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Abstract—The idea is suggested that the neoclassical tearing modes in shear-optimized discharges in toka-
maks can be suppressed by a magnetic well. It is noted that this effect can be strengthened by shaping magnetic
surfaces due to the combined influence of ellipticity and triangularity. © 2000 MAIK “Nauka/Interperiodica”.
1. It is known that shear-optimized discharges are
one of the most prospective variants of long confine-
ment of high-temperature plasma in tokamaks [1, 2]. It
is also known that one of the basic obstacles for achiev-
ing sufficiently high β are neoclassical tearing modes
(NTMs) leading to the formation of magnetic islands
[3–6]. In this connection, the problem of the suppres-
sion of NTMs in the shear-optimized discharges
becomes urgent. In this work, the idea is proposed that,
under the specified conditions, NTMs can be sup-
pressed by a magnetic well. The precondition for this is
the fact that, in the region of the internal transport bar-
rier (ITB) arising in the discharges of the specified type,
the shear is small, the ion temperature is larger than the
electron temperature, and the gradient of the ion tem-
perature is larger than the density gradient [2]. This
strengthens the effect of a magnetic well, which, in
usual discharges, is small in comparison with the effect
of the bootstrap current, which is responsible for the
formation of magnetic islands [7, 8]. The effect of a
magnetic well can be reinforced even more due to the
noncircular shape (ellipticity and triangularity) of the
magnetic surfaces.

2. Let us generalize the equation for stationary
islands derived in [9] by taking account of the magnetic
well. We will cite the formulas of [9] as (I…). We start
from the known equation for the stationary magnetic
island of the form (I.5.1) (see also [10] and Appendix):

(1)

Here, w is the island width; ∆' is the standard parameter
of the theory of tearing modes, which is assumed to be
negative (for instance, ∆' = –2m/r for m @ 1, m being
the poloidal mode number); B0 is the toroidal magnetic
field; Ω is the surface function of the island explained
in [9] (see also Appendix); ξ is the angle variable of the
island; χ is the poloidal magnetic flux; σχ = sgn(χ – χs),
χs is the “centering” magnetic flux of the island; S =
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rq'/q is the shear; q is the safety factor; r is the average
radius of the corresponding equilibrium magnetic sur-
face; the prime denotes the derivative over r; R0 is the
major radius of the torus; c is the speed of light; and J||
is the parallel current, equal to

(2)

Here, Jbs is the bootstrap current and  is the part of J||

dependent on ξ and satisfying the condition 〈 〉 ξ = 0,
where 〈…〉ξ stands for the averaging over the island
magnetic surface (see [9] for details).

It is assumed that, in the considered region of the
plasma column, the banana regime is realized; i.e., ν <
e3/2vT/qR0, where ν is the characteristic particle colli-
sional frequency, vT is the particle thermal velocity, and
e = r/R0. In addition, similar to [10], it is assumed that
e ! 1.

We assume that the current  arising due to the cur-
vature of the magnetic field lines satisfies the equation

(3)

where

(4)

Here, B and p are the total magnetic field and the total
plasma pressure, respectively (the sums of the equilib-
rium and perturbed parts). The operation (…)θ means
the averaging over the poloidal coordinate θ at constant ξ.
Correspondingly, equation (1) can be represented in the
form [cf. (I.5.3)]

(5)

where ∆bs is the contribution of the bootstrap current
and ∆U is due to the magnetic curvature effect.
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The value ∆bs was calculated in [9]. According to
(I.5.51), it is equal to

(6)

Here, Kbs and cbs are given by the formulas

(7)

(8)

where k = [2/(Ω + 1)]1/2; E(k) is the complete elliptical

integral of the second kind; βpe = 8πn0Te/ , Bθ is the
poloidal magnetic field; τi = Ti/Te; and n0, Te, and Ti are
the equilibrium plasma density and electron and ion
temperatures, respectively.

According to (1), (2), and (5), we have

(9)

It follows from [9] that

(10)

where

(11)

Using (4), we find that, in terms of the variables ξ
and θ,

(12)

where

(13)

Here, p0 is the equilibrium plasma pressure and 〈…〉
stands for the averaging over the equilibrium magnetic
surfaces.

It follows from [9] that the total plasma pressure is
a function of the island magnetic surface; i.e., p = p(Ω).
Then, in terms of ξ, θ, and Ω, we have

(14)
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where subscript r denotes that differentiation is per-
formed at a constant r. Then, from (12) we obtain

(15)

Using (10), (11), and (15), we represent (3) in the
form

(16)

Hence,

(17)

Then, (9) takes the form

(18)

One can obtain from [9] that

(19)

where h(Ω) is the function explained in [9]. Then, we
obtain

(20)

According to (I.2.20) and (I.5.50), we have

(21)

It follows from (8), (18), (20), and (21) that

(22)

where

(23)

Substituting (6) and (22) into (5), we obtain
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It follows from (24) that, for ∆' < 0, the stationary mag-
netic island is absent if
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This inequality is the criterion for suppression of neo-
classical magnetic islands by a magnetic well.

According to formula (2.79) of [11], the vacuum
value of w' in a noncircular tokamak can be represented
as

(26)

where e is the ellipticity and τ is the triangularity of the
magnetic surfaces. These values are determined in such
a way that the equation for a magnetic surface of aver-
age radius r has the form

(27)

where ρ and θ are the polar coordinates related to the
center of this surface. Using (23) and (26), we find

(28)

3. Criterion (25) can be represented in the form

(29)

where

(30)

Substituting (7) and (28) into (30), we obtain

(31)

where ηα = ∂lnTα /∂lnn0, α = e, i.
The standard discharges are characterized by S . 1,

Ti . Te, ηe . ηi . 1, and 6eτ/e < 1. Then, we have

(32)

Therefore, the magnetic well is of minor importance for
NTMs in such discharges.

On the other hand, in the ITB region, in the shear-
optimized discharges [2], we have S ! 1, Ti > Te , and
ηi > 1. If, in addition, the magnetic surfaces are noncir-
cular so that 6eτ/e > 1, the criterion for NTM stabiliza-
tion (29) may be satisfied.
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APPENDIX

In the presence of a magnetic island, the total mag-
netic field B takes the form (see [9] for details)

(A.1)

where B0 and  are the equilibrium and perturbed
magnetic fields, respectively, defined by

(A.2)

(A.3)

Here, R is the major radius, ψ is the perturbed magnetic
flux equal to

(A.4)

φ and θ are the toroidal and poloidal angles, Bφ and Bθ
are the toroidal and poloidal components of the mag-
netic field B0, and  is a positive constant. In terms of
the island width w, we have

(A.5)

According to Ampére’s law, the parallel current J|| ≡
b · j (where b = B0/B0 and j is the current density) asso-
ciated with magnetic field B is equal to

(A.6)

Introducing x ≡ r – rs, we integrate (A.6) weighted with
cosξ over x within an interval much wider than the
island and over ξ within the interval –π ≤ ξ ≤ π and use
the matching condition
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to obtain

(A.8)

In addition, according to [9], we have

(A.9)

so that

(A.10)

Then, (A.8) takes the form

(A.11)

Substituting  from (A.5) and taking into account
that, in the case of a weak deviation of the magnetic
surfaces from the circular ones, Bθ = eB0/q, in which we
are interested here, we arrive at (1).
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It worth noting a discrepancy in [9, 10]: in the initial
formulas of these papers, as well as in our formula (1),
w denotes the width of the magnetic island, whereas in
some other equations in [9, 10], w denotes the half-
width of the island.
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Abstract—Results are presented from numerical studies of the magnetic field lines and the charged-particle
trajectories in the magnetic system of the DRAKON device and of its curvilinear element—the KREL with
magnetic mirrors. For the KREL, mirror ratio values are found that do not worsen the particle-drift compensa-
tion. The dimensions of the input region for the electrons injected into the KREL to create the beam–plasma
discharge are calculated. Calculations show that, in the paraxial approximation, after multiple passes around
the device, the magnetic field lines and trajectories of individual transit particles form a system of embedded
toroidal surfaces with circular cross sections. When symmetrically changing the current distributions in the
coils of the device, these surfaces shift with respect to their previous positions, but their shape remains the same.
For the DRAKON device with helical KRELs, the shift of the drift surfaces with respect to the magnetic sur-
faces, as well as the flow of the longitudinal diamagnetic currents from the KRELs into the rectilinear regions,
is found as a function of the pitch angle θ of the KREL helix. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The long equilibrium stellarator configuration
DRAKON, which was proposed in 1981, consists of
two separate equilibrium parts: two rectilinear regions
with a uniform magnetic field and two curvilinear ele-
ments (KRELs) that close the system [1]. Equilibrium
of the system elements means that the diamagnetic
plasma currents do not go beyond its boundary. This
property of the magnetic configuration can be experi-
mentally verified only in a closed magnetic confine-
ment system. However, according to theoretical esti-
mates [1], the knowledge of the toroidal drift trajecto-
ries of individual particles in a curvilinear magnetic
field allows us to evaluate the behavior of the diamag-
netic plasma currents. If the KRELs are such that, after
passing through the curvilinear region, the Larmor cen-
ter of the particle comes into the vicinity of the same
magnetic field line on which it was at the input to the
KREL (drift compensation), then the flow of the longi-
tudinal diamagnetic currents from the KREL into the
rectilinear regions will be small even in a closed mag-
netic confinement system. The degree of compensation
is determined by the residual drift—the distance
between the Larmor center and the initial magnetic line
at the output of the curvilinear element.

In this paper, we study numerically the properties of
the DRAKON closed magnetic confinement system for
different types of curvilinear elements. In Section 3, we
consider the effect of the magnetic mirrors on the elec-
tron-drift compensation in an individual geodesic
KREL. Section 4 describes the influence of various cur-
rent distributions in the system windings on the posi-
tion and shape of the magnetic and drift surfaces in the
DRAKON with KRELs consisting of three half-tori. In
1063-780X/00/2605- $20.00 © 20379
Section 5, we optimize the DRAKON-1 system with
helical KRELs with respect to the pitch angle θ of the
helix in order to decrease both the flow of the longitu-
dinal diamagnetic current from the KRELs into the rec-
tilinear regions and the departure of the drift surfaces
from the magnetic ones.

2. CALCULATION OF THE MAGNETIC FIELD 
LINES AND ELECTRON TRAJECTORIES

As a model for the vacuum magnetic field, we used
the field of a system of thin current coils with radius a.
The winding current J was chosen so that the value of
the magnetic field B satisfied the proposed projects [2].
The magnetic field of an individual coil was calculated
by the Biot–Savart formula. The calculation algorithm
is described in more detail in the Appendix.

The magnetic field lines were calculated from the
equations

(1)

by the third-order Runge–Kutta method with an auto-
matic step selection. Here, the total field B of the sole-
noid is the superposition of the fields of N coils, B =

, and l is the length of the field line.

The equations of motion of a charged particle in the
magnetic field are

dx
dl
------

B
B
----,=

Bkk 1=
N∑
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(2)

where v is the particle velocity, e and m are the particle
charge and mass, and c is the speed of light. In the mag-
netic field, the energy of the charge particle is constant
(v = const); then, by using the relations dlp = vdt and

 = vt (where lp is the length of the trajectory and t is

the tangent vector), the set (2) can be presented in the
form

(3)

The simultaneous solution of equations (1) and (3)
gives the particle trajectory and the field line, along
which the particle begins to move. Its drift D with
respect to the “starting” field line in the plane of a cer-
tain current coil is determined as the distance between
the points of intersections of the field line and the tra-
jectory of the particle Larmor center with the coil plane.

3. NUMERICAL INVESTIGATION 
OF THE MAGNETIC FIELD STRUCTURE 
AND THE CHARGED-PARTICLE DRIFT

IN THE KREL DEVICE WITH MAGNETIC 
MIRRORS

The closing of the KREL currents can be provided
by the appropriate choice of the configuration of the
KREL spatial axis. The simplest version is a 3/2-T
KREL, which consists of three half-tori rotated 120°
with respect to each other in the joining regions [3].
Another version, the geodesic KREL, has been con-
structed at the Moscow Engineering Physics Institute
(MEPI) [4, 5]. This KREL consists of two periods of
the five-period helical torus whose spatial axis is the
geodesic line on the surface of a torus with a 40-cm
major radius and 12-cm minor radius. It is shown
experimentally that this KREL contains an equilibrium
region (~1.5 periods long), where the electron drift is
almost completely compensated [4, 5]. The KREL
device can be supplemented with magnetic mirrors [in
the end regions (0.25 periods long), the axis is rectified
and the current in the coils is increased]. The rectified
axis behind the ends of the equilibrium region models
the magnetic mirrors attached to the KREL and allows
investigation of their influence on the particle-drift
compensation. The magnetic mirrors are also required
in order to produce a plasma with a beam–plasma dis-
charge (BPD) inside the KREL. In this connection, it is
necessary to find such values of the mirror ratio R that
do not cause a loss of equilibrium and an additional

dx
dt
------ v,=

dv
dt
------

e
mc
------- B v,[ ] ,=

dx
dt
------

dx
dlp

------- t,=

dt
dlp

-------
e

mvc
----------- B t,[ ] .=
excursion of both the magnetic field lines and particle
trajectories on the chamber wall.

Calculations were performed for a KREL with mag-
netic mirrors. The model included 40 thin current coils
with radius a = 7.5 cm, which were equidistantly posi-
tioned along a 178-cm-long system; the distance
between the coils was d = 0.6a. In [4, 5], it was shown
that the equilibrium region in the geodesic KREL cov-
ered the region from fourth to 36th coil. In the KREL
with magnetic mirrors, additional end coils of the geo-
desic KREL (from first to fourth and from 37th to 40th)
were positioned along the straight line whose direction
was determined by the normal to the planes of the
fourth and 36th coils, respectively; the current in these
coils was varied. We calculated the drift trajectories of
electrons starting from the plane of the fourth coil at a
distance r < 0.1a from the geometrical axis. The longi-
tudinal Larmor radius of these electrons, which was
calculated by the total velocity, was ρ* = mevec/eB =
0.03a–0.16a; the electron energy was W = 100–
2400 eV; and the magnetic field on the axis of the equi-
librium region was B ≈ 140 G.

The rectified axis behind the ends of the equilibrium
region causes a decrease in the rotational transforma-
tion. As a result, the drift compensation somewhat
worsens; i.e., the residual drift Dr defined as the dis-
tance between the Larmor center of an electron and the
starting field line at the output of the equilibrium region
increases (Fig. 1). In the geodesic KREL, we have Dr <
0.15Dmax, where Dmax is the maximum electron drift (in
the center of the KREL). When the rectilinear regions
are included, Dr increases to 0.25Dmax. With the recti-
fied axis and decreased current in the rectified coils
(which corresponds to the simulation of the DRAKON
device), when the average field value in the KREL is
higher than the average field in the rectilinear region,
the electron-drift compensation worsens: for R =
B1/B0 = 0.3, Dr increases to 0.4Dmax (here, B1 is the
magnetic field on the axis of the fourth coil and B0 is the
field on the axis of the 20th coil). As R increases, the
residual drift decreases and reaches its minimum at a
certain value Ropt. Then, the residual drift increases as
the mirror ratio increases to Rmax, when the electrons
start to leave for the chamber wall. The values of Ropt
and Rmax depend on the position of the particle starting
point, the particle energy, and the direction of the start-
ing velocity. In this case, in the range of R from 1 to 3,
Dr does not exceed 0.25Dmax. Figure 2a shows the influ-
ence of the mirror ratio R on the value of Dr/Dmax for
different starting points of electrons with the energy
W = 100 eV that begin to move along the field lines
(Fig. 3). In Fig. 2, n and b are the coordinates (in cm) in
the directions of the normal and binormal to the geo-
metrical axis in the plane of the starting coil. It is seen
from the figure that the values of Ropt and Rmax depend
strongly on the position of the particle starting point:
Ropt varies from 0.9 to 2.7 and Rmax varies from 3 to 5.8.
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
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The effect of R on the value of Dr/Dmax as a function of
the particle energy is shown in Fig. 2b for the electrons
starting along the magnetic field lines from the point n
= 0 and b = 0. It is seen that the increase in the electron
energy shifts Ropt toward larger R, whereas Rmax does
not change. Calculations show that the change in the
angle between the direction of the starting velocity of
an electron and the magnetic field direction, as well as
the rotation of the velocity vector around the vector B,
has no effect on the values of Ropt and Rmax. Thus, the
increase in the current in the transient regions (when
the average field is higher than the average field in both
the magnetic mirror devices and the KREL) improves
the particle-drift compensation. However, the increase
in the current in the additional coils leads to the pertur-
bation of the magnetic field in the KREL by the addi-
tional magnetic fluxes emerging from the mirrors. The
shift of the field lines decreases the amount of electrons
that are able to pass along the KREL without contact
with the chamber wall. The reason is that some field
lines emerge from the chamber, thus carrying the drift-
ing particles onto the wall. We calculated the regions S1

and S2 in the input section of the chamber (Fig. 3) such
that the field lines starting from S1 and electrons with
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Fig. 1. Shift D of the electrons with energy W = 800 eV
coming out of the center of the fourth coil along the mag-
netic field lines as a function of the coil number N in (1) the
geodesic KREL and (2–4) KREL with the axis rectified
behind the ends of the equilibrium region for R = (2) 0.9, (3)
Ropt, and (4) 0.3.
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ρ* ≈ 0.09a starting from S2 stay in the KREL over its
entire length. The figure shows the boundaries of these
regions calculated for eight azimuthal directions. The
regions are symmetric about the direction making an
angle of 45° with the direction of the binormal to the
geometrical axis of the KREL in the plane of the fourth
coil. As is seen from Fig. 3, the regions shift only
slightly in the fourth quadrant, where the proximity to
the curvature center provides a higher field. The stron-
gest shifting takes place in the second quadrant, where
the average magnetic field is lower. When the plasma is
produced with a BPD, it is necessary to take into
account the electron loss on the chamber wall and, for
the chosen mirror ratio, place the electron gun inside
the calculated region.

For the KREL with the magnetic mirrors, we recom-
mend the mirror ratio R = 1–3. In this case, for the elec-
trons with the longitudinal Larmor radius in the range
0.03a < ρ* < 0.16a that enter the KREL at a distance r <
0.1a from the geometrical axis, the residual drift
increases only slightly (at most to 0.25Dmax) and the
electrons do not fall on the chamber wall.
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Fig. 2. Dr/Dmax as a function of the mirror ratio R for differ-
ent values of the electron energy W and different positions
of the starting point (n = 0, ±1, and b = 0, ±1): (a) for W =
100 eV at (1) n = 0 and b = 0, (2) n = 1 and b = 0, (3) n = −1
and b = 0, (4) n = 0 and b = 1, and (5) n = 0 and b = –1;
(b)  for n =0 and b = 0 at W = (1) 100, (2) 400, (3) 800,
(4) 1600, and (5) 2400 eV.
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4. CALCULATION OF THE MAGNETIC FIELD 
STRUCTURE AND THE CHARGED-PARTICLE 
MOTION IN A DRAKON WITH A 3/2-T KREL

The development of the first experimental DRA-
KON magnetic confinement device [2] required the cal-
culation of its vacuum magnetic field structure and
analysis of the motion of the individual charged parti-
cles in it (single-particle approximation). For analysis,
we chose a DRAKON with 3/2-T KRELs. In the math-
ematical model, 180 thin coils were positioned along
the 144-cm-long system. Each KREL consists of
60 coils, and each of the rectilinear regions consists of
30 coils. The radius of the current-carrying coils in the
rectilinear regions was a = 4 cm and that in the KREL
was 0.6a. The current in the coils of the rectilinear
regions was J = 600 A, and, in the KREL, it was 3J. The
distance between coils was d = 0.2a. The average mag-
netic field was 1 kG in the rectilinear region and 3 kG
in the KREL. We studied the motion of electrons with
an energy of W = 50 keV (ρ* ≈ 0.2a) starting from the
plane of the central coil of the rectilinear region at a dis-
tance r < 0.1a from the axis along the magnetic field
line. The size of the model system was chosen to be
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Fig. 3. Domains S1 for the magnetic field lines in the input
cross section of the KREL (solid line) and S2 for the trajec-
tories of the electrons with the energy W = 800 eV (dashed
line) that do not fall on the wall for different values of the
mirror ratio R = (1) 0.9, (2) 1.6, (3) and 3.3; (4) domain S3
in the plane of the central coil of the rectilinear region of a
DRAKON with a 3/2-T KREL for the trajectories of the
electrons with energy W = 50 keV that do not fall on the
chamber wall after a single passage around the system.
small so as to save on computation time. The results of
calculations carried out with the use of a 12-m-long
full-scale model with 450 coils (with radius a = 10 cm
and the distance between coils d ≈ 0.2a) are in agree-
ment with those of the small-scale model. Computation
time is saved because, in the small-scale model, the
number of coils is less by a factor of 2.5, the relative
distance between coils being the same. Moreover, in the
small-scale model, the ratio of ρ* to the axis length is
increased approximately by a factor of 8; as a result, the
trajectory becomes smoother, which additionally
reduces computation time.

The key problem of closed magnetic confinement
systems is the problem of the existence of the magnetic
surfaces. To find the magnetic surface, we traced the
magnetic field line over 100 passages along the system,
whereas the closed spur of the surface in the plane of
the central coil of the rectilinear region was formed
already after 20–30 passages. After a single passage,
the calculation error did not exceed 10–4 cm. The sur-
faces were calculated for the distance from the axis r <
0.25a. These surfaces are circular in shape, and their
axis (magnetic axis) is shifted with respect to the geo-
metrical axis. The deviation of the magnetic axis from
the geometrical one in the rectilinear region results
from the fact that, when the magnetic field lines enter
the magnetic mirror devices from the KRELs, they can-
not instantly “forget” about their curvature. In the cen-
ter of the rectilinear region, this shift can attain a max-
imum value of 0.03a for a length of the magnetic mirror
device of L = 6a.

The drift surfaces were sought by analogy with the
magnetic surfaces: the trajectory of a transit electron
with energy W = 50 keV was calculated instead of the
magnetic field line. After the electron trajectory made a
single passage around the device, the calculation error
also did not exceed 10–4 cm. The surfaces were calcu-
lated for the distance r < 0.25a from the axis. The cross
sections of the drift surfaces are circular in shape, and
their axis is shifted with respect to both the geometrical
and magnetic axes. The shift of the axis of drift surfaces
with respect to the magnetic axis is proportional to ρ*.

In order to examine the stability of the system of the
magnetic and drift surfaces with respect to the symmet-
ric change in the distribution of the currents Jk in the
DRAKON coils, we investigated two regimes.

In the first regime, the current in the coils (from sec-
ond to 18th) of the central half-tori of both KRELs was
increased to 4J. Electrons that start near the axis in the
magnetic mirror device pass through the region with a
reduced magnetic field (∆B/B = 21–38%) in the central
region of the KREL. The increase in the current of the
coils in the central half-tori reduces the ratio ∆B/B by
more than one-half; this results in a decrease in the
number of particles trapped in this magnetic well when
the plasma is produced near the axis of the magnetic
mirror device.
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In the second regime, the current was increased in
both the coils of the central half-tori (to 4J) and in the
five coils of the rectilinear regions near the KREL
(to 3J). As before, in this case, ∆B/B = 10–18% and the
magnetic field at the ends of the magnetic mirror
devices is equal to the average field in the KREL. The
increase in the magnetic field at the boundaries of the
rectilinear region results in a double decrease in the
number of particles that are confined by the magnetic
mirror but, at the same time, penetrate into the curvilin-
ear magnetic field of the KREL, where they experience
the uncompensated drift and leave the device.

Calculations show that, when the current in the coils
of the central half-tori is increased, the magnetic field
lines (including the magnetic axis) in the magnetic mir-
ror device turn out to be shifted (Fig. 4, regime 1)
because of the perturbations of the magnetic field in the
rectilinear regions by the magnetic fluxes coming out of
the KREL. With the simultaneous increase in the cur-
rent of the boundary coils of the magnetic mirror
devices, this shift should decrease, which was observed
in calculations (Fig. 4, regime 2). When Jk changes, the
axis of the drift surfaces shifts following the magnetic
axis. In both regimes, the shape of both the magnetic
and drift surfaces remains the same. Thus, calculations
show that the system of the magnetic and drift surfaces
is stable against the symmetric change in Jk in the DRA-
KON coils. This is evidence for the possibility of vary-
ing the current distribution in the device in question.

We also calculated the region S3 of radius ~0.25a in
the plane of the central coil in the rectilinear region
such that, if the passing electrons with ρ* ≈ 0.2a come
out of this region, they stay in the DRAKON over its
entire length (we take the radius of the KREL coil for
the chamber radius). Particles starting outside the S3
region fall on the chamber wall during the first passage
around the system because of the drift with respect to
the magnetic field lines (Fig. 3, region 4). Thus, we
determined the boundary of the domain where the
plasma can be produced in the rectilinear region of the
DRAKON device.

5. NUMERICAL INVESTIGATION 
OF THE MAGNETIC FIELD STRUCTURE 
AND THE CHARGED-PARTICLE MOTION

IN THE DRAKON-1 DEVICE

The design of the DRAKON-1 device for investigat-
ing the properties of the magnetic confinement system
has been proposed by MEPI. In this device, the geomet-
rical axis of each KREL consists of one turn of a helix
with additional regions of a quarter of a circle at the
ends. These end regions have the same curvature and
same direction of the normal to the solenoid axis at the
point of connection as the helix. The basic advantage of
this system is the absence of the jump in the curvature
of the KREL axis, which can assist in plasma confine-
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ment. The main parameters of the DRAKON-1 device
are presented in Table 1.

The device field was modeled by the field produced
by 282 thin coils. To reduce the computation time, the
length of the model axis was taken to be 15-fold shorter
than that of the real device, but the ratio of the distance
between coils to the coil diameter in the rectilinear
region was the same. In addition, cone-shaped transient
regions were introduced between the magnetic mirror
devices and KRELs and the coil radius in the KREL
was chosen such that the magnetic fluxes in the KREL
and in the rectilinear region were equal to each other.
The parameters of the numerical model of the
DRAKON-1 device are presented in Table 2.

We studied the influence of the pitch angle θ of the
KREL helix on the flow of the diamagnetic currents
into the rectilinear regions and the departure of the drift
surfaces from the magnetic ones.

Figure 5 presents the normalized shift d/ρ* of the
electron drift surfaces with respect to the magnetic ones
in the center of the rectilinear region as a function of θ.
The curves correspond to the starting points of the par-
ticle Larmor center and the magnetic field line located
at the distances R1 = a/8 (curves 1, 2) and R2 = a/2
(curves 3, 4) from the geometrical axis of the magnetic
mirror device for two values of ρ*: ρ* ≈ 0.015a (curves
1, 3) and ρ* ≈ 0.05a (curves 2, 4). For small R, there is

a plateau between θ = 41° and θ = 42° in the (θ)

curves. For R2 = a/2, the (θ) curves have minima at

θ = 42°. According to the general features of drift
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Fig. 4. Cross sections of the magnetic surfaces by the plane
of the central coil of the rectilinear region in a DRAKON
with 3/2-T KREL: (0) unperturbed regime, (1) the current in
the central regions of the KRELs is increased, and (2) the
current is increased in both the central regions of the KRELs
and the ends of the rectilinear regions.
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Table 1.  Basic parameters of the DRAKON-1 device

Rectilinear region KREL

Length along the axis, cm 300 300

Vacuum chamber diameter, cm 20 20

Diameter of the solenoid coil, cm:

inner 25 15

outer 35 35

Coil thickness, cm 0.4 0.4

Number of coils 200 300

Winding pitch, cm 1.5 1

Coil current, kA 1.2 2.4

Magnetic field on the axis, kG 1 3

Table 2.  Parameters of the DRAKON-1 model device

Rectilinear region KREL Transient region

Length along the axis, cm 18 20.3 0.9

Radius of the solenoid coil, cm a = 4 2.3

Number of coils 44 89 4

Winding pitch, cm 0.4 0.23 0.23

Magnetic field on the axis, kG 1 3
motion, electrons with higher energy have larger devi-

ation d ~ , where W is the particle energy.

Figure 6 shows  (α is the angle between the
“starting coil of the Pfirsh–Schluter currents” and the
plane perpendicular to the geometrical axis at the cen-
ter of the rectilinear region) as a function of θ. The
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Fig. 5. Normalized shift d/ρ* of the electron drift surfaces
with respect to the magnetic ones in the center of the recti-
linear region as a function of θ for (1) R1 = a/8 and ρ* ≈
0.015a, (2) R1 = a/8 and ρ* ≈ 0.05a, (3) R2 = a/2 and ρ* ≈
0.015a, and (4) R2 = a/2 and ρ* ≈ 0.05a.
starting coil of the Pfirsh–Schluter currents is defined
as a set of points on the magnetic surface such that the

integral U =  has the same value along all of the

magnetic-field-line segments that originate at this coil
and arrive at the same coil after a single passage around
the system.
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Fig. 6. The value of  as a function of θ for the starting
coils of the Pfirsh–Schluter currents on the magnetic sur-
faces with (1) R1 = a/8 and (2) R2 = a/2.
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This condition results from the following simple
considerations. Let there be two close magnetic sur-
faces with a circular cross section. Let their radii be r1
and r2 and the plasma pressure be p1 and p2. Then, the
relation

(4)

for the current flowing through the area bounded by the
field-line segments with length l on both boundaries
and the segments with length (r2 – r1) perpendicular to
the magnetic surfaces yields

(5)

From here, we have

(6)

If we find the starting coil of the Pfirsh–Schluter
currents using the above procedure and place the
Pfirsh–Schluter-current coils along the magnetic field
lines at the fixed distances l = l2 – l1 such that

(7)

then we can specify the closed currents j flowing along
these coils. The tilting angle α of the coils with respect
to the magnetic field lines determines the current com-
ponents j|| = jsinα and j⊥  = jcosα. By determining the
component

(8)

we find

(9)

at each point of the magnetic surface. Since the currents
between two coils flow in the layer between the mag-
netic surfaces, such that the closing condition
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holds, we found the steady-state current distribution
satisfying the conditions

(11)

which correspond to the plasma equilibrium.
The dependences presented in Fig. 6 (curves 1 and

2 plot  for the starting coil of the Pfirsh–Schluter
currents on the magnetic surfaces with R1 = a/8 and
R2 = a/2, respectively) show the minimum for the
Pfirsh–Schluter currents at θ = 42° in both the paraxial
and peripheral regions. Thus, the optimization of the
device by varying the parameter θ in order to bring
together the drift and magnetic surfaces gives θ = 41–
42°; the optimization carried out to reduce the Pfirsh–
Schluter currents in the rectilinear regions gives
approximately the same value. Therefore, the minimi-
zation of the shift of the drift surfaces with respect to
the magnetic ones is almost equivalent to the minimiza-
tion of the longitudinal diamagnetic currents.

