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Abstract—The partial wave analysis of two-photon free–free (bremsstrahlung) electron transition cross sec-
tions during scattering by a static potential U(r), as well as by an atom with a nonzero angular momentum, is
carried out. The dipole interaction with radiation is taken into account in the second order of perturbation theory
for the general case of elliptic polarization of photons. The polarization and angular dependences of the two-
photon potential scattering amplitude is presented as a combination of the scalar product of electron momenta
and photon polarization vectors and five atomic parameters containing Legendre polynomials of the scattering
angle as well as radial matrix elements depending on the initial (E) and final (E ') electron energies. The results
are applicable both for spontaneous double bremsstrahlung at nonrelativistic energies and for induced absorp-
tion and emission in the field of a light wave. Specific polarization effects (circular and elliptic dichroism) are
analyzed for two-photon bremsstrahlung processes associated with the interference of the Hermite and anti-
Hermite parts of the amplitude and depending on the sign of photon helicity. The limiting cases of high and low
photon frequencies are investigated analytically, and the asymptotic forms of radial matrix elements and ampli-
tudes for the general form of the U(r) potential are determined. Closed analytic expressions are derived for the
radial matrix elements of the Coulomb potential in the form of integrals of hypergeometric function, and sin-
gularities are singled out in explicit form for E '  E. The methods of approximate calculation of the radial
matrix elements are discussed, and the results of their exact numerical calculation, as well as angular distribu-
tions and the cross sections of induced one- and two-photon emission and absorption, are given for the case of
the Coulomb potential. The numerical results show that dichroism effects are quite accessible for experimental
observations. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electron scattering by atoms and ions accompanied
by emission and absorption of photons constitutes a
significant branch in atomic physics. A quantum-
mechanical description of such processes originates
from the experiments on spontaneous bremsstrahlung
(BrS) carried out in 1931 by Sommerfeld, who studied
electron scattering by a Coulomb center [1]. In the non-
relativistic dipole approximation, the BrS cross section
with the emission of a photon of frequency ω and polar-
ization vector e in direction k,

(1)

is determined by the matrix element (ME)

(2)

of the transition between the states  and  of the
continuous electron spectrum in the static atomic
potential U(r). For scattering by a Coulomb center, the
3D ME } can be calculated in terms of hypergeometric
functions 2F1(a, b; c; x) [1, 2]. Moreover, it is possible
in this case to analytically integrate cross section (1)
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over the directions of scattered electron and to express
the BrS spectral distribution dσ/dω in closed form in
terms of the derivative of the squared modulus of func-
tion 2F1 with respect to the argument (Sommerfeld for-
mula [1, 3]). The calculation of cross section (1) for the
general form of potential U(r) is based on the use of

multipole expansion of function  (see formula (15)
below). In this case, the partial expansion of ampli-
tude }, which is convenient for analysis of the
polarization-angular dependence of the cross sec-
tion, has the form [4]

(3)

(4)

Here, ∆l± = δl ± 1(p') + δl(p), δl(p) are the phases of scat-

tering at potential U(r),  = (d/dx)Pl(x) is the
derivative of the Legendre polynomial Pl(x), E ' =
p '2/2m = E – "ω, and δl', l(E ', E) are the radial MEs of
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TWO-PHOTON BREMSSTRAHLUNG PROCESSES IN ATOMS 1007
the momentum operator (see formula (37)). The spec-
tral distribution dσ/dω can also be written in the form
of a partial series:

(5)

In the case of a Coulomb potential, this series can be
summed directly (see [5], where the sum of series (5)
written using the interaction operator in the “form of
acceleration” is calculated analytically) and the Som-
merfeld formula can be reproduced. Although such an
approach is of rather methodical interest for Coulomb-
type BrS, the partial wave analysis for a U(r) potential
of the general form is the only method of simplifying
general formulas (1) and (2) without using additional
approximations.

Apart from conventional BrS, the scattering of an
electron at a force center can be accompanied by simul-
taneous emission of two spontaneous photons (double
bremsstrahlung, 2BrS), which was considered for the
first time in the general form by Heitler and Nordheim
in 1934 [6] as a radiation correction to conventional
BrS. In 1985, spontaneous 2BrS was detected experi-
mentally (see [7] and subsequent publications [8],
where the differential cross sections of emission of two
bremsstrahlung photons during scattering of electrons
with an energy of about 70 keV by thin targets were
measured by the coincidence method). In experiments
[9], spontaneous 2BrS was observed for electrons with
energy of the order of 10 keV. The first theoretical cal-
culations of the 2BrS cross section for electron scatter-
ing by a nucleus were made in the framework of the rel-
ativistic Born approximation [10]. The action of the
Coulomb field on the electron in a 2BrS process can be
taken into account exactly in the nonrelativistic dipole
approximation. Using the Coulomb Green function, the
2BrS amplitude can be presented in the form of inte-
grals of the hypergeometric function 2F1 (a two-photon
analog of the results obtained in [1, 2] for } in Eq. (2)).
Different methods of calculation of two-photon ampli-
tudes (with different representations of the Coulomb
Green function) used by different authors lead to quan-
titatively equivalent expressions, but having different
forms [11–13]. In particular, the integrated (“Born”)
terms were singled out in the amplitude in [13], which
considerably simplifies analysis of the limiting cases. It
is worth mentioning the effective approximate method
of calculation of the 2BrS amplitude proposed by Korol
[14] by taking into account only the contribution for δ-
shaped singularities emerging for E2  E1 in the sin-
gle-photon MMs  appearing in the com-
pound ME of the two-photon transition. This method
was subsequently extended to nondipole calculations
[15] and to the relativistic case [16]. Exact analytic
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expressions for the nonrelativistic 2BrS amplitude tak-
ing into account delay effects were obtained in [17, 18].
In addition to the above results obtained for the Cou-
lomb potential, numerical calculations of spontaneous
2BrS were also made for electron scattering by neutral
atoms both in the model of potential scattering [19] and
in the model taking into account the polarization
bremsstrahlung emitted by an atomic core [20].

In addition to spontaneous emission, considerable
interest in multiquanta bremsstrahlung processes was
stimulated by laser experiments, which made it possi-
ble to observe induced multiphoton bremsstrahlung
emission and absorption in the optical frequency range.
The first measurements of the cross sections of free–
free electron transitions in the presence of a high-inten-
sity laser wave were made in [21, 22]. Such experi-
ments were subsequently repeated more than once with
different atomic targets for different electron beam
energies and experimental geometries (see, for exam-
ple, [23] and review [24]). Quite general results could
be obtained in the theoretical description of multipho-
ton transitions in the continuous spectrum in the Born
and low-frequency approximations. In the Born case,
the cross section dσn of the n-photon induced emission
(n < 0) and absorption (n > 0) in a laser field with ampli-
tude F, polarization vector e, and frequency ω has a
simple form (the Bunkin–Fedorov formula [25]; see
also [26]):

(6)

where Jn is the Bessel function, dσB is the Born elastic
scattering cross section in the absence of a light wave,
and momenta p and  in the initial and final states are

associated with the energy conservation law: (  –
p2)/2m = n"ω. It was shown in [27] that the Born series
can be summed exactly in the low-frequency limit
(ω  0) so that cross section dσn also has factorized
form (6) in which dσB is replaced by the exact elastic
scattering cross section dσ0 in zero light field even for
slow electrons for which "ω ! E. It should be noted
that, although various versions were proposed for
deriving the low-frequency asymptotic form (see,
for example, [28, 29]), the limits of applicability of the
Kroll–Watson approximation [27] disregarding the
action of the laser field on the dynamics of interaction
between a slow electron and the atomic potential are
still a subject of discussions [30–33]. In [34], the
expression for dσn was derived in the approximation in
which the motion of an electron is described classically
and the emission and absorption processes are
described quantum-mechanically. Various versions of
generalization of the results obtained in [25, 27] taking
into account the effects of a strong laser field are given,
for example, in review [35]; however, the scattering
potential can be taken into account exactly only in per-
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1008 KRYLOVETSKIŒ et al.
turbation theory in the field of the wave. In particular,
such calculations for the Coulomb-type double
bremsstrahlung emission and absorption is completely
identical to the case of spontaneous 2BrS [11–13].
However, a special situation emerges in the case of
elastic reemission of photons: both MEs determining
the transition amplitude are diverging; consequently,
we must eliminate the divergence to obtain a finite
result [13, 36]. In addition to purely stimulated transi-
tions induced by a high-intensity laser field, the latter
may modify spontaneous BrS also. This question was
investigated in [37] in the Born approximation. A more
detailed inclusion of the effects of an atomic (Cou-
lomb) potential was carried out in [38, 39]. It is also
appropriate to mention publications [40, 41], in which
“combined” Compton-type bremsstrahlung processes
(absorption of a laser photon by an electron followed by
spontaneous BrS in the field of the nucleus) were con-
sidered.

In view of the difficulties encountered in the exper-
imental determination of the polarization characteris-
tics of spontaneous BrS, the energy and angular depen-
dences of cross sections have been mainly analyzed in
publications devoted to spontaneous bremsstrahlung
processes. On the contrary, in the case of induced pro-
cesses, the possibility of controllable variation of laser
polarization opens new prospects for studying the free–
free transitions, which stimulates an analysis of polar-
ization effects in bremsstrahlung processes. A general-
ization of the results obtained by Kroll and Watson [27]
to the case of elliptic polarization of laser radiation is
considered in [31, 42]. A considerable difference in the
one- and two-photon scattering cross sections in the
cases of linear and circular laser polarizations for elec-
trons scattered by hydrogen [43] and helium [44] atoms
is demonstrated in [43, 44]. However, the most impres-
sive polarization effect is the dichroism manifested in
the difference in the cross sections for the opposite
polarities of the degree of circular polarization of pho-
tons. It was found [4] that the differential cross section
of single-photon BrS for electron scattering by a
nucleus differs significantly for photons with right and
left circular polarizations (circular dichroism, CD). A
general analysis of the CD in bremsstrahlung in the
case when an electron is scattered by an atom with a
nonzero angular momentum was carried out in [45].
The polarization dependence of corrections to the Cou-
lomb scattering, which are associated with the effect of
the light wave, was studied in [13, 36]. The CD effect is
sensitive to the electron energy and the photon fre-
quency and vanishes in the Born limit as well as in the
low-frequency limit and for small scattering angles.
Outside these regions, CD has a noticeable magnitude
and is quite accessible for experimental observation. It
should be noted that CD in photoprocesses with nonpo-
larized atomic targets is an essentially quantum-
mechanical interference effect, which is absent, in par-
ticular, in the classical analysis of BrS in a strong laser
field [46]. At the same time, numerical quantum calcu-
JOURNAL OF EXPERIMENTAL 
lations of single-photon Coulomb BrS, which are not
confined to perturbation theory in the laser field [47]
indicate significant CD. Electron scattering by a hydro-
gen atom in the presence of two fields with linear and
circular polarizations is considered in [48]. The emer-
gence of dichroism effects in the presence of the two
fields is quite obvious; in this case, CD differs from
zero for certain geometries of the fields for fast (Born)
electrons also and in the total cross section.

It was noted above that the first Born approximation
is insufficient for correctly describing the polarization
effect, and the interaction of an electron with the target
must be taken into account more exactly; this involves
considerable difficulties for processes with two or more
photons even in the framework of perturbation theory
in the electron interaction with radiation. Since the
problem has several vector parameters, the separation
of dynamic (depending on the energy and structure of
the potential) and kinematic (depending on the photon
polarization and the geometry of the problem) factors
in the general expressions for cross sections is of prime
importance. We will carry out partial-wave analysis of
two-photon free–free transitions as applied to potential
scattering U(r) both in the field and by atoms with non-
zero angular momentum. General results are illustrated
by analytic and numerical calculations for scattering by
a Coulomb potential. In Section 2, the analytic expres-
sion for the amplitude of two-photon dipole transitions
is simplified to the maximum possible extent for the
case of a central potential U(r), which generalizes
results (3) and (4) to the case of single-photon BrS. In
contrast to binomial expression (3), the two-photon
amplitude in the general case of different photons can
be written in the form of five products of invariant
(independent of photon polarizations) atomic parame-
ters Qi and the scalar products of photon polarization
vectors by the initial and final electron momenta. By
analogy with Eq. (4), parameters Qi are presented in the
form of a series of products of the second-order radial

MEs  between the states of the continuum with
fixed values of the orbital angular momenta l and l' and
the Legendre polynomials in the scattering angle θ.
Such a form of representing the amplitude makes it pos-
sible to obtain explicit expressions for the atomic
parameters that describe dichroic polarization effects
depending on the sign of the photon helicity (Subsec-
tion 2.3) and to demonstrate, in particular, a new dich-
roic effect, viz., elliptic dichroism (ED), which emerges
in induced two-photon processes along with CD and
vanishes in the case of a purely circular laser field
polarization. The optimal conditions for the observa-
tion of CD and ED are analyzed. Closed analytic

expressions for the Coulomb MEs  are obtained in
Section 3 (see also Appendix B) in the form of the sum
of the MEs  for conventional bremsstrahlung
and a single integral of the function 2F1. In Section 4,
elastic two-photon transitions are considered and it is

Ml'l
L l 1±=

Ml'l
L

dl2l1
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TWO-PHOTON BREMSSTRAHLUNG PROCESSES IN ATOMS 1009
shown that singularities appearing in  in the case
when the energy difference between the initial and final
states becomes insignificant (E '  E) are compen-

sated in the calculation of the invariant parameters ,
for which explicit analytic expressions are derived in
the case of Coulomb scattering. The limiting ranges of
low and high photon frequencies are investigated, and
simple asymptotic forms of inelastic scattering ampli-
tudes are obtained for the central field U(r) in Sec-
tion 5. The frequency and energy dependences of the
Coulomb radial MEs and the accuracy of approxi-
mate methods of computation are discussed in Sub-
section 6.1. The results for the angular distributions
and the polarization dependence of induced two-photon
emission and absorption are given in Subsection 6.2,
where the numerical values of the cross sections of one-
and two-photon bremsstrahlung transitions are com-
pared. The analytic formulas derived by us for the Cou-

lomb MEs  are the most general expressions for the
amplitudes of two-photon transitions in the Coulomb
field between the states with fixed orbital angular
momenta l and l'. It is shown in Appendix B that the
well-known results for the case when both states or one
state belong to the discrete spectrum can be obtained
from these formulas by the analytic continuation in
energy (p  imZe2/n" and/or p'  imZe2/n'") [49].

In the subsequent analysis, we will use the atomic
system of units.

2. POLARIZATION–ANGULAR STRUCTURE 
OF CROSS SECTIONS OF TWO-PHOTON 

BREMSSTRAHLUNG PROCESSES

2.1. General Formulas

The amplitude of a two-photon electron transition
between two scattering states with asymptotic
momenta pi ≡ p and pf ≡ p' in potential U(r) is deter-
mined by the second-order ME in perturbation theory
(cf. Eq. (2)):

(7)

where  and  are the wave functions of the
continuum with the asymptotic forms of converging (–)
and diverging (+) waves, normalized by the condition

and G% is Green’s function of the Hamiltonian with
potential U(r) and with the asymptotic form for diverg-
ing waves for % > 0. The differential cross section of a
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spontaneous 2BrS with the photon emission in direc-
tions k1 and k2 (|ki | = 1, ei ·  = 1, i = 1, 2) has the form

(8)

For an electron scattered by a force center U(r) in
the presence of a high-intensity light wave whose elec-
tric vector is written in the form

induced multiphoton processes are of prime impor-
tance. Induced two-photon transitions determine dou-
ble bremsstrahlung emission and absorption as well as
the correction to the elastic scattering cross section,
which is linear in the wave intensity I = cF2/4π. The
cross sections of the above-mentioned processes are
also determined by ME (7). For example, the differen-
tial (with respect to the angles of a scattered electron)
induced 2BrS cross section has the form

(9)

where the electron energy % in the intermediate state is
connected to the energies in the initial (E = p2/2) and
final (E ' = p'2/2) states through the relation % = E – ω =
E ' + ω. Similarly, the double bremsstrahlung absorption
cross section is given by

(10)

where % = E + ω = E ' – ω.
In the case of elastic scattering (E ' = E), the inclu-

sion of the interaction with the light wave in the lowest
(second) order of perturbation theory gives a correction
to the amplitude linear in wave intensity,

(11)

where f0 is the amplitude of elastic scattering by poten-
tial U(r) in the absence of a light wave, while

(12)

is the correction associated with the two-photon transi-
tion induced by the wave (reemission of a photon by an
electron during scattering, Fig. 1). A correction on the
order of F2 to the elastic scattering cross section is
determined by the interference of amplitudes f 0 and f2:

(13)
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1010 KRYLOVETSKIŒ et al.
2.2. Partial-Wave Expansion of the Amplitude

Since e1 and e2 appear linearly in Eq. (7), ME
M(e2, e1, %) can be presented as the sum of the products
of linearly independent combinations of vectors e1, e2
and n, n' (where n = p/p and n' = p'/p') and the invariant
amplitudes 3i depending only on p, p', %, and the angle
θ between n and n'. There are five linearly independent
combinations e1, e2 and n, n'; choosing these combina-
tions appropriately, we can write M(e2, e1, %) in the
form

(14)

It should be noted that the analytic expressions for the
amplitude of two-photon transitions in the Coulomb
field, derived in [11–13] without using partial expan-
sions, have exactly the same structure. The explicit
form of the amplitudes 3i = 3i(p, p', θ, %) for an arbi-
trary potential U(r) can be obtained only by specific
calculations of ME (7). A general method for simplify-
ing expressions of form (7) is the use of multipole
expansions of the wave functions and operators appear-
ing in Eq. (7), followed by integration with respect to
angular variables by the methods of quantum theory for
angular momentum [50]. Let us write the wave func-
tions and Green’s function in Eq. (7) in the form of
expansions in spherical functions:

(15)

where REl(r) are the radial functions of the continuum
in potential U(r), normalized to energy, and δl(p) are
scattering phases. Substituting expressions (15) into
Eq. (7), integrating with respect to angles, and carrying
out summation over the angular momenta components,
we obtain
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ω ω ω ω

|p'(–)〉 |p(+)〉 |p(+)〉|p'(–)〉

Fig. 1. Feynman diagrams for reemission of a photon by an
electron in the continuum.
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(16)

(we will use below the standard notation in the quantum
theory of angular momentum [50]).

Expressions of type (16) are usually considered as
the final result of analytic transformations of the “geo-
metrical” part of the amplitudes by the methods of
quantum theory of angular momentum, and subsequent
calculations are based on numerical computations of
tensor constructions in Eq. (16) in an appropriately
chosen system of coordinates (see, for example, the
publications [30] on the induced one- and two-photon
emission and absorption in a linearly polarized field; it

should be noted that the function  with the
asymptotic form for diverging waves is groundlessly
used by the author of [30] as the final state of ME (2)
and (7)). A special technique for simplifying tensor
products of the spherical functions Ylm(n) based on the

reduced formula for bipolar harmonics 
defined as

(17)

was developed in [45] (see also [51]). This technique

makes it possible to present  with arbitrary
values of l, l ' > L in the form of a finite sum of “mini-

mal” harmonics with 0 ≤ k ≤ L and Leg-
endre polynomials. For example, for the bipolar har-

monic , we have [45]

(18)

where x = n · n' = cosθ and  = (d/dx)kPl(x). The
expressions for the remaining bipolar harmonics

(n', n) with c = 0, 1, 2, which appear in Eq. (16), are
also given in [45]. Using these expressions and writing
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e1}c · {n' ⊗  n}c) in terms of the scalar products of vec-
tors e1, e2, and n, n' (Section 3 in [50]), we can reduce
expression (16) for M(e2, e1, %) to the form (14). It is
convenient to write the final result in the form

(19)

where

(20)

Radial MEs  contain the phase factors from rela-
tions (15):
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-------------}l l

l 1– 1
2l 3+
--------------Ml l
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∑=
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-------------}l l
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--------------}l l
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  x
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1
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l

+( ) Pl
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x( ),

Q4
1
2
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l 1– }l l
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–[ ] Pl
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l 1=

∞

∑=

Q5
1
3
--- l}l l
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l 1+( )}l l

l 1+
+[ ] Pl x( ).

l 0=

∞

∑=

Ml'  l
L

}l'  l
L

2π2/ p p'( )=
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(21)

(22)

Formulas (20) give five invariant parameters Qi (which
are obviously associated with 3i in Eq. (14)) in explicit
form in terms of radial MEs. Relations (20) directly
demonstrate the symmetry properties,

2.3. Effects of Circular and Elliptic Dichroism
in free–free Transitions

Parametrization of the amplitude in the form (19)
and (20) makes it possible to completely analyze the
polarization and angular dependences both in spontane-
ous 2BrS (with different polarizations e1 and e2) and for
induced processes (with e1 = e2). Let us first consider
induced 2BrS (the results for double bremsstrahlung
absorption follow from the formulas given below with
the substitution e, ω  e*, –ω). Assuming that e1 =
e2 = e* in Eq. (19), we see that parameter Q4 for
induced processes is omitted and the expression for M
has the form

(23)

As a result, cross section (9) assumes the form

(24)

where

(25)

× i δl' p'( ) δl p( )+( )[ ] Ml'  l
L E' E %, ,( ),exp

Ml'  l
L E' E %, ,( )

=  D L l',( )RE'l' gL %( ) D L l,( )REl〈 〉 ,

D l1 l2,( )
rd

d l2 l1–( )max l1 l2,( )sgn 1+
r

--------------------------------------------------------------.+=

Q1 p p',( ) Q2 p' p,( ), Q3 4 5, , p' p,( ) Q3 4 5, , p p',( ).= =

M Q1 e∗ n⋅( )
2

Q2 e∗ n'⋅( )
2

+=

+ Q3 e∗ n⋅( ) e∗ n'⋅( ) 4 e∗ e∗⋅( ),+

4 Q5
1
3
--- Q1 Q2 xQ3+ +( ).–=

dσ
dΩp'
-----------

1

4π2
-------- F

2ω
------- 

 
4 p'

p
---- f reg ∆CD ∆ED+ +( ),=

f reg Q1
2 e n⋅ 4 Q2

2 e n'⋅ 4 Q3
2 e n⋅ 2 e n'⋅ 2+ +=

+ l2 4
2

2Re Q1*Q2( )Re e n⋅( )2 e∗ n'⋅( )2{ }+

+ 2Re Q1*Q3( ) e n⋅ 2Re e n⋅( ) e∗ n'⋅( ){ }

+ 2lRe Q1*4( )Re e n⋅( )2{ }

+ 2Re Q2*Q3( ) e n'⋅ 2Re e n'⋅( ) e∗ n⋅( ){ }

+ 2lRe Q2*4( )Re e n'⋅( )2{ }

+ 2lRe Q3
*4( )Re e n⋅( ) e n'⋅( ){ } ,
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(26)

(27)

Obviously, freg remains unchanged upon the substi-
tution e  e*, i.e., is independent of the sign of pho-
ton helicity. In order to analyze ∆CD and ∆ED, it is con-
venient to write the unit complex polarization vector in
an invariant (relative to the choice of the coordinate
system) form,

(28)

where the unit vectors eeee and k define the directions of
the principal axis of the polarization ellipse and of the
propagation of waves, while ellipticity η is connected
to the degrees of linear (l) and circular (ξ) polarizations,
which we define as in [3]:

Using relations (28), we can easily find that

(29)

so that

(30)

Relations (30) show that the last two terms in
Eq. (24) lead to a dependence of the cross section on
the sign of ξ and describe the CD and ED effects. The
value of ∆ED vanishes for purely circular polarization
(ξ = ±1, l = 0), while the CD term ∆CD attains its maxi-
mum value in this case. Although the quantitative
results for CD and ED can be obtained only from
numerical calculations, the distinguishing features of
these effects can be seen even from general formulas
(24)–(27). In particular, the CD and ED terms in
Eq. (24) exhibit essentially different dependences
not only on the polarization parameters of the waves,
but also on the geometry of the process. For example,
the term ∆CD contains the common polarization-angu-
lar factor ξ(k · [n × n']) (see relations (29)) and attains
the “geometrical” maximum for a light wave propagat-

∆CD 2Im e n⋅( ) e∗ n'⋅( ){ } Im Q2
*Q3( ) e n'⋅ 2(=

– 2Im Q1
*Q2( )Re e n⋅( ) e∗ n'⋅( ){ } Im Q1

*Q3( ) e n⋅ 2– ),

∆ED 2l Im Q1
*4( )Im e n⋅( )2{ }(–=

+ Im Q2
*4( )Im e n'⋅( )2{ }

+ Im Q3*4( )Im e n⋅( ) e n'⋅( ){ } ) .

e
eeee iη k eeee×[ ]+

1 η2+
--------------------------------, 1 η 1,≤ ≤–=

l
1 η2–

1 η2+
--------------- e e⋅ e∗ e∗ ,⋅= = =

ξ 2η
1 η2+
--------------- ik e∗ e×[ ] .⋅= =

2Im e∗ n⋅( ) e n'⋅( ){ } ξ k n n'×[ ]⋅( ),=

2Im e n⋅( ) e n'⋅( ){ } ξ eeee n⋅( ) k eeee×[ ] n'⋅( ){=

+ eeee n'⋅( ) k eeee×[ ] n⋅( ) } ,

∆CD ξ , ∆ED ξ l.∼∼
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ing orthogonally to the plane of electron scattering:
k || ±[nn']. In this case, the term ∆CD has the form

(31)

If, however, the initial electron momentum is collinear
to the direction of wave propagation (n × k = 0), CD
vanishes in the same way as in the case of forward and
backward scattering, n' = ±n. It should be noted that the
kinematic factor ξ(k · [a × b]) determining ∆CD is uni-
versal by nature and describes CD in various single-
phonon processes with nonpolarized atoms in the pres-
ence of two polar vectors, a and b, say, in the case of
conventional and induced single-photon BrS [4] and
two-electron ionization of an atom by a hard photon
[45, 52]. ED is possible only in processes with two or
more identical photons and is less sensitive to the pro-
cess geometry; in accordance with Eq. (27), the neces-
sary condition for vanishing ∆CD is simultaneous fulfill-
ment of the conditions e · n = 0 and e · n' = 0. The ED
effect is manifested in “pure form” (without CD
accompanying it) in the angular distribution of scat-
tered electrons, when the initial momentum p is col-
linear to the light beam, [k × n] = 0. In this case, only
the terms with 4 and Q2 remain in relation (23) and ∆ED
has the simple form

(32)

and attains its maximum value for scattering at right
angles (i.e., in the polarization plane) in the directions
forming the angles ±π/4 and ±3π/4 with the direction of
the principal axis of the polarization ellipse.

In contrast to CD, the ED effect persists in the cross
section of the induced 2BrS (or double bremsstrahlung
absorption), integrated over the directions n' of a scat-
tered electron momentum. In this case, the cross section
depends only on vectors e and n and has the following
structure:

(33)

It can be seen that the ED term in the expression for σ
attains its maximum value when the initial electron
momentum p is orthogonal to the direction of the light
beam and forms an angle of π/4 with principal axis of
the polarization ellipse. It should be noted that expres-
sion (33) is completely identical kinematically to the
angular distribution of photoelectrons in the case of
two-photon ionization of an atom with a nonzero
orbital angular momentum in an elliptically polarized

∆CD ξ θsin=

× 2Im Q1
*Q2( ) θcos Im Q1

*Q3( ) Im Q2
*Q3( )–+[ ] .

∆ED 2lIm Q2
*4( )Im e n'⋅( )2{ }–=

=  2lξ Im Q2
*4( ) eeee n'⋅( ) k eeee n'×[ ]⋅( )–

σ 1

4π2
-------- F

2ω
------- 

 
4 p'

p
---- A1 A2l2 A3lRe e n⋅( )2{ }+ +(=

+ A4lξ eeee n⋅( ) eeee n k×[ ]⋅( )

+ A5 e n⋅ 2 A6 e n⋅ 4 ).+
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field (polarization effects and ED in this problem were
analyzed in [53]). We can derive explicit expressions
for dynamic parameters Ai in relation (33) in terms of
radial MEs (21) by integrating the squared modulus of
amplitude (16) with respect to n'. By way of an exam-
ple, we consider only the expression for the “dichroic
parameter” A4:

In all investigated cases, the numerical values of
dichroic parameters (∆CD, ∆ED, and A4) in the cross sec-
tions is determined in the long run by the relation
between the real and imaginary parts of the radial ME

, i.e., by the interference of Hermite and anti-Her-
mite parts of the process amplitude. Consequently,
dichroism effects disappear in the Born electron energy
range E and E' as well as in the low-frequency limit (see
Section 5 below, where it is proved that the parameters
Qi differ in this limit differ only in the real multipliers

so that  = 0). In the remaining cases, the
dichroic terms in the cross section have no smallness
parameter symbols and the relative magnitude of the
dichroism effects (in a favorable geometry of the pro-
cess) may be as high as 100%. Thus, in contrast to sin-
gle-photon bremsstrahlung processes in which only the
CD effect can take place and the cross section of ellip-
tical polarization can be reconstructed from experimen-
tal data for linear and circular polarizations, the fullest
information on the process in the case of double-photon
bremsstrahlung emission and absorption can be
obtained only from a light wave with an elliptical polar-
ization.

It should be borne in mind in an analysis of polariza-
tion effects in elastic scattering that Q1 = Q2 for E ' = E,
and, hence, the correction to the elastic cross section in

Eq. (13) contains four invariant parameters :

(34)

A4
16π5

p p'
----------- Im

l l 1+( )
2l 1–( ) 2l 3+( )

--------------------------------------Mll
l 1– Mll

l 1+ ∗




l 0=

∞

∑=

+ lMll
l 1– l 1+( )Mll

l 1++( )

× l 1+( ) l 2+( )
2l 1+( ) 2l 3+( )

--------------------------------------e
i δl p( ) δl 2+ p( )–( )

Ml l 2+
l 1+ *

+
l l 1–( )

2l 1–( ) 2l 1+( )
--------------------------------------e

i δl p( ) δl 2– p( )–( )
Ml l 2–

l 1*–





.

}l'  l
L

Im Qi*Q j( )

Qi
el

dσ
dΩp'
----------- f 0

2 1
π
--- F

2ω
------- 

 
2

+=

× Re f 0
*Q1

el( ) e n⋅ 2 e n'⋅ 2 2/3–+( ){

+ Re f 0
*Q2

el( ) Re e∗ n⋅( ) e n'⋅( ){ } 1/3( ) θcos–( )

+ Re f 0
*Q4

el( ) Im f 0
*Q3

el( )ξ k n n'×[ ]⋅( )+ } .
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Thus, elastic scattering of an electron in a light field
gives rise only to the CD effect, which is described by

the term containing  and characterized by the same
interference nature and the kinematic dependence as
CD in inelastic processes as well as in the case of sin-
gle-photon scattering [4]. Explicit expressions for the

parameters  similar to expressions (20) will be
given below (see Eqs. (48)).

In view of the presence of several vector parameters
in the problem, the symmetry properties of angular dis-
tributions of scattered electrons in the general case of
elliptic photon polarization can be established only for
the simplest initial configurations of the electron and
laser beams. The most informative and convenient
experimental configuration is the “orthogonal” geome-
try, in which the initial electron momentum p (z axis) is
orthogonal to the direction of the light beam (x axis),
while the principal axis of the polarization ellipse forms
angle α with the y axis (Fig. 2). In this case, the yz
(polarization) plane is the symmetry plane of the angu-
lar distribution in the general case of elliptic polariza-
tion. Since in the case of circular polarization the
results are independent of angle α, the angular distribu-
tion in the absence of CD would also possess a symme-
try relative to the xz plane, i.e., to the substitution ϕ 
–ϕ. The CD terms break this symmetry since ξ(k · [n ×
n']) = –ξ sinθsinϕ. Nevertheless, this relation shows
that the angular distributions in a circular field are
transformed into one another for ξ = 1 and ξ = –1 upon
reflection by the xz plane (or rotation through 180°
about the z axis); i.e., the cross section dσ/dΩ is invari-
ant relative to the substitutions ξ  –ξ and ϕ  –ϕ.
In an elliptic field, symmetry is lowered and the above
invariance is preserved only for values of α multiple
to π/2.

For spontaneous 2BrS, the cross section integrated
over the directions n' of a scattered electron is of exper-
imental interest. The general form of the polarization–

Q3
el

Qi
el

z

p

y

x

k

α

θ
p'

ϕ

eeee

Fig. 2. Geometry of induced bremsstrahlung emission and
absorption: θ and ϕ are the spherical angles of the momen-
tum vector p' of a scattered electron in the coordinate sys-
tem with the polar axis along vector p and the x axis along
the direction k of the laser beam; angle α defines the orien-
tation of the polarization ellipse in the yz plane.
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angular dependence of cross sections for this case fol-
lows from Eqs. (8) and (19) (cf. Eq. (33)):

(35)

where

Omitting cumbersome expressions for coefficients ai in
terms of radial ME, we note that factors ImI1 and ImI2
in the last two terms in Eq. (35) change their sign upon
the simultaneous replacement of the polarization vec-
tors by their complex conjugate, e1   and e2 

; for this reason, the cross section contains terms lin-
ear in ξ1 and ξ2 and depends on the sign of the degree
of circular polarization of photons. Thus, the CD effect
in spontaneous 2BrS is also preserved in the integration
over n'. The complex quantities I1 and I2 can be
expressed in terms of the real vectors eeeei and ki for any
polarizations e1 and e2 (such expressions can be found
in [54]); however, the case when one of the photons is
polarized linearly (say, e2 =  ≡ eeee2) is most interesting
for CD observation. In this case, I1 = I2 ≡ I, and the kine-
matic dependence of the CD term in Eq. (35) is given
by

This expression has a maximum in the orthogonal
geometry (k1 ⊥  n, k2 = –k1) used in experiments [8],
when bremsstrahlung photons are detected in the oppo-
site direction at right angles to the incident electron
beam. Using polarization-sensitive detectors, the CD
effect can be observed in these experiments by measur-
ing the difference in the yields of photons with right and
left circular polarizations for a fixed linear polarization
of the second photon at an angle of π/4 to the plane of
vectors n, k1, and k2.

When an electron is scattered by a freely oriented
atom with a nonzero total angular momentum, the
polarization structure of the cross section of two-pho-
ton bremsstrahlung processes is much more compli-
cated. Indeed, in this case only the cross section (and
not the amplitude) of the process is a scalar that can be
presented as a combination of scalar and mixed prod-
ucts of photon polarization vectors and electron
momenta p and p'. Accordingly, the number of terms in
the expression for the cross section, which are deter-
mined by linearly independent polarization-angular
factors, increases considerably. Nevertheless, the gen-
eral expression for the cross section in vector form, as

dσ4

dΩk1
dΩk2

dω1dω2
-------------------------------------------- a1 a2 e1 e2⋅ 2 a3 e1 e2*⋅ 2

+ +=

+ a4 e1 n⋅ 2 a5 e2 n⋅ 2 a6 e1 n⋅ 2 e2 n⋅ 2+ +

+ a7ReI1 a8ReI2 a9ImI1 a10ImI2,+ + +

I1 e1 n⋅( ) e2 n⋅( ) e1* e2*⋅( ),=

I2 e1 n⋅( ) e2* n⋅( ) e1* e2⋅( ).=

e1
*

e2
*

e2
*

2ImI ξ1 eeee2 n⋅( ) eeee2 n k1×[ ]⋅( ).=
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well as explicit expressions for dichroic terms repre-
sented in terms of reduced MEs of the momentum oper-
ator, can be obtained in analogy to the case of potential
scattering.

3. COULOMB TWO-PHOTON RADIAL
MATRIX ELEMENTS

Formulas (20) express parameters Qi in terms of the

radial MEs  (21) of transitions between
the states of the continuum with fixed values of the
orbital angular momentum in potential U(r). In accor-
dance with the dipole selection rules, MEs of the fol-
lowing four types appear in expressions (20):

(36)

It can be seen from the definition that  =

; consequently, it is sufficient to calcu-

late , , and  only.

In the case of the Coulomb potential U(r) = –Z/r, the

MEs  can be calculated in closed analytic form. It

is shown in Appendix A that each ME from  can be
presented as a sum of six terms of which two contain
first-order dipole MEs,

(37)

while the remaining four terms include the integrated
terms Jmm' (A.4) with m, m' = 0, 1:

(38)

Ml'  l
L E' E %, ,( )

Ml l
l 1+ E' E %, ,( )

=  D l 1+ l,( )RE'l gl 1+ %( ) D l 1+ l,( )REl〈 〉 ,

Ml 2 l 2+ +
l 1+ E' E %, ,( )

=  D l 1+ l 2+,( )RE'l 2+ gl 1+ %( ) D l 1+ l 2+,( )REl 2+〈 〉 ,

Ml 2 l+
l 1+ E' E %, ,( )

=  D l 1+ l 2+,( )RE'l 2+ gl 1+ %( ) D l 1+ l,( )REl〈 〉 ,

Ml l 2+
l 1+ E' E %, ,( )

=  D l 1+ l,( )RE'l gl 1+ %( ) D l 1+ l 2+,( )REl 2+〈 〉 .

Ml l 2+
l 1+ E' E %, ,( )

Ml 2 l+
l 1+ E E' %, ,( )

Ml l
l 1+ Ml 2 l 2+ +

l 1+ Ml 2 l+
l 1+

Ml'  l
L

Ml'  l
L

dl'  l E' E,( ) RE'l' D l' l,( ) REl〈 〉 , l' l 1,±= =

Mll
l 1+ E' E %, ,( )

p
E %–
-------------- l 1 ia–+

l 1 ia–+
------------------------dl l 1+ E' E,( )=

–
p'

E' %–
--------------- l 1 ia'–+

l 1 ia'–+
-------------------------dl 1 l+ E' E,( )

+
22l 2+ Z2 p p'( )l

2l 3+( )![ ] 2
---------------------------------CElCE 'l l 2 ia'+ +( ) l 2 ia+ +( )J00[

+ l 2 ia'+ +( ) l 1 ia–+( )J01

+ l 1 ia'–+( ) l 2 ia+ +( )J10
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(39)

(40)

Here, a = Z/p is the standard Coulomb parameter, and
CEl is the normalization factor for the continuum state
REl(r):

+ l 1 ia'–+( ) l 1 ia–+( )J11 ] ,

Ml 2 l 2+ +
l 1+ E' E %, ,( )

p
E %–
-------------- l 2 ia–+

l 2 ia–+
------------------------dl 2l 1+ + E' E,( )–=

+
p'

E' %–
--------------- l 2 ia'–+

l 2 ia'–+
-------------------------dl 1l 2+ + E' E,( )

+
2

2l 2+
Z2 p p'( )l

2l 3+( )![ ] 2 l 2 ia–+( ) l 2 ia'–+( )
-----------------------------------------------------------------------------------

× CEl 2+ CE 'l 2+ J00 J01 J10 J11+––[ ] ,

Ml 2l+
l 1+ E' E %, ,( )

p
E %–
-------------- l 1 ia–+

l 1 ia–+
------------------------dl 2l 1+ + E' E,( )=

+
p'

E' %–
--------------- l 2 ia'–+

l 2 ia'–+
-------------------------dl 1l+ E' E,( )

+
22l 2+ Z2 p p'( )

l

2l 3+( )![ ] 2 l 2 ia'–+( )
--------------------------------------------------------

× CElCE'l 2+ l 2 ia+ +( )J00 l 1 ia–+( )J01+[

– l 2 ia+ +( )J10 l 1 ia–+( )J11– ] .

CEl
2 p
π

------ πa/2( ) Γ l 1 ia–+( ) .exp=
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The MEs dll' satisfy the symmetry relations

and can be expressed explicitly (see Appendix A) in
terms of the functions 2F1 (cf. the expression for the ME
for a single-photon transition with the interaction oper-
ator in the “form of length” [55]):

(41)

Here,

(42)

where λ0 = –4pp'/(p – p')2.
Expression (A.4) for Jmm' can be written only in the

form of a one-dimensional integral of the function 2F1
with the same parameters as in Eq. (42):

dll 1+ E' E,( ) dl 1l+– E E',( ),=

dl 2l 1+ + E' E,( ) dl 1l 2+ + E E',( )–=

dl 1l+ E' E,( )
22l 2+ Z p'l 1+ pl

2l 3+( )![ ] 2
---------------------------------–=

× CE'l 1+ CEl l 2 ia+ +( )I10 l 1 ia–+( )I11+[ ] ,

dl 1l 2+ + E' E,( )
22l 2+ Z p'l 1+ pl

2l 3+( )![ ] 2 l 2 ia–+( )
-------------------------------------------------------–=

× CE'l 1+ CEl 2+ I10 I11–( ).

Im'm E' E,( ) 1–( )l 2l 3+( )!=

× p p'– i0+( )–l 1– m'– ia'+ p' p– i0+( )–l 1– m– ia+

p p'+( )2 ia' ia m'– m–+ +
-----------------------------------------------------------------------------------------------------------

× F2 1 l 1 m' ia'–+ + l 1 m ia–+ + 2l 4+ λ0, , ,( ),
(43)

Jm'm E' E %, ,( ) 22l 4+ 2l 3+( )!ν2l 5+ td

0

1

∫=

×
tl 1 Zν–+ F2 1 l 1 m' ia'–+ + l 1 m ia–+ + 2l 4+ ; λ, ,( )

Al 1 m ia–+ + Bl 1 m' ia'–+ + C2 m'– m– ia' ia+ +
---------------------------------------------------------------------------------------------------------------------------,
where ν = 1/ , λ = (16pp'|ν|2t)/AB, and

(44)

Formulas (43) and (44) are written under the assump-
tion that the energy of the intermediate state is positive:
% > 0. If % < 0 (this case is realized in elastic scattering
with reemission of a photon with ω > E), the parameter

ν = 1/  is real-valued and the substitution |ν| 

2%–

A 1 p ν i0+–( ) 1 p' ν i0+ +( )=

– t 1 p ν i0–+( ) 1 p' ν i0––( ),

B 1 p ν i0+ +( ) 1 p' ν– i0+( )=

– t 1 p ν– i0–( ) 1 p' ν i0–+( ),

C 1 p ν i0+ +( ) 1 p' ν i0+ +( )=

– t 1 p ν– i0–( ) 1 p' ν i0––( ).

2%–
–iν must be carried out in Eqs. (43) and (44). Infinitely
small corrections ±i0 in Eqs. (42) and (44), which
determine the rules for raising negative quantities to a
power, appear as a result of regularization of inte-
grals (A.3) and (A.4) with oscillating functions. It can
be seen that expressions (38)–(40) contain two types
of terms: the hypergeometric functions 2F1 and inte-
grals of 2F1. Relatively simple “integrated” terms make

a dominating contribution to  in the
domain of the variables (see Section 5) and contain, in
particular, the Born limit since the terms with integrals
Jm'm have an extra factor Z.

In spite of the cumbersome form typical of analytic
calculations with Coulomb functions of the continuum,
formulas (38)–(40) and (43) cannot apparently be sim-

Ml'  l
L

E' E %, ,( )
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plified further and are the simplest expressions general-
izing Coulomb matrix elements of the type (41), (42)
for single-photon bremsstrahlung processes to the case
of two-photon free–free transitions. At the same time,
the analytic expressions for the MEs for bound–bound
and bound–free transitions following from them for
analytic continuations in E and E' can be simplified and
reduced to two-photon Gordon formulas [49], which
are free of integrations. The corresponding transforma-
tions can be found in Appendix B.

4. ELIMINATION OF SINGULARITIES 
IN THE AMPLITUDE 

OF ELASTIC TWO-PHOTON TRANSITIONS

Elastic two-photon transitions in the continuous
spectrum require special analysis in view of the conver-
gence of the radial MEs of dipole transitions between
the states of the continuum with identical energies even
in the single-photon case. The situation in two-photon
transitions is analogous: it can be seen from expres-

sions (42) and (43) that all MEs  diverge for
E '  E (p'  p). The reason for the divergence can
be easily grasped if we consider the asymptotic form of
the radial Coulomb Green function integrated with the
wave function of the continuum:

where A, C1, and C2 are constants. The presence of the
second term oscillating with the same frequency as the
wave function REl(r) in the asymptotic form is respon-

sible for the divergence of  for E '  E
both in the case of the Coulomb potential and for Z = 0.
Since the cross sections of elastic processes are finite,

the singularities in  must be compensated in the
calculation of the limit E '  E in the sum

(45)

defining the total amplitude f2 of the transition in rela-
tion (12). The first term in expression (45) corre-
sponds to the absorption of a photon followed by its
emission (see Fig. 1a), while the second term corre-
sponds to the reverse process (see Fig. 1b). The quan-
tities ω and ω' in sum (45) are connected through the rela-
tion ω – ω' = E' – E.

It follows from expression (19) for M(e*, e, %) that
the polarization-angular parameter Q4 reverses its sign
upon the transposition of e and e*, while the signs of
the remaining Qi remain unchanged. It follows hence

Ml'  l
L

r'd r'2gL %; r r',( )
r'd

d A
r'
---+ 

  REl r'( ) C1rZν 1– e r/ν–

0

∞

∫ r → ∞

+
C2

r
------ pr

Z
p
--- 2 pr( )ln

π
2
---l– δl p( )+ + 

  ,cos

Ml'  l
L

E' E %, ,( )

Ml'  l
L

M e∗ e E ω+, ,( ) M e e∗ E ω'–, ,( ),+
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that singularities for E '  E must be compensated in
the combinations of MEs,

(46)

(47)

through which we can express the parameters  of
elastic transition in formula (34):

(48)

where

In order to verify the compensation of the diver-
gences and to find the limits of expressions (46) and
(47), we must explicitly separate the diverging and

finite parts of the ME . We will illustrate the corre-
sponding results using analytic expressions (38)–(40)
for the Coulomb potential. This can easily be done for
the integrated terms through the known asymptotic
expansion of function 2F1 in inverse powers of argu-
ment [56]. The separation of singularities from Jm'm in
expressions (38)–(40) requires more complex transfor-
mations. It should be noted above all (see Eq. (43)) that
integrals J00 and J11 are finite for E' = E, while J01 and
J10 diverge as ln(E ' – E). The presence of the logarith-
mic singularity alone allows us to set E' = E in the coef-
ficients of the integrated terms in expressions (38)–(40)

Sl'  l
L Ml'  l
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E' E→
lim=

+ Ml'  l
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Qi
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1
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+( ) Pl
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--------------6l l
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+ Pl
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∞

∑=

+ 2
1
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-------------6l l
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  x
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∞

∑

+
1
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l 6l 1 l 1–+
l

+( ) Pl
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el 1

3
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∞
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L
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everywhere except in factors A and B. Using the tech-
nique for separating singularities described in [13], we
can present the diagonal MEs in the form

(49)

(50)

where K is the regular part of the sum J01 + J10,

(51)

and ψ(x) = (d/dx)lnΓ(x) is the psi function. Integrals
Jmm in expressions (49) and (50) are defined by for-
mula (43) with p' = p. In this case,

(52)
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Ml l
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--------------–
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+
ia
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----------------------------CEl
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K
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0
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 
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Considering that E – % = –ω for the diagram presented
in Fig. 1a and E – % = ω' for the diagram in Fig. 1b and
that the singular terms in expressions (49) and (50) are
identical and independent of l, we can easily see that the
divergences in the calculation of Rl(%) in expression (47)

and in the diagonal elements  in expression (46) are
compensated and the final results obviously follow
from expressions (49) and (50).

