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Abstract—We have analyzed optical and infrared light curves of GU Mus obtained during the system’s
quiescent state and carried out computations for “hot-line” and “hot-spot” models. The hot-line model
describes the optical variability of GUMus better than the hot-spot model. Season-to-season variations of
the shape, amplitude, andmean levels of the optical and infrared light curves of GUMus are due to changing
parameters of the hot line and, to a lesser degree, of the accretion disk. Taking into account the contribution
of the variability of the disk + hot line system to the variability of the system as a whole, we are able to
reliably estimate the orbital inclination, i = 54◦± 1◦.3, and the mass of the black hole,MX = (6.7–7.6)M�.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Among the numerous stellar X-ray sources, there

exists a small group of stars whose members exhibit
characteristic X-ray variations in which their X-ray
luminosity increases by a factor of several hundred
thousand within days, after which the luminosity re-
turns to its original value over several months (cf.,
for example, [1, 2]). This behavior strongly resem-
bles the light curves of classical novae, leading to
these variable X-ray sources being named “X-ray
novae.” Subsequent optical observations of these ob-
jects have confirmed the novalike character of their
outbursts.
Spectroscopic observations of such objects demon-

strate that they were binaries, like classical or dwarf
novae. The secondary, whose light dominates in
the optical during quiescence, is usually a main-
sequence star, subgiant, or even late-type giant. In
contrast to the primaries of classical novae, which are
white dwarfs, the primary is now a neutron star or
black hole. Consequently, most of the gravitational
energy released during accretion is emitted in the
X-ray. More detail on the physics of X-ray novae
can be found in the reviews [3–6] and the recent
monograph [7].
The X-ray outbursts are accompanied by optical

outbursts due to X-ray heating of the accretion disk
1063-7729/03/4708-0621$24.00 c©
and optical star, making it possible to identify X-ray
novae very reliably. At the same time, the quiescent
optical spectra of X-ray novae contain absorption
lines of the optical star, enabling measurement of
their mass function and estimation of the mass of the
relativistic object (cf., for instance, the reviews [8, 9]).

During quiescence, the luminosity of the optical
star is comparatively low. When interpreting the opti-
cal light curves of X-ray novae, it is necessary to take
into account the effect of the optical star’s ellipsoidal
shape, the contribution of the accretion disk’s radi-
ation, and variability due to the contribution of light
from the region where the disk interacts with the gas
flow. The three-dimensional gas-dynamical compu-
tations of gas flows in interacting binary systems [10–
13] have demonstrated that, in self-consistent flow
models, the major region of energy release is located
outside the disk, in a shock wave due to interaction of
the flowwithmatter of the circumstellar envelope; this
is the “hot-line” model. Application of the hot-line
model to the interpretation of the optical and infrared
light curves of dwarf novae [14–16] have illustrated
its advantages over hot-spot models.

The current study is aimed at analyzing the light
curves of the X-ray nova GU Mus in quiescence
using the hot-line model.
2003 MAIK “Nauka/Interperiodica”
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2. GENERAL INFORMATION
ABOUT THE X-RAY NOVA GU Mus

The X-ray nova Muscae 1991 GUMus = XN
Mus 1991 = GS 1124–683 = GRS 1124–68) was
independently discovered in sky surveys by the
GRANAT and GINGA space telescopes on Jan-
uary 9, 1991 [17, 18]. Four days later, it was identified
with an optical star (V = 13m. 0) located near the
X-ray source [19]. After another several days, the flux
from the system had decreased to V ∼ 13m. 4, and it
had decreased to its pre-outburst level, V ∼ 20m. 5, in
about a year.
Remillard et al. [20] acquired photometric and

spectroscopic observations of GU Mus at
4900–6500 Å and in the I filter 15 months after
the outburst, when the system had returned to
quiescence (V ∼ 20m. 5). The spectrum appeared to
correspond to a К0–К4V star. The half-amplitude
of the secondary’s radial-velocity curve exceeded
400 km/s (K2 = 409 ± 18 km/s). From the radial-
velocity curve, Remillard et al. [20] determined the
system’s orbital period (Porb = 0d.43325(58)) and
computed the mass function of the compact object,
f(M) = 3.07 ± 0.40 M�. The spectrum of the nova
reveals broad Hα and Hβ emission lines, testifying to
the presence of an accretion disk around the compact
object in the quiescent state. The full widths at half
maximum of the Balmer lines reach 1500–2500 Å.
Both the line intensities and profiles vary in time, and
the line profiles are asymmetric.
In both filters, the system’s light curve forms a

double wave during the orbital period. The brightness
minima coincide with the transitions of the radial
velocity of the optical star through the γ velocity,
providing evidence for the dominance of ellipsoidal
variability of the K star in the optical variations. The
I light curve is fairly symmetric, with the variation
amplitude being lower than in V (∆I ∼ 0m. 15).
TheV light curve is characterized by a higher vari-

ability amplitude and appreciably unequal maxima at
the quadratures, with the system being brighter at
phase ϕ ∼ 0.25.
Antokhina and Cherepashchuk [21] interpreted

the more symmetric I light curve of GU Mus in
a standard X-ray binary model with a thin accre-
tion disk around a relativistic object [22], with the
disk’s radius being ∼0.6 of the maximum size of the
Roche lobe of the primary (compact object). They
demonstrated that the orbital inclination i showed
a weak dependence on the component-mass ratio
over a wide range of q = M1/M2. However, it is
not possible to derive a reliable mass ratio for the
system solely based on the shape of the infrared
light curve. They estimated the lower limit for the
orbital inclination i > 39◦. They also were not able
to adequately describe the V light curve’s shape and
amplitude using this standard model.
Based on observations of GU Mus three years

after its outburst, Orosz et al. [23] improved the
values found in [20] for the system’s orbital pe-
riod (Porb = 0d.4326058(31)), the half-amplitude of
the secondary’s radial-velocity curve (K2 = 406 ±
7 km/s), and the compact object’s mass function
(f(M) = 3.01 ± 0.15 M�). According to this study,
the secondary is a K3–K5 main-sequence star. After
subtracting the standard spectrum of a K5V star
from the total spectrum, the disk spectrum shows
strong Balmer, HeI, and FeII emission lines against
a flat continuum. The light-curve modeling of Orosz
et al. [23] using an ellipsoidal-variability model could
not fit the unequal light-curve maxima or the depth of
the minimum corresponding to the upper conjunction
of the optical star. Based on the absence of eclipses
of the disk in the system, Orosz et al. [23] estimated
the upper limit for the orbital inclination imax ∼ 65◦.
A lower limit was estimated from the minimum
amplitude of the V light curve, imin ∼ 54◦. For the
mass ratio q = M1/M2 = 6.5–8.8, the mass of the
primary will beM1 ∼ 5.0–7.5 M�.
Casares et al. [24] observed the Hα line in the

spectrum of GU Mus, confirmed that the secondary
has spectral type K3–K4V, and demonstrated that the
secondary contributed 85–88% of the integrated R
flux. Based on the rotational broadening of the photo-
spheric absorption lines together with the v sin i value
obtained for the secondary with limits based on the
system’s geometry, they estimated the component-
mass ratio to be q = 7.5–8.1. They also present Hα
Doppler tomography maps revealing a considerable
flux from the secondary, probably related to the star’s
chromospheric activity, with the flux from the hot spot
being absent or weak.
Shahbaz et al. [25] analyzed the H light curve of

GU Mus to derive the orbital inclination i = 54◦ ±
15◦, distance d ∼ 2.8–4 kpc, and mass of the com-
pact objectM1 ∼ (4–11) M�.
Gelino et al. [26] acquired infrared light curves of

GU Mus in the J and K bands and analyzed their J
and K light curves using the code of Wilson and
Devinney [27], without taking into account the accre-
tion disk around the compact object or the hot spot.
These computations considered only the ellipsoidal
variability of the secondary, which was taken to be
slightly evolved, since a normal K4V star does not fill
its Roche lobe. However, the secondary cannot be a
giant: in this case, the star’s size would be larger than
the orbit corresponding to the orbital period of 0d.43.
Their analysis of the J and K light curves confirmed
the conclusion of Antokhina and Cherepashchuk [21]
that the model light curves were fairly insensitive to
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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input parameters such as the component-mass ra-
tio, the limb darkening and gravitational-darkening
coefficients, and the effective surface temperature of
the secondary. An exception is the orbital inclination,
for which Gelino et al. [26] found the best-fit value
i = 52◦–56◦. Taking into account additional sources
of radiation in the system (the disk and hot spot)
increases the admissible orbital inclination by ∼4◦.
They estimated the mass of the compact object to be
M1 = 6.95 ± 0.6 M�; the corresponding distance to
the system is d ∼ 5.1 kpc.

3. THE MODEL OF THE SYSTEM

The light curves of GU Mus obtained by various
authors show a significant light excess near quadra-
ture, ϕ ∼ 0.25, which cannot be reproduced in the
standard models (phase ϕ = 0.0 corresponds to up-
per conjunction of the compact object). Such models
likewise cannot reproduce the deeper minimum at
phase ϕ ∼ 0.0. Heating of the secondary by X-rays
from the compact source, which could make the min-
imum at phase ϕ ∼ 0.5 shallower, is not strong in
this system. For the distance d ∼ 5 kpc, the X-ray
luminosity of the source in its low state does not
exceed LX < 1.5 × 1032 erg/s, but no more accurate
value is known. The bolometric luminosity of the op-
tical K3–5V star is ∼(6–9) × 1032 erg/s, so that the
ratio of the components’ bolometric luminosities is
LX/Lopt ≤ 0.2. The secondary can also receive some
fraction of the hot ultraviolet radiation from the inner
parts of the disk if this radiation propagates symmet-
rically. The ultraviolet light could be invisible to an
observer on Earth due to absorption in the circum-
stellar envelope and interstellar medium. However,
if the angular distribution of the X-ray flux is not
uniform, as is characteristic of black holes [28], the
heating of the secondary by this radiation will remain
insignificant. In addition, considerable heating of the
secondary would lead to variations of the star’s spec-
tral type with orbital phase, which are not observed.
To compute the theoretical light curve and derive

the X-ray nova’s parameters, we used amathematical
model taking into account the contribution of the
additional radiation from the shock wave outside the
accretion disk. The radiation of this shock is strongest
at phase ϕ ∼ 0.25, but, depending on the conditions
for its radiative cooling, it may also be observed at
phases ϕ ∼ 0.75. We successfully used this model
earlier in our analysis of light curves of cataclysmic
variables [15]. Below, we briefly describe its main
features; a more detailed description of the model can
be found in [15, 29].
(1) The donor star (secondary) completely fills its

Roche lobe.
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(2) We take into account the tidal and rotational
distortion of the secondary.
(3) The surface of the secondary is subdivided into

648 area elements, and the intensity of the radiation
emitted toward the observer is computed for each,
taking into account gravitational darkening and limb
darkening (applying a nonlinear limb-darkening law).
We consider occultations of the area elements on the
star by the body of the star itself and by the bodies
of all the components of the system. When allowing
for the effects of heating of the stellar surface by hot
radiation from inner regions of the disk, we use two
models, with isotropic and anisotropic angular flux
distributions. It was demonstrated in [30] that, for
disk accretion onto a neutron star, the star’s rotation
makes the propagation of radiation from this central
source isotropic; i.e., this radiation will not be atten-
uated in the orbital plane of the system. In the case
of a black hole, there is no such central source, and
the radiation flux from the flat surface of the accre-
tion disk possesses considerable anisotropy, leading
to reduced heating of the companion. However, due
to a number of instabilities that accompany high
accretion rates [31], the inner parts of the disk can
becomemore spherical, making the radiation from the
accretion disk more isotropic. Note that the accretion
rates during the quiescent states of X-ray novae are
probably low, making it unlikely that the inner parts
of the accretion disk become more spherical. The
central parts of an advection-dominated disk become
spherical due to the high ion temperature [32, 33].
(4) The primary is spherical in shape and is located

at a focus of the elliptical accretion disk. Since the
compact object is small, we assume when analyzing
the light curves of X-ray novae that its optical and
infrared luminosities are negligible and do not con-
tribute to the combined flux of the system.
(5) The elliptical (eccentricity e) accretion disk is

represented as follows. The lateral (or outer) surface
of the disk is an ellipsoid with semi-axes a, b, and c.
The semi-axes a and b are in the orbital plane, so that
b2 = a2(1 − e2); the semi-axis c is orthogonal to the
orbital plane. The center of the primary is at a focus of
the ellipsoid.
The disk’s orientation is determined by the angle

αe between the radius vector from the center of the
compact object to the disk periastron and the line
connecting the components of the close binary. The
value of αe can vary from 0 to 2π and increases in
the direction of the components’ orbital motion. A
detailed description of the procedure used to model a
thick, elliptical accretion disk was presented in [34].
The temperature of an area element on the disk

surface depends on the distance r between its center
and the compact object. We assume that the temper-
ature of disk areas near the black hole are equal to the
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temperature Tb of the first inner orbit located near the
equator at the distance R1 from its center. Variations
of the disk temperature are usually represented by the
relation [28]

T (r) = Tb

(
R1

r

)αg

, (1)

assuming that the gravitational energy released dur-
ing the accretion is balanced by radiative cooling. As
a first approximation for the parameter αg, the value
αg = 0.75 [28] is usually used, which corresponds to
assuming that each point of the disk’s surface emits
as a black body. However, observations show that the
radial temperature distribution is often flatter than for
the canonical case, leading to higher temperatures.
Heating of the disk’s outer regions by radiation from
the secondary increases its temperature only slightly,
but the model also takes this into account. The outer
boundaries of the disk can also be heated by high-
temperature radiation from its inner regions. This ef-
fect is significant only when this radiation propagates
isotropically; in this case, it also heats the secondary.
If high-temperature radiation with luminosityLb from
the inner regions of a classical accretion disk propa-
gates anisotropically, the flux L reaching the surface
of the secondary varies according to the relation [30]

dL

dΩ
=

Lb cos θ(1 + ub cos θ)

2π
(
1 + 2

3ub

) . (2)

Here, the limb darkening in the accretion disk has
been included in a linear approximation, θ is the angle
between the normal to the disk’s surface and the
direction of the solid-angle element dΩ, and ub is the
limb-darkening coefficient of the disk. For the case of
isotropic flux propagation, this simplifies to

dL

dΩ
=

Lb

4π
. (3)

(6) The hot line along the flow is described using
part of an ellipsoid with semi-axes av, bv, and cv
elongated toward the inner Lagrangian point, L1. The
lateral surface of this ellipsoid coincides with the tan-
gent to the elliptical disk for all disk orientations, and
its center is in the orbital plane in the disk, at some
distance from its edge. Only that part of the ellipsoid
outside the accretion disk is considered to be the hot
line. The procedure used to construct the shape of the
hot line and the technique used to synthesize the light
curve of a close binary in the framework of the model
used are described in [29].
The release of the shock energy occurs at the sur-

face of the hot line, both at the shock front (i.e., on the
side of the approaching flow, or the “windward side”)
and on the opposite (“leeward”) side, depending on
the physical parameters of the interacting flows (their
velocities, densities, etc.). Areas on the surface of
the hot line are assumed to radiate according to a
Planck law, which means the hot line adjacent to the
accretion disk is considerably opaque. We compute
the temperature of an area element on the surface
of the hot line independently for both its sides, in
accordance with the relation

Ti(y) = Td + T0 cos(0.5π∆yi), (4)

∆yi =
yi − ymax
ymin − ymax

,

where Td is the temperature matter would have at
the distance r from the compact object according
to Eq. (1). At the point with the coordinate ymax,
the temperature of the matter in the hot line, Ti(y),
has the largest increment, Tmax(y) = Td + T0, and,
at the point with ymin, the temperature increment is
equal to zero, and the temperature of the matter is
Ti(y) = Td. When ymin and ymax are close to each
other, the energy release from the shock occurs in a
small region resembling a hot spot, but located not
on the disk but instead on one part of the hot-line
surface, with its other parts remaining comparatively
cool. It is assumed that the temperature on the wind-
ward side of the hot line reaches its highest value,
Tmax, at the point of contact between the flow and the
lateral surface of the disk. The highest temperature
of the hot line on the leeward side is displaced to the
point with

y
(2)
max = y

(1)
max − dy,

with the displacement dy being a free parameter of the
problem, dy > 0. Here, the superscripts (1) and (2)
refer to the windward and leeward sides of the hot line,
respectively.
The model parameters we wish to estimate are

q = M1/M2, i, T2, and Tb; the disk eccentricity e and
semi-major axis a; the parameter αg determining the
profile of the temperature variations across the disk
surface; the azimuth of the disk’s periastron αe; the
parameter Ap determining the thickness of the disk’s
outer edge; the semi-axes of the ellipsoid describing
the ellipsoidal part of the hot line av, bv, and cv; the
highest temperatures on the surface of the hot line
near the outer edge of the disk at its windward side,
T (1), and leeward side, T (2); and the parameters ymin
and dy described above. Thus, there are a total of 16
parameters; however, we were able to fix some of these
(cf. Section 4).
(7)We searched for the parameters best describing

the system’s mean light curve using the Nelder–
Mead method [35]. When searching for the global
minimum of the residual for each of the curves, we
applied several dozen different first approximations,
due to the large number of independent variables,
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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which typically leads to the existence of a number
of local minima in the studied parameter range. We
estimated the quality of the fit between the theoretical
and observed light curves using the residual

χ2 =
n∑

j=1

(mtheor
j −mobs

j )2

σ2
j

, (5)

where mtheor
j and mobs

j are the object’s theoretical
and observed magnitudes at the jth orbital phase, σ2

j

is the dispersion of the observations for the jth data
point, and n is the number of normal points in the
curve.

4. RESULTS OF LIGHT-CURVE MODELING
FOR GU Mus

We determined the parameters of GU Mus using
two models. The first assumed isotropic propagation
of the X-ray and high-temperature ultraviolet radia-
tion from inner parts of the disk. In the second, we
allowed for angular anisotropy of the propagation of
this radiation.
As noted in Section 3, the reason for the anisotropy

of the X-ray radiation from the inner parts of a
classical accretion disk is that, in the case of a
black hole, the flat inner part of the disk radiates
similarly to a thin stellar atmosphere. In this case,
the radiation intensity is highest along the normal
to the surface and decreases rapidly with deviation
from the normal direction. In addition, due to the
effect of projection, the radiating area of the flat
disk surface also decreases with deviation from the
normal direction. According to [28], this leads to a
strong angular dependence for the X-ray intensities
of accreting black holes [cf. Eq. (2)].

Light curves used.We used three groups of light
curves of GU Mus to determine its parameters. The
first consists of light curves acquired in white light
(effective wavelength λ ∼ 5000 Å) in 1992–1995
(designated BV , cf. Figs. 1, 2), and the second group
are I curves (λeff = 9000 Å) acquired in 1992 and
1993. The BV and I observations are presented
graphically in [23]. The 1992 light curves for BV
and I are also described in detail by Remillard et al.
[20]. The mean BV and I light curves are shown
in Figs. 1–3. All these observations correspond to
the system’s low state, but comparison of the mean
fluxes shows that GUMuswas∼0m. 2 brighter during
1993–1994 than in 1992 or 1995. The light-curve
shape varies from season to season; the relative height
of the brightness maxima at the quadratures in 1993–
1995 was opposite to that observed in 1992. Both
the absolute and relative depths of the brightness
minima vary in both filters. We can see that the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
modulation amplitude and the difference between the
maxima of the light curve at the quadratures increase
with decreasing wavelength, especially for the 1992
season. The phase ϕ = 0.0 corresponds to the upper
conjunction of the compact source. The I light curves
are more symmetric due to the lower contribution of
the accretion disk and possibly of the shock, since the
optical star is, on average, cooler than the disk.
The third group of light curves we used are the

J,K light curves of GU Mus presented by Gelino
et al. [26], which were also acquired during the sys-
tem’s low state, on February 20 and 21, 2000.
The number of normal points n used to fit the

shape of the mean BV , I, J , and K light curves of
GU Mus are presented in the table, along with the
corresponding critical χ2

0.01,n values for the α = 0.01
significance level; thus, the probability that the ac-
tual parameters of the system are outside the ranges
derived from our light-curve analysis does not ex-
ceed 1%. Since the nature of the X-ray and ultravi-
olet heating of the optical star remains unclear, we
analyzed the light curves independently for the cases
of isotropic and anisotropic radiation from the inner
regions of the accretion disk.

Optical light curves of 1992–1995. When con-
structing the theoretical light curves, we computed
the radiation fluxes from the system’s components,
F (X,ϕ), for a given set of parameters X and a se-
quence of orbital phases, ϕ. The resulting F (X,ϕ)
values are expressed in relative units. These can be
converted into commonly used units (referring to a
unit wavelength interval) using the expression f =
Fa2

0 × 10−12 [erg s−1 cm−3], where a0 is the distance
between the centers of mass of the stars in centime-
ters. When interpreting individual light curves, during
the construction of a trial theoretical curve, we usually
used the flux at the first quadrature corresponding to
the given trial curve to convert the computed radiation
fluxes to magnitudes. For comparison with the ob-
served light curve, we initially shift the computed trial
light curve to achieve the best agreement between the
observed and computed radiation fluxes (in magni-
tudes) at the first quadrature. The subsequent com-
parison of the observed and synthesized light curves
uses the χ2 criterion.
Since the number of model variables could be as

high as 16, it is necessary to use additional infor-
mation to choose the most probable solutions from
the large number of sets of admissible parameters
obtained from the light-curve fitting. This includes
spectroscopic information about the mass ratio of the
close-binary components, as well as data on the red
dwarf’s contribution to the combined radiation flux
during the studied observing period. Information on
the red dwarf’s contribution to the combined flux is



626 KHRUZINA et al.

 

20

0–0.5 0.5 1.0 1.5
0

40

60

80

100

 
F

 
d

 
 +

 
 

hl
 

/
 

F
 

to
ta

l
 

, %

0–0.5 0.5 1.0 1.5 0–0.5 0.5 1.0 1.5 0–0.5 0.5 1.0 1.5

 

ϕ

 

1

2

3

4

5

 
F

 
B

V
 

 
 

×
 

 1
0

 
11

 

0

 

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

 

0.4

0.2

0

–0

 

m

 

.2

 
∆

 
m

 
B

V
 

1992 1993 1994 1995

Fig. 1.Computational results for the model with isotropic radiation from the inner parts of the accretion disk. The upper panels
show 1992–1995 observations of GU Mus in the optical (λ = 5000 Å; points with corresponding error bars) and theoretical
curves (solid) computed using the parameters given in the table. The middle panels show the contributions of the (1) compact
object (equal to zero in both models), (2) red dwarf, (3) elliptical accretion disk, and (4) extended hot line to the combined flux.
The bottom panels show the relative contribution of the nonstellar radiation sources (disk and hot line) to the combined flux
from the system.
very limited. According to the spectroscopic observa-
tions of Orosz et al. [23] obtained in 1993, the contri-
bution of the secondary to the combined BV flux was
46–48%, with the corresponding contribution of the
nonstellar sources of radiation being 52–54%. The
luminosity of GU Mus was lower in 1992 due to the
decreased flux from the nonstellar components; as a
result, the relative contribution of the red dwarf’s light
to the total flux increased to 55–61%. This estimate
of the contribution of the optical star to the combined
flux was obtained using the standard approach: the
equivalent widths of the stellar absorption lines for the
binary were compared to the equivalent widths of the
absorption lines in the spectrum of a standard star,
which is a single star of a similar spectral type and
luminosity class.
When searching for the parameters of theGUMus
components for different observing seasons, we ex-
pressed all four observed BV light curves
(λeff ∼ 5000 Å) in magnitude differences, ∆mBV ,
relative to the system’s magnitude at phase ϕ = 0.25
(mBV = 20m. 3684) for the 1993 light curve (this light
curve’s number isN = 2):

∆m=mobs
N (ϕ)−mobs

2 (ϕ)=−2.5 log
(

F obs
N (ϕ)

F obs
2 (0.25)

)
.

In other words, this flux, in magnitudes, was used as a
unified energy unit for all other observed light curves.
Thus, all the 1992–1995 observations were reduced
to the same zero point, corresponding to the observed
flux at the first quadrature of the 1993 light curve.
This approach enabled us to estimate variations of the
system’s luminosity from one light curve to another
for each phase and to use both the light-curve shape
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 2. Same as Fig. 1 for the model with anisotropic radiation from the inner parts of the accretion disk.
(as in the analysis of the individual light curves) and
changes of the mean flux levels when comparing with
the synthesized curves.
Thus, we constructed the N th trial theoretical

light curve in magnitudes by converting the theoret-
ical fluxes, F th

N (X,ϕ), computed in the model into
magnitudes, ∆mth

N (X,ϕ), using the flux at the first
quadrature for the same theoretical curve that best
fitted the observed light curve withN = 2, F th

2 (0.25).
In other words, the theoretical magnitude at phase ϕ
for theN th light curve will be

∆mth
N (ϕ) = −2.5 log

(
F th

N (ϕ)
F th

2 (0.25)

)
.

The number of unknown parameters was largest
in the first stage of solving for the parameters of
GU Mus using each of the studied BV light curves.
In the second stage of the analysis, we found the
values of q, i, T2 common to all the curves (close
to the mean values). These parameters can be best
determined from the J,K observations, because the
star’s optical light makes the highest contribution in
ASTRONOMY REPORTS Vol. 47 No. 8 2003
these filters, but the normal points of the J,K light
curves [26] have very high uncertainties, leading to a
large range of admissible values for q and i. There-
fore, when selecting the optimal q, i, T2 values to
fix, we used the parameters derived from the infrared
light curves using the same weight as for the pa-
rameters derived from the BV light curves. We also
fixed common values close to the mean parameter
estimates for the disk’s maximum radius (at apoas-
tron), Rd/ξ (ξ is the distance between the center of
mass of the compact object and the inner Lagrangian
point, L1), the thickness of the disk’s outer edge βd,
the parameter αg determining the radial temperature
distribution in the disk, and the inner radius of the
disk R1 [this last parameter is needed to derive the
radial temperature distribution of the disk; cf. (1)]. We
then repeated the fit for the system’s parameters for
all four light curves fixing the parameter values q =
M1/M2 = 7.7 (close to the spectroscopic estimate),
i = 54◦, T2 = 4500 K, R1 = 0.0006a0, Rd/ξ = 0.50,
βd = 1◦.8, and αg = 0.72 for both the isotropic and
anisotropic models.
Since we fixed the parameters of the secondary
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Parameters of the components of GUMus in 1992–2000, derived from theBV , I, J ,K light curves in the hot-line model

Parameter 1992 1993 1994 1995 1992 1993 2000 2000

“Isotropic”model

n 30 10 20 10 25 10 29 22

χ2
0.01,n 50.9 23.2 37.6 23.2 44.3 23.2 49.6 40.3

Filter BV I J K

e 0.395 0.043 0.074 0.270 0.001 0.033 0.174 0.043

a/a0 0.250 0.334 0.324 0.274 0.348 0.337 0.297 0.334

αe, ◦ 113.8 63.2 72.3 97.2 140.6 84.7 112.6 33.9

Tb, K 115255 133650 127340 134070 114800 132300 96935 97650

av/a0 0.054 0.098 0.093 0.058 0.104 0.148 0.075 0.079

bv/a0 0.582 0.362 0.324 0.530 0.325 0.307 0.422 0.442

cv/a0 0.017 0.011 0.010 0.005 0.007 0.018 0.010 0.019

T1∗(max) 10480 54850 15300 13210 6460 26505 15880 29670

T2∗(max) 8500 30170 8985 11570 3195 14100 8150 12895

〈T1〉 3620 2100 6480 2950 4565 5130 5245 19580

〈T2〉 3070 2200 5630 2920 2065 4665 3515 9555

ymin/a0 0.321 0.236 0.273 0.248 0.367 0.276 0.291 0.411

ymax/a0 0.198 0.232 0.213 0.170 0.203 0.262 0.196 0.215

dy/a0 0.261 0.0 0.097 0.251 0.217 0.015 0.151 0.014

χ2 103 22.1 33.3 10.3 70.5 17.5 37.7 10.6

“Anisotropic”model

e 0.336 0.141 0.123 0.267 0.000 0.214 0.287 0.059

a/a0 0.261 0.305 0.310 0.275 0.348 0.287 0.271 0.328

αe, ◦ 157.9 92.9 92.4 110.8 138.4 175.0 131.3 83.3

Tb, K 101425 158865 175055 170155 75340 147730 85010 90320

av/a0 0.046 0.077 0.073 0.058 0.013 0.063 0.046 0.076

bv/a0 0.558 0.343 0.381 0.432 0.518 0.401 0.575 0.448

cv/a0 0.007 0.006 0.006 0.006 0.006 0.006 0.010 0.019

T1∗(max) 15765 18785 14600 8515 19885 11600 11935 32725

T2∗(max) 9475 11530 94845 8380 2030 8370 8630 11782

〈T1〉 3010 3730 3395 2985 1410 2480 3035 18065

〈T2〉 2345 5275 3935 3135 1055 2445 2630 7985

ymin/a0 0.24 0.25 0.25 0.26 0.13 0.21 0.29 0.38

ymax/a0 0.20 0.20 0.19 0.17 0.12 0.18 0.18 0.21

dy/a0 0.226 0.129 0.178 0.297 0.358 0.238 0.188 0.032

χ2 222 33.9 34.6 45.3 153 29.8 40.7 10.8

Note. Solutions were found for the cases of isotropic and anisotropic propagation of the radiation from the inner parts of the accretion
disk with temperature Tb. The following parameters were fixed: q = 7.70, i = 54◦, T2 = 4500 K, R1 = 0.0006a0 , R2 = 0.230a0,
Rd/ξ = 0.50, βd = 1◦.8, and αg = 0.72. χ2

0.01,n is the critical χ
2 value for the α = 0.01 significance level, and n is the number of

normal points in the mean light curves of GUMus.
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 3. Computational results for the models with isotropic (I) and anisotropic (II) radiation from the inner parts of the
accretion disk derived from near-infrared (I) observations of GU Mus. The upper panels show the 1992–1993 observations
(points with corresponding error bars) and theoretical curves (solid) computed using the parameters given in the table. The
notation is the same as in Fig. 1.
in the computations, the contribution of its light to
the combined flux depends only weakly on the trial
set of remaining parameters (slight variations were
found only at phase ϕ = 0.5, during the secondary
minimum, due to re-radiation of the ultraviolet flux
from inner parts of the disk by the body of the star
in the case of isotropic propagation of the initial ra-
diation). As a result, variations of the flux of the
system are mainly determined by variations in the
contributions of the nonstellar components of the
close binary. We determined the best-fit parameters
for the 1993 light curve based on the set of Xi values
that gave the smallest residuals, for which the mean
contribution of the light from the disk and hot line
averaged over an orbit was 52–54%, in agreement
with the spectrophotometric estimate [23] for that
epoch. We accordingly used this value of the theoreti-
cal flux, F th

2 (0.25), to calculate the theoretical 1992–
1995 light curves in magnitudes when translating
ASTRONOMY REPORTS Vol. 47 No. 8 2003
the theoretical fluxes, F th
N (X,ϕ), into magnitudes,

∆mth
N (X,ϕ).

The table contains the parameters of the disk and
hot line for 1992–1995, computed for the cases of
isotropic and anisotropic propagation of the high-
temperature ultraviolet radiation and X-rays from the
inner parts of the disk. In the upper part of the ta-
ble, we indicate the numbers of normal points for
each of the light curves and their corresponding crit-
ical χ2 values for the α = 0.01 significance level. We
can see that the agreement between the theoretical
and observed light curves is somewhat better for the
isotropic model. The solid curves in the upper panels
of Fig. 1 are the theoretical curves for the 1992–1995
observations computed using the parameters from the
table.

The hot-line model obtained assuming isotropic
propagation of the radiation from the inner parts of
the disk provides a very good fit to the observations of
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the X-ray nova GUMus, for both the standard 1993–
1995 light curves with the normal luminosity ratio at
the quadratures and the 1992 BV light curve with
its anomalous distribution of the radiation fluxes at
the quadratures. This can be achieved by increasing
the contribution of the visible light from the hot line
at phases ∼0.25, due to the increase in the length
of the shock along the line and the more favorable
orientation of the disk and line for that epoch (see
below).
There is a significant contribution to the sec-

ondary’s brightness in the isotropic model due to
the reflection effect, i.e., from reprocessing of the
high-temperature radiation (X-rays and ultraviolet
light) from inner parts of the disk in the atmosphere
of the red dwarf. Such heating is strongest in the
hemisphere facing the compact source (with the
exception of equatorial regions of the star, due to
screening by the disk itself). As a result, the minimum
at phase ϕ ∼ 0.5 is shallower than when the heating
is not taken into account, and the minimum at phase
ϕ ∼ 0.0 is deeper [compare Figs. 1 and 2, where
we show the contributions of the optical star to the
combined flux (2) for the cases of a considerable
reflection effect (Fig. 1) and virtually no reflection
effect (Fig. 2)].
The middle panels of Fig. 1 show the contribu-

tions of the light from the system’s components to
the combined flux. In the isotropic model, the contri-
bution of the disk varied little from epoch to epoch.
The influence of the hot-line flux and its variations
in the course of the system’s orbital motion is much
stronger. In particular, the anomalous shape of the
light curve in 1992 is due to a significant increase
of the flux from the windward side of the line (seen
at phases ϕ ∼ 0.25) compared to the flux from the
leeward side (ϕ ∼ 0.75). The hot-line flux depends on
the size of the emitting region and the temperature at
the shock front. We can estimate the size of the emit-
ting region on the surface of the hot line from ymax and
ymin (see the table), which are the y coordinates of the
areas along the axis of the hot line on the windward
side with the highest and lowest temperatures (recall
that the highest temperature on the windward side of

the line, T (1)
max, is reached where the hot line intersects

the disk, whereas the leeward-side region with the

highest temperature, T (2)
max, is displaced along the y

axis by dy = y
(1)
max − y

(2)
max, where the superscripts 1

and 2 refer to the windward and leeward sides of the
hot line). We can see from the table that the size
of the hot region on the windward side of the line
was quite large in 1992 (∆y ∼ 0.123a0). The size of
the emitting region on the leeward side (at phases
ϕ ∼ 0.75) is almost twice that on the windward side,
and the ratio of the hot-line fluxes at phases ϕ ∼ 0.25
and ∼0.75 depends strongly on how much higher
the mean temperature of the line material is on the
windward side than on the leeward side.
Another important factor is the possible occulta-

tion of the brightest region of the shock by the edge
of the disk. For the 1992 light curve, the mean tem-
perature of the hot line on the windward side turned
out to be almost 15% higher than on the leeward
side. The combination of the large size of the hot-line
emitting region and the temperature ratio was signif-
icant in making the radiation flux from the windward
side higher than that from the leeward side. Figure 3
(column I) schematically displays the components of
GU Mus in the optical. The shading shows emitting
regions on the surface of the hot line for different
years.

