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Abstract—A four-field model is proposed that describes turbulent plasma convection inside the separatrix dur-
ing the L–H transition. It is shown that the Braginskii four-field hydrodynamic equations, which describe fluc-
tuations of the electron and ion temperatures, plasma density, and electrostatic potential in tokamak edge plas-
mas, can be reduced to three Lorentz-like systems of equations coupled through the equation for the kinetic
energy of the fluctuations, i.e., to a four-field edge turbulent layer model describing the nonlinear dynamics of
convective cells in the presence of a sheared flow. For three coupled oscillators, the critical pressure gradient
corresponding to transitions to both L- and H-modes is found to be much lower than that for an individual oscil-
lator, which describes turbulent convection driven by fluctuations of one type. The edge turbulent layer model
makes it possible to describe the formation of a transport barrier inside the separatrix during the L–H transition;
calculate heat and particle fluxes via ion and electron channels; and, in combination with the transport code for
a core plasma, compute the auxiliary heating power required for a transition to the H-mode. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The DIII-D experiments [1] aimed at studying the
conditions for triggering the transition to an improved
confinement regime (the H-mode) showed that the
threshold power for the L–H transition is very sensitive
to the local values of the plasma parameters in the sep-
aratrix region, specifically, the electron and ion temper-
atures, Te and Ti, and the plasma density n at the inner
boundary of the transport barrier. That is why the
threshold power should be calculated using a physi-
cally realistic model of turbulent convection near the
separatrix surface. The two-field model developed in
[2] turned out to be inadequate for describing the exper-
iments quantitatively, because it was constructed with-
out allowance for fluctuations of the electron density
and temperature. In the two-field model, the transport
barrier forms as a result of the suppression of convec-
tive cells by a sheared flow when the ion temperature
gradient in a turbulent layer (TL) is above a critical
level. Here, we extend the edge turbulent layer (ETL)
model to describe turbulent convection excited in the
separatrix region of a tokamak plasma taking into
account four types of interacting fluctuations, specifi-
cally, fluctuations of the electron and ion temperatures,
plasma density, and electric potential at the plasma
edge. We show that the critical parameter for the onset
of turbulent convection is the total plasma pressure gra-
dient in the TL. By TL we mean a narrow edge region
of a tokamak plasma inside the separatrix, where large-
scale convective cells are excited as a result of the onset
of a resistive interchange instability. In moving inward
from the separatrix in the direction of the minor radius,
the electron temperature increases so that the plasma
1063-780X/00/2606- $20.00 © 0465
conductivity becomes higher, thereby stabilizing the
instability. In computations, the pressure gradient at the
inner boundary of the transport barrier was set to be
proportional to (Te + Ti)n, because our model implies
that, in simulating the scenarios of discharges, the bar-
rier width and the parameter values at the separatrix
should be fixed in each run of the code. The numerical
results and analytic estimates allow us to conclude that,
in the four-field ETL model, the first critical pressure
gradient for the onset of turbulence in the L-mode and
the second critical pressure gradient for the generation
of the sheared flow that suppresses turbulence in the
H-mode are both much lower than those in the case
with fluctuations of only one type.

In contrast to the two-field combined ASTRA–ETL
model [2], the four-field ETL model combined with the
ASTRA transport code [3] makes it possible to com-
pute the power threshold for the L–H transition more
exactly and to determine the threshold power as a func-
tion of Te, Ti, and n at the inner boundary of the trans-
port barrier.

Our paper is organized as follows. In Section 2, we
describe the four-field ETL model (a detailed deriva-
tion of the ETL model equations is presented in the
Appendix) and analyze the stability of two and three
coupled Lorentz oscillators. In Section 3, we describe
the calibration of the four-field ETL model. In Section 4,
we present the results of calculating turbulent fluctua-
tions with the four-field ETL model and compare them
with analytic predictions and experimental data. Con-
clusions are drawn in Section 5.
2000 MAIK “Nauka/Interperiodica”
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2. FOUR-FIELD ETL MODEL

The four-field ETL model results from the reduced
Braginskii equations in the electrostatic approximation
[4]. Since the model is aimed at describing edge turbu-
lent convection across the magnetic field, we omit, for
simplicity, the equation for longitudinal ion motion. We
use two different equations to describe the electron and
ion temperatures, because the difference between them
seems to be an important parameter determining the
threshold power for the L–H transition. The dimension-
less nonlinear equations describing turbulence driven
by the drift-resistive-ballooning instability have the
form (see the Appendix)

(1)

(2)

(3)

(4)

where α = 1.71 and α1 = α + 3.16 are constants, ϕ is the
electrostatic potential φ normalized to TSe/e, n is the
electron density normalized to its value nS at the sepa-
ratrix, and Te and Ti are the electron and ion tempera-
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Fig. 1. Convective cells in the TL.
tures expressed in units of the electron temperature TSe

at the separatrix. The fluctuating quantities are repre-
sented as

(5)

where f stands for ϕ, Ti , Te, and n. The averaged quan-
tities are assumed to have the form

Here, the subscripts B and S refer to the quantities taken
at the inner surface of a transport barrier of width L and
at the separatrix, respectively; x and y are the coordi-
nates in the radial and poloidal directions (Fig. 1), nor-
malized to the ion Larmor radius ρ = Cs/ωc, where Cs is
the speed of sound in terms of the electron temperature;
the time t is in units of the inverse ion gyrofrequency

; 〈T〉 and 〈n〉 describe the averaged (across the TL)
drops in the dimensionless temperatures and density;
gTe ≡ −d〈Te〉/dx = ρ(TBe – TSe)/(LTSe), gTi ≡ –d〈Ti〉/dx =
ρ(TBi – TSi)/(LTSe), gn ≡ −d〈n〉/dx = ρ(nB – nS)/(LnS);
gB = ρ/R is the normalized magnetic field line curvature
on the outer side of the tokamak; R is the major radius

of the plasma column; σ = ρλe is the coef-
ficient proportional to the Spitzer plasma conductivity;
k|| = 1/qR (we assume that the correlation length in the
convective cells in the magnetic field direction is on the
order of qR); λe is the electron mean free path; and the
coefficients of viscosity (µ), thermal diffusivity (χi and
χe), and diffusion (D) are normalized to ρCs. The term
Qei = Pei/(TSeωc) accounts for the energy transfer from
electrons to ions due to Coulomb collisions.

Note that equations (1) and (2) taken with σ = 0,
Te = 0, and n = const coincide with the Boussinesq
equations describing thermal convection in a horizontal
layer of a liquid heated from below [5]. The Lorentz
system of equations can be derived from the Bous-
sinesq equations in the case of two-dimensional con-
vection by taking into account the interaction between
three spatial modes: two unstable modes with ampli-
tudes X and Y, which describe the convective cells, and
a stable mode with amplitude Z, which represents the
deformation of the averaged temperature profile. The
Lorentz system of equations is traditionally written
as [5]

(6)

where Pr is the Prandtl number, r is the normalized
Rayleigh number, and b is a numerical factor.
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In order to reduce equations (1)–(4) to the Lorentz-
like system, we follow the procedure that was used in
[6] to construct the two-field ETL model. To do this, we
must take into account the first three harmonics in the
Fourier expansion of the fluctuating quantities,

Here, kx = ky = ρπ/LC, where LC is the size of a convec-
tive cell (Fig. 1), and f again stands for n, Te, and Ti.
Then, for simplicity, we assume that the phase shift
between the fluctuations of the temperatures, density,
and potential is αk = π/2 (note that fk = Aϕkexp(iαk)),
which corresponds to the most intense flux, because
Qk = kyAϕkϕ–ksinαk. This assumption allows us to
reduce the number of harmonics by one-half:

(7)

Since the Fourier expansion (7) does not differ between
Te, Ti, and n, we introduce the subscripts e, i, and n for
the corresponding perturbation amplitudes Z of the
averaged profiles and the amplitudes Y of the turbulent
fluctuations. The equations of the four-field ETL model
are written for the global variables, which are normal-
ized as follows:

(8)

where the subscript rms indicates the root mean square
value of the fluctuation amplitude,

(9)

In order to elucidate the asymptotic relation to the
Lorentz equations, we keep the notation adopted in
working with the Lorentz system. The amplitudes X, Y,
and Z in system (6) coincide with the amplitudes Xc, Ys,
and Z in expansions (7).

The four-field ETL model includes the following
the equations:

(10)
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(11)

(12)

(13)

(14)

(15)

(16)

(17)

where V is the amplitude of the sheared flow associated
with E × B drift, X2/2 is the kinetic energy of the fluc-
tuations, Y2/2 is the thermal energy of the fluctuations,
and Z is the y-averaged deviation of the temperature
and density profiles from the linear profiles. The con-
stant V1 depends on the time during which the energy is
exchanged between the first (X) and second (ϕ2) modes
of fluctuations. This time cannot be determined cor-
rectly in the ETL model, in which the equations are
written for the global variables (in order to guarantee
the conservation laws) and the harmonics are used
merely to estimate the nonlinear terms [6]. Conse-
quently, the factor V1 should be found from the test cal-
culations aimed at the calibration of the ETL model by
comparing the computed and experimental kinetic
energies of the fluctuations, V2 = (ν + νcx)/ωc, where

(18)

is the neoclassical viscosity coefficient [7] and

(19)

is the simplest representation of a friction coefficient
incorporating the charge exchange of the ions with neu-
trals with a zero mean poloidal velocity. In (18), the ion
collisionality parameter has the form ν∗  = νi/(ωTε3/2),
where νi is the ion collision frequency, ωT = VTi/qR is the
bounce frequency, VTi is the ion thermal velocity, R is
the major radius of the plasma, q is the safety factor,
ε = a/R is the inverse aspect ratio, and nn is the neutral
density in the TL. The small source term V3 in (10)
describes a seed flow with a low velocity (10–5 m/s) that
gives rise to the “peeling” instability, when the convec-
tive cells become unstable against the generation of a
sheared flow. The rest of the notation in (11)–(17) is as
follows:

(20)
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For the parameter values close to the experimental
ones, we have J4e/J3e ≈ J4n/J3n ≈ 0.1 ! 1, so that, for
simplicity, we can set J4e = J4n = 0.

We assume that the viscosity and thermal diffusivity
are due to self-similar small-scale turbulence that
ensures an energy sink on small scales,

(21)

where the numerical coefficient C should be found
from the calibration of the model and DB = ρCs/16 is
the Bohm diffusion coefficient. The wavenumber has

the form k = (  + )1/2 = ρπ/LC, where the con-
vective-cell size LC is determined from the balance
between the growth rate of the interchange instability
and the rate of dissipation along the magnetic field lines

due to the longitudinal electron conduction,  ≈ σϕ

or  ≈ σϕ with γg = Cs/(RLC)1/2:

(22)

For an Ohmic L-mode discharge in DIII-D (shot
no. 82830 [8]) with the parameters

R = 1.67 m, a = 0.63 m, B = 2.17 T,

(23)

nB = 2.3 × 1019 m–3, TBe = 75 eV, TBi = 75 eV,

we obtain LC ≈ 1 cm. In simulations, the TL width is
assumed to be fixed (L = 2LC), because the TL is com-
posed of convective cells rotating in pairs in opposite
directions (Fig. 1). The factor δ = (LC/∆)2 in Z2 accounts
for the formation of a diffusive boundary layer of width
∆ inside each convective cell [2].

The terms (Ze – Zi) in equations (12) and (14)
describe the energy exchange between electrons and
ions through Coulomb collisions. The total power
transferred from electrons to ions is
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The first term should be substituted into the evolution-
ary equations for the electron and ion temperatures at
the separatrix. However, in calculations, this term was
disregarded, because the electron and ion temperatures
at the separatrix were assumed to be fixed. In equations
(13) and (15), we took into account only the heat trans-
fer term that depends on Ze – Zi ,

In comparison with the two-field ETL model [2],
which includes only V, X, Yi, and Zi , the four-field ETL
model (10)–(17) is less stable: it can be shown that
three (or two) coupled Lorentz oscillators may be
unstable even if each of them has only a trivial solution.
To prove this assertion, we consider the following sim-
plified subsystem, which describes the interaction
between the fluctuations of the ion temperature and
density in the case of a shearless flow velocity:

(24)

(25)

(26)

(27)

(28)

This subsystem consists of two Lorentz oscillators,
which are described by equations (24)–(26) and by
equations (24), (27), and (28) and are coupled through
equation (24). The equilibrium solution describing
steady-state convection has the form

(29)

where κ is a nonnegative root of the equation

(30)

We analyze three limiting cases in which the condi-
tion for steady-state convection to exist can be evalu-
ated analytically.

(i) In the case J2n = 0, we again deal with the two-
field ETL model [2], which is described by one Lorentz
oscillator (24)–(26) with the following standard param-
eters of system (6):
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The critical ion temperature gradient for the onset of
convective cells is determined by the condition

(31‡)

(i.e., r = I2J2i/I3J3i > 1), so that the critical ion tempera-
ture gradient is

(31b)

(ii) In the case J3iZ2i = J3nZ2n, we can simplify equa-
tion (30) so that it becomes possible to write out the
instability criterion for two coupled Lorentz oscillators,

(32‡)

Comparing (32a) with (31a), we can see that the insta-
bility threshold for two coupled oscillators is lower
than that for each of them, J2i + I2nJ2nZ2n/Z2i > I3J3i/I2.
For gTi ≈ gn, the threshold is lower by a factor of two:

(32b)

(iii) In the case J3nI3 – J2nI2I2n and J3iI3 – J2iI2 > 0,
each of the two oscillators is characterized by the solu-
tion that describes completely damped fluctuations.
Consequently, in equation (30) for X2, the factor in
front of κ is negative and a positive solution exists only
if the free term is negative:

i.e., only under the condition

. (33)

While each of the two oscillators is linearly stable in the
vicinity of zero, a system of two coupled oscillators is
subjected to a linear instability that gives rise to convec-
tive cells. Below, we will show that the experimental
parameter values (23) correspond just to this case.

3. CALIBRATION OF THE ETL MODEL

The coefficients in the ETL model equations (10)–
(17) contain three constants that should be found from
the calibration calculations. These are V1 in equation
(10); C in formula (21) for the seed transport coeffi-
cients; and δ, which accounts for the amplitudes Z2i ,
Z2e, and Z2n of the small-scale harmonics of the per-
turbed averaged profiles in (20). The constants V1 and
C can be found by comparing the computed and mea-
sured values of the amplitude of the potential fluctua-
tions, eφrms/TSe = X(L/πρ), and the particle flux Γturb =
CsnΓ (where Γ = (ky/k)XYn) in the H-mode. For an
H-mode discharge, in which V ≠ 0, equation (10) has

b Z2i/J3i 2δ.= =

X
2
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the time-independent solution  = V2/V1, so that we

obtain V1 = V2/ . According to the data presented in
[8], this estimate gives

V1 = 0.08. (34)

By virtue of (29), the turbulent particle flux and the
amplitude of the potential fluctuations are related by

(35)

In the approximation J3iZ2i = J3eZ2e = J3nZ2n, equa-
tion (11) taken with Yi and Yn from (29) (note that Ye has
a form analogous to Yi) yields the following relation-
ship, which is valid in the steady state:

Substituting the experimental values of the turbulent
particle flux ΓH and the amplitudes of the potential and
velocity fluctuations XH and V (all obtained for H-mode
discharges) into formulas (20) and (35), we arrive at

(36‡)

For H-mode discharges, the term J1Z1X2/Z2n with the
constant δ in (35) is much smaller than J3n. For L-mode
discharges, this difference is less marked. Conse-
quently, the constant δ can be determined more pre-
cisely by inserting the values of ΓL and XL obtained
experimentally for L-mode discharges into (35):

(36b)

With the parameters values (23), which were presented
in [8] for DIII-D shot no. 82830, we find

C = 0.6, δ = 8.

Figure 2 shows the particle flux Γturb versus δ for
fluctuation amplitudes corresponding to the L- and
H-modes. We can see that the problem of determining
δ from the experimental values of the flux and fluctua-
tion amplitudes is well posed only for low-intensity
fluxes in L-mode discharges. The experimentally mea-
sured flux Γturb = (15 ± 4) × 1020 m–2 s–1 presented in [8]
lies just in the range that is convenient for calculations.
Since, in the range δ > 8, the flux becomes independent
of δ, the errors in determining this constant weakly
affect the results of computations with the full
ASTRA–ETL model, in which the fluxes are the output
parameters of the ETL model.

The calibration of the ETL model was performed at
fixed temperature and density gradients in the TL. In
the combined ASTRA–ETL model, the gradients are
calculated self-consistently: the coincidence of the
computed and experimental fluctuation amplitudes
serves as a criterion for the correctness of the full
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2
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model. Calculations based on the ETL model were car-
ried out with the profiles of n and T taken at the time at
which the fluctuation amplitude starts to decrease, i.e.,
just before the L–H transition (at t = 1520 ms). Conse-
quently, the profiles with the corresponding edge gradi-
ents of n and T can yield a bifurcated solution describing
either L-mode (when V = 0) or H-mode (when V ≠ 0)
discharges. The combined ASTRA–ETL code utilized
the values of n and T at the separatrix only. The results
of calibration computations for the ETL model and
simulations of the L–H transition scenario for shot
no. 82830 [8] by running the ASTRA–ETL code are
summarized in the table.

In simulating the scenario of the discharge, we
found that the neutral density at the separatrix for
which the mean plasma density coincided with the
experimental one was equal to nn = 3 × 1016 m–3. In the
full ASTRA–ETL model, the turbulent particle flux and
the fluctuation amplitudes of the density and potential
coincided with the experimental ones only in the H-
mode. The calculations carried out for the L-mode
showed that, for a given power, the plasma pressure
gradient and, accordingly, the particle flux intensity in

2

0 2
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δ
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Fig. 2. Turbulent particle flux vs. δ in the L- and H-modes.
the TL are lower than those measured in the experi-
ment.

Figure 3 shows the time evolutions of the sheared
flow velocity V, the fluctuation amplitude eφrms/T, and
the particle flux Γturb during the L–H transition. In the
ETL model, the transition time is determined by the
growth rate of the sheared flow and is approximately
equal to 500 µs. In the full ASTRA–ETL model, the
transition time is longer (about 10 ms), because a ped-
estal on the ion and electron temperature profiles forms
on the diffusive time scale (corresponding to the diffu-
sive rebuilding of the ion and electron temperature pro-
files) with a rate governed by the rate of power supply
from the core plasma to the TL. In shot no. 82830, the
L–H transition is very slow: it occurs over a time of
about 10 ms. This indicates that the input power is close
to the threshold power. Consequently, the difference
between the L- and H-modes appears to be more qual-
itative than quantitative: although, in the H-mode, the
turbulence-driven E × B velocity is about 4000 m/s and
the level to which the turbulent fluxes are suppressed is
lower than that in the L-mode by one-half, the temper-
ature and density profiles near the separatrix in these
modes differ only slightly.

4. DYNAMICS OF THREE COUPLED 
LORENTZ OSCILLATORS

The calibrated four-field ETL model makes it possi-
ble to determine the threshold pressure gradients in the
TL that are required to trigger transitions from the
Ohmic regime to the L- and H-modes. It turns out that,
under the experimental conditions (23), each individual
oscillator [specifically, the one described by equations

(11)–(13) for fluctuations  at  = 0 and  = 0; the
one described by equations (11), (14), and (15) for fluc-

tuations  at  = 0 and  = 0; and the one described
by equations (11), (16), and (17) for fluctuations  at

 = 0 and  = 0], as well as each pair of oscillators

[e.g., the pair described by (24)–(28) for  and ], is
characterized exclusively by the solutions that describe
fluctuations damped to zero. However, for three cou-
pled Lorentz oscillators, there exists a solution that
describes the L–H transition (see Fig. 3 and the table).

T̃ i T̃ e ñ

T̃ e T̃ i ñ
ñ

T̃ i T̃ e

T̃ i ñ
Table

Mode Ln, mm LTe , mm nrms/n eφrms/T Γturb, 1020 m–2 s–1 V, m/s

Experiment L 17 18 0.3–0.4 0.15–0.3 15 ± 4 0

ETL L 48 23 0.26 0.44 18 0

ASTRA-ETL L 60 26 0.14 0.28 6 0

Experiment H 2.5 6 0.1–0.2 0.15–0.3 4 ± 1.5 5000

ETL H 48 23 0.15 0.22 5.3 3790

ASTRA-ETL H 40 25 0.13 0.23 5.6 4100
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In this case, the instability condition is satisfied,
because all three gradients (∇ Te ∝  gTe, ∇ Ti ∝  gTi, and
∇ n ∝  gn) contribute to the pressure gradient ∇ p ∝  g,
which drives the instability in the TL. Here,

(37)

is the effective pressure gradient.
For the system of three oscillators, we can represent

the condition for the onset of steady-state convection in
the L-mode (X2 > 0) in a form analogous to (31b) and
(32b),

(38)

under the simplifying assumption J3iZ2i = J3eZ2e =
J3nZ2n, which, by virtue of (20), is satisfied with an
accuracy of 10% in the parameter range under consid-
eration.

In the case of three oscillators, the criterion for a
transition to the H-mode can be obtained from condi-
tion (32a):

(39)

This criterion differs from (38) in that it contains an
additional term on the right-hand side:

(40)

Under this condition, solution (39) for the L-mode
becomes unstable, which corresponds to a transition to
the H-mode characterized by the solution

(41)

The critical values of g* and g** depend on which
particular gradient (∇ Te, ∇ Ti, or ∇ n) is responsible for
triggering transitions to the L- and H-modes. This is
due to the fact that the coefficients σ(Te, n) and V2(Ti, n)
on the right-hand side of equations (38) and (39) are
functions of the turbulent layer–averaged parameters
Te, Ti, and n.

Figure 4 shows the fluctuation amplitude eφrms/TSe

and the sheared flow velocity V versus g in the cases of
one and three oscillators. The plots in this figure were
computed under the assumption that g changes only
due to the increase in the ion temperature TBi at the
inner boundary of the TL, i.e., the growth of gTi at fixed
gn and gTe. We can distinguish the following three
ranges of the parameter g.

g
nB nS+

2nS

----------------- gTi gTe+( )
TBe TSe TBi TSi+ + +

2TSe

-------------------------------------------------gn+≡

=  
ρ
L
---

nB TBi TBe+( ) nS TSi TSe+( )–
nSTSe

----------------------------------------------------------------------

g 2 σk 2– µk2+( )χ ik
2 gB⁄ 3 TSi TSe⁄+( )gB g∗ ,≡+>

XL
2

I2 Z2iJ2i Z2eJ2e I2nZ2nJ2n+ +( )[=

– I3Z2iJ3i ] / J1Z1I3( ) V2/V1.>

g 2 σk 2– µk2+( )χ ik
2 gB⁄ 3 TSi TSe⁄+( )gB+>

+ V2 V1⁄( ) σk 2– µk2+( ) 4δχ igB( )⁄ g**.≡

XH
2

V2/V1.=
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(i) For g < g*, no fluctuations are excited, which cor-
responds to the Ohmic mode.

(ii) The range g* < g < g** is characterized by the
onset of steady-state convection such that

(42)

which corresponds to the L-mode (38).
(iii) For g > g**, convective cells are unstable

against the generation of a sheared flow with the veloc-
ity

(43)

which corresponds to the H-mode (40). If the sheared
flow is suppressed by one or another means, then the
solution XL corresponding to the L-mode (39) can also
exist in this range (it is indicated by the dashed curve in
Fig. 4a).

According to Fig. 4b, the threshold pressure gradi-
ent g** for the L–H transition simulated using the four-
field ETL model with three Lorentz oscillators is g** =
0.087 at TBi = 0.057 keV, while the threshold obtained
from the two-field ETL model [2] with one oscillator is
equal to g** = 0.15 at TBi = 0.13 keV. Consequently, in

eφrms
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Fig. 3. Time history of the L–H transition.
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the four-field ETL model, the threshold ion temperature
gradient (and, accordingly, the threshold power) for the
L–H transition is lower by a factor of about two than the
threshold in the two-field ETL model. We thus con-
clude that the threshold power can be accurately esti-
mated only if the interaction between the fluctuations
of the potential, density, and electron and ion tempera-
tures is taken into account. In the four-field ETL mod-
els, the instant at which a sheared flow begins to be gen-
erated is regarded as the start of the L–H transition. If
the pressure gradient is slightly above the threshold,
then the sheared flow velocity is low and the fluctua-
tions are suppressed only slightly. The degree to which
the fluctuations are suppressed can be estimated from
Fig. 4a by comparing eφrms/TSe in the L-mode (dashed
curve) and in the H-mode (solid curve). To achieve a
twofold reduction in the fluctuation amplitude and,
accordingly, a fourfold reduction in the flux intensity
Γ ∝ φ 2, it is necessary that g = 0.1–0.11. The results of
simulations with the ETL model presented in the table
correspond precisely to the minimum threshold gradi-
ent g = 0.102 for the transition to the H-mode with a
substantially improved plasma confinement.

Figure 5 differs from Fig. 4 in that the parameter g
changes because of the growth of the density nB at the
inner boundary of the TL, i.e., the growth of gn at fixed

eφrms/TSe
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Fig. 4. (a) Fluctuation amplitude eφrms/TSe and (b) sheared
flow velocity V versus g for one-oscillator and three-oscilla-
tor models. The parameter g changes because of the growth
of TBi . The dashed curve is the unstable solution corre-
sponding to the L-mode.
gTi and gTe. According to Fig. 5b, the threshold pressure
gradient g** for the L–H transition simulated using the
four-field ETL model is g** = 0.092 at nB = 1.99 ×
1019 m–3, while the threshold obtained from the two-
field ETL model is equal to g** = 0.147 at nB = 3.65 ×
1019 m–3. For an L–H transition triggered by the
increase in the density gradient, the threshold g** is
slightly higher and eφrms/TSe falls off gradually as g
increases, which differs from the situation illustrated in
Fig. 4a, where eφrms/TSe gradually rises. This difference
results from the fact that the neoclassical viscosity ν in
the coefficient V2 in (41) grows as TBi increases and
falls off as nB rises.

When g changes due to the increase in gTe, it is
impossible to determine the threshold for the L–H tran-
sition under the experimental conditions (23). For any
value of TBe and the remaining parameters in (23) being
fixed, an individual oscillator has only a trivial solution,
because, in criterion (38) for the interchange instability,
the right-hand side, containing σ ∝ (TBe + TSe)2,
increases faster as TBe grows in comparison with the
left-hand side, containing gTe ∝ TBe – TSe. In the case of
three oscillators, a decrease in TSe (the remaining param-
eters in (23) being fixed) does not lead to the suppres-
sion of fluctuations, because σ falls off faster than gTe.
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Fig. 5. (a) Fluctuation amplitude eφrms/TSe and (b) sheared
flow velocity V versus g for one-oscillator and three-oscilla-
tor models. The parameter g changes because of the growth
of nB.
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5. CONCLUSION

We have proposed the four-field ETL model of tur-
bulent plasma convection near the separatrix surface.
The model is aimed at describing the interaction
between four types of fluctuations (fluctuations of the
ion and electron temperatures, plasma density, and
electrostatic potential) by three systems of Lorentz-like

equations (for , , and ) coupled through the
equation for potential fluctuations. When TBe, TBi, and
nB are specified at the inner boundary of the TL and TSe,
TSi, and nS are fixed at the separatrix, the ETL model
makes it possible to calculate the fluctuation ampli-
tudes, sheared flow velocity, and also heat and particle
fluxes via ion and electron channels. We have shown
that, in the four-field ETL model, the first critical pres-
sure gradient for the onset of turbulence in the L-mode
and the second critical pressure gradient for the gener-
ation of the sheared flow that suppresses turbulence in
the H-mode are both much lower than those in the two-
field ETL model. Under the experimental conditions

(23), each of the oscillators for fluctuations , , or

, as well as each pair of oscillators (e.g.,  and ),
has only a solution that describes fluctuations damped
to zero, whereas, for the three coupled oscillators, there
exists a solution corresponding to the L–H transition.

We have shown that, in the four-field ETL model,
the effective pressure gradient in the TL, ∇ p =

 = , is the main

control parameter; moreover, the threshold values of g*
and g** depend on which particular gradient (∇ Te, ∇ Ti,
or ∇ n) is responsible for triggering transitions to the
L- and H-modes. The threshold for the L–H transition
is lowest when the electron temperature in the TL is
minimum and the critical pressure gradient is achieved
owing to the increase in the ion temperature gradient
and the density gradient. This is due to the fact that the
increase in the electron temperature raises the coeffi-
cient proportional to the plasma conductivity σ(Te, n)
on the right-hand side of conditions (38) and (40) for
transitions to L- and H-modes. In other words, if the
input power is deposited exclusively in the electrons,
then the transition to an improved confinement mode
can be achieved via the suppression of turbulence due
to the high plasma conductivity rather than by the
sheared flow.

In combination with the transport code for a core
plasma, the four-field ETL model can be used to com-
pute the auxiliary heating power required for a transi-
tion to the H-mode and to determine the threshold
power for the L–H transition as a function of the aver-
aged quantities n and B and the values of TSe, TSi, and nS

at the separatrix.

