
  

Astronomy Letters, Vol. 26, No. 6, 2000, pp. 339–343. Translated from Pis’ma v Astronomicheski

 

œ

 

 Zhurnal, Vol. 26, No. 6, 2000, pp. 403–407.
Original Russian Text Copyright © 2000 by Chavushyan, Mujica, Gorshkov, Konnikova, Mingaliev.

                                                    
Optical Spectra of Four Objects Identified 
with Variable Radio Sources

V. Chavushyan1, R. Mujica1, A. G. Gorshkov2, V. K. Konnikova2*, and M. G. Mingaliev3

1 National Institute of Astrophysics, Optics, and Electronics, Puebla, Mexico
2 Sternberg Astronomical Institute, Universitetskiœ pr. 13, Moscow, 119899 Russia

3 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhniœ Arkhyz, Stavropol’skiœ kraœ, 357147 Russia
Received July 5, 1999; in final form, November 17, 1999

Abstract—We obtained optical spectra of four objects identified with variable radio sources. Three objects
(0029+0554, 0400+0550, 2245+0500) were found to be quasars with redshifts of 1.314, 0.761, and 1.091.
One object (2349+0534) has a continuum spectrum characteristic of BL Lac objects. We analyze spectra
of the radio sources in the range 0.97–21.7 GHz for the epoch 1997 and in the range 3.9–11.1 GHz
for the epoch 1990, as well as the pattern of variability of their flux densities on time scales of 1.5 and 7 years.
© 2000 MAIK “Nauka/Interperiodica”.
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INTRODUCTION
We obtained optical spectra of four objects

(0029+0554, 0400+0550, 2245+0500, 2349+0534)
from a complete flux-limited sample of Zelenchuk-sur-
vey radio sources [1]. The sample contains all sources
with fluxes S > 200 mJy at a frequency of 3.9 GHz and
covers 24 h in right ascension at declinations 4°–6° and
|b| > 10° [2]. Since the limiting flux of the sample is low
enough, the entire luminosity function of quasars is
observed up to redshifts z ≈ 1, which allows an attempt
to be made to detect cosmological evolution of the qua-
sar luminosity function after determining the redshifts
for all sample objects.

OPTICAL OBSERVATIONS
We carried out optical observations in October 1998

with the 2.1-m telescope at the Guillermo Haro Obser-
vatory in Cananea of the National Institute of Astro-
physics, Optics, and Electronics, Mexico (INAOE). We
used the LFOSC spectrophotometer equipped with a
600 × 400-pixel CCD array [3]. The detector readout
noise was 8 e–, and the wavelength range covered was
4200–9000 Å with a 8.2-Å dispersion. The effective
instrumental resolution was ~16 Å.

We performed the standard reduction procedure—
the removal of cosmic-ray hits, bias and flat-field cor-
rections, wavelength linearization, and flux calibra-
tion—by using the IRAF package.

The source 0440+0550 was observed with a 60-min
exposure; the exposure time for the remaining objects

* E-mail address for contacts: algor@sai.msu.su
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was 40 min. Magnitudes were taken from the Auto-
mated Plate Scanner Catalog of the Palomar Sky Sur-
vey [4].

RADIO OBSERVATIONS

We observed all four radio sources yearly from 1984
until 1992 at frequencies of 3.9 and 7.5 (or 7.7) GHz
with the RATAN-600 Southern Sector. In 1990, spectra
of the sources at frequencies of 3.9, 4.8, 7.7, and
11.1 GHz [5] were obtained with the Southern and
Northern Sectors. Since 1996, the sources have been
observed two or three times a year simultaneously at six
frequencies (0.97, 2.3, 3.9, 7.7, 11.1, and 21.7 GHz)
with the Northern and Western RATAN-600 Sectors.
Detector parameters and beam characteristics for the
Northern and Western RATAN-600 Sectors are pre-
sented in [6, 7]. The same characteristics for the South-
ern Sector are given in [5]. In every series, the sources
were observed 10 to 15 times each. The source flux was
obtained by averaging all data in each series. Flux
errors were determined from the scatter of fluxes
detected daily in a given series; they include all types of
error: noise, calibration error, calibration-signal refer-
encing error, antenna pointing error, etc. The reduction
procedure is described in [8]. The flux-density scales in
different years were reduced to the scale adopted in [7],
which presents the observations of all sample sources
with power-law spectra.

RESULTS

Table 1 gives objects’ names, their radio positions,
and differences between the optical and radio positions.
The first column contains the source names consisting
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Optical spectra of the objects identified with the radio sources 0029+0554, 0400+0550, 2245+0500, and 2349+0534.
of hours and minutes of right ascension and degrees
and minutes of declination for the epoch 2000. The
source names for the epoch 1950 appearing in previous
papers are given in parentheses.

The radio positions were taken from the JVAS2 cat-
alog of 2118 northern-sky compact radio sources [9];
the rms error of the positions in this catalogue is
0.014  arcsec. The error in the positions of the optical
objects is 0.5 arcsec [4].

The difference between the radio and optical posi-
tions for all sources is smaller than 3σ of the total error
of the radio and optical positions.

The source 0029+0554 was identified with a star-
like object [10]. Figure 1a shows the object’s optical
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
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Fig. 2. Radio spectra of the sources 0029+0554, 0400+0550, 2245+0500, and 2349+0534 in 1990 and 1997.
spectrum. The spectrum exhibits two intense lines,
which can be interpreted as the semi-forbidden C III]
1909 Å line and the Mg II 2798 Å line at redshift
z  =  1.314. The spectrum is typical of quasars. The
RATAN-600 observations of the source show that its
flux density slowly increases: between 1990 and 1997,
the flux density increased from 300 to 480 mJy at
3.9 GHz and from 360 to 498 mJy at 7.5 GHz. Figure 2a
presents the spectra of 0029+0554 obtained in August
1990 in the frequency range 3.9–11.1 GHz and in
August 1997 in the range 0.97–21.7 GHz. Both spectra
are rising, with the two-frequency spectral index
between 3.9 and 7.5 GHz in both spectra being α ≈ 0.23
(S ∝ ν α). In the August 1997 spectrum, the flux density
reaches a maximum at 22.7 GHz. During 1.5 years, the
source was observed at six frequencies in four series
and exhibited no statistically significant variability of
its flux density. The relative variability amplitude V was
calculated by the method described in [11]. On a time
scale of ~8 years (1984–1992), the relative amplitude
of long-term variability is 0.11 and 0.14 at 3.9 and
7.5 GHz, respectively [2]. All radio observations show
that the flux density of the radio source 0029+0554 var-
ies rather slowly, and the development of a single out-
burst at the stage of electron acceleration and/or mag-
NOMY LETTERS      Vol. 26      No. 6      2000
netic-field strengthening is observed. The absolute
spectral radio luminosity of the source 0027+056 at the
frequency of maximum in a homogeneous isotropic cos-
mological model with a zero cosmological constant,
deceleration parameter q0 = 0.5, and H = 50 km s–1 Mpc–1

is Lν = 2.5 × 1034 erg s–1 Hz–1.
The source 0400+0550 was identified with a star-

like object [12]. The source’s optical spectrum (Fig. 1b)
exhibits three lines, which are interpreted as Mg II 2798 Å,
Hγ 4340 Å, and Hβ 4861 Å at redshift z = 0.761. The
spectrum is typical of quasars. Figure 2b presents the
spectra of the source 0400+0550 obtained in August
1990 in the range 3.9–11.1 GHz and in May 1997 in the
range 0.97–21.7 GHz.

The August 1990 spectrum is falling with the mean
power-law index α = –0.23, typical of the outburst
spectrum in an optically thin spectral region. The May
1997 spectrum is composite; it can be separated into
two components: an extended one with a power-law
spectrum and a compact one with a peak in the spec-
trum attributable to synchroton self-absorption at
13.63 GHz, i.e., the initial stage of development of a
new outburst is observed. During the source’s observa-
tions from April 1996 until May 1997, no statistically
significant variability of the flux density was found.
Table 1.  Source names, radio positions, and differences between radio and optical positions

Source name
Radio positions, J2000.0 Radio–optical

R.A. Decl. R.A., arcsec Decl., arcsec

0029+0554 (0027+056) 00h29m45 90 +05°54′40 69 –0.30 0.09

0400+0550 (0357+057) 04 00 11.74 +05 50 43.14 0.0 –0.46

2245+0500 (2243+047) 22 45 53 65 +05 00 56.96 –1.35 –1.04

2349+0534 (2346+052) 23 49 21.06 +05 34 39.85 0.15 –0.55

.
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Table 2.  A summary of the results of optical and radio observations

Object Lines Å Type z B R

0029+0554 QSO 1.314 18.7 18.3

0400+0550 QSO 0.761 18.1 17.5

2245+0500 Mg II 2798 QSO 1.091 18.6 18.4

2349+0534 none BL Lac 19.0 18.0

S mJy,
3.9 11.1,
--------------------

1997
---------------------

V
3.9 7.5,
-----------------

1984–1991
---------------------------

C III]
Mg II
------------- 1909

2798
------------ 422 9( )

524 6( )
------------------- 0.11

0.14
----------

Mg II
Hγ

-------------

Hβ
-------------

2798
4340
------------

4861
------------

387 9( )
497 13( )
----------------------
----------------------

0.12
0.13
----------
----------

405 8( )
399 8( )
------------------- 0.34

0.41
----------

366 11( )
400 10( )
---------------------- 0

0
---
The relative amplitude of long-term variability in seven
years is V = 0.13 and 0.15 at 3.9 and 7.5 GHz, respec-
tively [2]. By contrast to the previous source,
0400+0550 exhibits variations on a time scale of 2 or
3 years. The source’s absolute spectral radio luminosity
at the frequency of maximum of the May 1997 spec-
trum is Lν = 8.6 × 1033 erg s–1 Hz–1.

The source 2245+0500 was identified with a star-
like object [13]. It was observed in September 1989
with the 1-m telescope of an expedition of the Institute
of Theoretical Physics and Astrophysics (Lithuanian
Academy of Sciences) at Mount Maidanak (Uzbeki-
stan) in U, B, and V. Its U magnitude was 19.3 ± 0.5,
U–B = 0, and B–V = 0.3 [13].

Our optical spectrum exhibits a single line (Fig. 1c).
Judging by its profile and intensity, this is the Mg II
2798 Å line at redshift z = 1.091, i.e., the object belongs
to quasars. Its B and R magnitudes are 18.6 and 18.4,
respectively. The source may also have a variable opti-
cal flux.

Figure 2c shows the source’s snap-shot spectra
obtained in August 1990 and in November 1997. Both
spectra have the spectral index α = 0 virtually in the
entire centimeter range; however, subtracting the
extended component from the 1997 composite spec-
trum reveals a compact component with a peak flux
density at 15 GHz. The source was observed at six fre-
quencies from July 1996 through February 1998; the
relative variability amplitude V at 3.9, 7.7. and 11.1 GHz
was, respectively, 0.11, 0.32, and 0.38. The relative
amplitude of long-term variability in [2] was 0.34 and
0.41 at 3.9 and 7.5 GHz, respectively.

The daily RATAN-600 observations in January–
February 1998 revealed no rapid variability of the
source on time scales shorter than 30 days.

The absolute spectral luminosity of the source at the
frequency of maximum in the compact component’s
spectrum is Lν = 1.25 × 1034 erg s–1 Hz–1. 

The source 2349+0534 was identified with a star-
like object [13]. The object’s optical spectrum (Fig. 1d)
is a purely continuum one without noticeable lines. The
spectrum is characteristic of BL Lac objects. The opti-
cal spectrum was apparently obtained during a radio
outburst of the source. During the observations from
1984 until 1992, the source’s flux density was essen-
tially the same in all observations, the mean flux densi-
ties at 3.9 and 7.5 GHz were, respectively, 300 and
305 mJy, and the spectral index was virtually zero in all
observations.

After a considerable break, the source was observed at
six frequencies from April 1996 through August 1997.
The flux density increased: we apparently observed the
initial stage of an outburst in early 1996. Figure 2d
shows the source’s spectra for the epochs August 1990
and August 1997.

The August 1997 spectrum is composite and can be
separated into two components: an intense extended
one with a power-law spectrum (α = –0.9) and a com-
pact one with a peak in the spectrum at 10.7 Ghz.

CONCLUSION

The results of our optical observations and some
characteristics of the objects in the radio band are pre-
sented in Table 2.

Of the four objects whose optical spectra we
obtained, three are quasars and one is a BL Lac object.
For all sources, the ratio of radio and optical flux den-
sities lies in the range (2–4) × 103.
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Abstract—A model of gas-dynamical flow during gravitational collapse is analyzed mathematically by assum-
ing its spherical symmetry and self-similarity. A shock wave diverging from the center emerges in this model.
The physical requirements imposed on the post-shock flow at the center for the specified parameters at infinity
unambiguously determine the shock front and the flow behind it. © 2000 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Gravitational collapse is an astrophysical problem
of current interest. A self-similar, spherically symmet-
ric flow is taken by many authors [1–5] as a model to
study this phenomenon and, in particular, its gas-
dynamical aspect. Self-similarity is ensured by assum-
ing a power-law density distribution at infinity and by a
polytropic equation of state for the gas; since self-grav-
itation is taken into account, the flow is determined by
two dimensional constants: the coefficient in the for-
mula for the density distribution and the gravitational
constant. Here, we mathematically analyze the flow
that arises under these conditions on significant time–
space intervals. We use the method of investigation
from [6], which is devoted to a self-similar flow during
accretion in the gravitational field of a central point
mass. There is qualitative agreement between the situ-
ations in the solutions obtained here and in the above
study. The main points are formulated in the text, while
the factors that are not crucial in the emerged flow are
mathematically justified in the Appendices.

Let us consider the gas-dynamical flow that arises
during gravitational collapse. We consider this flow in
the adiabatic approximation. The flow is assumed to be
spherically symmetric. As r  ∞, where r is the dis-
tance from the mass point relative to which the flow is
assumed to be spherically symmetric, the velocity u rel-
ative to this point, temperature T, and pressure p tend to
zero, while the density ρ falls off as a power law

(1)

where the exponent ω lies in the interval 2 < ω < 2.5.
The limits of this interval are determined by the
requirements that the temperature reduce to zero when

ρ ρ0r
ω–
,≈

* E-mail address for contacts: popov@keldysh.ru
1063-7737/00/2606- $20.00 © 20344
r  ∞ and that the energy at the initial time in any
finite volume be finite.

The equation of state for the gas is assumed to be
polytropic,

(2)

where S is the entropy function, and γ is the adiabatic
index (4/3 < γ < 5/3). At the center (for r = 0), the veloc-

ity is u = 0, and the flux is  = 0, where mr is the gas

mass within a sphere of radius r.
Our main result is the emergence of a shock wave

diverging from the center in the flow under consider-
ation; its front and the post-shock flow are unambigu-
ously determined by the specified state of the gas for
r  ∞.

The gas-dynamical system of equations for a flow
with self-gravitation appears as follows:

(3)

where g is the gravitational constant. The gas-dynami-
cal flux through a sphere of radius r is given by

(4)

p ργ
S,≈

∂mr

∂t
---------

∂ρ
∂t
------ ∂ r

2
uρ( )

r
2∂r

-------------------+ 0,=

∂u
∂t
------ u

∂u
∂r
------ 1

ρ
---∂p

∂r
------

gmr

r
2

---------+ + + 0,=

∂ p/ργ( )
∂t

------------------- u
∂ p/ργ( )

∂r
-------------------+ 0,=

mr r t,( ) 4πr
2ρ r,d

0

r

∫=

∂mr

∂t
--------- 4πr

2
uρ.–=
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We set the following boundary conditions:

(5)

The time t is measured from some time characteristic of
the emerged flow.

It seems convenient to reduce the physical quantities
to dimensionless form:

where r0 and t0 satisfy the relation /  = 4πgρ0. In
this case, one free parameter arises, for example, t0. In
what follows, t0 = 1.

After this transformation, the Euler equation, the
quantity mr, and the asymptotics of the density for
r  ∞ can be represented as

Below, we omit the bar in the designations.
The form of the equations in the gas-dynamical sys-

tem and the boundary conditions determine self-simi-
larity of the sought-for solution. The self-similar vari-
able and the self-similar representation of the gas-
dynamical functions appear as follows:

(6)

It turns out that the function Mr(η) can be explicitly
expressed in terms of U(η) and R(η). Indeed, the gas
mass in a sphere of radius r and the gas-dynamical flux
through this sphere for the self-similar representation
of the functions can be rewritten as

(7)

(8)

Below, the prime denotes a derivative of the corre-
sponding function with respect to η.

ρ ρ0r
ω–
, u 0, p 0 when r ∞,≈

u 0,
∂mr

∂t
--------- 0 at r 0.= = =

r r0r, t t0t, u
r0

t0
----u, ρ ρ0r0

ω– ρ,= = = =

p ρ0

r0
2 ω–

t0
----------- p, mr 4πρ0r0

3 ω–
mr,= =

r0
ω

t0
2

∂u
∂t
------ u

∂u
∂r
------ 1

ρ
---∂p

∂r
------

mr

r
2

------+ + + 0,=

mr ρr
2

r, ρd

0

r

∫ r
ω–
.= =

η r

t
2/ω-------, u

r
t
--U η( ), ρ r

ω–
R η( ),= = =

p
r

2 ω–

t
2

---------- p η( ), mr r
3 ω–

Mr η( ).= =

Mr ηω 3– η2 ω–
R η( ) η ,d

0

η

∫=

2
ω
----Mr'η UR.=
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Thus,

(9)

and, using equation (8), we obtain

(10)

Since, by definition, R and Mr are nonnegative, the
inequality U(η) ≤ 2/ω must be satisfied for ω < 3 at any
η (0 ≤ η ≤ ∞).

In what follows, it seems convenient to introduce
the function f(η) = P(η)/R(η), a self-similar representa-
tive of the speed of sound squared, instead of P(η). The
self-similar system of equations then takes the form

(11a)

(11b)

(11c)

For η  ∞: η2f  0, ηU  0, and R  1; for
η  0: U(η)R(η)η3 – ω  0, and ηU(η)  0.

The derived self-similar system of equations has the
first integral—the adiabaticity integral

(12)

where the constant c0 is determined by the asymptotics
at infinity and, in the case of shock generation, by the
values of the functions at the shock front.

Note that the first two terms, the next three terms,
and the last term in the Euler equation (11b) correspond
to the acceleration of a unit mass, the pressure force,
and the gravitational force, respectively.

Using the first integral, we can represent the self-
similar system as

(13a)

(13b)

Here,

Mr'
1
η
---R

3 ω–( )Mr

η
-------------------------,–=

Mr
R 2 ωU–( )
2 3 ω–( )

--------------------------.=

U
2
ω
----– 

  R'η RU'η 3 ω–( )UR+ + 0,=

U
2
ω
----– 

  U'η U
2

U–( ) f 'η f
R'
R
---- 

 + + +

+ 2 ω–( ) f Mrη
ω–

+ 0,=

U
2
ω
----– 

  f R
1 γ–( )'η

+ γω 2 ω–+( )U 2–[ ] f R
1 γ–

0.=

f R
1 ω 3γ–+( )/ 3 ω–( )

U
2
ω
----–

2 ω 1–( ) γω–[ ] / 3 ω–( )

ηω
c0,=

U'η
Φ1

Φ2
------,=

f 'η 1 3γ–( )U 2 γ 1–( )U'η–+[ ] f / U
2
ω
----– 

  .=

Φ1 4 1 1
ω
----– 

  3γU– f=
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(14)

The particular solution of the self-similar system
corresponding to the state of complete hydrostatic equi-
librium can be written explicitly as

(15)

Clearly, this solution satisfies the conditions for η  ∞
and η  0.

ASYMPTOTICS OF THE FUNCTIONS 
FOR η  ∞

Based on the natural assumption that the velocity
tends to zero and on the specified density distribution
ρ ≈ r–ω when r  ∞, the asymptotics of U(η), f(η),
and R(η) for η  ∞ appears as follows:

(16)

where –U0∞ and f0 are arbitrary positive constants, and
U1∞ and R1 are determined by U0∞ and f0:

(17)

It is convenient to represent f0 as

where ∆∞ is the ratio of the pressure forces to the grav-
itational force when r  ∞ specified from physical
conditions.

For a free fall,

– U
2
ω
----– 

  U U
2

– Mrη
ω–

–( ),

Φ2 γf U
2
ω
----– 

  2

,–=

Mr
ω
2
---- U

2
ω
----– 

  R
3 ω–( )

-----------------,–=

R c0
η ω–

f
--------

3 ω–

U
2
ω
----–

2 ω γ 2–( )+

 
 
 

1
1 3γ– ω+
-------------------------

.=

U 0, R 1, f
η ω–

2 ω 1–( ) 3 ω–( )
---------------------------------------.= = =

U U0∞η ω/2–
U1∞η ω–

,+=

R 1 R1η
ω/2–

,+=

f f 0η
ω–
,=

U1∞
ω
2
---- 1– 

  U0∞
2

2 ω 1–( ) f 0
1

3 ω–
-------------,–+=

R1
3ω
2

------- 3– 
  U0∞.=

f 0

∆∞

2 ω 1–( ) 3 ω–( )
---------------------------------------,=
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U0∞ is arbitrary. According to this asymptotics, the
velocity u ~ r1 – ω/2 becomes supersonic as t  0
(η  ∞); it is lower than the parabolic velocity

for ω > 2 and tends to zero as r  ∞.

To within a constant factor, the gas temperature for
the assumed equation of state is equal to the speed of

sound squared, i.e., T ~ f. Since, according to the

derived asymptotics, T ~ r2 – ω when r  ∞, the ine-
quality ω > 2 must be satisfied for the temperature and
velocity to be zero at infinity.

The total energy inside the sphere of radius r0 at
time t = 0 is finite only for ω < 5/2 and is given by

(18)

where A is a positive constant (see Appendix I). Conse-
quently, the requirement of a negative energy at t = 0
inside the sphere of radius r0 relates ∆ and u∞ by the ine-
quality

(19)

Before a singularity emerges, the flow remains super-
sonic with respect to any η = const line.

ASYMPTOTICS OF THE FUNCTIONS 
FOR η  0 (r  0)

The inequality U(η) ≤ 2/ω holds irrespective of
the  flow pattern, because Mr(η) > 0. If U(η)  U0

as  η  0, where |U0 | < ∞, then  = 0 and

U(0) < 2/ω. This is because the ratio of the third term to
the sum of the first two terms in equation (11a) would
tend to infinity at U(0) = 2/ω, and (11a) could not hold.

For the specified flow parameters at infinity satisfy-
ing the above constraints, the asymptotics for η  0
identifies the only flow whose gas-dynamical functions
satisfy the system of equations (11a)–(11c) with appro-
priate boundary conditions.

r
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ASYMPTOTICS OF A SUPERSONIC FLOW
FOR r  0

For a supersonic flow near the center, the boundary
condition cannot be satisfied when η  0. If f/U2 < 1
for η  0 and γ < 5/3, |U(η)|  ∞ and limf/U2  0.
In this case, the asymptotics of U(η) and R(η) appears
as follows:

(20)

where

(21)

(see Appendices II and III). Consequently,

Thus, the boundary conditions when η  0 can be
satisfied only for a subsonic flow near the center. The
latter is possible when a shock wave diverging from the
center or a weak discontinuity along the characteristic
arises. Since the flow under consideration is self-simi-
lar, η = const lines correspond both to the shock front
and to the characteristic: η = ηf and η = ηch. However,
the singular point of system (11a)–(11c) corresponds to
the η = ηch line, and the integral curve can pass through
this point only at exceptional values of the parameters
in the asymptotics for η  ∞; we therefore do not
consider this situation below.

Thus, a shock wave diverging from the center nec-
essarily arises for a spherically symmetric self-similar
flow, which determines gravitational collapse.

CONDITIONS AT THE SHOCK FRONT

Below, the subscripts 1 and 2 denote the pre-shock
and post-shock values of the functions, respectively.
For the self-similar functions, the conditions at the
front η = ηf appear as follows:

(22)

(23)

(24)

where  is the square of the pre-shock Mach number.

The value of c0 in the first integral (12) for the post-
shock flow can be determined from the derived U2, f2,
R2, and ηf.
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ASYMPTOTICS OF A SUBSONIC FLOW
FOR r  0: U2/f  0

For a subsonic flow, U2/f < 1; U cannot tend to a
finite nonzero value as η  0, and U2/f  0 (see
Appendices II, IV).

The sough-for asymptotics can be realized for the
specified parameters (c0, ω, γ) only at a definite coordinate
of the shock front, ηf = ηf0, at which η  0 in the corre-
sponding solution behind the front when U(η)  0.

In this case, the asymptotics of the self-similar func-
tions in the principal terms appears as follows:

(25)

and the boundary conditions for η  0 are clearly
satisfied. Indeed, according to the first integral (12),
fRαηω  M0, where α = (1 + ω – 3γ)/(3 – ω), and
M0 = c0(2/ω)[γω – 2(ω – 1)]/(3 – ω). It follows from equation
(11a) that (R'/R)η  0, and equation (11b) in the prin-
cipal terms appears as

(26)

Substituting f = M0R–αη–ω in (26) yields the equation
for R(η) with the solution

where T0 is an arbitrary constant. Since the exponent
2(ω – 1)(α + 1)/α > 0,

and

To determine the exponent β, it is necessary to
invoke the second terms of the expansion in the asymp-
totics for f and R; i.e., the asymptotics of the functions
for η  0 can be represented as

(27)

In this case, it follows from the continuity and Euler
equations that α = β and δ = β, respectively.

Substituting (27) in the first two equations of system
(11a)–(11c) and in the first integral (12) and given that
α = δ = β, we obtain a linear homogeneous system of
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equations for U0, R10, and f10 with β-dependent coeffi-
cients:

(28)

The exponent β can be determined from the condi-
tion that the determinant of system (27) is equal to zero;
this is a necessary condition for the existence of a non-
trivial solution:

(29)

Since the free term in (29) is definitely negative for

γ >  and ω > 1, one of the roots β is positive. It will be

represented in the sough-for asymptotics. One of the
coefficients, for example, U0, is arbitrary and can be
obtained by integration, because the system is homoge-
neous.

It is important to note that, in this case, only this sin-
gle free parameter exists; together with the one-param-
eter set of ηf values, it determines the unique solution
ηf = ηf0 for which the derived asymptotics is realized.

Indeed, representing the function in the vicinity of
η = 0 as

(30)

the equations for U1(η) and f1(η) follow from system
(13a), (13b), and (14) for the initial conditions η = 0,
U1(0) = 0, and f1(0) = 0. The type of singularity of the
derived system (η  0, U1 = 0, f1 = 0) can be deter-
mined from the equations

2
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Since the right-hand part of the first equation is a con-
stant,

where

For γ > 4/3 and ω < 3, ω + 1 – 3γ < 0; therefore, for
ω < 2.5,

This implies that the unique solution of system (31),
 = 0,  = 0,  = 0, exists at any U0, which satisfies

zero initial conditions; i.e., the singularity is a saddle
point, and the system for U1(η) and f1(η) with zero ini-
tial conditions has the unique solution.

Thus, if there is an intersection of the one-parameter
set of solutions with U(0) = 0 for given parameters at
infinity with the set of solutions corresponding to the
one-parameter set of shock-front coordinates ηf, then it
is unique, i.e., corresponds to a certain value of ηf = ηf0
and certain coefficients in the asymptotics for η  0.