The length of the optically thick hot line in 1995
was approximately the same as in 1992, but the
linear size of the emitting region was half as large
(∆y ∼ 0.078a0); the mean hot-line temperatures
coincided within the errors. As a result, the luminosity
from the leeward side of the hot line was higher than
that from the windward side, and the variations of the
radiation flux from this component were similar to
those expected for hot-spot models. We see a similar
picture for the 1993–1994 light curves. The hot line
was quite short and resembled a modest bulge on
the disk, and the linear size of the emitting region
was even smaller (∆y ∼ 0.004a0 and ∼0.060a0 for
1993 and 1994, respectively). The main flux comes
from the leeward side of the line. The increase in the
hot-line luminosity in 1993 was due to a considerable
increase in its highest temperature, to ∼30 000 K on
the leeward side, though the mean brightness tem-
perature for the entire surface of the hot line was not
high due to the small size of the emitting region with
the highest temperature. In 1994, the highest hot-line
temperature decreased almost threefold. However,
due to the increased linear size of the emitting region,
the maximum flux from the line was reduced by only
20%.
The bottom panels of Fig. 1 present the rela-

tive contributions of the nonstellar radiation sources
to the combined flux. The contribution of the sec-
ondary’s light remained practically constant during
1992–1995. Thus, in this period, the main origin of
variations of the system’s flux were changes in the
luminosities of the disk and hot line. The contribu-
tion of the nonstellar components to the combined
luminosity of the system estimated using the 1992
light curve is ∼42%, in good agreement with the
spectrophotometric estimate of [23], 39–45%.
With the anisotropic model for the propagation of

radiation from the inner parts of the disk, the agree-
ment between the observed and theoretical curves
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 4. Schematic of the components of GU Mus during the 1992–1995 observations for the models with isotropic (I) and
anisotropic (II) radiation from the inner parts of the disk. The shading shows the emitting regions on the surface of the hot line
in different years.
becomes worse for all four light curves (cf. the bot-
tom part of the table). For example, in 1992, the
anisotropic model predicted higher fluxes in the pri-
mary minimum and, correspondingly, a poorer agree-
ment with the observations.

Comparison of the BV light curves of GU Mus
obtained in 1993–1995 shows that it is very difficult
to describe the rather shallow minimum of the ob-
served light curves at phaseϕ = 0.5 in the anisotropic
model. The theoretical flux is lower at phase ϕ ∼ 0.5
than at phaseϕ ∼ 0.0. Due to the angular distribution
of the hot radiation from inner parts of the disk in
the anisotropic model, the reflection effect is negligi-
ble, and variations of secondary’s flux are determined
solely by effect of its ellipticity, which are known to
give rise to two minima with equal amplitudes, at
photometric phases 0.25 and 0.75, and a deeper min-
imum at phase ϕ ∼ 0.5 due to the star’s gravitational
darkening near the inner Lagrangian point L1, which
is most visible at such phases.

The solid curves in the upper panels of Fig. 2 are
the theoretical curves for the 1992–1995 observa-
tions for the anisotropic model with the parameters
from the table. The luminosity of the hot line in the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
anisotropic model for 1992–1995 (cf. the model pa-
rameters in the table) experienced variations similar
to those for the isotropic model. In this case, the
luminosity of the disk needed to reproduce the ob-
served flux from the system is much higher than in
the isotropic model. Schematic images of the com-
ponents of GU Mus in the optical obtained for the
anisotropic model for 1992–1995 are shown on the
right-hand side of Fig. 4 (column II).
Thus, the isotropic-radiation model is better able

to fit the shape of the BV light curves for the low-
mass X-ray binary GU Mus. Our analysis of the
opticalBV light curves indicates that, in theGUMus
system during quiescence, there exists a source of
ultraviolet light in the central parts of the accretion
disk whose luminosity is higher than the X-ray lumi-
nosity, LX , giving rise to a significant reflection effect
from the optical star. The origin of this ultraviolet light
remains unclear, as does the origin of the X-rays in
the low state of the system.

I light curves of 1992–1993. The shapes of both
the 1992–1993 I light curves of GUMus are close to
the standard one, with the system’s brightness lower
at the first than at the second quadrature (Fig. 3). The
curves are symmetric, but the deeper minimum is at
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Fig. 5. Schematic of the components of GU Mus for the observations of 1992–1993 (I band) and 2000 (J and K bands) for
the models with isotropic (I) and anisotropic (II) radiation from the inner parts of the disk.
phase ϕ ∼ 0.0 rather than phase 0.5, so that non-
ellipsoidal variations also contribute to the I light
curve. The higher brightness at phase 0.5 testifies to
the presence of an additional source of light, usually
believed to be due to heating of the red dwarf by
radiation from its companion. The higher brightness
of the system at phase 0.75 is sometimes attributed
to the emission of a hot spot at the outer edge of the
disk.

The I light curves of GUMus were analyzed using
a model with purely ellipsoidal variability in [21, 23].
Both the BV and I observations were reduced to
standard magnitudes by Orosz et al. [23], taking
into account interstellar reddening using the value
E(B–V ) = 0m. 29 derived byCheng et al.. Both stud-
ies [21, 23] assumed that the contribution of nonstel-
lar sources of additional light to the system’s light
curve was small and did not vary with the system’s
orbital motion. We used our hot-line model to in-
terpret the I light curves of Orosz et al. [23]. The
resulting parameters for the GUMus system in 1992
and 1993 are in good agreement with the values found
for the system’s optical radiation during the same
time intervals (see the table).

Only Casares et al. [24] have estimated the con-
tribution of light from nonstellar sources in the in-
frared. Their observations indicate that the contribu-
tion of the secondary to the R flux from the system
is 85–88%. No similar estimates are available for
spectral bands further in the infrared. The bottom
panels of Fig. 3 show the relative contributions of the
light from the disk and hot line to the combined flux
derived by fitting the 1992 and 1993 I light curves
using the isotropic (I) and anisotropic (II) models.
This contribution was 5–7% in 1992 but increased
to 20–25% in 1993. Due to the low contribution of
the light of the disk and hot line to the combined
flux in 1992 and its insignificant variability in the
course of the orbital motion, the 1992 I light curve
corresponded best to the model with purely ellipsoidal
variability. The assumption of isotropic heating of the
stellar surface by radiation from inner parts of the disk
whose material is heated to the effective temperature
Tb leads to consistent effective temperatures for BV
and I light curves (Tb = 115 000 ± 200 K).
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 6. Computational results for the models with isotropic (I) and anisotropic (II) radiation from the inner parts of the
accretion disk obtained for the observations in the far infrared (J andK). The upper panels show the observations of GUMus
for 2000 (points with corresponding error bars) and the theoretical curves (solid) synthesized using the parameters given in the
table. The notation is the same as in Fig. 1.
The table contains the parameters of the system
derived from the 1992 and 1993 I light curves of
GU Mus in both models, and the upper panels of
Fig. 4 display the theoretical light curves computed
using these parameters. The lowest residual for the
1992 light curve (χ2 = 70.5) is above the critical χ2

value for the 1% significance level (χ2
0.01,25 = 44.3),

even in the isotropic model, despite the good repro-
duction of the light-curve shape. The reason is that
the normal points of the 1992 I light curve demon-
strate appreciable scatter, whereas the observing er-
rors, σi, are comparatively low, probably testifying
to physical variability of the system. The 1993 curve
is well described by the isotropic model (χ2 = 17.5,
while the critical χ2 residual for the 1% significance
level is χ2

0.01,10 = 23.2).
Themiddle panels of Fig. 4 show the contributions

of the system’s components to the combined flux.
Compared to 1992, the 1993 infrared fluxes for both
ASTRONOMY REPORTS Vol. 47 No. 8 2003
the disk and hot line increased, by factors of about two
and of more than ten, respectively, giving rise to an
increase of the system’s overall brightness, a stronger
reflection effect, and the appearance of signatures of
an orbital hump in the light curve (the observed flux
from the system is higher at phase ϕ ∼ 0.75 than at
phase 0.25). At that time, the hot line was trans-
formed into a small bulge on the outer surface of the
disk (Fig. 5).

The discrepancy between the Tb values derived
from the optical and infrared light curves using the
anisotropic model exceeds the errors: Tb∼ 100 000
and Tb ∼ 75 000 K, respectively. The agreement be-
tween the I observations and the theoretical light
curves is a factor of two better for the isotropic than
for the anisotropic model, which is not able to repro-
duce the depth of the secondary minimum of the I
light curve without taking into account the reflection
effect. Thus, even the 1993 light curve, which is fit
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well by the isotropic model, is fit much worse by the
anisotropic model (χ2 = 29.8, whereas the critical χ2

value for the 1% significance level is χ2
0.01,10 = 23.2).

J and K light curves for 2000. We interpreted
the J,K light curves of GU Mus acquired by Gelino
et al. [26] using the same technique we applied to
the homogeneous BV and I light curves of [23]: the
observed J,K light curves were reduced to the corre-
sponding fluxes at the first quadrature (mJ = 18.04,
mK = 16.97).
The upper panels of Fig. 6 display the theoretical

J,K light curves for the parameters providing the
lowest residual, estimated fixing the parameters of
both the stars and applying the above restrictions on
the fluxes from the nonstellar components (see the
table). When the temperature of the inner parts of
the disk is ∼90 000 K, the reflection effect is neg-
ligible at these wavelengths, and the isotropic (I)
and anisotropic (II) models give similar results. The
residuals for both models are below the critical sig-
nificance level, and neither model can be rejected on
the basis of this criterion. The middle panels of Fig. 6
show the contributions of the light from the system’s
components in the J and K filters for both models,
while the lower panels illustrate the relative contri-
butions of the light from the nonstellar components
to the combined flux. In the J filter, this contribution
is ∼13–17% for the isotropic and ∼11–14% for the
anisotropic model, close to the estimates presented by
Casares et al. [24] derived from spectrophotometricR
observations, ∼12–15%. For the chosen parameters,
the contribution of the light from the disk and shock
in theK filter increases to∼35%, on average: the flux
from the hot line is comparable in both filters, while
theK flux from the red dwarf is a factor of four to five
lower than in the J filter. Since the fraction of light
from the hot line increases in the K filter due to the
contribution of free–free radiation in the infrared, to
obtain the hot-line flux required to fit the shape of the
K light curve, its brightness temperature must be a
factor of ∼1.5–2 higher than its value in the J band.
This conclusion is in agreement with the estimates
of the contribution to the infrared flux from free–free
transitions in the disk and hot-line material obtained
for other cataclysmic variables [15].
Our self-consistent analysis of photometric

BV IJK light curves of the X-ray nova GU Mus
using the hot-line model has yielded parameters for
the system occupying a narrower range than those
obtained in other studies based on standard models
for close binary systems (for example, cf. [26]). Using
the component-mass ratio q = M1/M2 ∼ 8 and the
known mass function, f2 = 3.01 ± 0.15 M�, our
estimate of the orbital inclination, i = 54◦ ± 1◦.3,
gives the component masses MX = (6.7–7.6)M�
(or 7.2+0.4
−0.5 M�), M2 = 0.93(3) M�. These uncer-

tainties correspond to the 90% confidence interval.
Our estimate of the uncertainty in i was obtained by
running through values for this parameter keeping the
remaining parameters fixed at their best-fit values.
The mass we have derived for the primary, black-

hole, component is in good agreement with the values
found earlier in [24, 26], whereas the mass of the
secondary, a K3–4V star, is higher than the values
(0.70–0.74) M� corresponding to main-sequence
stars of this spectral type [36]. The radii of single
K3–4V stars do not exceed (0.76–0.81)R�. The
radius of the secondary of the binary GU Mus
coincides with the size of the star’s Roche lobe,
which is equal to R2 = 0.23a0 in our case, where
a0 = (4.80 ± 0.14)R� is the distance between the
centers of mass of the components, i.e.,R2 = (1.10 ±
0.03)R�, and the secondary has obviously already left
the main sequence. The secondary, whose effective
temperature is 4500 K, has a bolometric luminosity of
Lbol = (1.7 ± 0.1) × 1033 erg/s, or (0.43 ± 0.01)L�.
Using the observed X-ray flux at 2–30 keV during
the low state, LX ≤ 1.5 × 1032 erg/s [1, 23], we
can estimate the component-luminosity ratio to be
LX/Lbol < 0.1. This ratio is too low to give rise
to an appreciable reflection effect on the secondary.
The observed reflection effect is apparently due to
heating by ultra-soft X-ray and ultraviolet radiation
from inner parts of the disk, which are heated to
100 000–180 000 K. The nature of this radiation
remains unclear, but its presence necessarily follows
from our analysis of the light curves.
A considerably stronger radiation flux originates

from matter in the inner parts of the disk heated to
temperatures of 115 000–130 000 K (see the table).
Assuming this is black-body radiation, the maximum
of the spectral energy distribution for such temper-
atures is at soft X-ray energies (∼0.05 keV). Our
model assumes that this radiation originates near the
radiusR1, with the value adopted in our computations
beingR1 = 0.0006a0, or, using the above estimates of
a0,R1 ∼ (2–3)× 108 cm (R1 ∼ (90–150)Rg in units
of the gravitational radius, Rg, for masses of MX ∼
(6.7–7.6) M�). The corresponding bolometric flux is
Lb ∼ (0.7–2.7) × 1033 erg/s, and the ratio of the soft
X-ray to the optical flux from the secondary will be
high enough to lead to an appreciable reflection effect
on the red dwarf, Lb/Lopt ∼ 0.4–1.5.

5. CONCLUSIONS

Due to the low optical luminosity of the stars, the
contribution of the optical luminosity of the accretion
disk becomes significant for X-ray novae in quies-
cence. It is important that, due to the existence of a
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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region of interaction between the disk and flow (the
hot line), the contribution of this gaseous structure
depends on the phase of the orbital period. This gives
rise to optical and infrared variability that, combined
with variations due to ellipticity effects, makes inter-
pretation of the orbital light curve less straightforward
than in the case of purely ellipsoidal variability.

We have developed a technique for computing the
contribution of nonstellar components to the orbital
optical and infrared variability of an X-ray nova in
quiescence, based on a hot-line model. Applying this
technique to the X-ray nova GUMus=GRS 1124–
68, we have demonstrated that the hot-line model
can provide a good description of various features of
the system’s orbital optical and infrared variability,
including the anomalous increase of the system’s
luminosity at phase ϕ ∼ 0.25. At the same time, in
some cases, the hot-spot model cannot explain the
anomalous shape and amplitude of the orbital light
curves of “quiescent” X-ray novae.

Our detailed analysis of the orbital optical
and infrared light curves of the X-ray nova
GU Mus = GRS 1124–68 using a model with an
ellipsoidal optical star and an accretion disk with a
hot line has enabled us to determine the parameters of
the disk and hot line that give rise to the light-curve
anomalies, and to obtain a trustworthy estimate of
the orbital inclination, making it possible to derive a
more reliable estimate of the mass of the black hole
in the system. On the other hand, the variations of
the characteristics of the accretion disk and hot line
we have discovered lead to the need for studies of
unstable phenomena occurring during mass transfer
in “quiescent” X-ray novae, probably due to activity
of their optical components, which have convective
envelopes. It is also of interest to clarify the nature
of the ultraviolet radiation emerging from central
regions of the disk, whose luminosity exceeds the
X-ray luminosity, LX , and leads to a considerable
reflection effect on the optical star in the GU Mus
system in quiescence.

Note also that we have used a Planck approxi-
mation to describe the radiation from the disk and
hot line, leading to large optical depths for both the
accretion disk and the region of interaction of the flow
with the circumstellar envelope of the binary, the hot
line. If the optical depth of the disk and hot line for
the quiescent state of GUMus is not high, the optical
variability of the nonstellar components (disk + hot
line) should be less strong than we have found. In this
case, the accretion disk and hot line will only provide
a constant addition to the system’s optical luminosity.
This ambiguity can be removed using spectrophoto-
metric estimates of the component-luminosity ratio
ASTRONOMY REPORTS Vol. 47 No. 8 2003
at various phases of the orbital period. Thus, fur-
ther detailed and high-accuracy spectroscopic ob-
servations of X-ray novae in their low state are very
promising.
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Abstract—The rate of gamma-ray bursts (GRBs) in the Galaxy is estimated assuming that these events
result from the formation of rapidly rotating Kerr black holes during the core collapse of massive, helium,
Wolf–Rayet secondary components in very close binary systems. This process brings about rapid rotation
of the cores of such Wolf–Rayet stars, inevitably resulting in the formation of Kerr black holes during
type Ib,c supernovae. The current rate of formation of Kerr black holes (GRBs) in the Galaxy is about
3 × 10−5/year. Collimation of the gamma-ray radiation into a small solid angle (about 0.1–0.01 sr) brings
this rate into consistency with the observed rate of GRBs, estimated to be 10−6–10−7/year. Possible
immediate progenitors of GRBs are massive X-ray binaries with X-ray luminosities of 1038–1040 erg/s.
Due to the short lifetimes of the progenitors and the very high brightnesses of GRBs, the GRB rate can
provide information about the history of star formation in the Universe on the Hubble time scale. A model
in which the star-formation rate is determined by the conditions for ionization of the interstellar gas, whose
density and volume are determined by supernovae, yields a Galactic star-formation history that can be
viewed as representing the history of star formation in the Universe. The theoretical history of star formation
is in satisfactory agreement with the history reconstructed from observations. The theoretical model for the
history of star formation in the Galaxy can also be used to assess the influence of dust on optical observa-
tions of supernovae and GRBs in galaxies of various ages. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the very first publications on gamma-ray
bursts (GRBs), themechanism producing these short
(0.01–1000 s) bursts of gamma-ray radiation has
been one of the most popular and complex problems
in astrophysics. Although papers dedicated to GRBs
are now being published at a rate that exceeds that of
the detection of the events themselves (∼300/yr), it
has only recently became clear that most or all GRBs
are associated with events in distant galaxies with
high star-formation rates and accompany superno-
va explosions of massive stars [1–5]. However, the
estimated detection rate of GRBs (10−6–10−7/yr [6,
7]) is much lower than the rates of known types of
supernovae (10−3–10−2/yr [8]) for a galaxy with a
mass equal to that of the Milky Way. This appreciable
discrepancy must be explained in an adequate GRB
model. Thus far, no such unambiguous model has
been developed.

The record brightnesses of GRBs and the under-
standing that GRBs are associated with the evolution
of short-lived massive stars and, consequently, with
the local star-formation rate makes these events an
invaluable tool for analyzing the history of star for-
mation during the earliest stages of galaxy evolution,
which are not accessible using other methods. As is
1063-7729/03/4708-0637$24.00 c©
well known, at redshifts z > 6.3 (ages t < 5 × 108 yr),
neutral hydrogen and the associated optical absorp-
tion make the earliest stages of star formation in
the Universe inaccessible to optical methods. The
extreme energy (∼1051 erg), collimation (0.1 sr [7])
and penetrating power of gamma rays enable GRBs
to be detected to distances z ∼ 100 (t ∼ 107 yr) [8].
Generally speaking, this enables the reconstruction
of the history of star formation in the Universe, even
without knowledge of the specific mechanism pro-
ducing the GRBs, based only the hypothesis that the
GRB rate is related to the intensity of star formation
and the evolution of the most massive stars (figure).
This approach, in particular, has made it possible to
establish that active star formation begins at z ∼ 15
(t ∼ 2 × 108 yr) and peaks at z ∼ 8 and that the star-
formation rate has decreased by almost a factor of 100
by the present [10]. About half of all GRBs have z < 5
(t > 109 yr; figure); i.e., they are located at redshifts
where possible optical manifestations of the GRB
could be detectable. The lack of optical “companions”
for about half of even the most powerful GRBs [10] is
likely due not only to the “reionization” barrier, but
also to optical absorption by dust, which is usually
abundant in regions of active star formation. We re-
turn to this issue below.
2003 MAIK “Nauka/Interperiodica”
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Star-formation rate dM/dt (solid line) [67], gamma-ray
burst rate dN/dt (dotted line) [10], and optical depth τ
(dashed line) as functions of the age of the Galaxy. τ =

10−8XZMg/M�(104 pc/R)2, where XZ is the heavy-
element abundance, Mg the mass of the gaseous com-
ponent, and R the radius of the galaxy in pc. T = 1.3 ×
1010/(1 + z)3/2 yr. Also shown is the reionization bound-
ary R. Half of all the stars in the model are born before the
galaxy reaches an age of ∼109 yr.

The unique properties noted above have made
studies of GRBs one of the most popular areas of
research in modern astrophysics. The rate of pub-
lications in this field in the astronomical literature
exceeds the detection rate of GRBs (1–3 per day) [3,
11]. The wide range of GRB durations (10−2–103 s)
and the variety of their light curves may indicate that
several mechanisms are involved in their formation
and/or that the observed manifestations strongly
depend on the conditions under which the process
responsible for the GRB occurs. The first evidence
pointing to a cosmological origin for longer GRBs
included their uniform sky distribution and the clas-
sical brightness distribution of bright GRBs, which
appeared to be uniformly distributed in Euclidean
space [12]. It is interesting that the number–flux re-
lation flattens and forms a plateau at low gamma-ray
fluxes [13], indicating that these events have reached
their spatial cosmological “horizon.” Because these
relations flatten at fluxes ∼10−4 erg/cm−2 [13] and
the distance to the “horizon” is ∼5 × 109 pc, the
characteristic energy emitted in an isotropic burst
should be equal to ∼1053 erg. However, the radiation
of a GRB is collimated in a narrow beam filling a
solid angle of only 0.1–0.01 sr [9, 14, 15], so that
the characteristic energy of a GRB is actually on the
order of 1050 − 1051 erg [16, 17], comparable to the
energy of a supernova. It is important that this energy
is carried away by gamma rays with characteristic en-
ergies of about 10−5–10−6 erg, although multifaceted
studies of GRBs have shown that bright bursts are
accompanied by appreciable infrared, optical, and
X-ray radiation [1].

Host galaxies have been identified for many GRBs
(a total of thirty events so far). The distances to these
host galaxies vary from z = 0.01 (GRB 980425) to
z = 4.5 (GRB 000131), with the mean redshift being
z ∼ 1 [1]. In the most nearby galaxies, we find that
the positions of GRBs are definitely associated with
regions of active star formation and, in particular, with
the spiral arms in spiral galaxies [18]. These results
suggest that most, if not all, GRBs are associated
with the evolution of the most massive stars [7]. Es-
timates of the characteristic star-formation rates in
these host galaxies are about several solar masses per
year [1], close to the estimated current star-formation
rate in our Galaxy. However, we should bear in mind
that this result may be largely due to two obvious
selection effects. First, the mass function of galax-
ies has a break near 1011 M� [19], which implies,
among other things, that most of the stellar mass in
galaxies is contained in galaxies with masses close
to that of the Milky Way, where the current star-
formation rate is several solar masses per year [20,
21]. Second, during the early stages of the evolution
of isolated massive galaxies, when the star-formation
rate is high [20–22], the optical depth due to dust
is also high (see the figure). This complicates the
detection of optical afterglows of GRBs in young,
distant, dust-rich galaxies. Therefore, such distant,
young, bright (L ∼ 1012 L�) GRB host galaxies with
star-formation rates of the order of 100 M�/yr were
detected only very recently, in 2002 [4, 23, 24]. As
a result, it becomes clear that, owing to their ex-
ceptional brightness, GRBs are an effective tool for
studying the history of star formation in the Universe,
including distant “dusty” stages and stages that are
“screened” by the ionization barrier, which have re-
mained inaccessible to other methods of observation.
It is important that neither a specific model nor the
conditions for the formation of a GRB have been con-
fidently established. The only guiding circumstance
is the observed association between GRBs and some
type Ib,c supernovae, which, according to our current
understanding, mark the end of the evolution of short-
lived, massive stars that are probably in close binaries.

The aim of the current paper is to analyze a plau-
sible model for a GRB, which suggests that a GRB
occurs during the formation of a rapidly rotating Kerr
black hole during the core collapse of a rapidly rotat-
ing Wolf–Rayet star [25]. The fast rotation of these
stars is made possible by the presence of a close,
massive black hole, which forms a close binary to-
gether with the Wolf–Rayet star. Unfortunately, the
mechanism producing the GRB and the collima-
tion of the resulting gamma-ray radiation remain un-
known. The collimation may be due to the strong
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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magnetic field of the collapsing core [26]. Studies of
related objects—accreting black holes, microquasars
(e.g., GRS 1915+105), and quasars—have shown
that these objects possess narrowly collimated jets
of matter and, possibly, radiation. The rapid rotation
of these black holes is powered by the prolonged
accretion of matter from a Keplerian disk, which has
a large angular momentum. This provides hope that
GRBs can be explained in terms of a model based on
the formation of a Kerr black hole during the collapse
of the rapidly rotating 6core of a massive helium star.

2. CONDITIONS FOR AND RATE
OF FORMATION OF KERR BLACK HOLES

The search for adequate GRB models has pushed
forward our understanding of explosive processes
with appropriate energies occurring during the evolu-
tion of single stars and close binaries. The wide range
of GRB time scales (0.01–1000 s) and the fact that
GRBs may be subdivided into short (with durations of
less than one second) and long bursts [27] leave open
the possibility that several scenarios explaining the
origin of the bursts operate simultaneously. One GRB
model associates these events with the disruption of
low-mass (< 0.1 M�), unstable neutron stars during
the coalescence of the components of a close binary
made up of a pair of neutron stars or a neutron star
and a black hole under the action of gravitational-
wave radiation [28, 29]. Estimates of the rates of
such events in the Galaxy vary from ∼10−4 [8, 30]
to 3 × 10−6/yr [31]; the former estimate neglects the
“kick” a young neutron star may receive at the time
of its formation. However, the high fraction of binary
radio pulsars [32], the bimodal distribution of their
spatial velocities, and scenario-based analyses [33]
allow the absence of a substantial kick. The latter
estimate of the neutron-star coalescence rate is based
on the “observed” fraction of binary radio pulsars,
for which the uncertainty, due to selection effects,
remains rather high [32].

Naturally, to explain the low [6, 7] observed rate
of GRBs, the model must include collimation of their
radiation. Available estimates suggest that the radia-
tion of GRB 980329 and GRB 000911 may be highly
collimated ((102–103) [34, 14]). However, generally
speaking, the observed manifestations of the coa-
lescence of relativistic stars in a tenuous interstellar
medium are incompletely understood.

Evidence has been accumulating suggesting that
at least long GRBs may be associated with type
Ib,c supernovae in starburst galaxies [5, 35–38]. It is
noteworthy that at least two GRBs—GRB 01121 [39]
and GRB 0211189 [40]—have shown signs that they
are surrounded by an intense (10−6–10−4 M�/yr)
ASTRONOMY REPORTS Vol. 47 No. 8 2003
and fast (vw ∼ 1000 km/s) stellar wind with a char-
acteristic radial distribution, presumably associated
with the burst precursors. The high wind velocity
has enabled the identification of these precursors with
Wolf–Rayet stars, whose explosions at the end of
their nuclear evolution have been suggested as pos-
sible models of type Ib,c supernovae. These explo-
sions are accompanied by the formation of massive
black holes with masses 5–40 M� [37, 41, 42]. One
possible explanation of GRBs involves the formation
of a rapidly rotating Kerr black hole as a result of a
SN Ib,c explosion [43, 44]. The energy released in
the form of neutrinos and gravitational waves during
the formation of a massive black hole exceeds the
gamma-ray emission of a GRB by three to four orders
of magnitude.

The condition for the formation of a Kerr black hole
has the obvious form [37]

ω2R3
BH = GMBH , (1)

where ω, RBH , and MBH are the angular rotational
velocity, radius, and mass of the black hole, respec-
tively. It is important that the rotation of the cores
of single stars or of the components of wide binaries
slows during their evolution so efficiently that the
young final products of stellar evolution—black holes,
neutron stars, and degenerate dwarfs—rotate with
velocities that are far from their limiting values [45,
46]. One obvious way to achieve the maximum rota-
tional velocity for young neutron stars and black holes
is for a compact helium presupernova to have a very
close, massive, compact companion, with the axial
rotation of the presupernova being synchronous with
the orbital rotation of the close binary. The feasibility
of this picture follows from the scenario for the evo-
lution of close massive binaries described in [47]. The
angular velocity of the orbital motion is determined by
the equation

ω2a3 = G(MSN + M2), (2)

where a is the semimajor axis of the binary and MSN

and M2 are the masses of the helium supernova and
its companion, respectively. Assuming that the col-
lapsing core of the supernova conserves angular mo-
mentum, the condition for the formation of a Kerr
black hole acquires the form(

Rn

a

)3 Rn

RBH
>

MBH

MSN + M2
, (3)

where Rn is the radius of the helium presuperno-
va core that collapses into a black hole. Suppos-
ing as an example that M2 = MBH = 10 M� and
MSN = 2MBH [37], we find that this last condition
is equivalent to

a < 0.0145Rn
4/3. (4)
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To estimate Rn, we assume that the black hole
forms from the products of carbon burning, with
a nuclear energy of ∼3 × 1017 erg/g. Comparing
this energy with the binding energy of the col-
lapsing core, we find the final constraint on the
semimajor axis of the binary before the explosion
a < 1.5 R�(MBH/10 M�)4/3, and the orbital period
is equal to porb < (MBH/10 M�)3/2 h. It is clear
that such close systems can consist only of compact
helium stars with radii ∼0.2(MHe/M�)0.6 R� [47]
and black holes. This estimate of the allowed interval
of semimajor axes should be considered only pre-
liminary, and special numerical computations of the
late stages of the evolution of massive (M > 10 M�)
helium stars and supernovae accompanying the
formation of black holes are required to refine this
interval and clarify its dependence on the mass of the
helium presupernova. Note also that the mass of the
black hole and the nature of the explosion may depend
appreciably on the rotational velocity of the supernova
core [48].

We can now use the empirical star-formation
function for close binaries in our Galaxy [8, 49],

d3ν = 0.2d log(a/R�)(M/M�)−2.5d(M/M�)dq,
(5)

to estimate the formation rate of Kerr black holes
in the framework of the mechanism proposed here.
This last formula describes the distribution of close
binaries forming each year in the Galaxy over their
semimajor axes a, the mass M of their primaries,
and their initial mass ratio q. In this connection,
we should bear in mind that, to form a close bi-
nary consisting of a Wolf–Rayet star and a black
hole, after depleting all its hydrogen, the secondary
must expand and form the common envelope of the
binary. This means that the mass of the secondary
should not exceed ∼50 M� [50]. At the same time,
to become a black hole, a main-sequence star should
have a mass greater than ∼25 M� [37]. If we now
adopt d log a = 0.3 and dq = 0.5, the final estimate
of the formation rate of Kerr black holes becomes
∼10−4/yr. This formation rate must be corrected
for the high collimation factor of the GRB radiation
(100–1000) [14,15]. Combined with this collimation
factor, the inferred formation rate of Kerr black holes
yields the estimate of the observed rate of GRBs
in our Galaxy 10−6–10−7/yr [6, 7, 51]. However,
we acknowledge that both estimates—observed and
theoretical—remain uncertain and will be refined in
the course of subsequent work.

Thus, GRBs may result from the core collapse of
a Wolf–Rayet component in a close binary system
accompanied by a type Ib,c supernova. The enormous
(a factor of ∼6000 [51]) difference between the rates
of these events (type Ib,c supernovae and GRBs) is
probably due to the necessary “fine” tuning of the
initial parameters of the close binaries and the narrow
(only several degrees [9, 14, 15]) opening angles of
the the GRB beams. We do not address here the
physics of the development of a GRB during the
collapse of the rapidly rotating core of a Wolf–Rayet
star. One possible mechanism for the formation of a
narrowly collimated jet in the presence of a strong
magnetic field in a collapsing core has been suggested
by Bisnovatyi-Kogan [26].

3. ANALYSIS OF THE OBSERVED
PROPERTIES OF X-RAY BINARIES.

PROGENITORS OF GAMMA-RAY BURSTS

We show below that luminous, massive X-ray
binaries (XRBs) are likely immediate progenitors of
GRBs. Let us now look at their main observational
properties in some detail. Grimm et al. [52] have
established the principal properties of the empirical
luminosity function of X-ray sources in several of the
nearest galaxies. The maximum luminosity of XRBs
is limited to 1040 erg/s. In the interval 4 × 1035 <
LX(erg/s) < 1040, the luminosity function is given by
the equation

dN/dLX ∼ L−1.6
X . (6)

The total X-ray luminosity of a starburst galaxy
with a star-formation rate exceeding ∼5 M�/yr is
proportional to the star-formation rate µ, as we would
expect, given the nature of massive XRBs. At lower
star-formation rates, we have

LX ∼ µ1.7. (7)

Gilfanov [54] showed that the extension of the
proportionality between LX and µ toward low star-
formation rates found by Ranalli [53] is due to the
inclusion of long-lived, low-mass binaries, which re-
flect the mass of the corresponding galaxies rather
than their star-formation rates. Note also the poor
statistics of the dependence of LX on µ in this interval
of LX [53]—it is based only on two galaxies.

Special attention should be paid to the fact that the
observed XRB luminosity function exhibits no dis-
cernible features near sources with luminosities cor-
responding to the Eddington limit for neutron stars
(LX ∼ 1038 erg/s), implying that accreting neutron
stars do not contribute appreciably to the luminos-
ity function. The hypothesis that the accretors in
most bright XRBs are stellar-mass black holes is
further supported by the fact that the luminosities
of the brightest XRBs are bounded from above by
1040 erg/s. The hypothesis that this XRB luminosity
limit is associated with the Eddington limit yields
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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a direct constraint on the maximum mass of stellar
black holes: ∼40(1 + X) M�, where Х is the hydro-
gen abundance of the accreting matter. In the case of
the accretion of wind material from a Wolf–Rayet star
by a companion (Х = 0), the upper limit on the mass
of stellar black holes should be ∼40 M�.

It also follows from the constraint on the XRB
luminosity that the accretion rates in these systems
are limited to ∼10−6 M�/yr. Such accretion rates
rule out conservative exchange on the thermal or
nuclear time scales for donors with masses exceeding
∼2 M� or ∼10 M�, respectively, provided that the
corresponding donors are main-sequence stars filling
their Roche lobes. It follows that the donors in most
of the brightest XRBs are Wolf–Rayet or OB stars
feeding the black hole via their stellar wind. Note that
the overall increase in the masses of the most massive
black holes during the X-ray stage is fairly small,
even for the brightest X-ray sources: 3 × 106 yr ×
10−6 M�/yr ∼ 3 M� and ∼0.3 M� for hydrogen and
helium donors, respectively.

Known Galactic XRBs have black holes with
masses that do not exceed ∼20 M� [37], obviously
due to their small number (∼20) and their mass
function, which has the form dN/dMBH ∼ M−2

BH .
The condition for survival of an XRB with a low-mass
donor during a supernova in a system with a circular
orbit [47] requires that the mass of the resulting black
hole exceed half the mass of the Wolf–Rayet su-
pernova, or MBH/M� > 0.05(MMS/M�)1.4, where
MMS is the initial main-sequence mass of the star.
It follows that, to produce a black hole with a mass
of ∼40 M�, the initial mass of the ОВ star must be
70–100 M�. This mass is typical of the most massive
OB stars in the Milky Way and other galaxies [55].