6. CONCLUSION

Calculations of the magnetic field lines and
charged-particle trajectories in the KREL with mag-
netic mirrors showed that rectifying the axis behind the
ends of the equilibrium region and decreasing the cur-
rent in the rectified coils (i.e., modeling the DRAKON
device) lead to an increase in the residual electron drift.
As the mirror ratio R increases, the residual drift first
decreases and reaches its minimum at a certain value
Ropt. Then, the residual drift increases as the mirror
ratio increases to Rmax, when the particles begin to fall
on the chamber wall. The values of Ropt and Rmax are
functions of the starting point and energy of the parti-
cle. For a KREL with magnetic mirrors, we can recom-
mend the use of the mirror ratio R = 1–3. In this case,
first, the residual drift of the particles with ρ* < 0.09a
increases insignificantly (at most to 0.25Dmax) and, sec-
ond, the electrons with ρ* < 0.09a, which start from the
region with the radius r < 0.4a with respect to the geo-
metrical axis in the input section of the KREL chamber,
do not fall on the wall. Thus, we determined the region
appropriate for plasma production with a BPD.

In the paraxial approximation, the magnetic field
configuration of the DRAKON closed magnetic con-
finement device with 3/2-T KRELs is a system of
embedded toroidal magnetic surfaces with circular
cross sections. After multiple passages around the
device, the transit-particle trajectories form a system of
embedded surfaces. Thus, the small drift that remains
after the particle passes through the KREL is mainly
azimuthal rather than radial and does not lead to parti-
cle loss. The electrons that come into motion near the
axis in the magnetic mirror device, in the central region
of KREL, pass through the region with a reduced mag-
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— p
1
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--- j B,[ ] ,=

αtan
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netic field (∆B/B = 21–38%). If the current distribution
in the system coils is such that it halves this ratio and
reduces the penetration of electrons trapped in the rec-
tilinear regions into the KREL, then the magnetic and
drift surfaces turn out to be shifted with respect to their
previous positions, but their shape remains unchanged.
In the plane of the central coil of the rectilinear region,
we found an area with the radius ~0.25a such that, if the
passing electrons with ρ* ≈ 0.2a emerge from it, they
stay in the DRAKON over its entire length. This gives
an estimate for the region in which the plasma can be
produced.

The numerical studies of the DRAKON-1 model
device with transient regions show that the optimum
pitch angle of the helix is θ = 42°. Such a magnetic con-
figuration provides the minimum (with respect to θ)
flow of the Pfirsh–Schluter currents into the rectilinear
regions, as well as the almost minimum departure of the
drift surfaces from the magnetic ones. Thus, the results
of single-particle calculations give an idea of the
behavior of the diamagnetic current in the system.

APPENDIX

Calculation of the Magnetic Field

The magnetic field of a single coil with the radius a
and current J was calculated by the Biot–Savart for-
mula [6]

(A.1)

where dlk is the element of the coil length, R = r – r*,
and r* is the radius vector of the point in the coil; inte-
gration is carried out over the coil contour. If we intro-
duce the coil coordinate system

(A.2)

where tk is the unit vector of the coil axis and r0k is the
radius vector of the coil center, then, denoting r = rk and
z = zk, the corresponding magnetic field components Br

and Bz (A.1) can be represented in the form
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To save on computation time, the complete elliptic inte-
grals K(m) and E(m) for m < m* = 0.1 were approxi-
mated by a series in terms of m, which results in the
representation of Br and Bz in the form (here, J is in A
and B is in G)

(A.4)

For m > m*, K(m) and E(m) were calculated by the
method of the arithmetical–geometrical mean, which,
for Br and Bz, yields

(A.5)
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Abstract—A study is made of the structure of the wakefield excited in the linear stage of the self-modulation
of a high-power laser pulse in a homogeneous underdense plasma. It is shown that the fronts of the wake wave
are curved and the profile of the wakefield amplitude differs strongly from the intensity profile of the laser pulse.
The diffraction effects are found to play a key role in the formation of the transverse profile of the wakefield. ©
2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
In recent years, much attention has been devoted to

the problem of the interaction of high-power laser
pulses with underdense plasmas. The increased interest
in this problem is associated, in particular, with the
development of laser schemes for particle acceleration
by the plasma wakefield generated by laser pulses [1–3].
One of the most important problems in this line of
research is that of investigating the structure of the
wakefield, which can be essentially non-one-dimen-
sional under the strong focusing conditions of laser
light.

One of the ways of generating a large-amplitude
wakefield is to create conditions for the onset of an
instability that gives rise to the self-modulation of a
short (t0 ≤ 1 ps) laser pulse propagating in an under-
dense plasma, such that ω @ ωp, where ω is the carrier
frequency of the pulse and ωp ≡ (4πe2ne0/me)1/2 is the
electron plasma frequency. This method for generating
plasma waves was first proposed in [4–6] and then was
implemented in experiments [7–9]. The instability
causes the pulse to become modulated (with the char-
acteristic longitudinal wavenumber kp ≡ ωp/vg ≈ ωp/c,
where vg = kc2/ω ≈ c is the group velocity of a laser
pulse) due to the redistribution of the laser energy in
either the longitudinal [10] or transverse [2, 11–14]
direction. In order to accelerate electrons to energies of
about 1 GeV and higher, the laser pulse should be
strongly focused and the plasma density should be suf-
ficiently low, in which case the transverse redistribution
of laser energy is expected to be the main cause of the
instability.

In the conventional simplified analytic approach to
describing the effects associated with the transverse
redistribution of laser energy in the course of laser–
1063-780X/00/2605- $20.00 © 20388
plasma interaction, the radial profiles of the electro-
magnetic field phase and perturbed plasma permittivity
are assumed to be parabolic (the aberration-free
approximation [15]). In the aberration-free approxima-
tion, the initially Gaussian transverse profile of the
laser pulse intensity will always remain Gaussian, in
which case the equations for the electromagnetic field
reduce to the equation for the field amplitude on the
axis (or to the equation for the laser spot size).

The aberration-free approximation is justified for
moderate-power laser pulses guided with preformed
plasma density channels [16] under conditions such
that the amplitudes of the instability-driven perturba-
tions of the plasma permittivity δε are much smaller
than the radial variations of the plasma permittivity in
the channel, δε0. For laser pulses guided in initially
homogeneous (δε0 = 0) nonlinear media (in particular,
in plasmas), retaining the lowest order terms in the
expansion of the perturbed plasma permittivity in pow-
ers of r2 is justified only in the axial region. Below, the
aberration-free approximation applied to the processes
near the pulse axis will be referred to as the paraxial
approximation. We will show that the paraxial approx-
imation can be used to describe satisfactorily how the
amplitude of the excited plasma wave grows on the
pulse axis. On the other hand, the solutions obtained in
the paraxial approximation are not completely self-
consistent, so that this approximation is inapplicable
for describing the evolution of both the radial structure
of an electromagnetic field and the perturbed electron
density during the self-modulation of a laser pulse in a
plasma.

Our purpose here is to investigate the radial struc-
ture of the wakefield excited during the self-modulation
of a laser pulse. The linear stage of the instability is
000 MAIK “Nauka/Interperiodica”
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analyzed using the self-consistent set of equations
describing the interaction between a weakly relativistic
laser pulse and an underdense plasma [4–6, 17] without
any a priori assumptions regarding the shape of the
transverse profiles of the amplitudes of the excited per-
turbations. We show that the radial profile of the wake-
field amplitude differs strongly from the transverse pro-
file of the laser pulse and that the fronts of the wake
wave are substantially curved.

2. BASIC EQUATIONS

We consider a laser pulse with an axisymmetric dis-
tribution of the electric field amplitude E0(z, r, t) prop-
agating in an initially homogeneous (ne0 = const)
underdense (ω @ ωp) plasma along the z-axis. We
assume that the pulse is not too intense, vE/c =
eE0/mecω ! 1.

We describe the evolution of the electric field ampli-
tude and electron density using the self-consistent set
of equations [17]

(1)

(2)

Here, ξ = z – vgt, a is a slowly varying (|∂lna/∂t | ! ω)
dimensionless complex electric-field amplitude related
to the electric field E of the pulse by

(3)

N ≡ δne /ne0 ! 1 is the dimensionless perturbed electron
density, ∆⊥  ≡ (1/r)∂/∂r(r∂/∂r), and ∆ ≡ ∂2/∂ξ2 + ∆⊥ .
Equation (2) is written in the quasisteady approxima-
tion (without the terms c–2∂2/∂t2 and 2c–1∂2/∂ξ∂t in
parentheses on the left-hand side); i.e., the perturba-
tions are assumed to grow on characteristic time scales
longer than the pulse duration t0.

We consider the self-modulation of a sufficiently
long (ωpt0 @ 1) laser pulse whose initial intensity obeys
a Gaussian transverse profile

(4)

where r0 @ .

We assume that the intensity am(ξ) varies gradually
in the region ξ < 0 (dlnam/dξ ! kp) and decreases rather
sharply (on a scale length shorter than or comparable

with ) inside the pulse front (in the region ξ > 0). In
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this case, the plasma wave generated by the pulse front
gives rise to the initial perturbations of the electron den-
sity (see, e.g., [18, 19]):

(5)

Note that the shape of the front has an insignificant
impact on the dynamics of the laser-pulse–plasma
interaction and governs exclusively the initial ampli-
tude of the excited plasma wave. For simplicity, we
assume that the wave amplitude undergoes a jump at
the pulse front (kpLf ! 1), in which case the initial
amplitude of the plasma wave excited by the front is

Nf = (1/4) (ξ = 0).1

Below, we will be interested in the case such that

(6)

where W = c–1  is the pulse energy, P =

rdr ≈ 0.55k2  GW is the pulse

power, and Pc ≈ 17ω2/  GW [20, 21] is the threshold
power for relativistic self-focusing (P/Pc ≈
0.032 ). Under conditions (6), the self-modula-
tion of the pulse occurs primarily due to the transverse
energy redistribution [11] (the third and fourth terms in
parentheses on the left-hand side of equation (1) are
small in comparison with the second term) and devel-
ops on time scales much shorter than the Rayleigh time

tR ≡ k /2c (the characteristic time for the diffractive
spreading of the pulse).

From equations (1) and (2), we can immediately see
that, when the transverse redistribution of the pulse
energy dominates, the radial profiles of the electron
density that form during the self-modulation process

should differ greatly from the transverse profile of .

In fact, using the relationship rdr = const, which

is valid in the case at hand, we integrate equation (2)
over r with allowance for the boundary condition at the
sharp front to obtain

(7)

1 The perturbations of the electron density, Npond, associated with
the displacement of electrons from the region occupied by the
pulse in the transverse direction via the high-frequency potential

are relatively small (Npond ~  ! Nf) and can be

neglected.
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This indicates that, when the instability is well devel-
oped (i.e., the amplification coefficient K ≡ |N/Nf |r = 0
for the seed perturbations is much larger than unity),
either the perturbation N at the fixed longitudinal coor-
dinate should be an alternating-sign function of r or the
width of the radial profile of N should decrease substan-
tially (to about r0K–1/2).

3. PARAXIAL APPROXIMATION

Here, we consider the radial structure of the electron
density perturbations excited during the self-modula-
tion of a laser pulse within the paraxial approximation.

In this approximation, which is widely used in sim-
plified analyses of the evolution of the transverse pro-
files of laser beams and pulses, the complex amplitude
a of the laser field and the perturbed electron density N
are represented as [15]

(8)

(9)

In other words, we expand the perturbed density and
the phase of the pulse in powers of r, retaining terms up
to the second order, and assume that the transverse pro-
file of the laser field amplitude remains Gaussian (with
the transverse dimension r0 f). Then, we substitute (8)
and (9) into (1) and (2) and linearize the resulting equa-
tions in δf ≡ f – 1.

We represent N as N = (1/2)[ exp(ikpξ) + c.Ò.],

where  =  + r2/ , and introduce the dimen-
sionless variables

(10)

where the small parameter

(11)

is equal in order of magnitude to the squared ratio of the
characteristic rise time of the self-modulational insta-
bility to the characteristic time tR for the diffractive
spreading of the pulse.

As a result, for a pulse with the initial radial profile
(4) and a sharp front, equations (1) and (2) reduce to the

a
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following equation for the envelope of the electron den-

sity perturbations on the axis  (see [11–14]):

(12)

with the initial and boundary (at ζ = 0) conditions

(13)

The quantities  and  are related by  = 2Nf –

4 ; i.e., in the axial region, the envelope of the elec-
tron density perturbations is

(14)

The solution to equation (12) has the form [12, 13]

(15)

We define the characteristic size of the electron den-
sity perturbations in the transverse direction as

(16)

Then, with allowance for (14), we obtain

(17)

We can see that, in the paraxial approximation, the
characteristic width RN of the wake near the axis, which

is equal to RN = r0/  at t = 0, decreases to r0/2 in the
initial stage of instability and then (for K @ 1) remains
unchanged.

Representing  in the form  = | |exp(iϕ) and
using (14), we can find the radius of curvature Rc of the
front of the electron density perturbations, which is
defined as ϕ(r, ξ) + kpξ = const. In the axial region, we
have

, (18)

where we adopted Rc > 0 for a concave front. This
expression shows that, in the initial stage of instability
(K ≥ 1), the originally planar fronts of a wake wave

become curved (  ~ ); however, in the stage of
well-developed instability (K @ 1), the front curvature

 rapidly falls to zero according to the law ~1/K(t).
Therefore, a theoretical approach based on the paraxial
approximation for a homogeneous plasma predicts nei-
ther a substantial increase in the transverse inhomoge-
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2Ñ0

--------- 
 –

–1/2

r0.≡

2
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neity of the wake nor the curvature of the fronts of a
wake wave in the stage of well-developed self-modula-
tional instability. Also, within this approach (by virtue
of the basic assumptions underlying the paraxial
approximation), we fail to describe the formation of
nonmonotonic transverse profiles of the wake.

4. SELF-CONSISTENT RADIAL PROFILES 
OF THE PERTURBATIONS

Now, we consider a linear approximation that gives
a better insight into the transverse structure of the per-
turbations produced during the self-modulation of a
laser pulse. We represent a in the form

(19)

where A and ψ are the real amplitude and real phase of
the pulse. In contrast to the paraxial approximation, we
do not make any assumptions regarding the shape of the
transverse profile of A and do not expand ψ and N in
powers of r2.

We analyze how the self-modulation of the pulse
perturbs the laser field on time scales t ! tR, on which
the diffractive spreading of an unmodulated pulse can
be neglected. We linearize equations (1) and (2) in
small quasi-periodic (with a longitudinal wavenumber
close to kp) deviations of the amplitude and phase, δA
and δψ, from the unperturbed state (in which the wave
fronts of a laser pulse are planar, ψ0 = 0).

Representing δA, δψ, and N in the form

(20)

and assuming that |∆⊥ | ! |∂2/∂ξ2 | ≈ , we obtain from
(1) and (2) the following expressions for the slowly

varying (∂ln{δ , δ , }/∂ξ ! kp) complex ampli-
tudes of the perturbations in the region occupied by the
pulse, –L < ξ < 0:

(21)

(22)

(23)

Note that the terms on the right-hand side of (21)
describe, respectively, the refraction by electron den-
sity perturbations, relativistic self-focusing, and dif-
fraction.
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Equations (21)–(23) can be reduced to the following

equation for :

(24)

where we keep the term accounting for the diffraction
of the perturbed laser field (the second term in paren-
theses on the left-hand side). Note that, for perturba-
tions with characteristic transverse scale sizes of about
the transverse dimension r0 of the pulse, this term is
small in comparison with the first term on time scales
t ! tR. The second derivative with respect to r on the
right-hand side of (24) results in a more rapid growth of
perturbations with shorter transverse scale sizes. As a
result, the role of the diffraction term in (24) (which is
proportional to the fourth derivative with respect to r)
increases. When this term becomes on the order of the
first term, the growth rate of the small-scale transverse
perturbations decreases. Consequently, it is very impor-
tant to take into account diffraction effects, because
they lower the anomalously high growth rates of pertur-
bations with characteristic transverse scale sizes much
shorter than the transverse dimension of the pulse.

Switching to the dimensionless variables (10) and
introducing the notation

(25)

(26)

we obtain from (24) the following equation for a pulse
with the initial radial profile (4) and a sharp front:

(27)

which contains a small dimensionless parameter β.
If the seed wave of the electron density perturba-

tions is generated by the pulse front [see (5)], then the

initial and boundary (at ζ = 0) conditions for  have
the form

(28)

In (27), the operators  and  account for the effects
of refraction of the laser field by the excited electron-
density wave and the diffraction of the perturbed laser
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Q̂rÑ
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field, respectively. In the paraxial approximation, equa-
tion (12) is an analogue of equation (27).

5. NUMERICAL RESULTS

Numerical analysis of the linear stage of self-modu-
lation showed that, in the parameter range (6), the solu-
tion to equations (1) and (2) is well approximated by
the solution to the reduced one-parameter equation
(27). Figure 1 presents time evolutions of the amplifica-
tion coefficient K of the seed perturbations of the elec-
tron density on the axis behind the pulse. The evolu-
tions were traced by numerically solving equations (1)
and (2) (curve 1), equation (27) (curve 2), and equation
(12) in the paraxial approximation (curve 3). The lon-
gitudinal profile of the pulse am(ξ) was specified as

(29)

Computations were carried out for the following
parameters of the plasma and laser pulse: ω/ωp = 45,
amax = 0.15, kpr0 = 28 (which corresponds to P/Pc ≈ 0.57
at the top of the pulse), kpL = 100, kpL2 = 15, and
kpL1 = 6. For these parameter values, formula (11)
gives β ≈ 1/256.
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Fig. 1. Time evolutions of the amplification coefficient K of
the seed perturbations of the electron density on the axis
behind the pulse for ω/ωp = 45, amax = 0.15, kpr0 = 28, kpL =
100, kpL1 = 6, and kpL2 = 15 (which corresponds to β =
1/256). The evolutions were traced by numerically solving
equations (1) and (2) (curve 1), equation (27) (curve 2), and
equation (12) in the paraxial approximation (curve 3).
We can see that the time evolution K(t) computed
from (27) is close to that obtained by solving equations
(1) and (2) numerically and that the growth of the elec-
tron density perturbations on the whole is well
described by the paraxial approximation, although the
amplification coefficient is somewhat overestimated.

As the amplitude of the wake wave grows, its phase
velocity decreases [11–14]. Figure 2 shows time evolu-
tions of the ratio of the relativistic factor γph = (1 –

/c2)–1/2 computed from the phase velocity vph = (1 –

∂ϕ/∂t)vg of the wake wave on the pulse axis to γg =

(1 – /c2)–1/2. The solid curve illustrates the solution
to equation (27), and the dashed curve was obtained in
the paraxial approximation. The time evolutions of
γph/γg calculated using these approximate approaches
are seen to be in close agreement.

Hence, the numerical results shown in Figs. 1 and 2
allow us to conclude that, in the above parameter range,
the paraxial approximation satisfactorily describes
both the amplitude and phase parameters of a wake
wave on the pulse axis.

Now, we examine the transverse structure of the
wake wave excited during the self-modulation of a laser
pulse. Figure 3 shows the contours of N in the trailing
part of the pulse at t = 0.45tR for the same plasma and
pulse parameters as in Fig. 1. The perturbed electron
density is normalized to the maximum perturbed den-
sity N in the trailing part of the pulse. One can see that
the wake wave structure reconstructed from the solu-
tion to the reduced one-parameter equation (27)
(Fig. 3b) agrees well with that obtained using equations
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2

1.2
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Fig. 2. Time evolutions of the relativistic factor γph com-
puted from the phase velocity of the wake wave on the pulse
axis for the same plasma and pulse parameters as in Fig. 1.
The solid curve illustrates the solution to equation (27), and
the dashed curve was obtained in the paraxial approxima-
tion.
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(1) and (2) (Fig. 3a). The fronts of the plasma wave are
seen to be highly concave; in the axial region, the front

curvature  is about 20 .

Figure 4 illustrates the evolution of the profile of the
wake wave behind the pulse (ζ = –1) for the same
plasma and pulse parameters as in Fig. 1. The curves in
Fig. 4 are obtained for a fixed longitudinal coordinate
such that the perturbed electron density N is maximum
on the axis. The solid curves correspond to the radial

profiles of the perturbations N = (1/2)[ exp(ikpξ) + c.Ò.]
at the initial time t = 0 (curve 1) and at the time t = 0.45tR
(τ ≈ 7.2), at which K ≈ 60. Curve 2 illustrates the solu-
tion to equations (1) and (2), curve 3 reflects the solu-
tion to equation (27), and curve 4 refers to the paraxial
approximation. The dashed curves show the perturba-

tion amplitudes | | (the envelope of the electron den-
sity perturbations N) computed from the solutions to
equations (1) and (2) (curve 2') and to equation (27)
(curve 3'). The electron density is normalized to the
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Fig. 3. Structure of the electron density perturbations in the
trailing part of the pulse at t = 0.45tR for the same plasma
and pulse parameters as in Fig. 1: (a) solution to equations
(1) and (2) and (b) solution to equation (27).
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Fig. 4. Time evolution of the plasma wave behind the pulse
for the same plasma and pulse parameters as in Fig. 1. The
curves are obtained at the fixed longitudinal coordinate ξ at
which the perturbed electron density N is maximum on the
axis. The solid curves correspond to the radial profiles of the
perturbed electron density N at the initial time t = 0 (curve 1)
and at the time t = 0.45tR. Curve 2 illustrates the solution to
equations (1) and (2), curve 3 refers to the solution to equa-
tion (27), and curve 4 refers to the paraxial approximation.
The dashed curves show the amplitudes of the electron den-
sity perturbations (the envelope of the perturbations N) com-
puted from the solutions to equations (1) and (2) (curve 2')
and to equation (27) (curve 3'). The electron density is nor-
malized to the maximum perturbed density in the plasma
wave.
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Fig. 5. Time evolutions of the characteristic transverse scale
size RN of the electron density perturbations in the axial
region for the same plasma and pulse parameters as in Fig. 1.
The solid curve is calculated using equation (27), and the
dashed curve refers to the paraxial approximation.
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maximum perturbed density in the plasma wave. The
profiles computed from the solutions to equation (27)
and to equations (1) and (2) are very similar and differ
markedly from the profile obtained in the paraxial
approximation in that they have a narrow peak near the
pulse axis.

1.2
N/Nmax

1.00.80.60.40.20
r/r0

1.0
0.8
0.6
0.4
0.2

0
–0.2
–0.4

1

2

1'

–0.6
–0.8
–1.0

Fig. 6. Time evolution of the curvature of the wake wave
fronts in the axial region for the same plasma and pulse
parameters as in Fig. 1. The solid curve is calculated from
equation (27), and the dashed curve is obtained in the parax-
ial approximation.

30
kpr0

2Rc
–1

0.50.40.30.20.10
t/tR

25

20

15

10

5

Fig. 7. Radial profile of the plasma wave amplitude behind
the pulse without allowance for the diffraction of laser field
perturbations at τ = 6.3: curve 1 is the profile of N at a fixed
ξ at which N is maximum (in ξ) along the pulse axis, and

curve 1' is the profile of the perturbation amplitude | |.
Curve 2 is the profile of the wake amplitude calculated by
solving equations (1) and (2) numerically for a long pulse
with kpL = 600 (the remaining parameters are the same as in
Fig. 1). The solutions are normalized to the maximum per-
turbed electron density in the plasma wave.

Ñ

Figure 5 shows time evolutions of the characteristic
transverse scale size RN of the electron density pertur-
bations in the axial region [see (16)]. The solid curve is
calculated using equation (27), and the dashed curve
illustrates the paraxial approximation. We can see that,
in accordance with (17), the wake of the laser pulse in
the paraxial approximation narrows only to RN = r0/2,
whereas, in the stage of well-developed instability, the
self-consistent profile turns out to be significantly nar-
rower (RN ≈ 0.3r0).

Note that the curves illustrating the profiles of N at
a fixed ξ change sign, which is a manifestation of the
curvature of the wake wave fronts. Figure 6 demon-
strates the time evolution of the curvature of the wake
wave fronts in the axial region. The solid curve is cal-
culated from the solution to equation (27), and the
dashed curve is obtained in the paraxial approximation.
One can see that, in accordance with formula (18),
which refers to the paraxial approximation, the wave
fronts are slightly curved only in the initial stage of
instability; at later times, they again become planar. In
contrast, according to the solution to equation (27), the
wave fronts rapidly become substantially curved (the

front curvature reaches its maximum  ≈ 25  at
t ≈ 0.3tR) and then the front curvature slowly weakens.
Numerical analysis shows that, in the range 50 < β–1 <
1000, the maximum curvature is approximately equal

to  ~ 1.5 β–1/2.

Here, we must point out the following circumstance.
In [22–24], the deformation of the wake wave fronts
was governed either by the nonlinear character of the
excited plasma wave or by the radial plasma nonunifor-
mity induced by a laser pulse guided in a plasma chan-
nel. In contrast, in our problem, the deformation of the
fronts of a linear wake plasma wave excited in an
underdense homogeneous plasma by a sufficiently wide
quasi-one-dimensional laser pulse (kpr0 @ 1) is gov-
erned exclusively by the specific features of the self-
modulational instability itself.

Now, we analyze the role of diffraction effects in
more detail. To do that, we neglect the diffraction of the
laser field perturbations (the term with β), in which case
the solution to equation (27) can be represented as a
series:

(30)

Figure 7 illustrates the radial profile of the plasma wave
amplitude behind the pulse (ζ = –1) computed without
allowance for the diffraction of laser field perturbations
at τ = 6.3, which corresponds to t ≈ 0.4tR for the above
case β ≈ 1/256. Curve 1 is the profile of N at a fixed
radial coordinate at which N is maximum (in ξ) along
the pulse axis, and curve 1' is the profile of the pertur-

bation amplitude | |. The solution is normalized to the
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maximum perturbed electron density in the plasma
wave. We can see that neglecting diffraction radically
changes the radial structure of the perturbations: a local
dip at the axis appears in the profile of the wake ampli-
tude. Periodic variations of the perturbation amplitude
in the radial direction at a fixed ξ provide evidence for
an even stronger deformation of the fronts of the
excited wake wave if the diffraction effects are ignored.

Hence, a comparison between Figs. 4 and 7 shows
that, although β is small (in the case at hand, we have
β ≈ 1/256), the diffraction effects play a decisive role in
the formation of the radial structure of perturbations.

Clearly, at a prescribed amplification coefficient of
the seed perturbations, the smaller the β value (which
corresponds to longer pulses at a given power), the
lesser the role of the diffraction term (the instability
develops on time scales short enough for the diffraction
of the laser field perturbations not to come into play).
This indicates that, below a certain value of β, we may
expect the formation of the profiles of the wake ampli-
tude with a dip at the axis. The results of solving the
one-parameter equation (27) numerically show that, for
the range of amplification coefficients under study (K ≤
100), a dip (instead of a narrow peak) forms in the pro-
files of the wake amplitude in the axial region at β val-
ues of about 10–3 or lower. For β ! 10–3, the diffractive
term in equation (27) is small and the self-modulation
proceeds in the same manner as in the absence of dif-
fraction. Curve 2 in Fig. 7 illustrates the profile of the
wake amplitude computed by solving equations (1) and
(2) numerically for a long pulse with kpL = 600 (the
remaining parameters being the same as in Fig. 1)2 at
t = 0.17tR (which corresponds to τ ≈ 0.63). In this case,
the parameter β is approximately equal to 1/1360. We
can see that, as in the absence of diffraction (curve 1'),
a dip appears in the profile of the wake amplitude in the
axial region.

6. CONCLUSION

(i) Our investigation of the radial structure of the
wakefield generated during the self-modulation of a
moderately intense (I ≤ 1017 W/cm3) laser pulse shows
that the radial profile of the wake amplitude changes
strongly in the course of instability and that, in the
parameter range (6) (in which the self-modulation is
associated primarily with the transverse energy redistri-
bution), the evolution of this profile can be described by
only one dimensionless parameter β ≈ (4ωpW/Pc)–1 ! 1,
which is proportional to the squared ratio of the rise
time of the self-modulational instability to the time for

2 For a neodymium laser (λ ≈ 1 µm), these parameters correspond
to the pulse duration t0 ≈ 15 ps, which substantially exceeds the
pulse duration in the proposed schemes for laser acceleration
based on the self-modulation mechanism for generating wake
plasma waves (t0 ≤ 1 ps). The results of computations with these
parameter values are presented merely to illustrate the effect of
the diffraction of the laser field perturbations.
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the diffractive spreading of the pulse. During the insta-
bility, the characteristic radial scale size of the pertur-
bations decreases, so that the diffraction effects become
more important. For β > 10–3 and in the range of ampli-
fication coefficients K ≤ 100, diffraction has a signifi-
cant impact on the formation of the profiles of the per-
turbation amplitude, in which case the profiles of the
wake amplitude have a narrow peak in the axial region.