The nondiagonal MEs contain, in addition to the
logarithmic singularity, a power singularity; conse-
quently, their singular part has the form

(53)

When we evaluate the limit E '  E in sum (46) with
l ' = l + 2, the terms with the logarithmic singularities
vanish, while the terms with the power singularities
make a finite contribution. As a result, the final expres-

sion for  assumes the form

(54)

The functions 2F1 in the integrands of the integrals Jmm'

and K appearing in expressions (49), (50), and (54)
have a branching point for λ = 1, lying on the integra-
tion contour. The choice of the required analytic branch
is determined by the imaginary correction in expres-
sion (52) for A. Expressions (49), (50), and (54) com-
pletely determine the amplitude f2 in expression (12)
and the cross section (34) of elastic two-photon transi-
tion in the Coulomb field.

5. ASYMPTOTIC ANALYSIS 
OF THE AMPLITUDES OF INELASTIC 

TWO-PHOTON TRANSITIONS
The partial-wave approach leads to expressions for

parameters Qi(p, p', θ) only in the form of series in Leg-
endre polynomials, and the radial MEs appearing in
these series can be calculated analytically only in the
Coulomb case. Nevertheless, we can derive quite sim-
ple closed expressions for Qi and transition amplitudes

Sl l
L

Ml 2 l+
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a
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  p
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+ C E l,( )
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-----------------+ 

  p p'–
2 p

------------- 
 

2

.ln

Sl 2 l+
l 1+

Sl 2 l+
l 1+ Zp 1 2ia+( )

π l 1 ia–+ l 2 ia+ +
----------------------------------------------------- 1

ω2
------=

+
Z222l 2+ p2l
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-------------------------------------------------------
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in potential U(r) of the general form for the number of
limiting ranges of the parameters of the problem, which
will be considered below.

5.1. Low-Frequency Limit (ω/p2 ! 1)

Let us first consider first-order MEs dl ' l(E ', E) (37).
Since the oscillation frequencies of the wave functions
of the initial and final states become close for E '  E,
the radial integral in formula (37) diverges at infinity.
Replacing the wave functions by their asymptotic
expressions for r  ∞,

(55)

and retaining in expression (37) only the principal
terms in 1/r, we obtain

(56)

where ∆l ' l(E) = δl(p) – δl '(p) – (π/2)(l – l '). The presence
of the δ function in the MEs of the free–free transitions
and the method of determining of their asymptotic form
are well known (see Section 21 in [57]). In real single-
photon transitions between the states of the continuum
(with E ' ≠ E), the singular term is omitted; however, in
compound MEs, integration is carried out with respect
to the energies of virtual states and the δ term in dl ' l
plays a significant role. The problems associated with
its inclusion in numerical and analytic calculations
have been repeatedly discussed in the literature [14,
58−62].

Let us now consider the low-frequency limit of the

second-order MEs  with % = E ± ω and
E ' = % ± ω'. Using the spectral expansion for the Green

function in relations (21), we can represent  in the
form

(57)

where summation is carried out over the states of the
discrete spectrum, while integration is carried out over
the states of the continuous spectrum of the Hamilto-
nian with potential U(r). In the low-frequency range,
the two terms in Eq. (57) have different values; we can
easily verify that the sum over the discrete spectrum
gives a finite result for ω, ω'  0, while the integral is
of the order of 1/ωω' in accordance with the general
nature of the frequency dependence of the amplitude of

REl
2 p
π

------ pr
1
2
---πl δl p( )+– 

  ,sin

dl'  l
p
π
---Re

i∆l'  l E( )–( )exp
E' E– i0+

----------------------------------- 
 –=

=  p ∆l'  l E( )δ E ' E–( )sin
p
π
---

∆l'  l E( )cos
E' E–

------------------------,+

Ml'  l
L E' E %, ,( )

Ml'  l
L

Ml'  l
L E ' E %, ,( )

dl'  L E' En,( )dL l En E,( )

En %–
---------------------------------------------------

n

∑–=

– e
dl'  L E ' e,( )dL l e E,( )

e % i0––
---------------------------------------------,d∫
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scattering accompanied by the emission of soft photons
[3]. It turns out that the main contribution to the integral
in expression (57), leading to the above-mentioned sin-
gularity for ω, ω'  0, is associated with δ-shaped
terms in the integrand function, whose presence follows
from relation (56) and from the well-known relation

(58)

Omitting the sum over the discrete spectrum in expres-
sion (57) and taking into account only the contribution
from the points e = E, E ', % in the integral, we obtain

the following intermediate expression for :

(59)

Replacing the MEs (E2, E1) by their limiting
expressions for E2  E1 (second term in Eq. (56)) and
retaining only the principal term in the asymptotic form
for ω, ω'  0, we obtain

(60)

In the low-frequency limit, we cannot only simplify
partial MEs, but also sum the series in relations (20) in
the general form for parameters Qi. Let us consider for
definiteness the process of induced 2BrS: e1 = e2 = e*,
% = E – ω, E ' = E – 2ω. Then relation (60) leads to the

following expressions for :

(61)

Substituting expressions (61) into (20) and using the
recurrence relation for the derivatives of the Legendre
polynomial [56], we present parameter Q1 in the form

1
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Taking now into account the well-known relation for the
amplitude f0 of elastic scattering in the field U(r) [57],

(62)

we express Q1 in terms of f0:

Similarly, we can express the remaining parameters
Qi in relations (20) in terms of f0 with the help of appro-

priate recurrence relations for  and find that

As a result, we obtain the following expression for the
2BrS amplitude M(e*, e*, E – ω) in expression (19),

(63)

and the low-frequency asymptotic form of the cross
section (see Eq. (9)) has the form

(64)

The same result follows from the Kroll–Watson for-
mula (expression (6) with dσB  dσ0 = | f0 |2dΩ) if we
pass to a low field strength F in it.

Let us write for reference the low-frequency asymp-
totic expressions for 2BrS partial MEs (61) in the Cou-
lomb field. In this case,

(65)

so that we obtain from relations (61)

(66)

We considered above the arbitrary potential U(r)
(the general method of estimating ME in the low-fre-
quency region was used earlier [62]); however, the
behavior of Coulomb amplitudes in the low-frequency
range can also be analyzed proceeding from exact
expressions derived in Section 3. Expanding the func-

tions 2F1 in the expression for  in inverse powers of
the argument and retaining the principal term in 1/ω, we
arrive at results exactly coinciding with relations (66).
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It turns out that the contribution to the main term of the
asymptotic form comes only from the integrated terms.
Formula (59), taking into account the contribution from
the δ-type singularities in the compound ME only and
appearing in our calculations as an intermediate expres-
sion, was derived in an analogous way by Korol [14]
and was used for approximate evaluation of Coulomb
amplitudes in the entire range of variables. A compari-
son with the available data from the literature [11, 12]
shows that formula (59), which is simple for calcula-
tions, successfully reproduces the results of exact cal-
culations of the spontaneous 2BrS cross section. The
existence of exact analytic expressions for Coulomb
amplitudes makes it possible to establish the source of
such good agreement. Comparing relation (59) with
(38)–(40) and taking into account relations (65), we can
easily verify that the real part in Korol’s formula (59)
exactly coincides with the real part of the integrated

terms in . At the same time, the imaginary part in
relation (59) is exact. Thus, formula (59) disregards
only the real part of the integral terms in (38)–(40). It
was mentioned above that the integrated terms make
the main contribution to the amplitude in the Born and
low-frequency region. The first term in the asymptotic

form of the integral part of  in the Born region, as
well as in the low-frequency range, turns out to be
purely imaginary so that correction appears in formula
(59) only in the next order and has the relative value

(67)

where C and C ' are constants. This estimate determines
the accuracy of approximation of formula (59) for the
Coulomb field.

It should be noted that the low-frequency Kroll–
Watson approximation is inapplicable for small scatter-
ing angles, when the inclusion of only the principal
term of expression (60) of the asymptotic form of the

ME  for ω, ω'  0 is insufficient for estimating
amplitudes Qi. Since the estimation of corrections to
expression (60) for the field U(r) of the general form is
complicated, we will illustrate this statement for the
Coulomb scattering. In this case, the low-frequency
asymptotic form (64) is given by

(68)

where

Corrections of the next order in frequency are cumber-
some and can be obtained from the exact formulas
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obtained in Section 3. In particular, in the next order in
ω, there appears the CD term

(69)

where

and b = b(a) is a smooth function of the momentum p.
Obviously, the condition of applicability of the Kroll–
Watson approximation is the fulfillment of the ine-
quality

(70)

Since |e · (n – n')|2 ~ θ2 and |n × n'| ~ θ for θ  0, con-
dition (70) is obviously violated for small scattering
angles (the fulfillment of this condition naturally
depends also on the azimuth angle). It should be noted
that, since correction (69) depends on ξ, dichroism
effects are significant in the 2BrS cross section even
for small values of the ratio ω/p2 in this range of
angles (although the CD effect obviously vanishes for
θ = 0).

5.2. High-Frequency Limit (Z/p ! 1, ω/E ' @ 1, 
ω/E ~ 1) and Born Approximation

Let a fast electron lose a considerable part of its
energy during induced 2BrS so that the final state is not
of the Born type. In this case, the replacement of the
wave function of the initial state by the function of free
motion,

(71)

leads to the following results of the action of operators D
on the wave function:

(72)

Substituting now Green’s function for a free electron
for Green’s function gL in relations (36) and using rela-

tions (72), we reduce  to the form

(73)

1

4π2
-------- F

2ω
------- 

 
4 p'

p
----∆CD

=  B
2aω

p2
---------- y b+ln( )ξ k n n'×[ ]⋅( ) e n n'–( )⋅ 2,

y
4 p p'

p p'–( )2
-------------------- θ

2
---sin

2
=

aω
p2
------- k n n'×[ ]⋅( )  ! e n n'–( )⋅ 2.

REl r( ) REl
0( ) r( ), REl

0( ) 2 p
π

------ jl pr( ),=

D l 1+ l,( )REl
0( ) pREl 1+

0( ) ,–=

D l 1+ l 2+,( )REl 2+
0( ) pREl 1+

0( ) .=
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Evaluating the overlap integral  [63] and
proceeding to the limit E  ∞, we obtain

(74)

Comparing relations (72) with (A.1) and (A.2), we can
easily establish that expression (74) in the Coulomb
case corresponds to the inclusion in relations (38)–(40)
of only the integrated term with dl ' l + 1 in which the
wave function of the initial state is replaced by . A

more detailed analysis of expressions (38)–(40) in the
high-frequency range shows that the term with dl ' l + 1

makes the main contribution to the asymptotic form of

 only for L = l ' + 1, while all the terms with 

and  (including the real part of the integral
terms) are of the same order of magnitude for L = l ' – 1.
Thus, expression (74) is a correct high-frequency

asymptotic form for the MEs  and  and dif-

fers from the correct result for  and  in
the coefficient of p–l' – 7/2.

It is interesting to note that an analogous situation
also emerges in an analysis of single-photon transi-
tions: substitution (71) in the MEs of photoionization,

, (75)

leads to a correct asymptotic form of MEs with lf =
li + 1 and gives an erroneous factor in the energy
dependence for lf = li – 1 (this fact is mentioned in the
monograph [55], although its origin is not discussed).
In order to clarify the reason for such results, we con-
sider the formation of the high-frequency asymptotic
form of the photoionization MEs in the Born approx-
imation:

(76)

The integral in this relation contains the rapidly oscil-
lating (for Ef  ∞) spherical Bessel function ;

consequently, the main contribution comes from the

neighborhood of point r = 0. Since  ~  for

small r, it follows from expression (76) that

(77)
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Using the well-known formula [63], we obtain the fol-
lowing expression for an integral of the form (77):

(78)

For l1 = l + 1 and l2 = l – 1, the gamma function in the
denominator of this expression becomes infinitely
large; consequently, the principal term in the expansion
of  in r does not contribute to the asymptotic form.
In order to evaluate the first nonvanishing term of the
high-frequency asymptotic form of dl – 1 l(Ef, ), we

must not only continue the expansion of  in r, but
also take into account the next terms in the expansion
of the wave function REl in 1/E, i.e., the correction to

 in expressions (71), as well as the Coulomb cor-
rection to Green’s function of a free electron for the
second-order MEs. We omit here these calculations and
only note that the main contribution to the asymptotic
form of the total ME M(e*, e*, E – ω) in relation (7)
comes from the partial amplitudes with l' = 0, whose
high-frequency asymptotic form is given by formu-
la (74) (it should be recalled that all partial ampli-
tudes in the low-frequency region had the same order
of magnitude in ω).

In the Coulomb case, taking into account in rela-
tions (20) only the terms with l' = 0, which appear only
in Q1 and Q5,

(79)

we arrive at the following expression for the total
amplitude:

(80)

It should be noted that the quantitative agreement
between the asymptotic and exact results is improved
significantly if we calculate the asymptotic form retain-

ing the exact normalization factor CEl in , which

corresponds to the substitution   CEl/l! in
relations (71).

Since the high-frequency asymptotic form of 

and  is determined by the integrated terms (see
above), formula (59), taking into account these terms,
exactly gives the correct limit (74) for these MEs in this
region also. On the contrary, the high-frequency limit of

r
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0

∞

∫

=  
Γ

l2 l1 1+ +
2

----------------------- 
 

Γ
l2 l1– 2+

2
---------------------- 

 
--------------------------------2

l1 1/2–
2E( )

2l1 1+( )/4–
.

Rnil

Eni

Rnili

REl
0( )

Q1 3Q5 25πZeπa' /2Γ 1 ia'–( )p 4– ,= =

M e∗ e∗ E ω–, ,( )

=  25πZeπa' /2Γ 1 ia'–( )p 4– e∗ n⋅( )
2
.

Ml'  l
L

2 p/π

Ml l
l 1+

Ml l 2+
l 1+
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
formula (59) for  and  coincides with
relation (74) and differs from the correct result.

If an electron remains fast in the final state also (a' =
Z/p' ! 1), we can apply the Born approximation.
According to the results obtained by Bunkin and
Fedorov [25] (see Eq. (6)), the induced 2BrS cross sec-
tion in the Coulomb field in this case has the elementary
form

(81)

This result can also be obtained directly from the exact
results of partial-wave analysis. In the low-frequency
region ω ! p2 (although the frequency in this case may
be significant as compared to the binding energy, ω ~ 1),
the partial Born series can be reduced to low-frequency
series in which we must assume that a  0 (see Sub-
section 5.1). For an arbitrary ω, partial Coulomb MEs

 are also simplified significantly in the Born
region: first, the terms containing integrals in relations
(38)–(40) are small for a, a' ! 1 since these terms con-
tain an extra factor Z/p; second, the parameters of func-
tions 2F1 become integral so that these function can be
reduced to elementary functions. For example, the

expression for  in the Born limit assumes the form

where λ0 = –4pp'/(p – p')2. Moreover, assuming that a =
a' = 0 in the integrand in formulas (38)–(40), we can
calculate the second Born correction from the inte-
grated terms in radial MEs in elementary form as well.
However, the explicit expressions of these integrals and
of functions 2F1 with integral parameters in terms of
elementary (power and logarithmic) functions turn out
to be cumbersome and become more and more involved
with increasing l, which complicates the summation of
partial series in l in formulas (20). In the first Born
approximation, such a summation can be carried out by
using the expansion (see formulas (5.17.26) and
(5.17.32) in [50])

Ml 2+  l 1+
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Fig. 3. Frequency dependences of the matrix elements of 2BrS for the initial electron energy E = 0.1 (a, b) and 1.0 (c, d). Solid
curves correspond to ReM, dot-and-dash curves to ImM, and rhombs to ReM in approximation (59).
Using the recurrence relations for functions 2F1 and
Legendre polynomials, we can verify that the summa-
tion of partial series for the amplitude in the Born limit
results in expression (81).

6. NUMERICAL RESULTS FOR THE COULOMB 
POTENTIAL AND DISCUSSION

6.1. Frequency and Energy Dependences 
of Radial Matrix Elements

Since the cross sections of two-photon bremsstrahl-
ung processes remain multiparametric functions even
for fixed experimental geometry and photon polariza-
tion, it would be interesting to analyze qualitatively the

dependence of MEs (E ', E, %) on the frequency of
photons and on the electron energy for various values

al p p',( )
l! p p'( )l

1/2( )l p p'–( )2l 2+
------------------------------------------=

× F2 1 l 1+ l 1+ 2l 2; 4 p p'

p p'–( )2
--------------------–+, , 

  .

Ml'  l
L
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the orbital angular momenta l, L, and l'. The existence
of exact formulas (38)–(40) for the Coulomb potential
makes it possible to obtain quantitative results for MEs
and cross sections in a wide range of these parameters
since the problem is reduced to the evaluation of func-
tions 2F1 and their integrals, which can easily be carried
out using standard computer programs. It was shown in
[64] that single-photon Coulomb MEs dl ' l(E ', E) are
positive monotonic functions of energy, which decrease
monotonically with increasing E', say, for a fixed E and
E' > E and diverge for E '  E (in the presence of a
non-Coulomb part in potential U(r), the MEs may
change their sign in a certain energy range depending
on the value of the non-Coulomb correction to scatter-
ing phases [65]). In the two-photon case, the situation
is complicated significantly due to the presence of an
additional parameter, viz., the photon frequency ω (or
the energy of an electron % = E ± ω in the virtual state),

and in view of the complex nature of the MEs 
(these matrix elements are real-valued only for % < 0,
which corresponds to the re-emission of a photon with
ω > E in the course of elastic scattering (see Fig. 1b)).

Ml'  l
L
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Fig. 4. The same as in Fig. 3 for the matrix elements of double bremsstrahlung absorption.
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Since the imaginary parts of the MEs  can be
reduced to the simple product of single-photon MEs
(see formula (59)), it becomes especially interesting to
establish the range of the parameters, in which the
imaginary part makes a dominating contribution to
two-photon MEs in view of the obvious radical simpli-
fication of the results.

It was mentioned above that, for a fixed l, the contri-
bution to two-photon cross sections comes from two

“diagonal” (  and ) and two “nondiago-

nal” (  and ) radial MEs. According to the
results of calculations made in a wide range of E, ω, and
l, all these elements exhibit quite a universal behavior.
The real and imaginary parts of all radial MEs (except

Re ) are negative and decrease monotonically in
absolute value with increasing frequency without
reversing their signs (the imaginary part decreases at a

higher rate than the real part). The signs of Re  and

Im  are preserved upon a change in l. The absolute

values of Re  and Im  for a given initial energy

Ml'  l
L

Ml l
l 1+ Ml 1+  l 1+

l

Ml  l 2+ 
l
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l 1+

Ml l
l 1+
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L
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L

Ml'  l
L Ml'  l

L
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(outside the low-frequency region) decrease with
increasing l (the imaginary part decreases at a higher
rate than the real part in this case also), the rate of their
decrease with increasing frequency increasing with l.
Figure 3 illustrates some examples of numerical calcu-
lations of the frequency dependence of radial MEs with
l = 0 and 5 for induced 2BrS (% = E – ω, E ' = E – 2ω)
for small (E = 0.1) and intermediate (E = 1.0) values of
the initial energy E. It should be noted that all MEs
assume finite values at the threshold frequency ω = E/2
(E' = 0).

Figure 4 shows the frequency dependence of radial
MEs of double bremsstrahlung absorption (% = E + ω,
E ' = E + 2ω) for the same values of E and l as in the case
of 2BrS (see Fig. 3). It can be seen that the behavior of

 for emission and absorption processes is qualita-

tively the same (monotonic decrease of Re  and

Im  upon an increase in ω and angular momentum
l preserving fixed sign, and the rapid decrease in the
imaginary part). The only difference is that there is no
threshold limitation on frequency in the case of
bremsstrahlung absorption, and the MEs decrease upon

Ml'  l
L

Ml'  l
L

Ml'  l
L
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an increase in ω, tending to an asymptotic form of type
(74) (in a very far frequency range). For a given fre-
quency ω, the “diagonal” MEs for absorption are con-
siderably larger than the corresponding MEs for 2BrS,

and  > . An interesting correspon-
dence is observed between the numerical values of
“nondiagonal” MEs for emission and absorption:

In particular, the MEs in which the change in energy
and in the orbital angular momentum occurs “in the
same direction” have the largest magnitude in both
cases in the major part of the frequency range. This cor-
responds to the well-known Bethe rule for single-pho-
ton transitions in a discrete spectrum [55]. However, for
two-photon transitions in the continuous spectrum, this
rule turns out to be not very stringent; it is violated in
the low-frequency range, this region expanding with
increasing angular momentum l.

The existence of exact results makes it possible to
verify the correctness of approximations used for calcu-

lating (E ', %, E). The simplest among them is the
“pole” approximation, which consists in the inclusion

of only the imaginary part of in relation (57) (orig-
inating from the term with the δ function in Eq. (58)).
In the conditions of applicability of perturbation theory
in the wave field, the model of “significant states” [66,
67] in the theory of multiphoton transitions in a strong
field can also be reduced to this approximation.
Asymptotic estimates (66) and numerical calculations
show that the imaginary part dominates in the low-fre-
quency range for low initial electron energies (the accu-
racy of the pole approximation for “nondiagonal” MEs
in this case is much higher than for “diagonal” MEs). In
the pole approximation, a two-photon transition can be
regarded as a “cascade” transition, i.e., a transition
occurring only via an intermediate state of the contin-
uum with energy %, which corresponds to the factoriza-
tion of the process amplitude:

As the frequency and/or the electron energy increases,
the contribution of the omitted real part of MEs
increases. In the high-frequency region (a ! 1, ω/E' @ 1,
ω/E ~ 1 for emission and a' ! 1, ω/E ' ~ 1, ω/E @ 1 for

absorption), the real part of  becomes dominat-
ing, while the imaginary part has a relative smallness

of the order of 1/ . In the intermediate frequency

range ω ~ E, the quantities Re  and Im  are of
the same order of magnitude so that transitions through
various intermediate states corresponding to the real

part of  become as significant as “cascade” transi-
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tions. By way of an example, we give below a number

of MEs (E + 2ω, E + ω, E) for the energy E =
0.0536 = 1.458 eV and ω = 0.0735 = 2.0 eV, which
appear when we estimate the contribution of correc-
tions to the photoionization cross section of the state of
a hydrogen atom with n = 5, l = 4, which are quadratic
in intensity and associated with virtual transitions in the
continuum [68] (the results are given for the dipole
interaction operator in the “form of length,” which was
used in [68]):

It can be seen that, in the case under investigation, the
pole approximation (as well as the Bethe rule) is inap-
plicable; this situation is typical of “superthreshold”
multiphoton processes, when the photon frequencies
are comparable to the electron energy in the continuum.
It should also be borne in mind that individual radial
MEs in the total amplitude of the process “interfere”
considerably (cancelled out) as a rule; this renders the
requirements to their accuracy much more stringent.

Approximation (59) (1-delta approximation [14])
takes into account exactly the real part of the integrated
terms in relations (38)–(40) along with the imaginary

part of . It was established in Section 5 that this
leads to correct results in the low-frequency range (for
any values of the initial electron energy) in the Born
region and gives a quite accurate result for two out of

four MEs  (those whose final state has the smallest
possible orbital angular momentum, see Subsection 5.2)
as well as the correct form of the frequency dependence
and the order of magnitude of the remaining two MEs
in the high-frequency region. Consequently, this
approximation is in good agreement with exact results
practically for all values of the laser field frequency and
electron energy (see Figs. 3 and 4). A noticeable dis-
crepancy is observed only for small energies and for
small values of momentum l (the largest discrepancy is
observed for the MEs in which the integrated terms do
not provide a correct high-frequency asymptotic form).
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6.2. Angular Distributions and Dichroism
in Induced Bremssrahlung Processes

It was established in Subsection 2.3 that angular dis-
tributions depend considerably not only on the initial
electron energy E and frequency ω, but also on the
polarization of photons. Figure 5 shows qualitative fea-
tures of the spatial distribution of electrons scattered by
a Coulomb center in the presence of a circularly polar-
ized wave with ξ = ±1 in the case of induced 2BrS for
two frequency values of ω = 0.01 and 0.1, In accor-
dance with the geometry presented in Fig. 2, the direc-
tion k of the light beam is chosen to be orthogonal to
the initial momentum p = pn of electrons with energy
E = p2/2 = 1.0 au. Figure 5 clearly demonstrates the
presence of CD: cross sections dσ/dΩ for ξ = +1 and
ξ = −1 differ considerably (at the same time, they are
transformed into each other upon reflection relative to
the xz plane; see Subsection 2.3). The CD effect
decreases with frequency since the low-frequency
asymptotic form (68) contains only the “regular” term.
However, in the range of small scattering angles, the
values of dσ/dΩ for ξ = ±1 differ significantly even for
ω/E = 0.01 (see Figs. 5a and 5b and discussion in Sub-
section 5.1). As the value of θ decreases further, the
value of ∆CD again becomes smaller than freg, which is
also confirmed by numerical calculations: it can be seen
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x

(c) z
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Fig. 5. Spatial distribution of electrons in 2BrS, which are
scattered (with initial energy E = 1.0) by a Coulomb center
in the presence of a circularly polarized wave with fre-
quency ω = 0.01 (a, b) and ω = 0.1 (c, d) for ξ = 1 (a, c) and
ξ = –1 (b, d). The initial electron momentum lies in the
polarization plane (yz plane).
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from Fig. 5 that the values of dσ/dΩ for ξ = +1 and −1
coincide for θ = 0.

In a field with elliptic polarization, the asymmetry in
the angular distribution is caused, apart from CD, by
the effect of ED (the term with ∆ED in relation (24)). In
this case, the cross section depends to a considerable
extent on the orientation of the polarization ellipse,
which is defined in Fig. 2 by the angle α between vector
eeee and the y axis. Figure 6 shows the angular distribution
of electrons for the same values of E and ω as in

Figs. 5c and 5d, but for ξ = ±1/  and for two values
of angle α: α = π/2 (eeee || p) and α = π/4 (vector p forms
the angle π/4 with the principal axis of the polarization
ellipse). Figures 6c and 6d visually illustrate the reduc-
tion of symmetry upon a transition from the circular to
elliptical polarization, which was considered in Sub-
section 2.3: for α = π/4, the results obtained for ξ =

1/  and ξ = –1/  differ qualitatively, although the
yz plane remains the symmetry plane as before. It
should be noted that although the term ∆ED in general for-
mula (24) has no smallness parameter, numerical calcula-
tions show, however, that the effect of elliptical dichroism
on the asymmetry of angular distributions is considerably
weaker than the effect of circular dichroism.

By way of illustration of the absolute value of two-
photon cross sections and their dependences on elliptic-
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Fig. 6. The same as in Fig. 5, but in the field with elliptical

polarization and frequency ω = 0.1: (a) α = π/2. ξ = 1/ ;

(b) α = π/2, ξ = –1/ ; (c) α = π/4, ξ = 1/ ; (d) α = π/4,

ξ = –1/ .
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Fig. 7. Dependence of the 2BrS cross section for electrons with E = 1.0 and ω = 0.1 on the scattering angle θ in the polarization

ellipse plane: ξ = –1 (1), –1/  (2), 0 (3), 1/  (4), and 1 (5). The values of angles α and ϕ in the geometry of Fig. 2 are given in
the figures.
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ity, Fig. 7 shows the angular distributions in angle θ
between p and p' (in the plane of polarization ellipse)
for induced 2BrS for E = 1.0, ω/E = 0.1, and for various
values of ξ (the curves for double bremsstrahlung
absorption have an analogous form with the substitu-
tion ξ  –ξ). The results are given for α = π/2 and
α = π/4. In the former case (α = π/2), for θ = π, the
cross sections are exactly identical for ξ = ±1 due to the
absence of CD for backward scattering. At the same
time, the cross sections virtually coincide in the case of

elliptic polarization with ξ = ±1/  also in view of the
smallness of ∆ED as compared to the regular term freg in
Eq. (24) for θ = π. In the latter case (α = π/4), four

curves (with ξ = ±1 and ξ = ±1/ ) converge at one
point for θ = π since the regular term freg for these values
of angles α, θ, and ϕ is independent of polarization to a
high degree of accuracy (>95%) and makes a dominat-
ing contribution to the cross section. It can be seen that
the polarization sign reversal in the range of small
angles changes the cross section by almost an order of
magnitude. A considerable dependence of the results on
the orientation of vector p relative to the principal axis
of the polarization ellipse and the absence of symmetry
dσ(ξ; ϕ) = dσ(–ξ; –ϕ) for α = π/4 are also worth noting.

2

2
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The dependence of the two-photon absorption cross
section on energy E for the same values of ξ and ω as
in Fig. 7 is shown in Fig. 8 for two values of angle θ and
orientation of p at right angles to the principal polariza-
tion axis (α = 0). Dichroism effects are most significant
for ω ~ E, the energy dependence in this region chang-
ing qualitatively upon a variation of θ.

Double bremsstrahlung absorption differs from
2BrS in the existence of the “critical” scattering geom-
etry, in which the transferred momentum ∆p = p – p'
turns out to be orthogonal to the polarization plane so
that e · ∆p = 0. In this case, the Born approximation (81)
and the low-frequency asymptotic form (64) give zero
value for the cross section, for which the value of
dσ/dΩ is finite when the scattering potential is accu-
rately taken into account. Figure 9 shows the depen-
dence of the double bremsstrahlung absorption cross
section on angle ϕ (see Fig. 2) in the “critical” region.
For energy E = 1.0 and ω = 1/6 (Fig. 9a), the Bunkin–
Fedorov formula (81) describes the cross section quite
satisfactorily (although the Born parameters are not
very small in this region: α ≈ 0.7 and α' ≈ 0.6) except in
the small angular region near the “critical” point θ =
π/6, ϕ = 0 at which the Born results vanishes, and the
exact cross section has a clearly manifested minimum.
AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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waves with frequency ω = 0.1, The momentum of a scattered electron lies in the polarization plane; ϕ = π/2. The quantities dσ(n)/dΩ
with n = –1, –2 and n = +1, +2 correspond to (a) emission and (b) absorption of one or two photons. The insets show the cross section
dσ(R)/dΩ of Rutherford scattering in zero field.
At the same time, the low-frequency asymptotic form
(64) for E = 0.1 and ω = 1/60 (Fig. 9b) leads to a much
worse quantitative agreement with exact results.
Another region of “critical” parameters, in which the
low-frequency Kroll–Watson asymptotic form leads to
a strong discrepancy with experimental values and
which has been discussed actively during recent years
(see references in [32]) is the low-energy scattering
(with energy E on the order of several electronvolts) via
small angles in a linearly polarized field with the initial
momentum p along the direction of polarization.
Figure 10 shows the double bremsstrahlung absorption
cross sections for E = 0.1 and ω/E = 0.01 and 0.05 in
this geometry. It can be seen that the difference between
exact and approximate results for small angles can be as
large as five to six orders of magnitude, although an
increase in θ leads to nearly complete agreement (the

dσ
(R

) /d
Ω

, F
–

2 dσ
(–
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/d

Ω
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–
4 dσ

(–
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/d
Ω 1014

1010
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ω, au

dσ(R)/dΩ

dσ(–1)/dΩ

dσ(–2)/dΩ α = π/2

Fig. 12. Frequency dependence of the single-photon (dσ(–1)/dΩ)
and double bremsstrahlung (dσ(–2)/dΩ) emission of elec-
trons with energy E = 1.0 by a Coulomb center in the field
of a circularly polarized wave with ξ = 1 in the geometry of
Fig. 2 with θ = ϕ = π/2; dσ(R)/dΩ is the Rutherford scatter-
ing cross section.
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results for 2BrS are qualitatively the same as in Fig. 10,
but the difference for small angles θ in this case does
not exceed one or two orders of magnitude). Thus, the
problem of simple approximations of bremsstrahlung
cross sections for describing small-angle scattering at
low energies (when the Born approximation is inappli-
cable) requires special analysis.

Figure 11 illustrates the relation between the cross
sections of one- and two-photon scattering as functions
of the laser radiation parameters and scattering angle.
The cross sections of conventional Rutherford scatter-
ing (dσ(R)/dΩ) and one- and two-photon absorptions
(dσ(n)/dΩ with n = ±1, ±2) are given as functions of
angle θ in the polarization plane (analytic expressions
for factors Q in the amplitude of single-photon pro-
cesses (3) and (4) are given in [4] for the Coulomb
potential). It can be seen that the cross sections
(dσ(n)/dΩ are more sensitive to a change in the elliptic-
ity for angles θ < π/2; in both cases, for small angles,
the cross sections have maximal values for circular
polarization, while scattering via angles θ > π/2 is more
effective in a field with linear polarization. In contrast
to the sharp angular dependence of the Rutherford cross
section dσ(R)/dΩ for small angles θ, the cross sections
of bremsstrahlung processes depend on θ more
smoothly, although single-photon cross sections also
increase by more than two orders of magnitude for
small angles, while two-photon processes exhibit a
nonmonotonic dependence. Dichroism effects are the
most significant for small angles, although the differ-
ence in the cross sections for scattering at right angles
attains 100% upon the sign reversal of ξ. For a fixed initial
electron energy, the absolute value of bremsstrahlung
cross sections increases sharply with decreasing fre-
quency (Fig. 12); in this case, the frequency dependences
are successfully approximated by the expression

dσ n±( ) ω( )/dΩ 1/ω4n.∼
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It should be noted in conclusion that the above
results make it possible to qualitatively estimate the
limits of applicability of perturbation theory in the laser
field for describing bremsstrahlung processes. For
example, in the range of small angles, for E ≈ 1 and ω ≈
0.1, a typical ratio of two-photon to one-photon cross
sections amounts to (103–104)F2 and attains unity
(when perturbation theory becomes obviously inapplica-
ble) for an intensity Icr ~ (1012–1013) W/cm2, which is
much smaller than the intraatomic intensity I0 = 3.51 ×
1016 W/cm2. The value of Icr decreases rapidly with fre-
quency (in proportion to ω4) so that the effective parame-
ter of perturbation theory in the optical frequency range is
F/ω2 (or the ratio of the amplitude of classical oscillations
of an electron in a laser field to the Born radius). For small
θ, the ratio dσ(±2)(ω)/dσ(±1) attains unity only in ultrastrong
fields with Icr ~ I0 (see Fig. 11), while the dominating con-
tribution to the cross section of scattering via small angles
in weaker fields comes from single-photon processes.
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APPENDIX A

Using the recurrence relations for the degenerate
hypergeometric function Φ(α, β; x), we can present the
action of the dipole operators (22) on the Coulomb wave
function REl(r) of the continuous spectrum in the form

(A.1)

(A.2)

Since the first terms on the right-hand sides of rela-
tions (A.1) and (A.2) are proportional to REl + 1(r), the

corresponding terms in the MEs  in relations (36)

D l 1+ l,( )REl r( ) p
l 1 ia–+
l 1 ia–+
------------------------REl 1+ r( )–=

–
2ZCEl

2l 3+( )!
--------------------- 2 pr( )l ipr–( )exp

× l 2 ia+ +( )Φ l 3 ia+ + 2l 4; 2ipr+,( )[

+ l 1 ia–+( )Φ l 2 ia+ + 2l 4; 2ipr+,( ) ] ,

D l 1+ l 2+,( )REl 2+ r( ) p
l 2 ia–+
l 2 ia–+
------------------------REl 1+ r( )=

–
2ZCEl 2+

2l 3+( )! l 2 ia–+( )
------------------------------------------------ 2 pr( )l ipr–( )exp

× Φ l 3 ia+ + 2l 4; 2ipr+,( )[
– Φ l 2 ia+ + 2l 4; 2ipr+,( ) ] .

Ml'  l
L
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can be expressed in terms of MEs (37) in accordance
with relations (38)–(40). The values of dl' l can easily be
calculated using relations (A.1) and (A.2), which gives
formulas (41) for dl + 1 l and dl + 1 l + 2, in which the integral

(A.3)

is a tabular integral [56], which can be reduced to the
functions 2F1 (see relation (42)).

The double integral Jm'm in relations (38)–(40) con-
tains the radial Coulomb Green’s function gl(r, r', %):

(A.4)

In order to evaluate this integral, it is convenient to use
the integral representation of gL [69]:

(A.5)

where Ik(t) is a modified Bessel’s functions ν =

1/ . It should be noted that integrals (A.3) and
(A.4) with oscillating functions contain regularizing fac-
tors exp(–εr) with ε  +0. Substituting expression (A.5)
into integral (A.4) and using the integral representation
of the function Φ(α, β, x) [56], we obtain

(A.6)

Im'm E' E,( ) rr2l 3+ –i p' p+( )r εr–[ ]expd

0

∞

∫=

× Φ l 3 m' ia'+–+ 2l 4; 2i p'r+,( )
× Φ l 3 m– ia+ + 2l 4; 2i p'r+,( )

Jm'm r' r r'r( )l 2+ –i p'r' ipr– εr–[ ]expdd

0

∞

∫=

× Φ l 3 m'– ia'+ + 2l 4; 2i p'r+,( )
× gl 1+ % r r', ,( )Φ l 3 m– ia+ + 2l 4; 2ipr+,( ).

gL r r' %, ,( )
2

rr'
---------- td

1 t–
----------t 1/2( )– Zν–

0

1

∫=

× r r'+
ν

------------1 t+
1 t–
-----------– I2L 1+

4 rr't
ν 1 t–( )
------------------- 

  ,exp

2%–

Jm'm E' E %, ,( )

=  
2 2l 3+( )!

Γ l 1 m ia+ + +( )Γ l 3 m– ia–+( )
---------------------------------------------------------------------------------

× t
t–Zν 1/2–

1 t–
----------------- uul m ia+ + 1 u–( )

l 2 m'– ia–+
d

0

1

∫d

0

1

∫

× r'r'l 3/2+ 1
ν
---1 t+

1 t–
----------- i p'+ 

  r'–expd

0

∞

∫

× Φ l 1 m' ia' 2l 4; 2i p'r'+,+ + +( ) rrl 3/2+d

0

∞

∫

× ip
1
ν
---1 t+

1 t–
----------- 2ipu–+ 

  r– I2l 3+
4 rr't
ν 1 t–( )
------------------- 

  .exp
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The special relation between the index of Bessel’s func-
tion Ik, the parameter β in Φ(α, β; x), and the exponents r
and r' in integral (A.6), which was obtained using transfor-
mations (A.1) and (A.2), makes it possible to express the
JOURNAL OF EXPERIMENTAL 
integrals with respect to r and r' in terms of elementary
functions [63]. As a result, the integral with respect to u in
relation (A.6) gives a definition of the hypergeometric
function of two variables (Appel’s function),
F1 l 1 m ia; l 3 m'– ia' l 1 m' ia'; 2l 4; x y,+ + + +,–+ + + +( ),
which can be reduced, for the above values of parame-
ters, to 2F1 in accordance with the well-known reduc-
tion formulas [56], and Jm'm assumes the final form (43).

APPENDIX B

Analytic continuation of formulas (38)–(40) in vari-
ables p and p' to the range of negative energies, p 
iZ/n and p'  iZ/n', makes it possible to obtain the
MEs of two-photon transitions between the states |nl〉
and |n'l'〉  of the discrete spectrum:

(B.1)

As a result of such a substitution for p and p', the param-
eters of the functions 2F1 and the exponents in the
denominator in integral (43) become integral:

Ml'  l
L n' n %, ,( ) n'l' D l' L,( )gL %( )D L l,( ) nl .=
(B.2)Jm'm n' n %, ,( ) td

0

1

∫
tl 1 Zν–+ F2 1 l 1 m' n'–+ + l 1 m n–+ + 2l 4; λ+, ,( )

1 t/y–( )l 1 m n–+ + 1 yt–( )l 1 m' n'–+ + 1 y't–( )2 m'– m– n' n+ +
--------------------------------------------------------------------------------------------------------------------------------,∝
where

The integral in formula (B.2) can be expressed in
terms of the known functions by transforming the inte-
grand with the help of the relation (see formula (2.5.2.12)
in [56])

y
α ν–( ) α' ν+( )
α ν+( ) α' ν–( )

-------------------------------------, y'
α ν–( ) α' ν–( )
α ν+( ) α' ν+( )

-------------------------------------,= =

λ 16αα 'ν2

α 2 ν2–( ) α'2 ν2–( )
--------------------------------------------- t

1 yt–( ) 1 t/y–( )
---------------------------------------,=

α n/Z , α' n'/Z .= =

1 yt–( )n' l– m'– 1– 1 t/y–( )n l– m– 1–

1 y't–( )n n' 2 m– m'–+ +
-------------------------------------------------------------------------------

× F2 1 l 1 m' n'–+ + l 1 m n–+ + 2l 4; λ+, ,( )
where z = –4αν/(α – ν)2, z' = –4α'ν/(α' – ν)2. After this,
the integral in formula (B.2) can be evaluated easily and
has the form identical for formula (13) from [49]. Using
the results obtained in [49], we can write Jm'm in terms
of the hypergeometric polynomials 2F1(–k, b; c; x) and
Appel’s function F1(a; –k, k + 2l + 2; d; x, y) of special
form, which can be expressions through the sum of k +
1 complete functions 2F1 or (in the case of negative inte-
gral a) through the hypergeometric polynomial of two
variables:

(B.3)

where

=  
2l 4+( )k

k!
--------------------- y't( )k F2 1 l 1 m n–+ + k; 2l– 4; z+,( )

k 0=

∞

∑
× F2 1 l 1 m' n'–+ + k; 2l– 4; z'+,( ),

Jm'm 2–2l 4– Γ2 2l 4+( ) αα '( )l 2+=

× gn l– 1– m– n' l– 1– m'–,
l 1+ ν; α α ',( ),
(B.4)

gkk'
l ν; α α ',( ) ν 4ν αα '( )2l 2+

Γ 2l 2+( )
---------------------------------- α ν–( )k

α ν+( )k 2l 2+ +
--------------------------------- α' ν–( )k'

α' ν+( )k' 2l 2+ +
-----------------------------------

F2 1 k l 1 η ; 2l– 2; z+ +,–( )
l 1 η–+

-----------------------------------------------------------------∫=

× F1 l 1 η ; k'– ; k' 2l 2; l 2 η ; y y',–+ + +–+( )

+ Ck
p z–( )

p

p 1=

k

∑ F2 1 –k p l 1 η– p; 2l 2 p; z+ + + +,+( )
2l 2+( )p

----------------------------------------------------------------------------------------------Φp k' l η ; y y',, ,( ) ,
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Φp k' l η ; y y',, ,( )
l 2 η p–+ +( )p 1– 1 y–( )k'

1 y'–( )k' 2l 2+ +
--------------------------------------------------------------–=

× F1 – p 1; –k' k' 2l 2; l 2 η p; 1/ 1 y–( ) 1/ 1 y'–( ),–+ + + +,+( ),
 is the binomial coefficient, and η = Zν.

In order to transform Jm'm to (B.3), (B.4), it is suffi-
cient that only one of the two numbers (n or n') in for-
mula (B.2) be an integer (this number will determine
the upper limit k of the sum over p in formulas (B.4)).
Consequently, the amplitudes of free–bound (but not
free–free) transitions can also be presented in closed

form. Explicit expressions for all (n', n, %) in for-
mula (B.1), which are allowed by the dipole selection

rules, in the form of linear combinations of , as well
as analogous expressions for the MEs of bound–free
transitions (two-photon Gordon’s formula), are given
in [49].
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Abstract—The interaction between a pulsed volume discharge with preionization by ultraviolet radiation from
plasma sheets and a gasdynamic flow with a known density distribution is studied experimentally. The complex
quasi-two-dimensional flow that emerges after the diffraction of a plane shock wave by rectangular obstacles
in the channel is experimentally studied and numerically simulated. The glow intensity fields for an unsteady
gasdynamic flow are imaged for the first time when recording the plasma radiation from a pulsed discharge in
the flow. Since the ionization duration is short (150–200 ns), the gas-flow structure does not change and the flow
does not heat up in the glow time of the discharge plasma in the flow. Our images are compared with the recip-
rocal-density fields of the corresponding two-dimensional gas flow. The effects of gasdynamic structures on the
discharge plasma redistribution in the flow are analyzed. The energy contribution is localized into low-density
zones (vortices, rarefaction waves) and into regions of density jumps and significant density gradients. The dis-
charge current from adjacent regions with low E/N is redistributed into these zones. Breakdown channels are
formed along rarefaction waves, vortices, and discontinuity surfaces between high-electron-density
regions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the interactions between gas dis-
charges of various types and gasdynamic flows have
been studied extensively. The possibility of influencing
the flow around bodies using gas discharges is mainly
discussed. Theoretical [1] and experimental [2–4] data
on the effects of discharges on gasdynamic flows were
obtained. It was shown that a discharge could signifi-
cantly affect the flow parameters, the discontinuity
structure, and the aerodynamic drag of the model. At
the same time, the physical mechanism of the discharge
influence on flows is still of current interest. Since the
ionization of the medium by a discharge is accompa-
nied by a change in the translational flow temperature,
the effects of ionization on discontinuities and on the
flow as a whole are difficult to study experimentally.
Separating out the ionization and thermal components
in the nonequilibrium discharge plasma, analyzing the
space–time parameters of the discharge region, and
predicting their influence on gasdynamic structures are
complex problems that require special studies. It is of
considerable interest to investigate the interaction of a
discharge with a gas flow when the flow is not heated
by the discharge. Such conditions are provided by the
pulsed volume ionization of a flow segment during a
time in which the translational gas temperature does not
change. It was suggested that a pulsed volume dis-
charge with preionization by ultraviolet radiation from
plasma sheets be used to study the pulsed ionization of
gasdynamic flows and to visualize the spatial structure
of unsteady flows [5]. This type of discharge is widely
1063-7761/02/9506- $22.00 © 21033
used to pump excimer and CO2 lasers [6, 7]. Ultraviolet
radiation from plasma sheets preionizes the main dis-
charge gap, whereupon (several nanoseconds later) the
pulsed ionization of the volume takes place. Preexpo-
sure to ultraviolet radiation causes the volume-dis-
charge current to rise in several nanoseconds and facil-
itates the formation of diffuse glow at the initial dis-
charge stages. Density perturbations in the discharge
region result in significant fluctuations of the local
energy contribution [7].

The initiation of a pulsed volume discharge with
preionization in a shock tube allows the steady-flow
segment in the interelectrode region to be uniformly
ionized for a time shorter than 200 ns. Thus, the ioniza-
tion time is much shorter than the interaction time
scales for gasdynamic flow elements (microseconds).
In such a short flow ionization time, the gasdynamic
flow structure does not change and the gas is not heated
by the discharge.

In the case of flow ionization by a discharge, gasdy-
namic nonuniformities cause a plasma redistribution
because of the density dependence of the electron num-
ber density. The spatial unsteady gasdynamic structures
are imaged when the glow of a pulsed volume discharge
is recorded in a gasdynamic flow. The structure of the
gasdynamic flows simulated in a shock tube was visu-
alized and studied by the method proposed in [5, 8].