The values of ηf0 and U0 can be determined by
numerically integrating system (11a)–(11c) or (13a),
(13b) with allowance for the asymptotics when η  0
(26). To avoid the loss of accuracy resulting from the
mutual cancellation of two indefinitely increasing
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quantities, it seems convenient to change to new func-
tions and argument:

(32)

The equations for U(ζ), f1(ζ), and R1(ζ) and the cor-
responding asymptotics for ζ  0 take the form

(33)

where

(34)

When η  0, U ≈ U0ζ, f1 ≈ f10ζ, R ≈ R10ζ,

(35)

The value of U0 is chosen from the condition that, at
η = ηf, the values of U, f, and R obtained by integration
be equal to their values obtained from the conditions at
the shock front ηf = ηf0. For example, at γ = 1.4, ω = 2.4,
U0∞ = –0.5, ∆∞ = 0.5, ηf0 = 0.55587.

The asymptotics of the physical quantities at the
center, i.e., when r  0, and for the specified param-
eters at infinity appears as follows
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(36)

For a free fall f = 0, there is such a coefficient U0∞
for ω > ω0(γ) in the asymptotics when η  ∞ that the
post-shock flow is hydrostatic at some shock-front
coordinate ηf = ηf0. In this case, the pre-shock values of
the functions are

(37)

For η < ηf0, the hydrostatic solution is

Accordingly, the physical quantities take on the follow-
ing values:

(38)

At γ = 1.4, ω(γ) ≈ 2.28.
If |U(η)|   ∞ for η  0 and γf/U2 > 1, then the

corresponding asymptotics contains two free parame-
ters. It is therefore realized for the specified parameters
at infinity for the entire range of shock-front coordinates.

The function U(η)  ∞ for 0 < ηf < ηf0 and
η  0, and the asymptotics of the self-similar func-
tions in the principal terms appears as follows:

(39)

i.e., RUη3 – ω  R0U0 ≠ 0; the boundary condition for
η  0 is not satisfied (see Appendix V).

Thus, of all the possible self-similar solutions with
the asymptotics of a subsonic flow at the center, only
the flow satisfying the natural condition of a zero cen-
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tral gas flux can exist. A definite shock front in the (r, t)
plane corresponds to this flow.

ASYMPTOTICS OF A SUBSONIC FLOW 
FOR ηf > ηf0

If the shock-front coordinate ηf > ηf0, then U(ηh) =
2/ω at some value of η = ηh. The possible asymptotics
of the functions when η  ηh follows from the
emerging singularity in system (13a), (13b), and (14):

(40)
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Fig. 1. Particle trajectories r/r0 = S(t/t0) belonging to
spheres bounding dimensionless masses:  = 2,  = 3,
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Fig. 2. Profiles of dimensionless hydrodynamic velocity
u(r/r0) for a sequence of dimensionless times: t/t0 = 5, t/t0 = 10,
t/t0 = 15, and t/t0 = 20;  shock-front location.*

0
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0

where U0 = , f0 is an arbitrary positive

number, and

(41)

After numerical integration over the entire range of
parameters (γ, ω, U∞, f0), the integral curves approached
the first of the possible asymptotics for η > ηf0. In this
case, there are two free parameters: ηh and the coeffi-
cient in the asymptotics f0. Consequently, this situation
arises for the specified parameters at infinity for the
entire interval of shock-front coordinates, ηf0 < ηf < ∞.
Thus, if the shock-front coordinate ηf > ηf0, then a cav-
ity diverging from the center and growing with time
proportional to t2/ω emerges.

It should be noted that the η = ηh line (the cavity
boundary) is a trajectory in the (r, t) plane. Indeed, a
trajectory in the (r, t) plane is given by the equation

or, changing to the self-similar variables,

Consequently,  = 0 along the ηh line where U(ηh) =

2/ω. According to the asymptotics (40), we have at the
cavity boundary:

(42)

Clearly, this solution cannot be considered satisfac-
tory from a gas-dynamical point of view, because the
pressure at the cavity boundary in it is finite. However,
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the derived solution can be interpreted as the flow
behind a spherical piston diverging from the center,
whose radius rp, in view of the assumed self-similarity,
increases with time as rp = ηht2/ω. The cavity boundary
coincides with the piston surface; the piston velocity
and the pressure on it decrease with time.

Of interest is the change in the radius of a fixed layer
of gas with time, which follows from the explicit
expression for Mr(η) (10) and from the self-similar rep-
resentation of the gas mass inside a sphere of radius r:
mr(r, t) = r3 – ωMr(η).

The particle trajectory at times t longer than some
fixed time t0 is given by

(43)

The right-hand part of this equation determines the gas
mass inside the sphere of radius r0 at fixed time t0. In

this case, r0 = η0 . Figure 1 shows trajectories for
various types of flow. At U(0) = 0, the trajectory radius
approaches some positive value with time, i.e., the layer
stops. At U(ηh) = 2/ω, the trajectory radius increases
starting from some time, i.e., expansion begins.

Plots of velocity and density versus radius at various
times t for each of the two types of flow we considered
are shown in Figs. 2 and 3.

CONCLUSION

We have singled out the unique, acceptable (from a
gas-dynamical point of view) solution from all types of
solutions to the self-similar equations that satisfy
boundary conditions at the center and at infinity for the
specified admissible flow parameters when r  ∞;
i.e., we have identified the front of a shock wave diverg-
ing from the center that provides a zero velocity and a
zero flux at the center. Thus, the central physical condi-
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Fig. 3. Same as Fig. 2 for the function proportional to den-
sity R = (r/r0)ωρ(r/r0): (1) flow with zero central flux, self-
similar front coordinate ηf = 0.55587; (2) flow with an
emerging cavity, self-similar front coordinate ηf = 0.625,
cavity boundary ηh = 0.1;  shock-front location.*
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tions producing this solution were determined. Natu-
rally, the central state cannot be unique, identified in
our case. An analysis of gas-dynamical quantities at the
center differing from those we obtained will apparently
require investigating a problem that is not self-similar.

In the gas-dynamical theory of gravitational col-
lapse for massive stars or, to be more precise, for their
iron cores (their total mass exceeds 10M(), virtually
the same self-similar problem that we solved here
arises. Nadyozhin [1] obtained a self-similar solution
for an ideal gas with the adiabatic index γ = 5/3 by tak-
ing into account neutrino energy losses (with a distinctive
power-law dependence on density and temperature).
Subsequently, Jahil [3] constructed a physically close
self-similar solution for several adiabatic indices γ < 4/3,
but without allowance for neutrino losses [5]. Murzina
and Nadyozhin [4] investigated self-similar gravita-
tional collapse in the case of volume energy losses. All
these solutions end with a singularity at time t = 0 (the
domain of the solution: 0 ≥ t > –∞) and do not include
the shock front. Actually, as shown by numerical solu-
tions to the gas-dynamical problem of collapse that take
into account a complex equation of state for the gas (in
particular, with a variable adiabatic index and a general
law of neutrino energy losses, whose behavior change
sharply when opacity or neutrino self-absorption arise),
the development of the collapse is suspended without
reaching a characteristic singularity in the self-similar
solution [2]. In this case, a strong shock wave, which
virtually stops the motion of gas toward the center, is
invariably formed. Here, we obtained (for the above
constraints on the parameters at infinity) this kind of
self-similar solution for collapsing matter with the
inclusion of the shock front, which is useful in inter-
preting numerical gas-dynamical calculations.
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APPENDIX I

In the self-similar flow under study, the total energy
inside any sphere of finite radius 0 ≤ r0 < ∞ at t = 0 is
finite and nonpositive if and only if the flow parameters
ω, U∞, and ∆∞ satisfy the conditions

(I.1)

The total energy inside the sphere of radius r0 is
given by the integral

(I.2)

After changing to the self-similar variables and using
the explicit expression for Mr(η), this integral can be
represented as

(I.3)

where

and the constant A > 0.

At t = 0, η is infinite at finite r > 0; at r = 0, it varies
in the range η0 ≤ η ≤ ∞, where η0 = 0, if the flow near
the center is supersonic or subsonic, and ηf ≤ ηf0, while
η0 = ηh if ηf > ηf0.

The integral that specifies Er0 at time t = 0 can be
represented as the sum of integrals:

(I.4)

In the first integral, η = ∞, and, according to the
asymptotics (16) and (17), we have for 2 < ω < 3

2 ω 2.5,< <
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therefore,

(I.5)

To determine the second term on the right-hand side
of (I.4), we represent the integral in it as the sum of four
integrals:

(I.6)

Here, ε is small enough, while N is large enough; η1 = ηf
is the shock coordinate in discontinuous flows, η1 is
any number, η0 + ε < η1 < N in continuous solutions.

According to the asymptotics, for η  0 and
η  ηh (4/3 < γ < 5/3),

(I.7)

(I.8)

The integrals  and  are finite, because the inte-

grands are continuous and bounded in these intervals.
The integral

(I.9)

It is easy to see from the above estimates that

(I.10)

In view of the boundary condition at infinity (the
temperature T  0 as r  ∞), the parameter ω > 2.
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Thus, for the energy at t = 0 to be finite and nonpositive
inside any sphere of radius r, 0 ≤ r < ∞, it is necessary
that 2 < ω < 2.5 and that the inequality

(I.11)

be satisfied.

APPENDIX II

If |U(η)|  ∞ for η  0 and 4/3 < γ < 5/3, then
the ratio f/U2 cannot tend to a finite nonzero limit.
Indeed, if |U(η)|  ∞ and f/U2  K, where 0 < K < ∞,
then, according to equation (13b), |U| ~ ηα, where α =

, and it follows from the first integral (12) that

therefore,

When η  0 and |U(η)|  ∞, according to equa-
tion (11a), R|U(η)|η3 – ω  const = L, where 0 ≤ L < ∞.
However, L cannot be equal to zero, because the expo-

nent α in this case would be larger than , in con-

flict with equation (13b). Consequently, L > 0. In this
case, however, Mr ~ RU ~ ηω – 3, hence Mrη–ω ~ η–3, and,
since U ~ η(1 – 3γ)/(γ + 1), Mrη–ω/U2 ~ η(3γ – 5)/(γ + 1)  ∞.

We then have U'η ≈  ~ , i.e., U2 ~ η–3 but

the emerging condition  = –3/2 can be satisfied

only at γ = 5/3.

APPENDIX III

The flow near the center (η = 0) can be only sub-
sonic. If (γf/U2 < 1)limU(η) = U0 for supersonic onflow
at the center, where |U0 | < ∞, then U0 = 2/3.

It follows from the assumption |U0 | < ∞ that
 = 0, f(0) < ∞, and Φ2(η) < ∞, while (η) =

0. In this case, f(0) = 0, because, according to the first
integral (12), Mr ~ R ~ η(ω – 3)ω/(1 – 3γ + ω) at f(0) ≠ 0
(given that U0 < 2/ω), and, consequently, Mrη–ω ~
η(3γ − 4)/(1 – 3γ + ω)  ∞ and Φ1(η)  ∞. In our case,
U0 ≠ 0, because it would follow from the equality U0 = 0
that R(0) = 0, and equation (11a) could not be satisfied.
The ratio of the first term in this equation to the sum of
the other two would tend to infinity. U0 ≠ 1, because
ω > 2, while U0 < 2/ω. It thus follows from the condi-

∆∞
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----------------------------------------------------
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2
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tion (η) = 0 that η–ω = U0 – , i.e.,

R ~ Mr ~ ηω. On the other hand, according to equation

(11a), R ~ . U0 is therefore determined

by the equality  = ω, i.e., U0 = 2/3, and the

asymptotics appears as follows:

In view of the equality

we obtain

where α = . Thus, RUη3 − ω  0 as η  0.

However, as follows from the numerical integration
of system (13a), (13b), and (14), this asymptotics for
any c0 and η  ∞ yields R(η)  const ! 1; i.e., the
initial asymptotics (16) is not satisfied when η  ∞.
So, the function U(η) does not tend to a finite limit for
supersonic onflow at the center when η  0.

If, however, U(η)  ∞, then RUη3 – ω  const ≠ 0
and Uη  ∞; i.e., the boundary conditions are not
satisfied when η  0. Indeed, γf/U2  0 in this
case, because γf/U2 cannot tend to a finite, nonzero
limit as U(η)  ∞, and γf/U2 < 1 (see Appendix II).

For γ f/U2 < 1 and U(η)  ∞ (η  0), in the prin-
cipal terms of the function,

(III.1)

i.e., f ≈ f0η1 – 3γ|U|1 – γ and Mr ≈ Aηω – 3, while Mrη–ω ≈
Aη–3; the coefficient A is given by

(III.2)

Two cases are then possible:

(1)  cannot tend to zero as η  0,

because U ~ η–1, and, consequently, f ~ η–2γ and
f/U2 ~ η–2(γ – 1)  ∞.
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(2)  cannot tend to infinity, because U ≈

(2A/3)2/3η–3/2, and, consequently, f = f0η(1 – 3γ) and f/U2 ~
η4 – 3γ  ∞ for γ > 4/3.

Thus, U2 ~ Mrη–ω with

Consequently,

(III.3)

and, for η  0,

APPENDIX IV

For a subsonic flow, γf/U2 > 1 and γ > 4/3, the func-
tion U(η) near the center when η  0 cannot tend to
constant U0, where 0 < |U0 | < ∞.

Indeed, if U(η)  U0, where 0 < |U0| < ∞, then it
is necessary that U'η  0, U0 < 2/ω, and f(η) 
f0 > 0. According to equation (13b), f(η) ~ ηα when

η  0, where α = . Since f0 > 0, it is

necessary that α ≤ 0. However, the exponent α must be
negative, because R ~ η–ω(3 – ω)/(1 + ω – 3γ), while Mrη−ω ~
ηω(3γ – 4)/(1 + ω – 3γ)  ∞ at α = 0; consequently,
Φ1(η)   ∞, while |Φ2(η)| < ∞, i.e., U'η  ∞. Thus,

it is necessary that U0 <  and, hence, f  ∞. In

this case,

The condition U'η  0 can therefore be satisfied only
if Mrη–ω/f  A, where the constant A ≥ 0, with A = 0

at U0 =  =  > 0. However, for |U0 | < ∞,

the   quantity R ~ , while Mrη–ω ~

 and Mrη−ω/f ~ ηβ, where

But β < 0 at U0 =  and A = const, i.e., β = 0 only at
γ = 4/3.
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APPENDIX V

For η  0 and |U(η)|  ∞, the corresponding
asymptotics in a subsonic flow near the center contains
two arbitrary constants, as follows from the form of its
first two terms. Consequently, this asymptotics at the
specified parameters γ, ω, U∞, and ∆∞ is realized for the
entire interval of shock-front coordinates ηf.

When η  0 and |U(η)|  ∞ and for U2/γf < 1,
U2/f  0 (see Appendix II). In this case, it follows
from equation (11a) that RUη3 – ω  const; therefore,

Mr ≈ – RU/(3 – ω) ≈ Mr0ηω – 3.

Since U2/f  0, equation (11b) in the principal
terms appears as follows:

and its solution is f = f0η–3. Indeed, assuming that
R ~ ηα or R ~ const when η  0, we find that the solu-
tion of this equation in the principal term can be (1) f ~
f0ηω – 2 – α (at R ~ const, α = 0), for ω – 2 – α < –3, or
(2) f ~ η–3.

Since U ~ ηω – 3 – α, U/f ~ η−1  ∞ in the first case;
given that U  ∞, clearly, U2/f  ∞, in conflict with
the initial assumption. Thus, f ≈ f0η–3 in the principal term
in the solution of this equation for η  0. In this case, it
follows from the first integral that U ~ U0η(4 – 3γ)/(γ – 1), and,
consequently, R ≈ R0ηω – 1/(γ – 1). One of the coefficients
of the derived asymptotics, for example, U0, is arbitrary
and can be obtained only by integrating system (13a),

(13b); in this case, R0U0 = L and f0 = – L,

where

In accordance with the condition U(η)  ∞ as η  0,
the derived asymptotics is possible only for γ > 4/3.

Thus, if U(η)  ∞ when η  0, then

To determine the second terms, we represent the
asymptotics of the functions for η  0 as

(V.1)
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Cumbersome calculations (they are omitted here)
yielded the following functions U1(η), f1(η), and R1(η).

For 4/3 < γ < 3/2,

(V.2)

where U10, f10, and R10 are given by the system of linear
equations

(V.3)
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(V.4)

For 3/2 < γ < 5/3,

(V.5)

C in (V.4) and (V.5) and for 4/3 < γ < 5/3 is an arbi-
trary constant.

Thus, if the function U(η)  ∞ in a subsonic flow
for 4/3 < γ < 5/3 and η  0, then the corresponding
asymptotics is determined by two arbitrary parameters;
it can thus be realized for the specified flow parameters
at infinity for the entire range of ηf, which determine
the shock-front location in the (r, t) plane.

Translated by V. Astakhov
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A Self-Similar Solution for a Supernova Explosion 
with Allowance for Accelerated Relativistic Particles

I. N. Toptygin*
St. Petersburg State Technical University, ul. Politekhnicheskaya 29, St. Petersburg, 195251 Russia

Received August 18, 1999; in final form, November 16, 1999

Abstract—A self-similar solution to Sedov’s problem of a strong explosion in a homogeneous medium is gen-
eralized to the case of relativistic-particle generation in a supernova remnant; the particles are accelerated by
Fermi’s mechanism at the shock front and in the perturbed post-shock region. Self-similarity takes place if the
thickness of the prefront is small compared to its radius and if the pressure ratio of the relativistic and nonrela-
tivistic components at the shock front is kept constant. In the presence of relativistic particles, the time depen-
dence of the shock-front radius remains the same as that in their absence, but the plasma parameters in the inner
perturbed region change appreciably. The shell of the matter raked up by the explosion is denser and thinner
than that in the nonrelativistic case, the relativistic-particle pressure in the central region remains finite, and the
nonrelativistic-gas pressure at the explosion center approaches zero. The influence of relativistic particles on
the transition to the radiative phase of expansion of the supernova remnant and on its dynamics is studied. It is
shown that relativistic particles can decrease several-fold the remnant radius at which the transition to the radi-
ative phase occurs. © 2000 MAIK “Nauka/Interperiodica”.

Key words: supernovae and supernova remnants
INTRODUCTION AND STATEMENT
OF THE PROBLEM

In the case of spherical symmetry, the expansion of
supernova remnants and strong stellar winds can be
described at some evolutionary stages by self-similar
solutions [1–4], which allow the laws of motion of
shock fronts and plasma in perturbed regions to be
found. Self-similar solutions are widely used to analyze
specific astrophysical phenomena [5]. However, in
such an analysis, the fact that shock fronts can acceler-
ate charged particles up to relativistic energies [6]
should be taken into account; an appreciable fraction of
the energy of the primary perturbation, reaching tens of
percents, can be transferred to the accelerated particles.
Under these conditions, the relativistic component
(accelerated particles) becomes an important dynamic
factor and considerably affects the gas dynamics of
plasma, i.e., the density and pressure distribution
behind the front of a spherical shock wave.

Here, our goal is to generalize self-similar solutions
to the case where relativistic accelerated particles are
present and to deduce the observational implications of
these solutions. The problem is solved in a two-fluid
gas-dynamical approximation; the relativistic compo-
nent is described by pressure pc(r, t), whose value at the
shock front is specified as a boundary condition. In a

* E-mail address for contacts: INT@cosmos.hop.stu.neva.ru
1063-7737/00/2606- $20.00 © 20356
microscopic treatment (which is not presented here),
the accelerated-particle pressure at the front can be
expressed in terms of the injection rate of nonrelativis-
tic particles to the acceleration regime, much as we did
in [7] for a steady-state case. In the above paper, we
also showed that the density of accelerated particles is
generally negligible compared to the total density of
plasma particles. Based on numerical calculations,
Berezhko et al. [8] have recently considered in detail
the particle acceleration in supernova remnants. How-
ever, these authors focused their attention on the micro-
scopic aspect of the problem, treated gas-dynamical
phenomena in a simplified way, and did not discuss the
relationship of their results to known self-similar solu-
tions for various expansion stages of supernova rem-
nants.

The set of gas-dynamical equations for deriving
self-similar solutions is taken in the Euler approxima-
tion [9], i.e., without allowance for viscosity and heat
conduction in the regions of smoothly varying gas-
dynamical parameters. In our case, this set is

(1)

(2)

(3)

∂ρ
∂t
------ ∂ ρu( )

∂r
-------------- 2ρu

r
---------+ + 0,=

∂u
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∂
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---ρu
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(4)

Here, equations (3) and (4) describe the energy balance
for the nonrelativistic and relativistic components,
which are assumed to be polytropic gases,

(5)

are the densities of their internal energies, and γg = 5/3
and γc are the Poisson adiabatic indices. For a relativis-
tic gas, we have 5/3 > γc ≥ 4/3, depending on the shape
of the accelerated-particle spectrum [7]. The quantity

(6)

is the energy flux density of a nonrelativistic gas. The
energy flux of the accelerated particles is given by

(7)

where κ is the diffusion coefficient determined by
small-scale magnetic fields. The presence of diffusion
coefficient in (7) introduces some characteristic scale
(transport mean free path Λ of the accelerated particles)
into the problem, and a self-similar solution can be con-
structed only by disregarding this scale. For this reason,
we take the approximation κ  0, which corresponds
to neglect of the shock transition thickness determined
by the accelerated particles in comparison with the
front radius

(8)

where v is the particle velocity. This approximation
does not result in any significant constraint, because a
sufficiently large acceleration is possible only if the
inequality (8) is satisfied. If this inequality is violated,
the particles quickly leave the neighborhood of the
front and cannot gain appreciable energy.

STRONG EXPLOSION WITH ALLOWANCE 
FOR THE GENERATION 

OF RELATIVISTIC PARTICLES

For an instantaneous point release of energy E (and
neglecting the mass of the ejected shell) in a homoge-
neous medium of density ρ0, we have the self-similar
variable [9]

(9)

where Rs(t) is the shock radius, β is a dimensionless
constant, which is defined below. This approach is
applicable only to expansion into a “cold” medium, i.e.,
when the pressure is neglected in comparison with the
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pressure in the perturbed region. It is valid irrespective
of whether accelerated relativistic particles are gener-
ated during the explosion. The self-similar variable dif-
fers from the nonrelativistic case only by the constant β.
However, the solution in the perturbed region s < 1 dif-
fers more significantly from Sedov’s well-known solu-
tion [9].

We introduce dimensionless dependent variables
U(s), G(s), Y(s), Z(s) given by the relations

(10)

Substituting these relations in set (1)–(4) yields ordi-
nary differential equations with one independent vari-
able ξ = lns, which can be written in symmetric form as

(11)

(12)

(13)

(14)

To determine the four unknown functions, we must
specify four boundary conditions at the shock front. In
the presence of relativistic particles, the boundary con-
ditions will differ from those specified for an ordinary
gas-dynamical front. Let us formulate them with allow-
ance for the condition (8), i.e., neglecting the thickness
of the front broadened by relativistic particles in com-
parison with its radius. First of all, the relative plasma
compression at the front

(15)

can exceed σg = (γg + 1)/(γg – 1) for a strong gas-dynam-
ical nonradiative shock wave. The value σ ≥ 4 depends
on the rate of particle injection to the acceleration
regime and on the spectrum shape, which can be deter-
mined by solving the kinetic equation [7]. When a
purely gas-dynamical problem is considered, this quan-
tity must be specified as an external parameter.

In the local frame of reference associated with some
portion of the shock front, the pre- and post-shock
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plasma velocities v1 and v2 satisfy the relation v1/v2 = σ.

Since v1 = vs = (t) = 2Rs(t)/5t, and u(Rs(t), t) = vs –
v2 = vs(1 – σ–1), this yields

(16)

Conservation of the momentum flux through the

front, ρ1  + p1 = ρ2  + p2, allows the total pressure
ptot = p2 on the inner side of the front to be found at
ρ1 = ρ0, v1 = vs , ρ2 = σρ0, and p1 ≈ 0:

(17)

A similar equation for the energy flux results in the
relation

(18)

This equality suggests the absence of “runaway” parti-
cles, whose energy is so large that they freely leave the
system. From the last two equalities, we find the frac-
tion of the dynamic pressure at the front transferred to
the accelerated particles:

(19)

The last formula is valid only in the presence of relativ-
istic particles, i.e., for γc < γg. Using relations (10) and
the preceding equalities, we can find the remaining
boundary conditions:

(20)

The boundary conditions (15), (16), and (20) form a
complete set. They include the parameter σ, which is
calculated by kinetic methods. The results obtained when
solving a steady-state problem [7] can be applied in the
case under consideration only to a quasi-static regime,
when the front displaces by a small distance compared

to its radius on an acceleration time scale τa ≈ κ/ .
This regime requires sufficiently small particle trans-
port mean free paths, i.e., strong plasma turbulization.
A transition to the case of a nonrelativistic gas-dynam-
ical shock wave occurs for σ  (γg + 1)/(γg – 1). This
implies η  0 and Y  0, and the conditions (15),
(16), (20) transform to Sedov’s conditions [9].

The set of ordinary nonlinear equations (11)–(14)
with the above boundary conditions can be readily inte-
grated numerically. This procedure is facilitated by
constructing the energy integral for these equations,
which can be done by using the methods of Sedov [9]
or Landau and Lifshitz [10]. In this way, we obtain the
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relationship between the dimensionless functions U, Y,
and Z:

(21)

which satisfies the boundary conditions (16) and (20).
However, even the derivation of the asymptotics of the
solution at s ! 1 and its comparison with the asymptot-
ics of Sedov [9] reveal the principal differences brought
about by relativistic particles.

Let us represent the sough-for functions in the
region s ! 1 as

where U0, A, and a are constants; U0 > 0 by the meaning
of this quantity, and au > 0 and ag ≥ 0 because the veloc-
ity and density are bounded. From equations (11), (13),
and (14), we find

The condition ag > 0 yields U0 < 1; whence it follows
that ay < 0, az < 0, ay – az = ag(γc – γg) < 0. Thus, we have
Y(s) @ Z(s) for s ! 1. This condition implies that, in the
central explosion region, the pressure of the relativistic
particles prevails, pc @ pg, for any their finite contribu-
tion η to the total pressure at the front.

From equation (12), we find

(22)

and finally obtain

(23)

In contrast to Sedov’s solution, the nonrelativistic-gas
pressure vanishes at the explosion center, pg  0,
while the accelerated-particle pressure remains finite:
pc  const as r  0. The gas density at the explo-
sion center in the presence of relativistic particles
approaches zero more rapidly than it does in their
absence. In the limiting case of ultrarelativistic parti-
cles (γc  4/3), we have ρ ∝  r9, whereas in the non-
relativistic gas-dynamical case ρ ∝  r4.5. Thus, in the
presence of relativistic particles, the shell becomes
thinner, denser, and colder than in the nonrelativistic
case. These qualitative conclusions are confirmed by
numerical calculations, whose results are shown in the
figure. The calculations were carried out for γc = 4/3.
The plasma velocity inside the perturbed region grows
toward the periphery almost linearly; the pressure of
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Plasma parameters versus distance from the explosion center in the perturbed region, normalized to their values on the inner side of
the front: (a) σ = 4.01, (b) σ = 4.25; (c) σ = 5.50; (d) σ = 6.75. Curves 1 for plasma velocity, 2 for density, 3 for total pressure, 4 and
5 for the pressure of relativistic and nonrelativistic particles, respectively, relative to the total pressure at the front.
the accelerated particles is finite in the central region
even for their very small contribution to the total pres-
sure at the front (figure a); and the nonrelativistic-gas
pressure decreases with increasing compression and
vanishes at the explosion center. The shell thickness
also decreases with increasing compression.