Why are most X-ray sources associated with ac-
creting black holes, whereas, according to the initial
stellar mass function (5), neutron stars should out-
number black holes by a factor of three? This estimate
is based on the assumption that, in order for a star to
evolve into a neutron star or black hole, its initial mass
must be no less than 10 M� or 25 M�, respectively
[25]. The predominance of black holes among XRBs
is due to the stellar-wind accretion mechanism. The
rate of accretion of the stellar wind is [56]

µacc = 0.25G2M2
av−4

w a−2µw, (8)

where vw = (GMd/Rd)0.5, G is the gravitational con-
stant, Ma is the mass of the accretor, vw is the velocity
of the stellar wind, a is the semimajor axis of the XRB
orbit, and µw is the intensity of the wind. Rd and
Md are the radius and mass of the donor. It follows
from (8) that the accretion rate of a black hole of mass
10 M� is almost a factor of 50 higher than that of a
neutron star of mass 1.4 M�. At the same time, the
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number of neutron stars is only a factor of three higher
than the number of black holes. This explains the
predominance of black holes among the accretors of
bright XRBs, despite the somewhat longer duration
of the X-ray stage for accreting neutron stars, owing
to the two–threefold difference in the characteristic
masses of the donors in these systems.

Let us now turn to the relationship between the
integrated X-ray fluxes of galaxies and their star-
formation rates. For massive galaxies with masses
exceeding that of the Milky Way, the X-ray lumi-
nosity is proportional to the star-formation rate,
which is quite natural in the case of a standard
luminosity function. However, at lower galaxy masses
and star-formation rates, the observed X-ray lumi-
nosity decreases much faster than the correspond-
ing star-formation rates [see (7)]. This provides
direct evidence that a new factor associated with
the galaxy mass plays a role in these galaxies. If
XRBs are assumed to have the same standard lu-
minosity function, this additional factor may depend
on the abundance of metals XZ in the galactic
material. For galaxies more massive than the Milky
Way, XZ = XZ� , whereas M ∼ Xα

Z for less massive
galaxies, where α = 0.7–1.3 [57, 58]. The stellar-
wind intensities of OB stars can be written µ ∼ Xβ

Z ,
where β = 0.5–1.7 [55, 59]. We now assume that
µ ∼ M to obtain LX ∼ µ1+β/α. The luminosity func-
tion (7) shows that, to explain its observed slope, we
must suppose that β/α = 0.7. This appears quite
possible given the appreciable uncertainty in the
parameters used. It is important that, to explain the
observed dependence (7) in terms of the proposed
model, the dependence of the stellar-wind intensity on
the heavy-element abundance must be independent
of nature of the donor, i.e., of whether it is an OB
or Wolf–Rayet star. These two types of stars should
display different mechanisms for sustaining their
stellar wind [37]. Note also that the hypothesis that
the XRB luminosity function has a universal form
is not consistent with the dependence of the specific
X-ray luminosity on the star-formation rate in the
galaxy [52].

Let us now consider the XRB luminosity distribu-
tion (6). We first estimate the maximum luminosity
attained by an XRB fed by the stellar wind of the
donor. We assume that the accretor is a black hole
and that the donor is close to filling its Roche lobe,
i.e., а = 2.5R. We find from (7)

µacc = 0.04(MBH/Md)2µw. (9)

In general, the donor can be either a main-sequence
star with

µw = 10−16.4(LOB/L�)2 (10)

= 10−12.4(MOB/M�)4 M�/yr,
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according to [55], or a Wolf–Rayet star with

µWR = 10−8.6(LWR/L�)0.7 (11)

= 10−6.1(MWR/M�)1.3 M�/yr,

according to [37]. Estimates made using the formal-
ism adopted earlier in [60] show that we can neglect
the X-ray driven stellar wind in this case. We can now
find from the latter three relations that, to provide the
maximum observed luminosity, XRB ∼ 1040 erg/s
(µacc ∼ 10−6 M�/yr) for MBH = 40 M�, the mass
of the Wolf–Rayet star must be MWR < 100 M�.
These are usual masses for Wolf–Rayet stars [37].
To provide the maximum luminosity of an XRB with
an OB donor, the mass of the donor must exceed
∼200 M�, ruling out these stars as possible donors
for the brightest XRBs.

Finally, we can use the XRB luminosity funct-
ion (6) to make another comparison of the “feasi-
bility” of these two types of donors. For a Salpeter
mass distribution for the primaries and a flat mass
distribution for the secondaries in close binaries (5),
the mass distribution of the binaries has the form
dν/dM2 ∼ M−1.5

2 . Because MWR ∼ M1.4 [47], we
have dν/dMWR ∼ M−1.36

WR . The lifetimes of Wolf–
Rayet stars are [47] TWR ∼ M−0.5

WR , so that we finally
obtain for LX ∼ µWR ∼ M1.3

WR (11) the theoretical lu-

minosity function dN/dLX ∼ L−1.66
X , which virtually

coincides with the observed luminosity function (6)
within the uncertainties. Applying the same proce-
dure to OB donors yields a luminosity function of
the form dN/dLX ∼ L−1.1

X , which differs appreciably
from (6).

As a result, we conclude that at least the brightest
X-ray sources associated with XRBs are extremely
close binaries consisting of massive black hole ac-
cretors and Wolf–Rayet donors. At the same time,
these very systems are potentially promising candi-
dates for explaining GRBs. Two conclusions follow
from this coincidence. First, close binaries suitable
for producing Kerr black holes should be among the
brightest XRBs of their host galaxies. Second, since
the brightest systems should be the closest ones, it
is worthwhile to search for variability in the brightest
XRBs, due to eclipses of the X-ray source by the
wind from the donor or by the donor itself, with pe-
riods ranging from several hours to several days. A
supernova accompanied by a GRB produces a close
binary consisting of massive black holes. Due to the
emission of gravitational waves, the components of
such systems coalesce at a rate of ∼10−6/yr per
Milky Way [30] and are the brightest stellar sources
of gravitational waves.

An important question now arises: why have no
obvious systems with Wolf–Rayet donors been found
among the sixteen XRBs with black-hole accretors
cataloged thus far? The most likely explanation is
observational selection effects. According to the lu-
minosity function (6), the brightest X-ray sources are
few in number, and those in our Galaxy are located far
from the Sun and are thus hidden from an “optical”
observer located in the plane of symmetry by interstel-
lar dust. Furthermore, the large widths of the spectral
lines of Wolf–Rayet stars make periodic variations
of their radial velocities—and, consequently, binarity
of such stars with X-ray companions—difficult to
detect. The search for eclipses inXRBs may be a more
promising way of their detection.

4. GAMMA-RAY BURSTS—TRACERS
OF STAR FORMATION IN GIANT GALAXIES

Because GRBs are visible at cosmological dis-
tances [10], it is absolutely essential to take into ac-
count the history of star formation when analyzing
the evolution of their rate. Available estimates show
that the GRB rate per galaxy increases by almost
a factor of ten in going from the present (z = 0) to
galaxies with ages ∼1.6 × 109 yr (z = 3) [12, 61].
If we assume a “standard” nature for long GRBs,
we can reconstruct the “observed” dependence of
the GRB rate on galaxy age (see the figure) [10,
62] in the age interval 108–1010 yr. It seems natural
to assume that star formation starts at an age of
∼108 yr, since this is close to the time scale for the
collapse of protostars with an initial density of the
order of the mean density of our Galaxy. Recall that,
according to the observed luminosity function, our
Galaxy, with a mass of ∼2 × 1011 M� and a radius
of ∼20 kpc, is representative of the stellar component
in the Universe [63]. This provides hope that modeling
the history of star formation in our Galaxy will enable
us to approximately reconstruct the history of star
formation in the Universe. It is important that the
penetrating power of GRBs makes them a realistic
and potentially very effective tool, enabling us to see
for the first time beyond the hydrogen reionization
“barrier,” which makes the first billion years of star
formation in the Universe inaccessible to optical ob-
servations.

The physically self-consistent model for the nu-
merical analysis of star formation in disk galaxies of
[20, 21] assumes that the star-formation rate in a disk
galaxy is determined by the full ionization of hydrogen
in a presumably uniform interstellar medium. Quali-
tatively, this condition is equivalent to the empirical
Schmidt law, which says that the local star-formation
rate is proportional to the square of the interstellar-
gas density. The volume of an axisymmetric gaseous
component of a given constant radius and variable
thickness is determined by the balance between the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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kinetic energy pumped into the interstellar gas by
supernovae and the dissipation of this energy during
collisions of gaseous clouds. The model shown in the
figure enables us to describe the history of star forma-
tion in the Galaxy from the formation of the first stars
(t ∼ 108 yr) to the present (t ∼ 1.3 × 1010 yr). The
advantages of this model include the following: (1) it
implies that the current integrated star-formation rate
in the Galaxy should be proportional to the mass of
its gaseous component, as is confirmed by observa-
tions over a very wide range of galactic gas masses
(102–1011 M�), (2) it can describe the observed dis-
tribution of stellar heavy-element abundances, and
(3) it can explain the observed dependence of the
metal abundance on distance from the Galactic plane
[20].

We adopted a galaxy model with a mass and ra-
dius of the order of those of the Milky Way, since
the Milky Way is representative of the stellar pop-
ulation [64] and most (∼30) of the GRBs identified
thus far are associated with galaxies with luminosities
similar to that of the Milky Way [65]. In this model,
the star-formation rate gradually increases with the
age of the galaxy. The maximum star-formation rate,
∼300 M�/yr, is attained at z = 5 (t = 8 × 108 yr)
and is nearly two orders of magnitude higher than the
present-day star-formation rate in the Galaxy. About
half of all stars form by the age of ∼109 yr. It is inter-
esting that only about one-quarter of all stars in this
model are born beyond the reionization barrier. The
age of the galaxy when it attains its maximum star-
formation rate in the adopted model is completely de-
termined by its radius and, given the observed disper-
sion of galactic radii with similar masses [66], varies
within a factor of three. For example, a twofold de-
crease or increase of the galactic radius [21, 67] would
shift the time of star-formation maximum to ages of
∼2.5 × 108 and ∼3 × 109 yr, respectively. Compari-
son with mostly optical observations of galaxies show
that the model of galactic evolution portrayed in the
figure describes the observed history of star formation
in massive galaxies at z < 3 [20, 67].

We can see that the model star-formation history
and the “observed” evolution of the GRB rate [10, 68,
69] in the figure are qualitatively in good agreement.
We should not give too much weight to the question
of quantitative agreement at this point, given the
remaining uncertainties in both the parametrization
of the model and, most importantly, in the procedure
for reconstructing the history of GRB rates from the
known statistical properties of the ensemble of GRBs.
It follows from the model that a large fraction of
stars formed after the epoch of hydrogen reionization.
Combined with possible mechanisms for the decrease
of the dust optical depth in galaxies, this can explain
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the high fraction of GRBs (about half [1]) that are
accompanied by detectable optical afterglows.

The figure shows that the optical halfdepth of the
galactic model varies with time. It increases during
early stages of the evolution, reflecting the increase
in the metal abundance as a result of supernovae.
The optical halfdepth reaches its maximum, ∼5m, at
z = 5, and afterward begins to decrease as a result of
the decrease in the gas content in the galaxy due to
the conversion of gas into stars. Observational esti-
mates of the role of intergalactic dust in the absorp-
tion of radiation are currently limited to a search for an
X-ray halo produced by dust grains around the blazar
GB 1508+5714 (z = 4.3) by Telis [70]. The absence
of a detectable halo suggested that the optical ex-
tinction of radiation from cosmological objects by
intergalactic dust is insignificant. At the same time,
infrared observations of galaxies with ongoing star
formation and the model described here show that
optical extinction by dust in young galaxies requires
a special discussion.

Young gas-rich galaxies are known to be pow-
erful sources of infrared radiation resulting from the
conversion of stellar radiation by interstellar dust
grains [71, 72]. As noted above, a high gas content
is always accompanied by a high star-formation rate
and, consequently, by a high luminosity of the galaxy.
The model shows that optical halfdepth of the young
galaxy during the stage of active star formation and
a high GRB rate (see the figure) could have been as
high as several magnitudes, even in the polar direc-
tion. Naturally, inclination of the axis of a disk galaxy
to the line of sight can only increase the extinction.
As a result, the extinction toward several observed
supernovae is as high as ∼8m [74]. The measured
extinction in young (z = 2–4) galaxies can reach
∼3m [73], close to the model estimate. Evidence for
strong optical extinction by dust in the host galaxies
of GRBs is also provided by their high bolometric-
to-ultraviolet luminosity ratios (∼100) [75]. Our old
Galaxy also exhibits appreciable extinction in the po-
lar direction (∼0m. 5). The mean observed extinction
averaged over 80 000 galaxies is ∼1m [76]. Against
this background, the low extinctions observed for 39
extragalactic type Ia supernovae (∼0m. 2 [77]) and
22 optically identified GRBs (∼0m. 3 [4, 78]) appear
paradoxical. Moreover, it is well known that up to half
of all GRBs have optical afterglows [79, 80]. How can
the high mean optical extinction of the host galaxies
by dust be reconciled with the low extinctions of
optically detected SN Ia’s and GRBs?

A number of factors may be responsible for the
relatively low mean observed optical extinction of
SN Ia’s and GRBs. The most important ones prob-
ably include various selection effects. Let us consider
one of these. Suppose that the optical depths τ
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of galaxies are distributed according to the law
dN/dτ = Ae−Aτ . The median optical depth for this
distribution is 0.7/A. If we assume that galaxies are
distributed uniformly in space, the volume where
objects of a given luminosity are observable for a
fixed minimum flux depends on the optical depth
as e−1.5τ . As a result, the median optical depth of
detectable objects is 0.5(A + 1.5)−1. For A = 1, the
median extinction is 0m. 2 (as for SN Ia’s) for a median
optical-depth extinction of 0m. 7 for the initial galaxy
distribution. This example clearly illustrates the role
of the predominance of objects with low extinctions
in optically selected samples. Note that the decrease
in the mean extinction for SN Ia’s is also due to a
considerable degree to the fact that a sizeable fraction
of these supernovae occur in elliptical galaxies with
negligible optical extinction by dust.

There is another obvious selection effect that de-
creases the dust optical depth in disk galaxies with
ongoing star formation, primarily for GRBs. This is
due to the presence of gaseous supershells with sizes
of the order of the thickness of the gaseous disk of
the galaxy, which are usually transparent in the po-
lar directions [81]. Such holes in the gaseous-dust
disk “expose” regions of violent star formation and
young stellar objects, including GRBs, to an exter-
nal observer. Another important effect decreasing the
extinction toward young objects in young, dust-rich
galaxies compared to that implied by the model in the
figure is that an appreciable fraction of young stars
are in galaxies that are less massive than the Milky
Way [63, 82]. Numerical simulations show that such
galaxies do not reach solar metal abundances [57, 58]
and, consequently, large optical depths, probably due
primarily to the loss of the products of supernovae
carried away by the galactic wind [21, 67].

Another effect that may also be important in in-
creasing the chances of detecting optical radiation
from GRBs and the associated type Ib,c supernovae
is the vaporization of dust by the powerful and nar-
rowly collimated GRB radiation. Simple estimates
show that the blackbody temperature of the dust is
higher than the vaporization temperature at distances
smaller than 30 kpc from the GRB. This demon-
strates the potentially high efficiency of the gamma-
ray radiation in vaporizing dust in the host galaxy, at
least within the GRB radiation cone. To summarize,
the above effects are capable of explaining the low
mean extinction toward SN Ia’s and the high fraction
(up to half) of GRBs with optical afterglows [1].

5. CONCLUSIONS

The origin of GRBs remains a subject of heated
debate. Despite the variety of models proposed, no
real criteria making it possible to discriminate be-
tween them were known until recently, when several
long GRBs were identified with type Ib,c cosmolog-
ical supernovae. The detection of the manifestations
of intense stellar winds in the optical spectra of these
supernovae leads us to conclude that, at least in these
cases, the presupernovae were massive Wolf–Rayet
stars [83], which appear to be common progenitors for
type Ib,c supernovae. In this paper, we have assumed
that a GRB marks the formation of a Kerr black hole
during the core collapse of a Wolf–Rayet component
in an extremely close binary. Preliminary estimates
yield the plausible estimate for the rate of such events
in a galaxy like ours ∼10−6–10−7/yr, and make it
possible to describe the “observed” cosmological his-
tory of such events. However, given the wide variety
of manifestations of observed GRBs, we must ac-
knowledge that this mechanism cannot represent the
entire range of these events, so that studies of other
interpretations, such as the coalescence of the com-
ponents of extremely close binaries [30], magnetoro-
tational supernovae associated with the formation of
neutron stars with strong magnetic fields and rotation
energies of the order of ∼1051 erg (prot ∼ 0.01 s) [84,
85], etc., should remain on the research agenda.

Theoretical studies of the history of star formation
in massive galaxies suggest a severalfold increase in
the star-formation rate in the past, in the age interval
2 × 109–13 × 109 yr [22, 86–89], as is confirmed by
observations. The use of GRBs as tracers of star-
formation history enables us to expand the age inter-
val accessible for objective analyses to earlier epochs
up to ages of ∼108 yr (see the figure). A compari-
son of the theoretical star-formation history with the
“observed” history based on GRBs would enable the
establishment of their qualitative and currently sat-
isfactory quantitative agreement. Further improve-
ment of the theoretical model and refinement of the
“observed” star-formation history reconstructed from
GRBs would enable a more constructive approach to
such comparisons. One problem of our model that
should be pointed out is the origin of the delay of
the complete ionization of the gaseous components in
galaxies at z = 6–20. Formally, in the adopted model,
star formation brings about complete ionization of the
uniformly distributed galactic gas within a dynamical
time scale ∼108 yr, which is much less than the age
of the Universe during the reionization stage. Several
factors can be suggested to explain this delay, such as
a nonuniform distribution of the gas or a delay in the
onset of star formation due to a low initial gas density.
This problem requires a special analysis.

We have searched for the immediate progenitors
of GRBs in the framework of a model that associates
these events with the collapse of the rapidly rotating
cores ofmassive Wolf–Rayet star in the closest binary
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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systems. To this end, we have analyzed the principal
properties of the brightest stellar extragalactic X-ray
sources [52]. Most of these sources reside in the
spiral arms of their host galaxies [91], supporting
their identification as massive stars. The donors
in these systems are massive sources of powerful
stellar winds—most likely massive (20–70 M�)
Wolf–Rayet stars that fill their Roche lobes nearly
completely—while the accretors are black holes with
masses of 10–40 M�. The presence of a massive
black hole is dictated by the high (up to ∼1040 erg/s)
luminosities of the brightest XRBs, while Wolf–
Rayet stars are required to provide high (up to
10−6 M�/yr) accretion rates by the black hole.
The reconstruction of the observed XRB luminosity
function requires scenario modeling to determine
the contributions of various binaries to the observed
XRB luminosity function in the framework of current
concepts about the nature and intensity of the stellar
winds of massive stars. Allowance for the dependence
of the stellar-wind intensity on the heavy-element
abundance may make it possible to explain the
strong observed dependence of the integrated specific
luminosity of XRBs on the star-formation rate for
low-mass galaxies with low (µ < 5 M�/yr) star-
formation rates [52].

The extreme closeness of the XRB components
that is required to produce Kerr black holes during
the core collapse of Wolf–Rayet stars suggests that
eclipses can be used to search for binarity of the
brightest X-ray sources. It is important that this
method can also be applied to eclipsing XRBs in
other galaxies that are beyond the reach of detailed
spectroscopic analyses. The brightest XRBs—GRB
progenitors—are expected to have orbital periods
ranging from several hours to several days, and it
is possible that an appropriate rereduction of already
available X-ray monitoring data would make it possi-
ble to find close binaries among these objects.

The qualitative agreement between the model
star-formation history and the evolution of the GRB
rate as a function of galaxy age enables us to nor-
malize the GRB rate to the star-formation rate.
The current star-formation rate in our Galaxy is
dM/dt ∼ 2 M�/yr [21]. The local observed GRB rate
is ν ∼ 10−6–10−7/yr in a galaxy with a mass of the
order of the mass of the Milky Way. As a result, we
can write

ν ∼ 10−7dM/dt, (12)

where dM/dt is in units of M�/yr. The total number
of galaxies with masses of the order of the mass of the
Milky Way located within the cosmological “horizon”
is ∼109 [64], explaining why the observed rate of
GRBs is about one burst per day. Given the high
ASTRONOMY REPORTS Vol. 47 No. 8 2003
degree of collimation of the GRB radiation, the real
formation rate of Kerr black holes should exceed the
GRB rate by two to three orders of magnitude [9,
14, 15] and be equal to 10−4–10−5/yr. This means
that GRBs accompany the formation of 10% of black
holes in the Galaxy. In these estimates, we have as-
sumed that stellar black holes are the final products
of the evolution of stars with initial masses exceeding
∼25 M� [37].

The GRB mechanism discussed here, in which a
GRB is the result of the collapse of a rapidly rotating
core of a massive star, is, in many respects, similar
to the magnetorotational supernova hypothesis [84],
which has been suggested to explain the ejection of
a supernova shell by the energy associated with the
rapid rotation of a young pulsar with a strong mag-
netic field. However, after the slowing of their rotation
at the red supergiant stage, the cores of single stars
and of the components of wide binaries are unlikely
to be capable of producing either GRBs, rotating
neutron stars, or radio pulsars. Only compact, he-
lium, presupernova components in close binaries with
compact companions, which are “forced” to rotate
rapidly by their orbital motion, can offer the necessary
conditions for the formation of rapidly rotating young
neutron stars and Kerr black holes.

If our suggestion that GRBs accompany the
formation of Kerr black holes is confirmed, this
raises the question of the formation of supermassive
(106–1010 M�) black holes in galactic nuclei, which
are manifest as quasars in the presence of sufficiently
active accretion. Quasars have been detected to
high redshifts, z ∼ 6, corresponding to ages of only
∼7 × 108 yr [64, 91]. This suggests that quasars
may have formed via the collapse of short-lived
(∼2.5 × 106 yr) supermassive stars, ruling out the
accretion-driven increase of their masses from the
maximum stellar values ∼100 M�, at least for these
objects [64]. The fast rotation of these supermassive
stars is powered by disk accretion of gas from the
galactic nucleus. The formation of a Kerr black hole
appears likely in this case. It is more difficult to
estimate the formation rate of supermassive black
holes in galactic nuclei and the observational man-
ifestations of these events. If the formation rate of su-
permassive black holes is estimated from the observed
number of quasars within the horizon (∼105 [64]), it
should be ∼10−5/yr, which would virtually rule out
the possibility of observing such events. However,
quasars quite probably represent only a fraction of the
total number of supermassive black holes “switched
on” by powerful accretion. If we suppose that the
number of supermassive black holes that form as a
result of the collapse of supermassive stars is of the
order of the number of galaxies located within the
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horizon—(∼1010–1011)—the formation rate of su-
permassive black holes becomes quite “observable.”
This problem requires a special analysis.

Finally, given the observed variety of GRBs, we
note that Kerr black holes can also form during
the coalescence of relativistic components in close
binaries—neutron stars and black holes—as a result
of gravitational radiation. Theoretical estimates of
the rate of such events in the absence of “kicks”
accompanying the formation of the neutron stars vary
from 10−4/yr for binary neutron stars to 10−6/yr for
binary black holes [30]. The collimation of the result-
ing radiation that probably accompanies such events
provides hope for reconciling the rate of detectable
events with the observed rate.

It is worth noting the inevitable association be-
tween the formation of stellar-mass Kerr black holes
and a powerful burst of gravitational waves with a
duration of ∼10−4M/M� s, which emits ∼0.1 of
the binding energy of the black hole. These events
may become the first detected sources of gravitational
waves produced by stellar objects.
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Abstract—Using atmosphere models based on high-resolution spectra, we have derived the abundances
of chemical elements in the atmospheres of seven classical barium stars and compared them with the
elemental abundances of moderate barium stars and normal red giants. The behavior of elements up to
the iron peak is the same in all three groups of giants, providing evidence that they have a common
origin. The dependence of the anomalous abundances of s-process elements on stellar mass and metallicity
is qualitatively similar for all three groups, probably indicating that a substantial role is played by the
evolutionary phase of the stars. We conclude that the barium-star phenomenon and the overabundances
of s-process elements in barium stars cannot be explained as a consequence of binarity alone. The extent
to which the s-process elements are overabundant is affected by the mass, metallicity, and evolutionary
phase of the given star, and any of these parameters may prove to be important in a specific object.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The spectra of late-type giants often display
chemical peculiarities. Such stars include carbon
stars, S stars, and so-called barium stars, a peculiar
group of G–K giants. Quantitative analyses of the
spectra of these stars are essential for our under-
standing of stellar evolution, since these spectra can
reflect the synthesis of elements in the interiors of
stars at different evolutionary phases.

Barium stars, or BaII stars, were distinguished
as a separate group by Bidelman and Keenan in
1951 [1] on the basis of their unusually strong BaII
lines; in addition, they display enhanced SrII lines
and CH, C2, and CN bands. Warner [2] introduced
quantitative indices (1 to 5) to classify the strength
of the BaII lines, which Bidelman and Keenan [1]
suggested was associated with an overabundance
of barium. Garstang [3] noted that many elements
heavier than barium are also overabundant in these
stars. The first quantitative study of the barium star
HD 46407, which is classified as K0IIIBa3, was car-
ried out in [4] via a growth-curve analysis based on
spectrograms with dispersions of 10 and 15 Å/mm at
photographic and visual wavelengths, respectively. It
was concluded that elements heavier than Sr display
anomalously high abundances (on average, by an or-
der of magnitude), with these elements initially being
produced by the s process (slow neutron capture in
the stellar interior) and subsequently being carried to
the stellar atmosphere. Further studies of elemental
1063-7729/03/4708-0648$24.00 c©
abundances in the atmospheres of barium stars [5–
13] made it possible to determine the abundance
anomalies with higher accuracy and analyze their
origin. The carbon abundances in the atmospheres of
classical barium stars exceed that in the solar atmo-
sphere by 0.3 dex, while normal red giants display a
carbon deficit of approximately 0.5 dex, as is typical
for the phase of hydrogen burning in the CNO cycle.
Barium stars exhibit “normal” nitrogen and oxygen
abundances, unlike red giants, which display nitrogen
excesses, also typical for the CNO cycle. It was con-
firmed that the overabundances of s-process elements
reach 1.5 dex in individual stars. The metallicity—
i.e., the average abundance of iron-group elements—
ranges from 0.0 to −0.5 dex in studied barium stars,
which may indicate that they belong to the old disk
population of the Galaxy.

Two basic hypotheses have been offered to explain
the barium-star phenomenon. According to one, bar-
ium stars are single (see, for example, [14]). At certain
stages of their evolution, conditions favoring the s
process and the synthesis of rare-earth elements are
created in their interiors. This may occur either (1)
during explosive ignition of helium in the degenerate
core (the helium flash) or (2) in the course of ther-
mal pulsations in the helium shell source during the
asymptotic giant branch (AGB) stage. In both cases,
convection can carry s-process elements to upper
layers of the atmosphere. However, these scenarios
face serious difficulties. Modern hydrodynamical cal-
culations of the core helium flash [15] indicate that,
2003 MAIK “Nauka/Interperiodica”
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Table 1. List of selected barium stars

HD
Coordinates (2000.0)

mv Sp Porb, day
α ∆

46407 06h32m46s.9 −11◦09′59′′ 6.30 K0III Ba3 457.4

65854 08 03 32.3 +54 09 35 8.41 G8III Ba1 –

77247 09 03 32.3 +53 06 30 6.87 G8III Ba2 80.5

199394 20 55 09.0 +46 21 00 7.00 G8II Ba1 4382.6

199939 20 58 43.5 +44 24 53 7.44 K0III Ba4 584.9

204075 21 26 39.9 −22 24 41 3.77 G4II Ba3 2378.2

205011 21 31 50.2 +23 50 43 6.43 G9III Ba2 2836.8
although there is mixing of the products of helium
burning and the hydrogen envelope, few neutrons are
produced, due to the insufficient temperature in the
corresponding zone at this evolutionary phase. On the
other hand, the fact that the luminosities of barium
stars are substantially lower than is needed for the
ignition of burning in the helium shell source presents
serious difficulties for the thermal-pulsation model.

The other hypothesis suggests that barium stars
are binary (see, for example, [16]). In this picture,
the more massive component, which evolves more
rapidly than its companion, reaches the AGB, where
helium thermal flashes in a shell source occur. In its
subsequent evolution, the star loses matter enriched
in heavy elements and becomes a white dwarf. Some
of this matter falls onto the surface of the secondary,
which becomes a barium star. Monitoring of radial
velocities carried out for over a decade has yielded the
orbits of 75 barium stars thus far [16–21]. As a rule,
these stars have orbital periods from several hundreds
to several thousands of days. The mass functions of
several stars have been derived from their radial ve-
locities. Assuming the mass of a barium star is about
1.5 M�, which is very likely [16], these estimates
imply that the secondaries in these systems are white
dwarfs. This has been observationally confirmed for
several barium stars [22, 25]. The binarity hypothe-
sis is also supported by the inverse dependence be-
tween the overabundance of s-process elements and
the orbital period of the binary [13]. However, this
hypothesis likewise cannot be adopted uncondition-
ally, and a number of observational results present
real challenges (see, for example, [20]). Therefore,
supplementary data based on observations with high
spectral resolution are desirable.

In a number of studies, nucleosynthesis calcula-
tions have been used to estimate the relative abun-
dances of heavy elements, with the aim of explaining
the observed abundances of these elements in barium
stars. Currently, the most attractive hypothesis is that
ASTRONOMY REPORTS Vol. 47 No. 8 2003
a BaII star originates due to mass transfer from an
AGB star onto its companion in a binary. Therefore,
the most extensive nucleosynthesis calculations have
been made for AGB stars in the phase of thermal
flashes in the helium shell source.

One of the first studies of this kind [24] considered
the unbranched s process, and observations of barium
stars were analyzed on the basis of these calculations
in [25]. Later, Malaney [26] performed nucleosynthe-
sis calculations for s-process elements formed during
thermal pulsations on the AGB, using a new net-
work of nuclear reactions that took into account a
large number of branching processes. These calcula-
tions were carried out for several stellar models with
different core masses. The abundances of elements
from Fe to Tl were determined for each model after
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Fig. 1. Comparison between the equivalent widths of
spectral lines of the red giant β Gem observed with the
2.6-m Shain telescope and the 6-m SAO telescope.
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Table 2. Parameters of the atmospheres of the studied stars

HD Sp Teff , K log g Vt, km/s [M] [s-el/Fe] M/M�

46407 K0III Ba3 4916 2.48 1.43 −0.11 +1.38± 0.12 2.1

65854 G8III Ba1 4958 2.74 1.30 −0.22 +0.80± 0.10 1.6

77247 G8III Ba2 4978 2.20 1.51 +0.07 +0.56± 0.10 3.9

199394 G8II Ba1 5080 2.81 1.53 −0.03 +0.90± 0.06 2.3

199939 K0III Ba4 4600 1.91 1.74 −0.35 +1.53± 0.13 2.5

204075 G4II Ba3 5300 1.75 2.16 −0.09 +1.05± 0.08 4.8

205011 G9III Ba2 4880 2.63 1.51 −0.03 +0.86± 0.13 2.4
30 pulsations, i.e., after 30 neutron exposures, after
which these abundances reach their asymptotic val-
ues. Similar calculations were performed for a single
neutron exposure (as may occur, for example, in a
single helium flash in a degenerate core). It turned out
that the abundances of some elements, such as Rb,
Eu, and Tb, are sensitive to the neutron density at the
time of the exposure, so that observations of their lines
in stellar spectra may provide information about this
quantity (the importance of Rb observations was also
noted in [27–29]). Furthermore, a single exposure
predicts low abundances of Cu, Zn, and Ge. In addi-
tion, different core masses and other parameters yield
different relative abundances of s-process elements.
Comparisons between the calculations and observa-
tions can provide information about the nature and
localization of processes leading to the barium-star
phenomenon. However, as was noted in [26], the
results of observations of the same star by different
authors often differ appreciably, leading to uncertain-
ties when comparing observations and calculations.
Thus, one of the most important tasks that must be
undertaken if we wish to obtain a fuller understanding
of the barium-star phenomenon is to obtain high-
accuracy observations and use them to determine the
abundances of the largest number of s-process ele-
ments possible with the maximum possible certainty.

Classical barium stars, as a peculiar group of red
giants, were included in our program, which is aimed
primarily at comparative analyses of various sub-
classes of red giants based on homogeneous, high-
resolution, high signal-to-noise observational data
carried out using a single method.

2. OBSERVATIONS AND DATA REDUCTION

Our previous studies of red giants, which did not
consider spectral peculiarities and did not include
moderate barium stars, were based on observations
carried out with the 2.6-m Shain Telescope at the
Crimean Astrophysical Observatory [30–34]. A CCD
camera mounted in the first camera of a diffraction
spectrograph mounted at the Coudé focus (with a
resolution of R = 50000) was used as the detector.
Due to the relative faintness of classical barium stars,
they were observed with the 6-m telescope of the
Special Astrophysical Observatory. The NES echelle
spectrograph mounted at the Nasmyth focus [35]
provided a spectral resolution of R = 60000, and a
2048 × 2048 CCD camera was used as the detec-
tor [36]. Table 1 presents the list of classical barium
stars studied along with their orbital periods, taken
from [16–21].

The accuracy of the derived chemical composition
of a stellar atmosphere depends on the accuracy of the
measured line equivalent widths. Since the studied
spectra were obtained with an echelle spectrograph,
we paid special attention to a careful determination
of the continuum level, which was complicated by
the presence of substantial variations of the inten-
sity along the spectral strips of different orders (with
widths of about 70 Å), as is characteristic of echelle
spectra. We were guided by previously analyzed pho-
tographic spectra of red giants obtained with the
2.6-m Shain telescope, whose widths were about
1000 Å, making it possible to trace the continuum
level with certainty. We excluded the edges of spec-
tral orders, where the intensity of the echelle spectra
varied too steeply and the measured line equivalent
widths were more uncertain.