Here, our goal is to analyze the redistribution of the
pulsed volume discharge plasma in a nonuniform gas
flow with a known density field. Localizing the energy
002 MAIK “Nauka/Interperiodica”
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contribution into specified flow segments and control-
ling the discharge structure are of current interest.

We recorded the glow of unsteady two-dimensional
flow fields for pulsed volume ionization by the dis-
charge initiated at various stages of the gasdynamic
process. We compare the gasdynamic fields experimen-
tally visualized by plasma glow with the numerically
simulated density fields of the corresponding complex
unsteady flows (with obstacles in the flow). Given the
model of the volume-discharge current distribution in a
known field of parameters, the gasdynamic flows can
be adjusted via the influence of the localized energy
contribution on flow elements. On the other hand, a
controllable volume-discharge current redistribution is
possible in a specified density field.

12

3

4

5

6

He

Fig. 1. A scheme of the experimental setup.

200 ns

100 ns

1 cm

SW

100 ns

(a) (b)

Fig. 2. (a) A photoscan of the pulsed volume-discharge
glow in the shock-tube channel; the scanning rate is
250 ns cm–1. (b) A slit photoscan of the glow of the flow
segment with a plane shock wave. The preshock air pressure
is 15 Torr, the shock Mach number is 3.9, and the scanning
rate is 50 ns cm–1.
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2. EXPERIMENTAL SIMULATION 
OF THE PULSED IONIZATION

OF A TWO-DIMENSIONAL
GASDYNAMIC FLOW

The experiments were carried out in air with a 48 ×
24-mm shock tube (Fig. 1) composed of a high-pres-
sure chamber (1), a diaphragm section (2), and a dis-
charge section (3). Helium was used as the “pushing”
gas. A pulsed volume discharge with preionization by
ultraviolet radiation from plasma electrodes was pro-
duced in a 10-cm-long flow segment in the discharge
chamber. The electrode spacing was 2.4 cm. The two
chamber sidewalls were quartz windows; the top and
bottom walls were flat plasma electrodes. A discharge
was initiated at a given time of the unsteady gasdy-
namic process that proceeded in the channel in the
interelectrode gap. Plasma electrodes flush-mounted
with the tube walls in the shock tube were as close to
the flow under study as possible, and they introduced
minimum perturbations into the flow. The volume-dis-
charge current in the gasdynamic flow was measured by
using a noninductive shunt. Analysis of the discharge-
glow scans in the flow obtained with image converters
(Fig. 1, 5) shows that all segments of the gasdynamic
flow were ionized in a time of less than 10 ns; subse-
quently, the discharge glowed for about 150–180 ns and
was quenched in 15–20 ns (Fig. 2a). The gasdynamic
perturbations and discontinuities traveled a distance of
no larger than 10–4 m in the discharge-glow time.
Therefore, the recording of the discharge glow in the
flow gives a snapshot (from a gasdynamic standpoint)
of the discharge plasma glow distribution. Figure 2b
shows a slit glow photoscan for the flow segment with
the incident plane shock wave moving in the discharge
gap at the time of discharge initiation. The pressure
behind the plane shock wave calculated from the Rank-
ine–Hugoniot relations at the shock was 260 Torr; it
increased approximately by a factor of 18 at the shock
front. As we see from Fig. 2b, in this case, the discharge
glowed only in the preshock region, in the low-pressure
region. Analysis of the space–time parameters for the
discharge glow in a flow with nonuniformities and dis-
continuities using glow scans indicates that the spatial
localization of the discharge glow in the gas flow field
changed only slightly in the discharge-glow time and
only at the initial and final stages for 10–15 ns.

To study the spatial redistribution of the pulsed vol-
ume discharge glow in an ionized gasdynamic flow
with discontinuities and nonuniformities, we experi-
mentally simulated the pulsed volume ionization of the
two-dimensional flow in a rectangular channel with
obstacles that emerged after the passage of a plane
shock wave and made a comparison with our calcula-
tions of the corresponding flow. We numerically solved
the corresponding gasdynamic two-dimensional prob-
lem, compared the images obtained when recording the
volume-discharge glow in the flow and the density
fields of the corresponding two-dimensional flows, and
AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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analyzed effects of the gasdynamic nonuniformities on
the redistribution of the pulsed volume discharge glow.

We investigated the flow that emerged in the channel
with obstacles behind the incident shock with Mach
numbers M = 2.5–4.5. Rectangular 2 × 6 × 48-mm
obstacles were located on the top and bottom channel
walls (Fig. 3). A pulsed volume discharge was initiated by
a clock system (Fig. 1, 6) at a specified instant of time in
the flow that emerged in the channel after the passage of a
plane shock. The integrated glow of the flow field in the
ionization time was recorded with a photocamera (Fig. 1,
4) through the window of the working chamber in a direc-
tion perpendicular to the flow axis.

When the plasma sheets were fired, gas photoioniza-
tion began and the electron number density reached
109 cm–3. Subsequently, a volume discharge was fired
and ionization took place; the electron number density
increased to 1012–1013 cm–3. After completion of the
volume-discharge current pulse, energy was pumped
into the vibrational and excited electronic states of the
molecules. The input energy was 0.01–0.05 J cm–3. The
volume-discharge current reached 1000 A.

Figure 4 shows an integrated photograph of the dis-
charge glow in the flow after the passage of a plane
shock through the obstacles: the Mach number of the
unperturbed flow behind the plane shock was 1.5.

Density nonuniformities in a gas flow ionized by a
pulsed volume discharge cause a redistribution of the
volume-discharge current, because the electron number
density and conductivity depend on the ionization coef-
ficient. The latter is a nonlinear function of E/ρ, where
E is the electric field strength. The specific energy con-
tribution to the gas per particle is

Here, τ is the current-pulse duration; ne is the electron
number density; Vdr is the electron drift velocity,

σ0 is the collision cross section; and V0 is the thermal veloc-
ity of the molecules. The regions of low gas density ρ (or
particle number density N) correspond to an enhanced
intensity of the discharge plasma glow. It is of considerable
interest to directly compare the computed unsteady two-
dimensional flow density fields with the glow field imaged
in the time of the volume-discharge current pulse.

3. NUMERICAL SIMULATIONS OF THE FLOW

When we carried out our computational experiment,
we chose the model of an ideal single-component gas
with an adiabatic index of γ = 1.4 as the physical model
of the medium. Analysis of the local thermodynamic
parameters for the flow indicates that the temperature
range in the flow field under study is 600–2000 K. In
this case, because the vibrational degrees of freedom of

W
N
----- ne ρ( )τe2me σ0 ρ( )V0 ρ( )〈 〉 E2 ρ( )

N2 ρ( )
-------------.=

Vdr
eE

me σ0V0〈 〉 N
-----------------------------;=
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the air molecules are excited, the minimum local adia-
batic index γ in the flow field is 1.31 [9]. This value was
observed in a small region behind the shock. The adia-
batic index averaged over the computational region is
no lower than 1.38–1.41. Therefore, it seems legitimate
to use the model of an ideal diatomic gas.

We took the system of two-dimensional unsteady-state
Euler equations with appropriate boundary conditions as
the mathematical model. This system for the compressible
flow of an ideal, calorifically perfect gas can be written as

(1)

(2)

Here, ρ, p, and E are the density, pressure, and total
energy, respectively; u and v  are the Cartesian velocity
vector components; and H is the vector of the source

qt f x q( ) gy q( )+ + H,=

q

ρ
ρu

ρv

E

, f q( )

ρu

ρu
2

p+

ρuv

E p+( )u

,= =

g q( )

ρv

ρuv

ρv 2 p+

E p+( )v

.=

Plane shock wave Obstacles

Discharge region

Fig. 3. A scheme of the experiment.

Fig. 4. Discharge glow in the unsteady flow behind the
obstacles 70 µs after the passage of a plane shock with the
Mach number M = 3.8. The density of the steady gas flow
behind the plane shock is 2 × 10–5 g/cm3.
SICS      Vol. 95      No. 6      2002
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(b)(a)

Fig. 5. Numerical calculation of the flow.
terms. The system of four equations (1) and (2) is
closed by the equation of state for a polytropic gas,

(3)

where γ is the ratio of the specific heat capacities.
The system of equations was numerically solved by

using an explicit, quasi-monotonic numerical scheme
with an increased order of accuracy, which is a modifi-
cation of the Godunov scheme. We used a piecewise-
linear distribution of the parameters at the computa-
tional layer and two-dimensional procedures for data
recovery in the computational cells [10, 11]. The non-
leakage conditions were specified as the boundary con-
ditions on the channel walls; the conditions for a super-
sonic flow and for the absence of reflection were spec-
ified in the input and output cross sections, respectively.
Our numerical scheme has peculiarities that can reveal
subtle features of the flow inaccessible with standard
schemes.

In differential-difference representation, the basic
system of equations written for a quadrilateral compu-
tational cell ABCD is

(4)

where aij is the cell area and

(5)

is the cell-averaged value of q at time t. The flux 
through the face of cell ABCD is defined as the line
integral of the second kind,

(6)

numericaly approximated by the Gaussian quadrature
formulas. The solution of the problem on the decay of
an arbitrary discontinuity (Riemann problem) is used to

p γ 1–( ) E
ρ

2 u2 v 2+( )
-------------------------– 

  ,=

∂qij t( )
∂t

---------------
1
aij

-----–=

× f̂ AB t( ) f̂ BC t( ) f̂CD t( ) f̂ DA t( )+ + +[ ] ,

qij t( )
1
aij

----- q x y t, ,( ) xd yd

CD

∫
AB

∫=

f̂

f̂ AB t( ) f yd gdx–( ),

AB

∫°=
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determine the numerical fluxes through the lateral
cell faces (at Gaussian points). The algorithm for an
exact solution of the Riemann problem is used in our
problem.

Equation (4) can be discretized in time by a modi-
fied Runge–Kutta method:

The order of accuracy, as well as the conservation of
TVD properties (the scheme with a reducible total vari-
ation of the grid), is achieved by choosing an appropri-
ate set of αlm, βlm, and p.

The numerical scheme uses a piecewise-linear dis-
tribution of the parameters at the computational layer
and two-dimensional procedures for data recovery in
the computational cells to determine the values of vec-
tor q on the cell faces (at Gaussian points) from the
averaged values at the cell centers [10]. The procedure
for recovering the flow parameters at the computational
layer allows us to more accurately and properly approx-
imate the fluxes through the lateral faces of the compu-
tational cells and enhances the possibilities of the
method to take into account two-dimensional effects.

4. ANALYSIS OF THE RESULTS

Figure 5a shows the computed density isolines in
the flow behind the obstacles in the range 1.1 × 10–5 <
ρ < 2 × 10–5 g/cm3 (zones of minimum density). To ana-
lyze the spatial ionization of the gasdynamic flow, we
suggest comparing the glow images of the flow during
pulsed ionization with the computed reciprocal flow
density field. In Fig. 5b, the numerical calculations of
the reciprocal-density (1/ρ) field are visualized on a
continuous gray scale. The conditions in the flow are
the same as those in Figs. 4 and 5a. Figure 6 visualizes
the numerical calculations of the flow density field (the
lower part of the image) with the glow field of a pulsed
discharge in the flow (the upper part of the image).

When comparing the digitized images of the dis-
charge-glow fields in the flow with the computed recip-

qij
l( ) α lmqij

m( ) βlm∆tLij
m( )+[ ] , l

m 0=

l 1–

∑ 1 2 … p,, , ,= =

Lij
m( ) Lq( )ij

m, qij
0( ) qij

n( ), qij
n 1+( ) qij

p( ).= = =
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Fig. 6. Visualization of the numerically computed flow density field and the corresponding images of the pulsed-discharge glow in
the flow. (a) 165 µs after the passage of a (M = 3.1) shock through an obstacle, the density of the steady gas glow behind the plane
shock is 17 × 10–5 g/cm3; (b) 150 µs after the passage of a (M = 2.9) shock through an obstacle, the density of the steady gas glow
behind the plane shock is 24 × 10–5 g/cm3.
rocal flow density field under the same conditions as
those in the experiment, we found the major structural
elements of the quasi-two-dimensional flow to be well
reproduced by the discharge plasma glow field in the
flow. The flow separation regions and the vortices
behind the obstacles (1 in Fig. 6) correspond to the
regions of maximum glow intensity. The low-density
regions in front of the oblique shocks (2 in Fig. 6) and
the rarefaction fan are marked by an intense glow.

Figure 7a shows the intensity profile of the dis-
charge plasma glow (the reciprocal of the film blacken-
ing) along the channel wall of the discharge chamber
behind an obstacle (x = 540). The experimental condi-
tions are the same as those for Figs. 4 and 5. The chosen
region is located near the boundary layer of the com-
plex flow and near the plasma electrode region; i.e., the
glow intensity is determined both by the properties of
the discharge that slides over the dielectric surface and
forms the plasma electrode and by the density nonuni-
formities attributable to the interaction of gasdynamic
structures with the chamber wall and the boundary
layer. Nevertheless, the intensity profile of the dis-
charge plasma glow in the flow qualitatively coincides
with the corresponding reciprocal density profile when
the computed reciprocal density is visualized on a gray
scale (Fig. 7b).

We imaged the unsteady Mach configuration
(during the shock’s crossing in the flow symmetry
plane) for an ionized flow. The discharge-visualized
Mach configuration 150 µs after the shock’s passage
through an obstacle is seen in Fig. 6b (3). In our cal-
culations, we recorded the two-dimensional Mach
configuration for this regime at an earlier stage of the
process and the shock interaction becomes regular
90 µs later. This discrepancy may result from hyster-
esis when passing from Mach reflection to regular
reflection and back [12].
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The density in the steady airflow behind the incident
shock wave calculated from the Rankine–Hugoniot
relations,

in our experiments was within the range 10–5–5 ×
10−4 g/cm3. The parameter E/N in the steady flow varied
over the range 100–700 Td. As the gas density in the
flow behind the plane shock (or the Mach number M0
and the preshock density ρ0) increased, the mean E/N
decreased. In this case, local breakdown conditions are
created in different segments of the gasdynamic flow.

ρ1

ρ0
-----

γ 1+( )M0
2

γ 1–( )M0
2 2+

---------------------------------,=

I, rel. units
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200
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100
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(a)

0
250

200

150

100

50

(b)

0 100 200 300 400 500 600
x

Fig. 7. (a) The profile of discharge plasma glow intensity I
along the channel wall of the discharge chamber behind an
obstacle and (b) the computed profile of relative reciprocal
gas density.
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High-current filaments are formed in the regions of
enhanced local E/N; the energy from nearby discharge
zones is redistributed into these filaments.

The local energy-contribution density is defined as

where x and y are the coordinates of the discharge
region along the flow and along the electric vector,
respectively. The parameters are uniformly distributed
along the z axis. At a given time-independent discharge
current I, the electric field is

where ne(x, y) and µ(x, y) are the spatial distributions of
the electron density and mobility, respectively.

The local density in the transonic flow behind the
obstacles varied significantly. The density difference in
the vortex regions in the separation zone behind the
obstacles in a 1-cm-long segment was 700–900%. The

ε j x y,( )E x y,( ) xd y,d

s

∫∫=

E x y,( )
I

e ne x y,( )µ x y,( ) xd yd

s

∫∫
--------------------------------------------------------,=

5 3

2
1

4 5 3

Fig. 8. The formation of a breakdown channel. The density of
the steady gas flow behind the plane shock is 44 × 10–5 g/cm3.

Fig. 9. A numerical reciprocal-density surface in the flow.
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jump in density reached 200–300% in the shock-cross-
ing region on the flow axis. The energy contribution
went into low-density zones (vortices, rarefaction
waves) and into regions of density jumps and sharp
density gradients; the discharge current from adjacent
regions with low E/N was redistributed into these
regions.

Since there is a region of low gas density and,
accordingly, high electron number density during ion-
ization, the two opposite vortex zones of flow separa-
tion behind the obstacles are effective plasma elec-
trodes. As the density in the unperturbed onflow
increases, local breakdown conditions arise between
these regions and a breakdown channel is formed in the
rarefaction-fan region at densities in the flow behind the
incident shock that are higher than 3 × 10–4 g/cm3 (Fig. 6b
and 8). Figure 8 shows an image of the discharge glow
in the flow at a density in the unperturbed flow
behind the incident shock of 4.4 × 10–4 g/cm3. We see
the following gasdynamic structures: the trails of the
shocks (1) as they cross the plasma sheets, the deceler-
ation wave (2) formed upstream of the obstacles (3),
and the rarefaction fan (4) between the separation
zones (5) behind the obstacles in which a breakdown
channel is formed between the zones of enhanced elec-
tron number density.

At densities in the flow behind the incident shock
within the range 10–5–2 × 10–4 g/cm3, the overall flow
structure determined from a snapshot of the flow glow
is in satisfactory agreement with the structure of the
computational region—the shocks, vortices, and local
rarefaction regions are clearly visualized. Our tech-
nique for numerically visualizing the results on a gray
scale for a layer-by-layer reproduction of the regions
with constant reciprocal density can be considered as a
numerical visualization of the glow of a pulsed volume
discharge in the flow in terms of the model in question
(the dependence of local discharge plasma glow inten-
sity on the reciprocal gas density in the flow in the
absence of local breakdown conditions).

Three-dimensional color animation of the process
allows us to visualize and trace the dynamics of the
development of regions with minimum gas density and,
accordingly, the redistribution of the volume-discharge
current under prebreakdown conditions when a dis-
charge is initiated at various stages of the gasdynamic
process. Figure 9 shows an image of the density isosur-
face as an element of numerical animation.

Thus, comparison of the quasi-two-dimensional
flow visualized by the method of pulsed volume dis-
charge and the numerically computed reciprocal-den-
sity field visualized on a continuous gray scale indi-
cates that the model in which the glow intensity is pro-
portional to the reciprocal gas density satisfactorily
describes the plasma redistribution for a pulsed volume
discharge in a given flow density field. Enhanced dis-
charge plasma glow intensities visualize the regions of
low density ρ (or gas particle number density N) or the
 AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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regions of density gradients. By analyzing the images,
we can determine the validity range of this proportion-
ality for specific flow configurations and channel geom-
etries. As the pressure in the flow between the local
zones of enhanced electron number density increases,
breakdown channels are formed along rarefaction
waves and discontinuities in the low-density regions.

5. CONCLUSION

We have studied a two-dimensional unsteady gasdy-
namic flow in a channel with obstacles ionized by a
pulsed volume discharge with preionization. In com-
parison with other types of discharge, a pulsed volume
discharge with preionization by ultraviolet radiation
from plasma electrodes ensures that the unperturbed
gas has a high spatial uniformity, that the flow is not
heated in the discharge-glow time, and that the expo-
sure used to record the discharge glow in the flow is
short. By recording the discharge glow in the flow, we
can image the major elements of the flow structure—
the unsteady configurations of discontinuities, vortices,
and rarefaction and compression waves.

By comparing the recorded glow of a pulsed volume
discharge and the numerically computed reciprocal-
density fields visualized on a continuous gray scale, we
can determine the validity range for the physical model
in which the glow intensity is proportional to the recip-
rocal gas density and analyze the validity range of this
proportionality for specific flow configurations. The
formation of regions with local breakdown conditions
(associated with high E/ρ) in the flow leads to devia-
tions of the dependence of the discharge plasma glow
intensity on the reciprocal gas density from the model.
Since the electron impact ionization and excitation
rates depend sharply on E/ρ, the discharge is rapidly
pulled into these regions, where the current density sig-
nificantly increases. Breakdown channels are formed
along rarefaction waves, vortices, and discontinuity
surfaces between the high-electron-number-density
regions that emerge in low-density zones. The spatial
distribution of the volume-discharge current can be pre-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
dicted and corrected by initiating a pulsed volume dis-
charge in a gas flow with a given density distribution.
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in the Presence of a Transverse Magnetic Field
L. A. Bolshov, A. M. Dykhne, P. S. Kondratenko*, and L. V. Matveev

Nuclear Safety Institute, Russian Academy of Sciences, Moscow, 113191 Russia
*e-mail: kondrat@ibrae.ac.ru

Received July 18, 2002

Abstract—The properties of free convection in a conducting fluid in laminar regime near a hot solid vertical
wall in the presence of a transverse magnetic field are theoretically analyzed. The existence of two regimes of
heat transfer from the wall to the fluid are established. In the first regime, at small heights x ! x* where the
magnetic field effect can be disregarded, heat transfer is described by the well-known results for a free convec-
tive boundary layer in a nonconducting fluid with the Nusselt number Nux ∝  x3/4. In the second regime, at x @
x* where the magnetic field plays a crucial role, the dependence of heat transfer on the height and field strength

is Nux ∝  /B. The location of the boundary between these regimes strongly depends on the magnetic field,
x* ∝  B–4. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Whereas free convective boundary layers in non-
conducting fluids have been studied extensively (see,
e.g., [1]), these layers for conducting fluids in the pres-
ence of a magnetic field have been studied inade-
quately. For instance, in their monograph [2], which
gives an overview of this problem, Blum et al. consider
a problem that admits a self-similar solution if the mag-
netic field strength has a specific dependence on the
coordinate along a hot surface (∝ x1/4). Without this
dependence (in particular, in a uniform field), the prob-
lem becomes much more complicated. In any case, the
solutions from [2] have the form of infinite power series
that are difficult to use. At the same time, knowing the
laws of heat transfer for a conducting fluid in the pres-
ence of a magnetic field is important for many practical
problems, for example, the problems of conducting-
fluid flows in tubes [3] or processes pertaining to elec-
trolytic metallurgy.

Here, our goal is to analyze the properties of the
steady laminar free conductive boundary layer of a con-
ducting fluid near a vertical wall at a wall temperature
that differs from the fluid temperature in a uniform
magnetic field normal to the wall. Below, for definite-
ness, we consider a situation where the wall tempera-
ture is higher than the fluid temperature, but all our
results, with appropriate changes, also apply to the
reverse situation.

2. STATEMENT OF THE PROBLEM

Consider the distributions of the flow velocity and
the conducting-fluid temperature in the presence of a
magnetic field near a hot wall. The fluid far from the
1063-7761/02/9506- $22.00 © 21040
wall is assumed to be isothermal and motionless. The
magnetic field normal to the wall is assumed to be uni-
form near it. Denote the temperature difference
between the wall and the fluid far from it by ∆T. The
temperature is counted off from its value far from the
wall. We direct the x axis upward and the y axis perpen-
dicular to the wall, so y = 0 on the wall itself. Since the
system is assumed to be homogeneous along the z axis,
there is no z velocity component.

Suppose that the validity condition for the boundary
layer approximation is satisfied. This condition implies
that the Rayleigh number is large compared to unity:

Here, g is the acceleration of Earth’s gravity, β is the
thermal expansion coefficient, H is the vertical scale
size, ν is the kinematic viscosity, and χ is the thermal
diffusivity. In addition, we assume the magnetic Rey-
nolds number to be small,

where σ is the fluid conductivity, c is the speed of light,
and V is the characteristic flow velocity. This condition
allows us to ignore the inverse effect of the fluid flow on
the magnetic field.

The current in a fluid in the presence of a magnetic
field is defined by the relation
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Since the magnetic field is directed along the y axis and
since the velocity vector lies in the xy plane, the vector
V × B is directed along the z axis. It follows from the
equation

at constant conductivity that

In addition, the following equation is valid:

curlE = 0. 

Thus, we conclude that under the short-circuit condi-
tion, which is assumed to be satisfied, the electric-field
strength becomes identically equal to zero:

E ≡ 0.

Let us derive the equations of motion for the bound-
ary layer. In comparison with a nonconducting fluid,
the hydrodynamic equations for a conducting fluid in a
magnetic field contain an additional Lorentz force. In
the geometry under consideration, this force enters only
into the longitudinal component of the Navier–Stokes
equation (along the x axis). As usual, having used the
transverse component in this equation to eliminate the
pressure, we obtain the following system of equations
of motion for the free convective boundary layer of a
conducting fluid in a transverse magnetic field:

(1)

(2)

(3)

Here, u and v  are the longitudinal and transverse veloc-
ities (along the x and y axes, respectively). The temper-
ature T is counted off from its value for the fluid far
from the wall. The magnetic thickness appearing in
Eq. (2) is defined as

(4)

where η is the dynamic viscosity of the fluid. As usual,
the boundary conditions for system (1)–(3) are zero u
and T in the limit y  ∞, zero u and v  at y = 0, and
T = ∆T at y = 0.

3. STRUCTURE OF THE BOUNDARY LAYER

We see from Eq. (2) that the magnetic field produces
additional braking. Let us show that in the initial seg-
ment of fluid acceleration (at small x), the contribution
from the term containing the magnetic field strength
can be neglected. Estimate the total contribution from
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the viscous and inertial terms in Eq. (2) by assuming
that

According to the well-known results for an ordinary
boundary layer (see [1]), which are valid in the absence
of a magnetic field, for the quantity

we then have

(5)

where

and S = 1 if the Prandtl number Pr ≡ ν/χ * 1 and S =
Pr−1 if Pr & 1. Comparing estimate (5) with the mag-
netic term in Eq. (2), we conclude that in the initial seg-
ment of the boundary layer at x ! x*, where

(6)

the magnetic field effect on the boundary layer can be
ignored. In this case, the thickness of the thermal
boundary layer is δT ∝  x1/4 and the Nusselt number

(7)

which is the dimensionless heat transfer coefficient, is
given by

Let us now consider the properties of the boundary
layer at x @ x*. In this range of x, we can now discard
the inertial term and, at y > δM, the viscous term in
favor of the magnetic term in momentum balance
equation (2). Under these conditions, according to Eq. (2),
u ≈ , where

(8)

As we show below, the thickness of the thermal bound-
ary layer δT at x @ x* is much larger than δM:

(9)

Thus, the difference between  defined in (8) and the
longitudinal flow velocity u in the energy balance equa-
tion (3) can be neglected. Therefore, taking into
account the linearity of Eq. (3) in temperature, we
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obtain a closed system of equations for  from Eqs. (1)
and (3):

(10)

(11)

with the boundary conditions

(12)

Formally, the system of Eqs. (10)–(11) matches the cor-
responding system for a shear boundary layer [4] if we
substitute ν  χ in the latter. However, the boundary
conditions for these two cases differ fundamentally.

Just as in the case of a shear boundary layer, sys-
tem (10) and (11) can be reduced to an ordinary dif-
ferential equation for the dimensionless stream func-
tion f(ξ):

(13)

(14)

The self-similar variable ξ is defined as

(15)

The quantities  and  are related to the function f  by
the relations

(16)

In turn, the temperature, according to equality (8), is
given by
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Naturally, the characteristic scale of the dependence of
f on ξ is on the order of unity. Therefore, according to
equality (15), the thickness of the thermal boundary
layer can be estimated as

(18)

which confirms inequality (9) if x @ x*.

Let us return to determining the longitudinal flow
velocity in the boundary layer at x @ x*. For y @ δM, it
is defined by expression (8). For y & δM, the convective
terms in Eq. (2) are still small but viscosity becomes
important. Instead of relation (8) for the velocity u, we
then have the equation

. (19)

Since temperature T at distances on the order of δM

changes only slightly if δT @ δM, the solution of
Eq. (19) takes the form

(20)

We emphasize that this expression is valid over the
entire range of transverse y coordinates.

As follows from (18), the total thickness of the
boundary layer δT increases with the longitudinal coor-

dinate proportionally to , while the thickness of the
viscous sublayer δM remains constant. Therefore, as x
increases, the temperature perturbation caused by the
deviation of the velocity profile from the temperature
profile near the wall [formula (19)] will decrease in
importance.

According to Eq. (18) and with account of Eq. (4),
the thickness of the thermal boundary layer at x @ x* is
proportional to the magnetic field strength:

4. HEAT TRANSFER FROM THE WALL
IN THE REGIME OF MAGNETIC BRAKING

The heat flux from the wall is determined by the
Nusselt number (7). In the regime of magnetic braking
(at x @ x*), with account of relations (7), (15), and (17),
this number is determined as

In this regime, the heat flux density is inversely propor-
tional to the magnetic field strength and proportional to
the square root of the longitudinal coordinate.
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To determine f ''(0), the set of Eqs. (13)–(14) was
solved numerically. We emphasize that, although
Eq. (13) coincides with the corresponding equation for
a shear boundary layer, the boundary conditions for the
function f(ξ) for the latter have the following form
instead of (14):

We numerically solved Eqs. (13) and (14) using the
fourth-order Runge–Kutta method. The second deriva-
tive at zero was found to be f ''(0) = –0.44. As a result,
the ultimate expression for the Nusselt number is

In the figure, the temperature and longitudinal
velocity are plotted against the coordinate ξ. Their
profiles were obtained by numerically solving sys-
tem of Eqs. (13)–(14) using relations (17) and (20)
for δT/δM = 10.

The condition for heat transfer in the regime of mag-
netic braking requires that the wall height H be simul-
taneously large compared to the boundary-layer thick-
ness and to the lower boundary of the regime in longi-
tudinal coordinate x*. With account of expressions (5)
and (17), this requirement reduces to the inequalities

(21)

For typical parameters β ≈ 10–4 K–1, σ ≈ 3 × 1016 s–1,
χ ≈ 0.1 cm2 s–1, ∆T ≈ 10 K, and H = 40 cm, inequal-
ity (21) takes the form of the following condition
for the magnetic field strength:

Another condition for this regime is the stability of
the laminar fluid flow in the range of parameters under
consideration. Since the complete problem of flow sta-
bility in the boundary layer concerned requires an inde-
pendent analysis, here we only note the following.
According to [4], the motion in a laminar boundary
layer is stable if the Reynolds number determined with
respect to the displacement thickness δ (see [4] for the
definition of δ) does not exceed a critical value Reδcr ~
102. Substituting boundary-layer thickness (18) for the
displacement thickness and expression (8) with T = ∆T
for the maximum velocity yields the following estimate
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for the Reynolds number at Pr ≈ 1 and B ≈ 500 G:
ReδT ≈ 10. As the magnetic field increases in strength,
the Reynolds number decreases in inverse proportion to
the field strength. Therefore, one might expect the lam-
inar flow in the boundary layer concerned to be stable
for the parameters under consideration.

5. CONCLUSION

The main results of our analysis are as follows. In
the presence of a transverse magnetic field, a free con-
vective boundary layer is subdivided in the longitudinal
coordinate into two regions; the spatial location of the
boundary between these regions is determined by the
magnetic field strength. In the first region of the bound-
ary layer adjacent to its front edge, the magnetic field
effect is negligible. In the second region that follows the
first one, the magnetic field brakes the boundary layer.
Here, as the longitudinal coordinate x increases, the
longitudinal velocity becomes saturated and the bound-
ary-layer thickness acquires a steeper dependence

(∝ ) instead of x1/4, as in the first region. In turn, this
behavior results in a significant suppression of the heat
flux from the fluid to the wall, which is inversely pro-
portional to the magnetic field strength.
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Abstract—A theoretical substantiation is provided for realization of the spin structure in a weakly doped
subsystem based on LaMnO3 , which is observed in compounds with an excess of manganese,
(La1 − yCay)1 – xMn1 + xO3, where y = 0 and 0.3, x = 0–0.4. It is proved experimentally that samples with x > 0.1
exhibit an anomalous behavior of magnetization at T < 45 K. The magnetization decreases in fields H < 100 Oe
and increases for H > 200 Oe. It is assumed that this is associated with the emergence of a canted phase in clus-
ters of manganese ions with difference valences. A theoretical analysis indicates that a competition between
double and superexchange interaction is in principle possible in such clusters, since the charge carrier concen-
tration in them is considerably lower than in the host matrix. It is shown that the inclusion of quantum properties
of spin leads to a considerable modification of the thermodynamic behavior of a magnet with collectivized elec-
trons. The results of analysis are compared with analogous results in the de Gennes classical theory. The pos-
sibility of formation of a state with a canted magnetic sublattice in the weakly doped subsystem in the low-tem-
perature region is substantiated on the basis of calculations. An analysis of the thermodynamic behavior of the
weakly doped subsystem based of LaMnO3 taking into account quantum-mechanical properties of spin shows
that relaxation phenomena determined, to a considerable extent, by the relation of parameters of intra- and inter-
planar indirect exchange, as well as the electron transport energy, can take place in the region of phase transition
to the canted state. The microscopic parameters of interactions are estimated quantitatively. The results of cal-
culations are in qualitative agreement with experimental data. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetism of doped manganites is due to indi-
rect exchange and the double exchange mechanism [1–
3]. Superexchange dominates in compounds containing
exclusively Mn3+ and Mn4+ and forms the antiferro-
magnetic (AFM) structure. Partial replacement of lan-
thanum by cations with the lowest valence in A posi-
tions (positions of the rare-earth ion R in the structure
of RMnO3 crystal) in lanthanum-manganese oxides
leads to the formation of holes at the Mn3+ ion, facilitat-
ing the emergence of mixed Mn3+/Mn4+ ionic states.
Considering that magnetism in manganites is deter-
mined by the number of Mn3+ and Mn4+ ions, oxides
with an excess of manganese and with a deficit of lan-
thanum, which are self-doped systems, are of special
interest. In such systems, manganese ions with different
valences, as well as vacancies, are formed and charge
carriers generated in this process facilitate ferromag-
netic ordering of localized spins of manganese via the
double exchange mechanism. It should be noted that
the magnetism in compounds with excess manganese
was not investigated intensely. It is known that EPR and
NMR studies have been carried out in manganites with
superstoichiometric content of manganese [4, 5] as well
as spin-wave resonance studies in La0.7Mn1.3O3 [6].
1063-7761/02/9506- $22.00 © 21044
Clusters in which the mixture of manganese ions
with charges of 3+ and 4+ also exists can be formed in
the vicinity of cation vacancies or implanted manga-
nese ions. A canted AFM structure (CS) can emerge
both in clusters and in weakly doped manganites at a
certain concentration of charge carriers.

In spite of the suggestion by some authors [7–9] that
the CS is unstable to phase separation into ferro- and
antiferromagnetic states, some experimental results
[10–12] cannot be described within the existing theo-
ries [7–9].

In this paper, we theoretically substantiate the real-
ization of noncollinear antiferromagnetism in a weakly
doped LaMnO3-based subsystem, which is confirmed
by the results of investigation of the effect of superstio-
chiometric manganese content on the features of the
magnetic state in (La1 – yCay)1 – xMn1 + xO3 compounds,
where y = 0 and 0.3 and x = 0–0.4.

2. EFFECT OF SUPERSTOICHIMETRIC 
MANGANESE ON THE MAGNETIC PROPERTIES 

OF (La1 – yCay)1 – xMn1 + xO3

In this work, the system LaMnO3 was chosen as the
basic structure. Since the properties of manganites are
very sensitive to the conditions of synthesis, all the
002 MAIK “Nauka/Interperiodica”
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samples were obtained according to the same technol-
ogy, which allowed us to compare their properties.
Ceramic targets were obtained using two-stage (at 900
and 950°C) 20-h synthesizing annealing followed by
fritting of pressed (P = 0.5 MPa) samples in air at
1150°C. The detailed procedure of synthesis and char-
acteristics of the crystal structure of manganites with
excess manganese are described in [13]. We analyzed
the structure of the ceramic samples under investigation
at room temperature with a DRON-3 X-ray diffractometer
using CuKα radiation. We determined the phase compo-
sition, the type of the crystal lattice, and its parameters.
According to X-ray diffraction data, the samples con-
tain only one phase with the orthorhombic (Pnma) dis-
torted perovskite structure. An increase in the manga-
nese concentration did not cause a change in the struc-
tural symmetry. An increase in the manganese content
from x = 0.1 to 0.4 leads to a decrease in the lattice
parameters and an increase in the Curie temperature TC,
indicating complete solubility of excess manganese in
the matrix structure of these perovskites in the absence
of secondary phases in them. The X-ray structural anal-
ysis, taking into account the diffuse halo, proved that
manganese ions in combination with vacancies form
clusters in the ceramic samples under investigation. It
will be shown below that some features of the low-tem-
perature magnetic behavior of the samples are associ-
ated with magnetism of these clusters.

The magnetization M(T, H) was measured in fields
varying from 2 Oe to 12 kOe on samples cooled both in
zero magnetic field (ZFC) and in an applied field (FC)
in the temperature range 4.2–300 K.

M, G cm3/g
0.5

0.4

0.3

0.2

0.1

0 50 100 150 200 250 300
T, K

Fig. 1. Temperature dependences of FC and ZFC magneti-
zations for samples of La0.8Mn1.2O3 (n and m, respec-
tively), (La0.7Ca0.3)0.8Mn1.2O3 (s and d), and
La0.7Ca0.3MnO3 (h and j) in the field 2 Oe.
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Figure 1 shows the temperature dependence of FC
and ZFC magnetizations of three samples,
La0.8Mn1.2O3, La0.7Ca0.3MnO3, and (La0.7Ca0.3)0.8Mn1.2O3

in the field 2 Oe. Figure 2 shows the temperature depen-
dences of the reduced magnetization M/Ms of the same
samples in magnetic fields H = 0.5–10 kOe, where Ms

is the saturation magnetization of (La0.7Ca0.3)0.8Mn1.2O3

in the field 10 kOe at T = 4.2 K. All samples exhibit the
ferromagnetic behavior below the paramagnetic–ferro-
magnetic transition temperature. The magnetic phase
transition is narrow, which is characteristic of the first-
order phase transition. It can be seen from Figs. 1 and 2
that the magnetization remains almost constant below
220 K. The FC magnetization in weak fields (Fig. 1)
exceeds the ZFC magnetization below the characteris-
tic “freezing” temperature, which is slightly lower than
TC. As the magnetic field increases (H > 1 kOe), the dif-
ference between the magnetizations MFC and MZFC

nearly vanishes.

In fields H < 100 Oe, the magnetization decreases at
low temperatures (see Fig. 1). In fields 100 < H <
200 Oe, the magnetization does not change upon cool-
ing. In magnetic fields H > 200 Oe, the MFC(T) depen-
dence displays an upward jump at T < 45 K (Fig. 2).
The difference between the magnetizations at T = 4.2 K
and T > 50 K increases with the manganese content.
The MZFC(T) dependence also exhibits a similar depen-
dence below 45 K. It is assumed that the decrease and
increase in the magnetizations observed at low temper-
atures are associated with a change in the spin configu-

M/Ms

1.0

0.8

0.6

0.4

0.2

0 50 100 150 200 250 300
T, K

Fig. 2. Temperature dependences of FC magnetizations
M/Ms for samples of La0.8Mn1.2O3 in magnetic fields H =
0.5, 1, and 10 kOe (m, e, and d, respectively),
(La0.7Ca0.3)0.8Mn1.2O3 for H = 0.5 and 10 kOe (n and s),
and La0.7Ca0.3MnO3 for H = 1 kOe (h).
SICS      Vol. 95      No. 6      2002
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ration in clusters formed by manganese ions of differ-
ent valences.

Figure 3 shows the field dependences of the reduced
magnetization M/Ms measured at 4.2 and 100 K in the
field interval H = 0–12 kOe. The saturation magnetiza-
tion is attained even in fields of the order of 4 kOe at
temperatures T < 150 K. It can be seen from Fig. 3 that
the M(H) dependences exhibit a typical ferromagnetic
behavior. The mean values of magnetic moments for
completely ordered spins, which were calculated by the
formula m(µB) = 3µBxA + 4µBxB (the magnetic moments
of Mn4+ and Mn3+ are equal to 3µB and 4µB, respec-
tively, and the concentrations are xA and xB) exceed the
experimental values. This is due to the fact that part of
the spins do not participate in the establishment of the
long-range magnetic order.

3. QUANTUM-MECHANICAL ANALYSIS 
OF THE MAGNETIC STRUCTURE

OF A WEAKLY DOPED LaMnO3-BASED 
SUBSYSTEM

In order to analyze the experimental data on magne-
tization, we must study the magnetic structure of
weakly doped LaMnO3 at temperatures T ! TC. We

M/Ms

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10 12
H, kOe

Fig. 3. Field dependences of the reduced magnetization
M/Ms for samples of La0.8Mn1.2O3 (n and m),
La0.9Mn1.1O3 (d and s), La0.6Mn1.4O3 (j and h), and
(La0.7Ca0.3)0.8Mn1.2O3 (r and e) at 4.2 and 100 K, respec-
tively.
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assume, on the basis of experimental data, that the clus-
ters of manganese ions with difference valences, which
are formed in the La1 – xMn1 + xO3 compound, have a
composition very close to that of weakly doped
LaMnO3. It is well known that de Gennes [3] provided
a detailed description of the magnetic state of this com-
pound and proved that a noncollinear structure is real-
ized in the low-temperature range for a low hole con-
centration. This is the result of the A-type distortion
(planes are ferromagnetic) of the AFM ordering typical
of LaMnO3. However, the analysis was confined to the
use of classical ion spins only. It will be shown below
that the inclusion of quantum properties of spin can
considerably affect the final results of thermodynamic
analysis, giving rise to some specific features such as
the change in the type of phase transition and magnetic
relaxation. The role of the ratio of parameters of intra-
and interplanar indirect exchange interactions becomes
very significant.

Let us carry out a theoretical analysis, assuming that
there are charge states of the Mn4+ and Mn3+ ions in the
existing clusters. In order to determine the conditions
under which the ferromagnetic (FM), AFM or canted
phases exist, we must find the interaction energies for
double and indirect exchanges. We write the system
Hamiltonian in the form

(1)

(2)

(3)

Here, the Hund exchange JH > 0—i.e., the interaction of
the spin σ of a collectivized electron with the spin S of
the Mn4+ core is ferromagnetic; Jij is the indirect
exchange, which is positive in the planes and negative
between the planes; µ is the chemical potential; ni is the
operator of the number of electrons at the ith site; tij is
the jump integral, which is assumed to be isotropic; and

 and ciσ are the creation and annihilation operators
for an electron with spin σ at the ith ion. We assume that
the relation JH @ t @ Jij, which permits the application
of perturbation theory in Hint, is satisfied. Unfortu-
nately, it is difficult to use relation (2) directly as the ini-
tial Hamiltonian even after separating the mean-field
Heisenberg part in it, since the electron degrees of free-
dom appearing in it considerably extend the basis used.
It is clear, however, that, for an infinitely strong Hund
bond, it is meaningless to take into account the mutual
orientations of the electron and ion spins. Conse-
quently, we can use the same procedure of separating
the mean field to the Hund part of Hamiltonian H0 also.
In this case, operator terms of the type of JHS〈σ〉  can be
formally cancelled out with JH〈S〉〈σ〉  since the ion and
electron spins are parallel. Thus, the initial Hamiltonian

H H0 H int,+=

H0 JHSiσi

i

∑ JijSiS j

i j,
∑– µ ni,

i

∑––=

H int tijciσ
† c jσ.

ij〈 〉 σ,
∑=

ciσ
†
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now contains two commuting mean-field Hamiltonians
for electrons and ions, respectively:

(4)

(5)

where

are the Fourier components of indirect exchange J(k)
for the ferromagnetic, k = 0, and antiferromagnetic, k =
k0 = (0, 0, π/a) (A-type magnetic structure) types of
ordering, respectively, and a is the lattice constant. The
quantities J1 > 0 and J2 < 0 are the parameters in intra-
planar FM interaction and interplanar paired superex-
change AFM interaction, respectively. In expression (5),
we assume the existence of different types of magnetic
order, which can be presented in the general case in the
form

(6)

where α = 0 and α = π/2 for the FM and AFM struc-
tures, respectively, while for the CS phase we have 0 <
α < π/2, where α is the angle between the mean spin 〈S〉
and the z axis and k0 is the wave vector of the AFM
structure. Here, we assume that there are no preferred
directions along the y axis, and the anisotropy field
determining the direction of the z axis is equal to zero.

In expression (5),  is the operator constant of
Hamiltonian H0:

(7)

where N is the number of magnetic sites.
Thus, taking into account initial Hamiltonians, we

can analyze the electron and ion subsystems separately;
in this case, the coupling between these subsystems is
carried out through the self-consistent field parameters.
We must now diagonalize Hamiltonians (4) and (5),
which can be carried out with the help of unitary trans-
formation of spin operators for the ion subsystem,

(8)

and via a similar transformation for electron spins. It
can easily be verified that the transformed initial
Hamiltonian for electrons assumes the form

(9)

H0
el JH Si

x〈 〉σ i
x Si

z〈 〉σ i
z+{ }

i

∑ µ ni,
i

∑––=

H0
ion CiSi

x DSi
z+{ }

i

∑ H0
const,+–=

D = 2J 0( ) S〈 〉 a,cos

Ci = 2J k0( ) S〈 〉 α k0 · ri( ),cossin–

J 0( ) 4J1 2J2, J k0( )+ 4J1 2J2–= =

Si
z〈 〉 S〈 〉 α , Si

x〈 〉cos S〈 〉 α k0 · ri( ),cossin–= =

H0
const

H0
const N S〈 〉 2 J k0( ) αsin

2
J 0( ) αcos

2
+{ } ,=

Si
x S̃i

x γi S̃i
z γi,sin–cos=

Si
z S̃i

x γi S̃i
z γi,cos+sin=

H0
el –h̃ σ̃i

z

i

∑ µ ni,
i

∑–=
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where  = JH〈S〉  and  is the electron spin operator in
the system associated with the mean spin 〈S〉  of the
magnetic ion. The spin Hamiltonian for Mn4+ ions in
the mean field approximation becomes diagonal:

(10)

where the effective field is given by

(11)

and the angle γi from formula (8) satisfies the equation

(12)

The expression for the free energy of superexchange
interactions can now be written in the following form:

(13)

It should be noted that this expression takes into
account the quantum nature of the spin, which was dis-
regarded in the de Gennes theory [3]. It should also be
observed that an analog of Eq. (12) for ordinary mag-
nets defines the trivial angles corresponding to the easy
magnetization axes. In our case, the electron subsystem
is coupled with the ion subsystem through the perturba-
tion Hamiltonian Hint (3). On account of electron jumps
at a magnetic site, a certain mean spin 〈S〉  is formed,
whose magnitude does not exceed 2, and the angle α of
the canted structure is determined by the ratio of contri-

butions from Hint and . At low temperatures, the

role of the contribution from  is mainly reduced to
a shift in the chemical potential.

