for the
BE UMa system:

i = 82◦.9 ± 0◦.8,
Ru = 0.090 ± 0.007R�,

Tu = (1.25 ± 0.13) × 105 K,

Ro = 1.18 ± 0.10R�,

To = (5.40 ± 0.45) × 103 K,

Ts = (1.5 ± 0.1) × 104 K,

where Ts is the central temperature of the spot on the
surface of the normal component. In our computa-
tions, we took the distance between the components
to be 7.5 ± 0.5R� [8].
Plots of the computed and observedB light curves

are shown in Fig. 2.

4. DISCUSSION AND CONCLUSIONS

We have refined the orbital period of BE UMa and
constructed detailedUBV light curves of this system.
We have also used numerical models to derive physi-
cal and geometrical characteristics of the components
in the system.
The most interesting result of the modeling of

the optical light curves is the very high (≈1.25 ×
105 K) temperature of the compact object. Several
other similar binary systems are known; however,
as a rule, their compact objects have significantly
lower temperatures. For example, the central star of
the planetary nebula in the binary V477 Lyr has a
temperature of 4 × 104 K, and the temperature of the
compact object in UU Sge is 5 × 104 K. Only the
hot-dwarf planetary-nebula nucleus V664 Cas has a
temperature as high as (1.3–1.5) × 105 K.
Though no changes in the orbital period of the

system have been detected, it is possible that such
variations will be revealed by more precise obser-
vations. The system is detached, but the very high
temperature of the primary may enable mass transfer
via its stellar wind, leading to mass exchange in the
system accompanied by changes in the period. This
question can be answered by further, more detailed
studies.
It is of considerable interest to consider the further

evolution of BE UMa-type binaries. There are two
possible paths for the evolution of a precataclysmic
system from the detached to the semidetached stage,
with one of the components reaching its Roche limit:
(1) the secondary’s radius increases due to the

star’s nuclear evolution;
(2) the secondary’s Roche lobe shrinks due to the

loss of orbital angular momentum.
The secondaries of the vast majority of cataclysmic
variables are main-sequence stars [12], so that the
semidetached stage is achieved due to Roche lobe
shrinking, i.e., via the second path. The mechanisms
that can remove angular momentum from precata-
clysmic binaries are the same as those acting in cata-
clysmic variables: the emission of gravitational waves
and the outflow of a magnetic stellar wind from the
red dwarf [13, 14]. The first mechanism can operate
in virtually any binary, independent of the internal
structure of the components. The second mechanism
is effective only under certain conditions [15], namely,
that the secondary bemagnetically active, have a high
rate of (differential) rotation, possess a convective
envelope, and have a mass exceeding ∼0.3M� (if the
mass is lower, the whole star will be convective). The
system must form a sufficiently close binary that the
tidal interaction forces lead to almost synchronous
rotation of the secondary.
The mass of the secondary in BE UMa is

0.36 ± 0.07M�, so that both mechanisms for the loss
of orbital angular momentum can operate. To identify
the correct scenario for the binary’s further evolution,
we must compare the time scale for changes in the
separation of the components due to gravitational-
wave radiation (and/or the outflow of magnetic stellar
wind from the red dwarf) to the nuclear-evolution time
scale for the secondary (tev). The time after which a
BE UMa-like binary reaches the semidetached stage
due to the loss of angular momentum via gravitational
radiation can be computed using the formula [15]

tGR
sd = 4.73 × 1010

(
M1 +M2

M�

)1/3(M1

M�

)−1

(6)

×
(
M2

M�

)−1

P
8/3
orb (1 − (Psd/Porb)8/3) years,

where

Psd = 9π
(

R3
2

2GM2

)1/2

(7)

is the orbital period of a semidetached system whose
components have analogous parameters (all the peri-
ods are expressed in days). The time needed to reach
the semidetached stage via the outflow of a magnetic
stellar wind is given by the formula [15]

tMW
sd = 1.6 × 107f

(
r2
g2

0.1

)−1
q

(1 + q)1/3
(8)

×
(
R2

R�

)(
M2

M�

)((
Porb
Psd

)10/3

− 1

)
years,

where R2 is the secondary’s radius, rg2 its radius of
gyration, and f a parameter of the order of unity. For
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a BE UMa-type system, we obtain

tGR
sd = 1.7 × 1012 years,

tMW
sd = 3.5 × 1012 years,

tev = 6.1 × 1011 years.

According to the recent results of Ferguson
et al. [8], the radius of the secondary in BE UMa is
almost twice the radius of a main-sequence star with
the same mass, 0.36M�. The age of the planetary
nebula in the system is estimated to be∼104 years [5].
It is obvious that this time is insufficient for the
secondary to have reached thermal equilibrium and
shrink to its normal radius (corresponding to a main-
sequence star). When computing time scales, we
considered the equilibrium radius of the secondary,
0.37R�, since it is reached on a time scale tKH ∼ 107,
where tKH is the thermal Kelvin–Helmholtz time
scale for the red dwarf to reach thermal equilibrium,
which is much shorter than the above values for tGR

sd ,
tMW
sd , and tev.
These calculations indicate that the time scale for

nuclear evolution of the secondary exceeds the time
scale for changes in the separation of the components
due to the loss of orbital angular momentum by less
than an order of magnitude. Given the uncertainty in
the mass of the secondary, these time scales could
be comparable. We conclude that the future Roche
lobe filling by the red dwarf in the BE UMa system
will be the result of two factors: (1) the decrease in
the component separation (decrease in the absolute
dimensions of the Roche lobe) due to the loss of
energy and angular momentum via the radiation of
gravitational waves and/or the outflow of a magnetic
stellar wind and (2) the increase in the radius of the
red dwarf due to its nuclear evolution. Note that the
time required for this system to become semidetached
exceeds the Hubble time; thus, systems similar to
BE UMa whose secondaries fill their Roche lobes
ASTRONOMY REPORTS Vol. 47 No. 6 2003
should not be observed, since they have not had time
to evolve to this stage.
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Abstract—We have calculated profiles of the CIV 1550, NV 1240, OVI 1035, and SiIV 1400 resonance
doublets for a plane-parallel shock viewed at various angles. Calculations were performed for the range of
preshock gas velocities V0 and gas densities ρ0 appropriate for classical T Tauri stars. The parameters of
accretion shocks in young stars can be determined by comparing the calculated and observed profiles of
the studied lines and their relative intensities. It is not possible to derive the parameters of the accreting
gas from the line profiles without knowing the geometry of the accretion zone. The relation Iν(µ, V0, ρ0)
for a plane shock, where Iν is the intensity µ = cos θ, can be used to determine the accretion parameters
by either choosing a geometry for the radiating region or using a technique similar to Doppler tomography.
The results obtained for DR Tau, T Tau, and RY Tau indicate that, in contrast to current concepts, the inner
regions of the accretion disk are not disrupted by the magnetic field of the star, and the disk reaches the
stellar surface. As a result, only a small fraction of the accreted matter passes through the shock and falls
onto the star. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the beginning of the 1990s, there has been a
consensus that the line and continuum emission ob-
served in the spectra of classical T Tauri stars results
from the magnetospheric accretion of circumstellar
material. More precisely, the magnetic field of the star
is believed to stop the accretion disk from reaching
the stellar surface. In one way or another, the disk
material becomes frozen in the magnetic field and
slides along the field lines toward the stellar surface,
eventually being accelerated to velocities∼300 km/s.
The gas is decelerated in an accretion shock, whose
radiation gives rise to the observed line and contin-
uum emission.

According to [1], the radiating region of the accre-
tion shock should be much smaller than the radius
of the young star, making it possible to calculate the
structure and spectrum of the accretion shock in a
one-dimensional approximation [2, 3]. The calcula-
tions indicated that the structure of the flow can be
specified nearly unambiguously by two parameters:
the velocity V0 and density ρ0 of the gas far in front
of the shock. Following [2], along with the density (in
g/cm3), we will use the number of nuclei of all ele-
ments per unit volume located far in front of the shock,
N0 (in cm−3). Since we assume standard abundances
for the elements, ρ0 = 2.17 × 10−24N0.

The results of the calculations [3] were used to
derive the parameters of the accretion shock via mod-
eling of the continuum spectral energy distributions
1063-7729/03/4706-0498$24.00 c©
of classical T Tauri stars: V0, ρ0, the accretion rate,
and the area occupied by the shock. However, agree-
ment between the calculated and observed spectra
of the veiling continuum cannot be considered as a
decisive support for the magnetospheric model, since
boundary-layer models provide equally good agree-
ment (see, for example, [4]). The line spectrum is far
more informative, and comparisons of the calculated
and observed intensities and profiles of emission lines
enable detailed studies of the accretion processes.

Optically thin lines are best suited for this purpose:
their intensity ratios can be used to derive physi-
cal conditions independent of the geometry of the
region where they are formed, and the line profiles
provide information about both the velocity field and
geometry of this region. The calculations of [2] show
that the OIII 1663, SiIII 1892, and CIII 1909 inter-
combination lines should display the highest inten-
sities among the optically thin lines, and precisely
these lines were used to determine the accretion-
shock parameters for several young stars [5, 6]. How-
ever, Gómez de Castro and Verdugo [7] questioned
whether these lines form in the accretion shock, while
Kravtsova and Lamzin [8] showed that, in the case of
DR Tau, most of the flux in these lines is formed in the
inner regions of the accretion disk. In addition, there
are reasons to believe that the helium lines observed
in the optical spectra of classical T Tauri stars are
also formed largely outside the accretion shock [9] and
thus likewise cannot be used for diagnostics of the
shock parameters.
2003 MAIK “Nauka/Interperiodica”
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In this connection, the resonance lines of the CIV,
NV, and OVI lithium-like doublets and the sodium-
like SiIV ion are the most promising lines for studies
of the accretion-shock parameters. These lines have
high intensities in the spectra of classical T Tauri
stars, and their profiles are consistent with the hy-
pothesis that they are formed in the accretion shock.
This is also in agreement with the results of [2],
which, in particular, predict that the luminosity in
the CIV 1550 lines should be several percent of the
bolometric luminosity of the accretion shock.

These lithium- and sodium-like ions display the
following term structure. Two levels of the 2P 0 term
are situated directly above the 2S1/2 ground level;
the J = 1/2 level lies below the J = 3/2 level. The
excitation potential of the 2P term is appreciably
lower than the excitation potentials of both the ion
and the nearest higher level. In the problem at hand,
this means that these ions can be treated as three-
level systems, with the levels numbered in order of
increasing excitation energy: level 1 is 2S1/2, level 2
is 2P 0

1/2, and level 3 is 2P 0
3/2. The statistical weights

g = 2J + 1 for these levels are g1 = 2, g2 = 2, and
g3 = 4. The transitions 2 → 1 and 3 → 1 generate
the line doublets that we will study, while transitions
between fine-structure levels of the 2P 0 term, i.e.,
3 → 2, are strongly forbidden by the selection rules.

Table 1 presents the wavelengths, excitation po-
tentials for the upper levelEk (k = 2, 3), spontaneous-
transition probabilities Ak1, and oscillator strengths
f1k for these lines from the database http://physics.
nist.gov. The two last columns contain parameters
characterizing the collisional broadening of the lines.
These are the same for both lines of the doublet and
were taken from [10–13]; see below for details. For
completeness, we note also the atomic weights A for
carbon, nitrogen, oxygen, and silicon: 12, 14, 16, and
28, respectively.

According to [2], these resonance lines should
display substantial optical depths. Therefore, their
profiles and relative intensities in the case of a plane-
parallel shock should depend on the inclination of the
plane of the shock front to the line of sight θ, and, in
the case of an accretion shock, on the geometry of
the accretion zone and its orientation relative to the
observer, which, in particular, can vary in the course
of the axial rotation of the star.

It means that, in order to diagnose the accretion
shocks in young stars using the CIV 1550, NV 1240,
OVI 1035, and SiIV 1400 doublet lines, it is not
sufficient to know the intensities radiated in these
lines from a unit area of the shock front normal to the
front, which were found in [2]. We must also calculate
the dependence of the intensities and line profiles on
the angle θ for the case of a one-dimensional shock,
ASTRONOMY REPORTS Vol. 47 No. 6 2003
Table 1. Parameters of the studied lines

Ion λ, Å Ek, eV Ak1,
108 s−1 f1k

TP ,
104 K

WP ,
10−3 Å

CIV 1548.19 8.008 2.65 0.190 2 11.5

1550.77 7.995 2.64 0.095

NV 1238.82 10.008 3.40 0.156 5 3.58

1242.80 9.976 3.37 0.078

OVI 1031.91 12.015 4.16 0.133 10 1.46

1037.61 11.949 4.09 0.066

SiIV 1393.76 8.896 7.73 0.450 2 17.6

1402.77 8.839 7.58 0.224

and then use this information to calculate these cor-
responding values for various accretion-zone geome-
tries. Here, we solve the first part of this problem:
calculation of the line profiles for the case of a plane-
parallel shock. Our analysis will be based on the
calculations of [2], where we derived the distributions
of the density and temperature of the gas and of the
abundances of the corresponding ions perpendicular
to the front of a one-dimensional shock for various
values of V0 and ρ0.