The constant β appearing in the self-similar vari-
ables (9) can be determined from equality of the explo-
sion energy E and the total energy of the gas and the
accelerated particles:

(24)

which gives the relation

(25)

The table lists numerical values of β and fractions
ηk, ηg, and ηc (ηk + ηg + ηc = 1) of the total explosion
energy accounted for by the shell kinetic energy,
the  nonrelativistic-gas internal energy, and the acceler-
ated-particle energy, respectively. This table also gives
the parameter A characterizing the remnant radius (see
the next section). As we see from the table, the fraction
of the explosion energy ηc accounted for by the accel-
erated particles rapidly grows with increasing relative
compression, with the injection rate remaining modest
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[7, 8] and quite attainable under real conditions. As the
compression increases further, the runaway particles,
which we disregarded here, begin to play a significant
role, and they must be included in the calculations to
obtain reliable results. Although the compression can,
in principle, be arbitrarily large, stable states are possi-
ble only for moderate compressions, which apparently
do not exceed σ = 8–10 [11].

RADIATIVE EVOLUTIONARY STAGE 
OF THE SUPERNOVA REMNANT

The redistribution of total explosion energy in favor
of the accelerated particles with increasing relative
compression σ results in a change of the parameters
and dependences that characterize the radiative stage of
expansion of the supernova remnant. Let us make the
corresponding estimates following [12] and our results.

At the previous, adiabatic stage, the temperature
immediately behind the shock front is

(26)

where µ = 0.60mH is the mean mass per particle for
standard elemental abundances. This value can be
obtained from relations (17) and (19) and the equation
of state for a nonrelativistic gas pgs = (ρ0σ/µ)Ts. The
transition to the radiative stage occurs when the post-
shock temperature reaches some value Tr at which
strong radiation in the lines of heavy elements takes

Ts

µv s
2
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---------- 1 1
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The distribution of explosion energy between the components and the normalization constant as a function of relative compression

σ 4.00 4.01 4.10 4.25 4.50 4.75 5.00 5.50 5.90 6.30 6.75 6.90
β 1.148 1.132 1.088 1.097 1.097 1.075 1.067 1.032 1.019 1.004 0.995 0.991
ηc 0.000 0.062 0.255 0.267 0.331 0.440 0.504 0.640 0.699 0.750 0.789 0.801
ηg 0.721 0.675 0.521 0.494 0.420 0.323 0.260 0.148 0.094 0.052 0.016 0.006
ηk 0.279 0.262 0.223 0.239 0.249 0.237 0.236 0.212 0.207 0.198 0.195 0.193
A 10.8 10.5 9.7 9.6 9.2 8.5 7.9 6.6 5.8 4.8 3.3 2.4
place (Tr = 6 × 105 K, according to [12]). From this con-
dition, we find the transition radius of the remnant

(27)

Here, the second equality suggests that ρ0 = 1.26mHn0,
where n0 is the atomic number density (cm–3), and E is
the explosion energy (in ergs). The dependence on
explosion energy and on ambient density in the pres-
ence of accelerated particles does not change, Rc =

A(E/1050)1/3 , but the numerical coefficient A
decreases from 10.8 at σ = 4 to 2.4 at σ = 6.9 (see table).

After the radius Rc is reached, a thin dense cold shell
surrounding the region filled with heated gas and accel-
erated particles is rapidly formed. Almost the entire
mass of the raked-up gas is contained in this shell. The
pressure inside the shell is close to a uniform one,
because the speed of sound is relatively high, but
decreases with time due to the remnant expansion. The
dependence of the pressure on remnant radius can be
found in the snowplough model [12]. Denoting the
internal energy of the remnant by

, (28)

we write the condition of its adiabatic expansion as

(29)

where p = pg + pc is the total pressure. In this case, we
assume that the dense shell prevents the outward escape
of the accelerated particles and that their pressure in the
outer region is low. To estimate their maximum effect,
we take the condition pc @ pg. The applicability of this
inequality is facilitated by the fact that, as the compres-
sion increases, an increasingly large fraction of the
energy is accounted for by the accelerated particles (see
table), and that a considerable part of the internal energy
of nonrelativistic gas is lost during radiative cooling
(more than half, according to [12]). In this approxima-
tion, we obtained from equalities (28) and (29)

(30)

where ET0 is the internal energy of the remnant after
radiative cooling. This energy can be approximately
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estimated with the aid of the table; a more accurate
result requires a numerical calculation of radiative
cooling. For γc = 4/3, we have the dependence pc ∝  R–4,
whereas in the nonrelativistic case pg ∝  R–5.

To calculate the time dependence of the remnant
radius, we take into account the balance of mass and the
balance of momentum of the cold shell (neglecting the
small mass of the central part):

(31)

Using these and the preceding equations, we can easily
find the asymptotics of the radiative stage of expansion
of the supernova remnant:

(32)

The derived time dependence R(t) ∝  t1/3 is similar to the
dependence R(t) ∝  t2/7 for the nonrelativistic case.

It should be emphasized that the latter result is valid
only if the dense shell holds well the relativistic parti-
cles within the remnant. Since there are no observa-
tional and theoretical data on regular and turbulent
magnetic fields in the shell, this assumption may prove
to be wrong. In this case, the estimate (27) for the tran-
sition radius of the remnant is preserved, but its subse-
quent evolution will follow a more complex law.

CONCLUSION

We have obtained a self-similar solution to the non-
steady-state gas-dynamical problem of the adiabatic
stage of a strong point explosion accompanied by the
generation of relativistic particles. The mechanism of
accelerated-particle generation is unimportant. The
solution allows us to calculate the variations of plasma
parameters in the perturbed region and the distribution
of total explosion energy between the nonrelativistic
gas and the relativistic particles.
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Abstract—We study the effect of nova magnetodipole fields on the dynamics and structure of ejected shells by
using a numerical model based on the kinetic–hydrodynamic description of plasma dynamics. Our calculations
show that characteristic nonuniformities appear in the distribution of field and plasma perturbations during
super-Alfvén shell expansion in the circumstellar medium. © 2000 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

According to an analysis of observational data for
many novae, in particular, for V603 Aql (1918) and
DQ Her (1934), their expanding plasma shells break up
into several fragments as they evolve, among which
polar clumps and equatorial belts are distinguished [1, 2].
During initial plasma expansion, the emission region is
similar in shape to an ellipse elongated along the star’s
polar axis, with an axial ratio of 1 : 1.5 for V603 Aql.
The idea of gravitational formation of ejections as mat-
ter falls onto the star from an accretion disk [3], includ-
ing a magnetized one [4], was invoked to account
for  the asymmetric expansion of plasma from stars.
However, the role of stellar intrinsic magnetic field,
~106–108 G in strength [5], in the possible redistribu-
tion of shell energy to produce jets has not been inves-
tigated. There is an as yet unstudied hypothesis that a
strong magnetic field of the star affects the dynamics of
the matter ejected by an explosion from its surface [1, 2].

Typically, the energy of the nova magnetodipole
field (1038–1042 erg) is much lower than the kinetic
energy of the shell (1044–1046 erg) acquired through
thermonuclear heating [6]. Therefore, the hydrody-
namic models of a point explosion with shock propaga-
tion from the stellar center usually disregard the effect
of magnetic field on the motion of matter [7]. In this
case, the shell remains spherical in shape.

The approximation of a weak magnetic field breaks
down if the subsurface region, where the initial pertur-
bations form, is taken into account. In this region, the

* E-mail address for contacts: S.A.Nikitin@inp.nsk.su
1063-7737/00/2606- $20.00 © 20362
matter with a magnetic field beneath the detaching shell
is compressed. The dipole magnetic field in a relatively
narrow layer can act as a “working body” with distinct
anisotropic properties. The stellar magnetic field also
affects the interaction of the shell with stellar wind.
These peculiarities must show up in observable inho-
mogeneity of the ejected plasma as it moves away from
the star. Here, we study this hypothesis by using our
kinetic–hydrodynamic model of plasma dynamics. The
model allows for the redistribution of plasma flows and
makes it possible to trace the shell expansion in the
magnetized medium around the star shortly after the
outburst energy release.

In Section 1, we consider the magnetogravitational
and electrodynamic approaches, which enable us to
estimate the scale sizes of the region where the initial
perturbation is formed as a function of the released
energy, respectively, with and without allowance for
gravitation. In the magnetogravitational approach, we
determine the deformation scale size for a gravitating
nonrotating sphere of an incompressible magnetized
fluid. By disregarding the gravitational field, we study
a superconducting shell separated from a rigid mag-
netic core by a vacuum gap. In this case, an energy sim-
ilarity is established between these two models in
equality of the relative scale sizes of the sphere defor-
mation, on the one hand, and of the magnetic-field
compression region, on the other. We discuss the char-
acteristics of real stars in an effort to justify the physical
model we propose [8]. It consists of a uniformly mag-
netized, perfectly conducting sphere surrounded by a
thin exploding shell and a rarefied ionized gas that fills
the ambient space.
000 MAIK “Nauka/Interperiodica”
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In Section 2, we describe a mathematical model,
which is based on the kinetic approximation for ions and
on the hydrodynamic approximation for electrons [9].
This model is intended to investigate the above physical
system.

In Section 3, we discuss our numerical results,
showing that nonuniformities appear in the distribu-
tions of field and plasma perturbations at early times of
the shell motion.

1. ON THE CHOICE OF A PHYSICAL MODEL

1.1. Estimating the Deformation 
of a Magnetic Gravitating Incompressible Sphere

by an Explosion of Its Shell 

Let us consider the possible scale size of the defor-
mation of the star itself—a white dwarf in a close
binary system—by a thermonuclear explosion of the
spherical hydrogen layer accreted on its surface [6]. We
assume that the star has the mass M = (0.5–1)M(, radius
R ≈ 8 × 108 cm, and magnetic field B = 106–108 G, which
are typical of novae, and ignore its own rotation. Chan-
drasekhar and Fermi [10] showed that a nonrotating
sphere with a uniform magnetic field inside and a
dipole field outside is not an equilibrium configuration
under steady-state conditions and tends to flatten out,
shrinking in the field direction. If the stellar matter
beneath the shell is assumed to be perfectly conducting
and incompressible, then we conclude that the white
dwarf is deformed by the compressing effect of pres-
sure forces through the kinetic energy %0 ~ 1044–1046 erg
released during the explosion with its volume pre-
served. A quasi-static estimate for the scale size of this
deformation can be obtained by equating part of the

energy W ~ %0 (approximately half of the entire

energy %0 is assumed to move toward the stellar center)
to the change in total potential energy ∆U. Following
Chandrasekhar and Fermi [10], we write the equation
of a deformable surface as

(1)

where ϑ  is the polar angle in a system with the symme-
try axis along the vector of uniform stellar magnetiza-
tion; Pl(cosϑ) is the Legendre polynomial of the lth
order; and ε is the amplitude of the “Pl deformation”.
According to the virial theorem, the total increment
∆U is equal to the sum of changes in the gravitational
(∆Ω) and magnetic (∆}) energies. In particular, for l = 2
(ε ! 1), we have

(2)

where G = 6.7 × 10–11 m3 kg–1 s–2 is the gravitational
constant. Expression (2) is written for the P2 deforma-
tion, which is the main deformation when deriving the
condition of gravitational equilibrium for a uniformly
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magnetized sphere formed by an incompressible
medium. Such a sphere is known to be unstable and
tend to take the shape of an oblate spheroid (ε < 0). In
this case, the change in magnetic energy ∆} of the sec-
ond order in ε is positive for all l ≠ 2, which rules out
the system’s instability against this type of perturba-
tion. The amplitude ε (l = 2) can be determined from the
condition of ∆U minimum and can be written in relative
units as

It is easy to see that, for a typical white dwarf in steady
state without rotation, the flattening along the magnetic
axis is negligible: |ε∗ /R | ~ 10–11, |ε∗ | ~ 100 µm!

Let us now assume that the P2 deformation also
dominate during the forced compression by a thermo-
nuclear explosion of the shell. This assumption is based
on the fact that, since the sphere is incompressible, its
shape can change primarily due to the motion of inter-
nal particles along frozen-in magnetic field lines. As a
result, the front velocity of the lower part of the shell,
which exerts a compressing effect, varies with ϑ  as
V0cosϑ . The amount of transformed energy (i.e., the
energy of shell motion along the magnetic axis) is thus
estimated to be

The deformation scale size can be determined from the
equation of energy balance

and is [8]

(3)

or |εN | ~ 10–100 km. We take the compression to be
elastic, i.e., assume that the star regains its original
shape associated with a minimum of the total energy
after the matter of the lower part of the shell disperses.

Our quasi-static estimate for the maximum ampli-
tude of the star’s flattening by shell explosion is deter-
mined by the gravitational energy and does not depend
on the magnetic-field strength. It can be shown that this
is because the equilibrium degree of deformation (ε∗ )
is low under steady-state conditions, or, in other words,
because the contributions of the gravitation and the
magnetic field to the change in potential energy are
incommensurable at relatively large amplitudes |ε| @ |ε∗ |.
Nevertheless, as follows from the above reasoning, the
role of strong stellar magnetization in the development
of the compression itself shows up in the pattern of
deformation of the boundary surface.
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Gravitation affects the general scale size of the com-
pression region, while the spatial nonuniformity of the
latter is determined by the magnetic field. Below, we
use a different, even more idealized model as an exam-
ple to illustrate this.

1.2. A Superconducting Shell and the Similarity 
Condition for Models with and without Gravitation 

Let us consider a system composed of a uniformly
magnetized conducting sphere with radius a and
moment µ surrounded by a closed shell of inner radius
re separated from the sphere by a vacuum gap of thick-
ness δe. In the magnetostatic approximation, we can
easily estimate the field configuration in this system
after the shell has exploded and transformed into a per-
fectly conducting plasma spherical layer. The perturbed
scalar potential of the field H = –∇Φ  in the gap is given
by the sum Φ = Φ0 + Φ1, where Φ0 = µcosϑ /r2 is the
potential of the original field, and the perturbation
potential Φ1 is written as a series of spherical harmon-
ics, whose coefficients can be determined from the
boundary conditions

As a result, we obtain

In a similar approach, the identity Φ0 + Φ1 = 0, r ≥ re,
holds for the region outside a shell of thickness dre,
because the radial component of ∇ (Φ0 + Φ1) vanishes
on the r = re + dre sphere and because Φ1  0 as
r  ∞. In other words, there is no external total
quasi-static field, which is tantamount to the emergence
of superconductor properties in the shell. Thus, a con-
sequence of the idealized model with an instanta-
neously emerging closed highly conducting shell is the
screening effect of the latter, which must produce an
electromagnetic impulse that propagates in all direc-
tions away from the body and that “switches off” the
original external field. The fact that the initial kinetic
energy of the shell plasma is much higher than the mag-
netodipole energy } = µ2/a3 underlies this assumption
[8]. In this case, the magnetic flux is intercepted and
compressed in the gap between the plasma and the
body by the diamagnetic current that arises near the
inner boundary of the heated layer. The magnetic pres-
sure, which exerts a deceleration effect on the lower
boundary of the shell, depends strongly on polar angle,
according to the expression for the square of the field at
r = re

∂
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In the approximation of a spherical front (δe,  ! a),
the work of ponderomotive forces as the field is com-
pressed in the gap is

where , and  are, respectively, the shell radius and
the gap thickness in the final state. Equating ! to the
shell kinetic energy W and assuming the compression

to be strong (  ! δe), we obtain

The energy parameter κm is the ratio of the plasma-shell
energy to the energy of the magnetodipole field outside
a sphere of radius a. Nikitin and Ponomarenko [11]
introduced this parameter to analyze the efficiency of
interaction of the local-explosion plasma with a point-
like magnetic dipole (in this case, a is the distance from
the dipole to the point of explosion). Thus, there is an
anisotropy in the magnetic-pressure distribution
(∝ sin2ϑ) in the gap, which causes deformation of the
compression front. Another characteristic of the com-
pression region is its mean scale size, specified by κm.
A similar parameter, as applied to the gravitational
energy of the sphere, can be introduced:

According to the estimate (3),

The origin of P2 deformation in the model of a sphere
of an incompressible fluid corresponds to the angular
dependence of magnetic pressure in the model of a
shell with a vacuum gap. Thus, one might expect the
spatial pattern of field and medium perturbations as the
shell of a magnetic gravitating star explodes to be sim-
ilar to the corresponding pattern in the model configu-
ration without gravitation. The following relation
serves as the similarity criterion:

(4)

when this relation is satisfied, the relative scale sizes of
the perturbation region are the same in both
approaches:

(5)

The perturbation scale of the magnetic field during
its compression, specified by κm, for novae lies in the
range 1/κm ~ 10–2–10–8. Thus, our estimates show that
the stellar core undergoes no significant initial defor-
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mations produced by compression during the shell
explosion. The core remains nearly spherical. It is
therefore important to consider the following question:
to what extent can the deviation from a spherical shape
in the shell expansion be caused by the interaction of
the expanding plasma with the magnetized circumstel-
lar medium?

1.3. Basic Characteristics
of the Circumstellar Medium 

Let us estimate some characteristics of the stellar
surface and its ambient space from the viewpoint of
peculiarities of the perturbation propagation.

The velocity of Alfvén waves in the surface layer of
a white dwarf with density ρ ~ 104 g cm–3 [6] is VA =

 ~ 3 × (106–107) cm s–1, and the velocity of
matter in a shell of mass Me ~ (10–3–10–4)M( for a typ-

ical nova is V ~  ~ (107–108) cm s–1. Thus, the
velocity of the inner shell boundary toward the stellar
center is higher than the Alfvén one. In the theory of an
ideal magnetized fluid, satisfying this condition implies
the emergence of strong local hydromagnetic turbu-
lence [12]. After the action of the external impulse
ceases, two oppositely directed trains of Alfvén waves,
which carry away the turbulent energy from the pertur-
bation region, must propagate along magnetic field
lines. If we restrict ourselves to the hydromagnetic
approximation, then this effect will be the main mani-
festation of anisotropic properties of the spherical sur-
face layer in which a shock emerges.

To take into account finite compressibility, let us
estimate the speed of sound in the surface layer by

using the formula S = , where, according to [13],
the pressure at the above density for steady-state condi-
tions at minimum of the total energy is P ~ 9.7 ×
1018 dyne cm–2, and the adiabatic index is assumed to
be equal to that for a nonrelativistic ideal gas (γ = 5/3).
We then have S ~ 4 × 107 cm s–1. In general, the velocity
of magnetosonic perturbations is given by

where the “+” and “–” signs refer to the fast and slow
waves, respectively; and θ is the angle between the
wave vector and the field direction. Clearly, given the
estimated VA and S, a shock wave is generated at shell
velocity V ~ 108 cm s–1. The jump in density is attribut-
able to the removal of electron-gas degeneracy because
of the high temperature at the shock front determined
by a mean temperature of ~2 × 108 K [6] in the shell at
the time of explosion; in order of magnitude, this value
is the critical degeneracy temperature in helium and
hydrogen at densities ~104 g cm–3.
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The nova shell in a binary system expands in the
stellar wind from the neighboring star. The mass flux,
which causes hydrogen accumulation on the surface of
the future nova, is related to the outburst period and is

variously estimated to be  ~ (10–5–10–13) M( yr–1 [5].
We use the approximation of spherically symmetric
accretion to estimate the density ρ∗  and velocity of the

ionized gas around the white dwarf. From the condition

of flux conservation  = 4πρ∗ V∗ r2 = const and from

the dependence of radial infall velocity V∗  on radius

(V∗  ∝  r–1/2), we obtain ρ∗  ∝  r–3/2. In particular, near the

star (r ~ R),

and the particle number density is

The derived density distribution of the background
medium enables us to estimate the radius of gas-

dynamical deceleration  at which the shell mass
equals the mass of the entrained stellar-wind plasma,

The estimated value of  ~ 4 × (1013–1019) cm is much
larger than the stellar radius and, accordingly, the for-
mation scale of the shell structure of interest.

Another characteristic scale is the size of the white-
dwarf magnetosphere [13]. The location of a stationary
shock wave in stellar wind RA can be determined from
equality of the ionized-gas infall velocity V∗ (RA) and

the Alfvén velocity, which depends on the star’s dipole
magnetic field strength B(RA) and the wind density

n∗ (RA): V∗  ~ B/ . It follows from the above esti-

mates of V∗ , n∗ , and B that RA ≥ 10R. Within this scale,

the original field can be assumed to be a dipole one. The
shell front cannot be decelerated by the magnetic field
as it moves in the rarefied medium inside the magneto-
sphere, because the kinetic energy W is much higher
than the star’s magnetodipole energy }.

It seems most likely that the expanding shell near
the nova interacts with the magnetized atmosphere of
the white dwarf, which is formed at the stage immedi-
ately preceding the outburst. Calculating atmospheric
parameters at distances of the order of R from the star
is a separate, complex problem even for the quasi-
steady-state case where hydrogen is accumulated in a
degenerate surface layer [14]. We therefore restrict our-
selves to qualitative reasoning, which allows the range
of background-particle densities to be specified. When
the temperature in the layer rises to ~108 K, the gas can
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successively pass several states—from complete
degeneracy to the onset of explosive expansion. It may
well be that a substantial mass of matter with a rela-
tively low expansion velocity compared to the particle
velocity at the time of explosion outflows from the sur-
face in this case. Assuming hydrostatic equilibrium and
using the barometric formula, we find an upper limit for
the atmospheric density at a distance of one radius (R)
to be n∗  ~ 4 × 1023 cm–3 at a scale height of ~103 km for

a temperature of ~108 K at the onset of outburst devel-
opment and a surface density of 104 g cm–3. Since the
above estimate of the density in accretion flow gives a
lower limit, 109 < n∗  < 1023 cm–3. For definiteness, we

choose a density from this range at which the local
Alfvén velocity does not exceed the shell velocity. In
background matter with n∗  ~ 1018–1019 cm–3 at distance

R from the stellar surface with a field strength of 106 G,
the velocity VA is ~ 3 × 107–8 × 106cm s–1. Under such
conditions, the shell motion near the nova at velocity
V ~ 108 cm s–1 can be super-Alfvén one with the Mach–
Alfvén number MA = V/VA ~ 3–10.

At large MA, the front of a collisionless shock wave
has a width of the order of the ion gyroradius ρi =
mcV/eB [15]. In our case, it is rather small, <10–1 cm,
i.e., considerably smaller than the mean free path of
particles in the background plasma. In particular, the
mean free path of hydrogen ions in the shell for colli-
sions with ions of a hydrogen background of mass m
and relative velocity Vr is given by

At n∗  ~ 1018 cm–3 and Vr of the order of the shell veloc-
ity, λii ~ 103 cm (the Coulomb logarithm is Λ ~ 1).
Under the above conditions, the effect of collisions on
the shock structure can be assumed to be marginal, and,
as a result, we may use a collisionless plasma model to
describe the interaction of the shell with the magne-
tized plasma near the nova.

Thus, in energy terms, the specific mechanism of the
shell interaction with the background medium proves
to be of no importance in studying the morphology of
shell expansion. We can therefore choose between the
hydrodynamic and kinetic–hydrodynamic (hybrid)
models in favor of the latter for the reasons associated
with the possibility of calculating multiflow plasma
motions.

1.4. A Model with Background Plasma 

In agreement with our analysis, the physical model
must have the following main properties:

—the presence of a strong dipole magnetic field in
which the ion gyroradius is much smaller than the size
of the region under study (ρi ! a);

λ ii
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2πn*e
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—the kinetic energy of the shell particles is much
larger than the magnetodipole energy (%0 @ µ2/a3).

—the scaling factor characterizing the compression

region is  < 10–2 [see (3, 5)];

—the propagation velocity of perturbations in the
compression region and in outer space is lower than the
shell front velocity, i.e., the corresponding Mach–
Alfvén number is large;

—the gas-dynamical deceleration radius, defined as
the size of the region in which the background-particle
mass in the initial state is equal to the expanding-
plasma mass, is much larger than the system’s charac-

teristic size (  @ a).
The computed region in our model consists of three

subregions:
—the space between the perfectly conducting sur-

face of a uniformly magnetized sphere filled with the
dense medium of the shell in its part that is not sub-
jected to initial heating; since the model is intended for
a collisionless interaction, the dense medium is simu-
lated by a cold plasma with large Mach–Alfvén num-
bers (MA > 1) specified for it;

—the high-temperature layer of particles in the shell
with a specified initial radial-velocity distribution;

—the outer rarefied medium with a uniform density
in which MA > 1 near the sphere.

2. A MATHEMATICAL MODEL

The basic set of equations includes Vlasov’s equa-
tion for the ion plasma component, the equations of
motion, and Maxwell’s equations:

where

Here, E, H are the electric- and magnetic-field
strengths; Ve, 〈Vi〉  are the weighted mean electron and
ion velocities; and n is the ion (electron) density.
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The equations of ion motion are the equations for
the characteristics of the kinetic equation

At initial time t = 0 in the cylindrical region 0 ≤ r ≤ rmax
and 0 ≤ z ≤ zmax, there is a stationary plasma with uni-
form density n∗  (background plasma) and a dipole

magnetic field with the dipole center at point (0, 0). The
external plasma does not penetrate into the central

region R < Rs (R = ), where the magnetic field
is uniform and constant, and the ions are reflected elas-
tically from the core at boundary Rs. A spherical shell
containing N ions with total kinetic energy %0 is located
at distance ∆R from the central part. We chose ∆R in our
calculations in the range from 0.1R to 0.2R. For clarity,
the main plots were constructed for ∆R = 0.2R. The
ion velocities in the shell are distributed in the interval
[–Vmax, Vmax] following a specified law (for example, a
law that ensures self-similar expansion in free space)
and are directed perpendicular to the shell. In our cal-
culations, attention was focused on the dimensionless
model parameters MA and %0/}.

3. NUMERICAL RESULTS

We performed our calculations with the parameters
typical of novae. In one of the cases, the model corre-
sponds to the following characteristics. A stellar core of
radius R = 8 × 108 cm is magnetized to the internal uni-
form field strength B = 2.6 × 107 G. The initial hydrogen
ion velocities in the shell correspond to a self-similar
distribution function with Vmax = 3 × 108 cm s–1. The
shell kinetic energy is %0 = 1043 erg, and its ratio to the
stellar magnetic energy %0/} ~ 102 is near the lower
limit for observational data. The density of the ionized
hydrogen background produced by the stellar wind is
7 × 1022 cm–3. The Mach–Alfvén number is MA = 5 for
the region near the nova surface. The results of our cal-
culations are presented in Figs. 1–3, which show the
distributions of the total density of shell and back-
ground particles in the form of sections (Fig. 1) and iso-
lines (Fig. 2) and of magnetic field lines (Fig. 3) for
time  = tVmax/∆R = 4. The system’s magnetic axis is
directed along the section plane in Fig. 1 and is hori-
zontal in Figs. 2, 3, and all the succeeding figures.