T̃e T̃ i ñ

T̃ i T̃ e

ñ T̃ i ñ

nB TBi TBe+( ) nS TSi TSe+( )–
L

----------------------------------------------------------------------
gnSTSe

ρ
----------------
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APPENDIX

The set of equations (1)–(4) was derived from the
Braginskii two-fluid MHD equations [4]. We sum up
the equations of electron and ion motion and neglect
both the oblique viscosity tensor and electron inertia to
obtain the equation of motion of a plasma as a whole:

(A.1)

where p = n(Ti + Te). Neglecting the Hall effect and
electron inertia converts the equation of electron
motion to Ohm’s law for the plasma:

(A.2)

where pe = nTe, E = –—φ, σSp = e2nλe/(meVTe), VTe is the
electron thermal velocity, and RT = –0.7ln—||Te is the

thermal force. We apply the operation curl  … to

equation (A.1) and consider the projection of the result-
ing equation onto the direction of the magnetic field,
b = B/B. We also take into account the following rela-
tionships:

(i) B = Beζ + Bθeθ, where θ and ζ are the poloidal
and toroidal angles; moreover, for Bθ/B ! 1, we can set
b ≈ eζ and B ∝  1/(1 + εcosθ), where ε = r/R and r is the
minor plasma radius.

(ii) Neglecting classical diffusion and drift-induced
corrections in equation (A.2) yields

(A.3)

(iii) bcurl —p = b ·  ≈  +

sinθ  ≈ , where y = rθ. This relationship is

valid at the outer circumference of the torus for small θ
such that cosθ ≈ 1 and sinθ ≈ 0. Consequently, in the
ETL model, the turbulence is assumed to be driven by
an interchange instability at the outer circumference of
the torus.

(iv) bcurl [j × B] = (b—)j|| for divj = 0.

Min
dV
dt
------- — p–

1
c
--- j B×[ ] Minµ∆V,+ +=

1
σSp

------- j E
1
c
--- V B×[ ]

— pe

en
---------- RT ,–+ +=

1
B
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V⊥
c
B
--- b —φ×[ ] , b curl

1
B
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c

B
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1
B
--- — 1

B
--- — p× 1

BR
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 1
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1
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Then, we obtain the equation

(A.4)

where j|| = b · j is the magnetic field–aligned current.

We substitute the projection of equation (A.2) onto
the magnetic field direction into equation (A.4),

(A.5)

We also replace the operator (b—) by k|| and switch to
the dimensionless variables ϕ = eφ/TSe,  = tωc,  =
x/ρ,  = y/ρ, and x = r – rB, where rB is the radial coor-
dinate of the inner boundary of the transport barrier. As
a result, we arrive at equation (1). In equations (1)–(4)
and in what follows, we omit the caret sign over the
dimensionless variables. For simplicity, we also ignore
ion motion along the magnetic field lines.

Equations (2)–(4) follow from equations (2.3e,i)
and (2.1) in [4]:

(A.6)

(A.7)

(A.8)

where the first term on the right-hand side of (A.7) is
evaluated with allowance for the relationships Ve =
V⊥  + Ve|| and divV⊥  = 0 and without allowance for col-
lisional fluxes in qe:

MinSc
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The rate with which the ions are heated by ion–electron

collisions is Pei = (Te – Ti), where me is the mass

of an electron, Mi is the mass of an ion, T is in units

of eV, τe = 3.5 × 105  [s] is the electron time

between collisions, Λ is the Coulomb logarithm, and n
is in units of cm–3.

If we evaluate the divergence of the flux,

with allowance for the magnetic field line curvature in
the expression for velocity, then the terms with the
factor 1/R appear in the left-hand side of equations

(A.6)–(A.8). Although –  @ , the term with the

radius of curvature should be incorporated in order for
the energy in equations (1)–(4) to be conserved in the
absence of dissipation.

To derive the four-field ETL model equations
(10)−(17), first, we utilize expansion (5); second, mul-
tiply equations (1)–(4) by ϕ, Ti , Te, and n, respectively;
and then average the resulting equations over the TL,
imposing periodic (in y) boundary conditions and
assuming that ϕ = 0, ∂ϕ/∂y = 0, Ti, e = 0, and n = 0 at
x = 0, L:

(A.9)
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(A.12)

(A.13)
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(A.14)

(A.15)

(A.16)

Here, W(x) = – dy is the y-averaged Reynolds

shift; Q(x) = Qi(x) + Qe(x) + 1 + Γ(x) is the y-aver-

aged heat flux; the prime denotes the derivative with
respect to x; the angle brackets stand for spatial averag-

ing, 〈…〉 = dxdy, ‡ Qi(x) = – dy, Qe(x) =

– dy, Γ(x) = dy, Q = dx, U =

〈 〉1/2 is the amplitude of the sheared flow velocity;

I = 〈|∇ |2/2〉  is the kinetic energy of the turbulent fluc-

tuations; Θi = 〈 〉1/2, Θe = 〈 〉1/2, and N = 〈 〉1/2 are
the amplitudes of the deviations of the y-averaged tem-
perature and density profiles from the linear profiles;

Jf = 〈 /2〉; and  = , ,  is the thermal energy of
the fluctuations. The nonlinear terms that describe
energy exchange between the averaged-profile plasma
and the fluctuations are evaluated by integrating by

parts with allowance for the relationship (…)dy = 0

under the periodic boundary conditions, e.g.,

(A.17)
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Equations (A.9)–(A.16) manifest the energy conserva-
tion law even in the absence of dissipation:

(A.18)

The finite-dimensional set of equations (10)–(17) was
derived with the minimum number of harmonics (7)
needed to describe the three-wave interaction and the
generation of a sheared flow. In order to exactly satisfy
the energy conservation law for a truncated Fourier
expansion, we substituted the set of harmonics (7) into
equations (A.9)–(A.16) rather than into (1)–(4). The
solution to equations (1)–(4) is well approximated by a
set of harmonics (7) such that the first harmonic is
unstable, while the second harmonic, which ensures the
stabilization of the first harmonic, is stable. In this case,
the second (damped) harmonic serves as a sink of the
energy released by the pressure gradient during the
interchange instability. Of course, if the pressure gradi-
ent in the TL is far above the threshold, then there exists
a “tail” of harmonics, which ensures cascading of the
energy to small-scale fluctuations through which the
energy is dissipated. In our model, energy dissipation
by the “tail” harmonics is described by appropriately
adjusting the numerical factor in front of the seed coef-
ficients of viscosity, diffusivity, and thermal diffusivity.
This factor was determined from the calibration calcu-
lations and their comparison with the experiment.

Let us present the estimates required for switching
from equations (A.9)–(A.16) to the finite-dimensional
set of equations (10)–(17):

(A.19)

where, to the lowest order, we have X = Xc/2. In (A.19),
we also took into account the fact that the second har-
monic is generated as a result of the nonlinear interac-
tion between the first harmonic and the sheared flow.
Then, from equation (1), we can estimate the amplitude
of the second harmonic,

(A.20)

where τ is the decay time of the second harmonic.
Because of truncation of the Fourier expansion, this
time appears to be the parameter of the problem. Since
the regular closure procedure is lacking, we are forced
to introduce the coefficient V1, which is determined
from the calibration calculations and their comparison
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with experiments. Under the assumption that the large-
scale turbulence is self-organized, i.e., that ∆ϕ ∝  –k2ϕ,

we can use the estimates 〈 〉  ≈ 2I/k2 and 〈(∆ )2〉  ≈
2Ik2. Recall that the phase shift between the fluctua-
tions of the temperatures, density, and potential was
assumed to be αk = π/2. Consequently, for correlations

of the form 〈 〉 , where  = , , , we have

〈 〉  = 0, so that the correlations between the temper-
ature and density fluctuations can be estimated as

〈 〉  = 2 . We present the estimates of the flux
and the related convective term for the case of density
fluctuations:

(A.21)

where Yn = Ys/2. Substituting the above estimates into
equations (A.9)–(A.16) and switching to the variables

V, X, Y, and Z such that U = V, I = X2/2, Jf = /2,
Θi, e = Zi, e , and n = Zn, we arrive at the generalized
Lorentz set of equations (10)–(17).
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Abstract—The possibility of feedback suppression of the external kink modes in a tokamak with a resistive
wall is studied theoretically, assuming that the stabilizing conductors are located at a certain distance from the
wall and without making any assumptions regarding the locations of the magnetic sensors that close the feed-
back circuit and the parameters (i.e., the particular components of the perturbed magnetic field or magnetic
fluxes) measured by the sensors. It is shown that the efficiency of the stabilizing system can generally be ana-
lyzed within a two-parameter model. The parameters of the problem are the jump in the logarithmic derivative
of the radial magnetic field in the region where the stabilizing conductors are positioned and the ratio of the
minor radius of the torus on which the conductors are wound to the radius of the wall. However, specific calcu-
lations should be carried out with at least a three-parameter model: the final results should depend on the cur-
rents in the conductors and the locations of the conductors and magnetic sensors. The relation between the mag-
netic parameter in the criterion for the suppression of the resistive wall modes and the currents in the stabilizing
conductors is clarified, and the current magnitudes required for the suppression are estimated. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Mikhailovskii and Kuvshinov [1] treated the prob-
lem of feedback suppression of the so-called resistive
wall modes (RWMs) (specifically, external kink modes
excited due to the wall resistivity [2]), assuming that
the magnetic sensors measuring the local values of the
perturbed magnetic field and the stabilizing conductors
are located just behind the wall. In this study, we
assume that the stabilizing conductors are placed at a
certain distance from the wall and do not make any
assumptions regarding the magnetic measurements and
the locations of the magnetic sensors required to close
the feedback circuit. The main objective of this paper is
to analyze the condition for suppression of the external
kink modes in a tokamak as a function of the distance
between the stabilizing conductors and the wall. This
problem is of current interest because RWMs may be a
serious obstacle to confinement of high-pressure plas-
mas in tokamaks [3]; in particular, solving this problem
is important for obtaining reliable estimates of the
parameters in the ITER design [4].

The capabilities and efficiency of any stabilizing
feedback system depend on the way in which it is
arranged. Four versions of feedback systems for sup-
pressing RWMs, which differ in the choice of the signal
that initiates the system response, were considered in a
recent paper by Okabayashi et al. [5]. Here, we do not
restrict ourselves to treating particular versions but dis-
cuss the general physical criterion for suppressing
RWMs, which is the starting point for choosing a
scheme for stabilization by active external means. As
an example of how to apply the general criterion to a
1063-780X/00/2606- $20.00 © 0477
feedback system, we will calculate the currents in the
stabilizing conductors needed to suppress RWMs (in
[1], the currents were characterized by a parameter
whose physical meaning remained unspecified).

In [1, 2], the feedback stabilization problem was
treated in cylindrical geometry, in which case the
RWMs appeared because the longitudinal current den-
sity profile was not optimal. Such modes can be
referred to as cylindrical RWMs. However, from the
standpoint of the possibility of confining high-temper-
ature plasmas in tokamaks, it is of interest to study
another type of external kink modes, specifically, the
modes that are driven by the plasma pressure gradient
and that can be referred to as toroidal RWMs. The tor-
oidal RWMs, which were first observed in the experi-
ments performed by Turnbull et al. [6], limit the maxi-
mum possible β values in tokamaks. In contrast to
cylindrical RWMs, which are perturbations with one
poloidal mode number, toroidal RWMs are modes with
different poloidal numbers, coupled to each other
through the dependence of the magnetic field on the
poloidal angle. This circumstance makes it difficult to
analyze toroidal RWMs theoretically and, in particular,
to study the feedback suppression of RWMs in which
we are interested here.

To simplify the analytic description, Mikhailovskii
and Kuvshinov [2] developed an approximate model of
toroidal RWMs. In the approach taken in [2], one of the
perturbation modes is regarded as fundamental, while
the others are treated as satellites and are assumed to be
important only in the plasma region. This makes it pos-
sible to describe the perturbations on the outside of the
2000 MAIK “Nauka/Interperiodica”
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wall in the cylindrical approximation. Here, we also
apply this approach, treating the influence of the feed-
back system in the cylindrical approximation. In this
case, the role of toroidal effects consists in determining
the so-called dimensionless instability growth rate
(which will be introduced below) in the absence of
feedback. According to [7], this growth rate is governed
by the equilibrium parameters of a particular discharge
and can be obtained from one-dimensional simulations.
We treat the dimensionless growth rate as a free param-
eter and, for illustration, explain its physical meaning in
the case of cylindrical RWMs in a plasma with a step
profile of the longitudinal current density [1, 2].

In Section 2, we formulate the problem and present
the basic equations. In Section 3, we derive a dispersion
relation [see (12) below] showing that the feedback
efficiency can be characterized in terms of only two
parameters, which will be denoted by Wm and y. The
quantity Wm is proportional to the jump in the logarith-
mic derivative of the radial magnetic field in the region
where the stabilizing conductors are located and is
defined below by formula (9). The quantity y, whose
definition is given after formula (13), is the ratio of the
minor radius of the torus on which the conductors are
wound to the radius of the wall.

Clearly, the parameter Wm is governed by the current
in the stabilizing conductors, which is responsible for
the jump in the derivative of the radial magnetic field.
However, Wm is the ratio of this jump to the magnitude
of the total radial magnetic field in the same region (i.e.,
in the region where the stabilizing conductors are posi-
tioned). Since the total radial field should be deter-
mined from magnetic measurements, the feedback effi-

PlasmaVacuumVacuumVacuum

Cout Cin

Fin
Fout

rf rwr

Feedback Resistive wall
(Casing)

a

Fig. 1. Geometry of the problem and the main symbols.
ciency is also governed by the type of magnetic detec-
tors and their locations. Consequently, the problem of
stabilizing the RWMs should involve at least three
parameters: the final result should depend on both the
coil currents and the location of the conductors and
magnetic detectors. To simplify matters, in Section 4,
we first analyze the problem in terms of two parame-
ters, Wm and y. Then, in Section 5, we clarify the mean-
ing of the quantity Wm as a function of the coil currents
and the location of the active coils and magnetic detec-
tors. We also present the results of particular calcula-
tions carried out with allowance for the third parameter.
Final remarks and some estimates are given in Section 6.

2. FORMULATION OF THE PROBLEM 
AND BASIC EQUATIONS

We assume that the plasma column (0 < r < a, where
r is the radial coordinate) is surrounded by a vacuum
region (a < r < rw) and a conducting wall (rw < r < rw + d).
The thicknesses of both the vacuum gap and the wall
(rw – a and d, respectively) are assumed to be small in
comparison with a. The conductivity of the medium
surrounding the wall is negligible, so, for simplicity,
the surrounding medium can be regarded as a vacuum.
Outside the wall, a set of helical stabilizing conductors
is arranged in the region rf < r < rf + δ. The transverse
size δ of the conductor region is also assumed to be
small compared to a. The magnetic detectors (sensors)
are positioned somewhere between the wall and the
feedback coils. At this point, we do not specify the type
of sensors or their locations, which are to be determined
after we formulate the physical requirements for the
stabilization system. Figure 1 shows the geometry of
the problem and the corresponding notation.

One of the key equations in our problem is the equa-

tion for the radial component  of the magnetic field
of the fundamental perturbation mode in the wall
region (see equation (9) in [1] or equation (5) in [2]):

(1)

where σ is the wall conductivity, γ is the instability
growth rate, c is the speed of light, and the prime
denotes the derivative with respect to r. We assume that

the perturbations depend on time as exp(γt) and that 
depends on the poloidal and toroidal angles, θ and ζ, as
exp[i(mθ – nζ)], where m is the number of the funda-
mental poloidal mode and n is the toroidal number of
the perturbation. For simplicity, we usually omit the
exponential factors in the perturbed quantities.

Assuming that  changes insignificantly on spatial
scales of about the wall thickness, we obtain from (1)

(2)

B̃r

B̃r'' 4πσγB̃r/c
2
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where  = γ/γD is the dimensionless growth rate and
γD = c2/(4πσda) is the reciprocal of the skin time of the
wall. In writing (2), we took into account the approxi-
mate equality rw . a. Here and below, Cin indicates that
a function should be calculated at the inner surface of
the wall (r = rw) and Cout refers to the outer surface (see
Fig. 1).

According to equation (9) in [2],

(3)

where Xm is the mth harmonic of the radial displace-
ment of the perturbed plasma, µ = 1/q, q is the safety
factor, and ε is an infinitesimal quantity. Hence, equa-
tion (2) reduces to

(4)

with Γ the dimensionless instability growth rate in the
absence of feedback,

(5)

In particular, for a cylindrical plasma with a steplike
current density profile (the current is nonzero only in
the region 0 < r < a0), Γ has the form [1, 2]

(6)

where q0 = q(0). For a plasma described in toroidal
geometry, Γ is determined by the right-hand side of for-
mula (55) in [2].

With the approach adopted here, the problem of the
influence of feedback on RWMs reduces to that of cal-
culating the logarithmic derivative of the radial field

component  in (4) as a function of the location of the
feedback coils and the amplification coefficient of the
feedback system. This is the subject of Section 3.

3. DERIVATION OF THE DISPERSION RELATION

In the gap between the wall and the stabilizing con-
ductors (a region free of coils and currents), the ampli-
tude of the radial component of the perturbed magnetic

field  depends on the radius as

(7)

where C and D are constants. Consequently, at the inner
surface of the conductor region (Fin, Fig. 1), we have

(8)
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To find D, we can specify the jump in the derivative of

the radial component , driven by the currents flow-
ing in the stabilizing conductors, by the expression

(9)

which is analogous to (7) in [1] (namely, the quantity
2mWm corresponds to W in [1]). We also take into
account the relationship

(10)

which is valid in the vacuum region surrounding the
stabilizing conductors. The last three formulas yield

(11)

With (7) and (11), expression (4) becomes

(12)

where

(13)

and y = rf/rw . Note that the dimensionless growth rate
(12) can be rewritten as

(14)

In the limit Wm  0, expression (12) gives  = Γ.
This explains why the quantity Γ was called the dimen-
sionless instability growth rate in the absence of feed-
back.

4. ANALYSIS OF THE DISPERSION RELATION 
IN THE TWO-PARAMETER PROBLEM

According to (12), the condition for feedback sup-
pression of the instability is

(15)

For y = 1 (when the stabilizing conductors are posi-
tioned just behind the wall), condition (15) becomes
Wm > Γ/2m, in accordance with the results of [1]. How-
ever, for y ≠ 1, condition (15) can be satisfied not only
in the range Wm > 0 (we regard this as the first operating
mode of the feedback system) but also in the range
Wm < 0 (which will be regarded as the second operating
mode). In Section 4.1, we present the general results of
the analysis of these two cases. In Section 4.2, we dis-
cuss the conditions under which one or another case
would be beneficial.
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4.1. General Results

For y ≠ 1 and Wm > 0, condition (15) can be rewritten
as

, (16)

in which case the instability can be suppressed only if
the gap between the wall and the stabilizing conductors
is not too large,

(17)

where the critical value ycr of y is defined as

(18)

Condition (17) can also be represented as a restriction
on the thickness of the gap between the conducting wall
and the set of stabilizing conductors,

(19)

For large values of Γ, the quantity ycr is close to
unity. Consequently, in this case, restrictions (17) and
(19) appear to be fairly stringent.

Since the physical meaning of the problem implies
that Γ > 0 and y ≥ 1, condition (16) indicates that, for
y > 1, the mode stabilization requires larger values of
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Fig. 2. Feedback stabilization of RWMs for m = 2 and

 = 2 (Γ = 2m). The hatched regions in the (Wm = y =

rf /rw) plane show the domains in which the instability can be
suppressed. The domain boundaries (the branches of the curve

Wm = y2m/(  – y2m)) are shown by heavy lines. The dashed

curve corresponds to Wm = y2m/(1 – y2m).

ycr
2m

ycr
2m
Wm and, accordingly, higher currents in the stabilizing
coils in comparison with those analyzed in [1] for the
case y = 1.

The quantity y is governed by the design of the
device and should be fixed, while Γ can change depend-
ing on the discharge parameters. The higher the growth
rate Γ, the smaller the critical value ycr. As the quantity
ycr approaches y, condition (16) becomes progressively
more difficult to satisfy. To see this, we rewrite (16) as

(20)

Since, in practice, the parameter Wm can only be finite,
requirement (20) is sometimes impossible to satisfy
even when condition (17) holds.

Going over from y = 1 to larger values of y makes
condition (20) more restrictive. On the other hand, for
y ≠ 1, there is another way to satisfy the stabilization
condition (15): along with trying to satisfy (20), we can
turn to the range Wm < 0. Recall that inequality (16) fol-
lows from (15) if the denominator in (13) is positive,
which corresponds to positive values of Wm. However,
expression (13) implies that, for y > 1, criterion (15) can
also be satisfied when Wm is negative. For y < ycr, crite-
rion (15) holds in the range

(21)

For y > ycr, criterion (15) is satisfied for Wm lying in the
interval

(22)

The two domains where RWMs can be stabilized are
displayed in Fig. 2.

4.2. Comparison between Two Possible Operating 
Modes of the Feedback System

Mathematically, the two operating modes are
described by the two branches of the function fm shown
in Fig. 3. The right branch reflects inequality (20), and
the left branch corresponds to (21) and (22). In the limit
y  1 (as the distance between the stabilizing con-
ductors and the wall tends to zero), the right branch
degenerates into a straight line and the left branch
approaches infinity; consequently, the only way to sta-
bilize RWMs is that treated in [1].

For y > 1, in the operating mode described by the
right branch, it is possible to suppress only the modes
that grow at a rate

(23)
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where

(24)

The higher the growth rate Γ, the larger the required
values of Wm. For the operating mode described by the
left branch, the stabilization condition (15) can be sat-
isfied at any value of Γ: it is sufficient to hold Wm close
to the upper limit in (21) and (22), which is independent
of ycr and is finite. In contrast, for the operating mode
described by the right branch, the values of Wm that are
required to satisfy the stabilization condition for
RWMs with high Γ (which should be, however, lower
than the critical growth rate Γcr) may be infinitely large.

According to (9), the parameter Wm is proportional to
the currents flowing in the stabilizing conductors of the
feedback system, so that large Wm values are undesirable.
Consequently, the left branch seems to be more attractive
from the standpoint of stabilizing RWMs with

(25)

where Γcr is defined by (24), because the Wm values
required for suppression are smaller than those on the
right branch. In contrast, for Γ < Γcr /2, the more prefer-
able operating mode appears to be that described by the
right branch.

5. THE Wm PARAMETER

According to (9), the parameter Wm depends only on

 and . The jump in the derivative  is governed
exclusively by the currents in the stabilizing conduc-
tors, which serve as a controlled active element of the
feedback system. However, since the currents flowing
in the plasma and in the wall also contribute to the total

field , it should be determined from measurements
with magnetic detectors that close the feedback circuit.

Since the thickness of the layer where the stabilizing
conductors are arranged is assumed to be small in com-
parison with rf , the denominator in (9) should be taken

with (rf). We also assume that the magnetic probes
positioned somewhere on the outside of the wall allow

measurements of  at the radius r = rs , which gener-
ally differs from rf (here, rs is the radial coordinate of the

magnetic sensors). The desired quantity (rf) can be

expressed in terms of (rs) with the help of (7) and (11):
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With this relationship, we obtain from (9)
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where

(28)

To evaluate Y in (27), we must specify the currents
in the stabilizing conductors, which should produce the

field  ∝  exp[i(mθ – nζ)]. Such a field can be driven,
e.g., by oppositely directed currents flowing in 2m heli-
cal coils that are wound around a torus of radius r = rf

[8]:

(29)

Here,  is the longitudinal current density in the kth
coil; Jf is the current magnitude in each coil; and

(30)

where θ0 is a constant, which will be used below in
order to properly choose the phase of the stabilizing

field . The notation ϕ – αz is introduced for conve-
nience in comparing our results with the results
obtained by Morozov and Solov’ev [8] (we are working
in conventional cylindrical coordinates r, ϕ, and z). The

net current density can be obtained by summing up 
over all of the coils:

(31)
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Retaining only the first term and setting θ0 = 0, we
obtain the distribution iζ examined in [1]. However,
below we will show that our problem requires another
choice of θ0.

The potential of the magnetic field produced by a set
of coils with currents (29) was calculated in [8]. Using
formula (5.59) from that paper, we obtain

(32)

where

(33)

(34)

In accordance with (29), we neglected the coil thick-
ness in (32).

We only need the first harmonic in the exact equality
(32) (in the approximation αrf ! 1):

(35)

Up to this point, we assumed that  ∝  exp[i(mθ – nζ)].
To keep this dependence in (35), we must set

(36)

in which case the fundamental harmonic of the quantity
Y in (27) has the form

(37)

so that the parameter Wm can be found simply by sub-
stituting (37) into (27).

Now, we go over to a description of the suppression
of RWMs in terms of the three-parameter problem
mentioned above.

Equality (27) suggests that we can take the quantity

(38)

as one of the parameters of the problem. Physically, this
is the ratio of the current in the stabilizing conductors
to the perturbed magnetic field measured by the probes.
Using (27), we express Wm through U and insert it into
(13) to arrive at the following expression for the func-
tion fm , which characterizes the operation efficiency of
the feedback system:

(39)
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U s
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1–( )+
-------------------------------------------------------,=
where s = rs/rw is the ratio of the radius at which the
probes are located to the radius of the wall. The func-
tion fm is seen to depend on the quantities U, y, and s,
which are just the aforementioned three parameters of
the problem.

Let us analyze formula (39) in the following two
limiting cases.

A. The probes are positioned near the stabilizing 
conductors (s = y)

For s = y, relationship (39) reduces to

(40)

in which case U coincides with Wm. This indicates that,
in the limiting case at hand, the general results obtai-
ned in Section 4 can be used directly in particular cal-
culations.

B. The probes are positioned near the wall (s = 1)

For s = 1, formula (39) becomes

(41)

Clearly, under these conditions, the feedback sys-
tem for suppressing RWMs can operate only in the first
of the two possible operating modes discussed in Sec-
tion 4.

Formula (41) makes it possible to determine the
amount by which the current in the stabilizing conduc-
tors should be increased as the conductors are displaced
away from the conducting wall, provided that the mag-
netic probes remain near the wall.

6. FINAL REMARKS AND ESTIMATES

Relationships (16), (20)–(22), (27), and (37) allow
us to estimate the current in the stabilizing conductors
that is required to suppress RWMs, and formulas
(38)−(41) can be used to express the result obtained in

terms of the perturbed magnetic field  measured by
the magnetic probes arranged at different radial loca-
tions.

Let us make some estimates for the above two lim-
iting cases, in which the magnetic detectors are posi-
tioned either at the same radius as the stabilizing con-
ductors (case A) or near the wall (case B).

A. Case rs = rf (the probes are far from the wall)

We assume that the magnetic detectors (Mirnov

probes) measuring the perturbed field  are placed at
the same radial position as the stabilizing conductors,
in which case it is more convenient to operate with the

f m
U

y
2m

U y
2m

1–( )+
-----------------------------------------,=

f m

rw

r f

----- 
 

m 1–

U .=

B̃r

B̃r
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parameter Wm. Using (27) and (37), we can represent it
in the form

(42)

where

(43)

is the field produced by the current Jf flowing in a
straight conductor at a distance rf from the conductor.
Clearly, the currents required to suppress RWMs are
governed by the discharge parameters (in our model,
these currents are functions of the parameter Γ).
According to (6), we estimate Γ as Γ = 2m, in which
case the stabilization condition (16) for RWMs in the
operating mode described by the right branch in Fig. 1
reduces to

(44)

As an example, we take y2m = 1.5 (or Γcr = 4m). This
corresponds to the choice rf/rw . 1.11 for m = 2 and the
choice rf/rw . 1.07 for m = 3. With these parameter val-
ues, criterion (44) becomes Wm > 3 for any value of m.
For comparison, note that, in the case y = 1, which was
considered in [1], condition (44) gives Wm > 1. Conse-
quently, when there is a gap between the wall and the
set of stabilizing conductors, the values of Wm should
be several times larger than those in the absence of the
gap (y = 1). However, for y > 1, the stabilization condi-
tion (44) remains rather modest: the field Bf should be

approximately the same as the measured field (rf).

Formulas (21) and (22) allow us to conclude that,
for y2m = 1.5, the stabilization condition at the left
branch of the function fm in Fig. 3 should have the form
Wm < –3.

For m = 2, the value |Wm | = 4, at which both of the
stabilization conditions in the example at hand are sat-

isfied, is reached at Bf = (rf). Setting this field to be
equal to 2 G and taking rf = 200 cm, we can see that the
current in the stabilizing conductors should be as high
as Jf = 2 kA.