2. FORMULATION OF THE PROBLEM

Let us write equations describing the radiative
transfer in a plane-parallel layer of gas in the situation
considered, following [14–16]. Let z be the current
coordinate measured from the upper boundary of the
layer perpendicular to this layer and τ1k(z) be the
characteristic optical depth in the 1 ↔ k (k = 2, 3)
transition, also measured from the upper boundary.
We can write

dτ1k

dz
=

πe2f1k

mec∆νD

(
N1 −

g1

gk
Nk

)
. (1)

Here, N1 and Nk are the numbers of ions per unit
volume in the ground and excited states and ∆νD is
the Doppler half-width of the line, which is related to
the thermal velocity of the ions Vt by the expression

∆νD =
ν0

c
Vt, Vt =

√
2�Ti

A
,

where � = 8.31 × 107 erg g−1K−1 is the universal
gas constant and Ti is the temperature of the ion
component of the gas. If the gradient of the velocity
associated with the macroscopic motion in the layer
is zero, τ1k is

√
π times the optical depth at the line

center.
In [2], the structure of the shock was considered

in a two-temperature approximation in which it was
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Table 2

V0,
km/s

logN0

(cm−3)
Zpst, cm

τpst

CIV NV OVI SiIV

200 11 1.6336 + 7 4.34 0.99 13.1 1.10

12 1.7787 + 6 4.36 1.00 13.6 1.10

300 11 7.1064 + 7 4.10 0.70 8.80 1.06

12 7.1920 + 6 4.10 0.71 9.05 1.06

400 11 1.2980 + 8 5.19 0.70 6.99 1.47

12 1.3018 + 7 5.23 0.71 7.16 1.49

assumed that the atoms and ions have the same
temperature Ti, which, in general, differs from the
temperature of the electron gas Te. It turned out,
however, that Ti and Te differ appreciably only in a
relatively thin layer behind the accretion shock. It
can be shown that, in this region, the rates of ion-
ization and excitation by electron collisions depend
on T eff

e = Te + me/miTi, where me and mi are the
masses of the electron and ion, rather than on the
electron temperature. In the case considered here,
however, the difference between T eff

e and Te does not
exceed a few percent, and we will assume that the
rates of these processes are specified by Te.

In our case, the lines corresponding to the 2 ↔ 1
and 3 ↔ 1 transitions do not overlap; therefore, ne-
glecting absorption in the continuum and assuming
total frequency redistribution, the radiative-transfer
equation for each line can be written

µ
dI1k

dτ1k
= φ1k (Sk − I1k) , (2)

where µ = cos θ, I1k(ν, τ1k, µ) is the intensity of the
line radiation at frequency ν at an angle θ to the
normal at the optical depth τ1k, and φ1k(ν, τ1k) is the
Voigt profile for the absorption (and radiation) coef-
ficient normalized to the variable x = (ν − ν0)/∆νD,
i.e.,

φ(a, x) =
a

π3/2

∞∫
−∞

exp(−y2)
(x− y)2 + a2

dy,

∞∫
−∞

φ(a, x)dx = 1.

In addition to the variable x, we will use the values

∆λD =
λ0

ν0
∆νD, a =

WP

2∆λD
,

where WP = WP (Te, Ne) is the full width at half
maximum (FWHM) of the profile φ(ν∗) due to col-
lisions of the radiating atoms with the surrounding
particles. The values of WP presented in Table 1 are
for the case when Ne = 1017 cm−3 and Te = TP ; TP
is also given in Table 1. According to [17], if, as in our
case, log Ne < 17,

WP (T,Ne) = W 0
P

√
TP

Te

Ne

1017
,

where W 0
P is taken from Table 1.

We denote the source function Sk(τ1k) in (2):

Sk =
2hν3

1k

c2
Nkg1

N1gk −Nkg1
. (3)

Let us assume that the population of the excited
levels is small, i.e.,Nk/N1 	 1. Equations (1) and (3)
will then take the form

dτ1k

dz
=

πe2f1k

mec∆νD
N1, (4)

Sk =
2hν3

1k

c2
g1Nk

gkN1
. (5)

Let qik and qki be the coefficients of electron colli-
sional excitation and deexcitation for the i ↔ k tran-
sitions. They are related by the expression

qik = qki
gk

gi
exp

(
−hνik

kTe

)
,

with

qki =
8.63 × 10−6

gk

√
Te

Υik,

where Υik is the collisional strength, which depends
only weakly on Te. The Υ1k values for the studied lines
were taken from the CHIANTI database [18].

Let us also denote the intensity of the line radiation
for the 1 ↔ 3 transition averaged in angle J13(ν, τ13):

J13 =
1

4π

4π∫
0

I13dΩ =
1
2

1∫
−1

I13dµ.

Since radiative transitions between levels 2 and 3
are strongly forbidden, the condition of stationarity for
the third level can be written

N3 [A31 + Ne (q31 + q32)] (6a)

= N1

(
B13J̄13 + Neq13

)
+ N2Neq23,

where Ne is the electron density, A31 and B13 are the
Einstein coefficients, and

J̄13(τ13) =

∞∫
0

J13φ13(ν)dν.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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By neglecting radiative transitions between the
fine structure levels of the 2P term in (6a), we are
assuming that the relative populations of the ex-
cited levels are specified by collisions; i.e., NeN2q23 =
NeN3q32. Then

N3

N2
=

g3

g2
exp

(
−hν23

kTe

)

 g3

g2
= 2, (7)

since hν23 < 0.04 eV and kTe > 1.5 eV for all ions
in the regions of interest to us. Further, this makes
it possible to eliminate N2 from (6a), so that

N3

N1
=

B13J̄13 + Neq13

A31 + Neq31
. (6b)

If we introduce the critical density N c
e = A31/q31,

then, using the relation between B13 and A31, the
source function for the 1 ↔ 3 transition can be
written

S3 = (1 − ε)J̄13 + εB13, (8)

where ε = Ne/(Ne + N c
e ), and

B13 =
2hν3

13

s2
exp

(
−hν13

kTe

)

is the Planck function in the Wien approximation.
The z distributions of the density, temperature, and

abundances of all the ions are known from the solu-
tion for the structure of the one-dimension shock; the
dependences of these values on τ13 can be found us-
ing (4). According to (8), the source function S3 does
not depend on the population of the second level. This
makes it possible to solve for the radiative transfer in
the line corresponding to the 1 ↔ 3 transition inde-
pendently, without considering the radiative transfer
in the line corresponding to the 1 ↔ 2 transition. The
problem can then also be solved for the second line of
the doublet, since

S2(τ12) = S3(τ13)
(
ν12

ν13

)3

, τ13 = 2τ12. (9)

These relations follow from (4), (5) and (7), taking
into account the fact that f13/f12 
 2.

In this way, we are able to reduce the calculation
of the profiles of the CIV, NV, OVI, and SiIV doublets
to the solution of the problem for the 1 ↔ 3 transition,
for example. Further, we will consider only this tran-
sition; therefore, we will omit the index “1k,” denote
ν0 to be the frequency at the line center, and write
B0 in place of B13(ν0). Although the initial problem
has been reduced to the case of radiative transfer
in a two-level atom, the expression for the source
function (8) differs somewhat from the corresponding
general expressions; see, for example, (11.6)–(11.8)
in [16]. This is due to our a priori hypothesis that the
ratioN3/N1 is small. Jumping ahead, we can say that,
ASTRONOMY REPORTS Vol. 47 No. 6 2003
in the calculated models, the ratio Nk/N1 turned out
to be smaller than 0.01, which a posteriori justifies
the initial assumption.

Below, we will show that we must first determine
the intensity of the radiation from regions behind the
accretion-shock front. We can then use the results
as a boundary condition for the region in front of the
shock.

3. THE REGION
BEHIND THE ACCRETION-SHOCK FRONT

Table 2 presents the extent of the region behind the
shock front (the post-shock region) and the optical
depth of the studied lines τpst ≡ τ13 perpendicular to
the front for various V0 and N0. The value of τpst was
obtained via numerical integration of (1), and takes
into account, in particular, variations in the ther-
mal velocity of the ions in the layer, associated with
variations in the gas temperature. Due to the factor
φ(x), which should also take into account the velocity
gradient in the cooling gas [see (10) below], the real
optical depth of the lines in this direction should be
substantially smaller than the value in Table 2: calcu-
lations indicate that, in all cases, it is either smaller
than or only slightly greater than unity. For example,
in the case of the OVI ion lines for V = 300 km/s,
the effective optical depth at the line center is 
2,
a factor of four smaller than the corresponding value
from Table 2.

This suggests that photoexcitation does not play a
significant role behind the shock front. Of course, as
θ → π/2, the optical depth of the layer τpst/µ ceases
to be significant. However, the contribution from one
section of the accretion zone to the total radiation flux
is proportional to the cosine of the angle at which it
is viewed [see (17) below]; therefore, the contribution
to the accretion-shock radiation from regions with
µ 
 0 is small. Based on this, we will not take pho-
toexcitation into account for all µ values; however,
the effect of the flux decrease due to self-absorption
will be included. This approach simplifies the prob-
lem dramatically, making it possible to calculate line
profiles in the region behind the shock front while
neglecting the radiation from regions in front of the
shock.

Behind the shock front, the gas velocity V be-
comes smaller than the sound speed, and decreases
from V0/4 to nearly zero as the gas cools. Therefore,
due to the Doppler effect, the frequency of a photon
ν measured by an external observer is related to the
frequency ν∗ in the rest frame of the moving gas by
the expression

ν∗ = ν

(
1 +

V µ

c

)
.
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Fig. 1. (a) CIV 1548, (b) NV 1239, (c) OVI 1032, and (d) SiIV 1394 line profiles at the outer boundary of the region
behind the accretion-shock front for V0 = 250 km/s and logN0 = 12. The vertical axis shows the intensities in units of
10−4 erg s−1cm−2sr−1 Hz−1 and the horizontal axis plots the radial velocity in km/s. The various curves represent profiles for
different values of µ: the solid curves of decreasing thickness correspond to the values 1.0, 0.5, and 0.25, the dashed curve to
0.125, and the dot–dash curve to 0.0625.
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Fig. 2. Source functions for the (a) CIV 1548, (b) NV 1239, (c) OVI 1032, and (d) SiIV 1394 lines normalized to the maximum
(solid curves) and the gas velocity (dashed curves) in the region behind the accretion-shock front for V0 = 250 km/s and
logN0 = 12.
For convenience in comparing the calculated and
observed profiles, we will use v = c(ν0 − ν)/ν0 rather
than the frequency as the independent variable. Ne-
glecting terms of order V/c, we obtain

|x| =
|v − V µ|

Vt
, (10)

φv ≡ φ(x) = φ

(
|v − V µ|

Vt

)
.

We know the z dependence of Vt and V from the
calculations of the shock structure, so that we can
find the Vt(τ) and V (τ) dependences using (1). Thus,
φv is a known function of τ .

From the mathematical point of view, the possibil-
ity of neglecting photoexcitation means that the first
term in (8) is equal to zero, i.e., S3 = εB0. It then
follows from (2) that the intensity of the outgoing
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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(0 < µ ≤ 1) radiation is

Iv(0, µ) =

τpst∫
0

φv(τ)ε(τ)B0(τ) (11)

× exp


−

τ∫
0

φv(t)
dt
µ


dτ

µ
.

Figure 1 presents the results of the calculation
of the line profiles for the 3 ↔ 1 transitions of the
C+3, N+4, O+5, and Si+3 ions with V0 = 250 km/s,
log N0 = 12, and various µ values. Let us clarify why
the profiles and their variations with µ display this
behavior.

Figure 2 presents the source functions of the lines
as functions of the optical depth τ0 at the central
frequency—i.e., for v = 0—for the given values of V0

and N0. When calculating τ0, we took into account
the velocity gradient in the layer using (10). The
plots are given for µ = 1; however, since S does not
depend on the angle, the corresponding curves will
only be stretched along the x axis by a factor of 1/µ
for other values of the angular variable. In Fig. 2,
we have plotted µτ0 along the horizontal axis, so
that the shape of the curves is independent of µ. The
dashed curve shows the variations of the gas velocity
behind the accretion-shock front from its maximum
value Vmax 
 V0/4 
 63 km/s to essentially zero. We
can see that the line optical depths build up away
from the front, more precisely, in the zone where the
corresponding ionization stage of the given element
dominates, where the gas velocity is relatively small.

The value of τpst
0 for the CIV, NV, and SiIV ion

lines for µ = 1 is appreciably smaller than unity; i.e.,
these lines are optically thin. As µ becomes smaller,
the optical depth of these lines along the line of sight
grows, so that their central intensity also increases as
µ decreases. This continues as long as τ0/µ remains
smaller than unity. With further decrease in µ, the
gas becomes optically thick, and the largest contri-
bution at the central intensity is made by regions of
the accretion shock for which τ0/µ ∼ 1. As long as
these regions lie to the right of the source function’s
maximum (Fig. 2), as before, decreases in µ will be
accompanied by increases in the central intensity: as
θ increases, the observer sees regions of more intense
radiation. However, starting from some µc, as θ in-
creases further, regions with τ0/µ ∼ 1 will correspond
to smaller and smaller values of the source function,
so that, when µ < µc, the central intensity of the line
will begin to decrease.