As follows from Figs. 1–3, the shell boundary (the
outer isoline in Figs. 2 and 3) takes a nearly elliptical
shape. This boundary is determined by the fastest shell
particles, whose number depends on the initial ion
velocity distribution. The ellipticity of the plasma-shell
boundary results from the deceleration of ions as they
move at an angle to the magnetic field. Along the mag-
netic field, the particles fly apart freely. However, max-
imum density perturbations are observed near the
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poles, which is attributable to a superposition of the
motions of the particles reflected from the sphere and of
the particles directed toward the stellar surface in a nar-
row cone along the polar axis. The travel velocity of
these maxima is appreciably lower than the initial
velocity Vmax that the particles initially moving outward
exactly along the polar axis retain. Note that the latter
particles are few in number. They do not cause an
appreciable increase in density along the magnetic axis
far from the star (Fig. 1). The plasma decelerates most
effectively as it moves across the magnetic field in the
region adjacent to the equatorial plane, in close agree-
ment with the theory of a magnetolaminar mechanism
for the interaction of interpenetrating ionized flows

t~ = 4
MA = 5
%0/} ~ 102

Z

Fig. 1. Distribution of the total density of shell and back-
ground particles at time  = 4 (MA = 5, %0/} ~ 102).t̃

t~ = 4
MA = 5
%0/} ~ 102

Fig. 2. Density isolines at time  = 4 (MA = 5, %0/} ~ 102).t̃
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t~ = 4
MA = 5
%0/} ~ 102

Fig. 3. Magnetic field lines at time  = 4 (MA = 5, %0/} ~ 102).t̃
[16]. The deceleration gives rise to a plasma belt of
enhanced density near the equator (Fig. 2). This zone of
enhanced density is produced both by particles of the
stellar shell and by the ions of the stellar wind entrained
by the shell. The high-density equatorial zone breaks

t~ = 4
MA = 5
%0/} ~ 105

Fig. 4. Density isolines at time  = 4 (MA = 5, %0/} ~ 105).t̃
away from the stellar surface and propagates at late
times as a wave through the stellar-wind plasma with a
local enhancement of the interstellar magnetic field.
From an observer’s point of view, the motion of the
equatorial part of the shell can be interpreted as the for-
mation and propagation of a broad plasma jet. The shell
plasma presses the nova magnetic field against the core
surface, as can be seen from the crowding of field lines
near the sphere (Fig. 3). In general, the magnetic field
acquires a quadrupole symmetry in the meridional sec-
tion, which is seen most clearly in the case of low shell
energy. This effect vanishes as we pass to a large ratio
of the shell energy to the stellar magnetic energy,
%0/} ~ 105.

We calculated the case with a large shell kinetic
energy for the same Mach–Alfvén number MA = 5 by
increasing the number of particles in the shell by three
orders of magnitude. The model corresponds to an
explosion of energy %0 = 1.5 × 1043 erg, stellar field
strength B = 106 G, a background density of 1.4 ×
1021 cm–3, and shell velocity V = 3 × 107 cm s–1. The
results of our calculations are shown in Fig. 4 for iso-
lines of plasma density and in Fig. 5 for magnetic field
lines. It follows from Fig. 4 that the cloud boundary
remains elliptical. However, the bulk of the plasma of
enhanced density expands spherically, corresponding
to the model of a point explosion. Individual fluctua-
tions are attributable to the reflection of the finite num-
ber of particles used in our calculations from the
sphere. The equatorial belt of enhanced density
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
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t~ = 4
MA = 5
%0/} ~ 105

Fig. 5. Magnetic field lines at time  = 4 (MA = 5, %0/} ~ 105).t̃
stretches along the boundary with the stellar wind and
became less distinct against the background of the
expanding shell. The magnetic field lines are com-
pressed in this belt to form a narrow plasma sheet with
the plasma motion across the magnetic field. The mag-
netic field inside the expanding shell tends to recover its
dipole structure. Outside the boundary, the waves prop-
agate because of the reconnection of magnetic field
lines. The main region of wave generation lies at an
angle of ~45° to the magnetic dipole axis and is most
distinct for a low shell energy. Thus, the ratio of the
shell energy to the magnetic energy is important for the
formation of a nova explosion, which transforms into a
spherically symmetric expansion at large values of this
parameter.

Our numerical calculations revealed these features
of the overall picture of exploded-shell expansion in the
dipole magnetic field of the nova core for large Mach–
Alfvén numbers. The results of our calculations of
plasma dynamics with MA = 2.5 are shown in Figs. 6
and 7. We reduced MA by decreasing the particle veloc-
ity in the shell, which also caused the shell energy to
decrease by a factor of 4. As follows from the plot of
density isolines, the pattern of plasma dynamics
became spherically symmetric. The distribution of
magnetic field lines remains a magnetodipole one,
though with distortions at the boundary between the
shell and the stellar-wind plasma. The dipole magnetic
field distribution exhibits an abrupt decrease in the effi-
ciency of interaction between the expanding plasma
flow and the ambient medium. Indeed, as the Mach–
Y LETTERS      Vol. 26      No. 6      2000
Alfvén number decreases to 2 or 3, the magnetolaminar
mechanism of interaction between the plasma flows
changes to the mechanism of interaction with the mag-
netic field [16–18]. In this case, the energy is lost
through magnetosonic and Alfvén waves. However, the

t~ = 4
MA = 2.5
%0/} ~ 104

Fig. 6. Density isolines at time  = 4 (MA = 2.5,%0/} ~ 104).t̃
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t~ = 4
MA = 2.5
%0/} ~ 104

Fig. 7. Magnetic field lines at time  = 4 (MA = 2.5, %0/} ~ 104).t̃
decline of the magnetic field during plasma expansion
away from the star causes the Alfvén velocity to
decrease. As a result, the waves do not go outside the
expanding shell, and it expands as a whole.

Turning to astronomical data [1], we conclude that
such morphological features are observed during the
development of nova outbursts. Note that changes in
other model parameters, in particular, the spatial broad-
ening of the initial shell-particle distribution to size ∆R
causes no qualitative change in the pattern of plasma
dynamics.

CONCLUSION

Our model shows the emergence of nonuniformi-
ties, which are similar in symmetry properties and
structure to the observed pattern of nova-shell expan-
sion. Shell expansion depends on two basic parameters:
the Mach–Alfvén number and the ratio of shell energy
to stellar magnetodipole energy. The Mach–Alfvén
number determines the mechanism of plasma interac-
tion with a magnetized stellar wind. For the magneto-
laminar mechanism, the energy ratio acts as a dimen-
sionless scale, which also affects the observed proper-
ties of expansion at fixed MA. A further development of
the model and its verification require astrophysical data
with a determination of the above dimensionless
parameters and using methods of laboratory simula-
tions of nonsteady cosmic phenomena.
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A Study of the Shell of Nova V705 Cas
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Abstract—Spectroscopic observations of the DQ Her-type Nova V705 Cas in the wavelength range Hγ–7400 Å
at the nebular stage are presented. The Balmer decrement yields EB–V = 0.98. Based on statistical relationships,
we estimated EB–V to be 0.7 and the distance to the Nova to be 1.17 kpc. The discrepancy between the estimates
of EB–V may result from circumstellar reddening after the formation of a dust shell. The helium, oxygen, nitro-
gen, argon, iron, and calcium abundances in the Nova shell are determined. The shell of V705 Cas is similar in
chemical composition to those of other DQ Her-type novae. © 2000 MAIK “Nauka/Interperiodica”.

Key words: novae, spectroscopic observations, shells, chemical composition
INTRODUCTION

Since Nova V705 Cas, which was discovered in
1993, exhibited a deep minimum on the descent of its
light curve, it can be classified as being of the DQ Her
type. The deep minimum is associated with the forma-
tion of a dust shell. The dust formation was confirmed
by IR spectroscopic and photometric observations [1],
as well as by UV spectra [2].

We constructed an overall V light curve (Fig. 1) by
using visual and photoelectric estimates of different
authors taken from IAU circulars, as well as photoelec-
tric [3, 4] and photographic observations [5].

Here, based on emission-line intensities, we deter-
mine the abundances of several elements in the Nova
shell. Data on the chemical composition of nova shells
are of great importance in understanding the nature of
white dwarfs that are members of novae, in particular,
in estimating their masses.

INTERSTELLAR EXTINCTION 
AND DISTANCE

We used the light curves to determine the following
parameters of the Nova: the V magnitude at maximum

light  = 6 4; the B magnitude at maximum light

 = 6 6; the time of brightness decline by 2m below

the maximum t2V = 62d; the rate of early brightness
decline d = 0.03 m d–1; and the V magnitude 15 days

after the maximum mV(15) = 6 85.

mVmax
.
m

mBmax
.
m

.
m
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Based on statistical relationships between the
decline rate of the Nova and its absolute magnitude at
maximum light, we estimated its distance. We used
Parenago–Sharov’s [6] statistical method to estimate
the interstellar extinction. Using the MV–t2V relation [7],
assuming that all novae have the same absolute magni-

tude  = –5 6 15 days after the maximum, and
using the relation [8] between the B magnitude of a
nova at maximum light and its decline rate, we obtained
the following distance and interstellar-extinction esti-
mates for V705 Cas:

r = 1.24 kpc, AV = 2 34, EB–V = 0.73 (from t2V);

r = 1.14 kpc, AV = 2 18, EB–V = 0.68 (from mV(15));

r = 1.12 kpc, AV = 2 15, EB–V = 0.67 (from d).

We finally adopted 〈r〉  = 1.17 kpc, 〈AV〉  = 2 2, and
〈EB–V〉  = 0.7.

The distance to V705 Cas was also estimated by
other authors. El’kin [9] obtained the following values:
r = 880 pc from the equivalent width of the interstellar
Ca II λ3933 Å line; r = 940 pc from polarimetric obser-
vations; and r = 1350 pc and EB–V = 0.67 from photo-
metric data. Hauschildt et al. [10] obtained three dis-
tance estimates: r = 3–6 kpc from interstellar Na I and
Mg II lines; r = 2 kpc from the  – t2V and  – t3V

relations by assuming EB–V = 0.5; and r = 3.2 kpc
by assuming that the magnitude of V705 Cas at maxi-
mum was equal to the magnitude of DQ Her at maxi-
mum. Using statistical relations, the distance to the
Nova was also determined by Hric et al. [3], EB–V = 0.56
and r = 1.67 kpc, and by Lynch et al. [11], r = 1246 pc.
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.
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.
m

.
m

.
m

.
m
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MVmax
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Fig. 1. The V light curve of V705 Cas.
Eyres et al. [12] performed radio observations in
July 1995. They found r = 2.5 kpc for V705 Cas from
the angular size of its shell.

Below, we determine the interstellar extinction from

the Balmer decrement: AV = 3 1, EB–V = 0.98. This dis-
crepancy may stem from the fact that the dust in the
Nova shell had not yet dispersed by the beginning of
our observations.

The Nova is moderately fast, as suggested by t2V .

SPECTROSCOPIC OBSERVATIONS OF V705 Cas 
AND REDUCTION OF ITS SPECTRA

We obtained spectra of the Nova in Cassiopeia with
an optically efficient spectrograph attached to the 1.25-
m reflector at the Crimean station of the Sternberg
Astronomical Institute The detectors were SBIG ST-6
242 × 375 CCD arrays. The spectral resolution with
a  600 lines mm–1 diffraction grating was ~6 Å pixel–1.
The wavelength range covered was 4200–7500 Å. The
total spectrum of the Nova consisted of two partially
overlapping frames corresponding to different rotation
angles of the grating. The spectral range of each frame
was ~2000 Å.

We carried out our observations during five nights in
the summer and fall of 1994: on July 15, August 2, Sep-
tember 5, October 2, and November 1. At this time, the
Nova brightness was constant, ~13m, and it was already
at the nebular stage. Apart from V705 Cas, we also
observed two standard stars, which were used to reduce
the spectra: 50 Boo and BD+ 16°3972 (B6V, EB–V = 0.4).

.
m
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We performed a preliminary reduction of the spectra
by using the ST6 program provided with the CCD
array. The standard stars were used to correct the spec-
tra for the CCD spectral response and for atmospheric
extinction. The spectra were not corrected for the air-
mass difference (which, however, did not exceed 0.1).
We calibrated the spectra by means of the ESIP.EXE
and KOEF.EXE programs written by A.M. Tatarnikov.
For the subsequent reduction, we used the SPE pro-
gram written by S.G. Sergeev at the Crimean Astro-
physical Observatory. Figures 2 and 3 show the spec-
trum of V705 Cas taken on November 1, 1994.

The line intensities were determined by using the
SPE program.

We inferred the interstellar extinction from the
Balmer decrement. The results are given in Table 1.
Since Hγ was blended with the λ4363 Å [OIII] line, the
color excesses derived from this line are less reliable.
We took the mean color excess to be EB−V = 0.98 and
used this value to correct the intensities of all lines for
interstellar reddening. They are given in Table 2.

We estimated the mean error in the line intensities to
be 30%, but for lines with relative intensities of a few
hundredths, it can reach 50–100%.

ELECTRON DENSITY AND ELECTRON 
TEMPERATURE IN THE SHELL OF V705 Cas

The [OIII] line intensity ratio R(Ne, Te) = I(λ4959 +
λ5007)/I(λ4363) at a late nebular stage is used to deter-
mine Te in nova shells. Ne can be estimated by using the
critical densities of forbidden lines. The critical density
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for the auroral 4363 Å line is 107 cm–3. Preliminary
estimates using forbidden lines show that the temper-
ature and electron density decreased only slightly dur-
ing the observations. We therefore assumed their values to
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Fig. 2. The spectrum of V705 Cas in the wavelength
range 4200–5800 Å taken on November 1, 1994.
be constant and equal to Te = 104 K and Ne = 107 cm–3,
respectively, in the subsequent computations. The
R(Ne, Te) ratios over the observing period are also
given in Table 2.
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Fig. 3. The spectrum of V705 Cas in the wavelength
range 5500–7500 Å taken on November 1, 1994.
Table 2.  The line intensities relative to Hβ and the R(Ne , Te) ratio

Line July 15 August 12 September 5 October 2 November 1

Hγ 0.42 0.42 0.42 0.55 0.63

Hβ 1 1 1 1 1

Hα 2.56 2.82 2.73 2.91 2.83

4363 [O III] 2.53 2.53 2.05 1.73 1.83

4640 N III 0.93 0.58 0.76 0.81 0.78

4686 He II 0.39 0.30 0.33 0.21 0.30

4959 [O III] 3.30 3.65 4.24 4.92 5.49

5309 [Ca V] 0.01

5411 He II 0.02

5680 N II 0.05 0.08 0.06 0.06 0.07

5721 [Fe VI] 0.04

5755 [N II] 0.77 0.84 0.82 0.85 0.81

5801 C IV 0.03 0.02 0.03 0.03

5876 He I 0.09 0.11 0.08 0.08 0.09

6086 [Fe VII] 0.05 0.04 0.04 0.04 0.05

6300 [O I] 0.16 0.18 0.17 0.18 0.17

6364 [O I] 0.07 0.08 0.06 0.06 0.06

6678 He I 0.02 0.03 0.02

7006 [Ar V] 0.01

7065 He I 0.04 0.04 0.03 0.03 0.03

7135 [Ar III] 0.03 0.04 0.03 0.04 0.05

7235 [Ar IV] 0.07 0.07 0.06 0.06 0.07

7320+7330 [O II] 0.42 0.46 0.42 0.46 0.48

R(Ne , Te) 5.05 5.59 8.03 11.04 11.65

Table 1.  The color excess estimated from the Balmer decrement

Color excess July 15 August 12 September 5 October 2 November 1

EB–V(Hα) 0.91 1.00 0.97 1.02 1.00

EB–V(Hγ) 1.22 1.23 1.21 0.65 0.39:
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
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DETERMINING THE CHEMICAL COMPOSITION 
FOR THE SHELL OF V705 Cas

For the total abundance of any element to be
derived, all the ionization stages possible at given Ne
and Te of the gas in the shell must be taken into account.
The total abundance is the sum over all ionization states
of the element in question, and the unobserved ioniza-
tion states are taken into account by using the ioniza-
tion correction factor ICF.

The relative ion abundance can be deduced from the
intensities of observed recombination lines:

where αeff(Hβ) and αeff(λ) are the effective recombina-
tion coefficients, and I(Hβ) and I(λ) are the intensities
of the corresponding lines.

We used the FIVEL program written by de Robertis
et al. [13] to determine the elemental abundances from
forbidden lines. This program computes volume emis-
sion coefficients for the forbidden lines and Hβ at given
Te and Ne.

1. Helium

The total helium abundance is the sum of the He0,
He+, and He++ abundances. The unobserved He0 state is
ignored, because all helium in the Nova shell is
assumed to be ionized. In this case, we have

We determined the He+ abundance from the He I
λ5876 and λ6678 Å lines. Given the temperature
dependence of X(Te), we derived the following relation
for these lines [14]:

We determined the He++ abundance from the λ4686 Å
line [14]:

To deduce the true abundance of He+ required
allowance for collisional excitation of the metastable

N X
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N H
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2s2 3S level of He I. The method of allowance is
described in [15]. The derived ion and total helium
abundances are given in Table 3. As the He+ abundance,
we took a weighted mean of the values inferred from
the He I λ5876 and λ6678 Å lines with weights 2
and  1, respectively (for those cases where both lines
were observed). The helium abundance averaged over the
period of observations was taken to be 〈He/H〉 = 0.082.

2. Oxygen 

The oxygen abundance can be determined from the
relation [14]

 [14],

where the He/He+ ratio is taken as the ICF. We esti-
mated the oxygen abundance by using all available
lines of various ions, namely, λ6300 Å [O I], λ7330 Å
[O II], λ4959 Å [O III], and λ4363 Å [O III]. The total
oxygen abundance is then equal to the sum over three
ionization states:

This is a lower limit on the oxygen abundance,
because we did not took into account the higher ioniza-
tion stages. However, it is hoped that, even if O+++ or
ions of higher ionization stages are present in the Nova
shell, they are very few in number, and we allowed for
the prevailing states of oxygen. We used the FIVEL
program to determine the abundances of all ions from
forbidden lines. The O++ abundance was deduced from
two lines: [O III] λ4363 and λ4959 Å. The results are
given in Table 4. We took the mean oxygen abundance to
be 〈O/H〉 = 5.9 × 10–3. Note that, after applying the above
ionization correction, we obtained 〈O/H〉 = 5.5 × 10–3, in
good agreement with the previous result.

3. Nitrogen 

We determined the nitrogen abundance by using all
measurable lines, namely, [N II] λ5755 Å, N II λ5680 Å,

O
H
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------------------------------------------------------------------------------------- He
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---------=
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Table 3.  The helium abundance in the shell of V705 Cas

Date He+/H+ He++/H+ He/H

λ5876 Å λ6678 Å mean λ4686 Å

July 15 0.054 0.054 0.033 0.087

August 12 0.067 0.067 0.025 0.092

September 5 0.049 0.054 0.050 0.028 0.078

October 2 0.049 0.066 0.054 0.018 0.072

November 1 0.060 0.058 0.058 0.025 0.083
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Table 4.  The oxygen abundance in the shell of V705 Cas

Date O++/H+, 10–3 O+/H+, 10–4 O0/H+, 10–4 O/H, 10–3

λ4363 Å λ4959 Å λ7330 Å λ6300 Å

July 15 6.7 5.5 4.6 2.1 6.6

August 12 6.7 6.0 5.0 2.4 6.9

September 5 5.4 7.0 4.6 2.3 7.2

October 2 4.6 8.1 5.1 2.4 7.7

November 1 4.8 9.1 5.2 2.4 8.5
and N III λ4640 Å. The lower limit on the total nitrogen
abundance was then estimated as follows:

where for permitted lines:

and the function Xi(Te) can be represented as

The coefficients χ0 and η are tabulated in [16]:

λ5680: χ0 = 0.205, η = –0.41;

λ4640: χ0 = 0.014, η = –0.71.

We computed the N+ abundance by using the FIVEL
program. The mean nitrogen abundance was taken to be
〈N/H〉  = 2.5 × 10–2. The results of our calculations are
given in Table 5.

4. Argon 

We determined the argon abundance by using the
FIVEL program from two lines of different ions: [Ar III]
λ7135 Å and [Ar IV] λ7235 Å and, for September 5,

N
H
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N
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-----------------------------------------------------------------------------------------------------,=
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Table 5.  The nitrogen abundance in the shell of V705 Cas

Date N+/H+, 10–4 N++/H+, 10–2 N+++/H+, 10–2 N/H, 10–2

July 15 7.2 1.0 1.3 2.4

August 12 7.8 1.5 0.81 2.4

September 5 7.7 1.1 1.1 2.3

October 2 7.9 1.3 1.1 2.5

November 1 7.6 1.5 1.1 2.7
also [Ar V] λ7006 Å. A lower limit on the argon abun-
dance was estimated as follows:

The mean argon abundance was taken to be 〈Ar/H〉 =
2 × 10–5. The results of our calculations are given in
Table 6.

5. Iron 

The iron abundance is commonly determined by
using the formula

 [17].

Since only the [Fe VII] λ6086 Å line was measur-
able in our spectra, we could only place a lower limit on
the iron abundance. We determined the Fe6+ abundance
by using the relation from [18]:

where ε(Hβ) is the volume emission coefficient for Hβ,
A(λ) is the emission probability, and n(1D) =

 is tabulated in the above paper.

The mean iron abundance was taken to be 〈Fe/H〉 =
1.6 × 10–5. The results are given in Table 7.

6. Calcium 

We had only one calcium line, [Ca V] λ5309, at our
disposal, which could be measured only in the Septem-
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Table 6.  The argon abundance in the shell of V705 Cas

Date Ar++/H+, 10–6 Ar+++/H+, 10–6 Ar4+/H+, 10–6 Ar/H, 10–5

July 15 0.97 21 2.2

August 12 1.1 21 2.2

September 5 0.97 17 0.24 1.8

October 2 1.2 16 1.7

November 1 1.4 19 2.0

Table 7.  The iron abundance in the shell of V705 Cas

Date Fe6+/H+, 10–6 Fe/H, 10–5 Date Fe6+/H+, 10–6 Fe/H, 10–5

July 15 5.4 1.4 October 2 4.9 2.0

August 12 4.1 1.5 November 1 6.1 2.0

September 5 5.1 1.4

Table 8.  The chemical composition of V705 Cas, some other novae, and the Sun

Element, logN Sun [14] V705 Cas DQ Her [19] DQ Her [20] QV Vul [14]

He 11.00 10.9 10.85 11.15 11.04

N 7.98 10.4 9.57 10.45 9.04

O 8.91 9.8 9.56 10.38 9.58

Ar 6.57 7.3 – – –

Ca 6.34 5.8 7.49 – –

Fe 7.53 7.2 – – 7.36
ber 5 spectrum. We determined the Ca4+ abundance
from the formula:

The Ca4+ abundance was estimated to be 〈Ca4+/H〉  =
5.8 × 10–7.

CONCLUSION

The first reliable determinations of elemental abun-
dances in nova shells showed their chemical composi-
tion to differ from the solar one primarily by the helium
and CNO abundances. Subsequently, O–Ne–Mg novae
with enormous neon overabundances were discovered.

The helium abundance that we derived for V705 Cas
does not exceed the solar value. This may be because
the ejected shell contained mainly matter from the une-
volved cool component of the binary. The oxygen and
nitrogen abundances that we deduced for V705 Cas do
not differ markedly from their estimates for other novae
and exceed the solar values. The argon abundance in
the shell of V705 Cas exceeds the solar value; we
obtained only a lower limit. The iron abundance is
nearly solar, but this is again a lower limit. The adopted
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calcium abundance is highly uncertain, because it was
derived from a single measurement of a very weak line.

Table 8 gives the chemical composition in the shell
of V705 Cas we inferred, the solar chemical composi-
tion, and the chemical composition of the shells around
two other novae: DQ Her and QV Vul. Nova QV Vul,
like V705 Cas, is distinguished by a deep minimum on
its light curve and can therefore be classified as being
of the DQ Her type.
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Porous Dust Grains 
in the Shells of Herbig Ae/Be Stars
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Abstract—The transfer of polarized radiation in inhomogeneous circumstellar shells with a spheroidal spatial
distribution of porous dust particles is computed. The grains are modeled by an MRN mixture of silicate and
graphite particles. The optical properties of porous particles (considered separately in the Appendix) are com-
puted by using effective medium theory and Mie theory. The following observational characteristics have been
computed for WW Vul, a typical Herbig Ae star with Algol-like minima: the spectral energy distribution from
the ultraviolet to the far infrared, the color–magnitude diagrams, the wavelength dependence of linear polar-
ization, and the shell brightness distribution. The effect of grain porosity on the results is considered. It has
been found that only moderate particle porosity (the volume fraction of matter is f ~ 0.5) can explain avail-
able observational data in terms of the approach used. Since radiation pressure must rapidly sweep submi-
cron-sized grains out of the vicinity of Herbig Ae/Be stars, we briefly discuss how particle porosity can affect
this process. © 2000 MAIK “Nauka/Interperiodica”.

Key words: stars—circumstellar shells, interstellar dust
1. INTRODUCTION

Herbig Ae/Be (HAeBe) stars are young stars of
moderate mass (2–8 M(), which appear to be the pre-
cursors of Vega- and β Pic-type main-sequence stars
surrounded by gas–dust protoplanetary disks. Consid-
erable infrared (IR) excesses commonly observed in
HAeBe stars are generally explained by thermal dust
radiation. However, it is unlikely that dust particles can
form in the shells of these stars, while strong radiation
pressure makes it difficult for dust grains to exist near
the stars for long. Circumstellar dust is assumed to be
the remnant of a protostellar cloud and is continuously
supplied to the inner shell layers by comet-like bodies [1].
The presence of dust around Vega- and β Pic-type stars
can be explained in a similar way [2, 3].

When modeling the shells around HAeBe stars,
only compact dust particles have always been consid-
ered (see, e.g., [4–8]). Meanwhile, many of the existing
models for interstellar dust suggest a certain grain
porosity (see [9] and references therein). Note that the
hypothesis of particle porosity in the disk around β Pic
allows available observational data to be interpreted in
a more consistent way [10, 11]. The presumably low
albedo of circumstellar particles [12] can also be evi-

* E-mail address for contacts: vi2087@vi2087.spb.edu
1063-7737/00/2606- $20.00 © 0379
dence that the dust grains in the vicinity of HAeBe stars
are not compact.

Here, we consider the influence of particle porosity
on the observational manifestations of circumstellar
dust: the IR spectrum, the circumstellar extinction
curves, the color variations during brightness minima
(for UX Ori-type HAeBe stars), the wavelength depen-
dence of polarization, and the shell brightness distribu-
tion. Our shell model and the representation of porous
dust grains in it are described in Section 2; the results
of our calculations are presented and discussed in Sec-
tion 3. The Appendix contains figures that show how
porosity affects the optical properties of silicate and
graphite particles of difference sizes.

2. MODEL

2.1. Porous Dust Grains 

To describe the optical properties of circumstellar
dust grains, we used the MRN model by Mathis et al.
[13], to which we added one more parameter, particle
porosity p (the fraction of the particle volume occupied
by vacuum). Thus, two types of dust grain were
assumed to be simultaneously present in the shell:
graphite and silicate ones. Both are spherical and have
the same power-law size distribution

(1)n a( ) a
q–
,∼
2000 MAIK “Nauka/Interperiodica”
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where q is a constant. The model parameters also
include the largest and smallest particle sizes, amin and
amax, as well as the ratio (by number) of silicate parti-
cles to graphite ones, nSi/nC. Here, we do not discuss
advantages and disadvantages of the MRN model. Note
only that this is one of the existing models for interstel-
lar dust, with each having its own difficulties in
explaining the entire set of available direct and indirect
data on interstellar grains (see, e.g., [14, 15]). Never-
theless, it is the MRN model that has been used virtu-
ally always in calculations similar to ours.