B. Case rs = rw (the probes are close to the wall)

For rs = rw , formulas (15) and (41) enable us to rep-
resent the condition for feedback suppression of the
RWMs as

Wm 2m
B f

B̃r r f( )
---------------,=

B f

2J f

cr f

--------≡

Wm

2m
--------

B f

B̃r r f( )
--------------- 1

2m
------- y

2m

2 y
2m

–
-----------------.>=

B̃r

B̃r
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(45)

where, with allowance for (37) and (43), the quantity U
defined in (38) has the form

(46)

For Γ = 2m, condition (45) reduces to

(47)

(recall that y = rf/rw). A comparison with (44) shows
that the ratio of the desired field Bf to the measured field

(rs) turns out to be smaller than that in the case in
which the probes are located far from the wall. In par-
ticular, for y2m = 1.5, the field Bf required for the sup-

pression of RWMs is several times lower than (rs).
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Abstract—Pressure profiles p(ψ) marginal with respect to convective instability in a toroidal tubular plasma
confined by the magnetic field of an internal levitated ring current and external ring currents are studied as func-
tions of the shape of the magnetic separatrix. Configurations are found in which the maximum plasma pressure
in a finite-width layer near the plasma boundary decreases by two orders of magnitude at the expense of artifi-
cially raising the effective length (characterized by the integral /B) of the magnetic field lines near the sepa-
ratrix surface. It is shown that, in the case of a straight cylindrical tubular plasma, which is the limiting case of
a toroidal configuration with an arbitrarily large aspect ratio, the sufficient condition for the plasma to be MHD
stable against both convective and kink perturbations is satisfied for local values β ≤ 0.4. © 2000 MAIK
“Nauka/Interperiodica”.

ld∫°
1. INTRODUCTION

Research on the creation of a thermonuclear reactor
based on magnetic plasma confinement has been car-
ried out for nearly fifty years. The most substantial
progress toward achieving fusion parameters has come
from experiments on tokamaks; the next are experi-
ments on steady-state helical plasma confinement sys-
tems, the largest of which are the W7-AS stellarator in
Garching (Germany) and the LHD stellarator in Toki
(Japan). The advanced W7-X stellarator, which is being
constructed in a new thermonuclear research center in
Greifswald (Germany), is supposed to be capable of pro-
ducing plasmas in which the average ratio of plasma to
the magnetic field pressure 〈β〉 will be as high as 5%.

Magnetic systems in stellarators, which are fully
three-dimensional nonaxisymmetric devices, are rather
complicated: the stellarator magnetic field is generated
either by continuous helical windings or by modular
twisted solenoidal coils. An attractive feature of steady-
state axisymmetric devices with no toroidal magnetic
field is their simple geometry: the external, purely
poloidal, confining magnetic field is created by unidi-
rectional currents flowing in a set of coaxial ring coils
(two coils in quadrupole configurations, four coils in
octopole configurations, etc.) and the plasma carries
only diamagnetic current. Various versions of confine-
ment systems with internal levitated conductors have
been reviewed in a recent paper by A.I. Morozov and
V.V. Savel’ev [1]. The simplest version seems to be that
developed by Akira Hasegawa [2, 3], who proposed to
confine plasmas in the magnetic field of one ring coil (a
dipole configuration). The magnetic field of a levitated
dipole stabilizes kink modes with m ≥ 1. The inner part
of a toroidal tubular plasma is stable, because the mag-
1063-780X/00/2606- $20.00 © 20484
netic field increases away from the plasma boundary.
The pressure profile that forms in the outer part is
marginally stable against convective instabilities, in
accordance with the familiar Kadomtsev’s criterion [4]

p ~ ( /B)–γ, where γ = 5/3. Since the profile is gradu-

ally decreasing, the volume of confined plasma is very
large (~104 m3). The shape of the separatrix can be
made elliptical by imposing a transverse magnetic
field, which weakens the magnetic field of the ring coil
in its central region. Because of the presence of the sep-
aratrix null points (at which the magnetic field van-

ishes), the integral /B diverges logarithmically, so

that, in the vicinity of null points, the maximum pres-
sure consistent with stability tends to zero at a finite
plasma volume. This idea underlies the Mirage system
proposed by Morozov, Pastukhov, and Sokolov [5].

However, for the configurations under discussion,
the plasma pressure profile marginal with respect to
convective instability has not yet been calculated, as
was done, e.g., by Vabishchevich et al. for compact tori
[6]. This will be the subject of our paper, which is
aimed at studying how the marginal pressure profile
depends on the prescribed shape of the separatrix in the
presence of the imposed external magnetic field. We
solve the equilibrium equation for a toroidal plasma
numerically by using the specially devised TuTor
(Tubular Toroidal plasma equilibrium) code; the non-
linear right-hand side p'(ψ)r2 (where r is the distance
from the major axis of the torus) of the equilibrium
equation is determined by Kadomtsev’s marginal sta-
bility condition. However, we first examine the main
equilibrium properties of a tubular plasma, neglecting

dl∫°

dl∫°
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the axis curvature and treating, as an example, a cylin-
drically symmetric plasma configuration.

2. CYLINDRICALLY SYMMETRIC TUBULAR 
PLASMA

2.1. Equilibrium

For a confinement system with a straight central axial
current Jc, the simplest geometric configuration is a hol-
low circular plasma cylinder. In cylindrical coordinates
(ρ, ϕ, z), the equilibrium equations have the form

(1)

(2)

(in SI units, µ0 = 4π × 10–7, so that the magnetic field
pressure is pm = B2/2µ0). In a hollow plasma cylinder
with an inner radius ρ1 and outer radius ρ2, the pressure
increases (p' > 0) from zero to the maximum value p0 in
the region ρ1 ≤ ρ ≤ ρ0 and falls (p' < 0) to zero in the
region ρ0 ≤ ρ ≤ ρ2 (Fig. 1). Equation (1) implies that, at
the peak of the plasma pressure profile, we have either
B(ρ0) = 0 or j(ρ0) = 0. If a tubular Z-pinch is created in
the absence of the central current, Jc = 0, then the mag-
netic field changes sign at the surface ρ = ρ0, as in the
case with a planar Z-pinch. If the plasma is created in
the external magnetic field of the current Jc in the
central rod without deliberately generating reverse
currents (as is the case with confinement systems), then
the magnetic field does not change sign and the density
of the pressure gradient–driven diamagnetic current,
j = −(1/B)dp/dρ, is negative in the region ρ < ρ0 and is
positive in the region ρ > ρ0. In the first region, in which
the plasma pressure gradient is directed opposite to the
magnetic field gradient, the plasma is stable against
flute perturbations. As was shown by Kadomtsev for
the case of an ordinary pinch, a gradually decreasing,
marginally stable density profile exists in the second
region, in which the pressure decreases toward the
plasma boundary.

Clearly, the total electric current flowing in the
region of radius ρ > ρ1,

, (3)

is the sum of the rod current Jc and the plasma current
Jp(ρ):

(4)

In the region ρ1 < ρ < ρ0, the pressure gradient is pos-
itive, while the current density j(ρ) and plasma current

(5)

dp
dρ
------ jB,–=

d ρB( )
ρdρ
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J ρ( ) Jc J p ρ( ).+=

J p
– ρ( ) j ρ'( )2πρ' ρ'd
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PLASMA PHYSICS REPORTS      Vol. 26      No. 6      2000
are both negative, Jp(ρ) = (ρ) < 0. In the outer region
ρ0 < ρ < ρ2, where the pressure profile is decreasing,
p'(ρ) < 0, the plasma current

(6)

is positive and the total current is represented in the

form of the sum in (4) with Jp(ρ) = (ρ0) + (ρ), so

that we have 2πρB(ρ) = µ0[Jc + (ρ0) + (ρ)].

In terms of the current J(ρ) in (4), the equilibrium
equation (1) becomes

(7)

Taking the product of (7) with πρ2 and integrating the
resulting equation from ρ1 to ρ2 yields the Bennet rela-
tion for the averaged (over the plasma cross section)
pressure 〈p〉  in a tubular plasma:

(8)

where S = π(  – ) is the cross-sectional area of the
plasma cylinder. Assuming that p(ρ1) = p(ρ2) = 0, we
obtain

(9)
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Fig. 1. Plasma pressure profiles in a cylindrical tubular
pinch: (a) an arbitrarily increasing pressure profile in the
inner part of a tubular plasma and (b) the pressure profile
marginal with respect to flute instability (solid curve) in the
outer region of a tubular pinch, where the pressure gradient
is the largest (the dashed curve corresponds to a smoothed
pressure profile, which also satisfies the stability condition).
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We introduce the notation J(ρ2) = J2 and B(ρ2) =
B2 = µ0J2/2πρ2 and the averaged parameter β, charac-
terizing plasma confinement,

(10)

With allowance for J(ρ1) = Jc, we can relate the plasma
beta (10) to the geometrical and physical parameters of
a tubular plasma:

(11)

where J2 = Jc + Jp and Jp ≡ Jp(ρ2).

The integral relationships derived for βav apply both
to the “passive-confinement” case (without externally
generated currents), in which the magnetic field does
not change sign and J2 > Jc, and to the pinch case, in
which the total plasma current can be either positive or
negative. Formula (11) implies that the plasma can be

in equilibrium (βav > 0) for /  > 1, i.e., for (2Jc +
Jp)Jp > 0, regardless of the sign of J2. Assuming Jc to be
positive, we can see that the equilibrium condition is
always satisfied if the total plasma current is also posi-
tive, Jp > 0 (confinement systems). If the total plasma
current is directed opposite to the rod current, Jp < 0,
then the equilibrium condition is satisfied only for
plasma currents that exceed the rod current at least by a
factor of two, |Jp | > 2Jc (for a tubular pinch with a
skinned layer such that ρ2 – ρ1 ! ρ2, this result was
obtained by Artsimovich [7]). If the negative plasma
current is insufficiently high, |Jp | < 2Jc, then the plasma
can be maintained in equilibrium only by a longitudinal
magnetic field (the straight Hard Core Pinch device [8]
and the toroidal Levitron [9, 10]).

Note that, for both cylindrical and toroidal tubular
plasmas with a noncircular cross section, it is more
convenient to characterize equilibrium by another
parameter, specifically, the “invariant” plasma beta

(11‡)

In the case of a cylindrical plasma, we have βinv =

βav(1 – / ), so that, clearly, βinv < βav.

Below, we will be interested only in the confinement
versions of tubular plasma systems with a current-car-
rying rod or ring internal to the plasma.

2.2. MHD Stability

Unstable modes are divided into two groups: com-
pressible flute modes (m = 0 and — · x ≠ 0) and incom-
pressible kink modes (m ≥ 1 and — · x = 0).
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2
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2

Kink perturbations (m ≠ 0). According to [11, 12],
the potential energy of incompressible kink perturba-

tions with ξρ = ξ(ρ)expi ϕ + kz  has the form

(12)

For Bz = 0, we introduce the notation X = ξ/ρ, in terms
of which (12) becomes

(13)

(here and below, we omit the subscript ϕ, so that B =
Bϕ). The second term in square brackets, –2B(ρB)' =
−2µ0ρjB, shows that, if the current density is negative,
then the ideal MHD modes are stable (the Rosenbluth
criterion) [11]. Note that these formulas apply not only
to regions filled entirely with a plasma but also to con-
figurations with a vacuum gap between the plasma and,
e.g., the metal chamber (see [12, 13]). In the vacuum
region, ξ can be regarded as a fictitious displacement,
which is related to the physical quantity—the perturbed
radial magnetic field component B1—by the complex
relationship B1 = imB(ξ/ρ) = imBX. The condition for
B1 to vanish at the boundaries of the confinement region
coincides with the condition ξ = 0. The Euler–Lagrange
equation for X is

(14)

From (13), we can see that the most dangerous per-
turbations are those with m = 1. A sufficient condition
for plasma stability can be obtained by omitting the first
positive term in (13), so that we have W ≥ W1, where

(15)

Taking into account the equilibrium equation, the suffi-
cient condition for local plasma stability, B2 > 2B(ρB)',
can be written as

(16)
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Note that, in the presence of a longitudinal magnetic
field, the last term in (12) contains, instead of m2B2, the
factor (mBϕ + kρBz)2, which vanishes with m and k sat-
isfying the equality mBϕ + kρBz = 0. In this case, the
kink modes can be stabilized only when the current
density is negative (in a passive-confinement version,
in which the magnetic field does not change sign).
Recall that plasmas with a negative current lower (in
absolute value) than the doubled rod current, |Jp | < 2Jc,
can be maintained in equilibrium only by the longitudi-
nal magnetic field Bz, in which case the sufficient con-
dition for stability remains valid only when the mag-
netic field B does not change sign, i.e., when |Jp | < Jc.

Flute perturbations (m = 0). The profiles of the
plasma pressure and, accordingly, the current density
should also satisfy the condition for stability against
flute perturbations with m = 0.

According to the condition for stability against flute
modes (see the Introduction), the pressure profile in the
outer part of a tubular plasma is determined by the rela-
tionship

(17)

where ψ(V) is the poloidal magnetic flux and dV is the
volume of the layer between the toroidal surfaces p =
const and p + dp = const. Given the flux and volume
elements per unit length, dψ = Bdρ and dV = 2πρdρ, we
can write (17) as

(18)

where the normalizing constants ρ0, B0, and J0 are cho-
sen so that p0 = p(ρ0), B0 = B(ρ0), and J0 = J(ρ0). At low

plasma pressures, when  + Jp(ρ) ! J0 (i.e., J ≈ Jc),
the pressure decreases according to the law p(ρ) ∝
ρ−2γ = ρ–10/3. Since the local stability condition depends
on the magnetic field magnitude at a given surface ρ
(i.e., on the total current flowing in the region of radius
ρ), the pressure profile marginal with respect to flute
instability in the region ρ > ρ0 coincides with the
“outer” (in the region ρ > ρK) portion of the pressure
profile obtained by Kadomtsev for an ordinary pinch in
the form of two equations.1 With the notation Y =
(pi/p)1/5, it is convenient to represent these equations as

(19)

(20)

1 Since, in the review by Kadomtsev [12], the denominator in one
of the formulas for the pressure profile is misprinted, in the
Appendix, we present the derivation of the plasma pressure pro-
file in parametric form.
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where pi and a are scaling factors. As applied to a tubu-

lar plasma, it is necessary that the current Jc + (ρ0)
flowing inside a surface ρ = ρ0 be equal to the pinch cur-
rent in the region ρ < ρK in Kadomtsev’s solution. Since
we deal with a hollow plasma column, the plasma pres-
sure profile is peaked at a certain cylindrical surface
ρ = ρ0 (rather than at the axis of the system) and is
decreasing in both directions away from this surface. In
the region outside the surface ρ = ρ0, the properly scaled
pressure profile is exactly the same as the outer portion
of the profile obtained by Kadomtsev, p/pi = PK(ρ/a). To
determine the boundaries ρ0/a = fρ(β0) and ρ2/a = fρ(β2)
of this region from the prescribed ratios p2/p0 and ρ2/ρ0,
it suffices to find the values of β0 and β2 from the two
equations

(21)

The decreasing portion of the marginally stable pres-
sure profile is illustrated in Fig. 1. The dashed curve
shows a more realistic smoothed profile, which is char-
acterized by a smaller pressure gradient and is therefore
also stable.

A comparison between the sufficient conditions for
local stability of the modes with m = 0 [4] and m = 1
[see (16)],

, (22)

allows us to conclude that, for Kadomtsev’s profile,
even the condition for local stability of the m = 1 mode
is satisfied at β < 0.4, i.e., according to (19) and (20), at

p/pi < 1/  and ρ/a > 2.08.

3. TOROIDAL TUBULAR PLASMA

3.1. Stability of Kink Modes

A pithy sufficient condition for the stability of
incompressible (divx = 0) kink perturbations can also
be derived for a toroidal tubular pinch. In fact, in the
axisymmetric case under discussion and in the absence
of a toroidal magnetic field (when the current flows
across the magnetic field, j · B = 0, and the local shear

equals zero, S =  · — ×  = 0), the poten-

tial energy of incompressible perturbations, which is
given by formula (6.39) in review [14], has the form
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(23)

Here, a is an arbitrary toroidal magnetic surface label
(the volume V enclosed by a surface, the toroidal or
poloidal magnetic flux, etc.), ξ and η are the compo-
nents of the displacement vector

and T3 =  – . Omitting

the second and third positive terms gives

(24)

Hence, the sufficient condition for plasma stability
against kink perturbations is

(25)

where k =  is the magnetic field

line curvature in an equilibrium plasma configuration

—⊥  = — – B . Using the estimates B · — ≈ kB,

k · —p ≈ kp/a, we obtain a tentative stability criterion

(26)

Since we are interested in configurations in which the
radius of curvature is comparable with the transverse
dimension of the system, this estimate gives the upper
limit on the maximum possible local beta, β ~ 0.5. To
obtain more exact estimates of the maximum plasma
pressure consistent with kink instability requires spe-
cial calculations. It is particularly important here to
examine the stability condition in the presence of a sep-
aratrix.
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3.2. Equilibrium Code at the Stability Boundary
of Flute Modes

Assuming that the kink modes can be stabilized by
an internal current, we investigate pressure profiles for
a configuration with a sufficiently large drop in the
plasma pressure: from the maximum pressure p0 inside
the tubular column to a pressure p2 of about 10–3p0 at
the plasma boundary (separatrix). We substitute the
derivative p'(ψ) obtained from (17) into the equilibrium
equation for an axisymmetric plasma and take into

account the relationship dV/dψ = /B to arrive at the

desired plasma equilibrium equation for determining
the pressure profile at the stability boundary of flute
perturbations:

(27)

where ψ is the poloidal magnetic flux outside a mag-
netic surface. The boundary conditions for the nondi-
mensionalized equation (27) are u  = 1 and u  = 0,
where u = ψ/ψi, Si is the inner boundary of a tubular
plasma column, Se is its outer boundary, which coin-
cides with the separatrix surface, and ψi is the poloidal
flux at the inner boundary Si. The poloidal flux Se at the
outer boundary is assumed to be equal to zero.

In solving the equilibrium equation, the derivative

p'(ψ) should be found by calculating the integral /B

along closed magnetic field lines. If the mesh points of
the grid on which the equation is solved do not lie on
the magnetic surfaces, the accuracy with which the

integral /B can be calculated is insufficient. To

improve the computational accuracy, we solved the
equilibrium equation iteratively on radial grids with
mesh points on the lines of the poloidal coordinate by
optimizing the grids with respect to the magnetic field
line geometry: at each iteration step, the mesh points
were adjusted to lie on the magnetic surfaces, in which
case there was no need to additionally approximate the

values of the flux ψ in calculating the integral /B

over a magnetic surface. At each iteration step, equa-
tion (27) was solved by the finite-element method [15];
the derivative p'(ψ) on the right-hand side was calcu-
lated from the function ψ found at the preceding itera-
tion step. Such a code makes it possible to compute
pressure profiles marginal with respect to flute instabil-
ity in a plasma configuration with an arbitrarily shaped
magnetic separatrix.
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Fig. 2. Calculation of the equilibrium configuration marginal with respect to flute instability in a tubular plasma with a fixed elliptical
boundary. (a) Plasma pressure profiles in the equatorial plane (on a logarithmic scale): (1) the pressure profile in the region between
the z-axis and the inner side of the levitated ring and (2) the profile on the outside of the internal ring. Near the separatrix, the pressure
falls off sharply because of the presence of magnetic null points. (b) The related family of magnetic surfaces. (c) The integral 
(one of the possible criteria for making the effective volume of confined plasma as large as possible) as a function of the major radius
of a levitated ring (in arbitrary units) for a fixed shape of the plasma boundary and a fixed minor radius of the ring. (d) The inner
portion of the plasma pressure profile 1 in Fig. 1a (on a logarithmic scale) for two different values of βinv: βinv = (1) 0 and (2) 0.35.
Figures 1a–1c refer to the configuration proposed by Morozov, Pastukhov, and Sokolov [5] (the major and minor radii of a levitated
ring are R = 4 m and a = 0.8 m). In Fig. 2d, R is a variable parameter.

p Vd∫

p Vd∫
We checked the accuracy of the numerical code in
two ways. First, we compared the pressure profiles
computed for large-aspect-ratio configurations without
a separatrix (the cylindrical approximation) with the
analytic profiles obtained from (21). Second, we car-
ried out numerical calculations for configurations with
a separatrix at p'(ψ) = const, in which case the pressure
profiles can also be evaluated analytically.

3.3. Magnetic Surfaces and Pressure Profiles
at the Stability Boundary of Flute Modes]

We carried out a series of computations for the
plasma configuration that was proposed by Morozov,
PLASMA PHYSICS REPORTS      Vol. 26      No. 6      2000
Pastukhov, and Sokolov [5] and in which the separatrix
has the shape of an ellipse. Figure 2a shows the plasma
pressure profile marginal with respect to flute instabil-
ity in the equatorial plane. The profile in the left part of
the figure (curve 1) corresponds to the inside of a levi-
tated ring, and the right part (curve 2) illustrates the
pressure profile on the outside. Near the separatrix, the
plasma pressure falls off sharply because of the pres-
ence of magnetic null points. Figure 2b presents the rel-
evant family of magnetic surfaces.

We investigated the confinement efficiency as a
function of the major radius R of a levitated ring, keep-
ing both the minor radius and the shape of the outer
boundary (separatrix) fixed. The value of the integral of
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Fig. 3. Examples of configurations with different shapes of the separatrix: the pressure profiles in the equatorial plane and the related
families of magnetic surfaces. The profiles are computed in the low β approximation.
the plasma pressure over the entire volume of the sys-

tem, , can serve as one of the possible criteria for

making the effective volume of a confined plasma as
large as possible. In Fig. 2c, different points on the pro-
file of this integral correspond to systems with different
major radii of a levitated ring. The profile is peaked at
R ≈ 4 m, which agrees with the estimates that governed
the choice of the plasma configuration in [5]. Figure 2d
shows inner portions of the pressure profiles obtained
for this configuration at different values of the integral

parameter βinv = 1 – / . As in the case of a cylindri-

p Vd∫

Je
2

J2
2

cal configuration, the larger the parameter β, the
broader the pressure profile.

Examples of configurations with different shapes of
the plasma separatrix are illustrated in Fig. 3. One way
of optimizing configurations is to search for a system in
which the plasma pressure falls off sharply across a
fairly broad layer near the separatrix, since it would
hardly be possible to create configurations with a very
abrupt drop in pressure across a thin layer (because of
diffusion). According to the stability condition for flute
modes, the plasma pressure is inversely proportional to

( /B)γ; consequently, it is expedient to reduce theld∫
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edge pressure by making the magnetic field lines near
the separatrix longer, which is illustrated in Fig. 3b.
This configuration appears to be the most beneficial,
because the layer across which the pressure falls off is
the narrowest.

Here, we have not attempted to search for a set of
ring currents capable of producing a magnetic separa-
trix with the desired shape. However, as an example,
Fig. 4 illustrates how to create separatrices whose
shapes are similar to those examined above by means of
several ring currents.

4. CONCLUSION

We have analyzed the equilibrium and stability of a
cylindrical tubular plasma confined by the external azi-
muthal magnetic field of a current flowing in a hard
core placed along the z-axis. In contrast to a hard-core
pinch device with the “externally generated” currents,
in the passive-confinement version under consider-
ation, no external current is excited and the plasma car-
ries only a diamagnetic current. We have shown that, in
the outer region, the radially decreasing pressure profile
marginal with respect to flute instability is exactly the
same as the profile calculated by Kadomtsev for an
ordinary pinch. It is also shown, unlike an ordinary
pinch, a tubular plasma pinch can be stable against kink
modes.

–0.1 I –0.2 I

I

–0.3 I

–0.4 I

–0.3 I

I

Fig. 4. Examples of the sets of ring currents capable of pro-
ducing magnetic separatrices that are similar in shape to
those in Fig. 3.
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We have developed the two-dimensional TuTor code
capable of computing equilibrium plasma pressure pro-
files that are marginally stable against flute perturba-
tions in a toroidal tubular pinch with a central ring cur-
rent. The simulations carried out for such systems
under the assumption that the shape of the magnetic
separatrix is prescribed showed that, as expected, the
plasma pressure profile near the separatrix is sharply
decreasing and the plasma remains MHD stable against
flute modes. One of the optimization parameters—the
width of the layer across which the pressure falls off
sharply—can be controlled by varying the shape of the
separatrix. In toroidal tubular pinches, it is possible to
satisfy the criteria for MHD stability of kink modes, as
in the case of cylindrical tubular pinches.

In this paper, we have not discussed the question of
how to maintain an internal ring with current Jc. In the
review by Morozov and Savel’ev [1], attention was
focused on the idea of a levitated ring supported by a
horizontal magnetic field, which was proposed as early
as 1958 by Sakharov [16]. Another noteworthy idea
proposed by Sakharov is that of maintaining a current-
carrying ring mechanically. Along with the cables dis-
cussed in [16], it might be expedient to consider local
supports connecting the internal ring to the external
current-carrying ring. In this case, a strong magnetic
field generated between the rings gives rise to “toroidal
magnetic mirrors,” which can reduce the energy flux to
supports. Such a confinement system with toroidal
magnetic mirrors and possibly with current-carrying
supports requires a separate investigation.

ACKNOWLEDGMENTS

We are grateful to S.Yu. Medvedev for valuable
advice concerning the optimization of computations
and to M.A. Samitov for providing us with the code for
calculating the vacuum field from the prescribed distri-
bution of the ring currents. We also thank V.V. Arsenin
for amending the manuscript. This work was supported
in part by the Russian Foundation for Basic Research,
project no. 97-02-17695.

APPENDIX

To refine expressions (4.4) in the review by
Kadomtsev [12], we derive formulas that describe the
pressure profile marginal with respect to flute instabil-
ity in a cylindrically symmetric plasma, without mak-
ing any assumptions regarding the parameter γ. We take
the logarithmic derivative of (18), introduce the local
parameter β = 2µ0p/B2, and eliminate B' using the equi-
librium equation (1) to obtain

(A.1)d pln
d ρln
------------– ρp'

p
--------–

2γ

1
γ
2
---β+

----------------.= =
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Analogously, we find the logarithmic derivative of β:

(A.2)

These relationships give

(A.3)

Integrating (A.3) over β, we arrive at a parametric rep-
resentation of the marginal plasma pressure profile:

(A.4)

where pi and a are integration constants. With γ = 5/3,
(A.4) becomes

(A.5)

Note that there are misprints in the review by Kadomt-
sev [12]: in the formula corresponding to the second
relationship in (A.5), the power index 1/4 in the numer-
ator has been left out and the denominator contains the
power index 5/4 instead of 3/4.

Instead of formulas (A.4) and (A.5) for p(β) and
ρ(β), it is more convenient to use the formulas for β(p)
and ρ(p). The dependence β(p) can be obtained directly
from the first relationship in (A.4):

(A.6)

which also gives the representations

(A.7)

From the second relationship in (A.4), we find
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The formulas derived describe the behavior of the
stable marginal pressure profile on the outside of the
surface at which the plasma pressure is maximum. For
large values of ρ, the parameter β is small; specifically,
for ρ ~ 1/β1/2(γ – 1), we have p ~ βγ/(γ – 1). In other words, as
ρ increases, the plasma pressure falls off according to
the law 1/ρ2γ = 1/ρ10/3.

Note that the first equality in (A.8) gives  =

, so that we have  = . We

can see that, at a given surface ρ, the plasma pressure
profile depends solely on the total current J(ρ) =
2πρB(ρ)/µ0.
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Abstract—Kinetic equations with the BGK collision integral are used to derive MHD equations for a weakly
ionized plasma that are applicable over a broad range of magnetic field strengths. In strong magnetic fields, a
substantial contribution to the transverse diffusion of the magnetic field comes from the ambipolar magnetic
diffusion, which is associated with the motion of both the charged component and the magnetic field against
the background of the neutral plasma component. The problems of the magnetic field diffusion in a weakly ion-
ized plasma and the shock wave structure are solved. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Numerous experiments on the propagation of shock
waves in weakly ionized plasmas in shock tubes (as
well as recent experiments with gas-dynamic tubes)
have revealed a number of effects that are not com-
pletely clear. One of them is the formation of a precur-
sor, which overtakes the gas-dynamic shock wave and
propagates as the wave of the perturbed ion density,
almost without driving neutrals into motion.

The experiments motivated theoretical studies of the
structure of shock waves in a weakly ionized plasma [1]
(see also [2]) with allowance for the possible motion of
the charged component against the background of the
neutral gas upstream of the hydrodynamic shock. We
think that it will be of interest to consider the problem
of the shock wave structure again and to examine shock
waves in a weakly ionized plasma with such a strong
magnetic field that its pressure should be incorporated
into the equations of motion.

We will show that, although in laboratory plasmas
the magnetic field pressure is usually lower than the
neutral pressure (if an especially strong magnetic field
is not created intentionally) and, accordingly, the mag-
netic field has an insignificant impact on the propaga-
tion of gas-dynamic shock waves, the magnetic field
energy density can be comparable with the energy den-
sity of the charged component, so that, in our opinion,
the magnetic field may be responsible for a number of
experimentally observed effects associated with the
motion of the charged component against the back-
ground of neutrals at the shock fronts.

In various plasma phenomena in the universe (from
the formation of stars to the processes in the Earth’s
ionosphere), the magnetic field energy density is usu-
ally comparable with the pressure of the neutral com-
ponent of a weakly ionized plasma, in which case the
motion of the charged component with respect to the
1063-780X/00/2606- $20.00 © 20493
neutral gas is especially important and can give rise to
qualitatively new effects [3–5]. That is why the prob-
lems we are considering here may also be of interest for
astrophysical applications.