The different behavior for the central intensities of
the CIV, NV, and SiIV ion lines is due to differences
in the values of τpst

0 and µc. The OVI 1032 line is
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already optically thick when µ = 1; in addition, as
follows from Fig. 2, the region with τ0/µ ∼ 1 for this
line lies to the left of the maximum of S(τ0/µ) for all µ.
In accordance with the above discussion, this results
in a monotonic decrease in the central line intensity
with decreasing µ in Fig. 1.

All the above arguments remain qualitatively valid
if we consider any other point of the profile with v �= 0
instead of the central frequency. When performing
quantitative analyses, we must take into account the
fact that, for the same µ values, the optical depth of a
layer will differ from τpst

0 /µ due to the factor φv. If the
gas behind the accretion-shock front was stationary,
the line profiles would be symmetrical (Iv = I−v),
and the optical depth of a layer for a given µ would
decrease with increasing |v|. Because of this, the
FWHM of the lines would increase as µ decreases,
and, at some time, their profiles would display two
peaks.

The motion of the gas behind the accretion-shock
front preserves this behavior, but the lines become
asymmetrical, since, in accordance with (10), the
absorption coefficient reaches its maximum when
v = V µ rather than at the line center. For this reason,
at small (large) optical depths, the line intensity
displays the most rapid increase (decrease) at the
point in the profile where v = V µ, rather than at
v = 0. Finally, since the velocity gradient in the region
of line formation is not very high, the line center shifts
monotonically toward v = 0 as µ decreases, and the
lines become increasingly symmetrical.

For other velocities and densities of the falling
gas in the intervals 200 km/s ≤ V0 ≤ 400 km/s
and 11 ≤ logN0 < 13, the profiles of the lines orig-
inating behind the accretion-shock front vary only
quantitatively: for example, for V0 = 400 km/s and
log N0 = 12, the lines look broader and have intensi-
ties that are about twice as high.

4. THE REGION IN FRONT
OF THE ACCRETION SHOCK

According to [2], the gas velocity varies little in
front of the shock, by only 2–3%. The drop in the
velocity at a distance of ∆z is on the order of the
mean free path for the photons of the lines consid-
ered, appreciably smaller than the thermal velocity
of the corresponding ions, so that the “clearing” of
the medium due to the velocity gradient is small. We
will accordingly assume that the gas in front of the
shock moves at constant velocity,1 V (z) = const =
V0. This enables us to consider the radiative transfer

1 It also follows from the mass conservation law that N(z) =
const = N0.
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Table 3

V0, km/s logN0 (cm−3) Zpre, cm Tmax, 104 K
τ0
pre

CIV NV OVI SiIV

200 11.0 7.7 + 8 1.67 1.26 + 2 1.46 2.26 − 2 2.64 + 2

12.0 7.0 + 7 1.69 1.31 + 2 1.70 2.29 − 2 2.57 + 2

300 11.0 6.4 + 9 1.88 3.84 + 3 4.45 + 2 3.12 + 2 2.46 + 3

12.0 6.4 + 8 1.91 3.84 + 3 4.63 + 2 3.34 + 2 2.41 + 3

400 11.0 1.6 + 10 2.02 1.14 + 4 2.32 + 3 3.46 + 3 1.65 + 3

12.0 1.6 + 9 2.06 1.13 + 4 2.34 + 3 3.55 + 3 1.61 + 3
in the rest frame of the gas, which is moving from
the observer with the velocity V0µ, where 0 ≤ µ ≤ 1.
In other words, for the region in front of the shock,
we will calculate the line profiles in a stationary layer
of gas, denoting the frequency in this frame as ν.
If the final results are represented using v = c(ν0 −
ν)/ν0 instead of the frequency, the line profiles in
the observer’s rest frame are obtained by shifting the
calculated profiles a distance V0µ along the horizontal
axis.

Table 3 presents the variations of the optical
depths in the region in front of the shock τpre(µ = 1)
(the preshock region) at the center of the 1 ↔ 3
transition lines for the studied ions as functions of the
velocity and density of the gas. Table 3 also gives the
characteristic size of the layer in which the lines are
formed, Zpre, and the maximum temperature of the
gas reached immediately in front of the shock, Tmax.
We can see that τ0

pre can be � 1, so that, generally
speaking, photoexcitation cannot be neglected in this
region. Therefore, we must solve a system consisting
of Eqs. (2) and (8), which we write in the form

µ
dIν

dτ
= φν (S − Iν) , (12a)

S =
1 − ε

2

∞∫
0

φνdν

1∫
−1

Iνdµ + εB0. (12b)

The boundary conditions for this system is

Iν = 0 for τ = 0 and µ ≤ 0, (13a)

Iν = Ipst
ν for τ = τpre and µ ≥ 0, (13b)

where Ipst
ν is the line radiation intensity from the

region behind the accretion-shock front [see (11)]
taking into account the shift by −V0µ in v.

In the region of line formation, the gas temperature
varies by roughly a factor of 1.5 [2]. For this reason,
ε varies by approximately the same factor inside the
layer considered; however, the profile of the absorp-
tion coefficient φν and the Planck function B0 vary
rather strongly. Consequently, in our case, ε = ε(τ),
φν = φν(τ), B0 = B0(τ), so that no analytical solu-
tion of the type [15] exists for this problem, which we
therefore solved numerically.

Before describing our solution technique, we will
present characteristic values of the optical parameters
of the layer, based on the results for the CIV 1548 line
and the shock model with V0 = 300 km/s
and logN0 = 11. In this case, ε 
 3 × 10−5 and
a 
2 × 10−7. This corresponds to a characteristic
optical depth for which thermalization of the radiation
in this line will be substantial Λ ∼3 × 104; see for-
mula (11.26a) in [16]. 2 The optical depth of the layer
τ0
pre is a factor of a few lower than this value (Table 3);

i.e., the layer is effectively thin. It turns out that, for
all lines considered with 200 < V0, km/s < 400, and
log N0 < 12.5, the thermalization of the radiation is
not very large.

Returning to our specific numerical example, it
turns out that the mean free path of CIV 1548
photons is ∼2 × 106 cm in the middle of the layer
considered. Having estimated the average num-
ber of scatterings in the layer N from the relation
N ∼ τ0

pre(ln τpre)
1/2 [14, 16], we see that the mean

free path of the photons until they leave the layer is
comparable to the size of the layer, Zpre. However,
the gas velocity V0 is three orders of magnitude lower
than the velocity of light; therefore, no more than 0.1%
of all the matter in the layer will have time to pass
through the front during the time a photon is inside
the layer. This enables us to consider the radiative

2 Relation (11.26b) in [16], given for the estimated thermal-
ization optical depth in the case of a Voigt profile, yields
an incorrect result for a� 1; it was derived assuming
that H(a, x) ∝ a, and therefore it does not transform into
(11.26a), which corresponds to purely Doppler profile, as
a→ 0.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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transfer in the rest frame of the falling gas, and at the
same time to use the boundary condition (13b).

We solved the system (12) numerically following
the procedure described in § 6.3 of [16]. We briefly
present the essence of the technique here. We in-
troduced the variable uνµ = [Iν(τ,+µ) + Iν(τ,−µ)],
where, from now on, we will consider only positive
values for µ: µ ∈ [0, 1]. In the equation for uνµ, the
derivatives

µ2d2uνµ

dτ2
ν

= uνµ − S

were replaced by finite differences for τν , with the
interval [0, τpre] being partitioned into 30–70 sub-
intervals. In the expression for the source function

S = (1 − ε)

∞∫
−∞

φ(x)dx

1∫
0

uνµdµ + εB0,

the integrals over µ and ν were replaced by 6-point
and 64-point quadrature sums, respectively. Adding
the boundary conditions (see (6.33) and (6.35) in
[16]), we obtained a closed system of algebraic equa-
tions, which was solved using the method of Ry-
bicky [19].

Our computer program was tested by calculating
line profiles for the case of a homogeneous layer with
the zero boundary condition (13b) for various τpre,
ε, and a. Our profiles are virtually identical to those
presented in Fig. 6 in [20] for the same parameters.
When calculating the profiles in the case of a shock,
we also investigated the dependence of the results on
the number of points in the partitions over τ , µ, and ν,
which demonstrated the reliability of the calculation
results.

5. DISCUSSION

The line profiles were calculated for V0 values from
200 to 400 km/s in steps of 50 km/s and log N0

values from 11.0 to 13.0 in steps of 0.5, since pre-
cisely this range of V0 and N0 is of interest in the
case of classical T Tauri stars [2]. For V0 = 200,
250, and 300 km/s, we also calculated profiles for
log N0 = 10.5. For larger velocities, the extent of the
region in front of the shock becomes comparable to
the radius of a classical T Tauri star, and the ap-
plication of the plane shock approximation becomes
problematic.

Figure 3 presents the results of the CIV
1548 line profile calculations for log N0 = 12.0 and
V0 = 200 km/s, 300 km/s, and 400 km/s for
µ = 0.034, 0.619, and 0.966. For comparison, Fig. 4
presents the analogous results for the OVI 1032 line.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
The gas velocity at the shock front displays a
jump-like variation by approximately a factor of four.
For this reason, the profiles of lines originating in
regions in front of and behind the accretion-shock
front are observed at very different frequencies and
do not overlap when viewed from a direction nearly
perpendicular to the front. As a result, the observed
line profile has two components: one near v = 0, cor-
responding to the region behind the shock front, and
the other dramatically shifted toward the red, formed
in the preshock zone. Physically, this means that the
region in front of the shock is transparent to the
radiation from lower-lying regions, so that the profile
of the “zero” component is identical to that obtained
without taking into account the region in front of
the shock. The “red” profile displays a two-peaked
structure, which is similar to the shape of profiles
originating in an effectively thin isothermal layer (see
Fig. 6 in [20] or Fig. 11.4 in [16]).

As the angle between the line of sight and the nor-
mal to the front increases (and µ decreases), the dis-
tance between the components decreases, and when
V0µ becomes comparable to the width of the compo-
nents, the profiles begin to overlap (Fig. 4). When µ
is small, the optical depth of the region in front of the
shock is high, so that the radiation from behind the
front is strongly absorbed in the region where the pro-
files overlap. To illustrate this, Fig. 4 displays the line
profiles originating behind and in front of the shock
front for the zero boundary condition (13b) together
with the combined profile for the case V0 = 300 km/s
and µ = 0.034. The absorbed radiation is partially
thermalized and partially re-emitted in other direc-
tions; therefore, the intensity of the “red” component
integrated over all µ is slightly higher compared to its
value in the case Ipst

ν = 0.
The known relation for the intensities of the

doublet components in the case of a homogeneous
isothermal layer follows from (9) and (11) and the
condition ν12 
 ν13:

R32 ≡ I13(ν)
I12(ν)

= 1 + exp
[
−τ12(ν)

µ

]
, (14)

where τ12(ν) is the optical depth of the layer in the
1 ↔ 2 transition. It follows from (14) that, in a homo-
geneous layer, R32 lies in the interval from one to two,
depending on whether the layer is optically thick or
thin.

Figure 5 presents the ratio of the integrated in-
tensities of the doublet components for all the ions
considered. In the case of the CIV, NV, and SiIV ions,
R32 lies in the interval from one to two and decreases
as the angle between the normal to the shock front
and the line of sight increases, probably due to the
increase of the optical depth of the layer along the line
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Fig. 3. Profile of the CIV 1548 line for an accretion shock with logN0 = 12 observed at various angles (thick solid curves).
The upper, middle, and lower profiles are calculated for V0 = 200, 300, and 400 km/s, respectively. For comparison, the
contributions from the zone behind the accretion-shock front (thin solid curves) and in front of the accretion shock (dotted
curves) are shown for V0 = 300 km/s, logN0 = 12, and µ = 0.034; see text for details. The plotted intensity is in units of
10−4 erg s−1cm−2sr−1 Hz−1, and the radial velocity is in km/s.
of sight. However, in the case of the OVI ion, R32 is
smaller than unity for some µ, due to the variation of
the source function with depth and the overlapping of
the profile components.

The dependence of the ratio R32 on V0 is fairly
complicated for all the ions. Its dependence on N0

is simpler: R32 increases as N0 decreases. To more
clearly illustrate this, we present the results of the
calculations for the CIV ion for V0 = 300 km/s and
log N0 = 12.0 and logN0 = 11.0, as for the other
ions, and also for logN0 = 10.5.

The vast majority of UV spectra of T Tauri stars
have been obtained by the IUE satellite with low
resolution (∆λ 
 6 Å). These spectra do not con-
tain any information about the line profiles, and the
CIV 1550 doublet lines merge into a single emission
feature. Therefore, it is of interest to see whether the
ratio of the total intensities of the doublets IΣ = I12 +
I13 for different ions can be used to determine the
parameters of the accretion shock. To this end, we
calculated the ratios of the intensities of the NV 1240,
OVI 1035, and SiIV 1400 doublets to the intensity
of the CIV 1550 doublet. Figure 6 displays the varia-
tions of this ratio as a function of µ for V0 = 200, 300,
and 400 km/s for log N0 = 11.0 and 12.0.