We checked the reliability of our analysis by
comparing line equivalent widths for the red giant
β Gem (frequently used as a comparison star) derived
from observationsmade at theCrimeanAstrophysical
Observatory and Special Astrophysical Observatory
(Fig. 1). Figure 1 shows that there is no systematic
shift between these two data sets, and the scatter
of individual points does not exceed the uncertain-
ties of the equivalent-width measurements (several
milliangstroms). Thus, a comparative chemical-
composition analysis based on equivalent widths
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Table 3. Elemental abundances in the atmospheres of the barium stars

HD 46407 HD 65854 HD 77247 HD 199394 HD 199939 HD 204075 HD 205011

N [X] N [X] N [X] N [X] N [X] N [X] N [X]

CI 1 0.02 2−0.19 ± 0.11 – – 1 –0.05 1 +0.39 3 0.13 ± 0.04 2−0.07 ± 0.16

NaI 2 0.09 ± 0.07 2−0.12 ± 0.02 – – 3+0.09 ± 0.05 3−0.03 ± 0.05 2 0.33 ± 0.06 2 0.17 ± 0.02

MgI 2 0.27 ± 0.08 1 –0.04 2 0.39 ± 0.04 1 +0.20 2+0.21 ± 0.10 1 0.74 3 0.42 ± 0.03

SiI 5−0.14 ± 0.03 4−0.24 ± 0.04 3 0.09 ± 0.07 11−0.01 ± 0.07 5−0.17 ± 0.04 4−0.09 ± 0.03 4−0.07 ± 0.02

CaI 4−0.11 ± 0.03 5−0.09 ± 0.05 2 0.13 ± 0.01 2−0.02 ± 0.08 2−0.41 ± 0.03 5 0.14 ± 0.12 4−0.08 ± 0.04

ScI 1 0.03 2−0.23 ± 0.02 – – 7−0.11 ± 0.05 4−0.33 ± 0.05 1 –0.22 2−0.12 ± 0.03

ScII 5 0.00 ± 0.03 4−0.25 ± 0.05 3 0.35 ± 0.18 7−0.06 ± 0.08 4−0.24 ± 0.09 3−0.21 ± 0.03 3−0.04 ± 0.02

TiI 35−0.10 ± 0.07 47−0.19 ± 0.0613 0.06 ± 0.07 59+0.09 ± 0.1839−0.34 ± 0.1223−0.03 ± 0.0935−0.08 ± 0.07

TiII 4 0.03 ± 0.11 11−0.20 ± 0.08 6 0.26 ± 0.12 13+0.02 ± 0.08 6−0.35 ± 0.06 5 0.12 ± 0.12 8 0.05 ± 0.08

VI 9−0.16 ± 0.04 13−0.20 ± 0.07 4 0.10 ± 0.08 15−0.08 ± 0.14 9−0.35 ± 0.06 5−0.28 ± 0.1110−0.07 ± 0.06

VII 1 0.89 – – – – – – – – 4−0.26 ± 0.16 1 0.48

CrI 12−0.11 ± 0.08 33−0.21 ± 0.09 7 0.08 ± 0.05 41+0.01 ± 0.1313−0.39 ± 0.1210 0.03 ± 0.1413 0.01 ± 0.09

CrII 4 0.04 ± 0.02 6−0.20 ± 0.04 6 0.12 ± 0.08 10−0.03 ± 0.05 3−0.26 ± 0.08 6−0.12 ± 0.04 8 0.09 ± 0.07

MnI 9−0.18 ± 0.21 4−0.31 ± 0.08 3−0.01 ± 0.11 3−0.18 ± 0.06 3−0.35 ± 0.09 5−0.02 ± 0.09 5−0.27 ± 0.09

FeI 63−0.14 ± 0.08105−0.20 ± 0.0840 0.09 ± 0.05119−0.02 ± 0.1282−0.34 ± 0.1157−0.04 ± 0.1160−0.03 ± 0.05

FeII 7−0.14 ± 0.04 11−0.35 ± 0.07 8 0.08 ± 0.07 8−0.11 ± 0.03 4−0.42 ± 0.05 5−0.08 ± 0.07 7−0.07 ± 0.05

CoI 13−0.08 ± 0.07 12−0.16 ± 0.06 7 0.08 ± 0.08 15−0.09 ± 0.09 5−0.33 ± 0.04 5−0.15 ± 0.0711 0.05 ± 0.07

NiI 24−0.20 ± 0.07 57−0.27 ± 0.1017−0.03 ± 0.07 53−0.08 ± 0.1038−0.37 ± 0.1735−0.08 ± 0.1330−0.11 ± 0.07

ZnI 1 –0.15 1 –0.35 2 0.23 ± 0.08 1 –0.10 1 –0.39 1 –0.03 2 0.03 ± 0.07

SrI – – – – – – – – 1 +1.03 – – 1 1.04

YI 2 0.95 ± 0.06 1 0.43 – – 1 +0.05 – – 1 1.02 1 0.66

YII 4 1.07 ± 0.02 6 0.40 ± 0.07 4 0.59 ± 0.06 5+0.85 ± 0.06 5+1.01 ± 0.13 3 0.98 ± 0.32 7 0.85 ± 0.07

ZrI 10 0.78 ± 0.09 9 0.36 ± 0.12 3 0.61 ± 0.30 8+0.69 ± 0.1311+0.47 ± 0.16 7 0.82 ± 0.13 8 0.53 ± 0.08

ZrII 4 1.40 ± 0.10 3 0.61 ± 0.07 1 0.77 2+0.87 ± 0.05 2+1.24 ± 0.03 1 1.47 3 0.98 ± 0.07

MoI 3 0.85 ± 0.09 4 0.33 ± 0.04 1 0.25 3+0.79 ± 0.02 3+0.77 ± 0.05 1 0.69 3 0.43 ± 0.05

RuI 3 1.35 ± 0.14 1 0.28 – – 2+0.49 ± 0.17 4+1.25 ± 0.21 3+1.71 ± 0.18 – –

CdI 1 0.84 – – – – – – – – – – – –

BaII – – 1 0.84 1 1.23 1 +1.04 1 +1.38 1 1.01

LaII 5 1.39 ± 0.04 5 0.69 ± 0.12 3 0.74 ± 0.05 4+0.90 ± 0.15 8+1.44 ± 0.15 3 0.76 ± 0.10 4 0.77 ± 0.10

CeII 13 1.23 ± 0.09 8 0.56 ± 0.08 4 0.57 ± 0.12 5+0.84 ± 0.0614+1.25 ± 0.11 7 0.90 ± 0.10 6 0.68 ± 0.07

PrII 7 1.20 ± 0.09 3 0.55 ± 0.02 2 0.54 ± 0.09 1+0.99 ± 0.1916+1.14 ± 0.21 5 0.82 ± 0.15 3 0.69 ± 0.01

NdII24 1.19 ± 0.12 17 0.67 ± 0.12 9 0.55 ± 0.10 26+0.97 ± 0.1835+1.20 ± 0.17 8 0.91 ± 0.0519 0.76 ± 0.10

SmII 4 0.53 ± 0.08 3 0.02 ± 0.05 2 0.33 ± 0.05 1+0.45 ± 0.15 4+0.70 ± 0.15 3 0.26 ± 0.08 1 0.71

EuII – – – – – – – – 1 +0.85 1 0.19 – –

DyII – – 1 0.85 – – – – 1 +0.80 – – 1 1.08

HfI 1 1.16 1 0.72 – – – – 1 +0.80 – – 1 0.85

[M] −0.11 ± 0.07 −0.22 ± 0.06 +0.07 ± 0.04 −0.03 ± 0.06 −0.35 ± 0.05 −0.09 ± 0.09 −0.03 ± 0.07
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 2. Elemental abundances of the studied classical barium stars relative to those in the solar atmosphere. The circles mark
abundances derived from lines of neutral atoms, while the asterisks mark those derived from ion lines. The errors in all the
abundances are given and were calculated as the dispersions of the values for the individual lines. The absence of an error bar
indicates that the abundance was determined from a single line.
obtained from observations made with these two
telescopes should not contain systematic differences.

The selection of spectral lines for the abundance
determinations was also done very carefully. We
chose pure (unblended) lines for which the oscillator
strengths were known with reasonable certainty.
When checking the lines for blending, we relied
primarily on the VALD [37] database. In general,
the processing of the spectra and measurement of
the equivalent widths were carried out using the
procedure described in detail in [30]. For one expo-
sure, the NES spectrograph recorded the spectral
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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interval from 4600 to 6030 Å. The Sun served as a
comparison star. The equivalent widths of the solar
lines were estimated from Shain-Telescope observa-
tions of scattered solar light [33]. We hope that the
differential analysis will minimize errors in the oscil-
lator strengths. The list of equivalent widths for the
selected lines and corresponding oscillator strengths
can be found at http://bnfm1.sai.msu.ru/∼pakho-
mov/article/2/cqw.dat.

The turbulent velocity Vt was derived from the FeI
lines using the condition that the iron abundances be
independent of the equivalent widths of the lines that
were used to derive them.

As in the previous studies [30–34], we assumed
that the relative abundances of iron-group elements
from Ti to Ni do not differ from their values in the
solar atmosphere. This seems justified, since only
the abundances of lighter elements (He–Si) and
s-process elements are expected to change in the
course of evolution of ordinary stars; variations in
the relative abundances of iron-group elements occur
only in supernova outbursts.

It was shown in [30, 33] that, under this assump-
tion, calculations of the abundances of iron-group
elements for different atmospheric parameters (Teff ,
log g) close to those expected can be used to deter-
mine the parameter values that minimize the scatter
of the relative abundances of these elements. Ac-
cording to [30, 33], the effective temperature can be
estimated with an accuracy of ±20 K and the surface
gravity log g with an accuracy of ±0.1dex. The tech-
nique is described in detail in [30]. Table 2 presents
the atmospheric parameters obtained for the studied
stars. The parameters of the classical barium stars
do not differ systematically from those of moderate
barium stars and are also close to those of normal
red giants. Further, we calculated the corresponding
model atmospheres in accordance with Kurucz’s AT-
LAS9 code, which were, in turn, used to calculate the
elemental abundances using the WIDTH9 [38] code.

To avoid a loss of accuracy in the abundances due
to uncertainty in the damping constants, which affect
the line wings, we primarily restricted our analysis to
lines with equivalent widths not exceeding 100 mÅ.
In addition, we did not consider lines whose lower
level had excitation potentials of 0.0 eV or close to this
value, since, as a rule, these transitions are sensitive
to non-LTE effects.

Table 3 presents the estimated elemental abun-
dances in the atmospheres of the studied stars relative
to those in the Sun, specified by the relation

[X] = log[ε(el)/ε(H)]∗ − log[ε(el)/ε(H)]�. (1)

The number of lines used for the abundance determi-
nations are given for each star in the corresponding
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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(c) [Mg/Fe] in the atmospheres of red giants compared
to the Sun. Shown are data for (1) normal giants and
supergiants [34], (2) moderate barium stars [34], and
(3) classical barium stars (this study).

column (N); the metallicities [M], specified as the
averaged abundances (relative to the Sun) of the iron-
group elements (Ti to Ni) are also presented. Figure 2
displays the elemental abundances for each of the
studied stars.

It follows from Table 3 that the various studied
stars have somewhat different metallicities [M]. Al-
though these values are determined fairly reliabil-
ity (with a relatively small scatter), we will further
consider the ratio of the elemental abundances to
the abundance of iron, which is determined with the
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highest accuracy due to the large number of observed
Fe spectral lines. Note that the studied stars display
positive values of [Na/Fe], [Si/Fe], and [Mg/Fe]; i.e.,
these elements are overabundant. We plotted these
excess abundances as a function of log g (i.e., versus
luminosity), as had previously been done for normal
red giants and supergiants, and also for moderate
barium stars (see Figs. 3a–3c). The anomalous over-
abundances of classical barium stars are in good
consistency with these relationships. We conclude
that the anomalous abundance excesses observed for
all these groups of stars—supergiants, normal red
giants, moderate barium stars, and classical barium
stars—have a common origin.

As we can see from Table 3, some of the stars
display a modest (compared with the Sun) carbon
excess. Qualitatively, this suggests we are observing
matter from a region of helium burning. However,
quantitative estimates should be treated with cau-
tion. The excitation potentials of the observed carbon
lines are high; for this reason, and given the low
temperatures in the atmospheres of red giants, the
resulting carbon abundances may be fairly uncertain.
The carbon abundances of red giants derived from
analyses of molecular bands aremost trustworthy, but
this requires specialized methods and observations.
We were not aiming to address this problem, and,
therefore, having noted the qualitative consistency,
we will further use data from the literature to analyze
the carbon abundances.

As expected, the abundances of s-process ele-
ments are high and show relatively little scatter. It is
striking that the zirconium abundances determined
from the ZrI and ZrII lines are in poor agreement.
The lines of neutral zirconium are numerous, and the
corresponding abundances show only a modest scat-
ter about the average value. Only two lines of ionized
zirconium were observed. It would seem preferable
to determine the Zr abundance from the ZrI lines.
However, the results for different stars indicate that
the difference in the abundances determined from the
two types of lines depends on log g (Table 3). The
ZrI lines are apparently affected by deviations from
LTE (although the excitation potentials of the lines
used are 1–1.5 eV), which should decrease with in-
creasing log g; i.e., with increasing density (as is in-
deed observed). The abundances determined from the
ZrII lines are consistent with those of other elements
originating primarily via the s process (along with Zr,
these include Sr, Y, Ba, La, Ce, Pr, and Nd), and
they should probably be given preference. The same
is true for Y. Since the atoms of various s-process
elements have similar compositions, it is very likely
that abundances for these elements based on lines for
their neutral states should be treated with caution,
even if the lines are not related to the ground state.
In contrast to these elements, the atoms of Mo, Sm,
Eu, Dy, and Hf do not originate entirely due to the s
process; they form partly as a result of the r process.
This may be the reason for their somewhat lower
abundances.

The abundance excesses for various elements
originating mainly due to slow neutron capture (the s
process) are fairly similar. For each star, the abun-
dances of these elements can be characterized by
the average of the abundances of individual elements,
determined by the relation

[s–el/Fe] = [SrI] + [ZrII] + [YII] + [CeII] (2)

+ [LaII] + [NdII] + [PrII]/7 − [Fe].

Table 2 presents these average abundances for
each star. Here, we have not used the BaII lines due
to their high intensities and the expected influence of
non-LTE effects. Table 2 indicates that the typical
scatter of the abundances of these elements about
the mean value is modest, comparable to the scatter
of the abundances for individual lines. The excess
abundances of s-process elements are from +0.5 to
+1.5 dex.

3. THE LUMINOSITIES OF THE STARS

Further analysis of the properties of our program
stars requires knowledge of their luminosities, which
can be estimated using the data in Table 4. The appar-
ent magnitudes, B–V color indices, and parallaxes
(columns 2, 4, and 8) are taken from the HIPPAR-
COS catalog [39]. Note that, when the HIPPAR-
COS data were being collected, many binary barium
stars had not yet been identified as binaries, and the
astrometric parameters (parallaxes and proper mo-
tions) published in [39] were obtained assuming that
these stars were single. As was noted in [40, 41],
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Table 4. Luminosities of the studied stars

HD mv mv B–V B–V N (B–V )0
π

milliarcsec r, pc Aa
v MV TB–V , K BC Mbol log

(
L∗
L�

)

(HIP) (Ph) (HIP) (Ph) (HIP) (HIP) (HIP)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

46407 6.30 6.26 1.096 1.11 7 1.07 8.25 121 0.083 +0.78 4660 −0.56 +0.22 1.81

65854 8.41 8.41 0.976 0.96 6.34 157 0.051 +2.35 4930 −0.42 +1.93 1.13

77247 6.87 6.86 0.999 0.96 2.86 349 0.125 −0.92 4870 −0.35 −1.27 2.41

199394 7.00 7.01 1.002 1.01 3 0.96 6.33 157 0.134 +0.78 4850 −0.39 +0.39 1.74

199939 7.44 7.45 1.238 1.24 2 1.07 3.16 316 0.538 −0.52 4350 −0.67 −1.19 2.38

204075 3.77 3.74 1.002 1.00 11 0.81 8.19 122 0.000 −1.83 4880 −0.39 −2.22 2.79

205011 6.43 6.43 1.064 1.01 6.31 158 0.173 +0.33 4730 −0.49 −0.16 1.96

a Av = 3.2 ∗ EB–V ,
EB–V = (B–V ) − (B–V )0.
the neglected orbital motions may have introduced
so-called “space errors”; i.e., a real orbital displace-
ment can be interpreted as a false parallax shift or
can be falsely added to the shift resulting from the
proper motion. This problem was analyzed in detail
in [42], where it was concluded that the HIPPAR-
COS parallaxes are equal to their true values for all
unidentified binaries excepting those whose orbital
periods are close to a year. Thus, the parallaxes of our
stars, and hence the absolute magnitudes calculated
on their basis, can be considered trustworthy, with the
possible exception of the parallax of HD 46407.

The interstellar absorption was estimated from the
reddening of B–V (Av =3.2 × [(B–V )∗−(B–V )0]).
We first compared the HIPPARCOS B–V esti-
mates [39] (see column 4 in Table 4) with those ob-
tained from ground-based photometry (the SIMBAD
database). Column 6 of Table 4 indicates the number
of such measurements, while column 5 contains the
average B–V . A comparison of columns 4 and 5
clearly show that the two data sets are consistent.
We determined the (B–V )0 values from the spectral
type of the star. In our calculations of the interstellar
absorption, we used the data from the column 4; the
results of the calculations are given in column 10. The
calculated distances to the stars r, absolute mag-
nitudes Mv, bolometric corrections BC, bolometric
magnitudes Mbol, and luminosities log(L∗/L�) are
given in columns 9, 11, 13, 14, and 15 of Table 4.

The B–V color index was also used to estimate
the effective temperatures of the objects. Note that the
effective temperature determined as one parameter
ASTRONOMY REPORTS Vol. 47 No. 8 2003
of the model atmosphere from a given model grid
providing the best fit of the observed spectrum does
not always coincide with the effective temperature de-
rived from the continuum spectral energy distribution,
as was noted in [30, 33]. It was proposed that this
inconsistency was due to imperfection of the model
atmospheres. Therefore, we used the data from col-
umn 4 of Table 4 to estimate the temperatures of the
objects using the calibration we constructed based on
the temperatures derived from the stellar diameters
and IR observations. The resulting temperatures are
given in column 12 of Table 4. Further, we used these
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values to analyze the positions of the stars in the
log T − log(L∗/L�) diagram.

4. ANALYSIS AND DISCUSSION

Currently, themost popular hypothesis is that bar-
ium stars originate within binaries. This predicts an
inverse dependence between the excess of s-process
elements and the orbital period: the shorter the pe-
riod, i.e., the closer the components, the larger the
amount of material enriched in s-process elements
that is lost by the evolved component and falls onto
its companion, transforming it into a barium star. The
observations confirm this dependence (see, for exam-
ple [13]). This hypothesis is also supported by the high
proportion of binaries among classical barium giants
compared to normal giants. Figure 4 presents the
excess of s-process elements as a function of the or-
bital period for our stars. It is obvious that HD 77247
does not follow this dependence. As the barium star
with the shortest orbital period, it should display the
largest excess of s-process elements. For brevity, we
will call the degree of enrichment of s-process ele-
ments in a stellar atmosphere the “barium degree.”
This excess, or barium degree, for HD 77247 is an
order of magnitude lower than expected based on this
dependence. This discrepancy cannot be explained by
the observational errors and the uncertainties in the
atmospheric parameters. There may be some other
factor that affects the barium degree of this star, in
addition to binarity.

Note that some non-barium binaries have the
same types of components (a white dwarf and cool
giant), periods, and eccentricities as barium stars.
These stars were studied in [43], where it was con-
cluded that binarity on its own is not a sufficient
condition for the formation of a barium star, and that
the mass-transfer rate probably plays an important
role.

Figure 5 illustrates the position of the studied stars
in the log T − log(L∗/L�) diagram. The evolutionary
tracks were constructed based on the data of [44].
The temperatures and luminosities of the stars are
taken from Table 4 (see also Section 3). The position
of each star is denoted by a symbol corresponding to
its barium-line-strength index according to [2] (see
captions to Fig. 5 and Table 1). The higher this index,
the stronger the lines of barium and other s-process
elements, i.e., the larger their overabundances in the
stellar atmospheres [2]. Table 2 presents mass esti-
mates for each star determined from their positions
relative to the evolutionary tracks in Fig. 5. We can
see from this figure that stars with relatively large
barium degrees tend to be in areas of lower temper-
atures or higher mass; i.e., for the classical barium
stars considered, the barium degree increases with
the evolution of the star. We noted a similar pattern
for moderate barium stars, and suggested that this
is due to different degrees of convection (mixing) in
stars of different masses with, accordingly, different
amounts of nucleosynthesis products being carried to
the stellar surfaces from the interiors [32].

Figure 5 also shows that several stars pos-
sess similar temperatures but different masses. Fig-
ure 6 presents the dependence of the abundances
of s-process elements [s-el/Fe] on the stellar mass
for these stars, according to the data from Table 2.
It is clear that, in general, the abundances of these
elements tend to increase with increasing mass;
however, HD 77247 again falls away from this de-
pendence. The abundance of s-process elements in
its atmosphere is roughly 0.5 dex lower than it should
be according to this dependence. As was noted above,
this discrepancy cannot be explained by the errors in
the observations or the atmospheric parameters. The
study [13] also presents low estimates for this star’s
abundances of s-process elements. We thus conclude
that the abundances of s-process elements obtained
for HD 77247 are inconsistent with the established
dependence between the excess of s-process ele-
ments and the stellar mass.

Note that HD 77247 also differs from the other
program stars in its metallicity, which exceeds the
solar value (+0.07 ± 0.04 dex), Table 2). The stellar
population of the Galactic disk is a mixture of objects
with a range of ages, rather than a homogeneous
group. Taking the metallicity as an age index, we
conclude that HD 77247 is the youngest of the stars
considered.

Thus, compared with the other classical barium
stars, HD 77247 displays a high mass, high metal-
licity (Table 2), and young age. In the framework of
the hypothesis that classical barium stars are single
(or evolve unaffected by their companions), this may
indicate that other factors (such as mass) being
equal, the mixing in HD 77247 is less developed
than in other barium stars that have the same mass
and temperature but lower metallicities, i.e., that are
older. Qualitatively, the same effect—a decreased
abundance of s-process elements with increased
metallicity—was noted previously in the study of
red giants [31]. In addition, we note that the very
young Hyades-cluster red giants do not display any
overabundances of s-process elements [34].

Analysis of the properties of HD 77247 in the
framework of the hypothesis that barium stars are
binaries does not yield satisfactory results. As is noted
above (see also Fig. 4), the abundances of s-process
elements in its atmosphere are substantially lower
than expected if it is accreting from a companion
and the accreted matter is mixed with the material of
the red giant’s atmosphere. Given the short period of
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 6. Abundances of s-process elements in the atmo-
spheres of the studied classical barium stars as a function
of their mass. The position of HD 77247 is marked by
the (◦).

the system (and the corresponding proximity of the
components), the amount of accreted matter should
exceed that for barium stars with longer periods. In
addition, since the mass of HD 77247 is fairly large
(about 4 M�; Table 2), the mass of its companion
would have to have been substantially higher, so that
it would be able to reach its proposed present evo-
lutionary stage of a white dwarf. In this case, we
would expect to observe on the surface of the barium
star matter reprocessed in nuclear reactions in the
interior of a massive star at very late stages of its
evolution. In other words, we would expect to detect
larger overabundances of s-process elements than in
the case of less massive donors. However, the excess
abundances of these elements in the atmosphere of
HD 77247 are the lowest of all the seven studied stars.

Thus, there must be another factor that affects the
barium degree of HD 77247. It may be its high metal-
licity that makes this star different from the others
studied. The study [45] of nucleosynthesis and mixing
in stars located on the asymptotic giant branch and
displaying a wide range of metallicities indicated that
the overabundances of s-process elements should de-
pend on metallicity. The calculations of [45] showed
that this dependence is complex over a broad range
of metallicities; however, in the metallicity interval of
interest to us, [M] = 0.1–(−0.8) dex, we should ob-
serve a monotonic increase of the excess abundances
of s-process elements with decreasing metallicity.
Figure 7 presents this dependence for our program
stars. We can see that the positions of HD 77247
and several of the other stars are consistent with
this relation. Thus, in this star, the metallicity indeed
exerts an appreciable influence on the barium degree.
However, two stars do not follow this dependence,
suggesting there may be some other factors playing
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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the dominant role in specifying their overabundances
of s-process elements.

It was shown in [31] that the overabundances of
s-process elements in the spectra of red giants tend
to increase with increasing stellar mass. It was also
noted that, for the same temperature, gravitational
acceleration, and mass, a star with a higher metal-
licity will display a lower abundance of s-process
elements than a star with a lower metallicity. Our
results show a qualitatively similar dependence be-
tween the abundances of s-process elements in the
atmospheres of classical barium stars and the stellar
masses (Fig. 6) and metallicities (Fig. 7), although
the magnitudes of the abundance excesses in classi-
cal barium stars are substantially higher.

Modest overabundances of s-process elements
were found earlier in the atmospheres of normal red
giants [30]; higher abundances of these elements are
displayed by the atmospheres of moderate barium
stars [32]. The results we present here indicate very
high (up to 1.5dex for individual stars) anomalous
abundances in classical barium stars (here, we do not
consider numerous sources in the literature, prefer-
ring to compare results obtained from homogeneous
observational data using a single method). Despite
the different barium degrees in these three cases,

Table 5. Comparison of the average data for moderate and
classical barium stars

Barium
stars

[Fe] [C/Fe] 12C/13C Z, pc
Number

of
stars

Moderate −0.14 −0.30 20 98 17

Classical −0.41 +0.09 15 276 13
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the abundances of s-process elements within each
group of objects behave qualitatively similarly: they
increase with evolutionary phase, increasing stellar
mass, and decreasing metallicity. We conclude that,
in the case of classical barium stars, whose high
barium degrees are, as a rule, determined by their
binarity, the evolutionary phase, mass, metallicity,
and possibly some other factors can play appreciable
roles, and even, as in the case of HD 77247, very
important ones.

Mennessier et al. [46] attempted to consider bar-
ium stars from the point of view of stellar evolution,
analyzing the positions in the HR diagram of approx-
imately three hundred stars with various barium-star
signatures. The absolute magnitude Mv and height
above the Galactic plane Z were calculated for each
star based on the HIPPARCOS data. It was con-
cluded that barium stars do not form a homogeneous
group, and can be divided into five types according to
their luminosity and kinematic properties. The aver-
age age and mass were determined for each of these
five groups, and their evolutionary status was dis-
cussed. We collected publishedmetallicities [Fe], car-
bon abundances [C/Fe], and isotope ratios 12C/13C
for the stars from [46] (apart from the supposed halo
stars and dwarfs, whose existence is subject to doubt
and which we do not consider here). We divided all the
stars for which these data were available into only two
groups—moderate and classical barium stars. We
calculated the average values of the above parameters
for each of these groups, presented in Table 5. We
can see that, based on the metallicity and Z values,
the classical barium stars can be interpreted as being
older than the moderate barium stars. In addition, the
classical barium stars have positive carbon excesses,
providing evidence for the presence of products of
helium burning. The moderate barium stars show a
carbon deficiency, as is characteristic for the phase of
hydrogen burning via the CNO cycle.

In each of Figs. 4, 6, and 7 illustrating the de-
pendences between the s-process element overabun-
dances and the stellar masses, metallicities, and or-
bital periods, one or two different stars fall away from
the dependences. We verified that these discrepancies
could not be due to errors in the abundances. Thus, it
is likely that the classical-barium-star phenomenon
and a star’s barium degree (the overabundance of
s-process elements) cannot be fully explained using a
single parameter—binarity, metallicity, mass, or evo-
lutionary phase. In various particular cases, any of
these parameters could become dominant in giving
rise to the barium star and determining the degree of
the anomalous s-process element abundances.

It is possible that two groups of barium stars exist.
The stars of the first group evolve in the usual way, be-
ing unaffected by their companions, if they have any.
The larger the luminosity of the star (which increases
with the evolutionary phase), the higher the degree
of mixing, which penetrates into deeper layers of the
star and carries out more nucleosynthesis products
from its interior. This scheme is illustrated by Figs. 6
and 7, which indicate the dependence between the
overabundances of s-process elements and the stel-
lar mass and metallicity. This is consistent with the
results of [46], in which it was suggested that two of
the five groups of barium stars (see above)—giants
belonging to the “clump” group and supergiants—
are post-core-helium-flash objects in which convec-
tion can carry s-process elements produced inside the
stars to their outer layers.

The second group of barium stars contains stars in
which mass transfer from one component of a binary
to the other plays the dominant role in creating the
barium star (classical barium stars). It is very likely in
this case as well that the mass, metallicity, and evo-
lutionary phase of the component currently observed
as a barium star can affect the observed anomalous
abundances of heavy elements.

These conclusions must be considered tentative,
however, due to the small number of studied stars.

5. CONCLUSIONS

(1) Comparison of the elemental abundances in
the atmospheres of the classical barium stars, moder-
ate barium stars, and normal red giants [30, 32] indi-
cates that the behavior of elements up to the iron peak
is the same in all three groups of giants, providing
evidence that they have a common origin.

(2) The dependences of the anomalous abun-
dances of s-process elements on the stellar masses
and metallicities are qualitatively similar for normal
red giants and moderate and classical barium stars.
This probably indicates that a substantial role is
played by the evolutionary phase of the stars.

(3) The creation of a barium star and the mag-
nitudes of the overabundances of s-process ele-
ments cannot be explained as the effect of a single
parameter—binarity, mass, metallicity, or evolution-
ary phase. Any one of these parameters could be
dominant in certain individual objects; however, this
does not rule out the possibility that the other factors
also simultaneously exert a significant influence.
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Abstract—Simultaneous dual-frequency observations of giant radio pulses from the millisecond pulsar
B1937+21 were performed for the first time in January–February 2002 on the Westerbork Synthesis
Radio Telescope (2210–2250 MHz) and the 64-m Kalyazin radio telescope (1414–1446 MHz). The total
observing time was about three hours. Ten giant pulses with peak flux densities from 600 to 1800 Jy were
detected at 2210–2250 MHz, and fifteen giant pulses with peak flux densities from 3000 to 10 000 Jy were
observed at 1414–1446 MHz. No events were found to occur simultaneously at both frequencies. Thus,
the observed radio spectra of individual giant pulses of this pulsar are limited in frequency to scales of
about ∆ν

ν < 0.5. The duration of the giant pulses is less than 100 ns and is consistent with the expected
scattering timescale in these frequency ranges. Instantaneous radio spectra of the detected giant pulses
were compared with the diffractive spectra obtained from ordinary pulses of the pulsar. In some cases,
considerable deviations of the radio spectra of the giant pulses from the diffractive spectrum were revealed,
which can be interpreted as indicating temporal structure of the giant pulses on timescales of 10–100 ns.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Giant radio pulses are one of the most surprising
phenomenon associated with the radio emission of
pulsars. The peak flux densities of giant pulses fre-
quently exceed those of ordinary pulses by factors of
tens of thousands. Such powerful giant pulses have
been observed in only two pulsars: the Crab pulsar,
B0531+21 (see, e.g., Sallmen et al. [1]), and the
millisecond pulsar B1937+21 (see the most recent
study of Kinkhabwala and Thorsett [2]). B0531+21
is one of the youngest known pulsars, with a period
of about 33 ms, whereas the first detected millisecond
pulsar B1937+21 is one of the oldest, with a period of
only 1.5 ms. However, these objects have two char-
acteristics in common: first, they have a strong inter-
pulse in addition to the main pulse, i.e., the magnetic
axis of the neutron star is almost perpendicular to
the rotation axis; second, both pulsars have magnetic
fields at the light cylinder which are stronger than
those in most other pulsars. According to this and
some other criteria, searches for giant pulses from
other pulsars have been carried out in recent years.
Johnston et al. [3] and Kramer et al. [4] have reported
the detection of anomalously strong micropulses from
the Vela pulsar (B0833−45), and Romani and John-
ston [5] have found some pulses exceeding the mean
pulse strength by about an order of magnitude in
1063-7729/03/4708-0660$24.00 c©
pulsar B1821−24. Johnston and Romani [6] have
also found similar “giant” pulses in pulsar B1706−44.
Ershov and Kuz’min [7] have reported the detection
of anomalously strong pulses from pulsar B1112+50
at 111 MHz. However, it remains unclear whether
such strong pulses have the same nature as the giant
pulses observed for B0531+21 and B1937+21.

The properties of the giant pulses from these two
pulsars also differ in several respects. The giant pulses
of the Crab pulsar (B0531+21) are in phase and
observed within the main pulse or interpulse, whereas
those of the millisecond pulsar B1937+21 are ob-
served outside the main pulse and interpulse (at the
trailing edge of the mean profile), within a very narrow
time interval (±3 µs). This particular feature of the
giant pulses of B1937+21 was first confidently estab-
lished by Kinkhabwala and Thorsett [2], who studied
the giant pulses of this pulsar in detail using consecu-
tive observations at three frequencies (430, 1420, and
2380 MHz) on the 300-m Arecibo radio telescope.
They also pointed out another characteristic feature
of the giant pulses of B1937+21: their extremely short
duration, whichwas in all cases less than 1 µs. In fact,
the giant pulses remained unresolved in time even
with the 100-ns time resolution used by Kinkhabwala
and Thorsett [2], so that these authors could only
show that the observed shapes of giant pulses at
2003 MAIK “Nauka/Interperiodica”
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various frequencies are determined entirely by scat-
tering on interstellar plasma inhomogeneities. The
giant pulses of the Crab pulsar often have multiple
components, with the durations of individual com-
ponents being several microseconds and with these
components having submicrosecond microstructure
[8]. Soglasnov et al. [9] studied the giant pulses of
B1937+21 at 1650 MHz with a time resolution of
31.25 ns on the 70-m Deep Space Network radio
telescope at Tidbinbilla. They found 309 giant pulses
in 39 min of observing time, the most powerful of
which had a peak flux of about 60 000 Jy. All the
detected giant pulses (except for one, which had mul-
tiple components) were unresolved, and their shape
indicated scattering on a timescale of about 70 ns.

In January–February 2002, we carried out syn-
chronous observations of the millisecond pulsar
B1937+21 on the Westerbork Synthesis Radio Tele-
scope (WSRT, 2210–2250 MHz) and the 64-m radio
telescope in Kalyazin (1414–1446 MHz) in order
to study the shapes and radio spectra of the giant
pulses. The scattering timescale at 2210–2250-MHz
should be about 25 ns, which is the time resolution
provided by the PuMa recording system used in these
WSRT observations. We report here the results of
these observations.

2. OBSERVATIONS AND DATA
PROCESSING

The observations were carried out on January 22,
January 28, and February 3, 2002; each observing
session lasted about one hour, and the total observ-
ing time was about three hours. At Westerbork, we
used the specialized “Pulsar Machine” (PuMa) [10]
system to record the pulsar signals, in a mode with
direct recording of the video signals in four adja-
cent 10-MHz frequency channels. In Kalyazin, the
video signal was also directly recorded in two adja-
cent 16-MHz frequency channels by the S2 recording
system, intended for VLBI observations [11, 12]. The
S2 recording was played back using a TCI interface
developed at the Centre for Research in Earth and
Space Technology (CRESTech) of York University
(Toronto, Canada) and installed at the Astro Space
Center of the Lebedev Institute of Physics. Both radio
telescopes received right-hand circular polarization.
The signal was recorded with two-bit sampling and
four-level quantization. InKalyazin, the boundary be-
tween low and high signal levels was set equal to the
level of the rms fluctuations (1σ), while this boundary
was set at the 2σ level for the WSRT. When decoding
the signals, a correction depending on the current
quantization level was applied, as described by Jenet
and Anderson [13]. The decoded data were further
processed using the predetector dedispersion method
ASTRONOMY REPORTS Vol. 47 No. 8 2003
[14, 15]. In our case, the data processing consisted
of calculating the Fourier transform of a decoded
data set of duration T , with subsequent correction of
the spectrum amplitudes for the nonuniform receiver
passband and of the spectrum phases for the dis-
persion delay introduced into the radio signal during
its propagation through the interstellar plasma. The
phase corrections for corresponding harmonics of the
Fourier spectrum were calculated as

δφ(f) =
2πDM

Df

(
∆f

f0

)2

, (1)

where f0 is the lower boundary of the recorded fre-
quency band, f is the frequency for which the phase
correction is calculated, ∆f = iδf is the deviation
of this frequency from the limiting value f0, i is the
number of the spectrum harmonic, δf is the frequency
step in the spectrum (δf = 1

T ), D is the dispersion
constant (D = 2.4100 × 10−16 cm−3 pc s), and DM
is the dispersion measure of the pulsar. This formula
is derived from the relationship given by Hankins and
Rickett [15].