We determined the optical properties of porous
grains by using effective medium theory (EMT) and
Mie theory. In other words, a porous particle was
replaced by a compact homogeneous sphere with some
mean refractive index 〈m〉 . The latter was calculated by
using Bruggeman’s rule [16]

(2)

where m1 is the refractive index of silicate or graphite
(in both cases, the refractive indices were taken from
[17]), and m0 = 1 is the refractive index of vacuum.
Note that EMT has a wide range of applicability (see,
e.g., [16, 18, 19]).

Some optical parameters of silicate and graphite
particles that we calculated by using EMT and Mie the-
ory are shown in the figures in the Appendix. The opti-
cal properties of the MRN grain aggregates considered
here can also be inferred from them.

2.2. Dust Distribution in the Shell

The dust in the shell was assumed to have a spheroi-
dal spatial distribution,

(3)

where Rx, Ry, Rz are the coordinates of radius vector R,
A/B is the flattening (axial ratio) of spheroidal equiden-
sites, and n0 and α are constants. The angle between the
line of sight and the equidensite symmetry axis is i.

There is a dust-free spherical zone of radius Rin at
the shell center. We determined Rin by taking into
account the fact that the temperature of the grains at this
distance from the star cannot exceed their sublimation
temperature (about 1500 K). The outer radius Rout of the
dust shell was chosen to be constant (4.7 × 103 AU). Its
value affects weakly the radiation fluxes in the spectral
range under consideration (λ < 100–300 µm).

We emphasize that, although the shell in our model
is spherical, its dust distribution is not spherically sym-
metric. For this reason, the total radiation emerging
from the shell is polarized, and the degree of its polar-
ization depends on A/B and on other model parameters.
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,=
2.3. Method of Calculation 

We computed the transfer of polarized radiation in
the shell by the Monte Carlo method using the program
developed by Fischer [20].

The grain temperatures at various distances from the
star required for such calculations were determined for
a simplified shell model with a spherically symmetric
dust distribution,

(4)

and with the same sizes and mass as those of the shell
with the spherodical distribution given by (3). This
approximation is accurate enough (see, e.g., [21]).
Below, the shell models with the dust distributions
given by (3) and (4) are called, respectively, spheroidal
(or two-dimensional) and spherically symmetric (or
one-dimensional).

We simulated the transfer of unpolarized radiation
in the spherically symmetric shell by using Kruegel’s
program described in [22]. The changes required to
realize the chosen model were made to both programs
(see [21] for more detail).

2.4. Brightness Minima

Several HAeBe stars (UX Ori, WW Vul, etc.)
exhibit Algol-like minima, which are accompanied by
characteristic color and polarization variations [23, 24].
In the currently most popular hypothesis, the minima of
UX Ori-type stars are associated with eclipses of the
stars by circumstellar clumps of gas and dust ([24, 25];
see, however, [26]). As a result, at minimum light, the
fraction of the radiation scattered in the shell increases,
and, hence, the star + shell system becomes bluer, while
the degree of linear polarization increases, in general
agreement with observations (see [24] and references
therein).

Clearly, the observed color and polarization varia-
tions in this hypothesis must be determined mainly by
the properties, amount, and distribution of circumstel-
lar dust in the inner shell layers. Recall that the same
layers give a major contribution to the IR spectrum
(except the far infrared) and to circumstellar extinction
and scattering. We therefore modeled both the spectral
energy distribution and the color and polarization vari-
ations in terms of the hypothesis described above. Sim-
ple relations, for example, those from [27, 28], were
used to calculate the latter.

3. RESULTS OF THE CALCULATIONS 
AND THEIR DISCUSSION

Here, we did not set the objective of comprehen-
sively interpreting the observational data for a specific
HAeBe star listed in the Introduction. Instead, we
chose a typical shell model and varied the grain poros-
ity in it. Subsequently, a comparison of the results for
shells with the same sizes (and optical depths for visi-

n R( ) n0' R
α–

=
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ble absorption ) revealed the main effects of grain
noncompactness.

We chose the model of the shell around WW Vul
proposed by Friedemann et al. [29] as the basic model.
This model is well developed and satisfactorily
accounts for the observed IR spectrum. Other models
of this dust shell have similar parameters [7, 28].

3.1. Spectral Energy Distribution 

Figure 1 shows our computed spectral energy distri-
butions for the spherically symmetric (one-dimen-
sional) model of the shell around WW Vul (T∗  = 9500 K,

L∗  = 80 L()) at various circumstellar particle porosities

(p = 0, 0.3, and 0.6). The model parameters Rin = 2.7 AU,
Rout = 4.7 × 103 AU, α = 1.45, nSi/nC = 1.12, q = 3.5,
amin = 0.005 µm, and amax = 0.32 µm were fixed; only

n0 was varied with p to keep the optical depth  con-
stant, which allowed us not to violate satisfactory
agreement between the observed and theoretical IR
spectra. Note that varying A/B alone affects weakly the
shape of the IR spectrum for shells of the same mass
[21]. In general, the variations in the above parameters
of the spherically symmetric shell are also insignificant

if  is constant [12, 30].

It is easy to see that, as the grain porosity p increases
from 0 to 0.6, the peak in the IR spectrum, while main-
taining its magnitude, shifts longward (from 2.5 to
4.5 µm), and a dip is formed in the energy distribution
at λ ≈ 1.5–2 µm. In addition, the emission bands at λ 10
and 20 µm become less distinct, and the spectral slope
in the far infrared (λ > 60 µm) slightly decreases. These
spectrum transformations are mainly attributable to
changes in the grain temperature and in the relative
contribution of graphite and silicate particles to the
object’s IR radiation as the grain porosity increases.

Note that, as p increases further from 0.7 to 0.97, the
peak in the IR spectrum is enhanced and shifts short-
ward (from 4.5 to 2.5 µm). In this case, the dip in the
spectrum at λ ≈ 1.5–2 µm is preserved, while the inten-
sity of the emission bands at λ 10 and 20 µm slightly
increases. The change in the behavior of the curves at
p ≈ 0.6–0.7 results from an abrupt change in the optical
properties of porous graphite particles in the infrared
(cf. Figs. 6 and 7 in the Appendix).

Recall that porous grains are more or less compact
particles with insignificant vacuum inclusions for
p  0 and most likely an assembly of small subparti-
cles for p  1 (see, e.g., [31]). The optical properties
of silicate and graphite particles vary with p differently,
at least in the EMT approximation (see Figs. 6–9 in the
Appendix), and, as a result, the pattern of variations in
the grain temperature and, consequently, in the emis-
sion spectra with porosity proves to be fairly complex
for the MRN mixture of particles.

τV
abs

τV
abs

τV
abs
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The far-IR shell spectrum is mainly determined by
Qabs /a, where Qabs is the absorption efficiency, and a is
the grain size. Variations of Qabs/a with particle poros-
ity p have been repeatedly considered previously (see,
e.g., [32]), while the influence of grain porosity on the
profile of the λ 10 µm silicate band was discussed by
Hage and Greenberg [31] and Henning and Stognienko
[33] (see also Fig. 8 in the Appendix).

Note also that, if we fix all shell parameters except
p and n0, then the mass of the circumstellar dust, which
gives approximately the same IR flux, first decreases
with increasing p and then increases (a minimum at p ≈
0.6–0.7). For example, for a shell with the parameters
from Subsection 3.1, the IR flux is approximately the
same at Msh = 6.6 × 10–6 M( (for p = 0), 3.9 × 10–6 M(

(p = 0.65), 8.3 × 10–6 M( (p = 0.97), etc. Such an effect
was noted by Mathis [34] when searching for a mini-
mum of the dust mass required to explain the observed
interstellar extinction in the Galaxy.

The behavior of the ultraviolet (UV) spectrum can
be better traced in Fig. 2, which shows the so-called cir-
cumstellar extinction curve—the wavelength depen-
dence of extinction in the shell. Note that the extinction
in this case is defined as the difference between the flux
from the object (star + shell) and the flux from the star
without a shell and differs from the extinction by dust
on the line of sight [6].

Since the circumstellar extinction curve is not
known for WW Vul, Fig. 2 shows the results obtained
from the observations of the star NX Pup by Tjin A Djie
et al. [35]. NX Pup (T∗  = 9500 K, L∗  = 100 L() closely
resembles WW Vul, and its circumstellar extinction
curve is more or less typical of HAeBe stars (see, e.g.,
the curve for AB Aur in [4]).

As we see from Fig. 2, the peak at λ2200 Å weakens
and shifts longward as p increases from 0 to 0.6. As p
increases further (from 0.7 to 0.97), a significant
change occurs, as in the case of the IR spectrum: the
peak is enhanced and shifts shortward, with the rise in
the far ultraviolet (1/λ > 6.2 µm–1) becoming very steep
(see Fig. 8 in the Appendix). Note, however, that these
results must be treated with caution. It is unclear
whether EMT is applicable to those cases where the
size of particle inhomogeneities is comparable to or
larger than the wavelength of the radiation, which is
quite possible in the far ultraviolet.

3.2. Color–Magnitude Diagrams 

Figure 3 shows our computed diagrams for the pho-
tometric U, B, V, R, and I bands. For comparison, we
present the results of observations for WW Vul at one
of the minima [36].

We found the theoretical curves to monotonically
displace downward and to the right as p increases; this
tendency is also preserved for p > 0.6. This is because
an increase in grain porosity, with the grain size being
preserved, usually causes the albedo to decrease (see,
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e.g., [31] and Fig. 9 in the Appendix). At the same time,
the ensemble-averaged grain albedo 〈Λ〉  determines the
fraction of the scattered radiation in the object’s total
radiation (for optically thin shells). For the same ther-
mal radiation, porous grains therefore scatter starlight
worse than do compact particles; accordingly, the star
tracks in the color–magnitude diagram are less
deformed, i.e., deviate less from the initial straight lines
that they must be in the absence of scattered radiation.

For compact grains (p = 0), the theoretical curves
run well away from the observational points, which we
pointed out in [12]. We also showed that the problem
could be solved if 〈Λ〉  ≈ 0.3–0.4 in the visible range.
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Fig. 1. Spectral energy distributions for a spherically sym-
metric model of the shell around WW Vul at various grain
porosities: p = 0 (solid line), p = 0.3 (dashed line), and p = 0.6
(dotted line). The squares represent observational data from
[54–58].
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Fig. 2. Circumstellar extinction curves for a spherically
symmetric model of the shell around WW Vul at various
grain porosities. The notation is the same as in Fig. 1. The
squares represent data for NX Pup from [35].
Recall that interstellar grains and, consequently, the
standard MRN mixtures used for their representation
have 〈Λ〉  ≈ 0.5–0.7 (see, e.g., [37]).

Circumstellar-particle porosity can explain the low
albedo in a natural way. However, there are also other
possibilities to achieve agreement between the theoret-
ical and observed spectra and diagrams simultaneously,
for example, by attributing ~50% of the observed near-
IR flux that we did not took into account to the radiation
of gas and/or very small grains (see, e.g., [38, 39]) or by
assuming that the dust in the shell concentrates mainly
in optically thick clumps [40, 41]. In addition, for shells
without spherical symmetry, the ratio of the total scat-
tered flux to the thermal flux from circumstellar dust
can depend strongly not only on the mean particle
albedo, as was shown above, but also on the shell ori-
entation relative to the observer (inclination i). Recall
that the fraction of the scattered light emerging from an
optically thin oblate shell in the direction of the equato-
rial plane is usually larger than that from the poles,
because the scattering is anisotropic and because the
dust distribution is nonspherical (see, e.g., [42]). When
a spheroidal shell is observed at different inclinations i
to the symmetry axis, the scattered flux therefore
increases with i, while the thermal flux, which is essen-
tially isotropic, is preserved.

When the grains scatter radiation only forward, i.e.,
when the asymmetry factor of the phase function is
〈cosΘ〉 = 1, the following simple relation clearly holds
for the i dependence of the total scattered flux emerging
from a shell with the dust distribution (3) toward the
observer:

(5)

It shows that, for very oblate shells (A/B @ 1) observed
nearly edge-on (i ~ 90°), the dependence of Fsh on i

must be appreciable, Fsh(i) ~  – i , because α is

expected to be ~1.5–2. The flux ratio is Fsh(0)/Fsh(90) =
(A/B)–α and differs markedly from 1.

The asymmetry factor of the phase function 〈cosΘ〉
for particles of the MRN mixture in the visible range is
close to 1, and formula (5) can be of use. Our calcula-
tions confirm that, in general, the dependence of Fsh on
i follows relation (5), although 〈cosΘ〉 < 1 and the optical
depth τ ~ 1.

It should be noted that the effect of orientation of a
nonspherical shell relative to the observer clearly can-
not be invoked to account for the difficulty in simulta-
neously interpreting the IR spectra and the color–mag-
nitude diagrams (the “excess” scattered flux in models).
It can hardly be assumed that only shells seen at an
angle to their equatorial plane (for example, |90° – i| >
20°) and, hence, with a deficit of scattered radiation are
observed. For a random distribution of the shell sym-
metry planes in space, the number of shells seen nearly
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Fig. 3. Color–magnitude diagrams for the UBVRI bands for a spheroidal model of the shell around WW Vul. The heavy and normal
lines are for inclinations i = 90° and 70°, respectively; the remaining notation is the same as in Fig. 1. The squares represent obser-
vational data for WW Vul at minimum light from [36].
edge-on (|90° – i| < 10°) and, consequently, without this
deficit must always be significant.

Note, on the other hand, that the scattered-to-stellar
flux ratio Fsh/F∗  determines the position of the turning
point of the star track in the color–magnitude diagram
(see [12]). At large A/B, Fsh/F∗  depends strongly on i
[see, e.g., formula (5)], and the tracks must turn at
markedly different levels of brightness decline (∆V) for
different stars. If the tracks for a large group of UX Ori-
type objects had been available, then we could have
inferred the flattening of their scattering dust shells
(spherical or disk-like ones).

3.3. Linear Polarization 

Although the linear-polarization variations in the
object (star + shell) observed during minima are con-
siderable, they are satisfactorily described by the fol-
lowing approximate relation [36]:

(6)

where ∆m is the change in magnitude; and Pobs, Pis, and
Psca denote, respectively, the object’s observed polar-
ization, the interstellar polarization (including the
polarization produced by dust extinction on the line of
sight in the shell), and the polarization produced by the
scattered radiation of the shell. The latter can be repre-
sented as

(7)

where Ish, Qsh, and Ush are the Stokes parameters for the
scattered radiation emerging from the shell; Psh =

/Ish, Ish/Itot(∆m = 0) is the fraction of the
scattered radiation in the object’s total radiation at max-
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imum light; and Itot(∆m = 0) = I∗ exp(–τext) + Ish, where

I∗  is the stellar radiation, and τext is the optical depth of

the shell for absorption (along the line of sight).
The wavelength dependence of linear polarization

Psca(λ) can give additional important information about
the properties of circumstellar dust. The curves in Fig. 4
indicate this dependence computed for models with
A/B = 5 at various grain porosities (p = 0, 0.3, and 0.6).
Note that Psca monotonically decreases as the porosity
increases further (p > 0.6). The points in Fig. 4 repre-
sent the values taken from [36], where they were deter-
mined from the observed values by using relation (6).

It should be noted that, although the computed Psca
are in satisfactory agreement with the observed ones
(see Fig. 4), the polarization of the scattered radiation
from the shell Psh at p ≈ 0–0.3 turns out to be consider-
ably smaller than its estimates that can be obtained
from observations. The reason is that the theoretical
ratio Ish/Itot(∆m = 0) in formula (7) is clearly overesti-
mated for models with such porosities p, as the corre-
sponding tracks in the color–magnitude diagram show
(see Fig. 3).

The case of a shell with A/B = 5 we chose corre-
sponds to a nearly maximum Psh [21, 42]. Since Psh rap-
idly decreases with p (for p > 0.7), we conclude that
models with a large particle porosity can hardly explain
the observed polarization in UX Ori-type stars.

Shells with a disk-like dust distribution (for exam-
ple, a dust disk in the shape of a sphere without polar
cones, which one might expect when a magnetic field
does not govern the motion of grains, and they are
swept out of the inner shell layers almost radially by
stellar radiation) can have a slightly higher degree of
polarization Psh. Nevertheless, our estimates show that
no disk-like dust distribution (for the representation of
porous grains we used) can give a considerably larger
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Psh than that for the very oblate spheroidal shells we
considered and can thus explain the results of our
observations.

3.4. Shell Brightness Distribution 

To the best of our knowledge, as yet no sufficiently
detailed maps of the brightness distribution have been
obtained for the shells of HAeBe stars with minima;
however, they should be considered as observational
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Fig. 4. Wavelength dependence of linear polarization for a
spheroidal model of the shell around WW Vul. The notation
is the same as in Fig. 3. The squares represent data for
WW Vul from [36].

Fig. 5. Brightness distributions at various wavelengths for a
spheroidal model of the shell around WW Vul. The heavy

and normal lines are for p = 0 and 0.6, respectively.  is

the flux from a blackbody of temperature T∗  = 9500 K.

Fν
bb
tests, which will be possible in the near future. Figure 5
shows the brightness distributions at several wave-
lengths (λ = 0.7, 1.65, 12, and 50 µm) computed for two
models with particle porosities p = 0 and 0.6. The fluxes
from the peripheral regions of the shells with porous
grains are seen to be a factor of 3–5 lower than those for
the shells with compact grains. This is because the
phase function for porous particles is generally more
elongated forward than that for compact particles (see,
e.g., [43] and Fig. 9 in the Appendix).

Polarization maps with a sufficiently high spatial
resolution are unlikely to be obtained for UX Ori-type
stars in the immediate future. We therefore do not pro-
vide and do not discuss here our computed distributions
of the polarization parameters over the shell image.
Note that they are mainly determined by other parame-
ters than the porosity of circumstellar dust particles
(see [44] for more detail).

3.5. Radiation Pressure on Dust 

It should be noted that the mere assumption that
comet-like bodies supply grains to the inner shell layers
does not yet completely solve the problem of submi-
cron-sized grains being present in them—the radiation
pressure of HAeBe stars is strong enough to set such a
high rate of dust outflow from the shell that it cannot be
offset even by the complete breakup of all comet-like
bodies near the star [45]. A magnetic field of a certain
geometry can slow down the sweeping out of charged
grains but cannot change radically the situation [46]. It
is therefore of interest to consider how grain porosity
can affect the efficiency of their sweeping out of the
vicinities of HAeBe stars.

The effect of particle porosity on the radiation-pres-
sure force was discussed in detail by Mukai et al. [47]
for a rather peculiar model of circumsolar dust grains
(fractal aggregates of subparticles). We consider this
effect in terms of the representation of porous grains
used.

The radiation-pressure force is known to be

(8)

where  is the flux-averaged radiation-pressure cross
section, R∗  and T∗  are the stellar radius and tempera-

ture, R is the distance from the star to the particle, c is
the speed of light, and σ is the Stefan–Boltzmann con-
stant. For silicate and even for graphite at p > 0.5, the
effective complex refractive index is (〈m〉 – 1) ~ f, where
f = 1 – p is the filling factor of a porous grain. For x =
2πa/λ < 0.1–1, which includes a substantial part of the
integration range when averaging the cross section in (8),
Cpr ≈ 16π2a3Im(〈m〉 – 1)/(3λ) ~ a3f, where λ is the wave-
length of the incident radiation. Thus, the radiation-
pressure force is approximately the same for particles
of the same mass but of different porosity and rapidly
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nomical silicate with vacuum. The porosities are p = 0 (solid
lines), 0.3, 0.6, 0.9, 0.97 (dashed lines), and 0.99 (dotted
lines).
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Fig. 8. Extinction efficiencies Qex for silicate and graphite porous particles of size 0.01 and 0.1 µm.
decreases with increasing p (or decreasing f ) for parti-
cles of the same size.

An important dynamic indicator is the ratio of radi-
ation-pressure force Fpr to gravitational force Fg,

(9)

where ρ is the density of the grain material, M∗  is the

stellar mass, and γ is the gravitational constant. If  ~
a3f (see above), then β does not depend on the grain size
and porosity.

We computed Planck mean radiation-pressure cross
sections and β for an A0 star (R∗  = 2.5 R(; T∗  = 104 K,
M∗  = 3.2 M(). At large particle porosity and for
a < 0.1–0.3 µm, β was found to be almost independent
of the grain size and roughly correspond to its values
for very small, compact grains (a < 0.001 µm). For
a > 0.3–1 µm, β rapidly decreases with increasing a.
Recall that, by contrast, there is a noticeable peak of the

β
Fpr

Fg

-------
3σ

4πcγ
------------R*

2
T*

4

M*
--------------

Cpr

ρa
3

f
------------,= =

Cpr
dependence β(a) at a ~ 0.01–0.2 µm for compact parti-
cles (see, e.g., [48]).

Note also that, for p ~ 0.9 and a < 0.3 µm, we
obtained β ≈ 6–7 and β ~ 70 for silicate and graphite
porous particles, respectively. Although allowance for
the star’s actual spectral energy distribution must
slightly reduce β (see, e.g., [49]), we conclude that even
the large porosity of submicron-sized grains composed
of astronomical silicate or of more absorptive materials
(graphite, amorphous carbon, iron oxide, etc.) cannot
prevent their sweeping out of the vicinities of HAeBe
stars. Only porous particles of any size composed of
less contaminated silicates than astrosil (see, e.g., [50])
can have β < 1. However, the albedo of such grains is
large, and they cannot simultaneously explain the
observed IR fluxes and color–magnitude diagrams (at
least in terms of the approach used here).

4. CONCLUDING REMARKS

We considered the transfer of polarized radiation in
shells with a spheroidal dust distribution at various
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
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grain porosities. We revealed the effects of noncom-
pactness of circumstellar particles on the observational
manifestations of dust shells around HAeBe stars: the
spectral energy distribution from the ultraviolet to the
infrared, the color–magnitude diagram in the visible
range, the wavelength dependence of linear polariza-
tion, and the shell brightness distribution in the plane of
the sky.

We showed that, in the model we chose, agreement
with observational data could be achieved only for
grains with a moderate porosity (p ~ 0.5). Such a poros-
ity is postulated in some currently available models of
interstellar dust (see, e.g., [15]). A considerably larger
particle porosity p ~ 0.9 is commonly assumed for the
grains around β Pic-type stars and of cometary dust [11].

Note that the MRN mixture of particles that we used
in our modeling is not quite natural when porous grains
are considered. Clearly, the latter must most likely
result from subparticle coagulation in the interstellar
medium, and, thus, the separate existence of porous sil-
icate and porous graphite particles seems unjustified
[15]. We chose the MRN mixture for our analysis,
RONOMY LETTERS      Vol. 26      No. 6      2000
because most similar calculations are performed pre-
cisely with this mixture, but the revealed effects must
generally show up also for a different representation of
an assembly of circumstellar grains. We consider the
porosity effects for several models of the particles in
the shells of HAeBe stars in the next paper [44].

Here, we determined the optical properties of
porous dust grains by using the EMT approximation.
The latter suggests that the filling factor f does not vary
inside the grain. Meanwhile, a more complex case
where f generally decreases outward toward the grain
edge is realized in many situations, for example, for
fractal particles, including such popular ballistic aggre-
gates as BPCA and BPPA. The optical properties of
such aggregates have been repeatedly considered previ-
ously (see, e.g., [51, 52]). They differ from homoge-
neous grains in that the asymmetry factor of the phase
function 〈cosΘ〉 for them is larger than that for the par-
ticles we considered [43]. As a result, the radiation
pressure on such aggregates must be slightly lower, and
the dependence of the scattered flux on i must be stron-
ger. In order to assess the importance of these effects,
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we plan to also compute radiative transfer in the case
where circumstellar grains are ballistic aggregates.
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APPENDIX

The effect of particle porosity on the observational
manifestations of polydisperse assemblies of silicate
and graphite circumstellar grains is by no means always
clear. For a better understanding of this effect, we pro-
vide several figures, which show how porosity changes
the optical properties of silicate and graphite particles
of different sizes. All calculations were performed by
using the EMT approximation and Mie theory.

The input data—the effective refractive indices 〈m〉
calculated by using the rule (2) for various porosities
(p = 0–0.99) of astronomical silicate and graphite—are
shown in Figs. 6 and 7, respectively. Note the signifi-
cant change in the wavelength dependence of the
imaginary part of refractive index 〈m〉  for graphite at
p ~ 0.6–0.7.

The extinction efficiencies Qext for silicate and
graphite particles of size 0.01 and 0.1 µm are shown in
Fig. 8. In the infrared (λ > 3–10 µm), Qabs have approx-
imately the same wavelength dependence as Qext. For

graphite particles, we applied the so-called  + 

approximation, which uses the relation Qext =

Qext(m||) + Qext(m⊥ ), where m⊥  and m|| are the refrac-

tive indices of graphite for two orientations of the elec-
tric vector of the incident radiation relative to the axis
of the hexagonal structure of crystalline graphite (see
[53]). This approximation makes it possible to properly
allow for the optical anisotropy of graphite for ran-
domly oriented spherical particles. Notice the different
behavior of the curves for silicate and graphite over the
entire wavelength range at a moderate particle porosity
(p ≤ 0.6).

The albedo and the asymmetry factor of the scatter-
ing indicatrix for silicate and graphite porous particles
of size 0.1 µm are shown in Fig. 9. The behavior of the
curves does not change dramatically with particle size.
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Spectrum of the Star BM Ori at Minimum Light
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Abstract—Two spectra of the star BM Ori were obtained with the 2.6-m Crimean Astrophysical Observatory
telescope near its maximum eclipse phase. The light detector was a CCD array. The wavelength range 5305–
5373 Å was chosen in such a way that it contained no strong primary lines. Optimum filtration of the spectra
yielded a signal-to-noise ratio of ~300. Eighteen secondary lines are seen in the spectrum. Atmospheric param-
eters of the secondary star were determined: Teff = 5740 K and logg = 3.0; the secondary was classified by these
parameters as being of spectral type G2 III. The best agreement between observed and synthetic spectra is
achieved for metallicity [M/H] = –0.5 and microturbulence ξt = 0 km s–1. The projected rotational velocity is
Vsini = 60 km s–1, in agreement with the synchronous velocity in the hypothesis that assumes a total eclipse by
the secondary star. Atmospheric elemental abundances in the secondary are estimated. Nickel, chromium, and
iron exhibit an underabundance of ~1 dex. © 2000 MAIK “Nauka/Interperiodica”.

Key words: stars—structure and evolution
INTRODUCTION

The star BM Ori is a member of the Orion Trape-
zium. It is a spectroscopic binary and an eclipsing sys-
tem. The companion Θ1 Ori B1 with the magnitude
K = 7 53(5) was discovered at a distance of 0 9 [1].
The error, in units of the last digit, is given in parenthe-
ses. These measurements were confirmed by Petr et al.
[2], who obtained ä = 7 60(6). Both measurements are
in good agreement, which argues for the constancy of
light from this star. Simon et al. [3] found yet another
star at a distance of 0 6 from the eclipsing system.

Surprising results have recently been obtained by
Weigelt et al. [4]. These authors discovered that Θ1 Ori
B1 is a binary with the components at distances of 0 94
and 1 02 from the eclipsing system by using speckle
interferometry. They estimated the probability of a
chance projection of field stars onto a circle of radius 1″
to be less than 1%. Given that the primary star is a
spectroscopic binary, BM Ori is found to be a pentu-
ple system.