(ii) We have shown that the fronts of the wake wave
generated during the self-modulation of the pulse are
highly concave. This phenomenon is of interest in con-
nection with the problem of effective resonant wake-
field acceleration of relativistic charged particles. On
the one hand, such a curvature acts to increase the lon-
gitudinal size ∆ξ of the region in which the wakefield
simultaneously accelerates and focuses charged parti-
cles injected into the axial region [kp∆ξ = π –

/2Rc)]. On the other hand, as the trans-
verse scale sizes of the inhomogeneity of the wake
wave increase, the effect of the radial component of the
electric field on the acceleration of the particles
injected into the off-axis plasma region grows, which
may lead to an unfavorable increase in the transverse
momentum of the accelerated particles. Note that the
expansion of the region where the accelerating and
focusing phases of the electric field of a wake wave
overlap due to the curvature of its fronts was discussed
previously in connection with other mechanisms for the
deformation of wake wave fronts, such as the nonlin-
earity of an excited plasma wave [23] and the radial
plasma inhomogeneity when a laser pulse is guided in
a plasma channel [24, 25]. Here, we have shown that
the fronts of a wake wave become curved even in the
linear stage of the self-modulation of a laser pulse prop-
agating in a homogeneous plasma.

(iii) In our analysis, we neglected the change in the
plasma frequency due to the displacement of plasma
ions from the axial region under the action of pondero-
motive forces. The deformation of the plasma wave
fronts due to a decrease in the plasma frequency near

the pulse axis δωp is insignificant in the range  <

, where  ≈ c–1 δωp/∂r2|dξ is the front

curvature associated with the change in the plasma fre-
quency. Our estimates show that, for the above param-
eters of the plasma and laser pulse and for the pulse

durations t0 ≤ 100 , the change in the plasma fre-
quency δωp can be legitimately ignored.

(iv) Recent experiments on wakefield excitation
during the self-modulation of laser pulses [7–9] were
carried out with a relatively dense plasma (ω/ωp ~ 10)
and with very strong laser fields (vE/c ~ 1) far above the
threshold for relativistic self-focusing (P/Pc @ 1).
Under the conditions of those experiments, the excited
plasma wave is strongly nonlinear. For this reason, we
cannot directly compare our results with the data
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obtained in experiments aimed at achieving the highest
possible rates of laser acceleration of particles. On the
other hand, most attention is now focused on attempts
to accelerate electrons to unsurpassed energies (of
about 1 GeV and higher) by a wakefield excited by a
laser pulse in plasma. In this way, it is necessary to oper-
ate with a lower density plasma [3], in which case laser
pulse focusing should be much weaker than that in the
cited experiments. Thus, if we consider a laser pulse
with the parameters λ0 = 1 µm, P = 10 TW, and t0 = 1 ps,
which are close to those in the experiments of [7–9], but
assume that the pulse is focused to a lesser extent
(r0 ≈ 100 µm, which corresponds to am ≈ 0.2) in a lower
density plasma (ne/nc ≈ 10–3), then we obtain kpL ≈ 60
and P/Pc ≈ 0.6. In this case, the resonant acceleration
length [1] coincides with the Rayleigh length and the
electrons may be accelerated to energies of about
1 GeV. In this example, the plasma and pulse parame-
ters correspond to β ≈ 0.006. Based on the results
obtained, we may expect that the profile of the ampli-
tude of the generated plasma wave will become nar-
rower and the wave fronts will become strongly curved
even in the linear stage of the self-modulational insta-
bility.

(v) Finally, we can say that, since the radial scale
sizes of the laser field perturbations excited during the
self-modulation of a laser pulse are much smaller than
the characteristic width of the pulse, the features of the
radial structure of the wakefield that we have discussed
here should lead to a broadening of the angular spec-
trum of the forward-scattered radiation.
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Abstract—Transverse collisionless shock waves in a plasma in which the initial β value is equal to zero for
electrons and is small but nonzero for ions are studied in the two-dimensional approximation with allowance
for anomalous resistivity. A hybrid model is applied such that the ions are treated in the kinetic approximation
and the electrons are described in the hydrodynamic approximation. A collisionless shock wave is generated
using a piston with a small two-dimensional perturbation. The ion distribution downstream of the shock front
and the effect of electron and ion heating are analyzed. It is shown that, for Alfvén–Mach numbers MA > 2, ion
heating is attributed primarily to the ions that have experienced a reflection from the shock front and whose
velocities downstream of the front are very high. This conclusion agrees with the results of one-dimensional
calculations. Solving the problem as formulated shows that two-dimensional effects are insignificant in the
range of low Alfvén–Mach numbers (MA ≤ 5): the direction of the magnetic field is always close to its initial
direction, the ions acquire low velocities along the magnetic field, and the quantitative parameters of the plasma
downstream of the shock front are close to those obtained from the one-dimensional model. In the range of
higher Alfvén–Mach numbers, two-dimensional effects are more pronounced and the ion distribution function
is less anisotropic. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Hybrid numerical methods are widely used to study
collisionless shock waves (CSWs) in the one-dimen-
sional approximation (in which all of the quantities
depend only on the coordinate transverse to the shock
front) [1–6] as well as in the two- and three-dimen-
sional approximations [7] with allowance for particular
physical processes. In most shock experiments, current
instabilities (primarily, the ion acoustic instability)
should develop at the shock front, giving rise to anom-
alous plasma resistivity, which serves, together with ion
gyration, as the main mechanism for the formation of
the CSW structure. Anomalous resistivity was taken
into account in the one-dimensional simulations of
CSWs carried out in [3, 6]. Note that, according to the
results of one-dimensional modeling, the ion distribu-
tion downstream of the shock front turns out to be
unstable [8, 9]; consequently, the CSW itself is also
unstable and is distorted on a spatial scale of about
~c/ωpi . This was demonstrated by Thomas [7] for
CSWs with high Mach numbers. However, he
neglected plasma resistance, because it should play an
insignificant role in the range of high Mach numbers
but requires to resolve relatively short spatial scales.

In [6], we showed that the structure of CSWs with
moderate Mach numbers should be investigated with
allowance for plasma resistance and Joule heat release
and that the latter appears to make the main contribu-
tion to the plasma thermal energy in the range MA < 8.
Here, we study CSWs in the two-dimensional approxi-
1063-780X/00/2605- $20.00 © 20397
mation with allowance for anomalous resistivity. We
formulate the problem for a plasma in which the initial
β value is equal to zero for electrons and is small but
nonzero for ions.

Since the plasma downstream of the shock front
relaxes to an equilibrium state on a time scale of about
the collision time, which can be sufficiently long in
shock experiments, we can assume that, in some cases,
the plasma state downstream of the front is quasi-equi-
librium. For this reason, it is important to know the
plasma characteristics, specifically, the energy
expended on electron and ion heating and the ion distri-
bution downstream of the front. Here, we will be con-
cerned with just these plasma characteristics. In the
case of a magnetohydrodynamic flow, we can make the
following assumptions: the ion distribution function
keeps its shape and changes adiabatically with the
plasma density on time scales shorter than the charac-
teristic ion–ion collision time (after the relaxation of an
instability associated with the anisotropy of the distri-
bution function), the ratio of the relative fractions of the
energy spent on electron and ion heating is constant on
time scales shorter than the time required for the equal-
ization of the electron and ion temperatures, and the
electron and ion energies change adiabatically accord-
ing to the change in the plasma density. The issues of
the ion distribution function and the ratio of the relative
fractions of the energy expended on electron and ion
heating are also important for plasma devices in which
the plasma is heated by CSWs (see, e.g., [10]), because
000 MAIK “Nauka/Interperiodica”
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plasma diagnostics implemented in such devices are
based on measurements of the spectra of fusion neu-
trons [11] and deal just with ion spectra (especially,
their high-energy parts).

2. PHYSICAL MODEL

We consider a two-dimensional plasma flow under
the following assumptions: a CSW propagates along
the x-axis, the initial magnetic field is directed along the
z-axis, and all of the quantities are functions of x and z
because of the presence of perturbations in the z-direc-
tion. All three components of the magnetic field and
particle velocities may be nonzero.

We describe the electrons by hydrodynamic param-
eters: the density n, the velocity ve, the temperature Te,
and the pressure pe, assuming that the pressure is
pe = nTe and the adiabatic power-law index is γ = 5/3. In
contrast, we treat the ions in the kinetic approximation,
denoting their velocities by v and their averaged (over
the distribution function) density and velocity by ni and
U, respectively. We also assume that the plasma is
quasineutral, n = ni.

The equations of ion motion have the form

(1)

where mi is the mass of an ion, j = en(U – ve) is the cur-
rent density, and η is the plasma resistivity. We neglect
electron inertia in comparison with electron friction
against the ions and write the equation of electron
motion as

(2)

in which case the electron energy equation has the form

(3)

where χ is the electron thermal conductivity. We also
reduce the Joule heating of plasma electrons, because,
under the assumption that the plasma resistivity is
anomalous due to ion-acoustic turbulence, a small frac-
tion of the Joule heating power is deposited in the ions.
We denote this fraction by α and incorporate the Joule
heating of plasma ions by supplementing the right-hand
side of equation (1) with the term

(4)

where Ti is the averaged (over the distribution function)
local ion energy.
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The Maxwell equations have the form

(5)

(6)

In equations (1)–(6), which underlie our model, the
quantities η, χ, and α are regarded as phenomenologi-
cal parameters. We assume that, if the quantities η and
χ, which mainly govern the width of the resistive front,
are sufficiently small, then neither their magnitudes nor
their specific forms will affect the main parameters of a
CSW. Consequently, in calculations, we put η = const
and assume that χ is related to the magnetic diffusion

coefficient κ = η by

where βe = . We represent the anomalous resistiv-

ity in the same approximate form that we used in the
one-dimensional simulations [6]:

where cA is the Alfvén velocity and a is a small dimen-
sionless coefficient, which is on the order of the factor
α accounting for ion heating due to the induced scatter-
ing of ion acoustic oscillations by the ions. Our two-
dimensional simulations were carried out with a = 0.2
and α = 0.1 [6].

3. FORMULATION OF THE PROBLEM

We treat the problem of a CSW in a time-dependent
formulation and assume that there is an ideally con-
ducting rigid piston at x = 0 and that the velocity of the
flow of an initially homogeneous plasma onto the pis-
ton surface is –u. The perturbation is assumed to be
produced by the ions, which are reflected from the pis-
ton as if from an inclined surface:

where 2z0 is the width of the computation region in the
z-direction. In simulations, the boundaries z = z0 and
z = –z0 are related through the periodicity conditions.
By virtue of the nonlinear and unstable character of the
problem, the perturbation, which was initially specified
as a single mode, generates numerous shorter wave-
length perturbation modes in the course of a run.

We express the density in units of the initial plasma
density n0, the magnetic field in units of the initial mag-
netic field B0, the velocity in units of the initial Alfvén
velocity, the time in units of the reciprocal initial ion
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cyclotron frequency, and the coordinates in units of
c/ωpi (where ωpi is the initial ion plasma frequency). At
the initial time, the plasma is assumed to be cold, so
that βe0 = 0 and βi0 = 0.01. Because of the plasma heat-
ing, the β values clearly become much higher than βi0
over the course of a run. The initial βi0 value is set to be
nonzero merely in order to specify the initial Max-
wellian ion distribution function, which should remain
Maxwellian when the ion heating is described only by
(4). The computations were performed for both subcrit-
ical (u = 1) and supercritical (u = 3, 6) CSWs.

We modeled CSWs using the familiar methods for
solving equations (1)–(6) [12]. Thus, the behavior of
the plasma ions was modeled using the particle-in-cell
technique: the averaged plasma parameters were com-
puted by linearly weighing the contributions of parti-
cles to the mesh parameter values. Equation (3) was
solved using an alternative direction implicit (ADI)
method. The magnetic field components Bx, z were
defined through the Ay-component of the vector
potential,

According to (6), this component satisfies the equation

,

which was solved with the help of the ADI method [12].
The main difficulty in simulations is that of captur-

ing the effects occurring on short spatial scales near the
shock front. In [6], we showed that the spatial step ∆x
of the mesh on which the averaged plasma parameters
(density, velocity, temperature, etc.) are to be computed

should satisfy the condition ∆x ≤ 0.5  (written in the

above normalized units). In the two-dimensional
model, this condition appears to be too restrictive, so
that we sometimes used less stringent conditions. How-
ever, the results of two-dimensional simulations carried
out with different meshes were found to differ insignif-
icantly from each other. Presumably, the reason is that
the two-dimensional fronts of CSWs are inclined with
respect to the incident plasma flow, so that the effective
velocity of the plasma flow onto the shock front is
lower than MA.

4. NUMERICAL RESULTS

According to our simulations, two-dimensional effects
can be neglected for CSWs with u = 1 and MA . 2, so
that the results of one-dimensional modeling [6] are
valid in the range of subcritical Mach numbers.

Two-dimensional effects become more pronounced
for flow velocities above u = 3. As an example, Fig. 1
shows reliefs of the magnetic field component Bz and
plasma density n at the time t = 15 and Fig. 2 displays
the x-profiles of the following parameters: the z-aver-
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aged magnetic field component Bz and plasma density,
their maximum and minimum values along the z-axis,
and the maximum values of the magnetic field compo-
nents Bx, y along the z-axis (in the problem as formu-
lated, these components are odd functions of z and their
maxima coincide in absolute value with their minima)
for the same time. The results illustrated in Figs. 1 and
2 were obtained from simulations performed with z0 = 5,
the spatial steps of the mesh being ∆x = 0.05 and
∆z = 0.1. We can see that the magnetic field oscillations
excited downstream of the shock front are character-
ized by amplitudes δBx ~ δBy ~ 0.2, while the oscilla-
tions of δBz along the x-direction have approximately
the same wavelength as those in the one-dimensional
case [6] and a somewhat smaller amplitude.

The amplitudes of the modes of the magnetic field
oscillations excited downstream of the front in the
z-direction are illustrated in Fig. 3a, which indicates
that the most intense oscillations of the magnetic field
components Bx and By are those with the wavenumbers
k ~ 1. A quasilinear analysis of the evolution of noises
downstream of the shock front shows that the peak in
the noise spectral density is displaced from the initial
wavenumber (which corresponds to the maximum
growth rate [9]) toward smaller wavenumbers k; this
result agrees qualitatively with the results in Fig. 3a.
The characteristic mode amplitudes of the magnetic
field oscillations in the x- and y-directions differ by a
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Fig. 1. Reliefs of the magnetic field component Bz and
plasma density n for a CSW with u = 3 at the time t = 15.
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Fig. 2. The x-profiles of the maximum (along the z-axis) values of the magnetic field components Bx, y and the maximum and min-
imum (along the z-axis) values of the Bz-component and plasma density n, as well as of their z-averaged values, for a CSW with
u = 3 at the time t = 15.

Fig. 3. Squared amplitudes of the modes of the magnetic field oscillations excited downstream of the shock front for CSWs with
u = (a) 3 and (b) 6 at the time t = 15. Solid, dashed, and dotted curves show the squared amplitudes of Bx, By , and Bz , respectively.
factor of less than two. In this sense, the oscillations in
the x- and y-directions downstream of the shock front
are isotropic.

The ion distributions in the phase planes (x–vx) and
(x–vy) (Fig. 4) are oscillatory in nature and provide evi-
dence for the presence of ions reflected from the shock
front. The ion distribution in the phase plane (x–vz) is
seen to broaden farther away from the front: the noises
downstream of the front cause the ion distribution func-
tion to become more isotropic (such “isotropization”
was studied in [8, 9]). On the whole, the overall two-
dimensional picture of the propagation of a supercriti-
cal CSW for u = 3 agrees qualitatively with the one-
dimensional picture [6]: as in one-dimensional simula-
tions, the ions reflected from the shock front are mani-
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
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fested by the presence of foots and overshoots on the
profiles of the magnetic field Bz(x) and plasma density
n(x), as well as on the ion distribution in the phase
plane. Both two-dimensional and one-dimensional
computations present evidence for the unsteady and
pulsating character of CSW propagation.

In the case of a CSW with u = 6, two-dimensional
effects become more pronounced. The reliefs of the
magnetic field component Bz and plasma density
(Fig. 5) that were computed for z0 = 10.5, ∆x = 0.06,
and ∆z = 0.3 illustrate an essentially two-dimensional
CSW structure, which is especially distorted in the
front region and is similar to the wave structure calcu-
lated by Thomas [7] for MA ~ 13, βe0 = 4, and βi0 = 0.5
without allowance for plasma resistance. In Fig. 6, the
magnetic field components Bk and the plasma density
are illustrated by the profiles of their maximum and
minimum values along the z-axis as well as their z-aver-
aged values. We can see that the magnetic field oscilla-
tions excited at the shock front have the characteristic
amplitudes δBx ~ δBy ~ 3 and a somewhat larger ampli-
tude δBz (the amplitude of the density perturbations δn
is also somewhat larger). This is associated with both
the nonuniformity (along the z-axis) of the overshoots
that appear in the profiles of the magnetic field compo-
nent Bz and density as a result of reflection of the inci-
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Fig. 4. Ion distributions in the phase planes (x, vx), (x, vy),
and (x, vz) for a CSW with u = 3 at the time t = 15.
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dent ion flow from the CSW front and with the distor-
tion of the front shape. Downstream of the front, the
magnetic field oscillations are damped, so that their
amplitudes are relatively small: δBx ~ δBy ~ δBz ~ 0.8.
Figures 5 and 6 illustrate the damping of oscillations
with distance from the shock front.

The amplitudes of the modes of the magnetic field
oscillations excited downstream of the front in the
z-direction are illustrated in Fig. 3b. One can see that
the characteristic wavenumbers k ~ 0.9 are somewhat
smaller than those in the case of a CSW with u = 3,
while the oscillations of the components Bx and By are
isotropic for both CSWs, i.e., with u = 3 and 6.

The ion distributions in the phase planes (x, vx) and
(x, vy) in the case of a CSW with u = 6 (Fig. 7) are seen
to be more smeared in comparison with the cases of a
one-dimensional shock wave [6] and a CSW with u = 3
(Fig. 4): the reflected ion flows become less pro-
nounced with distance from the shock front, because
the two-dimensional effects are more significant than
those in the case of a CSW with u = 3 and there are no
correlations among the magnetic field oscillations in
different regions along the z-axis. The width of the ion
distribution in the phase plane (x, vz) essentially does
not change with increasing distance from the shock
front (i.e., the velocities vz acquired by the reflected
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Fig. 5. Reliefs of the magnetic field component Bz and
plasma density n for a CSW with u = 6 at the time t = 15.
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and (x, vz) for a CSW with u = 6 at the time t = 15.
ions near the front change insignificantly as the dis-
tance from the front increases).

Figure 8 shows the ion distributions downstream of
the front computed for the two CSWs under discussion
at the time t = 15, from which it can also be established
whether there are ions reflected from the shock front. In
order to eliminate the effect of the zones near the piston
and the shock front, the distribution functions were cal-
culated in the region x1 = 0.1xF < x < 0.9xF = x2, where
xF is the coordinate of the CSW front. Since the veloc-
ity components vx and vy are equalized by the ion
cyclotron gyration, Fig. 8 presents the ion distribution
functions over the absolute values of the total ion veloc-
ity, f(v), and of the velocity component vz, so that the
number of ions in the velocity intervals dv and d |vz | is
equal to f(v)dv and f(vz)dvz, respectively. Along with
the ion distribution functions, Fig. 8 shows the profiles

of the quantities v2f(v) and f(vz), characterizing the
velocity distribution of the ion kinetic energy. We can
see that, as in the case of a one-dimensional CSW, the
velocities of the ions reflected from the shock front are
very high and the main contribution to the ion thermal
energy comes from the reflected ions, although their
relative fraction is small. However, in the case of a
CSW with u = 6, the reflected ions cause the profile of
v2f(v) to be peaked at a somewhat lower velocity v in
comparison with the case of a one-dimensional CSW
[6] presumably because of the two-dimensional modu-

v z
2
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lation of the shock front and the related reduction in the
effective velocity of the plasma flow onto the front.
From the ion distribution over vz, we can also see that,
in the case of a CSW with u = 3, the degree of anisot-
ropy in the distribution function decreases only slightly
on the time scales under consideration and that isotro-
pization is pronounced only in the range of low veloci-
ties corresponding to the main ion flow, which is not
reflected from the shock front. In the case of a CSW
with u = 6, isotropization is highly pronounced; in
agreement with [9], the rate at which the ion distribu-
tion function becomes isotropic is highest in the low-
velocity range.

The main simulation results characterizing the
plasma state downstream of the shock front are summa-
rized in the table, which presents the values of the fol-
lowing parameters:

the computed Alfvén–Mach number defined as
MA = xF/t + u, where xF is the coordinate of the shock
front at the time t = 15;
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
the average magnetic field  in the region x1 < x < x2

downstream of the shock front (or the compression
ratio downstream of the front);

the distribution of the plasma internal energy down-
stream of the shock front over different degrees of free-
dom: the electron thermal energy We, the ion thermal
energies Wi⊥  in the x- and y-directions, the ion thermal
energy Wiz in the z-direction, and the energy WB =

 – dx of the magnetic field oscillations

downstream of the front;
the ion velocity vm corresponding to the median

kinetic energy (i.e., the velocity dividing the area under
the curve v2f(v) into two halves); and

the ratio of the squared median velocity vm to the

squared mean ion thermal velocity .

A comparison of the data listed in the table and the
results of our one-dimensional modeling [6] shows

Bz

B
2

2
------


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x2∫ Bz
2

2
------



v Ti
2

Table

u MA We , % Wi⊥ , % Wiz , % WB , % vm

3 4.36 3.18 75.4 22.4 1.9 0.3 7.2 29

6 8.17 3.72 51.3 35.5 12.5 0.7 11 7.3

Bz vm
2

/v Ti
2
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that, in the case of a CSW with u = 3, one- and two-
dimensional computations give approximately the
same values of the global parameters of the plasma
downstream of the shock front. However, the results of
one- and two-dimensional simulations of a CSW with
u = 6 are noticeably different. In two-dimensional mod-
eling, the values of MA and  are close to those deter-
mined by the shock adiabat with γ = 5/3. This result is
a consequence of the fact that the ion distribution func-
tion becomes much more isotropic: the energy Wiz of
the ion thermal motion in the z-direction becomes com-
parable with the energies Wi⊥ /2 of the thermal motion
in the x- and y-directions. As in one-dimensional simula-
tions, in the case of a two-dimensional CSW with u = 6,
ion heating is responsible for about one-half of the
plasma thermal energy. In both one- and two-dimen-
sional models, the energy WB of the magnetic field
oscillations (including those excited downstream of the
shock front) contribute only slightly to the plasma
internal energy, regardless of the CSW velocity u. Like
in one-dimensional simulations, the ion spectrum for
supercritical CSWs is enriched with “superthermal”
particles. This conclusion can be drawn from the values

of the ratio / , although the median velocity vm =
11 in the case of a CSW with u = 6 is somewhat lower
than that in the one-dimensional problem (vm = 13).

5. CONCLUSION
We have shown that two-dimensional effects play a

minor role in the formation of CSWs with low Alfvén–
Mach numbers (MA < 5), so that such CSWs can be
described using a one-dimensional model [6]. In the
range of higher Mach numbers, the onset of instabilities
and two-dimensional effects in the (x, z) plane play a
fairly important role, especially inside the CSW front,
where the plasma density and magnetic field are per-
turbed so strongly that the generated x- and y-compo-
nents of the magnetic field are comparable in amplitude
with the perturbations of the Bz component. In the case
of CSWs with high Mach numbers, two-dimensional
effects cause the ion distribution function to become
more isotropic downstream of the shock front and
slightly reduce the energy of the reflected ions. As in

Bz

vm
2
v Ti

2

the one-dimensional problem, ion heating is primarily
governed by the ions that are reflected from the shock
front and whose velocities downstream of the front are
far above the ion thermal velocities.
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Abstract—Results are presented from the two-dimensional numerical simulations of laser energy input into a
hohlraum through a hole. This problem is of interest for ICF research, specifically, for optimization of laser
microtarget design. The optimum relations are found between the hole size and the effective laser spot radius
under conditions close to those of present-day ICF experiments. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The promising concept of microtargets intended for
ICF research assumes that a laser beam is input into a
hohlraum through a hole. Among such microtargets,
there are indirect-drive [1, 2], inverse-corona [3, 4], and
laser greenhouse [5, 6] targets, as well as targets with
an internal energy input (for a long-wavelength laser
driver) [7]. In principle, laser input into the interior cav-
ity of the target can enhance the efficiency of the inter-
action of radiation with a plasma; increase the energy
fraction deposited directly in the fuel; and prevent the
outer layers of the target shell from expansion, thus
increasing the pressure on the inner layers. The laser
energy input into the hohlraum can be efficiently con-
verted into X-ray and electron heat fluxes. This results
in equalizing the pressure on the nonevaporated layers
of the target shell that move toward the center; thus, the
homogeneity of fuel compression increases. These
advantages of the internal input of laser energy into a
target can be realized only if the hole area is much less
than the total area of the outer shell.

In this paper, we analyze the efficiency of laser
energy input into a hohlraum through a hole. When
radiation passes through the hole, its wall evaporates,
which decreases the fraction of the energy penetrating
into the hohlraum (see, e.g., [8, 9]). Ultimately, this can
result in a complete screening and absorption of most
of the laser radiation outside the hohlraum. Based on
two-dimensional numerical calculations, we have
obtained the optimum relations between the hole size
and the effective laser spot radius.

In modeling the heating and compression of spheri-
cal laser targets, the Lagrangian method is traditionally
used to calculate gas-dynamic flows (see, e.g., [10]).
However, the use of the Lagrangian method to model
targets with an internal input of laser energy encounters
great difficulties because Lagrangian cells of the shell
turn out to be strongly deformed near the boundary of
the hole and the internal plasma outflows through this
hole [11]. To model the above processes, we used the
1063-780X/00/2605- $20.00 © 20405
NUTCY two-dimensional Eulerian code in cylindrical
coordinates r and z [12].

2. BRIEF DESCRIPTION OF THE NUTCY CODE

The NUTCY two-dimensional Eulerian code in
cylindrical coordinates is designed to solve the set of
equations of gas dynamics, nonlinear heat conduction,
and laser-radiation transport along the z direction:

(1)

Here, qT is the heat flux. The velocity V has a radial and
z component: u and w, respectively. The problem was
solved in the one-temperature approximation; i.e., only
the electron heat conduction was taken into consider-
ation, qí = –κgradT, where κ is the electron thermal
conductivity and qL(r, z, t) is the intensity of laser radi-
ation. It was assumed that radiation propagates in the z
direction. The calculations were performed in the
region 0 < r < R and 0 < z < L.

The set of equations (1) was solved by “splitting”
the problem into subproblems corresponding to differ-
ent physical process. To solve the gas-dynamic equa-
tions (the continuity equation, the Euler equations for
two velocity components, and the energy conservation
equation with no account of the heat or laser radiation
transports), we used explicit nonlinear conservative
quasi-monotonic difference schemes with a higher
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order approximation, as in the NUT program [13]. To
solve the heat-transport equation, we used implicit dif-
ference schemes. The heat-transport equations

(2)
Cνρ
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∂t
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r∂r
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Fig. 1. Schematic of the target:  is the lower boundary of

the first condensed shell,  is the lower boundary of the

upper condensed shell, and  is the boundary of the calcu-
lation region.
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were solved by the sweep method separately in each
direction. In calculations, we used the Spitzer–Bragin-
skii formula for the electron heat conductivity, κ =
κ0T 2.5 [14].