After applying the amplitude and phase correc-
tions to the spectrum, we calculated the inverse
Fourier transform, which yields the actual restored
signal. However, to perform digital detection (obtain
the signal envelope), wemust take the inverse Fourier
transform of the corrected spectrum, in which the
harmonics corresponding to negative frequencies are
set to zero. This Fourier transformation yields a com-
plex dataset, and the sum of the squares of the real
and imaginary parts of each element of this dataset
represents the required detected signal. To improve
the time resolution, we can restore the signal over
the full receiver bandwidth (2 × 16 MHz at Kalyazin
and 4 × 10 MHz at the WSRT) by combining the
spectra in adjacent frequency channels into a single
synthetic spectrum and reducing the phase correction
to a single frequency f0 corresponding to the lower
edge of the total band. In our case, this provides time
resolutions of 31.25 ns at 1430 MHz and 25 ns at
2230 MHz.

We used the value DM=71.025 cm−3pc, which
was determined from the delay of the detected giant
pulses between frequency channels during the data
processing. We initially used DM=71.034 cm−3 pc,
taken from Soglasnov et al. [9]. For this dispersion
measure, the pulse smearing in a 16-MHz band
at 1430 MHz is approximately 3280 µs, slightly
less than two pulsar periods (p = 1557.8 µs). At
2230 MHz, the pulse smearing in a 10-MHz band is
approximately 535 µs, or about one-third of the pulsar
period. With such pulse smearing, data restoration
only in time windows corresponding to the main
pulse and interpulse is impossible at 1430 MHz
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Fig. 1. Examples of mean profiles (left) and of the temporal behavior of the intensities of ordinary pulses (right) for selected
observing sessions.
and inconvenient at 2230 MHz. Therefore, we re-
stored the recorded signal in a piecewise continuous
fashion. We used a time interval of 65.536 ms (a
dataset of 2 097 152 points) when processing the
Kalyazin recordings, and an interval of 26.2144 ms
(524 288 points) for the WSRT recordings. To recon-
struct the entire recording, we had to superimpose
these time intervals with some overlap, since the
information for a time segment equal to the timescale
for the pulse smearing in the receiver band is lost each
time.

In parallel with our search for giant pulses (using
the algorithm described in Section 4), we accumu-
lated the average profile over all frequency channels
and calculated the radio spectrum of the restored and
dedispersed, but not detected, signal in windows at
the positions of the main pulse and interpulse, as well
as in reference windows outside the pulse. We used
these data to monitor the pattern of the diffractive
distortions of the radio spectrum due to scattering on
interstellar plasma inhomogeneities.

3. AVERAGE PROFILES AND DIFFRACTIVE
SPECTRA OF THE SCINTILLATIONS

Figure 1 shows examples of average profiles ob-
tained in an one-hour session in various frequency
channels. For the WSRT data, the adjacent 10-MHz
channels were combined when obtaining these mean
profiles, so that the mean profiles in Fig. 1 were ob-
tained for 2210–2230 MHz (lower profile) and 2230–
2250 MHz (upper profile). The time delays between
these frequency bands and between the 16-MHz
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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bands for the Kalyazin data (1414, 1430 MHz), were
not corrected in this figure. The flux-density scales
are based on the equivalent system noise temperature
at each radio telescope in Janskys, which we took
to be 50 Jy for the WSRT and 150 Jy for the
Kalyazin telescope. We believe that the uncertainty
in these values is no greater than 10%. Figure 1
presents sample mean profiles obtained during the
most successful sessions for each radio telescope,
which were February 3 at Kalyazin and January 22
at the WSRT. Unfortunately, the modulation of the
intensity of the pulsar radio emission by interstellar
scintillations was unfavorable during our observa-
tions: the scintillation maxima at Westerbork fell
predominantly at the scintillationminima at Kalyazin.
The temporal pattern of the scintillations during the
observing sessions for which the average profiles
are presented is shown on the right in Fig. 1. The
scintillation curves were obtained by calculating the
average excess of the signal above the mean level
outside pulses during time segments (“windows”)
corresponding to the position of the main pulse and
interpulse. The durations of the time windows on the
pulse and interpulse were 64 and 102.4 µs for the
Kalyazin and WSRT data, respectively (2048 points).
The averaging times were 1 min for Kalyazin and
40 s for the WSRT. We can see from Fig. 1 that the
scintillation time scale is about 1 hour. During this
time, the flux density of the pulsar radio emission
varies by at least a factor of ten. The table lists
ASTRONOMY REPORTS Vol. 47 No. 8 2003
measured values of the mean peak flux densities for
the main pulse.

The study of the pattern of the radio-spectrum
distortions due to diffractive scintillations is of great
interest for the subsequent analysis. Figure 2 shows
the mean diffractive spectra for three observing ses-
sions at Westerbork and the dynamic spectrum ob-
tained for 33 min of the observations at the beginning
of the session of February 3 at Kalyazin. The pulsar
intensity was highest in this time interval, as can also
be seen from the scintillation curve in Fig. 1. We can
distinguish two diffraction maxima in the dynamical
spectrum in the total band of 1414–1446MHz, which
decay after 20 min. To determine the characteristic
decorrelation bandwidth in the diffractive spectra, we
constructed themean autocorrelation function (ACF)
of these spectra by adding together the individual
ACFs computed for the difference between the spec-
tra obtained on and outside the pulses. As a result,

Table.Measured peak flux densities for the main pulse (the
January 28 WSRT observations were only at 2230 MHz.)

Date
(2002) F1414, mJy F1430, mJy F2210, mJy F2230, mJy

January 22 190 130 40 65

January 28 250 165 – 65

February 3 265 350 30 8
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we obtained the decorrelation bandwidths at the 0.5
level of the ACF: 1.5 ± 0.2 MHz at 1430 MHz and
9.6 ± 0.5 MHz at 2230 MHz.

4. CRITERION FOR THE GIANT-PULSE
SEARCH AND THE SEARCH RESULTS

As was first clearly shown by Kinkhabwala and
Thorsett [2], the giant pulses of B1937+21 appear
within strictly limited longitude intervals, in two win-
dows with widths of about 5 µs separated from the
phase of the main pulse peak by 57 µs and from the
phase of the interpulse peak by 65 µs. Soglasnov
et al. [9] determined the positions of these windows
more accurately; the corresponding delays turned out
to be 58.2 and 66.6 µs, and the rms deviations in
the arrival time of the giant pulses relative to the
center of each window were 1.3 and 1.8 µs. We used
this remarkable property in our search for new gi-
ant pulses and checked the intensity for an excess
over some threshold only inside these narrow time
intervals (±5 µs). Since Soglasnov et al. [9] showed
that the giant pulses remain unresolved in a 16-MHz
band at 1650 MHz, we did not perform any averag-
ing of the restored detected signal in our search for
new giant pulses. The amplitude statistics of such
a signal obey a χ2 distribution with two degrees of
freedom: p(x > a) = exp(−a), where the amplitudes
of the analyzed signal are in units of the rms fluc-
tuations σ of the signal. After reconstructing the
signal using the predetector-dedispersion method at
each pulsar’s period, the amplitude of each sample
inside the selected longitude windows was compared
with the given threshold and, when the threshold was
exceeded, the necessary information was saved for
subsequent analysis. A one-hour session contains
about 2.3 million periods of B1937+21, and there
are two monitoring windows with a total duration of
400 samples in each period. Thus, about a billion tests
for giant pulses were performed in each observing
session. The expected number of random deviations
in the detected signal obeying χ2 statistics with two
degrees of freedom is about a hundred for a 16σ
threshold for each one-hour observing session, and
only one random event is expected in such a session
at a threshold of 21σ.

For subsequent comparison of suspected events
at the two frequencies (1430 and 2230 MHz), we
purposely selected a fairly low threshold for such
events at each frequency. Since we have two adjacent
frequency channels in the 1430-MHz band and
four channels in the 2230-MHz band, we used an
additional criterion to select events, namely an excess
above the threshold simultaneously in two adjacent
frequency channels, with a time delay corresponding
to the adopted dispersion measure (the four frequency
channels in the 2230-MHz band were processed
in pairs: 2210–2220 MHz and 2230–2240 MHz).
Thus, the initial selection threshold for the events was
set at 16σ, and events exceeding the 16σ threshold in
at least one of the two channels or having a total level
of 16σ in the two frequency channels were recorded
(e.g., 14σ in one channel and 2σ in the other, or 10σ
in one channel and 6σ in the other).

In total, we compiled a list of several hundred
events at each frequency. A comparison of the recorded
events in the 1430- and 2230-MHz bands taking
into account the dispersion delay between these
frequencies and the geometrical delay between the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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observation points revealed no coincident events. We
then included in the final list of detected giant pulses
only those events exceeding the 21σ threshold in one
frequency channel or in two adjacent channels using
the above criterion. There were 15 such events at
1430 MHz and 10 at 2230 MHz. The strongest giant
pulses at 1430MHz and 2230MHzhad amplitudes of
63σ (9450 Jy) and 36σ (1800 Jy), respectively. These
pulses are shown in Fig. 3.

For the 15 Kalyazin events, we carefully analyzed
the selected segments of theWSRT data at the corre-
sponding time intervals to search for excesses above
the noise level. The accuracy with which we de-
termined the dispersion measure from the time de-
lay of the detected giant pulses between the fre-
quency channels in the 1430- and 2230-MHz bands
(71.025 ± 0.001) provides a time alignment between
ASTRONOMY REPORTS Vol. 47 No. 8 2003
the 1430- and 2230-MHz signals to within about
1 µs. Accordingly, we searched theWSRT recordings
for outbursts that could correspond to the Kalyazin
events within an interval of ±20 readings. In this
interval, the outburst amplitude should exceed the 6σ
level if we are to consider it to be significant with
90% confidence. No counterparts were found for any
of the 15 Kalyazin giant pulses. A similar procedure
was carried out for the ten Westerbork events using
the Kalyazin recordings, with the result again being
negative. Thus, the observed radio spectrum of the
giant pulses we have recorded is limited in frequency
to scales of at least ∆ν

ν < 0.5. In the next section, we
will consider the radio spectra of the individual giant
pulses at 1430 and 2230 MHz.
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Fig. 5. Comparison of the radio spectra of selected giant pulses with diffractive spectra derived from ordinary pulses at
1430MHz. The notation is the same as in Fig. 4.
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5. RADIO SPECTRA OF INDIVIDUAL GIANT
PULSES

We obtained the radio spectra of individual giant
pulses by restoring the signal using the predetector-
dedispersion method in individual spectral bands with
bandwidths of 2.5 MHz for the WSRT data and
2.0 MHz for the Kalyazin data. Figures 4 and 5
show these radio spectra together with the diffractive
scintillation spectra obtained for the ordinary pulses
in three-minute intervals corresponding to the times
of the giant pulses. Spectral flux-density fluctuations
outside the pulse are also shown to demonstrate the
uncertainties in the estimated spectral flux densities;
these estimates were obtained using the same tech-
nique of numerical detection of the signal in the above
spectral intervals, as for the giant pulses.

A comparison of the radio spectra of the giant
pulses with the diffractive spectra at 2210–2250MHz
shows that the spectrum of some pulses repeat the
diffractive spectrum within the errors (pulses 21 849
and 3959 in Fig. 4). Therefore, the radio spectra of
such pulses are broader than 40 MHz, and their du-
rations are less than 25 ns. The radio spectrum of
pulse 13 825 is slightly narrower than the diffractive
spectrum, while the radio spectrum of pulse 22 816 is
fundamentally different from the diffractive spectrum.
The same pattern is observed at 1414–1446 MHz
(Fig. 5): the spectra of some giant pulses satisfactorily
fit the diffraction pattern (pulses 4645, 2923, 5116),
whereas the spectra of other giant pulses display an
appreciable excess spectral flux density at some fre-
quencies or a lack of radiation near diffraction peaks
(pulses 4484 and 2359). In such cases, the scale
for frequency modulations of the giant-pulse radio
spectra is about 10 MHz. This modulation can be
interpreted as a reflection of fine temporal structure
of the giant pulses on time scales of 10–100 ns.

6. DISCUSSION

The most important result of our study is the
limited extent in frequency of the radio spectra of
giant pulses from the millisecond pulsar B1937+21.
Giant radio pulses were detected in our synchronous
observations at 1430 and 2230 MHz. If we compare
the peak flux densities for the two brightest pulses
detected at each frequency, we find a spectral index
of −3.7 for a power-law frequency dependence of the
peak flux density. If we perform the same procedure
for all the detected giant pulses, we obtain a spectral
index of−2.6. Kinkhabwala and Thorsett [2] obtained
a spectral index of −3.1 in the same way. However,
our synchronous observations have shown that in-
dividual giant pulses have a radio spectrum limited
in frequency to scales ∆ν

ν < 0.5. This is especially
convincingly demonstrated by the absence of any
ASTRONOMY REPORTS Vol. 47 No. 8 2003
traces of the Westerbork 2230-MHz giant pulses in
the Kalyazin recordings. Any giant pulse exceeding
the adopted 21σ threshold at 2230 MHz has a peak
flux density higher than 1000 Jy, and the expected
peak flux density of such a pulse at 1430 MHz should
be about 4500 Jy (30σ) for the most conservative
spectral index of −2.6. In fact, no 1430-MHz coun-
terparts for the tenWesterbork giant pulses exceeding
6σ (900 Jy) were detected at the presumed positions
of such pulses. Consequently, this would require that
the spectral indices for all tenWesterbork giant pulses
be positive and greater than 1.0. On the other hand, all
15 Kalyazin giant pulses would have to have spectral
indices more negative than −5.0 for their amplitudes
to be below the 6σ (300 Jy) level in the Westerbork
recordings.

In his report of the results of simultaneous VLA
observations of giant pulses from the Crab pulsar
at 4.9 and 1.4 GHz, Hankins [8] showed that the
spectral indices of giant pulses recorded simultane-
ously at these frequencies were generally distributed
in a broad interval from 0 to −4, with a maximum
between −1.5 and −2.0, but with two pulses with a
spectral index of +2 also being observed. This study
shows that the radio spectra of individual giant pulses
from the Crab pulsar cannot be represented by a
simple exponential function, much less by a single
spectral index. However, to explain the absence of
simultaneous giant pulses from themillisecond pulsar
B1937+21 at 1430 and 2230 MHz as random varia-
tions of their radio spectra (similar to those observed
for giant pulses of the Crab pulsar), we must suppose
a special sorting of the giant pulses according to their
spectra, which seems extremely improbable. It is pos-
sible that the relatively narrow-band radio spectrum
of the giant pulses of this millisecond pulsar is one
more distinctive feature of these pulses as compared
to the giant pulses of the Crab pulsar.

These pulses also have other characteristic fea-
tures, as was noted in the Introduction: the giant
pulses from the millisecond pulsar appear in very
narrow longitude intervals outside themean profiles of
the main pulse and interpulse, and these giant pulses
have extremely short durations, remaining unresolved
in all observations to date. Comparing the radio spec-
tra of individual giant pulses with the diffractive spec-
tra, we were able to show that some giant pulses
can have multiple components on timescales of 10–
100 ns.

7. CONCLUSIONS

Giant radio pulses from the millisecond pul-
sar B1937+21 represent the most short-lived phe-
nomena ever observed in an astronomical object.
Timescales of 10–100 ns correspond to spatial scales
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of 3–30 m. The measured instantaneous power of the
giant radio pulses implies a brightness temperature
for the radiation of about 1038 K [9]. There is no
doubt that, studying the properties of giant radio
pulses, we are coming close to investigating the
actual generation of coherent radio emission in a
nonstationary stream of relativistic electron–positron
plasma in the magnetosphere of a neutron star. At
present, there is no generally accepted model for this
coherent mechanism, in which the energy release is
apparently rather sensitive to particular local parame-
ters of the plasma; minor changes of these parameters
(for instance, the density or distribution function of
the relativistic particle energies) can result in huge
changes in the instantaneous power of the radio
emission.

Models for the formation of short micropulses in
pulsar radio emission are based on nonlinear effects
arising from interaction of a stream of charged rel-
ativistic particles with plasma waves in the pulsar
magnetosphere (see, e.g., [16]). Weatherall [17, 18]
has numerically simulated the development of insta-
bility in a turbulent flow of relativistic plasma. In
this model, the origin of the electrostatic turbulence
is the two-stream instability. When the turbulence
becomes nonlinear, modulation instability results in
the collapse of the wave packet along the magnetic
field, leading to the generation of short radio pulses
with durations of several nanoseconds and with a
fairly narrow spectral bandwidth ∆ν

ν ∼ 0.2 near the
local plasma frequency in the comoving coordinate
frame.

This model agrees well with our conclusion that
the frequency bandwidth of individual giant radio
pulses from the millisecond pulsar B1937+21 is rela-
tively narrow. Eilek et al. [19] indicate that, though
the giant pulses of the Crab pulsar are observed
simultaneously in a broad frequency band (at least
from 1.4 to 4.8GHz), the fine structure of these pulses
is correlated only in narrow frequency intervals: 1.4–
1.7 GHz, 4.5–5.0 GHz, and 8.4–8.5 GHz. For giant
pulses of the Crab pulsar, the durations of pulse
structural features are correlated with their intensi-
ties, in the sense that shorter features have primarily
greater intensities [19]; precisely such a relation is
predicted by nonlinear models for the generation
of nanosecond pulses. It would be easier to study
this relation using giant pulses from a millisecond
pulsar, in which there is no need to select structural
features, since the majority of these pulses have only
one component. However, the temporal broadening
of the pulse due to scattering on interstellar plasma
inhomogeneities limits the time resolution to several
tens of nanoseconds, even at 2230 MHz, as we
have shown in this work (Fig. 2). Therefore, the
actual shapes of giant pulses of the millisecond pulsar
B1937+21 can be studied only using the 300-m
Arecibo radio telescope at 5 GHz.

To conclude, we point out an interesting hypoth-
esis explaining the origin of giant pulses. Istomin
[20] considers they may be associated with the re-
connection of limiting open magnetic lines near the
zero line of the magnetic field in the vicinity of the
light cylinder. For pulsars in which the rotation axis
is almost perpendicular to the magnetic-dipole axis,
such lines of force connecting two opposite magnetic
poles emerge from regions having opposite signs for
the equilibrium charge density of the magnetosphere.
Reconnection of these force lines results in a short-
lived electrical discharge between the poles, leading
to the intense generation of energetic particles, which
gives rise to a radio burst, observed as a giant radio
pulse. Such giant pulses should arise in the region of
the last closed line of force; i.e., at the very edge of the
mean pulse profile, as is observed for the millisecond
pulsar B1937+21.
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Abstract—A long-term analysis of the noise background of the “ULITKA” gravitational-wave antenna
is presented in connection with searches for anomalous impulsive signals and slow solar–terrestrial
correlations with a period of 27 days. Automated selection and estimation algorithms are used, including
nonparametric criteria for the statistical dependence of samples uniform in time. The upper limit for
the gravitational-noise background is confirmed by the observational statistics. The presence of slow,
anomalous correlations is not confirmed. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Long-term monitoring of the gravitational field
is currently carried out using two global networks
of gravitational detectors: one consisting of cryo-
genic gravimeters (to study variations of the ver-
tical component of the gravitational force [1]) and
another of cryogenic rigid gravitational antennas (to
study variations of the longitudinal gradient of the
gravitational field [2, 3]). The goal of the first of
these networks is to detect fine global geodynamical
effects due to slow dynamical processes in deep
layers of the Earth, while the second network is
intended for searches for weak gravitational per-
turbations at 102–103 Hz induced by gravitational
waves from cosmic objects. Both systems currently
have limiting sensitivities determined by their own
instrumental noise: ∆g/g ≈ 10−9–10−11 for 100 s
for the gravimeters and h = ∆L/L ≈ 10−18–10−21

for 1 s for the gravitational antennas. Several of the
previous generation of such instruments continue
to operate in a continuous-service regime: uncooled
tidal gravimeters such as “SODIN” (10−6–10−7)
and room-temperature gravitational antennas. One
example of the latter is the uncooled “ULITKA”
gravitational detector of the Sternberg Astronom-
ical Institute of Moscow State University (10−16–
10−17) [4]. The main argument for maintaining these
systems is based on the possibility of detecting rare,
anomalous events such as distant earthquakes, as
well as nearby catastrophic cosmic events involving
relativistic objects or explosive processes in the Sun.
One such case was the detection of gravitational
radiation by uncooled detectors during the explosion
of supernova SN 1987A (52 kpc), which, however,
was not subsequently reliably confirmed [5]. Recently,
new data have indicated an excess of coincident flares
by cryogenic antennas when the antenna beam has an
1063-7729/03/4708-0670$24.00 c©
optimum location in the plane of the Galactic disk [6];
this has also stimulated interest in a detailed analysis
of the background noise of ULITKA.

In addition, gravitational instruments of this type
represent one component of a long-term obser-
vational program on solar–terrestrial connections,
which supposes the possible action of indirect grav-
itational effects via the Earth’s atmosphere, iono-
sphere, etc. [7]. There are also groups of researchers
who are trying to use such high-sensitivity equipment
to search for non-standard global effects, or “new
physics,” such as gravitational screening during solar
eclipses, magnetic polarization of the vacuum, and
other global cosmic (cosmophysical) effects in the
spirit of the Mach principle and so forth [8].

The noise background of ULITKAwas used in this
context by the group of Professor S. E. Snoll, to test
their hypothesis that a universal cosmophysical force
acts on various types of ground-based measuring de-
vices [8–10]. Their analysis of long-term recordings
by the ULITKA antenna based on the expert selection
of smoothed empirical histograms (noise probability
densities) led to the appearance of correlation peaks.
One such peak has a characteristic period of 27 days.
In principle, one possibility would be to try to explain
this result as being due to the action on the an-
tenna of Newtonian gravitational noise generated by a
nonlinear parametric transformation of low-frequency
perturbations of the atmosphere and the Earth’s core
(analogous to “acoustical emission” in geophysics).
However, such estimates or references to such exper-
iments are not given in [8–10].

In this connection, we undertook a reanalysis of
the ULITKA noise background, avoiding as much
as possible the application of subjective expert es-
timation. The results are presented below. We first
briefly describe the structure and parameters of the
2003 MAIK “Nauka/Interperiodica”
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gravitational antenna, then present data on the statis-
tics of its noise spikes. These data are important for
estimating an empirical upper limit for the impulsive
gravitational-wave background.

2. CHARACTERISTICS
OF THE EXPERIMENTAL DATA

The ULITKA uncooled resonance gravitational
antenna has been in a regime of quasicontinuous
use since 1996. The basic device, properties of its
construction, and the method used to form the re-
sulting database are described in detail in [4]. Below,
we briefly recall the main characteristics required for
further analysis of the data.

ULITKA is an instrument that measures varia-
tions in the gradient of the gravitational field. The
basic sensitive element of the system is a gravita-
tional detector in the form of a high-Q aluminum
cylinder with length l ≈ 1.5m and massm ≈ 103 kg.
Rapid variations of the gravitational field lead to
perturbations of the main longitudinal mode of this
cylinder at the resonance frequency, f0 ≈ 1.6 kHz.
Acoustical oscillations are transformed into electri-
cal signals by piezoelectric transducers, which are
then amplified and subject to optimal processing
(see Appendix 1). The threshold sensitivity of the
ULITKA antenna to variations in the amplitude of
these oscillations in the optimal-filtration band,∆f ≈
1 Hz, is ∆xmin ≈ 10−14 cm/Hz1/2. In terms of the
variations of the metric h(t) in the field of a weak
gravitational wave, this yields hmin = ∆xmin/l ≈
10−16 1/Hz1/2 (which corresponds to a variation of
the gravitational gradient at the Earth’s surface of
(∂g/∂l)min = (ω2

0∆xmin/l) ≈ 10 E over 1 s, where
ω0 = 2πf0 is the resonance frequency of the main
mode.
Impulsive stochastic background.When search-

ing for effects due to gravitational waves, attention is
drawn to short spikes in the output signal with dura-
tions less than one second, which exceed a threshold
whose value depends on the selected relationship
between the sensitivity and the frequency of events.
In early measurements made in 1996 [4], two events
per day were detected at the 5σ level, equivalent to an
impulsive metric noise of 5 × 10−16.

In 2001, the effective “pure” measurement time
was 60.5% of the year, and the mean occurrence
rate of spikes exceeding the 3.5σ threshold was nine
every ten minutes. This corresponds to thermal noise
statistics but is too high for use in estimating an upper
limit for the gravitational-wave background. The am-
plitude distribution of these spikes, shown in Fig. 1,
can be described fairly well with a biexponential curve.
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 1. Distribution of noise-spike amplitudes.

The long, weak, slowly decaying “tail” of the distribu-
tion can be explained by the presence of rare impulsive
noise. The end of the zone in which the equipment
is sensitive to the Brownian noise of the gravitational
detector corresponds to a spike amplitude≥5σ.

About 1000 spikes were detected at this threshold
over 365 × 0.605 ≈ 221 days. Applying a selection
according to “anticoincidences” with perturbations
registered by seismotransducers mounted alongside
ULITKA [4] enabled the rejection of 30% of these
spikes, leaving a background of three events per day.
This is in agreement with the 1996 result to within
the measurement errors (to 50%), confirming the
estimated upper limit to the “impulsive metric noise”
presented in [4]: two to three impulse spikes per day
with amplitudes of the order of 5 × 10−16. Note also
that the confirmation of this result testifies to some
constancy of the background of local perturbations of
ULITKA over the six years of its operation.
Background of slow variations. Searches for

slow “solar–terrestrial” correlations require a transi-
tion from registered impulsive characteristics to mean
values averaged on time scales of tens of minutes or
more. Mathematically, the signal y(t) at the output
of the linear tract of the antenna (see Fig. 7 below)
can be represented as a quasi-Gaussian, random,
narrow-band process:

y(t) = a1(t) cosω0t− a2(t) sinω0t

= r(t) cos[ω0t+ ϕ(t)],

where a1(t) and a2(t) are quadrature components,
and r(t) =

√
a2

1(t) + a2
2(t) and ϕ(t) =

arctan[a2(t)/a1(t)] are the envelope function and
phase of this oscillation. The auto-frequency-adjust-
ment system makes it possible to trace drifting of the
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Fig. 2. Examples of pairs of PDEs: (a) selected by experts, with ρij = 0.92; (b) selected by experts, with ρij = 0.50; and
(c) missed during the expert selection, with ρij = 0.93.
resonance frequency of the gravitational detector ω0

with high accuracy (no lower than 1%). The analog
signals a1(t) and a2(t) are discretized in time with a
discretization step of δt ≈ 1 s. The discretized signals
a1m = a1(mδt) and a2m = a2(mδt) are saved and
used in the subsequent processing of the data.

Slow (technical) variations of the system param-
eters (the amplification of the electrical circuit, etc.)
were taken into account by tracking the behavior of
the sample dispersionD(m) of the discretized signals
a1m and a2m, calculated using a running average of
the square of the envelope function r(t) in intervals
(t, t− ∆t), with∆t = 10min:

D(m) = D(m∆t) =
1
2µ

m∑
i=m−µ

r2i , (1)

where r2i = a2
1i + a2

2i and µ ≈ 600. The sequence
D(m) was saved during the operation of the antenna,
and was used by the group of Snoll and by us in
our reanalysis, in order to search for anomalous
correlations in the output signal y(t).

During the preliminary data reduction, the real-
ization of the random process D(m) with a duration
of 120 days was divided into 480 individual inter-
vals Di(m), i = 1, 480, each with a duration of six
hours. The time shift τij between intervals was τij =
(1/4)|i − j| days. With the time step of∆t = 10min,
each interval contained 36 discrete readings.

We used the samples Di = {Dim} to construct
smoothed probability-density estimates
(PDEs) Wi(x), applying the potential-function me-
thod, well known in mathematical statistics (see Ap-
pendix 2). We used Gaussian curves as the approxi-
mating functions. The shapes of our PDE graphs and
of the histograms of Snoll obtained using running
averages coincide virtually perfectly.

We can treat the PDE graphs as a realization of a
random process

Wi(x) = 〈Wi(x)〉 + pi(x),

where 〈. . .〉 represents statistical averaging and pi(x)
is a random, nonstationary process with zero mean.
The dispersion of this random process is inversely
proportional to the sample volume, n = 36. Applying
the central limit theorem for∆t� τ∗ (where τ∗ ≈ 7 s
is the relaxation time of the gravitational detector),
we can consider the sample dispersion D(m) (1) to
be a random, asymptotically Gaussian process. In
this case, it can be shown (see Appendix 2) that
the mean 〈Wi(x)〉 of the smoothed PDEs Wi(x) is
also a Gaussian function, whose parameters can be
calculated directly from the experimental data. This
result depends only weakly on the specific form of the
approximating function δ(x, ε2).

In a Gaussian approximation, the fine structure of
the shapes of the individual curves Wi(x) is deter-
mined fully by the behavior of the “residual” pi(x) =
Wi(x) − 〈Wi(x)〉. This centering enables us to re-
move the “trivial” correlations (resemblances) of in-
dividual PDEs that are positive definite functions.
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 3.Number of PDE pairs as a function of the time interval between them for (a) expert selection and (b) selection using the
criterion ρij ≥ ρmin.
3. CORRELATION CRITERION
FOR SELECTION

The correlation criterion for selection of a PDE
we used in our reanalysis was based on computing
the correlation coefficient ρij between the functions
pi(ax) and pj(x+ b), i �= j, where a is a compression
factor and b is a shift,

ρij = max
a,b

∣∣∣∣∣∣

∑
x
pi(ax)pj(x+ b)
√
Ei(a)Ej

∣∣∣∣∣∣ , (2)

Ei(a) =
∑

x

p2i (ax), Ej =
∑

x

p2j(x).

The introduction of the parameters a and b pro-
vides the maximum degree of “fitting” of the shapes of
the pi(ax) and pj(x+ b) curves during the automated
selection. Only those pairs of PDEswhose correlation
coefficient (2) exceeds a specified threshold ρmin =
u1−α are selected, where uγ = F−1

1ρ (γ) is the quantile
of the sample distribution function F1ρ(ρ) of the ρij

values and α is the probability of false detection of a
ASTRONOMY REPORTS Vol. 47 No. 8 2003
correlation. We used all possible pairs of PDEs when
constructing the distribution function F1ρ(ρ).

The automated selection yielded a database of
such curves based on all possible combinations of
i, j = 1, 480. We then used this database to construct
the dependence of the event rate ρij ≥ ρmin on the
time shift (see above) τij = (1/4)|i − j| days. Fig-
ure 2a presents pairs of PDEs selected manually by
experts that had anomalously high correlation coef-
ficients, ρij ≈ 0.92. At the same time, some expert-
selected pairs had correlation coefficients that were
substantially lower; examples of such pairs with ρij ≈
0.5 are shown in Fig. 2b. The mean correlation coeffi-
cient for the expert-selected pairs, 0.67, remains fairly
high compared to themean value for all possible pairs,
〈ρ∗ij〉 ≈ 0.3. In addition, application of the automated
correlation criterion revealed pairs with high correla-
tion coefficients that had been missed by the expert
selection, examples of which are shown in Fig. 2c.

Figure 3a presents the dependence of the relative
rate of appearance of similarly shaped histograms on
the time shift between them [8]. The appearance of a
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Fig. 4. Histogram of the distribution of the Spearman
rank criterion calculated for expert-selected pairs.

characteristic peak near τ ≈ 27 days is interpreted in
[7, 8] as a consequence of the Snoll effect. Figure 3b
presents the same dependence for all pairs that were
selected automatically using the correlation criterion.
This characteristic period of 27 days disappears.

4. STATISTICAL METHODS
FOR SEARCHING

FOR ANOMALOUS CORRELATIONS

The selection of PDEs with similar shapes is
essentially a specialized method for analyzing the
distinctive properties of the random process D(n),
whose stability and power require further study, to say
the least. Other well-developed probability criteria
designed to test for the existence of anomalous
statistical relationships in noise are known in math-
ematical statistics. The application of these criteria
to a statistical analysis of the output signal of the
ULITKA gravitational antenna enables us to avoid
the construction of PDEs, and the results obtained
provide additional information about the statistical
properties of the input samplesDi andDj .

In the first stage of our reanalysis, we investigated
the statistical dependences of the samples Di and
Dj , which we used to construct expert-selected his-
tograms with similar shapes. Let H1 be the hypothe-
sis that there is a statistical dependence between the
samples Di and Dj (i �= j). The alternative hypoth-
esis H0 is that there is no such dependence. Under
hypothesisH0, the random functions pi(x) and pj(x)
are statistically independent, so that the coincidence
of some fragments of the fine structure of these func-
tions should be considered random events.

One widely used criterion for testing the statistical
dependences of samples is the Spearman rank corre-
lation criterion [11]. One advantage of this criterion
is that it can be used to study statistical dependences
based on properties that cannot be conveniently de-
scribed quantitatively.

When verifying the rank correlation, we use
the samples Ri = (Ri1, Ri2, . . . , Rin) and Rj =
(Rij , Rj2, . . . , Rjn) in place of the input samples Di

and Dj , where Rik and Rjk are the ranks of the
individual elements of Dik ∈ Di and Djk ∈ Dj (the
rank of a sample element is the ordinal number of
this element in a variational series), and n = 36 is the
sample volume. In this case, under hypothesisH0, the
rank statistic

Sij(n) =
n∑

l=1

RilRjl (3)

should be an asymptotically random Gaussian quan-
tity, whose mean 〈Sij(n)〉 and dispersion σ2

s(n) are
determined by the formulas [11]

〈Sij(n)|H0〉 =
n(n+ 1)2

4
, (4)

σ2
s(n|H0) =

n2(n+ 1)2(n− 1)
144

.