Let us now consider the contribution to the system
thermodynamics associated with the electron sub-
system. In order to simplify subsequent calculations,
we use the Hubbard operators technique, disregarding
states with double filling of a site. In this case, for the
three electron states at a site (|+〉, |0〉, and |–〉) for the
cases spin up, hole, and spin down, we realize a basis of
nine Hubbard operators Xαβ = |α〉〈β|, in which Hint
assumes the form

(14)

Since the initial Hamiltonian has already been trans-
formed, we must transform Hint also. As in the case of

spinors, the Hubbard operators  in the ith local sys-
tem have the form

(15)

h̃ σ̃i
z

H0
ion H̃ S̃i

z
,

i

∑–=

H̃ 2 J2 0( ) αcos
2

J2 k0( ) α S〈 〉sin
2

+ ,=

γitan
4J1 2J2–
4J1 2J2+
----------------------- α k0ri( ).costan=

Fexch T
H̃m
T

--------- 
 exp

m S–=

S

∑
 
 
 

ln H0
const.+–=

H0
ion

H0
el

H int tij Xi
+0X j

0+ Xi
0– X j

0–+{ } .
ij

∑=

X̃i
σ0

X̃i
σ0 σXi

σ0 γi

2
---- Xi

σ0 γi

2
----,cos+sin–=
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where σ = –  = ±1, and angle γi is determined from
Eq. (12). Substituting Eq. (15) into relation (14), we
obtain

(16)

This expression shows that the first term describing the
intraplanar dynamics of electrons coincides with the
kinematic contribution derived by Anderson and Hase-
gawa [14]. In the case of an AFM structure, this contri-
bution vanishes, cos(π/2) = 0. However, electrons jump
between the planes since the last term in relation (16) is
not equal to zero for γi – γj = π. It is this part of Hint that
describes the interplanar kinematics of collectivized
electrons. It would be interesting to find the Fourier
components of intra- and interplanar jump integrals
taking into account the transformation coefficients. For
jump integrals in and between the planes, these compo-
nents are given by

(17)

where we have used the nearest neighbors approxima-
tion for jumps with integral t and γ is the absolute value
of the angle γi determined from Eq. (12).

In order to calculate the corrections to free energy or
to the electron magnetization, we will use the diagram-
matic approach on the basis of the scattering matrix for-
malism. The corresponding results for the FM, AFM,
and paramagnetic states were published in [15, 16].
Using relation (16), we can immediately write, in the
zeroth approximation of the self-consistent field, the
expression for the effective interaction line,

(18)

where ωp = (2p + 1)πT, p are integers, T is the temper-

ature, εσ = – σ/2 – µ are the levels of the one-electron
Hamiltonian (9), and 〈Fσ0〉  = 〈Xσσ + X00〉  = 1 – n/2 +
σ〈σ〉  is the mean combined population of a site by an
electron or a hole. The frequencies ωqσ of elementary
excitations caused by jumps between sites are
defined as

σ

H int tij

γi γ j–
2

-------------- X̃i
σ0

X̃ j
0σ

cos




ij〈 〉 σ
∑=

– σ
γi γ j–

2
-------------- X̃i

σ0
X̃ j

0σ
sin





.

t1 q( ) 2t qxa( )cos qya( )cos γ qza( )coscos+ +[ ] ,=

t2 q( )
2t
i

----- qza( ) γ,sinsin=

Bσ0 0σ, q iωp,( )

=  
t1 q( ) iωp εσ–( ) t1

2 q( ) t2
2 q( )+[ ] Fσ0〈 〉–

iωp ωq+–( ) iωp ωq+–( )
------------------------------------------------------------------------------------------ iωp εσ–( ),

h̃
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(19)

This expression shows that the kinematic part of the
interaction, which is associated with interplanar jumps,
is an effect of a higher order of smallness since it is pro-

portional to /JH. On the other hand, if t1(q) ~ 0,
which is typical of G structures (staggered order in the
AFM structure), the main contribution comes from
t2(q). It describes the electron dynamics against the
AFM background. This problem is being developed
intensely in connection with the ground state of HTSC,
and many results were obtained in the framework of the
t–J model. However, we are not interested in this case
at the moment and will mainly pay attention to the term
with t1(q). Disregarding t2(q), we obtain from Eq. (18)
the following expression for the effective line:

(20)

where Eqσ = εσ + t1(q)〈Fσ0〉 . The effective interac-
tion (20) describes the electron dynamics against the
FM background of ion cores of Mn4+. The effects of the
type of ordering of FM planes on electron jumps are
controlled by the factor cosγ in formula (17) for t1(q).
It can be seen that for α = π/2, i.e., in the case of anti-
ferromagnetically ordered planes, the band is narrower
than for α = 0 for the FM structure. Since the band in
the A-type structure is narrower, this renders the B-type
(fully ferromagnetic) structure more advantageous and
underlies the double-exchange mechanism discovered
by Zener.

A more detailed analysis of the magnetic structure
requires the study of the ground state of the electron
subsystem. Since t ! JH, we have a sufficiently favor-
able relation for the application of perturbation theory
in parameter t. In the first order in the reciprocal effec-
tive radius of interaction, the corresponding diagram-
matic expansion for mean combined populations in the
paramagnetic or FM phase was presented in [16]. This
relation can be written analytically in the form

(21)

where

ωqσ
1
2
--- ε+ ε– t1 q( ) F+0〈 〉 F–0〈 〉+( )+ +{ }=

– σ
ε+ ε––

2
--------------- 

 
2 1

4
---t1

2 q( ) F+0〈 〉 F–0〈 〉–[ ] 2
+





–t2
2 q( ) F+0〈 〉 F–0〈 〉 1

2
---t1 q( ) ε+ ε––( ) F+0〈 〉 F–0〈 〉–( )+





1/2

.

t2
2 q( )

βBσ0 0σ, q iωn,( ) β
t1 q( ) iωn εσ–( )

iωn Eqσ–
-----------------------------------,=

Fσ0〈 〉 Fσ0〈 〉 1
1
N
---- f Eqσ( ) f εσ( ),+

q

∑–=

Fσ0〈 〉 1
e

βEσ 1+

e
βEσ e

βEσ 1+ +
----------------------------------,=
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f(ε) = 1/[exp(βε) + 1] is the Fermi distribution function,

Let us analyze various limiting cases of system (21).
For T ! TC, where TC is the Curie temperature, for the
rectangular density of states ρ = 1/W, where W = 4t(2 +
cosγ) is the bandwidth, we have the solution to sys-
tem (21) in the form

(22)

for n > 1/2 (ε+ < 0, ε– > 0). Thus, the electron subsystem
is magnetized to saturation, and the chemical potential
is greater than zero. In the case of a low electron con-
centration, n < 1/2. We have the same solution (22), the
only difference being µ < 0 and ε+ > 0.

At a temperature T ~ TC and α = 0, we can expand
system of equations (21) into a series in the small
parameter 〈σ〉  and derive equations for the chemical
potential and the temperature TC of the phase transition
to the FM state:

(23)

where

For solving system of equations (23), we use the
density of states

which is presented in Fig. 4 for a simple cubic lattice,
where δ(x) is the Dirac delta function. In particular, if
we introduce the relative chemical potential  = µ/W,

β 1
T
---, Eσ –εσ δµσ,+= =

δµσ
1
N
---- t1 q( ) f Eqσ( ).

q

∑=

σ〈 〉 n
2
---,

µ
W
----- n

1
2
---– h̃

2W
--------–= =

1 n– 1

1 2e
β µ δµ0+( )

+
---------------------------------

2
N
---- f Eq( )

q

∑ 2 f µ–( ),+–=

T2 1

2 e
β µ δµ0+( )–

+
------------------------------- 1

N
---- t1

2 q( ) f Eq( )
q

∑=

× 1 f Eq( )–[ ] T
N
---- t1 q( ) f Eq( ) 1 f Eq( )–[ ] ,

q

∑–

Ea –µ 1 n
2
---– 

  t1 q( ), δµ0+
1
N
---- t1 q( ) f Eq( ).

q

∑= =

ρ ε( )
1
N
---- δ ε

t1 q( )
2t

-----------– 
  ,

q

∑=

µ̃
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we can derive the approximate formula for TC for elec-
tron concentrations n ~ 1:

(24)

Since  ≈ 1/4 in the paramagnetic phase for T ~ 0 [16],
it follows from relation (24) that TC/W  0 for n  1.
For n ≈ 0.9, the ratio TC/W is maximal and does not
exceed a value of 0.045.

Figure 5 shows the result of numerical solution of
system (23) in the form of the concentration depen-
dence of TC in units of W. It can be seen that the peak
value of the ratio TC/W corresponds to an electron con-
centration of n ≈ 0.85 and amounts to (TC/W)max ≈
0.035, which is 30% lower than the analogous value
obtained in the dynamic molecular field (MF) method
[17, 18]. The difference between the presented depen-
dence and that obtained by the MF method is that the TC

peak is shifted in concentration n from half the band
filling towards larger values of n ≈ 0.85. If we assume
that the bandwidth W ~ 1 eV in perovskite-type manga-
nites, we can use the value of (TC/W)max ≈ 0.035 to
obtain a rough estimate of TC ≈ 400 K for the present
case. It is closer to the experimentally observed values
of TC than in an analogous case in the MF approxima-
tion. The values of TC/W were calculated in the electron
concentration range from n = 0.2 to n = 0.98, although
the accuracy of the theory deteriorates upon a decrease

TC

W
------

3µ̃2ρ 6µ̃
1 0.5n–
------------------- 

 

1 0.5n–( )3 6µ̃ 1 0.5n–( )ρ 6µ̃
1 0.5n–
------------------- 

 +

----------------------------------------------------------------------------------------------.=

µ̃

ρ

0.3

0.2

0.1

0
–3 –2 –1 0 1 2 3

ε

Fig. 4. Density of states of collectivized electrons in the
cubic lattice.
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in the electron concentration and the value of chemical
potential since the initial Hamiltonian in the first
approximation is proportional to µn and may be of the
same order of magnitude as Hint for small µ and n.

Let us now consider the region of low temperatures,
T ! W. In order to determine the internal energy of the
electron subsystem, we must take into account all one-
loop contributions to Green’s function G0σ, σ0(iωn, q).
Carrying out the analytic continuation G0σ, σ0(iωn, q) 
G0σ, σ0(ω + iδ, q), we can easily find the spectral density
Λσ(q, ω):

Then the internal energy of the electron subsystem is
given by

The exact Green function of the electron sub-
system was investigated in [16]. It was proved that its
contributions to the electron energy are different in
different regions of concentration n and have a quite
complicated structure. However, the case n ~ 1 is the

Λσ q ω,( ) = 
βπ
i

------ G0σ σ0, ω iδ– q,( ) G0σ σ0, ω iδ+ q,( )–{ } .

Eel 1
N
---- ωd

2π
-------

ω εσ–( )Λσ q ω,( )

eβω 1+
-----------------------------------------.

∞–

∞

∫
qσ
∑=

TC/W

0.036

0.024

0.012

0
0.4 0.6 0.8 1.0

n

Fig. 5. Concentration dependence of temperature TC (in
units of W) of the ferromagnetic ordering of the electron
subsystem.
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simplest since it allows the application of G0σ, σ0(iωn, q) in
the form

which implies that

(25)

The meaning of this formula is quite clear: t1(q)〈Fσ0〉  is
the excitation energy for an electron–hole pair, f(Eqσ) is
the Fermi distribution function, and 〈Fσ0〉  is the proba-
bility of the electron–hole state with spin σ. We can
write analytic expression (25) at low temperatures T ! W
in the form

(26)

where we assume that 〈F+0〉  = 1, 〈F–0〉  = 0.
Let us consider the case of zero temperature and

determine the boundaries for the existence of the CS
and FM phases. The total internal energy of the entire
system is the sum of the free energy of the ion (13) and
electron (26) subsystems at T = 0. We can easily find
that

(27)

where  is defined by formula (11). Differentiating
Eq. (27) with respect to parameter 〈S〉 , we obtain the
following expression for the self-consistent mean spin:

(28)

It follows from this expression that 〈S〉  ≥ S. This is quite
possible if we take into account electron dynamics. In
any case, however, the value of 〈S〉  should not exceed
S + n/2. The free energy attains its minimum for

For d > –1, this inequality automatically holds. For d <
–1, the slope of the sublattices α > αcr. We will consider
the range of parameter d > –1. Substituting relation (28)
into (27) and taking into account expression (26) for the
electron energy, we obtain the formula for the total
energy Etot of the indirect and double exchanges:

(29)

G0σ σ0, iωn q,( )
Fσ0〈 〉

β iωn Eqσ–( )
-------------------------------,=

Eel 1
N
---- t1 q( ) f Eqσ( ) Fσ0〈 〉 2

.
qσ
∑=

Eel W
1
2
---n n 1–( ) π2T2

6W2
-----------+

 
 
 

,=

Eexch –SH̃=

+ J k0( ) αsin
2

J 0( ) αcos
2

+{ } S〈 〉 2,

H̃

S〈 〉
J2 0( ) αcos

2
J2 k0( ) αsin

2
+

J 0( ) αcos
2

J k0( ) αsin
2

+
------------------------------------------------------------------S.=

αtan
2 α crtan

2≥ 1 d+
1 d–
------------.–=

Etot

4J1S2
-------------- = E = 4b0d 2 γcos+( ) 1 d2–

1 d– 2d αcos
2

+
---------------------------------------,+
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Fig. 6. Angular dependence of the free energy E/4J1S2 of the electron and ion subsystems for n = 0.9, T = 0, and the following values
of parameters: (a) b = 0.2, d = –0.01, –0.08, –0.2, –0.5, and –0.8 (curves 1–5, respectively); (b) b = 1.92, d = –0.1, –0.3, –0.5, –0.6,
–0.7, –0.8, and −0.9 (curves 1–7, respectively).
where

Expression (29) for angles α close to π/2 gives an equi-
librium angle for the canted structure, cosα = b0,
obtained by de Gennes [3] for b0 ! 1. Figure 6 shows
the E(α)curves for various values of d for fixed values
of parameters n = 0.9 and b = 4b0|d| = 0.2 and 1.92. It
can be seen that for small values of b, an increase in d
gradually transforms the system from the FM to the CS
phase. For large values of b, there exists a region of
coexistence of the CS and FM phases, in which the
thermodynamic potential has two minima. In this case,
various relaxation phenomena may take place due to
thermally excited energy levels on the opposite banks
of potential wells. Figure 7 shows the phase diagram in
the b vs. d coordinates for n = 0.9. The solid phase-tran-
sition line was determined from the equality of energies
at two minima of the thermodynamic potential. The
metastability region of the FM phase can easily be
determined knowing the second derivative d2E/dα2 pro-
vided that it is positive at point α = 0. It can easily be
found that the solution cosα = 1 exists for d > –1/7. The
coordinates of the bicritical point on the phase diagram
are as follows: dcr = –1/7, bcr = 3/7. Above and below
the solid phase-transition line, one minimum exists for
the FM and CS structures, respectively. This region is
typical of a second-order phase transition. Metastable
phases emerge for d < –1/7. The metastability boundary
for the FM phase is determined by the curve b0 = (1 +
d)/(1 – d). The metastability boundary of the CS phase
was determined numerically from the condition that the
real roots of the equation d2E/d(cosγ)2 = 0, which deter-
mine the positions of the maximum and minimum for
the CS structure, vanish.

b0
tn 1 n–( )
4 J2 S2

----------------------, γcos
1 d+( ) αcos

1 d–( )2 4d αcos
2

+
--------------------------------------------------.= =
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It should be noted that the presence of irreversibility
effects in the present case is directly connected to the
quantum origin of spin. The factor (1 + d)/(1 – d)
appearing in calculations is a direct consequence of the

b

2

1

0
–1.0 –0.8 –0.6 –0.4 –0.2 0

d

0–0.4–0.8
0

20

40

60

d

FM

CS Ä

α, deg

Fig. 7. Phase diagram of magnetic states of a weakly doped
LaMnO3-based system at T = 0. The solid curve is the
phase-transition line; dashed curves correspond to the sta-
bility boundaries of the FM and CS structures. The coordi-
nates of bicritical point A are dcr = –1/7, bcr = 3/7. The inset
shows the dependence of the noncollinearity angle of ion
magnetic moments on the parameter d in the CS phase on
the phase-transition line at T = 0.
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unitary transformation of spin operators. This consti-
tutes the main difference from the de Gennes theory, in
which the spin is assumed to be classical. In our opin-
ion, the inclusion of quantum properties of spin
improves the agreement between the theory and exper-
iments. In particular, the experimental temperature
dependences of magnetization clearly exhibit irrevers-
ibility phenomena typical of potentials with numerous
minima. The inset to Fig. 7 shows the dependence of
the slope α of the sublattices on the parameter d on the
line of phase transition from the FM to the CS structure
at T = 0.

Let us consider the case of low temperatures T ! W,
such that the ratio T/J1 is not small. The mean nodal
spin is defined by the expression

(30)

where  has form (11). Figure 8 shows the dependence
of temperature Tcant (in units of 4J1) of the phase transi-
tion from FM to CS structure on the parameter b for

S〈 〉
J2 0( ) αcos

2
J2 k0( ) αsin

2
+

J 0( ) αcos
2

J k0( ) αsin
2

+
------------------------------------------------------------------=

×

m
mH̃
T

---------– 
 exp

m S–=

S

∑
mH̃
T

---------– 
 exp

m S–=

S

∑
--------------------------------------------,

H̃

Tcant/4J1

3

2

1

0 0.2 0.4 0.6 0.8
b

CS

FM

Fig. 8. Dependence of the temperature Tcant of phase transi-
tion to the CS state (in units of 4J1) on the parameter b for
d = –0.3.
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d = –0.3 and n = 0.9. The curve was determined from
the equality of the total free energy at the minima cor-
responding to the FM and CS states. It can be seen from
the figure that a decrease in the parameter b increases
the temperature of formation of the canted structure,
which approaches the Curie temperature for indirect
exchange,

in the molecular field approximation. Figure 9 shows
the angular dependence of free energy Ftot of the elec-
tron and ion subsystem for T/4J1 = 0.64, b = 0.72, and
d = –0.3, which indicates that the FM (α = 0) and CS
(α = 48°) phases are thermodynamically stable at this
temperature. Obviously, the external magnetic field
may change the ratio of the volumes occupied by the
FM and CS phases by transferring part of the magnetic
ions through the potential barrier. Relaxation phenom-
ena associated with the existence of the potential bar-
rier between two thermodynamically stable states can
also be observed depending on the conditions of sample
cooling.

4. DISCUSSION

In accordance with Fig. 1, the ZFC magnetization
remains almost unchanged between 50 and 230 K,
which is apparently due to magnetic-moment blocking

TMF

4J1
---------

2
3
---S S 1+( ) 1 d–( ),=

Ftot/4J1

–2.85

–2.86

–2.87

0 20° 40° 60° 80°
α

Fig. 9. Angular dependence of the total free energy for the
values of parameters T/4J1 = 0.64, b = 0.72, and d = –0.3.
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below TC, when the sample is cooled in zero or very
weak magnetic field. This complicates the motion of
domain walls during magnetization and facilitates the
manifestation of relaxation effects. The magnetic field
helps domains to overcome “freezing” and rotates them
so that they become aligned with the magnetic field,
thus increasing magnetization. As a result, the ZFC and
FC magnetizations in strong magnetic fields are in fact
identical (see Fig. 2).

The changes in the ZFC and FC magnetizations
observed at T < 45 K, viz., a decrease in the magnetiza-
tion in weak magnetic fields (H < 150 Oe) and its
increase for H > 200 Oe, indicate a change in the spin
configuration.

The sign reversal in the change of magnetizations
MZFC and MFC (see Figs. 1 and 2) at T < 45 K cannot be
explained within the model of phase separation into
AFM and FM regions in manganites [7–9], which is
very popular at present and according to which the CS
structure is unstable to the formation of a ferro–antifer-
romagnetic (F–AF) state. However, certain other exper-
imental evidence [10–12] does not fit the simple pattern
of phase separation. It is important to note in this con-
nection that Nagaev’s theory is valid for an infinitely
low hole concentration, which rules out a rigorous tran-
sition to the thermodynamic limit. The wave functions
in [7] describe the dynamics of a single hole in the ion
core matrix with the A-type magnetic structure.

We used here the statistical method based on the
separation of the effective field, which does not specify
the form of the wave function of a moving electron. It
was found in the first approximation in the reciprocal
effective radius of interaction that the energy associated
with the electron dynamics in the noncollinear phase at
T = 0 has form (26). It can easily be seen that, in the lin-
ear approximation in the hole concentration 1 – n, the
compressibility k–1 = d2Eel/d(1 – n)2 of the electron gas
is positive. Consequently, the homogeneous CS struc-
ture may be stable, although the polaron state also can-
not be excluded from the analysis. This is due to the fact
that, in the linear approximation of perturbation theory,
we cannot state with confidence that the compressibil-
ity of the electron gas is positive since all quadratic cor-
rections in carrier concentration must be taken correctly
into account. For this reason, we cannot confine our
analysis to the linear order of perturbation theory alone.
Unfortunately, an analysis of second-order diagrams in
the reciprocal effective radius of interaction compli-
cates the problem considerably and is beyond the scope
of this paper.

In connection with this, it should be noted that a
detailed analysis of inhomogeneous charge states and
phase separation in manganites is given in [8]. It was
proved, in particular, that k–1 < 0 for classical de Gennes
canted structures. This circumstance was treated as a
warning symptom questioning the stability of the CS
state. It cannot be ruled out that localized electron states
may exist against the background of the homogeneous
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
noncollinear phase. These states lead to local spin dis-
tortions in the homogeneous magnetic structure with
the formation of magnetic polarons. De Gennes [3] was
the first to indicate the possibility of realization of such
a complex structure for a layered antiferromagnet. In
order to demonstrate that the polaron state in the AFM
matrix and the homogeneous AFM state are close in
energy in a certain temperature range, we consider the
relation between the free energies for these phases at a
temperature T ! TC.

In analogy to the results obtained in [8] for T = 0, we
can write the expression for energy Eel taking into
account the electron localization in a spherical polaron
of radius R:

(31)

In accordance with relation (29), we write b0 = pn(1 –
n), where p = t/(4|J2|S2). In this way, we can take into
account the energy loss in indirect exchange due to the
formation of the polaron by introducing the effective
field Hp:

(32)

where 〈Sp〉  is the mean spin taking into account polaron
states, determined from Eq. (30), in which α = π/2 and

 = Hp. The expression for the free energy Fp (see for-
mula (13)) of the inhomogeneous F–AF state can be
written in the form

(33)

Minimizing this expression in radius R, we obtain the
self-consistent equation for determining the polaron
radius Rp,

(34)

which coincides with the analogous results obtained in
[8] for T = 0. Comparing the energy (29) of the noncol-
linear phase in the limit b0 ! 1 and the energy (33) of
the inhomogeneous F–AF phase at T = 0, we can easily
find that phase separation occurs for
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Fig. 10. Temperature dependences of (a) the free energies of the CS, F–AF, and FM phases (curves 1–3, respectively) and (b) the
spherical polaron radius in units of lattice constant a for the values of parameters n = 0.998, p = 140, and d = –0.3.
while the noncollinear phase is stable for p < p0. The
estimates of parameters for lanthanum manganite per-
ovskites lead to a value of p ~ 10, which is an order of
magnitude smaller than p0.

For T ≠ 0 and p ~ p0, a transition from the stable CS
structure to the AFM state with polaritons may occur
upon an increase in temperature. Figure 10a shows the
temperature dependences of the free energy F of the
noncollinear inhomogeneous F–AF phase and the
homogeneous FM phase (curves 1–3, respectively) for
d = –0.3, n = 0.998, b0 = 0.279, and p = 140. The point
of intersection of curves 1 and 3 corresponds to the
temperature Tcant/4J1 = 1.8 of the transition from the CS
to the FM phase. It can be seen from Fig. 10a that the
CS structure is stable for T/4J1 < 1.36, while the AFM
state with polaron subsequently transformed into the
homogeneous FM state is realized for 1.36 < T/4J1 <
1.8. It should be noted that the energy difference
between the CS and the F–AF phases is very small and
does not exceed 0.8 K on account of the value of J1 (see
below). Figure 10b shows the temperature dependence
of the spherical polaron radius in the unit of lattice con-
stant a, which was obtained as a result of numerical
solution of Eq. (34). It can be seen that the polaron
radius increases with temperature. The critical value of
R for which polarons overlap is equal to 4.92a.

The observed singularities on the temperature
dependences of magnetization can be explained on the
basis of the following considerations. ZFC below
Tcant = 45 K leads to the formation in the clusters of a
canted structure which gives on the average zero contri-
bution to the increment of magnetization in fields H <
200 Oe in view of the random distribution of crystallo-
graphic axes. The clusters make a positive paramag-
JOURNAL OF EXPERIMENTAL
netic contribution to the total magnetization at T > Tcant,
while at T < Tcant this contribution vanishes since the
emerging magnetic moments of the clusters are distrib-
uted chaotically and the total contribution is equal to
zero. It can be stated that the application of a magnetic
field H ≈ 200 Oe disturbs the relation between the mag-
netic moment of the canted structure and the crystallo-
graphic direction of a crystallite. Thus, the thermody-
namic behavior of the magnetic moment of a cluster is
the same as that for a paramagnet. In magnetic field
H > 200 Oe, at T < 45 K, a phase transition to the
ordered state with the preferred direction along the
external magnetic field is realized. The above differ-
ences in the jumps of MZFC and MFC are associated with
irreversibility effects as well as with the strong interac-
tion between the spins of a cluster and the spin system
of the host matrix. Indeed, at T ~ TC, strong fluctuations
in the host matrix are responsible for the long-range
nature of spin correlations between the two subsystems.
The cooling from temperatures T ~ TC at the phase-transi-
tion point T = Tcant apparently leads to ferromagnetic
ordering of spins in a cluster with the magnetization
directed along the magnetic moment m of the host matrix,
which results in a positive increment in the magnetization.

The observed experimental dependences M(T, H)
suggest the existence of regions with different magnetic
orders at low temperatures: the major part of the sample
is ordered ferromagnetically, while a small part is a
canted spin structure with the FM interaction between
the magnetic moments in clusters of manganese ions
with difference valences.

In order to confirm this assumption, we give some
estimates of microscopic parameters of interaction,
which are obtained on the basis of the above theory. It
 AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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should be noted from the very outset that, in spite of the
approximate nature of these estimates due to the
absence of additional experimental data, they demon-
strate qualitative agreement between the theory and
experiments. Indeed, Fig. 5, depicting the concentra-
tion dependence of TC/W, shows that the optimal con-
centration n corresponds to TC/W ≈ 0.035. For TC = 240 K,
we have W ≈ 6900 K and t = W/12 = 570 K. The volume
fraction of clusters is equal to 0.2, and the magnetiza-
tion jump at T = 45 K is of the order of 15%. In this
case, 0.15/0.2 ≈ 0.7 = cosα, whence α ≈ 45°. On the
phase diagram in Fig. 7, the angle 45° (see also the inset
to Fig. 7) corresponds to the coordinates b = 0.72 and
d = –0.3. Using the experimental values of the indirect
exchange parameters J1 = 9.6 K and J2 = –6.7 K for
LaMnO3 [20], we obtain d = –0.35, which matches the
value 0.3 obtained above on the basis on the data on the
magnetization jump and the volume fraction of clus-
ters. For b = 0.72, we have n(1 – n) ≈ 0.05; i.e., the hole
concentration in the clusters is small. Let us take the
experimental value of d = –0.35. On the phase diagram
in Fig. 7, this value of d corresponds to b = 0.8. This
leads to the ratio Tcant/4J1 = 0.7, whence Tcant ≈ 27 K,
which corresponds to the experimental value of 45 K
for our rough estimates. Taking into account the
obtained values of parameters, we find that the potential
barrier height is approximately equal to 0.9 K. Thus,
irreversibility effects must disappear in fields above
7 kOe, which is confirmed by experiments. Using the
values of parameters obtained, we can determine the
temperature width of the phase transition over which
the FM and CS structures coexist. According to esti-
mates, this width is of the order of 10 K, which is in
accordance with experiment (see Figs. 1 and 2).

5. CONCLUSIONS

We investigated theoretically and experimentally
the features of magnetic behavior of a number of lan-
thanum manganite perovskites with an excess of man-
ganese. An increase in the manganese content increases
the magnetic transition temperature insignificantly.
Samples with x > 0.1 exhibit an anomalous behavior of
magnetization at low temperatures in addition to a tran-
sition from the paramagnetic to the ferromagnetic
phase. At T < 45 K, the magnetization decreases in
weak fields (H < 150 Oe) and increases in fields H >
200 Oe. These anomalies in the magnetic behavior are
most probably associated with a transition from the fer-
romagnetic phase to a canted phase in clusters contain-
ing manganese ions with different valences. This is due
to the fact that the concentration of charge carriers in
these clusters formed in the vicinity of vacancies in the
cation sublattice is considerably lower than in the host
matrix. A theoretical analysis indicates the possibility
of competition between the double and superexchange
interactions in clusters, which may facilitate the forma-
tion of a state with a canted magnetic sublattice in the
low-temperature region. An analysis of the thermody-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
namic behavior of the weakly doped LaMnO3-based
subsystem, taking into account the quantum-mechani-
cal properties of spin, revealed that relaxation effects
may appear in the region of phase transition to the
slanted state. These effects are determined, to a consid-
erable extent, by the relation of the parameters of intra-
and interplanar indirect exchange as well as by the
energy of electron transport.
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Abstract—The magnetic structure of Pd1 – xFex (x = 0.03, 0.06, 0.10, 0.15, and 0.20) alloys is investigated using
the method of 57Fe-Mössbauer spectroscopy. The distribution functions P(Bhf) of hyperfine magnetic fields have
a discrete structure defined by variations of the contribution to Bhf from the magnetic moment of the neighbor-
ing Fe atoms. The anomalies of intensities of components of the functions P(Bhf), which increase with the con-
centration of iron, are indicative of the instability of configurations with a large total spin and of the formation
of local spin configurations with the antiferromagnetic orientation of magnetic moments. The probability of for-
mation of such configurations is defined by the competition of the ferromagnetic Fe–Pd exchange interaction
with the direct antiferromagnetic exchange between the nearest neighboring atoms of Fe. An Ag or Rh impurity
effectively induces the process of spin flipping, which explains the anomalously strong effect of impurities on
the magnetic ordering temperature. The results confirm the presence in Pd–Fe alloys of perturbations of long-
range ferromagnetic order revealed by neutron diffraction. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Palladium-based Pd–Fe alloys represent a well-
known system with “giant” magnetic moments. The
ferromagnetic ordering of spins of Fe atoms in these
alloys arises even in the case of an iron concentration of
less than 1 at.%, with the mean magnetic moment per
Fe atom exceeding 10µB. The universally accepted
explanation for this phenomenon is based on a model
according to which the emergence of ferromagnetism
in dilute Pd–Fe alloys is due to the overlapping of
extended “clouds” of polarized atoms of the palladium
matrix. These alloys have been the subject of numerous
investigations for several decades. The basic results of
these investigations are summed up in the review by
Nieuwenhuys [1]. In spite of significant progress made
toward understanding the general pattern of this phe-
nomenon, some important properties of Pd–Fe alloys
(and of other systems with giant moments) remained
unexplained. The greatest difficulties were associated
with the problem of correct treatment of local effects,
whose importance was emphasized by Nieuwenhuys
[1]. As a rule, the magnetic susceptibility, which is a
macroscopic parameter, was treated as the main factor
defining the magnetic behavior of systems with giant
moments. Within such an approach, it proved impossi-
ble to explain the diffusion of magnetic phase transi-
tions, the anomalous effect of impurities on the Curie
temperature, and other phenomena [1]. In early micro-
scopic investigations performed using Mössbauer spec-
troscopy (see, for example, [2, 3]), only averaged char-
acteristics were determined (for example, mean hyper-
1063-7761/02/9506- $22.00 © 201056
fine magnetic fields); therefore, no information on local
effects could be obtained.

The most intensive studies were performed on the
nature of ferromagnetism arising in alloys with a low
concentration of iron. Because the magnetic ordering
temperature of Pd–Fe alloys increases monotonically
with the concentration of iron, it was assumed that the
mechanisms of exchange interaction remained qualita-
tively unchanged in a wide range of concentration (at
least up to 20–30 at.% Fe) and that all of these alloys
were systems with a simple (collinear) ferromagnetic
alignment of magnetic moments. However, experimen-
tal data have become available recently that compel one
to reconsider the traditional point of view on the mech-
anisms of exchange interaction in Pd–Fe alloys. Diffuse
satellite reflections were revealed in the spectra of mag-
netic scattering of neutrons by single crystals of
Pd1 − xFex (x = 0.10 and 0.15), whose presence is clearly
indicative of significant violations of the long-range
ferromagnetic order in these alloys [4, 5]. According to
the authors of the latter papers, the investigated Pd–Fe
alloys are characterized by the presence of antiferro-
magnetic interaction causing space-modulated varia-
tions in the mutual orientation of spins of Fe atoms. It
is important that, according to Tsunoda and Abe [4], the
antiferromagnetic exchange coupling between Fe
atoms is realized at small interatomic distances. We
have recently found an explanation for the strong effect
of rhodium impurity on the Curie temperature of the
ferromagnetic alloy Pd0.9Fe0.1 [6, 7]. As a result of
investigation of the “fine structure” of distribution func-
tions of hyperfine magnetic fields using Mössbauer
02 MAIK “Nauka/Interperiodica”
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spectroscopy, it was found that rhodium impurity
causes a reorientation of a part of magnetic moments of
Fe atoms. This leads to the formation of local antiferro-
magnetic spin configurations, a decrease in effective
exchange interaction, and an abrupt decrease in the
magnetic ordering temperature. We assumed [6] that
the antiferromagnetic exchange coupling between the
nearest neighboring atoms of Fe was always present in
Pd–Fe alloys; however, in the case of a low concentra-
tion of iron, this coupling does not show up because of
predomination of strong ferromagnetic exchange inter-
action with the palladium matrix. The verification of
this assumption is of fundamental importance from the
standpoint of understanding the singular features of the
behavior of systems with giant magnetic moments.

This paper contains the results of detailed investiga-
tion of the spin structure of Pd–Fe alloys, as well as of
Pd–Fe–Ag and Pd–Fe–Rh alloys, using 57Fe-Möss-
bauer spectroscopy. The main objective of the study
was to verify the hypothesis of the presence of antifer-
romagnetic Fe–Fe exchange interaction in a wide range
of the concentration of iron in Pd–Fe alloys, as well as
to investigate the evolution of the spin structure of these
alloys under the effect of two different types of impuri-
ties (Ag and Rh).

2. EXPERIMENT

Pd1 – xFex (x = 0.03, 0.06, 0.10, 0.15, and 0.20) alloys
and (Pd1 – xFex)1 – yAgy and (Pd1 – xFex)1 – yRhy (0.03 ≤
x ≤ 0.10, 0.05 ≤ y ≤ 0.20) alloys were prepared by fus-
ing together 99.99% (or better) pure metals by arc melt-
ing in an argon atmosphere. The ingots were annealed
at 1200 K and quenched. The powders prepared from
the ingots for performing Mössbauer measurements
were likewise annealed and quenched. We believe that
such a thermal treatment ensures statistical distribu-
tions of atoms in these alloys. The Mössbauer absorp-
tion spectra were measured in the temperature range
from 5 to 300 K. In order to increase the effect of reso-
nant absorption and the resolution, resonant detectors
were used for recording the Mössbauer radiation of
57Fe with an energy of 14.4 keV. The magnetic ordering
temperature was determined from the temperature
dependences of hyperfine magnetic field and by ther-
mal scanning.

The Mössbauer spectra were processed in two
stages. First, the distribution functions P(Bhf) of hyper-
fine magnetic fields were calculated. These calculations
were performed using the histogram method employed
by us previously in the investigation of the fine struc-
ture of the functions P(Bhf) for Rh–Fe and Pd–Fe alloys
[6–8]. For all alloys, the P(Bhf) distribution had a struc-
ture corresponding to a set of discrete spin configura-
tions with well-defined values of hyperfine magnetic
field (Bhf). Then, the spectra were approximated by the
superposition of discrete magnetic subspectra. The
number of subspectra required for correct approxima-
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tion was not fixed but was determined during process-
ing (as well as the intensity of the subspectra and the
values of Bhf).

3. EXPERIMENTAL RESULTS
AND DISCUSSION

Previously, the example of the Pd0.9Fe0.1 alloy was
used to demonstrate [6, 7] that the structure of the dis-
tribution functions P(Bhf) is defined by the dependence
of hyperfine magnetic field on the magnitude of the
total magnetic moment that developed in the nearest
environment of a given Fe atom by the neighboring
magnetic Fe atoms. In this case, the hyperfine magnetic
field on the site of the central Fe atom in a concrete spin
configuration may be given by [6, 7]

(1)

where a and b are constant coefficients; M = n↑  – n↓  is
the total magnetic moment of the nearest environment
(in units of the magnetic moment of an Fe atom, µFe);
and n↑  and n↓  denote the number of neighboring Fe
atoms with a spin parallel and antiparallel to the spin of
the central atom. For the Pd0.9Fe0.1 alloy, the coeffi-
cients a and b were found to be a = 8.4 T/µB and b =
0.3 T/µB [6, 7]. Because the coefficients a and b are of
the same sign, the hyperfine field is maximal for a
purely ferromagnetic configuration, when M = n↑  = n
(where n is the total number of the nearest neighboring
Fe atoms). If all spin configurations are fully ferromag-
netic, the relative intensities of configurations with dif-
ferent values of M in the case of statistical distribution
of Fe atoms in fcc-lattice sites must correspond to the

binomial distribution W(n) = xn(1 – x)12 – n. The
P(Bhf) distribution must include magnetic subspectra
with an equidistant set of Bhf values; the difference
between the values of Bhf for the neighboring subspec-
tra (∆M = ±1) is bµFe. The change in the orientation of
one of the spins to the opposite must cause a reduction
of Bhf by 2bµFe. As we will see below, these regularities
following from the representation of a hyperfine mag-
netic field in the form of Eq. (1) agree well with the
experimental results. Sections 3.1 and 3.2 below deal
with the experimental data obtained at a temperature of
5 K, which corresponds to the ground state of the inves-
tigated systems. The magnetic ordering temperature is
discussed in Section 3.3.

3.1. Pd1 – xFex Alloys

The P(Bhf) distribution functions for five Pd1 – xFex

alloys are given in Fig. 1. One can see that the P(Bhf)
distribution for all alloys has a well-defined discrete
structure corresponding to spin configurations with dif-
ferent values of M. The experimentally found values of
relative intensity of magnetic subspectra are given in
Table 1. In Fig. 2, the measured relative intensities of

Bhf aµFe bMµFe,+=

C12
n
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magnetic subspectra are compared with the results of
calculation of these intensities for purely ferromagnetic
spin configurations with a random (statistical) distribu-
tion of Fe atoms in fcc-lattice sites (binomial distribu-
tion).

Analysis of these results leads to the following con-
clusions.

(i) For alloys with x = 0.03 and 0.06, the measured
values of the intensity of magnetic subspectra with M =
+1, +2, and +3 agree well with the predicted values.
This means that the configurations with other-than-zero
total spin of the nearest environment are fully ferro-
magnetic, as is expected for alloys with a relatively low
concentration of Fe atoms. Almost as good an agree-
ment between the measured and predicted values of
intensity is observed for an alloy with x = 0.10.
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Fig. 1. The hyperfine magnetic field distribution functions
P(Bhf) for Pd1 – xFex alloys at T = 5 K. For the Pd0.80Fe0.20
alloy (bottom graph), the dashed curve indicates the pre-
dicted distribution calculated for the case of ferromagnetic
orientation of magnetic moments.
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(ii) When the concentration of iron increases to x =
0.15 and 0.20, a strong difference arises between the
measured and predicted values of the intensity of mag-
netic subspectra. One can see in Table 1 and Fig. 2 that,
for these alloys, the measured values of the intensity of
subspectra with M = +2, +3, and +4 turn out to be
grossly underestimated, and no high-spin components
with M = +5 and +6 are observed at all. In Fig. 1, the
experimentally obtained P(Bhf) distribution for an alloy
with x = 0.20 is compared with the distribution calcu-
lated for ferromagnetic alignment of spins in all config-
urations. One can see that high-spin components are
completely absent from the experimentally obtained
distribution, with the entire distribution shifted (relative
to the predicted one) to the region of low hyperfine
fields.
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Fig. 2. The relative intensity of magnetic subspectra with
M = 0, +1, +2, +3, and +4 as a function of the concentra-
tion of iron in Pd1 – xFex alloys at T = 5 K (symbols). The
solid line indicates the relative intensity calculated for
the case of ferromagnetic orientation of magnetic
moments in configurations with n atoms of Fe in the
nearest environment of the central atom (binomial distri-
bution W(n), n = M).
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Table 1.  Comparison of the relative intensity of magnetic subspectra with the predicted probability of formation of atomic
configurations with n atoms of Fe in the nearest coordination sphere in Pd1 – xFex alloys

x
n 0 1 2 3 4 5 6

Bhf(T) <30.0 30.9 32.0 33.1 34.1 35.2 36.3 37.4

0.03 W(n) 0.69 0.26 0.05

I 0.14(3) 0.52(2) 0.29(3) 0.05(1)

0.06 W(n) 0.48 0.36 0.13 0.03

I 0.10(3) 0.37(3) 0.36(3) 0.14(2) 0.03(1)

0.10 W(n) 0.28 0.38 0.23 0.09 0.02

I 0.04(2) 0.25(3) 0.36(2) 0.24(1) 0.09(1) 0.02(1)

0.15 W(n) 0.15 0.30 0.29 0.17 0.07 0.02

I 0.10(3) 0.25(3) 0.31(3) 0.20(2) 0.11(2) 0.03(1) <0.01

0.20 W(n) 0.07 0.21 0.28 0.24 0.13 0.05 0.02

I 0.12(3) 0.23(3) 0.26(3) 0.21(2) 0.13(2) 0.05(1) <0.01 <0.01

Note: The following notation is used in the table: I, measured relative intensity of a subspectrum; W(n), predicted probability of configu-
ration (binomial distribution); and Bhf, hyperfine magnetic field.
(iii) The behavior of a subspectrum with M = 0 dif-
fers significantly from the behavior of subspectra with
nonzero spin of the nearest environment. In the case of
a low concentration of iron (x = 0.03 and 0.06), the
intensity of this subspectrum is much lower than the
predicted value; on the contrary, in alloys with x = 0.15
and 0.20, this intensity is much higher than the pre-
dicted value.

These results confirm the existence of perturbations
of long-range ferromagnetic order in a real magnetic
structure of Pd–Fe alloys. Most characteristic is an
abrupt decrease in the probability of the formation of
high-spin configurations in alloys with x = 0.15 and
0.20 (compared to their predicted values for a fully fer-
romagnetic orientation of spins of Fe). This fact may be
attributed to antiferromagnetic spin correlations whose
importance rises rapidly with increasing concentration
of iron. The direct antiferromagnetic exchange interac-
tion between the nearest neighboring atoms of Fe in the
lattice of Pd–Fe alloys must be regarded as the most
natural reason for the emergence of such correlations.
This interaction does not show up (or shows up to a
small extent) in the case of a low concentration of iron
when contribution by direct interaction between Fe
atoms is small compared to the strong ferromagnetic
exchange interaction of Fe atoms with the palladium
matrix. As the concentration of pairs of interacting Fe–
Fe atoms increases, the importance of antiferromag-
netic correlations rises and the competition between
two exchange interactions of opposite sign brings about
a local violation of ferromagnetic ordering. In regions
with a high local concentration of iron, the ferromag-
netic alignment of spins becomes unstable. This
explains the absence of high-spin components with
M = +5 and +6 in the P(Bhf) distribution and the abrupt
decrease in the intensity of components with M = +2,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
+3, and +4 (compared to the predicted values for purely
ferromagnetic spin configurations). The transformation
of ferromagnetic configurations to fully or partially
antiferromagnetic ones proceeds with the parity of M
unchanged. Therefore, an abrupt increase in the inten-
sity of a subspectrum with M = 0 in alloys with x = 0.15
and 0.20 corresponds to anomalously low values of the
intensity of subspectra with M = +2 and +4 (and to the
complete destruction of a subspectrum with M = +6).
The flipping of spins in configurations with odd values
of M in these alloys leads, in particular, to the formation
of a subspectrum with M = –1 (Bhf ≈ 29.8 T).

Ferromagnetic spin configurations predominate in
alloys with x ≤ 0.10; however, these alloys are not ide-
ally ordered ferromagnets either. It follows from Table 1
that the intensity of a subspectrum with M = 0 for alloys
with x = 0.03 and 0.06 is much less than the predicted
value. For a low concentration of iron, this subspectrum
corresponds to isolated Fe atoms which have no mag-
netic Fe atoms in their nearest environment. A decrease
in the intensity of the subspectrum with M = 0 implies
that some part of such isolated atoms turns out to be
affected by a weakened exchange field. This results in
a decrease in the average value of the atomic magnetic
moment and in a corresponding decrease in the hyper-
fine field. This explains the emergence of a “satellite”
component (Bhf < 30 T, see Table 1 and Fig. 1) in the
P(Bhf) distribution. The intensity of this component
decreases as the concentration of iron increases from
x = 0.03 to x = 0.10.

3.2. (Pd1 – xFex)1 – yAgy and (Pd1 – xFex)1 – yRhy Alloys

The effect of Ag and Rh impurities on the spin struc-
ture was investigated for alloys with an iron concentration
of x = 0.03 and 0.06. This effect was qualitatively similar
SICS      Vol. 95      No. 6      2002
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to that found previously for the (Pd0.90Fe0.10)1 – yRhy (y =
0.10, 0.20, and 0.30) alloys [6, 7]. Given in Fig. 3 by
way of example are the P(Bhf) distribution functions for
(Pd0.94Fe0.06)1 – yRhy (y = 0, 0.1, and 0.2). (For alloys
with an Ag impurity, an analogous dependence of the
structure of functions P(Bhf) on the concentration of the
impurity was observed.) One can see that the impurity
effectively destroys the ferromagnetic structure of the
alloys and causes the formation of antiferromagnetic
configurations (subspectra with M = −1 and −2) and an
overall shift of distribution to the region of low hyper-
fine fields. This process develops very rapidly and, with
an impurity concentration of y = 0.20, the intensity of
subspectra with positive values of M becomes very low.
The substitution of Pd atoms by atoms of Rh or Ag
causes a weakening of the matrix polarization and
shifts the balance of competing exchange interactions
in favor of direct antiferromagnetic Fe–Fe exchange,
which develops conditions for the formation of local
spin configurations of the antiferromagnetic type. Even
with an impurity concentration of y = 0.10, alloys can-
not be regarded as ferromagnetic, because the intensi-
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Fig. 3. The hyperfine magnetic field distribution functions
P(Bhf) for (Pd0.94Fe0.06)1 – yRhy alloys.
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ties of ferro- and antiferromagnetic spin configurations
become comparable. The magnetic structure of such
alloys may be qualitatively interpreted using the model
of collinear spin glass, which was previously treated for
a Rh–Fe–Pd system [7].