The dependence of the total intensity IΣ on µ, i.e.,
“the limb darkening law,” is of particular interest for
the CIV 1550 doublet. We can see in Fig. 7 that the
calculated dependence IΣ(µ) is not monotonic, and a
limb “lightening” rather than darkening is observed
for angles θ from 0◦ to ∼75◦; a similar effect is seen
for the CIV 1550 doublet for the case of the Sun [16].
For reasons that will become clear below, we present
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 4. Same as Fig. 3 for the OVI 1032 line.
δCIV in Fig. 7 instead of IΣ, specified by the relation

IΣ = δCIV
ρ0V

3
0

4
. (15)

It follows from Figs. 3–7 that the shapes of the
profiles, as well as the absolute and relative intensi-
ties of the studied lines, can vary dramatically with
variations in the velocity V0 and density N0 of the
accreted gas in front of the shock, making it possible
to use these lines for diagnostics. In addition, the
profiles and intensities are also strongly dependent on
the angle at which the plane-parallel shock is viewed.
This confirms the conclusion made in [2] that, without
information about the geometry of the accretion zone,
the lines studied here cannot be used to determine V0,
N0, the accretion rate Ṁac, or the area Sac occupied
by the accretion shock on the surface of the star facing
the observer.

However, even based on the results for a plane-
parallel shock, we can draw a number of conclu-
sions about the character of the accretion in classical
RONOMY REPORTS Vol. 47 No. 6 2003
T Tauri stars. First and foremost, Figs. 3 and 4 in-
dicate that the width of the “red” component of the
profile does not exceed ∼0.1V0. This enables us to
estimate V0 fairly accurately from the extent of the
red wings of the studied lines—naturally, if we are
confident that at least some of the falling gas moves
nearly along the line of sight. This confirms that
V0 < 400 km/s in the classical T Tauri case [21–25].
These same studies indicate that the lower boundary
of V0 is 250 km/s.

The CIV 1550-doublet profiles observed in classi-
cal T Tauri stars do not display the two-component
structure that is characteristic of a plane shock; com-
pare the corresponding figures in [8, 21–25] with
Fig. 3. This suggests that the flow lines in the ac-
cretion zone are oriented in a wide range of angles
relative to the line of sight. This rules out accretion
in the form of a cylindrical jet [26].

According to [3], the observed veiling continuum
in classical T Tauri stars forms in the transition layer
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between the shock and the star: in this region, the

shock radiation directed toward the star is absorbed.
Due to the high density of the gas, the absorbed en-

ergy is re-emitted, primarily in the continuum (see [2]
for more detail). Therefore, we can assume that a unit

area of the accretion-shock surface radiates half of the
energy of the accreted gas; i.e., 0.5 × ρ0V0 × V 2

0 /2.

Let us assume that ρ0V
3
0 varies little within the ac-
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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cretion zone (the accretion is homogeneous). Then,
without taking interstellar absorption into account,
the bolometric continuum flux near the Earth will be

F⊕
c =

ρ0V
3
0

4
Sac

2πd2
, (16)

where d is the distance to the star.
On the other hand, the total observed flux in the

CIV 1550 doublet lines, also corrected for interstellar
absorption, is equal to [16]

F⊕
CIV =

1
d2

∫
Sac

µIΣdS. (17)

Here, the integration is carried out over the surface of
the accretion zone, located on the stellar hemisphere
facing the observer. From (15) and (17), we obtain for
the case of homogeneous accretion

F⊕
CIV =

ρ0V
3
0

4
Sac

πd2
〈µδCIV〉,

where 〈µδCIV〉 is averaged over the integration region.
According to Fig. 7, δCIV differs from 0.7% by no
more than a factor of 2.5, for any V0, N0, and µ. The
large extent of the red wings of the CIV 1550 lines
in classical T Tauri spectra indicates that the contri-
bution from regions with µ ∼ 1 cannot be very small;
therefore, we will adopt the average value µ ∼ 0.5.
Using (16), we find that, if the veiling continuum and
the CIV 1550 doublet lines are formed in the accretion
shock, then

F⊕
CIV

F⊕
c

= 2π〈µδCIV〉 ∼ 2%. (18)

At the same time, the ratios F⊕
CIV/F

⊕
c observed

for DR Tau [8], T Tau, and RY Tau [27] are two
orders of magnitude smaller. Since there is no doubt
that the CIV 1550 lines form in the accretion shock,
the discrepancy between the theory and observations
provides evidence that the emission continuum is
formed beyond the accretion shock, at least in the
case of the mentioned stars. Since there is also no
doubt that the veiling continuum is due to disk ac-
cretion, we conclude that this continuum forms in the
inner regions of the disk. However, the ratio of the
luminosities of the accretion disk and disk should be
of the order of the ratio of the inner radius of the disk
and the radius of the star [28], so that this ratio cannot
exceed unity, even if the disk reaches the surface of the
star.

It means that, in the case of DR Tau, T Tau, and
RY Tau, the stellar magnetic field does not stop the
accretion disk at some distance from the stellar sur-
face, as is commonly believed (see the Introduction).
In fact, the disks reach the surfaces of these stars,
so that the bulk of the accreted matter falls onto the
stars in the equatorial plane, and only ∼1% of the
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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gas becomes frozen in the magnetic field; the gas falls
onto the star at higher latitudes, forming an accretion
shock. Note that, according to [31], the temperature
of the gas in the inner regions of the disk and/or in the
boundary layer of classical T Tauri stars cannot ex-
ceed 10 000–15 000 K; therefore, the energy released
by the accretion will be radiated here, primarily in
the continuum and hydrogen lines, and the CIV, NV,
OVI, and SiIV lines cannot be formed in this region.

In subsequent studies, we plan to compare the
calculated and observed profiles and intensity ratios
of the components of doublets of various ions under
various assumptions about the accretion-shock ge-
ometry. We note here that the OVI 1035 doublet has
been observed only in TW Hya [29] and T Tau [30]
(by the FUSE satellite). Unfortunately, in both stars,
the doublet lines are strongly blended with absorption
lines of molecular hydrogen and cannot be used for
comparison with our calculations.

6. CONCLUSIONS

We have calculated the CIV 1550, NV 1240,
OVI 1035, and SiIV 1400 resonance doublet profiles
for a plane-parallel shock viewed at various angles
and for various velocities and densities of the gas in
front of the shock. Comparison of the calculated and
observed profiles and relative intensities of these lines
has proved to be an effective method for estimat-
ing the parameters of accretion shocks in classical
T Tauri stars. At the same time, these lines cannot be
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used to determine the parameters of the accreted gas
without knowledge of the geometry of the accretion
zone.

If V0 and N0 are the same at all points in the
accretion shock, it seems reasonable to assume that
the accretion zone is an axisymmetric surface similar
to an extended spot or a spherical belt [6]. In this case,
the size of the region and the orientation of its axis
of symmetry relative to the line of sight will become
parameters of the problem, along with V0 and N0.
We plan to investigate this problem in subsequent
studies.

A much more complicated situation for accretion-
shock diagnostics will arise when V0 and N0 vary
appreciably within the accretion zone, as is natural if
the magnetic axis of the star is significantly inclined
to its rotational axis. There is a hope that a tech-
nique similar to Doppler tomography can be applied
to determine the parameters of accretion shocks in the
case of inhomogeneous accretion. We are referring
to the possibility of analyzing the variability of the
line profiles due to variations in the accretion shock’s
orientation relative to the observer in the course of
the axial rotation of the star. In this case, we can
use the relations Iν(µ, V0, N0) in the same way that
the relations Iν(µ) obtained from stellar atmosphere
models are used in classical Doppler tomography. The
idea seems very promising, although it is not clear
if it will always be possible to separate the periodic
and stochastic (due to the nonstationary accretion)
components of the observed line-profile variations for
classical T Tauri stars.
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Abstract—A simple model for a multiscaled MHD dynamo is suggested. The uppermost tier of the model
controls the evolution of the large-scale magnetic field, while the lower tiers are responsible for the evolution
of the small-scale velocity and magnetic fields. This approach makes it possible to reproduce, e.g., the
evolution of the Galactic magnetic field for realistic magnetic Reynolds numbers, which cannot be done
using direct, detailed simulations. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The origin and evolution of the magnetic fields
of astronomical bodies are attributed to the action
of the hydromagnetic-dynamo mechanism (see, e.g.,
[1, 2]). The large-scale and small-scale components
of the magnetic field produced by this mechanism
behave quite differently. While various investigators
have reached a high level of agreement concerning
the behavior of the large-scale fields, the evolution of
the small-scale fields remains a point of controversy
(see, e.g., [3]). It is in part these disagreements that
have prompted the most recent attempts to revise
the foundations of dynamo theory in the early 1990s
by Vainshtein and Cattaneo [4] and Gruzinov and
Diamond [5].

Studies of small-scale magnetic fields are compli-
cated by the fact that the parameters governing the
dynamo process typically assume enormous values
in astronomical bodies. For example, the magnetic
Reynolds numbers in galaxies are as high as 106, even
if the magnetic diffusion is assumed to be ambipolar,
and these numbers becomemuch higher for estimates
based on Coulomb collisions. Therefore, in spite of
the tremendous progress in computational physics
achieved in recent years, which has yielded some con-
firmation of the principal concepts of dynamo theory,
direct and complete descriptions of the dynamos op-
erating in real astronomical objects remain far beyond
the ability of computational studies.

However, a new approach that seems to promise
substantial improvements in this situation has re-
cently appeared [6]. Of course, we are not speaking of
a complete description of the phenomenon. However,
note that, of the huge number of degrees of freedom
that are formally necessary to describe the small-
scale magnetic field, only a relatively small number
1063-7729/03/4706-0511$24.00 c©
characterizing the behavior of the mean properties
of the small-scale fields are of real interest. These
properties can be described using so-called cascade
turbulence models, which replace complex partial dif-
ferential equations with a relatively simple system
of ordinary differential equations that lends itself to
numerical treatment for realistic values of the char-
acteristic parameters.

The cascade-model technique is essentially a di-
rect development of the ideas of A.N. Kolmogorov,
whose school pioneered studies in this field [7, 8].
These techniques have proved their worth in various
problems in the theory of turbulence. We suggest a
joint description of large-scale variables based on the
mean-field equations and of small-scale variables in
the framework of cascade models.

It is obvious that a crucial aspect of this approach
is matching the equations responsible for the large-
scale and small-scale variables. This procedure is dif-
ficult to formalize and must be elaborated separately
for each particular case. This is precisely the aim of
the present study. We choose a very simple problem
in dynamo theory—the so-called α2-dynamo—as the
large-scale component of our study. In this problem,
as usual, the toroidal component of the large-scale
magnetic field gives rise to a poloidal component
via the mean helicity; however, the feedback loop is
closed by the same helicity, rather than by differ-
ential rotation (which is normally more efficient in
this respect). Our choice is dictated by the fact that
the structure of the generated magnetic field is very
simple in this dynamo problem; if we are interested
in the magnetic-field distribution in the vicinity of the
point of most intense dynamo generation (in our case,
the point of maximum helicity), this structure can be
described using only one spatial mode [9]. In other
words, the behavior of the large-scale component
2003 MAIK “Nauka/Interperiodica”
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can also be described using an ordinary differential
equation.

Such α2 dynamos are not very typical of astro-
physical situations, although they can operate in close
binaries, where differential rotation is inhibited by
tidal interactions. However, the positive experience
acquired in matching the systems for the microscopic
and macroscopic variables described below also
seems promising for future studies of more realistic
(and more complex) situations.

2. CASCADE MODEL OF MHD
TURBULENCE

To describe the generation and transfer of the
small-scale magnetic field by small-scale turbulence,
we use the cascade model of MHD turbulence pro-
posed by Frick and Sokoloff [10]. The basic idea
underlying cascade turbulence models is the con-
struction of a chain of ordinary differential equations
that describe the spectral energy transfer in highly de-
veloped turbulence. In the case of MHD turbulence,
the problem is to retain, for any wavenumber octave
kn < |k| < kn+1, kn = 2n, only one pair of complex
variables Un and Bn that characterize the velocity
and magnetic-field pulsations on the corresponding
scales, and to write a system of equations for these
variables that preserves certain “basis properties” of
the original MHD equations. By “basis properties”,
we mean the type of nonlinearity and conservation
laws obeyed by the original equations in the limit
of large Reynolds numbers (both hydrodynamic and
magnetic). Without dwelling on the properties of
cascade models (to which hundreds of papers have
already been devoted), we write the equations of the
cascade model used here in the form

(dt + Re−1k2
n)Un (1)

= ikn

{
(U∗

n+1U
∗
n+2 −B∗

n+1B
∗
n+2) −

1
4
(U∗

n−1U
∗
n+1

−B∗
n−1B

∗
n+1) +

1
8
(U∗

n−2U
∗
n−1 −B∗

n−2B
∗
n−1)

}
+fn,

(dt +Rm−1k2
n)Bn (2)

=
ikn

6

{
(U∗
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n+2 −B∗

n+1U
∗
n+2)

+ (U∗
n−1B

∗
n+1 −B∗

n−1U
∗
n+1)

+ (U∗
n−2B

∗
n−1 −B∗

n−2U
∗
n−1)

}
.