In this paper, we use the kinetic equations for
charged particles with the Bhatnagar–Gross–Krook
(BGK) model collision integral [6] in order to derive a
set of MHD equations that describe motions in a
weakly ionized plasma and apply them to a broad range
of magnetic field strengths, including such strong mag-
netic fields that both the electrons and ions are magne-
tized in collisions with neutrals; i.e., the electron and
ion gyrofrequencies are higher than the collision fre-
quencies, which is typical of space and astrophysical
plasmas. An analysis of the MHD equations derived
demonstrates the possibility of significant enhance-
ment of the transverse diffusion of a strong magnetic
field.

We will solve the problems of the structure of a
weak shock wave and the nonlinear diffusion of the
external magnetic field in a weakly ionized plasma.

2. KINETIC EQUATIONS FOR CHARGED 
PARTICLES AND THEIR SOLUTIONS

We treat the motion of neutral gas in the hydrody-
namic approximation, which applies to the processes
occurring on long time scales such that the characteris-
tic frequency Ω is much lower than the neutral–neutral
collision frequency,

(1)

We describe charged particles interacting with an
electromagnetic field in the kinetic approximation
because we do not assume that gyrofrequencies are
small in comparison with the collision frequencies.
However, since the ion–neutral and electron–neutral

Ω ! νnn.
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collision frequencies, νin and νen, satisfy the conditions
νin ≥ νnn and νen @ νnn, inequality (1) allows us to
neglect the time and space derivatives in the kinetic
equations,

(2)

where a = e, i; faM are Maxwellian distribution func-
tions with a temperature equal to that of the neutral gas;
and n is the density of the electrons and ions in a
plasma, which is assumed to be quasineutral. The rest
of the notation is standard. The degree of ionization is
assumed to be weak,

(3)

(N is the neutral density), so that we can neglect colli-
sions among the charged particles. This implies that
χ ≤ 10–4–10–2, because the cross sections for collisions
among the charged particles differ greatly from the
cross sections for collisions between charged and neu-
tral particles. Equations (2) with the BGK collision
integral and with constant collision frequencies are
written for each of the small spatial regions of a weakly
ionized plasma in the frames of reference in which the
neutral gas is at rest.

We solve equations (2) in the first-order approxima-
tion in the electric field E, which is driven inductively
in the course of motion of a weakly ionized plasma in a
magnetic field. Accordingly, we represent the electron
and ion distribution functions as the sum of Maxwellian
distribution functions and small corrections,

(4)

(5)

We seek a solution to kinetic equations in the form

(6)

where Ua are constant vectors independent of the parti-
cle momenta. Expressions (6) turn equations (5) into
identities if the constant vectors satisfy the condition

(7)

where ma are the electron and ion masses.

Substituting (4) and (6) into the integral fav, we

can readily see that Ua are the mean directed velocities
of the electrons and ions with respect to the neutral gas.
Consequently, equations (7) for the electrons and ions
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pd∫
are merely two-fluid hydrodynamic equations in which

the terms of the form  + (Ua—)Ua are omitted by

virtue of condition (1). Using the equation for the qua-
sisteady magnetic field in which the displacement cur-
rent is discarded,

, (8)

we can obtain from (7) the following expression for the
bulk force with which the charged component acts
upon the neutral gas (i.e., the density of the momentum
transferred from charged particles to neutrals per unit
time):

(9)

Using (8), we eliminate Ue from (9) to obtain Ui:

(10)

Inserting (10) into (7), we express the electric field
in terms of curlH and H:

(11)

(12)

We also need the expression for the density of the
power loss due to Joule heating of the neutral gas:

(13)

3. MHD EQUATIONS OF MOTION 
FOR A WEAKLY IONIZED PLASMA

We write the complete set of MHD equations of
motion in the common frame of reference, in which the
velocity U of motion of the neutral component depends
on time and coordinates (above, for each local spatial
plasma region, we introduced its own frame, in which
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the neutral gas was at rest, and the MHD equations
were written in these frames). With allowance for
Lorentz transformations, we must make the replace-

ments E  E – [U × H] and Ui  Ui + U. We use

the hydrodynamic approximation for the neutral com-
ponent with allowance for (9) and substitute the trans-
formed ion velocity (10) into the continuity equation
for the charged component and the transformed electric
field into the induction equation:

(14)

As a result, we obtain

(15)

(16)

(17)

(18)

(19)

where Pn is the neutral pressure and γ is the adiabatic
power-law index for the neutral gas.

4. AMBIPOLAR MAGNETIC DIFFUSION
Equation (16) accounts for ambipolar magnetic dif-

fusion [9], whose rate is proportional to Ampére’s force
[replace curlH × H, rather than ordinary ambipolar dif-
fusion [7, 8], whose rate is proportional to the gradient
of the charged-particle density, –gradn. Comparing
ambipolar magnetic diffusion with ordinary diffusion
(which is ignored in our analysis), we can see that mag-
netic diffusion dominates under the condition

(20)

which implies that the magnetic field energy density
(more precisely, the characteristic amplitude of its spa-
tial variations) exceeds the charged-particle energy
density. Inequality (20) is often satisfied for space plas-
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mas and for weakly ionized laboratory plasmas (even in
experiments in which the magnetic field in a device is
controlled so that it is aligned with the Earth’s magnetic
field, plasma densities on the order of n ≤ 1010 cm–3 are
sufficient for this inequality to hold). Hence, we can say
that, in many interesting problems, instead of following
the hydrodynamic approach to a weakly ionized
plasma, we should take an MHD approach or, at least,
a hydrodynamic approach with allowance for ambipo-
lar magnetic diffusion.

The physical meaning of ambipolar magnetic diffu-
sion is quite clear: a drop in the magnetic field pressure
δH2/8π over the spatial scale L accelerates the charged
component to the velocity Ud ~ δH2/(8πLn mi) rela-
tive to the neutral component, thereby giving rise to a
diffusion with the coefficient

(21)

In the case of ambipolar magnetic diffusion, both
the magnetic field and the charged component drift
with respect to the neutral component. We emphasize
that, in a weakly ionized plasma, this process, which is
accompanied by friction between the charged and neu-
tral particles, is the only mechanism for the interaction
between the magnetic field and neutral gas (of course,
if the magnetic properties of neutrals are neglected). In
contrast to a fully ionized plasma, in which all of the
plasma particles can interact with the magnetic field
either directly or via the charge-separation electric field
(which, in particular, makes magnetic confinement pos-
sible and is responsible for the existence of equilibrium
configurations), the majority of particles in a weakly
ionized plasma are insensitive to both the magnetic
field and the magnetic pressure gradient. Remember
that the magnetic field can indirectly affect the neutral
particles only via the charged component propagating
against the background of neutral gas; however, in this
case, the forces acting on the neutral component [see
equation (17)] inevitably give rise to the convection of
the magnetic field and charged component [see the
related terms in equations (16) and (18)]. Under the
assumptions adopted, a weakly ionized plasma cannot
be in equilibrium with the magnetic field.

Unlike the conventional one-fluid hydrodynamic
equations, the above equation for the magnetic field
contains a Hall term that accounts for the induction
effects associated with the charge-separation electric
fields, which are always present in a plasma with ambi-
polar magnetic diffusion because the friction force of
electrons on neutrals differs from that of ions on neu-
trals. However, the most interesting effect from the
standpoint of astrophysical applications is the nonlin-
ear (in H) growth of the plasma resistivity in the direc-
tions transverse to the magnetic field, in which case the
related growth in the magnetic field diffusion coeffi-
cient in the transverse directions is again a direct con-
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sequence of the ambipolar magnetic diffusion. The
nonlinear terms in the plasma resistivity become domi-
nant under the condition

(22)

This condition can also be derived as the require-
ment for ambipolar magnetic diffusion to dominate
over ordinary magnetic diffusion, which is described
by the H-independent coefficient c2/(4πσ). For esti-
mates, we take (22) with the frequencies νan ~
Nσan(T/ma)1/2 and cross sections σan ~ 10–16 cm2 and
introduce the ratio of the neutral pressure to the mag-
netic field pressure, βn = 8πNTH–2. As a result, we
obtain

(23)

Condition (23) usually holds for weakly ionized space
plasmas, in which the energy is considered to be
equally distributed between the magnetic field and the
plasma particles, βn ~ 1.

In such plasmas, neutral gas heating via collisions
between current-carrying electrons and neutrals plays a
lesser role than heating via the friction between charged
particles (mainly, the ions) and neutrals due to ambipo-
lar magnetic diffusion, which is represented by the last
term in equation (19) for neutral heating.

We again emphasize that it is the ambipolar mag-
netic diffusion in a weakly ionized plasma with a large
number of neutrals that is responsible for the appear-
ance of the new effects under discussion here, which
are absent, e.g., in a plasma with two ion species (ions
with different charges and/or masses). In the latter case,
the solutions to the problems of magnetic field diffu-
sion in a plasma [10] and the shock wave structure [11]
are known.

5. DIFFUSION OF A MAGNETIC FIELD
IN A WEAKLY IONIZED PLASMA

We study the possible effect of ambipolar magnetic
diffusion on the magnetic field evolution in a weakly
ionized plasma by treating the problem of the diffusion
of a magnetic field in a plasma.

Let a plasma with the parameters N = N0, n = n0, and
H = H0 occupy the half-space x > 0 (we work in Carte-
sian coordinates x, y, and z) by the time t = 0. For sim-
plicity, we assume that the magnetic field is parallel to
the plasma boundary and is directed along the y-axis.
We consider the case in which the magnetic field H =
H1 = αH0 with α > 1 originates at the boundary x = 0 at
the time t = 0 and thereafter is maintained to be constant
(the interesting case α = 0, which corresponds to the
magnetic field reconnection at the plasma boundary
and can be treated in a similar manner, will be analyzed
in a separate study). In the initial stage (whose charac-
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teristic duration will be estimated below), the motion of
neutral gas can be ignored. In this stage, the magnetic
field penetration into the region x > 0 is governed exclu-
sively by the convection of both the charged plasma
component and the magnetic field, which is frozen in
this component, against the background of neutral gas;
moreover, the neutrals can be assumed to be immobile,
because their inertia is large and they are not directly
affected by the magnetic field. Let us follow the mag-
netic field evolution during the initial stage.

Assuming that the neutral density is constant, we
write the equations for the dimensionless magnetic
field and charged-particle density, Y = Hy/H0 and
Z = n/n0, in the form

(24)

(25)

where

(26)

and

(27)

are the coefficients of the magnetic field diffusion and
ambipolar magnetic diffusion, respectively. The colli-
sion frequencies should be taken with N = N0.

Equations (24) and (25) can be somewhat simplified
by transforming to the Lagrangian variables [12] asso-
ciated with the elements of the charged component. As
a new spatial coordinate, we introduce the following
variable describing the mass motion:

(28)

The magnetic field pressure causes the left boundary
x0(t) of the region occupied by the charged component
to displace to the right. Transforming equation (25) into
Lagrangian variables, we obtain, in the usual way,

(29)

i.e., the ξ = const contours in the (x, t) plane coincide
with the trajectories of the fluid elements of the charged
plasma component (different values of the Lagrangian
label ξ refer to different fluid elements). We change the
derivatives, (∂/∂t)ξ = (∂/∂t)x + Ud(∂/∂x)t  and (∂/∂ξ)t =
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Z−1(∂/∂x)t, to convert equations (24) and (25) with (26)
to the form

(30)

(31)

Without allowance for ordinary dissipation of the
magnetic field, the quantity Y/Z is a Lagrangian invari-
ant; i.e., it is frozen in the charged plasma component
and is carried by it.

We begin the analysis of (30) and (31) by treating

two limiting cases. For  !  (i.e., without allow-
ance for magnetic field diffusion), equation (30) gives
Y = Z and equation (31) reduces to the nonlinear heat
conduction equation

(32)

The method for solving this equation (in particular,
with the above boundary conditions) and its interesting
exact solutions are presented in [13]. The magnetic
field carried by the charged component diffuses (more
precisely, propagates in a diffusive manner) in a plasma

with the velocity ~ t–1/2.

In the opposite limiting case (  @ ), setting
Z = 1 in (30) provides a linear heat conduction equa-
tion, whose solutions are well known. The magnetic
field is no longer frozen in the charged plasma compo-
nent and penetrates diffusively into a plasma with the

velocity ~ t–1/2. The charged component diffuses in
the same direction as the field but with a lower velocity

~ t–1/2.

For an arbitrary ratio R = /  between the dif-
fusion coefficients, we seek solutions to equations (30)
and (31) in the form of dimensionless functions of the
only possible dimensionless combination of the spatial
coordinate and time, λ = x/(DMt)1/2. This combination
converts equations (30) and (31) to the ordinary differ-
ential equations

(33)

where the prime denotes the derivative with respect
to λ.

The solutions shown in Fig. 1 illustrate the qualita-
tive tendencies described above.

Now, we determine the conditions under which the
neutral component can be assumed to be immobile. The
boundary of the region occupied by the charged com-
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ponent moving with the characteristic velocity Ud is
displaced with respect to the neutral gas by the distance
Udt over the time t. The neutral gas through which this

boundary passes is affected by the bulk force nmiUd

over the time t; as a result, the neutral particles acquire
the velocity U ~ nmiUdt/(miN) = nUdt/N. The
condition for the entrainment of neutral gas by the
charged component, U ~ Ud, starts to hold only after a

fairly long time interval t ~ N/( n), over which the
neutral component can be assumed to be immobile.
However, we must keep in mind that, over a very short
time interval at the beginning of the initial stage, one of
the main conditions for the applicability of the initial
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Fig. 1. Self-similar penetration of the magnetic field into a
weakly ionized plasma: (a) distribution of the magnetic field
normalized to that deep in the plasma and (b) distribution of
the specific volume 1/Z. At an arbitrary time, the spatial
coordinate refers to the distance from the boundary of the
region occupied by the charged component moving into the
plasma. The magnetic field penetrating into the plasma is
seen to be two times stronger than that deep in the plasma.
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equations (15)–(19) may fail to hold: the linearization
of the kinetic equation and the BGK model itself imply
that the velocity of the charged component with respect
to the neutral gas should be low in comparison with the
thermal velocities, whereas, at the very beginning of
the initial stage, the relative velocity evaluated from the
diffusion equation behaves as t–1/2.

6. STRUCTURE OF SHOCK WAVES
IN A WEAKLY IONIZED PLASMA

Now, we describe the structure of shock waves in a
weakly ionized plasma. It is of interest to note that,
under condition (20), which implies that the magnetic
energy density exceeds the energy density of the
charged particles, the shock wave structure can be
described without regard to such a specific plasma pro-
cess as the energy transfer in the charged plasma com-
ponent (which was a key problem in previous investiga-
tions [1, 2]); in this way, it is sufficient to exploit equa-
tions (15)–(19). The reason is that the processes of the
energy and momentum transfer in the charged compo-
nent are unimportant because the energy and momen-
tum of the charged component are both negligible and
the role played by the ambipolar magnetic diffusion,
which is incorporated into equations (15)–(19), in the
momentum transfer from charged particles to the neu-
tral component is greater than that of ordinary ambipo-
lar diffusion: the ambipolar magnetic diffusion coeffi-
cient (and even more so the total diffusion coefficient,
which includes the ordinary magnetic diffusion coeffi-
cient) is larger than the ordinary ambipolar diffusion
coefficient.

For simplicity, we restrict ourselves to considering a
longitudinal shock wave, such that the magnetic field
vector is parallel to the shock front. We write equations
(15)–(19) in the frame in which the shock front is at
rest. We assume that the velocity is aligned with the
positive x-axis, which is directed from the region
upstream of the shock front to the region downstream
of the front; i.e., when moving along the x-axis from
−∞ toward +∞, the gas velocity decreases, while the
density, pressure, and magnetic field increase. We
denote by the subscripts 0 and 1 the plasma states
upstream and downstream of the shock front, respec-
tively. In the steady-state case, equations (15)–(19)
with the magnetic field configuration adopted can be
written as

(34)
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where the prime indicates the derivative with respect to
x. Except for equation (35), which was already used to
derive (37), these are one-fluid MHD equations with the
refined total magnetic field diffusion coefficient. We also
restrict ourselves to treating weak shocks, N1 – N0 ! N0.
In the problem as formulated, the jump in entropy at the
shock front is a small third-order quantity [12] and we
can set

(38)

For a weak shock, we can also put  = const and

introduce the dimensionless variable x = λ/U0. As a
result, we arrive at the following two differential equa-
tions, describing the shock front structure:

(39)

(40)

where u = U/U0, h = H/H0, vs0 = [γP0/miN0)]1/2 is the
speed of sound and vA0 = [H0/(4πmiN0)]1/2 is the Alfvén
velocity upstream of the front. In the plane (u, h), the
points corresponding to the states at the shock front lie
on ellipse (39) and above the curve hu = 1, which is a
hyperbola, because the right-hand side of (40) is posi-
tive in the shock (compression) wave. Since the points
at which the hyperbola intersects the ellipse correspond
to the initial and final states, we can take (39) with

(41)

in order to obtain the final parameter values:

(42)

As usual, the quantity I will be referred to as the shock
wave intensity. From (42), we can see that the shock
wave is supersonic with respect to the gas upstream of
the wave front:

(43)

Since the curve defined by (39) is an ellipse, the
function u(h) along this curve may be non-single-val-
ued. Depending on the relative positions of the hyper-
bola and ellipse, we can distinguish between two radi-
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cally different cases (Fig. 2). The first case is illustrated
in Fig. 2a. When moving from the point corresponding
to the state upstream of the front to the point corre-
sponding to the state downstream of the front along the
ellipse (this portion of the ellipse corresponds to the
states at the front), together with the condition h = h1,
the condition u = u1 turns out to be satisfied. This result
indicates the possibility of a continuous transition from
the initial state to the final state inside the shock front,
so that the front structure is continuous (Fig. 3a). The
second case is illustrated in Fig. 2b. When moving
along curve (39), we can see that, when the magnetic
field reaches the value h1, the velocity does not
approach the value u1, because this value lies on the
other branch of the function u(h). In this situation, the
velocity can take the value u1 only via a gas-dynamic
jumplike transition. The spatial scale on which this
transition occurs is governed by processes that were not
included in our analysis. Owing to diffusion, the mag-
netic field is continuous on arbitrarily short spatial
scales and, therefore, remains constant within this
jump. Thus, ahead of the gas-dynamic jump, the mag-
netic field increases continuously up to h1 and the
velocity also grows to a certain value. Within the jump,
the velocity increases instantaneously from this value
up to u1 (Fig. 3a). The sign of the derivative dH/du
along curve (39) at the point (u1, h1) serves as a criterion
for distinguishing between the two cases. The condition
for this derivative to be positive (and, accordingly, for a
continuous solution to exist) has the form

(44)

(Recall that the quantity βn = 2 /γ  was intro-
duced as the ratio of the neutral pressure to the mag-
netic field pressure upstream of the front.)

If the magnetic field pressure is higher than the ther-
mal pressure (the parameter βn is small), then the left-
hand side of (44) is negative and the shock front struc-
ture is continuous. If the magnetic field pressure is low
(βn  ∞), then, naturally, there is a gas-dynamic jump
at the shock front, because, in the absence of a field, the
shock wave is nothing more than a gas-dynamic jump.
In a weak magnetic field, only very weak shocks (with

intensities I ≤ ) can have a continuous structure.

To describe the continuous structure of a shock
wave, we expand the quantity 1 – u in powers of h – 1
with the help of (39), retaining terms up to the second
order. Then, we substitute the resulting expansion in
(40) and expand the right-hand side of (40) with the
same accuracy to obtain

(45)

Equation (45) has the solution
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(46)

To describe a precursor ahead of the gas-dynamic
jump at a shock front with a discontinuous structure,
we can assume that the velocity in the precursor region
is constant, so that

(47)

In dimensional variables, the characteristic width ∆c
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Fig. 2. Two cases of relative positions of curve (39) (marked
by A) and curve (40) (marked by B). Case (a) corresponds to
a shock wave with a continuous structure (for the parameter
values vs0/vA0 = 1 and u0/vA0 = 2), and case (b) corresponds
to the front structure with a gas-dynamic jump (for
vs0/vA0 = 3 and u0/vA0 = 3.5).
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of the precursor upstream of the front with a discontin-
uous structure are as follows:

(48)
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Fig. 3. Profiles of the density (solid curve) and magnetic
field (dashed curve) inside the shock front normalized to
their values ahead of the shock front. Cases (a) and (b) cor-
respond to the parameters of Figs. 2a and 2b, respectively.
7. DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

First, we discuss the applicability of our results to
the analysis of shock waves in tubes that are prefilled
with a weakly ionized plasma. Simple estimates show
that the magnetic field diffusion is dominated by ordi-
nary magnetic diffusion, while the contribution of
ambipolar magnetic diffusion is insignificant. In this
case, the diffusion coefficient is very large. To obtain
rough estimates, we set νen ~ 10–7N [s–1]] and express
the diffusion coefficient in terms of the degree of ion-

ization,  ~ 3 × 104χ–1 [cm2/s]. This indicates that, if a
precursor has enough time to form in the course of
experiments in which the plasma is weakly ionized and
shock waves propagate with a typical velocity of about
~105 cm/s, then it may become as wide as several tens
or even hundreds of meters. Such a precursor will have
essentially no impact on the shock wave, because the
magnetic energy density is low compared to the neutral
pressure, so that the wave structure will remain discon-
tinuous and the gas-dynamic jump will remain almost
unchanged.

However, the magnetic field redistribution may lead
to the redistribution of the charged-particle density
upstream of the shock front. The density redistribution
should be described by the above set of equations sup-
plemented with fairly complicated boundary conditions
for the magnetic field. Here, we leave out of account the
unpleasant fact that, during probe measurements of the
charged-particle density, the magnetic field redistribu-
tion gives rise to inductive electric fields, which, in
turn, may induce probe currents that are completely
unrelated to the plasma density variations.

The conclusions regarding astrophysical applica-
tions can be summarized as follows. First, in a weakly
ionized plasma, transverse magnetic diffusion turns out
to be inherently nonlinear and is closely related to
ambipolar magnetic diffusion. This indicates in partic-
ular that, in zero field regions (magnetic null points and
lines), the magnetic field diffusion sharply reduces (the
ambipolar diffusion coefficient vanishes) and ordinary
diffusion, associated with electron–neutral collisions,
comes into play.

Second, in weakly ionized space plasmas, the front
width of the shock waves is very sensitive to both the
direction of the magnetic field and its strength. In a
finite-βn plasma, a purely transverse shock wave, in
contrast to a purely longitudinal wave, may have a con-
tinuous structure and its front width is governed by the
ambipolar magnetic diffusion coefficient, which is non-
linearly dependent on the magnetic field. In the regions
where the magnetic field is zero and βn values are arbi-
trarily large, the width of the shock fronts is small and
the parameter range in which shock waves with a con-
tinuous structure can exist is narrow.

We should say a few words about papers [14, 15],
which appeared when we were preparing this work for

D̃
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publication. Bulanov and Sakai [14] presented a com-
prehensive review of the research that has been carried
out on ambipolar magnetic diffusion, beginning with
the paper by Mestel and Spitzer [16]. Smolyakov and
Khabibrakhimov [15] considered the penetration of an
alternating magnetic field into the column of a weakly
ionized plasma with allowance for ambipolar magnetic
diffusion; the problem as formulated has much in com-
mon with the problem treated in Section 5 of our paper.
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Abstract—Results are presented from numerical calculations of the maximum energy of accelerated deuterons
as a function of the magnetic field for two models of the formation of the accelerating field in the region where
two magnetosonic shock waves collide. The numerical results are compared with the similar experimental
dependence. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the processes accompanying high-power
energy deposition in a plasma is the excitation of mag-
netosonic shock waves (MSWs). These waves have
been actively studied both theoretically and experimen-
tally because they are among the main sources of high-
energy particles in cosmic plasma and play an impor-
tant role in plasma heating in laboratory experiments.

Theoretical investigations [1–5] show that a fairly
high electric field generated at the MSW front can
accelerate charge particles to high energies with a high
acceleration rate.

Laboratory experiments [6, 7] demonstrate that ions
can be accelerated by MSWs both along and perpendic-
ularly to the shock front. In both cases, the accelerated
particles move across the magnetic field.

Taking into account the collisions between MSWs
even more widens the spectrum of nonlinear plasmady-
namic effects due to the sharp increase in the energy
density (including electric and magnetic energies) in
narrow space and time intervals.

In experiments [8–10], the possibility of accelerat-
ing plasma ions along an external magnetic field during
the interaction of two MSWs propagating quasi-per-
pendicularly to the magnetic field toward each other
was demonstrated for the first time. It was shown exper-
imentally that, when two MSWs (with the magnetic
Mach number MA ~ 1.7 and extended plane fronts of
length l ~ 8 cm) propagating toward each other in deu-
terium plasma with the density N ~ 2.5 × 1013 cm–3 at
an angle of Θ ~ 12° to the external magnetic field (B0 =
1.0 T) collided, a pulsed flux of accelerated deuterons
(τ ≈ 150 ns and Imax ≈ 105–106 particle/pulse) with a
maximum energy of ~10 MeV was generated along the
magnetic field. This means that, in the region where
two MSWs collide, a traveling electric field directed
along the external magnetic field is produced.

Two models were proposed to interpret the experi-
mental results. According to the first model [8, 9], the
1063-780X/00/2606- $20.00 © 0502
generation of an accelerating electric-field wave propa-
gating along the magnetic field is a result of the sum-
mation of the longitudinal (with respect to the magnetic
field) components of the electric fields occurring at the
MSW fronts. The other model [10] suggests that an ion-
acoustic wave propagating along the external magnetic
field is generated in the region where the MSWs collide
and the ions are accelerated by the electric field at the
front of this ion-acoustic wave. However, both models
fail to adequately describe the process of trapping par-
ticles in the acceleration regime, to explain long-term
confinement of ions in the phase with the accelerating
wave, or to predict the maximum energy of the acceler-
ated particles. In both models, it is assumed that the
plasma density is constant along the magnetic field.

Detailed investigations of the plasma density distri-
bution carried out in [11] by a method based on the
measurements of the Hall potential during the passage
of a controlled probing current showed that the plasma
density distribution along the magnetic field is approx-
imately described by the expression N(z) = N0(0.74 +
0.26cos(kz)), where k = 0.255 cm–1 and N0 is the plasma
density at z = 0. In [12], the spectra of the accelerated
deuterons for the given density distribution were calcu-
lated under the assumption that the accelerating field
resulted from the summation of the longitudinal com-
ponents of the electric fields at the MSW fronts. The
calculations show that the initial plasma density distri-
bution substantially affects the spectrum and number of
accelerated ions.

In this paper, we present the results of calculations
carried out to test (and choose one of) the two models
describing the dependence of the energy of the acceler-
ated ions on the initial magnetic field, the other param-
eters being fixed. The results obtained are compared
with the similar experimental dependence.

In calculations, we take into account the shape of the
plasma density distribution along the magnetic field,
the finite plasma pressure, and the degree to which the
plasma is magnetized.
2000 MAIK “Nauka/Interperiodica”
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The paper is organized as follows. In Section 2, we
describe the MSW formation. In Section 3, we specify
the physical parameters for the two models of ion
acceleration. Section 4 gives a brief description of the
experiment. Section 5 presents the procedure and
results of numerical calculations of acceleration for
both models.

2. FORMATION OF AN MSW

Let the plasma drifting from the region with the
electric field Ep (discharge region), which is directed
perpendicularly to the magnetic field, move along the
X-direction (across the magnetic field B) with the
velocity Vd . cEp/B, where c is the speed of light. When
the plasma flow arrives at the region where Ep  0
(outside the discharge), the drift velocity vanishes
(Vd  0). The increase in the ion velocity with
respect to the electron velocity (due to the difference in
the Larmor radii) leads to the charge separation along
the X-axis; i.e., the field Ex emerges. This field acceler-
ates the electrons and decelerates the ions, so that the
kinetic energy of the plasma flow is transferred to the
electrons, which drift in the Y-direction with the veloc-
ity Vy . βeVd under the action of the Lorenz force [13]
(here, βe = ωBe/νei is the degree to which the electrons
are magnetized, ωBe is the electron cyclotron frequency,
and νei is the electron–ion frequency).