3.3. Magnetic Ordering Temperature

The measured values of magnetic ordering temper-
ature (TM) for all investigated alloys are given in Table 2.
Ag and Rh impurities cause a very strong reduction of
TM of alloys, which is naturally attributed to the
destruction of the ferromagnetic spin structure accom-
panied by a decrease in the mean electron polarization
and effective exchange fields. The spin flipping and
random distribution of Fe atoms in lattice sites result in
the emergence of a strong spatial nonuniformity of
exchange interaction, which, in turn, entails the
observed blurring of magnetic transition (increasing
with the impurity concentration) [1, 7]. We cannot offer
a quantitative explanation of the observed dependences
of TM on composition; however, we will give our atten-

0.200.150.100.050
y
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–0.2

–0.1

0

∆TM

Fig. 4. The relative variation of the magnetic ordering tem-
perature ∆TM(y) = (TM(y) – TM(0))/TM(0) as a function of
rhodium concentration for (Pd1 – xFex)1 – yRhy alloys at x =
0.03 (hollow triangle), 0.06 (solid dots), 0.10 (hollow dots).
Table 2.  The magnetic ordering temperature TM (in K) of (Pd1 – xFex)1 – yAgy and (Pd1 – xFex)1 – yRhy alloys

Ag Rh

y 0.00 0.05 0.10 0.20 0.05 0.10 0.20

Pd0.97Fe0.03 105(2) 72(2) 83(2)

Pd0.94Fe0.06 176(2) 144(2) 129(2) 115(3) 159(2) 133(2) 105(4)

Pd0.90Fe0.10 246(1) 190(2) 140(4)
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tion to a remarkable feature of the behavior of TM for
(Pd1 – xFex)1 – yRhy alloys. Figure 4 gives the dependence
of relative variation of TM, (TM(y) – TM(0))/TM(0), on the
rhodium concentration. One can see that this depen-
dence is linear and is the same for all alloys (regardless
of the iron concentration). It is obvious that such a
behavior of TM reflects some important features of the
mechanisms of magnetic ordering in a system with
competing exchange interactions. In view of this, a fur-
ther study into the effect of various impurities on TM

may be of great interest. It appears to be most desirable
to develop a theory of systems with giant moments that
would take into account the direct antiferromagnetic
exchange coupling between magnetic centers.

4. CONCLUSIONS

The results of detailed investigation of the distribu-
tion functions of hyperfine magnetic fields and local
spin configurations have demonstrated that the mag-
netic behavior of Pd1 – xFex (0.03 ≤ x ≤ 0.20) alloys is
largely determined by the competition of ferromagnetic
Fe–Pd exchange interaction with the direct antiferro-
magnetic exchange between the nearest neighboring
atoms of Fe. The antiferromagnetic exchange has little
effect on the spin structure of dilute alloys, but it
becomes very significant as the concentration of iron
increases. For alloys with x = 0.15 and 0.20, the spin
configurations with antiferromagnetic orientation of
spins of Fe represent a significant fraction of all spin
configurations of the system. The experimental data
obtained by us (as well as the results of studying the
neutron diffraction spectra [4, 5]) lead us to conclude
that nominally ferromagnetic Pd–Fe alloys should not
be treated as simple ferromagnets with exchange inter-
action of a single type. For detailed analysis of the mag-
netic properties of these alloys, one must take into con-
sideration the presence of antiferromagnetic spin corre-
lations due to direct antiferromagnetic Fe–Fe
exchange. The presence of antiferromagnetic Fe–Fe
exchange shows up clearly in the observed evolution of
the spin structure of Pd–Fe alloys under the effect of
impurities.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
It is interesting to compare the revealed special fea-
tures of the magnetic behavior of Pd–Fe alloys with the
well-known properties of Pd–Mn magnetic alloys [9].
In the case of a low concentration of manganese, Pd–
Mn alloys are ferromagnetic; however, at a concentra-
tion of above 4 at. % Mn, a transition to the state of spin
glass is observed. It is well known that this transition is
caused by direct antiferromagnetic Mn–Mn exchange
[9]. One can assume that the behavior of two systems of
alloys, Pd–Fe and Mn–Fe, is qualitatively similar; how-
ever, the balance between competing exchange interac-
tions in Pd–Mn alloys is strongly biased in favor of
direct antiferromagnetic exchange between magnetic
centers. This may be caused both by a stronger antifer-
romagnetic Mn–Mn interaction (compared to the simi-
lar Fe–Fe interaction) and by a weaker polarization of
the palladium matrix in Pd–Mn alloys.
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on the Thickness of the Chrome Interlayer and on Temperature

S. O. Demokritova, A. B. Drovosekovb, N. M. Kreinesb, 
H. Nembacha, M. Rickarta, and D. I. Kholina, *

aUniversität Kaiserslautern, Kaiserslautern, 67653 Germany
bKapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334 Russia

*e-mail: kholin@kapitza.ras.ru
Received June 22, 2002

Abstract—A three-layer sample of Fe(100 Å)/Cr(0–20 Å)/Fe(100 Å) is used to study the dependence of inter-
layer exchange on the thickness of the chrome interlayer and on temperature. The method of Kerr magnetom-
etry in the temperature range from 77 to 473 K and the method of Brillouin scattering of light by spin waves at
room temperature are used. The data for magnetization curves and spin wave spectra are treated in the model
of biquadratic exchange. The range of validity of this model is established, which is apparently determined by
interlayer exchange. The resultant dependence of the constant of bilinear interaction on the interlayer thickness
demonstrates an oscillating behavior with two oscillation periods of about 3 and 18 Å. Within the experimental
error, the magnitude of this constant, the amplitude, and the period and phase of its oscillation are independent
of temperature. It is found that the constant of biquadratic exchange decreases in inverse proportion to the
chrome thickness, the proportionality factor decreasing linearly as the temperature rises. In order to interpret
the observed singularities in the behavior of the biquadratic exchange constant, a theoretical model is sug-
gested which includes the nonideality of the interface and the presence of magnetic hardness in the chrome
interlayer. This rigidity exceeds in magnitude the interaction on the interface between iron and chrome. The
suggested model gives an adequate qualitative description of the experimental results. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of interlayer interaction between
ferromagnetic layers via a nonferromagnetic interlayer
in multilayer metal structures (superlattices) remains
urgent as before. This interaction is treated in a large
number of experimental and theoretical studies. The
results of those studies were described in a number of
review papers (see, for example, [1–6]). At present, it
has been found that, in the case of rather thin (from sev-
eral to tens of angstroms) interlayers, this interaction
brings about magnetic ordering of a multilayer struc-
ture. Depending on the interlayer thickness, ferromag-
netic or antiferromagnetic ordering of magnetic
moments of neighboring ferromagnetic layers may be
realized. Noncollinear magnetic ordering is observed in
many structures; i.e., an angle other than zero or π is
observed between the moments of neighboring ferro-
magnetic layers. In the majority of cases, all of the
magnetic structures identified above are described rela-
tively well within the theory of biquadratic exchange,
with the interaction energy represented in the form of
the sum of two contributions, namely, a contribution
which is bilinear with respect to the magnetizations of
neighboring layers and describes the regular (Heisen-
berg) exchange with the interaction constant J1 and a
contribution which is biquadratic with respect to these
magnetizations with the constant J2,
1063-7761/02/9506- $22.00 © 21062
(1)

Here, m1 and m2 are unit vectors directed along the
magnetizations of ferromagnetic layers and θ is the
angle between them. Depending on the sign of J1, the
first term in formula (1) describes the ferromagnetic or
antiferromagnetic ordering of the superlattice. When
the constant J2 is positive, the second term has a mini-
mum at θ = 90° and, therefore, the combination of two
contributions may, generally speaking, produce an arbi-
trary angle θ; i.e., it brings about noncollinear magnetic
ordering in a multilayer structure.

As was experimentally demonstrated in a number of
studies, the dependence of bilinear exchange on the
thickness of the chrome interlayer is oscillating and
includes two harmonics with periods of 3 and 18 Å [5].
This behavior of interlayer interaction finds a theoreti-
cal explanation within the framework of models based
on the RKKY theory [6–8] and that treat the interaction
of localized magnetic moments of iron as proceeding
via the conduction electrons of chrome.

For interpreting the effect of noncollinear magnetic
ordering in the structures being treated, a number of
authors suggested that the models of indirect exchange
via conduction electrons should include higher order

EBQ J1 m1 m2⋅( ) J2 m1 m2⋅( )2+=

=  J1 θ J2 θcos
2

.+cos
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corrections leading to the emergence of additional
terms in the effective energy of interlayer interaction
[9]. However, the estimation of the magnitude of these
corrections produces values of the constant J2 that are
two orders lower than the actually observed values.

In view of this, the so-called extrinsic models of
emergence of noncollinear ordering are treated, i.e.,
models which either include the roughness of the inter-
layer boundaries (the fluctuation model of [10] and
magneto-dipole mechanism of [11]) or presume the
presence of magnetic impurities within the nonmag-
netic interlayer (the loose spin model [12]). The above-
identified models bring about a biquadratic (over the
magnetic moments of iron layers) addition in expres-
sion (1); the value of the constant J2 may, in principle,
turn out to be fairly high.

Of special interest are systems in which the nonfer-
romagnetic interlayer exhibits an antiferromagnetic
structure of its own. First of all, this applies to Fe/Cr/Fe
and Fe/Mn/Fe systems. In order to explain the emer-
gence of noncollinear magnetic ordering in such super-
lattices, Slonczewski [13] proposed the mechanism of
“magnetic proximity” (or “torsion” model) allowing
for the presence of intrinsic magnetic hardness in the
interlayer. He obtained a form of the energy of interac-
tion between the neighboring layers of ferromagnetic
material in a superstructure, which was different from
the model of biquadratic exchange,

(2)

Here, θ is the angle between the magnetizations of
neighboring ferromagnetic layers, and C1 and C2 are
phenomenological constants. Schreyer et al. [14] used
this model to describe the experimental data obtained
by the method of neutron scattering in a Fe/Cr superlat-
tice, and Pierce et al. [15] used it to describe the prop-
erties of a three-layer Fe/Mn/Fe system.

For the same class of objects, as an alternative to the
model of biquadratic exchange, Levchenko et al. [16]
point to the possibility of emergence in a sample of a
peculiar domain structure in the presence of fairly
large, atomically smooth regions on the interface.
Unfortunately, the results of Levchenko et al. [16] are
presented in a form which makes difficult their compar-
ison with the available experimental data.

In what follows, we will restrict ourselves to treating
the data pertaining to a Fe/Cr system.

This system has already been under investigation for
two decades, and it is in this system that such effects as
antiferromagnetic and noncollinear magnetic ordering
and giant magnetoresistance were observed for the first
time. Nevertheless, by virtue of the complexity of the
electronic and magnetic structure of chrome, the ques-
tion of the mechanism of interlayer exchange through
the chrome interlayer remains open. Intensive experi-
mental and theoretical investigations of this system are
being continued.

ESloncz C1θ
2 C2 θ π–( )2.+=
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The pattern of the magnetic structure of the chrome
interlayer as a function of the interlayer thickness and
of the temperature in Fe/Cr superlattices was studied
experimentally, in particular, using neutron scattering
(for more detail, see [5, 17]), and theoretically [18, 19].
The experimentally obtained phase diagram of chrome
in a superlattice differs essentially from the respective
phase diagram of bulk chrome. It contains two lines of
characteristic temperatures and an additional region
which, according to Schreyer et al. [17], corresponds to
the presence of a long-range magnetic order with a
commensurable wave of spin density. Men’shov and
Tugushev [19] proposed a mechanism predicting the
formation of a short-range antiferromagnetic order with
a spin density wave in chrome in the vicinity of the
Fe/Cr interface. Men’shov and Tugushev [19] demon-
strated that the redistribution of the discharge (and, as a
consequence, spin) density in the neighborhood of the
interface between the layers in the case of low values of
the interlayer thickness causes instability of the para-
magnetic phase at temperatures significantly exceeding
the Neel temperature for bulk chrome. Men’shov and
Tugushev [19] further used this approach to interpret
noncollinear magnetic ordering observed in superstruc-
tures of the type of Fe/Cr/Fe [20]. They made a micro-
scopic substantiation of the model of “biquadratic
exchange” and specified the restrictions of its range of
validity with respect to the interlayer thickness, the
temperature, and the degree of roughness of the inter-
face between layers.

The results of investigations of Fe/Cr superlattices
by different methods demonstrate that, in quite a num-
ber of cases, the model of biquadratic exchange given
by Eq. (1) adequately describes the available experi-
mental data [2, 4]. Nevertheless, a number of authors
interpret the results obtained using the model of “mag-
netic proximity” given by Eq. (2) [5, 17].

We have previously investigated ferromagnetic-res-
onance spectra and magnetization curves of a series of
[Fe/Cr]n superlattices at room temperature [21, 22]. The
experimentally obtained data for samples with the
chrome interlayer thickness within 7.7–14 Å could be
adequately described within the model of biquadratic
exchange. However, the absolute values of the constant
J2 (for one and the same value of the chrome interlayer
thickness), obtained in different studies (including our
work) as a result of treatment of experimental data
using Eq. (1), differ considerably from one another. The
reasons for such divergence are discussed in numerous
papers (in maximum detail in [5, 23]) and are associ-
ated with the microscopic difference in the structural
characteristics of the samples being investigated. For
the choice of the model of interlayer interaction to be
better justified, it appeared useful to experimentally
investigate its temperature dependence. This problem
was raised in a number of studies performed on three-
layer samples of Fe/Cr/Fe using different experimental
techniques. In [24, 25], the method of ferromagnetic
SICS      Vol. 95      No. 6      2002
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resonance was used; in [26, 27], the method of Bril-
louin scattering of light and the magnetooptical Kerr
effect; and in [28], a vibrating-coil magnetometer. The
experimental data obtained were used to determine the
temperature dependences either of the saturation fields
HS [25, 28] or of the exchange constants J1 and J2 [24,
26, 27] obtained using the model of biquadratic
exchange.

The results of studies into the temperature depen-
dence of interlayer interaction obtained by us, which
involved the use of the method of ferromagnetic reso-
nance in two [Fe/Cr]n superlattices with chrome inter-
layers 10 and 11 Å thick in a wide temperature range
from 400 to 2 K, were given in [29, 30]. It has been
demonstrated that the model of biquadratic exchange
describes well the resonance spectra of the investigated
lattices in the investigated temperature range.

In all of the studies referred to above, the obtained
temperature dependences of saturation fields or of
exchange constants for both three-layer and multilayer
samples pertain only to several concrete values of the
chrome interlayer thickness. Such limited data prevent
one from making sufficiently reliable inferences about
the validity of various theoretical models. Moreover, an
added complication consists in the difficulty of ensur-
ing the same quality of the interfaces for different sam-
ples.

Much more complete information may be obtained
by studying the dependences of interlayer interaction
on the intermediate layer thickness and on the temper-
ature in a three-layer sample with a wedge-shaped
chrome interlayer. In this case, by using the magne-
tooptical investigation methods, one can perform mea-
surements in one and the same sample while continu-
ously varying the interlayer thickness tCr. In doing so, in
addition to obtaining information about the temperature
dependence of biquadratic exchange, it is possible to
study the temperature dependence of the phase and
amplitude of the oscillation of biquadratic exchange. To
the best of our knowledge, no such systematic investi-
gations of the temperature dependence of interlayer
interaction J1(tCr) and J2(tCr) were performed hereto-
fore.

The object of our investigation was a three-layer
sample of Fe/Cr/Fe with a wedge-shaped chrome inter-
layer. For this sample, the Kerr magnetometry was used
to investigate the magnetization curves for different
values of interlayer thickness at different temperatures.
On the same sample, spectra of Brillouin scattering of
light by magnetic excitations were taken at room tem-
perature for different values of chrome thickness. The
obtained dependences were discussed in detail within
different theoretical concepts. The treatment of the
experimental data within the model of biquadratic
exchange resulted in revealing the range of validity of
this model. In order to interpret the obtained depen-
dences of the constant of biquadratic interaction on the
chrome interlayer thickness and on temperature, a
JOURNAL OF EXPERIMENTAL
model is suggested which takes into account the pres-
ence of magnetic ordering in chrome and the roughness
of the interlayer boundary.

2. SAMPLE AND MEASUREMENT 
PROCEDURE

We studied a three-layer sample of Fe(100 Å)/Cr(0–
22 Å)/Fe(100 Å) with a wedge-shaped chrome inter-
layer whose thickness varied from zero to 22 Å over a
length of 10 mm. The sample was grown by molecular-
beam epitaxy. The substrate was provided by an MgO
plate 10 × 10 mm in size and oriented in the (100)
plane, onto which was deposited a thin (10 Å) seeding
film of iron followed by a buffer layer of silver 1500 Å
thick. The sample was grown at a substrate temperature
of 200°C. The [001] crystallographic axis of the iron
and chrome films coincided with a normal to the sample
plane. The single-crystal type and orientation of the
resultant structure were monitored by the method of
low-energy electron diffraction (LEED).

In the thus grown sample, measurements were per-
formed of magnetization curves in the temperature
range from 77 to 473 K and of spectra of Brillouin scat-
tering of light by heat spin waves at room temperature.

The magnetization curves were measured using the
magnetooptical Kerr effect. Magnetic field was applied
in the sample plane. At room temperature, the meridi-
onal Kerr effect was used; i.e., the magnetic field lay in
the plane of incidence of light (for more detail about the
classification of magnetooptical effects, see [31, 32]).
At temperatures above and below room temperature,
the configuration of the experimental apparatus enabled
one to use only a much weaker equatorial Kerr effect.
As a result, the precision of measurement of magneti-
zation curves at room temperature was appreciably
higher than at other temperatures. A light beam was
focused on the sample surface in a spot of approxi-
mately 0.3 mm. The magnetic field varied in the range
from −4 to 4 kOe. The magnetization curves were taken
in succession at points spaced 0.1 mm from one another
over the wedge length, this corresponding to a step of
variation of the chrome interlayer thickness of about
0.2 Å. After scanning along the entire sample was com-
pleted, the temperature was varied and measurements
at the new temperature were performed. This procedure
was used to measure series of hysteresis curves for
seven values of temperature, namely, 77, 127, 175, 226,
276, 373, and 473 K.

Given in Fig. 1 in the form of a three-dimensional
diagram is the set of all magnetization curves measured
in the chrome thickness–magnetic field–relative mag-
netization coordinates, the latter coordinate being M/MS,
where MS is the saturation magnetization. The figure
shows the presence of regions with both ferromagnetic
and nonferromagnetic ordering and the oscillation of
the saturation field with the variation of the interlayer
thickness.
 AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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Fig. 1. A series of hysteresis loops recorded at room temperature for different values of the chrome interlayer thickness.
The Brillouin scattering of light by heat spin waves
was investigated at room temperature using a spectrom-
eter incorporating a high-contrast multipass tandem
Fabry–Perot interferometer [33]. The light source was
provided by an argon laser (wavelength, 514.5 nm;
operating power, 300 mW). The measurements were
performed in a backscattering configuration. A light
beam was focused on the sample in a spot of approxi-
mately 0.1 mm in diameter. The angle of incidence was
50°, which corresponded to a wave vector of magnons
being investigated of 1.57 × 105 cm–1. The incident beam
polarization lay in the plane of incidence, while the
observation of scattered light was performed in cross
polarization. Magnetic field was applied in the sample
plane normally to the plane of light incidence. The Bril-
louin spectra were taken in succession at points spaced
0.2 mm from one another, this corresponding to a step
of 0.4 Å over the chrome interlayer thickness.

Examples of experimental records of spectra for an
interlayer thickness of tCr = 8.3 Å are given in Fig. 2.
Plotted on the horizontal axis on the graph is the fre-
quency shift of scattered light, and on the vertical axis,
the scattering intensity (number of photons per channel
for the time of signal accumulation, which amounted to
approximately 20 min). The exhibited curves were
obtained at one and the same point of the sample for
three values of magnetic field specified in the graph. In
each record, the arrows indicate the positions of two
lines of Brillouin scattering corresponding to the opti-
cal and acoustic modes of spin waves of the system
being investigated. The dependence of the spin-wave
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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Fig. 2. Examples of experimental records of Brillouin
spectra for a chrome interlayer thickness of 8.3 Å. The
arrows indicate the positions of two lines of Brillouin
scattering.
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frequency on magnetic field is given in Fig. 4 and will
be discussed below.

3. EXPERIMENTAL RESULTS
AND THEIR DISCUSSION

3.1. Choice of Model

The authors of a large number of papers devoted to
the investigation of Fe/Cr/Fe multilayers managed to
interpret the obtained experimental data within the
framework of the model of biquadratic exchange given
by Eq. (1) [4, 5, 23, 34, 35]. In particular, in [21, 22] this
model made possible a successful description of the

5 Å

8 Å

15 Å

M
/M

S
1.0
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–1.0

–2 0 2
H, kOe

Fig. 3. Examples of records of hysteresis loops for three val-
ues of the chrome interlayer thickness, taken at room tem-
perature. The points indicate the experimental data. The
continuous lines indicate the results of calculation using the
model of biquadratic exchange.

f, 
G

H
z

40

20

0 2 4
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Fig. 4. The frequency shift of scattered light as a function of
magnetic field for tCr = 8 Å at room temperature. The dots
indicate the experimental data: solid dots, acoustic mode of
spin waves; hollow dots, optical mode of spin waves. The
continuous lines indicate the results of calculation using the
model of biquadratic exchange.
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magnetization curves and spectra of ferromagnetic res-
onance of [Fe/Cr]n superlattices. In view of this, we will
analyze our experimental data using, first of all, the
model of biquadratic exchange.

Shown in Fig. 3 are three hysteresis loops obtained
for different values of the chrome interlayer thickness.
The measurements were performed at room tempera-
ture in a magnetic field applied along the four-fold hard
magnetization axis in iron. One can see in the figure
that the experimentally obtained curves demonstrate
significantly different values of the saturation fields and
residual magnetization. Solid curves plotted in the
same graph are the results of calculation of magnetiza-
tion curves in the model of biquadratic exchange.

In the calculation, the energy of a three-layer
Fe/Cr/Fe sample per unit area was written in the follow-
ing form:

(3)

where J1 and J2 are the constants of bilinear and biqua-
dratic exchange; M1 and M2 denote the magnetization
of iron layers; d is the thickness of iron films; Keff is the
effective coefficient of uniaxial anisotropy, which
includes a demagnetizing field and surface anisotropy
of iron films; and Ha is the four-fold anisotropy field
with easy magnetization axes x, y, and z (the z axis is
perpendicular to the sample plane). In order to con-
struct a magnetization curve, the energy given by
Eq. (3) was numerically minimized in the directions of
magnetizations M1 and M2 in the presence of external
magnetic field H. The constants J1 and J2 were selected
such as to reach the best fit with the experimentally
obtained magnetization curves. For determining Ha, we
also used magnetization curves measured along the
easy axis of anisotropy of iron. The obtained value of
Ha = 500 Oe corresponds to the known value of cubic
anisotropy of bulk iron. Figure 3 demonstrates that the
magnetization curves obtained in our sample may be
quite successfully described within the model of biqua-
dratic exchange in a fairly large range of chrome thick-
ness.

Figure 4 gives a spin wave spectrum measured for
the interlayer thickness tCr = 8 Å. The spectrum consists
of two vibration branches, namely, optical (solid dots)
and acoustic (hollow dots). The solid curves in the
graph indicate the results of calculation of the spectrum
of spin waves of a three-layer Fe/Cr/Fe system in the
model of biquadratic exchange. In calculating the spec-
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+
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------- M1 M2⋅( )2 d
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trum, the equilibrium orientation of the magnetic
moments of iron was determined, as in the case of cal-
culation of the magnetization curves, by way of numer-
ical minimization of the energy given by Eq. (3). After
this, the magnetic excitation frequency was calculated
using the formulas derived by Rezende et al. [35]. The
data in Fig. 4 correspond to the same interlayer thick-
ness as the middle magnetization curve in Fig. 3 (shown
by hollow squares). In calculating the magnetization
curve and the spectrum, the same values of J1 and J2
were used, which were determined from the experi-
mentally obtained magnetization curve. The calculated
curves are in excellent agreement with experiment, and
this further supports the view that the model of biqua-
dratic exchange is suitable for describing both the static
and dynamic properties of the system being investi-
gated.

Schreyer et al. [14, 17] used Slonczewski’s model of
“magnetic proximity” given by Eq. (2) to describe their
experimental results. In view of this, note the following.
The magnetization curves calculated using the model of
“magnetic proximity” reach saturation asymptotically,
whereas our experimental curves have, as a rule, a well-
defined saturation point. Nevertheless, because of the
shape of these curves, it is not always that one can give
preference to some or other model. The decisive argu-
ment in favor of the model of biquadratic exchange is
the form of spin wave spectra. The calculation of these
spectra using the model of “magnetic proximity” for a
three-layer sample was performed by Chirita et al. [36].
A qualitative difference exists in the behavior of the
optical mode for these two mechanisms. In the model
given by Eq. (1), the frequency of the optical mode
exhibits a clearly defined minimum in the saturation
field, which corresponds well to our experimental data
(see Fig. 4). In the model given by Eq. (2), the fre-
quency of this mode increases monotonically with the
magnetic field, which is obviously inconsistent with
our data.

Therefore, the model of biquadratic exchange in the
majority of cases enables one to adequately describe
both the magnetization curves and the magnon spectra
for our sample. However, a more detailed analysis
reveals that, for certain values of the chrome interlayer
thickness, this model gives significant deviations from
experiment. This may be demonstrated very clearly if
we construct magnetization curves in the H/M, M2

coordinates. In the case where the behavior of the sys-
tem corresponds to the model of biquadratic exchange,
the magnetization curve before saturation must be
described by the equation

(4)

where 

H AM BM3,+=

A
4J1 8J2–

dMS
2

-----------------------
Ha
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-------, B–
16J2

dMS
4

----------- 2
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MS
3

-------–= =
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(it is assumed that the field is applied along the hard
magnetization axis of anisotropy of iron) [22]. In the
H/M, M2 coordinates (this construction is also referred
to as the Arrott plot), this region must appear as a
straight line segment reaching saturation values behind
the kink. Given in Fig. 5 are two magnetization curves
measured for chrome interlayers of different thick-
nesses. The first curve (triangles) has a clearly defined
linear segment, with the prediction graph being in good
agreement with experiment (broken solid line). The
second curve (circles) has no linear segment; therefore,
it is poorly described by the model of biquadratic
exchange. The fitting of this curve using the model of
biquadratic exchange (broken dashed line), suggested
in Fig. 5, is rather subjective.

Figure 6 gives the dependence of the quantity J2 +
2J2 on the interlayer thickness tCr, obtained from the
magnetization curves and from the spin wave spectra
at room temperature. It is this combination of
exchange constants that defines the saturation field HS

of the multilayer structure and is related to this field,
in the case of a field applied along the hard magnetiza-
tion axis, as [22]

(5)

The hollow dots in the graph indicate the data
obtained from the Brillouin spectra. Unfortunately, for
most of the values of the interlayer thickness, these
spectra were measured much less thoroughly than is
demonstrated in Fig. 4; therefore, in treating the spec-
tra, the region of magnetic fields above the saturation
field of the multilayer structure was primarily involved.
This fact will be of importance in what follows.
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Fig. 5. Magnetization curves in Arrott coordinates for two
values of the chrome interlayer thickness (hollow dots,
5.7 Å; hollow triangles, 11.6 Å). The continuous and
dashed curves indicate the results of calculation using the
model of biquadratic exchange.
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The solid dots and hollow triangles indicate the data
obtained from the magnetization curves, and the differ-
ence between them consists in the following. As was
already mentioned, for some values of the chrome layer
thickness, the magnetization curves were poorly
described by the model of biquadratic exchange. In
these cases, the procedure of extracting exchange con-
stants from these curves is ambiguous, if at all legiti-
mate. Such curves (Fig. 5, hollow dots) were treated by
two methods. The first method consisted in trying to
best describe the magnetization curve using the model
of biquadratic exchange, i.e., identify in the Arrott plot
a segment which may be regarded as linear and use this
particular region in fitting (dashed curve in Fig. 5). The
use of this procedure produced the data shown in Fig. 6
by solid dots. The second, much more objective,
method of treatment consisted in extracting the combi-
nation of exchange constants J1 + 2J2 with the aid of
formula (5), using only the real value of the saturation
field for the given curve, i.e., the point at which the dif-
ference of the sample magnetization from saturation
magnetization becomes indistinguishable from noise.
This method was used to obtain the data shown in Fig. 6
by hollow triangles. If the model of biquadratic
exchange was valid for all values of the interlayer thick-
ness, the solid dots and hollow triangles in Fig. 6 would
have coincided. The difference between them, though
qualitative, is a fairly clear indicator of the deviation of
the system behavior from that predicted by the model of
biquadratic exchange.

Of great importance is the comparison of the value
of exchange obtained by the method of Brillouin scat-
tering of light (hollow dots) with the values obtained
from the magnetization curves. Given a chrome thick-

J 1
 +

 2
J 2

, e
rg
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0 5 10 15 20
tCr, Å

Fig. 6. The total exchange J1 + 2J2 as a function of the
thickness of the chrome interlayer: hollow dots, data
obtained by the method of Brillouin scattering of light; solid
dots and hollow triangles, data obtained from the magneti-
zation curves.
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ness in excess of approximately 8 Å, the treatment of
magnetization curves and spin wave spectra produces
one and the same result (the exception is provided by
regions with a negative value of total exchange, where
the magnetization curves are purely ferromagnetic and
give no way of determining the true value of interlayer
interaction). The model of biquadratic exchange offers
excellent agreement with experiment for these values
of chrome thickness. In the case of a smaller thickness
of interlayers (the values of tCr < 2.5 Å are omitted from
treatment, because it is most probable that so thin a
layer of chrome is not continuous), the Brillouin data
faithfully reproduce the curve obtained from Kerr mea-
surements by the second method, i.e., using only the
value of the saturation field (hollow triangles). This
coincidence is observed even in the case where the
magnetization curves have an “irregular” shape and the
solid dots in Fig. 6 deviate significantly from the hollow
dots and triangles.

One can fairly easily explain the agreement between
the values of J1 + 2J2 obtained by the method of Bril-
louin scattering of light and from the saturation field of
magnetization curves. As was already mentioned, the
points above the saturation field of the structure were of
first importance in treating the spectra. In this case, the
spin wave frequencies depend on the form of the first
terms in the expansion of the energy of interaction
between two layers of iron in the vicinity of the value
θ = 0 of the angle between magnetizations. The same
local form of the interaction energy defines the instant
of complete collapse of magnetizations of iron layers.
For any recording of the interlayer interaction energy,
its behavior in the vicinity of θ = 0 will be defined by a
single parameter which is the same for the magnetiza-
tion curves and for the spin wave spectra. Agreement
between the data obtained from the Brillouin spectra
and from the value of the static saturation field (Fig. 6)
is indicative only of the fact that the deviation of the
magnetization curves from the shape predicted by the
model of biquadratic exchange is not a result of the
nonuniform behavior of the sample on scales smaller
than the light spot diameter, or of any other imperfec-
tion of the measurement procedure.

It is of importance that the range of validity of the
model of biquadratic exchange in our case is restricted
by the value of interlayer exchange rather than by the
chrome interlayer thickness. One can see in Fig. 6 that
the model is hardly valid in the vicinity of the maxima
of the saturation field, at a value of total exchange J1 +
2J2 * 1.5 erg/cm2. In the vicinity of the minima of the
saturation field, even for values of thickness of less than
5 Å, the model becomes valid again.

3.2. Dependence of the Interlayer Interaction 
Constants on the Interlayer Thickness

Figure 7 shows the constants J1 and J2 as functions
of the chrome interlayer thickness tCr at room tempera-
AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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ture. Our data on Brillouin scattering of light proved to
be insufficient for reliable division of interlayer
exchange into bilinear and biquadratic; therefore, the
values of exchange given in Fig. 7 were derived from
the magnetization curves. The points for which the
model of biquadratic exchange produced poor agree-
ment with experiment are indicated in the graph by
rhombs instead of dots, and the division of exchange
into J1 and J2 for these points is rather conventional.
Nevertheless, the remaining data prove to be quite suf-
ficient for describing the basic regularities of the behav-
ior of exchange constants depending on the interlayer
thickness.

It is known that the RKKY theory in the case of
chrome predicts at least two oscillation periods in the
dependence of bilinear exchange J1 on the interlayer
thickness, namely, short-wave oscillations with a
period of about two monolayers and long-wave oscilla-
tions with a period of the order of ten monolayers. In
this case, the long-wave oscillation amplitude decays in
inverse proportion to the square of interlayer thickness,
as in the case of free electrons, and the short-wave
oscillation amplitude decays simply in proportion to
the inverse thickness because of the nesting effect [5, 8,
9]. So, the formula for J1 in the RKKY theory is given
by an expression such as

(6)

where q1 and q2 define the short and long periods of
exchange oscillations, ϕ1 and ϕ2 are the phases, and

 and  are the amplitudes of these oscillations.

The solid curve in Fig. 7 is a result of fitting the
experimentally obtained dependence J1(tCr) by a two-
period function of the form of (6) and is described by
the equation

(7)

where the energy constants are taken to be measured
in erg/cm2, and the thickness, in ångströms. So, the
bilinear exchange has two oscillation periods, namely,
2.9 and 19 Å, which corresponds well to the existing
concepts [5].

It is more interesting to discuss the damping rate of
the exchange oscillations. As was already mentioned,
the RKKY model predicts the 1/tCr dependence for the
short-wave oscillation amplitude; this corresponds,

with the accuracy available to us, to our result of 1/ .

As to the long-wave oscillation amplitude, the 1/
dependence obtained by us does not correspond to the
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predicted dependence 1/ . This result, however, can
hardly be regarded as reliable, because our thickness
range covers only one long-wave period.

One must say a few words about the exchange oscil-
lation phase. The technology of sample growing pre-
vented us from exactly determining the position of the
initial point of the wedge-shaped chrome interlayer.
This causes an error of 1–2 Å in determining the abso-
lute value of interlayer thickness at each point. There-
fore, it does not appear possible to compare the short-
wave oscillation phase with, for example, the results of
[23]. The wedge gradient was monitored with an accu-
racy of at least 95%, this leading to an error of 1 Å or
less for a thickness of 20 Å.

We will now describe the dependence of the con-
stant of biquadratic exchange on the interlayer thick-
ness. The fluctuation model of [10] takes into account
the nonideality of the Fe–Cr interface. In view of the
presence of fast oscillation of the sign of exchange inte-
gral, the interface roughness causes competition
between the ferromagnetic and antiferromagnetic
states; as a result, noncollinear ordering arises in a mul-
tilayer structure, which is described by the biquadratic
term in the interaction energy equation (1), with the
constant of biquadratic interaction defined by the
expression

(8)

where A is the exchange hardness of a ferromagnetic
layer of thickness D and L is the width of steps on the
interface. In accordance with formula (6), the ampli-
tude of short-wave oscillation J1 decreases in inverse
proportion to the interlayer thickness; so, the biqua-
dratic interaction in this model decreases with thick-

ness as 1/ .
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Fig. 7. The constants J1 (solid dots) and J2 (hollow dots) as
functions of the thickness of chrome interlayer. The curves
indicate the calculation results.
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The approximation of experimentally obtained
curve J2(tCr) at room temperature by a power function

of the form A/  gives the exponent α = 1.2 ± 0.2. This
is significantly closer to the inverse proportionality than

to the dependence 1/  predicted by the fluctuation
model. The dashed curve in Fig. 7 is a result of fitting
the experimentally obtained curve of J2(tCr) to a func-
tion of the form A/tCr and is described by the equation

(9)

with the same units of measurements as in formula (7).
The dotted curve in Fig. 7 indicates the result of fit-

ting of the dependence J2(tCr) within the model of [12].
We do not give the appropriate formulas for the reason
of their awkwardness. One can see in the figure that this
model enables one to quite successfully describe the
dependence of the constant of biquadratic exchange on
the interlayer thickness. However, the required value of
the energy of interaction between impurity spins and
ferromagnetic layers must amount to approximately
1000 K, and the related oscillation amplitude of bilin-
ear exchange must be three orders of magnitude higher
than the experimentally observed value. This difference
causes doubts in the validity of the loose spin model of
[12] in our case.

3.3. Temperature Dependence
of Interaction Constants

Figure 8 gives the dependences J1(tCr) for three dif-
ferent temperatures. One can see that, within our error,
the value of the constant of bilinear exchange does not
vary with temperature. In spite of the wide scatter of
experimental data, one can maintain that the phase and
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Fig. 8. Bilinear exchange as a function of interlayer thick-
ness for three values of temperature. The data were obtained
from the magnetization curves.
JOURNAL OF EXPERIMENTAL
period of oscillation of J1(tCr) are independent of tem-
perature.

The weak temperature dependence of bilinear
exchange may be readily understood within the RKKY
model. According to this theory [8], the temperature
dependence of the constant J1 has the form

(10)

In this formula, the characteristic temperature T0 is of
the order "vF/2πkBtCr, where vF is the Fermi velocity
for electrons involved in interlayer exchange. This
velocity is, generally speaking, different for the Fermi
surface regions responsible for the long-wave and
short-wave exchange oscillations; however, the substi-
tution of the typical values of vF ~ 108 cm/s and tCr ~
20 Å gives a value of T0 ~ 1000 K. This high value of
T0 explains well the fact that the value of J1 is almost
constant in the temperature range from 0 to 500 K.

Figure 9 gives the dependence of the constant J2 on
the chrome interlayer thickness at 77 and 473 K. The
biquadratic exchange is observed to increase with
decreasing temperature. The J2(tCr) dependence was

best described by a function of the form /tCr (solid
curves in Fig. 9) for all temperatures values.

Figure 10 gives the temperature dependence of the

parameter  defining the dependence of the constant
of biquadratic exchange on thickness at each tempera-
ture value. In the investigated temperature range, this
dependence may be described as linear (solid curve in
Fig. 10), although the observed experimental error per-
mits more complex interpretations of this dependence.
If this linear dependence is extrapolated into the region
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Fig. 9. Biquadratic exchange as a function of interlayer
thickness for two values of temperature. The data were
obtained from the magnetization curves.
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of higher temperatures, the biquadratic exchange in our
structure must go to zero at a temperature of about
650 K. This value is much lower than the Curie temper-
ature in iron and is much higher than the Néel temper-
ature in bulk chrome. However, it is close to the temper-
ature of transition to the paramagnetic phase, which is
observed in thin chrome layers adjoining iron [37]. This
agreement is an indirect argument in favor of the fact
that it is to the unusual structure of chrome that the
observed biquadratic exchange owes its origin.

Before proceeding to the next section, we will for-
mulate once again some of our results which cannot be
explained within the existing theoretical models. First,
the dependence of biquadratic exchange on the chrome
interlayer thickness has the form 1/tCr, which contra-
dicts the fluctuation model of [12] which is often used
in interpreting experimental data. Second, the tempera-
ture dependence of biquadratic exchange indicates that
its origin is closely related to the antiferromagnetic
order in the chrome interlayer. As a rule, the models
taking into account the presence of intrinsic magnetic
order in the interlayer lead to forms of notation of the
interlayer interaction energy other than biquadratic
exchange [13, 20] or predict too small a magnitude of
this exchange [20]. Furthermore, the results of
Men’shov and Tugushev [20] cannot be directly applied
to our experimental data because the interlayer thick-
ness in our sample is too small.

4. UPDATED FLUCTUATION MODEL
OF BIQUADRATIC EXCHANGE

In order to interpret the foregoing data, a model is
suggested which takes into account the presence of
magnetic structure in chrome and the interface rough-
ness. Under these conditions, if the layers of iron are
assumed to be uniformly magnetized, the total energy
of a multilayer system is made up by the bulk energy of
the chrome interlayer and by the surface energy of
interaction on the interface between Fe and Cr. In dis-
tinction to Slonczewski’s model of magnetic proximity,
in which the interaction on the interface prevails over
the interaction within chrome and brings about a strong
distortion (twisting) of the chrome structure, we will
treat the inverse situation of weak exchange on the
interface between Fe and Cr. This situation brings about
only a weak distortion of the chrome structure. In order
to calculate the energy, we will deal with a simplified
case, in which one interface is ideally smooth and the
other represents a periodic series of monatomic steps,
as demonstrated in Fig. 11. In addition, we will proceed
from the simplified concept of chrome as a layered anti-
ferromagnet with localized spins. In this case, the dis-
tortion of the chrome structure is characterized by a
deflection of the antiferromagnetic vector. One can see
in the figure the averaging of exchange interaction
because of the roughness of the upper interface; there-
fore, the fluctuations of the antiferromagnetic vector
occur in the vicinity of the direction of magnetization of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the bottom layer of iron. In the case of a fairly thin
interlayer and large terraces, the deflection of the anti-
ferromagnetic vector in chrome may be assumed to be
uniform over the thickness and, therefore, the value of
this deflection ϕ may be treated as a function of the
coordinate x alone (Fig. 11). In the suggested model,
the surface part of energy may be written in the form

(11)

where J0 is the exchange interaction between iron and
chrome on the surface. The bulk part of energy is

(12)

ES J0 ϕcos xd yd

S

∫ J0 ϕ θ–( )cos xd yd

S1

∫+=

– J0 ϕ θ–( )cos xd y,d

S2

∫

EV tCr A
ϕd
xd

------ 
 

2
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Fig. 10. The parameter , which describes the dependence

of biquadratic exchange on the interlayer thickness, as a
function of temperature. The points indicate the experimen-
tal data; the straight line indicates the results of linear
approximation of these data.
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Fig. 11. The updated fluctuation model of the emergence of
biquadratic exchange.
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where A is a parameter characterizing the magnetic
hardness of chrome. The dependence E(θ) is found by
minimization of the total energy E(θ, ϕ) = ES + EV with
respect to ϕ. The pattern of this dependence may be
estimated as follows. The surface and bulk contribu-
tions to energy per unit area are given by

(13)

(14)

From the condition of minimum of ε = εS + εV, we
find

(15)

We derive

(16)

i.e., the biquadratic form of energy. The expression for
the constant of biquadratic interaction has the form

(17)

with J2 being inversely proportional to the interlayer
thickness tCr. The condition of smallness of the angle of
deviation of magnetic order in chrome from the middle
position will be written as

(18)

In this case, the condition of disregarding the depen-
dence of the deviation angle ϕ on the coordinate z
reduces to the simple expression

(19)

The suggested model is similar to the fluctuation
model of Slonczewski [13] with the difference that we
treat the distortion of the magnetic structure of chrome,
while Slonczewski deals with the distortion of magne-
tization of ferromagnetic layers. Therefore, it is not sur-
prising that the result coincides with that obtained using
the fluctuation model, with the parameters characteriz-
ing chrome being replaced by the respective parameters
for iron.

In the foregoing reasoning, chrome was treated as a
regular antiferromagnet with localized spins; in reality,
however, the magnetic structure of chrome is a spin
density wave in which, generally speaking, a correla-
tion exists between the amplitude and angle of twisting.

εS J0

J0

2
----- ϕ1 θ–( )cos

J0

2
----- ϕ2 θ–( )cos–+≈

≈ J0
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2
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εV tCrA
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2
–≈ ε0 J2 θcos
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2L2
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J0L2
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---------------- ! 1.

tCr ! L.
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Therefore, for the calculation results to remain valid,
one must impose an additional condition that the con-
tribution to energy due to the nonuniform distribution
of the amplitude of spin density wave should be insig-
nificant.

5. CONCLUSIONS

We will briefly formulate the main inferences made
as a result of applying an integrated experimental
approach to studying the interlayer interaction in a
Fe/Cr system.

A three-layer Fe/Cr/Fe sample with a wedge-shaped
chrome interlayer was used to measure the magnetiza-
tion curves (by the method of magnetooptical Kerr
effect) in the temperature range from 77 to 473 K and
the spin wave spectra (by the method of Brillouin scat-
tering of light) at room temperature for different values
of thickness of the chrome interlayer (0–20 Å) in a
magnetic field parallel to the sample plane and directed
along the hard magnetization axis. The acoustic and
optical modes of spin wave oscillation were observed in
Brillouin spectra.

It has been demonstrated that the experimentally
obtained magnetization curves and spin wave spectra
measured at room temperature are well described
within the model of biquadratic exchange for almost all
values of chrome interlayer thickness. The range of
validity of this model has been determined, which is
apparently defined by the interlayer exchange.

The data for magnetization curves were used to cal-
culate the dependence of the exchange constants (bilin-
ear, J1, and biquadratic, J2) on the chrome layer thick-
ness for different values of temperature.

In accordance with the literature data, the obtained
dependence J1(tCr) exhibits an oscillating pattern with
two periods of oscillation of 3 and 19 Å and, by and
large, is well described within the RKKY theory. It has
been demonstrated that, within the experimental error,
the magnitude, amplitude, period, and phase of oscilla-
tion of J1(tCr) are independent of temperature in the
temperature range employed.

Unlike bilinear exchange, the magnitude of biqua-
dratic exchange J2(tCr) was found to significantly
depend on the temperature T.

For all temperature values involved, the magnitude
of biquadratic exchange has been shown to decrease in
inverse proportion to the chrome interlayer thickness

and to be described by the formula J2(tCr) = /tCr,

where  is a temperature-dependent coefficient.
The models of biquadratic exchange available in the lit-
erature lead to other J2(tCr) dependences.

The magnitude of  in the range of 77–473 K
has been found to decrease linearly with rising temper-
ature. The extrapolation of the obtained straight line of

J2
0 T( )

J2
0 T( )

J2
0 T( )
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 to the region of high temperatures leads one to
assume that the constant of biquadratic exchange goes
to zero in the neighborhood of 600–700 K. According
to the results of diffraction of neutrons by Fe/Cr super-
lattices [17], in this temperature region, with the inter-
layer thickness ranging from 10 to 20 Å, chrome
changes into a paramagnetic state.

In order to interpret the new experimental results
pertaining to the behavior of the biquadratic exchange
constant , a theoretical model has been suggested which
takes into account the nonideality of the interface
between the Fe and Cr layers and the presence of mag-
netic hardness in the structure in the chrome interlayer.
In doing so, the magnetic hardness of chrome was
assumed to exceed the interaction between iron and
chrome on the interface. It must be emphasized that,
though being simplified, the employed model enables
one to fairly well describe the experimentally obtained
data.
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Abstract—Conductance anomalies at low bias voltages and superconducting currents in Au/YBa2Cu3Ox and
Nb/Au/YBa2Cu3Ox heterojunctions in which the c axis of the YBa2Cu3Ox (YBCO) epitaxial film is rotated in
the (110) YBCO plane through 11° with respect to the normal to the substrate plane were studied experimen-
tally. The films were prepared by laser deposition onto (7 2 10)-oriented NdGaO3 substrates. The current–volt-
age characteristics of the heterojunctions exhibit conductance anomalies at low voltages. The behavior of these
anomalies is studied at various temperatures and in various magnetic fields. The critical current and Shapiro
steps observed in the current–voltage characteristics of Nb/Au/YBa2Cu3Ox were evidence of the Josephson
effect in these heterojunctions. The experimental results are analyzed in terms of the model of the arising of
bound states caused by Andreev reflection in superconductors with d-type symmetry of the superconducting
order parameter. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It has been established that most metal oxide super-
conductors with high critical temperatures of the super-
conducting transition (high-Tc superconductors) are
characterized by a complex symmetry type of the
superconducting order parameter, in which the 

component dominates (d-wave superconductors) (e.g.,
see review [1]). As distinguished from superconductors
with a completely isotropic (s) symmetry type of the
superconducting order parameter (s-wave supercon-
ductors), the superconducting order parameter in
d-wave superconductors changes sign under quasiparti-
cle momentum rotations over 90° in the ab plane.

In tunnel junctions between a d-wave superconduc-
tor (D) and a normal metal (N/D, where the slash
denotes the tunnel barrier), an s-wave superconductor
(S/D), or another d-wave superconductor (D/D'), quasi-
particles experience Andreev reflection in addition to
the usual mirror reflection. An additional phase shift π
arises for incident and Andreev-reflected quasiparticles
when the superconducting order parameter of a d-wave
superconductor changes sign.