3. FORMULATION OF THE PROBLEM
AND RESULTS OF SIMULATIONS

The parameters of the problem were chosen to be
close to those achievable in present-day experiments.
We considered the following problem (see Fig. 1). A
cylindrical region with a radius of 2000 µm and
3000 µm in height was divided into five domains. In
domain I (0 ≤ z ≤ 400 µm), the mass density was taken
to be ρ = 10–5 g/cm3; in domain II (400 ≤ z ≤ 470 µm), we
set ρ = 1 g/cm3; and in domain III (470 ≤ z ≤ 2000 µm),
we set ρ = 2 × 10–3. The third domain modeled a low-
density absorber with a mass density lower than the
critical mass density for laser radiation at a wavelength
of 0.35 µm (for the third harmonic of a neodymium
laser and a plasma produced from polyethylene, the
critical mass density is equal to ρc = 3.07 × 10−2 g/cm3).
In domain IV (2000 ≤ z ≤ 2070 µm), we set ρ = 1 g/cm3.
This domain had a hole with radius rd = 50 µm on the
axis. Domain V corresponded to a low-density plasma
(ρ = 10–5 g/cm3). The above structure modeled a region
in the vicinity of one hole in a laser-greenhouse spher-
ical target. A laser pulse with an energy of 3 kJ, a dura-
tion of 1 ns, and a right-triangle waveform entered the
target from above. The radiation intensity had a Gauss-
ian transverse profile ∝ exp(–(r/rf)2) with rf = 250 µm.
The hole radius rd was a variable parameter.
3000
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Fig. 2. Version 2 (rd = 300 µm): density contours at t = 1 and 2 ns.
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Fig. 4. Version 5 (rd = 1000 µm): longitudinal profiles of (a) pressure, (b) temperature, and (c) mass density at t = 1 ns.
The results of calculations were compared with
those for rd = 1000 µm (in fact, the latter corresponded
to the absence of an upper cover). We examined the
efficiency of radiation input into the hole for various
values of the ratio rd/rf . Figure 2 shows the contour
plots of the target mass density at t = 1 and 2 ns for rd =
300 µm. It is seen that, by t = 2 ns, the material of the
inner target shell began to move. Figure 3 shows the
longitudinal profiles of the pressure p, temperature í,
and mass density ρ on the axis at 1 ns for the same hole
radius. It is seen that, along with the density maximum
at z < 500 µm (the inner target shell), a density peak
arises at z = 2000 µm. This is a consequence of the
evaporation of the hole-wall material. As a result, the
LASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
temperature in the region around z ~ 2000 µm increases
(Fig. 3b) and the efficiency of energy transfer deep into
the target decreases. Thus, the inner target appears to be
screened. For rd = 1000 µm, this effect is absent (Fig. 4)
and laser radiation penetrates deep into the target to z =
600 µm. To determine how the energy loss due to
screening depends on the rd/rf ratio, we calculated the
total energy contents in domains I, II, III, and IV. By the
energy input in the hohlraum (Ein), we mean the sum of
the energies in domains I, II, and III. By the energy
transferred to the inner target, EI, we mean the energy
in domain I [note that, during the target heating, the
inner shell almost completely shifts into domain I
(Fig. 2)]. Figure 5a shows the time behavior of Ein for
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Fig. 5. Time behavior of (a) energy input into the hohlraum and (b) hydrodynamic efficiency for different values of the hole radius  rd.
rd = 300, 400, and 1000 µm. It is seen that, for rd /rf =
1.6, the energy input into the target is close to that in the
case of direct irradiation. By hydrodynamic efficiency,
we mean the ratio η = EI /Ein . Figure 5b shows the time
behavior of η for the above values of the hole radius. It
is seen that, for rd/rf = 1.6, the hydrodynamic efficiency
is close to that of direct-irradiation targets.

4. CONCLUSION

The results obtained show that, for the hydrody-
namic efficiency of the targets under consideration to
be comparable with that of direct-heating targets, the
hole radius should be 1.5–1.6 times larger than the laser
spot radius. If this ratio is decreased to 1.0–1.2, then the
energy loss increases almost twofold. In principle, if
the outer shell is made of a high-Z material, the time
during which the hole is filled with the plasma
increases. However, for a correct modeling of such a
problem, the radiation transport in a plasma must be
incorporated into the model. This problem will be con-
sidered in a separate paper.
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Abstract—The formation of a virtual cathode is studied with one-dimensional analytic self-consistent dynamic
models describing the pulsed injection of an electron beam into equipotential regions: a half-space or a plane-
parallel gap. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that, if the current of an electron
beam injected into an equipotential cavity is above a
certain level, then the beam space charge creates a
potential barrier that prevents further electron injection
into the cavity, so that some of the electrons are
reflected from the potential barrier back to the injection
plane. A reflection point characterized by an infinite (in
the hydrodynamic approximation) electron density is
referred to as a virtual cathode (VC). A VC is unsteady
in nature: its periodic displacements and oscillations of
its total electric charge give rise to high-power electro-
magnetic (mostly, microwave) radiation.

At present, it is impossible to describe the electron
and wave properties of an electron flow in the presence
of a VC by taking a rigorous analytic approach, because
the existing mathematical methods fail when the flow
velocity is multivalued. Consequently, theoretical stud-
ies of systems with a VC are being carried out mainly
via computer modeling.

However, in some cases, the problem of the forma-
tion of a VC can be investigated self-consistently using
simple analytic models that are limited to plane-parallel
geometry and allow the formation of a VC to be traced
self-consistently throughout the initial stage, even over
a certain time interval after the flow velocity becomes
non-single-valued.

Here, we consider self-consistent analytic models
describing the above processes when an electron beam
is injected into a half-space or a plane-parallel equipo-
tential gap.

2. MODELS OF THE FORMATION 
OF A VC DURING THE INJECTION 

OF AN ELECTRON BEAM INTO A HALF-SPACE

We consider the injection of a monoenergetic elec-
tron beam into a half-space bounded by a metal plane
z = 0. We are not interested whether the electron beam
is injected through a metal grid or a metal foil (both
transparent to electrons), in which case a positive image
1063-780X/00/2605- $20.00 © 0409
charge is induced in the grid, or whether the electron
inflow into the half-space is stimulated by, e.g., an
intense flux of X-ray photons knocking the electrons
out of the metal surface (and thus giving rise to an
unneutralized positive ion charge at the surface of the
photoemitter). In both cases, the positive charge at each
instant of time is exactly equal to the total charge of the
beam electrons. Neglecting the positive charge (as was
done, e.g., in [1]) makes the problem physically mean-
ingless.

Let the flux density of the electrons emitted from the
surface z = 0 at the time t = 0 be N [cm–2 s–1] =  N(t). By
the time t, the total space charge of the emitted elec-
trons per unit area of the surface is equal to

(1)

so that the related positive surface charge is |Q |. Conse-
quently, according to [2–4], the electrons injected dur-
ing the time interval from τ to τ + dτ are affected by the
electric field E(τ), whose magnitude is only governed
by the charge of the electrons emitted by the time τ, so
that we have

(2)

Relationship (2) is valid up to the time at which one of
the injected electron layers overtakes a layer of the
electrons that were emitted earlier (an exact expression
for this time will be obtained below). For the particular
case of an electron pulse with a step density profile
N(t) = N0Θ(t), where Θ(t) is the Heaviside step function
of unit height, we obtain

(3)

Q e N τ( ) τd

0

t

∫–=

E τ( ) 4πe N τ( ) τ .d

0

τ

∫=

E τ( ) 4πeN0τ .=
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so that, in Lagrangian variables (t, τ), the electron
motion is described by the equation

(4)
∂2

∂t
2

-------z t τ,( ) e
m
----E τ( )–

4πe
2
N0

m
------------------τ–= =

1

2

0

v

(‡)

2
1

2

0

n
(b)

2

1

1 2
z

4

3

2

1

0 1 2 3 4
τ

t

Region where the flow
velocity

is multivalued

tr tp

tm

Emission line

Fig. 1. Instantaneous profiles of (a) the velocity and (b) den-
sity at t = (1) 1 and (2) 1.5 in the case of beam injection into
a half-space.

Fig. 2. Phase diagram of a beam injected into a half-space in
the (t, τ) plane.
with the initial conditions

(5)

We introduce the dimensionless units by normaliz-
ing the time variables to τ' = mv0/4πe2N0, the length to
v0τ', the velocity to v0, the electron density to N0, the

electric field to mv0/eτ', and the potential to m /e. In
dimensionless form, equation (4) with initial conditions
(5) becomes

(6)

The problem as formulated is easy to solve:

(7)

(8)

In Figs. 1a and 1b, respectively, we plot profiles of
the electron velocity v(z) and electron density n(z) cal-
culated from (7) and (8), and the electron trajectories in
the (z, t) plane are plotted in Fig. 2.

The times tr at which different electron layers are
reflected from the potential barrier (v = 0) are defined
as

(9)

and the time tp at which the electrons return to the injec-
tion plane can be found from the equation z(tp, τ) = 0
[see (8)]. This equation has two roots,

(10)

The first root corresponds to the time of electron injec-
tion, and the second root is the time at which the elec-
trons return to the injection plane z = 0.

Let us determine the time at which the electron flow
velocity becomes non-single-valued, i.e., when equal-
ity (3) fails to hold. In the region in which the flow
velocity is single-valued, we have

(11)

This condition holds for

(12)

Relationships (9), (10), and (12) determine the
states of the electron flow; the boundaries between dif-
ferent states in the (t, τ) plane are displayed in Fig. 3.

z τ τ,( ) 0, ż τ τ,( ) v 0.= =

v 0
2

∂2

∂t
2

-------z t τ,( ) τ , z τ τ,( )– 0, ż τ τ,( ) 1.= = =
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τ
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Solutions similar to (7) and (8) can also be derived
for the relativistic case [3]

(13)

(14)

where

(15)

and β0 and γ0 are the normalized velocity and Lorentz
factor of the injected electrons.

It is also of interest to study the dynamics of the
electrons injected into a half-space with allowance for
the energy spread of the injected beam. Let us assume
that the surface density of the electrons injected
through the surface z = 0 (or emitted from this surface)
at the time t = 0 is N [cm–2] and that the electron distri-
bution function f(W0) in terms of the kinetic energy
W0 = mv2/2 is normalized to N so as to satisfy the con-
dition

(16)

The total electric charge of the emitted electrons per
unit area is Q = –eN, the related positive surface charge
being |Q |. The electric field acting on the electrons with
the energy W0 is

(17)

The electron motion in the electric field (17) is
described by the relationships

(18)

(19)

For the specific case of a rectangular distribution func-
tion, which is assumed to be nonzero within the interval
{W0 min; W0 max} (Fig. 4), relationships (18) and (19) can
be rewritten as

(20)

(21)
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Figure 5 illustrates the electron trajectories in the (z, t)
plane that were calculated from formulas (20) and (21)
with W0 max = 150 keV and W0 min = 50 keV.

The time tr at which the electrons are reflected and
the time tp at which they return to the emitting surface
are

(22)

Note that, in the case of instantaneous emission, in
which we are interested here, the electron flow velocity
can never be non-single-valued, because the condition
∂z/∂W0 > 0 always holds.

tr W0( )
2W0

m
----------

m

4πe
2
N

----------------
W0 max W0 min–

W0 max W0–
-----------------------------------, tp 2tr.= =

2

1

0 0.5 1.0 1.5 2.0 2.5 3.0
t

z

Fig. 3. Electron trajectories in the (z, t) plane in the case of
long-time injection of a beam into a half-space.
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Ν
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z

Fig. 4. Electron energy distribution in the case of instanta-
neous injection of a beam into a half-space.

Fig. 5. Electron trajectories in the (z, t) plane in the case of
instantaneous injection of a beam into a half-space.
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It is noteworthy that the models of electron injection
into a half-space that were treated in this section imply
the absence of transit particles, because all of the
injected electrons will inevitably (sooner or later)
return to the injection plane.

3. MODEL OF THE FORMATION
OF A VC DURING ELECTRON INJECTION

INTO A PLANE EQUIPOTENTIAL GAP

Now, we consider the dynamics of an electron flow
in a plane equipotential gap. To the best of the author’s
knowledge, Ignatov and Rukhadze [5] were the first to
study the problem as formulated. Because of the seri-
ous mathematical difficulties, they solved the problem
of the formation of a VC using the particle simulation
technique. However, the initial stage of the formation
of a VC in a plane gap may be treated analytically and
some of the parameters characterizing the formation
process may be evaluated exactly, as will be done in
this section. Of course, this circumstance does not
make the results obtained in [5] any less important,
because our analytic approach is valid only for a finite
time interval and cannot be used to describe the modu-
lation of the currents of transit and reflected electrons
(see below).

The dynamics of the electron flow in a plane equi-
potential gap differs markedly from that of electrons
injected into a half-space (see Section 2). The most
important difference is the presence of transit electrons,
which appear because the electron flow induces a posi-
tive charge not only in the emitter but also in the other
electrode (collector). We describe the initial stage of
formation of a VC in a plane equipotential gap using the
model that was developed in [6–8] and that (unlike the
model proposed in [2–4]) makes it possible to follow
the evolution of the process over a certain time interval
after the flow velocity becomes non-single-valued.

We consider an electron beam injected through a
thin conducting foil (or grid) into a plane equipotential
gap. We assume that the gap is wide enough for the
front of the electron flow not to reach the opposite con-

0.5

0 1 2 3 4

1.0

ωpτp

ωpz/v0

ωpts ωptp
ωpt

VC

ωpτs

Fig. 6. Electron trajectories in the (z, t) plane in the case of
long-time injection of a beam into a plane equipotential gap.
ducting surface during the injection; the corresponding
condition will be refined below.

Let t = 0 be the initial time of electron injection in a
strong guide magnetic field, the density and velocity of
the injected electrons being n and v, respectively. In
Lagrangian variables, the equation of electron motion
in the flow, the continuity equation, and the equation for
the electric field can be written as

(23)

(24)

(25)

where τ is the time of injection of an electron layer. We
eliminate n(t, τ) and E(t, τ) from these equations and
use the relationship ∂/∂z = v–1∂/∂t to arrive at the basic
model equation

(26)

The Cauchy problem for equation (26) supplemented
with the boundary conditions

(27)

(28)

(29)

at the injection plane can be readily integrated by
quadratures:

(30)

Before proceeding to an analysis of the dynamics of an
electron flow using integral (30), we determine the time
interval over which our model is valid. Recall that, in
Poukey and Rostoker’s model [2], the electric field was
taken to be of the form (2), which is valid up to the time
at which the electron flow velocity becomes non-sin-
gle-valued (i.e., a VC starts to form). In contrast, our
model, which is based on the equations for an electron
flow and the field equation (25), is self-consistent and
makes it possible to treat longer time intervals in com-
parison with those in the model of [2–4].

We assume that the gap is wide enough so that the
electrons reflected from the VC return to the injection
plane before the transit electrons reach the opposite
electrode. In this case, our model is valid up to the time
at which the front of the flow of the reflected electrons
reaches the injection plane, because the electron losses
from the gap cannot be incorporated into boundary
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conditions (28) and (29). This time can be determined
by equating dv/dt to zero and the velocity v to v0:

(31)

with

(32)

Numerically, the times in (31) and (32) can be esti-
mated as

(33)

The electron trajectories in the (z, t) plane that were
calculated from our model are illustrated in Fig. 6, in
which one of the heavy curves shows the trajectory of
the electrons injected at the time τ = τp. It is also an easy
matter to estimate the distance that the front (τ = 0) of
the electron flow passes by the time tp:

(34)

This implies that the condition L > df (where L is the
gap width) is necessary in order for the time interval
over which our model is valid to be the longest.

The bounce frequency of the electrons in the poten-
tial well between the emitting cathode and the VC can
be estimated as

(35)

Of course, the bounce cycle times are different for
different electron layers. Consequently, by the bounce
frequency of the electrons in the potential well, we
mean a characteristic frequency close to the mean
bounce frequency measured experimentally from the
emission spectra.

Let us estimate the time required for a VC to form.
The time at which an electron layer injected at the time
τ will stop can be found from the condition ξ(t, τ) = 0.
Then, we determine which of the electron layers will be
the first to stop. To do this, we must find the extremum
(minimum) of the function defined implicitly through
the equation ξ(t, τ) = 0 from the condition dt/dτ = 0. Per-
forming the required manipulations, we find that the
electron layer that will stop the first is injected at the
instant τs that satisfies the transcendental equation

(36)
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The instant ts at which this layer stops is

(37)

Numerical estimates give

(38)

The time ts governs the temporal scale on which a
VC forms. Another heavy curve in Fig. 6 shows the tra-
jectory of the electrons injected at the time τ = τs.

4. CONCLUSION

We have analyzed some self-consistent one-dimen-
sional models describing the dynamics of an electron
flow. The results obtained can be summarized as fol-
lows.

In studying the dynamics of an electron beam
injected into a half-space, we have considered the two
cases: long-time injection of a monoenergetic electron
beam and instantaneous injection of a beam with a pre-
scribed electron energy spectrum. In both cases, all of
the injected electrons return to the injection plane. In
the first case, a VC appears in the electron flow; more-
over, at the time at which the VC starts to form, the
electron flow velocity becomes non-single-valued,
thereby limiting the applicability range of our model. In
the second case, the reflected electrons come back to
the injection plane as a laminar flow, so that the flow
velocity always remains single-valued.

We have constructed a simple self-consistent ana-
lytic model of the initial stage of the formation of a VC
in a plane-parallel equipotential gap. Analyzing this
model allowed us to determine the temporal scale on
which the VC forms. Unlike the models developed in
Section 2, which can be applied only up to the time at
which the electron flow velocity becomes non-single-
valued, the applicability range of the self-consistent
model is broader but it is limited by the fact that the
electron losses in the injection plane are impossible to
incorporate. The model makes it possible not only to
study the processes that occur before the formation of a
VC but also to trace its time evolution and estimate the
bounce cycle frequency of the electrons in the potential
well between the emitting cathode and the VC.

The results obtained may prove useful for develop-
ing high-power microwave oscillators operating with a
VC [7–10], collective ion accelerators in systems with
a VC [11], and generators of high-power pulses of soft
X radiation in reflecting systems [12].
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Abstract—Results are presented from the experimental studies and numerical simulations of the behavior of
dust grains in the plasma of an inductive RF discharge. The experiments were carried out with neon at a pressure
of 25–500 Pa and with 1.87-µm melamine formaldehyde grains. The discharge was excited by a ring inductor
supplied from a generator operating at a 100-MHz frequency. The effective dust-grain interaction potential used
in numerical simulations involved the spatial dependence of the grain charge on the plasma floating potential,
grain-interaction anisotropy resulting from the focusing of the drift ion current by the negatively charged grains,
and specific features of the shielding of the dust grains by the plasma electrons and ions recombining both in
the plasma bulk and on the grain surface. The results of Monte Carlo simulations show that the dust grains
form specific filament structures observed experimentally in the plasma of an inductive electrodeless discharge.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The properties of a dusty plasma and, first of all, the
conditions for the formation of ordered charged-grain
structures (so-called plasma crystals) were experimen-
tally studied mainly near the electrodes of an RF capac-
itive discharge [1–7], in the thermal plasma [8, 9], and
in the standing strata of a glow discharge [10–12]. The
dust grain levitation and the formation of ordered dusty
structures in the low-pressure plasma of an inductive
RF discharge were first reported in [13].

In order to confine and suspend charged dust grains,
it is necessary to create a potential well. The potential
wells produced in different types of discharges differ
significantly from each other; however, in every case,
their formation is governed by the charge-particle
fluxes on the wall of the discharge tube or the elec-
trodes of a gas-discharge device. In an electrode gas
discharge, there is an external electrostatic field and an
external dc current. The combined action of the exter-
nal electric field and the electrostatic field of the tube
wall on the charged dust grains makes it possible to bal-
ance out the gravity force, so that the grain is sus-
pended. In a stratified glow discharge, a spatial struc-
ture is formed in which the plasma parameters change
periodically (with a characteristic scale length of sev-
eral centimeters) along the plasma column. At the head
of the stratum, the electric field can attain 10–15 V/cm,
whereas, outside this region, the field is weak
(~1 V/cm). The maximum of the electron density is
shifted toward the anode with respect to the field max-
1063-780X/00/2605- $20.00 © 0415
imum. The electron energy distribution is bimodal. The
second maximum is predominant in the stratum head,
and its center is close to the excitation potential of the
neutral-gas atoms. Because of the high floating poten-
tial of the discharge-tube wall, the stratum potential is
two-dimensional: the axis–wall potential difference in
the stratum head attains 20–30 V. If the discharge tube
is in the upright position, the grains with a sufficiently
large charge and relatively small mass can be sus-
pended in this potential well; the strong radial electric
field prevents the grains from depositing on the wall of
the discharge tube. In an asymmetric RF capacitive dis-
charge, the period-averaged constant voltage in the
sheath near one of the electrodes is nonzero due to the
self-biasing effect [14]; this results in the formation of
a potential well in which the dust grains can be sus-
pended.

In an electrodeless RF gas discharge, both the exter-
nal dc current and external electrostatic field are absent.
In this case, an important role is played by the electro-
static fields that originate due to the violation of plasma
electric neutrality caused by the different diffusivities
and mobilities of the electrons and ions. The spatial dis-
tribution of the plasma parameters in the central region
of an electrodeless RF discharge is more uniform than
in a glow discharge with strata. The formation of a
potential well in an electrodeless RF discharge is deter-
mined by both the volume processes in the plasma and
recombination and adsorption of charges on the dis-
charge-tube wall.
2000 MAIK “Nauka/Interperiodica”
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2. DESCRIPTION OF THE SETUP 
AND RESULTS OF EXPERIMENTS

In this study, as in [13], the plasma was produced in
a glass tube 27 mm in diameter and more than 20 cm
long. The tube was in the upright position (Fig. 1). An
RF voltage generator with a power up to 10 W operated
at the 100-MHz frequency. The power deposited in the
discharge through an annular inductor was about sev-
eral watts. The position of the discharge tube in the
inductor could be varied. The working gas was neon at
a pressure P from 25 to 500 Pa. When the generator was
switched on, a luminous plasma region filled the entire
tube cross section. The size of the plasma formation
along the tube depended on the gas pressure and the
generator power and could vary from several centime-
ters to the entire length of the tube. The dust grains
were injected into the plasma by shaking a metal con-
tainer positioned on the upper end of the tube. The bot-
tom of the container was made of a small-cell metal
grid. We used monodisperse grains of melamine form-
aldehyde 1.87 ± 0.05 µm in diameter. Since the density
of the grain substance was 1.5 g/cm3, the grain mass
was 5.1 × 10–6 µg. The diagnostic facility was the same
as in [12, 13]. A striplike, 25-mm-wide and ~200-µm-

1

2

3

4

5

Fig. 1. Schematic of the experimental device: (1) discharge
tube, (2) grain container, (3) inductor, (4) plasma formation,
(5) region where the structures produced from monodis-
perse grains were observed.
thick (in the waist) laser beam produced by a diode
laser operating at the 670-nm wavelength passed
through the plasma. The laser beam could be displaced
in both the vertical and horizontal direction, and the
beam plane could be rotated. This allowed us to observe
different cross sections of the plasma volume. The dust
grains were observed in scattered laser radiation with
the use of a CCD array, and the produced images were
recorded by a videotape recorder.

In this paper, the first attempt is made to describe the
levitation of dust grains in an electrodeless RF dis-
charge; therefore, the theoretical approach we will use
further does not pretend to completely describe the
behavior of grains under the conditions in question.
Our main purpose is to choose an appropriate model of
a potential well and describe the most characteristic
properties of the dust behavior. Hence, for numerical
simulations, it is natural to choose the experimental
conditions under which stable steady structures without
grain oscillations are observed. From this standpoint,
the most appropriate neon-pressure range is from 30 to
80 Pa and the most appropriate structures are those pre-
sented in Figs. 2 and 3. The levitation of monodisperse
grains was observed only in the peripheral region of the
discharge (Fig. 1), namely, at the low boundary of the
plasma formation in the transient region between the
luminous plasma core and neutral gas. In the center of
the discharge, the levitation of grains was not observed.
When the grains were injected from above, they devi-
ated toward the tube wall, bent around the plasma core,
and then approached again the tube axis in the region
where the plasma emission intensity decreased sub-
stantially. As the deposited power increased, the verti-
cal size of the plasma volume increased; i.e., the bound-
aries of the luminous region shifted upward and down-
ward and, correspondingly, the region occupied by the
grains shifted downward as a whole. In this case, the
structure formed of grains remained unchanged as it
moved downward along with the discharge boundary
until it reached the bottom of the discharge tube. The
structures presented in Figs. 2 and 3 were obtained by
injecting the grains into the plasma at a fixed pressure.
It is seen that the dust cluster together to form filaments
extended in the upright direction. As is seen from
Fig. 2, the number of filaments in the structure
decreases toward the discharge periphery. The number
of grains confined in such structures is limited from
above. When the filament reaches a certain length that
depends on the pressure, the structure ceases to capture
new grains; i.e., saturation occurs. New grains either
remain uncaptured or they force out other grains and
occupy their place. As the pressure increases, the longi-
tudinal size of the structure and the distance between
grains decrease (Fig. 2) and the structure itself extends
in the transverse direction (Fig. 3).
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
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30 Pa 50 Pa 80 Pa

30 Pa 50 Pa 80 Pa

Fig. 2. Structures formed in neon at different pressures. The fragment dimensions are 17 × 7.4 mm.

Fig. 3. The image of the upper region of the structures obtained at different neon pressures. The fragment dimensions are  5.2 × 3.4 mm.
3. ANALYSIS OF THE CONDITIONS 
FOR FORMATION OF A POTENTIAL WELL

FOR DUST GRAINS

In order to determine the shape of a potential well
formed in an electrodeless RF discharge, it is necessary
to find the distribution of the amplitude of the heating
RF field and the densities and temperatures of the
plasma electrons and ions. This problem contains a nat-
ural small parameter, namely, the ratio of the difference
between the ion and electron densities to the electron
density (ni – ne)/ne ! 1. Therefore, in the first approxi-
mation, the plasma can be assumed quasineutral (ni = ne).
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
In this case, the spatial distribution of both the heating
RF electric field and the electron density can be found
from Maxwell’s equations and the balance equation for
the number of electrons with allowance for ambipolar
diffusion, electron-impact ionization, and the boundary
conditions for the electric field and electrons. Knowing
the spatial distribution of electrons, we can find the dis-
tribution of the electrostatic field by solving Poisson’s
equation, in which we take into account the difference
between the density distributions of electrons and ions
over the plasma volume. The obtained distribution of
the electrostatic field determines the configuration of
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the potential well in the plasma without dust grains.
Accurate calculations of the plasma parameters of an
inductive RF discharge were carried out in [15].

It is should be kept in mind that the presence of
charged grains in the potential well (especially when
their number is large) can change the initial well con-
figuration. However, when calculating the formation of
a dusty structure in the given electrostatic field pro-
duced by a positively charged plasma and negatively
charged discharge-tube wall, the distortion of the initial
well configuration can be neglected in the first approx-
imation. In order to perform numerical simulations of
the structures formed by charged dust grains, we need
appropriate analytical expressions adequately describ-
ing the physical properties of the well potential. The
region where the plasma quasineutrality is violated can
be approximately described as an electric-charge dou-
ble layer with thickness lq. We assume that the positive
space charge is mainly located on a surface whose
shape is close to an elongated ellipsoid of revolution.
To find the space charge located on the ellipsoid sur-
face, it is necessary to take into account its Debye
shielding by the plasma electrons and ions on the char-
acteristic spatial scale on the order of lq. The total effec-
tive positive charge of the ellipsoid surface can be
found from the relationship Q(σm) ≈
8πε0akBTe(σm)exp(–lq /rD)/e, where ε0 is the permittiv-
ity of vacuum, a is the characteristic size of the ellip-
soid (the half-distance between foci), rD is the Debye
radius, σm is the coordinate of the ellipsoid surface in
elliptic coordinates, e is the electron charge, and Te is
the electron temperature. From the physical consider-
ations and estimates made for our experimental condi-
tions, it follows that lq/rD > 1. The potential field of a
conducting charged ellipsoid of revolution can be
expressed in terms of elementary functions [16]

(1)

where Q(σm) is the effective charge of an ellipsoid with
the parameter σm (with allowance for charge shielding),
σ(r) = (r1 + r2)/2a, and r1 and r2 are the distances of an
arbitrary point with coordinates (x, y, z) from the ellip-
soid foci (0, 0, –a) and (0, 0, a).

Note that (1) describes the potential field outside a
positively charged elliptic plasma object produced in an
inductive RF discharge. However, inside this object, the
model potential (1) turns to infinity logarithmically.
Therefore, the model potential should be corrected. For
this purpose, we introduce the characteristic function

(r) = (1 – exp(–[(1 – σ(r))/σm])), which vanishes on the
centerline of the ellipsoid, between its foci. The result-
ing potential has the form ϕ1(r) = (r) (r). Another
important factor is that the tube wall is negatively
charged, because it is at the floating plasma potential.
To analyze the behavior of the electric potential near

ϕ̃ r( )
Q σm( )
8πε0a
---------------- σ r( ) 1+

σ r( ) 1–
-------------------- 

  ,ln=

χ̃

ϕ̃ χ̃
the tube wall quantitatively, it is necessary to consider
the structure of the sheath near a nonemitting wall [17].
The thickness lW of this sheath can be estimated as lW .
max(le , rD), where le is the electron mean free path and
rD is the Debye radius corresponding to the plasma
parameters near the wall (lW/R < 1), where R is the
radius of the discharge tube. It should be taken into
account that, in an electron sheath of length rb, the elec-
tron temperature varies from Te(r) inside the plasma to
the equilibrium value Te(R) = Ta = TW, (Te(r) > Ta) on
the tube wall. The small value of the ratio rb/R .

le/(R ) ! 1, where δ is the coefficient of inelastic
energy loss, and the azimuthal uniformity of the
tube-wall charge allow us to evaluate the shape of the
potential well far from the wall and approximate it by
the simple expression ϕ2(r) = ϕW(z)χr(rp) [18], where
χr(rp) = –(rp /R)3/2 and rp = (x2 + y2)1/2 is the length of
the radius vector in the (x, y) plane. Here, ϕW(z)
accounts for the variations in the potential of the tube
wall along the z-axis; this potential is approximated by
the dependence [18] ϕW(z) = ϕ∞ + ∆ϕ/(1 + (z/dW)2),
where dW is the characteristic length of variations in the
wall potential along the z-axis, ϕ∞ is the wall potential
at |z| @ dW, and ∆ϕ = ϕW(0) – ϕ∞. Thus, the electric field
of the well, which is determined by the combined
action of the electric field produced by the discharge-
tube wall, ϕ2(z), and the field of a positively charged
plasma core (1) is

(2)

Particular values of the parameters entering into the
formulas presented will be chosen below, when consid-
ering the results of numerical simulation.