The charge separation in the Y-direction is accompa-
nied by the polarization current. On the spatial scale
δx ~ Ri (where Ri is the ion Larmor radius), the polariza-
tion current density is j . eNβeVd. Taking into account
the dielectric permittivity of a magnetized plasma (ε .
4πmiNc2/B2), we obtain the time t . 1/βeωBi during
which the current flows [11]. During the same time, the
Y-component of the electric field in the plasma
increases to Ey ≤ Ep and the plasma begins drifting
again. For small values of βe (large values of νei), which
corresponds to a relatively cold plasma (νei ~ 1/T3/2),
the polarization current is small and the plasma moves
across the magnetic field almost without deceleration.
(This regime was used to fill the working volume with
an initial plasma.) As βe and Vd increase (which corre-
sponds to an increase in the temperature and/or the drift
velocity), the increased polarization current substan-
tially increases the Joule loss and the plasma flow is
decelerated. The polarization current produces an addi-
tional magnetic field (magnetic perturbation) [11]

Here, B0 is the external (unperturbed) magnetic field. If
the polarization current rapidly increases, the magnetic
perturbation is detached from the decelerated flow and,
propagating through the initial plasma, transforms into
an MSW. We assume that the magnetic perturbation

∆B . 
2πmic

2
NβEp

2

B0
3

--------------------------------.
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transforms into a magnetoacoustic soliton. Then, the
perturbation front should steepen from an initial width
of l ~ tVA ~ c/βωpi (where VA is the Alfvén velocity and
ωpi is the ion plasma frequency) to

(1)

where ωpe is the electron plasma frequency. Such a front
can form when a freely propagating magnetic perturba-
tion covers a distance of L ~ c(2MA – 1)/βωpi(MA – 1).
Thus, the rapid change in Ep (which corresponds to a
rapid energy deposition in the plasma) can result in the
formation of a soliton with the Mach number

(2)

(here, we take into account that ((∆B + B0)/B0 = (2MA – 1))
and the electric field at the front [2]

(3)

Further, we will consider an MSW with parameters
corresponding to a magnetic soliton.

3. ACCELERATING FIELDS

Let two symmetric plane MSWs move toward each
other in a uniform plasma. The MSW fronts are
inclined at a certain small angle Θ to a uniform mag-
netic field. Then, the region where the MSWs collide
moves along the Z-axis with the velocity Vph =
MAVA/sinΘ. We assume that, in the region where the
MSWs collide, all of the components of the MSW elec-
tric field, except Ez = 2EsolsinΘ, cancel each other; i.e.,
there is an electrostatic quasi-wave with the front width
∆sol /sinΘ propagating at a fixed velocity Vph along the
magnetic field. The charge particles are accelerated in
the field of the quasi-wave. If the electrostatic wave
moves uniformly, the ratio of the maximum energy of
the accelerated particles to their initial energy is at best
~2 under the condition that the initial particle velocity
is comparable with the wave phase velocity and is
directed in the direction of the wave propagation. In
this case, the accelerated particle (ion) overtakes the
wave and quits the acceleration regime. Consequently,
in order to prolong the time the particle stays in the
acceleration regime, it is necessary to provide condi-
tions for the accelerating potential to propagate with
increasing velocity along the Z-axis. Such conditions
exist, e.g., in the presence of a plasma density gradient
in the Z-direction (along the magnetic field). In this
case, Vph(z) ~ MA(z)VA(z)/sinΘ(z) and, for small angles,
we have [12]

(4)

∆sol . c/ωpe 2 MA 1–( )[ ] 1/2
,

MA . 
πNmic

2
Ep

2

B0
4

-------------------------β 1+
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miV A
2

2 MA 1–( )[ ] 3/2ωpe

ce
---------------------------------------------------------.=

Θ z( ) . 
d z Θ0tan+

2N z( )
--------------------------dN

dz
-------sin Θ0,tan+



504 DUDKIN et al.
where Θ0 is the initial angle between the MSW front
and the magnetic field and d is the distance of the center
of the MSW front from the axis along which two shock
waves collide. Thus, in the case of the accelerated
motion of the quasi-wave, both the width of the region
occupied by the accelerating field and the field value
are functions of Z:

(5)

(6)

If N(z) has a maximum, so that gradN on both sides
of the maximum has opposite directions, we have two
electrostatic quasi-waves (collision regions) propagat-
ing from opposite directions with increasing velocities
[12].

It should be noted that the accelerated propagation
of the quasi-wave is also possible in the presence of
magnetic field gradients in both the X- and Z-directions.

In the region where two MSWs collide, the plasma
is additionally heated through compression by the mag-
netic fields (“walls”) of the solitons. For the instanta-
neous equilibrium state, under the condition that the
characteristic time of the density variation is tN > 1/βΩci

(where Ωci = eB0(2MA(z) – 1)/cmi is the ion cyclotron fre-
quency in the soliton magnetic field Bsol), we have

(7)

Here, Bp is the initial magnetic field in the plasma and
α = Te/Ti is the ratio between the electron and ion tem-
peratures. For a Maxwell distribution (with the temper-
ature Ti) in longitudinal (with respect to the magnetic
field) ion velocities, a fraction of the particles is trapped
in the regime of acceleration by the field Esol(z).

We also consider another mechanism for the forma-
tion of the accelerating field. Let us assume that, in the
region where the MSWs collide, the thermal electron
velocity is higher than the ion velocity (VTe > VTi ≥ Vph)
and the electrons are magnetized. Then, the charge sep-
aration proceeds along the magnetic field on the spatial
scale on the order of the Debye length

(8)

The electric field in this region is

(9)

Below, when calculating the spectra of accelerated
ions, we use expressions (6) and (9) for the accelerating
field.

∆sol z( ) . 
c
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----------------------------------------------------------------------,
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4. EXPERIMENT

In order to test the above concepts of the formation
of the accelerating field and the acceleration process,
we carried out experiments in which we determined the
final energy of the accelerated ions as a function of the
magnetic field, the other parameters remaining almost
unchanged. We chose the initial value of the magnetic
field as an independent parameter, because the investi-
gations showed that, when the magnetic field was var-
ied (within a certain range), the longitudinal (with
respect to the magnetic field) distributions of the energy
density and plasma density in the plasma flow changed
only slightly.

Experiments were carried out with the Temp plasma
device described in greater detail in [8, 10]. Two pairs
of 30-cm-long and 4-cm-wide electrodes with a gap
distance of ≈2 cm were positioned in a ceramic cham-
ber (with an inner diameter of 18 cm and length l =
150 cm) at a small angle to the symmetry axis of the
longitudinal magnetic field. Two plasma flows pro-
duced in a “fast” discharge (characterized by a rapid
increase in Ep and the deposited power) in the crossed
E and B fields propagated toward each other across the
magnetic field with the drift velocity Vd. Decelerated in
the background plasma, these waves excited shock
waves, whose collision at the varying angle Θ(z)
resulted in the acceleration of deuterons along the mag-
netic field.

A beam of accelerated ions was formed in a
100-cm-long ion-transport line, which was connected
coaxially to the discharge chamber. The guiding mag-
netic field in the line was 0.3 T. A scintillator detector
was positioned at the end of the ion-transport line. The
energy of accelerated ions was measured by the time-
of-flight technique. The stop signal for the time-of-
flight system was generated by the above scintillator
detector. The start signal was generated by one of two
optical detectors viewing the region where two MSWs
collided, the spatial resolution being 0.8 mm. Signals
from the detectors were fed to an S8-14 storage oscillo-
graph. Since the base distance between the light and
scintillator detectors was known (175 cm), we could
reconstruct the maximum energy of the bunch of accel-
erated ions by processing the oscillograms. In the
experiment, the maximum number of ions per pulse
varied from 105 to 106. The experiments were carried
out at a constant electric field Ep . 9 kV/cm, fixed den-
sity N0 . 2.5 × 1013 cm–3, and different magnitudes of
the magnetic field, which provided different MSW
Mach numbers [see (2)]. The measurement procedure
was as follows. A series of shots was produced at the
same initial parameters of the device. By analyzing the
delay time for the detector signals in this series, we
selected the event corresponding to the maximum
energy and intensity of the flux of accelerated ions.
This procedure was repeated for each new value of the
magnetic field.
PLASMA PHYSICS REPORTS      Vol. 26      No. 6      2000



SIMULATION OF THE FORMATION OF ACCELERATING STRUCTURES 505
The experimental results are shown in Fig. 3. The
error bars reflect only the error of determining the ion
energy by the delay of the storage oscillograph signal.

The experiment is described in more detail in [14].

5. CALCULATIONS

The numerical calculation procedure is described in
greater detail in [12]. Here, we restrict ourselves to its
basic aspects.

We solve the problem of the one-dimensional
motion of a particle in the electric field produced in the
region where the MSWs collide. In calculations, we
consider this field to be a potential step with the width
(the region occupied by the field) determined by
expressions (5) and (8) for the first and second models,
respectively.

Within the potential step, the ions were accelerated,
and, outside the step, they moved at a constant velocity.
In each discretization interval over Z, the particles had
a Maxwellian energy distribution corresponding to the
equality between the gas-dynamic and magnetic pres-
sures in the region where the MSWs collided. In accor-
dance with this distribution, certain initial velocities
and densities were assigned to the groups of particles.
Then, we studied the interaction of each of these groups
with the potential step.

Acceleration of a group of ions comes to an end
when the group either leaves the step through its back
boundary or reaches the Z boundary of the 8-cm-long
integration region.

The validity of the model was tested for the case
N(z) = const, for which an analytical solution is known.

Calculations were carried out for a deuterium
plasma with the use of relations that express the final
plasma and MSW parameters through the initial param-
eters B0 and Ep, which can be controlled in the experi-
ment:

(10)

(11)

(12)

(13)

where Λ is the Coulomb logarithm (in calculations, we
take 1/ Λ = 0.09). Calculations were carried out for the
experimentally measured distribution of the deuterium
plasma density that was presented in the Introduction.

For the Mach numbers in the range from MA ≥ 1 to a
supercritical value of MA ~ 3, we calculated the values
of Ep and B0 for which MA falls in the range in question
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(Fig. 1). It is seen from the figure that, under particular
experimental conditions, the value of MA depends
strongly on the relation between Ep and B0. However, in
further calculations, we only varied B0. The choice of

Ep, kV/cm
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Fig. 1. Calculated values of B0 and Ep for the given values

of the magnetic Mach number MA at N0 = 2.5 × 1013, Θ0 =
12°, and α = 2.
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Fig. 2. Spectra of the accelerated deuterons calculated by
expression (6) for Esol (curve 1) and expression (9) for ED

(curve 2) at N0 = 2.5 × 1013, Ep = 9 kV/cm, Θ0 = 12°, α = 2,
and B0 = 0.8 T.
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the initial magnetic field as an independent variable is
determined by the fact that, as the experiments show,
the change in Ep leads to the redistribution of the den-
sity in the plasma flow, which is difficult to control,
because any probe placed in the region where the
MSWs collide terminates the acceleration process.

For both models, the maximum energies of acceler-
ated deuterons taken from the calculated spectra
(Fig. 2) are presented in Fig. 3 as functions of B0 (at
Ep . const). The coefficient α was estimated from the
bremsstrahlung intensity and was taken to be α . 2. The
experimental results are presented in the same figure.

In conclusion, we note that, although the dynamic
processes were calculated using the drift approxima-
tion, we obtained a satisfactory qualitative agreement
between the calculated and experimental data for the
Debye accelerating field. In the future, we also plan to
investigate MHD processes, which, according to esti-
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Fig. 3. The calculated energy of the accelerated deuterons (in
the maximum of the spectral distribution) as a function of the
initial magnetic field for the accelerating electric fields
described by expressions (6) (curve 1) and (9) (curve 2).
Squares show the experimental data. Curve 3 shows the cal-
culated ratio between the number of accelerated ions for the
two models (indices by N correspond to curves 1 and 2). The
values of the parameters are the same as in Fig. 2.
mates, dominate in experiments with the discharge cur-
rent density above a certain value.
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Abstract—The structure of an ion-acoustic forerunner excited by a shock wave in a weakly ionized plasma is
studied. It is shown that, when the shock velocity exceeds the ion-acoustic speed, a soliton bunch is produced
at the perturbation front. The increase in the shock velocity to a certain critical value is accompanied by an
increase in the soliton amplitude. A further increase in velocity leads to an explosive-like collapse of the bunch,
which results in a decrease in the medium resistance. This phenomenon is analogous to the “Houston’s horse”
effect in narrow-channel hydrodynamics. © 2000 MAIK “Nauka/Interperiodica”.
1. The formulation of the problem is similar to that
in [1]. We study a steady-state perturbation in a weakly
ionized nonisothermal plasma ahead of the shock front.
The perturbed quantities are assumed to be functions of
ξ = x – ct, where x and t are the coordinate and time and
c is the shock velocity. The plasma is characterized by
the electron temperature Te, ion temperature Ti, and the
temperature Tn of neutrals. The stepwise shock of the
neutral component is assumed to be strong.

We begin with the simplest problem and ignore the
viscosity and heat conduction. In this case, the pro-
cesses in the plasma are described by the set of equa-
tions

(1)

where n and v are the electron density and velocity, e is
the electron charge, mi is the ion mass, E is the electric
field, ε0 is the permittivity of a vacuum, νin = νin(ξ) is
the collision frequency, and k is the Boltzmann con-
stant.

The electric field in (1) can be represented in the
potential form
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Since the process is steady, system (1) can be
reduced to a single nonlinear equation for the potential

(2)

where F ≡ expψ – 2D2ψ''(ξ), D ≡ (ε0kT0ee–2 , and

M ≡ c  is the ion Mach number. Hereafter, the prime
denotes the derivative with respect to the argument.

The fields are related by

(3)

Previously, equation (2) was investigated in two
limiting cases: D = 0 and νin = 0. The case D = 0 was
studied in [1]. In this case, equation (2) can be trans-
formed into the equation for v (below, the index by v is
omitted):

(4)

For M > 1, the solution to equation (4) has a disconti-
nuity at the point ξ = ξd [1] with the jump c(1 – M–2).

The second limiting case νin = 0 is well studied.
From (2), we obtain Sagdeev’s equation

(5)

(6)

Since we are interested only in the real solutions, we
have ψ ≤ ψ∗ , where ψ∗  = 0.5M2. The “potential

d
dξ
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energy” Φ(ψ) has a maximum at ψ = 0. For M ≤ M∗ ,

where M∗  satisfies the equation

(7)

the equation Φ(ψ) = 0 has a positive solution. For
1 < M ≤ M∗ , equation (5) has both periodic solutions

and a nonperiodic (soliton) solution.
For M > M∗ , equation (5) has only periodic solu-

tions. When going over from M = 1 to M = M∗ , the soli-

ton amplitude increases from 0 to ψ∗ , which corre-

sponds to the velocity v∗  = M∗ vs. For M > M∗ , there is

no soliton solution. The value M = M∗  is the bifurcation

point for the soliton.
For weak dispersion, from (2) and (3), we obtain the

equation intermediate between the two limiting cases
described by (4) and (5). According to (3), ψ and v are
related by

(8)

We assume δ1 to be a small parameter, |δ1| ! 1. We
make use of the representation

to obtain

(9)

Relations (8) and (9) yield the representation for
ψ ≈ ψ(v):

Taking into account the relations

we transform equation (9) into the approximate equa-
tion for the velocity v(ξ):

(10)

In equation (10), we retained the second-order terms
with respect to v and the first-order terms with respect
to the parameter D2. If we set νin = 0 in equation (10),
we obtain qualitatively the same dependences as those
described by the solution to Sagdeev’s equation (5):
there is a bifurcation value of the Mach number for the
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soliton, M∗  = ; the maximum possible soliton

amplitude is v∗  = vs.

Equation (16) for v(ξ) that involves the ion viscos-
ity and electron heat conduction was obtained in [1].
From (10) and (16), we obtain the equation describing
v in the problem in question:

(11)

where κ is the electron thermal conductivity and η is
the dynamic viscosity.

Thus, equation (11) involves the nonlinear terms to
the third order in vc–1, elastic ion–neutral collisions,
electron heat conduction (this leads to the replacement
νin  ν0 in the region ξ > 0, where vn(ξ) = 0), ion vis-
cosity, and dispersion. The factors by the higher order
derivatives v''' and v'' contain small parameters propor-
tional to D2 and η, respectively. This means that we
have a singularly perturbed problem.

The first term of the inner expansion can be obtained
by setting D = 0 and η = 0 in (11). As was noted above,
for M > 1, v(ξ) has a discontinuity at the point
ξ = ξd(M) and the function ξd(M) is monotonic [1]: for

M  (γ + 1 (γ – 1 , we have ξd  0 (for γ = 1.4

ξd  0 with M  ). This corresponds to the
merging of the ion-acoustic front with the front of the
shock of the neutral component. In the vicinity of
ξ = ξd, the velocity v(ξ) described by (11) changes
sharply. Hence, it is necessary to take into account the
higher derivatives. Three cases are possible: (i) disper-
sion is more important than viscosity, (ii) dispersion is
less important than viscosity, and (iii) the effects of dis-
persion and viscosity are of the same order of magnitude.

The first case is of greater interest; therefore, we
restrict ourselves to consideration of only this problem.

2. Let us derive an approximate representation of
the solution to equation (11) in the vicinity of the point
ξ = ξd (inner expansion) for 1 < M ≤ M∗ , when the dis-

persion is more important than the viscosity.

We will assume that the small dimensionless param-
eters δ2 and δ3,

(12)

are of the same order of magnitude, δ2 . δ3. Here, λ =
λ(M) is the spatial scale of the perturbations at ξ ≈ ξd.
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We construct the representation (inner expansion for
the singular problem [2])

(13)

The condition δ2 ≈ δ3 allows us to obtain the set of
equations for Un(y). The leading term in (13) satisfies
the equation

(14)

where

(15)

Figure 1 shows dependence (15) for different values
of M. At the point U0 = 0, W(U0) has a maximum. For

1 < M ≤ M∗  = , there are both periodic solutions (13)

and a nonperiodic (soliton) solution. The soliton ampli-

tude increases from 0 to vs with increasing M from

1 to M∗  = . The ion density ni is related to the veloc-

ity v by the expression

As M  M∗ , v tends to c = vs; hence,

Therefore, the amplitude of the soliton bunch exhib-
its an explosive-like behavior: the finite increase in the
velocity of the neutral-component shock leads to an
infinite increase in the amplitude of the soliton of the
ion density ni . The value M = M∗  is the bifurcation

point for the soliton: for M > M∗ , the soliton is absent

and equation (13) has only periodic solutions. Integrat-
ing (13) over dU0, we obtain the relation between 
and U0 that describes the phase-plane portrait

Nonperiodic solutions correspond to W0 = 0. The
matching of the inner and outer expansions is shown in
Fig. 2, where we take the soliton as the outer expansion.
This allows us to describe the transition v(ξ)  0 as
ξ  ∞. For

,
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the above condition δ2 ≈ δ3 gives the criterion of the
validity of expansion (13):

(16)

When M increases to M∗ , the soliton bunch col-

lapses: in the model in question, we have η = 0 at the
point ξ = ξ∗ λ(M)  0 for M  M∗ ; i.e., the

assumptions adopted here [in particular (16)] are vio-
lated. In this case, viscosity becomes more important
than dispersion.

3. We construct an approximate representation of
the solution to equation (11) in the vicinity of the ξ = ξd

(inner expansion) for M ) M∗  with allowance for vis-

T0eT0i
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cλ M( ) D
2ν in( )
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 @ 1.≈

0
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M > √3
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Fig. 1. The “potential energy” W as a function of U0 for dif-
ferent values of the ion Mach number M.

Fig. 2. Matching of the inner (ξ > ξ1) and outer (ξ < ξ1) rep-
resentations for the velocity of the ion plasma component

for 1 < M ≤ .3
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cosity and with δ2 ≈ . The expansion is constructed
in the form

For ϕn, we obtain the set of the coupled equations; ϕ0 is
described by the first-order equation

(17)

which gives the relation between ξ and ϕ0 in the form

(18)

The function ϕ0(ξ) decreases monotonically. The
matching of ϕ0(ξ) and the outer representation of v(ξ)
is shown in Fig. 3 for ϕ0(0) = 0.5v(ξd). According to
(18), the spatial scale of variations in v(ξ, η) in the
vicinity of ξ = ξd is

The linear approximation for ϕ0(ξ) is described by

which allows evaluation of the field.
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Fig. 3. Matching of the inner (ξ > ξ2) and outer (ξ < ξ2) rep-
resentations for the velocity of the ion plasma component

for M > .3
4. We obtain the intermediate representation for
v(ξ) in the vicinity of ξ = ξ1 for the case of Section 2
and in the vicinity of ξ = ξ2 for the case of Section 3. We
denote v0 ≡ v(ξ1, 2) and linearize equation (11) in the
vicinity of v ≈ v0:

(19)

where v1 ≡ v – v0 and |v1| ! v0.
The general solution to nonuniform equation (19) in

the region ξ ≥ 0 is

where qn are the roots of the dispersion equation.
The intermediate representation and the representa-

tions in the adjacent regions can be matched at the
points ξ1, 2 ± λ(M). At one of these points, it is possible
to provide the continuity of both the function and its
first derivative.

5. The ion-acoustic shock-wave forerunner pos-
sesses the following properties. If δ2 ≈ δ3 for 1 < M <

M∗  = , then the soliton amplitude increases from

zero to vs with increasing the Mach number from 1

to . At M = M∗ , the bifurcation occurs; i.e., the soli-
ton bunch collapses and the resistance of the medium
sharply decreases. Smoothing of v(ξ) in the vicinity of

ξ = ξd at M∗  >  is due to viscosity. An abrupt disap-
pearance of the soliton on the front of the forerunner
corresponds to the “Houston’s horse” effect. The
hydrodynamic analogue of this effect was first
observed in the nineteenth century. Below, we retell the
description by Thomson presented in [3] (for the first
time, this phenomenon was described in [4]).

“This effect was accidentally observed in a small
channel between Glasgow and Ardrossan. A ‘clever’
horse drew the barge of William Houston, esquire. Sud-
denly the owner of the horse saw in wonder that the
barge was moving unusually rapidly. The horse made
much less efforts to draw it than usually, because it ran
with a velocity equal to the velocity of the wave propa-
gation. The wake wave, which usually splashed out on
the bank, disappeared. Mr. Houston realized what ben-
efit the company owning the channel transport can
draw from the ‘horse’s’ discovery. Since that time, the
barges were towed through the channel at a higher
velocity.”

In [3], this effect was characterized somewhat inad-
equately: the formation of the wake wave was called
the “Houston’s horse” effect. In fact, the effect consists
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in an abrupt disappearance of the wake wave when the
boat velocity exceeds a certain critical velocity, rather
than in the formation of a wake wave (soliton). In [3],
it was stated that, “when the boat velocity v approaches
the wave velocity cph, a boat in a narrow channel can
climb up the crest of the wake wave, where it does not
need to perform the work on the water by elevating or
lowering its level.” However, in reality, the boat cannot
climb up the crest of its own wake wave; it can climb
up only the crest of the “alien” wake wave (the wake
wave of another boat or some other naturally or artifi-
cially created wave); it is also possible to slide down the
alien wake wave (an example of this is surfing).

This effect is easily realized in a narrow sloping gut-
ter (e.g., in a gutter for log floating). The barge can be
replaced with a canoe, and the horse can be replaced
with a man drawing the canoe against the water flow.
The analogy between the ion-acoustic effect and the
hydrodynamic one is the following: the parameter ν0
characterizes the dragging against the bottom and the
walls of the channel, η is the viscosity of the water, and
D is the dispersion coefficient of the surface wave. In a
narrow channel, the effect is due to strong nonlinearity;
the “potential energy” W(U) is described by either (15)
or Sagdeev’s approximation (5). In the Appendix, we
present a model equation in which W(U) is a fourth-

order polynomial with M∗  = . If W(U) is described
by a third-order polynomial, there is no critical Mach
number: the soliton amplitude monotonically increases
with increasing M. Presumably, such a regime exists in
open shallow reservoirs. The “Houston’s horse” effect
has hysteresis: the decrease in the Mach number from
M > M∗  to M = 1 does not lead to the appearance of a
soliton at M = M∗ , because the viscosity continues to
smooth perturbations also at M < M∗ .

APPENDIX

From (11), we will derive the model equation
describing the “Houston’s horse” effect. For this pur-
pose, we linearize the terms with the higher order deriv-
atives

(20)

For D = 0, η = 0, and M = c  > 1, there is a discon-
tinuous solution satisfying the condition v(ξ) = 0 for
ξ > ξd [1]. An analogue of equation (14) is

3

v '''2D
2
v s

2
– v ''ηcρ0

1–
v ' c v–( )2

v s
2

–[ ]+ +

– ν0v c v–( ) 0.=

v s
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(21)

The “potential energy” Φ(U0) has extremes at the
points

Equation (21) has a nonperiodic solution only under

condition 1 < M ≤ M∗  = ; the soliton amplitude

increases from 0 to 2 vs as M increases from 1 to

. The value M =  is the bifurcation point for the
soliton.

An analogue of equation (17) is

(22)

In the range 0 < ϕ < ϕ(1), there exists a solution to equa-
tion (22) that monotonically decreases as ξ  ∞.

Model equation (20) qualitatively describes the

“Houston’s horse” effect: as M increases from 1 to ,

the soliton amplitude increases to 2 vs; then, the

soliton collapses. For M > , viscosity is more impor-
tant than dispersion in the vicinity of ξ = ξd.
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Abstract—The nonlinear evolution of collisionless magnetic field line reconnection is investigated numeri-
cally in plasma regimes where the effects of the electron and ion temperatures are important. These effects
modify the structure of the current and vorticity layers that are formed during the onset of the reconnection
instability. The results of investigations in a two-dimensional periodic configuration including ion Larmor
radius effects to all orders are presented and compared with the results obtained in regimes with a large sound
Larmor radius. It is found that, while the roles of the sound Larmor radius and the ion Larmor radius are inter-
changeable as far as the nonlinear reconnection rate is concerned, the structure of the vorticity and current den-
sity layers is different in the two cases. © 2000 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

In recent years, the problem of magnetic reconnec-
tion in collisionless regimes has been investigated
extensively [1–10]. In these regimes, the decoupling of
the plasma motion from the magnetic field is caused by
the finite electron inertia [11–13]. The natural scale
length associated with this process is the inertial skin
depth, de = c/ωpe. Within the two-fluid model, the
effects of the finite electron temperature in the general-
ized Ohm’s law have also been considered [2]. These
effects are important when the sound Larmor radius,
ρs = (mic2Te/e2B2)1/2, is comparable with de . On the
other hand, ion Larmor radius effects were left aside.
Since the ion Larmor radius is proportional to the sound
Larmor radius through the relation ρi = (Ti/Te)1/2ρs, the
results presented so far in the literature are valid in the
cold ion limit, Ti ! Te (such that ρi < de, while allowing
ρs ~ de). Ion Larmor radius effects normally require full
kinetic treatment of the ion species. However, the
model proposed in [14], based on a Padé approximation
of the ion response, allows us to consider these effects
within a “modified fluid” description. The objective of
this article is to investigate ion Larmor radius effects to
all orders within the mentioned “modified fluid”
approximation and to compare the results with those
obtained when taking into account sound Larmor
radius effects only. Previously, this analysis was limited
in the nonlinear phase to a special class of self-similar
solutions [15].

In the strictly collisionless (i.e., dissipationless)
limit, the two-fluid model including finite temperature
effects admits a Hamiltonian structure [14, 16, 17] with
two infinite sets of conserved Casimirs. The Casimirs
are arbitrary functionals of the fields that are conserved

1 This article was submitted by the authors in English.
1063-780X/00/2606- $20.00 © 0512
by the Hamiltonian in the Lagrangian sense. These
Lagrangian invariants generalize the topological invari-
ants that are found in the so-called reduced magnetohy-
drodynamics, as discussed in [14, 16]. Thus, the topol-
ogy of these fields is frozen in the course of the dynam-
ical evolution of the reconnection process, at least as
long as the velocity fields with which the conserved
fields are advected are smooth functions of space and
time. Depending on whether electron and/or ion tem-
perature effects are retained, different Lagrangian
invariants and, thus, different Casimirs are conserved.

The linear theory of collisionless reconnection with
finite electron temperatures and ion Larmor radius
effects to all orders was developed in [18–21]. The fol-
lowing statements summarize the results of main inter-
est here. When the tearing mode stability parameter ∆'
is positive (∆' is the jump of the logarithmic derivative
of the perturbed magnetic flux across the reconnection
layer), the growth rate and structure of the perturbed

current density depend on the parameter ρτ = (  +

)1/2, i.e., the geometric mean between the ion and
sound Larmor radii. In particular, when ρτ > de and
∆'de @ (de/ρτ)1/3, the linear growth rate approaches the

asymptotic value γL ≈ (2de /π)1/3 and the perturbed
current density is mainly distributed over the inertial
skin depth, with a tail extending up to distances of order
ρs; the vorticity also exhibits a rapid variation over the
scale de and a milder variation over the scale ρs (scale
lengths are normalized to a macroscopic equilibrium
length L, and the growth rate is normalized to the equi-
librium Alfvén time τA). On the other hand, the profile
of the stream function ϕ is very different when the ion
temperature is smaller or larger than the electron one.
When Ti ! Te, ϕ varies smoothly across the reconnec-

ρi
2

ρs
2

ρτ
2
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tion layer over the scale length ρs. By contrast [21],
when Ti exceeds Te, the stream function, like the vortic-
ity, varies rapidly over the distance de and approaches a
constant amplitude over a distance of order ρτ. This
behavior reflects the decoupling of the electron and ion
flows at distances x < ρi. Linear theory also indicates
that diamagnetic effects are important and can lead to
complete stabilization with positive ∆' when ω∗ i, e ≥ γL,
where ω∗ i, e = (cTi, e/eBLn)dn/dx is evaluated at the
reconnection layer [20]. In this paper, we neglect dia-
magnetic effects; i.e., we consider the limit of a weak
density gradient such that ω∗ i, e < γL.