These equations are written in a dimensionless form,
where Re is the hydrodynamic Reynolds number,
Rm is the magnetic Reynolds number, dt is the
derivative with respect to time, and the characteristic
turnover time of an eddy on the maximum scale,
T = L0/U0, is used as the unit of time. The structure
of the nonlinear terms in (1), (2) is such that only
local interactions are taken into account
(energy exchange takes place only between neigh-
boring scales); in the limit of Re,Rm → ∞, the
equations retain only three quadratic terms corre-
sponding to the three integrals of motion known
in magnetohydrodynamics—the total energy E =
EU +EB (where EU =

∑
|Un|2/2, EB =

∑
|Bn|2/2),

the cross helicity Hc =
∑

(UnB
∗
n +BnU

∗
N ), and the

magnetic helicity Hb =
∑

(−1)n|Bn|2/kn). The fn

terms in (1) describe the action of the forces giving
rise to the turbulent flow.

We should emphasize that, along with positively
defined integrals of motion such as the energy or the
enstrophy (an integral in two-dimensional fluid mo-
tion; cascade models of two-dimensional turbulence
conserve its analog), cascade models can also con-
serve quantities whose sign is not known in advance.
Such integrals in fluid mechanics are usually called
helicities (a term that was brought into use by the
discovery of the fact that, in addition to the energy, the
incompressible motion of an ideal fluid also conserves
the mean dot product of the velocity and its curl,
which reflects the predominance of helical structures
of one particular sign). In cascade models, the sign
of the helicity reflects the predominant contribution of
either odd or even tiers to the corresponding quantity.
Helicity can be introduced into real cosmic turbu-
lence either by an external force, such as the Coriolis
force, or as an initial condition for the formation of
turbulence. In our case, we specified some helicity at
the initial time for the evolution and did not specially
sustain it.

Our cascade model of MHD turbulence not only
was able to reproduce the basis properties of the
small-scale turbulence but also enabled us to study
the effect of the magnetic Prandtl number on the gen-
eration threshold for small-scale magnetic fields [11]
and to simulate the behavior of forced MHD turbu-
lence for very long time intervals [12] and the char-
acteristic features of this behavior in the case of free
degeneration [13].

3. COMBINED MODEL FOR AN α2 DYNAMO

Let the evolution of the large-scale magnetic field
be determined by the behavior of its poloidal, BP ,
and toroidal,BT , components, for which the following
equations are valid:

dtBP = ikLαBT − βBP , (3)

dtBT = −ikLαBP − βBT , (4)

where α describes the ability of non-reflection-
invariant, small-scale turbulence to generate the
mean, large-scale magnetic field; β is the effective
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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diffusion coefficient of the turbulent medium; and
kL is the wavenumber determining the macroscopic
scale L. In other words, the poloidal magnetic field
is produced from the toroidal field by the helicity,
and vice versa, and both are affected by turbulent
diffusion. It is this process that is called the α2

dynamo.
The idea behind the combined model is to sup-

plement equations (3), (4) with the cascade equa-
tions (1), (2). The coefficients α and β are obtained
from the solutions to the cascade equations, and en-
ergy exchange between the turbulent flow and the
generated large-scale magnetic field is taken into ac-
count. The coefficient α is related to the helicity of the
turbulent flow,

α ≈ 1
3
τ〈v curlv〉,

to within the factor τ , which has the dimensions of
time. Assuming that τ is associated with the turnover
time for eddies with the corresponding scale, we can
relate α to the parameters of the small-scale turbu-
lence:

α = Cα

∑
n

τn(−1)nkn|Un|2 = Cα

∑
n

(−1)n|Un|.

(5)

The diffusion of the large-scale magnetic field is
determined by the coefficient β, for which we adopt
the estimate

β ≈ 1
3
τ〈v2〉;

the following formula in terms of the variables of the
cascade equations corresponds to this estimate:

β =
1
3

∑
n

k−1
n |Un|. (6)

Taking into account the outflow of kinetic en-
ergy from the turbulent flow generating the large-
scale magnetic field is an important issue (the cas-
cade equations themselves exactly obey the conser-
vation laws and correctly describe the redistribution
of the kinetic energy and the energy of the small-
scale magnetic field). Obviously, the energy supplied
to the large-scale magnetic field should be extracted
from the turbulent kinetic energy via an appropriate
correction of the variables Un. We tried various cor-
rections and ultimately adopted the following one for
our model. Assuming that only structures carrying
the dominant sign of the helicity are responsible for
the generation of the magnetic field via the α effect,
we subtract the energy supplied to the large-scale
magnetic field that is associated with precisely those
variables Un that contribute to the helicity with the
sign coinciding with the current sign of the coefficient
ASTRONOMY REPORTS Vol. 47 No. 6 2003
α. For the cascade model, this means that coefficients
Un with either odd n or even n are recalculated. A
coefficient introducing the necessary change in the
kinetic energy when multiplied by all the correspond-
ing Un is computed.

Another important physical process that must
be taken into account when combining the models
for large-scale and small-scale processes is the
generation of Alfvén waves due to the interaction of
the large-scale magnetic field with small-scale MHD
perturbations. This means that, in addition to local
interactions, nonlinear interactions with the large-
scale magnetic field must be taken into account in the
cascade equations; these interactions have the form

dtUn = . . .+
1
2
ikLB

∗
n(B∗

P +B∗
T ),

dtBn = . . .+
1
2
ikLU

∗
n(B∗

P +B∗
T ).

Accordingly, the equations for the large-scale mag-
netic field become

dtBP = ikLαBT − ikL

∑
n

U∗
nB

∗
n − βBP , (7)

dtBT = −ikLαBP − ikL

∑
n

U∗
nB

∗
n − βBT . (8)

Equations (7) and (8) contain two types of dissipation
terms associated with the large-scale magnetic field.
The terms proportional to β represent the regular
turbulent diffusion, which can, in our approximation,
be determined from the system describing the small-
scale variables. The other terms contain sums over
small-scale variables and describe the transformation
of the large-scale magnetic field into Alfvén waves.

4. NUMERICAL SIMULATIONS

We numerically integrated equations (7), (8) com-
bined with the system (1), (2) for 26 variables Un, Bn

(0 ≤ n ≤ 25). The wavenumber range described by
this system (kmax/kmin ≈ 108) enables the consid-
eration of ReRm = 1010. The boundary conditions
in the region of small wavenumbers have the form
Un = Bn = 0 for any n < 0 and n > 25. The first
condition (for negative n) corresponds to the presence
of a maximum possible scale in the system, while
the second condition (for large wavenumbers) is only
formal, since dissipation actually becomes important
several octaves before the boundary of the scale range
considered, and energy does not reach the farthest
tiers of the system. We adopt the value kL = 1/8
(which corresponds approximately to the ratio of the
small and large scales in the Galactic disk); in the en-
ergy spectra presented below, the large-scale field is
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Fig. 1. Time evolution of the model for Cα = (a) 1, (b) 3, and (c) 100. See text for details.
represented by the leftmost point on the wavenumber
axis.

Kinetic energy was pumped into the system by a
force of the form fn = δ0n(1 + i) in Eq. (1), which op-
erates only on the zeroth tier, so that only the largest
scale pulsations are fed.We adopted Rm = 106, Re =
1010; i.e., the magnetic Prandtl number was set equal
to 0.0001. This affects the behavior of the large-scale
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magnetic field only slightly, and the particular value of
the magnetic field was chosen in order to demonstrate
that the velocity-pulsation spectrum on small scales,
where no magnetic-field pulsations are present for the
specified ratio of the kinematic and magnetic viscosi-
ties, behaves quite differently compared to most of
the spectrum. Moreover, the adopted value of Rm is
fairly close to the actual value of this parameter for
the Galactic disk.

Figure 1 presents solutions to the system for sev-
eral values of the parameter Cα determining the in-
tensity of the dynamo effect; for an αω dynamo, the
same role is played by the dynamo number. The time
evolution is shown by the thick curves for the kinetic
energy of the entire system, the dotted curves for the
energy of the magnetic-field pulsations, and the thin
curves for the energy of the large-scale magnetic field,
which is the sum of the energies of the poloidal and
toroidal components.

When Cα = 1 (Fig. 1a), the large-scale magnetic
field decays (a logarithmic scale is chosen for the en-
ergy axis). This Cα is close to the critical value Cα =
3 (Fig. 1b) at which the large-scale magnetic field can
survive. This field varies substantially in amplitude
but remains so weak that it does not considerably af-
fect the behavior of the small-scale turbulence. When
Cα ≈ 10, the energy of the macroscopic field reaches
values comparable to the kinetic energy of the velocity
pulsations, and this field begins influencing not only
the variations of the total pulsation energy but also
the spectral distribution of this energy. Figure 1c
illustrates the case of Cα = 100. With such a high
Cα, the magnetic-field variations become very in-
tense, although irregular. The possibility of nonlinear
dynamo regimes with chaotic time behavior has been
noted in various mean-field dynamo models and was
probably first identified in the Rikitake dynamo. Such
regimes are of interest in the context of explaining
the chaotic sequence of geomagnetic-field inversions.
Our result confirms that chaotic regimes are not an
artifact of the mean-field description of the dynamo,
and are compatible with the inclusion of small-scale
variables.

Note that, in this last case, the energy of the
magnetic-field pulsations is much higher than the
energy of the velocity pulsations, although the energy
of the large-scale magnetic field remains somewhat
lower than the kinetic energy. This suggests another
possible resolution of the problem of the ratio of the
energies of the large-scale and small-scale magnetic
fields generated by the dynamo process, as raised
by Vainstein and Cattaneo [4]. The possibility that a
hydrodynamical force that sustains random motions
in a nonlinear dynamo could, in principle, give rise to
a very strong small-scale magnetic field is of interest
for the solar-neutrino problem [14].
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 2. Equilibrium spectra of the turbulence and mag-
netic field for Cα = (a) 3 and (b) 100. Shown are the tur-
bulence spectrum (open circles), spectrum of the small-
scale magnetic field (small solid circles), and the energy
of the large-scale magnetic field (large solid circles). In
some cases, a solid and open circle coincide, and only the
solid circle is visible. See text for details.

Figure 2 presents the spectra of the velocity and
magnetic-field pulsations for Cα = 3 and Cα = 100.
In the former case, when the large-scale field is weak,
there is equipartition of energy over all scales. The
spectral slope exceeds the Kolmogorov value (and
even more so the Kraichnan–Iroshnikov value), and
is close to the slope of the spectrum E(k) ∼ k−2.
The magnetic-field spectrum terminates before the
turbulence spectrum, in accordance with the chosen
Prandtl number. We can see that, in the small-scale
region, where hydrodynamic turbulence is present,
the spectral slope decreases, and reaches the Kol-
mogorov value. In the Cα = 100 case, the spectral
distribution in the MHD range is substantially less
well ordered, and the corresponding values for the
magnetic-field pulsations systematically exceed the
kinetic energy on the corresponding scale.

5. CONCLUSIONS

We have already made some specific remarks that
may be of interest in connection with special issues
in dynamo theory. In general, we believe our dynamo
model describing both large-scale and small-scale
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magnetic fields confirms the possibility of using cas-
cade models to describe the behavior of small-scale
variables in dynamo theory. Further, a more sophisti-
cated description of the large-scale variables could be
developed, to include the more realistic αω dynamo,
and also to use a more realistic (but not catastroph-
ically high) number of large-scale variables when
implementing either a spectral (as here) or a finite-
difference [6] approach.

Our model directly answers the standard descrip-
tion of the growth of the large-scale magnetic field
in dynamo theory. In particular, the gap between the
kL and k0 scales in our model can, in principle, be
as large as desired and is not filled with any aux-
iliary variables. Therefore, the concept of an inverse
cascade (which implies the formation of the kL-scale
magnetic field directly from the preceding scale) is not
necessary for the mean-field dynamo theory (cf. [15]).

Direct interactions between the large-scale field
and small-scale magnetic-field and velocity pulsa-
tions (an analog of the Alfvén mechanism) play an
important role in our model. As they are switched
off, the generation threshold becomes much higher
(Cα ≈ 100), and, as it is reached, strong instability
appears in the behavior of the large-scale field (sharp
bursts with subsequent drops by five or six orders of
magnitude).
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Abstract—A multifaceted statistical study of all available data on solar activity during the Maunder
minimum (1645–1715) is presented. The data include European telescope observations, Asian sunspot
observations using the unaided eye, concentrations of cosmogeneous isotopes, and catalogues of polar
aurorae. Joint analyses of data on the cosmogeneous isotopes 10Be and 14C are a promising source
of information on solar activity in the past. The dates of relative sunspot maxima during the Maunder
minimum are consistent with the idea that there were chaotic bursts of solar activity randomly distributed
in time during this interval. The available evidence that the 11-year cyclicity was preserved in 1645–
1715 are worthy of attention but require additional deep study and verification. No convincing evidence
for a 22-year periodicity of the occurrence of sunspots during the Maunder minimum has been found.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the well-known work of Eddy [1], the pe-
riod 1645–1715 when sunspots were nearly absent,
known as the Maunder minimum (MM), has at-
tracted the attention of numerous researchers. The
existence of such anomalous epochs in solar activ-
ity shows that the physical nature of this activity
remains incompletely understood. It is obvious that
deep and multifaceted studies of such periods can
help elucidate the origin of solar cyclicity and mech-
anisms for the formation of sunspots. The question
of whether any short-timescale (11–22 year) period-
icity was present during the MM is very important.
Since such short-period cycles in the occurrence of
sunspots are associated with the dynamo mechanism,
we can establish whether the dynamo mechanism
continued to operate during the MM. In turn, this is
extremely important for our understanding of global
solar-activity minima.