4. GRAIN CHARGE AND MECHANISMS FOR 
THE INTERACTION BETWEEN GRAINS

In order to study the interaction between the dust
grains and the formation of ordered structures, it is nec-
essary to know the mechanisms for the grain charging
and the nature of forces acting on the grains. At present,
several physical mechanisms governing both the bal-
ance between gravitational and electric forces acting on
suspended grains and the interaction between them are
discussed in the literature. As was noted above, the
electric force acting on a grain is found by solving Pois-
son’s equation with allowance for the spatial distribu-
tions of electrons and ions generated by an RF field, as
well as the distribution of dust grains, whose charge
depends, in turn, on the local floating potential. Since
this self-consistent problem is too complicated, it is
convenient to separate out a force responsible for the
interaction between dust grains and consider the
plasma to be a background. The density of plasma elec-
trons and ions is three orders of magnitude higher than
the grain number density; therefore, the plasma–grain
interaction can be modeled by introducing an effective

δ

ϕ r( ) ϕ1 r( ) ϕ2 r( ).+=
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dust-grain interaction potential, which can be found by
averaging over the electron and ion positions. Thus, the
dust-grain subsystem is open and can exchange the
charge and energy with the gas-discharge plasma. Fur-
ther, we will follow the approach developed in [18] and
assume that the grain charge Q(r) is a given function of
spatial coordinates and, according to the commonly
accepted views [19–21], is proportional to the plasma
floating potential

(3)

where C . 4πε0Rp is the coefficient on the order of the
dust-grain capacitance, Rp is the grain radius, and φt(r)
is the floating plasma potential depending on spatial
coordinates. In this case, the seed potential of the inter-
action between two dust grains has the form

(4)

In addition to the partial shielding of the grain
charge by the plasma electrons and ions, which interact
strongly with the dust grains, a very important factor is
the appearance of regions with increased free-ion con-
centration. These regions are produced due to the
focusing action of the large negative charge of dust
grains on the ion drift current in the plasma. The
regions with increased ion density downstream of the
dust grains were considered, e.g., in [22, 23], in which
Poisson’s equation was solved and the ion–neutral col-
lisions and charge exchange processes were taken into
account by the Monte Carlo method. In those papers,
the characteristics of the point positive charge equiva-
lent to the ion cloud were also calculated and the dis-
tance between this charge and the dust grain was found.
According to [22], the equivalent positive charge can
attain one-third of the grain charge and the equivalent
charge–grain distance d is less than or on the order of
the Debye radius. Usually, the average distance 〈r〉
between the dust grains in the gas-discharge plasma is
larger than the Debye radius rD and, according to [22],
is larger than d.

In spite of the absence of the external direct electric
current in an electrodeless RF discharge, there are
always ion currents caused by diffusion and ion motion
in the electrostatic field Es: ji = e(µiEsni – Di∇ ni) =
−eDa∇ ni , where µ, Di , and Da are the ion mobility, dif-
fusivity, and ambipolar diffusivity, respectively. The
ion currents in the plasma core and at the periphery dif-
fer in magnitude and direction. Thus, in the central
region of the discharge, the radial current jir =
−eDadne/dr is dominant, whereas on the periphery, the
current flows mainly in the axial direction jiz =
−eDadne/dz. Their averaged ratio can be estimated by

using the relationship jiz/jir ≈ R/ a. Here, R is the

radius of the discharge tube and  and  are the

Q r( ) eZ p≡ Cφt r( ),=

V r1 r2,( ) 1
4πε0
-----------

Q r1( )Q r2( )
r1 r2–

----------------------------.=

Te
in

Te
ex

Te
in

Te
ex
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
temperatures inside and outside the plasma formation,
respectively [17].

It is also of importance that, under the conditions in
question, the ratio of the drift ion velocity to the ther-

mal velocity is on the order of unity, vi/  .
Teli/TiR . 1, where li is the ion mean free path [17]. In
this case, the shielding cloud of positive ions can be
asymmetric around the dust-grain center. The asymme-
try of the distribution of the positive-charge cloud leads
to the origination of a virtual dipole with the dipole
moment ζeZprD, where ζ ≤ 1 is the dimensionless
parameter. Note that the asymmetry of the positive-
charge cloud depends on the position of the dust grain.
Anisotropic polarization of the background plasma can
affect different processes. For example, when the dust
grain enters the region occupied by the plasma from
above, its charge changes due to the change in the local
floating potential; the positive charge of the ion cloud
surrounding the dust grain also changes. As a result, the
effective charge of the system consisting of a negatively
charged dust grain and a positive ion cloud changes. If
the change in the effective charge proceeds sufficiently
rapidly, the dust grain flows around the positively
charged plasma region. Such behavior of dust grains
was observed in the experiment: a fraction of the grains
falling from the container was forced out toward the
discharge-tube wall when approaching the luminous
region and flow around the central region of the dis-
charge. The polarization of the plasma containing dust
grains can lead to the capture of other dust grains if
their average kinetic energy is not too large. It is the
interaction anisotropy that can cause the ordering of
dust grains and formation of spatial or linear crystal-
like structures [18]. It follows from the aforesaid that,
in order to correctly describe the interaction between
dust grains, it is necessary to introduce the effective
potentials taking into account the above effects.

5. EFFECTIVE DUST-GRAIN INTERACTION 
POTENTIAL

The shielding of dust grains by the plasma, the influ-
ence of the electron and ion fluxes, and recombination
processes on the grain surface were taken into account
in [6]. It was shown that, at small distances, the pair
potential of interaction (r1, r2) is shielded by the
Debye exponential law and, at distances on the order of
several Debye lengths, it is inversely proportional to the
squared distance between the grains. Based on the
results of numerical calculations [6, 22, 24, 25] and
introducing an effective positive point charge Q+ that
takes into account the presence of regions with an
increased ion density, we can use the following approx-
imation for the effective pair potential U(r12) of the

8kBTi πmi⁄

ϕ̃
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interaction between dust grains located at the distance
r12 from each other:

(5)

Here, ri and rj are the radius vectors of the ith and jth
grains; rij = rj – ri;

is the excessive negative charge of the dipole formed by
the negatively charged dust grain and the effective pos-
itive point charge;
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is the dipole moment; θi is the angle between the vector

rij and the unit vector  directed from the negatively
charged ith dust grain to the equivalent point positive
charge of its ion cloud; θij is the angle between the vec-

tors  and ;

is the quadrupole moment; (|rij|) and D(|rij|) are the
fitting functions, which, under our conditions, change
from unity to zero over a distance equal to one and two

Debye radii, respectively; and  is the fitting constant.
The direction of the unit vector e+ coincides with the
direction of the local electric field in the potential well.
In this model, the dependence of the Debye radius on
spatial coordinates is neglected. This dependence will
be analyzed in a future study.

It is convenient to choose the Debye radius as a unit
length. Then, we have

P
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where β = 1/kBTp, kBTp is the energy temperature of the
dust grains: and Z(ri) is a charge expressed in terms of
the electron charge Q(ri) = Z(ri)e. The distances are nor-
malized to the Debye radius rD (for simple estimates, it

can be written in the form  = kTg /4πe2(ne + ni),
where Tg is the gas temperature).

The Coulomb coupling parameter can be repre-
sented as

rD
2

Γ ri r j,( )
βe

2

4πε0
-----------

Zs ri( )Zs r j( )
rD

--------------------------- Γ≈ Zp
2
e

2
/4πε0kBT prD= =
or

Here, γp = e2/4πε0kBTp〈r〉  is the nonideality parame-
ter, Zp is the characteristic grain charge, and 〈r〉  =
(4πnp/3)–1/3 is the average distance between grains.

Note once again that potential (6) takes into account
a number of physical factors affecting the interaction of
dust grains in the plasma. First, we include the spatial
dependence of the grain charge on the floating poten-
tial. Second, the first and second terms describing the
spherically symmetric part of the interaction involve

Γ γp r〈 〉 rD.⁄=

Z p
2
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the shielding of the dust grains by the plasma electrons
and ions, which strongly interact with grains. The third
and fourth terms in (6) describe the anisotropic interac-
tion of dust grains, which results from focusing of the
ion current by the highly charged dust grains. For the
dust grains positioned one above the other, the sum of
the third and fourth terms in the expression for the
effective potential becomes negative (the grains attract
each other). If the grains are positioned in the horizon-
tal plane, the above sum is positive and the grains are

repelled from each other. The fitting function  also
takes into account the destruction of the ion clouds
when the dust grains approach each other at a distance
on the order of the Debye radius. A dust grain can be
suspended if its weight is balanced out by the electro-
static field of the potential well, which acts on both the
negatively charged dust grain and the equivalent posi-
tive charge of the surrounding ion cloud.

6. NUMERICAL SIMULATION

To carry out numerical simulations of ordered struc-
tures, it is necessary to specify the dependence of the
grain charge and effective charge of the surrounding
ion cloud on spatial coordinates. As a first approxima-
tion, we assume that the negative charge of the dust
grains is proportional to the floating potential of the dis-
charge-tube wall; i.e., it is a function of the vertical
coordinate of the dust grain only, namely, φt(r) = ϕW(z)
[see (3)]. As was done in [18], we assume that the effec-
tive charge of the ion cloud is proportional to the dust-
grain charge. As was mentioned above, in the general
case, the relationship between the negative charge of
the dust grain and positive charge of the shielding cloud
can be different due to the difference between recombi-
nation processes in the plasma-production region and at
small distances from the discharge-tube wall, where the
wall-sheath processes play an important role. In our
model, this difference was not taken into account.
Finally, the charge dependence on spatial coordinates
was taken in the form

where the coefficient α accounts for the difference
between the effective charge of the ion cloud and the
dust-grain charge (α < 1). Returning to the interaction
of dust grains with the potential well described by (2),
we note that the potential energy (normalized to the
energy temperature of dust grains kBTp) of the interac-
tion of the ith grain with the electrostatic field of the
potential well created by an inductive discharge is
described by the expression

(7)
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Numerical simulations of the plasma with dust
grains were carried out by the standard Monte Carlo
method [26]. A finite number N of grains was placed in
a cell of size L. It was convenient to measure the cell
size L in terms of the Debye radius rD, which was about
0.5 mm under the experimental conditions. Taking into
account the performance of the available computers
and restricting ourselves to a reasonable computation
time, the number of grains was chosen to be N = 300–
1000. Accordingly, the linear size of the Monte Carlo
cell holding the characteristic dusty structure was cho-
sen to be L = 80rD ≈ 4 cm, which approximately corre-
sponds to the experimental conditions. Note that the
linear size and the number of dust grains used in numer-
ical calculations were less than those in the experiment;
this substantially reduces the requirements for com-
puter power and decreases the computation time to
about ten hours. The dust grains were suspended in a
potential well described by (7). Parameters Q, a, and σm

estimated for our experimental conditions were 3 ×
102e, 8rD, and 2, respectively. The parameters of the
potential corresponding to the force with which the
tube wall acted on the grains were taken to be ϕ∞ = 8 V,
∆ϕ = 8 V, and dW = 14rD. Gravity acted on the grains
along the z-axis.

The interaction between dust grains is determined
by (6). In calculations, the quantities Tp = 300°C, Zp =
3 × 103, Γ, and L were fixed, whereas the parameters d
and |Z+(ri)/Zs(ri)| = |α/(α – 1)| varied from 0.5rD to 2rD

and from 0.01 to 0.5, respectively. According to the
results of [22], this corresponded to the conditions of a
20- to 200-Pa-pressure gas discharge. From the physi-
cal standpoint, the change in the absolute value of the
parameter Z+(ri)/Zs(ri) is equivalent to the change in the
neutral-gas pressure; for example, the increase in the
neutral-gas pressure decreases the mean free path of
ions and prevents them from focusing downstream of
the dust grains. Figure 4 compares potential (6) to the
Coulomb and Debye potentials, as well as the Debye
potential approaching the asymptote r–2 at large dis-
tances. For convenience, the ratios of these potentials to
the Coulomb potential are presented on the logarithmic
scale. Thus, the Coulomb potential in Fig. 4 is pre-
sented by the zero-ordinate horizontal line, whereas the
Debye potential corresponds to the linear dependence.
All of the repelling potentials are substantially weaker
than the Coulomb potential.

7. DISCUSSION

Let us consider the results of Monte Carlo simula-
tions. The total uncompensated dipole charge Zs(r) as a
function of height is shown in Fig. 5. The vertical axis
shows the coordinate along the discharge-tube axis (the
total length is equal to the size of the Monte Carlo cell).
The center of the plasma ellipsoid generated by an RF
discharge is positioned at the 0.9L height. As the dis-
tance from the center of the plasma ellipsoid decreases,
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the total charge Zs(ri) of the system consisting of a neg-
atively charged grain and positive ion cloud increases
in magnitude. In spite of the attraction to the plasma
ellipsoid, a significant number of dust grains are
located in the region of the RF discharge where the
plasma potential is smaller in magnitude and changes
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Fig. 4. Logarithm of the ratio of the dust-grain interaction
potential Ui to the Coulomb potential UC: (1) Debye poten-

tial, (2) Debye potential approaching the asymptote r–2 at
large distances, and (3, 4) upper and lower values the poten-
tial (6) takes when the angle θ varies from 0 to π for d =
0.8rD and Z+(ri)/Zs(ri) ≈ –0.1.
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Fig. 5. The quantity Zs in terms of 3 × 103e as a function of
height for d = 0.8rD and Z+(ri)/Zs(ri) ≈ –0.1.
rather gradually. Calculations show that the change in
the pressure or, analogously, in the ratio Z+(ri)/Zs(ri)
affects the distribution only slightly. Figure 6 presents
the axial vertical cross section of the calculated dusty
structure. The figure size is equal to the size of the
Monte Carlo cell. The horizontal axis in Fig. 6 shows
the distance across the discharge tube. The point 0.5 L
corresponds to the discharge-tube axis. The scale divi-
sion 0.1 corresponds to approximately 8rD, or 4 mm. As
was noted above, the physical reason for the formation
of a linear structure is the focusing action of the nega-
tively charged dust grains on the ion current, which
leads to the production of clouds with increased ion
density between grains. As a result, an additional
attraction occurs between the dust grains along the dis-
charge axis against the background of a spherically
symmetric effective repelling potential. At the same
time, in the horizontal plane, there is additional repel-
ling.

The data presented confirm the conclusion about the
predominant location of grains in the region of the
potential well where the repelling energy is minimum.
The appearance of individual, very long filament struc-
tures is energetically advantageous not only because of
the dipole attraction in the linear structures, but also
because of the presence of the non-Coulomb additive to
the Coulomb force (this effect was discussed in [18]).
This additive is directed oppositely to the gradient of
the charge Q(r) (in our case, outward from the center of
the plasma ellipsoid).

Note also that, as the pressure increases, the Debye
radius decreases and the effective focusing of the ion
current by the negatively charged dust grains becomes
weaker. This results in a decrease in the dipole moment
determining the dust-grain interaction potential in the
model in question. As a result, the increase in the pres-
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Fig. 6. Vertical cross section of a dusty structure for d =
0.8rD and Z+(ri)/Zs(ri) ≈ –0.1.
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sure leads to a decrease in the size of linear grain struc-
tures and the number of grains in them. This is in qual-
itative agreement with the experimental results.

8. CONCLUSION

We have carried out experimental and theoretical
studies of the physical mechanisms for dust-grain levi-
tation and the formation of ordered grain structures in
the plasma of an inductive RF discharge. The plasma
was produced in neon at a pressure of 25–500 Pa. The
melamine formaldehyde grains were 1.87 µm in diam-
eter. An effective dust-grain interaction potential is pro-
posed. The potential takes into account the spatial
dependence of the grain charge on the plasma floating
potential and the interaction anisotropy resulting from
the focusing of the drift ion current by the negatively
charged grains. We have performed Monte Carlo simu-
lations of the ordered structures produced in the dusty
plasma. The results of simulations allowed us to
explain the specific features of the formation of fila-
ment grain structures in the plasma of an electrodeless
inductive discharge. The results are in qualitative
agreement with the experiments.
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Abstract—It is shown that the electrostatic attraction between two likely charged plane plates in a plasma
can appear due to the formation of “holes” in the phase space of the electrons or ions. The possibility of
extending the theory of this effect to the three-dimensional case of a plasma with point dust grains is discussed.
© 2000 MAIK “Nauka/Interperiodica”.
One of the main theoretical problems in the physics
of dusty plasmas is that of explaining the experimen-
tally observed mutual attraction between dust grains.
Although, in plasmalike media, dust grains, as a rule,
behave as probes at a negative floating (on the order of
~Te) plasma potential (or, in some cases, positive poten-
tial), they nevertheless form quite regular and stable
crystalline structures [1–3]. Real dusty plasmas are
rather complicated systems characterized by a diversity
of dynamic interaction processes, which involve
plasma particles of each species: due to the permanent
bombardment of solid-state grains by electrons and
ions, the charge, energy, momentum, etc. are continu-
ously exchanged between the grains and plasma parti-
cles. Due to their complexity, dusty plasmas are the
subject of significant research efforts aimed at develop-
ing more theoretical models (in addition to the many
models that have already been constructed) for study-
ing all possible attraction mechanisms (see [1–3]).
However, the starting point in constructing each of
these models is the assertion that taking into account
only electrostatic forces is insufficient to build up a
realistic theory, because describing the electrostatic
interaction of likely charged “test” dust grains within
the approximation of Debye screening should inevita-
bly result in their repulsion. A somewhat different
approach was developed in [4–8] and subsequent stud-
ies, which were devoted to the questions of how the
steady ion flows that may arise in the plasma affect the
classical screening (in which case the relevant mecha-
nisms could not be regarded as being “static”).

Although the starting assertion adopted in most
papers has a solid physical foundation, it seems to be
somewhat erroneous. In this paper, we focus on the
possibility that the structures of likely charged test
grains coupled exclusively through electrostatic forces
can, in principle, form via unconventional screening
mechanisms in a dusty plasma. Our analysis reveals
that such dust-grain structures possess some interesting
properties, which should be observed in experiments.
Unfortunately, the author succeeded in rigorously justi-
fying the proposed physical picture of the formation of
1063-780X/00/2605- $20.00 © 0424
electrostatic structures only in the one-dimensional
case. Although this case may also be investigated
experimentally, the one-dimensional character of the
problem introduces additional difficulties in establish-
ing an agreement between the proposed model picture
and the realistic one. On the other hand, these obstacles
do not seem to be insurmountable (see below); more-
over, from the methodological standpoint, it is impor-
tant that conventional approaches that do not possess
any three-dimensional properties do not ensure a com-
plete analysis of a real situation.

We consider the interaction of two infinite plane
plates having the same surface charge density σ and
located at x = ±a. In this case, the spatial distribution of
the electrostatic potential is determined by the equation
[9, 10]

(1)

where ρ is the charge density of the screening cloud,
which is induced as a result of the response of the
plasma components to the perturbing action of the
external charges (in the case at hand, plates) in the
plasma. This charge density is found from the assump-
tion that the steady-state velocity distribution functions
of the plasma electrons and ions are fα(mαv2/2 + eαϕ),

(2)

In the linear approximation, for low values of ϕ and for
Maxwellian distributions, formula (2) passes over to
the classical Debye expression –ne2ϕ(1/Te + zi/Ti).

Note that, in this model formulation of the problem,
the plates are assumed to be transparent to electrons
and ions; more precisely, the plates interact with
plasma particles only through the electric field. Each of
the attempts to incorporate other (nonelectrostatic)
forces fails to extend the model to a non-one-dimen-
sional case, because the physical motion of plasma
electrons and ions, which is also affected primarily by

d
2ϕ

dx
2

--------- 4πρ ϕ( )+ 4πσ δ x a–( ) δ x a+( )+( ),–=

ρ ϕ( ) eαnα f αdv 1–∫( ).
α e i,=

∑=
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the electric fields of the grains, is, at the same time, much
less sensitive to a solid-state point grain than to a plate.

The most general solution to equation (1) can easily
be written in quadratures, in which case the charges in
the form of plane plates do not affect the spatial distri-
bution of ϕ(x) but are responsible for the electric field

jumps at the plate positions,  = –4πσ. To bet-
ter understand the problems associated with the above
arguments that likely charged particles will inevitably
repulse each other, it is only necessary to analyze the
properties of the quadrature expressions and there is no
need to write out the relevant integrals. To do this, it is
sufficient to know the general features of the behavior
of the solution in coordinate space (Fig. 1) and (simul-
taneously) in the phase plane of equation (1) (Fig. 2).
For definiteness, we choose σ > 0 (the sign of the exter-
nal charges is unimportant in our problem). Since equa-
tion (1) without allowance for external charges is
invariant under the transformation x  –x, the phase
portrait of this equation is symmetric about the axis
ϕ' = 0 but not about the axis ϕ = 0, by virtue of the fact
that, in the general case, ρ(ϕ) ≠ –ρ(–ϕ).

We can immediately see that, for any single-valued
continuous function ρ(ϕ) (it is, in fact, suffice to require
that the function be integrable) satisfying, in the gen-
eral (nonlinear and non-Maxwellian) case, the quite
permissive restrictions ρ(0) = 0 (the plasma is
quasineutral far from the plates) and signρ = –signϕ
(the functions fα are monotonically decreasing func-
tions of their arguments; otherwise, we cannot speak
about the screening and the situation under analysis is
unstable; see [10]), the point x = –a in Fig. 1 (in which
the potential profile is symmetric about the axis x = 0)
corresponds to a certain point ϕ0 (dependent of σ and a)
of the transition from the upper branch ϕ' = s(ϕ) of the
separatrix to a phase trajectory inside the region
bounded by the separatrix ϕ' = ±s(ϕ) in Fig. 2 (the point
x = a corresponds to the transition back to the lower
branch of the separatrix). In other words, the electric
field |dϕ/dx| on the outer surfaces of the plates is always
stronger than that on the inner surfaces; i.e., in the
model at hand, the electrostatic interaction inevitably
results in the repulsion of the plates. The question of
whether the electrostatic interaction will always result
in the repulsion of likely charged point grains in three-
dimensional geometry appears to be unanswered.

Nevertheless, in contrast to the above considerations
and to the “theorem” we have just proved, the relation
between the electric fields on the outer and inner sur-
faces of the plates can be reversed. For this purpose, the
function ρ(ϕ) should be chosen to be different over dif-
ferent spatial intervals: (–∞, –a), (–a, a), and (a, ∞);
i.e., this function, being “globally” continuous, should
take on different values at ϕ ≠ ϕ0 within these intervals.
In this case, first, the separatrices are different for dif-
ferent portions of the phase trajectories of equation (1)
and, second, the transitions at the point ϕ0 can result in

dϕ dx⁄[ ]–
+
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an increase in |ϕ'|, so that the trajectory remains inside
the desired region (ϕ, ϕ') if the spatial distribution of
the charge density of the screening cloud between the
plates is such that the curve ϕ' = –s(ϕ) between the
plates lies below that in the external region.

In fact, from the time of the classical paper by Bern-
stein et al. [11], it has been well known that the plasma
may exhibit nearly arbitrary self-consistent steady-state
(or running at a constant velocity) potential distribu-
tions, referred to as Bernstein–Green–Kruskal (BGK)
waves: it is always possible to choose the distribution
functions fα that ensure that the charge density ρ(ϕ) sat-
isfies the homogeneous (without the right-hand side)
equation (1) for an arbitrary (hand-drawn) function
ϕ(x). Such freedom stems from the fact that the elec-
trons and ions that may be trapped in the regions of
potential humps and wells, respectively, do not contrib-
ute to the plasma charge outside these regions. As a
result, the distribution function fα of each plasma com-
ponent turns out to be different in different spatial
regions, in which case the solution can be constructed
from piecewise functions. Unfortunately, the reverse
problem of determining the distribution functions fα in
(2) from the desired charge density ρ [as is the case

ϕ'

ϕ0 ϕ

ϕ' = –s(ϕ)

ϕ' = s(ϕ)

ϕ

ϕ0

0–a +a x

Fig. 1. Solution to (1) in coordinate space.

Fig. 2. Phase portrait of equation (1) with the separatrix

s(ϕ) ≡ .8π ρ φ( ) dφ
0

ϕ

∫
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with the solution of equation (1)] is justified mathemat-
ically only within one-dimensional geometry, in which
we are working here; nevertheless, this circumstance
stands as an additional argument in favor of the choice
of our model. However, the phenomenon in question
does not possess these specific features (see below).

We can easily see that the external charges, which
manifest themselves only in the boundary conditions at
x = ±a, do not restrict the freedom in the choice of dis-
tribution functions. This indicates that it is possible to
“construct” a steady plasma state in which the values of
|ϕ'| at the inner surfaces of the plates will be higher than
those at the outer surfaces (the questions of whether
this state is stable and how it is established as time
elapses go beyond the scope of our paper, which is
aimed merely at discussing the possibility for this state
to exist). This plasma state can be called the “BGK
screening state.”

On the other hand, the physical situation under anal-
ysis is rather nontrivial. For the likely charged plates to
attract one another, it is necessary to ensure an opposite
plasma charge between the plates in excess of the
charge ρ of a single plasma cloud. However, such a
plasma charge cannot be ensured at the expense of the
electron (in the case σ > 0) or ion (in the opposite case)
trapping because, in the region between the planes, the
potential ϕ(x) exhibits a hump rather than a well
(Fig. 1). However, we can open up another possibility:
the cloud charge ρ can be changed in the desired man-
ner through the deficiency of the plasma particles of
another species (it is the two-component nature of the
plasma that is responsible for freedom in choosing the
distribution functions in the case of BGK screening
[11]). In other words, we speak about a so-called hole
in the phase space of the ions (see, e.g., [11, 12]). In
fact, the ions that come from ±∞ are successively
reflected from the potential barriers (Fig. 1), thereby
giving rise to the plasma charge ρ(ϕ), so that only a cer-
tain fraction of the ions can overcome the potential bar-
riers and enter the well region between them. If, ini-
tially, the well region is free of trapped positive ions
(i.e., those with energies miv2/2 + eiϕ < eiϕ0) or con-
tains a smaller number of positive ions in comparison
with that at the points with the same electric potential
outside the system of two plates, then the well region
will be negatively charged because of the incomplete
neutralization of the plasma electron component
between the plates.

Now, we are left with an example of the above pos-
sible situation in which |ϕ'(–a + 0)| > |ϕ'(–a – 0)|
(according to [11], the number of such examples is infi-
nite). Performing fairly simple manipulations, we can
reduce the problem to that of the existence of a positive
quantity  < ϕ0 satisfying the condition

(3)

ϕ̃

ρin φ( )dφ–

ϕ̃

ϕ0

∫ ρout φ( )dφ,–

0

ϕ0

∫>
where ρout and ρin (which take on the same value at
ϕ = ϕ0) are the charge densities of the screening cloud
outside the system of two plates and in the region
between them, respectively. (Recall that the potential ρ0
at the charged plates should be determined self-consis-
tently from the complete solution to equation (1). In our
approach, fixing this potential at the prescribed values
of σ and ρ corresponds to fixing a certain value of a;
however, this circumstance is unimportant for the effect
under analysis.) The simplest example obeying condi-
tion (3) is that in which the velocity distribution func-
tions of the electrons and ions are both Maxwellian
with the temperatures Ti ! Te  ∞ and no ions are
trapped in the region (–a, a). In this example, the
screening is governed exclusively by the ions, and, for
low values of ϕ, we have

(in the case of BGK screening, the requirement ρ(0) = 0
should not necessarily be satisfied in the region
between the plates), which obviously indicates that
condition (3) holds.

Recall that the simple one-dimensional model we
have examined cannot be automatically extended to
plasmas that contain point dust grains and are described
in three-dimensional geometry. One (but not the most
important) reason is the lack of relevant rigorous math-
ematical formulas. The main problem is that, in three-
dimensional plasma configurations, the potential wells,
which naturally form between the charged test planes,
should be prepared in a certain way. On the other hand,
it is the holes (rather than the trapping regions) in the
phase spaces of the electrons and ions that make the
BGK regime easy to realize, because, in the case of
nonuniform potential distributions in non-one-dimen-
sional plasma configurations, the dominant role is
played by the scattering processes, which hinder parti-
cle trapping but prevent the particle trajectories from
passing through certain regions in phase spaces. Gener-
ally, in six-dimensional (2 × 3 = 6) phase spaces, the
holes not only may exist but may also be stable [12].

Thus, we have shown that the mutual attraction of
likely charged test grains and, accordingly, the forma-
tion of regular crystalline structures in dusty plasmas
may, in principle, be explained in terms of unconven-
tional screening mechanisms. However, in this model,
crystalline structures have to be composed of the initial
external charged grains and the “holes” that appear in
the plasma and whose charge is opposite to the grain
charge. Presumably, the most serious obstacle to the

ρout eini

eiϕ
Ti

-------– 
  1–exp 

  ni

eiϕ
Ti
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achieving the BGK regime is the plasma collisionality,
which is unfavorable for the existence of piecewise dis-
tribution functions. The main qualitative (and some-
what surprising) distinguishing feature of the proposed
attraction mechanism is that the plasma should contain
particles whose charge coincides in sign with the
charge of the test dust grains. In the example we have
analyzed, the sign of the surface charge density was
chosen arbitrarily: the proposed mechanism is insensi-
tive to this sign and applies equally well to ions and
electrons, in contrast to the flow-related screening
mechanism mentioned above [4–8], in which the key
role is played by directed ion motion at reasonable
velocities. Moreover, it is the electron holes that may be
observed in present-day dusty plasma experiments,
because most of them are carried out with negatively
charged dust grains.
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Abstract—Two qualitative electron magnetohydrodynamic models are developed of an enhanced-rate (in com-
parison with ordinary diffusion) propagation of a magnetic field in a plasma due to the Hall effect. The first
model is based on a simple hydrodynamic approach, which in particular makes it possible to reproduce some
familiar results. The second model provides an exact analytic description of the main global parameters of the
enhanced-rate propagation of a magnetic field in an isothermal inhomogeneous plasma: the front velocity of the
magnetic field and the effective front width. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Hall effect in plasmas [1, 2], which is governed
by the freezing of a magnetic field in the electron com-
ponent and, accordingly, by transport of the magnetic
field with the electron current velocity, results in an
enhanced-rate propagation of the magnetic field,
whereas the current flows along the plasma density gra-
dient (to follow the development of this problem, see
reviews and papers [3–14]). The electron density can be
nonuniform both at the plasma boundary (at the elec-
trode surface) and in the plasma interior. The main
mechanism for the rapid penetration of a magnetic field
into a plasma is the “braking” of the magnetic field
(which is carried by the electric current) at the positive
gradient of the electron density. As a result, the mag-
netic field is “scattered” in the direction orthogonal to
the direction of the electron current. This phenomenon
has a substantial impact on the dynamics of the field
and electron component treated in the electron magne-
tohydrodynamic (EMHD) theory and on the plasma
dynamics treated in a more general MHD approxima-
tion. In particular, the rapid penetration of a magnetic
field due to the Hall effect plays a key role in the forma-
tion of a highly inhomogeneous noncylindrical current
sheath in Filippov’s plasma focus (PF) discharges. This
is confirmed by the good agreement (see [12]) between
the experimental data obtained by Orlov et al. on the
LV-2 device [15] and the results of two-dimensional
numerical simulations carried out by Vikhrev and
Zabajdullin [11].