Such phenomena are, for instance, observed in an
N/D contact with the (110)-oriented d-wave supercon-
ductor. A sequence of mirror and Andreev reflections of
quasiparticles then causes the formation of Andreev
bound states with low energies (zero-energy states,
ZES) on the (110) surface of d-wave superconductor.
These states are localized close to the interface at a dis-

d
x

2
y

2–
1063-7761/02/9506- $22.00 © 21074
tance of about the coherence length [2].1 As a result, a
peak of the density of states is formed on the Fermi sur-
face, which manifests itself by the appearance of a con-
ductance anomaly in the current–voltage characteristic,
that is, a zero bias conductance peak (ZBCP) [2–4].

Studies of the tunnel spectra of high-Tc materials, in
particular, YBa2Cu3Ox (YBCO), are impeded by the
small coherence length of the material (≈3 nm) and the
high sensitivity to crystal lattice defects and to the pres-
ence of impurities. At the same time, ZBCP was exper-
imentally observed in N/D and S/D heterojunctions [5–
9], bicrystal and ramp-type junctions [10, 11], and in
point contacts of a scanning tunneling microscope [12].
Currently, of two possible reasons for the appearance of
conductance anomalies in N/D heterojunctions (the
presence of magnetic impurities in the barrier [5] and
ZES on the d-wave superconductor surface [2]), prefer-
ence is given to the second mechanism. Theoretical
studies predict the existence of ZES on d-wave super-
conductor crystallographic planes somewhat different
from the (110) plane [4], for instance, on faceted (100)
surfaces [13]. These theoretical predictions have been
confirmed experimentally [7–9]. Splitting of ZES in a
strong magnetic field observed in [6–8] has been
explained by a Doppler shift of ZES levels caused by a
screening current flow, that is, by excitation of the is

1 If the d-wave order parameter is suppressed near the interface,
bound states with finite energies can also be formed in N/D con-
tacts [2].
002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Schematic representation of growth of (1 1 20) YBCO films on (7 10 2) NdGaO3 substrates. The rotation angles of the
a, b, and c crystallographic axes of the YBCO film with respect to the a', b', and c' axes of the standard (001)-oriented YBCO film
on the (110) NdGaO3 substrate are aa' = 7.6°, bb' = 7.9°, and α ≡ cc' = 11°. (b) Technological sequence for preparing Nb/Au/YBCO
heterojunctions.

α

Photoresist
component in the surface layer of d-wave superconduc-
tors [13].

In this work, we report the results obtained in an
experimental study of Au/YBCO and Nb/Au/YBCO
heterojunctions on single-domain YBCO films pre-
pared on (7 10 2)-oriented NdGaO3 (NGO) substrates
[14]. The temperature and magnetic field dependences
of ZBCP were determined for heterojunctions of both
types. Superconducting current was observed in
Nb/Au/YBCO heterojunctions, and changes in the
shape of the current–voltage characteristics under the
action of electromagnetic monochromatic millimeter-
range radiation were studied.

2. GROWTH OF FILMS AND THE PROCEDURE 
FOR PREPARING HETEROJUNCTIONS

The tunnel heterojunctions were prepared on
(7 10 2)-oriented NGO substrates tilted by angle α ≈
11° from the (110) plane of NGO, which is used for
growing (001)-oriented YBCO films. As a result, the c
axis of the YBCO film grown on such a tilted substrate
was rotated in the (110) YBCO plane over 11° with
respect to the normal to the substrate plane; that is, the
orientation of the YBCO film was close to (1 1 20)
(Fig. 1a). Epitaxial YBCO films 150 nm thick were
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
laser deposited at 770–790°C in oxygen at a pressure of
0.6 mbar. The films had a critical temperature of Tc =
85−90 K, which was measured by the magneto-induc-
tion method.

Microbridges 20 µm long and 4 µm wide, parallel to
substrate sides (the [20 0 1] and [0 20 1] directions in
Fig. 1a), were used to measure the critical current den-
sity in YBCO films. At T = 77K, the critical current
density in the microbridges of one of the samples
was 7.5 × 104 and 2.0 × 104 A/cm2 with an anisotropy
of 3.75. X-ray diffraction patterns of YBCO films
grown on NGO substrates with the (7 10 2) orientation
showed these films to be single-domain and that they
demonstrate the presence of a single twin complex [14],
in contrast, for instance, to YBCO films on SrTiO3 sub-
strates with the (110) orientation and NGO substrates
with the (120) orientation [14–16].

The morphology of the YBCO films was studied by
atomic force microscopy. The surface of the films on
tilted NGO substrates with the (7 10 2) orientation con-
sisted of large-sized growth steps, which formed ter-
races much wider and higher than those present on the
substrate surface (Fig. 2a). The long and short sides of
growth steps were oriented in the (001) and (110)
planes of YBCO, respectively (segments AA and BB in
Fig. 2b). For this reason, the total transport current in
SICS      Vol. 95      No. 6      2002
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Fig. 2. Profile of the surface of YBCO films with a (1 1 20) orientation measured with an atomic-force microscope: (a) three-dimen-
sional image of a 0.8 × 0.8 µm2 surface region; (b) surface profile along the white line in Fig. 2a; AA and BB are the (001) and (110)
YBCO film growth steps, respectively; and (c, d) flattened YBCO film surface profiles in the AA and BB regions, respectively.
planar Au/YBCO and Nb/Au/YBCO heterojunctions
prepared on such YBCO films was the sum of currents
flowing through contacts to the (001) and (110) crystal-
lographic planes of YBCO films. Because of conduc-
tance anisotropy, the major current fraction flowed
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0
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Fig. 3. Temperature dependences of resistance of hetero-
junctions of two types, Nb/Au/YBCO (solid line) and
Au/YBCO (dashed line), measured at a 1 µA bias current. The
dotted line is the dependence R[kΩ] = 0.11 + 3exp(–T[K]/85),
which closely approximates the Rd(T) dependence for the
Au/YBCO heterojunction at T > Tc = 53 K.
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through facets with the (110) orientation of the YBCO
film [17].

Detailed studies of the morphology of the surface of
YBCO films on the facets with the (001) and (110) ori-
entations (AA and BB, respectively) showed that the
maximum surface roughness was of 1–2 lattice con-
stants of the YBCO film (see Figs. 2c, 2d). The root-
mean-square surface roughness values on the AA and
BB facets equaled h(001) ≈ 0.6 nm and h(110) ≈ 1.3 nm,
respectively. Taking into account the quasiparticle
wavelength in the ab plane, λab ≈ "/  ~ 10 nm (" is

the Planck constant, and  is the quasiparticle
momentum on the Fermi surface of YBCO), we could
consider reflection of quasiparticles from the
Au/YBCO interface as mirror reflection and the inter-
face itself as consisting of a sequence of disoriented
facets [13, 18]. Note that, for YBCO films deposited
onto a (110)-oriented NGO substrate (α = 0), the sur-
face is (001)-oriented and its maximum roughness
equals 3−4 nm (see Fig. 4a in [19]). Growth steps
appear as α increases, and their height amounts to η ≈
20 nm (see Fig. 2b) on (7 10 2)-oriented NGO sub-
strates (α ≈ 11°).

In preparing Nb/Au/YBCO heterojunctions, the
deposited YBCO films were coated with gold (film
10 nm thick) immediately after cooling to room tem-
perature without loss of vacuum (in situ). Additional Au
and Nb layers for Au/YBCO and Nb/Au/YBCO hetero-
junctions were deposited in other vacuum chambers by
electron-beam evaporation and radiofrequency magne-

pFab

pFab
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30, 35, 40, 45, and 55 K. The dotted line is the parabola that approximates the σ(V) dependence at T = 55 K. The dashed line cor-
responds to the σ(V) dependence at 4.2 K for Au/YBCO heterojunctions on (001)-oriented YBCO films [19]. The σ(V) dependences
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the inset. The solid line is the Lorentzian approximation of the σ(V) dependence.
tron sputtering.2 The deposition of Au films for
Au/YBCO heterojunctions was performed with loss of
vacuum (ex situ). Heterojunctions with sizes of 5 × 5 to
30 × 30 µm2 were produced by photolithography and
ion-beam etching in argon. The insulating SiO2 layer
deposited by the electron-beam method allowed the
region of current flow to be localized and undesirable
contacts at the ends of YBCO films to be excluded. Up
to 20 heterojunctions were usually prepared on a 5 × 5 mm2

substrate. The technological sequence for preparing
Nb/Au/YBCO heterojunctions is shown in Fig. 1b.

The electrophysical parameters were measured
using the four-point scheme in the current-bias mode in
the temperature range T = 4.2–300 K and magnetic
fields up to 5 T and under electromagnetic radiation of
frequencies of 40–100 GHz. The results of electrophys-
ical parameter measurements at T = 4.2 K are listed in
the table.

2 As distinguished from Pb used in [5, 7], Nb does not mix with Au
when deposited on it. Note that the direct Nb/YBCO contact has
a very large characteristic resistance [19].
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3. RESULTS AND DISCUSSION

3.1. Temperature Dependences 
of Heterojunction Resistances

The temperature dependences of resistances R of
Au/YBCO and Nb/Au/YBCO heterojunctions mea-
sured at a current of 1 µA are shown in Fig. 3. The resis-
tance of the Au/YBCO heterojunction increases expo-
nentially as temperature decreases at T * 53 K; at T &
53 K, the R(T) dependence deviates from exponential.
No substantial change in R at T ≈ Tc is observed for the
Au/YBCO heterojunction because the RN resistance of
the heterojunction itself3 is much larger than the Re

resistance of YBCO leads. This behavior is typical of
heterojunctions prepared by depositing Au films ex
situ. The accompanying escape of oxygen atoms from
the surface layer of YBCO decreases interface transpar-
ency. The characteristic interface resistance r ≡ RNA,
where A is the area of the heterojunction, varies in the
wide range 10–2–10–6 Ω cm2 depending on the tech-
nique for heterojunction preparation. In particular, the

3 For Nb/Au/YBCO heterojunctions, RN ≡ R(Tc), and for
Au/YBCO heterojunctions, the RN value was determined from
current–voltage characteristics as a maximum resistance at 4.2 K.
SICS      Vol. 95      No. 6      2002
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Heterojunction parameters

No. A, µm2 Ic , µA RN , Ω RNA, 
mΩ cm2 IcRN, µV ∆V, mV

T = 4.2 K
σ0/σmin

T = 4.2 K

Nb/Au/YBCO J9 10 × 10 45 6 0.006 270 – –

J10 20 × 20 10 15 0.06 150 – –

J11 30 × 30 13 12 0.108 156 – –

J12 30 × 30 2 40 0.36 80 – –

Au/YBCO J9 10 × 10 – 2900* 2.9* – 5.65 1.37

J10 20 × 20 – 7200* 28.8* – 9.14 1.25

J11 20 × 20 – 6700* 26.8* – 6.6 1.81

J13 30 × 30 – 1400* 12.6* – 6.4 1.57

J16 20 × 20 – 2700* 10.8* – 4.8 1.65

Note: The RN values for Au/YBCO heterojunctions determined from current–voltage characteristics as maximum resistance values at 4.2 K
are labeled by asterisks.
resistance of heterojunctions with the Au/YBCO inter-
face formed by depositing the Au film ex situ increased
3–4 orders of magnitude compared with the resistance
of the Au/YBCO interface produced in situ. As the r
value unambiguously determines the interface transpar-
ency averaged over momentum directions 〈D(θ)〉 ≡ 

[19],  decreases as much as r increases.

The R(T) dependence was quite different at RN ! Re.
This inequality held if the Au film was deposited in situ,
as in the preparation of Nb/Au/YBCO heterojunctions.
The R(T) dependence for such a heterojunction is
shown in Fig. 3. A sharp decrease in R caused by the
transition of the leads into the superconducting state
was observed at T ≈ Tc = 53 K.4 Resistance R slowly
decreased as temperature decreased below Tc to the
temperature of the transition of the Nb electrode into
the superconducting state, TcNb ≈ 9.2 K. The Tc = 53 K
temperature coincided with the temperature at which
the R(T) dependence of the Au/YBCO heterojunction
deviated from the exponential curve. The R(T) depen-
dence for Au/YBCO and Nb/Au/YBCO heterojunc-
tions at T & Tc was determined by the “switching on” of
the current transport channel involving Andreev reflec-
tions as temperature decreased [20]. In our heterojunc-
tions, the influence of Andreev reflection strengthened
because of the presence of ZES at the boundary of the
d-wave superconductor [1, 2]. Note that a ZBCP
appeared in heterojunction current–voltage characteris-
tics only at T < Tc, which cannot be explained by the
presence of magnetic impurities in the barrier [5].

4 The critical temperature of the leads was low, Tc = 53 K, because
open ab planes of YBCO films were depleted of oxygen during
sample preparation.

D

D
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3.2. Broadening of Andreev States

Changes in the bias voltage dependence of conduc-
tivity σ(V) for the Au/YBCO heterojunction caused by
a decrease in temperature are shown in Fig. 4. At T > Tc,
the σ(V) dependence (the upper solid line in Fig. 4) can
be closely approximated by a parabola (the dashed line
in Fig. 4) in conformity to the tunnel theory of N/N'
junctions, taking into account a finite potential barrier
height [21]. At T < Tc, the σ(V) dependence deviates
from parabolic at low V voltages, and there appears a
conductivity peak at zero bias (that is, a ZBCP), which
increases as temperature decreases (the solid curves
from top to bottom in Fig. 4). The temperature at which
the R(T) dependence of the Au/YBCO heterojunction
deviates from exponential coincides with that of arising
ZBCP in the current–voltage characteristics. Note that,
for Au/YBCO heterojunctions prepared on c-oriented
films, no ZBCP is observed (see dashed lines in Fig. 4)
[19].

The σ(V) dependences for the Nb/Au/YBCO het-
erojunction in the temperature range 9–40 K are shown
in Fig. 5. These dependences are characterized by the
most pronounced ZBCP. At T > Tc, σ(V) ≈ const, which
corresponds to the tunneling of quasiparticles through a
delta-shaped barrier uniform across the junction area.
At T < Tc, the current–voltage characteristics of
Nb/Au/YBCO heterojunctions, like those of Au/YBCO,
contain ZBCP. Decreasing temperature increases the
amplitude and decreases the halfwidth (∆V) of conduc-
tivity anomalies for both types of heterojunctions (see
Fig. 6). Apart from thermal smearing of conductivity
anomalies, Andreev state levels broaden because of the
influence of finite ZES lifetimes. For a quasiparticle of
energy ε < ∆0 [∆0 is the amplitude energy gap value for
AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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a d-wave superconductor, ∆(θ) = ∆0cos(2θ)], the
N(ε, θ) density of states is written in the form [22]

(1)

where θ is the angle of incidence of the quasiparticle
with respect to the normal to the boundary and εb

describes the shift of ZES caused, for instance, by cur-
rent flow over the N/D interface. In (1), the Γ(θ) ~
"/τ(θ) parameter, where τ(θ) is the quasiparticle life-
time in ZES, characterizes level broadening. Generally,
Γ(θ) is determined by the tunneling of quasiparticles
Γtunn(θ), diffusive scattering caused by YBCO film
roughness Γdiff(θ), U-scattering of quasiparticles with
changes in the normal momentum component ΓU(θ),
and scattering by crystal lattice defects and impurities
Γimp [22]; that is,

(2)

If scattering by defects and impurities Γimp, which
does not depend on the direction of the quasiparticle
momentum, makes the predominant contribution to the
broadening of ZES in their formation, then, as follows
from (1) and (2), the ZBCP has the form of a Lorentzian
of width Γ. The experimental σ(V) dependences at low
voltages (V < 6 mV) are shown in the inset in Fig. 4 for
the Au/YBCO heterojunction at T = 4.2 K (turned over
open triangles) and for the Nb/Au/YBCO heterojunc-
tion at T = 10 K (open squares). The σ(V) dependence
of Au/YBCO heterojunctions is well approximated by
a Lorentzian (the solid line in the inset in Fig. 4).5 It fol-

5 The shape of the ZBCP of Au/YBCO heterojunctions remains
Lorentzian at T < Tc.

N ε θ,( )
π 1– Γ2 θ( )

ε εb–( )2 Γ2 θ( )+
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Fig. 5. The σ(V, T) dependences for Nb/Au/YBCO hetero-
junctions.
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lows that scattering by defects and impurities deter-
mines the halfwidth of ZBCP. The inset in Fig. 4 also
shows that the shape of the σ(V) dependence of the
Nb/Au/YBCO heterojunction is not Lorentzian.

In our experiments, the Au/YBCO interface was
formed with loss of vacuum (ex situ), and the surface of
the YBCO film before Au deposition was held under
atmospheric conditions for approximately an hour.
Interaction with the atmosphere causes the deposition
of various impurities such as CO2 and OH ions on the
surface of YBCO films. In addition, regions depleted of
oxygen, which are crystal lattice defects, are formed.
As a result, a large number of scattering centers are
formed in the surface layer of YBCO films. These cen-
ters can play the determining role in broadening ZBCP.
The degree of surface layer diffusivity at the Au/YBCO
interface can be characterized by the ρ = d/l parameter,
where d is the thickness of the disordered layer and l is
the quasiparticle mean-free path [4]. The ρ = 0 value
corresponds to the ideal Au/YBCO interface, and ρ =
∞, to a fully diffuse interface.

The σ0(T) temperature dependences of conductivity
at a zero bias voltage are shown in Fig. 6 for the
Au/YBCO (turned over solid triangles) and
Nb/Au/YBCO (open squares) heterojunctions. These
dependences are normalized to the minimum conduc-
tivity σmin(T) at the given temperature. For both types of
heterojunctions, the σ0/σmin(T) ratio monotonically
increases as temperature decreases. The σ0(T) depen-
dence for ρ = 0.1 constructed based on the calculations
performed in [4] is shown in Fig. 6 by a solid line. For
the Nb/Au/YBCO heterojunction, σ0(T) decreases as
temperature decreases more rapidly than this is predicted
in [4]. At the same time, the σ0(T)/σmin(T) normalized

3.0

2.5

2.0

1.5

1.0

0.10 0.2 0.3 0.4 0.5 0.6
T/Tc

σ0/σmin

Fig. 6. Experimental σ(V = 0, T) ≡ σ0(T) dependences for
Au/YBCO (turned over solid triangles) and Nb/Au/YBCO
(squares) heterojunctions calculated from current–voltage
characteristics and normalized by minimum conductivity
values σmin(T) at a given temperature. The solid line was
obtained in theoretical calculations [4] for ρ = 0.1.
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values for the Au/YBCO heterojunction differ several
times from the theoretical values at ρ = 0.1 [4]. Unfor-
tunately, data on ρ > 0.1, which correspond to our
experimental situation for Au/YBCO heterojunctions,
are absent in [4].

Tunneling, scattering by the rough surface of
YBCO, and scattering with a change in the quasiparti-
cle momentum direction are the mechanisms of broad-
ening of ZES that depend on the direction of incident
quasiparticle momenta. The probability of escape of
quasiparticles from ZES by tunneling through the bar-
rier increases as the barrier becomes more transparent,
which should increase Γtunn(θ) [23, 24]. In our experi-
ments with Nb/Au/YBCO heterojunctions, the  value
was, however, at least one order of magnitude larger
than for Au/YBCO heterojunctions, but the ∆V value
for Nb/Au/YBCO heterojunctions at low temperatures
was several times lower than for Au/YBCO heterojunc-
tions. For instance, at T = 10 K, ∆V equaled 1 and
6.8 mV for the Nb/Au/YBCO and Au/YBCO hetero-
junctions, whose conductivity anomalies are shown in
Fig. 6, respectively. It follows that in the heterojunc-
tions studied in this work, ∆V decreases as  increases,
and, therefore, the tunneling of quasiparticles is not the
factor that determines broadening of ZBCP.

The broadening of ZES, which results in a non-
Lorentzian shape of ZBCP, is likely to be determined
by two processes, namely, diffusion scattering caused
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Fig. 7. Dependences ∆σ(V, H) = σ(V, H) – σ(V, 0) at T =
4.2 K for Au/YBCO heterojunctions at magnetic fields of 0
to 5 T applied normally to the substrate surface. The curve
at H = 0 is a straight line passing through zero. Magnetic
field dependence of splitting calculated as half the distance
between ∆σ(V, H) dependence maxima and normalized by
∆0 = 20 meV is shown in the inset (squares). The solid line
in the inset corresponds to calculations by the model of the
generation of an additional s component of the order param-
eter in YBCO at a temperature below Ts & 7 K; ∆s-YBCO =
1.2 meV, ∆0 = 20 meV, H0 = 16 T, and Hc = 1 T [13].
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by YBCO film surface roughness and U-scattering of
quasiparticles with a change in the normal momentum
component. Experimental studies of the influence of
each of these processes on ZBCP broadening is hin-
dered by the necessity of determining the exact trans-
parency distribution over the junction area and angles θ
and the Γ(θ) dependences for each process.

3.3. Magnetic Field Dependences

When an N/D heterojunction is placed into a per-
pendicular magnetic field, screening currents are gener-
ated in superconductor D. These currents shift ZES lev-
els (the Doppler shift of levels) [13]. Similarly, sponta-
neous currents can also arise in the absence of an
external magnetic field if the transition to a mixed

 + is symmetry type of the superconducting order

parameter occurs on the surface of D, for instance,
when temperature decreases below some critical value
Ts. In both cases, ZES levels experience splitting. As a
result, the ZBCP peak in the N/D heterojunction splits
into two peaks.

The splitting of ZES levels in perpendicular mag-
netic field H is described by the formula [13]

(3)

where c is the velocity of light in vacuum, e is the
charge of the electron, vF is the Fermi velocity in the ab
plane of YBCO, and λL is the London penetration depth
in the c direction of YBCO. We studied Au/YBCO het-
erojunctions in magnetic fields up to 5 T perpendicular
to the substrate plane (the angle between the magnetic
field and the ab planes of YBCO was about 79°). No
splitting of ZBCP was directly observed in the σ(V)
dependences. However, if the σ(V) dependence at H =
0 is subtracted from the dependence measured in a
magnetic field, the presence of ZBCP splitting becomes
obvious (see Fig. 7).6 The dependence of ZBCP split-
tings on the magnetic field value, δ(H), for the
Au/YBCO heterojunction at T = 4.2 K is shown in the
inset in Fig. 7 (squares). In strong magnetic fields (H >
2 T), δ(H) is virtually constant and, qualitatively, can be
well approximated by the δ(H) dependence obtained
for the model of the Doppler shift of ZES levels caused
by the generation of an additional s component of the
superconducting order parameter at T < Ts (YBCO) ≈
7 K (the solid line in the inset in Fig. 7) [6, 13]. In this
case, the ZBCP should also split in a zero magnetic
field. This splitting was not observed in our experi-
ments although the condition T < Ts was satisfied
(also see Fig. 4). It was shown in [25] that zero-field
splitting of ZBCP disappeared in the transition of

6 This procedure for analyzing the experimental σ(V, H) depen-
dences was used because of small σ(V) changes under the action
of magnetic fields; a similar procedure was applied in [10, 11].
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superconductor D from excessive to deficient doping
with carriers. It is likely that the deficient level of dop-
ing with carriers caused by the depletion of oxygen
characterizes YBCO films in our experiments, which is
indirectly substantiated by the low temperature of the
transition to the superconducting state, Tc = 53 K. In
weak magnetic fields (H < 1 T), we do not have enough
experimental data to compare them with theory [13].

Recently, alternative explanations of ZES level
splittings in a magnetic field have been suggested.
Laughlin [26] relates these splittings to the formation of
a magnetic moment in samples in a magnetic field.
Deutscher et al. [25] suggest the existence of the idxy

component of the superconducting order parameter in
high-Tc superconductors, spontaneous or induced by an
external magnetic field. In the latter case, the δ(H)
dependence is nonlinear.

3.4. The Influence of Andreev States 
on Superconducting Current 

in Nb/Au/YBCO Heterojunctions

The current–voltage characteristics of the
Nb/Au/YBCO heterojunction (sample J9) and the
dependence of the differential resistance Rd(V) on volt-
age at T = 4.2 K are shown in Fig. 8. The narrow max-
imum at V = 0 and the dip of the Rd(V) dependence at
V = 1.2 mV characterize the Josephson current and the
superconducting energy gap of Nb (∆Nb), respectively.
The wide Rd(V) minimum at V < 5 mV corresponds to
the ZBCP. The dependence of the energy of Andreev
bound states on phase difference ϕ of the superconduct-
ing order parameters of the electrodes that form the
Josephson junction determines the superconducting
current (e.g., see [27–29]),

(4)

where the summation over n is over all states with ener-
gies En. For contacts between two identical s-wave
superconductors, we have

(5)

where ∆1 is the amplitude of the order parameter in the
s-wave superconductor. Substituting (5) into (4) yields
the well-known sine phase dependence of the supercon-
ducting current Is(ϕ) = Icsinϕ obtained by Ambegaokar
and Baratoff for tunnel transitions [30]. Note that the
energies of Andreev bound states are close to the super-
conducting energy gap for tunnel junctions from
s-wave superconductors (  ! 1).

For the Andreev bound states of the contact between
an s-wave superconductor (∆1) and the (110) plane of a
d-wave superconductor (S/D(110)), we have not only lev-

Is ϕ( ) θncos
En θ ϕ,( )d

ϕd
---------------------- f En θ( )( ) θ,d

π/2–

π/2

∫
n

∑∝

En θ ϕ,( ) ∆1 1 D θ( ) ϕ /2( )sin
2

– ,±=
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els (5) but also ZES levels at ε ! ∆0 [27–29, 31],
namely,

(6)

It follows from (4) and (6) [29] that, as in S/S junctions,
Ic ∝   and IcRN ~ ∆0/e in S/D(110) junctions at low tem-

peratures kT ! ∆0 (k is the Boltzmann constant), but
Is(ϕ) is substantially different from the sine depen-
dence, Is(ϕ) ~ cosϕ (0 < ϕ < π) [case (a)]. At higher

temperatures, ∆0 ≤ kT, we have Ic ∝  2, IcRN ~

/ekT, and Is(ϕ) ~ sin2ϕ [case (b)]. The
Nb/Au/YBCO heterojunctions studied in this work are
characterized by  ~ 10–5. It follows that, at ∆0 =

20 meV, ∆1 < 0.01 K, and we have case (b) at T =

4.2 K. For instance, IcRN ~ 2 µV at  ~ 10–5, which is
much smaller than the experimental value.

In addition, a low-temperature peak should be
noticeable in the Ic(T) temperature dependence of the
critical current if the superconducting current in
S/D(110) heterojunctions largely flows through Andreev
states [28, 29, 31]. The experimental Ic(T) critical cur-
rents in the Nb/Au/YBCO heterojunction (sample J9)
monotonically decrease as temperature increases. It
follows that the contribution of ZES to superconducting
current transfer in our experiments can be ignored and
the superconducting current in the Nb/Au/YBCO het-
erojunction flows through Andreev states close to the
superconducting energy gap, see (5). An alternative
explanation of the absence of a low-temperature Ic(T)
peak is a d-wave superconductor surface irregularity
(faceting). In our view, the determining factor for the
Nb/Au/YBCO heterojunction, as distinguished from
bicrystal junctions, is the low transparency of the

En ϕ( )
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Fig. 8. Current–voltage characteristic and Rd(V) for the
Nb/Au/YBCO heterojunction (sample J9) at T = 4.2 K.
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Au/YBCO interface, which decreases the influence of
the d-symmetrical component of the superconducting
order parameter of YBCO.

Close agreement between our experimental data and
the theoretical Ic(T) dependence for tunnel junctions
between different s-wave superconductors (S1IS2) (see
Fig. 9) is evidence of the predominance of the s-sym-
metrical component of the order parameter of YBCO
close to the Au/YBCO interface. Several experiments
showed the presence of an additional s component of
the superconducting order parameter of YBCO with
energy gap ∆s-YBCO. This s component is either excited
at the interface (see Section 3.3) or present in YBCO
because of its orthorhombic structure. The supercon-
ducting current is then determined similarly to a current
through a Josephson junction between two different
s-wave superconductors [32],

(7)

Equation (7) takes into account the proximity effect
existing between Au and Nb and responsible for the
induces order parameter with a critical temperature of

 ≤ TcNb in the Au interlayer because of the high trans-
parency of the Nb/Au interface. The dependence calcu-

lated by (7) with Ts = 7.4 K,  = 7.4 K, ∆1 = 1.2 meV,
and ∆0 = 20 meV shown in Fig. 9 by a solid line was
obtained on the assumption that the ∆s-YBCO(T) depen-
dence was determined by the classical Bardeen–Coo-
per–Schrieffer theory. Figure 9 shows that the Ic(T)
dependence calculated by (7) is in qualitative agree-

IcRN
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Fig. 9. Temperature dependence of the critical current for
Nb/Au/YBCO (sample J9).The solid line is the Ic(T) depen-

dence calculated by (7) with Ts = 7.4 K,  = 7.4 K,
∆1 = 1.2 meV, and ∆0 = 20 meV and with ∆s-YBCO(T) and
∆Nb(T) corresponding to the Bardeen–Cooper–Schrieffer
theory.

Tc'
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ment with the experimental dependence for
Nb/Au/YBCO heterojunctions.

3.5. Phase Dependence of Superconducting Current
in Nb/Au/YBCO Heterojunctions

Josephson current transfer through Andreev states
close to the superconducting energy gap does not
exclude the appearance of the second harmonic in the
Is(ϕ) dependence because of the d-symmetrical compo-
nent of the order parameter of YBCO. The Is(ϕ) depen-
dences of Josephson junctions in high-Tc superconduc-
tors are often determined by calculating them from
measured amplitude-frequency characteristics of a
radiofrequency resonator connected with an supercon-
ducting quantum interferometer, in which the Joseph-
son junction under study is shunted by superconducting
inductance coil L [33]. The main restriction in using
this method is the critical current value, which deter-
mines Josephson inductance, LJ = Φ0/2πIc (Φ0 is the
magnetic flux quantum). Reliable Is(ϕ) measurements
require the fulfillment of the condition L < LJ. At a real
inteferometer size of several dozen microns, the Ic cur-
rent for a Josephson junction should not exceed 10 µA,
which severely limits the selection of samples.

The Is(ϕ) value can also be determined by applying
a different technique based on measuring the depen-
dences of the critical current and the Shapiro steps in
the current–voltage characteristics of Josephson junc-
tions on the amplitude of external monochromatic elec-
tromagnetic radiaction Im(IRF) [34]. The appearance of
subharmonic Shapiro steps is evidence of deviations of
the Is(ϕ) dependence from a sinusoidal function. Sha-

1.2

0.8

0.4

2 4 6
IRF/Ic

0

Fig. 10. Dependences of critical current (circles) and the
first Shapiro step (triangles) observed in current–voltage char-
acteristics of the Nb/Au/YBCO heterojunction (sample J9)
on the amplitude of electromagnetic radiation of frequency
fe = 46.4 GHz normalized by Ic; T = 4.2 K. The solid and
dashed lines are the corresponding dependences according
to the resistively shunted model of Josephson junctions.

I/Ic
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piro steps appeared in the current–voltage characteris-
tic under the action of external electromagnetic mono-
chromatic radiation of frequency fe ≈ 46.4 GHz at volt-
ages corresponding to fe and its harmonics. At small
external radiaction amplitudes, the first Shapiro step
was symmetrical with respect to the autonomous cur-
rent–voltage characteristic, which was evidence of
coherence of Josephson generation in autonomous
junctions. We were, however, unable to detect subhar-
monic Shapiro steps in the current–voltage characteris-
tics. The accuracy of step amplitude measurements was
determined by the noise current of the measuring sys-
tem, which equaled the maximum deviation (in current)
of the current–voltage characteristic from the autono-
mous characteristic at Rd ≈ RN/2 in the vicinity of the
Shapiro step, that is, at half the normal resistance [34,
35]. The measured noise current in our experiments at
T = 4.2 K was If = 0.4 µA; therefore, arbitrary steps of
height Im * 2.5If could be detected. The maximum
amplitude of the first step was 11 µA, whereas subhar-
monic steps were not observed. It follows that the Is(ϕ)
dependence at T > 4.2 K in the junction subjected to
measurements corresponds to a sine dependence with
an accuracy of not lower than 9% of the autonomous
critical current value. The d-symmetrical order param-
eter of YBCO requires the presence of the second har-
monic in the Is(ϕ) dependence; its absence is likely to

be caused by the low transparency of the interface,  ~
10–4. At the same time, asymmetric (with a 45° angle)
bicrystal junctions are characterized by interface trans-
parency  ~ 10–2, and the second harmonic is present
in the corresponding Is(ϕ) dependences [36].

The dependences of the critical current and the
amplitude of the first Shapiro step on the radiofre-
quency current amplitude are shown in Fig. 10. The the-
oretical I1(a) and Ic(a) dependences, where a = IRF/Ic is
the experimental normalized radiofrequency current
value, which was determined by fitting the experimen-
tal I1(IRF) dependences (shown by solid lines) at the first
I1(a) minimum [34]. The I1(a) dependence is nonmono-
tonic, which corresponds to the dependence reported in
[34]. At the same time, Ic(a) oscillations are not
observed. The Ic current monotonically decreases as the
amplitude of external radiation increases. The Ic(H)
dependence shows a similar behavior. Note that both
the Ic(a) and I1(a) dependences of symmetrical bicrys-
tal junctions oscillate [37, 38].

The normalized external radiation frequency ω ≡
2π"fe/2eIcRN = 1.15 ± 0.15 for the fe = 46.4 GHz fre-
quency and the Ic = 13 µA and RN = 6.5 Ω values
obtained from the autonomous current–voltage charac-
teristics is somewhat different from ω = 0.75 ± 0.15
obtained from the frequency dependence of the maxi-
mum I1(a)/Ic(0) value [34]. The resistance is calculated
at voltages V > 20 mV, at which the tunnel anomaly
does not influence the current–voltage characteristic. In

D

D
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both cases, the major contribution to the error in fre-
quency ω calculations is made by the error in current Ic

measurements, which is caused by the deviation of the
current–voltage characteristic from the resistively
shunted model at bias currents close to Ic, whereas the
shape of the current–voltage characteristic corresponds
to this model in the vicinity of Shapiro steps. Note that
close agreement between the experimental and calcu-
lated dependences of Shapiro step heights on the external
signal amplitude is typical of symmetrical bicrystal junc-
tions [37, 38].

4. CONCLUSION

The experimental study of the electrophysical, mag-
netic, and microwave properties of Au/YBCO and
Nb/Au/YBCO heterojunctions prepared on single-
domain (1 1 20)-oriented YBCO films showed the pres-
ence of a conductance peak in the current–voltage char-
acteristics at low voltages. This is caused by the 

symmetry type of the order parameter of YBCO films.
The Lorentzian shape and the 1/T temperature depen-
dence of the ZBSP in Au/YBCO heterojunctions sug-
gest that its broadening is caused by scattering on impu-
rities and YBCO crystal lattice defects close to the
interface; this scattering is independent of the quasipar-
ticle momentum direction. The behavior of the ZBSP
splitting experimentally observed in magnetic fields up
to 5 T and the temperature dependence of the critical
current in Nb/Au/YBCO heterojunctions qualitatively
correspond to the theoretical model of an additional s
component of the superconducting order parameter
excited close to the surface of the superconductor when
temperature decreases below some critical value. The
study of Nb/Au/YBCO heterojunctions under the
action of millimeter-range electromagnetic radiation
revealed the absence of subharmonic Shapiro steps in
the current–voltage characteristics of the heterojunctions
with an accuracy of not lower than 9% of the autonomous
critical current value. This is evidence that the phase
dependence of the superconducting current in the hetero-
junctions under study is sinusoidal, as is typical of tunnel
junctions of low-temperature superconductors with s sym-
metry of superconducting order parameter.
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Abstract—A model is proposed for describing the luminescence and excitation spectra of paramagnetic ions
with the 3d3 electron configuration in gadolinium-containing crystals that is based on the approximation of
strong magnetic interaction between paramagnetic ions of transition metals and Gd3+ ions. This model provides
a satisfactory description for the abnormally large width of the R line of the Mn4+ ion in gadolinium–gallium
garnet. It is shown that the large Stokes shift in the luminescence spectrum of the Mn4+ ion in gadolinium–gal-
lium garnet relative to the excitation spectra is associated with the splitting of energy levels as a result of mag-
netic interaction. An algorithm is developed for calculating the spectral shape of the R line of Mn4+ in gadolin-
ium–gallium garnet. The possibility of determining the degree of sublevel broadening associated with the pres-
ence of inhomogeneities in the crystal and with thermal vibrations from an analysis of the width of the R line
is demonstrated as well as the exchange interaction constant. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In most materials, the R lines in the luminescence
spectra of paramagnetic ions with 3d3 electron configu-
ration are narrow lines with a halfwidth on the order of
1 cm–1 at liquid nitrogen temperature [1–6]. For exam-
ple, the following results are described in the literature
for the width of the R line for tetravalent manganese
ions in various materials with octahedral ligand sur-
roundings: ∆ ≈ 10 cm–1 for MgO : Mn4+ (T = 77 K) [7],
∆ ≈ 10 cm–1 for Y3Al5O12 : Mn4+ (T = 80 K) [8], and ∆ ≈
3 cm–1 for Li4Ge5O12 : Mn4+ (T = 50 K) [9]. Such a
broadening can be explained by inhomogeneities in the
energy position of the ion due to the presence of defects
in the lattice. Crystals containing gadolinium in the lat-
tice are characterized by a special (anomalous) mecha-
nism of broadening. For example, the width of the R
line of the Mn4+ ion in gadolinium–gallium garnet
(GGG) at 10 K attains 60 cm–1 [10]. Anomalous broad-
ening of the R line was studied in GdAlO3 : Cr3+ [11],
Gd3Sc2Al3O12 : Gr3+ [12], Gd3Ga5O12 : Cr3+ [13], and
Gd3Ga5O12 : Mn4+ [10, 14]. Brenier et al. [14] attributed
the R-line broadening to a strong electron–phonon
interaction ("ω = 8 cm–1, Huang–Riesz factor S = 4.2);
however, they abandoned this idea later [10], assuming
that the magnetic interaction of the paramagnetic ions
of transition metals with gadolinium ions Gd3+ is
responsible for the anomalous broadening of the R lines
in these crystals.

In addition to a considerable broadening of R lines,
an abnormally large Stokes shift in the emission spec-
trum relative to the excitation spectrum of the Mn4+ ion
in GGG was also detected [14].
1063-7761/02/9506- $22.00 © 21085
In this study, we propose a model for describing the
luminescence and excitation spectra of paramagnetic
ions with 3d3 electron configuration in gadolinium-con-
taining crystals, which is based on the approximation of
strong magnetic interaction of the paramagnetic ions of
transition metals with Gd3+ ions. This model satisfacto-
rily describes the abnormally large width of the R line
of the Mn4+ ion in GGG. It is shown that the large
Stokes shift in the luminescence spectrum of the Mn4+

ion in GGG relative to the excitation spectra is also
associated with energy level splitting as a result of mag-
netic interaction. An algorithm for calculating the spec-
tral shape of the R line of GGG : Mn4+ was worked out
from an analysis of the spin–spin interaction of the
manganese ion and six gadolinium ions surrounding it.
The developed model makes it possible to estimate the
degree of broadening of the sublevels due to the pres-
ence of inhomogeneities in the crystal and thermal
vibrations and to determine the exchange interaction
constant from an analysis of the width of the R line.

2. CONSTRUCTION OF THE MODEL 
OF INTERACTION OF A Mn4+ ION 
WITH Gd3+ IONS IN GGG : Mn4+

Analysis of the magnetic interaction of a manganese
ion and six gadolinium ions surrounding it is facilitated
by zero value of the orbital angular momentum of the
Gd3+ ion. Indeed, an analysis of the structure of unfilled
shells of Mn4+ and Gd3+ ions indicates the applicability
of the Russel–Saunders scheme, in which the orbital li

and spin si angular momenta can be regarded as addi-
tive independently and as forming the resultant orbital
002 MAIK “Nauka/Interperiodica”
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L and spin S angular momenta of the shell as a whole.
The total angular momentum of the shell can be defined
as the sum of the latter quantities. In accordance with
Hund’s rule, the term 8S (L = 0, S = 7/2) is the ground
energy level of the Gd3+ ion, while the ground energy
level of the Mn4+ ion is 4F (L = 3, S = 3/2) and the first
excited level of this ion is 2G (L = 4, S = 1/2). As a
result, the magnetic properties of these ions are mainly
determined by spin angular momenta.

We used the model of isotropic spin–spin interaction
[11] as the basis for calculating the shape of the R line
in the luminescence spectra of GGG : Mn4+. This model
is applicable due to the symmetry of the surroundings:
gadolinium ions are located at the sites of an octahe-
dron with a manganese (or chromium [11]) ion at the
center. Such symmetry exhibits many features in com-
mon with spherical symmetry. Moreover, in contrast to
other rare-earth garnets, GGG displays absolute mag-
netic isotropy [15], which ensures such unique proper-
ties of this material as the absence of a long-range mag-
netic order up to 25 mK [16].

Isotropic spin–spin interaction can be presented by
the Hamiltonian [11]

(1)

Here, J is the overlap integral and SMn and SGd are the
spins of the manganese ion and the total spin of the gad-
olinium ions surrounding it. The overlap integral for
Mn4+ in GGG was calculated in [10] from an analysis
of the Zeeman effect, J = 1.9 cm–1. The total spin SGd is

the vector sum  of six spins of the gadolinium ions
surrounding the manganese ion. At temperatures
approximately above 3 K, the spins can be regarded as
independent [15, 17] and Hamiltonian (1) splits into six

independent terms of the form H = . The
eigenvalues of these operators are given by

(2)

where Sk(Sk + 1)/2 is the eigenvalue of operator (Sk)2 =

(SMn + )2. Since  = 7/2, while the spin of a man-
ganese ion is SMn(4A2) = 3.2 in state 4A2 and SMn(2E) =
1/2 in state 2E, Sk(4A2) can assume values of 2, 3, 4, or 5,
while Sk(2E) can assume the value 3 or 4.

Summation of six values of Ek gives a set of possible
energy values for sublevels of terms 4A2 and 2E with dif-
ferent statistical weights. Indeed, E = –59.85 cm–1 can
be realized, for example, for the only combination of
spins of six gadolinium ions and a manganese ion, i.e.,
for their parallel arrangement. At the same time, the
value E = 6.65 cm–1 is realized for 180 combinations of
vectors.

H JSMn SGd.⋅–=

SGd
k

JSMn SGd
k⋅–

Ek
J
2
--- Sk Sk 1+( ) SGd

k SGd
k 1+( )–[–=

– SMn SMn 1+( ) ] ,

SGd
k SGd

k
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In order to determine the statistical weights of sub-
levels, a random quantity distributed uniformly and
assuming four discrete values (2) was juxtaposed to
each Gd–Mn pair. The corresponding expression for
the probability density has the form

(3)

where δi, j is the Kronecker delta.

The random quantity corresponding to all possible
values of energy of the sublevels is the sum of six ran-
dom quantities distributed according to law (3). The
independence of these random quantities is important
for the subsequent analysis. This corresponds to the
physical situation without spin ordering. Such a situa-
tion is realized at temperatures above the Curie point, at
which the crystal becomes paramagnetic. In this case,
in accordance with probability theory, the probability
densities of the sum of independent random quantities
can be represented in the form [18]

where the asterisk marks the convolution operation.

The values of p(E) for terms 4A2 and 2E are calcu-
lated in the Appendix.

3. CALCULATION OF THE SPECTRAL SHAPE 
OF THE R LINE OF RADIATION 
FROM Mn4+ ION IN GGG : Mn4+

Expressions (A.5) and (A.6) in the Appendix con-
siderably facilitate the calculation of statistical weights.
In accordance with these relations and Eq. (2), we cal-
culated the level splitting of the terms 4A2 and 2E. Fig-
ure 1 shows the position of the sublevels of these terms
and their statistical weights Ci. It can be seen that the
figure clearly reflects the closeness of the statistical
weight distribution to the normal distribution, which is
in accordance with the central limiting theorem [18].
Nevertheless, the patterns of splitting of the 4A2 and 2E
states differ considerably. In the former case, 57 sublev-
els are distributed quite chaotically in the interval from
−59.85 and 76.95 cm–1, while in the latter case there are
seven equidistant sublevels in the interval from −19.95
to 25.65 cm–1. The common feature of the two distribu-
tions is that the distribution peaks are displaced towards
the short-wave region by 2.85 cm–1 for the 4A2 term and
by 12.35 cm–1 for the 2E term. This fact is significant
since its disregard may lead to an incorrect interpreta-
tion of spectroscopic data used for calculating the crys-
tal field parameters.

The population of each sublevel is proportional to
f(Ei) = Ciρ(Ei), where

(4)

pk E( )
1
4
--- δEi E, ,

i 0=

3

∑=

p E( ) = pk E( ) * p
k E( ) * p

k E( ) * pk E( ) * pk E( ) * pk E( ),

ρ Ei( ) Ei/kT–( )exp=
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Fig. 1. Calculated splitting of 4A2 (a) and 2E (b) terms of the Mn4+ ion in GGG, associated with the spin–spin interaction.
is the Boltzmann function. Thus, knowing the position
and occupancy of sublevels, we can find the shape of
the optical transition line; the general expression for
this line has the form

(5)

where i and j label the sublevels of the initial and final
states, respectively, and Mij is the matrix element of the
i–j transition. To a high degree of accuracy, we can
assume that Mij is a constant quantity: Mij = M. In the
case when index i corresponds to the term 2E and j to
4A2, Eq. (5) describes the luminescence spectrum; in the
opposite case, we obtain the excitation spectrum.

It should be noted that the sublevels in Fig. 1 and in
expression (5) are presented by δ peaks. Experiments
show that real crystals always contain inhomogeneities,
which are manifested in a certain energy distribution
(broadening) of energy levels. For this reason, a Gaus-
sian distribution with a certain standard deviation σ
associated with the presence of inhomogeneities in the
crystal and thermal vibration should be used in actual
practice in Eq. (5) instead of the δ function. In this case,
expression (5) can be rewritten in the form

(6)

where

I "ω( ) ρ Ei( )CiC jMij
2 δ "ω Ei– E j+( ),

ij

∑=

I "ω( ) M2 ρ E( ) f 2 E "ω–( ) f 1 E( ) E,d∫=

f 1 2, E( )
Ci

2πσ
--------------

E Ei–( )2

2σ2
---------------------– .exp

i

∑=
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The value of the standard deviation σ is determined by
the crystal quality and temperature [19].

Curve 1 in Fig. 2 shows the shape of the R line for
the 2E  4A2 optical transition, calculated by formula
(5). At low temperatures, the line width is mainly deter-
mined by the splitting of the 4A2 term and displays a
weak temperature dependence determined by the tem-

4

655 660

I , rel. units

λ, nm
665

12

8

670 675

0

1

2

3

Fig. 2. R line of GGG : Mn4+ calculated by formula (6) for
σ = 0 cm–1 (curve 1) and σ = 20 cm–1 (curve 2) and experi-
mentally measured luminescence spectrum at 100 K
(curve 3).
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perature dependence of the Boltzmann distribution. At
extremely low temperatures, the calculated R line has a
minimal width of about 45 cm–1, which is in good
agreement with experimental data [10, 14, 20].