In the cold ion limit (ρi/de  0), it was shown in
[1] that the reconnection rate is faster than exponential
in an early nonlinear phase, where the island width is
still small compared to the macroscopic convection
cells. This rate is even faster [2] when finite electron
temperature effects are considered and ρs > de. In addi-
tion, for finite values of ρs/de, the current density and
vorticity layers develop with a characteristic cross-
shape structure [2]. In this paper, the two main ques-
tions we address relate to the nonlinear reconnection
rate and to the structure of the current density and vor-
ticity layers when ion Larmor radius effects are consid-
ered to all orders.

2. MODEL EQUATIONS

We adopt the generalized two-fluid model [14], in
which electrons and ions are treated as two different
species. This set of equations governs the evolution of
plasma phenomena with frequencies below the ion
cyclotron and magnetosonic frequencies and above the
ion-acoustic frequency. We consider a two-dimensional
configuration characterized by a strong magnetic field
in the z-direction and neglect the coordinate along this
direction. The magnetic field is B = B0ez + ∇ψ  × ez,
where B0 is constant and ψ(x, y, t) is the magnetic flux
function.

The governing equations normalized to the Alfvén
time τA and the equilibrium scale length are [14]

(1)

(2)

(3)

(4)

(5)

where ϕ is the stream function (which is proportional to
the electrostatic potential) and [A, B] = ez · ∇ A × ∇ B.

∂F
∂t
------ ϕ F,[ ]+ ρs

2
U ψ,[ ] νe∇

2
J ,+=

∂U
∂t
------- ϕ U,[ ]+ J ψ,[ ] ν i∇

2
U ,+=

F ψ de
2
J ,+=

J ∇ 2ψ,–=

U ρi
2∇ 2

U– ∇ 2ϕ ,=
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Here, a strong uniform magnetic field is assumed to be
directed along the z-axis.

Electron inertia enters (1)–(5) through the electron
skin depth de, and the electron and the ion temperatures
enter through ρs and ρi, respectively. Equation (1)
describes the motion of the electrons along the field
lines, while (2) originates from the continuity equation,
and U is related to the electron density variation. The
latter is set equal to the ion density variation because of
the quasineutrality condition. The ion density is
expressed in terms of the electrostatic potential (which
is proportional to the stream function ϕ) through a Padé
approximation of the nonlinear ion response, valid to
all orders in the ion Larmor radius ρi, as introduced
in [14].

In the cold ion limit, ρi  0, equation (5) coin-
cides with the usual definition of the vorticity as the
Laplacian of the stream function of the plasma. Here,
we will consider the opposite limit by taking ρs  0.
In this case, ϕ is still related to the E × B drift of the
electrons but it is no longer related to the fluid vorticity
of the plasma. In particular, in the large Larmor radius
limit, we see that the first term on the left-hand side of
(5) can be neglected and ϕ is proportional to U [15].

Since we are interested in the numerical integration
of (1)–(5) in the nonlinear phase, when the energy cas-
cade to the small scales becomes significant, we have
introduced a small artificial viscosity into (1) and (2) by
means of two diffusive terms. Then, during the simula-
tions, the values of the dissipation coefficients νe and νi

have been chosen in order to dissipate only the unphys-
ically very small scales well below the electron skin
depth.

Neglecting the diffusive terms, the Hamiltonian
structure of the model equations can be revealed [14,
16, 22]. The two fluxes G± = F ± deρsU are advected by
the velocity fields v± = ez × ∇ϕ ± (where ϕ± = ϕ ±
(ρs/de)ψ), and equations (1) and (2) can be cast in a
Lagrange invariant form:

. (6)

Moreover, if we introduce the new variables,

(7)

we can cast our system of equations in noncanonical
Hamiltonian form

(8)

where the generalized Poisson’s brackets [17] are
defined as

(9)

∂G±

∂t
--------- ϕ± G±,[ ]+ 0=

ξ1 F,=

ξ2 deρsU ,=

∂ξ i

∂t
------- ξ i H,{ } i 1 2,,= =

P Q,{ } d
2
x)

ij δP
δξ i

------- δQ
δξ j

--------,∫=
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and

.

The Hamiltonian is

(10)

In (10), we recognize the magnetic energy, the kinetic
energy due to the motion of the electrons along filed
lines, the electron potential energy, and the ion kinetic
energy.

This system of equations admits two infinite sets of
Casimirs (functionals of the two Lagrangian invariant
fields, G±):

(11)

with h± arbitrary functions. In (6), we have assumed
that the velocity fields v± remain smooth during the
evolution of the system. We note that the absence of
finite time singularities has been shown in the case of
zero ion temperature in [6]. Expanding h± to first order
in ρs, we find from (11) the Casimirs in the cold elec-
tron limit (ρs  0)

(12)

In this case, only the generalized magnetic flux F
admits a conservative equation.

3. A BRIEF SUMMARY OF NONLINEAR 
RESULTS WITH Ti = 0

In ideal magnetohydrodynamics, the frozen-in law
forces the magnetic field lines to move with the plasma.
Electron inertia leads to a violation of this law over dis-
tances of the order of the inertial skin depth from the
magnetic surface where Beq · ∇ vx = 0, with Beq(x) the
equilibrium field. In this sense, electron inertia is
responsible for magnetic reconnection in the collision-
less limit. However, electron inertia is not a dissipative
process and the inertial skin depth is not a dissipative
scale length (similar remarks apply to the ion and sound
Larmor radii). Thus, the question may be raised of
whether a significant amount of magnetic flux can
indeed be reconnected in the absence of dissipation.
The answer to this question requires nonlinear consid-
erations.

In [1], where temperature effects were neglected
(Ti = Te = 0), it was shown that collisionless reconnec-
tion due to electron inertia is indeed a significant non-
linear process. In the large ∆' limit, the inertial skin
depth still sets the scale of the nonlinear parallel current
channel. However, a structure develops below de. The
width of this structure keeps shrinking in time with
apparently no lower limit cut-off. This should not come

)
ij ξ2 ξ1

ξ1 ξ2 
 
 

–=

H
1
2
--- d

2
x ∇ ψ 2

de
2
J

2 ρs
2
U

2 ∇ ϕ 2
+ + +( ).∫=

C± d
2
xh± ξ1 ξ2±( )∫ d

2
xh± G±( ),∫= =

C1 d
2
xh1 F( ), C2∫ d

2
xUh2 F( ).∫= =
as a surprise, given the absence of dissipation. The cur-
rent density tends to become singular, although it was
clearly shown in [6] that no singularity develops in
finite time, at least when temperature effects are
neglected. It is important to note that this microscale
below the inertial skin depth carries a negligible current
(the current density is mainly distributed over de). Thus,
the occurrence of this microscale does not play a role in
the dynamic evolution of the magnetic island, which is
found to grow in a quasi-explosive manner and to reach
a macroscopic width over a time scale of the order of

. The quasi-explosive behavior terminates and the
island width saturates when this width becomes compa-
rable with the equilibrium scale length [7].

A similar phenomenology was found when finite
electron temperature effects were included in the model
[2, 3]. In addition, with ρs comparable with or larger
than de, the current density and vorticity layers were
found to split into two branches crossing at the stagna-
tion point of the flow. These cross-shaped structures
were interpreted on the basis of the Hamiltonian
Casimirs.

The development of a microscale below the inertial
skin depth poses a challenge to numerical simulations.
However, since the microscale carries a negligible cur-
rent, the reconnection rate remains unaffected by the
inclusion of additional, microscale limiting (e.g., dissi-
pative) terms in the model, as long as these terms do not
modify the structure of the reconnection region over the
inertial skin depth scale length. Indeed, we have veri-
fied numerically that the reconnection rate does not
depend on viscosity in the limit where the viscosity
coefficient tends to zero. In this limit, the role of viscos-
ity is similar to coarse-graining, which is known to
introduce irreversibility in processes such as Landau
damping of electrostatic waves or continuous damping
of Alfvén waves in inhomogeneous plasmas. As we
remarked in the previous section, we also consider dis-
sipation in this paper in order to facilitate numerical
integration, with the values of the dissipation coeffi-
cient chosen so as to introduce a lower scale cut-off
well below the inertial skin depth.

4. NUMERICAL RESULTS
Having in mind a comparison with the results

obtained in the cold ion limit in [3], we choose a two-
dimensional doubly periodic magnetic configuration,
focusing on the so-called “large ∆'” regime character-
ized by ∆'de @ (deρi, s)1/3 and by macroscopic flow cells.
In this limit, when ρi, s > de, the linear growth rate γL ≈
(2de /π)1/3 is obtained [20].

The simulations have been carried out with a spec-
tral code that uses standard Fourier transforms to calcu-
late the spatial derivatives. The equations are integrated
in the domain [–Lx, Lx] × [–Ly, Ly] with periodic bound-
ary conditions in both directions. In order to follow the

γL
1–

ρT
2
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Fig. 1. Contour plots of the fields ψ, ϕ, J, U, and F for two simulations with de = 0.08. The first row corresponds to a case with
ρi = 3de, ρs = 0, and w = 8.5de. The second row corresponds to a case with ρi = 0, ρs = 3de, and w = 8de. The x and y coordinates
are normalized on the scale length Lx.
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Fig. 2. Profiles of the fields δψ, ϕ, J, and U as functions of x/Lx at different values of the y coordinate. The solid lines correspond to
the case ρi = 3de and ρs = 0; the dashed lines correspond to the case ρi = 0 and ρs = de.
nonlinear evolution, we choose the viscosity coeffi-
cients νi = 4 × 10–4 and νe = 3 × 10–4, such that the asso-
ciated dissipative scale lengths are of the order of de/4.
The equilibrium configuration is given by ψeq = cos(x),
ψeq = 0, with Lx = π, e = Lx/Ly = 0.5, and de = 0.08Lx.
We performed simulations choosing ρi = de and 3de,
which correspond to the same values adopted in [3] for
ρs. This choice gives the same linear growth rate for the
two cases (see Section 1).

In Fig. 1, we draw the contour plots of ψ, ϕ, J, U,
and F at a time such that the size of the magnetic island
width has reached half the size of the box for two sim-
PLASMA PHYSICS REPORTS      Vol. 26      No. 6      2000
ulations characterized by the same value de = 0.08Lx.
The plots in the first row are characterized by ρi = 3de

and ρs = 0. The plots in the second row are character-
ized by ρi = 0 and ρs = 3de. In Fig. 2, the profiles of δψ,
ϕ, J, and U at different values of the y coordinate for the
same simulations are drawn.

One important finding is that the nonlinear structure
of ϕ is different for the two cases. In particular, when
we consider the ion Larmor radius effects with ρi > de,
we see that the contour plot of ϕ is similar to that of U.
In the limit of a large ion Larmor radius, the density
variation (i.e., the U field) is concentrated on a scale
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length much smaller than ρi . Thus, in this region, equa-

tion (5) gives U ~ –ϕ/ . Consequently, the contour
lines of U tend to coincide with those of ϕ. In this limit,
the advection term in (2) becomes negligibly small and

equation (2) reduces simply to ∂ϕ/∂t = – [J, ψ]. Also,
the macroscopic flow cells are more localized in the
region around the X-point. This can account for the
stronger localization of the current density sheets on
the separatrix of the magnetic flux. A similar result with
both ρs and small ρi effects has been presented in [23]
in the case when the magnetic configuration is stable
and field line reconnection is forced from the bound-
aries. This feature is clearly evident in Fig. 2, where the

ρi
2

ρi
2

–1

–3

–5

–7
0 3 6

–4

–2

–6

1 2 4 5

Fig. 3. Time evolution of the reconnected flux δψX. The
straight lines correspond to the linear growth rate extrapo-
lated to nonlinear times. The solid lines correspond to the
case ρi = 3de and ρs = 0; the dashed lines correspond to the
case ρi = 0 and ρs = de.

γLt

δψX
 profiles of the current density for y = π/4 are drawn. We
see that the current density profile exhibits two peaks
that merge into a single peak at y = 0. The distance
between these two peaks increases with the distance
from the X-point (x = 0, y = 0), which is consistent with
the cross structure in Fig. 1. This distance increases in
time with the same rate as the magnetic island width.

We also note the different behavior of the general-
ized flux F. As can be seen from Fig. 1, the topology is
different in the two cases. In the former case of ρi = 3de

and ρs = 0, in the absence of dissipation, F is a
Lagrangian invariant. However, due to finite viscosity,
the F contour lines reconnect, following the behavior of
the magnetic flux, i.e., with an X-point in the origin. In
contrast, in the case ρi = 0 and ρs = de , F reconnects due
to the combined effect of the electron inertia and the
sound Larmor radius even in the absence of dissipation,
developing the typical cross structure with an O-point
in the origin [2], while the Lagrangian properties of the
model are transferred to the G± fields, which conserve
their topology. As a test of the small dissipative effects
of the viscosity coefficients we used, we checked the
conservation of the energy integral, given by (10). This
integral is seen to vary by about 1.2% by the time the
island has reached an amplitude comparable with the
slab width. However, a more systematic study, which
will be presented elsewhere, is required in order to
establish the dependence on the dissipation parameters
with certainty.
2
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Fig. 4. Contour plots of the fields ψ, ϕ, J, U, and F at different times for a simulation with de = 0.08, ρi = de, and ρs = 0. The first
row corresponds to a time in the linear phase such that w = de; the second row corresponds to a time in the nonlinear phase such that
w = 5.6de. The x and y coordinates are normalized on the scale length Lx.
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spond to a time such that w = 5de; the dashed lines correspond to a time such that w = de.
In Fig. 3, the time evolution of reconnected flux, as
measured by δψX ≡ ψ(0, 0; t) – ψeq(0) (the magnetic
flux function at the X-point, x = y = 0), is shown for the
two simulations discussed above. For each curve, the
corresponding linear fit is also drawn, as obtained from
the data of the simulations. We see that the fitted curves
are parallel, as expected from linear theory. Moreover
the nonlinear phase exhibits a faster than exponential
behavior in both cases.

In Figs. 4 and 5, the results of a simulation with ρi = de

are shown. In particular, in Fig. 4, the contour plots of
ψ, ϕ, J, and U are shown for two different times: the
first row corresponds to a time at the beginning of the
nonlinear phase, in which the magnetic island w has
reached a value of the order of de; the second row cor-
responds to a time in the full nonlinear phase, in which
the magnetic island is w = 5.6de. In Fig. 5, the profiles
at the same times are shown. In this case of a small Lar-
mor radius, the contour plot of the stream function is
similar to that obtained in the cold ion limit [3] with a
smooth variation on the typical scale length de ~ ρi .
When the nonlinear phase is fully entered, the differ-
ence between the two regimes becomes evident. The
localization of the stream function around the X-point
drives the splitting of the current density layer into two
layers aligned whit the separatrix of the magnetic flux.
Furthermore, the two vorticity layers tend to diverge
from each other, reproducing the typical cross structure
associated with ρs.

5. CONCLUSIONS

In this paper, we have analyzed the effect of ion tem-
perature on nonlinear collisionless reconnection by
including ion Larmor radius effects to all orders by
means of a Padé approximation. Diamagnetic effects are
not as of yet considered. Part of the motivation for this
work was the testing of the applicability of the well-
known cold-ion model in nonlinear regimes. In this
model, which is frequently adopted for the sake of its
algebraic simplicity in the linear analysis of small-scale
instabilities and boundary layer dynamics, finite tem-
perature effects in the direction perpendicular to the
magnetic field lines are retained only through the elec-
tron contribution by taking the formal limit Te/Ti  ∞.
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This model is known to mimic relatively well the linear
response of a number of instabilities by introducing a
hybrid Larmor radius (the so-called sound Larmor
radius), which can represent some of the real ion Lar-
mor radius effects. Numerical factors of order unity are
missed, but the overall picture is in general well repro-
duced by the cold ion model. For example, in the case
of magnetic field line reconnection, the growth rate
turns out to be wrong by a factor of approximately two
and the current channel is almost unaffected, but the
velocity pattern inside the reconnection region is
known to be different as the E × B ion motion is
impeded.

We find that most of this picture remains valid non-
linearly. Our comparison shows that, in the two cases
examined, the roles of the ion Larmor radius and the
sound Larmor radius are somewhat interchangeable. In
both cases, the growth in the early nonlinear phase is
superexponential and is closely related to the value of
linear growth rate, for which the “equivalence” of the
two descriptions is known to hold. The difference
between the velocity patterns persists in the early non-
linear regime and actually becomes more extreme. In
the 2D doubly periodic case examined in this paper, the
velocity pattern remains global in the sound Larmor
radius case and becomes much more local (“micro-
scopic” instead of macroscopic) in the ion Larmor
radius case.

For the doubly periodic configuration adopted in
this paper, it is not physically sensible to follow the
reconnection process when the size of the magnetic
island becomes of the order of the scale length of the
gradient of the equilibrium current density, since the
current and vorticity layers from different periodicity
cells start to interact.
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Abstract—It is shown that the lower limit in the Coulomb logarithm is governed by the collective behavior of
a plasma rather than by binary collisions with small impact parameters. For this reason, under the assumption
that the particle-to-particle momentum transfer is governed mainly by binary collision, the numerical coeffi-
cient in the second moment of the momentum transferred turns out to be overestimated by a factor of two. In
other words, the multiparticle character of the lower limit in the Coulomb logarithm governs not only the log-
arithm itself but also the numerical coefficient in front of it. Correctly incorporating the fluctuation electric
fields on spatial scales shorter than or close to the Debye radius (the multiparticle nature of collisions in a
plasma) provides a new insight into the physics of Coulomb collisions and leads to the appearance of a new
characteristic spatial scale (rDrmin)

1/2 in plasma theory. Hence, an almost ideal plasma possesses a unique fea-
ture: the existence of a spatial scale that is much shorter than the mean distance between the particles and has
no analogues in the systems of particles in which the interaction potential is not of Coulomb origin. The prob-
lem is considered in the limit of infinitely large values of the Coulomb logarithm. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The problems of the penetration of charged particles
through matter and the related particle energy losses
arose at the same time as the first elaborations of the
present concepts of the structure of matter (see, e.g.,
[1]). Most of the methods for investigating atomic
nuclei and the interpretation of the majority of experi-
mental data from measurements with cosmic-ray parti-
cles are to a greater or lesser extent based on the con-
clusions of the theory of the interaction between
charged particles and matter [1]. Although the entire
range of problems related to the penetration of a
charged particle through matter and the methods for
solving them cannot be reviewed even briefly, we are
quite sure that one of the key problems here is the study
of the laws describing particle scattering in Coulomb
fields as well as the role of screening in scattering pro-
cesses. However, numerous attempts to analyze screen-
ing-related problems and the question of whether the
scattering in a real electric field can be described as a
sequence of binary collision events were made under
the implicit assumption that the small-scale fluctuation
electric fields in media play a very minor role. Here, we
examine as an example the interaction of a charged par-
ticle with a plasma in order to show that this assump-
tion is incorrect: taking into account small-scale elec-
tric fields not only changes numerical coefficients in
some expressions but also provides a fundamentally
new insight into the physics of scattering processes in
systems of Coulomb particles. A systematic analysis of
the fluctuation electric fields in a plasma shows that
1063-780X/00/2606- $20.00 © 0519
Coulomb interaction in systems consisting of many
particles is characterized by a new spatial scale that
does not coincide with the Debye radius and has no
analogues in systems with different interaction poten-
tials. It is this nontrivial additional spatial scale that dis-
tinguishes the Coulomb potential from other interac-
tion potentials.

2. SCATTERING BY FLUCTUATION ELECTRIC 
FIELDS IN A PLASMA

The electric field of a test particle moving in a
plasma affects the other plasma particles, so that their
velocities change and their trajectories become per-
turbed. In other words, the actual electric field can be
regarded as a superposition of the fluctuation electric
field (which is related to the electric field of plasma
electrons and ions whose motion is not perturbed by the
electric field of a test particle) and the polarization elec-
tric field (which results from the polarization of the
plasma by a test particle, i.e., from the perturbation cre-
ated by the test particle in the motion of other plasma
particles). We analyze how the momentum of a test par-
ticle changes solely under the action of the fluctuation
electric field. The range of validity of this analysis will
be clarified in what follows (see also [2–4]).

We consider the statistical properties of the change
in the momentum of a test particle with charge Z0,
which moves with the velocity v in a plasma and inter-
acts with the other plasma particles over the time inter-
val τ. We treat the problem in a formulation similar to
2000 MAIK “Nauka/Interperiodica”



 

520

        

GORDIENKO

                                                                                    
the model developed by Kogan [5]. We are interested in
the time scales τ on which the velocities of the test par-
ticle and other plasma particles change only slightly, so
that the particle motion can be regarded as being
straight-line and uniform. According to Newton’s sec-
ond law, the change in the momentum of a test particle
over the time τ is

(1)

where E(t') is the electric field created by the plasma
particles at the point at which the test particle occurs at
the time t'. Since we are interested in time scales on
which the particle motion can be assumed to be
straight-line and uniform, we can write

(2)

∆pτ Z0e E t'( ) t',d

t

t τ+

∫=

E t'( ) e
r v t' t–( ) ri– vi t' t–( )–+

r v t' t–( ) ri– vi t' t–( )–+
3

------------------------------------------------------------------∑–=

+ Ze
r v t' t–( ) Ri– Vi t' t–( )–+

r v t' t–( ) Ri– Vi t' t–( )–+
3

---------------------------------------------------------------------,∑
where summation is implied over all of the plasma elec-
trons (in the first sum) and ions (in the second sum); r,
ri, and Ri are, respectively, the position vectors of the
test particle, the ith electron, and the ith ion at the time
t; and v, vi, and Vi are, respectively, their velocities at
the time t.

For the characteristic function (the Fourier trans-
formed distribution function) corresponding to the ran-
dom quantity ∆pτ, we can write by definition

(3)

where the angular brackets stand for ensemble averag-
ing. The scalar and vector products of vectors a and b
will be denoted by (a, b) and [a, b], respectively.

Assuming that the plasma is in thermal equilibrium
and neglecting correlations among the plasma particles
(i.e., keeping only zero-order terms in the parameter
e2n1/3/T in the statistical weighting factor), we can
rewrite (3) as

p u( ) i u ∆pτ,( )( )exp〈 〉 ,=
(4)

where the subscript m indicates averaging over a Maxwellian distribution; V is the plasma volume; and Ne and Ni are
the number of electrons and ions, respectively.

To evaluate the characteristic function in explicit form, we introduce the quantities

(5)

(with averaging over a Maxwellian distribution over the velocities vi of the plasma electrons) and

(6)

p u( ) = 
1
V
--- 

 
Ne

… i u Z0e
2 r v t' t–( ) ri– vi t' t–( )–+

r v t' t–( ) ri– vi t' t–( )–+
3

------------------------------------------------------------------ t'd∑
t

t τ+

∫,
 
 
 

exp
m

r1… rNe
dd∫∫

× 1
V
--- 

 
Ni

… i u Z0Ze
2 r v t' t–( ) Ri– Vi t' t–( )–+

r v t' t–( ) Ri– Vi t' t–( )–+
3

--------------------------------------------------------------------- t'd∑
t

t τ+

∫,
 
 
 

exp
m

R1… RNi
,dd∫∫

Ue i u Z0e
2 r v t' t–( ) vi t' t–( )–+

r v t' t–( ) vi t' t–( )–+
3

-------------------------------------------------------- t'd

t

t τ+

∫,
 
 
 

exp
m

1–
 
 
 

rd∫=

Ui i– u Z0Ze
2 r v t' t–( ) Vi t' t–( )–+

r v t' t–( ) Vi t' t–( )–+
3

--------------------------------------------------------- t'd

t

t τ+

∫,
 
 
 

exp
m

1–
 
 
 

rd∫=
(with averaging over a Maxwellian distribution over the
velocities Vi of the plasma ions).

With the quantities Ue and Ui , the characteristic
function p(u) becomes

p u( ) 1
Ue

V
------+ 

 
Ne

1
Ui

V
-----+ 

 
Ni

,=
and, in the limit V  +∞ such that Ne/V = n and
Ni/V = n/Z, it passes over to

(7)

To examine the characteristic function (7), we con-
sider the deceleration of a test particle moving with the
velocity v and analyze the distribution function f(∆pτ)

p u( ) nUe( ) nUi/Z( ).expexp=
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of the random quantity ∆pτ on the time scales τ satisfy-
ing the inequalities

where v* = max(v, vT) and V* = max(v, VT). Switching
to the variables r' = r/v*τ, we can readily see that the
quantities Be and Bi are large parameters in theory, so
that they can be used to construct an asymptotic expan-
sion of the distribution function. Since the real parts of
the exponential functions in (7) are nonpositive and the
parameters Be and Bi are large, the main contribution to
the distribution function

(8)

comes from the vicinity of the point in the u-space at
which the real part of the exponential function in (7) is
maximum. The contribution from the exterior of the
vicinity of this point in the u-space is exponentially
small, because Bi and Be are large. It is easy to see that
the real parts of the arguments of the exponential func-
tions in (7) are nonpositive and that the distribution
function should be found by analyzing the functions Ue

and Ui in the vicinity of the point u = 0. We perform the
necessary manipulations and, to the leading order in the
large quantity ln(1/ |u|), obtain (see Appendix 1)

(9)

(10)

where x = v – vi  and X = v – Vi. Averaging over Max-
wellian velocity distributions (the angular brackets)
concerns only x and X and does not apply to the func-
tional dependence on u in which we are interested here.
In the explicit form, this averaging results in the
appearance of an error function in (9) and (10).

Note that, by virtue of the logarithmic singularity at
u = 0, the functions Ue and Ui have a finite number of
continuous derivatives. Consequently, for a significant
amount of momentum transfer, the distribution func-
tion decreases as a power function or slower, so that
only the lowest moments of the momentum transferred
converge. Below, we will show that even the second
moment diverges.

Be n v*τ( )3
 @ 1 and Bi n V*τ( )3

 @ Z ,= =
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The higher moments turn out to be diverging,
because the particle trajectories were assumed to be
straight in solving for the momentum transferred. Con-
sequently, expression (7) cannot be applied to correctly
analyze large momentum transfer between the particles
that pass so close to one another that their trajectories
become curved. In this case, expression (7) greatly
overestimates (and, consequently, renders physically
meaningless) the momentum transferred between the
particles. However, such an unrealistically large
momentum transfer described by (7) can be avoided by
evaluating the distribution functions with the help of (9)
and (10) in the limit of infinitely large values of the
Coulomb logarithm. As an example, we consider an
electron moving with the thermal velocity in a plasma.
Over the mean free path λst, the electron will experi-
ence a large momentum transfer with each of the

λstn ~ 1/Λ plasma particles that are at distances
shorter than rmin = e2/T from it. Hence, expression (7),
according to which the momentum transfer is physi-
cally meaningless because of the incorrect description
of the particles that pass close to each other, should be
treated with the additional small parameter 1/Λ. Conse-
quently, in order to overcome such fictitious momen-
tum transfers, the calculations should be carried out to
the leading order in 1/Λ (in the limit Λ = +∞, there are
no particles over distances shorter than rmin from the
test particle during its mean free time, which thus turns
out to be short enough for the impact parameters asso-
ciated with unrealistically great momentum transfers
not to come into play). It is easy to see that, in this way,
the functions Ue and Ui in expression (7) can be
replaced with the functions (see Appendix 2)

(11)

(12)

where ξe = min[Ae and /(∆pτ)2], ξi = min[Ai, /(∆pτ)2]

with Ae = π e4τ/ |x| and Ai = π Z2e4τ/ |X|.

We emphasize that, in this paper, the problem is
considered in the limit of infinitely large values of the
Coulomb logarithm. It is this case in which the effects
in question are most pronounced. Note that, in Appen-
dix 2, we present the expressions that allow one to ana-
lyze the case of finite values of the Coulomb logarithm
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and thus clarify the physical meaning of the limit
Λ = +∞.

A distribution function that is consistent with (11)
and (12) and is very similar in structure to the Gaussian
function (i.e., a Gaussian function with a deformed tail)
allows us to evaluate the second moment of the
momentum transferred by determining the trace of a
certain matrix and to write

(13)

3. SOLVING FOR THE SECOND MOMENT 
OF THE MOMENTUM TRANSFERRED 
IN THE APPROXIMATION OF BINARY 

COLLISIONS

In order to give a better insight into the qualitatively
new physical meaning of expression (13), we evaluate
the second moment under the assumption that the
momentum is transferred via binary collisions with
small impact parameters. Under the above verisimilar
assumption, the second moment was calculated by
Kogan [5]. To solve for the second moment, we must
find the second derivatives of the characteristic func-
tion at u = 0,

(14)

Substituting (7) into (14) yields (see Appendix 3)

(15)

At µ = 1, the integrals in (15) diverge logarithmi-
cally. Consequently, under the above assumption that
the momentum transferred via binary collisions with
small impact parameters is maximum, the lower limit
µ = 1 of integration in (15) should be replaced by µ1 =

1 + ( / |x|τ)2 with  =  Z0e2/min[Mv*2, mev*2] in

the first term and by µ2 = 1 + ( / |X|τ)2 with  =

Z0Ze2/min[MV*2, miV*2] in the second term, because it
is these impact parameters for which the trajectories of
the colliding particles become significantly curved.
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+ 4nπZZ0
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p u( )

∂u∂u
-----------------=
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.
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2
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4
nτ 1

x
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--------------

1
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∫
m
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+ 8πZ0
2
Ze

4
nτ 1

X
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µ2
1–

--------------

1

+∞

∫
m

.

rmin
e( )

rmin
e( )

rmin
i( )

rmin
i( )
With the new lower limits of integration, we obtain
with logarithmic accuracy

(16)

where the subscript P indicates that a quantity is calcu-
lated in the approximation of binary collisions. Expres-
sion (16) was first derived by Kogan [5] using a method
that differs from that described above only in the calcu-
lation technique. We emphasize that the arguments of
the logarithmic functions in (13) and (16) are radically
different: the arguments of the logarithmic functions in
(13) depend on the plasma density, whereas those in
(16) are density-independent.