In accordance with the hypothesis advanced by
Kukushkin and Rantsev-Kartinov [18], the Hall effect
plays a particularly important role [16, 17] in the for-
mation of a closed heterogeneous spheromak-like mag-
netic configuration (SLMC) by the self-magnetic field
of Filippov’s PF. An analysis of the experimental
results of [15] performed by Kukushkin et al. [16, 17]
1063-780X/00/2605- $20.00 © 0428
provides evidence for the formation of an SLMC with
a substantial stored energy. An important feature of the
formation of an SLMC in a PF discharge is the possi-
bility of further increasing the stored energy via the
compression of the plasma inside the SLMC by the
residual magnetic field of the PF. In a hybrid Z–θ pinch
that is formed at the major axis of an SLMC, the plasma
energy density is substantially (several orders of mag-
nitude) higher than that in experiments on building up
force-free spheromak configurations [19] (with the
help of an artificially produced poloidal field) and on
confining the spheromak plasma in a special chamber
of the “flux conserver” type (see, e.g., [20]).

Here, we develop two qualitative models of an
enhanced-rate (in comparison with ordinary diffusion)
propagation of the magnetic field in a plasma due to the
Hall effect. The first model, which develops the “hydro-
dynamic” approach proposed by Kukushkin [21],
makes it possible not only to reproduce some familiar
results of EMHD theory, such as the propagation of a
magnetic field along the anode surface in a homoge-
neous plasma (Section 2.1) and the penetration of a
magnetic field into a plasma with a step (Section 2.2)
density profile and with a density profile increasing
monotonically (Section 2.3) in the direction of the cur-
rent velocity, but also to derive scalings for a plasma
with a nonmonotonic density profile in the EMHD
model (Section 2.3) and for the initial stage of the
plasma displacement from the anode in MHD theory
(Section 2.4). The second model provides exact ana-
lytic expressions for the main global parameters of the
enhanced-rate propagation of a magnetic field in an iso-
thermal inhomogeneous plasma: the front velocity of
the magnetic field (Section 3.1) and the effective front
thickness (Section 3.2).
2000 MAIK “Nauka/Interperiodica”
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2. “HYDRODYNAMIC” MODEL 
OF THE ENHANCED-RATE PROPAGATION 

OF A MAGNETIC FIELD IN A PLASMA

2.1. Enhanced-Rate Propagation of a Magnetic Field 
along the Anode

In EMHD theory (in which the ion velocity is equal,
by definition, to Vi = 0), the enhanced-rate propagation
of a magnetic field along the anode surface due to the
Hall effect can be described by a simple qualitative
model proposed by Kukushkin [21], which is based on
the qualitative solution to the EMHD equations for an
isothermal plasma (Fig. 1),

(1)

(2)

with the following initial and boundary conditions: the
magnetic field H = (0, –H0, 0) at t = 0 is nonzero only
in the region X < 0 and the anode occupies the region
Z < 0. The EMHD model is based on the following
qualitative considerations. A magnetic field diffusely
penetrating into the plasma gives rise to a density gra-
dient on the diffusion scale length ∆xdif(t). By virtue of
the freezing of the magnetic field in the electron plasma
component, the plasma density gradient–driven elec-
tron current with density jz = (c/4π)(curlH)Z =
(c/4π)(∂Hy/∂x) carries the magnetic field with a current
velocity VeZ = –jz/ne toward the anode. Near the anode
surface, where a high (formally, infinitely high) elec-
tron density (and, accordingly, infinitely high electron
conductivity) prevents the magnetic field from pene-
trating into the anode, the electron current changes
direction and starts to flow with a velocity VeX(t) ≈
cH0/4πne∆xdif(t) along the anode surface, thus carrying
the magnetic field with a velocity ωeτei times higher
than the diffusion velocity. From these considerations,
we easily arrive at the following results:

(3)

(4)

(5)

where

(6)

τei is the electron–ion (e–i) collision frequency, ωe is the
electron gyrofrequency, σ is the plasma conductivity,
and Dσ is the magnetic field diffusion coefficient in a
plasma.

The qualitative model proposed in [21] reproduces
the above formula for Deff , which was derived earlier
by Gordeev et al. [9] from an exact analytic (actually,

∂H
∂t
------- curl Dσ rot H( )– curl Ve H,[ ] ,+=

Ve
c

4πne
-------------curlH,–=

∆zeff ∆xdif∼ 2Dσt,=

∆xeff 2Deff t,∼

Deff ωeτei( )2
Dσ,=

Dσ
c

2

4πσ
----------,=
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one-dimensional) analysis of the magnetic field propa-
gation in a narrow layer along the anode (the applica-
bility range of the equations used in [9] was then ana-
lyzed in detail by Chukbar [10]). The results obtained
in [9], which apply to the propagation of a magnetic
field in a plasma in a narrow layer along the anode,
were later confirmed by the results of two-dimensional
numerical simulations [11], which are valid not only in
the anode region but also over the entire plasma vol-
ume.

2.2. Propagation of a Magnetic Field along the 
Boundary between Two Media in the EMHD Model

We consider the propagation of a magnetic field
along the boundary between two media with different
densities, n1 and n2, of free electrons (see the left part of
Fig. 2). This is the problem of the magnetic field prop-
agation along the anode surface generalized to the case
in which the magnetic field can penetrate into the
anode. We consider the simplest case of an isothermal
plasma (the method described below can also be used
to treat the problem in the case of a nonisothermal
plasma).

We consider the magnetic field distribution such
that, for n2 > n1, the electron motion is as shown in the
right part of Fig. 2. The motion of the magnetic field
front is governed by the current velocities in the first
(Ve1) and second (Ve2) media. If the second medium
were an anode with infinite conductivity, then, by the
time t, the magnetic field in the first medium would

propagate over the distance ∆  ~ . How-
ever, since the conductivity of the second medium is
finite, the electrons in the second medium move in the
direction opposite to that of the electron motion in the
first medium, causing the magnetic field front to prop-

agate backward through the distance ∆  ~ .

xeff
1( )

2Deff
1( )

t

xeff
2( )

2Deff
2( )

t

∆zeffVz

∆xdif

Z

X

H0

(

Anode

∆xeff

Fig. 1. A graphical illustration of the mechanism for
enhanced-rate propagation of a magnetic field along the
anode surface.
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Consequently, the distance through which the field
front propagates along the boundary between the two
media with the same temperatures can be estimated as
the difference

(7)

With allowance for (5) and (6), we obtain

(8)

where

(9)

and, as a result, arrive at

(10)

In the limit n2  ∞, formula (10) passes over to (5).
Expression (10) coincides with the relevant expres-

sion that was obtained by Vikhrev and Zabajdullin
[11,13] using the model that they developed and suc-
cessfully tested numerically. Note that, in [11, 13],
expression (10) was derived for the more general case
of media with different conductivities.

2.3. Propagation of a Magnetic Field in a Plasma
with a Finite Current-Aligned Density Gradient

in the EMHD Model

We consider the dynamic problem of a magnetic
field transport by the electric current in a plasma with a
small electron-density gradient of fixed sign along the
magnetic field front, assuming the plasma temperature
to be constant. The results we will obtain from solving
this model problem will allow us to derive a qualitative

∆xeff 2Deff
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(

n(z)
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n2

H0

Vz

Z Z

X

Fig. 2. A graphical illustration of the mechanism for
enhanced-rate propagation of a magnetic field along the
boundary between two media with different densities of free
electrons (on the left). The shape of the field front profile at
a certain time is displayed on the right. The arrows show the
direction of the electron current.
formula describing the motion of the magnetic field
front in a plasma with a small density gradient of arbi-
trary sign, which is regarded as a small density pertur-
bation.

The evolutionary equation for the magnetic field has
the form

(11)

where the velocities Vx and Vz depend on the plasma
density n(z).

Neglecting diffusion along the magnetic field front,
i.e., imposing the condition

(12)

we reduce the initial equation to

(13)

In the case n = const, equation (13) automatically
goes over to a standard one-dimensional equation for
the magnetic field diffusion (with the boundary condi-
tions presented in Section 2.1). The diffusive penetra-
tion of the field H(0) into a plasma gives rise to a plasma
current with the density

(14)

where the superscript in the velocity refers to the unper-
turbed plasma density. Since, in the case at hand,

∂H/∂x = 0, we have  = 0.

Now, we turn to a plasma in which the density is
nonuniform in the direction of the current (i.e., along
the Z-axis). We seek the electron current velocity in the

form Vx =  + . Assuming that the density per-
turbation affects the field dynamics only slightly, we
arrive at the relationship

(15)

which implies that the perturbed current with the veloc-

ity  is driven exclusively by the plasma density gra-
dient ∂n/∂z ≠ 0. Here, we also assume that the transport
of the magnetic field by the current causes the “tongue”
to extend in the x direction (see Fig. 2) more rapidly
than in the case of ordinary diffusion. Then, equation
(13) splits into the conventional diffusion equation and
equation (15), which describes the magnetic field trans-
port at the electron current velocity. With allowance for

(14), we obtain the estimate for  and, accordingly,
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for the velocity of the magnetic field front motion
driven by the density gradient ∂n/∂z,

(16)

in which case the field front penetrates the distance

(17)

With allowance for the front motion driven by ordinary
diffusion, we obtain

(18)

The qualitative method used to derive (18) implies that
the numerical coefficient ε is of order unity.

Estimate (16) agrees with the results of analytically
solving the problem of the penetration of a magnetic
field into a plasma whose density increases in the direc-
tion of the electron current [6, 7].

To analyze the case in which the electron current
substantially changes its direction, i.e., the problem of
how the propagation direction of the magnetic field
changes in the presence of a localized electron density
perturbation (this process may be called the “scatter-
ing” of the magnetic field by a localized electron den-
sity perturbation), we can apply estimate (16) to a local
change in the propagation direction of the magnetic
field due to (je , ∂n/∂r) ≠ 0. In this way, it is necessary to
transform formula (16) to the frame of reference in
which the Z-axis is oriented in the local direction of the
vector je , so that the magnetic field is scattered through
a small angle with respect to this vector. The coordi-
nates of the magnetic field front in the new frame and
in the laboratory frame are related by

(19)

where α is the angle between the tangent to the front at

the point at which the new coordinates ( , ) are
introduced and the Z-axis (see Fig. 3). With allowance
for the relationships

(20)

which hold in the new frame, we obtain the following
equation, which describes the motion of the magnetic
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field front x = x(z, t) and is linear in x:

(21)

where the e–i collision frequency τei = τei(z) depends
implicitly on z through the plasma density n(z). Equa-
tion (21) has the solution

(22)

Here, the first term accounts for the contribution of the
nonuniform plasma density; the second terms incorpo-
rates the contribution of the ordinary diffusion; and the
third term describes the transport of the initially per-
turbed magnetic field front, which is specified through

the equation x(z)|t = 0 = f , by an electron

current with the current velocity Vz.

This result generalizes formula (18) (and the corre-
sponding limit of the exact solution obtained by King-
sep et al. [7]) to the case of an alternating-sign density
gradient ∂n/∂z. Formula (22) describes not only the
extension of the tongue in the direction of ordinary dif-
fusion (which results in a faster penetration of the mag-
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Fig. 3. A schematic representation of the transition from the

initial (laboratory) frame to the local frame with the -axis
oriented along the electron current. The arrow indicates the
initial direction of the electron density gradient.
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netic field into a plasma) but also the appearance of a
similar new “tongue,” which is stretched in the opposite
direction and in which the background magnetic field is
reduced (Fig. 3). Formula (22) agrees with the numeri-
cal results obtained by Zabajdullin and Vikhrev [14],
who simulated the propagation of a magnetic field in a
plasma with an alternating-sign density gradient along
the current velocity. Also, formula (22) is in qualitative
agreement with the results obtained by Chukbar and
Yan’kov [8] for the case of a steady-state density profile
varying periodically in the direction of the current
velocity. Chukbar and Yan’kov [8] showed that, in a
steady state, the current flows along snakelike lines, in
which case the plasma electric conductivity is (ωeτei)2

times higher.
The above derivation of the formula describing the

evolution of the magnetic field front in a plasma with a
small density gradient can be generalized to the case in
which the plasma density gradient is arbitrary but the
magnetic field diffusion in the direction perpendicular
to the field front is still incompletely incorporated. If
we take into account the fact that, as the direction of the
velocity vector of the electron current at the magnetic
field front changes, the absolute value of the velocity
vector decreases with time according to the “diffusion”

law ( (t))2 =  + , then the velocity component
orthogonal to the initial magnetic field front can be esti-
mated as

where ϕ is the angle by which the direction of the cur-
rent velocity changes. This velocity component can be
rewritten as

(23)

so that the evolution of the magnetic field front is
described by the equation

(24)

This result agrees qualitatively with the formula

(25)

(where n0 is the unperturbed plasma density), which
was deduced by Zabajdullin [22] from the results of
two-dimensional numerical simulations. The above
formulas reflect the fact that the transition between two
limiting regimes of the enhanced-rate propagation of a
magnetic field in a plasma due to the Hall effect—spe-
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cifically, the regime in which the magnetic field propa-
gates as a wave (see [7]) and the regime of diffusive
penetration (see [9])—can be described qualitatively by
the parameter

(26)

Although formulas (24) and (25) are insufficiently
accurate for describing the dynamics of the magnetic
field front (see Section 3.2 below), they are simple and
illustrative and provide a better insight into the transi-
tion between different regimes of the enhanced-rate
propagation of a magnetic field in a plasma due to the
Hall effect.

2.4 Enhanced-Rate Propagation of a Magnetic Field 
in a Plasma along the Anode Surface with Allowance 

for Finite Ion Inertia: Plasma Displacement 
from the Anode

Now, we consider how the enhanced-rate propaga-
tion of a magnetic field affects the dynamics of plasma
ions (this corresponds to the disruption of the ion’s
immobility in the sense that ion inertia is taken into
account). An understanding of this problem requires
solving two-fluid MHD equations (see, e.g., [2, 3, 5, 23,
24]).

For equal constant electron and ion temperatures,
Te = Ti = T = const [24, 25], and for a magnetic field
pressure much higher than the plasma pressure,
H2/8π @ p (the latter condition is valid, in particular, in
the initial stages of high-current gas discharges, such as
Z-pinch discharges and PF discharges), the Euler equa-
tion and continuity equation take the familiar form

where the plasma density ρ and plasma velocity u are

determined by ρ = 

 

m

 

e

 

n

 

e

 

 +

 

 m

 

i

 

n

 

i

 

 and 

 

u

 

 = 

 

,

respectively.
For the magnetic field 

 

H

 

 = (0, –

 

H

 

0

 

, 0)

 

 and plasma
velocity 

 

u

 

 = (

 

u

 

x

 

, 0, 

 

u

 

z

 

) 

 

the second term on the right-
hand side of the Euler equation vanishes, in which case
we have

 

(27)

 

Using the approach proposed by Kukushkin [21],
we can find the scaling describing the plasma displace-
ment from the anode in the above-mentioned initial dis-
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charge stage, in which the plasma compression is insig-
nificant and we can set the plasma density to be con-
stant, ρ = ρ0 = const. Since, near the anode surface, the
magnetic field falls off from H0 to zero along the X-axis
(Fig. 1), we have ∂H/∂x ≈ –H0/∆xeff and, analogously,
∂H/∂z ≈ –H0/∆zdif (see Section 2.1), which yields

We integrate this equation over t to obtain

(28)

(29)

A comparison between (28) and (29) gives

(30)

Consequently, in the initial stage, the velocity uz at
which the plasma is displaced from the anode is ωeτei

times higher than the velocity at which the plasma is
“dragged” along the anode surface. Thus, we can con-
clude that the efficiency with which the plasma is dis-
placed from the anode surface because of the magnetic
field penetration into the anode region is much higher
than the efficiency with which the plasma is dragged by
the field.

The perturbed plasma density near the anode can be
estimated in an analogous manner from the continuity
equation in which the plasma density is sought in the
form ρ(t) ≈ ρ0(1 + δ(t)) with δ(t) ! 1. In the initial stage
of the plasma displacement from the anode surface (t !
1/ωeωiτei), the plasma density evolves according to
the law

(31)

3. GLOBAL PARAMETERS OF THE MAGNETIC 
FIELD PROPAGATION IN A PLASMA

We consider a two-dimensional problem of the
propagation of a magnetic field in an isothermal plasma
in the EMHD model. We assume that at the initial time
t = 0, the magnetic field H = (0, –H0, 0) occupies the
region x < 0 in a plasma with density n = n(z). With
allowance for (2), equation (11), which describes the
magnetic field dynamics, becomes

(32)

When the plasma density gradient along the magnetic
field front in a plasma is small, we can neglect magnetic
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field diffusion in the Z direction, in which case, with

allowance for the inequality  @ , equation

(32) can be simplified to

. (33)

This equation has an exact analytic solution [7] describ-
ing the propagation of the magnetic field in a plasma in
the form of a wave,

, (34)

where the front width is characterized by the parameter

(35)

and the front velocity is

(36)

In a plasma with an arbitrary density gradient, equa-
tion (32) cannot be solved analytically, meaning only
numerical results have been obtained [11, 13, 14, 22].
However, it turns out that such global parameters of the
magnetic field dynamics as the depth of the penetration
of a magnetic field into a plasma and the effective width
of the magnetic field front can be described analy-
tically.

3.1. Velocity of the Enhanced-Rate Penetration 
of a Magnetic Field into a Plasma 

and the Penetration Depth

We start by imposing the conditions (Fig. 4)

(37)

and introducing the effective penetration depth x0,

(38)

where h(x) is a step function of unit height.
As will be shown below, definition (38) correlates

reasonably well with the solutions to equation (33) and
with the results obtained for the case of a steep density
gradient. Definition (38) and conditions (37) will
enable us to derive a closed differential equation for the
penetration depth of the magnetic field into a plasma.
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We differentiate (38) with respect to time, take into
account (37), and perform simple manipulations to
obtain

(39)

Equation (39) with the initial condition x(z, t = 0) = 0
has the solution

(40)

Taking the time derivative of (39), we find that the
field front velocity, defined as u ≡ ux = ∂x0/∂t, satisfies
the equation

(41)

Assuming that, at the initial instant, the magnetic field

does not diffuse in the z-direction  @  and

 = , we determine the front velocity at

t = 0:

(42)
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Fig. 4. A comparison of the position of the front of the prop-
agating magnetic field (dashed lines) with the instantaneous
magnetic field profile (solid curve). The linear approxima-
tion of the field front profile (dashed-and-dotted line) and
the characteristic front width are shown schematically.
The solution to equation (41) with the initial condition
(42) is

(43)

The same solution can also be derived by differentiat-
ing expression (40) with respect to time.

This solution generalizes the results obtained previ-
ously for the penetration depth of the magnetic field
and the propagation velocity of the magnetic field front
in plasmas with small [7] and infinitely large [9, 11, 13]
density gradients. In fact, in the first case, we have

Changing the variable y = z – ξ and taking into account

the relationship  ≈  – (z – y), which

is valid for a plasma with a small density gradient, we
arrive at expression (36). For a jump in the plasma den-
sity (Fig. 2), we have

which yields

(44)

where erf(x) is the error function. At the point z = 0, we
obtain

(45)

thereby determining the effective diffusion coefficient
for the magnetic field,

(46)

which was evaluated earlier by Vikhrev and Zabajdullin
[11, 13].

If the plasma density increases gradually from n1 to
n2 over a finite distance, then, as t  ∞ (4/Dσt @ ξ2),
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Fig. 5. A comparison between the spatial profiles of the magnetic field front at different times t =  × 10–7 s, n = 1, …, 4 . Profiles

(a) and (b) are computed from the approximate formulas (24) and (25), respectively, and profile (c) is calculated from the exact for-
mula (40). The plasma density profile used in simulations is specified as n(z) = n0(1 + 1/2δ(1 – sin(πz/L))) for |z | < L/2 and n = 0 for

|z | ≥ L/2. Here, n0 = 1.0 × 1017 cm–3, L = 0.2 cm, the relative jump in the density is δ = 0.1, the electron temperature is Te = 5 eV,

the initial magnetic field is H0 = 1.0 × 104 G, Dσ = 3.7 × 105 cm2/s, and ωeτei = 33.5.

-
 n

4
--- 



the front velocity will approach the value

(47)

Numerical integration of expression (40) shows that
the approximate formulas (24) and (25) are insuffi-
ciently accurate, because the magnetic field diffusion in
the direction perpendicular to the instantaneous mag-
netic field front is incompletely incorporated (Fig. 5).

3.2. Front Width

In order to describe the front width δx0, it is expedi-
ent to define it as

(48)

u
cH0

16πe πDσt
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∞–

∞
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It is convenient to choose the proportionality coeffi-
cient α by replacing the function H(x, z, t) in formula
(48) with its linear approximation (Fig. 4). As a result,
we approximately obtain α = 6.

As an example, we can use definition (48) taken
with the exact field magnitude (34) corresponding to a
small density gradient as an adequate characteristic
front width, in which case we have δx0 = πλ.

To transform (48), we apply the same mathematical
procedure as in the previous section. As a result, we
arrive at the differential equation for the front width,

(49)
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with the initial condition

(50)

The derivative ∂x0/∂z can be found from (40).

Approximating the magnetic field profile in the last
term of equation (49) by a linear function, we can
readily see that, under the conditions (L/δx0)ωeτei @ 1
(where L is the spatial scale on which the plasma den-
sity varies) and ωeτei @ 1 (which is characteristic of the
enhanced-rate propagation problem under discussion),

H0 δx0( )
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Fig. 6. Time evolution of the front width at the point z = 0 in
the case of a periodically varying density profile n(z) =
n0(1 + 1/2δ(1 – sin(πz/L))). The remaining parameters,
namely, n0, L, δ, Te, and H0, are the same as in Fig. 5, the
initial front width being q = 0. The dashed curve reflects
the  time evolution computed from the approximate for-
mula (54).
this term may be neglected. Interestingly, with the exact
solution (34), the last term in equation (49) exactly
equals zero.

Inserting expression (40) for x0(z, t) into (49) yields
the equation

(51)

With allowance for (50), the solution to this equation
can be written as

(52)
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and the quantity q(z) ≡ (δx0(z))2/α|t = 0 accounts for the
contribution of the initial thickness of the magnetic
field front.

If the second derivative ∂2/∂z2[n0/n(z)] varies more

gradually than exp  (at least over the distance

between z –  and z + ), then, in expres-
sions (52) and (53), we can take the density-dependent
functions outside the integrals. For q = const, we obtain
from (52) and (53)

(54)

The condition for the function ∂2/∂z2[n0/n(z)] to
gradually vary yields

(55)

This inequality determines the time interval over which
expression (54) is valid.

Numerical simulations with formula (52) and its
approximate version (54) show that, in the initial stage,
the approximate expression (54) gives quite exact (up
to three significant digits) results (see Fig. 6).

It is of interest to consider the case of a plasma
whose density varies periodically in space. Our simula-
tions carried out with formula (40) show that, in such a
plasma, the shape of the field front profile changes
markedly only over a finite time interval and then
remains essentially unchanged (Fig. 7). Of course, this
does not indicate that the magnetic field stops penetrat-
ing: the field front becomes thicker by an amount δx0,
which is determined from (52), (53), or (54).

4. CONCLUSION

We have developed two qualitatively different
EMHD models of an enhanced-rate (in comparison
with ordinary diffusion) propagation of a magnetic
field in a plasma due to the Hall effect. The first model
is based on a simple hydrodynamic approach, which, in
our opinion, has permitted considerable insights into
the role of the Hall effect in a plasma. In particular, this
model makes it possible to reproduce some familiar
theoretical results and may prove useful for clarifying
the role of the Hall effect without turning to simplified
models, which are inevitably used in rigorous analytic
analyses.

In contrast, the second model endeavors to provide
an exact analytic description of the representative
parameters of the magnetic field propagation. In the
case of an enhanced-rate propagation of the magnetic
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field in an isothermal inhomogeneous plasma, these are
the effective velocity of the magnetic field front and the
effective front width. The results obtained with this
model make it possible to check the accuracy of the
simple formulas—in particular, formula (25), derived
by Zabajdullin [22], and formula (24), obtained in Sec-
tion 2—that describe a transition from the regime of
diffusive penetration [9] to the regime in which the
magnetic field propagates as a wave [7].
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Abstract—Based on the analytical study of the solutions to the coronal balance equations, as well as on the
numerical results, it is shown that, in many cases of practical interest, it is possible to describe the impurity ion-
ization state with acceptable accuracy by only the two or three most representative ionization states. Reduced
models for light impurities and strongly ionized heavy impurities in coronal hydrogen plasmas are proposed.
The models make it possible to obtain analytical results for many cases as well as to significantly reduce com-
putation time. In these approximations, simple equations determining the dynamics of impurity distributions
over ionization states are derived. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The theory of radiative impurities in hydrogen plas-
mas is applied for edge and divertor plasmas in thermo-
nuclear devices as well as in astrophysics for interstel-
lar and intergalactic clouds, stellar atmospheres, and
solar prominences (see, e.g., reviews [1–3]). It is well
known that radiative impurities are sometimes able to
change the plasma dynamics qualitatively, which leads
to the appearance of new types of equilibria and linear
and nonlinear waves and significantly changes the sta-
bility criteria. However, one needs an extremely cum-
bersome set of equations describing each ionization
state separately for a full impurity description. Thus,
for carbon, which is the main impurity in tokamak plas-
mas, seven ionization states must be described, from
neutrals to fully ionized ions. Obviously, it is impossi-
ble to get any qualitative results with analytical calcu-
lations in this way. Numerical solution of a set of partial
differential equations for each ionization state is an
extremely time-consuming procedure. Thus, in order to
minimize the computation time, as well as to elaborate
analytical models, some reduced descriptions of impu-
rity ionization states are being developed.

If the electron temperature is not too high, Te ≤
100 eV, such that the impurity is not too deeply ionized
and, respectively, the principal quantum number n ≥ 3,
then relatively heavy impurities with Z > 20 exist in
coronal plasmas as collections of a large number of
neighboring ionization states. The properties of these
states change slowly with the transition from one state
to another. Table 1 shows ionization energies for differ-
ent ionization states of iron as an example. One can see
1063-780X/00/2605- $20.00 © 0439
that only one transition from Fe+7 to Fe+8 leads to an
increase in the ionization energy by a factor of 1.5. For
all other transitions, the increase in the ionization
energy does not exceed 10–20%.

As shown in [4, 5], under these conditions, the real
impurity distribution over ionization states may be
approximated by a Gaussian function. An impurity
charge averaged over the ionization state distribution
and the width of the Gaussian peak are defined by sim-
ple equations.

Under the same temperature conditions, light impu-
rities with Z < 10 and n ≤ 2 exist in coronal plasmas in
the form of two or three neighboring ionization states
with significantly different properties. Table 2 shows
ionization energies for carbon ionization states as an
example.

It is easily seen that, in this case, the Gaussian rep-
resentation fails, because the difference in ionization
energies is on the order of the energy itself or larger.
However, this fact makes it possible to simplify the
problem. Under these conditions, the ratios between the
ionization and recombination rates for ions with
charges nearest to the charge of the most representative
ions are significantly larger than for more distant ion-
ization states. Thus, the concentrations of ions with
charges nearest to the charge of the most representative
ones are significantly higher (see Section 2).

To our knowledge, Galushkin et al. [6] were the first
to propose the two or three ionization state approxima-
tions. This approach was used for investigations of
thermal instabilities in radiative plasmas [7–9]. How-
2000 MAIK “Nauka/Interperiodica”
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Table 1

Ion Fe+6 Fe+7 Fe+8 Fe+9 Fe+10 Fe+11 Fe+12

∆Eion, eV 133 163 248 279 309 349 380

Table 2

Ion C+0 C+1 C+2 C+3 C+4 C+5

∆Eion, eV 11 24 48 64 392 490
ever, it was not well founded and its validity limits were
not defined properly.

The purpose of this work is to set the foundation and
to develop reduced dynamic models for impurities
existing mainly as ionization states with a relatively
small amount of electrons in hydrogen coronal plas-
mas. The model is valid not only for light impurities but
also for heavy impurities under high temperatures, for
instance, near the plasma column axis of tokamaks.

Simplifications related to the “space” parts of mod-
els, like developing one-dimensional or diffusion
approximations, are beyond our interest. In this paper,
we investigate only the simplifications determined by
the structure of coronal balance equations and proper-
ties of ionization–recombination processes reducing
problems to the two or three most representative ion
approximations.