In [21], the Gaussian shape of the R line of
GGG : Cr3+ at T = 10 K was attributed to nonuniform
broadening. Our results show that the main contribution
to the line width at such temperatures comes from the
splitting of the 4A2 term. The Gaussian shape of the line
is due to multiple convolution of random quantities Ek.
It should be noted, however, that the shape of the emis-
sion and absorption lines at low temperatures is asym-
metric (Fig. 3). Figure 2 shows for comparison the
experimental luminescence spectrum of GGG : Mn4+

measured at T = 100 K [20] (curve 3). The difference in

4

655 660

I , rel. units

λ, nm
665

8

670 675
0

1 2
12

16

Fig. 3. Calculates shape of the R line in GGG : Mn4+ in the
excitation (curve 1) and luminescence (curve 2) spectra
at 10 K.

Temperature dependences of the width of the R line and sub-
level broadening for Mn4+ ion in GGG

T, K ∆(T), 
cm–1

∆0,
cm–1

∆V(T), 
cm–1 σ, cm–1 a0 = σ/∆V(T)

100 84 52 66 20 0.303

125 101 52 87 27 0.310

150 123 52 111 34 0.306

175 149 53 139 42 0.302

200 176 53 168 50 0.298

225 210 53 204 61 0.299
JOURNAL OF EXPERIMENTAL A
the halfwidths of curves 1 and 3 indicates the presence
of an additional broadening associated with inhomoge-
neities in the crystal and lattice vibrations. The use of
Eq. (6) instead of Eq. (5) makes it possible to take this
effect into consideration. For example, curve 2 in Fig. 2
shows the theoretical shape of the R line that best agrees
with experiments. In order to obtain the width ∆ =
84 cm–1 observed, we used the value σ = 20 cm–1 in
Eq. (6).

4. ANALYSIS OF THE SHAPE OF THE R LINE 
OF EMISSION FROM Mn4+ AND Cr3+ IN GGG

In order to analyze how the shape of the optical tran-
sition line depends on the degree of broadening of sub-
levels for several values of σ in the interval from 20 to
60 cm–1, the shape of the optical transition line was cal-
culated and the halfwidth determined. The values
obtained for GGG : Mn4+ and GGG : Cr3+ systems
obtained in this way are presented in the table and in
Fig. 4, respectively. For describing the observed nonlin-
ear dependences, the width of the R line was repre-
sented in the form

where ∆0 is the minimal width associated with the spin–
spin interaction and ∆V(T) is the contribution deter-
mined by lattice vibrations. These values were calcu-
lated and are presented the table. In addition to the
above-mentioned quantities, the table also contains the
values of σ at which the experimentally observed width

∆ T( )[ ] 2 ∆0
2 ∆V T( )[ ] 2,+=

6
0 1

∆, cm–1

δ, cm–1

7

32

8

9

Fig. 4. Calculated dependence of the width of the R line for
GGG : Cr3+ on the sublevel broadening associated with
inhomogeneities in the crystal (J = 0.24 cm–1). Dashed lines
mark the experimentally observed [11] width ∆ = 6.8 cm–1 of
the R line as well as the sublevel broadening δ = 0.8 cm–1.
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of the R line was attained (Fig. 5). The last column of
the table contains the ratio of the quantities σ and ∆V,
which clearly demonstrates their direct proportionality
with the proportionality factor a0 ≈ 0.3. This makes it
possible to estimate the value of σ from the known
width of the R line using the formula

where the value of ∆0 can be set equal to 50 cm–1 in a
wide temperature range.

The proposed model of level splitting makes it pos-
sible to determine such fundamental characteristics as
the exchange interaction constant J provided that the
width of the R line is known as well as the broadening
of individual sublevels. One can also obtain informa-
tion on the broadening δ of individual sublevels formed
as a result of the spin–spin interaction.

The value of J is usually determined by measuring
the luminescence spectrum in a strong magnetic field at
low temperatures. For example, GGG : Mn4+ samples
in [10] were placed in a magnetic field of strength 20 T;
as a result, a set of narrow lines was observed at 2.2 K
in the spectrum, the positions of which were deter-
mined both by exchange interaction and by the Zeeman
effect, which complicates the identification of individ-
ual lines. In the case of GGG : Mn4+, identification is
possible due to such an anomalously large value of J
that exchange splitting is many times stronger than the
Zeeman splitting. In the case of GGG : Cr3+ in the field
4.6 T attained in [13], the corresponding values of split-
ting are comparable, which ruled out the separation of
the exchange interaction component. However, the val-
ues of the width of the R line and an individual sublevel
given in [13] for T = 4.2 K are the same as in Fig. 5.

These data enabled us to calculate the exchange
interaction constant using the theory of the shape of the
R line developed in this section. Taking into account
expression (6), we calculated the dependence of the
width of the R line δ for GGG : Cr3+ on the broadening
δ of sublevels for different values of J. Figure 4 shows
the curve plotted for J = 0.24 cm–1.The agreement
between the experimental data is observed precisely for
this value (δ = 0.8 cm–1 corresponds to ∆ = 6.8 cm–1).
For other values of J, the curves lie either above or
below the curve depicted in Fig. 4.

The calculated exchange interaction constant J =
0.24 cm–1 is close to the value J = 0.25–0.33 cm–1

obtained in [12] for Gd2Sc2Al3O12 : Cr3+.

A considerable Stokes shift of the R line in the lumi-
nescence spectra relative to the excitation spectra,
which was mentioned in [10, 14], can also be explained
in terms of the spin–spin interaction. It was mentioned
above that Eq. (6) makes it possible to calculate not
only the luminescence spectrum, but also the excitation
spectrum. The corresponding shapes of spectral lines

σ T( ) a0 ∆2 T( ) ∆0
2

– ,=
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were calculated at various temperatures. For example,
Fig. 3 shows the excitation spectra (curve 1) and lumi-
nescence spectra (curve 2) for GGG : Mn4+, calculated
for T = 10 K. The model spectra are in excellent agree-
ment with the experimentally measured spectra (see
Fig. 8 in [10]). The difference between the positions of
the peaks at this temperature amounts to 68 cm–1, which
corresponds to the data described in [14].

The spectral shift is caused by nonuniform filling of
sublevels of the terms 4A2 and 2E in accordance with the
Boltzmann distribution (4). This is manifested in a
weak temperature dependence of the Stokes shift: upon
an increase in temperature, the shift decreases mainly
due to the displacement of the peak in the excitation
spectrum. However, to our knowledge, experimental
studies of this effect have not been reported in the liter-
ature.

5. CONCLUSIONS

We have proposed a model for describing the lumi-
nescence and excitation spectra for paramagnetic ions
with 3d3 electron configuration in gadolinium-contain-
ing crystals. The model is based on an assumption con-
cerning the dominating role of the magnetic interaction

14 380 14 390
E, cm–1

14 400 14 410 14 420

14 410 14 420
E, cm–1

6.8 cm–1

6.2 cm–1

1

2

0.6 cm–1

3
H = 4.6 T H = 0 T

Fig. 5. Emission spectrum for the 2E  4A2 transition in

GGG : Cr3+ at T = 4.2 K [11]: excitation to the 4A2  4T2
transition band (1), resonance excitation (2) (spectra 1 and 2
are measured in zero magnetic field), and resonance excita-
tion in the field 4.6 T (3).
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between paramagnetic ions of transition metals and the
Gd3+ ions as compared to the electron-phonon or any
other excitation. The shape of the R line in the excitation
and luminescence spectra of GGG : Mn4+ calculated on
the basis of this model was completely similar to the
experimental spectra and the values of the width of the
R line as well as the Stokes shift obtained by other
authors [10, 14].

It is shown in addition that the developed model
makes it possible to estimate the broadening of sublev-
els due to the presence of inhomogeneities and thermal
vibrations in the crystal and to determine the exchange
interaction constant from an analysis of the width of the
R line. Recent calculations made for Cr3+ ions in GGG
are in accord with the results obtained by other
researchers [12].

APPENDIX

Let us prove that the values of p(E) for the 4A2 term
are equal to the coefficients in the polynomial

We juxtapose each value of Ek to a random quantity ξk

assuming the values 6, 12, 20, and 30 with the same
probability. In this case, the quantities Ek can be
expressed in terms of ξk as follows:

(A.1)

here, the number 19.5 is the sum of the second and third
terms in expression (2). The probability density of the
random quantity ξk can be written as

, (A.2)

where δi, j is the Kronecker delta.

Let us eliminate the normalization factor 1/4 and
represent i(i + 1) in the form f(i). In this case, the con-
volution of two densities of the form (A.2) can be writ-
ten as

(A.3)

where ζ is the random quantity which is the sum ξ + ξ.
Carrying out the obvious substitution

we obtain

P̃ x( ) x30 x20 x12 x6+ + +( )6
.=

Ek J
2
--- ξk 19.5–( );–=

p ξk( )
1
4
--- δi i 1+( ) ξk,

i 2=

5

∑=

p ζ( ) δ f i( ) ξ, δ f j( ) ζ ξ–, ,
ξ i j, ,
∑=

δ f j( ) ζ ξ–, δζ f j( )– ξ, ,=

δ f i( ) ξ, δζ f j( )– ξ,

ξ
∑ δ f i( ) f j( )+ ζ, .=
JOURNAL OF EXPERIMENTAL
Taking into account this relation, we can write
Eq. (A.3) as follows:

(A.4)

Since most values of the sum f(i) + f(j) can be obtained
for several combinations of i and j, each value of ζ has
its own statistical weight.

Let us now consider the product of two sums of the

form  = (x6 + x12 + x20 + x30):

(A.5)

where ak = , which is completely identi-
cal to expression (A.4).

Thus, we have proved the equivalence of the convo-
lution of random quantities of the type (A.2) and the
product of polynomials of the form (A.5).

It can be proved similarly that the values of p(E) for
the 2E term correspond to coefficients of the polyno-
mial

(A.6)
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Abstract—The decrease in entropy when passing from an equilibrium thermodynamic system to a slightly
nonequilibrium system is investigated. A quasi-equilibrium Boltzmann distribution is used to prove the conser-
vation of free energy during this passage. Results are obtained for a Brownian particle in a potential well with
a low escape probability. The escape is interpreted as a measurement. It is shown that because of the measure-
ment itself, the distribution function is narrower than that for a system undisturbed by measurement, i.e., an
equilibrium system. In this case, the entropy difference between the equilibrium and measurement-disturbed
systems is equal to the amount of information entered into the system. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Brownian motion is a fundamental concept of statis-
tical physics and thermodynamics. Fluctuations in ther-
modynamic parameters can be represented as the
motion of Brownian particles in complex potentials. Of
particular importance is the description of these fluctu-
ations in the theory of phase transitions, where the
change in order parameter corresponds to the displace-
ment of a Brownian particle and the free energy acts as
the potential in which it moves. The phase transition
itself then corresponds to the particle’s escape from a
potential well.

In addition, a Brownian particle is a simple but com-
plete model of an open system that exchanges not only
energy but also information with external bodies. It is
convenient to use this particle as an example to eluci-
date many fundamental questions, including the second
law of thermodynamics in generalized formulation.

Let us consider the Brownian motion of a single par-
ticle in a potential well U(r) ≤ 0 under the action of
external noise with temperature T. Its velocity obeys a
Maxwellian distribution. The particle can escape from
this well by overcoming the potential barrier along
which U = 0, but the probability of this event is low.
This is an equilibrium process in velocities but a non-
equilibrium process in coordinates, because the veloc-
ity correlation time is much shorter than the coordinate
correlation time τc.

A formula to calculate the escape constant a (i.e.,
the reciprocal of the mean lifetime τ) for a quasi-equi-
librium system was derived in [1–4]. The constant a has
the meaning of escape probability per unit time.

It was also shown in the above papers that, because
a is small, the escape is an exponential process, thereby
resembling a spontaneous decay. More specifically, the
1063-7761/02/9506- $22.00 © 21092
probability that a particle located in a well at the initial
time will be detected there at time t is given by

(1)

According to [5, 6], a depends on the mean particle
energy in the well as follows:

(2)

where C is a function that depends on T alone and that
does not depend on U. On the other hand, this probabil-
ity is related to the probability distribution in coordi-
nates near the well boundary S0, which imposes certain
conditions on the form of this probability distribution
w(r). For example, for two-dimensional motion, we
have

where L is the length of the boundary through which the
particle escapes. If the particle can escape from a poten-
tial well in the course of time, then the motion in the
well is a nonequilibrium process and, strictly speaking,
it cannot be described by a stationary probability distri-
bution.

However, the authors of [5, 6] obtained a stationary
probability distribution in coordinates for a particle in a
potential well with the possibility of escape from this
well. Clearly, this distribution can be used only if the
system lifetime is large compared to the correlation
time, τ @ τc. This quasi-equilibrium Boltzmann distri-
bution is given by

(3)

P t( ) at–( ).exp=

a C
U〈 〉

kT
---------- 

 exp
1
τ
---,= =

a
kT

2mπ
-----------Lw S0( ) 1

τ
---,= =

w r( ) 1
Ω
---- U〈 〉 U r( )α–

kT
-------------------------------- 

  ,exp=
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where Ω is the well volume. The constant α character-
izes the degree of system nonequilibrium. For α = 1, we
simply obtain the Boltzmann distribution. To determine
α and 〈U〉 , we have the system of equations

(4)

The first equation can be derived from the normaliza-
tion condition and the second equation can be derived
from the fact that 〈U〉  is the mean of U. It is easy to ver-
ify that (3) satisfies all of the above conditions, which
relate the escape probability to the mean energy and to
the probability distribution in coordinates.

If we compare (3) with the nonstationary distribu-
tion that is the solution to the Fokker–Planck equation
[7–9], then our quasi-equilibrium distribution corre-
sponds to a conditional distribution within the potential
well, provided that the escape has not yet occurred.

It was also shown in [5, 6] that α ≥ 1 for any T and
U(r). Thus, the probability distribution for a nonequi-
librium process is narrower than that for an equilibrium
process in a well with the same potential relief but with
a wall at the top of the potential barrier, which prevents
particle escape. Such an equilibrium system is
described by the Boltzmann distribution and all its
related quantities are marked by the subscript B. There-
fore, the mean particle energy in a well with the possi-
bility of escape is lower than that in an equilibrium sys-
tem. According to (2), the mean time of escape from the
well, τ, is larger than the mean time between collisions
with the wall in the closed region, τB. This result is con-
firmed by computer experiments [6].

Imagine an experiment in which we catch the parti-
cle that escaped from a well, throw it back into the well
with a velocity corresponding to an elastic collision
with the wall, and wait for the next particle escape. In
this case, our system differs from an equilibrium sys-
tem with a wall only in the measurement of escape
times (or times of collision with the wall). The fact that
a measurement causes the distribution function to nar-
row resembles the problem of quantum measurements
and it can serve as a classical analog of the partial col-
lapse of the wave function.

In the classical case, the difference between the
mean lifetimes can be explained by the fact that our
model of a nonequilibrium process excludes fast
escapes from the potential well, i.e., those that occurred
in a time shorter than the correlation time.

Otherwise, the narrowing of the probability distribu-
tion can be interpreted as a decrease in the effective
temperature similar to the cooling of a fluid as it evap-
orates. Only a fluid decreases the temperature after (as
a result of) the escape of a molecule. In our case, the
possibility of escape itself (a nonzero probability of this

Uα–
kT

----------- 
 exp rd∫ Ω U〈 〉–

kT
------------- 

  ,exp=

U
Uα–
kT

----------- 
 exp rd∫ U〈 〉Ω U〈 〉–

kT
------------- 

  .exp=
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event) causes a decrease in the temperature as the coef-
ficient that determines the probability distribution.

The decrease in entropy in the system as a result of
measurement can be assumed to be equal to the amount
of information on the escape time:

(5)

where SB is the entropy of the equilibrium system
described by the Boltzmann distribution, S is the
entropy of the quasi-equilibrium system, and I is the
amount of information on the escape time. This relation
between entropy and information for a thermodynami-
cally isolated system was discussed in [10, 11] in con-
nection with an analysis of the so-called Maxwell
demon. Here, we confirm and interpret the result (5).

2. CHANGE IN ENTROPY

The entropy of an equilibrium state without the
additive constant is

(6)

The integral in the second term can be transformed as
follows:

We chose such U* that exp(–(α – 1)(U* – U)/kT) could
be expanded in a series in which only the linear term
was retained and the error would be at a minimum; we
then obtain

Using system (4), we derive

(7)

Let us now find out at which U* the error in the expan-
sion of the exponential function in a series is at a mini-
mum. Let us introduce the function

SB S– I ,=

SB k wB r( )ln〈 〉–=

=  k U〈 〉
kT

---------- k
U–

kT
------- 

 exp r.d

Ω
∫ln+

J
U–

kT
------- 

 exp rd∫ U*–
kT

----------- 
 exp= =

× U* U–( )α α 1–( ) U* U–( )–
kT

-------------------------------------------------------------------------- 
  r.dexp∫

J
U*–
kT

----------- 
  U* U–( )α

kT
--------------------------- 

 exp∫exp=

× 1 α 1–( ) U* U–( )
kT

----------------------------------------– 
  dr.

J
U* α 1–( ) U〈 〉–

kT
----------------------------------------- 

 exp=

× Ω 1 α 1–( ) U* U〈 〉–( )
kT

----------------------------------------------– 
  .

f U*( ) Uα–
kT

----------- 
 exp∫=
SICS      Vol. 95      No. 6      2002



1094 CHICHIGINA
that describes this error and determine the U* that cor-
responds to its minimum. We obtain,

Substituting the integrals from (7) and (4) in the first
and second terms, respectively, yields

Using this equality, Eq. (7) can be simplified to give

(8)

Given (3), the entropy of the quasi-equilibrium state
can be written as

(9)

Given (6), (8), and (9), the change in entropy in (5) can
be represented as

(10)

It thus also follows that the free energy is the same for
the equilibrium and quasi-equilibrium states. For both
cases, it is defined by

where j is the number of degrees of freedom of the par-
ticle and the second term is its mean kinetic energy.

3. INFORMATION ON THE TIMES
OF ESCAPE FROM A POTENTIAL WELL

A quasi-equilibrium system differs from an equilib-
rium system by the availability of information on the
particle escape times (or, equivalently, on the times of
collision with the wall).

To determine the amount of information, we must
discretize the time, i.e., specify the characteristic time
interval. This interval is the mean time τB between col-
lisions with the wall in the equilibrium case. The escape
probability during the ith interval does not depend on i
and is

× α 1–( ) U* U–( )–
kT

-------------------------------------------- 
 exp





– 1 α 1–( ) U* U–( )
kT

----------------------------------------– 
 





dr

α 1–( )U*–
kT

---------------------------- 
  U–

kT
------- 

 exp rd∫exp

–
Uα–
kT

----------- 
 exp rd∫ 0.=

U* U〈 〉 .=

J
U〈 〉 2 α–( )–

kT
------------------------------- 

  Ω.exp=

S k
U〈 〉

kT
---------- α 1–( ) k Ω.ln+=

SB S–
U〈 〉 B U〈 〉–

T
----------------------------.=

F U〈 〉 jkT /2 ST ,–+=

p aτB τB/τ .= =
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According to the Shannon formula (see, e.g., [7]), the
information obtained when specifying the number i of
one of the equiprobable intervals during which the par-
ticle escape occurred is

Taking into account the dependence of τB on the
mean energy (2) and assuming it to be the same for the
equilibrium system, we obtain

This relation is identical to the expression for the
entropy difference (10) and it confirms formula (5).
Thus, we found the decrease in entropy in the system to
be equal to the amount of information entered into it. Of
greatest interest is the possibility of simulating effects
that are considered to be purely quantum ones in a clas-
sical system. However, all our results are also applica-
ble to quantum systems.

4. A QUANTUM QUASI-EQUILIBRIUM 
PROBABILITY DISTRIBUTION

Formula (3) in a quantum description of the distri-
bution in ith states with energy Ei is

It is a quasi-equilibrium Gibbs distribution. In this case,
the integrals in system (4) are substituted with the sums

(11)

Relation (5) for a quantum system can be derived in
a similar way.

5. EXAMPLES OF THE DEPENDENCE 
OF THE CHANGE IN ENTROPY ON THE DEPTH 

AND SHAPE OF A POTENTIAL WELL

To save space, we introduce the following dimen-
sionless variables:

Consider a parabolic potential well

For this well, system (11) can be written as

I k p.ln–=

I
U〈 〉 B U〈 〉–

T
----------------------------.=

wi

E〈 〉 Eiα–
kT

------------------------ 
  .exp=

Eiα–
kT

------------ 
 exp∑ E〈 〉–

kT
------------ 

  ,exp=

Ei

Eiα–
kT

------------ 
 exp∑ E〈 〉 E〈 〉–

kT
------------ 

  .exp=

β
Umin

kT
---------- 0, 0 γ<< U〈 〉

Umin
---------- 1,<= =

0 u< U
Umin
---------- 1, s< S

k
---.= =

U Umin 1 r2/R2–( ).=
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For a cone-shaped well

,

we obtain the equations

For a well of the form

,

the system takes the form

In Fig. 1, the calculated α is plotted against β for the
parabolic (solid line), cone-shaped (dotted line), and
root (dashed line) potential wells and for a well of the
form

(dash-dotted line).
Comparison of these plots leads us to conclude that

the change in the distribution due to the process being a
nonequilibrium one shows up most clearly for |β| ~ 4;

e βα– 1– αβe γβ– ,–=

γβ β– 1
α
---– 

  αe γβ– 1.–=

U Umin 1 r/R–( )=

βα 1– e βα–+
1
2
--- αβ( )2e γβ– ,=

γβ β– 2
α
---– 

  α
2
---e γβ– 1.–=

U Umin= 1 r/R–( )

6e βα– βα( )3 3 βα( )2– 6βα 6–+ +( )1
4
--- βα( )4 e γβ– ,=

γβ β– 4
α
---– 

  α
4
---e γβ– 1.–=

U Umin= 1 r/R( )4–( )

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0 10 20 30 40 50 60

α

–β

Fig. 1. The parameter of nonequilibrium α versus potential-
well depth β for parabolic (solid line), cone-shaped (dotted
line), and root potential wells and for a well of the form U =
Umin(1 – (r/R)4) (dash-dotted line).
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the closer the potential well to a square shape, the
smaller this change. The same dependence on the ves-
sel shape can also be traced in the cooling of a fluid via
its evaporation mentioned above.

In Fig. 2, the change in entropy is plotted against β
when passing from an equilibrium system to a system
with measurements for the same cases as in Fig. 1. We
see a slow decrease in the entropy difference with
increasing well depth and, accordingly, with decreasing
escape probability.

6. DISCUSSION
We have found that the effect of measuring the times

of escape from a potential well reduces to a decrease in
the effective temperature, i.e., to a narrowing of the dis-
tribution in coordinates. As a result, the entropy
decreases by an amount equal to the amount of infor-
mation obtained. Such a measurement can be compared
with the action of the so-called Maxwell demon and it
can be explained by the fact that the generalized second
law of thermodynamics holds.

Here, we did not discuss the technical possibilities
of detecting the particles that escaped from a potential
well. However, if the difficulties arising in this case
were overcome, then the decrease in entropy (or,
according to a different interpretation, in effective tem-
perature) in the system could be used to produce a Bose
condensate.

In general, calculating the time of system escape
from a quasi-equilibrium state under the action of fluc-
tuations is a problem that combines various fields of
modern science. This problem arises, for example, in
theories of phase transitions [12] and chemical reac-
tions, in studies of the dynamics of complex biomole-
cules [13], in calculations of the surface diffusion coef-
ficient in semiconductors [14], and in tracking-loss

4

3

2

1

0
0 2 4 6 8 10

∆s

–β

Fig. 2. The change in entropy ∆s versus potential-well depth
β for parabolic (solid line), cone-shaped (dotted line), and
root potential wells and for a well of the form U = Umin(1 –

(r/R)4) (dash-dotted line).
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analyses for radio and optical automatic tracking sys-
tems [15].

The quantum quasi-equilibrium Gibbs distribution
can be used to take into account a low ionization of
atoms in a gas laser and to calculate the corresponding
corrections in the Einstein coefficients. By a low ion-
ization we mean an ion number density that does not
lead to the avalanche processes of ionization and tran-
sition to plasma but that affects the optical properties of
the gas.
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Abstract—A graviton contribution to the one-loop quantum correction to the Newton law is found. This cor-
rection corresponds to an interaction decreasing with distance as 1/r3, in which the graviton contribution numer-
ically dominates. Previous calculations of this contribution to the discussed effect are demonstrated to be incor-
rect. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of corrections to the equations of
motion, arising in general relativity, is far from new.
The classical relativistic corrections to these equations
were found long ago by Einstein, Infeld and Hoffmann
[1], and by Eddington and Clark [2]. (A relatively sim-
ple derivation of these corrections is presented in text-
book [3].) Later, this result was reproduced by Iwasaki
by means of the Feynman diagrams [4]. Thus, the prob-
lem of the classical relativistic corrections to the New-
ton law has finally been solved.1

Let us note that the general structure of the relativis-
tic classical correction to the potential of interaction
between two bodies with masses m1 and m2, which
would be of the second order in the Newton gravita-
tional constant k, is a priori clear. Indeed, since the
quantity km/c2 (c is the velocity of light) has the dimen-
sionality of length, the correction, with an allowance
for the symmetry with respect to the interchange
m1  m2, should have the form

(1)

The dimensionless constant acl as found in the above
works equals 1/2.

There is one more combination of constants that is
linear in k and can be used for constructing a power cor-
rection to the Newton potential:

1 However, erroneous papers on the subject are being published up
to now. We mean the articles [5], where it was claimed that the
classical relativistic corrections to the equations of motion for
two bodies separated by large distance depend essentially on the
inner structure of these bodies. We believe that this claim does
not withstand criticisms.

     

Ucl acl

k2m1m2 m1 m2+( )

c
2
r2

------------------------------------------.=

k"

c
3

------ lp
2 ,=

                                   
1063-7761/02/9506- $22.00 © 20981
where " is the Planck constant and lp = 1.6 × 10–33 cm
is the Planck length. Clearly, being of a quantum
nature, such a correction should appear as follows:

(2)

Then, one has to find the numerical constant aqu.
Although the quantum correction is extremely small,
investigation of this factor has a certain methodological
interest, representing a closed calculation of a high-
order effect in the nonrenormalizable quantum gravity.

The reason why this problem allows for a closed
solution is as follows. The Fourier transform of 1/r3 is

(3)

This singularity in the momentum transfer q means that
the correction under consideration can be generated
only by diagrams with two massless particles in the
t-channel. The number of such diagrams of the second
order in k is finite, and their parts logarithmic in q2 can
be calculated unambiguously.

The corresponding diagrams with photons and
massless neutrinos in the loop (see Fig. 1) were calcu-
lated by Radkowski [6] and by Capper, Duff et al. [7–
9]. This contribution to the numerical factor aqu is

(4)

where Nν is the number of massless two-component
neutrinos.

As for the contribution to this effect from the gravi-
ton exchange, it was considered by Donoghue [10–13],
Muzinich and Vokos [14], Hamber and Liu [15], and
Akhundov et al. [16]. However, there is no quantitative
agreement between the results of these works, more-

Uqu aqu

k2
"m1m2

c
3
r

3
----------------------.=

rd
–iq r⋅( )exp

r3
------------------------------∫ 2π q

2
.ln–=

aγν –
4 Nν+

15π
---------------,=
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982 KIRILIN, KHRIPLOVICH
over, even predictions for the sign of the correction are
different.

We believe that the correct result for the quantum
correction to the Newton law will be sufficiently inter-
esting from the theoretical point of view. This is the aim
of our investigation. Among the previous works on the
subject, the most detailed presentation of the calcula-
tion is given in [11, 16]. Our approach, based on direct
calculation of Feynman diagrams, choice of the field
operator for the gravitational field, and selection of the
gauge, is the same as that employed in [10–13, 16].
This circumstance allows for a detailed comparison of
the calculations of separate contributions to the effect
under consideration. This comparison has demon-
strated that not all diagrams are taken into account in
[10–13, 16] and the contributions considered are calcu-
lated incorrectly. Below, when discussing particular
diagrams, we will return to comparison with the previ-
ous works, including [14, 15]. Here, let us only note an
obvious error in [10–13, 16], where the formula for the
Fourier transform of the function 1/r3 (see (3)) contains
π2 instead of π, and this error is retained in the final
expressions as well.

Some of the diagrams considered also contribute to
the classical relativistic correction. In order to check
our calculations, we have computed these classical con-
tributions in parallel and compared them with the cor-
responding results of [4]. For these classical correc-
tions, we have complete agreement with [4] for each
diagram taken separately.

2. PROPAGATORS AND VERTICES

Below we use the system of units in which c = 1 and
" = 1.

Fig. 1. Photon (neutrino) loop.

p p'

qµν

(a)
p p'

(b)

kρσ (k – q)νλ qµν

kαβ (k – q)γδ
(c)

Fig. 2. Vertices.
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As a gravitational field operator 

 

h

 

µν

 

, we choose the
deviation of the metrics 

 

g

 

µν

 

 from the flat one:

(5)

We use the gauge in which the graviton propagator is

(6)

The tensor 

 

P

 

µν

 

, 

 

αβ

 

 is conveniently represented as [17]

where 

is a kind of the unit operator such that

for any symmetric tensor 

 

t

 

αβ

 

. Note the following useful
identity:

(7)

The propagator of a scalar particle has the usual form:

(8)

The vertex of the interaction of a scalar particle with the
graviton is (see Fig. 2a)

(9)

The contact interaction of a scalar particle with two
gravitons (see Fig. 2b) is

(10)

To within the accuracy adopted, we can neglect the last
term proportional to (

 

p

 

' – 

 

p

 

)

 

2

 

 in this expression.
Let us note that the vertex (10) in [11, 16] is errone-

ously presented (and used in the calculations) with a
factor which is two times as small, 

 

κ

 

2

 

/2 instead of 

 

κ

 

2

 

.
We will return to this factor in Sections 3 and 4.

gµν δµν κhµν, δµν+ diag 1 1 1 1–,–,–,( ),= =

κ 2
32πk 32πlp

2 .= =

Dµν αβ, q( ) i
Pµν αβ,

q2 i0+
----------------,=

Pµν αβ,
1
2
--- δµαδνβ δναδµβ δµνδαβ–+( ).=

Pµν αβ, Iµν αβ,
1
2
---δµνδαβ,–=

Iµν αβ,
1
2
--- δµαδνβ δναδµβ+( )=

Iµν αβ, tαβ tµν=

Pαβ κλ, Pκλ γδ, Iαβ γδ, .=

G p( ) i
1

p2 i0+
----------------.=

Vαβ p p',( ) i
κ
2
--- pα pβ' pα' pβ δαβ p p' m2–( )–+[ ] .–=

Vκλ ρσ, iκ 2
Iκλ αδ, Iδβ ρσ, pα pβ' pα' pβ+( )=

–
1
2
--- δκλ Iρσ αβ, δρσIκλ αβ,+( )pα pβ'

+
p' p–( )2

4
-------------------- Iκλ ρσ,

1
2
---δκλ δρσ– 

  .
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(a) (b) (c) (d)

Fig. 3. Simple loops.
The following useful identities are worth mention-
ing here:

(11)

(12)

As for the three-graviton vertex (see Fig. 2c), which has
the most complicated form, we will follow [11] in rep-
resenting it as

(13)

Pµν αβ, pα pβ' pα' pβ δαβ p p' m2–( )–+[ ]

=  pα pβ' pα' pβ δαβm2,–+

Pαβ κλ, Pγδ ρσ, Vκλ ρσ, Vαβ γδ, .=

Vµν αβ γδ,, i
κ
2
--- v

i
µν αβ γδ, , ;

i

∑–=

v
1

µν αβ γδ, ,

=  Pαβ γδ, kµkν k q–( )µ k q–( )ν qµqν
3
2
---δµνq2–+ + ,

v
2

µν αβ γδ, , 2qλqσ Iλσ αβ, Iµν γδ, Iλσ γδ, Iµν αβ,+[=

– Iλµ αβ, Iσν γδ, Iλν αβ, Iσµ γδ,– ] ,

v
3

µν αβ γδ, , qλqµ δαβ Iλν γδ, δγδIλν αβ,+( )=

+ qλqν δαβ Iλµ γδ, δγδIλµ αβ,+( )

– q2 δαβ Iµν γδ, δγδIµν αβ,+( )
– δµνqλqσ δαβ Iγδ λσ, δγδIαβ λσ,+( ),

v
4

µν αβ γδ, , 2qλ Iσν αβ, Iγδ λσ, k q–( )µ[=

+ Iσµ αβ, Iγδ λσ, k q–( )ν

– Iσν γδ, Iαβ λσ, kµ Iσµ γδ, Iαβ λσ, kν– ]

+ q2 Iσµ αβ, Iγδ σν, Iσν αβ, Iγδ σµ,+( )
+ δµνqλqσ Iαβ λρ, Iρσ γδ, Iγδ λρ, Iρσ αβ,+( ),

v
5

µν αβ γδ, , k2 k q–( )2+[ ]=

× Iσµ αβ, Iγδ σν,
1
2
---δµνPαβ γδ,– 

 

– k
2δγδIµν αβ, k q–( )2δαβIµν γδ, .–
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In this vertex, to within the adopted accuracy, we can

neglect the last structure .

Note that the vertex (13) in [11, 16] is erroneously
taken with the opposite sign. Our sign is based on the
following: for the physical gravitons possessing the
momenta k and k – q, vertex (13) in the limit of q  0
should agree with vertex (9), corresponding to the inter-
action of the graviton with a scalar particle.

3. SIMPLE LOOPS

It is convenient to start with the diagrams where the
Feynman integrals contain two denominators only. The
simplest of these (Fig. 3a) is entirely missing in [10–13,
16]. The calculation of this diagram presents no diffi-
culties: one has only to use identity (12) and to pass to
the nonrelativistic limit in both two-graviton vertices.
The resulting contribution to the quantum correction is

(14)

The calculation of the next diagram (Fig. 3b) and that
obtained by interchanging scalar particles is also suffi-
ciently simple and results in

(15)

The result of [11] for this contribution differs from
(15) only by a wrong power of π. The corresponding
result of [16] is quite different.

As for the diagrams in Figs. 3c and 3d with the
polarization operator of graviton, we do not have much
to add to works [10–13] with respect to the method of
calculation, and we have nothing at all to add to the
result proper (which is also used in [14, 16]). However,
for completeness, we briefly present this calculation.

The effective Lagrangian corresponding to the sum
of these diagrams with gravitons and vector ghosts, as
obtained by ‘t Hooft and Veltman [17], is

(16)

v
5

µν αβ γδ, ,

Uqu1
22
π
------

k2m1m2

r3
------------------.–=

Uqu2
26
3π
------

k2m1m2

r3
------------------.=

L
1

16π2
----------- q2 1

120
---------R2 7

20
------RµνRµν+ 

  .ln–=
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In a linear approximation, the Ricci tensor and the sca-
lar curvature of the external gravitational field which
enter this expression are

The corresponding contribution to the graviton polar-
ization operator is

(17)

Here, we have taken into account two possibilities of
identifying Rµν and R with the upper and lower external
gravitons. The subsequent calculation is straightfor-
ward. Let us mention only that the summation over µ, ν
is conveniently performed at the end. Finally, this con-
tribution to the quantum correction is

(18)

Let us mention that diagrams in Figs. 3c and 3d were
computed in different variables, ψµν = hµν – (1/2)δµνh,
in [15, 18, 19] and in the Schwinger source description
of gravity in [6].

4. TRIANGLE DIAGRAMS

The master formula for the triangle diagrams in
Figs. 4a and 4b reads (we keep only terms singular
in |q|)

(19)

Rµν
κ
2
---hαβ q2Iµν αβ, qµqνδαβ+(=

– qµqαδνβ qνqαδµβ– ) κ
2
---hαβrµν αβ, ,=

R κhαβ q2δαβ qαqβ–( ) κhαβrαβ.= =

Παβ γδ,
κ2

8π2
-------- q2ln–=

× 1
120
---------rαβrγδ

7
80
------rµν αβ, rµν γδ,+ 

  .

Uqu3
43

30π
---------

k2m1m2

r3
------------------.–=

i
k4d

2π( )4
------------- 1

k2 k q–( )2 p k–( )2 m2–( )
------------------------------------------------------------∫

=  
1

32π2m2
------------------ π2m

q2
------------ q2ln+

 
 
 

.

(a) (b)

Fig. 4. Triangle diagrams.
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It is conveniently obtained by calculating first the imag-
inary part of the lhs in the t-channel and then restoring
the rhs via the dispersion relation. The first term in the
rhs of formula (19) generates 1/r2 in the coordinate rep-
resentation and contributes to the classical relativistic
correction. This term is retained in (19) in order to
check the calculations by comparison with the corre-
sponding results of [4].

Our result for the contribution of simpler diagrams
of the type depicted in Fig. 4a is

(20)

This contribution is also missed in [11, 16]. These dia-
grams contribute to the classical correction as well. An
extra proof of our normalization for the seagull vertex
is the agreement with the corresponding classical result
of [4].

Much more tedious is the calculation of diagrams of
the type presented in Fig. 4b, which yields

(21)

The corresponding results of [16], differs from only by
the sign and wrong power of π. The result of [11] for
this contribution is quite different.

5. BOX DIAGRAMS

Expressions for the matrix elements corresponding
to the box diagrams in Figs. 5a and 5b can be repre-
sented as

(22)

(23)

It is convenient to single out in the numerators of these
integrals such the structures that cancel one or both denom-

inators D1, D2 ( ). Upon canceling a single denomina-

Uqu4
28
π
------

k2m1m2

r3
------------------.=

Uqu5
29
3π
------

k2m1m2

r3
------------------.–=

Ms i
κ4

16m1m2
------------------- k4d

2π( )4
-------------

a b D1 D2+( )–[ ] 2

k2 k q–( )2D1D2

-------------------------------------------,∫=

D1 k2 2 p1k( ), D2– k2 2 p2k,+= =

a 2 p1 p2( )2
m1

2m2
2, b– p1 p2( ),= =

Mu i
κ4

16m1m2
------------------- k4d

2π( )4
-------------

a' b' D1 D2'+( )+[ ]
2

k2 k q–( )2D1D2
'

----------------------------------------------,∫=

D2
' k2 2 p2 q+ k,( ), b'– p1 p2 q+,( ),= =

a' 2 p1 p2 q+,( )2 m1
2m2

2.–=

D2
'
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tor, another one is left with an effective triangle dia-
gram of the type depicted in Fig. 4a:

(24)

(25)

It can be easily demonstrated that, to within the accu-
racy adopted, expressions (24) and (25) are mutually
canceled.

Expressions with both denominators missing,

(26)

(27)

correspond to diagrams of the type depicted in Fig. 3a.
These contributions add up to yield the following result
for the effect under consideration:

(28)

Now we have only to deal with the “irreducible”
parts of the diagrams in Figs. 5a and 5b. These irreduc-
ible matrix elements are conveniently obtained by cal-
culating first their imaginary parts (in the s and u chan-
nels, respectively) and then restoring the real parts
through the dispersion relations. The results are as fol-
lows (we omit the terms nonsingular in |q2|):

(29)

(30)

(31)

M1s i
κ4

16m1m2
------------------- k4d

2π( )4k2 k q–( )2
-------------------------------------∫=

× b2 2 p2k( )
D1

----------------
2 p1k( )

D2
----------------– 

  2ab
1

D1
------ 1

D2
------+ 

 –
 
 
 

,

M1u i
κ4

16m1m2
------------------- k4d

2π( )4k
2

k q–( )2
-------------------------------------∫=

× b'2 –
2 p2' k( )

D1
----------------

2 p1k( )

D2
'

----------------–
 
 
 

2a'b' 1
D1
------ 1

D2
'

------+ 
 +

 
 
 

.

M2s i
κ4

16m1m2
------------------- k4d

2π( )4
------------- 2b2

k2 k q–( )2
-----------------------,∫=

M2u i
κ4

16m1m2
------------------- k4d

2π( )4
------------- 2b'2

k2 k q–( )2
-----------------------,∫=

Uqu6
8
π
---

k2m1m2

r3
------------------.–=

M0s i
κ4a2

16m1m2
------------------- k4d

2π( )4
-------------∫=

× k2 λ2–( ) k q–( )2 λ2–( ) k2 2 p1k–( ) k2 2 p2k+( ){ } 1–

=  
κ4a

2

16m1m2( )2 q2 π2
---------------------------------------- –1

s m1 m2+( )2–
6m1m2

----------------------------------+
q2

λ2
--------,ln–

M0u i
κ4a'2

16m1m2
------------------- k4d

2π( )4
------------- k2 λ2–( ){∫=

× k q–( )2 λ2–( ) k2 2 p1k–( ) k
2

2 p2 q+ k,( )–( ) }
1–
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(32)

In these formulas, s = (p1 + p2)2 and u = (p1 – p2 – q)2.
Expressions (29) and (31) converge in the ultraviolet
sense but diverge in the infrared limit, depending loga-
rithmically on the “graviton mass” λ. As usual, such
behavior is directly related to the necessity of canceling
the infrared divergence in the bremsstrahlung diagrams
(of course, the gravitational bremsstrahlung in the
present case). The sum of the irreducible boxes a term
with ln|q2|, which generates the following quantum cor-
rection to the Newton potential:

(33)

It is worth mentioning that, in contrast to the previous
contributions, where |q2| served as an infrared cutoff for
ultraviolet-divergent integrals, here |q2| is the upper
limit for the infrared-divergent integrals.

For the box diagrams, we have also checked that our
results for thus generated classical corrections agree
completely with those obtained in [4].

The box contributions to the quantum correction are
missing at all in [10–13, 16], although diagrams in Figs. 5a
and 5b are considered in [20] from a different point of
view.

On the other hand, neither in [14] nor in [15] could
we find any mention of the “infrared” contribution of
type (33). In fact, the problem of classical and quantum
corrections in [15] was treated in different variables,
ψµν = hµν – (1/2)δµνh. It can be easily demonstrated
that expressions for the box diagrams are exactly the
same in both variables, ψ and h. However, the box
contributions as calculated in [15] disagree both with
the classical ones obtained in [4] (which are demon-
strated explicity in [4] to be the same in both vari-
ables ψ and h) and with our results for the quantum
correction presented as (28), or (33), or the sum of
(28) and (33).

Finally, let us say a few more words on [14]. The
approach advocated therein looks quite interesting and
promising. However, the results for the quantum cor-
rection presented in [14] do not agree with ours (nor do
they agree with the results of [10–13, 15, 16]). Due to
the lack of details in [14], we cannot indicate with cer-

=  
κ4a'2

16m1m2( )2 q
2 π2

---------------------------------------- 1
u m1 – m2( )2–

6m1m2
-----------------------------------+

q2

λ2
--------.ln–

Uqu7
23
3π
------

k
2
m1m2

r3
------------------.–=

(a) (b)

Fig. 5. Box diagrams.
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tainty what the origin of the disagreement is. Still, an
impression arises that, at least, it was overlooked in
[14] that the irreducible triangle diagrams generate not
only classical corrections, but quantum corrections as
well; that is, it seems that in [14] the second term is
missing in formula (20).

6. CONCLUSIONS
Summing up all the contributions obtained, (14),

(15), (18), (20), (21), (28), (33), we arrive at the follow-
ing result for the quantum correction to the Newton
potential due to the two-graviton exchange:

(34)

Let us note that the derived overall correction enhances,
but does not suppress the common Newton attraction.
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Abstract—A method for calculating the complex optical potential of slowly colliding Rydberg atom A** and
neutral atom B in the ground electronic state is suggested. The method is based on the asymptotic approach and
the theory of multichannel quantum defects, which uses the formalism of renormalized Lippmann–Schwinger
equations. The potential is introduced as the 〈q|Vopt|q〉  matrix element of the optical interaction operator, for
which the integral equation is derived, and is calculated in the basis set of free particle wave functions |q〉 . Fairly
simple equations for the shift and broadening of the ionic term are obtained, and the principal characteristics of
these equations are analyzed. By way of illustration, the optical potential of the Na**(nl) + B systems, where
B is a rare gas atom, is calculated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Processes involving strongly excited (Rydberg)
atoms and molecules are common in various astrophys-
ical and plasma phenomena and are extensively studied
experimentally and theoretically. Currently, a wealth of
data on such processes have been collected and can be
found in numerous original papers, reviews, and mono-
graphs [1–4]. Nevertheless, there are several processes
that have as get been scarcely studied, for instance, dif-
fusion of Rydberg atoms in the atmosphere of a differ-
ent buffer gas. If one of the atoms is strongly excited,
the “three-particle” model can most effectively be used,
when the optical electron is in an orbit whose size sub-
stantially exceeds the characteristic size of the ionic
core and medium atoms. The description of “elastic”
scattering of Rydberg atoms by target atoms should
then include not only the determination of the potential
energy of their interaction, but also inelastic virtual
transitions into all possible discrete and continual
weakly bound electron states. A natural approach to
solving this problem is the introduction of an optical
potential whose imaginary part characterizes the total
probability of transitions to the specified states.

The transition from a multiparticle to a two-particle
description of elastic collisions of atomic particles in
the optical potential representation is one of the tradi-
tional methods of the quantum theory of scattering.
Usually, a Vopt nonlocal operator is introduced, and a
multiparticle equation for its determination is con-
structed. Such a statement of the problem is formal in
character, and the problem cannot be solved without
additional assumptions about the interacting system
[5]. To solve the problem, we must pass to the represen-
tation of noninteracting colliding particles, determine
1063-7761/02/9506- $22.00 © 20987
the basis set of its eigenstates |q〉 , and calculate the cor-
responding matrix element 〈q|Vopt|q〉 . Precisely this
matrix element represents the sought for optical poten-
tial Vopt whose imaginary part should include the com-
plete set of quantum numbers s that describe the inter-
nal state of the interacting system and should depend on
the total energy E and the orbital momentum of collid-
ing particles. These values are integrals of motion and
should be conserved.

The optical potential concept has repeatedly been
applied in the theory of atomic collisions. In particular,
it has been extensively used to describe processes of the
type of Penning ionization [6]. In this work, we con-
sider slow elastic collisions between Rydberg atom
A** (n @ 1) and atom B in the ground electronic state
(n is the principal quantum number of the Rydberg
level) and determine the optical potential for this sys-
tem. We must distinguish between two fundamentally
different physical situations, when E < 0 and when E ≥ 0.
In the first situation, the optical potential is formed by
virtual transitions between bound electron states in a
discrete spectrum, and, in the second, there is the addi-
tional possibility for the ionization of atom A**.