Notably, it is the assumption about the substantial
deformation of the particle trajectories in the course of
momentum transfer via head-on binary collisions that
changes the structure of the Coulomb logarithm and
results in an erroneous coefficient in front of it: accord-
ing to (13) and (16), for τ ~ 1/ωpe, the erroneous coeffi-
cient differs from the correct one by a factor of two.
Consequently, the trajectory of a particle becomes sig-
nificantly curved (due to its interaction with the collec-
tive plasma electric fields) before the particle experi-
ences a head-on collision event, which is accompanied
by significant momentum transfer. Hence, we have
shown that both the upper and lower limits in the Cou-
lomb logarithm are governed by the scattering on col-
lective plasma fields rather than by binary collisions.

4. THE ROLE OF DEBYE SCREENING
IN A PLASMA

Now, we present the expression for the second
moment with allowance for the plasma permittivity (the
Debye screening). For simplicity, we assume that the
velocity of the test particle is much higher than the ther-
mal velocities of both ions and electrons. In this case,
over times τ during which the test particle passes a dis-
tance shorter than the Debye radius, the Debye screen-
ing does not affect the test particle deceleration. For
times during which the test particle passes a distance
longer than the Debye radius, we have (see Appendix 4)

(17)
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and, accordingly,

(18)

where rD is the Debye radius. In this case, the argu-
ments of the logarithmic functions radically differ from
each other. Note that, for the time τ on the order of the
time during which the test particle passes the distance
equal to the Debye radius, the difference between the
arguments of the logarithmic functions are so different
that the numerical coefficients in front of the logarith-
mic functions differ by a factor of two.

Of course, a correct (in the limit of infinitely large
values of the Coulomb logarithm) expression for the
second moment transferred can be derived from (18) by
appropriately choosing the lower limits of the diverging
integrals in the range of short spatial scales. Comparing
(17) with (18) and (13) with (15), we find that, for τ on
the order of the time during which the test particle
passes the distance equal to the Debye radius, the inte-

grals should be truncated at λe = . Note that the
spatial scale λe is shorter than the mean interparticle

distance by a factor of approximately  and is

longer than rmin by a factor of , where ND = n  is
the number of particles within the Debye sphere.

5. MULTIPARTICLE NATURE OF COLLISIONS
IN A PLASMA AND A FEATURE

OF THE COULOMB INTERACTION

Expression (18) is based on the approximation of
binary collisions [3]. The approach to describing the
interaction between plasma particles via binary colli-
sions is used to derive the Boltzmann equation with a
short-range interaction potential and implies that the
particles are statistically independent and that it is pos-
sible to single out the time interval ∆t over which a test
particle experiences no more than one collision event
and which, on the other hand, is long in comparison
with the duration τint of a collision event. In a plasma,
however, the duration τint depends on the impact param-
eter r as τint ~ r/v*. For example, in the course of one
collision event between two particles with the impact
parameter r ~ rD, the particles whose impact parameters
are smaller than the mean interparticle distance experi-
ence  collision events. Consequently, the applica-
bility conditions for the approximation of binary colli-
sions fail to hold. (In Appendix 5, this topic is analyzed
in a more formal way.) In other words, collision events
with large impact parameters have enough time to sub-
stantially change the momentum of a test particle
before the collision events with small impact parame-
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ters, accompanied by large momentum transfers, come
into play. It is this circumstance that is responsible for
the appearance of a new characteristic spatial scale λe.
The new spatial scale has a clear physical meaning: for
the interaction potentials U(r) ~ 1/rk with k > 1, the
momentum transfer is governed by head-on collisions
(i.e., collisions between the particles whose impact
parameters are small), and, for the potentials U(r) ~ 1/rk

with k < 1, it is governed by long-range collisions
(i.e., collisions between the particles whose impact
parameters are large). The intermediate case k = 1 pos-
sesses unique properties and should be investigated
separately.

It is also of interest to note that our approach to ana-
lyzing low interaction potentials that have no singular-
ities over the entire plasma volume and that come into
play on the finite radial scale r0 or shorter actually does
not result in a characteristic spatial scale of about

, although such a spatial scale does not contra-
dict the dimensionality considerations. This circum-
stance provides evidence that the new spatial scale,
which appears in the problem of Coulomb interaction
and can formally be supported by “naive” interpreta-
tions, has a deep dynamical meaning. In order to better
understand the role of the new scale in the physics of
Coulomb interaction, we can rewrite λe in the form λe =
(rDrmin)1/2 [the clear physical interpretation of the scale
(rDrmin)1/2 as has been associated with the “statistical
spreading” of particle trajectories in a plasma is dis-
cussed in Appendix 4].

6. CONCLUSION

We have shown that the profound difference
between the physics of systems with the Coulomb
potential of interaction among the particles and systems
with other interaction potentials consists in the pres-
ence of a nontrivial characteristic short spatial scale in
former systems. Accounting for the multiparticle nature
of particle scattering in plasmas improves the formulas
containing the Coulomb logarithm (e.g., the expression
for the polarization losses in a plasma) through the
refinement of the numerical coefficients in front of
it [4]. However, this problem is closely associated with
the question of whether the Born and quasiclassical
approximations can be applied to describe an almost
ideal nondegenerate plasma and requires separate
investigation. We emphasize that taking into account
the new short spatial scale that results from the multi-
particle character of the lower limit in the Coulomb
logarithm should inevitably modify the applicability
conditions for these approximations [3]. In this sense,
the problem we have analyzed serves only to illustrate
the fundamental role of the small-scale fluctuation elec-
tric fields, so that each approach that neglects fluctua-
tion electric fields and/or describes the interaction
between particles in terms of binary collisions [2, 3]
requires strong justification for its use.

1/nr0
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We emphasize that the Coulomb logarithm enters
the expressions for the transport coefficients in a ther-
modynamically equilibrium plasma that are derived
from the kinetic equation with the Landau collision
integral. This raises the question of whether the trans-
port coefficients with the Coulomb logarithm lowered
by a factor of approximately two will reduce accord-
ingly. To answer this question, note that the kinetic
equation with the Landau collision integral was derived
in the approximation in which plasma fluctuations are
neglected, so that the related Coulomb logarithm is
consistent with this approximation. For this reason, the
transport coefficients can be evaluated correctly only
with allowance for the contribution to the Coulomb
logarithm from the fluctuations, which, in turn, should
be examined systematically, taking into account their
contribution to the kinetic coefficients. However, this
problem, which is of crucial importance and was par-
tially analyzed in our earlier papers, is beyond the
scope of this study. To avoid misunderstanding, we
emphasize again that, in this paper, the problem is con-
sidered in the limit of infinitely large values of the Cou-
lomb logarithm.
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APPENDIX 1

First, we evaluate the vector defined in integral
form:

(A1.1)

We introduce a coordinate system in which the z-axis is
aligned with the vector v. In these coordinates, we have

(A1.2)
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where r = xi + yj + zk.
For further analysis, it is convenient to transform

(A1.2) to elliptic coordinates. Let the origin of the ellip-
tic coordinates be located at the point A, and let B be the
point with the coordinates (0, 0, –vτ). We denote by ra

and rb the distances from the point with the position
vector r to the points A and B, respectively. We define
the elliptic coordinates as

(A1.3)

the third coordinate being the angle φ of rotation of a
triangle with vertices at the points A and B and at the
point with the position vector r around the z-axis.

In elliptic coordinates, the quantity I0 has a very
simple form,

(A1.4)

We introduce the following function, which is linear in
u and r:

(A1.5)

According to (A1.1) and (A1.5), we can write

. (A1.6)

In elliptic coordinates, by virtue of ∂I0/∂ν = ∂I0/∂φ = 0,
(A1.6) reduces to

(A1.7)

Inserting (A1.5) into (A1.7) yields

(A1.8)

We now need to investigate the properties of the inte-
gral
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in the limit of small u values. In elliptic coordinates, the
integral in (A1.9) has the form

so that we have

(A1.10)

which gives ImU = 0. This equality can be verified in a
straightforward way. We rewrite the integral in (A1.10) as

(A1.11)

and expand the sine function in powers of its argument
to obtain that all of the expansion coefficients vanish:

where n is an arbitrary nonnegative integer. Conse-
quently, we can rewrite (A1.9) as

(A1.12)

We consider the limit of small |u| values. As will be
shown below, the main contribution to the integral in
(A1.12) comes from the spatial region where the argu-
ment of the cosine function is small [the contribution of
the region where the argument is larger than or close to
unity turns out to be small because the quantity ln(1/ |u|)
is large]. As a result, we obtain

(A1.13)
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where the domain of integration G is limited by the ine-
quality

(A1.14)

We need to evaluate the quantity U with logarithmic
accuracy in terms of the parameter ln(1/|u|). Using
(A1.8), (A1.13), and (A1.14), we obtain to the lowest
order in ux, uy, and uz

(A1.15)

where (u) – 1 = e4(  + )/v 4τ2. It is an easy
matter to take the integrals in (A1.15), so that, with the
desired accuracy, we finally arrive at

(A1.16)

APPENDIX 2

In order to make the analysis more clear and com-
pact, we illustrate how the Coulomb logarithm can be
used as a large parameter, taking as an example the
integral of a function of one variable. We consider the
function f(p) defined in terms of the Gaussian integral,

(A2.1)

Of course, the integral in (A2.1) is easy to take and the
final result is well known. However, in order to clarify
the general approach to the problem, it is of interest
to consider the method for evaluating this integral. Let
p > 0. Note that the derivative of the argument of the
exponential function in (A2.1) vanishes at the point
u(p) = ip/2, which lies in the upper half-plane. We con-
vert from an integration over the positive real semiaxis
to an integration over a new contour composed of a seg-
ment between the points 0 and u(p) at the imaginary
axis and a horizontal ray between the point u(p) and the
infinitely remote point u(p) + ∞. Since, for large values
of p, the integrand in (A2.1) is exponentially small
along the ray between the point u(p) and the infinitely
remote point u u(p) + ∞, the ray makes an exponentially
small contribution to the integral. Over the segment
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between the points 0 and u(p), the integrand is not
exponentially small, so that the contribution to the inte-
gral from the segment also is not exponentially small.
However, this contribution is purely imaginary and
does not affect the real part of the function f(p) in
(A2.1).

This example allows us to understand why, in the
range of large p values, the integrals of the form (A2.1)
are very sensitive even to slight changes in the argu-
ment of the exponential function: the contribution of
the integral over the segment at the imaginary axis,
which may contain a nonzero real part, can be much
larger than the contribution of the horizontal ray.

We consider a function having a logarithmic singu-
larity at the origin of the coordinates in the complex
plane; i.e., we analyze the function f*(p) defined by

(A2.2)

where p @ 1 and R  +∞. We choose the integration
contour to be composed of a segment between the
points 0 and u*(p) = ip/2ln(R2/p2) at the imaginary axis,
a horizontal segment between the points u*(p) and
u*(p) + R/2, and a segment between the points u*(p) +
R/2 and R/2. For large p values, only the contribution
from the segment at the imaginary axis is not expo-
nentially small, so that it is sufficient to consider the
quantity

(A2.3)

Note that the last term in the integrand in (A2.3) results
from a logarithmic singularity in the argument of the
exponential function in (A2.2). If this term were absent,
then ∆ would vanish. To exploit the large value of the
logarithm ln(R2/p2), we introduce a new variable z such
that u = zp/ln(R2/p2). In the argument of the exponential
function in (A2.3), we retain the leading-order terms in
ln(R2/p2) and keep the imaginary term, which appears
due to the logarithmic singularity. As a result, in the
limit ln(R2/p2)  +∞, we obtain

(A2.4)
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Expression (A2.4) incorporates a logarithmic singu-
larity in the limit of infinitely large values of the Cou-
lomb logarithm. It is easily seen from (A2.2) and
(A2.4) that the function f*(p) is Gaussian at p2 <  =

2ln(R2)ln(ln(R2)) and decreases as 1/p3 at p2 > .

Now, we can examine the distribution function

(A2.5)

where u = (ux, uy) and p is the two-dimensional vector
whose distribution we study here. The relation between
the distribution function (A2.5) and expression (A1.16)
is obvious. Our purpose is to study the “tail” of distri-
bution (A2.5) at p  ∞. Since the function f0(p)
depends only on the absolute value of the vector p, we
can assume without loss of generality that this vector is
directed along the x-axis. We introduce the new integra-
tion variable x = pu to obtain 

(A2.6)

To study the asymptotic behavior of the function f0 at
p  ∞ accurate to the terms decreasing as 1/p4 or
more rapidly, it is sufficient to rewrite the integrand of
expression (A2.6) in the form

(A2.7)

It is easily seen that the principal power-law part of the
function f0 at p  ∞ is

(A2.8)

where a = (ne4 τ)/(4πvp4) and b =

(πne4 τ ln(v4p2τ2/ e4))/(vp4). Integrating (A2.8) by
parts over the variable ξx, to first order in p, we obtain

(A2.9)
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The integral in (A2.9) is easy to calculate. First, we
integrate over ξx by shifting the path of integration to
the complex plane. The expression obtained is elemen-
tarily integrable over ξy. As a result, we obtain

(A2.10)

It is easy to verify that expression (A2.10) describes the
distribution function at p2 > ln(Λ/4), where Λ is the
root of the equation Λ = ln(2πΛn(vτ)3). At smaller val-
ues of p, the distribution function is Gaussian,

(A2.11)

The distribution function (A2.10) describes the scatter-
ing of only 1/(Λ ln(Λ/4)) fraction of all the particles;
however, in the general case, the second moment of the
momentum transferred related to these particles turns
out to be significant. Therefore, the passage to the limit
Λ  ∞ is rather nontrivial. In this paper, we do not
consider this problem in more detail, because here we
are interested just in the limiting case Λ = +∞. The
question of what real situation this limit corresponds to
deserves a separate study.

APPENDIX 3

To find the second moment of the momentum trans-
ferred, we must evaluate the integral

(A3.1)

Using (A1.1) and (A1.4), we obtain

(A3.2)

APPENDIX 4

Here, we consider how the finite plasma permittivity
(i.e., the Debye screening of the Coulomb potential of
the interaction between plasma particles) can be incor-
porated into our approach. Note that the screening of
the Coulomb interaction potential should be described
with allowance for correlation between the plasma par-
ticles. On the other hand, the expressions for the char-
acteristic functions involved in our analysis were
derived without allowance for correlation between the
plasma particles. This brings about the question of
whether it is possible in principle to refine the charac-
teristic functions so as to take into account the Debye
screening. Note that, in the limit of an arbitrarily large
number of particles within the Debye sphere, the

f 0 p( )
4πnZ0

2e4τ
v p4

------------------------.=

p0
2

f 0
1

4πp0
2

------------ p2

2 p0
2

--------–
 
 
 

.exp=

I1 I I,( )d
3r.∫=

I1
vτ
2

------ µ µ2
1–( ) ν

∂I0

∂µ
------- 

 
2

φd

0

2π

∫d

1–

1

∫d

1

+∞

∫=

=  
8πτ
v

--------- µd

µ2
1–

--------------.

1

+∞

∫

PLASMA PHYSICS REPORTS      Vol. 26      No. 6      2000
motion of each plasma particle can be regarded as
being statistically independent of the other particles.
However, the finite Coulomb interaction potential per-
turbs the trajectories of the particles, thereby giving rise
to correlation between them. It is the slight deforma-
tions of the particle trajectories that are responsible for
the screening of the Coulomb potential.

To make simple estimates, we consider a test elec-
tron moving with a nearly thermal velocity in a plasma
and interacting with another thermal electron (or ion)
whose impact parameter is equal to R. After the colli-
sion event, the trajectory of the test electron is dis-
placed by a distance of about δx. In other words, the
collision event causes the point at which the trajectory
of the test electron leaves the sphere of radius, e.g., 2R,
with the center at the point at which the particle scatter-
ing occurs to displace by the distance

(A4.1)

where vT is the electron thermal velocity. However, the

Debye sphere contains about ND = n  particles, which
perturb the trajectory of a test electron in a statistically
independent manner. Consequently, the deviation ∆x of
the trajectory of the test electron that has traversed the
Debye sphere from the unperturbed trajectory can be
estimated as

(A4.2)

This indicates that Coulomb interaction among plasma
particles and the related correlations force the particles
to make random excursions away from their unper-
turbed trajectories on a spatial scale of about (rDrmin)1/2.
In other words, the plasma particles are statistically
“smeared” around their unperturbed trajectories, while
the “smeared” trajectories remain statistically indepen-
dent. This analysis results in the appearance of the char-
acteristic spatial scale (rDrmin)1/2, which makes it possi-
ble to distinguish between the phenomena for which
the notion of Debye screening is consistent with the
approach to treating the plasma particles in a statisti-
cally independent fashion.

The above analysis provides a way to incorporate
the Debye screening into the approach developed. We
can readily see that, to account for the Debye screening
on time scales τ such that τmin[v*, V*] @ rD, it is suffi-
cient to carry out the manipulations from Appendix 1
with another expression for I0. Specifically, in the cal-
culations to logarithmic accuracy with allowance for
Debye screening, we may set

(A4.3)
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and I0 = 0 at any point (x, y, z) outside the cylinder (x2 +

y2 < , –vτ < z < 0), in which case the calculations are
simpler to perform in cylindrical coordinates.

APPENDIX 5

Since any gas medium consisting of interacting par-
ticles can be characterized by a certain evolving spatial
distribution of the interaction potential, we can con-
struct the dimensionless parameter

(A5.1)

where pch is the characteristic change in the momentum
of a particle on a characteristic time scale and Πch is the
characteristic potential difference between the points at
the beginning and end of the characteristic time interval.
Note that such gases can be described by the theory of
binary collisions, because the parameter Θ is large. In
fact, the theory of binary collisions assumes that a col-
lision event either has not yet occur or has already come
to an end; i.e., we always have Πch = 0 and, accordingly,
Θ = +∞. For a gas with a short-range interaction poten-
tial, as the characteristic time scale, one must adopt the
mean free time, in which case Θ  +∞. The situation
with a plasma is radically different: the characteristic
time scale should be set to be 1/ωpe , so that, for an elec-
tron moving with a nearly thermal velocity, we obtain
the estimates

(A5.2)

which yields

(A5.3)

(A5.4)

where ND = n  is the number of particles inside the
Debye sphere.

On the other hand, the theory of binary collisions
between plasma particles does not take into account the
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potential energy distribution in a plasma and, conse-
quently, implicitly assumes redefinition of the particle
momentum in formulas: the momentum transferred to
a particle always means the change in the momentum
of a particle due to the collision events that have already
come to an end. From the standpoint of the long-range
nature of the Coulomb potential, the momentum trans-
ferred between two particles in a collision event is a
poorly defined mathematical quantity, which may dif-
fer substantially from the momentum really transferred.
The simplest way to see that is to analyze the squared
moment of the change in the z-component of the
momentum of a test particle using formula (A1.16) and
the methods of the theory of binary collisions [3].
These two approaches give results that differ by a factor
of approximately ND (to avoid misunderstanding, we
emphasize that the second moment of the longitudinal
momentum transferred is a small quantity in compari-
son with the second moment of the transverse momen-
tum transferred; this indicates that such a large differ-
ence causes no dramatic consequences, because this is
merely the difference in a small correction to the lead-
ing-order term in the kinetic equation [3]: the correc-
tion always remains small, no matter how much the val-
ues obtained with the above approaches differ from one
another).
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Abstract—A variational method for separating fast and slow motions in quasi-Lagrangian continuous media
is proposed, which makes it possible to discard fast stable collective degrees of freedom and to derive simpler
(reduced) nonlinear equations describing the adiabatic dynamics of quasi-Lagrangian systems. The method is
applied to derive an improved version of the reduced Kadomtsev–Pogutse–Strauss MHD equations that
describe the dynamics of a tokamak plasma with steady-state sheared flows, as well as adiabatic equations for
two-dimensional modeling of MHD plasma convection near the threshold for flute instability in systems like
compact tori. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The well-known method of the adiabatic separation
of weakly coupled fast and slow motions is widely used
in classical mechanics. The method is based on reveal-
ing rapidly oscillating stable degrees of freedom in the
dynamic system under analysis. The characteristic
oscillation period Tf of the fast motion should satisfy
the condition Tf/τs ~ ε ! 1, where τs is the characteristic
time of slow motions. Further analysis of the fast
degree of freedom involves the construction of an adia-
batic invariant, i.e., an approximate integral of motion,
which remains unchanged during a slow evolution (on
a time scale of about τs) of the system. This slow evolu-
tion can be described by adiabatic (reduced) equations
of motion that are derived from the complete set of
basic equations under the assumption that the adiabatic
invariant is an exact integral of motion of the system.
An obvious advantage of the adiabatic description of
the system dynamics is that it becomes possible to
reduce the number of independent degrees of freedom
and to exclude the short time scales from consideration
(the latter circumstance is especially important for
developing computer codes). As a rule, allowing for an
additional integral of motion (adiabatic invariant) also
makes it possible to reveal important qualitative fea-
tures of the system dynamics that are hidden attributes
of the complete set of basic equations. As an example
illustrating the advantages of adiabatic equations in
plasma physics studies, we can mention drift equations
describing particle motion in a strong magnetic field.

Many of the mathematical methods that were origi-
nally developed in classical mechanics for systems
with a finite number of degrees of freedom (in particu-
lar, Lagrangian and Hamiltonian formalisms) have
been successfully applied to continuous media, which
are described by various quasi-hydrodynamic models
(see, e.g., reviews [1, 2]). Thus, it seems worthwhile to
apply the method of adiabatic separation of fast and
slow motions to a description of continuous media.
1063-780X/00/2606- $20.00 © 20529
However, the implementation of this approach runs into
serious difficulties that stem primarily from the fact that
continuous systems are characterized by a continual or
denumerable set of the degrees of freedom, so that we
can only speak of the adiabatic separation of infinite
subsets (or classes) of the degrees of freedom charac-
terized by different time scales (rather than individual
degrees of freedom).

The first problem is to prove that there is no resonant
interaction between the motions associated with the
degrees of freedom that are to be separated. A rigorous
mathematical treatment of this problem is very compli-
cated even when the number of degrees of freedom is
finite (see, e.g., review [3]). However, discarding a rig-
orous proof, we can formulate this problem in a slightly
different manner, i.e., as the problem of the stability of
fast motion in the presence of a prescribed slow motion.
In this case, based on the preliminary analysis and a
priori data, we can, first, separate the motions in a
desired fashion, assuming that the fast motion is stable
and, then, establish whether the fast motion is stable in
the presence of the most interesting and important
modes of the slow motion.

The second difficulty is associated with the develop-
ment of an adequate procedure for separating fast and
slow motions, because, in the case of continuous
media, this procedure is rather nontrivial and is a priori
unclear. Solving this problem is the main objective of
our paper.

The third problem—the construction of adiabatic
invariants for continuous media—seems to be the most
complicated, because the desired invariants should
reflect the conservation of the phase volume of a subset
of fast motions, which is characterized, as a rule, by an
infinite number of coupled collective oscillatory
degrees of freedom. To the best of my knowledge, an
adequate mathematical formalism for treating this
problem is lacking. However, we can easily overcome
this difficulty for many specific dynamic problems for
000 MAIK “Nauka/Interperiodica”
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continuous media. The reason is that, to the lowest
order, the adiabatic invariant under discussion, regard-
less of the details of its structure, is proportional to a
weighted sum of the squared amplitudes of fast oscilla-
tions. In other words, for this order, the adiabatic invari-
ant is positively definite. If no fast oscillations are
excited in the initial state (i.e., the invariant is initially
equal to zero), then the conservation of the invariant
guarantees that no fast motions will be driven during an
arbitrary adiabatic evolution of a slow dynamic sub-
system.

Adiabatic equations with a zero adiabatic invariant
for fast degrees of freedom are applicable to a wide
variety of dynamic problems for continuous media, in
particular, the problems of stability and nonlinear con-
vection, formation of vortex structures, etc. A classical
example of the above set of adiabatic equations is the
equations of incompressible fluid that are derived by
eliminating fast stable acoustic oscillations from the
complete set of hydrodynamic equations.

Magnetically confined high-temperature plasmas
are often investigated by means of reduced MHD equa-
tions, which were first derived by Kadomtsev and
Pogutse [4, 5] for describing plasma dynamics in toka-
maks and were further developed in a number of papers
[6–9] (mostly by Strauss) with allowance for a low (but
finite) plasma pressure and longitudinal ion acoustic
oscillations. The key idea underlying the Kadomtsev–
Pogutse–Strauss (KPS) equations is to exclude fast sta-
ble magnetosonic (compressional Alfvén) waves from
the complete set of MHD equations and to consider
slower degrees of freedom associated with shear Alfvén
and longitudinal acoustic motions. In terms of the way
in which the KPS equations were constructed, they
seem to belong to the above class of adiabatic equa-
tions; however, the procedure used to separate fast and
slow motions in deriving these equations was not quite
accurate. For example, because of the assumed struc-
ture of the velocity field of slow motions, the force
terms in the basic equations of motion vanish only
through the leading order in e, while a correct reduction
procedure should drive the force terms to zero through
both the leading and first orders. That the reduced equa-
tions derived in [4–9] are incorrect is evidenced even
more clearly by the fact that they admit no solutions
describing plasma flows in steady states consistent with
the basic MHD equations, because an incorrect reduc-
tion procedure violates their symmetry properties. The
modified versions of reduced equations that were pro-
posed in more recent papers [10, 11] to describe the
dynamics of plasmas with steady-state, magnetic field–
aligned flows have the same drawbacks: in particular,
they admit no solutions describing general steady-state
plasma flows. In this connection, it is desirable to
derive an improved (completely adiabatic) version of
MHD equations that is free of these drawbacks.

The above examples do not exhaust the problem of
derivation of the adiabatic equations of motion for con-
tinuous media. An infinite number of degrees of free-
dom and a large number of possible adiabaticity param-
eters e stemming from the wide variety of specific prob-
lems necessitate the development of a fairly general
regular method of deriving adiabatic equations for a
large class of physical problems. This is the subject of
our paper. In Section 2, we describe the ideas underly-
ing the variational method for separating fast and slow
motions and deriving adiabatic equations for continu-
ous media. In Section 3, we apply this method to derive
an improved version of the KPS equations that is free
of the aforementioned drawbacks. In Section 4, we
derive adiabatic equations for modeling two-dimen-
sional MHD plasma convection near the threshold for
flute instability in systems of the compact torus type. In
Section 5, we briefly summarize the results obtained.

2. BASIC PRINCIPLES OF THE VARIATIONAL 
METHOD FOR SEPARATING FAST AND SLOW 

MOTIONS

The method proposed here for adiabatic separation
of fast and slow motions is applicable, strictly speak-
ing, to Lagrangian systems, i.e., those systems in which
the equations of motion can be derived from the princi-
ple of least action (Hamilton’s principle) (see, e.g.,
[12]). Typical examples of Lagrangian systems are
those described in terms of traditional magnetohydro-
dynamics, Chew–Goldberger–Low collisionless aniso-
tropic magnetohydrodynamics, Hall magnetohydrody-
namics, and other ideal hydrodynamic models. How-
ever, this method can also be applied to weakly
nonideal (quasi-Lagrangian) models, which can be
reduced to Lagrangian models by neglecting weak dis-
sipation.

We assume that the equations of motion for a system
can be derived from Hamilton’s variational principle

(1)

with the Lagrangian density L({αi}, {∂tαi}, {—αi}),
which depends on the nondegenerate set of the general-
ized coordinates αi(r, t) (i = 1, …, n) and their first
space and time derivatives. If there is an infinitesimal
transformation of the generalized coordinates, δsαi,
such that it does not change the Lagrangian of the sys-
tem, then, according to Noether’s theorem [12], the sys-
tem possesses an implicit symmetry and, accordingly,
the related additional integral of motion. In mathemat-
ics, the transformation δsαi that depends only on the
generalized coordinates is known as point transforma-
tion, while, in hydrodynamic problems, it is referred to
as relabeling transformation. In the latter case, in terms
of classical mechanics, the transformation δsαi corre-
sponds to the variation of a certain cyclic coordinate
and the canonical momentum conjugate to this coordi-
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nate is an integral of motion. An important conse-
quence of momentum conservation is the existence of
dynamic steady states of a system that possess relabel-
ing symmetry. In continuous systems, these are states
with steady n-dimensional flows, whose velocity fields
are similar in structure to the transformation δsαi. In
particular, for toroidal MHD configurations with nested
magnetic surfaces (tokamaks, stellarators, etc.), analo-
gous symmetry transformations and similar structures
of the related steady-state flows were obtained by
Il’gisonis and Pastukhov [13].