The paper is organized as follows. In Section 2, the
validity conditions of the two- and three-ion approxi-
mations are examined based on analytic estimations
and numerical results. In Section 3, the set of equations
describing impurities in two- and three-ion approxima-
tions are derived. The most important results are sum-
marized in the Conclusion.

2. VALIDITY CONDITIONS FOR THE TWO 
AND THREE MOST REPRESENTATIVE 
IONIZATION STATE APPROXIMATIONS

Without going into detail, the impurity dynamics is
described by a set of equations with the following
structure:

(1)

where fz is the density, momentum, or energy; αzz' is the
transition rate from state z' to state z; βz is the transition
rate from the state z to any other state; and vz is the
transport velocity of fz.

Below, we will use a coronal model. This model
describes impurities perfectly in the plasma core, as
well as in the edge tokamak plasmas, under almost any
experimental conditions.

∂ f z

∂t
-------- div f zv z( )+ α zz' f z' βz f z,–

z'

∑=
We note that, within the coronal model, calculations
of the excited level populations and the relative concen-
trations of ionization states are independent problems,
because, within this model, the total concentration of
ions is practically equal to their concentration in the
ground state.1 This fact significantly simplifies many
calculations, for instance, calculations of the line radi-
ative losses—the most important part of radiative
losses under many experimental conditions. In this
case, one can calculate separately radiative losses for
every ionization state, find the distribution over ioniza-
tion states, and then summarize radiative losses over all
states taking into account their relative concentrations.

When calculating the impurity distribution over ion-
ization states in a coronal model, the right-hand side of
(1) may be simplified:

(2)

Here, ne is the electron density and Iz = 〈v 〉 and Rz =

〈v 〉  are the ionization and recombination rates,
respectively, for ions with charge z.

Equating the left-hand side of (2) to zero, i.e.,
neglecting the time derivative and transport processes,
we obtain the following steady-state solution to the set
of coronal balance equations:

(3)

1  In this paper, we do not take into account effects that lead to vio-
lation of the coronal model, for instance, the effects related to
metastable states. These effects are well known (see, e.g., [10]).

∂nz
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Here, yz = nz/  is the relative concentration of
ions with electric charge z; Z is the atomic impurity
number; and z0 is the charge of the most representative
ion, i.e., the ion with the largest relative concentration.
For the coronal equilibrium, the most representative ion
charge may be found without calculating all of the con-
centrations (0 ≤ z ≤ Z) but by solving the inequalities

which can be replaced by the approximate equalities

From the expressions above for  and  and
the approximate equalities determining z0 and omitting
“shell” factors containing such parameters as electron
numbers in the outer shell, its principal quantum num-
ber, and vacation number, we find

These relations show that, in the three most repre-
sentative ion approximation, the concentrations of ions
with charges z0 – 2 and z0 + 2 are significantly smaller
than the concentrations of ions with charges z0 – 1, z0,
and z0 + 1 and may be omitted. This means that the
approximation is valid if the following inequalities are
satisfied:

The computations (some of these results are repre-
sented below) show that, from a practical point of view,
it is sufficient to satisfy the weaker inequalities

The results of calculating relative ionization state
concentrations, ion charges averaged over ionization

yz

z 1=

Z

∑ 1.=

nkk 0=
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----------- 1
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-------------,< <
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state distributions 〈z〉  = , and line radiation
intensities for light impurities are presented below. It
should be noted that relative ionization state concentra-
tions and radiation intensities of individual ionization
states have been calculated in most of the earlier
papers; however, they were not presented directly
because the authors mainly concentrated on practically
used integral parameters.

We used the calculation method described in [6]
using the most updated and accurate data for ionization
energies, transition energies, and oscillator strengths
from [11]. Photorecombination was calculated taking
into account electron capture into excited states.
Dielectronic recombination was calculated with the
modified Burgess’s expression [12] and corrections to
the electron density. Line radiation intensities calcu-
lated here are in good agreement with the results of Post
et al. [13], Breton et al. [14], Tarter et al. [15], and other
authors.

Beryllium is an interesting case because it was used
as a material for divertor plates in JET experiments
[16]. Our calculations show that only three or less ion-
ization states with relative concentrations yz > 0.01 may
exist simultaneously in plasmas.

The most important impurities for fusion experi-
ments are carbon (Fig. 1) and nitrogen (Fig. 2). One can
see from Fig. 1 that, for 7 eV < Te < 10 eV, four ioniza-
tion states exist simultaneously. However, even in this
temperature range, the relative concentration of the less
representative (inside these four states) ionization
states does not exceed 6%. Qualitatively, the ionization
state distribution for nitrogen looks like that for carbon.
The temperature range in which more than three ioniza-
tion states exist is slightly broader and is shifted toward
high temperatures: 12 eV < Te < 20 eV.

One can see from the results presented above that
impurities in plasmas may be described with the two-
or three-ion approximation in a wide temperature range
with an appropriate accuracy. This is possible at least
for processes with characteristic times longer than the
relaxation time of the impurity distribution functions
over the ionization states. The validity conditions for
these approximations are the inequalities represented
above; i.e., the ratio of the difference between ioniza-
tion energies of the neighboring states to the electron
temperature must be larger than or on the order of the
electron temperature.

We note again that these approximations are valid
for strongly ionized heavy impurities. Thus, for iron, it
is accurate enough if Te > 2 keV.

In order to test the accuracy of the three most repre-
sentative ion approximation, we calculated the ion
charge averaged over the ionization state distribution,
〈z〉  (Fig. 3), and the total line radiation intensity for
nitrogen (Fig. 4) taking into account all ionization
states and using the three-ion approximation. One can
see from Fig. 3 that the two curves do not coincide only

kykk 0=
Z∑
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Fig. 1. Relative concentrations of carbon ions for the coro-
nal equilibrium vs. the electron temperature. The numerals
near the curves show the ion charge.

Fig. 2. Same as in Fig. 1, but for nitrogen.

Fig. 3. The nitrogen ion charge averaged over ionization
states for the coronal equilibrium. Curve 1 is calculated with
the three-ion approximation, and curve 2 is calculated tak-
ing into account all of the ionization states.
within a narrow temperature range 12 eV < Te < 15 eV.
The difference does not exceed 20%.

The difference in line radiation intensities calcu-
lated in two different ways is observed in three ranges
near 17, 50, and 90 eV.

In the region around 17 eV, the three-ion approxi-
mation does not take into account strongly radiating
lithium-like ions. Their concentration for such low tem-
peratures is small; however, the contribution to the total
radiation is noticeable. For temperatures near 50 eV, the
lithium-like ion concentration is small due to the high
value of the temperature and the three-ion approxima-
tion again does not take it into account. For the temper-
ature region around 90 eV, the three-ion approximation
does not take into account helium-like ions. However,
for all three ranges, the difference between the accurate
and the three ion curves does not exceed 5–15%.

From the results demonstrated above, one can see
that the two and three most representative ion approxi-
mations describe impurities with enough accuracy, at
least for slow processes. Now, we have to evaluate the
spreading of the distribution for the fast processes. Let
us assume that the electron temperature increases rap-
idly. Due to the exponential dependence of the ioniza-
tion rates on the temperature, the ionization rates of the
weakly ionized ionization states increase more than
those of highly ionized states, whose ionization ener-
gies are higher. Thus, under the total shift of the maxi-
mum toward higher temperatures, the width of the peak
will not increase significantly during a relaxation pro-
cess. A steep decrease in the temperature may be con-
sidered in a similar way. Thus, the proposed approxi-
mations are also valid for fast electron temperature
changes.

3. MHD EQUATIONS FOR THE TWO 
AND THREE MOST REPRESENTATIVE ION 

APPROXIMATIONS

As shown by Rozhansky et al. [17], in the zero
approximation, the impurity velocity is determined by
the main plasma parameters and does not depend on the
ion charge. The perpendicular velocity is determined
mainly by the E × B drift, and its velocity does not
depend on the ion charge,

(4)

Here, c is the speed of light and E and B are the electric
and magnetic fields, respectively.

The parallel velocity is described by the equation

(5)

u⊥
c

B
2

------E B.×=

mI

d nzuz||( )
dt

-------------------
∂nzTi

∂l
-------------– Czmineν iz uz|| ui||–( )–=

+ zenzE|| nzz
2 α z

∂Te

∂l
-------- βz

∂Ti

∂l
--------+ 
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Here, mI is the impurity ion mass; nz and uz|| are the con-
centration and parallel velocity of ions with charge z,
respectively; Ti is the ion temperature; ui|| is the main
plasma parallel velocity; l is the coordinate along the
field line; Cz is a constant taking into account a possible
anomaly of the main plasma–impurity collisions; νiz =

 is the impurity–main plasma collision

frequency; αz and βz are the numerical factors in the
electron and ion thermal forces, respectively; and Sz is
the parallel momentum source associated with the ion-
ization and recombination processes. We assume that
the main plasma ion temperature Ti is equal to the
impurity temperature TI. This assumption is valid for
many applications. First of all, we can neglect the iner-
tia in comparison with the thermal force. The impurity
velocity usually does not significantly exceed the impu-
rity thermal speed. Thus, the ratio of the inertial term to
the thermal force term may be estimated as

(6)

We put here Te ≈ Ti. For estimates, one can put αz + βz ≈ 3.
For light impurities, ratio (6) is significantly smaller
than unity if z ≥ 2. Thus, this inequality is satisfied if the
temperature is high enough. For Te @ Ti, this inequality
is even stronger.

It is clear that the first term on the right-hand side of
(5) is also smaller than the thermal force term by the
factor (αz + βz)z2 if the difference in spatial scales on
which the density and temperature vary is not too large.
We neglect this term, as well as the last one, because the
Coulomb collision frequency is usually significantly
larger than the ionization and recombination rates. The
electrostatic potential usually does not exceed the value
Te/e. In this case, the ratio of the parallel electric force
to the thermal force is on the order of 1/(αz + βz)z and
is also small. Finally, we obtain

(7)

Thus, in the zero approximation, the parallel and
perpendicular velocities of the impurity ions with
charge z may be expressed in terms of the main plasma
parameters and do not depend on the ion charge.

If we know the impurity velocity uI, it is easy to
derive equations for the ionization state concentrations.
Introducing the relative concentrations

(8)

4 2πe
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in the two-ion approximation, from the discontinuity
equation and the normalization condition (8), we obtain

(9)

It might seem that equation (9) is sufficient for our
purposes. However, even though we know that the most
representative ions are the ions with charges z and z + 1,
the values of these charges are known only for the case
of the coronal equilibrium. Moreover, the value of z
may change in a discrete way. Thus, it is more conve-
nient to pass over to a continuous variable (the charge
averaged over ionization states),

(10)

As a result, we obtain

(11)

Here, νz = ne(Jz + Rz + 1) and z∗  = z + 1 –  is

the averaged equilibrium charge under the given elec-
tron temperature. The accuracy of calculations with
(11) may be increased due to the fact that z∗ (Te) was
calculated in many papers taking into account all of the
ionization states (see, e.g., [10, 13]). The value νz may
be calculated easily with a model of an averaged ion
[18]. In order to increase the accuracy of calculations
and calculate the distribution over ionization states
using (8) and (10), we should know the value of z. In the
two most representative ion approximation (two-ion
approximation), the quantity 〈z〉  always satisfies the
condition z < 〈z〉  < z + 1. Thus, the value of z is simply
equal to the integer part of 〈z〉 .

∂yz
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------- uI —yz⋅+ ne Rz 1+ Jz Rz 1++( )yz–[ ] .=

z〈 〉 zyz z 1+( )yz 1++ z 1 yz.–+= =
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Fig. 4. Total radiative losses of nitrogen normalized to the
impurity and electron concentrations. Curve 1 corresponds
to the three-ion approximation, and curve 2 corresponds to
calculations using all of the ionization states.
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The two-ion approximation is attractive due to its
simplicity and validity for analytic calculations. For
instance, it gives good results for examinations of the
thermal stability in radiative plasmas. However, as fol-
lows from the results of Section 1, the temperature
ranges in which this approximation is valid are sepa-
rated by ranges in which the validity conditions are vio-
lated.

More accurate results that are valid for a wide range
of electron temperatures may be obtained with the
approximation of the three most representative ions
(three-ion approximation). In this approximation, the
states with charges z – 1, z, and z + 1 are taken into
account. The normalization condition gives

(12)

and the averaged charge takes the form

(13)

Taking into account (12), we can write two equa-
tions

(14)

(15)

Using the continuous variable 〈z〉 , we obtain a set of
two symmetric equations

(16)

Here, νz – 1 = ne(Jz – 1 + 2Rz); νz = ne(Rz + 1 + Jz – Rz); A1 =

ne; A2 = ne; and the quan-

tities z∗  and  are defined under the condition of the

coronal equilibrium by the expressions

(17‡)

(17b)
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As noted above, we do not need to use these expres-
sions, because the values of z∗  and  were calcu-

lated in many papers with account for all of the ioniza-
tion states. Here, the constants of elementary processes
may be calculated using the averaged ion model.

In the three-ion approximation, it is not as easy to
calculate z as in the two-ion approximation. This value
may lay within one of the two intervals, z – 1 < 〈z〉  < z
or z < 〈z〉  < z + 1, and one can obtain a wrong value by
simply taking an integer part of 〈z〉 . It follows from (13)
that, for the given 〈z〉  and 0 ≤ yz – 1 ≤ 1, there exists only
one value of z satisfying this equation. Indeed, let us
suppose that there is another value, z' = z ± 1, satisfying
this equation at another value of yz = . Substitution of

z' and  yields

(18)

Subtracting (13) from (18), we obtain

(19)

Taking into account the normalization condition,
this equation may be satisfied only if yz – 1 = 0, yz = 1, or

 = 1. However, in this case, z = 〈z〉 . For other cases,
there exists only one value of z satisfying (13) at any
value of yz and it may be obtained as an integer of the
expression z1 = 〈z〉  + 2yz – 1.

Two different effects compete in (11) and (16). The
higher the velocity of impurity transport from the
plasma region with the given temperature to the region
with another temperature, the larger the distance at
which the impurities “remember” their initial states.
The transport is determined by the terms on the left-
hand sides of (11) and (16) that are proportional to the
velocity. The larger the inverse relaxation time νz on the
right-hand side of the equations, the faster impurities
“forget” their initial states and achieve equilibrium val-
ues. The relation between these velocities changes in a
wide range and is determined by the specific conditions
of the problem. Let us estimate these parameters for
tokamak divertor conditions.

Estimates for νz are given in [9]. They depend on the
temperature and, for the divertor plasma, lie in the
interval νz ≈ 102–103 s–1. The deviation of 〈z〉  from the
equilibrium value for light impurities does not exceed a
few units. The fastest displacement of an impurity in
the direction perpendicular to the divertor plate occurs
due to the E × B drift [16], when the perpendicular elec-
tric field may attain the value of Te/(eρp) in certain
divertor regions. Here, ρp is the deuteron Larmor radius
in the poloidal magnetic field (see, e.g., [19]). In this
case, the impurity velocity perpendicular to the divertor
plate may be estimated as VI ≈ 104–105 cm/s and the
convective term is significantly larger than the relax-
ation term, which is proportional to νz. If such a strong
electric field does not exist and the impurity transport is

yz 1–*

yz'

yz'

z z〈 〉 1– 1 yz' 2yz 1– .+ +±=

yz yz'– 1.±=

yz'
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determined by the anomalous Bohm-type diffusion or
thermal force at characteristic spatial scales on the
order of 1–10 cm, the transport velocity is one or two
orders of magnitude lower. Under these conditions, the
convective and relaxation terms are of the same order of
magnitude. The conditions under which the relaxation
term dominates and impurities are in equilibrium are
hardly probable in divertor plasmas. However, such
conditions may occur in some other cases.

4. CONCLUSION
The validity of the two and three parameter models

(the two and three most representative ions) is well
founded for the dynamics of plasmas with radiative
impurities.

It is shown that the two main representative ions
(two-ion approximation) successfully describe light
impurities for practically all temperature ranges, except
for some narrow intervals. The more accurate three-ion
approximation for light impurities is valid for all tem-
perature ranges of practical interest within an accuracy
of 10–15%.

For the two-ion and three-ion approximations, the
dynamic equations for the charge averaged over ioniza-
tion states and charge distribution over ionization states
are derived. In the two-ion approximation, they are
reduced to one equation for an impurity ion charge
averaged over ionization states. This approach provides
the possibility to considerably decrease the computa-
tional time as well as to obtain analytical results.

The models proposed are also applicable for
describing strongly ionized heavy impurities under
thermonuclear temperatures.
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Abstract—The differential cross section for ionization of a hydrogen atom by fast electrons in an external uni-
form electric field is calculated using the nonrelativistic Born approximation. It is shown that the cross section
obtained can differ substantially from a similar ionization cross section of an isolated atom in the angular dis-
tribution of secondary electrons in momentum space, oscillation terms, and magnitude. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The collisions of electrons with atoms and ions in an
external uniform quasi-steady electric field can differ
significantly from collisions with an isolated atom even
when the external electric field is far below the atomic
field. This is explained by the interference and the
change in the time the electrons stay in the vicinity of
the scattering atom while they are reflected from the
potential barrier of the external electric field. These
effects come into play if the distance between the
atomic nucleus and the reflection point of the electrons
and the mean time the electrons stay in this region are
shorter than the spatial and temporal scales of the prob-
lem.

This case was considered in [1, 2], where, in partic-
ular, the differential cross section for ionization of a
hydrogen atom by fast electrons in a uniform electric
field was calculated using the nonrelativistic Born
approximation. When calculating the cross section, the
asymptotes of the wave functions of the final electron
states were taken in the form of standing waves (along
the external electric field) in the region between the
atom nucleus and the reflection point of the electrons
and in the form of progressive waves in the region
where reflection points were absent [1].

Evidently, such wave functions describe the density
of the electron current in a weakly ionized gas in an
external electric field or in a plasma region with a linear
size on the order of the Debye radius where a suffi-
ciently strong electric field exists.

Since mathematical expressions for the atom-ion-
ization cross sections obtained in [1, 2] are rather cum-
bersome and their interpretation raises certain difficul-
ties, only a preliminary and qualitative analysis of the
expressions was performed in those papers.
1063-780X/00/2605- $20.00 © 20446
In this paper, a more detailed quantitative study of
the cross section under consideration is carried out
using numerical methods. The numerical results show
(as was predicted in [2]) that, under certain conditions,
the cross section for ionization of a hydrogen atom by
fast electrons in a uniform electric field can be substan-
tially larger than a similar ionization cross section of an
isolated atom, as well as that of an atom in a uniform
electric field, calculated from asymptotes of the wave
functions of the final electron states that have the form
of standing waves (along the uniform field) at infinity
[3, 4] (such functions were used to describe the final
states of photoelectrons in [5, 6]) and which are thus
inapplicable for describing the density of the electron
current with a nonzero longitudinal component.

The cross section in question also differs markedly
from the cross section [7] corresponding to the proba-
bility of ionization of a hydrogen atom by an electron
in an oscillating uniform electric field (in the limiting
case of zero frequency). Note that, in [7], the interfer-
ence of electrons in the course of their reflection from
the potential barrier of the external electric field was
not taken into consideration when choosing the form of
the wave functions.

2. FORMULATION OF THE PROBLEM,
BASIC EQUATIONS

As in [1, 2], we assume that, in a half-space, there is
a uniform time-independent electric field e normal to
the boundary of the half-space.

We assume that the z-axis of the Cartesian coordi-
nate system x, y, and z is antiparallel to the field direc-
tion (e : e = (0, 0, –ε)) and a hydrogen-atom nucleus is
positioned at the point (0, 0, 0), at a distance L from the
boundary of the region occupied by the field. It is con-
000 MAIK “Nauka/Interperiodica”
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venient to set the potential of the uniform electric field
at this point to be equal to zero.

Let a monoenergetic flow of primary electrons
accelerated by the electric field fall from the boundary
onto a hydrogen atom, causing its ionization.

Keeping in mind that the differential cross section
will be calculated in the Born approximation, the wave
function for the initial state of a primary electron, con-
structed from the asymptotes of the Airy functions, can
be written in the form

(1)

where Ac is the normalization constant determining the

flow density, S =  + , l = ; me and –e

are the mass and charge of an electron, Ez =  + eεL

is the electron longitudinal energy, and the wave vector
c = (k⊥ , χz) determines the electron momentum "c at
the field boundary.

Functions (1) also describe the final states of both
primary and secondary (which left the atom) electrons,
provided that

(2)

and the normalization constant Ac enters the expression
for the number of states referred to the volume element
d3c of the c-space [1–4].

If the longitudinal electron energy in the final state
is less than eεL (Ez < eεL), then, according to the con-
siderations given in the Introduction, in the Born
approximation, the electron motion along the field
between the reflection point (zr = –Ez/eε) and the atom
nucleus must be described everywhere by a finite and
real Airy function decreasing exponentially at z < zr

(see, e.g., [8]). At the same time, in the half-space z > 0,
the longitudinal component of the electron flow density
in the uniform electric field obviously must differ from
zero and, consequently, the wave-function asymptote in
this half-space must take form (1) and correspond to a
progressive wave (see [1] for details).

If the inequalities

(3)

hold, we can neglect the interaction between the elec-
trons and atom nucleus and use the asymptotes of Airy
functions. Thus, the wave function ψk for the classi-
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cally permitted region of motion can be written in the
following form [1]:

(4)

where the phases α1 and α2 (αa1 and αa2 for the atomic
electron) should be regarded as fitting parameters that,
presumably, are close to π/4; Ak is the normalization con-
stant related to the number of electron states dnk referred
to the element volume dk3 of the k-space by the equation

dnk = (|kz|l/8π3|Ak|2)d3k; and k = (k⊥ , /") is the
local wave vector determining the electron momentum
in the vicinity of the nucleus. Assuming that a low (com-
pared to the atomic field) external uniform electric field
switches on adiabatically slowly, the state of the atom
electron is described by the wave function ψ0 of an iso-
lated atom: ψ0 = (πa3)–1/2exp(–ra/a), where ra is the
radius vector of the atom electron and a = "2/(mee2).
Because of a rapid decrease of this function at ra @ a,
it is sufficient to use ψk in the matrix element in the
classically permitted region only, i.e., to use it in form
(4) when conditions (3) are satisfied (note that the latter
provide the inequality |zr | @ a required for the condi-
tion ε ! |e |/a2 to be fulfilled). Using (1) and (4) for the
wave functions of the initial and final electron states,
we obtain the following expression for the differential
cross section dσ for ionization of a hydrogen atom by
fast electrons in a uniform electric field (in atomic
units):

(5)

where k0 and k are the wave vectors of the initial and
final states of the primary electron, respectively. Here,
we assume that k0 lies in the xz plane, ka is the wave

vector of the final state of the atomic electron, k2 = 

–  – 1; dο = sinθdθdϕ and dοa = sinθadθadϕa. In [1,
2], the angles θ, ϕ, ϕa, and θa were defined as follows:
θ is the angle between the z-axis and the vector k, ϕ is
the angle between k0⊥  and k⊥ , θa is the angle between
the z-axis and ka, and ϕa is the angle between k0⊥  and
ka⊥ . The expression for T takes a different form depend-
ing on the relation between kz, kaz, and εL.

If the inequalities ε2/3 ! /2 and /2 ! εL corre-
sponding to (3) are satisfied, then we have
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When ε2/3 ! /2 ! εL < /2, we have

When ε2/3 ! /2 ! εL < /2, T takes the form

Finally, when /2, /2 > εL, we have

(6)

When  @  @ 1, formula (5) with T in form (6) is
similar to the expression for the differential cross sec-
tion dσ0 for ionization of an isolated hydrogen atom by
fast electrons which was obtained by Massey and Mohr
(see, e.g., [8]) with allowance for the interaction of the
secondary electron with the atom nucleus:
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Expressions (5) and (6) make sense if k2 @  @ 1;
here, the first inequality allows us to ignore the
exchange effects, whereas the second one ensures the
applicability of the Born approximation. We note that,
according to the choice of the wave functions for the

final electron states, we have θ, θa ∈  (0, π/2) if /2,

/2 ! εL and θa, θ ∈  (0, π) if /2, /2 > εL.

The most significant distinction of the cross section
dσ from dσ0 and from the similar cross sections
obtained in [3, 4] is that the denominator in dσ contains
the quantity q⊥ , which, under certain conditions, can
vanish and, consequently, dσ/dσ0 can be much greater

ka
2

kaz
2

kz
2

kz
2

kaz
2

than unity. The numerical analysis of the above expres-
sions confirms the previous results obtained in [2].

3. NUMERICAL ANALYSIS 
OF CROSS SECTIONS

The cross section dσ is analyzed numerically by
representing the functions F = dσ/dοdοadka in the form
of surfaces constructed on the planes with coordinates
corresponding to the parameters entering the formula
for dσ.

We note that the angles θ, ϕ, θa, and ϕa used in [1, 2],
which are convenient for determining the applicability
conditions for mathematical expressions defining í,
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are not quite suitable from the physical standpoint for
analyzing dσ for the purpose of comparing it with the
ionization cross section dσ0 of an isolated atom. For
this reason, instead of θ and θa, we introduce the angles
θn and θan between k0 and the vectors k and ka . Also,
instead of ϕ and ϕa, we introduce the angles ϕn and ϕan

between the vector in = [j, n] (here, n = k0/k0 and j is
the unit vector in the direction along the y-axis) and
projections of the vectors k and ka onto the plane
formed by the vectors in and j (such coordinates are
usually employed when considering particle colli-
sions).

The quantities k±, q±, and ka±, which determine T,
are expressed through the chosen angles as follows:

where θ0 is the angle between the vector k0 and the z-
axis.

To study the behavior of the functions F and F0 =
dσ0/dοdοadka (which will be compared with F), we
created a program that allowed us to set the numerical
values for various parameters of the function under
study and visualize the surfaces in any pair of the
parameters on the computer display.

The program was written so that the points of the
calculated surface had some additional properties. By
placing the mouse cursor on the calculated surface, we
could trace the coordinates of the cursor point. We
could introduce the coordinates of an arbitrary point
into the parameter list in order to examine how the sur-
face in the vicinity of the point depends on the other
parameters. The program also could seek the function
maximums in given domains on the plane where the
function was defined.

When changing one function to another, the preset
parameters were kept unchanged, which allowed us to
compare different functions at the same parameters. We
note that the program was written in C++ permitting the
use of complex numbers.

For the numerical analysis, we set ε = 0.01 and
L = 104. We begin the analysis of the function F with
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the case ka = 10, k = 50, and k0 = 51 (according to the
applicability conditions for the expressions obtained
for dσ and dσ0). First, we set the phases α1, α2, αa1, and
αa2 to be equal to 0.78 ≈ π/4 (the angles are given in
radians).

The analysis of the surfaces F(θn, θ0), F(θan, θ0),
F(θ0, ϕan), and F(θ0, ϕn) at the given values of the
parameters (the first two surfaces are presented in
Fig. 1, whereas the latter two almost coincide with the
second function; the white strips on the coordinate
planes show the regions in which the obtained formulas
are inapplicable; the indexes n are omitted) shows that
the main maximums of the functions F(θn, ϕn) and
F(θan, ϕan) take maximum values at θ0 = 1.2818, θan =
1.2911, and ϕan = 3.1424 for the first surface and θn =
0.0877 and ϕn = 0.0014 for the second surface.

Figure 2 shows these surfaces and their fragments of
the function F(θan, ϕan) in the intervals (1.289, 1.292)
and (3.12, 3.16) of the angles θan and ϕan, respectively,
and for the function F(θn, ϕn) in the intervals (0.11596,
0.116) and (–0.14, 0.14) of the angles θn and ϕn, respec-
tively.

It follows from this figure that the fragments of the
function F(θan, ϕan) have an oscillatory structure and
vary from 0.121 to 0.898 with a period of 0.01 (along
ϕa). The oscillation amplitude of the function F(θn, ϕn)
is substantially smaller near its main maximum,
approximately equal to 0.9, whereas for the maximum
of about 0.043 the amplitude of variations of the func-
tion F(θn, ϕn) is 0.016.

In order to compare this cross section with a similar
ionization cross section for an isolated atom, Fig. 3
illustrates the surfaces of F0(θn, ϕn) and F0(θan, ϕan) cal-
culated for the same values of ka, k, ε, and L and for θn =
0.1961, ϕn = 0, θan = 1.3742, and ϕan = π. These param-
eters correspond to the highest maximums of the calcu-
lated functions, which are approximately equal to
0.014, i.e., more than one order of magnitude lower
than the highest maximums of F(θn, ϕn) and F(θan, ϕan).
The value of the angle θ0 = 0.2818 for the surfaces F(θn,
ϕn) and F(θan, ϕan) presented in Fig. 2 corresponds to
the case when the momentums of the electrons incident
on the atom are directed almost perpendicular to the
vector e.

In this case, the other characteristic values of the
angle θ0 are 0 (when the momentums of the primary
electrons in their initial states are antiparallel to e) and
0.2891 (when the primary electrons move in the trans-
verse direction to k0 given by θ0 = 1.2818).