The principal difficulty in understanding the system
is that the stellar spectrum during a totality, which lasts
for 8.5 h, remains the same as that outside eclipse. In
both cases, the spectrum corresponds to a star of spec-
tral type B. Meanwhile, the star reddens appreciably at
minimum light, so the eclipsing body is definitely a

.
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.
m

.″

.″
.″
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cooler star. It remains incomprehensible why the sec-
ondary spectrum is unseen during a total eclipse. This
puzzle was revealed by Doremus [5] and confirmed by
Popper and Plavec [6].

Several hypotheses were invoked to account for this
phenomenon.

Hall [7] surmised that the eclipse was produced by
an opaque disk surrounding the secondary star, which
rotates with such a high velocity that it resembles in
shape two plates with their bottoms put together. A sim-
ilar idea was considered by Huang [8] and Zakirov and
Shevchenko [9].

Wilson [10] believed the secondary to be a black
hole surrounded by a rotating semitransparent disk,
which produces an eclipse. Antokhina et al. [11]
showed that a star could not be eclipsed by a star in the
system BM Ori and suggested that the primary was
eclipsed by the secondary’s extended atmosphere dur-
ing an eclipse.

Vitrichenko [12] considered a model of the system
in which the secondary star is surrounded by a semi-
transparent dust shell. An eclipse is mainly produced by
this shell and partly by the secondary’s disk.

Here, we analyze the spectrum of BM Ori near its
primary minimum in order to determine the atmo-
spheric parameters and projected rotational velocity of
the secondary star, as well as to obtain a preliminary
estimate of the chemical composition. We also discuss
an eclipse model in which Θ1 Ori B1 contributes signif-
icantly to the light from the system.
000 MAIK “Nauka/Interperiodica”
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OBSERVATIONAL DATA 
AND THEIR REDUCTION

The observations were obtained with the 2.6-m
Crimean Astrophysical Observatory telescope. The
light detector was a CCD array. We investigated
the wavelength range 5305–5373 Å. This range was not
chosen accidentally. It contains no strong primary lines,
no intense nebular emission lines, and no noticeable
telluric lines.

The spectra are listed in Table 1. The first two rows
provide data on two spectra of BM Ori. Data on the
spectra of the comparison stars are given in the last two
rows. The star ζ Leo satisfactorily matches the second-
ary of the system both in spectral type and in luminosity
class. Popper and Plavec [6] used it as a comparison
star when searching for secondary lines. However, its
projected rotational velocity Vsini = 85 km s–1 [13] is
slightly higher than that of the secondary of BM Ori,
Vsini = 60 km s–1. In addition, as our analysis shows
(see below), the secondary star is of a considerably later
spectral type than has been previously thought. γ Ori is
used as a comparison star for the primary, although it is
not a close match in spectrum and luminosity. How-
ever, it is difficult to find a better comparison star.

The first two columns in Table 1 are self-explana-
tory. The next columns give dates of observations,
Julian dates for mid-exposures (reduced to the Sun),
exposure times, corrections to the radial velocity for the
Earth’s motion, and measured instrumental radial
velocities (not reduced to the Sun).

We observed BM Ori near its maximum eclipse
phase (at phases 0.973 and 0.975), which corresponds
to the second contact. At this time, the primary dims by
a factor of ~3, and the secondary lines become a factor
of ~2 deeper than those outside eclipse; therefore, they
can be measured more accurately.

A preliminary analysis of the spectroscopic data for
BM Ori shows that spectral lines are barely seen in each
of the spectra because of significant noise. In order to
improve the signal-to-noise ratio (S/N), we performed
two procedures.

The first procedure is obvious: we added up the two
spectra and subtracted twice the background intensity
from the sum. Background subtraction in this case is
important, because the background accounts for ~10%
of the signal. Simultaneously, nebular emission lines
were also subtracted. The radial-velocity difference
between two exposures due to orbital motion is 2 km s–1,
and the projected rotational velocity is Vsini = 60 km s–1;
therefore, adding the spectra causes no line broadening.

The second procedure involves filtration of the spec-
trum with a rectangular window. The choice of a win-
dow width was based on measuring the Gaussian
parameter σ for the line profile. Our measurements
yielded σ = 1.0(2) Å. We chose a 0.8 Å wide window.
The Gaussian parameter for a rectangular window is
σ1 = σ/(12)1/2 = 0.23 Å. This parameter for the filtered
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
spectrum is then σ2 = (σ2 + )1/2 = 1.03 Å, a value that
is larger than σ by a mere 3%. However, the filtration
procedure improves considerably the S/N ratio. This
ratio measured in a wavelength range without detect-
able lines (5355–5362) after filtration is S/N = 300.

We performed wavelength calibration of the spectra
by using a comparison spectrum; the source of light
was an argon-filled lamp with a hollow thorium cath-
ode. The instrumental profile was determined by using
lines of this lamp. The Gaussian parameter for it was
found to be σ3 = 0.2 Å, so the true line profile was
broadened by the instrumental profile by ~3%, which
affects the results only slightly. When radial velocities
are determined, the error associated with the difference
between the dispersion curves obtained from two com-
parison spectra located on either side of the observed
spectrum is introduced. This error is systematic in nature;
its maximum value is ~1 pixel = 0.066 Å = 4 km s–1. How-
ever, since we used mean parameters of the dispersion
curve, the systematic error could not exceed 2 km s–1.

The spectra of the comparison stars ζ Leo and γ Ori
were taken with a better S/N ratio than that of BM Ori,
but, for convenience of their comparison, the spectra
were also subjected to the same filtration procedure. To
obtain a sufficient number of points in the line profile,
the filtration was made at steps equal to half the win-
dow width.

THE SPECTRUM 
OF BM Ori AT MINIMUM LIGHT

Figure 1 shows the spectrum of BM Ori (middle)
and the spectra of the comparison stars ζ Leo (upper)
and γ Ori (lower). The identification of lines belonging
to ζ Leo and BM Ori is indicated in the upper part of
the figure. Lines belonging to γ Ori are shown in the
lower part of the figure. S II 5320.68 Å is a single line,
while S II 5345.8 is a blend.

When constructing Fig. 1, we displaced each of the
spectra along the wavelength axis by the value corre-
sponding to the radial velocity in Table 1. Thus, the
radial velocities of all three stars are zero relative to the
wavelength scale. Along the y axis, the spectra of the
comparison stars were displaced by 0.15 on the con-
tinuum intensity scale for convenience of their com-
parison. We took wavelengths and oscillator strengths
from the line list that was kindly sent to us by the
Vienna Atomic Line Data (VALD) Center at our
request [14].

An examination of Fig. 1 leads us to conclude that
only lines of an F–G star are seen in the spectrum of
BM Ori near its maximum eclipse phase in the wave-
length range under consideration. This conclusion con-
tradicts the opinion of Doremus [5], who believes only
the spectrum of the primary B star to be seen at mini-
mum light.
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There are three main reasons for the contradiction.
First, previously, a shorter wavelength part of the spec-
trum, where the contribution from the secondary star is
smaller, was mainly studied [15]. Second, the second-
ary lines are relatively weak, and their detection in pho-
tographic spectra is limited by the noise of the photo-
graphic emulsion. The choice of a spectral range with-
out strong primary lines (see the lower spectrum) also
played an important role. Third, an overwhelming
majority of lines in the spectrum of a G star belong to
iron ions; according to our preliminary estimates, iron
exhibits an underabundance of ~1 dex (see below),
causing the secondary lines to weaken. The detection of
secondary lines was discussed in [16].

The primary lines in the BM Ori spectrum are much
weaker than those in the γ Ori spectrum for two rea-
sons. They are weakened by the contribution of the sec-
ondary star and by the higher projected rotational
velocity of the primary star than that of γ Ori. Whereas
Vsini = 170 km s–1 for the primary [16], this parameter
for γ Ori is 61 km s–1 [13].

PROJECTED ROTATIONAL VELOCITY

The subsequent analysis requires that the projected
rotational velocity of the secondary star be determined.
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Fig. 1. The spectrum of BM Ori at minimum light (middle
curve). The upper and lower curves represent the spectra of
ζ Leo and γ Ori, respectively. The species to which the lines
of ζ Leo and BM Ori belong are indicated above the upper
curve for the strongest lines. The species to which the lines
of γ Ori belong is indicated under the lower curve.
Previously, it was determined unreliably. Based on eye
estimates, Popper and Plavec [6] took Vsini to lie in the
range 50 to 100 km s–1. Vitrichenko et al. [16] obtained
Vsini = 55(5) km s–1 from the widths of the Na doublet
lines. This determination is also unreliable, because
these are the resonance lines and can be broadened by
pressure.

The projected rotational velocity was estimated
from the two strongest Fe II 5316.52 and Fe I 5328.04
lines. Using the average spectrum, but before applying
the filtration procedure, we estimated the Gaussian
parameters to be 0.92 and 1.12 Å, respectively. For
these two lines, we constructed profiles with different
rotational velocities by using the STARSP code [17].
We determined the Gaussian parameter for each profile
and used these data to construct calibration curves;
Vsini was deduced from the latter. The velocity aver-
aged over the two lines is Vsini = 60(3) km s–1, in good
agreement with previous determinations [16], but the
error in our estimate is considerably smaller.

The projected rotational velocity matches the syn-
chronous velocity of the secondary star, Vsini =
66(2) km s–1 [16], within the error limits.

ATMOSPHERIC PARAMETERS 
OF THE SECONDARY STAR

We determined the effective temperature Teff and the
logarithm of surface gravity logg for the secondary star
from spectroscopic orbital elements of both compo-
nents and from light-curve solution [16, 18]. The grav-
ity g can be calculated using the formula

where g( = 2.7 × 104 cm s–2 is the solar surface gravity,
M2 = 2.5(1) M( is the secondary’s mass, and R2 = 8.4(2) R(

is its radius. We obtained logg = 2.98(2); its error was
estimated from the errors of the input data.

We derived the secondary’s temperature from the
luminosity–radius–temperature relation

Here, Mb = +0 1 is the absolute bolometric luminosity
of the secondary star. We obtained Teff = 5740(70) K;
the error in the temperature was deduced from the error
in the radius.

According to the tables from [19], a star with such
parameters belongs to the spectral type G2 III. Our

g g(M2/R2
2

960 cm s
2–
,= =

Mb 42.31 5 Rlog– 10 T .log–=

.
m

Table 1.  Data on the spectra

Star Spectral type Date, 1999 JD 2451000+ Exposure time, min ∆Vr , km s–1 Vr , km s–1

BM Ori B3+G2 March 1 239.212 30 –25 38(3)

BM Ori B3+G2 March 1 239.234 30 –25

ζ Leo F0 III March 22 260.441 15 –16 6(3)

γ Ori B2 III March 1 239.249 3 –28 54(5)
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
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result is in good agreement with an attempt to classify
the secondary star by temperature and luminosity [20].
According to the above study, the star lies in the region
of yellow giants in the Hertzsprung–Russell diagram.

BRIGHTNESS OF THE SECONDARY STAR

The next step toward estimating the chemical com-
position of the secondary star is to determine its bright-
ness during eclipse , which is used to convert

observed line equivalent widths  to true equivalent
widths Wλ using the formula

(1)

The secondary’s brightness is given by

(2)

where F1 is the monochromatic flux from the primary,
F2 is the flux from the secondary, and F3 is the flux from
other radiation sources, for example, from the star
Θ1 Ori B1. The term “brightness” was taken from the
jargon of variable-star researchers (see [21], p. 97). This
quantity is dimensionless. Occasionally, it is called the
relative luminosity or luminosity (see [22], p. 176).

The quantity  proves to be difficult to determine,
because the eclipse mechanism is not known for cer-
tain. Nor do we know the nature of Θ1 Ori B1. This
forces us to consider two hypotheses regarding the pat-
tern of eclipse. In the first hypothesis (A), we consider
an eclipse model in which the primary is mainly
screened by a semitransparent dust cloud and partly by
the secondary disk. In the second hypothesis (B), we
make an attempt to allow for the light from Θ1 Ori B1
by assuming that this star is of spectral type B.

Hypothesis A. We assume Θ1 Ori B1 to emit no
radiation in the spectral range under consideration. This
is possible if it is sufficiently cool, for example, of spec-
tral type M. We also assume that the primary star during
a totality is partially eclipsed by the secondary and par-
tially by the dust cloud, by the fraction α0 = 0.63 of the
entire stellar disk area [12]. According to [23], it fol-
lows from an analysis of the depths of minimum that
L2 = 0.32(2) outside eclipse. Vitrichenko and Larionov
[15] confirmed this result by an independent method by
studying the continuum spectrum. During a totality, we
then have

(3)

where L2 = 0.32 is the secondary’s brightness outside
eclipse, L1 = 0.68 is the primary’s brightness, and α0 =
0.63 is the maximum eclipse phase.

Hypothesis B. Let us consider a different scheme of
eclipse by assuming the following: (1) the secondary
during eclipse completely screens the primary, and
(2) Θ1 Ori B1 is similar in spectral type to the primary.

L2'

Wλ
obs

Wλ Wλ
obs

/L2' .=

L2 F2/ F1 F2 F3+ +( ),=

L2'

L2' L2/ L1 1 α0–( ) L2+[ ] 0.56 3( ),= =
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In that case, we see radiation from the secondary and
Θ1 Ori B1 during eclipse.

An argument for the first assumption is the fact that,
according to the atmospheric parameters derived
above, the secondary star is a giant. This is confirmed
by the location of the secondary in the region of giants
in the Hertzsprung–Russell diagram [20].

There are two arguments for the second assumption.
First, the stellar spectrum during a totality is the same
as that outside eclipse, i.e., typical of a B star [5, 6].
Second, the UBVRI light curves can be solved by
assuming that the maximum eclipse phase for all these
bands is the same, α0 = 0.63. This is possible only if the
energy distributions for the primary and the third star
are similar. The above assumption was confirmed by
Vasileiskiœ and Vitrichenko [18].

The parameter  for hypothesis B is the same as
that for hypothesis A. In this case, the radiation from
the primary star, which was considered in hypothesis A,
is divided into two parts in the proportion 0.63 : 0.37;
the first and second parts are attributed to the primary
and the third body, respectively.

As a result, it turns out that it does not matter which
of the two hypotheses we take for the reduction of line
equivalent widths to allow for the binary nature of the
star. In any case,  = 0.56(3) during a totality.

ESTIMATING THE CHEMICAL COMPOSITION

We can give many reasons why chemical anomalies
may be suspected in the secondary star. The first one is
its youth. The atmosphere could retain the “fossil”
chemical composition if the secondary was formed
from the matter preserved in the parent globule. The
second reason is the binary nature. The primary could
“transfer” part of its matter processed in the first
nuclear reactions to the secondary. The third reason is
that the secondary could “collect” matter from a gas-
eous nebula with a light-element underabundance [24].
The explosion of a nearby supernova and magnetic
fields can also change the atmospheric chemical com-
position.

The secondary lines identified in BM Ori are listed
in Table 2. About half of the lines are blends; most lines
belong to Fe I. The Ca II line is most likely interstellar
in origin. The first and second columns give the species
and the wavelength λ1 of the strongest line in the blend,
respectively. The wavelength λ2 (without the first three
digits), which is a weighted mean of the wavelengths of
the lines in the blend, is given next. The VALD line
depths served as weights. This wavelength was used to
measure the radial velocity (next column). The next
two columns contain the measured equivalent width W1
of the entire blend and the equivalent width W2 of the
strongest line freed from the effects of weaker lines.
Weak lines were taken into account by using the VALD
line depths. The next-to-last column gives the radial

L2'

L2'
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Table 2.  A list of secondary lines in BM Ori

Species λ1, Å λ2, Å W1, Å W2, Å Vr , km s–1 Blends

Ca II 5307.22 7.32 0.049 0.036 32: Fe I 7.36

Cr II 5310.69 0.010 44

Cr II 5313.36 0.031 29

Fe II 5316.62 6.70 0.068 0.036 38 Fe II 6.78

Fe I 5322.04 0.008 25

Fe I 5324.18 4.84 0.039 44 Fe II 5.55

Fe I 5328.04 8.30 0.118 0.046 43 Cr I 8.38, Fe I 8.53

Fe I 5332.90 2.83 0.024 0.017 44 Fe I 2.66, Si I 3.24

Cr II 5334.87 0.009 4:

Ti II 5336.77 0.026 63:

Fe II 5337.73 7.75 0.030 0.016 3: Cr II 7.77, Si I 7.99

Fe I 5341.02 1.03 0.070 0.031 16 Mn I 1.06

Cr I 5345.80 0.031 52

Cr I 5348.31 8.96 0.081 0.040 41 Ca I 9.46, Fe I 9.73

Fe I 5353.37 0.022 43

Fe II 5362.87 0.056 39

Fe I 5364.86 5.08 0.036 0.021 52 Fe I 5.40

Fe I 5367.48 0.032 37
velocity determined from the blend using λ2, and the
blends (the wavelength is given without the first three
digits) are listed in the last column.

The procedure of allowance for weak lines is not
faultless. It makes sense only under the following con-
ditions: solar chemical composition, microturbulence
ξt = 2 km s–1, and metallicity [M/H] = 0. All these quan-
tities were specified for the VALD line list. As we show
below, none of these conditions is satisfied. For this rea-
son, allowance for weak lines is merely an approxima-
tion rather than an exact solution to the problem of line
blending.

When in doubt about line identification or when
lines were closely spaced, we put a colon near the radial
velocity.

When the chemical composition is calculated, it is
necessary to determine the microturbulence ξt. Model
calculations show that the line equivalent widths
decrease by a factor of 2.5, on the average, as ξt
changes from 0 to 12 km s–1. The speed of sound is an
upper limit.

We used the following standard technique to esti-
mate ξt: the microturbulence was chosen in such a way
that the coefficient b in the equation

(4)

was zero. Here, ε is the abundance of an element (in our
case, neutral iron) relative to hydrogen, and Wλ is the
line equivalent width.

Unexpectedly, b turned out to be close to zero at
ξt = 0. As ξt grows, b also sharply grows, and the rms
error of one equation (4) increases. For main-sequence

ε Fe/H( ) a bWλ+=
G stars, ξt = 2 km s–1, on the average [25]. For a G giant,
the microturbulence can only be larger, in conflict with
the above estimate.

The number of measured Fe I lines in the spectrum
is relatively small, which casts doubt on the accuracy of
constructing a dependence of the type (4). However, we
have two spectra of BM Ori obtained with the CCD
spectrograph of the 6-m telescope outside eclipse [26].
In these spectra, we managed to detect and measure
~100 Fe I lines. An analysis of these measurements
shows that b ~ 0 at ξt = 10 km s–1. The behavior of the
dependences of b on ξt for these spectra proved to be
opposite: b decreases with increasing ξt, as does its
error. The value of b is positive in the former case and
negative in the latter case for all ξt.

This contradiction remains incomprehensible. The
difference in the microturbulences can be assumed to
be real, and this is attributable to variability of the phys-
ical conditions in the stellar atmosphere. The star
exhibits flares for about 10% of the time [27], which
may cause the turbulent velocity to increase, and no
flares are observed for about 90% of the time. Some
stabilization mechanism, for example, a magnetic field,
may be operating.

The results of our abundance calculations are pre-
sented in Table 3. We used the line equivalent widths
corrected for blending and reduced by using formula (1).
The first column gives species; solar elemental abun-
dances, deviations [X/H] of the abundance from the
solar value, errors σ of the mean abundance, and num-
ber N of lines used follow next. The last three columns
(marked with asterisks) contain the same quantities
obtained from a preliminary analysis of the spectra out-
ASTRONOMY LETTERS      Vol. 26      No. 6      2000



SPECTRUM OF THE STAR BM Ori AT MINIMUM LIGHT 395
side eclipse [26]. Both abundance measurements are in
satisfactory agreement, within the error limits, although
we used markedly different microturbulences. This is
an additional argument that the microturbulence is vari-
able. The solar elemental abundances were taken from
the VALD database. Using more accurate data [28]
affects the result only slightly.

Since the abundances of most of the elements were
not known, we chose [M/H] during our analysis in such
a way that the observed and synthetic spectra coincided
most closely. It turned out that agreement could be
achieved at [M/H] = –0.5 dex. A similar result for other
stars in the Orion Nebula was obtained by Cunha et al.
[29]. These authors showed iron in the F and G stars of the
Orion association to be underabundant, [Fe/H] = –0.16.
On the other hand, Vitrichenko and Klochkova [30]
investigated the chemical composition of the star
V1016 Ori and found iron to be probably overabundant,
[Fe/H] = 0.07(4).

In Fig. 2, the observed spectrum of BM Ori is com-
pared with its synthetic spectrum computed with
Teff = 5740 K, logg = 3.0, [M/H] = –0.5, and ξt = 0 km
s–1. To allow for the light from the secondary star, we
reduced its observed spectrum by using the formula

(5)

where Ir is the reduced spectrum, and Iobs is the
observed spectrum. The wavelengths of the observed
spectrum were shifted in accordance with the instru-
mental radial velocity (see Table 1).

An examination of Fig. 2 shows that the observed
spectrum is in satisfactory agreement with the synthetic
one. The largest discrepancy is seen for the Fe I
5332.90+Fe I 5332.66+Si I 5333.34 blend and the Cr II
5334.87 line. This discrepancy is difficult to explain,
but the superposition of emission lines originating in
the secondary’s atmosphere can be a possible reason. In
addition, the first line is a complex blend, and the effect
of its components on the observed equivalent width is
difficult to estimate. The Cr II line exhibits an abnormal
radial velocity (see Table 2), so there may be an error in
the identification. In both cases, the blend most likely
contain the line of an element that is more underabun-
dant than iron or chromium.

DISCUSSION

Let us discuss the following questions: (1) How well
do our measured radial velocities of the three stars stud-
ied agree with published determinations? and (2) How
can Θ1 Ori B1 affect the observed spectrum and the
light curve.

It follows from Table 1 that the secondary’s radial
velocity is Vr = 38–25 = 13(1) km s–1. According to
refined spectroscopic orbital elements for the second-
ary star [16], the radial velocity for phase 0.974 must be

 = –14(2) km s–1. Hence, O–C = +27 km s–1. The dif-

Ir 1 1 Iobs–( )/L2' ,–=

V r
1
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ference cannot be explained by observational errors.
This brings up a number of questions: How accurate are
the period and the epoch? How accurate are the ele-
ments of the secondary’s radial-velocity curve? Is there
any systematic error in the radial velocity?

We took the photometric elements (period and

epoch) from [23]. The error in the epoch is 0 001. The
radial-velocity difference requires that the error in the

phase be +0.027, which corresponds to an error of 0 14
in the date. The accumulated error in the period can

give an error of 0 007. So, errors in the photometric
elements cannot account for the difference. It was
pointed out in the literature that BM Ori could have a
secular change of the orbit [23, 31]. However, as yet
there are no quantitative estimates of this effect.

Errors in the spectroscopic orbit cannot give an error
in the calculated radial velocity larger than 2 km s–1.

Let us check whether there is a systematic error in
the radial velocities by using the comparison stars. For
ζ Leo and γ Ori, our measured heliocentric radial veloc-
ities are –10(3) and +26(5) km s–1, respectively (see
Table 1). In the catalog of stellar radial velocities [32],
Vr = –15 and +18 km s–1 for the first and second stars,
respectively. The difference can be explained by obser-
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Fig. 2. Comparison of the synthetic (dashed line) and
observed (solid line) spectra for the secondary of BM Ori.

Table 3.  Preliminary estimates of the chemical composition for the
secondary star of BM Ori

Species Sun [X/H] σ N [X/H]* σ* N*

Ti II –7.05 –1.2 1 –0.9 0.1 33

Cr I –6.37 –0.8 0.2 2 0.0 0.1 41

Cr II –6.37 –0.5 0.3 3 –0.4 0.1 17

Fe I –4.37 –1.6 0.1 8 –1.3 0.1 82

Fe II –4.37 –0.7 0.4 3 –1.8 0.1 11
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vational errors and by the fact that both stars exhibit
radial-velocity variations over a narrow range. We thus
conclude that our radial-velocity determinations cannot
have the systematic error that accounts for the radial-
velocity difference.

Popper and Plavec [6] found that the secondary’s
radial velocity inferred from several spectra was sys-
tematically higher by 20 km s–1, while the radial veloc-
ities of interstellar lines are in agreement with an accu-
racy of 1 km s–1. The secondary’s radial velocity
can  therefore be assumed to occasionally increase by
~20 km s–1. In that case, the deviation of the second-
ary’s radial velocity by +27 km s–1 we detected can also
be explained.

Let us check whether Θ1 Ori B1 can actually be the
source of third light. As was already mentioned above,
we only know the K magnitude of this star, K = 7 6. Let
us calculate its magnitude K1 by using data from [15].
Good agreement between the magnitudes K and K1 is
achieved if we assume that half of the flux from dust
belongs to the binary system and the second half
belongs to Θ1 Ori B1:

(6)

where K+ = 6 3 is the total magnitude of the stars cal-
culated by using data from [2], L1 = 0.19 is the bright-
ness of the primary star, α0 = 0.63 is the maximum
eclipse phase or (in hypothesis B) the ratio of the flux
from the primary to the total flux from the “primary +
third star,” and Ld = 0.46 is the ratio of the flux from
dust to the total flux from the triple system.

The hypothesis is confirmed under the above
assumptions, but it should be noted that the dust shell
gives 3/4 of the entire flux. On the one hand, this comes
as no surprise, because the dust radiation in this band is
more intense than the radiation from each of the stars
[15]. On the other hand, the magnitude K1 depends
largely on what fraction of the dust radiation we
attribute to the third star. In this case, it is therefore per-
tinent to speak about the lack of disagreement between
K and K1 rather than about their equality.

The question of dust localization still remains to be
solved. According to hypothesis B, half of the dust radi-
ation comes from the binary system and the other half
from the third star. Where is the dust located in the
binary system? Around the secondary star or around the
entire system? Infrared observations of the minimum
shows that the dust in the binary system lies around the
secondary [33], but this result needs to be confirmed.

The problem of detecting and measuring secondary
lines has a long history [16]. Our analysis explains why
these lines are difficult to detect. The secondary lines
are weakened for the following reasons: (1) the previ-
ously studied photographic flux from the primary
exceeds the flux from the secondary; (2) there is a metal
underabundance; (3) the projected rotational velocity is

.
m

K1 K+ 2.5 L1 1 α0–( ) Ld/2+[ ]log{ }– 7.
m
6,= =

.
m

relatively high; and (4) the photographic spectra have a
S/N ratio of ~ 30, and the secondary lines fall within the
noise track. For the above reasons, the secondary lines
are virtually unseen in the spectrum, although the pri-
mary and secondary stars are comparable in brightness.

We have been able to solve the problem stated above
because: the depth of secondary lines in the spectra dur-
ing eclipse increased by a factor of 1.8; the signal-to-
noise ratio reached 300 through the use of a CCD array;
and we chose a portion of the spectrum in the V band
where the flux from the secondary is higher than its
photographic flux.

CONCLUSION

We detected eighteen secondary lines in the spectra
of BM Ori obtained near a totality. Having analyzed the
radial-velocity curve and the light curve, we deter-
mined atmospheric parameters for the secondary star:
Teff = 5740 K and logg = 3.0. These parameters corre-
spond to the spectral type G2 III, in good agreement
with the secondary’s position in the Hertzsprung–Rus-
sell diagram [20].

The microturbulence was found from Fe I lines to be
ξt = 0 km s–1. This microturbulence is not typical of a
yellow giant, which can be attributed to the peculiar
atmospheric structure.