As part of the reanalysis, we constructed the
sample probability density for the random quantities
(3) for all pairs of the samples Di and Dj selected
by experts during the identification of similar PDEs
(Fig. 4). We can see from Fig. 4 that the sample
probability density is in good agreement with the
hypothetical Gaussian with the parameters (4) (solid
curve). We tested the hypothesis that the statistic (3)
had a Gaussian distribution with the parameters (4)
using the criterion of Pearson [11, 12]. The result was
the rejection of the hypothesis H1 with probability
P ≥ 1 − α ≈ 0.95 (α is the probability of false de-
tection of a correlation). Thus, the expert-selected
samples Di and Dj are statistically independent
with high probability (in the sense of the criterion
of the Spearman rank correlation). It follows that
the “similarity” of the smoothed PDEs cannot be
considered a trustworthy indication of the presence
of some common external perturbation for ULITKA
noise samples equally spaced in time.

A universal, nonparametric criterion for testing the
statistical dependence of the samplesDi andDj (i �=
j) is based on verifying the factorization of the two-
dimensional (joint) distribution function F2(xi, xj) of
the random processes Di(m) andDj(m). Let

F2(xi, xj) − F1(xi)F1(xj) = ∆(xi, xj|H0,1),

where F1(xj) are the one-dimensional distribution
functions.We then have under the hypothesesH0 and
H1∆(xi, xj |H0) = 0 and∆(xi, xj |H1) �= 0. Unfortu-
nately, with the small volume n = 36 of the samples
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Di and Dj , the resulting joint sample distribution
function is too crude an estimate of the distribution
function F2(xi, xj) to perform this test.

To overcome this problem, we did not form individ-
ual subintervalsDi(m), instead investigating the sta-
tistical dependence of the random processesX(m) =
D(m) and Y (m) = D(m+ k), where k = [[τ/∆t]]
and τ is an arbitrary time shift. The existence of
anomalous correlations with a period of 27 days (hy-
pothesis H1) should lead to a statistical dependence
between the random processes X(m) and Y (m) for
some characteristic shift.

Let (X1, Y1;X2, Y2; . . . ;XM , YM ) be a two-dimen-
sional sample obtained by realizing the random
processes X(m) and Y (m): Xk = X(k), Yk = Y (k).
TheseM sample pairs are distributed in x intervals of
class r and y intervals of class s forming a “table of
conjugate criteria” [11–13]. Then, assuming thatmij

is the number of pairs (Xk, Yk) falling in the class i x
interval and in the class j y interval, we have

f2(r, s) =
r∑

i=1

s∑
j=1

(mij

M
− mii

M

mjj

M

)2

mii

M

mjj

M

(5)

=
r∑

i=1

s∑
j=1

m2
ij

miimjj
− 1 ≤ min(r, s) − 1,

f2(r, s) is the root-mean-square conjugacy of the
criteria (residual).

Under H0 with M → ∞ (in reality with M �
1), the probability statistics of Mf2 converge to χ2

statistics with L = (r− 1)(s− 1) degrees of freedom.
Normalization of the χ2 distribution (with mij > 10)
leads to the following critical rule: the hypothesis H1

(the random processes X(m) and Y (m) are statisti-
cally dependent) should be adopted if

Mf2 > χ2
1−α(L),

χ2
1−α(L) ≈ 1

2
(
√

2L− 1 + u1−α)2,

where L� 1, uP is the quantile of the Gaussian
distribution, and α is the probability of false detection
of a correlation. Otherwise, the alternative hypothesis
H0 should be adopted.

Figure 5 presents the dependence f2(r, s, τ) as
a function of the shift τ = m′∆t constructed for a
realization of the random process D(n) (for r = s =
10, M = 10000, and 0 ≤ τ ≤ 60 days). For the case
of L = 81 degrees of freedom and α = 0.05, the curve
f2(r, s, τ) lies completely below the threshold level
χ2

0.95(81) ≈ 107.3. Consequently, we can consider
the analog (continuous) random processes D(t) and
D(t+ τ) to be statistically independent with the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
fairly high confidence level P = (1 − α) = 0.95. This
conclusion enables us to reject the hypothesis that
there exist anomalous periodic perturbations in the
output signal of ULITKA.

5. SPIKE CORRELATION ANALYSIS

Geophysical studies of the intensity of seismic in-
terference during periods of strong earthquakes often
apply statistical analyses of the rate of spikes in the
output signal of a high-frequency seismometer [14]
(by a spike, we mean an event in which the real
noise crosses some threshold level C.) The statis-
tics of such spikes for the case of a high thresh-
old are closely related to the behavior of the tails
of probability-density distributions. During the ex-
pert selection of the smoothed histograms accord-
ing to their shapes, the behavior of the distribution
tails was not taken into account. Therefore, we can
consider tracing spikes associated with the random
process D(m) to be an additional test for the pres-
ence of quasi-periodic “impulsive” events at the an-
tenna. External quasi-periodic perturbations of a low-
frequency gradient of the gravitational field should
have led to periodic variations in the rate of appear-
ance of spikes.

Let ∆N(m,C) be the number of spikes of the
process being analyzed in the interval (m− µ,m) (for
analog processing in the interval (t− ∆t, t)). Fig-
ure 6 presents the sample estimate of the autocorre-
lation function of a random impulsive process η(m) =
∆N(m,C) for a high thresholdC = 4σD, where σ2

D is
the sample dispersion of the random process D(m).
No characteristic “flares” of the autocorrelation func-
tion are observed (for a periodic signal with a period of
τ = τ0 ≈ 27 days). When testing the reliability of this
result, the confidence interval is calculated using the
Moire–Laplace asymptotic. In a “Gaussian” approx-
imation, the confidence coefficient is γ ≈ 0.96.

6. DISCUSSION OF MAIN RESULTS

Summarizing the results of the tests presented
above, we are able to draw the following conclusions.

We have estimated themetric noise during searches
for impulsive perturbations of the high-frequency
background of the gravitational gradient to be 5 ×
10−16, in agreement with the earlier results of [4]. This
testifies to the stability of impulsive interference in the
kilohertz range, as well as to the operational stability
of the ULITKA gravitational antenna in its quasi-
continuous monitoring regime. In connection with
the detection of anomalous coincidences of gravita-
tional events reported in [6], it will be of interest to test
the ULITKA noise background for coincidences with
the signals of the Explorer and Nautilus antennas.
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Our attempts to find hidden periodicities in the
output signal of the ULITKA gravitational antenna
were not successful. In particular, “anomalous” ef-
fects with a period close to the rotational period of the
outer envelope of the Sun (27 days) were not detected
in the antenna noise. The probability that this lack of
detection is erroneous does not exceed 0.05.

In contrast to the subjective method of expert se-
lection, we have applied an automated algorithm for
selecting smoothed PDEs with similar shapes. This
procedure incorporated the obvious a priori infor-
mation that the analyzed probability-density estimate
Wi(x) is constructed from a realization of the quasi-
Gaussian process D(m). By centering these func-
tions, we were able to exclude the trivial part of the
correlations that are positive definite PDEs and to
work with the random component pi(x). The pres-
ence of such a component is due to the finite volume
of the sample, n = 36. Comparison and conformal
fitting of the PDEs and calculation of the correlation
coefficient ρij (2) simulated the process of expert se-
lection.

The automated selection gave a negative result:
the relative repeatability of PDEs with similar shapes
does not have a significant peak at a time shift of
τ ≈ 27 days.

We have paid special attention to verifying the
statistical dependence of the samples Di and Dj

selected in expert searches (i.e., which gave rise to
similar PDEs). A test of this dependence using the
nonparametric Spearman criterion demonstrated that
there is no rank correlation between the elements of
these samples. Note that, in tests for the existence of
anomalous correlations of samples that are uniform
in time, applying rank criteria is more effective than
comparing the PDEs Wi(x) and Wj(x) constructed
from variational series, since information about the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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mutual locations of individual elements in the sam-
plesDi andDj is lost during the construction of such
series.

In addition, to search for hidden periodicity in the
ULITKA noise, we investigated the statistical rela-
tionship between the input process X(t) = D(t) and
the auxiliary process Y (t) = D(t+ τ). In this case,
we adopted a “narrow” meaning for the statistical
independence of these random processes: the joint
distribution function F2(X,Y ) was factorized under
the null hypothesis H0. We verified the correctness
of this factorization during the reduction of the real
data using a standard method based on the applica-
tion of a table of “conjugate criteria.” The alternative
hypothesis H1 (the random processes X(t) and Y (t)
are statistically dependent for the shift τ ≈ 27 days)
can be rejected with a probability exceeding 0.95.

In our opinion, applying probability criteria for the
analysis of individual samples is preferable, since the
“fine structure” in the samples is more fully taken into
account in this approach, and the need to smooth the
PDEs constructed from these samples is reduced.

Returning to the question of a hypothetical grav-
itational action on the ULITKA antenna, we note
that it is not possible to identify the origin of such
an action, even at low frequencies. For example, the
daily variations of the gravitational gradient at the
ULITKA sensitivity threshold (10 E) correspond to
inadmissibly large variations in the density of the
atmosphere, exceeding the density of its lower layers
by three to four orders of magnitude. In principle, we
could attempt to relate the appearance of anomalous
correlations in the output signal of the antenna with
possible non-linear parametric effects due to iono-
spheric perturbations on the electric circuit of the
recording system. However, since the formation of
the auxiliary process D(n) (1) used in our reanalysis
makes it possible to trace slow variations in the gain
coefficient, this mechanism should be considered im-
probable.
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APPENDIX 1

Data Collection System for the ULITKA Gravitational
Antenna

Figure 7 shows a flowchart of the detector system
of the ULITKA gravitational antenna. The electrical
ASTRONOMY REPORTS Vol. 47 No. 8 2003
 

Piezoceramic
facings

 

Ä
ñ
è

2

2

 

Computer

 

cos 

 

ω

 

0

 

t

 

sin 

 

ω

 

0

 

t

Fig. 7. Data-collection system.

 

0.1

16221620 1624 1626 1628 1630
Frequency, Hx

1E–3

0.01

1

10
Power spectrum

Fig. 8. Noise spectral density at the output of ULITKA.

narrow-band signal x(t) from the piezo-ceramic fac-
ings is routed to the input of a synchronous detector
(filtration bandwidth 1 Hz), which distinguishes the
quadrature components a1(t) and a2(t). The analog
(continuous) signals a1(t) and a2(t) are routed to the
input of an analog-to-digital converter (ADC). The
discretization frequency is ten readings per second.
The following tasks are carried out during the sub-
sequent digital processing of the data:

(1) The complex envelope c(t) = a1(t) + ja2(t) is
formed; the reference frequency of the synchronous
detector is synthesized.

(2) A running average is used to calculate the
dispersions of the quadrature components a1(t) and
a2(t) in ten-minute intervals; the resulting data are
stored on disk.

(3) The normalized quadrature components are
processed using an optimum scheme for Gaussian
noise (the quadratures are passed through a difference
chain, after which the sum of their squares is calcu-
lated). Information about the characteristics of spikes
exceeding the 3.5σ detection threshold is saved in a
database.

(4) The internal clock of the computer is tied to an
accurate time signal.

Figure 8 presents the spectral density of the noise
at the output of the low-noise amplifier. This spec-
trum was constructed using a duration of 5 min and
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a 2 × 106 accurate fast Fourier transform (with a
discretization frequency of about 6 kHz), then av-
eraged over 20 realizations. The narrow resonance
peak corresponds to the spectral density of the ther-
mal antenna noise. The pedestal in the probability
density function is determined by the intensity of the
broadband electrical noise. When the signal-to-noise
ratio is≈100, the effective bandwidth of the Gaussian
receiver is 1 Hz.

APPENDIX 2

Method of Potential Functions for Estimating
an Unknown Probability Density
(the Parzen–Nadaray Method)

Let

F1i(x) =
1
n

n∑
m=1

V (x−Dim) (A1)

be the sample distribution function of the random
process D(m), constructed using real data in the ith
subinterval, and V1(x) be the unit function: V (x) = 1
when x ≥ 0 and V (x) = 0 when x < 0.

Formally differentiating both sides of expres-
sion (A2), we find the unshifted sample PDE of the
random processD(m):

Wi(x) =
dF1i(x)
dx

=
1
n

n∑
n=1

δ(x−Dim), (A2)

where δ(x) is the delta function. In the potential-
function method, the delta function δ(x) is replaced
by “smoothed” approximating functions δ(x, ε2) that
depend on the smoothing parameter ε2. Gaussian
curves can be used as these functions [11–13]:

δ(x, ε2) =
1√

2πε2
exp

{
− x2

2ε2

}
, (A3)

−∞ < D <∞, δ(x, 0) = δ(x).

Using expressions (A2) and (A3), we can find the
smoothed PDE for the Parzen–Nadaray method:

Wi(x) =
1
n

n∑
m=1

δ(x−Dim, ε
2
i ). (A4)

The “smoothing” parameter ε2i in (A4) was chosen
in accordance with the condition ε2i � σ̂2

i , where σ̂
2
i

is the sample dispersion of the random processD(m)
in the ith interval:

σ̂2
i =

1
n− 1

n∑
m=1

(Dim − m̂i)2, m̂i =
1
n

n∑
m=1

Dim.

Let 〈Wi(D)〉 be the mean value of the random
[13] process Wi(x) (A4), and the random process
D(m) be asymptotically Gaussian with the parame-
ters (mi, σ

2
i ). We then find using (A3) and (A4)

〈Wi(x)〉 ≈
1√
2πσ̂2

i

∞∫
−∞

δ(x− z.ε2i ) (A5)

× exp
{
−(z − m̂i)2

2σ̂2
i

}
dz

=
1√

2π(σ̂2
i + ε2i )

exp
{
− (x− m̂i)2

2(σ̂2
i + ε2i )

}
.

Consequently, for a Gaussian random process D(m)
and Gaussian approximating functions δ(x, ε2), the
mean value 〈Wi(x)〉 of the smoothed PDE Wi(x) is
also Gaussian. We note especially that, when ε2i �
σ2

i , the shape of the smoothed PDEs depends only
weakly on the specific form of the approximating
functions δ(D, ε2).
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Abstract—There should be a universal correlation between the main observational parameters of mag-
netized accreting stars (neutron stars, white dwarfs, and possibly T Tauri stars): their luminosities,
periods, and temperatures. To first approximation, such a dependence is obeyed reasonably well for X-ray
pulsars, intermediate polars, and T Tauri stars. In contrast, the parameters of anomalous pulsars (so-
called “magnetars”) and soft gamma-ray repeaters differ sharply from this dependence, and even occupy a
“forbidden” region in the parameter space. This presents a serious argument against the idea that these are
accreting neutron stars. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The theory of accretion onto magnetized stars was
developed in connection with the discovery and sub-
sequent study of X-ray pulsars in binary systems [1].
Although we are still far from being able to construct
a complete theory, to first approximation, the main
elements of the theory discussed as early as the 1970s
can still be considered to be on firm ground. The most
important of these include the following.

(1) The size of the magnetosphere of the accreting
star is close to the so-called Alfven radius:

RA =
(

µ2

2Ṁ
√

2GMx

)2/7

.

(2) During its evolution under the action of the
accelerating and decelerating torques in the system,
the accreting star tends to approach an equilibrium
state in which the size of the magnetosphere is close
to the corotation radius (κ � 1) [2]:

RA = κRc = κ(GMx/ω2)1/3.

(3) The time over which this equilibrium is attained
is always less than the characteristic lifetime of the
star in the accretion stage:

teq =
Iω

Ṁ
√

GMRc

=
Mx

Ṁ

(
Rx

Rc

)3

� Mx

Ṁ
.

Generally, speaking, these last two points suppose
that a disk-accretion regime is realized; this is obvi-
ously applicable for systems in which there is a flow
of material through the inner Lagrange point but is
also a quite likely scenario for accretion of material
from a stellar wind. Here, we are not considering
1063-7729/03/4708-0679$24.00 c©
only systems in which there is disk accretion. Re-
call that the main observational quantities associ-
ated with X-ray pulsars are their luminosity L, period
P , period derivative (Ṗ ), and characteristic spectral
temperature (kTspec). The first three quantities are
obviously interconnected, since the luminosity is de-
termined by the accretion rate, which also determines
the rate of change of the period. Here, we concentrate
on the fact that the three points listed above imply
that the luminosity and period of any accreting star
(accretor) should be correlated with the characteristic
temperature of its radiation.

2. A NEW PICTURE FOR X-RAY PULSARS

Let us consider a lower limit for the characteristic
temperature of the radiating region of an accretor.
As a first approximation, we can use the Stefan–
Boltzmann formula

L = SσT 4. (1)

We can estimate the size of the region onto which
the accreting material falls based on the dipole struc-
ture of the magnetic field of the accretor [3]:

S = 2πR2
xε2, (2)

where ε is the opening angle of the polar column,
which is determined by the accretor’s radius Rx and
the size of the Alfven zone RA via the expression

ε =
(

Rx

RA

)1/2

. (3)

Let us now also take into consider the fact that,
during its evolution, the accretor tends toward a state
2003 MAIK “Nauka/Interperiodica”
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Table 1. Temperatures of accretors

Type Name kTmin, eV kTspec, eV kTeff, eV f(L)
Neutron stars Her X-1 3754 19000 13593 1.398

4U 0115+63 4965 8000 5631 1.421
X0331+53 4633 15500 11089 1.398
Cen X-3 7045 14300 8511 1.680
Vela X-1 6954 17500 13112 1.335

Magnetars AXJ 1845–0258 1752 640 541 1.182
1E 2259+586 1259 410 365 1.121
1E 1841–045 1911 550 465 1.182
4U 0142+615 2456 390 314 1.240
1E 1048–5937 1964 640 530 1.206
1RXS J17084.9 1986 460 386 1.190

Soft gamma-ray repeaters SGR 1900+14 696 500 486 1.027
SGR 1806–20∗ 76000 9000 5357 1.680
SGR 1627–41 1107 1300 1181 1.10

Burster SAXJ 1808.4–36 81 200 223 0.896
Polar AM Her 3.868 28 16 1.68
Intermediate polars DQHer 0.937 20 11.9 1.68

SWUMa 3.307 70 41.6 1.68
T Tauri star T Tau 0.290 0.43 0.25 1.68

∗ The temperature of the X-ray flare of the source is indicated.
in which the Alfven radius approaches the corotation
radius Rc, i.e.,

RA = κRc, (4)

where κ is a dimensionless coefficient that is close
to unity. Further, using the definition of the coro-
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tation radius and (1)–(4), we obtain the minimum
temperature of the accretion zone in the blackbody
approximation

kTmin = 0.94
M

1/12
1 L

1/4
35 P 1/6

R
3/4
6

keV. (5)

In (5), the mass is normalized to one solar mass,
the luminosity to 1035 erg/s, the period to one second,
and the radius to 106 cm. The corresponding relation
is shown by the line in Fig. 1.

We emphasize again that (5) gives a lower limit
for the temperature of the accretor’s radiation zone.
As a consequence of Rayleigh–Taylor instability, the
accreting material channeled in the near-polar zones
by the magnetic force lines falls not onto the polar cap
of the accretor but instead into a narrow ring of much
smaller area [1]. It is obvious that the resulting lower
limit for the temperature can be applied to any mag-
netized accretor independent of its nature—a neutron
star, white dwarf, or ordinary star. The main thing is
that we are dealing withmagnetized objects accreting
from a disk. There is no doubt that such objects are
found among X-ray pulsars, X-ray bursters, cata-
clysmic variables (polars and intermediate polars),
and possibly T Tauri stars [4].
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Table 2.Used numerical values of main accretor characteristics

Type Name P , s L, 1035 erg/s R, 106 cm M/M�

Neutron stars Her X-1 1.24 200 1.0 1.4

4U 0115+63 3.61 300 1.0 1.4

X0331+53 4.38 200 1.0 1.4

Cen X-3 4.84 1000 1.0 1.4

Vela X-1 283 63 1.0 1.4

Magnetars AXJ 1845–0258 6.97 3 1.0 1.4

1E 2259+586 6.98 0.8 1.0 1.4

1E 1841–045 11.76 3 1.0 1.4

4U 0142+615 8.69 10 1.0 1.4

1E 1048–5937 6.44 5 1.0 1.4

1RXS J17084.9 10.99 3.6 1.0 1.4

Soft gamma-ray repeaters SGR 1900+14 5.16 0.09 1.0 1.4

SGR 1806–20∗ 7.47 107 1.0 1.4

SGR 1627–41 6.41 0.5 1.0 1.4

Burster SAXJ 1808.4–36 0.0025 0.003 1.0 1.4

Polar AMHer 11139.2 0.0002 700 1.0

Intermediate polars DQHer 71.07 0.00002 700 1.0

SWUMa 954 0.0005 700 1.0

T Tauri star T Tau 432000 0.0044 140000 1.0

∗ The luminosity of the X-ray flare is indicated. The masses and radii of neutron stars are not intended to be extremely accurate, but to
represent their most likely values.
3. THE ROLE OF COMPTONIZATION

In the case of accreting neutron stars, we will use
the model atmosphere of [5] to specify the relationship
between the spectral X-ray temperature of the accre-
tor kTspec (which we will take to be the temperature in
the best-fit approximation to the observed spectrum
of the form I ∝ exp−hν/kTspec) and the effective tem-
perature of the radiating region.

We wish to elucidate the effect of comptonization
on the spectrum. We write for the relationship be-
ASTRONOMY REPORTS Vol. 47 No. 8 2003
tween kTspec and kTeff

Tspec = f(L)Teff, (6)

where the function f(L) has the form

f(L) =

{
1.51(L/Ledd)0.04, L � Ledd

1.68, L � Ledd.

The results of correcting for the effect of comp-
tonization are presented in Table 1. We can see that,
as before, the temperatures of observed accretors
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Table 3. References to observational data for the accretors

Type Name Reference

Neutron stars Her X-1 [6, 7]

4U 0115+63 [6, 7]

X0331+53 [6, 7]

Cen X-3 [6, 7]

Vela X-1 [6, 7]

Magnetars AXJ 1845–0258 [8–10]

1E 2259+586 [8–10]

1E 1841–045 [8–10]

4U 0142+615 [8–10]

1E 1048–5937 [8–10]

1RXS J17084.9 [8, 10, 11, 12]

Soft gamma-ray repeaters SGR 1900+14 [13–16]

SGR 1806–20 [17–20]

SGR 1627–41 [21–23]

Burster SAXJ 1808.4–36 [24, 25]

Polar AM Her [6, 26, 27]

Intermediate polars DQ Her [6, 28]

SW UMa [6, 29]

T Tauri star T Tau [4, 6]
are higher than their minimum values. The effect of
comptonization is somewhat smaller in the case of
other types of accretors—polars and T Tauri stars—
but the discrepancy between the effective temperature
and the minimum temperature remains large, even
when the largest value of f(L) is used for the correc-
tion (Table 1).

4. POLAR AND T TAURI SYSTEMS

The cataclysmic variable AM Her is a member of
the subclass of polars. It is a binary system containing
a magnetized white dwarf and a red dwarf. The red
dwarf fills its Roche lobe. The orbital period and rota-
tional period of the white dwarf are nearly coincident,
Pspin = 0.77Porb. It is thought that the magnetic field
at the white-dwarf surface is ∼109 G [6].

DQ Her is a cataclysmic variable classified as an
intermediate polar. It is a binary system containing a
white dwarf and a K–M star (the latter star’s spectral
type has not been established more precisely). The
synchronization coefficient is Pspin = 0.004Porb. The
magnetic field at the white-dwarf surface is believed
to be ∼106 G [6].

SW UMa is another intermediate-polar cata-
clysmic variable and periodically produces nova-
like flares. It is a binary system containing a white
dwarf and an M2 or later-type companion. The
relationship between the orbital period of the sys-
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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tem and the rotational period of the white dwarf is
Pspin = 0.195Porb [6].

T Tauri stars are young stars whose accretion
luminosities lie in the range from 0.02L� to 0.2L�;
we have adopted the luminosity 0.1L�) for our calcu-
lations for T Tau. The period of T Tau varies from 3
to 10 days, being on average 5 days. The mass of the
white dwarf is 1–1.5M�, and the magnetic field at its
surface reaches 104 G [4].

The numerical values for the characteristics of the
accretors we have considered are listed in Table 2.
References to this information are given in Table 3.

5. DISCUSSION

Let us consider the dependence for the lower limit
of the accretor temperature (5) shown in the figure,
which plots the X-ray spectral temperature as a func-
tion of the generalized coordinate

M1/12L1/4P 1/6

R3/4
.

We chose the generalized coordinate so as to
transform (5) into a linear relationship. Recall that
the collection of accretor parameters in (5) is the
result of combining expressions (1)–(4), so that the
right-hand side of (5) and therefore the generalized
coordinate plotted in the figure carries information
about the accretor’s rotational period, its luminosity,
and, indirectly, its moment of inertia.

This same plot shows the temperatures kTspec

characterizing the observed spectra. Since the the-
oretical area of the accretion zone is clearly overes-
timated, and taking into account the effect of comp-
tonization on the emerging radiation, we can be confi-
dent that points with kTspec should lie above their the-
oretical values, or at the very least not be below them.
The region below the theoretical line (5) is therefore
a “forbidden zone” for sources whose luminosities are
associated with accretion.

We can see from the figure that the anomalous
X-ray pulsars (magnetars) and soft gamma-ray re-
peaters lie in the “forbidden zone.” Only SGR 1627–
41 deviates slightly from this tendency. However,
in contrast to the undoubted accretors, for which
kTspec � kTmin, we have kTmin � kTspec for SGR
1627–41. We also emphasize that the position of
SGR 1627–41 above the line corresponding to
minimum accretor temperatures does not necessarily
imply that the luminosity of this source cannot have a
non-accretion nature.

The above discussion brings into doubt the ac-
cretional nature of the radiation of magnetars and
soft gamma-ray repeaters. It is possible that another
mechanism is responsible for their X-ray radiation.
ASTRONOMY REPORTS Vol. 47 No. 8 2003
For example, one possible mechanism is the dissi-
pation of magnetic fields ∼1014–1015 G [30, 31].
Thus, our proposed universal dependence based on
the relationships between the characteristic temper-
ature of the radiation zone of an accretor and its main
properties—luminosity, period, mass, and radius—
can add weighty arguments that the X-ray radiation
of an individual object has an accretional (or non-
accretional) origin.
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Abstract—The physical basis for thermodynamical modeling of plasma under the conditions typical
of moderate-mass stars is considered. We apply the method of thermodynamic potentials to introduce
chemical and physical plasmamodels that represent basic, modern descriptions of a nondegenerate, weakly
nonideal plasma. Ionization of an ideal multicomponent plasma at low temperatures is used as a basic
approximation for the solar convection zone and in the corresponding chemical picture. The effects of
Coulomb free–free and bound–free electron interactions are classified according to their appearance in
the solar interior. Modeling internal stellar structure requires a formalism with nonideal ionization at high
densities (frequently called pressure ionization). Perspectives for describing such ionization are considered
in the framework of several models. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The theoretical description of the thermodynamics
of matter in stellar interiors is a fundamental problem
of astrophysics and the theory of stellar structure.
While “extreme” conditions and processes often at-
tract the most attention, the material making up the
majority of stars can be considered to be a weakly
degenerate, low-temperature plasma. The term “low-
temperature” may sound paradoxical, but, from the
standpoint of plasma physics, this is the case [1]. In
the present paper, we consider the thermodynamic
conditions in the interiors of the Sun and solar-mass
stars.

The Sun as a star plays a unique role in the theory
of stellar structure. Evolutionary calibrations based
on the Sun’s well-known radius, luminosity, mass,
and age enable us to determine the two most impor-
tant parameters of stellar structure—the convective
efficiency and the initial helium abundance in the
model. It is difficult to determine these parameters
using other methods.

Solar-mass stars have similar temperature and
density profiles in their interiors. The outer parts of
these stars form a convective zone, i.e., a region that
is unstable to mixing. The extent of the convective
zone is quite substantial, though it decreases rapidly
with themass of the star: forM = 1.4M�, its depth is
only 10% (while it is 29% in the Sun). Convection in
the outer parts is initiated by the ionization of matter
and the increase of its opacity. However, ionization
does not explain the considerable depth of the con-
vective zone. The bulk of the convective zone can be
described by an adiabat (the temperature profile is
1063-7729/03/4708-0685$24.00 c©
close to T ∼ ρ2/3) and is characterized by a relatively
rapid increase of the temperature. The temperature
grows by a factor of 450 in the solar convective zone,
but by only a factor of six in the central radiative
zone. In the radiative zone, outside the stellar core,
the temperature profile can be approximated by the
law T ∼ ρ2/7. The core boundary can be defined as
the region for which the temperature is half the tem-
perature at the center of the star. It is convenient
to describe the essentially adiabatic convective zone
in terms of the specific entropy of the matter s. The
derivative ds/dr is negative in the convective zone,
but its absolute value drops very rapidly with increas-
ing density, and any deviation from adiabaticity levels
off over a distance of several pressure scale heights.
This property suggested [2] that the entropy of the
convective zone is a parameter of the stellar structure
rather than of convection theory. On the other hand,
this parameter (as well as the depth of the convective
zone) is determined by the thermodynamic conditions
in the radiative zone [3]. Bearing inmind that the tem-
perature and density profiles remain nearly constant
during the course of a star’s evolution, this implies
that, for any fixed temperature, the density (entropy)
will decrease (rise) with the mass of the star (Fig. 1).

Interest in the equation of state (EOS) has in-
creased in recent decades due to progress in helio-
seismology. First, the requirements for the accuracy
of solar models have increased, especially for the outer
layers. Second, one must know additional parame-
ters, such as the adiabatic exponent, for helioseismic
analyses. As a result, it was shown that problems as-
sociated with the disagreement between the observed
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Profiles of the temperature and density in solar-
mass stars. Profiles are shown for stars with four different
masses: 0.9MS (dash–dot curve), 1MS (solid curve),
1.1MS (dotted curve), and 1.2MS (dashed curve). The
vertical dashed line shows the level βIH = 1. The dotted
line intersecting the profiles corresponds to a constant
nonideality of the material.

and theoretical oscillation spectra originate precisely
due to the inaccuracy of thermodynamic models (see,
e.g., [4]).

Currently, two systems of EOS tables are used
most often. The first are the EOS tables of Mihalas,
Hummer, and Däppen [5] (abbreviated MHD), which
are based on a chemical model for the plasma and are
distinguished by their high internal consistency. The
only example of an EOS based on the physical picture
is the OPAL EOS, which are currently available only
as tables [6]. In the present paper, we also use the
EOS of Baturin; an example of applying this EOS in
a helioseismic analysis can be found in [7].

Comparing the MHD and OPAL EOS’s, we
can assert that neither is unambiguously preferable.
While the problem of helioseismic calibration of the
EOS’s remains open, some results indicate that the
OPAL EOS is more accurate for deep layers of the
convective zone [8], whereas the MHD EOS may be
better for modeling zones of ionization [9].

2. PHYSICAL AND CHEMICAL PLASMA
MODEL

Usually, the EOS refers only to the thermal
EOS relating the density, pressure, and temperature:
P = P (T, ρ,Xi). However, for computations of the
structure of the convective zone and for helioseismic
analyses, we must know several additional quantities
that cannot be derived using the thermal EOS alone.
These are the specific heat cP = T (∂S/∂T )P and the
adiabatic derivatives: the adiabatic temperature gra-
dient ∇S = (∂ lnT/∂ lnP )S and adiabatic exponent
Γ1 = (∂ lnP/∂ ln ρ)S . Not all of these quantities are
independent, and they must obey relations that are a
consequence of the first and second laws of thermo-
dynamics. This is especially important for numerical
EOS’s (for instance, the OPAL EOS), for which the
accuracy of the control relations is essentially the
accuracy of the thermodynamic functions.

To this end, at the basis of modern EOS’s lies
the method of thermodynamic potentials, i.e., the use
of functions whose derivatives give all the thermody-
namic quantities and guarantee thermodynamic con-
sistency. The best known potential is the free energy
F (T, ρ,Ni). The first-order thermodynamic quanti-
ties are computed as first partial derivatives of F :

P = −
(
∂F

∂V

)
T,Ni

, U = −T 2

(
∂ (F/T )
∂T

)
V,Ni

,

S = −
(
∂F

∂T

)
V,Ni

, µi =
(
∂F

∂Ni

)
T,ρ,Nj,j �=i

.

The choice of potential is not unique. For instance,
the internal energy is a potential in the form of the
function U(S, V ) (there is an incomplete EOS in the
form U(P, V ), which is sufficient for solving a number
of problems [1]). Use of the free energy is popular due
to the fact that its variables are “natural” measurable
quantities. One key issue is the choice of the number
of particles as an argument of the free energy. This
is the basis for a chemical picture of the plasma. In
such a model, it is easy to describe the noninteracting
particles using some assumed statistics, i.e., using an
ideal EOS. It is also possible to describe reactions
of particles of one sort into particles of another sort,
i.e., ideal ionization (for nonideal ionization, see Sec-
tion 4).

The free energy is related to the concept of a
canonical ensemble. Such an ensemble is formed by
systems with a given volume V , temperature T , and
number of particles N . The temperature of the sys-
tems is constant, while the energy can fluctuate. The
occupation probability is given by

w(K;V, β,N) = exp β[F − E(K)],

where K denotes a system from the ensemble and
β ≡ (kT )−1. The condition for normalization of this
probability defines the free energy:

−βF = ln
∑
K

exp[−βE] = ln Σ.

In the case of an ideal gas, the statistical sum Σ is
determined by the number of degrees of freedom in
the configuration space and, if the particles do not in-
teract, the configuration space is equal to the product
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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of the phase spaces of the separate particles. Finally,
the free energy reduces to an additive expression for
each kind of particle; specifically, for electrons, ions,
and radiation:

F = Fe + Fi + Frad.

The corresponding expressions for the pressure and
internal energy are also additive. The free energy re-
mains additive in the case of weak nonideality.

We should note here the role of the chemical po-
tential µ, which is seldom discussed in astrophysical
applications. It plays a substantial role in computa-
tions of the derivative of the internal energy if the
number of particles is variable. This problem remains
still poorly understood in astrophysical applications in
the case of nonstationary (irreversible) evolutionary
processes; for instance, in the presence of diffusion
or nuclear reactions. The best known application is
associated with the ionization-equilibrium equations.

The chemical potential is a conjugate variable to
the number of particles and is associated with the
grand canonical ensemble. This ensemble is formed
by systems with a given volume V and by the quan-
tities β and −βµ. The temperature and chemical po-
tential are taken to be constant, while the number of
particles of any sort (as well as the energy) can vary.

We obtain for the grand potential, from the condi-
tion for normalization of the probability

βPV = ln
∑
N

∑
K

exp β[Nµ− E(K)]

= ln Σ(V, β,−βµ).

The grand potential is a function of the system in
terms of V , T , and µ, and the remaining thermody-
namic functions are determined as

S = −
(
∂Π
∂T

)
V,µ

, p = −
(
∂Π
∂V

)
T,µ

,

Ni = −
(
∂Π
∂µi

)
V,T

.

This approach is employed in a physical picture for
the plasma. Applying an expression for the activity
za = eβµa/Λ3

a, we obtain an expression for the particle
density:

na = za

(
∂βp

∂za

)
.

The thermodynamic formalism of the grand potential
shows why an expansion of the pressure in degrees of
the activity is sufficient for a complete description of
the system.