Figures 4 and 5 show the surfaces F(θn, ϕn) and
F(θan, ϕan) and their fragments corresponding to these
values of the angle θ0. For each case, we chose the val-
ues of the parameters θn, ϕn, θan, and ϕan that corre-
sponded to the highest maximums of the functions
F(θn, ϕn) and F(θan, ϕan).
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Fig. 1. Functions F(θn, θ0), and F(θan, θ0) calculated for ka = 10 and k = 50 and illustrating the existence of maximums at (a) θ0 =
1.2818 and θn = 0.0877 and (b) θan = 1.2911 (the index n at θn and θan is omitted).
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Fig. 2. Functions F(θn, ϕn) and F(θan, ϕan) and their fragments calculated for ka = 10, k = 50, and θ0 = 1.2818: (a) F(θn, ϕn) for
θan = 1.2911 and ϕan = 3.1424; (b) F(θan, ϕan) for θn = 0.0877 and ϕn = 0.0014; (c) F(θan, ϕan) varying from 0.121 to 0.898 in the
intervals (1.289, 1.292) and (3.12, 3.16) of the angles θan and ϕan , respectively; and (d) F(θn, ϕn) varying from 0.027 to 0.043 in
the intervals (0.11596, 0.116) and (–0.014, 0.014) of the angles θn and ϕn, respectively (the index n at θn, θan, ϕn, and ϕan is omitted).
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Fig. 3. Surfaces F0(θn, ϕn) and F0(θan, ϕan) calculated for ka = 10 and k = 50: (a) F0(θn, ϕn) for θan = 1.3742 and ϕan = π;
(b) F0(θan, ϕan) for θn = 0.1961 and ϕn = 0 (the index n at θn, θan, ϕn, and ϕan is omitted).
Thus, for the surfaces shown in Fig. 4, we set θn =
0.0006, ϕn = 0.0014, θan = 0.005, and ϕan = 3.1418; for
θ0 = 0.2891, we used the following values of these
parameters: θn = 0, ϕn = 0.377, θan = 0.26, and ϕan =
3.1444. It easily seen from the shape of the surfaces
shown in these figures that the functions F(θn, ϕn) and
especially F(θan, ϕan) depend strongly on the angle θ0,
whereas both F0(θn, ϕn) and F0(θan, ϕan) are indepen-
dent of θ0 (which follows from general considerations
and directly from the calculation of the surfaces F0).

From the fragment of the function F(θan, ϕan)
(Fig. 4) calculated in the intervals (0, 0.014) and (0, 2π)
of the angles θan and ϕan , respectively, one can see that
this function is almost independent of ϕan and oscillates
between 0.12 to 0.58 with a period of about 0.003 along
θan.

The function F(θn, ϕn) also depends weakly on ϕn,
but unlike F(θan, ϕan), it does not oscillate at sufficiently
large values corresponding to the conditions ε2/3 !
Eaz ! εL < Ez. This is explained by the form of the
expression for T, which contains no oscillatory terms
dependent on kz when εL < Ez.

The function F(θan, ϕan) for θ0 = 0.289 has an oscil-
latory structure, which is seen from its fragment pre-
sented in Fig. 5 for the intervals (0.255, 0.265) and
(3.11, 3.17) of the angles θan and ϕan, respectively.
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However, the structure of this surface is more intricate
in comparison with the previous case, because this
function depends on ϕan. The function F(θn, ϕn), shown
in the same figure, depends weakly on ϕn, which is
illustrated by its fragment for θn ∈  (0, 0.01π) and ϕn ∈
(–π, π). The maximum values of these functions are
close to 0.58, which is one order of magnitude higher
than the maximum values of the function F0(θn, ϕn),
F0(θan, ϕan).

To examine the cross section under the condition

, (8)

we considered the functions F(k, ka), F(θan, ka), F(ϕan,
ka), and F(θ0, ka) presented in Fig. 6. The analysis of
these functions showed that, for θ0 = 1.2818, ka = 15.44,
and k = 49.6, in the planes (θn, ϕn) and (θan, ϕan) there
exist fairly large domains corresponding to inequalities
(8) and, for the angles θn = 0.2762, ϕn = 0.0001, θan =
1.2692, and ϕan = 3.1416, the functions F(θan, ϕan) and
F(θn, ϕn) are peaked, the maximums being 176474.53
and 176990.13, respectively. These surfaces are shown
in Fig. 7 together with the functions F0(θn, ϕn) and
F0(θan, ϕan), which attain maximums approximately
equal to 0.0032 at the same values of k and ka and θan =
1.2692, ϕan = 3.14189, θn = 0.3016, and ϕn = 0.0014.

ε2/3
 ! Ez ! εL Eaz<
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We note a general feature of the functions in ques-
tion that follows from the shape of the surfaces consid-
ered above. The values of the angles θan at which the
functions F(θan, ϕan) and F0(θan, ϕan) attain their maxi-
mums are close to each other and the values of ϕan for
both functions are close to π. Also almost coincident
are the angles θan and θ0 corresponding to the maximum
value of the function F(θan, ϕan). This means that, when
a hydrogen atom is ionized by fast electrons in a uni-
form electric field, it is most likely that the secondary
electron leaving the atom moves in the direction anti-
parallel to e. In other words, we can expect that the
cross section for ionization of a hydrogen atom by elec-
trons will increase significantly if a uniform electric
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Fig. 4. Surfaces (a) F(θn, ϕn) and (b) F(θan, ϕan): calculated
for θ0 = 0 corresponding to the longitudinal (antiparallel to
ε) direction of the primary electrons incident on the atom for
ka = 10 and k = 50; (c) the fragment of F(θan, ϕan) ∈  (0.12,
0.58) for θan ∈  (0, 0.014) (the difference between the max-
ima of the function and its fragment is due to different num-
bers of the points per unit area of the coordinate planes; the
index n at θn, θan, ϕn, and ϕan is omitted).
field is antiparallel to the momentum of the electrons
that leave the atom in the absence of a field (e = 0) with
maximum probability. We should note that, in the
model presented here, this effect is not related to the
tunnel “extraction” of an electron from an atom due to
an external field, because we do not consider the influ-
ence of the external field on the atomic electron in the
ground state.
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F(θan, ϕan) ∈  (0.12, 0.58) (the index n at θn, θan, ϕn, and ϕan
is omitted).
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Let us examine the dependence of the cross section
on the phases α1, α2, αa1, and αa2.

Figure 8 shows the functions F(αa1, αa2) and
F(α1, α2) corresponding to the surfaces F(θn, ϕn) and
F(θan, ϕan) presented in Figs. 2, 5, and 7.

It is seen from Fig. 8 that, if the conditions ε2/3 ! Eaz

and Ez ! εL are satisfied, then the values of the func-
tions F(α1, α2) and F(αa1, αa2) lie in the intervals
(0.066, 1.5234) and (0.0002, 1.409), respectively.
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Fig. 6. Surfaces F(k, ka), F(θan, ka), F(ϕan, ka), and F(θ0, ka)
illustrating the existence of the maxima and corresponding
to inequalities (8) for (a) ka = 15.44 and k = 49.6, (b) θan =
1.2692, (c) ϕan = 3.1416, and (d) θ0 = 1.2818 (the index n at
θan and ϕan is omitted).
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If the inequalities ε2/3 ! Eaz ! εL < Ez are satisfied,
then the values of the function F(α1a, αa2) lie in the
interval (0.002, 0.909). If the inequalities ε2/3 ! Ez !
εL < Eaz are satisfied, then the function F(α1, α2) varies
from 176426.36 to 176507.14.

Hence, the cross section under consideration can
depend strongly on the parameters α1, α2, αa1, and αa2.
However, if it is considerably greater than the cross sec-
tion for ionization of an isolated hydrogen atom by
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Fig. 7. Surfaces F(θn, ϕn), F(θan, ϕan), F0(θn, ϕn), and
F0(θan, ϕan) for θ0 = 1.2818, ka = 15.44, and k = 49.6: (a)
F(θn, ϕn) for θan = 1.2692 and ϕan = 3.1416, (b) F(θan, ϕan)
for θn = 0.2762 and ϕn = 0.0001, (c) F0(θn, ϕn) for θan =
1.2692 and ϕan = 3.1419, and (d) F0(θan, ϕan) for θn =
0.3016 and ϕn = 0.0014 (the index n at θn, θan, ϕn, and ϕan
is omitted).
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Fig. 8. Functions F(αa1, αa2) and F(α1, α2): (a) F(αa1, αa2)
and (b) F(α1, α2) calculated for θn, θan, ϕn, and ϕan corre-

sponding to Fig. 2 and inequalities ε2/3 ! Eaz, Ez ! εL,
0.0002 ≤ F(αa1, αa2) ≤ 1.41, 0.066 ≤ F(α1, α2) ≤ 1.52;
(c) F(αa1, αa2) calculated for θn, θan, ϕn, and ϕan corre-

sponding to Fig. 5 and inequalities ε2/3 ! Eaz ! εL < Ez,
0.002 ≤ F(αa1, αa2) ≤ 0.909; and (d) F(α1, α2) calculated
for θn, θan, ϕn, and ϕan corresponding to Fig. 7 and inequal-

ities ε2/3 ! Ez ! εL < Eaz, 176426.36 ≤ F(α1, α2) ≤
176507.14.
electrons, its relative variations [corresponding to the
variations in the phases α1, α2, αa1, and αa2 in the inter-
vals (0, 2π)] are much smaller than unity and the spe-
cific values of the phases are of no importance.

Note also that the cross section can increase signifi-
cantly under the condition Eaz, Ez ! εL if, for example,

ε = 0.001 and 1 <  ! k2 < 400. In this case, the cross
section is almost independent of the parameters α1, α2,
αa1, and αa2.

4. CONCLUSION

It is expected from the above considerations that the
differential cross section for ionization of a hydrogen
atom by fast electrons in an external uniform electric
field can differ significantly from a similar ionization
cross section of an isolated atom in both the angular
dependence and magnitude. The most pronounced
increase in the cross section is expected if the atom is
ionized by electrons with momentums directed almost
perpendicularly to the uniform electric field, while the
momentums of the electrons leaving the atom are anti-
parallel to this field.

The cross section under consideration contains
oscillation terms whose periods depend on the longitu-
dinal energy of both primary and secondary electrons.
The anisotropy that appears in the cross section is due
to the uniform electric field.

The physical explanation for these effects is the
redistribution (in comparison with the case ε = 0) of the
mean electron density when the electrons are reflected
from the potential barrier of the external electric field.

In ionized gases, these effects should appear when
the distance between the scattering-atom nucleus and
the point of the electron reflection from the potential
barrier of the uniform electric field is shorter than the
mean distance between ions or gas atoms: E ! eεn–1/3

(here, n is the density) and the mean time τ ~ /eε
needed for the electrons to pass over this distance is
much shorter than the characteristic time of the process
under study. Assuming E = 1 eV and n = 1012 cm–3, we
obtain ε @ 104 V/cm and τ < 10–11. Hence, it is expected
that, if a gas with a density of 1012 cm–3 is in an alter-
nating electric field with frequency ω < 1012 s–1 and
amplitude on the order of 102 kV/cm, the above effects
should come into play.
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Abstract—A two-dimensional numerical model is proposed for studying a steady microwave discharge driven
by the H10-type wave. The parameters of a discharge in nitrogen at atmospheric pressure are calculated. The
results obtained agree qualitatively with the experimental data. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microwave plasmatrons having unique parameters
and capable of producing a spectrally pure plasma at
elevated pressures are widely used in plasma chemistry
[1, 2]. In order to successfully apply plasmatrons in
various technological units, it is necessary to know how
the external controlled generator parameters affect the
plasma characteristics. Because of the nonlinear inter-
action between a plasma and an electromagnetic field,
solving the problem at hand theoretically runs into seri-
ous difficulties. So far, the mechanism for the formation
of a microwave discharge has been analyzed qualita-
tively [3] and the techniques for investigating radial
plasmatrons in a quasi-two-dimensional approximation
[2], the method of equivalent schemes [1, 4], and the
channel models for plasma generators based on the H10-
type [2, 5] wave have been developed.

Here, we present a two-dimensional numerical
model of a microwave discharge driven by the H10-type
wave. We calculate the parameters of a discharge in
nitrogen at atmospheric pressure when the electromag-
netic power is launched either into one end or symmet-
rically into opposite ends of the waveguide. We com-
pare the results obtained with the experimental data [4].

2. MODEL

We consider a steady microwave discharge in a
cylindrical quartz tube of radius R installed perpendic-
ularly to the wide walls of a rectangular waveguide of
cross section a × b (Fig. 1). The discharge is maintained
via dissipation of the electromagnetic energy of a TE-
wave with the field components E(0; Ey = E; 0)exp(iωt –
ikz) and B(Bx; 0; Bz)exp(iωt – ikz). The wave is launched
into the waveguide, is partially reflected from the dis-
charge plasma, and partially penetrates into the plasma.
The steady burning regime of a discharge is ensured by
heat removal to the walls of the discharge tube via ther-
mal conduction. We assume that the discharge plasma
is immobile and is in local thermodynamic equilibrium
1063-780X/00/2605- $20.00 © 20456
and that the discharge parameters change insignifi-
cantly along the electric field vector.

2.1. Equations

The microwave discharge parameters are described
by the energy balance equation and wave equation,

(1)

(2)

and the magnetic field components are determined
from the Maxwell equations

Here, T is the temperature, λ is the thermal conductiv-
ity, ε = 1 – σ/ε0νe is the plasma permittivity, σ =

e2neνe/me(ω2 + ) is the electric conductivity, νe is the
electron collision frequency, ne is the electron density,
e and me are the charge and mass of an electron, k =

∂
∂x
------ λ∂T

∂x
------ 

  ∂
∂z
----- λ∂T

∂z
------ 

  1
2
---σ E 2+ + 0,=

∂2E

∂x2
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∂z2
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σ
ωε0
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Fig. 1. Schematic of a microwave discharge driven by the
H10-type wave in a rectangular waveguide.
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 is the longitudinal wavenumber, c
is the speed of light, and ε0 is the dielectric constant.

2.2. Boundary Conditions

The computation region for the temperature is
bounded by the “cold” walls of the discharge tube:

The electric field is computed in the rectangular
region (0 ≤ x ≤ a/2, −L ≤ z ≤ L) with the boundary con-
ditions

E = 0 (perfectly conducting waveguide walls) 

at x = 0  

∂T/∂x = 0 (symmetry conditions) at x = a/2; (3)

 at z = –L;

  at z = L.

These boundary conditions correspond to a solution to
equation (2) for a waveguide with σ = 0 and ε = 1 and
the boundary conditions

(4)

where EI, ER, and ET are the field amplitudes of the inci-
dent, reflected, and penetrating waves of the H10 type
(the dimensions a and b are chosen so that the funda-
mental H10-mode penetrates into the waveguide,
whereas the higher modes, which are captured numeri-
cally in the discharge region, are completely damped
before they reach the boundaries z = ±L).

When the microwave power is launched symmetri-
cally into opposite ends of the waveguide, the boundary
conditions for the computation region −L ≤ z ≤ 0 are

2.3. Method of Solution

We solved equations (1) and (2) with the boundary
conditions numerically using the finite-difference
scheme on a rectangular nonuniform grid. The equations
were discretized by the control volume method [6].
The discrete analogues of the equations were solved
iteratively with the help of the sweep method along the
z-axis.

The technique for solving equation (2) is governed
by the numerical implementation of the boundary con-
ditions (3). Since the wave equation determines the
electric field amplitude to within an arbitrary constant
complex factor, we replaced the first condition in (3) by

ω c⁄( )2 π a⁄( )2–

T x z,( ) T R 300 K for z2 x a 2⁄–( )2+ R2.= = =

∂E ∂x⁄ 0,=

∂E
∂z
------ ikE– 2ikEI ikz–( ) πx a⁄( )sinexp–=

∂E
∂z
------ ikE+ 0=

E EI ikz–( )exp ER ikz( )exp+[ ] πx a⁄( )sin=

at z L,–=

E ET ikz–( ) πx α⁄( ) at zsinexp L,= =

∂E ∂z⁄ 0, ∂T ∂z⁄ 0 at z 0.= = =
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 = sin(πx/a) at z = –L, taking into account the condi-
tion at the right boundary iteratively. The solution

obtained, (x, z), was scaled, E(x, z) = KE (x, z), using
the coefficient KE, which was computed either from the
power of the incident wave,

,

Ẽ

Ẽ Ẽ

PI

kEI
2

4µ0ω
-------------ab, KE EI Ẽ a 2⁄ L–,( )⁄= =
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Fig. 2. Electric field distribution E(x, z)/Emax (with Emax =
0.63 kV/cm), Poynting vector field, and temperature distri-
bution (adjacent isotherms represent the change in the tem-
perature by 1 kK) in a microwave discharge with an electro-
magnetic power PI = 1.5 kW launched into one end of the
waveguide. The discharge-tube walls are hatched.
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or from the power dissipated in the discharge plasma,

where S is the cross-sectional area of the quartz tube.
The amplitudes EI, ER, and ET were calculated from
relationships (4).

3. RESULTS

We calculated the parameters of a microwave dis-
charge in nitrogen at atmospheric pressure under the
following experimental conditions [4]: a = 72 mm, b =
34 mm, ω/2π = 2.4 GHz, R = 8 mm, and PI = 1.5 kW.
The rate constants for a nitrogen plasma at atmospheric

Pd b
1
2
---σ E 2 x z, KEdd

S

∫∫ Pd P̃d⁄ ,= =
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pressure were taken from [3, 7]. The electron density
was found by evaluating the equilibrium plasma con-
tent, and the temperature dependence of the electron
collision frequency was determined from the electric
conductivity σ0 at ω = 0: νe = e2ne/meσ0.

3.1. Wave Launched into One End of the Waveguide

We consider an electromagnetic wave incident on
the plasma in a cylindrical channel with dielectric walls
in a rectangular waveguide. Because of the interaction
of a plasma with an electromagnetic field, the isolines
of |E | are closely spaced inside the discharge front
(Fig. 2). The region where the electromagnetic field
energy is dissipated serves as a “sink” for the Poynting
vector (E × B* + E* × B)/4µ0 (where the asterisk stands
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for complex conjugation), which is directed toward the
plasma center and results in the appearance of two sin-
gular points (a nodal point and a saddle point) on the
z-axis. The skin layer is ring-shaped, the skin effect
being most pronounced on the side of the incident
wave. Behind the saddle point, the vector of the density
flux of electromagnetic energy becomes solenoidal and
the electric field grows. The electromagnetic power dis-
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Fig. 6. The electric field distribution E(x, z)/Emax (with
Emax = 0.47 kV/cm), Poynting vector field, and temperature
distribution (adjacent isotherms represent the change in the
temperature by 1 kK) in a microwave discharge with an
electromagnetic power PI = 1.5 kW launched into opposite
ends of the waveguide. The dielectric-tube walls are
hatched.
sipation (Pd = 0.46 kW) causes intense plasma heating
in the discharge front. The distribution of isotherms
(Tmax = 6046 K) is asymmetric: they are shifted toward
the incident wave (Figs. 2, 3). A fraction of the electro-
magnetic field energy is reflected from the plasma
(PR = 0.89 kW), while the remaining fraction pene-
trates into the plasma (PT = 0.15 kW). In the x-direction
(Fig. 3), the temperature is highest at the channel axis,
whereas the electric field is weakest at the axis and
strongest near the walls.

The results obtained agree qualitatively with the
experimental data [4]: Tmax = (6200 ± 300) K and PR ≈
PT ≈ 0.38 kW, the threshold power being 0.6 kW. Pre-
sumably, discrepancies with the experimental data may
be attributed to the conversion of the incident wave into
a coaxial wave between the discharge plasma and the
metal tubes that screen the plasma outside the
waveguide and also to the azimuthal rotation of a gas
inside the channel [4].

3.2. Burning Regimes

According to the results obtained (Fig. 4), a micro-
wave discharge may burn in the (A) stable, (B) tran-
sient, and (C) unstable regimes, which agrees with the
experiment [1–3]. As in [3], we determined the stability
of a discharge against temperature fluctuations. The
stable regime is characterized by a relatively high
plasma temperature, large fractions of the dissipated
and reflected electromagnetic power, a weaker electric
field, and a lower power of the electromagnetic field
penetrating into the plasma. The dimensions of the skin
layer are much smaller than those of the discharge. In
the transient regime, the relative fraction of the electro-
magnetic wave energy dissipated in the plasma is max-
imum (Pd /PI = 0.55), while the fraction of the reflected
energy is minimum (Fig. 4). The skin effect in the elec-
tric field is less pronounced (Fig. 5). The temperature
distribution T(x, z) (Tmax = 5580 K) and the distribution
of the heat source (i.e., of the dissipated power, which
is described by the dissipative term in the energy bal-
ance equation) in the discharge plasma are almost sym-
metric. The discharge burns at a minimum threshold
power of 0.37 kW of the electromagnetic field launched
into the plasma (Fig. 4). In the unstable regime, the
electric field E is higher and the temperature T is lower
than those in the other regimes: the related isotherms
are circular, the temperature being highest at the chan-
nel axis (Fig. 5).

3.3. Wave Launched into Opposite Ends
of the Waveguide

When electromagnetic waves are launched into
opposite ends of the waveguide, the electric field distri-
bution and the Poynting vector field are both symmetric
with one nodal point (Fig. 6). The isotherms are nearly
circular, the temperature being maximum (Tmax =
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
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6136 K) on the channel axis. The isolines of the electric
field strength in the discharge plasma are ellipses
stretched in the x-direction (Figs. 3, 6). For an electro-
magnetic power of 1.5 kW launched into the plasma,
the fractions of the dissipated and reflected powers are
0.65 and 0.85 kW, respectively. In comparison with the
case of a wave launched into one end of the waveguide,
the threshold power is somewhat lower (0.23 kW),
while the maximum temperature is higher (5645 K) and
the absorption coefficient is larger (Pd/PI ≈ 1) in the
transient regime (see Fig. 4). This agrees with the esti-
mates made in [1, 2].

3.4. Discharge Tube with a Larger Radius

In a discharge tube with a radius R = 16 mm, the dis-
tributions of the plasma parameters and electromag-
netic field do not change qualitatively. When an electro-
magnetic wave is launched into one end of the
waveguide, the temperature distribution is more asym-
metric and a larger fraction of microwave power is
reflected. Accordingly, the fraction of the power dissi-
pated in the discharge, the fraction of the power pene-
trating into the plasma, the maximum temperature, and
the electric field strength in a discharge are all lower.
When electromagnetic waves are launched into oppo-
site ends of the waveguide, the isotherms inside the dis-
charge plasma are ellipses stretched in the z-direction,
the temperature being maximum at two points that lie
on the symmetry axis and are shifted toward the chan-
nel walls. The remaining parameters change in the
same manner as those in the case of a wave launched
into one end of the waveguide.

4. CONCLUSION
Our simulations of a microwave discharge driven by

the H10-type wave have revealed a qualitative agree-
ment between the results of two-dimensional computa-
PLASMA PHYSICS REPORTS      Vol. 26      No. 5      2000
tions and the experimental data, the existence of stable
and unstable (against temperature fluctuations) burning
regimes of discharges (the absorption coefficient of the
electromagnetic field power being optimum in the tran-
sient regime), and the possibility of achieving a non-
monotonic temperature distribution in the discharge
plasma.

For the description of a microwave discharge to be
adequate to experiment, it is necessary to take into
account the conversion of the incident electromagnetic
wave and gas-dynamic processes and simulate the dis-
charge using a three-dimensional model.
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Abstract—The penetration of a current and, accordingly, a magnetic field into the plasma of pulsed systems
characterized by short temporal and spatial scales can be investigated in electron magnetohydrodynamics. A
study is made of the rapid penetration of the magnetic field of an injected high-current ion beam into a plasma.
© 2000 MAIK “Nauka/Interperiodica”.
This work is a continuation of studies devoted to the
rapid penetration of a magnetic field into a plasma or
plasmalike media. An investigation of this phenomenon
in the electron magnetohydrodynamic (EMHD) model
revealed many interesting processes that were not cap-
tured with the help of the classical theory of the skin
effect. Among the works on this problem, we should
mention an important paper by Kingsep et al. [1], in
which it was predicted that the magnetic field could
penetrate into the plasma in the form of a nonlinear
constant-amplitude wave moving at a constant velocity.

Our purpose here is to study the characteristic
behavior of the magnetic field of a high-current
charged-particle beam injected into a plasma. The short
temporal and spatial scales of the problem, τ and a,
allow us to apply the EMHD approach [1], which is
valid under the conditions

(1)

(2)

(3)

where

The beam can be modeled merely by the external
current jb , because the mechanical component of the
beam-particle generalized momentum dominates over

its field component, |p | @  (or, in other words,

the Larmor radius of the beam electrons substantially
exceeds the spatial scale a). Analogously, we can
neglect the friction between the beam and plasma par-
ticles in comparison with the Ohmic resistance,
because the effective Coulomb collision frequency is

proportional to , where Eb is the energy of the
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beam particles. Under conditions (1)–(3), the plasma
ion velocity is much lower than the plasma electron
velocity, so that the plasma ions can be assumed to be
immobile.

The geometry of the problem is illustrated in Fig. 1.
The z-axis is directed along the external current z || jb;
the plasma occupies the half-space 0 < z < a; and the
system is uniform along the y-axis, ∂/∂y ≡ 0. At the ini-
tial time t = 0, the reverse current in the plasma com-
pletely neutralizes the external (beam-driven) current
and B ≡ 0. Outside the plasma, at any instant, we have
B = B0, where B0 is the self-magnetic field of the beam.
Under the assumptions adopted, the ion and electron
beams can be treated in the same manner; we should
only keep in mind that, in the case of an electron beam,
the beam current flows in the direction opposite to that
of the beam.

We start with the set of equations

and the equation of electron motion

Assuming, for simplicity, that n = const and σ = const
and performing the necessary manipulations, we obtain

(4)

curlE
1
c
---∂B

∂t
-------,–=

curlB
4π
c

------ j jb+( ),=

j eneve–=
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dve
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-------- eE–
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(5)

We should point out the following important property of
equation (4). In the limit of infinitely high conductivity,
equation (4) passes over to the familiar frozen-in equa-
tion in which the frozen-in quantity is the curl of the

generalized plasma-electron momentum P = p – A.

The problem of the transport of a magnetic field by
an external current was solved by Kingsep et al. [2]
without allowance for electron inertia. The physical
model they developed can be outlined as follows. The
magnetic field penetration is described by the dynamic
equation

(6)

In the initial stage, when the profile of B is steep, the
magnetic field penetrates into a plasma due to diffu-
sion. In later stages, when the profile of B becomes suf-
ficiently smooth, the magnetic field becomes frozen in
the current-carrying electrons and is transported by
them. The magnetic field enters the plasma through the
boundary z = 0 with the velocity v = j/ne. The exact
solution to equation (6) is

(7)

As a result of the competition between diffusion and
the linear transport of the magnetic field out of the
plasma, the steady-state magnetic-field profile

is established at the boundary z = a (Fig. 2).
In our problem, we take into account electron iner-

tia, insert (5) into (4), and perform simple but rather
laborious manipulations to obtain the following one-
dimensional equation, describing this physical model:

(8)

(9)

Following [2], we neglect the effects at the beam

boundary; i.e., we omit the term curl , which

accounts for the magnetic field generation.
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Taking the Fourier transformation of (8) in the
z-coordinate, we arrive at a linear differential equation.
This equation can be easily integrated to yield the time
dependence of the Fourier transformed magnetic field.
With allowance for the initial conditions, we can repre-
sent the exact solution to equation (8) in terms of the
Fourier integral,

(10)

The specific form of both the initial condition (9) and
equation (8) allows us to follow the penetration of the
initial jump (9) in the magnetic field into a plasma using
the Lax method, i.e., expanding the solution into a
series in functions with different smoothness [3]. To do
this, we represent the exact solution (10) as the sum of
discontinuous and smooth functions, B = Bsing + Bcon. As
the discontinuous function Bsing, we adopt Bsing = ϕ(z,
t)θ(S(z, t)), where θ(x) is the Heaviside step function.
We substitute Bsing into equation (8) and collect the fac-
tors in the generalized functions θ(S(z, t)), δ(S(z, t)),
δ'(S(z, t)), and δ''(S(z, t)). If we succeed in finding the
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Fig. 1. Geometry of the problem.

Fig. 2. Penetration of a magnetic field into the plasma with-
out allowance for electron inertia.
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functions ϕ(z, t) and S(z, t) with which to force the fac-
tors in the delta function and its derivatives to zero, then
we could state that the remaining function Bcon would
be at least continuous. The desired functions ϕ(z, t) and
S(z, t) satisfy the equations

(11)

(12)

Equation (11) implies that S = f(x – vt). Equation (12)
can be integrated by the method of characteristics. With
allowance for the fact that, at t = 0, the function Bsing

should satisfy the initial condition (9), we obtain the
final expression for Bsing:

(13)

Analyzing (13), we can see that the initial discontinuity
(9) propagates with the current velocity v and is expo-
nentially damped as time elapses. The diffusion acts to
reduce the jump rather than smooth the profile. Apply-
ing the same procedure, we can show that the remain-
ing function Bcon = B – Bsing is infinitely differentiable.
Of course, the solutions obtained and the boundary
conditions are discontinuous because we work in the
EMHD theory. In reality, the magnetic field changes
sharply on a spatial scale of about c/ωpe . On infinitely

St' vSx'+ 0,=

ϕ t ϕ x+
D

a
2
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B gsin B0θ vt z–( )e

D

a
2

----- t–

.=

z

B
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Fig. 3. Penetration of a magnetic field into the plasma with
allowance for electron inertia.
long time scales, the discontinuity disappears and the
magnetic field profile becomes smooth, in which case
neglecting the highest derivative in equation (8) yields
equation (6). The time evolution of the solution is illus-
trated in Fig. 3.

Thus, in our problem, unlike in the nonlinear prob-
lems treated by Gordeev et al. [4, 5] with allowance for
electron inertia, no small-scale solitons are generated:
we deal with a discontinuity (rather than a soliton) that
appears on a spatial scale of about c/ωpe and is expo-
nentially damped with time. The effective distance over

which the jump propagates is equal to leff ≈  =

.
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