There is no consensus about the behavior of the
solar activity during the MM, and the various views
on this question can be divided into three groups.

(1) Eddy [1] believed that the 11-year variation in
the solar activity was absent during the MM. This
conclusion was supported by the results of [2], which
showed that the number of sunspot groups (NSG)
recovered by Hoyt and Schatten [3] was not periodic.

(2) However, a number of other works argue that
the 11-year cycle (the Schwabe cycle) was present
during the MM. For example, this conclusion is sup-
ported by studies of catalogs of polar aurorae [4] and
1063-7729/03/4706-0517$24.00 c©
data on the concentrations of the cosmogeneous iso-
tope 10Be detected in Greenland ice cores [5]. Data on
the concentrations of radioactive carbon 14C in tree
rings [6] are also consistent with the presence of 11-
year periodicity in the solar activity during the MM.
The time behavior of the solar activity starting from
1576 was recovered in [7] via a joint analysis of data
on 10Be, 14C, and nitrates in layers of the Earth, and a
clear 11-year cyclicity during the MM was revealed.

(3) A new approach to studying the solar activity in
1645–1715 was presented in [8, 9]. Analysis of NSG
data [3] using a new original technique demonstrated
that a 22-year periodicity (theHale cycle) was present
during the entire MM period. Usoskin, Mursula, and
Kovaltsov [8, 9] found support for their conclusion
in data on polar aurorae and the 14C concentration
in tree rings, and especially in the data of [10–12],
which detected such 22-year variations twenty years
ago. The analysis of radiocarbon series presented in
[6] also shows evidence for 22-year periodicity during
the MM [13].

Our work continues studies of solar activity dur-
ing the MM using various direct and indirect solar-
activity indicators. European telescope observations
and observations using the unaided eye carried out
by Asian (mainly Chinese) astronomers are consid-
ered direct indicators. We use the series of Hoyt and
Schatten [3] for the European data and the catalog
of Wittmann and Xu [14] for the Asian data. We use
data on the cosmogeneous isotopes (10Be and 14C)
and polar aurorae [5, 6, 15, 16] as indirect data.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The solid curve shows the number of sunspot
groups according to Hoyt and Schatten [3]. The NSG
reconstruction [8] is used before 1645. The dashed curve
shows the Wolf numbers recovered in [7] using concen-
trations of cosmogeneous isotopes and nitrates.

2. THE MAUNDER MINIMUM AND 11-YEAR
VARIATIONS IN SOLAR ACTIVITY

The 11-year variations in the MM are most clearly
manifest by the concentrations of cosmogeneous iso-
topes. This periodicity is expressed by radioactive car-
bon comparatively weakly [6] and much more strongly
by beryllium [5]. Nagovitsyn and Ogurtsov [7] re-
constructed the Wolf numbers beginning from 1576
based on data on the concentrations of 14C, 10Be,
and nitrates (NO−

3 ions) in various layers of the Earth
using a specially developed complex, joint wavelet
analysis of these data. This analysis assumes that two
components are present in each temporal series: a
component that is common to all series, associated
with the solar modulation (the useful signal) and a
noise component that is specific to each series. In this
case, averaging several series can suppress the noise
and strengthen the useful signal. This reconstruction
is presented in Fig. 1 together with the NSG series of
[3].

There are numerous gaps in the series of Hoyt and
Schatten [3] before 1645. Therefore, for 1610–1645,
we have used the NSG reconstruction presented in
[9] instead of the original series [3]. Here, two facts
are striking.

(1) The Wolf numbers recovered using the cos-
mogeneous isotope and nitrate data agree well with
the actual NSG data during periods of normal solar
activity. For example, the correlation coefficient for
1610–1645 is 0.4. For comparison, dendroclimato-
logical correlation coefficients between reconstructed
tree-ring temperatures and experimentally measured
temperatures reach 0.3–0.5 [17]. The agreement ob-
tained testifies that the competent use of all available
indirect data can be useful in studies of solar activity
in the past, at least during epochs of normal activity.

(2) The solar activity reconstructed for the MM
[7] differs qualitatively from the Hoyt–Schatten se-
ries [3]. In fact, the Wolf numbers reconstructed for
1645–1687 reveal a strong cycle with a period of
8–10 yrs (Fig. 1), with the maximum Wolf number
reaching 25–40. At the same time, European tele-
scope observations [3] suggest the nearly complete
absence of solar activity.

Given the extensive work on identifying and study-
ing historical sources carried out by Hoyt and Schat-
ten [3], it is difficult to imagine that the real NSG dur-
ing the MM could reach 25–40. Therefore, the results
concerning solar activity during the MM presented in
[7] appear to be overestimated. The strong 12–15 year
variation in one of the sources used in [7] (10Be) is
the most probable reason for this. Indeed, according
to [5], the amplitude of the quasi-11-year variation of
the beryllium concentration during the MM was as
high as during periods of normal solar activity. This
peculiarity of the 10Be concentration was studied in
[9], taking into account the fact that the beryllium
record can be strongly distorted by climatic effects,
especially during deep solar minima. Therefore, the
8–10 year periodicity clearly established for the re-
covered Wolf numbers during the MM may reflect not
so much the corresponding solar cycle, as climatic
effects in the concentration of 10Be, and possibly 14C.
As regards the Schwabe cycle in the polar-aurora
data [4, 15], it was shown in [9] that, during the
MM, these temporal series display a 22-year rather
than 11-year periodicity. Thus, the suggestion that
the the 11-year variation in sunspot occurrence was
preserved during 1645–1715 can be considered a hy-
pothesis requiring additional verification.

3. THE MAUNDER MINIMUM AND 22-YEAR
VARIATIONS IN SOLAR ACTIVITY

It was quite reasonably concluded in [8, 9] that the
telescope observations of sunspots made in the sev-
enteenth century were not sufficiently reliable. There-
fore, instead of the original NSG series, Usoskin,
Mursula, and Kovaltsov [8, 9] used the number of
days when sunspots were observed—i.e., the NSG
series for 1645–1715—transformed into the binary
form
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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
 S(t) = 1, if at least one spot was observed on day t,

S(t) = 0, if no spots were observed on day t.
(1)
This binary series was then processed using a spe-
cialized original technique, and the frequency of days
with observed sunspots was analyzed. This enabled
Usoskin, Mursula, and Kovaltsov [8, 9] to do the
following:

(1) Clearly determine time intervals in which
sunspots were observed (1652–1662, 1672–1689)
and totally absent (1645–1651, 1663–1671, 1690–
1695).

(2) Determine the dates of absolute maxima of so-
lar activity during the MM, i.e., 1658 and 1679/1680.
The first solar-activity maximum before the MM
(1639/1640) and the last maximum at the very end
of the MM (1705) were dated in [8] using original
NSG data.

According to [8, 9], the alteration of relatively
active periods (sunspots appear, though rarely) and
periods of zero solar activity (sunspots are totally
absent), and especially the sequence of the solar-
activity maxima 1639/1640, 1658, 1679/1680, and
1705 convincingly confirm the presence of a 22-year
variation in the occurrence of sunspots during the
MM.

Note that the Hoyt–Schatten data [3] are not
a unique source of information on sunspots during
1645–1715. Observations using the unaided eye car-
ried out by Chinese and Korean astronomers pro-
vide another important source that should not be
neglected, since telescope observations of the Sun
were irregular in the seventeenth century. According
to [18], European solar observations before the middle
1680’s were probably no more frequent than 200–
250 days per year. The number of days with solar
observations [18] (the so-called “best estimate”) is
presented in Fig. 2a. Figure 2b compares the MM
solar-activity data obtained by European and Asian
astronomers.

Figure 2 shows that, in 1645–1651 and 1663–
1671, when European astronomers did not report any
sunspots at all, Asian astronomers reported observing
sunspots ten times (five in 1645–1651 and five in
1663–1671). For example, Asian astronomers ob-
served sunspots four times in 1665, while European
astronomers observed the Sun on fewer than 180 days
that year (Fig. 2a). The only European astronomer
to observe the Sun during most of the period from
1645–1651 was Jan Hevelius [19]. Although there is
no doubt of Hevelius’ competence, it is known that
EPORTS Vol. 47 No. 6 2003
he missed 4 of 24 sunspot groups that were present
during his observations [19]. Taking these factors into
account, Hoyt and Schatten [3] questioned the trust-
worthiness of sunspot data acquired in 1642–1653. It
is evident that the European observations of sunspots
in 1663–1671 and 1645–1653, used in [8, 9] to con-
clude that there was a complete absence of sunspots
during these periods, are fragmentary and not fully
reliable. Therefore, the record of five sunspot obser-
vations with the unaided eye (SOUE) in 1663–1671
and five in 1645–1651 can be considered a serious
argument against the conclusion that there was zero
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Fig. 2. (a) Number of days per year when the Sun was
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Fig. 3. (a) Annual mean number of sunspot groups [3].
(b) Annual mean number of observations of stars eclipsed
by the Moon [23]. The histograms show the original data,
and the solid curves the data smoothed over five points.

solar activity during these intervals. It was shown in
[20] that the SOUE data contain information about
global minima and maxima of the solar activity, as
well as on the secular and 11-year solar cycles. On the
other hand, we know that Asian astronomers could
potentially confuse real sunspots with clouds, flocks
of birds, etc. [14]. A comparison of Asian SOUE data
with European telescope observations for the period
1848–1918 shows that only one-third of the Asian
observations are confirmed by the European data [14].
The probability that at least one of the five SOUE
of 1645–1651 or 1663–1671 corresponds to a real
sunspot can be easily estimated:

P (5) = 1 − 0.665 = 0.88. (2)

The probability that at least one of these ten
SOUE corresponds to a real sunspot becomes 0.985.
If there were sunspots visible to the unaided eye in
1645–1651 and 1663–1671, this means that solar
activity was comparatively high during these periods.
According to the estimates of [21], in order for a
sunspot to be visible to the unaided eye, the spot must
have a large area exceeding 1900 µ h. As a rule, such
large sunspots appear during periods of high solar
activity. According to [22], the daily-average Wolf
number must be no lower than 50 in order for such
a sunspot to arise. Therefore, if there was at least one
sunspot visible to the unaided eye in 1645–1651 and
1663–1671, the daily-average Wolf number reached
50 or more at least once during these intervals.
According to [23], the maximum daily-average NSGs
recorded in the entire interval 1645–1715 were 59
(April 1, 1652) and 47 (September 19, 1654). This
means that, during 1645–1651 and 1663–1671, the
solar activity at least occasionally reached a level
comparable to the maximum level over the entire
MM. Therefore, we can argue that the conclusion
of [8, 9] that there was zero solar activity during
1645–1651 and 1663–1671 is in contradiction with
the observations of Asian astronomers and requires
additional verification.

Usoskin, Mursula, and Kovaltsov [8, 9] believed
that the solar activity of 1652–1662 and 1672–
1689 was comparatively high. This opinion is not
undoubted, at least for the interval 1672–1689.
Although detections of sunspots by European as-
tronomers were more frequent during that period,
there are no convincing arguments for a real growth
in the solar activity. Let us consider the European
observations of stars eclipsed by the Moon collected
by Stephenson [24] (Fig. 3b).

Of course, the eclipsing of stars by the Moon
is by no means related to sunspots. On the other
hand, these events were frequently reported by the
same astronomers who observed sunspots. Their re-
ports on stars eclipsed by the Moon and on sunspots
were also frequently published together [24]. It is
therefore important that the interval 1672–1689 is
a period of more frequent reports of occurrences of
both sunspots and of stars eclipsed by the moon,
with the latter phenomenon being reported more often
(Fig. 3b). This indicates a growth in the activities
of astronomers in 1672–1689. This increase in ac-
tivity could reflect both an increase in the number
of observations carried out and improvement in their
quality, i.e., in the care with which observations were
conducted and in the targetedness and accuracy of
the observations themselves. Therefore, an increase
in the number of reports of sunspots during this period
may reflect a growth in the activities of European as-
tronomers rather than any real increase in the number
of sunspots. It is worth noting that the Asian sources
indicate no increase in the number of sunspots in
1672–1689 (Fig. 2c).

Among the main arguments proposed in [8, 9]
in favor of the idea that the Hale cycle was main-
tained during the MM is a sequence of absolute solar-
activity maxima in [8, 9] 1640, 1658, 1680, and 1705.
However, when comparing their data with those of
other researchers [3, 25, 26], Usoskin, Mursula, and
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Kovaltsov [9] use a quite different sequence of SA
maxima obtained for another order of their statistical
technique: 1640, 1654, 1660, 1677, 1684, 1695, and
1705. Thus, in [8, 9], one sequence of solar-activity
maxima (1640, 1658, 1680, and 1705) is used to verify
the 22-year variations, while another sequence (1640,
1654, 1660, 1677, 1684, 1695, and 1705) is used to
compare their results with those of other authors.
This approach seems questionable and requires ad-
ditional justification. Note that the sequence 1640,
1658, 1680, and 1705 does, indeed, appear to indicate
a 22-year variation, but the dates 1658 and 1680 do
not well agree with the data of [3, 25, 26]. On the
contrary, the sequence 1640, 1654, 1660, 1677, 1684,
and 1705 agree well with the data of [3, 25, 26] but do
not give any hint of a 22-year periodicity.