We determined the projected rotational velocity,
Vsini = 60(3) km s–1, in agreement with the estimates
of other authors. In hypothesis B, this velocity agrees with
the synchronous velocity Ve = 66(2) km s–1 from [16].

Our radial velocity of the secondary star disagrees
with the radial-velocity curve, which can be explained
by the fact that the radial velocity is variable—it occa-
sionally increases by ~20 km s–1. This phenomenon
may be associated with mass outflow from the atmo-
sphere.

We considered two hypotheses for the pattern of
eclipse. In the first hypothesis, an eclipse is assumed to
be produced by a dust shell around the secondary star.
In the second hypothesis, the secondary completely
screens the primary, while Θ1 Ori B1 is a third light.
The fraction of the flux from the secondary during a
totality proves to be the same for both hypotheses,

 = 0.56(3).

A preliminary abundance analysis shows that one
might expect a metal underabundance [M/H] ~ –0.5 dex
in the secondary star. The observed spectrum is in sat-
isfactory agreement with the synthetic one computed
with the above atmospheric parameters.
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Abstract—Based on high-dispersion echelle spectra taken with the 6-m Special Astrophysical Observatory
telescope, we study the IR source IRAS 20004+2955 identified with the variable star V1027 Cyg. We have
determined the star’s fundamental parameters (Teff = 5000 K, logg = 1.0), metallicity ([Fe/H] = –0.2 dex),
and  atmospheric abundances of 16 elements. Its metallicity, carbon underabundance, and slight overabun-
dance of the heavy elements Zr, Y, Ce, and Eu suggest that V1027 Cyg belongs to the Galactic disk popula-
tion. © 2000 MAIK “Nauka/Interperiodica”.

Key words: stars—structure and evolution
INTRODUCTION

The theory of final evolutionary stages for red giants
and supergiants receives observational confirmation
slowly and with difficulty. Visible photometry proved
to be ineffective, because the lines of normal colors
could not be constructed (strong absorption in circum-
stellar shells is a hindrance). The situation improved
significantly as a result of the IRAS mission, when it
became possible to associate IR characteristics of the
shells with the presumed evolutionary status of the cor-
responding objects and to construct evolutionary mod-
els for gas–dust shells [1]. A subsequent, more oriented
search for evolutionary changes of the chemical com-
position in the stellar atmospheres of objects at the pro-
toplanetary-nebula stage shows that the chemical com-
position of a sample of protoplanetary-nebula candi-
dates is highly nonuniform, and its peculiarities are
associated with a set of characteristics of both IR and
optical spectra [2, 3].

There are many examples when different classifica-
tion criteria yield contflicting results. The object
IRAS  20004+2955, identified with the variable star
V1027 Cyg (HD 333385, BD+29 3865), serves as an
example. Its very red color index (B–V) = 2.34 is appar-
ently attributable to substantial interstellar reddening of
this object, located close to the Galactic plane. The IR
color indices are similar to those of IRAS 18095+2704,
which is believed to be a typical protoplanetary nebula,
but its chemical abundance [4] is not in close agreement
with that expected for this evolutionary stage.

* E-mail address for contacts: tamar@deneb.odessa.ua
1063-7737/00/2606- $20.00 © 20398
On the other hand, modeling a low-resolution spec-
trum of IRAS 20004+2955 led Volk and Kwok [1] to
conclude that the object was just beginning to evolve
toward high temperatures. In the diagram that relates
the intensity of the 10-µm emission feature to the infra-
red color index [25/12], IRAS 20004+2955 is located
in the region occupied by intermediate-mass giants
with effective temperatures above 5000 K, which cor-
responds to the core-helium burning stage between the
first and the second ascent along the red giant branch
[5]. The mean width of 14 photospheric lines was found
from photographic spectra with 0.4 Å resolution to be
34 km s–1 [6], which corresponds to luminosity class 0.

Arkhipova et al. [7] classified V1027 Cyg as SRd
with the photometric amplitude increasing from V to U.
They concluded that most of the reddening was attrib-
utable to interstellar extinction; the pattern of light and
color variations suggests that the variability was caused
by pulsations. In the spectrum taken in October 1991
with a two-pixel resolution of about ~4 Å, Arkhipova
et al. [7] suspected the presence of weak molecular ë2
Swan bands, 4714 (2;1) and 4734 Å (1;0), and the Sep-
tember 25, 1996 spectrum [8] exhibited molecular TiO
bands (γ, γ', and β); Ba II lines were suspected to be
enhanced (relative to çα), and radial-velocity varia-
tions were detected, which confirm the pulsation model
of light variations.

The above features of IRAS 20004+2955 make its
in-depth abundance analysis of current interest; it can
help understand the object’s evolutionary status.

OBSERVATIONS AND ANALYSIS OF SPECTRA

Our spectrograms of V1027 Cyg were obtained with
the PFES [9] and NES [10] echelle spectrographs of the
000 MAIK “Nauka/Interperiodica”
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Table 1.  Characteristics of the spectra and radial velocities

Spectrogram JD 2400000+ λλ , Å Resolution Signal/noise
Radial velocities

Vr, km s–1 σ

s15103 50309.4 4020–8000 13000 >100 8.88 3.30

s15104 50309.4 4020–8000 13000 >100 8.83 2.75

s20525 51001.4 5000–5900 35000 100 10.29 0.89

s20633 51002.4 5000–5900 35000 100 10.02 0.91
6-m Special Astrophysical Observatory telescope.
Information about the spectrograms is presented in
Table 1. The spectrograms were reduced by using the
MIDAS [11] and DECH20 [12] packages.

DETERMINING THE MODEL PARAMETERS 
AND CHEMICAL COMPOSITION

The spectral type of the object under study was con-
sidered by several authors and was estimated to range
from G7 Ia to K2–4 I. The spread in estimates can be
explained primarily by the star’s variability. Roman
[13], Keenan and McNeil [14], and Winfrey et al. [15]
found the spectral type to be K0 Ia, G7 Ia, and K2–4 I,
respectively. The spectra obtained at different epochs
with the same spectrograph were classified as late G [7]
and K2 Ib [8].

Using spectra with 1.5 Å resolution, Hrivnak et al.
[16] estimated the spectral type to be G7 Iab. When
modeling the IR spectrum, these authors ran into the
difficulty of describing optical and near-IR fluxes using
a single value of the extinction. According to Hrivnak
et al. [16], this may imply that the star’s effective tem-
perature is below 5000 K assumed in the model.

Using a calibration relationship between the equiv-
alent width of the oxygen infrared triplet and the abso-
lute luminosity [17], we estimated Mv ≈ –7. Based on
equivalent widths of the barium 5853, 6141 Å lines, we
estimated Mv by extrapolating the calibration from [18]
to be in the range –7 to –8. Taking into account uncer-
tainty in the object’s mass and large errors of the above
calibrations in the luminosity range under consider-
ation, we gave up determining the surface gravity from
the luminosity.

Because of the ambiguous relationship between
light and color variations [8] and because of the large
reddening, we also gave up determining the effective
temperature from photometric data. We estimated the
effective temperature (Teff = 5000 K) by comparing
observed and theoretical Hα profiles. In this case, the
profile is described best at the surface gravity logg = 1,
but it should be borne in mind that the Hα profile is
only slightly sensitive to logg in this temperature range.
The assumed Teff is confirmed by the lack of correlation
between the Fe I abundance and the lower-level poten-
tial of the Fe I lines used for its determination. The con-
ditions of ionization equilibrium for iron and vanadium
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
(two Fe II lines and one V II line were measured in the
spectrum) give a lower value, logg = 0.7. The set of Teff
and logg corresponds to the spectral type G5 Ib. We
determined the microturbulent velocity (6.7 km s–1)
from the condition that there was no correlation
between the equivalent widths W of Fe I lines and the
number density of iron atoms calculated from the cor-
responding lines.

We estimated the uncertainty in the effective tem-
perature, gravity, and microturbulent velocity to be 100 K,
0.3 dex, and 0.3 km s–1, respectively.

We determined the chemical composition by using
the spectra taken with the 6-m telescope on August 14,
1996 (JD 2450309). Photometric measurements are
available for this date: V = 8.88, B–V = 2.28, and U–B =
2.26 [8]. The star was on the descending branch of its
light curve, where the absorption spectra of semiregular
variables are generally not distorted by emission. Since
our spectra exhibit no clear peculiarities, we could use
the intensity ratio of the Ba II 6497 Å and Hα lines for
the classification (I6497/I6563 < 1, typical of normal
supergiants). We estimated the spectral type to be
G5 Ia–G7 Iab. The figure shows the corresponding por-
tion of the spectrum. The only peculiarity of the spec-
trum is the line broadening, which exceeds significantly
the instrumental-profile widths of the spectrographs
used. By comparing the observed and theoretical spec-
tra, we estimated the broadening (35 km s–1), in agree-
ment with the value from [6]. Although microturbu-
lence is most likely responsible for the broadening, we
formally estimated the projected rotational velocity
from the Fe I 4476 Å line to be Vsini = 40 km s–1. For
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Table 2.  Atomic data for the lines used, their equivalent widths, and the elemental abundances derived from specific lines using two model
atmospheres: (1) Teff = 5000 K, logg = 1.0, (2) Teff = 4900 K, logg = 0.5; logA(H) = 12

Species λ, Å χ, eV loggf W, mÅ
logA(X)

(1) (2)

1 2 3 4 5 6 7

Li I 6707.800 0.00 0.02 15.00 1.12 1.01

Na I 6154.220 2.10 –1.50 230.30 6.94 6.89

Al I 6696.020 3.14 –1.56 61.80 6.23 6.19

6698.670 3.14 –1.86 54.40 6.46 6.42

Si I 5645.600 4.92 –2.13 97.20 7.50 7.46

5665.550 4.92 –2.07 119.90 7.57 7.52

5772.150 5.08 –1.72 161.20 7.62 7.56

5793.070 4.92 –1.98 145.60 7.63 7.57

7034.901 5.87 –0.88 131.10 7.42 7.39

5690.430 4.93 –1.86 169.50 7.64 7.58

6125.030 5.61 –1.46 97.30 7.55 7.51

6131.860 5.61 –1.70 86.10 7.72 7.68

6583.710 5.95 –1.57 55.10 7.68 7.65

6800.600 5.96 –1.75 40.40 7.70 7.67

Ti I 5673.400 3.11 –0.40 8.20 4.93 4.88

5766.330 3.29 0.35 29.80 4.97 4.91

6312.240 1.46 –1.56 49.20 5.02 4.92

6325.150 0.02 –3.38 42.40 5.07 4.91

5644.137 2.26 0.13 155.50 4.98 4.89

5866.450 1.07 –0.87 256.60 5.03 4.91

5937.810 1.07 –1.95 87.50 5.29 5.17

6126.220 1.07 –1.42 148.90 5.07 4.95

5604.910 1.04 –1.17 46.30 4.15 4.04

5670.830 1.08 –0.36 156.10 4.08 3.96

5703.570 1.05 –0.23 137.80 3.83 3.71

V I 6058.110 1.04 –1.36 11.90 3.68 3.57

6081.430 1.05 –0.60 100.60 3.97 3.85

6224.505 0.28 –1.79 112.20 4.31 4.15

6274.700 0.26 –1.64 67.50 3.85 3.70

5830.675 3.11 0.72 10.00 3.88 3.83

V II 5819.935 2.52 –1.82 93.30 4.15 4.01

Cr I 5787.970 3.32 –0.06 144.80 5.50 5.44

6330.090 0.94 –2.80 118.80 5.33 5.20

6882.475 3.43 –0.28 54.90 5.20 5.15

6883.060 3.43 –0.35 68.50 5.39 5.33

6926.037 3.44 –0.55 106.90 5.86 5.80

6669.270 4.18 –0.42 14.50 5.54 5.50

Mn I 5537.760 2.18 –1.90 161.90 5.43 5.33

5516.774 2.17 –1.79 200.00 5.49 5.39

Fe I 5386.330 4.15 –1.82 141.60 7.74 7.68

5441.330 4.31 –1.60 78.30 7.31 7.25

5560.190 4.43 –1.15 99.00 7.13 7.08

5633.960 4.99 –0.37 193.50 7.48 7.43

5650.710 5.08 –0.79 67.60 7.25 7.21

5651.450 4.47 –1.87 32.30 7.29 7.24
ASTRONOMY LETTERS      Vol. 26      No. 6      2000



        

OPTICAL SPECTRUM OF THE INFRARED SOURCE IRAS 20004+2955 401

  
Table 2.  (Contd.)

1 2 3 4 5 6 7

Fe I 5652.310 4.26 –1.83 38.70 7.10 7.05

5653.800 4.38 –1.49 67.00 7.18 7.13

5661.348 4.28 –1.89 108.70 7.75 7.69

5809.200 3.88 –1.73 149.10 7.36 7.28

5859.560 4.54 –0.63 228.20 7.41 7.34

5905.670 4.65 –0.81 169.20 7.40 7.34

6055.970 4.73 –0.47 170.10 7.14 7.09

6082.710 2.22 –3.62 215.00 7.62 7.50

6093.666 4.60 –1.44 82.30 7.47 7.42

6094.340 4.65 –1.64 23.20 7.08 7.03

6096.662 3.98 –1.85 84.00 7.20 7.13

6226.730 3.88 –2.16 128.40 7.65 7.58

6351.270 4.31 –2.63 12.80 7.41 7.35

6380.750 4.18 –1.39 147.00 7.31 7.24

6726.640 4.61 –1.10 154.30 7.51 7.45

6732.060 4.58 –2.21 35.20 7.73 7.68

6737.980 4.56 –1.76 63.90 7.57 7.51

6752.720 4.63 –1.31 91.40 7.40 7.34

6769.660 4.58 –2.36 28.90 7.79 7.74

6786.856 4.19 –1.99 80.40 7.50 7.44

6801.870 1.61 –5.84 16.40 7.62 7.49

6806.850 2.73 –3.22 130.90 7.36 7.26

6820.430 4.64 –1.22 118.80 7.47 7.42

6837.016 4.59 –1.80 63.50 7.63 7.58

6851.640 1.61 –5.39 22.00 7.30 7.17

6911.520 2.42 –3.98 58.80 7.30 7.20

6916.700 4.15 –1.41 148.10 7.26 7.19

7366.387 4.63 –1.95 51.00 7.69 7.63

7430.541 2.58 –3.90 55.00 7.35 7.25

7473.552 4.60 –1.86 45.00 7.49 7.44

7476.376 4.79 –1.61 39.00 7.38 7.33

7491.649 4.30 –1.06 172.00 7.17 7.10

7498.530 4.14 –2.24 29.00 7.14 7.08

7501.272 4.18 –2.98 6.00 7.21 7.16

7551.100 5.09 –1.47 17.10 7.17 7.13

7563.020 4.83 –1.53 65.10 7.60 7.55

7568.894 4.28 –0.88 213.00 7.15 7.08

7582.150 4.95 –1.55 34.80 7.43 7.39

7588.300 5.03 –0.98 64.30 7.26 7.21

7723.200 2.28 –3.50 162.90 7.20 7.09

Fe II 5824.410 3.42 –4.77 20.60 7.26 7.09

7479.693 3.89 –3.59 135.00 7.62 7.45

Co I 5342.700 4.02 0.62 114.50 4.85 4.78

6189.000 1.71 –2.19 80.60 4.75 4.62

6093.143 1.74 –2.27 95.70 4.97 4.84

6771.040 1.88 –1.80 140.20 4.85 4.72

6814.950 1.95 –1.79 87.30 4.63 4.50

7054.040 2.72 –1.52 50.80 4.95 4.85
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Table 2.  (Contd.)

1 2 3 4 5 6 7

Ni I 5847.000 1.67 –3.35 103.00 5.88 5.75

6186.710 4.10 –0.84 122.50 6.23 6.16

6327.600 1.67 –2.98 178.10 5.84 5.71

6772.313 3.65 –0.93 168.60 6.01 5.93

6086.276 4.26 –0.84 96.80 6.26 6.20

5094.420 3.83 –1.07 59.90 5.79 5.73

5468.100 3.85 –1.57 62.60 6.31 6.25

5643.100 4.16 –1.19 25.20 5.82 5.76

5996.740 4.24 –0.97 24.40 5.65 5.60

6204.640 4.09 –1.09 61.60 6.05 5.99

6635.150 4.42 –0.68 57.50 5.95 5.89

6772.360 3.66 –0.86 183.20 6.01 5.93

6850.480 3.68 –1.92 44.00 6.21 6.14

7030.060 3.54 –1.70 80.00 6.14 6.06

Y I 6435.050 0.07 –0.93 20.40 2.30 2.16

6687.500 0.00 –0.65 42.80 2.27 2.12

Y II 5728.890 1.84 –1.16 122.00 2.49 2.29

Zr I 6762.380 0.00 –1.18 39.40 2.66 2.49

Ce II 5117.170 1.39 –0.04 51.50 1.45 1.24

6043.390 1.21 –0.20 79.50 1.59 1.37

Eu II 6049.510 1.28 –0.42 70.20 0.79 0.58

6645.130 1.38 0.29 208.80 0.94 0.72
Table 3.  Atmospheric elemental abundances for V1027 Cyg deter-
mined from two model atmospheres: (1) Teff = 5000 K, logg = 1.0,
(2) Teff = 4900 K, logg = 0.5; n is the number of lines used for the
analysis

Species n
(1) (2) Sun

logA σ logA σ logA

Li I 1 1.12 1.02 1.06

Na I 1 6.94 6.89 6.32

Al I 2 6.35 0.12 6.31 0.12 6.43

Si I 10 7.60 0.09 7.56 0.09 7.64

Ca I 3 6.27 0.14 6.21 0.14 6.38

Ti I 8 5.05 0.10 4.95 0.09 5.06

V I 8 3.97 0.19 3.85 0.18 4.00

V II 1 4.15 4.01 4.00

Cr I 6 5.47 0.20 5.41 0.21 5.64

Mn I 2 5.46 0.03 5.36 0.03 5.56

Fe I 46 7.39 0.19 7.33 0.19 7.64

Fe II 2 7.44 0.18 7.28 0.18 7.56

Co I 6 4.83 0.12 4.72 0.11 4.83

Ni I 14 6.01 0.19 5.94 0.20 6.22

Zr I 1 2.66 2.49 2.36

Y I 2 2.28 0.02 2.14 0.02 2.24

Y II 1 2.49 2.29 2.24

Ce II 2 1.52 0.07 1.31 0.07 1.47

Eu II 2 0.87 0.07 0.66 0.07 0.60
this purpose, we used the Vsini calibration for F super-
giants from [19]. Our measured radial velocities are
given in Table 1 (σ is the rms error of measurement
from a single line).

As was shown above, the luminosity estimates do not
argue for the value of logg obtained from the condition
of ionization equilibrium. However, the spectrum of
V1027 Cyg is mainly represented by lines of neutral
atoms, and the errors in the chemical composition attrib-
utable to uncertainty in logg affect the abundances of
those rare earths which are represented only by lines of
ions. In our procedure of determining the chemical com-
position, we restrict ourselves to lines whose effective
formation depths correspond to atmospheric levels
described well in the plane-parallel approximation.

The abundances of all elements were determined
from lines with W < 200 mÅ. We used Kurucz’s grid of
model atmospheres [20] by applying a standard proce-
dure of interpolation between grid points. To determine
the elemental abundances, we used Kurucz’s WIDTH-9
code and the STARSP software package developed by
Tsymbal [21]. In some cases, we computed synthetic
spectra to identify lines in blends by means of the
STARSP code. This software package was also used to
analyze the molecular spectrum. Oscillator strengths
loggf were taken from [22]. Table 2 gives atomic data
for the lines used, their equivalent widths, and the abun-
dances derived from two model atmospheres.
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
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DISCUSSION

The derived elemental abundances are given in
Table 3 for two model atmospheres with the following
parameters: Teff = 5000 K, logg = 1 [model (1)] and
Teff = 4900 K, logg = 0.5 [model (2)]. For both models,
the correlation coefficient between logA(Fe) and the
lower-level excitation potential of Fe I lines does not
exceed 0.1; i.e., within the error limits of the method,
the two models are identical in Teff. As we see from
Table 3, using the models with the above parameters
has no fundamental effect on the results of our abun-
dance determinations. The lithium abundance is nearly
solar and apparently suggests lithium depletion in the
atmosphere due to deep mixing of the envelope. For the
CNO-group elements, we estimated only an upper limit
for the carbon abundance, logA(C) < 8.3. This estimate
was obtained from the intensity of the molecular C2
(0, 1) Swan band head. The method of determining the
light-element abundances from molecular-band heads
is outlined in [23]. The carbon lines near 7100 Å are
strongly blended with the telluric spectrum, the oxygen
6300 Å line is also blended, and the IR oxygen triplet
lines are very strong and unsuitable for determining the
oxygen abundance. The nitrogen lines are weak and
blended; the nitrogen abundance is difficult to derive
from CN spectral features, because neither the oxygen
nor the carbon abundance is known. We deduced
the sodium abundance from the 6154 Å line with W =
230 mÅ. Since this line is weakly susceptible to depar-
tures from LTE (the errors in the abundances in the LTE
approximation do not exceed 0.2 dex), we can also
speak about a sodium overabundance. As we see from
Table 3, a modest underabundance of the iron-group
elements, ~ –0.2 dex, was obtained for the object under
study. Relative to Fe, we found modest overabundances
of Zr, Y, Ce, and Eu, whose values decrease with
increasing luminosity.

We conclude that the derived chemical abundance
pattern generally corresponds to the atmosphere of a
normal supergiant. However, if we take into account
our estimate of the carbon abundance relative to Fe,
then this will be a relationship that is more characteris-
tic of asymptotic-giant-branch (AGB) stars. The semireg-
ular light variations and the high degree of intrinsic polar-
ization do not rule out the possibility that V1027 Cyg is at
the post-AGB stage.

CONCLUSION

Based on spectra obtained over a wide wavelength
range, we determined the fundamental parameters and
detailed chemical composition of the peculiar super-
giant V1027 Cyg with the IR excess produced by its cir-
cumstellar gas–dust shell. The abundances of the iron-
group elements were shown to differ only slightly
from their solar values: the star’s metallicity is
[Fe/H] = –0.2 dex. The nearly solar metallicity in combi-
nation with the radial velocity that we measured for two
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
different epochs of observations and with the star’s loca-
tion near the Galactic plane, lead us to conclude that the
object belongs to the Galactic disk. The carbon under-
abundance and the sodium overabundance are consistent
with the hypothesis that the star is at the post-AGB stage.
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Abstract—We present and discuss IR observations for 35 stars of different variability types averaged
over many years. These include about twenty symbiotic stars, four W Ser stars and one Algol, six Miras, etc.
© 2000 MAIK “Nauka/Interperiodica”.

Key words: stars—variable and peculiar; IR photometry; circumstellar dust shells
INTRODUCTION

In the mid-1970s, systematic studies of variable
stars of different types were started with IR photometry
of Miras, Be stars, and other bright near-IR sources at
the Crimean Station of the Sternberg Astronomical
Institute (SAI). At present, the list of program objects
contains about one hundred sources. Here, we present
the results of our statistical analysis of JHKLM photo-
metric data for several tens of these objects.** The list
contains 16 symbiotic stars, four W Ser stars, six
Miras, etc.

OBSERVATIONS

IR photometry for stars of different variability types
was performed with the 1.25-m telescope at the
Crimean Station of the SAI from 1978 until 1998. Prior
to 1985, JHK and LM photometry had been carried out
using a photometer with plumbum sulfide (PbS) detec-
tors cooled by solid carbon oxide (JHK photometry)
and by liquid nitrogen (LM photometry). Since 1985,
JHKLM photometry for astrophysical sources has been
performed using a photometer with a photovoltaic
indium antimonide (InSb) detector cooled by liquid
nitrogen [1]. The InSb detector is considerably more
sensitive than the PbS detector and is currently an opti-
mum choice for near-IR (1–5 µm) observations. The
photometer was mounted at the Cassegrain focus of the
telescope, the exit aperture was ~12″, and the spatial
separation of the modulated beams was ~30″ in the
east–west direction. The list of program stars is given in

  * E-mail address for contacts: taranova@sai.msu.ru

** Electronic tables with JHKLM photometry for these stars
  will be made available via INTERNET at http://infra.sai.msu.ru
  in 2000.
1063-7737/00/2606- $20.00 © 20404
Table 1. The second, third, and fourth columns contain
variability types, ranges of V magnitudes, and variabil-
ity periods, respectively; the next column lists the star’s
coordinates and the photometric standards used. The
data in columns 2–6 were taken from the GCVS [2].
The last column contains references to published IR
observations of individual stars at the Crimean Station
of the SAI. Standard stars were chosen from the catalog
[3]; their HLM magnitudes were estimated from their
spectral types by using relations from [4]. In our stellar
photometry, the error of a single photometric measure-
ment generally did not exceed a few hundredths of a
magnitude.

DISCUSSION

The mean J magnitudes and J–K, H–K, K–L, and K–M
color indices calculated from the entire set of our obser-
vations for each of the 35 sources (Table 1) are col-
lected in Table 2. Besides, Table 2 contains mean
epochs of observations, standard deviations (SD), and
the number of observing nights for each star (N). All
stars were arbitrarily subdivided into several groups:
(a) sixteen symbiotic stars; (b) four W Ser stars and one
Algol; (c) six Miras; (d) four “unique” objects; and
(e) four “others.”

While analyzing the data from Table 2, we noticed
the following characteristic features. Among the sym-
biotic stars, the largest amplitude of J light variations
was observed for the slow novae V1016 Cyg and
HM Sge (∆J ~ 0 8) and for the carbon symbiotic star
UV Aur (∆J ~ 0 4). CH Cyg, V1329 Cyg, WY Gem,
TX CVn, V1413 Aql, BF Cyg, and AG Dra with ∆J in
the range 0 28–0 13 follow next. Minimum ∆J were
observed for the carbon symbiotic star NQ Gem and for
V443 Her. The largest J–K and H–K color variations,
which in most cases reflect atmospheric-temperature
variations in the cool components of symbiotic stars,

.
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.
m

.
m

.
m
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Table 1.  A sample from our list of objects observed at the Crimean Station of the SAI in 1978–1999

Object Type ∆V P, day α2000¶ δ2000 BS Reference

S Per M 8–12 822 2h 19m 58° 22′ 834 –

RX Cas SER 7–9 32 3 03 63 23 1035 [10–13]

ε Aur GS 3–4 9892 4 58 43 45 1454 –

ζ Aur GS 3–4 972 4 59 41 00 1454 –

UV Aur SS 7–11 394 5 19 32 28 1791 [14–16]

U Ori M 5–13 368.3 5 53 20 10 2134 –

WY Gem SS 9–10 – 6 09 23 13 2134 [17]

ZZ CMi SS 10–12 5000 7 19 09 05 2854 [17]

NQ Gem SS 7–8 70 7 29 24 37 2905 –

R LMi M 6–13 372.19 9 43 34 45 3705 –

RW LMi SRA 13–16 640 10 13 31 57 4100 [15, 16]

R UMa M 6–14 301.62 10 41 69 02 4301 –

TX UMa GS 7–9 3.06 10 42 45 50 4335 [13, 18]

TX CVn SS 9–12 – 12 42 37 02 4915 [14, 19, 20]

AG Dra SS 9–12 554 16 01 66 56 6132 [21, 14]

V CrB M 7–13 357.63 15 48 39 43 5932 –

RU Her M 7–14 484.83 16 08 25 12 5947 –

FG Ser SS – 18 15 –0 18 6752 [14, 22]

V443 Her SS 11–12 – 18 20 23 25 6895 [21, 14, 23]

V1413 Aql SS – 19 03 16 28 7176 [14, 24]

BF Cyg SS 9–13 – 19 22 29 35 7417 [21, 14]

CH Cyg SS 6–9 – 19 23 50 08 7328 [20, 25–31, 7]

HM Sge SS 11–18 550 19 40 16 38 7488 [32–38]

CI Cyg SS 10–13 855 19 46 35 33 7615 [39]

V1016 Cyg SS 10–17 580 19 55 39 42 7796 [32, 34, 40, 41]

FG Sge – 9–14 – 20 09 20 11 7635 [6, 42, 8, 5]

P Cyg SDOR 3–6 – 20 16 37 53 7796 –

V627 Cas – – 22 57 58 49 8832 [43, 44]

V367 Cyg SER 7–8 18 20 46 39 06 7949 [45]

V1329 Cyg SS 12–18 950 20 49 35 24 7949 [46]

V360 Lac SER 5.9–6 10 22 48 41 41 8632 –

V407 Cyg M + NB 13–? 745 21 00 45 34 8079 [24]

VV Cep GS 4.8–5.4 7430 21 55 63 23 8334 –

KX And SER 6.9–7.05 – 23 05 49 55 8860 [45]

Z And SS 8–12.4 – 23 31 48 32 8860 [47]
were found for V1016 Cyg and HM Sge [∆(J–K) ~ 0 4];
less pronounced variations were detected in UV Aur,
CH Cyg, TX CVn, AG Dra, FG Ser, CI Cyg, and
BF Cyg. For the remaining symbiotic stars, the J–K and
H–K color variations are within the limits of photomet-
ric errors. Note that J–K color variations within 0 4
correspond to color-temperature variations up to 500–
700 K at color temperatures below 3500 K.