Let us underline certain properties of the chemical
picture. Components for every sort of particle enter
every term of the potential additively, and, in the ideal
ASTRONOMY REPORTS Vol. 47 No. 8 2003
case, every term is independent of the densities of the
other components. The equilibrium state in terms of
the number of particles is found by minimizing the
free energy. The chemical picture has a logical basis
only for the case of constant internal statistical sums.
Variable statistical sums are self-contradictory, since
there are no terms corresponding to forces providing
this variability.

3. IONIZATION OF THE MATERIAL

Matter is ionized in three possible limits [1]. Two
correspond to ideal ionization: high temperature at
fixed density and low density at fixed temperature.

There is a third limit: ionization when the density
increases while the temperature remains constant.
This is commonly named “pressure ionization,” al-
though it would probably be more correct to call it
density ionization. This limit is fundamentally non-
ideal, since it corresponds to the action on (disruption
of) bound quantum states by the surrounding parti-
cles (see Section 4 for more detail).

The ionization of material in stars occurs along
adiabats in the convective zone. Along an adiabat,
the electron-degeneracy parameter ηe = ln(neΛ3

e/2)
varies only with the density, i.e., with the degree
of ionization. The equation of ionization equilibrium
(Saha equation) has the form µa −µa+ = µe = kTηe.
Considering the ratios of the densities of nuclei with
a given degree of ionization, we obtain an equa-
tion for the point where half of the matter is ionized

(na+/na = 1) in the form− ln
(
Σa
int/Σ

a+

int

)
= η + βI.

Thus, since it is natural to consider the statistical
sums to be constant in the chemical picture, the
position of the zone of ionization in the convective
zone is determined by the entropy of the adiabat.
Another expression for the same relation is µe ≈ I.
In other words, the lower the degree of degeneracy of
the star (the higher its mass), the lower the ionization
temperature (i.e., the larger the value of βI). For
the Sun, βIH � 10, but for helium, βIHe � 6 (since
helium is ionized against the background of hydrogen
ionization).

This parameter also determines the depth in
perturbations of thermodynamic quantities that have
sharp spikes resembling Dirac δ-functions, such as
the adiabatic exponent. The width of the ionization
zones varies in the opposite sense.

4. COULOMB INTERACTION OF FREE
CHARGES

The main nonideal effects are due to the Coulomb
attraction and repulsion of charged particles (elec-
trons and nuclei). To some extent, this interaction
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Fig. 2.Coulomb nonideality parameter x in several stellar
models. Notation is the same as in Fig. 1.

is already included in the chemical picture, in its
description of atoms and partially ionized ions. In
the physical picture, all particles are assumed to be
structureless; i.e., compound atoms are the result of
Coulomb interactions. In this sense, the description
in the physical picture is more self-consistent, al-
though much more labor-intensive, especially in the
case of a weakly ionized plasma.

It is common to start the description of the
Coulomb nonideality with the interaction of free
charges, i.e., with a fully ionized plasma. This ap-
proach can be traced to the seminal study of Debye
and Hückel [10]. The analysis of any nonideality
requires matching of the interaction potentials with
the thermodynamic parameters. In doing this, we
must necessarily go beyond the limits of a simple
thermodynamic model. This is obvious in the chem-
ical picture, where it is assumed that the EOS can
be based on any stable expression for the free energy.
However, for a given potential, we can suggest several
methods for the calculation of corrections to the
thermodynamic parameters, which, in general, do not
lead to the same results [1]. This raises the problem of
the statistical consistency of such a model.

The chemical picture is convenient when the de-
gree of nonideality is low and corrections represent
additional terms in the sum for the free energy. One
example is the short-range interaction potentials for
neutrals in rarefied media. However, the Coulomb po-
tential decreases so slowly that it is not even possible
to compute the energy of pair interactions. There-
fore, in place of the Coulomb potential, an effective
screened potential is introduced, which takes into
account the electric neutrality of the plasma on cer-
tain scales. Without going into the details of deriving
expressions for the screened potential in various ways
(which can be found in [11]), we present the well-
known result:

φ =
βe2

r
exp(−r/rD),

where the effective radius rD, with r−2
D =

4πβe2
∑

naZ
2
a , is called the Debye radius. The

screened potential is efficiently limited to the Debye
radius. It is important that this potential enables the
computation of the potential energy of any charged
particle in place of computing a large number of
pair-interaction energies. It is convenient to use a
dimensionless parameter describing the Coulomb
nonideality in the nondegenerate case in the form
x = l/rD, where l = βe2 is the Bjerum parame-
ter. (In the physical literature, another dimension-
less nonideality parameter is often used: Γ = l/d =
βe2(4πn/3)1/3 ∼ x2/3).

In the limit of a linear Debye approximation, the
correction to the specific free energy of each charged
particle α is

f0
es = βFes/(V Nα) = −x/3,

while the corrections to the pressure and internal
energy have the form

δp0
es = βPes/nα = −x/6,

u0
es = βUes/(V Nα) = −x/2.

Let us consider the behavior of corrections in the
solar model. Along an adiabat, the nonideality x ∼
(nα/T

3)1/2 will decrease in proportion to the square
root of the density. In accordance with the approx-
imate law given in Section 2, the nonideality will
increase in the radiative zone, but very slowly, approx-
imately as ρ1/14 (Fig. 2).

On the other hand, the nonideality is proportional
to the number of charged particles, i.e., the maxi-
mumnonideality is located just beneath the ionization
zone. The maximum value of x in the solar model
is 0.27.

In the linear approximation of a fully ionized
plasma and small x, these corrections lead to an
increase of the adiabatic exponent δesΓ1 � x/36. This
makes it possible to match the accuracy of Γ1 in
model profiles and the accuracy of x in various models
of the nonideality (see the end of this Section).

The discovery of the role of the Coulomb nonideal-
ity under the conditions of the solar interior was a fun-
damental contribution of helioseismology to stellar-
structure theory. Estimates of the Coulomb inter-
action had been known for a long time [12], but it
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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remained unclear whether they had any applications.
Their role seemed to be important for the center of the
Sun, although in this region x ≤ 0.06 and reduction
of the pressure is only about 1%. The thermodynamics
of the outer layers seemed to be not very important,
since these layers only weakly influence the structure
of the Sun as a whole. However, in the beginning of
the 1990s, it was shown that it is absolutely essential
to take Debye corrections into account in the EOS if
we wish to match theoretical and observed spectra of
oscillations [4, 13]. Although this assertion is related
to several different problems, we shall discuss the
simplest interpretation only.

The spectrum of low-degree solar-oscillation
modes (' ≤ 4) having high radial orders (n ≥ 10)
consists of nearly equidistant peaks. The distance
between peaks is related to the inverse time for sound
to propagate along the solar radius. The main origin
of mismatches between theoretical and observed
spectra was the lack of corrections for the Coulomb
interaction in the models; these corrections reduce
the sound speed in the outer layers, where their
contribution to the timescale for the propagation of
sound waves is most important.

Let us note one more problem related to the
Coulomb potential. The integral of the potential (for
opposite charges) also diverges at small distances.
This is due to quantum effects, since we are dealing
with a description of electron statistics close to a
nucleus or ion. However, in a rarefied medium, a free
electron appears within a small vicinity of an nucleus
fairly rarely, and the problem is not so obvious.

The solution was already suggested in [10], by
introducing a minimum distance of approach; i.e.,
the ions were treated like hard spheres. For a fixed
ion radius a, it is possible to obtain all neces-
sary corrections, e.g., uDH

es = u0
es(1 + (a/rD))−1

and δpDH
es = δp0

es(3(1 + a/rD)−1 − 2τ(a/rD)). The
function τ(z) = 3z−3(ln(1 + z) − z + z2/2) =
3z−3

∫ z
0 y2(1 + y)−1dy appears in these expressions.

However, the ions in a stellar plasma do not have a
natural radius. Therefore, the choice of such a radius
represents an attempt to extrapolate the solution
beyond the limit of small x. It was suggested in [16]
to adopt the Landau length, equal to 2l/3, for the
ion radius, and to retain the expression for the free
energy taking into account this substitution; i.e.,
setting f τ

es = f0
esτ(2x/3). This expression remains

quite consistent from the standpoint of the chemical
picture. (For more details on the introduction of the τ
correction, see [17]).

This form of correction is consistent with the Klein
theorem, which states that the corrections for a clas-
sical gas should be functions of x alone [18]. For small
degrees of nonideality, τ → 1 and f τ

es → f0
es; i.e., τ
ASTRONOMY REPORTS Vol. 47 No. 8 2003
is a correction to the linear approximation of Debye
and Hückel (the DH correction). However, when x
is large, one can argue that this form of correction
reduces the nonideality toomuch. Indeed, τ ∼ 1/x, so
that fes → const, and the correction to the pressure is
pτ

es → 0; i.e., the gas tends to become ideal!
The importance of the τ correction is related to its

use in the MHD EOS, which is currently the main
EOS used for the chemical picture. More accurately,
in the MHD EOS, these expressions are given for
the more general case of partial degeneracy of the
electrons, and the argument of the function τ has a
factor related to the average ion charge.

In the solar model with the maximum x, the value
of τ(0.3) ≈ 0.82; i.e., the DH correction is reduced by
nearly 20%. Thus, the τ correction represents a lower
limit for the electrostatic correction.

Note that, if the correction to the free energy is
expressed as the product f0ζ(z), where the argument
z is known, it is possible to derive expressions for
all the thermodynamic functions starting from the
correction to any one of them. Thus, for instance,
more accurate forms of the Coulomb-interaction cor-
rections are often given in terms of the corrections
to the pressure p0ζ(x), since this is more natural
in the physical picture (examples are given below).
The corresponding corrections to the free energy then
have the form f0

(
x−1

∫
ζ(x1)dx1

)
. Therefore, we do

not present all the corresponding expressions.
In attempts to derive more narrow limits for pos-

sible errors in the DH correction, it is possible to
consider models with other asymptotic behaviors. In
a ring approximation for the expansion in the grand
canonical ensemble [19], a solution was found that
predicts the computed DH correction using the mod-
ified parameter x̄, which is a solution of the equation

x̄2 = 4π(βe2)3
∑

α

Z2
αnα

1 + Z2
αx̄/2

.

If we assume that the charges are equal to unity,
this equation becomes cubic: x̄2(1 + x̄/2) = x2. It
can be solved analytically, but even without solving
the equation, it is clear that the modified parameter
is always smaller than the classical one, x̄ ≤ x, and,
for high degrees of nonideality, x̄ ∼ x2/3 + c. In this
approximation, the pressure correction has an upper
limit in the form of a fraction of the ideal pressure.
Under solar conditions, the minimum of the ratio
x̄/x is no lower than 0.93; i.e., the predicted DH
correction will be larger than in the case of the τ
correction. However, even in this case, the asymptotic
behavior of the correction is underestimated. Based
on a quasicrystal model, it is usual to assume that the
asymptotics must have order f cr

es ∼ x2/3 [1]. In none
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of these cases does the problem of a negative total
pressure arise, when the correction for the electro-
static interaction is greater than the ideal component.

If we do not attempt to describe the whole region
of nonideality and densities that are very high, we can
derive estimates for corrections that are valid only for
the case of small nonideal effects but nevertheless,
encompass the conditions in the solar interior. In a
model with a continuous electron background, two
terms of the expansion in x were already obtained in
[20]:

pAbe
es = p0

es (1 + x(C − 2/3 + ln(3x)/2)) .

Comparing this correction with those indicated above,
we see that it predicts an even lower reduction of
the correction for the solar interior than does the
linear DH term: no more than 0.03. The next two
terms of the expansion in x are also known [15], but
their contribution does not exceed several tenths of a
percent. Note the difference between the asymptotic
models discussed above and the expansions in x.
The latter are strictly limited to certain regions of
application, outside of which they lead to nonphys-
ical results. Furthermore, in a given model (e.g., a
classical plasma in a static potential) we must not
use too many terms, since such “more accurate
approximation” does not make the physics of the
model more meaningful unless other physical effects
are taken into account.

The model can be made more accurate by taking
quantum effects into account. We can consider quan-
tum effects to be a manifestation of the uncertainty
principle [14], so that we expect a “repulsion” of
charges at small distances. There are also a number
of other corrections related to quantum, diffrac-
tion, and exchange effects. A rigorous estimation
of these effects is still lacking, and there is the
danger of of taking into account the same interac-
tions more than once during a simple summation of
various corrections. A model that makes it possible
to qualitatively take into account corrections due to
quantum-mechanical effects is suggested in [15].
The expression for the free energy has the form
fΛ

es = f0
esτ(Λe/8rD); i.e., the charges are not brought

together closer than the thermal wavelength Λe. This
correction can easily be estimated qualitatively, if we
take into account the substitution of argument τ
by

√
2πx/8ξ, where the quantum parameter ξ =√

2πβe2/Λe depends only on the temperature. As a
result, the role of the τ correction will level out at low
temperatures, since ξ ≥ 1. Thus, in the region of the
convective zone of interest to us, differences from the
linear DH correction will be completely absent. Only
when T > 3 × 106 К will the coefficient of x become
larger than unity, and it attains about two for the
solar core. Thus, uncertainty in quantum effects may
reduce the Debye correction at the center of the Sun
to 10%.

Note that most theoretical results are obtained in
models with a single-component plasma, and must
be generalized for the case of a multicomponent
mixture of charges. As an example, in the numerical
modeling of a strongly nonideal plasma [14], the
form (〈Z5/3〉〈Z1/3〉)1/2 was obtained for the average
charge.

Interactions between the charges lead to displace-
ments of the ionization equilibrium. Attraction leads
to the formation of quasistates and reduces the elec-
tron potential. As a result, ionization becomes easier,
sometimes described as a lowering of the ionization
potential. Note that this effect has no relationship to
the interaction of free and bound electrons described
in the next section and cannot be used to describe
pressure ionization.

The results of this section can be summarized
as follows. The classical, linear Debye-Hückel cor-
rection is quite adequate for the conditions of weak
nonideality that are typical for solar-mass stars. The
possible reduction of this correction appears to be
best described by the formula of Abe [20]. The reduced
correction is only 0.957 in the region of maximum
nonideality. The probable accuracy of this value (in
units of x, i.e., accuracy of the correction itself) is sev-
eral percent. The described correction for the electro-
static interaction is close to the corresponding terms
in the OPAL EOS based on a physical picture.

5. INTERACTION OF BOUND AND FREE
CHARGES

The next most important manifestation of the
Coulomb nonideality is related to the interaction of
free and bound electrons. This interaction leads to
ionization as the density is increased and is called
pressure ionization.

The problems with including this effect in the
EOS are not associated with its influence on vari-
ous thermodynamic quantities. As we show below,
the thermodynamic corrections are not large, and the
main effect is to prevent the recombination of elec-
trons at high densities that would be predicted by the
classical Saha equation. The problems are related to
the methodological basis of chemical pictures. In a
chemical picture, it is assumed that there exist fixed
states of particles (a spectrum) and some probability
for their distribution over various states. The inclusion
of pressure ionization requires that we reject these
assumptions.

Two classes of models are used to describe pres-
sure ionization. We shall attempt to separate them
based on their thermodynamic manifestations. On the
one hand, we assume that the energy spectrum of
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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bound states varies. It is simplest to assume that
certain states disappear when some density or tem-
perature is achieved (the radius of the state is larger
than the average distance between ions, or βEs < 1,
respectively). In more elaborate models, not only the
number of states but also the energy spectrum itself
is variable, for instance, as a result of changing the
eigensolutions for the Coulomb potential in an exter-
nal screened potential. In any case, the disappearance
of the ground state of an atom leads to full ioniza-
tion of the material, called the Mott transition [15].
It is thought that this transition occurs in hydrogen
plasma at densities of 0.5–1.0 g/cm3.

It is clear that the disappearance of states is the re-
sult of quantum-mechanical modeling, and cannot be
the result of lowering the ionization potential. Since
both the temperature and density growmonotonically
with depth, the desired full ionization will be achieved
in any model with a limited number of states.

However, such simple pressure-ionization mod-
els have serious problems during the computation of
thermodynamic parameters. The statistical sum over
the internal states of the atom is

Σint =
N∑

i=1

siwi exp(−βEi).

For an infinite number of statesN (an isolated atom),
the sum diverges for any temperature, since si ∼ i2

(we assume for now that the weight coefficients
wi = 1). The formal divergence of this statistical sum
points to the existence of the pressure-ionization
problem but does not provide a means for its solution.
The main problem is related to the fact that, if we
assume some N(β, ρ), the statistical sum becomes
a discontinuous function and cannot be used to
compute the thermodynamic corrections. This is a
result of the absence of information on the amplitudes
of the corresponding corrections: the amplitude of
the corrections depends on the assumed width of the
transition.

Another approach is used in the MHD EOS. In
this case, the statistics of the distribution over states
is changed instead of the structure of the spectrum.
Additional weights wi(β,Ei) are introduced, which
decrease sufficiently rapidly with the state number i
and the density to ensure both the convergence of
the sum and its convergence to zero with increasing
density. Naturally, the choice of weights is based on
the independent modeling of the interaction. One of
the difficulties of such models is the impossibility of
isolating the key parameters describing the transition.

Finally, in a physical picture, it is usual to apply
a specific expression for the statistical sum called a
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 3.Comparison of adiabatic exponentΓ1 in theMHD
EOS (thin solid and dashed curves) and the OPAL EOS
(thick solid curve). The MHD EOS was computed for
the same heavy-element abundance adopted in theOPAL
EOS. The dashed curve corresponds to the MHD EOS
without the τ correction.

Planck–Larkin partition function [21]:

ΣPL
int =

∞∑
i=1

si [exp(−βEi) − 1 + βEi].

Although the formal usage of such an expression in
the chemical picture is considered to be an unjus-
tified extrapolation (the expression itself is obtained
by summing the series in the quantum-mechanical
expansion in physical picture), it is clear that theMott
transition can be expected to occur at a temperature
on the order of the ionization potential; i.e., at βI � 1
(for hydrogen, this is about 1.6 × 105 К). It is impor-
tant that the partition function does not depend on the
density.

Thus, two conditional limits constrain the pressure-
ionization models: a transition to complete ionization
that depends on the density and a transition that
depends only on the temperature. The position of
the transition region inside the star is somewhat
different for the two limits. In the Sun, the transition
due to the temperature occurs earlier (in the outer
parts of the convective zone) than the transition due
to the density. The distance between the transitions
grows with the stellar mass; i.e., the critical density is
attained at higher temperatures.

The main thermodynamic effect of pressure ion-
ization is to increase the degree of ionization. This
increase may occur at any density, since the sta-
tistical sum includes all states. However, the main
transition to full ionization occurs at temperatures
of the order of βI � 1 or higher, when the matter



692 BATURIN, DÄPPEN
is already strongly ionized. Therefore, the thermody-
namic corrections are relatively small. For instance,
for the Sun, the degree of ionization in the hydrogen
convective zone approaches 98%, yet the expected
effect is proportional to the fraction of neutral atoms
remaining. In higher-mass stars, the effect is even
weaker, since the degree of ionization is higher for the
same temperature. At low temperatures, in ionization
zones, the phenomenon of a “freezing” of inner states
is observed. This is related to the fact that, for large βI
(low temperatures), there exists a considerable range
of limiting valuesN ∼ 5–20, within which the choice
of N does not influence the resulting Σint at al (due
to the small exponential coefficient). Thus, the effect
is relatively small and the process of ionization in the
chemical picture can be described relatively precisely.

However, there also exists an indirect manifes-
tation of pressure ionization. The variability of the
statistical sum implies variations of the chemical
potential. As a result, corrections to the pressure and
other quantities appear in the EOS. These correc-
tions can be computed in the chemical picture, and
are proportional to the derivatives of the statistical
sum: βδpZ ∼ −ns

(
∂ logZs

int/∂ log ρ
)

and βuZ ∼
ns

(
∂ logZs

int/∂ log T
)
. The pressure correction is al-

ways nonnegative (the effective forces are repulsive).
In a model with a statistical sum ΣPL

int that depends
on the temperature alone, only corrections to the
internal energy exist, and, in a linear approximation,
the variation of the adiabatic exponent is positive.
A preliminary analysis shows that, in the same
approximation, the statistical sum of a restricted atom
(the transition due to density) should lead to negative
corrections to Γ1. The conditional character of this
last statement is due to the fact that the resultant sign
of the variation of Γ1 depends on several additional
assumptions: the precise form of Σint, the variation
of Γ1 as a result of variations of the statistical sum
itself, and the indirect correction to the chemical
potential. We can make the general statement that
the variation of the adiabatic exponent enables us to
discriminate between the models for the transition
to full ionization. Moreover, a method close to the
Planck–Larkin function is realized in the OPAL
EOS. A comparison of Γ1 in the MHD and OPAL
EOSs reveals some excess adiabatic exponent in the
deep part of convection zone (Fig. 3). This excess
adiabatic compressibility can be considered as an
incentive to bring the solar model into agreement with
the results of helioseismic inversion [8].

6. CONCLUSIONS

Let us briefly summarize the picture described
above (specific conclusions on the thermodynamic
models were given at the end of the corresponding
sections). In stars with weak degeneracy, ionization
occurs at low temperatures. This means that the ion-
ization zone and the region where the temperature
is of the order of the hydrogen ionization potential
are separated (in dense stars, the gap between them
may disappear, and the situation becomes muchmore
complicated).

The maximum Debye nonideality occurs just be-
yond the ionization zone, in a low-temperature re-
gion. The thermodynamic model profile through the
ionization zone lies steeper than the level of con-
stant nonideality. Therefore, the nonideality decreases
with decreasing degeneracy parameter. The thermo-
dynamic effect of the pressure ionization shows up in
the region of high temperatures, where the material is
already strongly ionized and the fraction of nonionized
atoms is small. Thus, its direct manifestations in the
EOS are not large, and they should decrease for more
massive stars.

The regions of temperature and pressure ioniza-
tion are critical for both the chemical and physi-
cal pictures. The chemical picture has difficulties in
describing the pressure ionization but is accurate
enough for the region of lower temperatures. The
physical picture appears to be quite accurate at high
temperatures, right up to the ionization zones. Thus,
the most important problem is the matching of the
two models in this intermediate region.
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Abstract—We present the results of numerical simulations of the development of a current sheet in the
solar corona over a bipolar region during the emergence of two new sunspots arranged collinearly with
older spots. Two fronts of increased plasma density form at the boundary of the rising new magnetic flux.
One of these is due to the generation of a current sheet, whose magnetic field accumulates energy for
a flare. The other front is a branch of the density perturbation, and separates the old and new magnetic
fluxes in a region where the magnetic field lines have the same direction on both sides of the boundary. The
development of this perturbation is not associated with the energy accumulation in the corona, and hinders
observation of the preflare state and complicates analysis of the results. This second front can be interpreted
as the eruption of a filament before the onset of the flare. A scheme conservative with respect to magnetic
flux was introduced in the Peresvet code that solves the MHD equations, in order to suppress numerical
instabilities in regions of large magnetic-field gradients. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Bipolar regions are rather widespread features
consisting of two sunspots of opposite polarities,
which move over the solar disk from the eastern
to the western limb. The two spots are called the
preceding, or leading, spot and the following spot.
Leading spots in the northern and southern hemi-
spheres normally have opposite polarities (see, e.g.,
[1]). These regularities in the appearance of bipolar
regions are among the principal arguments for the
existence of an azimuthal magnetic field of the Sun,
which periodically alternates with the dipolar field
because of the differential rotation of the Sun [2]. The
appearance of a bipolar region is interpreted as the
emergence of a small segment of a magnetic flux tube
of azimuthal field, while the spots are sites where the
tube issues from or returns below the photosphere.

As two new sunspots (i.e., a new magnetic arch)
nearly aligned with the older spots appear in a bipolar
region, the oppositely directed magnetic field lines
of the old and new fluxes can reconnect, forming a
current sheet. The energy stored in the current sheet
can be released during a flare. The field configuration
necessary for the development of a current sheet can
arise if the polarities of the four sunspots alternate. A
flare of this type was first observed by Dere [3], and
we have performed numerical MHD simulations of
the development of a current sheet during such an
event [4]. Simulation of the slow growth of the mag-
netic field of the new spots requires time-consuming
1063-7729/03/4708-0694$24.00 c©
computations to reproduce the large magnetic-field
gradients at the photospheric boundary. Large gra-
dients lead to numerical instabilities due to the fact
that the finite-difference analog of divB is not exactly
equal to zero. The resulting parasitic current distorts
the plasma flow and prevents accurate reproduction of
the physical pattern of the flare-energy accumulation.
Although the first simulations of [4] were relatively
imperfect, we were able to convincingly demonstrate
the formation of a current sheet resulting from the
emergence of new flux, with an accumulation of flare
energy over an active region.

Here, we attempt to numerically reproduce the
overall pattern of the plasma dynamics during the
formation of a current sheet. To suppress numerical
instabilities at the photospheric boundary, we use a
modified version of the Peresvet code based on a
scheme conservative with respect to magnetic flux.
The growth time of the emerging flux is increased
by an order of magnitude. The use of new comput-
ing facilities enabled us to employ a 241 × 241 grid
instead of the 41 × 41 grid used in previous studies.
All these improvements enable detailed studies of the
changes in the field configuration accompanying the
emergence of new sunspots and make it possible to
trace the formation and evolution of the current sheet
until the sheet thickness becomes comparable to the
spatial-integration step. Together with the formation
of a current sheet, strong coronal disturbances un-
related to the flare-energy accumulation develop over
the active region.
2003 MAIK “Nauka/Interperiodica”
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2. THE NUMERICAL SIMULATIONS

We employed a new version of the Peresvet code
that solves the full set of MHD equations [5]. All dis-
sipative processes, the compressibility of the plasma,
and the anisotropy of the plasma’s thermal conduc-
tivity in a magnetic field were taken into account. An
implicit scheme ensuring highly stability of the com-
putations was used. We developed a finite-difference
scheme conservative with respect to magnetic flux
to suppress numerical instabilities in regions of large
magnetic-field gradients at the photospheric bound-
ary. We used the averaged magnetic fluxes through
the faces of the computational-grid cells per unit area
as the magnetic-field values. The current density at
the cell edges was determined by computing a finite-
difference analog of the curl of the magnetic field
from the field values at the faces adjacent to a given
edge. The velocity components, plasma density, and
temperature were determined at the grid points, or
cell corners. The magnetic field and electric-current
density in the equations of motion and energy transfer
were determined at the grid points by interpolating
their values at the cell faces and edges. The veloc-
ity components normal to an edge, which appear in
the cross product of the velocity and the magnetic
field, were determined by interpolating over the grid
points at the ends of the edge. The magnetic-field
component that is multiplied by the velocity compo-
nent orthogonal to it was taken at the edge of the
adjacent cell, at the side opposite to the direction of
this velocity component. The finite-difference analog
of the curl of the electric field, which forms the right-
hand side of the magnetic-field equation, was calcu-
lated at the face corresponding to the givenmagnetic-
field component, using the electric-field values at the
edges adjacent to this face.

The magnetic flux through the boundary of each
cell remains zero as a time step is made, since any
edge adjoins two faces of the given cell. The electric
fields subject to the curl operator in the right-hand
side of the equation cancel when the magnetic fluxes
are summed over the faces of the given cell. This
summation determines the magnetic flux through the
cell boundary. The vanishing magnetic flux through
the boundary means that the finite-difference analog
of the divergence is zero.

The basic principles of simulating coronal MHD
processes are presented in [5, 6]. A detailed descrip-
tion of the system of equations that are solved and the
corresponding boundary conditions are given in [7].

All the computation results are represented in di-
mensionless units and are valid for any plasma pa-
rameters in the region over the active region. We
chose the size of the computational domain L0 to
be the unit length. This scale corresponds to the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
typical size of an active region, i.e., L0 ∼ 1010 cm.
Thus, the computations were carried out for the do-
main 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. The mean photospheric
magnetic field B0 in the active region is used as the
unit of the magnetic field. The units of the plasma
density, ρ0, and temperature, T0, are their values in
the solar corona, which we took to be constant in
space at the initial time. As the units of the veloc-
ity, time, plasma density, current density, and dipole
magnetic moment, we used the Alfvén speed V0 =
VA = B0/

√
4πρ0, t0 = L0/V0, the coronal density ρ0,

j0 = cB0/(4πL0), and M0 = B0L
3
0. For a magnetic

flux in the bipolar region of 1022 Mx, an average
magnetic field of B0 ∼ 100 G and a density of the
hydrogen plasma over this region of ∼108 cm−3, the
Alfvén speed is VA ∼ 2 × 109 cm/s and the time unit
is∼10 s. The speed of sound is CS = VA(βγ/2)1/2 ∼
7 × 107 cm/s. The main results were obtained with a
241 × 241 grid.

The field of the bipolar region was specified in
the form of two vertical dipoles of opposite polarities
placed under the photosphere. The following nondi-
mensional parameters were chosen for the main com-
putational runs: magnetic Reynolds number Rem =
104, normal Reynolds number Re = 104, gas-to-
magnetic pressure ratio β = 10−4, Peclet number
Π = 100, and Peclet number for thermal conduction
across the magnetic field ΠB = 108. As the moment
of the two new dipoles was increased, a current sheet
developed, and solar-flare energy was accumulated in
its magnetic field.

3. CURRENT-SHEET FORMATION

Figure 1a shows the magnetic field of a bipolar
region approximated by two vertical magnetic dipoles
placed under the photosphere. Their magnitudes and
positions are as follows: µ1 = 0.25, X1 = 0.1, Y1 =
−0.5, and µ2 = −0.25, X2 = 0.45, Y2 = −0.5. At t =
0, the magnetic moments of two other dipoles, µ3 and
µ4, begin increasing linearly; they are located at the
points X3 = 0.78, Y3 = −0.2 and X4 = 0.85, Y4 =
−0.2. By tcease = 50 (which corresponds to about
10 min), their magnitudes reach +0.2 and −0.2, re-
spectively. At t > 50, the magnetic moments of all
the dipoles are kept constant. Simultaneous with the
appearance of a magnetic arch between the dipoles
µ3 and µ4, a current sheet begins to form at the
interface between the oppositely directed field. The
current sheet separates the coronal plasma expelled
by the growing magnetic flux and the fresh plasma
ascending from the chromosphere together with the
frozen-in magnetic field. By t ∼ 10, the current sheet
can clearly be distinguished in the magnetic configu-
ration. The magnetic-field lines at t = 11 are shown
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in Fig. 1b. The region of formation of the current
sheet is outlined by the dashed square. Below, we
represent all events on the scale of this square. The
current-density distribution in the sheet is illustrated
in Fig. 1c, and Fig. 1d shows the temperature distri-
bution. The increase in temperature is due to Ohmic
heating in the current sheet.

The distribution of plasma density is fairly complex
(Fig. 1e). In addition to the increased plasma density
in the current sheet, there is a flat, higher peak to
the right of the current sheet, as follows from the
balance of the magnetic and plasma pressures. The
structure of the plasma-density distribution is more
clearly visible in Fig. 1f, which shows contours of the
plasma density. The plasma-density increase in the
current sheet can clearly be seen. There are extended
regions of reduced density (min) on both sides of the
layer. These are a characteristic feature of current-
sheet formation, since the flow of plasma into the
sheet produces regions of reduced plasma density,
and the ambient plasma has no time to fill these re-
gions. The flow pattern is quite evident from Figs. 2a
and 2b. The plasma flows into the sheet through both
sheet boundaries. The velocity component normal to
the sheet increases as the plasma approaches the
sheet boundaries, leaving behind regions of reduced
density. This acceleration of the flow as it approaches
the sheet and the thinning of the sheet with time are
manifestations of the pinch effect. As this takes place,
the length of the sheet continuously increases, as does
the energy stored in the magnetic field.

A broad maximum in which the direction of the
field does not vary is located to the right of the current
sheet. The field strength is nearly the same on both
sides of the maximum, and the current is vanish-
ingly small in this region. No magnetic energy is
accumulated there. Like the current sheet, this dif-
fuse plasma-density peak separates the old coronal
plasma and the fresh plasma that ascends together
with the emerging field lines. The rate of the displace-
ment of the maximum is about 0.02, or∼0.5CS .

Thus, the interface between the old and fresh
plasmas has two branches. The left branch, which
separates fields with opposite directions, is the cur-
rent sheet. This current sheet, like all current sheets
that are formed in nature or in the laboratory, is not
neutral. The plasma is accelerated by the magnetic
tension, mainly in the upward direction. Downward
acceleration is less efficient, since downward-moving
reconnected field lines produce a new magnetic arch
with a high plasma density below the current sheet,
and this arched field subsequently decelerates the
moving plasma. Plasma streams directed downward
from a region of reconnection were observed by
McKenzie and Hudson [8]. The high plasma density
in the region of arched field lines below the current
sheet can be seen in Fig. 2f. This process of concen-
trating arched field lines with high plasma densities
below the sheet forms the outer part of the postflare
loop below the vertical current sheet [9].

The evolution of the current sheet is illustrated in
Fig. 2. As it accumulates magnetic energy, the cur-
rent sheet becomes progressively longer and thinner.
It turns, approaching the vertical direction. By t ∼
30, its thickness becomes comparable to the spatial
integration step. In contrast to the rapidly moving
right branch, the current sheet remains almost sta-
tionary. Its further development is largely determined
by numerical rather than physical effects.

4. PROPAGATION OF THE FRONT
OF ENHANCED DENSITY

We studied the propagation of the front of en-
hanced density (which is not directly related to the
formation of the current sheet) for conditions under
which the current sheet cannot form. We considered
the emergence of two spots in a region where no
spots were originally present. We specified the con-
ditions µ1 = µ2 = 0, while the growth of the dipoles
µ3 and µ4 followed the same law as in the preceding
computational run.

In this case, the front of enhanced density prop-
agates upward with a speed exceeding the speed of
sound by almost a factor of 1.5 (V ∼ 108 cm/s),
producing a shock wave. Recall that, when this front
traveled in the strong magnetic field of a bipolar
region, its speed was half the sound speed. The
front separates the coronal plasma, in which B = 0,
from the plasma coupled with the frozen-in emerging
magnetic flux. The velocity field of the expanding
plasma is shown in Figs. 3a and 3b together with
density contours and magnetic-field lines. The den-
sity distribution is symmetric in this case (Fig. 3c).
The density of the expanding plasma decreases
slowly with distance from the Sun (Fig. 3d) and
increases sharply at the front. The plasma-velocity
front coincides with the plasma-compression front
due to interaction with the coronal plasma. It also
coincides with the boundary of the region occupied by
the magnetic field, in which curlB �= 0. The current-
density maximum also coincides with the density
maximum, which develops due to the deceleration
of the plasma expanding together with the magnetic
field as this plasma interacts with the coronal plasma,
in which B = 0. The absence of a magnetic field in
the coronal plasma reduces the pressure P + B2/8π,
which decelerates the ascending front, and the front
travels more rapidly in this case than in the preceding
run (Fig. 1). As the plasma expands, its velocity
increases (Fig. 1d) and reaches its maximum at the
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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front, after which it falls abruptly at the boundary with
the unperturbed corona.