A weakly bound electron behaves as a free particle
in the interaction with perturbing atom B, and the opti-
cal potential can therefore be constructed fairly simply
and rigorously. The problem is solved in terms of
asymptotic theory with the use of the integral variant of
the multichannel quantum defect method [7]. By way
of illustration, we calculate the interaction potentials
between strongly excited Na**(nl) and rare gas atoms.
002 MAIK “Nauka/Interperiodica”
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2. GENERAL EQUATIONS

Consider a slow elastic collision between strongly
excited (Rydberg) atom A**(nl) and unexcited atom B.
The total energy of the system E is (" = e = me = 1)

(1)

where νl = n – µl is the effective principal quantum
number, µl is the quantum defect of the level, l is the
angular momentum of the electron, and Ek is the initial
relative energy of the colliding particles. The 

interaction potential between ion A+ and atom B is
assumed to be known. To solve the eigenvalue problem,
we use the integral equation for the t-operator of the
shift of levels, which, in the problem under consider-
ation, has the form [7]

(2)

The  three-particle interaction operator, which

describes the interacting pair (A+–B) plus free electron
e–, is local and can be written as

(3)

where R and r are the coordinates of the A+ ion and the
electron, respectively, counted from the center of the B
atom. The basis wave function |q〉  has the form

(4)

Here, k =  is the relative momentum of the A+

and B colliding particles, Mc is their reduced mass,
and pe is the electron momentum. In essence, wave
function (4), which describes the free motion of parti-
cles, corresponds to the first order of the Born approxi-
mation. Further, we will be interested in the region of
fairly large (Rmin ≤ R) interatomic distances (for which
the  interaction potential is a polarization poten-

tial). For this reason, the condition of smallness of the
corresponding correction to the wave function [8]

for slowly colliding particles (kRmin < 1) imposes the
requirements

(5)

In the equations given above, β is the polarizability of
atom B and Rmin is some minimal distance between par-

E – 1

2ν l
2

-------- Ek,+=

U
A+B

t U
A+B

G E( )t.=

U
A+B

U
A+B

R R'; r r',,( )

=  2π( )6U
A+B

R( ) q R r,( )| 〉 q R' r',( )〈 | ,
q

∑

q R r,( )| 〉 1

2π( )3
------------- i k R⋅ pe r⋅+( )[ ] .exp=

2McEk

U
A+B

Mc U
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r( ) 2ik r⋅( )exp 1–[ ] rd

Rmin

∞

∫  ! k

k Mcβ ! 1, n Mcβ/8( )1/4.>
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ticles A+ and B, which is defined below (see Section 3).
Taking into account (4), the  interaction operator

can be written as

(6)

It is easy to see that the matrix element is

The G(E) Green operator in (2) describes the A** +
B system with  interaction switched off; that is,

the B atom in (2) is assumed to interact only with the
weakly bound electron. To construct this operator in a
regular manner, let us use the Dyson equation

(7)

where  is the e––B interaction operator and the

 Green operator describes the noninteracting
A** + B system with given kinetic energy Ek.

The nonlocal optical interaction operator, which
depends on the total energy E of the system, is intro-
duced as follows:

This operator satisfies the integral equation

Let us use the equation known in the theory of scat-
tering

The solution to (7) can then be formally represented as

(8)

(  is the operator of collisions between the weakly

bound electron and atom B), and the integral equation
for the Vopt operator can be rewritten as

(9)

This representation is exact and admits further transfor-
mations. For instance, we can conveniently pass to
the real  scattering matrix (which is known to be

constructed on standing waves) using the Heitler
equation [9]:

(10)

Eventually, operator equation (9) takes the form

(11)

U
A+B

U
A+B

R R'; r r',,( )

=  2π( )6U
A+B

R( )δ R R'–( )δ r r'–( ).

q〈 |U
A+B

R R'; r r',,( ) q| 〉 U
A+B
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U
A+B

G E( ) GA**B E( ) GA**B E( )V
e

–B
G E( ),+=

V
e
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Vopt U
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e

–B
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V
e
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G T

e
–B
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T
e

–B

Vopt U
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e
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GA**BVopt.+=

K
e
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e
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K

e
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iK
e
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T

e
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.–=

Vopt U
A+B

=

+ U
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GA**B 1 iK
e

–B
+( ) 1– K

e
–B

[ ] GA**BVopt.
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It is clear from the structure of (11) that the physical
reason for the appearance of the imaginary part of the
optical interaction operator is electron interactions with
the perturbing B atom, which cause virtual transitions
accompanied by changes in electron momentum and
angular momentum. Additional imaginaries contained
in the  Green functions at E > 0 should only influ-

ence the shift and broadening of the  potential.

3. THE GREEN FUNCTION 
OF THE NONINTERACTING A** + B SYSTEM

By definition, the  operator is the convolution

(12)

where GA** is the Green operator of the isolated Ryd-
berg atom. Integral (12) can easily be reduced to the
integral

(13)

Note that, if E < 0, this expression is strictly real,
because, according to (1), the GA** Green function of
the Rydberg atom is defined at negative energies and
corresponds to the bound electron state in the whole
range of electron and atom B coordinate variations. For
a positive total energy of the system (E > 0), the GA**
function in (13) is generally complex, because, at
Ek < E, it describes electron motion in the continuous
spectrum. This region of momentum k variations of col-
liding particles includes virtual transitions to the ion-
ization continuum and transitions between continuum
states. The major contribution to (13) is made by the
classically allowed region of motion, and the maximum
momentum value is therefore determined from the con-
dition

and equals

(14)

GA**B

U
A+B
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GA**B R R'; E,( )
1

2π( )3
-------------=

× ik R⋅( )GA** E
k2

2Mc

----------– 
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1

2π( )2
-------------=
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k R R'–( )⋅[ ]sin
R R'–

-----------------------------------------k k,d

0
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Ek k2/2Mc.=

0 E
1
R
--- k2
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----------–+≤

kmax 2Mc E
1
R
---+ 

  ,=

Rmin IA
1– , Rmin R 2ν l

2≤ ≤=
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(IA is the ionization potential of atom A). Strictly, the
maximum kinetic energy value (at given R) is deter-
mined by the equation

which corresponds to the limiting virtual momentum
value

(here, electron motion is not classical). As integral (13)
is calculated in the kR ≤ 1 region, we can assume that

to obtain (14).
Let us specify the GA** Green function of the

strongly excited atom. By analogy with (8), the equa-
tion for GA** can be written as

(15)

where G(c) is the Coulomb Green function and  is the
matrix of collisions between the electron and the A+

ion. Importantly, the poles of the Coulomb Green func-
tion are here strictly compensated, and the spectrum of

energy eigenvalues is determined by the poles of the 
matrix, which satisfies the integral equation [10]

(16)

where the t matrix of reactions describes electron inter-
actions with the ionic core. Its diagonal elements are
related to the µl quantum defect of the strongly excited
atom as tll = – . In the one-channel case that we

are interested in, the diagonal elements of the  oper-
ator are

(17)

Of greatest interest to us is the asymptotic region of the
coordinates of the weakly bound electron, that is, the
region in the vicinity of the perturbing atom B (ρ,
ρ' ! R), where the following general representation is
valid [7]:

(18)

(19)

Ek
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1

2νmin
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--------------------,=
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------------------------------------------------------.–=
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c( ) r r' ε, ,( )=

+ 2 s| 〉 s'〈 |gss' R ε,( ),
s s',
∑

gss' R ε,( ) pe ε( ) πν ε( )( )δss'cot[=

+ α LL'
ll' R ε,( )δM0δM'0 ] .
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Here,

is the quasi-classical electron momentum in the field of
a Coulomb center,

is the effective principal quantum number, |s〉  is the
electronic wave function

(20)

jL(x) is the L-order spherical Bessel function of the first
kind, YLM(θ, ϕ) is the spherical function [8], θ is the
angle between the vectors pe(ε) and ρ, L, and M are the
orbital momentum of the electron with respect to atom

B and its projection onto the R vector, and  is the
smooth part of the Coulomb Green function,

(21)

The  matrix in (19) is defined as

(22)

The corresponding radial wave functions in (22)
have the form

They differ from each other by the π/2 phase shift and
are expressed via the Whittaker functions

(23)

where Γ(x) is the gamma function. At large r @ 1, their
asymptotic expansions have the form [11]

(24)

The optical potential can be obtained in the explicit
form by expanding (16) and (18) in spherical harmon-
ics [12]; that is,
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(25)

(26)

where  and  are the momentum and its projection
onto the direction of R – R' vector, and nL(peρ) is the
L-order spherical Bessel function of the second kind,
which is related to the Neumann function as [8]

4. THE OPTICAL POTENTIAL

Let us find the explicit form of the optical potential.
For this purpose, we will use first-order perturbation
theory and replace the Vopt operator in the right-hand
side of (11) by local operator (5). This means that, in
the range of R variations under consideration, correc-
tions to the  potential should be small. The optical

potential is then determined as the matrix element

(27)

calculated with basis wave functions (4). Accordingly,
the  operator in (27) describes the motion of

particles with given orbital momenta , L, and l.
This means that the summation with respect to the
specified indices should be omitted in (16) and (25).
Because of the orthogonality of the spherical Bessel
functions of the first and second kinds and because
the nL(x) function reduces to jL + 1(x) at large dis-
tances, the first term in (16) makes no contribution
and should be eliminated. The integration in inter-
atomic coordinates taking into account the symmetry
property of the operator

yields
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(28)

where εk = E – k2/2Mc and  is the initial orbital
momentum of colliding particles A** and B. The
Ylm(R/R) spherical function in (28), which is also
present in the  matrix, should be replaced by
Ylm(0). Indeed, the electron motion in the vicinity of

atom B at l !  is described by a plane wave with the
momentum directed along R.

As the Rydberg electron behaves as a free particle in
the vicinity of atom B [13], the diagonal elements of the

 matrix in (28), which depend on the total energy

E of the system and the kinetic energies of the incident
(εe) and scattered ( ) electrons, can be replaced by the

corresponding elements of the  matrix of free elec-

tron scattering calculated at

This is valid if the electron wavelength λ weakly
changes over the effective region ρ0 of its interaction
with atom B; that is, if [4]

In addition, it is necessary that the kinetic electron
energy εe be much larger than its binding energy; that is,

Equation (28) defined for a given initial energy Ek

then takes the form

(29)

where the shift and broadening of the ionic term are

(30)
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and depend on the initial excitation of atom A**(n, l),

orbital momentum , and distance R between A+

and B. The expressions for the factor in (30) are deter-
mined by the sign of the total energy E of the system
and are written as

(31)

for E < 0, and

(32)

for E > 0. The integration in (31) is actually divided into
two intermediate regions. In the first region (at 0 ≤ k ≤

), the real and imaginary parts of gss(R, εk) are
obtained by substituting ν = i/p in (17), which gives

(33)

In the second region (at k > ), the gss(E, εk)
function is real and determined by (17).

Let us analyze these results. First, note that the

potential shift ∆ is proportional to the  element and

depends on its sign, and the potential width Γ ~ 

is always positive. The  value is an oscillat-
ing function of distance R and total energy E. For a neg-
ative system energy (E < 0), it vanishes outside the clas-
sically allowed region of electron motions [that is, at
R ≥ (–E)–1]. In addition, the  region con-
tains the centrifugal factor
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and should increase as the  angular momentum of
colliding particles increases.

Oscillations in R appear because of the 

Bessel functions in (30) and (31). In the R* < R < 2n2

region, the characteristic size of oscillations

(34)

is substantially smaller than the electron wavelength
λ ≈ n. We can therefore perform averaging on scale λ to
pass to smooth dependences of ∆ and Γ on R.

Oscillations in E are more complex in character.
They can be divided into three principal types. The first

type are resonances corresponding to the poles of the 
operator of electron collisions with ionic core A+ in the
gss(R, εk) matrix. At a fixed initial kinetic energy Ek,
they are situated in the interval

and, according to (17), are determined from the condi-
tion

The positions of the resonances are described by the
simple formula

in which the principal quantum number changes in the
range nmin ≤ n < ∞ (with the minimum value

where symbol  denotes the integer part). The scale of
these oscillations is ∆E(1) ~ 1/n3.

Oscillations of the second type are related to the
behavior of the square of the spherical Bessel function

 in (31) and (32). Their scale is easy to estimate
on the assumption that the gss(R, εk) matrix can be

removed from the integrand in k in the  < E < 
interval. The oscillations are then determined by the

functions sin(2kmax(E)R) (for even ) and

cos(2kmax(E)R) (for odd ), whose scale is

This estimate is valid for small n ! [∆E(2)]–1/3 values.
Otherwise, a complex irregular structure should be
observed.

Oscillations of the third type are “beats,” which arise
as a result of the disturbance of the strict compensation
of the Coulomb poles in the gss(R, εk) asymptotic func-
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tion at R ≤ n and cause splitting of resonance peaks.
Naturally, for the purely Coulomb case (µl = 0), the sec-
ond term in (19) vanishes and the beats should disap-
pear.

It follows from (30) and (31) that the Γ(E) width at
E = 0 has no singularities, that is, it is an analytic func-
tion. The value averaged over oscillations is larger for
positive total energies than for E < 0. This is caused by
the appearance of additional (virtual) ionization of the
A** atom in passing through the E = 0 point.

It is also easy to see that the shift and broadening of
the ionic potential are finite irrespective of the sign of
total energy E in the k  0 limit. Physically, this is a
natural result, because the weakly bound electron can
always exercise a virtual transition to a lower lying state
(with a lower n value) when the relative motion of
atoms is switched on. Note, however, that the passage
to this limit requires the fulfillment of an additional
condition of the smallness of scattering phase  in the

Born approximation. For polarization potentials, this

condition is only met if  ≥ 1 [5].

5. THE K MATRIX OF ELECTRON SCATTERING 
BY ATOM B

There are two mechanisms, direct and resonance, of
the interaction of slow electrons with atoms [14]. The
direct mechanism (potential or background scattering)
is usually described as

(35)

where δL is the phase of elastic electron scattering
determined at the energy equal to the kinetic energy of
the electron at the point where the B atom is situated. At
low energies ε1/2|Q| ! 1 and εβ ! 1 (here, Q and β are
the quadrupole moment and the polarizability of atom

B), the  value can be written in the form [15]

(36)

where a is the scattering length. Clearly, matrix ele-
ments (36) at L = 0 are determined by the spherically
symmetrical interaction part and largely depend on the
scattering length. At L ≠ 0, they also take into account
the anisotropic interaction part, which results in a
dependence on quadrupole moment Q. In the problem
under consideration (n @ 1), we can use the long-wave

η L̃

L̃

KLL
0( ) ε R,( )

1
pe R( )
------------- δL ε( )( ),tan–=

KLL
0( )

KLL
0( ) aδL0

L L 1+( ) 3M2–
L L 1+( ) 2L 1–( ) 2L 3+( )
---------------------------------------------------------------Q 1 δL0–( )–=

–
πpeβ

2L 1–( ) 2L 1+( ) 2L 3+( )
--------------------------------------------------------------- …,+
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(L = 0) decomposition [16] for the  matrix ele-

ments,

(37)

where γ is the coefficient whose values for rare gas
atoms were calculated in [17].

For the resonance mechanism of electron interac-
tions with the B perturbing particle, the scattering oper-
ator can be written in the form

(38)

Here, |ϕr〉  and Er are the wave functions and the energy
of the resonance state of the A+B quasi-molecule and
V is the corresponding interaction. The poles of the sec-
ond term in (38) determine the positions of the ionic
configuration terms,

Note that the K operator is determined uniquely for
positive and negative energies.

6. THE CROSS SECTION 
OF ELASTIC SCATTERING

The major contribution to optical potential (29) at
small R ~ Rmin distances is made by exchange interac-
tions between the A+ ion and atom B, because the δL

phase of elastic electron scattering by atom B rapidly
decreases as kinetic energy ε increases, and matrix ele-
ment (35) becomes small. Taking this into account, the
total cross section of elastic A**–B scattering can con-
veniently be written as

(39)

Here, angular momentum  is given by  =

(kRc(k)) and the E symbol denotes the integer part of
the kRc(k) value, where Rc(k) is the turning point of the
repulsive part of the  potential at a given kinetic

energy Ek of the system. The Born approximation in the
distorted wave method [21] can conveniently be
applied to the  partial amplitudes, which are then
written as the sums of two terms,

(40)
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The first term corresponds to ∆ = Γ = 0 and is the elastic
scattering amplitude on the polarization part of the

 potential; that is,

(41)

where  is the corresponding phase, which, at

 > , can be described by the simple dependence [5]

(42)

The cross section of scattering is then given by

(43)

The second term in the total amplitude [Eq. (40)] is
described by the equation

(44)

where the lower limit of integration is determined from
the condition

The  function is the solution to the radial
Schrödinger equation with polarization interaction and
is normalized by the asymptotic

Accordingly, the square of the modulus of the total
elastic scattering amplitude is

(45)

where

7. INTERACTION OF Na(nl) ATOM 
WITH RARE GAS ATOMS

By way of illustration, consider slow collisions
between Rydberg Na**(nl) and rare gas atoms. Of
greatest interest (at given initial excitation of atoms 
and relative energy Ek) are the dependences of the ionic
term width on total energy E and interatomic distance R.
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The dependence on the principal quantum number n of
intermediate virtual states then reproduces the energy

dependence at points  situated in the n0 ≤ n < ∞
interval and is of minor interest. The dependence on the
electron angular momentum l is weak. Below, for the
example of the Na**(10s) + He system, we restrict con-
sideration to the dependence of Γ on energy E, and, for
the example of the Na**(10d) + B systems (where

En
r( )

Parameters a, β, and γ for rare gas atoms

Atom a β γ

He 1.15 1.38 6.0

Ne 0.30 2.68 6.5

Ar –1.69 11.08 –5.0

Kr –3.20 16.74 –40.0

Xe –6.00 27.06 –210.0

Γ, eV
10–6

10–7

10–8

0.01 0.1 E, eV

Fig. 1. Dependence of optical potential width Γ on the total
energy E of the Na**(10s) + He system.

U, eV

10–3

10–5

10–7

5

10–9

10–11
4 6 7 8 9 10

Fig. 2. Dependence of optical potential width Γ and the
 ionic term taken with the opposite sign on inter-

atomic distance R in the Na**(10d) + He system at Ek =
0.19 eV and L = 0. The smooth curve is the ionic term, and
the oscillating curve is the Γ(R) width.

U
Na+He

R, Å
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B = {He, Ne, Ar, Kr, and Xe}), we analyze the depen-
dence on R. The corresponding calculations were per-
formed by (30)–(33) with the a, β, and γ parameters
in decomposition (37) taken from [18]. These param-
eter values are listed in the table. The quantum defects
of the s, p, and d series of the sodium atom were set
equal to

These values were found based on the spectroscopic
data of the National Institute for Standards and Tech-
nologies (NIST Atomic Spectra Database Data).

The dependence of ionic term width Γ on the total
energy E of the system shown in Fig. 1 was calculated
for the following initial data:

(46)

As expected, the oscillations converge to the Ek limit.

At small n values (in the vicinity of the  Rydberg
resonances, whose positions are determined by the
poles of the gss(E) matrix and indicated by arrows),
splitting of the corresponding peaks is observed. A
well-defined fine structure of oscillations of the second
type is seen between the resonances. The fine structure
minima are situated in the neighborhood of zeros of the

sin[R ] function. The picture becomes
noticeably more complex as n increases.

The dependences of width Γ on interatomic distance
R calculated for different rare gas atoms are shown in
Figs. 2–6. It follows from these figures that width Γ(R)
is an oscillating function and rapidly decreases as R
increases. In conformity with (34), the frequency of
oscillations increases as the Mc reduced mass grows.
Simultaneously, the width itself increases, which is
explained by the influence of the a, β, and γ parameters
(see table).

One more illustration is the dependences of the
Na**(ns) + He elastic scattering cross section on
kinetic energy Ek (at a fixed principal quantum number
n0 = 10) and on the level number n (at a given Ek =
10−3 eV energy) shown in Figs. 7 and 8; these depen-
dences were calculated by (39)–(45). The total scatter-
ing cross section σel(Ek) shown in Fig. 7 is a strongly
oscillating function of kinetic energy. In the region of
energies under consideration, its structure is deter-
mined by oscillations of the second type. The height of
the peaks is one to two orders of magnitude larger than
the Na+–He scattering cross section.

The dependence of the elastic scattering cross sec-
tion σel(n) on the principal quantum number (see Fig. 8)
is also a nonmonotonic function, which is, at certain
points, three orders of magnitude larger than the σel(0)
value equal to 10–13 cm2 at Ek = 10–3 eV. The scale of
these oscillations is ∆n ~ 10, and the prospects for their

µs 1.35, µp 0.86, µd 0.015.= = =

Ek 0.1904 eV, n0 10,= =

l L̃ 0, R 5 Å.≈= =

En
r( )

2Mc E 1/R+( )
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U, eV

10–2

10–4

10–6

5
R, Å

10–8

10–10
4 6 7 8 9 10

Fig. 3. The same as in Fig. 2 for the Na**(10d) + Ne system.

U, eV

10–2

10–4

10–6

5
R, Å

10–8
4 6 7 8 9 10

1

Fig. 5. The same as in Fig. 2 for the Na**(10d) + Kr system.

σel, cm2

10–11

10–12

10–13

0.002 0.008
Ek, eV

10–14

0.0100.0060.004

Fig. 7. Dependence of the total elastic scattering cross sec-
tion for Na**(10s) + He on the kinetic energy of colliding
particles. The thin line corresponds to calculations with the
use of optical potential (29), and the thick line is the cross
section of Na+–He scattering calculated by (43).
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U, eV

10–2

10–4

10–6

5
R, Å

10–8
4 6 7 8 9 10

Fig. 4. The same as in Fig. 2 for the Na**(10d) + Ar system.

U, eV

10–2

10–4

10–6

5
R, Å

10–8
4 6 7 8 9 10

Fig. 6. The same as in Fig. 2 for the Na**(10d) + Xe system.

σ, cm2

10–10

10–11

10–12

15
n

10–13
10 20 25 30 35 40

10–9

Fig. 8. Dependence of the total Na**(ns) + He elastic scat-
tering cross section on principal quantum number n.
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experimental observation therefore appear to be quite
realistic. Of greatest interest is the region of superlow
temperatures, which is currently being extensively
studied [22–25].

A natural application of the developed theory can be
calculations of inelastic and transport cross sections.
One more important application is related to the use of
the diffusion approach to describing the dynamics of
collisions of Rydberg atoms [26], where the electronic
transition in the elementary interatomic collision event
is treated as diffusion over the energy states of an
excited quasi-molecule. The diffusion coefficient is
then determined by the probability of transitions per
unit time and is directly related to the imaginary part of
optical potential (29). In the absence of necessary infor-
mation, only crude estimates are possible.

8. CONCLUSION

In this work, we were able to pass from the three- to
the two-particle problem first and foremost because the
major contribution to the broadening and shift of the

 ionic term was made by the region of electron

motions close to the B atom, which is much smaller
than interatomic distance R [7]. One more important
circumstance is the weakly bound character of the elec-
tron in the A** + B system; for this reason, this electron
can be treated as a free particle in interactions with the
B atom. Lastly, the mass of the electron is small com-
pared with the reduced mass of atoms, and the center of
gravity of the system is therefore actually situated on
the axis connecting the centers of the atoms. The intro-
duction of the optical potential, which takes into
account all possible nonadiabatic transitions, is a con-
venient formal technique, which allows the total and
differential cross sections of processes near the ioniza-
tion continuum to be calculated by the standard quan-
tum scattering theory methods. This potential is intro-
duced in the spectral region where the concept of the
potential of nuclei makes no sense, because, in this
region, the slow particle is the electron [4].

We restricted our consideration to the simplest situ-
ation when the B atom is a structureless particle. This
approximation is quite justified for rare gas atoms. In
considering more complex atoms, we should, however,
take into account the multichannel character of electron
motions [18] related to excitation of the ionic core and
the possibility of electron capture with the formation of
ion pairs [19]. Ion pairs are formed when the B atom
has a positive electron affinity, and their formation can
substantially change the resulting picture. In addition,
the possibility of the decomposition of the A* + B
quasi-molecule caused by predissociation, that is, a
nonadiabatic transition to the dissociative electronic
configuration A* + B accompanied by the acceleration
of atoms [20], should be borne in mind. A study of these
problems is beyond the scope of the present communi-
cation and requires additional inquiries.
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Abstract—The satellite structure of 1s2p1, 3P1–1s21S0 lines of the He-like argon ion in plasma produced by a
45-fs laser pulse in a gas-jet cluster target is measured with a high spectral resolution. Radiation transitions
2p  1s from autoionizing states (AISs) are detected for ions ranging from Li-like to F-like. The spectrum
observed is theoretically simulated with the use of the spectroscopic data for the AISs of multicharged ions
obtained within the multiconfiguration relativistic Hartree–Fock method. Good agreement with experimental
data is obtained when the main population channels of these states are taken into account for typical values of
cluster-target plasma parameters. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, cluster targets based on a supersonic gas
jet expanding at high pressure into a vacuum chamber
are widely used for producing plasma by femtosecond
laser pulses; this is primarily associated with various
applications of such plasma (for instance, controlled
fusion, sources of monochromatic and wideband X-ray
radiation, acceleration of charged particles, etc. [1–
10]). Similar experiments can also be carried out for
fundamental spectroscopic and diagnostic investiga-
tions of laser plasma. In particular, a promising direc-
tion is the investigation of extraordinary (from the
viewpoint of conventional conditions for producing
laser plasma) emission spectra of multicharged ions,
such as radiation-transition lines in hollow ions [11–18]
and the related transitions in inner shells, i.e., the radi-
ation decay of autoionizing states (AISs). These lines
are observed, as a rule, in plasma with high electron
density, and their relative intensities are highly sensi-
tive to the plasma parameters. It is well known that
high-density plasma is created when a very short laser
pulse is absorbed by a cluster target [10, 19–21].

The specific conditions implemented in the plasma
produced by femtosecond laser pulses, namely, a com-
paratively low level of ionization and the presence of an
appreciable fraction of fast electrons (see, for example,
[21, 22]), should give rise to satellite lines in the emis-
sion spectrum of the plasma that are associated with the
radiation decay of AISs with the number of electrons
ranging from four to nine. The existence of these lines
1063-7761/02/9506- $22.00 © 20998
gives an additional opportunity to apply X-ray spec-
troscopy techniques to the diagnosis of short-lived
plasma; however, this requires a preliminary investiga-
tion of the satellite lines themselves, which includes,
first of all, the identification of these lines and high-pre-
cision measurements of their wavelengths.

Similar spectra were measured earlier in experi-
ments on the interaction of slow multicharged ions with
metal surfaces [12, 23]; however, the spectral resolu-
tion of these measurements was rather low. In experi-
ments with high-voltage gas-discharge plasma (plasma
focus) [24], the spectral resolution was limited by the
size of the emitting region.

In the present paper, we report the results of mea-
surements of the satellite structure of 1s2p1 3P1–1s21S0

lines of the He-like argon XVII ion in the spectrum of
plasma produced by a 45-fs-long laser pulse in a gas-jet
argon target. The observed radiation spectrum of the
satellite lines in the Ar XVI–X ions (from Li-like to
F-like inclusive) is compared with the wavelengths,
the radiation probabilities, and the autoinonization
widths of the energy levels of appropriate ions calcu-
lated by the multiconfiguration relativistic Hartree–
Fock method. A simple kinetic model that takes into
account the main population channels of AISs is used
for modeling the spectra. The plasma parameters are
taken from detailed kinetic calculations performed ear-
lier [9, 10].
002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) The spectrogram of laser-produced plasma in the argon cluster jet. (b) The spectral characteristic of the X-ray yield for
the AISs of Ar X–XVII ions. Black circles correspond to femtosecond laser plasma (the present work), and light circles correspond
to high-voltage gas-discharge plasma obtained in the plasma-focus equipment [24].
2. EXPERIMENTAL SETUP

Experiments were carried out on the Ti-sapphire
laser system at the University of Bordeaux I; this sys-
tem operates in a four-stage chirped pulse amplification
mode. The details of this laser system were described in
[25]. In these experiments, the energy of the main
45-fs-long pulse at the output was 15 mJ under an
intensity contrast of about 105 with respect to a prepulse
generated by a regenerative amplifier included in the
system. A laser beam was focused by an off-axis parabolic
mirror to give a 6-µm spot at a level of 1/e2 in vacuum. A
pulse length of 45 fs corresponded to a peak intensity on
the order of 1017 W/cm2, which was sufficient for the tun-
neling ionization of argon ions up to F-like ions [26].

A pulsed argon jet expanding into a vacuum cham-
ber from a supersonic conic nozzle with M = 2.5 was
used as a target. The maximum pressure at the valve
was about 60 atm, and the divergence angle of the jet
was 22°. Under these conditions, atomic clusters are
formed in the jet due to the Van der Waals interaction
[9, 27]. Under a fast ionization of clusters, the maxi-
mum electron density in these clusters is much greater
than the critical value of Ne, cr ≈ 1.7 × 1021 cm–3 (for
λlas = 0.8 µm).
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X-ray spectroscopic measurements were performed
with the use of a focusing, spherically bent (R =
150 mm) spectrometer (a crystal-quartz spherical layer
with an interplane spacing of 2d = 0.49 nm) [28] in the
range of wavelengths from 0.394 to 0.425 nm (the first
reflection order) with a hardware resolution of λ/∆λ ~
104. The spectrum was recorded on a DEF-2 film
through a filter made of a 2-µm-thick polypropylene
layer with both surfaces covered by 0.4-µm-thick alu-
minum film. The plasma spectrogram obtained is
shown in Fig. 1a.

3. CALCULATION OF THE ATOMIC STRUCTURE

The energies and the probabilities of radiation and
autoionization transitions for 1sk2sm2pn(S 'L ')2S + 1LJ

levels of the Ar X–XVII ions were calculated by a code
based on the multiconfiguration Hartree–Fock method
with relativistic corrections (MHFR) [29]. The mixing
of the above configurations and those containing 3l
electrons in the outer m shell was taken into consider-
ation. To take into account the effect of other configu-
rations, a special optimization procedure for the inte-
grals of electrostatic and spin–orbit interactions was
SICS      Vol. 95      No. 6      2002
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applied. This procedure involves the interpolation or
extrapolation of the average energy of a configuration
along an isoelectronic sequence on the basis of the data
for other ions available in the literature (P VII–XIV,
S VIII–XV, K XI–XVIII, and Ca XII–XIX). A more
detailed description of this procedure and the results
can be found in [24].

4. SIMULATION OF THE SATELLITE SPECTRA

In the experiments carried out in this work, we mea-
sured the time-integrated X-ray emission from plasma.
The spectral characteristic of the X-ray yield in the
region of 1s2p  1s2 transition in the He-like ion is
approximately given by

(1)

where  is the rate of the radiation transition i  f

(1s2sn2pm  1s22sn2pm – 1) in the ArZ+ ion and  is
the population of the upper level for electron tempera-
ture Te and density Ne, averaged over time plasma vol-
ume, and the fraction f ! 1 of hot electrons with tem-
perature Th. The spectral function, normalized to unity
in frequency, is given by

(2)

which corresponds to the averaging of the line spectrum
of radiation over the normal distribution width γ
defined by the hardware resolution and the inhomoge-
neous Doppler broadening of lines. Homogeneous line
broadening for a small Stark shift is described by the
Lorentz profile L(∆ω, Γ) with the total width

determined by the radiation decay rates

of the upper and lower levels, by the autoionization rate

 of the upper level, and by the collisional width .

In a quasistationary approximation under the condi-
tion that the temperature Te of the main fraction of elec-
trons is much less than the excitation energy of AISs,
the populations of these states are defined by the rela-
tion

(3)
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which takes into account the channels of population
during the dielectronic capture,

from the ground state of an ion of the next ionization state

with a rate of  and during the excitation  + e 

 + e'  by the hot electron impact from the ground
state of an ion of the same ionization state with a rate of

, as well as the relaxation of AISs with the life-
times

(4)

where  is the total rate of collisional depletion
of a level.

Using the detailed balance relation for the dielec-
tronic-capture and the autoionization rates, we obtain

(5)

where  is the excitation energy of the AISs of an ion

with respect to the ground state;  and  are the sta-
tistical weights of the AISs and the ground state of ion

Z, respectively;  are the collisional deexcitation
rates of the AISs; and αZ is determined by the distribu-
tion of ions in plasma: 

Under real-life conditions for the argon plasma (Te ≈
200 eV, Ne ≈ 2 × 1022 cm–3, Th ≈ 5 keV, and f ~ 10–4), the
Mewe and Lotz approximate formulas yield the follow-

ing estimates for the rates: Ne ! 1013 s–1; thus,
formula (1) is rewritten as

(6)
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Fig. 2. Comparison of the measured spectrum for the Ar X–XVII ions in femtosecond laser plasma with the spectrum calculated by (6).
The parameters of the plasma are as follows: Ne = 2 × 1022 cm–3, Te = 200 eV, Th = 5000 eV, and f = 10–4 [9]; the spectroscopic
data are borrowed from [24]. The thin curves are obtained by taking into account solely the homogeneous line broadening, and the
thick curves are obtained by averaging over an effective hardware width of ∆λ = 2.6 mÅ.
where

are independent of the plasma parameters.

Formula (6) shows that, for narrow AISs at a suffi-

ciently low bulk electron temperature (Te ! ), the
excitation from the ground state (or from a low-lying
excited state) may become a more efficient popula-
tion channel even in the presence of a small fraction

of hot electrons (Th > ). It should be noted that
another possible population channel of AISs with the
filled 2s2 subshell is the ejection of an electron from
the 1s subshell of a lower ionized ion by hot elec-
trons. However, according to estimations, the effi-
ciency of this population channel is low for real-life
plasma parameters.
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5. RESULTS AND DISCUSSION

Figure 1 shows the measurement results for the soft
X-ray emission spectra in a plasma produced in a gas-
cluster argon jet in the range of wavelengths 0.394–
0.420 nm containing the resonance 1s2p1P1–1s2 1S0

(Heα1) and intercombination 1s2p3P1–1s2 1S0 (Heα2)
lines of the He-like ion, their dielectronic satellites
(from Li-like to F-like ions), and the characteristic
Kα1, 2 lines. To determine the dispersion curve, we used
the Heα1, 2 and Kα1, 2 lines as reference ones. For com-
parison, Fig. 1b presents, together with the spectrum
obtained in the present experiment, the results of mea-
surements carried out in high-voltage gas-discharge
plasma [24] with lower spectral resolution. The mea-
surements of the spectrum of femtosecond laser plasma
yield a more detailed satellite structure. In particular,
F-like satellites are not blended with the Kα doublet.
This fact can be attributed, in particular, to the higher
temperature of ions, which results in an increase in the
Doppler width. Moreover, the considerable size of the
SICS      Vol. 95      No. 6      2002
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Measured wavelength of satellite lines in the Ar X–XVII ions. The numbers of the lines correspond to the notations of Fig. 1b.
Theoretical data are borrowed from [24]

Line
Experiment Theory

Ion Transition
λ, nm λ, nm Aif, 1013 s–1 Γi, 1013 s–1

1 0.39489 0.39491 – – XVII 1s2p1P1–1s21S0

2 0.39552 – – – – –

3 0.39633 0.39647 4.14 6.39 XVI 1s2p2(1S)2S1/2–1s22p2P3/2

4 0.39680 0.39683 2.07 8.66 XVI 1s2s2p(3S)2P1/2–1s22s2S1/2

5 0.39702 0.39694 – – XVII 1s2p3P1–1s21S0

6 0.39816 0.39816 10.35 0.37 XVI 1s2s2p(3S)2P3/2–1s22s2S1/2

039838 8.91 1.47 XVI 1s2s2p(1S)2P1/2–1s22s2S1/2

7 0.39855 0.39854 14.59 1.10 XVI 1s2p2(3P)2P3/2–1s22p2P3/2

8 0.39910 0.39898 6.09 14.47 XVI 1s2p2(1D)2D3/2–1s22p2P1/2

9 0.39943 0.39931 5.29 15.40 XVI 1s2p2(1D)2D5/2–1s22p2P3/2

10 0.40000 0.40008 1.50 8.62 XV 1s2s2p2(1S)3S1–1s22s2p3P1

11 0.40044 0.40035 3.09 8.62 XV 1s2s2p2(1S)3S1–1s22s2p3P2

12 0.40071 0.40056 8.58 15.85 XV 1s2p3(2P)1P1–1s22p21D2

0.40096 10.20 5.69 XV 1s2s22p1P1–1s22s21S0

0.40117 15.76 5.69 XV 1s2s2p2(3P)1P1–1s22s2p1P1

13 0.40137 0.40133 4.03 14.54 XV 1s2p3(2P)3P1–1s22p23P2

0.40195 6.82 13.42 XV 1s2s2p2(1D)3D2–1s22s2p3P1

14 0.40201 0.40214 7.08 16.85 XV 1s2p3(2P)3P2–1s22p21D2

0.40214 5.16 16.49 XV 1s2s2p2(1D)3D3–1s22s2p3P2

15 0.40244 0.40249 0.81 17.74 XV 1s2s2p2(3P)3P2–1s22s2p1P1

0.40257 8.39 20.87 XV 1s2p3(2D)1D2–1s22p21D2

16 0.40272 0.40286 3.54 21.30 XV 1s2p3(2D)3D1–1s22p23P0

0.40291 4.37 25.51 XV 1s2s2p2(1D)1D2–1s22s2p1P1

17 0.40317 0.40320 4.97 21.57 XV 1s2p3(2D)3D3–1s22p23P2

18 0.40389 0.40387 1.42 27.13 XIV 1s2s2p3(2D)2D5/2–1s22s2p22D5/2

19 0.40439 0.40435 4.49 18.05 XIV 1s2s2p3(2P)2P3/2–1s22s2p22D5/2

20 0.40456 0.40452 13.11 12.50 XIV 1s2s22p2(3P)2P3/2–1s22s2p2P3/2

21 0.40483 0.40488 5.53 29.05 XIV 1s2s22p2(1D)2D3/2–1s22s22p2P1/2

22 0.40518 0.40518 4.75 30.49 XIV 1s2s22p2(1D)2D5/2–1s22s22p2P3/2

23 0.40549 0.40550 12.70 20.80 XIV 1s2s2p3(2D)2D5/2–1s22s2p22D5/2

24 0.40575 0.40580 4.18 16.49 XIV 1s2s2p3(2D)4D5/2–1s22s2p24P3/2

25 0.40601 0.40596 4.90 16.61 XIV 1s2s2p3(2D)4D7/2–1s22s2p24P5/2

26 0.40624 0.40622 4.72 24.10 XIV 1s2s2p3(2D)2D5/2–1s22s2p22P3/2

27 0.40659 0.40668 2.39 25.69 XIV 1s2p4(3P)2P3/2–1s22p32P1/2

– 0.40721 2.72 37.15 XIV 1s2p4(1D)2D5/2–1s22p32P3/2

28 0.40741 0.40735 8.16 29.71 XIII 1s2s22p3(2P)1P1–1s22s22p21D2

29 0.40806 0.40808 13.53 34.85 XIII 1s2s22p3(2D)1D2–1s22s22p21D2

30 0.40847 0.40848 6.29 37.03 XIII 1s2s2p4(1D)3D2–1s22s2p3(2D)3D3

31 0.40880 0.40876 4.41 40.27 XIII 1s2s22p3(2D)3D3–1s22s22p23P2

32 0.40903 0.40901 4.71 24.03 XIII 1s2s2p4(3P)5P2–1s22s2p3(4S)5S2

33 0.40953 0.40952 5.83 54.52 XIII 1s2s2p4(1D)1D2–1s22s2p31D2

34 0.40994 0.40996 3.89 32.68 XIII 1s2s2p4(3P)3P2–1s22s2p3(2P)3P2

35 0.41019 0.41040 0.93 45.72 XIII 1s2s2p4(3P)3P2–1s22s2p31P1
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Table (Contd.)

Line
Experiment Theory

Ion Transition
λ, nm λ, nm Aif, 1013 s–1 Γi, 1013 s–1

36 0.41096 0.41103 10.72 40.85 XII 1s2s22p4(3P)2P3/2–1s22s22p32D5/2

37 0.41154 0.41147 8.61 52.59 XII 1s2s22p4(1D)2D3/2–1s22s22p32D3/2

38 0.41197 0.41198 11.71 56.50 XII 1s2s2p52P3/2–1s22s2p4(1D)2D5/2

39 0.41225 0.41215 6.08 43.84 XII 1s2s2p54P5/2–1s22s2p44P5/2

0.41240 6.48 58.22 XII 1s2s2p52P3/2–1s22s2p44P3/2

40 0.41304 0.41258 4.82 61.78 XII 1s2s2p52P1/2–1s22s2p4(3P)2P1/2

41 0.41369 0.41369 1.55 56.50 XII 1s2s2p52P3/2–1s22s2p4(1S)2S1/2

42 0.41439 0.41436 14.06 59.20 XI 1s2s22p51P1–1s22s22p41D2

43 0.41491 0.41485 6.13 63.92 XI 1s2s22p53P2–1s22s22p43P2

44 0.41507 0.41504 6.92 60.11 XI 1s2s2p63S1–1s22s2p53P2

45 0.41759 – – – – –

46 0.41781 0.41775 7.93 78.19 X 1s2s22p62S1/2–1s22s22p52P3/2

0.41807 3.95 78.19 X 1s2s22p62S1/2–1s22s22p52P1/2

47 0.41916 0.41918 –  251) II Kα1

48 0.41942 0.41947 –  251) II Kα2

Note: 1) Data from [30].
emitting plasma limits the spectral resolution of the
measurements carried out by the Johann scheme.

Figure 2 presents the results of the numerical simu-
lation of the satellite spectrum by formula (6). The sim-
ulation was carried out with the use of the wavelengths
and the radiation and autoionization rates obtained by
the MHFR method; the details of this method are
described in [24]. In the present calculations, we used
the following plasma parameters: Ne = 2 × 1022 cm–3,
Te = 200 eV, Th = 5 keV, and f = 10–4. These parameters
were obtained earlier in [9, 10] by fitting the results of
calculations in a stationary radiative–collisional kinetic
model to the spectra of Li- and Be-satellites measured
under the same experimental conditions. The relative
concentrations of ions of different states of ionization
in (6) were used to normalize the spectra by the maxi-
mum intensity in the groups of satellite lines of differ-
ent ions. The obtained parameters αLi = 0.9, αBe = 0.2,
αB = 0.04, αC = 0.008, αN = 0.005, and αO = 0.003 show
that the difference of the plasma charge distribution
from the equilibrium one increases as the ion charge
decreases. For the Kα doublet, we used the value ΓK =
2.5 × 1014 s–1 and a radiation rate ratio of 0.5 from [30].

When calculating the line profiles, we took into
account that the collisional broadening has a significant
effect only on the lines with small radiation and
autoionization widths whose contribution to the total
intensity is small. An approximate expression for the

collisional width [31] is given by  ≈ 1014 s–1. Theγif
Z
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estimate for the quadratic Stark shift in the average ion
microfield made with regard to the Debye screening
gives a still lesser value of ∆ωSt ≈ 3 × 1013 s–1 for the
chosen plasma parameters. For simplicity, we took into
account the Stark broadening by assigning an appropri-
ate width to the Lorentz line shape.

The results of calculations show a strong variation in
the relative intensities of certain lines of the Li-like
(lines 6–8 in Fig. 1b) and Be-like (lines 13 and 14) ions
due to the population of AISs by hot-electron excita-
tion. For other lines, this population channel is less effi-
cient. The results of calculations also show that the
spectral resolution of lines is determined by the Dop-
pler broadening in expanding plasma and is given by
λ/∆λ = 1500 (∆λ = 2.6 mÅ). This fact significantly
changes the structure of satellite lines (the thin curve in
Fig. 2b). The data presented in the table show that the
maximal value of the autoionization width (attained for
the F-like ion) corresponds to ∆λΑ = 0.8 mÅ, which is
less than the spectral resolution approximately by a fac-
tor of three. The autoionization width can be deter-
mined experimentally when these values are approxi-
mately equal.

Another example that demonstrates the possibility
of using the results of our measurements for verifying var-
ious atomic calculations is the comparison (see Fig. 3a) of
the model spectra obtained with the use of two sets of
spectroscopic constants for argon ions that are bor-
rowed from [24, 32]. A comparison with experimental
data allows one to assess the accuracy of various theo-
SICS      Vol. 95      No. 6      2002
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Fig. 3. (a) Simulated satellite spectrum of argon ions with different sets of atomic data; the thick curve is obtained using the atomic
data of [24], the thin curve corresponds to the data of [32], and the dots represent experimental data. (b) Calculations performed
with the use of solely the Doppler width ∆λ = 3 mÅ, without taking into account (thick curve) homogeneous broadening and (thin
curve) hot electrons.
retical approaches. In [32], a similar method of calcula-
tion was used; however, the authors did not apply the
improvement procedure for the contribution of the elec-
tron–electron interaction to the total energy of levels on
the basis of the experimental data available (see [24] for
more details). This explains a substantial line shift and
an appreciable variation in the shape of blended lines
and indicates that the results of calculations are more
reliable [24]. Finally, Fig. 3b demonstrates the effect of
the natural width on the shape of the spectrum and the
influence of hot electrons on the intensity of certain
lines of the Li-, Be-, and B-like ions.

The table presents the wavelengths of the most dis-
tinct lines in the observed spectrum and the results of
calculations for the most intense transitions close to
these lines. More comprehensive theoretical informa-
tion is given in [24]. On the whole, the measured wave-
lengths agree well with the results of calculations. The
satellite lines of multicharged ions of Ar XVI–XIV
exhibit the greatest difference in the structure of the
spectrum. Probably, this fact is attributed to the specific
features of the kinetics of level population that are not
included in the simple model considered, as well as to
the contribution of satellite lines from higher levels.
These questions require an additional investigation.
JOURNAL OF EXPERIMENTAL
6. CONCLUSION

The emission K-spectra of satellite lines of multi-
charged argon ions from Li-like to F-like have been
measured for the first time in plasma produced by the
interaction of femtosecond laser pulses with a cluster
target. High-precision measurements have allowed us
to determine the fine structure of the spectrum of satel-
lite lines and to identify them by calculating the charac-
teristics of the AISs 1s2sn2pm of multicharged argon
ions for n + m ≤ 8.

The experimental data have been obtained for the
wavelengths of radiation transitions from autoionizing
levels of ions. These data can be used for verifying the
accuracy of calculations and the effect of various types
of configuration mixing on this accuracy.

The results of calculations obtained in a simple
kinetic model with typical plasma parameters are in
qualitative agreement with the spectrum observed. A
direct comparison with the observed intensities of cer-
tain lines of the Li-like argon ion confirms the dominant
role of hot electrons in the population of appropriate
AISs in plasma.

The spectral resolution achieved in the present
experiments is limited by the Doppler shift in moving
 AND THEORETICAL PHYSICS      Vol. 95      No. 6      2002
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ions. This fact has not allowed us to carry out the direct
measurement of dominant autoionization widths by the
observed profiles of spectral lines. However, estima-
tions show that such a measurement becomes possible
when the spectral resolution and the autoionizing width
increases by a factor of two. These conditions can be
satisfied in the plasma produced in the clusters of
heavier atoms. The verification of such a possibility is
of undoubted interest.
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