Usoskin, Mursula, and Kovaltsov [9] cite the ra-
diocarbon series obtained by American [6] and Soviet
[10, 12] researchers as support for their hypothesis
that the 22-year variation was present. However, their
conclusion that the behavior of the 14C concentration
and the solar activity are in agreement in 1645–1715
is based on an analysis of data covering only three
to four Hale cycles [9]. It was shown in [34] that
the consistency between the individual solar-activity
and radiocarbon cycles is fairly crude, due to the
relatively large uncertainties in ∆14C and distortions
introduced by a 15–30 year variation of nonsolar ori-
gin (attributed in [28] to regional climatic changes).
We expect that the relative contribution of this latter
variation increases during periods when the 11-year
solar-activity cycle is suppressed. Therefore, apply-
ing data on the 14C concentration to studies of the
occurrence of sunspots is less promising for the MM.
In any case, it is clear that any conclusions about
a solar modulation of ∆14C would be justified only
by a joint analysis carried out for many solar and
radiocarbon cycles. It remains unclear whether three
cycles are sufficient for this purpose. Nevertheless, we
will continue with our consideration of the study of
[9]; the radiocarbon series [6, 10–12] are presented in
Figs. 4b and 4c.

Figure 4 shows that these two series are not in
good agreement. The most prominent disagreement
is in the variation amplitudes. The amplitude of the
short-period (Т < 30 yrs) variations in the series of
[6] does not exceed 4–5�, while the amplitude of
the variations in [10–12] reaches 20�, or a factor
of four greater. This striking difference requires some
explanation before proceeding to any joint analysis
of these experimental series. Some ideas concerning
this question can be found in [27, 29], although the
problem remains unsolved.

It is well known that some properties of the carbon
recirculation system result in a time delay between
ASTRONOMY REPORTS Vol. 47 No. 6 2003
 

1600 1640 1680 17201620 1660 1700
Years

N
um

be
r 

of

(b)

su
ns

po
t g

ro
up

s

100

 

∆

 

14

 

C
, 

 

‰

 
(a)

50

–8

–6

–4

–2

0
2

4

–30

–20

–10

0

10

20

(c)

 

16
14

16
25

16
39

16
38

16
24

16
14

 

16
58

16
80

17
05

 

16
62

16
76

17
04 17

10

16
30

16
46

16
38

16
74 17

00

16
58
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variations of the cosmic-ray intensity and the tropo-
spheric 14C concentration. In the case of the 11-year
variations, this phase shift is about two to four years,
according to the theoretical estimates [30, 31] and
the experimental measurements of [6, 32]. The delay
should be longer for the 22-year variations. However,
Fig. 4 shows that most of the ∆14C minima in both
radiocarbon series lead the solar-activity maxima de-
termined in [8, 9] (1658, 1680, and 1705) by one to
four years, instead of lagging them by two to four
years. Thus, the phase shift between the solar-activity
maxima determined in [8, 9] and the 14C minima
derived in [6, 10, 12] does not reveal any cause–effect
relationship between these two phenomena.

This is also true of the ∆14C amplitude for 1645–
1715. Figure 4b shows that the amplitude of the 18-
year fluctuation in 1660–1678 [6] reaches 4�. It is
well known that the carbon recirculation suppresses
high-frequency fluctuations in the 14C concentration.
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The attenuation coefficient for the 22-year variations
is about 50 [30, 31]. This means that the 4� os-
cillation in the tropospheric radiocarbon Q is due to
a 20% fluctuation of the carbon production in the
atmosphere. The change in the intensity of Galactic
cosmic rays required for this fluctuation of Q can
easily be estimated using the formula [11]

∆I = −4.2 × ∆Q0.78, (3)

where ∆I is expressed in percents of
3854 m−2 s−1 steradian−1 and ∆Q is expressed in
2.54 atoms cm−2 s−1 (the average I and Q for 1890).

For ∆Q = 20%, formula (1) yields a peak-to-peak
∆I variation of 40%. This is a strong variation, com-
parable to the variation of the Galactic cosmic-ray
intensity during the usual Schwabe cycle. Let us
estimate the Wolf-number variation that can give rise
to a 20% fluctuation in Q in the framework of the
diffusion-modulation mechanism. According to [33],
the Wolf numbers of the current epoch are related to
the 14C production rate via the formula

Q = 2.091 − 0.0041W, (4)

where Q is in atoms cm−2 s−1.
Formula (2) shows that a Q variation of 20%

corresponds to a Wolf-number fluctuation with an
amplitude of 100. The parametrization [34] yields the
even higher amplitude of 150 for the Wolf-number
variation. Consequently, the variations of the 14C
concentration during 1660–1678 presented in [6]
could result from a Wolf-number variation with an
amplitude of 100–150. However, the fluctuations
of the mean annual NSG during the MM did not
exceed two to four, which is almost two orders of
magnitude lower. It is difficult to imagine that such
weak oscillations in the sunspot occurrence could be
associated with the 4� variation of the radiocarbon
concentration. Note that the ∆14C amplitudes are
even higher in the Soviet data. This led the Soviet
researchers [10–12] to invoke the drift mechanism for
the modulation of ∆14C by solar activity to explain
the 22-year radiocarbon variations. The drift mech-
anism, which is associated with the repolarization
of the interplanetary magnetic field every 22 yrs,
can give rise to Galactic cosmic-ray variations of
20–30% [12] during periods of extremely low solar
activity. However, it is difficult to attribute the 22-
year ∆14C variations with repolarization of the total
solar magnetic field, i.e., to argue that the 22-year
magnetic cycle was preserved during the MM, since
the 15–30 year variations in the 14C concentration
noted above, which are not associated with the
solar modulation, can strongly distort radiocarbon
variation of solar origin.

Usoskin, Mursula, and Kovaltsov [9] used cata-
logs of polar aurorae [4, 15] as additional evidence
supporting the presence of 22-year variations of the
solar and heliospheric activity during the MM. These
data are presented in Fig. 5 (we use the augmented
data of [16] instead of those in [4]). Figure 5 shows
that the agreement between the Hoyt–Schatten se-
ries [3] and the auroral data is poor for the seventeenth
century. The strong solar-activity cycle of 1610–1618
was only weakly manifest in the auroral activity and
the moderate cycle of 1635–1648 was not manifest
at all, while the weak cycle of 1619–1634 was re-
sponsible a significant growth in the number of polar
aurorae. The feeble solar cycle of 1700–1713 likewise
gave rise to an appreciable growth in auroral activ-
ity. This provides evidence that the number of polar
aurorae in the seventeenth century was only weakly
dependent on the number of sunspots. Note also that
the maximum auroral activity was reached in 1648,
when the Sun, according to [8, 9], was in an absolute
minimum and sunspots were totally absent. Thus, the
catalogs of polar aurorae [4, 15, 16] likewise do not
ASTRONOMY REPORTS Vol. 47 No. 6 2003



SOLAR CYCLICITY DURING THE MAUNDER MINIMUM 523
support the hypothesis of [8, 9]. Consequently, the
general conclusion of [9] that there were similar 22-
year variations of the solar activity, auroral activity,
and Galactic cosmic-ray intensity during the MM
does not appear to represent the real situation.

In our opinion, the most conclusive finding of [8,
9] is the sequence of solar-activity maxima in 1640,
1654, 1660, 1677, 1684, 1695, and 1705. As was
noted in [9], these dates agree with the data of [3,
25, 26] obtained independently by other researchers
using other methods. Therefore, this sequence seems
to be the most reliable estimate available of the dates
of maximum solar activity during the MM. This se-
quence of maxima was analyzed for the presence of
hidden periodicity [36] using the statistic of Sherman
[37, 38]. The average time interval between the solar-
activity maxima is 10.8 yrs, and the corresponding
value of the Sherman statistic is 0.83. The signifi-
cance of the effect was estimated using the diagram
in Fig. A3 of [39]. The value of 0.83 corresponds to a
probability of the null hypothesis (no periodicity) be-
ing correct exceeding 0.9. This means that, although
the sequence of maxima in 1640, 1654, 1660, 1677,
1684, 1695, and 1705 contain a hint of the 11-year
periodicity, it should be viewed simply as reflecting
fluctuations in solar activity randomly distributed in
time.

4. CONCLUSIONS
We have shown that analyses of the concentra-

tions of cosmogeneous isotopes are promising as a
source of information on solar activity during normal
intervals. However, reconstruction of solar activity
using cosmogeneous isotopes becomes difficult dur-
ing global minima. Our analysis of solar activity using
all direct and indirect data available for the Maunder
minimum shows that it remains difficult to answer the
question of whether or not the solar-activity cyclicity
was maintained in this period. It is most probable
that the dates of solar-activity maxima during 1645–
1715 correspond to weak peaks in solar activity that
are randomly distributed in time. The numerous in-
dications that the 11-year periodicity was maintained
during 1645–1715 require additional careful, multi-
faceted studies. We have found no convincing evi-
dence for the presence of 22-year variations in the oc-
currence of sunspots during the Maunder minimum.
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Abstract—Models of the motion of the terrestrial reference frame with respect to an inertial frame
can describe the motions of the Earth–Moon system, which are traditionally separated into precession,
nutation, the polar motion, and rotation about the Earth’s axis. Existing theoretical models do not describe
variations in the Earth-orientation parameters with the required accuracy, so that the current polar
coordinates and duration of the day must be determined from observations. To improve theoretical models
for the time dependence of the coordinates of the Earth’s pole, we examine the possible excitation of the
Chandler wobble due to internal properties of the Earth–Moon system. A differential equation describing
the parametric resonance in the Earth–Moon system is obtained for the first region of the parametric
excitation. The solution of this equation analytically describes the finite amplitudes of the nonlinear
conservative system. The theoretical results are compared with the empirical laws of Melchior deduced
from observational data on the coordinates of the Earth’s pole. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The growing accuracy of astronomical measure-
ments and observational techniques increases our
knowledge of interactions between celestial bodies
and provides a firm basis for the definition of an inertial
reference frame. The trustworthiness of interpreta-
tions of observational data depends appreciably on the
accuracy with which a reference frame fixed to the
Earth’s body can be defined with respect to an inertial
frame. Modeling themotion of the terrestrial reference
frame with respect to the inertial frame describes the
motion of the Earth–Moon system around the Sun
together with the bodies’ rotational motions; these
motions are traditionally separated into precession,
nutation, the polar motion, and rotation about the
Earth’s axis.

Modeling the dynamics of the Earth–Moon sys-
tem is a special case of constructing a dynamical
system of interacting celestial bodies governed by the
three classical laws of Newtonian mechanics and the
law of gravity. This results in a one-parameter (equal
to the time of the motion) group of mappings based
on a simple differential operator. However, studies of
this operator give rise to sophisticated mathemati-
cal problems, such as the Earth’s rotational motion
and the three-body problem for the Sun, Earth, and
Moon.

In a classical representation, these problems cor-
respond to those for conservative mechanical systems
governed by canonical Hamilton equations. Detailed
1063-7729/03/4706-0525$24.00 c©
consideration of this question shows that the classical
forms of the equations do not take into account a
number of features associated with coupled oscilla-
tions in the Earth–Moon–Sun system, which can
sometimes lead to discrepancies between themodeled
and real motions.

In a system of coupled bodies, the oscillations of
the individual bodies change their forms. A model
describing themost important and fundamental prop-
erties of coupled oscillations in the Earth–Moon sys-
tem was proposed in [1–3]. This model enabled us to
apply known analysis and calculation techniques. The
analysis yielded a theoretical period for the natural
oscillations of the Earth in the Earth–Moon system,
with this period being equal to the mean Chandler
period derived from observational data on the coor-
dinates of the Earth’s pole.

The fundamental kinematic features of oscillations
are their period and amplitude. Two basic models for
the Chandler wobble are encountered in the literature:
the “damped” model and the varying-period model.
Being a free motion, the Chandler oscillation ought
to be damped, but astronomical observations over the
last 150 yrs have given no indications of gradually
decreasing amplitudes.

Numerous studies of the Chandler wobble (under-
taken by Chandler, Kimura, Berg, Nicolini, Melchior,
and others) have suggested that its period varies with
in time. The variable period is related to the variable
2003 MAIK “Nauka/Interperiodica”
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amplitude in accordance with the empirical laws pro-
posed by Melchior [4].

(1) The Chandler period fluctuates, with the max-
imum deviation from the mean being about±4%.

(2) The period and amplitude of the Chandler wob-
ble are proportional to each other, with the correlation
coefficient being +0.88 (according to Nicolini).

(3) Increases in the Chandler period are correlated
with small amplitudes of the annual motion.

The unambiguous physical interpretation of these
laws requires that we understand the origins of the
variations in the amplitude and period. Recently,
attention has mainly been focused on atmospheric,
seismic, and tidal forces associated with changes in
the period and amplitude of the free oscillation of the
structurally inhomogeneous Earth.

However, the source and excitation mechanism of
this oscillation remain open to question. It is generally
believed that any movable component of the Earth
could be responsible for this oscillation, and it is usu-
ally easier to eliminate possibilities than to confirm
them [5].

Our approach [3] to explaining the behavior of the
amplitude and period of the Earth’s free oscillations is
based on the following assertions.