Now, we assume that the system described by the
equations derived from Hamilton’s principle (1) pos-
sesses motions that occur on different time scales. This
indicates that the Lagrangian of the system implicitly
contains the parameter e ! 1, which reflects the ratio of
the characteristic times of fast and slow motions. As a
rule, the manifestation of the parameter e is that the
expression for the perturbed potential energy contains
terms of order unity and e2, which correspond to struc-
turally different classes of motions. By analogy with
the procedure of searching for a symmetry transforma-
tion, we are seeking an infinitesimal transformation
δaαi that does not change the Lagrangian of the system
through both the leading and first orders in e. In other
words, we are interested in the transformation satisfy-
ing the condition

(2)

If a transformation of this sort (which will be referred
to as adiabatic transformation) does indeed exist, then
it plays a role similar to that of the symmetry transfor-
mation for fast motion. In fact, the equations describing
the dynamics of fast motion on time scales shorter than
the characteristic time of slow motions can be derived
from Hamilton’s principle (1) by neglecting terms on
the order of e2 in the variation of the Lagrangian.

If the functions δaαi satisfying condition (2) depend
only on the generalized coordinates αi and slow time,
δaαi = f i({αj}, et), then the functions δaαi play the role
of relabeling transformation but only for fast motion.
To continue drawing an analogy with symmetry trans-
formations, we introduce an adiabatic field of the gen-
eralized velocities that has the same functional struc-
ture as the transformation δaαi. For fast motions, the
adiabatic velocity field plays the role of the above
steady-state (neutral) flows. If no fast stable degrees of
freedom (fast motions) are excited at the initial state
(this corresponds to a zero adiabatic invariant, which
was mentioned in the Introduction), then the system
only evolves in the frame of the adiabatic velocity field,
as is the case with conservation of the steady-state char-
acter of the flows in a stable system possessing the cor-
responding type of symmetry.

δa L α i{ } ∂tα
i{ } —α i{ } e, , ,( )d

3r
Γ
∫ O e

2( ).=
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Since the transformation δaαi is a certain subset of
the initial set of arbitrary variations of the generalized
coordinates, the functions δaαi and, accordingly, the
generalized velocities depend on a smaller number
(na < n) of independent functions (adiabatic generalized
coordinates) and can be obtained from a smaller num-
ber of equations, e.g., from na independent conse-
quences of the basic set of the equations of motion.
However, a more regular method, which is analogous to
that of deriving the Lagrange equations from the varia-
tional principle (1), consists in driving to zero the coef-
ficients in front of the independent variations of na adi-
abatic generalized coordinates in equation (1) taken
with δαi = δaαi. The equations constructed in this fash-
ion, together with the adiabatic velocity field, constitute
the desired set of adiabatic (reduced) equations describ-
ing the dynamics of slow motion when no fast stable
motions are initially excited.

Hence, the procedure outlined above provides a reg-
ular method for both solving the problem of the adia-
batic separation of fast and slow motions and deriving
adiabatic equations that describe the dynamics of slow
motion. Since the symmetry transformations δsαi of the
basic equations are a subset of the set of the adiabatic
transformations δaαi, the way in which the latter are
constructed implies that the adiabatic equations of
motion possess all of the symmetry properties of the
basic equations. In particular, the adiabatic equations
admit such solutions describing plasma flows in steady
states that are consistent with the basic equations of
motion. We emphasize that, for the proposed procedure
to be correct, it is necessary to satisfy all of the condi-
tions formulated above.

The procedure for applying the method developed
here to weakly nonideal systems consists of the follow-
ing steps. First, it is necessary to neglect dissipation and
to rewrite the basic set of equations in Lagrangian form.
Second, in the resulting Lagrangian model, fast and
slow motions should be separated adiabatically. If the
fast degrees of freedom constitute a stable subsystem
with positive energy, then the effect of dissipative pro-
cesses on the fast subsystem shows up exclusively as a
reduction in its energy, which does not change the con-
dition for the conservation of the zero adiabatic invari-
ant. And finally, the basic nonideal equations should be
taken with the resulting adiabatic velocity field in order
to obtain na independent consequences required to
describe the slow nonlinear dynamics of the corre-
sponding adiabatic coordinates.

3. IDEAL ADIABATIC MHD EQUATIONS 
FOR TOKAMAK-LIKE MAGNETIC 

CONFINEMENT SYSTEMS

To illustrate how the procedure outlined above
should be applied, we will first derive adiabatic equa-
tions describing ideal MHD plasma dynamics in a tor-
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oidal magnetic confinement system with nested mag-
netic surfaces and a low ratio of plasma to magnetic
field pressure, β ≡ 8πp/B2 ! 1. To simplify the formulas,
we restrict ourselves to considering steady-state axi-
symmetric (tokamak-like) systems, in which all of the
physical parameters in a steady state are independent of
the toroidal angle ϕ. In other words, we are going to
derive a more accurate version of the reduced KPS
equations [4–11]. Note that preliminary results of
deriving such adiabatic equations were briefly
described in my recent paper [14]. Here, we present the
derivation in a general form, with allowance for a num-
ber of important aspects.

As was mentioned in the Introduction, plasma
dynamics in a strong magnetic field (β ! 1) is charac-
terized by motions with relatively weak perturbations
of the magnetic field. According to linear theory, the
magnetic field energy is perturbed most strongly by
magnetosonic oscillations with the characteristic fre-
quency ω ~ CA |—⊥ | (where CA is the Alfvén speed). On
the other hand, the most interesting dynamic processes
(in particular, those driven by MHD instabilities) are
associated with perturbations that are very stretched out
along the magnetic field (|—||| ! |—⊥ |) and have charac-
teristic frequencies typical of Alfvén waves, ω ~ CA|—|||,
or lower. Since, in such processes, fast stable magneto-
sonic degrees of freedom remain essentially unper-
turbed, we can exclude them from consideration with
the help of the procedure proposed for the adiabatic
separation of motions.

As in the KPS equations, we adopt the ratio of the
poloidal to toroidal magnetic fields (or the inverse
aspect ratio) e = Bp/BT ~ a/R (where a and R are the
minor and major radii of the toroidal plasma column) as
a small parameter of the adiabatic separation of motions.
By analogy with the KPS equations, we also assume that
the transverse and longitudinal gradients of the per-
turbed quantities satisfy the condition |—||| ≤ e|—⊥ | and
that β ~ e2a |—⊥ |.

We consider the variation of the standard
Lagrangian in the one-fluid MHD model [15]:

. (3)

Here and below, the coefficient 1/4π is incorporated
into the normalized field B. In (3), the variations of the
physical quantities are not completely independent,
because they should satisfy the frozen-in equation, con-
tinuity equation, and adiabatic equation:

(4)

(5)

(6)

where s = p/ργ is the entropy function. Equations (4)–
(6) are local conservation laws in the sense that the cor-

δ+ r3 ρV δV
V

2

2
------δρ δp

γ 1–
-----------– B–+ δB⋅ ⋅ 

 d∫=

∂tB curl V B×[ ] ,=

∂tρ div ρV+ 0,=

∂ts V —s⋅+ 0,=
responding Lie derivatives vanish. The scalar functions
satisfying equation (5) are often called local Eulerian
invariants (LEI), and the functions satisfying equation
(6) are referred to as local Lagrangian invariants (LLI).
According to [15], equations (4)–(6) can generally be
integrated by introducing three independent LLI αi,
which play the role of generalized coordinates with a
nondegenerate Jacobian J = —α1 · [—α2 × —α3] ≠ 0. In
this case, J (similarly to ρ) satisfies equation (5).

In this paper, we are considering magnetic systems
with an omnigenous topology of the toroidal magnetic
surfaces. Following paper [13], which presents the
most detailed analysis of the dynamics of such confine-
ment systems, we choose the poloidal magnetic flux ψ
and the angle variables θ and ζ as the Lagrangian coor-
dinates. In the initial steady state, the latter are the
poloidal and toroidal angles in the flux coordinate sys-
tem with straightened magnetic field lines [16]. In these
variables, the physical quantities B, ρ, and s satisfying
equations (4)–(6) are represented as

(7)

where q(ψ) is the traditional safety factor, f is an
arbitrary function of the Lagrangian coordinates, and
J = —ψ · [—θ × —ζ]. The coordinates just introduced
generate the contravariant basis —ψ, —θ, and —ζ and
the covariant one

in which the velocity has the form

(8)

where a superior dot denotes the partial derivative ∂t.
The above expressions allow us to explicitly express
the Lagrangian of the system as a function of the inde-
pendent Lagrangian coordinates and their first space
and time derivatives, which is especially important in
seeking both symmetry and adiabatic transformations
with the help of the method described in the previous
section.

In systems with axisymmetric steady states (such as
tokamaks), all of the physical quantities in a steady
state are independent of ζ. For such systems, the veloc-
ity of the neutral flows can be written as [13]

(9)

where κ(ψ) and Φ0(ψ) are arbitrary functions of ψ that
specify the transverse profiles of the flows. The rela-
tionships curl[V0 × B] = 0, divρV0 = 0, and V0 · —s = 0

B —ψ q—θ —ζ–( )×[ ] ,=

ρ Jf ψ θ ζ, ,( ), s s ψ( ),= =

eψ —θ —ζ×[ ] /J , eθ —ζ —ψ×[ ] /J ,= =

eζ —ψ —θ×[ ] /J , =

V eψψ̇– eθθ̇– eζ ζ̇ ,–=

V0 κ ψ( )B
ρ
---- Φ0' ψ( )eζ–=

=  
B
qJ
------ κ qJ

ρ
------ Φ0'– 

  1
qJ
------ —ζ —Φ0×[ ] ,+
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imply that the neutral flows do not change the real
physical quantities B, ρ, and p and the basis vectors
—ψ and eζ in both a steady state and in an arbitrary
dynamic state. However, in the presence of neutral
flows, the remaining basis vectors are time-dependent
even in a steady state. Since this circumstance compli-
cates further analysis, we switch to modified (pseudo-
Lagrangian) flux coordinates satisfying the conditions

(10)

where v = V – V0. This change makes it possible to
eliminate the secular (in time) terms associated with
neutral flows from the independent variables. In partic-
ular, in a steady state, the pseudo-Lagrangian function
ζ coincides with the traditional toroidal angle ϕ. In the
modified flux coordinates, expressions (7) and (9)
remain unchanged, while V in (8) should be replaced
by v. Since —ζ will play the role of the basis vector of
the adiabatic transformation, it is important to note that
the functions ζ and θ defined in such a manner satisfy
the condition |—ζ | ~ e |—θ|.

With allowance for (7), the leading-order term in the
variation of the Lagrangian (1) has the form

(11)

We can readily see that, in (11), the first term is domi-
nant. The adiabatic transformation of independent vari-
ables that drives the first term to zero is

(12)

where δα and δζ are arbitrary functions of the coordi-
nates and time. By analogy with [13], this transforma-
tion can be written in terms of the infinitesimal dis-
placement vector

(13)

A comparison with (9) clearly shows that, for δα =
Φ0(ψ)τ and δζ = (κqJ/ρ – )τ (where τ is an arbi-
trarily small quantity having the dimensionality of
time), transformation (13) passes over to the symmetry
transformation. Under the adiabatic transformation
(13), the remainder in expression (11) becomes

(14)

so that, for |—||δα| ~ e |—⊥ δα|, it is on the order of e2.
With allowance for —⊥ qJ ~ eqJ/a, we obtain the esti-

ψ̇ v —ψ⋅+ 0, θ̇ v —θ⋅+ 0,= =

ζ̇ v —ζ⋅+ 0,=

B δB⋅ B
2

q
------ eψ — qδψ( ) eθ — qδθ δζ–( )⋅+⋅( )=

– JB eθ
q'
q
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qJ
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 ⋅

– B eψ B —δψ⋅( ).⋅

δaψ
1
q
---eθ —δα , δaθ⋅ 1

q
---eψ– —δα δζ

q
------,+⋅= =

xa
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qJ
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------Bδζ .–=
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mate divxa ~ e|—⊥ xa |, and, with allowance for the initial
assumption about the β value, we find δap ~ B2ξβ/a ~
O(e2). Under the traditional hydrodynamic assumption
that, in order of magnitude, V does not exceed the speed
of sound cs, the term V2δaρ is of the same order. For an
arbitrary (unreduced) motion, the term ρV · δv is on the
order of e, because x depends on the fast time. In this
case, we have δv ~ CA|—⊥ ξ |. To make this term compa-
rable in order of magnitude to the remaining reduced
terms, we consider the following form of δav, which can
be obtained with allowance for the relationship δv =

 + (v · —)x – (x · —)v:

(15)

For the quantity δav to be of the desired order, it is nec-
essary to satisfy the conditions δa  + v · —δaα ~

eCA |—⊥ δaα | and δa  + v · —δaζ ~ eCA  |—⊥ δaζ |, which
imply that the functions δaα and δaζ depend only on the
pseudo-Lagrangian coordinates and slow time; in other
words, they play a role similar to that of the relabeling
transformation for fast motion. By analogy with the
neutral flows treated in [13], such infinitesimal adia-
batic transformations refer to adiabatic flows of the
form

(16)

which do not excite fast degrees of freedom. In (16), φ
and ν are arbitrary functions of the pseudo-Lagrangian
coordinates and slow time.

Expression (16) specifies the general structure of the
adiabatic velocity field va. In the absence of fast

motions, equations (10) yield ν = . With allowance for
the definitions of the velocities v and V0 and of the
cross-helicity χ = V · B, the general structure of the adi-
abatic velocity field can be represented as

(17)

where η = B · —ζ = qJ, the quantity Φ = φ + Φ0(ψ) has
the meaning of the electric potential, and the relation-
ship

determines adiabatic variations of the vector potential.
Accordingly, the adiabatic frozen-in equation takes the
form

ẋ

δav
1

qJ
------ —ζ — δα̇ v —δα⋅+( )×[ ]=

– B
qJ
------ δζ̇ v —δζ⋅+( ).
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ζ̇
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qJ
------B,–=
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B
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η
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 × B
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B

2
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η
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(18)

As was mentioned in the previous section, the adia-
batic equations of motion can be derived from Hamil-
ton’s principle (1). To do this, we substitute the adia-
batic variations (3) of the Lagrangian into (1), perform
straightforward integration by parts, and equate to zero
the coefficients of the independent functions δα and δζ,
which now can be regarded as arbitrary functions of r
and t (here and below, we omit the subscript a). Forcing
the coefficient of δζ to zero and taking into account the
pseudo-Lagrangian character of the functions ρ/η and
s = s(ψ), we arrive at the following differential conser-
vation law for the cross-helicity:

(19)

which is also valid for the basic (unreduced) MHD
equations and can be obtained by multiplying the com-
plete equation of motion by B/ρ. In particular, the con-
servation law (19) gives the first of the integral inva-
riants (29) in [13]. Driving the coefficient of δα to zero,
we arrive at the second dynamic equation of the adia-
batic MHD model in the form of the conservation law
for the generalized momentum Pα, which is canonically
conjugate to the adiabatic coordinate α:

(20)

This equation can also be derived directly from the
unreduced vector equation of motion.

Equations (17)–(20), which are the basic equations
of the adiabatic MHD model, should be supplemented
with the equations for ζ and η in the form

(21)

following from (17) and (18); the equations for ψ and ρ,

(22)
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and the explicit equation relating the functions Φ and
Pα,

(23)

where  = B2/ρ is the squared Alfvén speed. Equa-
tions (17)–(23) are similar to the corresponding
reduced equations of the well-known models [4–11].
However, in contrast to the latter, equations (17)–(23)
possess all of the symmetry properties of the basic set
of equations; in particular, they admit solutions
describing steady states with general plasma flows (9)
and are applicable to configurations with arbitrarily
shaped cross sections of the magnetic surfaces ψ =
const in a steady state. On the other hand, the velocity
field (17), strictly speaking, does not form a subclass of
the exact solutions to the basic set of MHD equations.
In this sense, the proposed MHD model should be
regarded as a new, relatively independent set of equa-
tions. The question of the complete group of symme-
tries of the new model and the set of corresponding
invariants requires further investigation and goes
beyond the scope of our paper.

In solving particular problems, some of the higher-
order terms in equations (17)–(23) can, in principle, be
omitted. It should be noted, however, that special care
is needed in doing this in order not to violate the self-
consistent character of the resulting set of equations
and their symmetry properties. As the simplest exam-
ple, we derive the equations needed to analyze the sta-
bility and nonlinear dynamics of the kink modes in the
absence of steady-state plasma flows (V0 = 0).

First, we neglect the term with B · — in equation
(19), which thus becomes the local conservation law for
the cross-helicity:

(24)

This equation is a nonlinear generalization of the con-
dition for minimizing the term γp0div2x in the tradi-
tional energy principle for MHD stability [17]. In this
case, the condition χ|t = 0 = 0 and equation (24) imply
that χ = 0 throughout the evolution. Then, note that,

with allowance for (21), the derivative  is small and
contributes only to the terms that are as small as e2 in
comparison with the leading-order terms in equation
(20) (or to the terms that are on the order of e4 in the
hierarchy of the full MHD equations). Consequently,

we can set  =  = 0; i.e., ζ = ϕ and η = B0 · —ϕ = BT/R,
in which case equation (18) for the magnetic field can

Pα div
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be partially integrated and can be reduced to the equa-
tion for one scalar function :

(25)

where v = [—ζ × —φ]/η. Note that the function  dif-
fers from the perturbed poloidal flux satisfying the cor-
responding equation in (22).

Neglecting terms on the order of e2 in the remaining

equations, we can assume that B2 =  ≈  and  =

/ρ. We set p = p0 +  and ρ = ρ0 +  (where the sub-
script 0 stands for the equilibrium parameter values)
and eliminate the equilibrium parameters from the
equilibrium condition to reduce equation (20) to

(26)

where —p = — – —ϕ(∂/∂ϕ) is the poloidal gradient.
Under the above assumptions, it is convenient to write
equation (22) in the form

(27)

Equations (25)–(27) constitute a closed self-consis-
tent set, which accounts for the toroidal effects through
the first order in a/R and the effects of the finite plasma
pressure and nonuniform plasma density through the
first order in (k⊥ a)–1. When the nonlinear effects are
most pronounced in a thin layer near a rational mag-
netic surface, the above effects can be neglected, in
which case we can assume that ρ = ρ0 and omit equa-
tion (27) and the last two terms on the right-hand side
of equation (26).
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4. ADIABATIC EQUATIONS FOR MHD 
CONVECTION NEAR THE THRESHOLD 

FOR FLUTE INSTABILITY

Along with relatively universal small parameters,
such as the ratio Bp/BT in tokamaks and β, many
plasma-related problems may contain additional small
parameters associated, e.g., with the closeness to the
instability threshold for MHD modes. The additional
parameters also provide the possibility of separating
the motions adiabatically, in which case the role of slow
motions is played by the most dangerous modes, spe-
cifically, those for which the stability condition can be
violated. Of course, we must keep in mind that the adi-
abatic equations are valid as long as the system evolv-
ing in a nonlinear fashion remains near the instability
threshold. Even with allowance for this circumstance,
simpler adiabatic equations make it possible to reveal
the main characteristic features of the nonlinear evolu-
tion of unstable modes and, in some cases, to describe
the evolution of the instability fairly completely. Con-
sequently, to illustrate the adiabatic separation of fast
and slow motions, we will consider, as a second exam-
ple, the systems near the instability threshold.

In order to exhibit the properties of this situation
more clearly, we consider a simplified model problem
that has a deep physical meaning and is, at the same
time, nontrivial. Specifically, we consider a straight
unbounded equilibrium plasma cylinder with a purely
longitudinal initial current having an arbitrary radial
profile. In other words, we are dealing with configura-
tions similar to Z-pinches, in which the plasma is ini-
tially in equilibrium with the azimuthal magnetic field
produced by the longitudinal plasma current. Gener-
ally, this equilibrium state is unstable against both kink
perturbations, which give rise to the kink instability of
the plasma column, and sausage modes, which cause
the plasma to become inhomogeneous in the z direction
but do not violate the axial symmetry of the column.
However, instead of Z-pinches, we are modeling sys-
tems like compact tori [18, 19] and levitated dipole
configurations, which are topologically equivalent to
compact tori [20, 21]. In such systems, kink perturba-
tions can be stabilized by a surrounding conducting
wall or by a rigid internal ring. Consequently, assuming
that, in the system under consideration, the kink modes
are suppressed, we consider exclusively two-dimen-
sional motions that do not violate the axial symmetry of
the plasma cylinder.

As in the previous section, we describe MHD
plasma dynamics in terms of the three Lagrangian flux
coordinates {ψ, θ, ζ}, corresponding to the magnetic
flux per unit length, the azimuthal angle, and the longi-
tudinal coordinate, which coincides with the conven-
tional z-coordinate (ζe = z) in the equilibrium state. In

the absence of kink perturbations, we have  = 0. In
terms of the flux coordinates, the frozen-in magnetic
field can be written as B = [—ζ × —ψ]. On the other
hand, in the case of an arbitrary evolution of a two-

θ̇
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dimensional system, the magnetic field has the only
nonzero component, which is conveniently described
by one independent function, namely, the nondegener-
ate Jacobian J = [—ζ × —ψ] · —θ. As in the previous sec-
tion, the Jacobian J satisfies the continuity equation
∂t J + divVJ = 0, which plays the role of the frozen-in
equation (4) in the example under discussion, so that
we have B2 = r2J2, where r is the conventional radial
coordinate. It is also convenient to represent the plasma
pressure as p = smJγ, where the Lagrangian invariant sm,
satisfying equation (6), can be referred to as a “mag-
netic” entropy function or simply “magnetic entropy.”
The plasma density can be expressed in a similar man-
ner, ρ = fJ, where f is a Lagrangian invariant. The mag-
netic entropy function is related to the ordinary entropy
function, introduced in Section 3, by the simple rela-
tionship sm = sf γ.

With the notation adopted, the Lagrangian of the
system has the form

(28)

and the ordinary static equilibrium condition can be
written as

(29)

We can easily show that the solvability condition for
equation (29) is that the equilibrium quantities be
homogeneous in the z direction, in which case we can
set Je = Je(r) and sme = sme(r) (here and below, the sub-
script e denotes equilibrium quantities). In equilibrium,
r is a single-valued function of ψ,

consequently, at any instant, the Lagrangian invariant
sm depends only on ψ.

Then, following [13], we can readily show that the
variational symmetry properties of the system admit
not only static equilibria described by (29) but also axi-
symmetric steady states with neutral flows that have the
velocity

(30)

and are analogous to (9). Note also that, in such states,
the plasma is not necessarily homogeneous in the z
direction. In the evolution of the two-dimensional sys-
tem under discussion, the momentum conservation
implies that neutral flows along the magnetic field B
give rise only to the additional centrifugal potential. To
simplify the problem and to make the analysis more
illustrative, we assume that there are no plasma flows
along the field B (κ = 0), in which case the steady states
of the system are homogeneous in the z direction (i.e.,
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we have Φ0(ψ), sm(ψ), and f(ψ)) and are described by
equation (29), because the steady-state plasma flows
along the z-axis have no impact on the force balance in
equilibrium.

Kadomtsev [17] has shown that the equilibrium
states described by (29) are stable against arbitrary
two-dimensional perturbations under the condition
dsme/dr > 0, which implies that the plasma pressure
should decrease sufficiently gradually with radius. This
stability condition can be easily derived if we write the
traditional energy principle of stability (see [17]) using
the notation already adopted:

(31)

According to (31), the most dangerous perturbations
governing the stability boundary are convective modes
such that div(xJ) = 0.

Marginally stable states are those with sme = const.
According to (29), the marginally stable profiles of the
magnetic field and plasma pressure can be evaluated
from the condition

(32)

where p0 and J0 are constant values of p and J at the axis
of the plasma cylinder. The marginally stable pressure
profile is seen to decrease with r according to a power

law on a characteristic radial scale such that a2 = p0/ .
For Z-pinches, such pressure profiles are not of much
interest, because they decrease too gradually at infinity.
However, Vabishchevich et al. [22] showed that, in sys-
tems like a compact torus in which the toroidal plasma
is bounded by a separatrix, the marginally stable pres-
sure profile is such that the pressure vanishes at the
separatrix. For such configurations, the nonlinear
plasma dynamics near the states of marginal stability,
sme = const, is extremely interesting from a physical
standpoint.

To simplify the analysis of the nonlinear plasma
dynamics near the state of marginal stability, we adia-
batically separate the motions according to the pro-
posed scheme. We start by varying the Lagrangian (28),

(33)

In an arbitrary state, the variation of the Lagrangian
(33) does not contain any small parameters, because, in
contrast to the previous section, here we have cs ~ CA

(or β ~ 1). However, near the state of marginal stability,
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we can represent the magnetic entropy as sm =  +

(ψ), where  = const and  ~ e2 . Since the

small deviation of the magnetic entropy  from that in
the marginally stable state drives the plasma into unsta-
ble motion, we assume that V ~ ecs, in which case the
last term in the integrand in (33) is a quantity of order
unity. The first term (with δV) is a priori proportional
to e (as in the previous section), while the remaining
terms are as small as e2.

The transformation consistent with the condition
div(xaJ) = 0 forces the leading-order term in (33) to
zero. From the standpoint of the energy principle (31),
this transformation, which, in the two-dimensional
case, can be represented as xa = [—θ × —δα]/J, corre-
sponds to the most dangerous perturbations. The first
term in (33) can be made as small as e2 if the function
δα is chosen to satisfy the condition ∂tδα + V · —δα ~
ecs |—δα| [cf. expression (15) in the previous section],
i.e., to correspond to the relabeling transformation for
fast magnetosonic oscillations. In this case, the two-
dimensional adiabatic velocity field, which can be rep-
resented in the form

(34)

where Φ(r, z, t) has the meaning of the electric poten-
tial, corresponds to convective plasma motions in a
quasi-potential electric field and contains neutral flows
(30) with κ = 0 and Φ0(ψ). Substituting the velocity
field (34) into the continuity equation for J yields
∂tJ = 0. Then, to within terms on the order of e2, we can
set J = Je(r), where Je(r) is determined from equation
(32) with sme =  and the quantity  is defined as

(35)

Applying the above procedure to derive the equation
of adiabatic motion, we obtain

(36)

Using the above representation ρ = Je f(ψ), where
f(ψe(r)) = ρe(r)/Je(r), we can reduce the full set of adia-
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batic equations to the following two equations for two
functions Φ(r, z, t) and ψ(r, z, t):

(37)

Equations (37) are analogous (both in structure and
in character) to two-dimensional hydrodynamic equa-
tions for an incompressible magnetized fluid. We can
substantially simplify equations (37) by choosing the
initial plasma density profile in a special way: f = const,
in which case the analogy becomes especially clear.
With this choice, the nonlinear structure of equations
(37) allows us to draw an analogy with the Charney–
Obukhov equation for planetary atmospheres [23] or
the Hasegawa–Mima equation for drift waves [24];
however, unlike the latter, equations (37) account for
the driving force for the convective instability. A
detailed analysis of equations (37), in particular, with
allowance for dissipative processes, goes beyond the
scope of our paper. We can only note that, during the
evolution described by these equations, the energy is
expected to be transferred from large-scale to small-
scale motions, while simultaneously the large-scale (of
about a) perturbations of the function (ψ) (i.e., per-
turbations that give rise to convective instability) pro-
gressively decrease. In this case, throughout the evolu-
tion, the system should not run out of the applicability
range of equations (37), which is governed by our basic
assumptions.

5. CONCLUSION

To conclude, note that the proposed variational
method for separating fast and slow motions is an effi-
cient tool for deriving far simpler but fairly informative
adiabatic equations for a large class of problems asso-
ciated with nonlinear dynamic (in particular, MHD)
processes in continuous media. The principle advan-
tage of the method is that the adiabatic equations pos-
sess all of the variational symmetries (and the related
conservation laws) inherent in the complete set of basic
equations, which provides the basis for an adequate
description of nonlinear dynamic processes with the
help of reduced equations.

Using the method developed to separate the
motions, we have derived adiabatic MHD equations for
the two classes of problems that are of interest from the
standpoint of confinement and stability of high-temper-
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ature plasmas in toroidal magnetic devices. First, we
have derived an improved version of the familiar
reduced KPS equations. The refined equations, which
possess all of the symmetry properties of the basic
MHD equations, make it possible to investigate the
nonlinear dynamics of tokamak plasmas with steady-
state sheared flows. Second, we have derived a set of
equations needed for two-dimensional modeling of
MHD plasma convection near the threshold for flute
instability in quasisteady magnetic confinement sys-
tems similar to compact tori with β ~ 1. This set of
equations can also be used to study the nonlinear
dynamics of plasmas with steady-state flows.
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