The plasma-compression front leaves the active
region at a high velocity, while the current sheet re-
mains virtually stationary during the preflare phase,
only slowly changing its inclination to the solar sur-
face. This highly dynamic behavior of the compres-
ASTRONOMY REPORTS Vol. 47 No. 8 2003
sion front can produce the illusion that this front plays
a leading role in the initial stage of the flare.

5. CONCLUSIONS

The slowly increasing magnetic field of two new
spots in a bipolar region expels the coronal plasma
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together with the frozen-in magnetic field lines. Si-
multaneously, the cavity is filled with ascending chro-
mospheric plasma carrying fresh magnetic flux. In the
numerical simulations, the chromospheric-plasma
density was kept constant, and the vertical temper-
ature gradient was neglected. A front of enhanced
density arises at the interface between the fresh and
old (coronal) plasmas. This front consists of a left
and a right branch. The slowly evolving left branch
is a classic current sheet with a normal magnetic-
field component, i.e., a layer of increased density and
temperature separating oppositely directed magnetic
fields. The plasma flows into this layer through its
side boundaries and is accelerated along the layer
by the magnetic tension. The magnetic field of the
layer accumulates a magnetic energy

∫
(B2/8π)dv,

which can be released during the breakdown of the
current sheet, giving rise to a flare. The upward ac-
celeration of plasma along the sheet by the magnetic
tension should lead to its ejection into interplanetary
space during the flare. The downward acceleration of
plasma results in the formation of a postflare loop.

Energy is accumulated in the field of the current
sheet because of the high stability of the sheet when
it is forming. The sheet is stabilized by the plasma
flow along the sheet due to the j × B/c force, pro-
vided a normal component of the magnetic field is
present. This quasisteady flow should be maintained
until the transition to an unstable state takes place
due to the decrease in the plasma density near the
sheet. The regions of density decrease are shown in
Fig. 1f. The transition to the unstable state results
from the mass loss by the sheet as the plasma is
expelled by the magnetic tension, and the mass loss
is no longer balanced by the inflow of plasma through
the side boundaries of the sheet. The formation of
the current sheet is possible only because it is not
neutral. Numerous theoretical studies appearing after
1963 have suggested that the instability of a neutral
current sheet grows rapidly; therefore, a neutral sheet
can only develop (if this is possible at all) on a time
scale shorter than the time for the development of
the instability. Thus, a neutral current sheet cannot
be a reservoir for a slow preflare accumulation of
energy that is then rapidly released during a flare. For
this reason, a neutral current sheet cannot exist in a
steady or quasisteady state. Indeed, all current sheets
observed in nature or simulated numerically possess
a normal magnetic-field component.

The right branch of the front of enhanced density
moves upward fairly rapidly as the region occupied
by the freshly emerging magnetic flux expands. This
branch is not related to the accumulation of magnetic
energy that could be released during a flare, since
the magnetic fields on either side of this branch have
the same direction and are nearly equal. The current
density j = (c/4π)curlB is negligibly small here. The
profile of the right-branch density front is determined
by the deceleration of the plasma expanding together
with the emerging field as this plasma interacts with
the coronal plasma. Electrodynamic forces do not
seem to be the determining ones here. According to
our computations, the ejection of such a front of in-
creased density is also possible in the absence of spots
in the region considered. In such cases, the current
at the front (Fig. 3d) produces a j × B/c force that
accelerates the expanding plasma, in addition to the
acceleration produced by the pressure gradient. As a
result, the front propagation becomes supersonic.

Observationally, the appearance of the right branch
of the density-increase profile can mask the main
phenomena related to the formation of the current
sheet and the accumulation of flare energy. This is
especially important in the earliest stages, when the
left branch of the front is still near the chromosphere.
The two branches of the front can be misinterpreted
as loops whose interaction gives rise to a flare [10].
The propagation of the right branch of the front can
also be considered a possible preflare ejection of a
filament.
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Original Russian Text Copyright c© 2003 by Zăıtsev, Shaposhnikov, Rucker.
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Abstract—A mechanism for the acceleration of electrons in the ionosphere of Io due to the moon’s motion
through the Jovian magnetic field and the presence of Io’s ionosphere is considered. Attention is drawn
to the important role of the anisotropic conductivity of the ionosphere, which results in the formation of
a longitudinal (with respect to the planetary magnetic field) component of the charge-separation electric
field. Owing to this anisotropy, the electric field induced by the motion of Io, Ei, produces in Io’s ionosphere
not only a Pedersen electrical current along Ei but also a Hall current that is approximately perpendicular
to the moon’s surface in the “upstream” and “downstream” parts of the ionosphere. However, this current
cannot be closed through the surface, leading to the formation of a powerful charge-separation field in
Io’s ionosphere. This field has a component parallel to the magnetic field, with an amplitude comparable
to that of the induced electric field. Electron runaway along the magnetic field is also considered, and the
occurrence of “active longitudes” and preferred locations for the sources of decametric radio emission in
the northern hemisphere of Jupiter are interpreted. The characteristic energies and fluxes of the accelerated
electrons injected into Io’s flux tube are estimated. The energy of these electron fluxes is sufficient to produce
the electromagnetic radiation observed from Io’smagnetic tube. c© 2003MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electromagnetic interactions between Io, the large
moon that is closest to Jupiter, and the Jovian
magnetosphere substantially affects processes in the
ionosphere and lower magnetosphere of the planet.
The first (and, for a long time, the only) observa-
tional evidence for this interaction was a correlation
between the occurrence of Jovian decameter radio
emission and the position of Io, discovered in 1964
by Bigg [1]. This correlation points to an electron-
acceleration mechanism associated with Io. Further
observational evidence for an electrodynamic inter-
action between Io and the Jovian magnetosphere is
the appreciable increase in the fluxes of energetic
electrons with energies � 100 keV and of ions with
energies ∼100 eV in the L shells of Io, discovered by
the Pioneer and Voyager spacecraft [2–5]. Recent
observations by Galileo in the vicinity of Io have
provided new confirmation of the presence of strong
electrodynamic interactions of Io with the planetary
magnetosphere [6–10]. Magnetometer measure-
ments have revealed a decrease in the magnetic-field
intensity in the tail of Io by almost 40%. In addition,
passing over the surface of Io at an altitude of about
900 km,Galileo detected beams of fast electrons with
energies exceeding 15 keV near the satellite’s poles,
moving along magnetic-field lines passing through

*E-mail: sh130@appl.sci-nnov.ru
1063-7729/03/4708-0701$24.00 c©
Io. These beams propagate in both directions along
the magnetic field and have approximately equal
intensities. On the other hand, Galileo did not detect
fast electrons with energies over 150–200 keV. This
may provide evidence that only some fraction of the
induced electric potential ∼500 kV [11] applied to
Io is manifest in the form of accelerated electrons
moving along the magnetic field.

The acceleration of charged particles in the Jupi-
ter–Io system has been studied in many papers. For
example, the electrical circuit composed of Io, a mag-
netic tube, and the Jovian ionosphere was analyzed
in [12–14] assuming a steady-state current. The aim
was to determine the region in which there is a suf-
ficiently large component of the electric field along
the magnetic field to imply a substantial potential
difference. It has usually been assumed that this takes
place in double plasma layers localized either near
Io’s surface [12, 13] or in the magnetic tube, near
the surface of Jupiter [14]. However, the existence of
such double plasma layers does not follow directly
from the analysis of the electric circuit and is only
postulated. As is noted in [15], the Alfvén velocity
decreases sharply when Io crosses the plasma torus,
so that Alfvén waves generated by Io and carrying a
longitudinal electric current cannot close the electric
circuit composed of Io, the magnetic tube, and the
Jovian ionosphere. In this case, the electrons are
assumed to be accelerated by interaction with the
2003 MAIK “Nauka/Interperiodica”
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Alfvén waves (similar to Fermi acceleration). How-
ever, this acceleration depends on the availability of a
sufficiently large number of fast particles, which can
be synchronous with the Alfvén waves propagating
from Io. Another mechanism for the formation of the
longitudinal electric field due to ionization processes
in Io’s ionosphere was considered in [16], but this
mechanism can accelerate electrons only to a few
eV and, therefore, can only facilitate the injection of
particles into the main acceleration regime.

Therefore, the acceleration mechanism resulting
in the formation of well-collimated electron beams
moving in opposite directions along the magnetic-
field lines intersecting Io remains unclear.

In the present paper, we will pay special attention
to the important role of anisotropic conductivity in
the formation of the longitudinal electric-field compo-
nent in Io’s ionosphere. If the magnetic field is taken
into consideration, the conductivity of Io’s plasma
envelope is a three-component tensor, which depends
substantially on the density of neutral particles in the
ionosphere. Owing to the anisotropic conductivity,
the induced electric field in a coordinate system co-
moving with Io,

Ei =
1
c
V × B, (1)

not only generates in the ionosphere Pedersen cur-
rents directed along Ei but also tends to produce a
Hall current orthogonal to Io’s surface. The quan-
tity V in (1) is the velocity of Io with respect to
the corotating magnetospheric plasma of Jupiter, B
is the magnetic field near Io, and c is the speed of
light. However, the Hall current cannot be closed
through the moon’s surface. The resulting charge
separation generates a powerful electric field, which
has a component along the direction of the magnetic
field. The amplitude of this electric field depends on
the density of neutrals in Io’s ionosphere and, under
favorable conditions, could be comparable to the in-
duced field Ei.

The electric fields and currents in a layer of par-
tially ionized plasma moving with constant velocity
V through the magnetic field of Jupiter (modeling
separate parts of Io’s ionosphere) will be calculated
in Section 2. The acceleration of electrons in this
layer by the longitudinal component of the charge-
separation electric field will be considered in Sec-
tion 3, taking into account the runaway of electrons
and probable collective effects, such as the Buneman
and ion-acoustic instabilities. Finally, we present an
interpretation of the “active longitudes” in the radio
emission of Jupiter in Section 4.
2. THE ELECTRIC FIELD IN A LAYER
OF PARTIALLY IONIZED PLASMA MOVING

THROUGH A GIVEN MAGNETIC FIELD

According toGalileo data [6], the ionosphere of Io
is at rest with respect to the moon, so that an electric
field Ei given by (1) is induced in the ionosphere by
the motion of Io through the magnetic field. In ad-
dition, a charge-separation electric field Es is gener-
ated in the upstream and downstream regions near Io
due to the ionosphere’s motion through the magnetic
field of Jupiter and the unequal magnetization of the
electrons and ions. The corresponding field system is
shown schematically in Fig. 1.

Our aim in this section is to estimate the charge-
separation electric field generated by the motion of Io
through the magnetic field of Jupiter. Let some part
of Io’s ionosphere be described as a two-dimensional
layer of partially ionized plasma with thickness L �
RIo moving with respect to the external magnetic
field B0. This is a reasonable approximation, since
the characteristic thickness of the plasma envelope
surrounding Io is about an order of magnitude smaller
than Io’s radius. Let us adopt a coordinate system
whose x axis is in the plane of the vectors V and
B0 and is directed at an angle α to the velocity V
(i.e., perpendicular to the layer boundary), and whose
y axis is orthogonal to V and B0 (Fig. 2). We will take
the plasma to be a partially ionized gas of electrons (e)
with density ne and mass me, ions (i) with density ni

and mass mi, and neutral atoms (a) with density na

and mass ma. For simplicity, we will assume that the
ions are singly ionized, so that ne � ni � n.

To study the electric fields generated by the motion
of the plasma layer in the magnetic field B, let us write
the generalized Ohm’s law [17]:

E + Ei =
j
σ

+
1

nec
[j × B] − ∇pe

en
(2)

− ξ
F

c2nmiν
′
ia

[[j × B] ×B],

where Ei is the “external” electric field generated
in the layer due to its motion through the magnetic
field B0 and described by (1), j is the electric current
density, B is the self-consistent magnetic field in the
acceleration region, e is the electron charge,

σ =
e2n

me(ν ′
ea + ν ′

ei)
(3)

is the plasma conductivity along the magnetic field,
and

ν ′
ea =

ma

ma + me
νea, ν ′

ia =
ma

ma + mi
νia, (4)

ν ′
ei =

mi

mi + me
νei
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Fig. 1. Field system generated by the motion of Io
through the planetary magnetic field B0. The component
of the charge-separation field Es along the magnetic field
B has different signs in regions a and b .

are the effective rates of collisions of electrons with
ions (ν ′

ei), electrons with neutral particles (ν ′
aa), and

ions with neutrals (ν ′
ia). The coefficient ξ in (2) de-

pends on the relative density of the neutral compo-
nent,

F � nama

nama + nimi
, (5)

and is determined by the expression

ξ =
F 2mi

2ma(1 − F ) + miF
. (6)

If the plasma is weakly ionized (F → 1), ξ � F . On
the other hand, if the degree of ionization is high (F →
0), ξ � F 2mi

2ma
. It was assumed in (2) that the plasma is

at rest in a coordinate system fixed to the layer—i.e.,
that the pressure gradient ∇p = ∇pa + ∇pi + ∇pe is
balanced by the Ampère force (∇p = 1

c j × B)—and
that the plasma is isothermal (Ta = Ti = Te). Gen-
erally speaking, this last condition is not satisfied in
Io’s ionosphere, but this is not of critical importance
for estimating the charge-separation electric field.

Because of the geometric configuration of the
problem, all parameters depend only on x; i.e., ∂

∂y =
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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Fig. 2. Schematic of motion of a two-dimensional layer
of partially ionized plasma through the external magnetic
field B0. The layer walls are inclined at the angle α with
respect to the magnetic field lines.

∂
∂z = 0. The problem is stationary in a coordinate
system fixed to the layer. Therefore, from the relation
rotE = −1

c
∂B
∂t , we find that

Ey = −1
c
V B, (7)

Ez = 0.

Taking projections of (2) onto the x, y, and z axes, we
obtain

Ex =
1

enc
(jyBz − jzBy) − a(jzBxBz + jyBxBy),

(8)

−1
c
V B =

jy

σ
+

1
enc

jzBx + a
[
jy(B2

z + B2
x) (9)

−jzByBz] ,

0 =
jz

σ
− 1

enc
jyBx + a

[
jz(B2

x + B2
y) − jyByBz

]
,

(10)

where

a =
ξ

c2nmiν ′
ia

. (11)

As follows from (10), we can assume without loss
of generality that By = 0, since the condition Ez = 0
can be satisfied by compensating the term due to the
Hall effect 1

encjyBx in (10) by the conduction current
jz

σ and the z component of a [j × B] × B.
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Solving the system of equations (8)–(10) contain-
ing the unknown quantities jy , jz , and Ex, we obtain

jy = −1
c
V Bσ

1 + ξωeτeωiτi sin2 α

A
, (12)

jz = −1
c
V Bσ

ωeτe sinα

A
, (13)

Ex = −1
c
V B

ωeτe cos α

A
, (14)

where

A = 1 + ξωeτeωiτi (15)
+ (ξωeτeωiτi + ξ2ω2
eτ

2
e ω2

i τ
2
i + ω2

eτ
2
e ) sin2 α,

ωe = eB
mec , ωi = eB

mic
, τe = (ν ′

ei + ν ′
ea)

−1, and τi =

(ν ′
ea)

−1. It follows from (14) that the charge-sepa-
ration field is directed toward the moon’s surface in
the upstream part of the region near Io and away from
the surface in the downstream part. The component
of this field along the magnetic field B, which is
responsible for the particle acceleration, is described
by the formula
E|| = −1
c
V B

ωeτe sinα cos α

1 + ξωeτeωiτi + (ξωeτeωiτi + ξ2ω2
eτ

2
e ω2

i τ
2
i + ω2

eτ
2
e ) sin2 α

. (16)
The quantity E|| has different signs on opposite sides
of Io’s equator (regions a and b in Fig. 1). Con-
sequently, the charge-separation field formed in Io’s
ionosphere will produce beams of fast electrons mov-
ing along the magnetic field in opposite directions.
If the electrons are magnetized more strongly than
the ions (ω2

eτ
2
e 	 1, ωeτe 	 ξωiτi), the longitudinal

component of the electric field is maximum when
sinα∗ � 1/ωeτe, i.e., when the magnetic field of the
incoming stream of particles is almost tangential to
the plane of the layer. Then,

Emax
|| � − 1

2c
V B. (17)

When the magnetic-field direction deviates further
from the plane of the plasma layer (sinα 	 sinα∗),
the field sharply decreases:

E||(α) � −1
c
V B

cos α

ωeτe sinα
. (18)

The topology of the magnetic field near Io is not
accurately known. However, it is commonly assumed
that the magnetic field of the incoming stream is
deformed due to the conduction of Io, so that its
field lines adopt the shape of the moon, as if they
were flowing around it [18]. This means that a lon-
gitudinal electric-field component with values of the
order of Emax

|| can exist on scales about equal to Io’s
radius. If the magnetic field in the vicinity of Io is B �
B0 � 1.8 × 10−2 G [7], Io’s velocity relative to the
corotating Jovian magnetosphere is V = VIo � 5.7 ×
106 cm s−1, and Io’s radius is RIo � 1.8× 108 cm, the
energy of the accelerated electrons could be as large
as Wmax

e ∼ e
cVIoBRIo � 100 keV. This estimate is in
agreement with the data obtained by Galileo; as was
noted in the Introduction, Galileo did not detected
beams of fast electrons with energies above 150–
200 keV.

3. ELECTRON ACCELERATION
IN Io’s IONOSPHERE

Let us consider in more detail the acceleration of
electrons in Io’s ionosphere by the field E||, described
by (16) and (17). The plasma in Io’s ionosphere is
weakly ionized. According to the model of [19], the
electron density in the maximum of the ionospheric
layer reaches n � 6 × 104 cm−3, whereas the density
of neutrals is na � 1010 cm−3. The neutral compo-
nent is composed for the most part of SO2 molecules,
with small admixtures of O, SO, O2, and Na. The
ion component is composed of SO+, SO+

2 , S+, O+,
S++, and O++ in various proportions. In accordance
with the model of [20], we will assume that the main
ion in Io’s ionosphere is sulphur oxide SO+ and that
the average charge number is 1.5. The atmospheric
temperature at the altitude h � 50 km (in the maxi-
mum of the F layer) is T � 900 K.

In addition to the electric field E||, the accelerated
electrons are also affected by a resistive force due to
electron–ion and electron–atom collisions. We will
not take into account the electron–ion collisions,
since the electric field under consideration is consid-
erably greater than the Dreicer field, defined as [21]

Ed =
mvTeν

′
ei

e
, (19)
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ELECTRON ACCELERATION IN THE IONOSPHERE OF Io 705
where vTe is the thermal velocity of the electrons. The
corresponding equation of motion of an electron is

me
dv

dt
= eE|| − meν

′
eav, (20)

where the effective rate of collisions between electrons
and neutrals ν ′

ea can be written

ν ′
ea = naSea(v)v. (21)

The quantity v in (20) and (21) is the relative veloc-
ity of the electrons and neutrals, and Sea(v) is the
cross section for elastic collisions of the electrons
with molecules. When the electron energies are small
(We � 1− 3 eV), the cross section can be taken to be
constant for many kinds of atoms, but this constant
varies over a wide range, 5 × 10−14–10−16 cm2 for
various atoms, reaching its largest values in alkali
metals. On the other hand, for sufficiently fast elec-
trons satisfying the inequality

v 	 e2

�
(We 	 10eV), (22)

we can use the Born approximation. In this case,
Sea ∼ 1/v4 (see, for example, [22]); i.e., the cross sec-
tion decreases sharply with increasing velocity. For
simplicity, we will use the following approximation for
the dependence of the cross section on the velocity in
our subsequent analysis:

Sea = S0, v < vB, (23)

Sea = S0
v4
B

v4
, v ≥ vB, (24)

where vB = e2

�
� 2.2 × 108 cm s−1 and S0 = 5 ×

10−14 cm2.
Since collisions with ions can be ignored, the elec-

tric field E|| will accelerate the electrons of the iono-
sphere until the force eE|| is balanced by the frictional
force produced by the neutrals. As follows from (20),
this balance is established when the electron velocity
reaches

vl =
(

eV B

2menaSeac

)1/2

, (25)

where Sea is determined by (23). For the parameters
characteristic of Io’s plasma environment, this veloc-
ity is vl � 5 × 107cm s−1, and exceeds the thermal
velocity of the electrons in Io’s ionosphere (v0

Te =√
κT0
me

� 1.2 × 107 cm s−1 at the electron tempera-

ture T0 = 900 K). As a result, the Buneman instability
will develop in the region where E|| acts, which should
considerably heat the electrons. Consequently, the
number of electrons satisfying condition (22) (whose
cross sections for electron–atom collisions decrease
ASTRONOMY REPORTS Vol. 47 No. 8 2003
with increasing velocity) will increase considerably. In
other words, heating of Io’s ionosphere will generate
an appreciable population of electrons in the runaway
regime, which can be accelerated by the electric field
(17) up to the maximum possible energy. Taking into
account (17), (20), (21), and (24), we can find the
threshold velocity v∗ for which the runaway regime is
possible:

v∗ =
(

2cmenaS0v
4
B

eVB

)1/2

. (26)

When na = 1010 cm−3, V = VIo � 5.7 × 106 cm s−1,
and B = 2 × 10−2 G, this formula gives
v∗ � 109 cm s−1.

If the heated electrons are characterized by a
Maxwellian velocity distribution with temperature Te,
the density of the runaway electrons will be described
by the formula

nr =
n

2
erfc(Z), (27)

where erfc(Z) is the Fresnel probability integral,
whose asymptotics at large values of the argument
(Z 	 1) can be written [23]

erfc(Z) =
1√
πZ

exp(−Z2). (28)

The argument appearing in (27) and (28) is

Z =
v∗ − ven√

2vT
, (29)

where vT =
√

κTe
me

is the thermal velocity of the heated

electrons and ven is the velocity shift of the electron
distribution function with respect to the neutrals due
to the longitudinal electric field (17), which is approx-
imately equal to the velocity shift between the ions
and electrons u that is established by the Buneman
instability. Therefore, to calculate the density of the
accelerated electrons, we must know vT and u, which
are determined by the kinetics of the Buneman insta-
bility.

During the development of the Buneman instabil-
ity, Ohm’s law can be written [24]

j|| =
1
2

(
mi

me

)1/3

ωpeE||. (30)

Hence, assuming j|| = enu, we find the relative ve-
locity of the motion of the electrons and ions to be

u =
1

2en

(
mi

me

)1/3

ωpeE||. (31)
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Fig. 3. (a) Probability of decameter radio emission con-
trolled by Io as a function of Io’s longitude in the λIII

system. (b) Magnetic-field variations along the trajectory
of Io (plot taken from [11]). (c) Deviations of the plasma
torus from Io’s orbital plane. The torus boundaries (plot-
ted by dashed curves) were taken at a distance of 1RJ from
the torus center.

Using (17), we obtain the estimate
u � 1.3 × 107 cm s−1. The rate of electron heating
can be derived from (30):

qe = j||E|| =
1
2

(
mi

me

)1/3

ωpeE
2
||. (32)

The most efficient channel for electron cooling in
Io’s ionosphere is the electron thermal conductivity.
The corresponding energy loss can be estimated by
the formula (for more details, see [25])

qT � 2
nT 2

e

meν ′
eL

2
||
, (33)

where L|| is the characteristic scale for temperature
variations along the magnetic field. If we assume that
electron heating is compensated by cooling due to the
electron thermal conductivity and that L|| ∼ 108 cm,
then relations (32) and (33) yield Te � 3 × 105 K.
Finally, we obtain the estimate of the density of
runaway electrons nr ∼ 5 × 10−2 cm−3. Further, if
the energy of accelerated electrons is equal to the
mean energy E � 80 keV and nr ∼ 5 × 10−2 cm−3,
the flux of fast electrons can be estimated to be
Fe ∼ 102 erg cm−2s−1, which corresponds to a power
for the source of the accelerated electrons P � FeS ∼
1011 W if the area of the stream cross-section is
S ∼ 1016 cm2. This power is sufficient to produce
the observed electromagnetic radiation at decameter
wavelengths ∼109 W. However, we note that the
density of runaway electrons depends substantially on
the intensity of the magnetic field and the neutral-gas
density in the acceleration region. This is associated
with the strong dependence of the argument of the
exponent, Z2, on these quantities in the formula for
nr:

Z2 ∝ B−11/7na. (34)

For example, when na ∼ 6 × 109 cm−3 and B �
1.2× 10−2 G [7], the density of runaway electrons will
be only nr ∼ 2 × 10−5 cm−3, which corresponds to
a flux of Fe ∼ 0.05 erg cm−2 s−1, in agreement with
the Galileo observations [8]. Note also that these
measurements were carried out far from the region
of optimal acceleration.

4. ACTIVE LONGITUDES

As was noted in the previous section, the den-
sity of accelerated electrons depends substantially on
the magnetic field in the acceleration region. Varia-
tions of the magnetic field along the trajectory of Io
could be associated with the presence of so-called
active longitudes—specific parts of Io’s orbit where
the probability of decameter outbursts from Jupiter is
maximum. This probability is shown as a function of
Io’s longitude in the λIII system in Fig. 3a, which we
have drawn using the data of [26].

Io rotates about Jupiter in the plane of its geo-
graphic equator, which does not coincide with the
plane of its magnetic equator, since the axis of
Jupiter’s magnetic dipole is inclined to its rotational
axis by approximately 10◦ in the direction of longitude
λIII � 200◦, whereas the dipole’s center is shifted
by 0.1RJ from the center of mass in the direction
of longitude λIII � 149◦ (where RJ � 71 000 km
is Jupiter’s radius) [11]. This results in a periodic
variation of Jupiter’s magnetic field along the orbit
of Io, which is shown in Fig. 3b as a function of
longitude in the λIII system. In addition, for the same
reason, Io is periodically immersed in the plasma
torus, which is symmetric about themagnetic equator
(or, more exactly, about the centrifugal equator, which
ASTRONOMY REPORTS Vol. 47 No. 8 2003
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is inclined at � 7◦ to the plane of the geographic
equator). Figure 3c shows the deviation of the torus
(in degrees) from Io’s orbital plane (denoted by the
solid line) as a function of longitude in the λIII

system. The torus boundaries (represented by dashed
curves) correspond to the characteristic scale for
variations in the torus density, which is 1RJ. We
can see in Figs. 3a and 3b that the probability of
decameter radio bursts increases when the position
of Io in its orbit (λIII � 120◦–300◦) is such that (1)
the magnetic field is fairly high (1.95 × 10−2–2.2 ×
10−2 G) and (2) the electrons accelerated in the
vicinity of Io can reach the northern hemisphere of
Jupiter without entering Io’s plasma torus.

The acceleration mechanism proposed here is
consistent with these properties. The first of these can
be justified by the following arguments. The increase
in the magnetic field near Io should lead to an increase
in the charge-separation electric field and, conse-
quently, to an increase in the number of runaway
electrons, which are in a regime of continuous accel-
eration. Formally, this follows from expression (34)
for Z2 and formula (27) for nr. Since Z2 	 1, even a
small decrease in Z2 combined with an increase in the
magnetic field B results in a substantial increase in
the density of the accelerated electrons. The increase
in the magnetic field in the vicinity of Io from Bmin �
1.85 × 10−2 G to Bmax = 2.2 × 10−2 G in the course
of the orbital motion should lead to an increase in
the density of runaway electrons by approximately
a factor of 20. Therefore, the fluxes of fast electrons
accelerated near Io will be a factor of a few greater at
the active longitudes.

Next, let us consider the screening action of the
plasma torus. When Io is located beyond the active
longitudes, the fast electrons must cross Io’s plasma
torus to reach the northern hemisphere of Jupiter,
where the main sources of emission controlled by Io
are located. In this case, the fast electrons experience
considerable pitch-angle scattering, due to either col-
lisions with the torus particles or interactions with
plasma waves and whistlers in the torus [27]. As a
result, a considerable number of fast particles are
scattered out of the pitch-angle interval 1.5◦–2.5◦,
within which the electrons can reach the heights
where the decameter radio emission is generated,
leading to a decrease in the efficiency of generation of
this emission. For example, the increment of plasma-
wave excitation in the torus of Io is of the order
of γ �

(
nr
n

)
ωpe � 60 s−1 when nr � 5 × 10−2 cm−3

and n � 2 × 103 cm−3 [28]. The time for the passage
of the fast electrons through Io’s plasma torus is τ ∼
RJ
v � 0.8 s for particles with energies for their longi-

tudinal motion E = E = 80 keV. Therefore, γτ � 50,
and the fast electrons can be substantially scattered
ASTRONOMY REPORTS Vol. 47 No. 8 2003
by the excited plasma waves. Note that, if the pitch-
angle interval of the accelerated electrons broadens,
the southward electron fluxes excited by Io at the
active longitudes should be substantially attenuated
when they reach the heights where the decameter
radio emission is generated, providing an explanation
for the fact that such emission is excited primarily in
the north hemisphere.

5. CONCLUSIONS

The electron-acceleration mechanism we have
considered here is based on the presence of a con-
ductive ionosphere associated with Io and the motion
of this ionosphere through Jupiter’s magnetic field.
Io’s ionosphere has a thickness of a few hundred
kilometers [10], so that the moon’s motion through
the magnetic field induces an electric field Ei =
(1/c)[V × B] in the ionosphere. This field generates
a Hall current j ∼ [B × [V ×B]] directed toward
Io’s surface. Since this current cannot be closed
through the surface, a charge-separation electric
field is formed, which has a component along the
magnetic field, and this component accelerates elec-
trons. The maximum accelerating field, on the order
of (1/2c)VIoB, is formed in the upstream part of Io’s
ionosphere, where the magnetic field is almost parallel
to the plasma layer.

The basic parameters of the resulting streams of
fast electron can be summarized as follows.

—The maximum energy of the accelerated elec-
trons is about 100 keV.

—The beams propagate in both directions along
the magnetic field with approximately equal intensi-
ties [see (16) for E|| for α > 0 and α < 0].

—The energy flux carried by the beams is suffi-
cient to feed the sources of electromagnetic radiation
located in regions of the Jovian magnetosphere and
ionosphere that are intersected by Io’s magnetic tube.

The acceleration mechanism can explain the ex-
istence of active longitudes associated with the radio
emission of Jupiter, as well as the predominant loca-
tion of most of these sources in the northern hemi-
sphere: the emission probability increases sharply
when Io is at longitudes λIII(Io) � 120◦–300◦. This
is the case when the accelerated streams of electron
are increased due to the increased magnetic field
in the vicinity of Io, and there is no appreciable
pitch-angle scattering of the electrons moving in the
northward direction due to the minimum influence of
Io’s torus in this case.



708 ZAĬTSEV et al.
ACKNOWLEDGMENTS

This work was supported by the Russian Foun-
dation for Basic Research (project codes 02-02-
16239 and 01-02-17252), the Program “Nonsta-
tionary Phenomena in Astronomy” of the Presidium
of the Russian Academy of Sciences, the Program
OFN (Russian Academy of Sciences), the Program
of Support for Leading Scientific Schools, RFFI–
NNIO grant no. 02-0204005, and the Commis-
sion on International Cooperation of the Austrian
Academy of Sciences.

REFERENCES
1. E. K. Bigg, Nature 203, 1008 (1964).
2. I. Fillius, in Jupiter, Ed. by T. Gerels (Univ. of Ari-

zona, Tucson, 1976; Mir, Moscow, 1979), Vol. 3.
3. D. A. van Allen, in Jupiter, Ed. by T. Gerels (Univ. of

Arizona, Tucson, 1976; Mir, Moscow, 1979), Vol. 3.
4. L. A. Frank, K. A. Ackerson, J. H. Wolfe, and

J. D. Mihalov, J. Geophys. Res. 81, 457 (1976).
5. S. M. Krimigis and E. C. Roelot, Physics of the

Jovian Magnetosphere, Ed. by A. J. Dessler (Cam-
bridge Univ. Press, Cambridge, 1983), p. 106.

6. L. A. Frank, W. R. Paterson, K. L. Ackerson, et al.,
Science 274, 394 (1996).

7. M. G. Kivelson, K. K. Khurana, R. J. Walker, et al.,
Science 273, 337 (1996).

8. D. J. Williams, B. H. Mauk, R. E. McEntire, et al.,
Science 274, 401 (1996).

9. F. Bagenal, Geophys. Res. Lett. 24, 2111 (1997).
10. D. P. Hinson, A. Kliore, F. M. Flasar, et al., J. Geo-

phys. Res. 103, 29343 (1998).
11. M. H. Acuna, K. W. Behannon, and J. E. P. Con-

nerney, Physics of the Jovian Magnetosphere, Ed.
by A. J. Dessler (Cambridge Univ. Press, Cambridge,
1983), p. 1.

12. D. A. Gurnett, Astrophys. J. 175, 525 (1972).
13. S. D. Shawhan, J. Geophys. Res. 81, 3373 (1976).
14. R. A. Smith and C. K. Goertz, J. Geophys. Res. 83,

2617 (1978).
15. F. Crary, J. Geophys. Res. 102, 37 (1997).
16. A. F. Cheng and C. Paranicas,Geophys. Res. Lett. 25,

833 (1998).
17. V. V. Zaitsev and A. V. Stepanov, Solar Phys. 140, 149

(1992).
18. C. K. Goertz and A. Haschick, Planet. Space Sci. 21,

1399 (1973).
19. S. Kumar and D. M. Hunten, Satellites of Jupiter,

Ed. by D. Morrison (Univ. of Arizona, Tucson, 1982),
p. 783.

20. M. E. Summers and D. F. Strobel, Icarus 120, 290
(1996).

21. A. F. Aleksandrov, L. S. Bogdankevich, and
A. A. Rukhadze, Foundations of Plasma
Electrodynamics [in Russian] (Vysshaya Shkola,
Moscow, 1978).

22. I. E. Golant, A. P. Zhilinskiı̆, and S. A. Sakharov,
Foundations of Plasma Physics [in Russian] (At-
omizdat, Moscow, 1977).

23. Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, Ed. by
M. Abramowitz and I. Stegun (Dover, New York,
1965; Nauka, Moscow, 1979).

24. S. A. Kaplan and V. N. Tsytovich, Plasma Astro-
physics [in Russian] (Nauka, Moscow, 1972).

25. A. V. Gurevich and A. B. Shvartsburg, Nonlinear
Theory of Wave Propagation in the Ionosphere [in
Russian] (Nauka, Moscow, 1973).

26. F. Genova and W. Calvert, J. Geophys. Res. 93, 979
(1988).

27. D. A. Gurnett, W. S. Kurth, A. Roux, et al., Science
274, 391 (1996).

28. V. V. Zheleznyakov, Radiation in Astrophysical
Plasmas [in Russian] (Yanus-K, Moscow, 1997).

Translated by Yu. Dumin
ASTRONOMY REPORTS Vol. 47 No. 8 2003


	621_1.pdf
	637_1.pdf
	648_1.pdf
	660_1.pdf
	670_1.pdf
	679_1.pdf
	685_1.pdf
	694_1.pdf
	701_1.pdf