(1) The main origin of variations in the period
and amplitude of the Earth’s free oscillations in the
Earth–Moon system is interactions between coupled
oscillations and the physical properties of the system.

(2) The redistribution of energy involves all mov-
able components of the Earth, including its atmo-
sphere.

2. PARAMETRIC ACTION
IN THE EARTH–MOON SYSTEM

The frequency ω0 of the natural oscillations and
the damping coefficient δ are determined solely by
the physical properties of the system. An analysis of
external actions on the Earth–Moon system must
distinguish between force and parametric actions.
Force actions do not change ω0 and δ. Pure force
actions can act only in the case of an ideal, linear,
model of the Earth–Moon system. On the contrary,
parametric actions change only ω0 and δ.

For the real Earth–Moon system, which is funda-
mentally nonlinear, pure force and parametric actions
cannot be separated, since the growing amplitude of
either an external force or of forced oscillations will
give rise to a nonlinear dependence of the energy-
consuming parameter ρ on the instantaneous exter-
nal force (ρ is the distance between the Earth’s and
Moon’s centers of mass). Such an action can be
considered hybrid, i.e., both force and parametric [6].
This circumstance severely complicates the anal-
ysis of forced actions in the nonlinear system, even in
a conservative approximation, and limits the correct-
ness of treatments of a direct force action that do not
take into account the simultaneous parametric action
on the system.

It thus seems reasonable that, when consider-
ing a purely parametric action on the amplitude and
frequency of the Earth’s natural oscillations in the
Earth–Moon system, we should not contrast this
with the case of a force, or direct, action.

To analyze a parametric action, we will classify
actions according to various scenarios for inputting
energy into the system, which is the most important
factor for resonance phenomena.

In the case of a direct action, the direct work of
external forces during the system’s motion provides
the energy of forced oscillations. In the case of a
parametric action, increases in the oscillation energy
are due to the transformation of energy from one form
to another.

According to general parametric-resonance the-
ory, a process with growing amplitudes that provides
partial or full compensation for energy losses in a
system can be realized via the periodic variation of
the energy-consuming parameter, if there are certain
relations between the frequency of this variation and
the natural frequency of the system. In particular, the
amplitude of natural oscillations at the frequency ω0

can be recovered by analyzing the internal properties
of the system.

The internal interaction reaches its maxima and
minima when the Moon is at perigee and apogee,
respectively. We can treat an elliptical motion with
a small eccentricity as a free oscillation near the
corresponding circle. Similarly, we can treat the real
motion of the Moon as a free oscillation near an orbit
with radius of curvature ρ0 = a, where a is the mean
distance between the Earth’s and Moon’s centers of
mass, which corresponds to the mean motion n along
the unperturbed orbit.

For small deviations of the Moon from the equi-
librium motion, we can express the increment of the
oscillation energy in the form

∆W =
k

2

(
1

ρ0 − ∆ρ
− 1
ρ0 + ∆ρ

)
, (1)

where k = GmEmM ,G is the gravitational constant,
and mE and mM are the masses of the Earth and
Moon, respectively.

Using the inequality ∆ρ� ρ0, we obtain from (1)
the expression

∆W = W0
2∆ρ
ρ0
, (2)
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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whereW0 is the potential energy of the Earth–Moon
system for the equilibrium rotation.

The modulation depth for the parameter ρ is

m =
ρmax − ρmin

ρmax + ρmin
. (3)

In (3),m = e; i.e., it is the eccentricity of the Moon’s
orbit.

Parametric excitation (parametric resonance) re-
quires that there be a certain relation between the
frequency ωρ of variations of the parameter ρ and the
frequency ω of the excited oscillations.

The mathematical description of the periodic vari-
ation ρt with respect to ρ0 takes the form

ρt = ρ0/[1 + e cos(2ωt)], (4)

where the frequency of the periodic variations ρt is
2ω = ωρ, which, in turn, is determined by the expres-
sion

ωρ =
1
2

√
(ω2

a − ω2
c )/2. (5)

In this case, ωa and ωc are the cyclic frequencies of
the anomalistic and synodic motions, respectively.

The periodic variations in the energy-consuming
parameter ρt with the frequency ωρ excite an oscilla-
tion with the frequency ω ∼= ω0.

In the general theory of oscillations for a one-
dimensional system, the parametric resonance is
mathematically described by the differential equation

ξ̈ + ϕ1(t)ξ̇ + ϕ2(t)ξ = 0, (6)

where ϕ1(t) and ϕ2(t) are periodic functions of time.

Substituting ξ = z exp
{
−1

2
∫
ϕ1(t)dt

}
, we trans-

form this equation into the Hill equation

z̈ + ψ(t)z = 0, (7)

where ψ(t) = ϕ2(t) −
1
2
ϕ̇1(t) −

1
4
ϕ2

1(t) is a periodic

function.
The Mathieu equation is a special case of the Hill

equation:

ÿ + ω2
0[1 +m cos(ωρt)]y = 0, (8)

where the ω0,m, and ωρ in (8) are the same as above.
The general solution of this equation takes the

form

ξ = c1χ(t)eβt + c2χ(−t)e−βt, (9)

where χ(t) are restricted functions whose period is
equal to the period of the variations of the energy-
consuming parameter or to half this period, and the
complex number β is the characteristic index. A com-
plete analysis of solutions of the Mathieu equation is
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 1. The parametric resonanceA2(ω2) for a conserva-
tive, nonlinear Earth–Moon system.

rather complicated for linear problems, and even more
so for nonlinear ones.

Let us consider only the most important features
of the system, under assumptions that will enable
us to correctly estimate the character of the para-
metric resonance for the important case when the
natural frequency ω(t) differs only slightly from some
constant value ω0. In addition, we will take into ac-
count the nonlinear character of the oscillations of
the energy-consuming parameter (4), which result in
certain qualitatively new features of the motion.

Equation (8) then takes the form

ẍ+ ω2
0 [1 + e cos(2ωt)] f(x) = 0, (10)

where f(x) is a function describing the nonlinear
characteristics of the system. We will assume that

f(x) = x+ γx3, (11)

where the coefficient γ describes the degree of nonlin-
earity.

In accordance with the interconnected nature of
the oscillations in the Earth–Moon system, we will
assume

γ = ±
√

1 + (4λ)2/2, (12)

where λ is the non-dimensional coupling coefficient
for the Earth–Moon system [3].

For a given modulation depth e of the parameter
ρ in (10), there are certain regions of ω near the
frequencies ω0/ω = 1, 2, 3, ..., n in which the equilib-
rium motion becomes unstable, and oscillations with
the frequencies ω, 2ω, 3ω, etc., should arise and grow
in the system.

In our approximate analysis of (10), we will con-
sider only the solution with the frequency ω corre-
sponding to the first region of instability near ω = ω0.
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Boundaries of the first region of parametric excitation of the
Chandler oscillation

e 0.0448 0.0549 0.0650

P0 = 433.4 (days)
P1, days 428.6 427.6 426.5

P2, days 438.3 439.4 440.6

P0 = 435.3 (days)
P1, days 430.5 429.4 428.4

P2, days 440.3 441.4 442.6

Let the approximate solution of (10) take the form

x = a cos(ωt) + b sin(ωt), (13)

that is, it is a steady-state oscillation with a frequency
equal to half the frequency of the parametric action,
which corresponds to the first region of the parametric
excitation. In this case, the amplitude of the steady-
state solution is A =

√
a2 + b2 and its phase is ϕ =

arctan(a/b). Substituting (13) into (10), after some
manipulations also using (11), we obtain the two
coupled equations

ω2
0a

(
1 +

3γ
4
A2

)(
1 +

1
2
e

)
− aω2 = 0, (14)

ω2
0b

(
1 +

3γ
4
A2

)(
1 − 1

2
e

)
− bω2 = 0.

The solutions of these equations are the following.

(1) a = b = A = 0. There is no periodic steady-
state motion. This is a possible equilibrium state. The
real existence of such a state for the given parameters
of the system and external actions is determined by
the stability of this state.
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Fig. 2.Mean amplitudes of the Chandler wobble.
(2) Taking a �= b and b = 0, we obtain

ω2
0

(
1 +

3γ
4
A2

)(
1 +

1
2
e

)
= ω2, (15)

whence

A2 =
4
3γ


 ω2

ω2
0

(
1 +

e

2

) − 1


 . (16)

The amplitude A is real (A2 > 0) for γ > 0 only if
ω2

ω2
0(1 + e/2)

− 1 > 0, that is, if ω/ω0 >
√

1 + e/2,

ω > ω1 = ω0

√
1 + e/2.

(3) When a = 0 and b �= 0, the second equation of
(14) yields

A2 =
4
3γ


 ω2

ω2
0

(
1 − e

2

) − 1


 , (17)

which means that the condition for a real solution is
ω/ω0 >

√
1 − e/2, ω > ω2 = ω0

√
1 − e/2.

When γ < 0 (the mean frequency decreases with
amplitude), the steady-state amplitude takes the form

A2 =
4

3|γ|

[
1 − ω2

ω2
0(1 ± e/2)

]
. (18)

(4) When a �= 0 and b �= 0, Eqs. (14) are inconsis-
tent.

Let us represent the amplitude (18) graphically.
Figure 1 shows the amplitude A2 (18) as a function
of ω2. The frequencies ω1 and ω2 correspond to the
boundaries of the first region of parametric excitation
of free oscillations. These frequencies were obtained
from the condition that there be a real solution of (14),
and have the form

ω1 = ω0

√
1 + e/2, (19)

ω2 = ω0

√
1 − e/2.

The table presents the boundaries (the periods P1

and P2) of the first region of parametric excitation
for two mean periods of the Chandler wobble P0 and
for three eccentricities of the Moon’s orbit e. The
mean value P0 = 433.4 days is calculated for the case
when the frequency ω of the excited oscillations is
equal to the natural frequency ω0; that is, ωρ = 2ω0, in
accordance with (5). Themean valueP0 = 435.3 days
is obtained from a statistical analysis of data on the
coordinates of the Earth’s pole obtained over the last
100 years.

The table shows that the widths of the interval
of variations in the mean period as a result of the
parametric excitation are 2.2, 2.7, and 3.3% for the
three eccentricities.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Taking into account the dissipation and amplitude
deformations resulting from the forced processes can
broaden somewhat the interval of changes in the
mean period.

We can describe the behavior of the system for the
case of a parametric action with a given modulation
depth e as follows. The presence of oscillations with
their frequency ω falling in the interval ω1 − ω2 gives
rise to an oscillatory process with a finite amplitudeA
that depends on the degree of nonlinearity γ.

Due to the anisochronic nature of the system, in
the presence of parametric excitations, the natural
frequency varies with growth in the amplitude, and
the system moves to the boundary of the correspond-
ing region of parametric excitation. This leads to a
decrease in the energy contributed by the system to
changes in ρ and limits the growth in the amplitude of
the natural oscillations with the frequency ω0.

Let us compare our theoretical conclusions with
a numerical analysis of the coordinates of the pole
derived from observational data obtained over the last
century.

3. DISCUSSION OF THE RESULTS

We considered the coordinates of the pole xi and yi
averaged over 5-day intervals from 1900 to 1998. The
technique for the linear combination of exponential
functions [7] was applied to the data after they were
transformed into complex form.

Figure 2 presents the Chandler amplitude as a
function of the oscillation period. The parameters of
themodels were determined in intervals of 18 yrs, with
a time shift of 0.25 yrs. The plot in Fig. 2 was con-
structed by averaging the amplitudes for a single pe-
riod. The Chandler amplitude increases with increas-
ing period (decreasing frequency), in good agreement
with the theoretical conclusions for γ < 0 and with
the first and second empirical laws of Melchior.

The deviations from the mean period
(P = 435 days) were 1.15% toward increasing and
about 4% toward decreasing periods (Fig. 2). At
the same time, for the case of a “pure” parametric
excitation (see table), the maximum deviation from
the mean does not exceed 1.7% when the asymmetry
is no more than 0.1%.

In the interval 428–442 days, the deviation from
the mean period is 1.7% toward increasing and 1.6%
toward decreasing periods, in full agreement with the
period distribution presented in the table.

Changing the durationH of the time interval used
to determine the model parameters from 9 yrs to
18 yrs does not change the character of the inter-
relation between the Chandler amplitude and period.
ASTRONOMY REPORTS Vol. 47 No. 6 2003
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Fig. 3. Variations of the linear component of the mean
amplitudes of the Chandler oscillations for various inter-
valsH for the data.

Figure 3 shows the linear components of the ampli-
tude variations as functions of the Chandler period for
various values ofH . The slope increases somewhat as
H increases.

The correlation coefficient for the linear relation
between A and P is 0.92 for periods from 429 to 442
days.

4. CONCLUSIONS

(1) The variations in the amplitude and period of
the Chandler oscillation determined by a parametric
action with a given modulation depth e and γ < 0 are
in full agreement with the first and second empirical
laws of Melchior, and also with the results of numer-
ical modeling using experimental data obtained over
the last century.

(2) The boundaries for the amplitude and period of
the Chandler wobble are determined by the nonlinear
character of the variations in the energy-consuming
parameter ρ and by changes in the physical condi-
tions of the Earth–Moon system associated with the
motion of the barycenter.
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