Among the W Ser stars, the eclipsing binaries RX
Cas and V367 Cyg and the Algol TX UMa exhibit the
largest amplitude of J light variations, and these varia-
tions are obviously due to orbital motion. The largest J–K

.
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and H–K color variations were observed in the W Ser
star V367 Cyg; in the remaining W Ser stars, these vari-
ations were within the limits of photometric errors.

Among the Miras under study, the largest amplitude

of J light variations was observed for S Per (∆J ~ 0 7),
a slightly smaller amplitude was observed for V CrB

and RU Her (∆J ~ 0 4), and ∆J ~ 0 2 for the three
remaining Miras. S Per also shows the largest (among
the Miras in Table 1) J–K and H–K color variations; in

the other Miras, these variations do not exceed 0 15.
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.
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.
m
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Among the “unique” objects, the largest J light vari-
ations (∆J ~ 1 1) were observed in FG Sge. These vari-
ations occurred in 1992–1998 after the star’s outburst
[5]. Prior to 1992, the J light variations in FG Sge did not
exceed several tenths of a magnitude [6–8]. This star also
showed the largest color variations over the last seven
years. The carbon star RW LMi and V407 Cyg can be
considered to be next in instability among the “unique”
stars. The (possibly symbiotic) star AS 501A can be
classed with objects of medium IR variability.

Among the “other” objects, the existence of IR vari-
ability is not obvious, because their IR light variations
do not exceed 0 04–0 06.

The existence of dust shells around the program
stars can be judged from their K–L and K–M color indi-
ces. For normal cool stars, they do not exceed 0 40
and 0m, respectively; larger values suggest the presence
of relatively hot dust shells. Thus, the data in Table 2
show that most program stars have color excesses; four-
teen stars exhibit no excesses. Maximum excesses were
observed in the “unique” object RW LMi, and slightly
smaller excesses were observed in the symbiotic star
HM Sge and the “unique” object FG Sge after its out-
burst; the symbiotic star V1016 Cyg, the unique object
V627 Cas, and the symbiotic star CH Cyg and V407
Cyg with nearly the same excesses follow next in order
of decreasing excesses. Considerable color excesses
were observed in the symbiotic stars UV Aur, TX CVn,
and BF Cyg.

Characteristic features of the color indices for the
program stars discussed above are clearly seen in the
two-color diagrams of Fig. 1. Figure 1a shows that, by
their mean J–K and H–K color indices, a considerable
fraction of the objects (including the W Ser stars, sev-
eral symbiotic stars, and all the “other” stars) are
located along the lines of their variations for normal
stars. Another group of stars is located along the black-
body line. The pattern in Fig.1b is slightly different.
Only late-type stars and “hot” stars (the W Ser star
V360 Lac and the Algol TX UMa) remain near the line
of normal stars. Most stars in the two-color [(J–K), (K–L)]
diagram (Fig. 1b) lie above the lines for normal stars
and a blackbody. The positions of the stars in the two-
color diagrams confirm our conclusions about color
excesses in the program stars.

Since the existence of dust shells around most pro-
gram stars was established simultaneously with the
beginning of their IR observations, we will assume the
observed brightness and color excesses to be mainly
attributable to radiation from the circumstellar dust
shells. In this case, the observed flux from the star,
Fobs(λ), can be represented as the sum

(1)

where the first term is the flux from the star (or from the
stars if the system is multiple and the other components
contribute appreciably at a given wavelength) at the

.
m

.
m

.
m

.
m

Fobs λ( ) Fstar λ( ) Fdust λ( ),+=
outer boundary of the dust shell, and the second term is
the flux from the dust shell. The contribution of real
dust shells (the dust-grain temperatures in which can-
not exceed 1500–1700 K) to the spectral range λ < 1.5 µm
is generally no larger than a few percent of the flux
from the system’s stellar components. Consequently,
only the radiation from the central star attenuated by
the dust shell is seen in this range. This effect is clearly
seen in Fig. 1a, where the mean J–K and H–K color
indices for the program stars lie along the blackbody
line, whose slope, in turn, is close to that of the normal
interstellar reddening line. In other words, attenuation
of the radiation from the central sources by dust shells
with different optical depths mainly shows up in the
behavior of the J–K and H–K color indices. However,
as follows from Fig. 1b, the radiation from the dust
shell itself is significant even for K–L: most values lie
above the lines for normal stars and a blackbody. To
illustrate this conclusion, we calculated several models
for the radiation from a star + dust shell system. The
calculations were performed for a spherically symmet-
ric, physically thin (a constant source function B(λ) = ε/α)
dust shell, whose radiation was in equilibrium with the
radiation from the central star. In this case, relation (1)
can be approximately represented as

(2)

where Θstar and Θdust are the angular radii of the star and
the dust shell; Rstar and Rdust are the radii of the star and
the shell; Tstar and Tdust are the temperatures of the star
and the shell; τ(λ) is the optical depth of the dust shell
at a given wavelength; and B(λ, T) is the monochro-
matic fluxes from a blackbody at temperature T.
According to McCabe [9],

(3)

where 〈Q(Tstar)〉  and 〈Q(Tdust)〉  are the grain absorption
efficiency factors averaged over the spectrum of the star
and the dust shell.

Since 〈Q(Tstar)〉/〈Q(Tdust)〉  ∞ 〈τ star(λ)〉/〈τ dust(λ)〉  and
assuming a power-law wavelength dependence of the
optical depth, i.e., τ(λ) ∞ λ–β and 〈τ star(λ)〉/〈τ dust(λ)〉  ≈
[( / ]–β = (Tdust/Tstar)–β, relation (3) can be
rewritten as

(4)

Fobs λ( ) Θstar
2

B λ T star,( )e
τ λ( )–≈

+ Θdust
2

B λ Tdust,( ) 1 e
τ λ( )–

–( )

=  Θstar
2

B λ T star,( )e
τ λ( )–

× 1 Rdust
2

/Rstar
2( ) B λ Tdust,( )/B λ T star,( )( )+[ e

τ λ( )
1–( ) ] ,

Rdust/Rstar( )2

≈ 0.25 Q T star( )〈 〉 / Q Tdust( )〈 〉[ ] T star/Tdust( )4
,

λ star
max λdust

max

Rdust/Rstar( )2
0.25 T star/Tdust( )4 β+

.≈
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Table 2.  Statistics of our JHKLM photometry for variable stars in 1978–1999

(a) Symbiotic stars

Z And CH Cyg WY Gem

Parameter Mean SD N Mean SD N Mean SD N

JD 2400000+ 44880 2320 10 48576 2252 209 51032 217 18
J 6.34 0.14 7 1.09 0.29 195 3.07 0.02 18

H–K 0.23 0.06 7 0.55 0.08 186 0.35 0.03 18
J–K 1.28 0.06 7 1.66 0.15 185 1.26 0.02 18
K–L 0.44 0.20 4 0.90 0.16 170 0.24 0.04 18
L–M –0.23 0.00 1 0.10 0.11 157 –0.36 0.04 18

UV Aur CI Cyg V443 Her

JD 2400000+ 49162 2078 66 47154 2895 56 48313 2544 32
J 4.32 0.41 66 5.85 0.08 50 6.67 0.05 30

H–K 0.88 0.13 65 0.33 0.07 32 0.34 0.07 14
J–K 1.99 0.23 65 1.29 0.09 46 1.27 0.05 28
K–L 0.88 0.29 65 0.28 0.13 21 0.26 0.08 13
L–M 0.21 0.17 61 –0.30 0.13 14 –0.25 1

AG Dra V 1016 Cyg HM Sge

JD 2400000+ 45801 1748 29 47335 2561 134 46906 2545 110
J 7.15 0.13 24 7.17 0.74 109 7.41 0.81 95

H–K 0.17 0.13 15 1.16 0.24 98 1.50 0.25 77
J–K 0.93 0.09 19 2.44 0.39 105 3.13 0.40 86
K–L 1.13 2.15 7 1.76 0.36 83 2.08 0.46 58
L–M –0.17 0.00 1 0.63 0.46 78 0.65 0.42 58

ZZ CMi V 1329 Cyg FG Ser

JD 2400000+ 49574 2169 15 44869 374 9 45054 884 11
J 4.14 0.10 15 8.22444 0.28 9 5.89 0.06 8

H–K 0.37 0.10 13 0.555 0.04 2 0.45 0.10 7
J–K 1.25 0.04 15 1.43333 0.17 6 1.49 0.08 8
K–L 0.24 0.05 15 0.26 0.04 4
L–M –0.16 0.11 15 –0.30 0.00 2

TX CVn NQ Gem V1413 Aql

JD 2400000+ 46833 5013 94 51053 203 16 48333 1833 19
J 7.35 0.18 80 4.44 0.05 16 8.89 0.15 18

H–K 0.37 0.09 40 0.36 0.02 16 0.47 0.05 9
J–K 1.23 0.14 72 1.24 0.04 16 1.25 0.08 18
K–L 0.75 0.11 37 0.33 0.03 16 0.43 0.08 8
L–M 0.09 0.24 21 –0.41 0.05 16

BF Cyg

JD 2400000+ 48002 2198 86
J 7.57 0.13 80

H–K 0.34 0.07 26
J–K 1.30 0.09 69
K–L 0.39 0.15 29
L–M 0.01 0.26 8

(b) W Ser stars

KX And V 367 Cyg TX UMa

Parameter Mean SD N Mean SD N Mean SD N

JD 2400000+ 50527 1272 26 50266 1274 56 45784 1821 25
J 5.81 0.09 26 5.42 0.23 56 6.82 0.23 25

H–K 0.17 0.04 26 0.04 0.18 55 0.07 0.04 21
J–K 0.64 0.04 26 0.33 0.18 56 0.24 0.09 24
K–L 0.19 0.07 26 0.26 0.09 55 0.08 0.16 16
L–M 0.03 0.15 24 0.32 0.18 51 0.13 0.16 8
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Table 2.  (Contd.)

RX Cas V 360 Lac

JD 2400000+ 46362 1787 58 51157 187 20
J 6.48 0.20 56 5.59 0.06 20

H–K 0.24 0.08 48 0.10 0.02 20
J–K 0.84 0.05 55 0.27 0.04 20
K–L 0.25 0.05 25 0.08 0.02 18
L–M –0.04 0.16 21 –0.04 0.14 17

(c) Miras

V CrB R LMi U Ori

Parameter Mean SD N Mean SD N Mean SD N

JD 2400000+ 47870 9493 23 48197 860 16 48738 1409 14
J 3.56 0.48 23 1.84 0.21 16 0.87 0.32 14

H–K 0.87 0.11 23 0.79 0.08 15 0.63 0.08 14
J–K 2.06 0.17 23 1.75 0.08 16 1.39 0.12 14
K–L 1.15 0.06 23 0.84 0.28 15 0.66 0.14 14
L–M 0.12 0.08 23 –0.01 0.06 14 –0.01 0.06 14

RU Her S Per R UMa

JD 2400000+ 49457 1710 21 47704 273 11 48016 687 12
J 1.73 0.41 21 3.37 0.72 11 2.71 0.19 12

H–K 0.74 0.09 21 0.76 0.19 11 0.58 0.08 11
J–K 1.50 0.12 21 1.72 0.18 11 1.26 0.07 12
K–L 0.76 0.09 21 1.16 0.26 11 0.78 0.06 12
L–M 0.18 0.07 21 0.49 0.19 11 0.02 0.06 12

(d) “Unique” objects

V 407 Cyg FG Sge (before IR outburst) 627 Cas

Parameter Mean SD N Mean SD N Mean SD N

JD 2400000+ 49446 1994 43 47087 512 16 48636 1345 24
J 5.07 0.53 41 7.10 0.13 16 5.85 0.27 22

H–K 0.75 0.12 41 0.12 0.05 16 1.06 0.08 22
J–K 1.96 0.17 41 0.53 0.07 16 2.42 0.10 22
K–L 0.92 0.18 41 0.26 0.08 13 1.48 0.41 23
L–M 0.22 0.13 32 0.15 0.25 6 0.47 0.13 16

RW LMi FG Sge (after outburst)

JD 2400000+ 49259 1806 47 50400 584 71
J 6.28 0.63 46 8.55 1.09 61

H–K 2.25 0.13 47 1.42 0.45 53
J–K 4.50 0.14 46 2.67 0.86 58
K–L 2.93 0.16 47 2.03 0.60 61
L–M 0.98 0.17 47 0.66 0.76 42

(e) “Others”

ζ Aur P Cyg VV Cep

Parameter Mean SD N Mean SD N Mean SD N

JD 2400000+ 51014 228 23 50940 317 8 51075 260 17
J 1.12 0.04 23 3.80 0.05 8 1.07 0.04 17

H–K 0.20 0.05 23 0.25 0.03 8 0.29 0.04 17
J–K 0.99 0.05 23 0.51 0.05 8 1.17 0.04 17
K–L 0.18 0.04 23 0.44 0.05 8 0.29 0.03 17
L–M –0.29 0.03 23 0.16 0.05 8 –0.48 0.07 17

ε Aur (eclipse, 1982–1984) ε Aur (maximum)

JD 2400000+ 45429 55 4 51027 223 22
J 2.60 0.03 4 1.82 0.03 22

H–K 0.14 0.04 4 0.12 0.05 22
J–K 0.37 0.05 4 0.39 0.03 22
K–L 0.23 0.03 22
L–M 0.02 0.03 22
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Fig. 1. Two-color [(J–K), (H–K)] (a) and [(J–K), (K–L)] (b) diagrams. The open circles represent mean color indices for the program
stars. Lines 1 refer to normal stars [4]. Dashed lines BB indicate variations in the corresponding color indices of a blackbody with
its temperature. The solid and dotted lines (2–6) represent our model calculations, and the color variations along these curves reflect
variations in the optical depths of the corresponding dust shells. The short solid lines indicate color variations with interstellar extinc-
tion with E(B–V) = 1m.
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Changing to magnitudes, we have

(6)

where mstar(λ) is the central star’s magnitude outside the
shell. The first term (in square brackets) describes
attenuation of the observed star’s brightness by the dust
shell, and the second term describes its increase due to

mobs λ( ) mstar λ( ) 1.08τ λ( )+[ ]≈
+ 2.5 D λ τ λ( ) T star Tdust β, , , ,( )log–[ ] ,
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Fig. 2. /E(B–V)] versus . The straight line is a linear fit.[Aλlog λlog
intrinsic radiation from the shell itself. If the parame-
ters (radius and temperature) of the central source are
assumed to be constant, then the observed magnitude
variations depend only on the dust-grain temperature
and on the optical depth of the dust shell.

The parameter β depends on the kind of dust grains.
For interstellar dust grains, it is close to 1.7 in the spec-
tral range 0.36–5 µm. This value is obtained for a linear
fit to the wavelength dependence of interstellar extinction,
as shown in Fig. 2, where  and /E(B–V)]
are  plotted along the x and y axes, respectively. Note
that Aλ ≈ 0.92τ(λ). For interstellar grains, we took the
following ratios:

(7)

The straight line in Fig. 2 is a linear fit for (7).
Based on the assumptions and relations described

above, we computed several model spectral energy dis-
tributions for a source surrounded by a dust shell with
a variable optical depth for several sets of parameters
(Tstar and Tdust) at β ~ 1.7. These model calculations are
represented by curves 2–6 in the two-color diagrams of

λlog [Aλlog

AU/AB/AV /AR/AJ/AH/AK/AL/AM

=  4.78/4.05/3.05/2.23/0.75/0.46/0.27/0.13/0.08.

Table 3.  Model parameters for a “star + dust shell” system

Model 
number τb(J) τe(J) Tstar , K Tdust , K Rdust/Rstar

2 0 5 3500 350 354

3 0 4 3500 600 76

4 0 5 8000 220 13153

5 0 5 8000 250 9742

6 0 5 10000 150 78905
Figs. 1a and 1b; their parameters are listed in Table 3,
where τb(J) and τe(J) give the range of optical depths
at  λ = 1.25 µm (J band). The color variations along
curves 2–6 in Figs. 1a and 1b reflect variations in the
optical depths of the corresponding dust shells.

Figure 1b shows that the thickest dust shell is
observed around the “unique” carbon star RW LMi.
The mean temperature of its dust shell in our model is
close to 600 K; its mean optical depth at a wavelength
of 1.25 µm is 〈τ (J)〉  ~ 4(〈AV〉  ~ 18). For the group of
stars consisting of the symbiotic stars (HM Sge,
CH Cyg, AS 338), Miras (V CrB, R LMi, RU Her, U Ori),
and the “unique” object V627 Cas, the dust-shell tem-
peratures are Tdust ~ 350 K. Among these stars, the sym-
biotic star HM Sge has the densest shell [〈τ (J)〉 ~ 4], and
the Mira U Ori has the least dense shell [〈τ (J)〉  < 1].
〈τ (J)〉  ~ 2 for the Mira V CrB and 〈τ (J)〉  ~ 2.5 for the
“unique” object V627 Cas. The mean temperature of
the dust shell around the “unique” object V407 Cyg is
below 350 K and 〈τ (J)〉 ~ 2. The systems FG Sge, V1016
Cyg, and TX CVn, and the Miras S Per and R UMa
have dust shells with mean temperatures of ~500 K.
Among these stars, the shell around FG Sge is densest
(〈τ (J)〉  ~ 3), and the shells around TX CVn and R UMa
are least dense (〈τ (J)〉  < 0.3).

The remaining stars have small brightness and color
excesses, and if we attribute these excesses to dust
shells, then their 〈τ (J)〉  cannot exceed 0.1.

Parameters of the dust shells around the program
stars, together with estimated parameters of the stars
themselves, either have been considered in more detail
in our cited papers or will be analyzed in the future.
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CONCLUSION

Our analysis of the mean color characteristics for
35  stars of different variability types obtained from
twenty-year-long JHKLM photometry at the Crimean
Station of the SAI enables us to subdivide them into
several groups:

(1) Stars with no evidence of radiation from dust
shells with temperatures above 250 K. These include,
in particular, all the classical symbiotic stars under
study, W Ser stars and the Algol, and the stars ε and
ζ Aur.

(2) Stars surrounded by dust shells with temperatures
of 300 K or higher, but their optical depths at λ = 1.25 µm
do not exceed 0.5. This group contains such dissimilar
(in the nature of variability) objects as the symbiotic
stars TX CVn, CH Cyg, and UV Aur, the “unique”
object V407 Cyg, and six Miras.

(3) Stars surrounded by optically thick dust shells
with temperatures of 350 K or higher. The densest dust
shell is observed around the carbon star RW LMi. This
group contains the symbiotic novae HM Sge and
V1016 Cyg and the “unique” stars V627 Cas and FG Sge.

It should be noted that all our estimates of the mean
dust-shell parameters were made for a simple model of
a star surrounded by a spherically symmetric, physi-
cally thin dust shell, whose grains are similar to inter-
stellar ones. Actually, the condition of spherical sym-
metry is often not satisfied. For instance, a break in the
dust shell whose size is comparable to the diameter of
the central star is enough for us to see the stellar radia-
tion which is not attenuated by the dust shell, while the
radiation from the shell itself will change only slightly.
Conversely, a compact dust cloud can significantly
attenuate the starlight, while its own radiation will be
unnoticeable.

ACKNOWLEDGMENTS

I am grateful to V.I. Shenavrin, B.F. Yudin, and other
researchers of the IR astronomy group at the SAI for
simultaneous observations. This study was supported in
part by the Russian Foundation for Basic Research
(project no. 96-02-16353).

REFERENCES

1. A. E. Nadzhip, V. I. Shenavrin, V. G. Tikhonov, Trudy
Gos. Astron. Inst. Shternberg 58, 119 (1986).

2. P. N. Kholopov, N. N. Samus’, V. P. Goranskiœ et al.,
General Catalogue of Variable Stars (Nauka, Moscow,
1985–1990).

3. H. L. Johnson, R. I. Mitchell, B. Iriarte, and W. Z. Wis-
niewski, Comm. Lunar Planet. Lab. 4, 99 (1966).

4. J. Koornneef, Astron. Astrophys. 128, 84 (1983).
5. A. M. Tatarnikov and B. F. Yudin, Pis’ma Astron. Zh. 24,

359 (1998) [Astron. Lett. 24, 303 (1998)].
6. O. G. Taranova, Astrofizika 25, 453 (1986).
ASTRONOMY LETTERS      Vol. 26      No. 6      2000
7. O. G. Taranova, Pis’ma Astron. Zh. 13, 423 (1987).
8. V. P. Arkhipova and O. G. Taranova, Pis’ma Astron. Zh.

16, 808 (1990) [Sov. Astron. Lett. 16, 347 (1990)].
9. E. M. McCabe, Mon. Not. R. Astron. Soc. 200, 71

(1982).
10. O. G. Taranova and V. I. Shenavrin, Pis’ma Astron. Zh.

9, 5 (1982).
11. O. G. Taranova, V. I. Shenavrin, and A. E. Nadzhip,

Astron. Tsirk., No. 1370 (1985).
12. O. G. Taranova, Pis’ma Astron. Zh. 13, 502 (1987) [Sov.

Astron. Lett. 13, 374 (1987)].
13. O. G. Taranova and V. I. Shenavrin, Pis’ma Astron. Zh.

23, 810 (1997) [Astron. Lett. 23, 698 (1997)].
14. U. Munari, B. F. Yudin, O. G. Taranova, et al., Astron.

Astrophys., Suppl. Ser. 93, 383 (1992).
15. O. G. Taranova, Astrofizika 27, 29 (1987).
16. O. G. Taranova and V. I. Shenavrin, Pis’ma Astron. Zh.

25, 860 (1999) [Astron. Lett. 25, 750 (1999)].
17. O. G. Taranova, Astron. Tsirk., No. 1467, 7 (1986).
18. O. G. Taranova, Astron. Tsirk., No. 1462, 4 (1986).
19. O. G. Taranova and B. F. Yudin, Pis’ma Astron. Zh. 9, 36

(1983) [Sov. Astron. Lett. 9, 19 (1983)].
20. O. G. Taranova and B. F. Yudin, Astron. Zh. 61, 510

(1984).
21. O. G. Taranova and B. F. Yudin, Astron. Zh. 59, 101

(1982).
22. O. G. Taranova and B. F. Yudin, Pis’ma Astron. Zh. 11,

55 (1985) [Sov. Astron. Lett. 11, 23 (1985)].
23. E. A. Kolotilov and B. F. Yudin, Pis’ma Astron. Zh. 20,

411 (1994) [Astron. Lett. 20, 347 (1994)].
24. V. F. Esipov, O. G. Taranova, and B. F. Yudin, Astrofizika

29, 286 (1988).
25. O. G. Taranova and B. F. Yudin, Pis’ma Astron. Zh. 8,

722 (1982) [Sov. Astron. Lett. 8, 389 (1982)].
26. A. P. Ipatov and O. G. Taranova, Astron. Astrophys. 135,

325 (1984).
27. O. G. Taranova and B. F. Yudin, Astrophys. Space Sci.

146, 33 (1988).
28. O. G. Taranova and B. F. Yudin, Astron. Zh. 69, 262

(1992).
29. O. G. Taranova, B. F. Yudin, and E. A. Kolotilov, Pis’ma

Astron. Zh. 21, 529 (1995) [Astron. Lett. 21, 470 (1995)].
30. U. Munari, B. F. Yudin, E. A. Kolotilov, and T. V. Tomov,

Astron. Astrophys. 311, 484 (1996).
31. O. G. Taranova and B. F. Yudin, Astron. Astrophys. 257,

615 (1992).
32. O. G. Taranova and B. F. Yudin, Pis’ma Astron. Zh. 6,

495 (1980) [Sov. Astron. Lett. 6, 273 (1980)].
33. O. G. Taranova and B. F. Yudin, Astron. Astrophys. 117,

209 (1983).
34. A. P. Ipatov, O. G. Taranova, and B. F. Yudin, Astron.

Astrophys. 142, 85 (1985).
35. O. G. Taranova and B. F. Yudin, Pis’ma Astron. Zh. 8, 90

(1982) [Sov. Astron. Lett. 8, 46 (1982)].
36. O. G. Taranova and B. F. Yudin, in Physics of Classical

Novae, Proc. IAU Coll. No. 122, Ed. by A. Cassatella
and R. Vioti (Springer, Berlin, 1990), p. 435.



412 TARANOVA
37. B. F. Yudin, U. Munari, O. G. Taranova, and I. Dalmeri,
Astron. Astrophys., Suppl. Ser. 105, 169 (1994).

38. B. F. Yudin, Astron. Zh. 71, 900 (1994).
39. O. G. Taranova and B. F. Yudin, Astron. Zh. 58, 1051

(1981).
40. B. F. Yudin, Astron. Zh. 59, 307 (1982).
41. O. G. Taranova and B. F. Yudin, Astron. Zh. 63, 17

(1986).
42. O. G. Taranova, Pis’ma Astron. Zh. 13, 891 (1987).
43. O. G. Taranova and B. F. Yudin, Astron. Tsirk., No. 1501,

7 (1987).
44. E. A. Kolotilov, U. Munari, B. F. Yudin, and A. M. Tatarni-
kov, Astron. Zh. 73, 894 (1996).

45. O. G. Taranova, Pis’ma Astron. Zh. 23, 803 (1997).

46. O. G. Taranova and B. F. Yudin, Astron. Zh. 63, 151
(1986).

47. O. G. Taranova and B. F. Yudin, Astron. Zh. 58, 1249
(1981).

Translated by N. Samus’
ASTRONOMY LETTERS      Vol. 26      No. 6      2000


	339_1.pdf
	344_1.pdf
	356_1.pdf
	362_1.pdf
	372_1.pdf
	379_1.pdf
	390_1.pdf
	398_1.pdf
	404_1.pdf

